FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Bakker, M Kuhlman, KL AF Bakker, Mark Kuhlman, Kristopher L. TI Computational issues and applications of line-elements to model subsurface flow governed by the modified Helmholtz equation SO ADVANCES IN WATER RESOURCES LA English DT Article DE Analytic elements; Line elements; Transient flow; Laplace transform ID POROUS-MEDIA FLOW; LAPLACE-TRANSFORM; MATHIEU FUNCTIONS; ANALYTIC ELEMENTS; GROUNDWATER-FLOW; AQUIFER SYSTEMS; EIGENVALUES; ALGORITHMS AB Two new approaches are presented for the accurate computation of the potential due to line elements that satisfy the modified Helmholtz equation with complex parameters. The first approach is based on fundamental solutions in elliptical coordinates and results in products of Mathieu functions. The second approach is based on the integration of modified Bessel functions. Both approaches allow evaluation of the potential at any distance from the element. The computational approaches are applied to model transient flow with the Laplace transform analytic element method. The Laplace domain solution is computed using a combination of point elements and the presented line elements. The time domain solution is obtained through a numerical inversion. Two applications are presented to transient flow fields, which could not be modeled with the Laplace transform analytic element method prior to this work. The first application concerns transient single-aquifer flow to wells near impermeable walls modeled with line-doublets. The second application concerns transient two-aquifer flow to a well near a stream modeled with line-sinks. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Bakker, Mark] Delft Univ Technol, Fac Civil Engn & Geosci, Water Resources Sect, Delft, Netherlands. [Kuhlman, Kristopher L.] Sandia Natl Labs, Repository Performance Dept, Carlsbad, NM USA. RP Bakker, M (reprint author), Delft Univ Technol, Fac Civil Engn & Geosci, Water Resources Sect, Delft, Netherlands. EM mark.bakker@tudelft.nl; klkuhlm@sandia.gov RI Kuhlman, Kristopher/I-7283-2012; OI Kuhlman, Kristopher/0000-0003-3397-3653; Bakker, Mark/0000-0002-5629-2861 FU Layne Hydro in Bloomington, IN; US EPA Ecosystems Research Division in Athens, GA [QT-RT-10-000812] FX Development of the integral line-sinks was funded in part by Layne Hydro in Bloomington, IN. Integral line-sinks are implemented in the Trim code, which was developed at the Delft University of Technology for the US EPA Ecosystems Research Division in Athens, GA under contract QT-RT-10-000812 to SS Papadopulos in Bethesda, MD. The Trim code is available from ttim.googlecode.com. NR 40 TC 10 Z9 10 U1 0 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD SEP PY 2011 VL 34 IS 9 SI SI BP 1186 EP 1194 DI 10.1016/j.advwatres.2011.02.008 PG 9 WC Water Resources SC Water Resources GA 830JQ UT WOS:000295653700011 ER PT J AU Blanch, HW Simmons, BA Klein-Marcuschamer, D AF Blanch, Harvey W. Simmons, Blake A. Klein-Marcuschamer, Daniel TI Biomass deconstruction to sugars SO BIOTECHNOLOGY JOURNAL LA English DT Review DE Biofuels; Lignocellulosic biomass; Pretreatment; White/Industrial biotechnology ID IONIC LIQUID PRETREATMENT; DILUTE-ACID PRETREATMENT; HOT-COMPRESSED WATER; FIBER EXPLOSION AFEX; CORN STOVER; ENZYMATIC-HYDROLYSIS; SACCHAROMYCES-CEREVISIAE; ETHANOL-PRODUCTION; 1-N-BUTYL-3-METHYLIMIDAZOLIUM CHLORIDE; LIGNOCELLULOSIC MATERIALS AB The production of biofuels from lignocellulosic biomass relies on the depolymerization of its polysaccharide content into fermentable sugars. Accomplishing this requires pretreatment of the biomass to reduce its size, and chemical or physical alteration of the biomass polymers to enhance the susceptibility of their glycosidic linkages to enzymatic or acid catalyzed cleavage. Well-studied approaches include dilute and concentrated acid pretreatment and catalysis, and the dissolution of biomass in organic solvents. These and recently developed approaches, such as solubilization in ionic liquids, are reviewed in terms of the chemical and physical changes occurring in biomass pretreatment. As pretreatment represents one of the major costs in converting biomass to fuels, the factors that contribute to pretreatments costs, and their impact on overall process economics, are described. C1 [Blanch, Harvey W.; Simmons, Blake A.; Klein-Marcuschamer, Daniel] Joint BioEnergy Inst, Emeryvill, CA 94608 USA. [Blanch, Harvey W.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Simmons, Blake A.] Sandia Natl Labs, Livermore, CA USA. RP Blanch, HW (reprint author), Joint BioEnergy Inst, 5885 Hollis St, Emeryvill, CA 94608 USA. EM blanch@berkeley.edu OI Simmons, Blake/0000-0002-1332-1810 FU Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 99 TC 59 Z9 59 U1 7 U2 95 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1860-6768 J9 BIOTECHNOL J JI Biotechnol. J. PD SEP PY 2011 VL 6 IS 9 SI SI BP 1086 EP 1102 DI 10.1002/biot.201000180 PG 17 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 831FK UT WOS:000295713900006 PM 21834132 ER PT J AU Cornejo-Garrido, H Kibanova, D Nieto-Camacho, A Guzman, J Ramirez-Apan, T Fernandez-Lomelin, P Garduno, ML Cervini-Silva, J AF Cornejo-Garrido, Hilda Kibanova, Daria Nieto-Camacho, Antonio Guzman, Jose Ramirez-Apan, Teresa Fernandez-Lomelin, Pilar Laura Garduno, Maria Cervini-Silva, Javiera TI Oxidative stress, cytoxicity, and cell mortality induced by nano-sized lead in aqueous suspensions SO CHEMOSPHERE LA English DT Article DE Water-stable; Stable nanoparticles; Lipid peroxidation; Lead nanoparticles; Biological activity ID LIPID-PEROXIDATION; RAT-BRAIN; HYDROXAMATE SIDEROPHORES; BRINE SHRIMP; NITRIC-OXIDE; IRON; DISSOLUTION; ADSORPTION; PB(II); GROWTH AB This paper reports on the effect of aqueous and nano-particulated Pb on oxidative stress (lipid peroxidation), cytoxicity, and cell mortality. As determined by the Thiobarbituric Acid Reactive Substances (TBARS) method, only 6 h after incubation aqueous suspensions bearing nano-sized PbO2, soluble Pb(II), and brain-homogenate only suspensions, were determined to contain as much as ca. 7, 5, and 1 nmol TBARS mg protein(-1), respectively. Exposure of human cells (central nervous system, prostate, leukemia, colon, breast, lung cells) to nano-PbO2 led to cell-growth inhibition values (%) Ca. <= 18.7%. Finally, as estimated by the Artemia sauna test, cell mortality values were found to show high-survival larvae rates. Microscopic observations revealed that Pb particles were swallowed, but caused no mortality, however. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Cornejo-Garrido, Hilda; Kibanova, Daria; Laura Garduno, Maria; Cervini-Silva, Javiera] Univ Autonoma Metropolitana Cuajimalpa, Dept Proc & Tecnol, Mexico City, DF, Mexico. [Cornejo-Garrido, Hilda] Univ Nacl Autonoma Mexico, Posgrado Ciencias Tierra, Mexico City 04510, DF, Mexico. [Nieto-Camacho, Antonio; Ramirez-Apan, Teresa] Univ Nacl Autonoma Mexico, Lab Ciencias Biolog, Inst Quim, Mexico City 04510, DF, Mexico. [Guzman, Jose] Cent Invest Ciencia Aplicada & Tecnol Avanzada, Unidad Legaria, Mexico City, DF, Mexico. [Fernandez-Lomelin, Pilar] Univ Nacl Autonoma Mexico, Inst Geog, Mexico City 04510, DF, Mexico. [Cervini-Silva, Javiera] NASA, Astrobiol Inst, Washington, DC USA. [Cervini-Silva, Javiera] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. RP Cervini-Silva, J (reprint author), Univ Autonoma Metropolitana Cuajimalpa, Dept Proc & Tecnol, Artificios 40,6 Piso Col Miguel Hidalgo, Mexico City, DF, Mexico. EM jcervini@correo.cua.uam.mx FU Universidad Autifinoma Metropolitana Unidad Cuajimalpa; ECACORE (SEMARNAT CONACYT) [23496] FX HC-G gratefully acknowledges the support of an undergraduate fellowship from DGAPA-UNAM. The authors are most grateful to Drs. Ben Gilbert and Zhao Hao (LBNL) for technical assistance. The authors would like to express their sincere appreciation to Dr. Rebecca Sutton (Environmental Working Group, Oakland, CA) who provided insightful comments and helpful suggestions which have substantially improved this manuscript. The authors thank Lic. Maria del Rocio Galindo Ortega (UAM-Cuajimalpa), and M. in Sc. Claudia Rivera Cerecedo and Hector Malagon Rivera (Bioterio, lnstituto de Fisiologia Celular, UNAM) for technical assistance. This project was supported in part by Universidad Autifinoma Metropolitana Unidad Cuajimalpa and ECACORE 2020 (SEMARNAT CONACYT 23496). NR 61 TC 15 Z9 18 U1 2 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD SEP PY 2011 VL 84 IS 10 BP 1329 EP 1335 DI 10.1016/j.chemosphere.2011.05.018 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA 828YX UT WOS:000295542400004 PM 21640370 ER PT J AU Anderson, LA McGillicuddy, DJ Maltrud, ME Lima, ID Doney, SC AF Anderson, Laurence A. McGillicuddy, Dennis J., Jr. Maltrud, Mathew E. Lima, Ivan D. Doney, Scott C. TI Impact of eddy-wind interaction on eddy demographics and phytoplankton community structure in a model of the North Atlantic Ocean SO DYNAMICS OF ATMOSPHERES AND OCEANS LA English DT Article DE Mesoscale eddies; Phytoplankton; Community composition; Air-sea interaction; Wind stress; Ekman pumping; 25-30 degrees N 58-68 degrees W ID SARGASSO SEA; CYANOBACTERIUM TRICHODESMIUM; NITROGEN-FIXATION; FLUX MEASUREMENTS; MESOSCALE EDDY; TIME-SERIES; WATER EDDY; RESOLUTION; EDDIES; LAYER AB Two eddy-resolving (0.1 degrees) physical biological simulations of the North Atlantic Ocean are compared, one with the surface momentum flux computed only from wind velocities and the other using the difference between air and ocean velocity vectors. This difference in forcing has a significant impact on the intensities and relative number of different types of mesoscale eddies in the Sargasso Sea. Eddy/wind interaction significantly reduces eddy intensities and increases the number of mode-water eddies and "thinnies" relative to regular cyclones and anticyclones; it also modifies upward isopycnal displacements at the base of the euphotic zone, increasing them in the centers of mode water eddies and at the edges of cyclones, and decreasing them in the centers of cyclones. These physical changes increase phytoplankton growth rates and biomass in mode-water eddies, bringing the biological simulation into better agreement with field data. These results indicate the importance of including the eddy/wind interaction in simulations of the physics and biology of eddies in the subtropical North Atlantic. However, eddy intensities in the simulation with eddy/wind interaction are lower than observed, which suggests a decrease in horizontal viscosity or an increase in horizontal grid resolution will be necessary to regain the observed level of eddy activity. (C) 2011 Elsevier B.V. All rights reserved. C1 [Anderson, Laurence A.; McGillicuddy, Dennis J., Jr.] Woods Hole Oceanog Inst, Dept Appl Ocean Phys & Engn, Woods Hole, MA 02543 USA. [Maltrud, Mathew E.] Los Alamos Natl Lab, Div Theoret, Fluid Dynam Grp, Los Alamos, NM USA. [Lima, Ivan D.; Doney, Scott C.] Woods Hole Oceanog Inst, Dept Marine Chem & Geochem, Woods Hole, MA 02543 USA. RP Anderson, LA (reprint author), Bigelow Bldg,Rm 411,WHOI MS 9, Woods Hole, MA 02543 USA. EM landerson@whoi.edu RI Doney, Scott/F-9247-2010; Lima, Ivan/A-6823-2016; OI Doney, Scott/0000-0002-3683-2437; Lima, Ivan/0000-0001-5345-0652; Anderson, Laurence/0000-0002-4281-6847 FU NASA [07-CARBON07-17]; NSF Center for Microbial Oceanography, Research and Education (C-MORE) [NSF EF-0424599] FX We would like to thank Many Friedrichs for providing the Regional Testbed code, Jeff Dusenberry for implementation of the BEC model into the Regional Testbed, and Valery Kosnyrev for retrieval of the AVISO data. The simulations were run on the supercomputer Pleiades at NASA Ames Research Center using 512 parallel cores. LAA and DJM gratefully acknowledge the support of NASA grant 07-CARBON07-17. SCD and IDL gratefully acknowledge support from the NSF Center for Microbial Oceanography, Research and Education (C-MORE; NSF EF-0424599). NR 56 TC 9 Z9 9 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0377-0265 J9 DYNAM ATMOS OCEANS JI Dyn. Atmos. Oceans PD SEP PY 2011 VL 52 IS 1-2 SI SI BP 80 EP 94 DI 10.1016/j.dynatmoce.2011.01.003 PG 15 WC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Oceanography SC Geochemistry & Geophysics; Meteorology & Atmospheric Sciences; Oceanography GA 828KD UT WOS:000295499000006 ER PT J AU Chow, WW Lorke, M Jahnke, F AF Chow, Weng W. Lorke, Michael Jahnke, Frank TI Will Quantum Dots Replace Quantum Wells As the Active Medium of Choice in Future Semiconductor Lasers? SO IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS LA English DT Article DE Semiconductor quantum-dot laser theory ID GAIN; THRESHOLD; AMPLIFIERS; DYNAMICS; DIODE AB The lasing capabilities and limitations of quantum dots are assessed using a first-principles theory with a rigorous treatment of relevant physics and without the free parameters plaguing predictive capabilities in usual gain calculations. Our results reveal quantitatively the extent the reduced threshold advantage is confronted with a larger sensitivity to saturation effects. Added to this intrinsic constraint is the present experimental performance limitation arising from inhomogeneous broadening due to growth fluctuations. C1 [Chow, Weng W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Lorke, Michael; Jahnke, Frank] Univ Bremen, Inst Theoret Phys, D-28334 Bremen, Germany. RP Chow, WW (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM wwchow@sandia.gov; mlorke@itp.uni-bremen.de; frank.jahnke@itp.uni-bremen.de FU Deutsche Forschungsgemeinschaft; NIC of Forschungszentrum Julich; Sandia National Laboratories; U.S. Department of Energy [DE-AC04-94AL85000]; Humboldt Foundation FX This work was supported in part by the Deutsche Forschungsgemeinschaft, by the NIC of Forschungszentrum Julich, by the Laboratory Directed Research and Development program at Sandia National Laboratories, by the U.S. Department of Energy under Contract DE-AC04-94AL85000, and by the Humboldt Foundation. NR 38 TC 8 Z9 8 U1 0 U2 12 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1077-260X J9 IEEE J SEL TOP QUANT JI IEEE J. Sel. Top. Quantum Electron. PD SEP-OCT PY 2011 VL 17 IS 5 BP 1349 EP 1355 DI 10.1109/JSTQE.2011.2157085 PG 7 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 829MK UT WOS:000295586100028 ER PT J AU Dean, J Braun, R Penev, M Kinchin, C Munoz, D AF Dean, Jered Braun, Robert Penev, Michael Kinchin, Christopher Munoz, David TI Leveling Intermittent Renewable Energy Production Through Biomass Gasification-Based Hybrid Systems SO JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article DE air pollution control; bioenergy conversion; environmental economics; fuel gasification; hybrid power systems; hydrogen production; power generation dispatch; power generation reliability; steam reforming; taxation; wind power plants ID FUTURE AB The increased use of intermittent renewable power in the United States is forcing utilities to manage increasingly complex supply and demand interactions. This paper evaluates biomass pathways for hydrogen production and how they can be integrated with renewable resources to improve the efficiency, reliability, dispatchability, and cost of other renewable technologies. Two hybrid concepts were analyzed that involve coproduction of gaseous hydrogen and electric power from thermochemical biorefineries. Both of the concepts analyzed share the basic idea of combining intermittent wind-generated electricity with a biomass gasification plant. The systems were studied in detail for process feasibility and economic performance. The best performing system was estimated to produce hydrogen at a cost of $1.67/kg. The proposed hybrid systems seek to either fill energy shortfalls by supplying hydrogen to a peaking natural gas turbine or to absorb excess renewable power during low-demand hours. Direct leveling of intermittent renewable electricity production was proposed utilizing either an indirectly heated biomass gasifier or a directly heated biomass gasifier. The indirect gasification concepts studied were found to be cost competitive in cases where value is placed on controlling carbon emissions. A carbon tax in the range of $26-40 per metric ton of CO(2) equivalent (CO(2)e) emission makes the systems studied cost competitive with steam methane reforming (SMR) to produce hydrogen. The direct gasification concept studied replaces the air separation unit (ASU) with an electrolyzer bank and is unlikely to be cost competitive due to high capital costs. Based on a direct replacement of the ASU with electrolyzers, hydrogen can be produced for $0.27 premium per kilogram. Additionally, if a nonrenewable, grid-mix electricity is used, the hybrid system is found to be a net CO(2)e emitter. [DOI: 10.1115/1.4004788] C1 [Dean, Jered; Braun, Robert; Munoz, David] Colorado Sch Mines, Golden, CO 80401 USA. [Penev, Michael; Kinchin, Christopher] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Dean, J (reprint author), Colorado Sch Mines, Golden, CO 80401 USA. FU U.S. Dept. of Energy [DE-AC36-08GO28308] FX Employees of the Alliance for Sustainable Energy, LLC, under Contract No. DE-AC36-08GO28308 with the U.S. Dept. of Energy have authored this work. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes. NR 35 TC 4 Z9 4 U1 1 U2 15 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0195-0738 J9 J ENERG RESOUR-ASME JI J. Energy Resour. Technol.-Trans. ASME PD SEP PY 2011 VL 133 IS 3 AR 031801 DI 10.1115/1.4004788 PG 11 WC Energy & Fuels SC Energy & Fuels GA 829YL UT WOS:000295622800007 ER PT J AU Price, JE Coulterpark, KA Masiello, T Nibler, JW Weber, A Maki, A Blake, TA AF Price, J. E. Coulterpark, K. A. Masiello, T. Nibler, J. W. Weber, A. Maki, A. Blake, T. A. TI High-resolution infrared spectra of spiropentane, C5H8 SO JOURNAL OF MOLECULAR SPECTROSCOPY LA English DT Article DE Spiropentane; High-resolution infrared spectrum; Rovibrational constants; DFT study; Anharmonic frequencies ID ELECTRON-DIFFRACTION; MOLECULAR-STRUCTURE; NEMATIC SOLVENT; CYCLOBUTANE; SPECTROSCOPY; PERTURBATIONS; RESONANCE; BANDS; NMR AB Infrared spectra of spiropentane (C5H8) have been recorded at a resolution (0.002 cm(-1)) sufficient to resolve for the first time individual rovibrational lines. This initial report presents the ground state rotational constants for this molecule determined from the detailed analysis of the nu(16) (b(2)) parallel band at 993 cm(-1). In addition, the determination included more than 2000 ground state combination-differences deduced from partial analyses of four other infrared-allowed bands, the nu(24)(e) perpendicular band at 780 cm(-1) and three (b(2)) parallel bands at 1540 cm(-1) (nu(14)), 1568 cm(-1) (nu(5) + v(16)), and 2098 cm(-1) (nu(5) + nu(14)). In each of the latter four cases, the spectra show complications: in the case of nu(24), these complications are due to rotational l-type doublings, and in the case of the parallel bands, the spectral complexities are due to Fermi resonance and Coriolis interactions of the upper states with nearby levels. The unraveling of these is underway but the assignment of many of these transitions permit the confident use of the ground state differences in determining the following constants for the ground state (in units of cm(-1)): B-0 = 0.1394741(1), D-J = 2.461(1) x 10(-8), D-JK = 8.69(3) x 10(-8). For the unperturbed nu(16) fundamental, more than 3000 transitions were fit and the band origin was found to be at 992.53793(3) cm(-1). The numbers in parentheses are the uncertainties (two standard deviations) in the value of the last digit of the constants. Surprisingly, the very accurate B-0 value measured here is lower than the value (0.1418 cm(-1)) calculated from an electron diffraction structure, instead of being higher, as expected. Where possible, the rovibrational results are compared with those computed at the anharmonic level using the B3LYP density functional method with a cc-pVTZ basis set. These too suggest that the electron diffraction results are in question. (C) 2011 Elsevier Inc. All rights reserved. C1 [Price, J. E.; Coulterpark, K. A.; Nibler, J. W.] Oregon State Univ, Dept Chem, Corvallis, OR 97332 USA. [Masiello, T.] Calif State Univ Hayward, Dept Chem & Biochem, Hayward, CA 94542 USA. [Weber, A.] NIST, Opt Technol Div, Gaithersburg, MD 20899 USA. [Blake, T. A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Nibler, JW (reprint author), Oregon State Univ, Dept Chem, Corvallis, OR 97332 USA. EM Niblerj@chem.orst.edu FU Camille and Henry Dreyfus Senior Scientist Mentor Award; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory (PNNL); United States Department of Energy by the Battelle Memorial Institute [DE-AC0w5-76RLO 1830] FX J. Nibler acknowledges a Camille and Henry Dreyfus Senior Scientist Mentor Award which provided support of undergraduates Joseph Price and Kathryn Coulterpark. The infrared spectra were recorded at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the United States Department of Energy by the Battelle Memorial Institute under contract DE-AC0w5-76RLO 1830. We thank Robert Sams of PNNL for helpful advice and assistance in recording the infrared spectra of spiropentane at this facility. We also thank Professors Kenneth Hedberg of Oregon State University and Norman Craig of Oberlin College for illuminating discussions of the electron diffraction study of spiropentane and of subtleties of the Gaussian calculations, respectively. NR 45 TC 3 Z9 3 U1 2 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-2852 J9 J MOL SPECTROSC JI J. Mol. Spectrosc. PD SEP PY 2011 VL 269 IS 1 BP 129 EP 136 DI 10.1016/j.jms.2011.05.011 PG 8 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 827JI UT WOS:000295424400019 ER PT J AU Hagos, S Leung, LR Dudhia, J AF Hagos, Samson Leung, L. Ruby Dudhia, Jimy TI Thermodynamics of the Madden-Julian Oscillation in a Regional Model with Constrained Moisture SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID TROPICAL INTRASEASONAL VARIABILITY; CONVECTIVE PARAMETERIZATION; STRATIFORM INSTABILITY; SCALE CIRCULATIONS; SUMMER MONSOON; WAVE; PACIFIC; PRECIPITATION; ATMOSPHERE; RADIATION AB To identify the main thermodynamic processes that sustain the Madden-Julian oscillation (MJO), an eddy available potential energy budget analysis is performed on a regional model simulation with moisture constrained by observations. The model realistically simulates the two MJO episodes observed during the winter of 2007/08. Analysis of these two cases shows that instabilities and damping associated with variations in diabatic heating and energy transport work in concert to provide the MJO with its observed characteristics. The results are used to construct a simplified paradigm of MJO thermodynamics. Furthermore, the effect of moisture nudging on the simulation is analyzed to identify the limitations of the model cumulus parameterization. Without moisture nudging, the parameterization fails to provide adequate low-level (upper level) moistening during the early (late) stage of the MJO active phase. The moistening plays a critical role in providing stratiform heating variability that is an important source of eddy available potential energy for the model MJO. C1 [Hagos, Samson; Leung, L. Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. [Dudhia, Jimy] NCAR, Boulder, CO USA. RP Hagos, S (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM samson.hagos@pnl.gov RI Dudhia, Jimy/B-1287-2008; hagos, samson /K-5556-2012 OI Dudhia, Jimy/0000-0002-2394-6232; FU U.S. Department of Energy [DE-AC06-76RLO1830] FX The authors thank Drs. Chidong Zhang, William Gustafson, and Brian Mapes for their comments and suggestions. This work is supported by U.S. Department of Energy under the Atmospheric Systems Research Program. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RLO1830. NR 46 TC 15 Z9 15 U1 0 U2 4 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD SEP PY 2011 VL 68 IS 9 BP 1974 EP 1989 DI 10.1175/2011JAS3592.1 PG 16 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 823WF UT WOS:000295157100009 ER PT J AU Romps, DM Kuang, ZM AF Romps, David M. Kuang, Zhiming TI A Transilient Matrix for Moist Convection SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Article ID ICE-PHASE MICROPHYSICS; PACIFIC WARM POOL; BOUNDARY-LAYER; TURBULENCE THEORY; PART I; PARAMETERIZATION; ATMOSPHERE; SHALLOW; PLUMES; MODEL AB A method is introduced for diagnosing a transilient matrix for moist convection. This transilient matrix quantifies the nonlocal transport of air by convective eddies: for every height z, it gives the distribution of starting heights z' for the eddies that arrive at z. In a cloud-resolving simulation of deep convection, the transilient matrix shows that two-thirds of the subcloud air convecting into the free troposphere originates from within 100 m of the surface. This finding clarifies which initial height to use when calculating convective available potential energy from soundings of the tropical troposphere. C1 [Romps, David M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Romps, David M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Kuang, Zhiming] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. RP Romps, DM (reprint author), Univ Calif Berkeley, Dept Earth & Planetary Sci, 377 McCone Hall, Berkeley, CA 94720 USA. EM romps@berkeley.edu RI Romps, David/F-8285-2011 FU Office of Biological and Environmental Research of the U.S. Department of Energy [DE-FG02-08ER64556]; Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231]; NSF [ATM-0754332] FX This research was supported by the Office of Biological and Environmental Research of the U.S. Department of Energy under Grant DE-FG02-08ER64556 as part of the Atmospheric Radiation Measurement Program, by the Director, Office of Science, of the U.S. Department of Energy under Contract DE-AC02-05CH11231, and by NSF Grant ATM-0754332. NR 41 TC 11 Z9 11 U1 1 U2 14 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD SEP PY 2011 VL 68 IS 9 BP 2009 EP 2025 DI 10.1175/2011JAS3712.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 823WF UT WOS:000295157100011 ER PT J AU Held, MA Be, E Zemelis, S Withers, S Wilkerson, C Brandizzi, F AF Held, Michael A. Be, Evan Zemelis, Starla Withers, Saunia Wilkerson, Curtis Brandizzi, Federica TI CGR3: A Golgi-Localized Protein Influencing Homogalacturonan Methylesterification SO MOLECULAR PLANT LA English DT Article DE Golgi; methyltransferase; homogalacturonan; pectin ID PLANT-CELL WALLS; PECTIN METHYLTRANSFERASE; MONOCLONAL-ANTIBODIES; METHIONINE BIOSYNTHESIS; ENDOPLASMIC-RETICULUM; S-ADENOSYLMETHIONINE; FLOWERING PLANTS; COTTON FIBER; ATTED-II; ARABIDOPSIS AB Plant cell walls are complex structures that offer structural and mechanical support to plant cells and are ultimately responsible for plant architecture and form. Pectins are a large group of complex polysaccharides of the plant cell wall that are made in the Golgi and secreted to the wall. The methylesterification of pectins is believed to be an important factor for the dynamic properties of the cell wall. Here, we report on a protein of unknown function discovered using an extensive proteomics analysis of cotton Golgi. Through bioinformatic analyses, we identified the ortholog of such protein, here named cotton Golgi-related 3 (CGR3) in Arabidopsis and found that it shares conserved residues with S-adenosylmethionine methyltransferases. We established that CGR3 is localized at the Golgi apparatus and that the expression of the CGR3 gene is correlated with that of several cell wall biosynthetic genes, suggesting a possible role of the protein in pectin modifications. Consistent with this hypothesis, immunofluorescence microscopy with antibodies for homogalacturonan pectins (HG) indicated that the cell walls of cgr3 knockout mutants and plants overexpressing CGR3 are decreased and increased in HG methylesterification, respectively. Our results suggest that CGR3 plays a role in the methylesterification of homogalacturonan in Arabidopsis. C1 [Held, Michael A.; Zemelis, Starla; Brandizzi, Federica] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Held, Michael A.; Be, Evan; Zemelis, Starla; Withers, Saunia; Wilkerson, Curtis; Brandizzi, Federica] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Wilkerson, Curtis] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. RP Brandizzi, F (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. EM fb@msu.edu OI Held, Michael/0000-0003-2604-8048 FU Department of Energy Great Lakes Bioenergy Research Center; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy [DE-FG02-91ER20021] FX We acknowledge support by the Department of Energy Great Lakes Bioenergy Research Center and the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy (award number DE-FG02-91ER20021). NR 60 TC 17 Z9 17 U1 1 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1674-2052 EI 1752-9867 J9 MOL PLANT JI Mol. Plant. PD SEP PY 2011 VL 4 IS 5 BP 832 EP 844 DI 10.1093/mp/ssr012 PG 13 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 828PW UT WOS:000295515500006 PM 21422118 ER PT J AU Ouellet, C Singh, B AF Ouellet, Christian Singh, Balraj TI Nuclear Data Sheets for A=32 SO NUCLEAR DATA SHEETS LA English DT Article ID NEUTRON-RICH NUCLEI; BEAM GAMMA-SPECTROSCOPY; N=20 SHELL CLOSURE; DOUBLE-CHARGE-EXCHANGE; S-D SHELL; ACCELERATOR MASS-SPECTROMETRY; ELECTRIC QUADRUPOLE-MOMENTS; LOW-ENERGY RESONANCES; BETA-DELAYED PROTON; N = 20 AB Nuclear spectroscopic information for experimentally investigated nuclides of mass 32 (Ne,Na,Mg,AI,Si, P,S,Cl,Ar) has been evaluated. The principal sources of the Adopted Levels presented for nuclides close to the stability line are Endt's evaluations (1990En08, 1978En02). The data sets for reactions and decays, including all available gamma-ray data, are based mostly on the original literature. Except for the half-life of Ne-32 decay, no other details about its decay characteristics are available. Structure data for Ne-32 and Na-32 are limited to only one excited state in each. The Mg-32 nuclide is of central and prime relevance in the 'island of inversion at or near N=20 semi-closed shell. The lifetime of only one excited state in Mg-32 is known. The spin-parity assignments of several levels in this nucleus are not quite firm. The structure of Ar-32 is limited to only one known state at low energy and two resonances in the, giant-dipole excitation region. The P-32, S-32 and Cl-32 remain the most extensively studied nuclei through various reaction channels. C1 [Ouellet, Christian] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. [Singh, Balraj] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada. RP Ouellet, C (reprint author), Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. FU Office of Nuclear Physics, Office Science of the Department of Energy of the United States; Natural Sciences and Engineering Research Council (NSERC) of Canada FX This work was supported by the Office of Nuclear Physics, Office Science of the Department of Energy of the United States. At McMaster, partial funding was also received from the Natural Sciences and Engineering Research Council (NSERC) of Canada. NR 494 TC 12 Z9 13 U1 1 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD SEP PY 2011 VL 112 IS 9 BP 2199 EP 2355 DI 10.1016/j.nds.2011.08.004 PG 157 WC Physics, Nuclear SC Physics GA 824NJ UT WOS:000295208300001 ER PT J AU Gnanakaran, S Bhattacharya, T Daniels, M Keele, BF Hraber, PT Lapedes, AS Shen, TY Gaschen, B Krishnamoorthy, M Li, H Decker, JM Salazar-Gonzalez, JF Wang, SY Jiang, CL Gao, F Swanstrom, R Anderson, JA Ping, LH Cohen, MS Markowitz, M Goepfert, PA Saag, MS Eron, JJ Hicks, CB Blattner, WA Tomaras, GD Asmal, M Letvin, NL Gilbert, PB DeCamp, AC Magaret, CA Schief, WR Ban, YEA Zhang, M Soderberg, KA Sodroski, JG Haynes, BF Shaw, GM Hahn, BH Korber, B AF Gnanakaran, S. Bhattacharya, Tanmoy Daniels, Marcus Keele, Brandon F. Hraber, Peter T. Lapedes, Alan S. Shen, Tongye Gaschen, Brian Krishnamoorthy, Mohan Li, Hui Decker, Julie M. Salazar-Gonzalez, Jesus F. Wang, Shuyi Jiang, Chunlai Gao, Feng Swanstrom, Ronald Anderson, Jeffrey A. Ping, Li-Hua Cohen, Myron S. Markowitz, Martin Goepfert, Paul A. Saag, Michael S. Eron, Joseph J. Hicks, Charles B. Blattner, William A. Tomaras, Georgia D. Asmal, Mohammed Letvin, Norman L. Gilbert, Peter B. DeCamp, Allan C. Magaret, Craig A. Schief, William R. Ban, Yih-En Andrew Zhang, Ming Soderberg, Kelly A. Sodroski, Joseph G. Haynes, Barton F. Shaw, George M. Hahn, Beatrice H. Korber, Bette TI Recurrent Signature Patterns in HIV-1 B Clade Envelope Glycoproteins Associated with either Early or Chronic Infections SO PLOS PATHOGENS LA English DT Article ID IMMUNODEFICIENCY-VIRUS TYPE-1; NEUTRALIZING ANTIBODY-RESPONSES; N-LINKED GLYCOSYLATION; SUBTYPE-C INFECTION; CYTOPLASMIC TAIL; CROSS-VALIDATION; IMMUNE EVASION; HETEROSEXUAL TRANSMISSION; SELECTIVE TRANSMISSION; VACCINE DEVELOPMENT AB Here we have identified HIV-1 B clade Envelope (Env) amino acid signatures from early in infection that may be favored at transmission, as well as patterns of recurrent mutation in chronic infection that may reflect common pathways of immune evasion. To accomplish this, we compared thousands of sequences derived by single genome amplification from several hundred individuals that were sampled either early in infection or were chronically infected. Samples were divided at the outset into hypothesis-forming and validation sets, and we used phylogenetically corrected statistical strategies to identify signatures, systematically scanning all of Env. Signatures included single amino acids, glycosylation motifs, and multi-site patterns based on functional or structural groupings of amino acids. We identified signatures near the CCR5 co-receptor-binding region, near the CD4 binding site, and in the signal peptide and cytoplasmic domain, which may influence Env expression and processing. Two signatures patterns associated with transmission were particularly interesting. The first was the most statistically robust signature, located in position 12 in the signal peptide. The second was the loss of an N-linked glycosylation site at positions 413-415; the presence of this site has been recently found to be associated with escape from potent and broad neutralizing antibodies, consistent with enabling a common pathway for immune escape during chronic infection. Its recurrent loss in early infection suggests it may impact fitness at the time of transmission or during early viral expansion. The signature patterns we identified implicate Env expression levels in selection at viral transmission or in early expansion, and suggest that immune evasion patterns that recur in many individuals during chronic infection when antibodies are present can be selected against when the infection is being established prior to the adaptive immune response. C1 [Gnanakaran, S.; Bhattacharya, Tanmoy; Daniels, Marcus; Hraber, Peter T.; Lapedes, Alan S.; Shen, Tongye; Gaschen, Brian; Krishnamoorthy, Mohan; Zhang, Ming; Korber, Bette] Los Alamos Natl Lab, Los Alamos, NM USA. [Bhattacharya, Tanmoy; Korber, Bette] Santa Fe Inst, Santa Fe, NM 87501 USA. [Keele, Brandon F.] NCI, SAIC Frederick, Frederick, MD 21701 USA. [Keele, Brandon F.; Li, Hui; Decker, Julie M.; Salazar-Gonzalez, Jesus F.; Wang, Shuyi; Goepfert, Paul A.; Saag, Michael S.; Shaw, George M.; Hahn, Beatrice H.] Univ Alabama Birmingham, Dept Med, Birmingham, AL 35294 USA. [Keele, Brandon F.; Li, Hui; Decker, Julie M.; Salazar-Gonzalez, Jesus F.; Wang, Shuyi; Goepfert, Paul A.; Saag, Michael S.; Shaw, George M.; Hahn, Beatrice H.] Univ Alabama Birmingham, Dept Microbiol, Birmingham, AL 35294 USA. [Shen, Tongye] Univ Tennessee, Ctr Biophys Mol, Knoxville, TN USA. [Shen, Tongye] Univ Tennessee, Dept Biochem Cellular & Mol Biol, Knoxville, TN USA. [Jiang, Chunlai] Jilin Univ, Sch Life Sci, Natl Engn Lab AIDS Vaccine, Changchun 130023, Peoples R China. [Jiang, Chunlai; Gao, Feng; Hicks, Charles B.; Tomaras, Georgia D.; Soderberg, Kelly A.; Haynes, Barton F.] Duke Univ, Med Ctr, Dept Med, Durham, NC 27710 USA. [Jiang, Chunlai; Gao, Feng; Hicks, Charles B.; Tomaras, Georgia D.; Soderberg, Kelly A.; Haynes, Barton F.] Duke Univ, Med Ctr, Dept Surg, Durham, NC 27710 USA. [Jiang, Chunlai; Gao, Feng; Hicks, Charles B.; Tomaras, Georgia D.; Soderberg, Kelly A.; Haynes, Barton F.] Duke Univ, Duke Human Vaccine Inst, Durham, NC USA. [Swanstrom, Ronald; Anderson, Jeffrey A.; Ping, Li-Hua; Cohen, Myron S.; Eron, Joseph J.] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC USA. [Swanstrom, Ronald; Anderson, Jeffrey A.; Ping, Li-Hua; Cohen, Myron S.; Eron, Joseph J.] Univ N Carolina, Div Infect Dis, Ctr AIDS Res, Chapel Hill, NC USA. [Markowitz, Martin] Rockefeller Univ, Aaron Diamond AIDS Res Ctr, New York, NY 10021 USA. [Blattner, William A.] Univ Maryland, Sch Med, Inst Human Virol, Baltimore, MD 21201 USA. [Asmal, Mohammed; Letvin, Norman L.] Beth Israel Deaconess Med Ctr, Boston, MA 02215 USA. [Letvin, Norman L.] Harvard Univ, Sch Med, Dept Med, Div Viral Pathogenesis, Boston, MA USA. [Gilbert, Peter B.; DeCamp, Allan C.; Magaret, Craig A.] Fred Hutchinson Canc Res Ctr, Vaccine Infect Dis Div, Seattle, WA 98104 USA. [Schief, William R.; Ban, Yih-En Andrew] Univ Washington, Dept Biochem, Seattle, WA 98195 USA. [Ban, Yih-En Andrew] Arzeda Corp, Seattle, WA USA. [Zhang, Ming] Univ Georgia, Coll Publ Hlth, Dept Epidemiol & Biostat, Athens, GA 30602 USA. [Sodroski, Joseph G.] Dana Farber Canc Inst, Dept Canc Immunol & AIDS, Boston, MA 02115 USA. RP Gnanakaran, S (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. EM btk@lanl.gov RI Shen, Tongye/A-9718-2008; Bhattacharya, Tanmoy/J-8956-2013; Tomaras, Georgia/J-5041-2016; OI Shen, Tongye/0000-0003-1495-3104; Bhattacharya, Tanmoy/0000-0002-1060-652X; Gnanakaran, S/0000-0002-9368-3044; Korber, Bette/0000-0002-2026-5757; Hraber, Peter/0000-0002-2920-4897 FU Division of AIDS, NIAID, NIH for the Center for HIV/AIDS Vaccine Immunology (CHAVI) [AI06785] FX This work was funded by the a grant from the Division of AIDS, NIAID, NIH for the Center for HIV/AIDS Vaccine Immunology (CHAVI) AI06785. This study was undertaken as part of our response to the CHAVI call, however, and in this sense it was at the request of the NIH that we initiated this work, but it was implemented, details were designed, and the specific experiments and analyses undertaken by CHAVI consortium. The supercomputing facility at Los Alamos National Laboratory also contributed computational resources. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 122 TC 63 Z9 64 U1 3 U2 15 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7366 EI 1553-7374 J9 PLOS PATHOG JI PLoS Pathog. PD SEP PY 2011 VL 7 IS 9 AR e1002209 DI 10.1371/journal.ppat.1002209 PG 19 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 827DY UT WOS:000295409000017 PM 21980282 ER PT J AU Korotkov, KV Johnson, TL Jobling, MG Pruneda, J Pardon, E Heroux, A Turley, S Steyaert, J Holmes, RK Sandkvist, M Hol, WGJ AF Korotkov, Konstantin V. Johnson, Tanya L. Jobling, Michael G. Pruneda, Jonathan Pardon, Els Heroux, Annie Turley, Stewart Steyaert, Jan Holmes, Randall K. Sandkvist, Maria Hol, Wim G. J. TI Structural and Functional Studies on the Interaction of GspC and GspD in the Type II Secretion System SO PLOS PATHOGENS LA English DT Article ID OUTER-MEMBRANE PROTEIN; N-TERMINAL DOMAIN; VIBRIO-CHOLERAE; PSEUDOMONAS-AERUGINOSA; ERWINIA-CHRYSANTHEMI; INNER MEMBRANE; CRYSTAL-STRUCTURE; ESCHERICHIA-COLI; TOXIN SECRETION; PATHWAY AB Type II secretion systems (T2SSs) are critical for secretion of many proteins from Gram-negative bacteria. In the T2SS, the outer membrane secretin GspD forms a multimeric pore for translocation of secreted proteins. GspD and the inner membrane protein GspC interact with each other via periplasmic domains. Three different crystal structures of the homology region domain of GspC (GspC(HR)) in complex with either two or three domains of the N-terminal region of GspD from enterotoxigenic Escherichia coli show that GspC(HR) adopts an all-beta topology. N-terminal beta-strands of GspC and the N0 domain of GspD are major components of the interface between these inner and outer membrane proteins from the T2SS. The biological relevance of the observed GspC-GspD interface is shown by analysis of variant proteins in two-hybrid studies and by the effect of mutations in homologous genes on extracellular secretion and subcellular distribution of GspC in Vibrio cholerae. Substitutions of interface residues of GspD have a dramatic effect on the focal distribution of GspC in V. cholerae. These studies indicate that the GspC(HR)-GspD N0 interactions observed in the crystal structure are essential for T2SS function. Possible implications of our structures for the stoichiometry of the T2SS and exoprotein secretion are discussed. C1 [Korotkov, Konstantin V.; Pruneda, Jonathan; Turley, Stewart; Hol, Wim G. J.] Univ Washington, Dept Biochem, Biomol Struct Ctr, Seattle, WA 98195 USA. [Johnson, Tanya L.; Sandkvist, Maria] Univ Michigan, Sch Med, Dept Microbiol & Immunol, Ann Arbor, MI 48109 USA. [Jobling, Michael G.; Holmes, Randall K.] Univ Colorado, Dept Microbiol, Sch Med, Aurora, CO USA. [Pardon, Els; Steyaert, Jan] VIB, Dept Mol & Cellular Interact, Brussels, Belgium. [Pardon, Els; Steyaert, Jan] Vrije Univ Brussel, Brussels, Belgium. [Heroux, Annie] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Korotkov, KV (reprint author), Univ Kentucky, Dept Mol & Cellular Biochem, Lexington, KY 40506 USA. EM wghol@u.washington.edu RI Steyaert, Jan/H-4662-2011; OI Steyaert, Jan/0000-0002-3825-874X; Korotkov, Konstantin/0000-0002-2182-6843 FU National Institutes of Health [AI34501, AI049294, AI31940]; Belgian Government under the framework of the Interuniversity Attraction Poles [I.A.P. P6/19]; DOE Office of Biological and Environmental Research; National Institutes of Health, National Center for Research Resources [P41RR001209]; National Institute of General Medical Sciences; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This study was supported by National Institutes of Health Grants AI34501 (to WGJH), AI049294 (to MS), AI31940 (to RKH); and by the Belgian Government under the framework of the Interuniversity Attraction Poles (I.A.P. P6/19). Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program (P41RR001209), and the National Institute of General Medical Sciences. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 79 TC 37 Z9 37 U1 0 U2 16 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-7366 J9 PLOS PATHOG JI PLoS Pathog. PD SEP PY 2011 VL 7 IS 9 AR e1002228 DI 10.1371/journal.ppat.1002228 PG 14 WC Microbiology; Parasitology; Virology SC Microbiology; Parasitology; Virology GA 827DY UT WOS:000295409000031 PM 21931548 ER PT J AU Lawrence, D O'Connor, P Frank, J Takacs, P AF Lawrence, David O'Connor, Paul Frank, James Takacs, Peter TI Model-independent Characterization of Charge Diffusion in Thick Fully Depleted CCDs SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID COUPLED-DEVICE; X-RAYS; EFFICIENCY; SILICON AB We present a new method to measure charge diffusion in charge-coupled devices (CCDs). The method is based on a statistical characterization of the shapes of charge clouds produced by low-energy X-rays using known properties of the two-dimensional Gaussian point-spread function (PSF). The algorithm produces reliable upper and lower bounds on the size of the PSF for photons converting near the entrance window of a device. It is optimally suited to the case of thick back-illuminated CCDs where the X-ray absorption length is smaller than the silicon thickness and the diffusion scale is of the same order as the pixel size. The only assumptions are that the charge cloud width is a monotonically increasing function of distance from the conversion point to the buried channel, and that the conversion probability is peaked at the surface. Otherwise, no physical models of carrier transport or knowledge of the electric field profile in the CCD are needed. In suboptimal conditions, the upper bound increases and the lower bound is unaffected, so confidence in the correctness of results is retained. The new method has been benchmarked against Monte Carlo simulations and tested on X-ray images measured on thick high-resistivity prototype CCDs for the Large Synoptic Survey Telescope. In Monte Carlo simulations of noiseless images having the optimal diffusion scale, the upper bound approximated the true PSF within 5%, increasing to 10% in simulations with added noise. Even with severely undersampled or truncated PSFs, the method brackets the true value to within 25%. Our method is accurate and computationally efficient and offers a fast and simple experimental setup. C1 [Lawrence, David; O'Connor, Paul; Frank, James; Takacs, Peter] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Lawrence, D (reprint author), Brookhaven Natl Lab, POB 5000, Upton, NY 11973 USA. EM dlaw@mit.edu; poc@bnl.gov; frank@bnl.gov; takacs@bnl.gov FU National Science Foundation; National Science Foundation [AST-0551161, AST-0244680, AST-0132798]; Department of Energy [DE-AC02-76SF00515, DE-AC52-07NA27344]; Stanford Linear Accelerator Center; Lawrence Livermore National Laboratory FX Thanks go to Veljko Radeka, the Instrumentation Division Chair, and the Brookhaven National Laboratory Office of Educational Programs for allowing this research to proceed. The Large Synoptic Survey Telescope (LSST) is a public-private partnership. Funding for design and development activity comes from the National Science Foundation, private donations, grants to universities, and in-kind support at Department of Energy laboratories and other LSST Corporation Institutional Members. Support of the W. M. Keck Foundation for sensor development is gratefully acknowledged. This work is supported by in part the National Science Foundation under Scientific Program Order 9 (AST-0551161) and Scientific Program Order 1 (AST-0244680) through Cooperative Agreement AST-0132798. Portions of this work are supported by the Department of Energy under contract DE-AC02-76SF00515 with the Stanford Linear Accelerator Center and contract DE-AC52-07NA27344 with Lawrence Livermore National Laboratory. NR 15 TC 2 Z9 2 U1 1 U2 6 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD SEP PY 2011 VL 123 IS 907 BP 1100 EP 1106 DI 10.1086/661948 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 829ON UT WOS:000295593300010 ER PT J AU Qu, DD Liss, KD Yan, K Reid, M Almer, JD Wang, YB Liao, XZ Shen, J AF Qu, Dongdong Liss, Klaus-Dieter Yan, Kun Reid, Mark Almer, Jonathan D. Wang, Yanbo Liao, Xiaozhou Shen, Jun TI On the Atomic Anisotropy of Thermal Expansion in Bulk Metallic Glass SO ADVANCED ENGINEERING MATERIALS LA English DT Article ID TRANSITION; ALLOYS AB Glass transition temperature and plastic yield strength are known to be correlated in metallic glasses. We have observed by in situ synchrotron high energy X-ray diffraction anisotropy of the thermal expansion behavior in the nearest neighbor and second nearest neighbor atomic distances in the building blocks of Zr-Cu-Ni-Al based bulk metallic glass, leading inevitably to shear. Mechanical yielding of the latter on the atomic scale leads to the glass transition and the increase of the free volume. These experimental results uncover the mechanism, how glass transition and yield strength are linked. C1 [Qu, Dongdong; Shen, Jun] Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China. [Liss, Klaus-Dieter; Yan, Kun] Australian Nucl Sci & Technol Org, Bragg Inst, Lucas Heights, NSW 2234, Australia. [Yan, Kun; Reid, Mark] Univ Wollongong, Fac Engn, Wollongong, NSW 2522, Australia. [Almer, Jonathan D.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Wang, Yanbo; Liao, Xiaozhou] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia. RP Qu, DD (reprint author), Harbin Inst Technol, State Key Lab Adv Welding & Joining, Harbin 150001, Peoples R China. EM kdl@ansto.gov.au; junshen@hit.edu.cn RI Wang, Yanbo/B-3175-2009; Liao, Xiaozhou/B-3168-2009; Qu, Dongdong/G-4521-2011; Liss, Klaus-Dieter/E-8548-2011 OI Liao, Xiaozhou/0000-0001-8565-1758; Liss, Klaus-Dieter/0000-0003-4323-0343 FU Australian Synchrotron Research Program; Commonwealth of Australia under the National Collaborative Research Infrastructure Strategy; National Natural Science Foundation of China [51025415, 50771040, 10732010]; U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Australian Synchrotron Research Program, which was funded by the Commonwealth of Australia under the National Collaborative Research Infrastructure Strategy; and the National Natural Science Foundation of China under the grant Nos. 51025415, 50771040, and 10732010. The experimentalists especially thank the XOR beamline members and the APS user office for support. Use of the APS was enabled by the U.S. Department of Energy under contract DE-AC02-06CH11357. The electron microscopy was performed at the University of Sydney. NR 19 TC 8 Z9 8 U1 1 U2 20 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1438-1656 J9 ADV ENG MATER JI Adv. Eng. Mater. PD SEP PY 2011 VL 13 IS 9 BP 861 EP 864 DI 10.1002/adem.201000349 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA 824DV UT WOS:000295183300009 ER PT J AU Grassi, T Krstic, P Merlin, E Buonomo, U Piovan, L Chiosi, C AF Grassi, T. Krstic, P. Merlin, E. Buonomo, U. Piovan, L. Chiosi, C. TI ROBO: a model and a code for studying the interstellar medium SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE evolution; dust, extinction; galaxies: evolution; galaxies: formation; methods: numerical ID INFRARED-EMISSION; RATE COEFFICIENTS; MOLECULAR CLOUDS; PRIMORDIAL GAS; STAR-FORMATION; DUST GRAINS; COSMOLOGICAL IMPLICATIONS; RADIATION-FIELD; SILICATE GRAINS; CHARGE-TRANSFER AB We present robo, a model and its companion code for the study of the interstellar medium (ISM). The aim is to provide an accurate description of the physical evolution of the ISM and to set the ground for an ancillary tool to be inserted in NBody-Tree-SPH (NB-TSPH) simulations of large-scale structures in the cosmological context or of the formation and evolution of individual galaxies. The ISM model consists of gas and dust. The gas chemical composition is regulated by a network of reactions that includes a large number of species (hydrogen and deuterium-based molecules, helium, and metals). New reaction rates for the charge transfer in H+ and H-2 collisions are presented. The dust contains the standard mixture of carbonaceous grains (graphite grains and PAHs) and silicates. In our model dust are formed and destroyed by several processes. The model accurately treats the cooling process, based on several physical mechanisms, and cooling functions recently reported in the literature. The model is applied to a wide range of the input parameters, and the results for important quantities describing the physical state of the gas and dust are presented. The results are organized in a database suited to the artificial neural networks (ANNs). Once trained, the ANNs yield the same results obtained by ROBO with great accuracy. We plan to develop ANNs suitably tailored for applications to NB-TSPH simulations of cosmological structures and/or galaxies. C1 [Grassi, T.; Merlin, E.; Buonomo, U.; Piovan, L.; Chiosi, C.] Univ Padua, Dept Astron, I-35122 Padua, Italy. [Krstic, P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Grassi, T (reprint author), Univ Padua, Dept Astron, Vicolo Osservatorio 3, I-35122 Padua, Italy. EM tommaso.grassi@unipd.it OI Grassi, Tommaso/0000-0002-3019-1077 FU EARA; US DOE Office of Fusion Sciences through ORNL [DE-AC05-00OR22725]; UT-Battelle, LLC FX T. Grassi is grateful to Dr. F. Combes for the kind hospitality at the Observatoire de Paris - LERMA under EARA grants, where part of the work was developed and for the many stimulating discussions.; P. Krstic acknowledges support from the US DOE Office of Fusion Sciences through ORNL, under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. NR 74 TC 11 Z9 11 U1 0 U2 3 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2011 VL 533 AR A123 DI 10.1051/0004-6361/200913779 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 823ZN UT WOS:000295168100123 ER PT J AU Gruber, D Lachowicz, P Bissaldi, E Briggs, MS Connaughton, V Greiner, J van der Horst, AJ Kanbach, G Rau, A Bhat, PN Diehl, R von Kienlin, A Kippen, RM Meegan, CA Paciesas, WS Preece, RD Wilson-Hodge, C AF Gruber, D. Lachowicz, P. Bissaldi, E. Briggs, M. S. Connaughton, V. Greiner, J. van der Horst, A. J. Kanbach, G. Rau, A. Bhat, P. N. Diehl, R. von Kienlin, A. Kippen, R. M. Meegan, C. A. Paciesas, W. S. Preece, R. D. Wilson-Hodge, C. TI Quasi-periodic pulsations in solar flares: new clues from the Fermi Gamma-Ray Burst Monitor SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE Sun: flares; methods: statistical; methods: data analysis; methods: observational ID MAGNETOHYDRODYNAMIC OSCILLATIONS; SPECTRAL-ANALYSIS; POWER SPECTRA; SPACED DATA; EMISSION; 090709A; GRB; SIGNALS; MISSION; ORIGIN AB Aims. In the past four decades, it has been observed that solar flares display quasi-periodic pulsations (QPPs) from the lowest, i.e. radio, to the highest, i.e. gamma-ray, frequencies in the electromagnetic spectrum. It remains unclear which mechanism creates these QPPs. In this paper, we analyze four bright solar flares that display compelling signatures of quasi-periodic behavior and were observed with the Gamma-Ray Burst Monitor (GBM) onboard the Fermi satellite. Because GBM covers over three decades in energy (8 keV to 40 MeV), it is regarded as a key instrument in our attempt to understand the physical processes that drive solar flares. Methods. We tested for periodicity in the time series of the solar flares observed by GBM by applying a classical periodogram analysis. However, in contrast to previous authors, we did not detrend the raw light curve before creating the power spectral density (PSD) spectrum. To assess the significance of the frequencies, we used a method that is commonly applied to X-ray binaries and Seyfert galaxies. This technique takes into account the underlying continuum of the PSD, which for all of these sources has a P(f) similar to f (-alpha) dependence and is typically labeled red-noise. Results. We checked the reliability of this technique by applying it to observations of a solar flare that had been observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). These data contain, besides any potential periodicity from the Sun, a 4 s rotational period caused by the rotation of the spacecraft about its axis. We were unable to identify any intrinsic solar quasi-periodic pulsation but we did manage to reproduce the instrumental periodicity. Moreover, with the method adopted here, we do not detect significant QPPs in the four bright solar flares observed by GBM. We stress that for this kind of analyses it is of utmost importance to account appropriately for the red-noise component in the PSD of these astrophysical sources. C1 [Gruber, D.; Greiner, J.; Kanbach, G.; Rau, A.; Diehl, R.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Lachowicz, P.] Green Cross Capital Pty Ltd, Ultimo, NSW 2007, Australia. [Bissaldi, E.] Univ Innsbruck, Inst Astro & Particle Phys, A-6176 Innsbruck, Austria. [Briggs, M. S.; Connaughton, V.; van der Horst, A. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R. D.] Univ Alabama, NSSTC, Huntsville, AL 35805 USA. [Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Meegan, C. A.] Univ Space Res Assoc, NSSTC, Huntsville, AL 35805 USA. [Wilson-Hodge, C.] NASA, Space Sci Off, Marshall Space Flight Ctr Huntsville, Huntsville, AL 35812 USA. RP Gruber, D (reprint author), Max Planck Inst Extraterr Phys, Giessenbachstr,Postfach 1312, D-85748 Garching, Germany. EM dgruber@mpe.mpg.de RI Bissaldi, Elisabetta/K-7911-2016; OI Bissaldi, Elisabetta/0000-0001-9935-8106; Preece, Robert/0000-0003-1626-7335 NR 43 TC 19 Z9 19 U1 0 U2 5 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2011 VL 533 AR A61 DI 10.1051/0004-6361/201117077 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 823ZN UT WOS:000295168100061 ER PT J AU Hauschildt, PH Baron, E AF Hauschildt, P. H. Baron, E. TI A 3D radiative transfer framework VIII. OpenCL implementation SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE radiative transfer; methods: numerical AB Aims. We discuss an implementation of our 3D radiative transfer (3DRT) framework with the OpenCL paradigm for general GPU computing. Methods. We implemented the kernel for solving the 3DRT problem in Cartesian coordinates with periodic boundary conditions in the horizontal (x, y) plane, including the construction of the nearest neighbor Lambda* and the operator splitting step. Results. We present the results of both a small and a large test case and compare the timing of the 3DRT calculations for serial CPUs and various GPUs. Conclusions. The latest available GPUs can lead to significant speedups for both small and large grids compared to serial (single core) computations. C1 [Hauschildt, P. H.; Baron, E.] Hamburger Sternwarte, D-21029 Hamburg, Germany. [Baron, E.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Baron, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Hauschildt, PH (reprint author), Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg, Germany. EM yeti@hs.uni-hamburg.de; baron@ou.edu OI Baron, Edward/0000-0001-5393-1608 FU DFG [GrK 1351]; NSF [AST-0707704]; US DOE [DEFG02-07ER41517]; NASA [HST-GO-12298.05-A, NAS5-26555]; Office of Science of the US Department of Energy [DE-AC0376SF00098]; [SFB 676] FX This work was supported in part by DFG GrK 1351 and SFB 676, as well as by the NSF grant AST-0707704, US DOE Grant DEFG02-07ER41517, and NASA Grant HST-GO-12298.05-A. Support for program number HST-GO-12298.05-A was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. The calculations presented here were performed at the Hochstleistungs Rechenzentrum Nord (HLRN) and at the National Energy Research Supercomputer Center (NERSC), which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC0376SF00098. We thank all these institutions for generous allocation of computer time. NR 17 TC 3 Z9 3 U1 0 U2 4 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD SEP PY 2011 VL 533 AR A127 DI 10.1051/0004-6361/201117051 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 823ZN UT WOS:000295168100127 ER PT J AU Seabra, JEA Macedo, IC Chum, HL Faroni, CE Sarto, CA AF Seabra, Joaquim E. A. Macedo, Isaias C. Chum, Helena L. Faroni, Carlos E. Sarto, Celso A. TI Life cycle assessment of Brazilian sugarcane products: GHG emissions and energy use SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE Saccharum officinarum; GHG emissions mitigation; global warming; energy balance; uncertainty analysis; sugarcane refineries ID ETHANOL-PRODUCTION; BALANCES; CORN AB Sugarcane is currently the main renewable energy source in Brazil. Due to the importance of the cane industry and its contribution to a wide range of biobased energy and other products, LCA studies regarding cane-derived products are needed to assess their environmental benefits. The main objective of this work was the assessment of life cycle energy use and greenhouse gas (GHG) emissions related to cane sugar and ethanol, considering bagasse and electricity surpluses as coproducts. We performed an overall balance for the Brazilian Center-South Region, adopting different methods to evaluate sugar and ethanol production separately. The GREET 1.8c.0 model was used for the 'well-to-wheels' calculations but adapted to the comprehensive set of Brazilian parameters that best represent the Center-South Region. For the reference case, fossil energy use and GHG emissions related to sugar production were evaluated as 721 kJ/kg and 234 g CO(2)eq/kg, respectively. For the ethanol life cycle, these values were 80 kJ/MJ and 21.3 g CO(2)eq/MJ. Special attention was paid to the variation of some parameters among producing units based on data collected by industry. The consequent uncertainties in ethanol life cycle emissions were assessed through a Monte Carlo analysis based on assigned distribution of probability curves for eleven selected parameters and informed by partial statistical data available from industry for distribution generation. Projections were also made for 2020 scenario parameters based on the best in current class technologies and technological improvements deemed commercially possible today. Published in 2011 by John Wiley & Sons, Ltd C1 [Seabra, Joaquim E. A.; Macedo, Isaias C.] Univ Estadual Campinas, Sao Paulo, Brazil. [Seabra, Joaquim E. A.] Brazilian Bioethanol Sci & Technol Lab CTBE, Sao Paulo, Brazil. [Chum, Helena L.] Natl Renewable Energy Lab NREL, US DOE, Golden, CO USA. [Faroni, Carlos E.; Sarto, Celso A.] Ctr Tecnol Canavieira CTC, Sao Paulo, Brazil. RP Seabra, JEA (reprint author), Univ Estadual Campinas, Fac Engn Mecan, POB 6122, BR-13083970 Campinas, SP, Brazil. EM jeaseabra@gmail.com FU Office of the Biomass Program of the U.S. Department of Energy as part of the Brazil-USA Memorandum of Understanding to Advance Biofuels Cooperation FX The authors gratefully acknowledge UNICA for helping in the revision of this work. Specialists of the Centro de Tecnologia Canavieira (CTC), particularly Jorge L. Donzelli, Luiz Antonio Dias Paes and Andre Elia Neto, are also gratefully acknowledged for the assistance in the analysis. Discussion with specialists from the Argonne National Laboratory (IL, USA) on the GREET model was also very important for this work. The work of one of the co-authors, H. L. Chum on behalf of this article, was sponsored by the Office of the Biomass Program of the U.S. Department of Energy as part of the Brazil-USA Memorandum of Understanding to Advance Biofuels Cooperation. Joaquim Seabra was also partially sponsored by the same USA source for a part of the LCA harmonization with GREET study. This support is gratefully acknowledged. NR 48 TC 69 Z9 69 U1 2 U2 70 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD SEP-OCT PY 2011 VL 5 IS 5 BP 519 EP 532 DI 10.1002/bbb.289 PG 14 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 823RU UT WOS:000295143000015 ER PT J AU Klein-Marcuschamer, D Simmons, BA Blanch, HW AF Klein-Marcuschamer, Daniel Simmons, Blake A. Blanch, Harvey W. TI Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE techno-economic analysis; biofuels; ionic liquids; pre-treatment; biorefinery; lignin ID ENZYMATIC-HYDROLYSIS; DILUTE-ACID; BIOMASS; WOOD; IMIDAZOLIUM; SWITCHGRASS; GENERATION; SOFTWOOD AB Lignocellulose dissolution in ionic liquids is a relatively new biomass pre-treatment technology that is receiving growing interest from the biofuels community as a route to provide readily-hydrolyzable holocellulose. Despite its proven advantages over other pre-treatment technologies - including feedstock invariance, high monomeric sugar yields over short saccharification times, and extensive delignification - there are several core issues that stand in the way of commercialization. These include the relative high cost of the ionic liquids themselves, a lack of knowledge in terms of process considerations for a biorefinery based on these solvents, and scant information on the coproducts this pre-treatment technology could provide to the marketplace. We present an initial techno-economic model of a biorefinery that is based on the ionic liquid pre-treatment technology and have identified, through a comprehensive sensitivity analysis, the most significant areas in terms of cost savings/revenue generation that must be addressed before ionic liquid pre-treatment can compete with other, more established, pre-treatment technologies. This report evaluates this new pre-treatment technology through the perspective of a virtual operating biorefinery, and although there are significant challenges that must be addressed, there is a clear path that can enable commercialization of this novel approach. (C) 2011 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Klein-Marcuschamer, Daniel; Simmons, Blake A.; Blanch, Harvey W.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Klein-Marcuschamer, Daniel; Blanch, Harvey W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Simmons, Blake A.] Sandia Natl Labs, Livermore, CA USA. RP Blanch, HW (reprint author), Joint BioEnergy Inst, 5885 Hollis St, Emeryville, CA 94608 USA. EM blanch@berkeley.edu OI Simmons, Blake/0000-0002-1332-1810 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; US DoE; Statoil; Boeing; General Motors; Lawrence Berkeley National Laboratory FX This work was part of the DoE Joint BioEnergy Institute (http://www.jbei.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. Project funding was provided by the US DoE, Energy Efficiency and Renewable Energy Technology Commercialization Fund; additional funding from Statoil, Boeing, and General Motors is acknowledged. The authors declare no conflicting interests. NR 25 TC 113 Z9 113 U1 4 U2 73 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD SEP-OCT PY 2011 VL 5 IS 5 BP 562 EP 569 DI 10.1002/bbb.303 PG 8 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 823RU UT WOS:000295143000018 ER PT J AU Li, G Li, XS Zhang, KN Moridis, GJ AF Li Gang Li Xiao-Sen Zhang, Keni Moridis, George J. TI Numerical simulation of gas production from hydrate accumulations using a single horizontal well in Shenhu Area, South China Sea SO CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION LA Chinese DT Article DE Natural gas hydrate; Depressurization; Horizontal well; Shenhu Area; South China Sea ID MACKENZIE DELTA; MALLIK SITE; DEPOSITS; CANADA AB In 2007, gas hydrate samples were recovered during the scientific expedition conducted by the China Geological Survey in the Shenhu Area. It is expected that Shenhu will become a strategic area of gas hydrate exploitation in China. However, evaluation of the hydrate deposits in the area as a potential energy resource has not been completed. Based on currently available data from site measurements, it is possible to develop preliminarily estimates of the gas production potential by numerical simulation. The hydrate accumulations in Shenhu Area are similar to Class 3 deposits (involving only a HBL), and the overburden and underburden layers are assumed to be permeable. In this study, we estimated gas production from hydrates in the Shenhu Area using the depressurization method with a single horizontal well. The simulation results indicated that the hydrate dissociation occurs on the cylindrical interface around the well, and along the horizontal dissociation interfaces at the top and bottom of the HBL. The gas production rate in the Class 3 hydrate deposit at site SH7 in Shenhu Area is not suitable for commercial production using the depressurization method. C1 [Li Gang; Li Xiao-Sen] Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Guangdong, Peoples R China. [Li Gang; Li Xiao-Sen] Chinese Acad Sci, Key Lab Renewable Energy & Gas Hydrate, Guangzhou 510640, Guangdong, Peoples R China. [Zhang, Keni; Moridis, George J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Li, G (reprint author), Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Guangdong, Peoples R China. EM ligang@ms.giec.ac.cn; lixs@ms.giec.ac.cn RI Li, Xiaosen/H-2002-2013 NR 26 TC 7 Z9 9 U1 2 U2 18 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 0001-5733 J9 CHINESE J GEOPHYS-CH JI Chinese J. Geophys.-Chinese Ed. PD SEP PY 2011 VL 54 IS 9 BP 2325 EP 2337 DI 10.3969/j.issn.0001-5733.2011.09.016 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 828KN UT WOS:000295500000016 ER PT J AU Trahey, L Kung, HH Thackeray, MM Vaughey, JT AF Trahey, Lynn Kung, Harold H. Thackeray, Michael M. Vaughey, John T. TI Effect of Electrode Dimensionality and Morphology on the Performance of Cu2Sb Thin Film Electrodes for Lithium-Ion Batteries SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Electrochemistry; Thin films; Copper; Antimony; Intermetallic phases ID ANODE MATERIAL; STORAGE; LI; NANOWIRES; SILICON AB Although graphitic carbons have been commercially used in lithium-ion batteries for many years, their low crystallographic density limits their use in applications where space is at a premium. Among the alternative anode materials being considered for these applications are Zintl phases and intermetallic insertion anodes. Historically, main-group-metal-based anode materials have had problems with respect to volume expansion experienced on lithiation and its effect on cycle life. In this paper, we report the role of morphology and electrode dimensionality in extending the cycle life of the intermetallic insertion anode Cu2Sb. We have found that controlling the surface area of the active material and building internal volume into the electrode structure significantly decreases the capacity fade on cycling. The decrease in fade rate may be due to the active material gradient identified within the structure produced by the electrodeposition process. This enhancement in cycling can be attributed to keeping the displaced copper closer to the active particles and to reducing the diffusion distances within the electrode. C1 [Trahey, Lynn; Thackeray, Michael M.; Vaughey, John T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Trahey, Lynn; Kung, Harold H.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. RP Vaughey, JT (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Kung, Harold/B-7647-2009 FU U.S. Department of Energy [DEAC02-06CH11357]; Northwestern University Center for Energy Efficient Transportation; Northwestern University Institute for Sustainability and Energy; Center for Electrical Energy Storage; Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX The authors would like to acknowledge support for the Cu2Sb study from the Batteries for Advanced Transportation Technologies (BATT) Program of the U.S. Department of Energy under Contract No. DEAC02-06CH11357, the Northwestern University Center for Energy Efficient Transportation, and the Northwestern University Institute for Sustainability and Energy. Four-point nanoprobe work was supported by the Center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Use of the four-point nanoprobe at the Center for Nanoscale Materials (CNM) at Argonne National Laboratory is also acknowledged. NR 27 TC 5 Z9 5 U1 1 U2 27 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1434-1948 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD SEP PY 2011 IS 26 SI SI BP 3984 EP 3988 DI 10.1002/ejic.201100329 PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 825IM UT WOS:000295265400023 ER PT J AU Parks, RC Duggan, DP AF Parks, Raymond C. Duggan, David P. TI Principles of Cyberwarfare SO IEEE SECURITY & PRIVACY LA English DT Article C1 [Parks, Raymond C.; Duggan, David P.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Parks, RC (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM rcparks@sandia.gov; dduggan@sandia.gov FU US Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract DE-AC04-94AL85000. NR 14 TC 4 Z9 4 U1 2 U2 7 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1540-7993 J9 IEEE SECUR PRIV JI IEEE Secur. Priv. PD SEP-OCT PY 2011 VL 9 IS 5 BP 30 EP 35 PG 6 WC Computer Science, Information Systems; Computer Science, Software Engineering SC Computer Science GA 826DS UT WOS:000295332200006 ER PT J AU Rangan, M Yung, MM Medlin, JW AF Rangan, Meghana Yung, Matthew M. Medlin, J. William TI Experimental and computational investigations of sulfur-resistant bimetallic catalysts for reforming of biomass gasification products SO JOURNAL OF CATALYSIS LA English DT Article DE Steam reforming; Tar; Ni catalyst; Sulfur poisoning; Biomass; Thermochemical conversion ID DENSITY-FUNCTIONAL THEORY; RAY-ABSORPTION SPECTROSCOPY; TRANSITION-METAL SURFACES; EVANS-POLANYI RELATION; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; NI CATALYSTS; AMMONIA-SYNTHESIS; AB-INITIO; MOLECULAR-DYNAMICS AB A combination of density functional theory (DFT) calculations and experimental studies of supported catalysts was used to identify H2S-resistant biomass gasification product reforming catalysts. OFT calculations were used to search for bimetallic, nickel-based (1 1 1) surfaces with lower sulfur adsorption energies and enhanced ethylene adsorption energies. These metrics were used as predictors for H2S resistance and activity toward steam reforming of ethylene, respectively. Relative to Ni, OFT studies found that the Ni/Sn surface alloy exhibited enhanced sulfur resistance and the Ni/Ru system exhibited an improved ethylene binding energy with a small increase in sulfur binding energy. A series of supported bimetallic nickel catalysts was prepared and screened under model ethylene reforming conditions and simulated biomass tar reforming conditions. The observed experimental trends in activity were consistent: with theoretical predictions, with observed reforming activities in the order Ni/Ru > Ni > Ni/Sn. Interestingly, Ni/Ru showed a high level of resistance to sulfur poisoning compared with Ni. This sulfur resistance can be partly explained by trends in sulfur versus ethylene binding energy at different types of sites across the bimetallic surface. (C) 2011 Elsevier Inc. All rights reserved. C1 [Rangan, Meghana; Medlin, J. William] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA. [Yung, Matthew M.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Medlin, JW (reprint author), Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA. EM will.medlin@colorado.edu FU National Renewable Energy Laboratory [KXEA-3-33606-26]; US Department of Energy [DE-AC36-99-GO-10337]; E.I. DuPont de Nemours Co.; Dow Chemical Company; State of Illinois; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Research funding from the National Renewable Energy Laboratory through subcontract KXEA-3-33606-26 and from the US Department of Energy's Biomass Program Contract DE-AC36-99-GO-10337 are gratefully acknowledged. This research utilized the NCSA-Teragrid system and the high-performance computing cluster carbon at Argonne National Laboratory. Portions of this work were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by E.I. DuPont de Nemours & Co., The Dow Chemical Company and the State of Illinois. Use of the APS was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02-06CH11357. Assistance from the DND-CAT beamline scientists, especially from Qing Ma, and from John Kuhn for data acquisition is greatly appreciated. NR 80 TC 6 Z9 7 U1 2 U2 37 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD SEP 1 PY 2011 VL 282 IS 2 BP 249 EP 257 DI 10.1016/j.jcat.2011.06.009 PG 9 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 825RL UT WOS:000295299700001 ER PT J AU Biagioni, DJ Astling, DP Graf, P Davis, MF AF Biagioni, David J. Astling, David P. Graf, Peter Davis, Mark F. TI Orthogonal projection to latent structures solution properties for chemometrics and systems biology data SO JOURNAL OF CHEMOMETRICS LA English DT Article DE O-PLS; partial least squares (PLS); Mid-infrared (MIR) calibration; Beer's law; systems biology ID NET ANALYTE SIGNAL; INDEPENDENT COMPONENT ANALYSIS; PARTIAL LEAST-SQUARES; MULTIVARIATE CALIBRATION; METABOLITE DATA; O-PLS; REGRESSION; OPLS; TRANSCRIPT; SELECTION AB Partial least squares (PLS) is a widely used algorithm in the field of chemometrics. In calibration studies, a PLS variant called orthogonal projection to latent structures (O-PLS) has been shown to successfully reduce the number of model components while maintaining good prediction accuracy, although no theoretical analysis exists demonstrating its applicability in this context. Using a discrete formulation of the linear mixture model known as Beer's law, we explicitly analyze O-PLS solution properties for calibration data. We find that, in the absence of noise and for large n, O-PLS solutions are simpler but just as accurate as PLS solutions for systems in which analyte and background concentrations are uncorrelated. However, the same is not true for the most general chemometric data in which correlations between the analyte and background concentrations are nonzero and pure profiles overlap. On the contrary, forcing the removal of orthogonal components may actually degrade interpretability of the model. This situation can also arise when the data are noisy and n is small, because O-PLS may identify and model the noise as orthogonal when it is statistically uncorrelated with the analytes. For the types of data arising from systems biology studies, in which the number of response variables may be much greater than the number of observations, we show that O-PLS is unlikely to discover orthogonal variation whether or not it exists. In this case, O-PLS and PLS solutions are the same. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Biagioni, David J.] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA. [Astling, David P.; Graf, Peter; Davis, Mark F.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Biagioni, DJ (reprint author), Univ Colorado, Dept Appl Math, 526 UCB, Boulder, CO 80309 USA. EM biagioni@colorado.edu OI davis, mark/0000-0003-4541-9852 FU DOE Office of Biological and Environmental Research [DE-AC36-08GO28308]; BioEnergy Research Center; Office of Biological and Environmental Research in the DOE Office of Science; Department of Energy, Office of Science; ASCR and BioEnergy Research Offices within the Office of Science [DE-AC36-99GO10337] FX We acknowledge the contributions of Kofi Adragni, Jinsuk Lee, and Terry Haut for many helpful discussions, as well as Ryan Elmore for a critical review of the manuscript. This research was supported the DOE Office of Biological and Environmental Research, grant award no. DE-AC36-08GO28308, and by the BioEnergy Research Center. The BioEnergy Research Center is a US Department of Energy BioEnergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. Additional support was provided by a grant from the Department of Energy, Office of Science, SciDAC, and GTL programs and by the ASCR and BioEnergy Research Offices within the Office of Science, grant award no. DE-AC36-99GO10337. NR 25 TC 3 Z9 3 U1 0 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0886-9383 J9 J CHEMOMETR JI J. Chemometr. PD SEP PY 2011 VL 25 IS 9 BP 514 EP 525 DI 10.1002/cem.1398 PG 12 WC Automation & Control Systems; Chemistry, Analytical; Computer Science, Artificial Intelligence; Instruments & Instrumentation; Mathematics, Interdisciplinary Applications; Statistics & Probability SC Automation & Control Systems; Chemistry; Computer Science; Instruments & Instrumentation; Mathematics GA 825PC UT WOS:000295291600006 ER PT J AU Yang, P Tretiak, S Ivanov, S AF Yang, Ping Tretiak, Sergei Ivanov, Sergei TI Influence of Surfactants and Charges on CdSe Quantum Dots SO JOURNAL OF CLUSTER SCIENCE LA English DT Article DE CdSe quantum dots; Surface ligands; Charges; Density functional theory ID DENSITY-FUNCTIONAL THEORY; LIGHT-EMITTING-DIODES; SEMICONDUCTOR NANOCRYSTALS; COLLOIDAL NANOCRYSTALS; ELECTRONIC-STRUCTURE; CDTE NANOCRYSTALS; CADMIUM SELENIDE; BIOLOGICAL APPLICATIONS; ANISOTROPIC GROWTH; LIGAND-EXCHANGE AB Surface effects significantly influence the functionality of semiconductor nanocrystals. High quality nanocrystals can be achieved with good control of surface passivation by various hydrophobic ligands. In this work, the chemistry between CdSe quantum dots and common surface capping ligands is investigated using density functional theory (DFT). We discuss the electronic structures and optical properties of small CdSe clusters controlled by their size of particle, self-organization, capping ligands, and positive charges. The chosen model ligands reproduce good structural and energetic description of the interactions between the ligands and quantum dots. In order to capture the chemical nature and energetics of the interactions between the capping ligands and CdSe quantum dots, we found that PMe3 is needed to adequately model trioctylphosphine (TOP), NH3 is sufficient for amines, while OPH2Me could be used to model trioctylphosphine oxide. The relative binding interaction strength between ligands was found to decrease in order Cd-O > Cd-N > Cd-P with average binding energy per ligand being -25 kcal/mol for OPH2Me, -20 kcal/mol for NH3 and -10 kcal/mol for PMe3. Charges on studied stoichiometric clusters were found to have a significant effect on their structures, binding energies, and optical properties. C1 [Yang, Ping] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Tretiak, Sergei; Ivanov, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol CINT, Los Alamos, NM 87545 USA. RP Yang, P (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, 902 Battlelle Blvd, Richland, WA 99352 USA. EM ping.yang@pnnl.gov RI Yang, Ping/E-5355-2011; Ivanov, Sergei/B-5505-2011; Tretiak, Sergei/B-5556-2009; OI Tretiak, Sergei/0000-0001-5547-3647; Yang, Ping/0000-0003-4726-2860 FU Environmental Molecular Sciences Laboratory; Center for Advanced Solar Photophysics (CASP); U.S. Department of Energy (DOE); Center for Integrated Nanotechnology (CINT); Center for Nonlinear Studies (CNLS); Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U. S. Department of Energy [DE-AC52-06NA25396] FX PY acknowledges support from Environmental Molecular Sciences Laboratory (a national scientific user facility sponsored by the U. S. Department of Energy's Office of Biological and Environmental Research) located at Pacific North-west National Laboratory and operated for the DOE by Battelle. ST acknowledges support of the Center for Advanced Solar Photophysics (CASP), an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE). We acknowledge support of Center for Integrated Nanotechnology (CINT) and Center for Nonlinear Studies (CNLS). Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U. S. Department of Energy under contract DE-AC52-06NA25396. NR 127 TC 20 Z9 20 U1 1 U2 56 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1040-7278 EI 1572-8862 J9 J CLUST SCI JI J. Clust. Sci. PD SEP PY 2011 VL 22 IS 3 BP 405 EP 431 DI 10.1007/s10876-011-0398-y PG 27 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 826CL UT WOS:000295328900009 ER PT J AU Lau, YY Yu, SS Barnard, JJ Seidl, PA AF Lau, Y. Y. Yu, Simon S. Barnard, John J. Seidl, Peter A. TI Final compression bearnline systems for heavy ion fusion drivers SO LASER AND PARTICLE BEAMS LA English DT Article DE Drift compression; Heavy ion fusion; Momentum dispersion AB We have identified a general final compression section for HIF drivers, the section between accelerator and the target. The beams are given a head to tail velocity tilt at the beginning of the section for longitudinal compression, while going through bends that direct it to the target at specific angle. The aim is to get the beams compressed while maintaining a small centroid off-set after the bends. We used a specific example, 1 MJ driver with 500 MeV Rubidium + 1 ion beams. We studied the effect of minimizing dispersion using different bend strategies, and came up with a beamline point design with adiabatic bends. We also identified some factors that lead to emittance growth as well as the minimum pulse length and spot size on the target. C1 [Lau, Y. Y.; Yu, Simon S.] Chinese Univ Hong Kong, Shatin, Hong Kong, Peoples R China. [Yu, Simon S.; Seidl, Peter A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Barnard, John J.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Lau, YY (reprint author), Chinese Univ Hong Kong, Shatin, Hong Kong, Peoples R China. EM yylau@phy.cuhk.edu.hk NR 5 TC 1 Z9 1 U1 0 U2 3 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0263-0346 EI 1469-803X J9 LASER PART BEAMS JI Laser Part. Beams PD SEP PY 2011 VL 29 IS 3 BP 279 EP 282 DI 10.1017/S0263034611000255 PG 4 WC Physics, Applied SC Physics GA 824WV UT WOS:000295233800002 ER PT J AU Hora, H Miley, GH Flippo, K Lalousis, P Castillo, R Yang, X Malekynia, B Ghoranneviss, M AF Hora, H. Miley, G. H. Flippo, K. Lalousis, P. Castillo, R. Yang, X. Malekynia, B. Ghoranneviss, M. TI Review about acceleration of plasma by nonlinear forces from picoseond laser pulses and block generated fusion flame in uncompressed fuel SO LASER AND PARTICLE BEAMS LA English DT Article DE Fast ignition; Fusion flame; Hydrogen-boron fusion; Laser driven fusion energy; Nonlinear (ponderomotive) force acceleration ID INERTIAL CONFINEMENT FUSION; VOLUME IGNITION; PICOSECOND LASER; HYDROGEN-BORON; BEAM FUSION; DRIVEN; ENERGY; TARGETS; GAINS; COMPRESSION AB In addition to the matured "laser inertial fusion energy" with spherical compression and thermal ignition of deuteriumtritium (DT), a very new alternative for the fast ignition scheme may have now been opened by using side-on block ignition aiming beyond the DT-fusion with igniting the neutron-free reaction of proton-boron-11 (p-B-11). Measurements with laser pulses of terawatt power and ps duration led to the discovery of an anomaly of interaction, if the prepulses are cut off by a factor 10(8) (contrast ratio) to avoid relativistic self focusing in agreement with preceding computations. Applying this to petawatt (PW) pulses for Bobin-Chu conditions of side-on ignition of solid fusion fuel results after several improvements in energy gains of 10,000. This is in contrast to the impossible laser-ignition of p-B-11 by the usual spherical compression and thermal ignition. The side-on ignition is less than ten times only more difficult than for DT ignition. This is essentially based on the instant and direct conversion the optical laser energy by the nonlinear force into extremely high plasma acceleration. Genuine two-fluid hydrodynamic computations for DT are presented showing details how ps laser pulses generate a fusion flame in solid state density with an increase of the density in the thin flame region. Densities four times higher are produced automatically confirming a Rankine-Hugoniot shock wave process with an increasing thickness of the shock up to the nanosecond range and a shock velocity of 1500 km/s which is characteristic for these reactions. C1 [Hora, H.] Univ New S Wales, Dept Theoret Phys, Sydney, NSW, Australia. [Miley, G. H.; Yang, X.] Univ Illinois, Urbana, IL 61801 USA. [Flippo, K.] Los Alamos Natl Lab, Los Alamos, NM USA. [Lalousis, P.] Inst Elect Struct & Lasers IESL FORTH, Iraklion, Crete, Greece. [Castillo, R.] Univ Western Sydney, Campbelltown Branch, Sydney, NSW, Australia. [Malekynia, B.; Ghoranneviss, M.] IA Univ Poonak, Plasma Phys Res Ctr, Graz, Austria. [Malekynia, B.; Ghoranneviss, M.] Coordinated Res Project IAEA Vienna, Vienna, Austria. RP Hora, H (reprint author), Univ New S Wales, Dept Theoret Phys, Sydney, NSW, Australia. EM h.hora@unsw.edu.au RI Flippo, Kirk/C-6872-2009 OI Flippo, Kirk/0000-0002-4752-5141 FU International Atomic Energy Agency IAEA [13508] FX Support for PhD projects under the main supervision by M. Ghoranneviss through the Coordinated Research Project No. 13508 of the International Atomic Energy Agency IAEA is gratefully acknowledged. Special thanks are expressed to Dr. Guenter Mank at IAEA for his helpful attention. Discussions about these results at the ICONE 2010 conference in Xian/China and at the Fast Ignition Workshop 2010 in Shanghai/China are appreciated with thanks. NR 81 TC 11 Z9 12 U1 0 U2 11 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0263-0346 J9 LASER PART BEAMS JI Laser Part. Beams PD SEP PY 2011 VL 29 IS 3 BP 353 EP 363 DI 10.1017/S0263034611000413 PG 11 WC Physics, Applied SC Physics GA 824WV UT WOS:000295233800011 ER PT J AU Qin, H Davidson, RC Logan, BG AF Qin, Hong Davidson, Ronald C. Logan, B. Grant TI Centroid and envelope dynamics of charged particle beams in an oscillating wobbler and external focusing lattice for heavy ion fusion applications SO LASER AND PARTICLE BEAMS LA English DT Article DE Centroid; heavy ion fusion; ignition; Oscillatory motion; Smoothing technique; Wobblers ID INSTABILITY AB Recent heavy ion fusion target studies show that it is possible to achieve ignition with direct drive and energy gain larger than 100 at 1 MJ. To realize these advanced, high-gain schemes based on direct drive, it is necessary to develop a reliable beam smoothing technique to mitigate instabilities and facilitate uniform deposition on the target. The dynamics of the beam centroid can be explored as a possible beam smoothing technique to achieve a uniform illumination over a suitably chosen region of the target. The basic idea of this technique is to induce an oscillatory motion of the centroid for each transverse slice of the beam in such a way that the centroids of different slices strike different locations on the target. The centroid dynamics is controlled by a set of biased electrical plates called "wobblers." Using a model based on moments of the Vlasov-Maxwell equations, we show that the wobbler deflection force acts only on the centroid motion, and that the envelope dynamics are independent of the wobbler fields. If the conducting wall is far away from the beam, then the envelope dynamics and centroid dynamics are completely decoupled. This is a preferred situation for the beam wobbling technique, because the wobbler system can be designed to generate the desired centroid motion on the target without considering its effects on the envelope and emittance. A conceptual design of the wobbler system for a heavy ion fusion driver is briefly summarized. C1 [Qin, Hong; Davidson, Ronald C.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Qin, Hong] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Logan, B. Grant] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Qin, H (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM hongqin@princeton.edu FU U.S. Department of Energy FX This research was supported by the U.S. Department of Energy. NR 26 TC 3 Z9 3 U1 0 U2 5 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0263-0346 J9 LASER PART BEAMS JI Laser Part. Beams PD SEP PY 2011 VL 29 IS 3 BP 365 EP 372 DI 10.1017/S0263034611000401 PG 8 WC Physics, Applied SC Physics GA 824WV UT WOS:000295233800012 ER PT J AU Klopffleisch, K Phan, N Augustin, K Bayne, RS Booker, KS Botella, JR Carpita, NC Carr, T Chen, JG Cooke, TR Frick-Cheng, A Friedman, EJ Fulk, B Hahn, MG Jiang, K Jorda, L Kruppe, L Liu, CG Lorek, J McCann, MC Molina, A Moriyama, EN Mukhtar, MS Mudgil, Y Pattathil, S Schwarz, J Seta, S Tan, M Temp, U Trusov, Y Urano, D Welter, B Yang, J Panstruga, R Uhrig, JF Jones, AM AF Klopffleisch, Karsten Nguyen Phan Augustin, Kelsey Bayne, Robert S. Booker, Katherine S. Botella, Jose R. Carpita, Nicholas C. Carr, Tyrell Chen, Jin-Gui Cooke, Thomas Ryan Frick-Cheng, Arwen Friedman, Erin J. Fulk, Brandon Hahn, Michael G. Jiang, Kun Jorda, Lucia Kruppe, Lydia Liu, Chenggang Lorek, Justine McCann, Maureen C. Molina, Antonio Moriyama, Etsuko N. Mukhtar, M. Shahid Mudgil, Yashwanti Pattathil, Sivakumar Schwarz, John Seta, Steven Tan, Matthew Temp, Ulrike Trusov, Yuri Urano, Daisuke Welter, Bastian Yang, Jing Panstruga, Ralph Uhrig, Joachim F. Jones, Alan M. TI Arabidopsis G-protein interactome reveals connections to cell wall carbohydrates and morphogenesis SO MOLECULAR SYSTEMS BIOLOGY LA English DT Article DE AGB1; Arabidopsis; GPA1; heterotrimeric G-proteins; RGS1 ID HETEROTRIMERIC G-PROTEIN; TRANSCRIPTION FACTORS; INTERACTION NETWORK; FUNCTIONAL-ORGANIZATION; DEVELOPMENTAL PROCESSES; BETA-SUBUNIT; MAP; IDENTIFICATION; THALIANA; MOTIFS AB The heterotrimeric G-protein complex is minimally composed of G alpha, G beta, and G gamma subunits. In the classic scenario, the G-protein complex is the nexus in signaling from the plasma membrane, where the heterotrimeric G-protein associates with heptahelical G-protein-coupled receptors (GPCRs), to cytoplasmic target proteins called effectors. Although a number of effectors are known in metazoans and fungi, none of these are predicted to exist in their canonical forms in plants. To identify ab initio plant G-protein effectors and scaffold proteins, we screened a set of proteins from the G-protein complex using two-hybrid complementation in yeast. After deep and exhaustive interrogation, we detected 544 interactions between 434 proteins, of which 68 highly interconnected proteins form the core G-protein interactome. Within this core, over half of the interactions comprising two-thirds of the nodes were retested and validated as genuine in planta. Co-expression analysis in combination with phenotyping of loss-of-function mutations in a set of core interactome genes revealed a novel role for G-proteins in regulating cell wall modification. Molecular Systems Biology 7: 532; published online 27 September 2011; doi:10.1038/msb.2011.66 C1 [Klopffleisch, Karsten; Kruppe, Lydia; Temp, Ulrike; Welter, Bastian; Uhrig, Joachim F.] Univ Cologne, Inst Bot, D-5000 Cologne, Germany. [Nguyen Phan; Bayne, Robert S.; Booker, Katherine S.; Carr, Tyrell; Frick-Cheng, Arwen; Friedman, Erin J.; Jiang, Kun; Liu, Chenggang; Mukhtar, M. Shahid; Mudgil, Yashwanti; Seta, Steven; Tan, Matthew; Urano, Daisuke; Yang, Jing; Jones, Alan M.] Univ N Carolina, Dept Biol, Chapel Hill, NC USA. [Augustin, Kelsey] Wayne State Coll, Dept Comp Technol & Informat Syst, Wayne, NE USA. [Botella, Jose R.; Trusov, Yuri] Univ Queensland, Sch Agr & Food Sci, Brisbane, Qld, Australia. [Carpita, Nicholas C.; McCann, Maureen C.] Purdue Univ, Dept Bot & Plant Pathol, W Lafayette, IN 47907 USA. [Carpita, Nicholas C.; McCann, Maureen C.] Purdue Univ, Bindley Biosci Ctr, W Lafayette, IN 47907 USA. [Chen, Jin-Gui] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Cooke, Thomas Ryan; Hahn, Michael G.; Pattathil, Sivakumar] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA. [Fulk, Brandon; Moriyama, Etsuko N.] Univ Nebraska, Sch Biol Sci, Lincoln, NE USA. [Fulk, Brandon; Moriyama, Etsuko N.] Univ Nebraska, Ctr Plant Sci Innovat, Lincoln, NE USA. [Hahn, Michael G.] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA. [Jorda, Lucia; Molina, Antonio] Univ Politecn Madrid, Ctr Biotecnol Genom Plantas UPM INIA, Madrid, Spain. [Lorek, Justine; Panstruga, Ralph] Max Planck Inst Plant Breeding Res, Cologne, Germany. [Schwarz, John] Univ N Carolina, Dept Biostat, Chapel Hill, NC USA. [Panstruga, Ralph] Rhein Westfal TH Aachen, Inst Bot, Unit Plant Mol Cell Biol, Aachen, Germany. [Jones, Alan M.] Univ N Carolina, Dept Pharmacol, Chapel Hill, NC USA. RP Panstruga, R (reprint author), Univ Aachen, Inst Biol 1, D-52056 Aachen, Germany. EM panstruga@bio1.rwth-aachen.de; Joachim.Uhrig@uni-koeln.de; alan_jones@unc.edu RI Chen, Jin-Gui/A-4773-2011; Panstruga, Ralph/F-3340-2011; Phan, Nguyen/I-3381-2013; Botella, Jose (Jimmy)/D-9766-2011; Molina, Antonio /G-9789-2015; Jorda, Lucia/H-5429-2015 OI Chen, Jin-Gui/0000-0002-1752-4201; , Sivakumar Pattathil/0000-0003-3870-4137; Panstruga, Ralph/0000-0002-3756-8957; Phan, Nguyen/0000-0001-7662-9014; Botella, Jose (Jimmy)/0000-0002-4446-3432; Molina, Antonio /0000-0003-3137-7938; Hahn, Michael/0000-0003-2136-5191; Jorda, Lucia/0000-0002-1660-3469 FU NSF [MCB-0723515, DBI-0421683]; Deutsche Forschungsgemeinschaft [DFG PA861/6-1, DFG UH119/6-1]; US National Science Foundation [DBI-0923992]; Oak Ridge National Laboratory; US Department of Energy [DE-AC05-00OR22725] FX We are extremely grateful to Philip Zimmermann for allowing us to access the raw data in the GENEVESTIGATOR database. We thank Ms Abby Lin, Chapel Hill High School for lab assistance. This work was supported by the NSF 2010 Program (MCB-0723515) to AMJ, by the Deutsche Forschungsgemeinschaft to RP (DFG PA861/6-1) and JU (DFG UH119/6-1), by the US National Science Foundation Plant Genome Program (DBI-0923992) to MGH and by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. The generation of the CCRC series of plant cell wall glycan-directed monoclonal antibodies used in this work was supported by the NSF Plant Genome Program (DBI-0421683). NR 42 TC 59 Z9 133 U1 3 U2 33 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1744-4292 J9 MOL SYST BIOL JI Mol. Syst. Biol. PD SEP PY 2011 VL 7 AR 532 DI 10.1038/msb.2011.66 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 829KK UT WOS:000295578500004 PM 21952135 ER PT J AU Lee, K Kim, S Points, MS Beechem, TE Ohta, T Tutuc, E AF Lee, Kayoung Kim, Seyoung Points, M. S. Beechem, T. E. Ohta, Taisuke Tutuc, E. TI Magnetotransport Properties of Quasi-Free-Standing Epitaxial Graphene Bilayer on SiC: Evidence for Bernal Stacking SO NANO LETTERS LA English DT Article DE Graphene; bilayer; SiC; quantum Hall; Bernal stacking ID BERRYS PHASE AB We investigate the magnetotransport properties of quasi-free-standing epitaxial graphene bilayer on SiC, grown by atmospheric pressure graphitization in Ar, followed by H(2) intercalation. At the charge neutrality point, the longitudinal resistance shows an insulating behavior, which follows a temperature dependence consistent with variable range hopping transport in a gapped state. In a perpendicular magnetic field, we observe quantum Hall states (QHSs) both at filling factors (v) multiples of four (v = 4, 8, 12), as well as broken valley symmetry QHSs at v = 0 and v = 6. These results unambiguously show that the quasi-free-standing graphene bilayer grown on the Si-face of SiC exhibits Bernal stacking. C1 [Lee, Kayoung; Kim, Seyoung; Points, M. S.; Tutuc, E.] Univ Texas Austin, Microelect Res Ctr, Austin, TX 78758 USA. [Beechem, T. E.; Ohta, Taisuke] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Tutuc, E (reprint author), Univ Texas Austin, Microelect Res Ctr, Austin, TX 78758 USA. EM etutuc@mail.utexas.edu FU NRI; DARPA; NSF [DMR-0819860, DMR-0654118]; NINE; State of Florida; DOE; LDRD; US DOE's National Nuclear Security Administration [DE-AC04-94AL85000]; US DOE Office of Basic Energy Sciences, Division of Materials Science and Engineering FX The work at University of Texas at Austin was supported by NRI, DARPA, NSF (DMR-0819860), and the NINE program. Part of this work was performed at the National High Magnetic Field Laboratory, which is supported by NSF (DMR-0654118), the State of Florida, and the DOE. The work at Sandia Laboratories was supported by LDRD, and performed in part at CINT, a US DOE, Office of Basic Energy Sciences user facility (DE-AC04-94AL85000). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the US DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000. We are grateful to Guild Copeland and Anthony McDonald for sample preparation and characterization, partly supported by the US DOE Office of Basic Energy Sciences, Division of Materials Science and Engineering. NR 27 TC 22 Z9 22 U1 0 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD SEP PY 2011 VL 11 IS 9 BP 3624 EP 3628 DI 10.1021/nl201430a PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 818XO UT WOS:000294790200020 PM 21797267 ER PT J AU Chen, W Xu, T He, F Wang, W Wang, C Strzalka, J Liu, Y Wen, JG Miller, DJ Chen, JH Hong, KL Yu, LP Darling, SB AF Chen, Wei Xu, Tao He, Feng Wang, Wei Wang, Cheng Strzalka, Joseph Liu, Yun Wen, Jianguo Miller, Dean J. Chen, Jihua Hong, Kunlun Yu, Luping Darling, Seth B. TI Hierarchical Nanomorphologies Promote Exciton Dissociation in Polymer/Fullerene Bulk Heterojunction Solar Cells SO NANO LETTERS LA English DT Article DE Organic photovoltaics; bulk heterojunction; hierarchical nanomorphology; charge photogeneration; X-ray scattering; device performance ID POWER CONVERSION EFFICIENCY; POLYMER-FULLERENE BLENDS; X-RAY SCATTERING; PHASE-SEPARATION; THIN-FILMS; PERFORMANCE; REFLECTIVITY; MORPHOLOGY; ADDITIVES; DYNAMICS AB PTB7 semiconducting copolymer comprising thieno[3,4-b]thiophene and benzodithiophene alternating repeat units set a historic record of solar energy conversion efficiency (7.4%) in polymer/fullerene bulk heterojunction solar cells. To further improve solar cell performance, a thorough understanding of structure-property relationships associated with PTB7/fullerene and related organic photovoltaic (OPV) devices is crucial. Traditionally, OPV active layers are viewed as an interpenetrating network of pure polymers and fullerenes with discrete interfaces. Here we show that the active layer of PTB7/fullerene OPV devices in fact involves hierarchical nanomorphologies ranging from several nanometers of crystallites to tens of nanometers of nanocrystallite aggregates in PTB7-rich and fullerene-rich domains, themselves hundreds of nanometers in size. These hierarchical nanomorphologies are coupled to significantly enhanced exciton dissociation, which consequently contribute to photocurrent, indicating that the nanostructural characteristics at multiple length scales is one of the key factors determining the performance of PTB7 copolymer, and likely most polymer/fullerene systems, in OPV devices. C1 [Chen, Wei; Darling, Seth B.] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA. [Xu, Tao; He, Feng; Wang, Wei; Yu, Luping] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Xu, Tao; He, Feng; Wang, Wei; Yu, Luping] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Wang, Cheng] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Strzalka, Joseph] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Lemont, IL 60439 USA. [Liu, Yun] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Liu, Yun] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. [Wen, Jianguo; Miller, Dean J.] Argonne Natl Lab, Ctr Electron Microscopy, Lemont, IL 60439 USA. [Wen, Jianguo; Miller, Dean J.] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. [Chen, Jihua; Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Chen, W (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Lemont, IL 60439 USA. EM wchen@anl.gov; lupingyu@uchicago.edu; darling@anl.gov RI Sanders, Susan/G-1957-2011; Chen, Wei/G-6055-2011; Wang, Cheng /E-7399-2012; Liu, Yun/F-6516-2012; Wang, Cheng/A-9815-2014; Chen, Jihua/F-1417-2011; He, Feng/J-2878-2014; Hong, Kunlun/E-9787-2015 OI Chen, Wei/0000-0001-8906-4278; Liu, Yun/0000-0002-0944-3153; Chen, Jihua/0000-0001-6879-5936; He, Feng/0000-0002-8596-1366; Hong, Kunlun/0000-0002-2852-5111 FU Argonne Director's Postdoctoral Fellowship; NSF; NSF-MRSEC; AFOSR; DOE; University of Chicago-Argonne Strategic Collaborative Initiative; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX W.C. gratefully acknowledges financial support from Argonne Director's Postdoctoral Fellowship. L.Y., T.X. and F.H. acknowledge support from NSF, NSF-MRSEC, AFOSR, and DOE on the synthesis of polymers. This work was partially supported by a University of Chicago-Argonne Strategic Collaborative Initiative Seed Grant. We thank Dr. Zhang Jiang for helpful discussions and sharing XRR of the thick polymer film. Use of the Advanced Photon Source (APS), the Electron Microscopy Center (EMC) for Materials Research, and the Center for Nanoscale Materials (CNM) at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The ALS at Lawrence Berkeley National Laboratory is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose. NR 54 TC 270 Z9 270 U1 16 U2 239 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD SEP PY 2011 VL 11 IS 9 BP 3707 EP 3713 DI 10.1021/nl201715q PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 818XO UT WOS:000294790200034 PM 21823620 ER PT J AU Liu, C Hwang, YJ Jeong, HE Yang, PD AF Liu, Chong Hwang, Yun Jeong Jeong, Hoon Eui Yang, Peidong TI Light-Induced Charge Transport within a Single Asymmetric Nanowire SO NANO LETTERS LA English DT Article DE Charge separation; Kelvin probe force microscopy (KPFM); asymmetric nanowire; dual band gap configuration; solar water splitting ID SOLAR-CELLS; FORCE MICROSCOPY; WATER; GROWTH; PHOTOLYSIS; DYNAMICS; ARRAYS AB Artificial photosynthetic systems using semiconductor materials have been explored for more than three decades in order to store solar energy in chemical fuels such as hydrogen. By mimicking biological photosynthesis with two light-absorbing centers that relay excited electrons in a nanoscopic space, a dual-band gap photoelectrochemical (PEC) system is expected to have higher theoretical energy conversion efficiency than a single band gap system. This work demonstrates the vectorial charge transport of photogenerated electrons and holes within a single asymmetric Si/TiO(2) nanowire using Kelvin probe force microscopy. Under UV illumination, higher surface potential was observed on the n-TiO(2) side, relative to the potential of the p-Si side, as a result of majority carriers recombination at the Si/TiO(2) interface. These results demonstrate a new approach to investigate charge separation and transport in a PEC system. This asymmetric nanowire heterostructure with a dual band gap configuration and simultaneously exposed anode and cathode surfaces represents an ideal platform for the development of technologies for the generation of solar fuels, although better photoanode materials remain to be discovered. C1 [Liu, Chong; Hwang, Yun Jeong; Jeong, Hoon Eui; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Liu, Chong; Hwang, Yun Jeong; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu OI Liu, Chong/0000-0001-5546-3852 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank S. Brittman and A Zhao for helpful discussions. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 28 TC 33 Z9 33 U1 13 U2 94 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD SEP PY 2011 VL 11 IS 9 BP 3755 EP 3758 DI 10.1021/nl201798e PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 818XO UT WOS:000294790200042 PM 21766837 ER PT J AU Bai, F Sun, ZC Wu, HM Haddad, RE Xiao, XY Fan, HY AF Bai, Feng Sun, Zaicheng Wu, Huimeng Haddad, Raid E. Xiao, Xiaoyin Fan, Hongyou TI Templated Photocatalytic Synthesis of Well-Defined Platinum Hollow Nanostructures with Enhanced Catalytic Performance for Methanol Oxidation SO NANO LETTERS LA English DT Article DE Self-assembly; photocatalytic reaction; methanol oxidation; platinum hollow nanostructure; fuel cell; porphyrin AB Hollow metallic nanostructures exhibit important applications in catalysis, sensing, and phototherapy due to their increased surface areas, reduced densities, and unique optical and electronic features. Here we report a facile photocatalytic process to synthesize and tune hollow platinum (Pt) nanostructures. Through hierarchically structured templates, well-defined hollow Pt nanostructures are. achieved. These nanostructures possess interconnected nanoporous framework as shell with high surface area for enhanced catalytic performance/mass transport for methanol oxidation. C1 [Bai, Feng; Sun, Zaicheng; Haddad, Raid E.; Fan, Hongyou] Univ New Mexico, Dept Chem & Nucl Engn, NSF Ctr Microengn Mat, Albuquerque, NM 87131 USA. [Bai, Feng] Henan Univ, Minist Educ, Key Lab Special Funct Mat, Kaifeng 475004, Peoples R China. [Sun, Zaicheng] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Key Lab Excited State Proc, Changchun 130033, Peoples R China. [Wu, Huimeng; Xiao, Xiaoyin; Fan, Hongyou] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. RP Fan, HY (reprint author), Univ New Mexico, Dept Chem & Nucl Engn, NSF Ctr Microengn Mat, Albuquerque, NM 87131 USA. EM hfan@sandia.gov RI Sun, Zaicheng/B-5397-2012 OI Sun, Zaicheng/0000-0001-5277-5308 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; National Natural Science Foundation of China [21171049, 50828302]; NSF EPSCOR; NNIN; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Dr. Dongmei Ye for her valuable discussions and help on the paper. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, Sandia National Laboratories' LDRD program, and the National Natural Science Foundation of China (No. 21171049 and No. 50828302). TEM studies were performed in the Department of Earth and Planetary Sciences at University of New Mexico. We acknowledge the use of the SEM facility supported by the NSF EPSCOR and NNIN grants. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 22 TC 67 Z9 67 U1 4 U2 91 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD SEP PY 2011 VL 11 IS 9 BP 3759 EP 3762 DI 10.1021/nl201799x PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 818XO UT WOS:000294790200043 PM 21853999 ER PT J AU Gargas, DJ Gao, HW Wang, HT Yang, PD AF Gargas, Daniel J. Gao, Hanwei Wang, Hungta Yang, Peidong TI High Quantum Efficiency of Band-Edge Emission from ZnO Nanowires SO NANO LETTERS LA English DT Article DE Zinc oxide; nanowire; quantum efficiency; photoluminescence; extraction; power dependent AB External quantum efficiency (EQE) of photoluminescence as high as 20% from isolated ZnO nanowires were measured at room temperature. The EQE was found to be highly dependent on photoexcitation density, which underscores the importance of uniform optical excitation during the EQE measurement. An integrating sphere coupled to a microscopic imaging system was used in this work, which enabled the EQE measurement on isolated ZnO nanowires. The EQE values obtained here are significantly higher than those reported for ZnO materials in forms of bulk, thin films or powders. Additional insight on the radiative extraction factor of one-dimensional nanostructures was gained by measuring the internal quantum efficiency of individual nanowires. Such quantitative EQE measurements provide a sensitive, noninvasive method to characterize the optical properties of low-dimensional nanostructures and allow tuning of synthesis parameters for optimization of nanoscale materials. C1 [Gargas, Daniel J.; Gao, Hanwei; Wang, Hungta; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@uclink.berkeley.edu RI Gao, Hanwei/B-3634-2010 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thank Michael C. Moore, Sean C. Andrews, and Chris J. Hahn for their valuable discussions on nanowire synthesis. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 17 TC 47 Z9 47 U1 2 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD SEP PY 2011 VL 11 IS 9 BP 3792 EP 3796 DI 10.1021/nl201850k PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 818XO UT WOS:000294790200049 PM 21859081 ER PT J AU Fu, DY Zou, JJ Wang, K Zhang, R Yu, D Wu, JQ AF Fu, Deyi Zou, Jijun Wang, Kevin Zhang, Rong Yu, Dong Wu, Junqiao TI Electrothermal Dynamics of Semiconductor Nanowires under Local Carrier Modulation SO NANO LETTERS LA English DT Article DE Semiconductor nanowires; electrothermal dynamics; scanning photocurrent microscopy; local carrier modulation ID CARBON NANOTUBE TRANSISTORS; FIELD-EFFECT TRANSISTORS; SILICON SOLAR-CELLS; TRANSPORT; DEVICES; MICROSCOPY; BARRIERS; PROBE AB Charge transfer, surface/interface, defect states, and internal fields strongly influence carrier statics and dynamics in semiconductor nanowires. These effects are usually probed using spatially resolved scanning current techniques, where charge carriers are driven to move by diffusion force due to a density gradient, drift force due to internal fields, and thermoelectric force due to a temperature gradient. However, in the analysis of experimental data, analytical formulas are usually used which are based on the assumption that a single component of these forces dominates the carrier dynamics. In this work we show that this simplification is generally not justified even in the simplest configurations, and the scanning microscopy data need to be analyzed with caution. We performed a comprehensive numerical modeling of the electrothermal dynamics of free charge carriers in the scanning photocurrent microscopy configuration. The simulation allows us to reveal and predict important, surprising effects that are previously not recognized, and assess the limitation as well as potential of these scanning current techniques in nanowire characterization. C1 [Fu, Deyi; Zou, Jijun; Wang, Kevin; Wu, Junqiao] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. Nanjing Univ, Sch Elect Sci & Engn, Jiangsu Prov Key Lab Adv Photon & Elect Mat, Nanjing 210093, Jiangsu, Peoples R China. [Fu, Deyi; Zhang, Rong] Nanjing Natl Lab Microstruct, Nanjing 210093, Jiangsu, Peoples R China. [Wang, Kevin; Wu, Junqiao] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yu, Dong] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. RP Wu, JQ (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM wuj@berkeley.edu RI Wu, Junqiao/G-7840-2011; Yu, Dong/C-7141-2011; Fu, Deyi/C-6624-2011 OI Wu, Junqiao/0000-0002-1498-0148; Yu, Dong/0000-0002-8386-065X; Fu, Deyi/0000-0003-1365-8963 FU Lawrence Berkeley National Laboratory under U.S. Department of Energy [DE-AC02-05CH11231]; Special Funds for Major State Basic Research Project [2011CB301901]; National Nature Science Foundation of China [60990311]; Graduate Student Research Innovation Project of Jiangsu Province of China [CX09B_009Z] FX This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231. D. Fu and R. Zhang acknowledge support by Special Funds for Major State Basic Research Project (Grant No. 2011CB301901) and the National Nature Science Foundation of China (Grant No. 60990311). D. Fu also acknowledges the special support of the Graduate Student Research Innovation Project of Jiangsu Province of China (Grant No. CX09B_009Z). We thank Professor Lincoln Lauhon for helpful discussions. NR 34 TC 29 Z9 29 U1 2 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD SEP PY 2011 VL 11 IS 9 BP 3809 EP 3815 DI 10.1021/nl2018806 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 818XO UT WOS:000294790200052 PM 21790187 ER PT J AU Kiener, D Minor, AM AF Kiener, D. Minor, A. M. TI Source Truncation and Exhaustion: Insights from Quantitative in situ TEM Tensile Testing SO NANO LETTERS LA English DT Article DE In situ tensile testing; transmission electron microscopy (TEM); size effect; strengthening mechanism; dislocation structure ID MICRO-PILLAR PLASTICITY; DISLOCATION NUCLEATION; CRYSTAL PLASTICITY; SINGLE-CRYSTALS; LENGTH-SCALE; STRENGTH; COMPRESSION; COPPER; DEFORMATION; SIMULATIONS AB A unique method for quantitative in situ nanotensile testing in a transmission electron microscope employing focused ion beam fabricated specimens was developed. Experiments were performed on copper samples with minimum dimensions in the 100-200 nm regime oriented for either single slip or multiple slip, respectively. We observe that both frequently discussed mechanisms, truncation of spiral dislocation sources and exhaustion of defects available within the specimen, contribute to high strengths and related size-effects in small volumes. This suggests that in the submicrometer range these mechanisms should be considered simultaneously rather than exclusively. C1 [Kiener, D.; Minor, A. M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Kiener, D.; Minor, A. M.] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Kiener, D (reprint author), Univ Leoben, Dept Mat Phys, Leoben, Austria. EM daniel.kiener@unileoben.ac.at RI Kiener, Daniel/B-2202-2008 OI Kiener, Daniel/0000-0003-3715-3986 FU National Center for Electron Microscopy, Lawrence Berkeley National Laboratory; U.S. Department of Energy [DE-AC02-05CH11231]; Austrian Science Fund (FWF) [J2834-N20] FX This work was supported by the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. D.K. gratefully acknowledges financial support of the Austrian Science Fund (FWF) through the Erwin Schrodinger fellowship J2834-N20. The authors are thankful to R. C. Major from Hysitron, Inc., for his continued support during development of the tensile loading mode. NR 46 TC 85 Z9 87 U1 8 U2 102 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD SEP PY 2011 VL 11 IS 9 BP 3816 EP 3820 DI 10.1021/nl201890s PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 818XO UT WOS:000294790200053 PM 21793497 ER PT J AU Kronawitter, CX Bakke, JR Wheeler, DA Wang, WC Chang, CL Antoun, BR Zhang, JZ Guo, JH Bent, SF Mao, SS Vayssieres, L AF Kronawitter, Coleman X. Bakke, Jonathan R. Wheeler, Damon A. Wang, Wei-Cheng Chang, Chinglin Antoun, Bonnie R. Zhang, Jin Z. Guo, Jinghua Bent, Stacey F. Mao, Samuel S. Vayssieres, Lionel TI Electron Enrichment in 3d Transition Metal Oxide Hetero-Nanostructures SO NANO LETTERS LA English DT Article DE Carrier dynamics; electronic structure; interfacial charge transfer; nanostructure; oxide heterostructure ID X-RAY-ABSORPTION; NANOROD ARRAYS; THIN-FILMS; DOPED TIO2; TITANIUM; ALPHA-FE2O3; INTERFACE; GROWTH; CELLS; NANOPARTICLES AB Direct experimental observation of spontaneous electron enrichment of metal d orbitals in a new transition metal oxide heterostructure with nanoscale dimensionality is reported. Aqueous chemical synthesis and vapor phase deposition are combined to fabricate oriented arrays of high-interfacial-area hetero-nanostructures comprised of titanium oxide and iron oxide nanomaterials. Synchrotron-based soft X-ray spectroscopy techniques with high spectral resolution are utilized to directly probe the titanium and oxygen orbital character of the interfacial region's occupied and unoccupied densities of states. These data demonstrate the interface to possess electrons in Ti 3d bands and an emergent degree of orbital hybridization that is absent in parent oxide reference crystals. The carrier dynamics of the hetero-nanostructures are studied by ultrafast transient absorption spectroscopy, which reveals the presence of a dense manifold of states, the relaxations from which exhibit multiple exponential decays whose magnitudes depend on their energetic positions within the electronic structure. C1 [Kronawitter, Coleman X.; Mao, Samuel S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Kronawitter, Coleman X.; Mao, Samuel S.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Bakke, Jonathan R.; Bent, Stacey F.] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Wheeler, Damon A.; Zhang, Jin Z.] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. [Wang, Wei-Cheng; Chang, Chinglin] Tamkang Univ, Dept Phys, Tamsui 250, Taiwan. [Antoun, Bonnie R.] Sandia Natl Labs, Livermore, CA 94551 USA. [Wang, Wei-Cheng; Guo, Jinghua] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Vayssieres, Lionel] Natl Inst Mat Sci, Int Ctr Mat NanoArchitecton, Tsukuba, Ibaraki 3050044, Japan. RP Mao, SS (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM ssmao@lbl.gov; Vayssieres.Lionel@nims.go.jp RI Bakke, Jonathan/F-9296-2010; OI Bakke, Jonathan/0000-0002-2925-9927; Chang, Ching-Lin/0000-0001-8547-371X FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Basic Energy Sciences Division of the U.S. Department of Energy [DE-FG02-ER46232]; W.M. Keck Center for Nanoscale Optofluidics at UCSC; Department of Defense (DoD); National Science Foundation (NSF); Center on Nanostructuring for Efficient Energy Conversion, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001060, DE-AC02-05CH11231]; MEXT, Japan FX This research has been partially supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. C.X.K. and B.R.A. were supported by Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. J.Z.Z. is grateful to the Basic Energy Sciences Division of the U.S. Department of Energy (DE-FG02-ER46232) for support. D.A.W. was supported in part by the W.M. Keck Center for Nanoscale Optofluidics at UCSC. J.R.B. acknowledges funding from the Department of Defense (DoD) through the National Defense Science and Engineering Graduate Fellowship (NDSEG) and from the National Science Foundation (NSF) Graduate Fellowship. The TEM studies, which were conducted by Hee Joon Jung, were supported as part of the Center on Nanostructuring for Efficient Energy Conversion, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001060. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. L.V. was supported by MEXT, Japan. NR 50 TC 32 Z9 32 U1 6 U2 93 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD SEP PY 2011 VL 11 IS 9 BP 3855 EP 3861 DI 10.1021/nl201944h PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 818XO UT WOS:000294790200060 PM 21834542 ER PT J AU Wang, C Lee, DH Hexemer, A Kim, MI Zhao, W Hasegawa, H Ade, H Russell, TP AF Wang, Cheng Lee, Dong Hyun Hexemer, Alexander Kim, Myung Im Zhao, Wei Hasegawa, Hirokazu Ade, Harald Russell, Thomas P. TI Defining the Nanostructured Morphology of Triblock Copolymers Using Resonant Soft X-ray Scattering SO NANO LETTERS LA English DT Article DE Block copolymer; ABC triblock copolymer; core-shell; soft X-ray scattering; RSoXS; electron tomography ID BLOCK-COPOLYMERS; THIN-FILMS; MICRODOMAIN MORPHOLOGY; POLYMERS; THERMODYNAMICS; SILICA AB The morphologies of a poly(1,4-isoprene)-block-polystyrene-block-poly(2-vinyl pyridine) (IS2VP) copolymer were investigated using resonant soft X-ray scattering (RSoXS) together with scanning force microscopy, small-angle X-ray scattering, and electron microscopy. Differences in the nanoscopic morphologies in the bulk and thin film samples were observed arising from the competition between segmental interactions between the blocks and the substrate and the surface energies of each block. Using soft X-rays at selected photon energies to isolate the scattering contribution from different polymer blocks, RSoXS unambiguously defined the complex morphology of the triblock copolymer. In the bulk sample, two nested, hexagonal arrays of P2VP and PI cylindrical microdomains residing in the PS matrix were observed. The cylindrical microdomains of one component were found to be located at the interstitial sites of the hexagonal array of the other component that has the larger d spacing. In solvent-annealed thin films with 40 nm in thickness, a hexagonal array of core shell microdomains of P2VP cores with PS shells that reside in a PI matrix were observed. C1 [Wang, Cheng; Hexemer, Alexander] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Lee, Dong Hyun] Dankook Univ, Dept Polymer Sci & Engn, Yongin 448701, Gyeonggi Do, South Korea. [Kim, Myung Im] Univ Calif Berkeley, Coll Chem, Berkeley, CA 94720 USA. [Kim, Myung Im] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Zhao, Wei; Russell, Thomas P.] Univ Massachusetts, Dept Polymer Sci & Engn, Amherst, MA 01003 USA. [Hasegawa, Hirokazu] Kyoto Univ, Grad Sch Engn, Dept Polymer Chem, Kyoto 6068501, Japan. [Ade, Harald] N Carolina State Univ, Dept Phys, Raleigh, NC 27650 USA. RP Wang, C (reprint author), Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM cwang2@lbl.gov; russell@mail.pse.umass.edu RI Wang, Cheng /E-7399-2012; Zhao, Wei/D-2398-2013; Ade, Harald/E-7471-2011; Wang, Cheng/A-9815-2014 OI Zhao, Wei/0000-0003-4643-2864; FU LBNL Laboratory; DOE OS, BES, Materials Science and Engineering Devision [DE-FG02-98ER45737]; NSF [DMR-0820506]; Department of Energy, Office of Basic Energy Science [DE-FG02-96ER45612] FX This work was supported by a LBNL Laboratory Directed Research and Development grant. HA. is supported by DOE OS, BES, Materials Science and Engineering Devision (Grant DE-FG02-98ER45737). NSF supported Materials Research Science and Engineering Center at the University of Massachusetts (DMR-0820506). TPR was supported by the Department of Energy, Office of Basic Energy Science under contract DE-FG02-96ER45612. NR 37 TC 60 Z9 60 U1 10 U2 78 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD SEP PY 2011 VL 11 IS 9 BP 3906 EP 3911 DI 10.1021/nl2020526 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 818XO UT WOS:000294790200068 PM 21805981 ER PT J AU Liu, XH Huang, S Picraux, ST Li, J Zhu, T Huang, JY AF Liu, Xiao Hua Huang, Shan Picraux, S. Tom Li, Ju Zhu, Ting Huang, Jian Yu TI Reversible Nanopore Formation in Ge Nanowires during Lithiation-Delithiation Cycling: An In Situ Transmission Electron Microscopy Study SO NANO LETTERS LA English DT Article DE Germanium nanowire; sponge; pore memory effect; reversible volume change; lithium ion battery; in situ TEM ID LITHIUM-ION BATTERIES; ELECTROCHEMICAL LITHIATION; SILICON NANOWIRES; GERMANIUM; LI; ANODES; OXIDATION; CAPACITY; BEHAVIOR; METALS AB Retaining the high energy density of rechargeable lithium ion batteries depends critically on the cycle stability of microstructures in electrode materials. We report the reversible formation of nanoporosity in individual germanium nanowires during lithiation-delithiation cycling by in situ transmission electron microscopy. Upon lithium insertion, the initial crystalline Ge underwent a two-step phase transformation process: forming the intermediate amorphous LixGe and final crystalline Li15Ge4 phases. Nanopores developed only during delithiation, involving the aggregation of vacancies produced by lithium extraction, similar to the formation of porous metals in dealloying. A delithiation front was observed to separate a dense nanowire segment of crystalline Li15Ge4 with a porous spongelike segment composed of interconnected ligaments of amorphous Ge. This front sweeps along the wire with a logarithmic time law. Intriguingly, the porous nanowires exhibited fast lithiation/delithiation rates and excellent mechanical robustness, attributed to the high rate of lithium diffusion and the porous network structure for facile stress relaxation, respectively. These results suggest that Ge, which can develop a reversible nanoporous network structure, is a promising anode material for lithium ion batteries with superior energy capacity, rate performance, and cycle stability. C1 [Huang, Shan; Zhu, Ting] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Liu, Xiao Hua; Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Picraux, S. Tom] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Li, Ju] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Li, Ju] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Li, Ju] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. RP Zhu, T (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. EM ting.zhu@me.gatech.edu; jhuang@sandia.gov RI Liu, Xiaohua/A-8752-2011; Huang, Jianyu/C-5183-2008; Zhu, Ting/A-2206-2009; Li, Ju/A-2993-2008 OI Liu, Xiaohua/0000-0002-7300-7145; Li, Ju/0000-0002-7841-8058 FU Sandia National Laboratories (SNL); Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160]; LDRD; NEES center; CINT; Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; NSF [CMMI-0758554, 1100205, DMR-1008104]; AFOSR [FA9550-08-1-0325] FX Portions of this work were supported by a Laboratory Directed Research and Development (LDRD) project at Sandia National Laboratories (SNL) and partly by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. The LDRD supported the development and fabrication of platforms. The NEES center supported the development of TEM techniques. CINT supported the TEM capability, in addition, this work represents the efforts of several CINT users, primarily those with affiliation external to Sandia National Laboratories. In addition, this work was performed, in part, at the Sandia-Los Alamos Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. T.Z. acknowledges the support by NSF Grants CMMI-0758554 and 1100205. J.L. acknowledges support by NSF DMR-1008104 and AFOSR FA9550-08-1-0325. NR 38 TC 163 Z9 164 U1 20 U2 201 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD SEP PY 2011 VL 11 IS 9 BP 3991 EP 3997 DI 10.1021/nl2024118 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 818XO UT WOS:000294790200084 PM 21859095 ER PT J AU Yashchuk, VV Anderson, EH Barber, SK Bouet, N Cambie, R Conley, R McKinney, WR Takacs, PZ Voronov, DL AF Yashchuk, Valeriy V. Anderson, Erik H. Barber, Samuel K. Bouet, Nathalie Cambie, Rossana Conley, Raymond McKinney, Wayne R. Takacs, Peter Z. Voronov, Dmitriy L. TI Calibration of the modulation transfer function of surface profilometers with binary pseudorandom test standards: expanding the application range to Fizeau interferometers and electron microscopes SO OPTICAL ENGINEERING LA English DT Article DE surface metrology; binary pseudorandom; modulation transfer function; power spectral density; calibration; surface profilometer; interferometer; scanning electron microscope; transmission electron microscope ID CROSS-CORRELATION CHOPPER; UNIFORMLY REDUNDANT ARRAYS; OF-FLIGHT SPECTROMETER; ROUGHNESS MEASUREMENTS; THIN-FILMS; X-RAY; MIRRORS AB A modulation transfer function (MTF) calibration method based on binary pseudorandom (BPR) gratings and arrays has been proven to be an effective MTF calibration method for interferometric microscopes and a scatterometer. Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 in. phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to the BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3622485] C1 [Yashchuk, Valeriy V.; Barber, Samuel K.; McKinney, Wayne R.; Voronov, Dmitriy L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Anderson, Erik H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Bouet, Nathalie; Conley, Raymond] Brookhaven Natl Lab, NSLS 2, Upton, NY 11973 USA. [Cambie, Rossana] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Engn, Berkeley, CA 94720 USA. [Takacs, Peter Z.] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. RP Yashchuk, VV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. EM VVYashchuk@lbl.gov RI Conley, Ray/C-2622-2013; McKinney, Wayne/F-2027-2014; OI McKinney, Wayne/0000-0003-2586-3139; Bouet, Nathalie/0000-0002-5816-9429 FU Office of Science, Office of Basic Energy Sciences, Material Science Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy [DE-AC02-98CH10886]; United States Government FX The authors are grateful to David Susnitzky, Mark Izquierdo, and Udit Sharma for the FIB/SEM sample preparation and the TEM measurements. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Material Science Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. Research at Brookhaven National Laboratory is sponsored by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.; This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favor by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California. NR 64 TC 7 Z9 7 U1 0 U2 5 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD SEP PY 2011 VL 50 IS 9 AR 093604 DI 10.1117/1.3622485 PG 12 WC Optics SC Optics GA 825FN UT WOS:000295256700024 ER PT J AU Seeley, ZM Kuntz, JD Cherepy, NJ Payne, SA AF Seeley, Z. M. Kuntz, J. D. Cherepy, N. J. Payne, S. A. TI Transparent Lu2O3:Eu ceramics by sinter and HIP optimization SO OPTICAL MATERIALS LA English DT Article DE Lutetium oxide; Transparent ceramic; Densification; Vacuum sintering; Hot isostatic pressing ID ND-YAG; SCINTILLATORS; PERFORMANCE; FABRICATION; POWDERS; LASERS AB Evolution of porosity and microstructure was observed during densification of lutetium oxide ceramics doped with europium (Lu2O3:Eu) fabricated via vacuum sintering and hot isostatic pressing (HIP'ing). Nano-scale starting powder was uniaxially pressed and sintered under high vacuum at temperatures between 1575 and 1850 degrees C to obtain densities ranging between 94% and 99%, respectively. Sintered compacts were then subjected to 200 MPa argon gas at 1850 degrees C to reach full density. Vacuum sintering above 1650 degrees C led to rapid grain growth prior to densification, rendering the pores immobile. Sintering between 1600 and 1650 degrees C resulted in closed porosity yet a fine grain size to allow the pores to remain mobile during the subsequent HIP'ing step, resulting in a fully-dense highly transparent ceramic without the need for subsequent air anneal. Light yield performance was measured and Lu2O3:Eu showed similar to 4 times higher light yield than commercially used scintillating glass indicating that this material has the potential to improve the performance of high energy radiography devices. (C) 2011 Elsevier B.V. All rights reserved. C1 [Seeley, Z. M.; Kuntz, J. D.; Cherepy, N. J.; Payne, S. A.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. RP Seeley, ZM (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, 7000 East Ave, Livermore, CA 94550 USA. EM seeley7@llnl.gov RI Cherepy, Nerine/F-6176-2013 OI Cherepy, Nerine/0000-0001-8561-923X FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; US DOE, Office of NNSA [LLNL-JRNL-474691] FX Our thanks to Todd Stefanik of Nanocerox Inc., Zurong Dai for the TEM microscopy, Jeff Roberts for helping with the flame spray synthesis, Scott Fisher for the machine shop support, Marcia Kellam and Earl Updike for helping with scatter measurements and light yield characterization, and the Confined Large Optical Scintillator Screen and Imaging System (CoLOSSIS) team including Patrick Allen, James Trebes, Daniel Schneberk, and Gary Stone. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and was funded by the US DOE, Office of NNSA, Enhanced Surveillance Subprogram, LLNL-JRNL-474691. NR 26 TC 22 Z9 23 U1 6 U2 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-3467 J9 OPT MATER JI Opt. Mater. PD SEP PY 2011 VL 33 IS 11 BP 1721 EP 1726 DI 10.1016/j.optmat.2011.05.031 PG 6 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA 824ZP UT WOS:000295241000030 ER PT J AU Dubay, KH Bothma, JP Geissler, PL AF DuBay, Kateri H. Bothma, Jacques P. Geissler, Phillip L. TI Long-Range Intra-Protein Communication Can Be Transmitted by Correlated Side-Chain Fluctuations Alone SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; CONFORMATIONAL ENTROPY; ALLOSTERIC BEHAVIOR; CRYSTAL-STRUCTURE; SCALAR COUPLINGS; ORDER PARAMETERS; HIGH-RESOLUTION; PDZ DOMAIN; EGLIN-C; NMR AB Allosteric regulation is a key component of cellular communication, but the way in which information is passed from one site to another within a folded protein is not often clear. While backbone motions have long been considered essential for long-range information conveyance, side-chain motions have rarely been considered. In this work, we demonstrate their potential utility using Monte Carlo sampling of side-chain torsional angles on a fixed backbone to quantify correlations amongst side-chain inter-rotameric motions. Results indicate that long-range correlations of side-chain fluctuations can arise independently from several different types of interactions: steric repulsions, implicit solvent interactions, or hydrogen bonding and salt-bridge interactions. These robust correlations persist across the entire protein (up to 60 angstrom in the case of calmodulin) and can propagate long-range changes in side-chain variability in response to single residue perturbations. C1 [DuBay, Kateri H.; Geissler, Phillip L.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [DuBay, Kateri H.; Geissler, Phillip L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Div Phys Biosci, Berkeley, CA 94720 USA. [DuBay, Kateri H.; Geissler, Phillip L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Bothma, Jacques P.; Geissler, Phillip L.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. RP Dubay, KH (reprint author), Columbia Univ, Dept Chem, New York, NY 10027 USA. EM geissler@cchem.berkeley.edu RI DuBay, Kateri/E-8689-2011 FU DOE, UC Berkeley; NSF; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Berkeley Fellowship; NSF GRF FX Support for this work was provided by DOE, UC Berkeley, and the NSF. All computational work was enabled through funding by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. KHD was also supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, the Berkeley Fellowship, and a NSF GRF. JPB was supported by the Berkeley Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 58 TC 33 Z9 33 U1 0 U2 25 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD SEP PY 2011 VL 7 IS 9 AR e1002168 DI 10.1371/journal.pcbi.1002168 PG 11 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 827CU UT WOS:000295404900020 PM 21980271 ER PT J AU Thukral, L Daidone, I Smith, JC AF Thukral, Lipi Daidone, Isabella Smith, Jeremy C. TI Structured Pathway across the Transition State for Peptide Folding Revealed by Molecular Dynamics Simulations SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID SRC-SH3 PROTEIN DOMAIN; PHI-VALUE ANALYSIS; BETA-HAIRPIN; SH3 DOMAIN; POTENTIAL FUNCTIONS; LATTICE MODEL; MECHANISM; ENSEMBLE; NUCLEATION; NUCLEUS AB Small globular proteins and peptides commonly exhibit two-state folding kinetics in which the rate limiting step of folding is the surmounting of a single free energy barrier at the transition state (TS) separating the folded and the unfolded states. An intriguing question is whether the polypeptide chain reaches, and leaves, the TS by completely random fluctuations, or whether there is a directed, stepwise process. Here, the folding TS of a 15-residue beta-hairpin peptide, Peptide 1, is characterized using independent 2.5 mu s-long unbiased atomistic molecular dynamics (MD) simulations (a total of 15 mu s). The trajectories were started from fully unfolded structures. Multiple (spontaneous) folding events to the NMR-derived conformation are observed, allowing both structural and dynamical characterization of the folding TS. A common loop-like topology is observed in all the TS structures with native end-to-end and turn contacts, while the central segments of the strands are not in contact. Non-native sidechain contacts are present in the TS between the only tryptophan (W11) and the turn region (P7-G9). Prior to the TS the turn is found to be already locked by the W11 sidechain, while the ends are apart. Once the ends have also come into contact, the TS is reached. Finally, along the reactive folding paths the cooperative loss of the W11 non-native contacts and the formation of the central inter-strand native contacts lead to the peptide rapidly proceeding from the TS to the native state. The present results indicate a directed stepwise process to folding the peptide. C1 [Thukral, Lipi] Univ Heidelberg, Interdisciplinary Ctr Sci Comp, Heidelberg, Germany. [Daidone, Isabella] Univ Aquila, Dept Chem Chem Engn & Mat, Coppito, Italy. [Smith, Jeremy C.] Oak Ridge Natl Lab, UT ORNL Ctr Mol Biophys, Oak Ridge, TN USA. RP Thukral, L (reprint author), Univ Heidelberg, Interdisciplinary Ctr Sci Comp, Heidelberg, Germany. EM daidone@caspur.it; smithjc@ornl.gov RI smith, jeremy/B-7287-2012; OI smith, jeremy/0000-0002-2978-3227; Thukral, Lipi/0000-0002-1961-039X FU Deutsche Forschungsgemeinschaft (DFG) [SM 63/12-1]; United States Department of Energy for a Laboratory-Directed Research and Development FX We acknowledge the Deutsche Forschungsgemeinschaft (DFG) for financial support under Grant SM 63/12-1 and the United States Department of Energy for a Laboratory-Directed Research and Development Grant to JCS at ORNL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 55 TC 5 Z9 5 U1 0 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD SEP PY 2011 VL 7 IS 9 AR e1002137 DI 10.1371/journal.pcbi.1002137 PG 14 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 827CU UT WOS:000295404900003 PM 21931542 ER PT J AU Breckenridge, RP Dakins, M Bunting, S Harbour, JL White, S AF Breckenridge, Robert P. Dakins, Maxine Bunting, Stephen Harbour, Jerry L. White, Sera TI Comparison of Unmanned Aerial Vehicle Platforms for Assessing Vegetation Cover in Sagebrush Steppe Ecosystems SO RANGELAND ECOLOGY & MANAGEMENT LA English DT Article DE bare ground; fixed-wing; helicopter; landscape; monitoring; remote sensing ID RANGELAND HEALTH; SAGE-GROUSE; SOUTHEASTERN IDAHO; INDICATORS; ACCURACY; ECOLOGY; IMAGERY; FIRE AB In this study, the use of unmanned aerial vehicles (UAVs) as a quick and safe method for monitoring biotic resources was evaluated. Vegetation cover and the amount of bare ground are important factors in understanding the sustainability of many ecosystems. Methods that improve speed and cost efficiency could greatly improve how biotic resources are monitored on western lands. Sagebrush steppe ecosystems provide important habitat for a variety of species including sage grouse and pygmy rabbit. Improved methods of monitoring these habitats are needed because not enough resource specialists or funds are available for comprehensive on-the-ground evaluations. In this project, two UAV platforms, fixed-wing and helicopter, were used to collect still-frame imagery to assess vegetation cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to 1) estimate percentage of cover for six different vegetation types (shrub, dead shrub, grass, forb, litter, and bare ground) and 2) locate sage grouse using representative decoys. The field plots were located on the Idaho National Laboratory site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetation cover. A software program called SamplePoint was used along with visual inspection to evaluate percentage of cover for the six cover types. Results were compared against standard field measurements to assess accuracy. The comparison of fixed-wing and helicopter UAV technology against field estimates shows good agreement for the measurement of bare ground. This study shows that if a high degree of detail and data accuracy is desired, then a helicopter UAV may be a good platform to use. If the data collection objective is to assess broad-scale landscape level changes, then the collection of imagery with a fixed-wing system is probably more appropriate. C1 [Breckenridge, Robert P.] Idaho Natl Lab, Ecol Sci Dept, Idaho Falls, ID 83415 USA. [Dakins, Maxine] Univ Idaho, Environm Sci Program, Moscow, ID 83844 USA. [Bunting, Stephen] Univ Idaho, Dept Rangeland Ecol & Management, Moscow, ID 83844 USA. [Harbour, Jerry L.] Epsilon Syst Solut Inc, Albuquerque, NM 87106 USA. RP Breckenridge, RP (reprint author), Idaho Natl Lab, Ecol Sci Dept, POB 1625, Idaho Falls, ID 83415 USA. EM Robert.Breckenridge@inl.gov FU Idaho National Laboratory under Dept of Energy, Idaho Operations Office [DE-AC07-051D14517] FX Work was supported through Idaho National Laboratory's Laboratory Directed Research and Development Program under Dept of Energy, Idaho Operations Office Contract DE-AC07-051D14517. NR 58 TC 13 Z9 13 U1 4 U2 55 PU SOC RANGE MANAGEMENT PI LAKEWOOD PA 445 UNION BLVD, STE 230, LAKEWOOD, CO 80228-1259 USA SN 1550-7424 EI 1551-5028 J9 RANGELAND ECOL MANAG JI Rangel. Ecol. Manag. PD SEP PY 2011 VL 64 IS 5 BP 521 EP 532 DI 10.2111/REM-D-10-00030.1 PG 12 WC Ecology; Environmental Sciences SC Environmental Sciences & Ecology GA 824GG UT WOS:000295189800012 ER PT J AU Otosaka, S Schwehr, KA Kaplan, DI Roberts, KA Zhang, SJ Xu, C Li, HP Ho, YF Brinkmeyer, R Yeager, CM Santschi, PH AF Otosaka, Shigeyoshi Schwehr, Kathleen A. Kaplan, Daniel I. Roberts, Kimberly A. Zhang, Saijin Xu, Chen Li, Hsiu-Ping Ho, Yi-Fang Brinkmeyer, Robin Yeager, Chris M. Santschi, Peter H. TI Factors controlling mobility of I-127 and I-129 species in an acidic groundwater plume at the Savannah River Site SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Savannah River Site; Iodine-129; Iodine-127; Groundwater; Speciation; Iodide; Iodate; Organo-iodine ID ORGANIC-MATTER; IODINE; IODATE; SOIL; PLUTONIUM; SORPTION; CHROMATOGRAPHY; TRANSPORT; AQUIFER AB In order to quantify changes in iodine speciation and to assess factors controlling the distribution and mobility of iodine at an iodine-129 (I-129) contaminated site located at the U.S. Department of Energy's Savannah River Site (SRS), spatial distributions and transformation of I-129 and stable iodine (I-127) species in groundwater were investigated along a gradient in redox potential (654 to 360 mV), organic carbon concentration (5 to 60 mu mol L-1), and pH (pH 3.2 to 6.8). Total I-129 concentration in groundwater was 8.6 +/- 2.8 Bq L-1 immediately downstream of a former waste seepage basin (well FSB-95DR), and decreased with distance from the seepage basin. I-127 concentration decreased similarly to that of I-129. Elevated concentrations of I-127 or I-129 were not detected in groundwater collected from wells located outside of the mixed waste plume of this area. At FSB-95DR, the majority (55-86%) of iodine existed as iodide for both I-127 and I-129. Then, as the iodide move down gradient, some of it transformed into iodate and organo-iodine. Considering that iodate has a higher K-d value than iodide, we hypothesize that the production of iodate in groundwater resulted in the removal of iodine from the groundwater and consequently decreased concentrations of I-127 and I-129 in downstream areas. Significant amounts of organo-iodine species (30-82% of the total iodine) were also observed at upstream wells, including those outside the mixed waste plume. Concentrations of groundwater iodide decreased at a faster rate than organo-iodine along the transect from the seepage basin. We concluded that removal of iodine from the groundwater through the formation of high molecular weight organo-iodine species is complicated by the release of other more mobile organo-iodine species in the groundwater. (C) 2011 Elsevier B.V. All rights reserved. C1 [Otosaka, Shigeyoshi] Japan Atom Energy Agcy, Res Grp Environm Sci, Tokai, Ibaraki 3191195, Japan. [Otosaka, Shigeyoshi; Schwehr, Kathleen A.; Zhang, Saijin; Xu, Chen; Li, Hsiu-Ping; Ho, Yi-Fang; Brinkmeyer, Robin; Santschi, Peter H.] Texas A&M Univ, Dept Marine Sci, Lab Oceanog & Environm Res, Galveston, TX 77553 USA. [Kaplan, Daniel I.; Roberts, Kimberly A.; Yeager, Chris M.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Otosaka, S (reprint author), Japan Atom Energy Agcy, Res Grp Environm Sci, Tokai, Ibaraki 3191195, Japan. EM otosaka.shigeyoshi@jaea.go.jp RI Santschi, Peter/D-5712-2012; zhang, saijin/A-4986-2013; Ho, Yi-Fang/H-4198-2013; OI Otosaka, Shigeyoshi/0000-0003-2087-9676 FU Department of Energy, Office of Science [DE-PS02-07ER07-18]; Welch Grant [BD0046]; Savannah River National Laboratory under the U.S. Department of Energy [DE-AC09-96SR18500] FX This work was funded by the Department of Energy's Subsurface Biogeochemical Research Program within the Office of Science (DE-PS02-07ER07-18). S.Z. was partially supported by Welch Grant BD0046. Laura Bagwell (SRNL) helped with GIS assistance and Jay Noonkester (SRNL) helped coordinate the field work. The work was conducted by the Savannah River National Laboratory under the U.S. Department of Energy (DE-AC09-96SR18500). NR 39 TC 31 Z9 31 U1 0 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD SEP 1 PY 2011 VL 409 IS 19 BP 3857 EP 3865 DI 10.1016/j.scitotenv.2011.05.018 PG 9 WC Environmental Sciences SC Environmental Sciences & Ecology GA 824WW UT WOS:000295233900031 PM 21641630 ER PT J AU Biswas, A Brooks, SC Miller, CL Mosher, JJ Yin, XPL Drake, MM AF Biswas, Abir Brooks, Scott C. Miller, Carrie L. Mosher, Jennifer J. Yin, Xiangping L. Drake, Meghan M. TI Bacterial growth phase influences methylmercury production by the sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Mercury; Methylation; Monomethylmercury; Growth stage; Desulfovibrio desulfuricans ND132 ID DISSOLVED ORGANIC-MATTER; MERCURY METHYLATION; ANAEROBIC-BACTERIA; STATIONARY-PHASE; NATURAL-WATERS; SEDIMENTS; CADMIUM; BIOAVAILABILITY; COMPLEXATION; SULFIDE AB The effect of bacterial growth phase is an aspect of mercury (Hg) methylation that previous studies have not investigated in detail. Here we consider the effect of growth phase (mid-log, late-log and late stationary phase) on Hg methylation by the known methylator Desulfovibrio desulfuricans ND132. We tested the addition of Hg alone (chloride-complex), Hg with Suwannee River natural organic matter (SRNOM) (unequilibrated), and Hg equilibrated with SRNOM on monomethylmercury (MMHg) production by ND132 over a growth curve in pyruvate-fumarate media. This NOM did not affect MMHg production even under very low Hg: SRNOM ratios, where Hg binding is predicted to be dominated by high energy sites. Adding Hg or Hg-NOM to growing cultures 24 h before sampling (late addition) resulted in similar to 2x greater net fraction of Hg methylated than for comparably aged cultures exposed to Hg from the initial culture inoculation (early addition). Mid- and late-log phase cultures produced similar amounts of MMHg, but late stationary phase cultures (both under early and late Hg addition conditions) produced up to similar to 3x more MMHg, indicating the potential importance of growth phase in studies of MMHg production. (C) 2011 Elsevier B.V. All rights reserved. C1 [Biswas, Abir; Brooks, Scott C.; Miller, Carrie L.; Yin, Xiangping L.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Mosher, Jennifer J.; Drake, Meghan M.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Biswas, Abir] Evergreen State Coll, Olympia, WA 98505 USA. RP Brooks, SC (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM brookssc@ornl.gov RI Drake, Meghan/A-6446-2011; Brooks, Scott/B-9439-2012; Miller, Carrie/B-8943-2012; OI Drake, Meghan/0000-0001-7969-4823; Brooks, Scott/0000-0002-8437-9788; Mosher, Jennifer/0000-0001-6976-2036 FU U.S. Department of Energy, Office of Science, Biological and Environmental Research, Subsurface Biogeochemical Research; U.S. Department of Energy [DEAC05-00OR22725] FX The authors thank Dr. J. Moberly and G. Southworth for helpful discussions and aid with analyses and C. Brandt for aid with statistical analyses. They also thank Dr. C. Gilmour for cultures of ND132 and Dr. D. Elias and Dr. J. Wall and for media protocols. We also appreciate the thoughtful review comments that improved the manuscript. We provide details of experimental conditions and methods as well as NOM characterization in Supporting material. This work was funded by the U.S. Department of Energy, Office of Science, Biological and Environmental Research, Subsurface Biogeochemical Research Program and is a product of the Science Focus Area (SFA) at ORNL. ORNL is managed by UT-Battelle LLC for the U.S. Department of Energy under contract DEAC05-00OR22725. NR 48 TC 5 Z9 7 U1 2 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 EI 1879-1026 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD SEP 1 PY 2011 VL 409 IS 19 BP 3943 EP 3948 DI 10.1016/j.scitotenv.2011.06.037 PG 6 WC Environmental Sciences SC Environmental Sciences & Ecology GA 824WW UT WOS:000295233900040 PM 21762955 ER PT J AU Fuentes-Cabrera, M Rhodes, BH Baskes, MI Terrones, H Fowlkes, JD Simpson, ML Rack, PD AF Fuentes-Cabrera, Miguel Rhodes, Bradley H. Baskes, Michael I. Terrones, Humberto Fowlkes, Jason D. Simpson, Michael L. Rack, Philip D. TI Controlling the Velocity of Jumping Nanodroplets Via Their Initial Shape and Temperature SO ACS NANO LA English DT Article DE molecular dynamics simulations; dewetting; copper; graphite; nanodroplets ID MOLECULAR-DYNAMICS; NANOPARTICLES; SIMULATIONS; NANOSCALE; REGIME; METALS AB Controlling the movement of nanoscale objects is a significant goal of nanotechnology. Dewetting-induced ejection of nanodroplets could provide another means of achieving that goal. Molecular dynamics simulations were used to investigate the dewetting-induced ejection of nanoscale liquid copper nanostructures that were deposited on a graphitic substrate. Nanostructures In the shape of a circle, square, equilateral, and isosceles triangle dewet and form nanodroplets that are ejected from the substrate with a velocity that depends on the initial shape and temperature. The dependence of the ejected velocity on shape is ascribed to the temporal asymmetry of the mass coalescence during the droplet formation; the dependence on temperature is ascribed to changes in the density and viscosity. The results suggest the dewetting induced by nanosecond laser pulses could be used to control the velocity of ejected nanodroplets. C1 [Fuentes-Cabrera, Miguel; Terrones, Humberto; Fowlkes, Jason D.; Simpson, Michael L.; Rack, Philip D.] Oak Ridge Natl Lab, Comp Sci & Math Div, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Rhodes, Bradley H.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Baskes, Michael I.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Simpson, Michael L.; Rack, Philip D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Fuentes-Cabrera, M (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Ctr Nanophase Mat Sci, POB 2008, Oak Ridge, TN 37831 USA. EM fuentescabma@ornl.gov; prack@utk.edu RI Simpson, Michael/A-8410-2011; Fuentes-Cabrera, Miguel/Q-2437-2015; OI Simpson, Michael/0000-0002-3933-3457; Fuentes-Cabrera, Miguel/0000-0001-7912-7079; Rack, Philip/0000-0002-9964-3254 FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX The authors acknowledge support from the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. B.H.R. was supported by an appointment under the Higher Education Research Experience (HERE) program, administered by the Oak Ridge Institute for Science and Education between the US. Department of Energy and Oak Ridge Associated Universities. M.F.C. acknowledges the computational resources of the UT/ORNL National Institute for Computational Sciences. NR 35 TC 16 Z9 16 U1 1 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD SEP PY 2011 VL 5 IS 9 BP 7130 EP 7136 DI 10.1021/nn2018254 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 824FI UT WOS:000295187400042 PM 21800918 ER PT J AU Liu, Y Zheng, H Liu, XH Huang, S Zhu, T Wang, JW Kushima, A Hudak, NS Huang, X Zhang, SL Mao, SX Qian, XF Li, J Huang, JY AF Liu, Yang Zheng, He Liu, Xiao Hua Huang, Shan Zhu, Ting Wang, Jiangwei Kushima, Akihiro Hudak, Nicholas S. Huang, Xu Zhang, Sulin Mao, Scott X. Qian, Xiaofeng Li, Ju Huang, Jian Yu TI Lithiation-Induced Embrittlement of Multiwalled Carbon Nanotubes SO ACS NANO LA English DT Article DE carbon nanotubes; lithiation embrittlement; lithium ion batteries; lattice expansion; brittle fracture ID LI-ION BATTERIES; IN-SITU OBSERVATION; ELECTROCHEMICAL INTERCALATION; LITHIUM INSERTION; ELASTIC-MODULUS; HIGH-CAPACITY; ELECTRODES; STORAGE; COMPOSITES; STRENGTH AB Lithiation of individual multiwalled carbon nanotubes (MWCNTs) was conducted in situ Inside a transmission electron microscope. Upon lithiation, the intertube spacing increased from 3.4 to 3.6 angstrom, corresponding to about 5.9% radial and circumferential expansions and similar to 50 GPa tensile hoop stress on the outermost tube wall. The straight tube walls became distorted after lithiation. In situ compression and tension tests show that the lithiated MWCNTs were brittle with sharp fracture edges. Such a failure models in stark contrast with that of the pristine MWCNTs which are extremely flexible and fall In a "sword-In-sheath" manner upon tension. The lithiation-induced embrittlement is attributed to the mechanical effect of a "point-force" action posed by the intertubular lithium that induces the stretch of carbon carbon bonds in addition to that by applied strain, as well as the chemical effect of electron transfer from lithium to the antibonding pi orbital that weakens the carbon carbon bond. The combined mechanical and chemical weakening leads to a considerable decrease of the fracture strain in lithiated MWCNTs. Our results provide direct evidence and understanding of the degradation mechanism of carbonaceous anodes in lithium ion batteries. C1 [Huang, Shan; Zhu, Ting] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Liu, Yang; Liu, Xiao Hua; Hudak, Nicholas S.; Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Zheng, He; Wang, Jiangwei; Mao, Scott X.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [Kushima, Akihiro; Li, Ju] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Huang, Xu; Zhang, Sulin] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA. [Qian, Xiaofeng] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Zheng, He] Wuhan Univ, Sch Phys & Technol, Ctr Electron Microscopy, Wuhan 430072, Peoples R China. [Zheng, He] Wuhan Univ, MOE Key Lab Artificial Micro & Nanostruct, Wuhan 430072, Peoples R China. RP Zhu, T (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. EM ting.zhu@me.gatech.edu; jhuang@sandia.gov RI Qian, Xiaofeng/P-4715-2016; Wang, Jiangwei/F-8249-2011; Kushima, Akihiro/H-2347-2011; Liu, Yang/C-9576-2012; Liu, Xiaohua/A-8752-2011; Huang, Jianyu/C-5183-2008; Hudak, Nicholas/D-3529-2011; Zheng, He/E-2964-2012; Zhu, Ting/A-2206-2009; Qian, Xiaofeng/E-7727-2012; Li, Ju/A-2993-2008; Zhang, Sulin /E-6457-2010; Huang, Xu/I-4416-2014 OI Qian, Xiaofeng/0000-0003-1627-288X; Wang, Jiangwei/0000-0003-1191-0782; Liu, Xiaohua/0000-0002-7300-7145; Zheng, He/0000-0002-6476-8524; Qian, Xiaofeng/0000-0003-1627-288X; Li, Ju/0000-0002-7841-8058; FU Laboratory Directed Research and Development (LDRD) at Sandia National Laboratories (SNL); Science of Precision Multifunctional Nanostructures for Electrical Energy Storage (NEES); Energy Frontier Research Center (EFRC); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; NSF [CMMI-0758554, 0758265, 1100205, CMMI-0728069, DMR-1008104]; AFOSR [FA9550-08-1-0325] FX Portions of this work were supported by a Laboratory Directed Research and Development (LDRD) project at Sandia National Laboratories (SNL) and partly by the Science of Precision Multifunctional Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. The LDRD supported the fabrication of platforms. The NEES center supported the development of TEM techniques. CINT supported the TEM characterization facility, in addition, this work represents the efforts of several CINT users, primarily those with affiliation external to SNLs. In addition, this work was performed, in part, at the Sandia-Los Alamos Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. T.Z. acknowledges the support by NSF Grants CMMI-0758554, 0758265, and 1100205. A.K., X.F.Q, and J.L. acknowledge the support by NSF CMMI-0728069, DMR-1008104, and AFOSR FA9550-08-1-0325. J.Y.H. thanks Yoke Khin Yap from Michigan Technology University for providing the BN nanotube. T.Z. thanks Yue Qi from General Motors R&D center for helpful discussions. NR 56 TC 64 Z9 65 U1 6 U2 85 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2011 VL 5 IS 9 BP 7245 EP 7253 DI 10.1021/nn202071y PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 824FI UT WOS:000295187400055 PM 21819128 ER PT J AU Pang, P He, J Park, JH Krstic, PS Lindsay, S AF Pang, Pei He, Jin Park, Jae Hyun Krstic, Predrag S. Lindsay, Stuart TI Origin of Giant Ionic Currents in Carbon Nanotube Channels SO ACS NANO LA English DT Article DE nanofluidics; nanopore; nanochannel; carbon nanotube; ionic field effect transistor; electroosmosis ID SOLID-STATE NANOPORES; TRANSPORT; FLOW; DNA; TRANSLOCATION; NANOFLUIDICS; TRANSISTORS; DEPENDENCE AB Fluid flow inside carbon nanotubes is remarkable: transport of water and gases is nearly frictionless, and the small channel size results in selective transport of ions. Very recently, devices have been fabricated in which one narrow single-walled carbon nanotube spans a barrier separating electrolyte reservoirs. Ion current through these devices is about 2 orders of magnitude larger than predicted from the bulk resistivity of the electrolyte. Electroosmosis can drive these large excess currents if the tube both is charged and transports anions or cations preferentially. By building a nanofluidic field-effect transistor with a gate electrode embedded in the fluid barrier, we show that the tube carries a negative charge and the excess current is carried by cations. The magnitude of the excess current and its control by a gate electrode are correctly predicted by the Poisson-Nernst-Planck-Stokes equations. C1 [Pang, Pei; Lindsay, Stuart] Arizona State Univ, Dept Phys, Tempe, AZ 85287 USA. [Lindsay, Stuart] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA. [Park, Jae Hyun; Krstic, Predrag S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Pang, Pei; He, Jin; Lindsay, Stuart] Arizona State Univ, Biodesign Inst, Tempe, AZ 85287 USA. RP He, J (reprint author), Florida Int Univ, Dept Phys, Miami, FL 33199 USA. EM jinhe@fiu.edu; Stuart.Lindsay@asu.edu FU National Human Genome Research Institute [1RC2HG005625-01, 1R21HG004770-01]; Arizona Technology Enterprises; Biodesign Institute; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX We thank Tao Luo, Hao Liu, and Weishi Song for assistance in the lab. We acknowledge valuable discussions with Dr. Collin Nuckolls. We also acknowledge the use of nanofab within the Center for Solid State Electronic Research (CSSER) and SEM and TEM within the Center for Solid State Science (CSSS) at Arizona State University. This work was supported by the DNA Sequencing Technology Program of the National Human Genome Research Institute (1RC2HG005625-01, 1R21HG004770-01), Arizona Technology Enterprises, and the Biodesign Institute. This research used resources of the Oak Ridge Leadership Facility at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 26 TC 36 Z9 36 U1 4 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD SEP PY 2011 VL 5 IS 9 BP 7277 EP 7283 DI 10.1021/nn202115s PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 824FI UT WOS:000295187400058 PM 21888368 ER PT J AU Sutter, P Lahiri, J Albrecht, P Sutter, E AF Sutter, Peter Lahiri, Jayeeta Albrecht, Peter Sutter, Eli TI Chemical Vapor Deposition and Etching of High-Quality Monolayer Hexagonal Boron Nitride Films SO ACS NANO LA English DT Article DE boron nitride; monolayer films; growth; etching; borazine; hydrogen; transition metal ID METAL-SURFACES; GRAPHENE FILMS; LARGE-AREA; NANOMESH; RU(0001); OXYGEN; DECOMPOSITION; ADSORPTION; PHASE AB The growth of large-area hexagonal boron nitride (h-BN) monolayers on catalytic metal substrates is a topic of scientific and technological interest. We have used real-time microscopy during the growth process to study h-BN chemical vapor deposition (CVD) from borazine on Ru(0001) single crystals and thin films. At low borazine pressures, individual h-BN domains nucleate sparsely, grow to macroscopic dimensions, and coalescence to form a closed monolayer film. A quantitative analysis shows borazine adsorption and dissociation predominantly on Ru, with the h-BN covered areas being at least 100 times less reactive. We establish strong effects of hydrogen added to the CVD precursor gas in controlling the in-plane expansion and morphology of the growing h-BN domains. High-temperature exposure of h-BN/Ru to pure hydrogen causes the controlled edge detachment of B and N and can be used as a clean etching process for h-BN on metals. C1 [Sutter, Peter; Lahiri, Jayeeta; Albrecht, Peter; Sutter, Eli] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, P (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM psutter@bnl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This research has been carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 33 TC 70 Z9 72 U1 15 U2 159 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2011 VL 5 IS 9 BP 7303 EP 7309 DI 10.1021/nn202141k PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 824FI UT WOS:000295187400061 PM 21793550 ER PT J AU Zeng, XQ Wang, YL Deng, H Latimer, ML Xiao, ZL Pearson, J Xu, T Wang, HH Welp, U Crabtree, GW Kwok, WK AF Zeng, Xiao-Qiao Wang, Yong-Lei Deng, Henry Latimer, Michael L. Xiao, Zhi-Li Pearson, John Xu, Tao Wang, Hsien-Hau Welp, Ulrich Crabtree, George W. Kwok, Wai-Kwong TI Networks of Ultrasmall Pd/Cr Nanowires as High Performance Hydrogen Sensors SO ACS NANO LA English DT Article DE hydrogen sensor; palladium; chromium; nanowire; network ID SINGLE PALLADIUM NANOWIRES; TITANIA NANOTUBES; THIN-FILMS; ELECTRICAL-RESISTANCE; CARBON NANOTUBES; MESOWIRE ARRAYS; GAS-DETECTION; ALUMINA; PD; NANOPARTICLES AB The newly developed hydrogen sensor, based on a network of ultrasmall pure palladium nanowires sputter-deposited on a filtration membrane, takes advantage of single palladium nanowires(1) characteristics of high Speed and sensitivity while eliminating their nanofabrication obstacles. However, this new type of sensor, like the single palladium nanowires, cannot distinguish hydrogen concentrations above 3%, thus limiting the potential applications of the sensor. This study reports hydrogen sensors based on a network of ultrasmall Cr-buffered Pd (Pd/Cr) nanowires on a filtration membrane. These seniors not only are able to outperform their pure Pd counterparts in speed and durability but also allow hydrogen detection at concentrations up to 100%. The new networks consist of a thin layer of palladium deposited on top of a Cr adhesion layer 1-3 nm thick. Although the Cr layer is insensitive to hydrogen, it enables the formation of a network of continuous Pd/Cr nanowires with thicknesses of the Pd layer as thin as 2 nm. The improved performance of the Pd/Cr sensors can be attributed to the increased surface area to volume ratio and to the confinement-induced suppression of the phase transition from Pd/H solid solution (a-phase) to Pd hydride (beta-phase). C1 [Zeng, Xiao-Qiao; Wang, Yong-Lei; Latimer, Michael L.; Xiao, Zhi-Li; Pearson, John; Xu, Tao; Wang, Hsien-Hau; Welp, Ulrich; Crabtree, George W.; Kwok, Wai-Kwong] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Zeng, Xiao-Qiao; Xu, Tao] No Illinois Univ, Dept Chem & Biochem, De Kalb, IL 60115 USA. [Wang, Yong-Lei; Latimer, Michael L.; Xiao, Zhi-Li] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Deng, Henry] Illinois Math & Sci Acad, Aurora, IL 60506 USA. [Crabtree, George W.] Univ Illinois, Dept Phys Elect & Mech Engn, Chicago, IL 60607 USA. RP Xiao, ZL (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM xiao@anl.gov RI Wang, Yong-Lei/N-7940-2013 OI Wang, Yong-Lei/0000-0003-0391-7757 FU Department of Energy (DOE) [DE-FG02-06ER46334]; DOE BES [DE-AC02-06CH11357]; Northern Illinois University FX The work on nanowire network fabrication was supported by the Department of Energy (DOE) Grant No. DE-FG02-06ER46334. J.P., H.H.W., U.W., G.W.C., and W.K.K. were supported by DOE BES under Contract No. DE-AC02-06CH11357. X.Q.Z. acknowledges partial support by the Nanoscience Fellowship of Northern Illinois University. We are grateful to Michael P. Zach and Phillip Stone for their technical assistance. The thin film deposition and morphological analyses were performed at the Center for Nanoscale Materials (CNM) and Electron Microscopy Center (EMC) of Argonne National Laboratory which is funded by DOE BES under Contract No. DE-AC02-06CH11357. NR 52 TC 36 Z9 37 U1 6 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD SEP PY 2011 VL 5 IS 9 BP 7443 EP 7452 DI 10.1021/nn2023717 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 824FI UT WOS:000295187400078 PM 21854059 ER PT J AU Smirnov, SN Vlassiouk, IV Lavrik, NV AF Smirnov, Sergei N. Vlassiouk, Ivan V. Lavrik, Nickolay V. TI Voltage-Gated Hydrophobic Nanopores SO ACS NANO LA English DT Article DE hydrophobic nanopore; voltage gating; surface conductance ID NANOFLUIDIC DIODE; CONFINED FLUID; WATER; SURFACE; CONDUCTANCE; MOLECULES; MONOLAYERS; MEMBRANES; CHANNELS; NOISE AB Hydrophobicity is a fundamental property that is responsible for numerous physical and biophysical aspects of molecular interactions in water. Peculiar behavior is expected for water in the vicinity of hydrophobic structures, such as nanopores. Indeed, hydrophobic nanopores can be found in two distinct states, dry and wet, even tough the latter is thermodynamically unstable. Transitions between these two states are kinetically hindered In long pores but can be much faster in shorter pores. As it is demonstrated for the first time in this paper, these transition's can be induced by applying a voltage across a membrane with a single hydrophobic nanopore. Such voltage-Induced gating in single nanopores can be realized in a reversible manner through electrowetting of inner-walls of the nanopores. The resulting I-V curves of such artificial hydrophobic nanopores mimic biological voltage-gated channels. C1 [Vlassiouk, Ivan V.] New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA. [Lavrik, Nickolay V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Vlassiouk, Ivan V.] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37931 USA. RP Smirnov, SN (reprint author), New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA. EM snsm@nmsu.edu; vlassioukiv@ornl.gov RI Lavrik, Nickolay/B-5268-2011; Smirnov, Sergei/H-8774-2016; Vlassiouk, Ivan/F-9587-2010 OI Lavrik, Nickolay/0000-0002-9543-5634; Vlassiouk, Ivan/0000-0002-5494-0386 FU U.S. Department of Energy [DE-AC05-00OR22725]; National Science Foundation (NSF) [DMR 0900238]; Office of Basic Energy Sciences, U.S. Department of Energy FX I.V. is a Eugene P. Wigner Fellow at the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract DE-AC05-00OR22725. This work was partially supported by a grant from the National Science Foundation (NSF DMR 0900238) to S.S. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 34 TC 47 Z9 47 U1 7 U2 66 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD SEP PY 2011 VL 5 IS 9 BP 7453 EP 7461 DI 10.1021/nn202392d PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 824FI UT WOS:000295187400079 PM 21838311 ER PT J AU Koenigsmann, C Santulli, AC Sutter, E Wong, SS AF Koenigsmann, Christopher Santulli, Alexander C. Sutter, Eli Wong, Stanislaus S. TI Ambient Surfactant less Synthesis, Growth Mechanism, and Size-Dependent Electrocatalytic Behavior of High-Quality, Single Crystalline Palladium Nanowires SO ACS NANO LA English DT Article DE palladium nanowire; growth mechanism; platinum monolayer; electrocatalysis; oxygen reduction reaction ID OXYGEN REDUCTION REACTION; PLATINUM-MONOLAYER ELECTROCATALYSTS; ONE-DIMENSIONAL NANOSTRUCTURES; HIGH-ASPECT-RATIO; METAL NANOWIRES; ETHANOL ELECTROOXIDATION; ULTRATHIN NANOWIRES; TUNGSTATE NANORODS; O-2 REDUCTION; TEMPLATE AB In this report, we utilize the U-tube double diffusion device as a reliable, environmentally friendly method for the size-controlled synthesis of high-quality, single crystalline Pd nanowires. The nanowires grown in 200 and 15 nm polycarbonate template pores maintain diameters of 270 +/- 45 nm and 45 +/- 9 rim, respectively, and could be isolated either as individual nanowires or as ordered free-standing arrays. Tint growth mechanism of these nanowires has been extensively explored, and we have carried out characterization of the isolated nanowires, freestanding nanowire arrays, and cross sections of the filled template in order to determine that a unique two-step growth process predominates within the template pores. Moreover, as-prepared submicrometer and nanosized wires were studied by comparison with ultrathin 2 nm Pd nanowires In order to elucidate the slze-dependent trend In oxygen reduction reaction (ORR) electrocatalysis. Subsequently, the desired platinum monolayer overcoating was reliably deposited onto the surface of the Pd nanowires by Cu underpotential deposit (UPD) followed by galvanic displacement of the Cu adatoms. The specific and platinum mass activity of the core-shell catalysts was found to Increase from 0.40 mA/cm(2) and 1.01 A/mg to 0.74 mA/cm(2) and 1.74 A/mg as the diameter was decreased from the submicrometer size regime to the ultrathin nanometer range. C1 [Koenigsmann, Christopher; Santulli, Alexander C.; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Sutter, Eli] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Wong, SS (reprint author), SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. EM sswong@notes.cc.sunysb.edu FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; U.S. Department of Energy [DE-AC02-98CH10886] FX Research (including support for S.S.W. and electrochemical experiments) was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. We especially acknowledge Dr. R. Adzic and his group's assistance and guidance with all of the electrochemical and electrocatalytic experiments reported herein. We also thank J. Patete for relevant discussions and assistance with the preparation of the manuscript. In addition, we thank Dr. J. Quinn for his assistance with obtaining FE-SEM images. We also acknowledge S. Van Horn at the Central Microscopy Imaging Center at Stony Brook for her assistance with preparing the microtome cross sections. We performed experiments at the Center for Functional Nanomaterials located at Brookhaven National Laboratory, which is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. NR 78 TC 45 Z9 45 U1 7 U2 112 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD SEP PY 2011 VL 5 IS 9 BP 7471 EP 7487 DI 10.1021/nn202434r PG 17 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 824FI UT WOS:000295187400081 PM 21875051 ER PT J AU Hlaing, H Lu, XH Hofmann, T Yager, KG Black, CT Ocko, BM AF Hlaing, Htay Lu, Xinhui Hofmann, Tommy Yager, Kevin G. Black, Charles T. Ocko, Benjamin M. TI Nanoimprint-Induced Molecular Orientation in Semiconducting Polymer Nanostructures SO ACS NANO LA English DT Article DE nanoimprint; organic semiconductor; nanoscale morphology; polymer chain orientation; GISAXS; GIWAXS ID X-RAY-SCATTERING; WAVE BORN APPROXIMATION; THIN-FILM TRANSISTORS; FIELD-EFFECT MOBILITY; GRAZING-INCIDENCE; CROSS-SECTION; CONJUGATED POLYMERS; LITHOGRAPHY; ANGLE; FABRICATION AB The morphology and orientation of thin films of the polymer poly-3(hexylthiophene)-important parameters influencing electronic and photovoltaic device performance-have been significantly altered through nanoimprinting with 100 nm spaced grooves. Grazing-incidence small-angle X-ray scattering studies demonstrate the excellent fidelity of the pattern transfer, while wide-angle scattering convincingly shows an imprinting-induced pi-pi reorientation and polymer backbone alignment along the imprinted grooves. Surprisingly, temperature-dependent scattering measurements indicate that the Imprinted induced orientation and alignment remain Intact even at temperatures where the imprinted. topographical features nearly vanish. C1 [Hlaing, Htay; Lu, Xinhui; Hofmann, Tommy; Ocko, Benjamin M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Hlaing, Htay] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Yager, Kevin G.; Black, Charles T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Ocko, BM (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM ocko@bnl.gov RI Yager, Kevin/F-9804-2011 OI Yager, Kevin/0000-0001-7745-2513 FU U.S. Department of Energy, Basic Energy Sciences; Materials Sciences and Engineering Division; Center for Functional Nanomaterials [DE-AC02-98CH10886]; Energy Laboratory Research and Development Initiative at Brookhaven National Laboratories FX This research is supported by the U.S. Department of Energy, Basic Energy Sciences, by the Materials Sciences and Engineering Division (H.H., X.L., and B.O.) and through the Center for Functional Nanomaterials (K.Y. and C.B.), which is supported under Contract No. DE-AC02-98CH10886. This work was partially supported by the Energy Laboratory Research and Development Initiative at Brookhaven National Laboratories. We thank Lin Yang and Danvers Johnston for scientific discussions and technical assistance. We are also indebted to Shalom Wind and John Kymissis for the use of the Columbia University Nanonex Imprinting Tool. NR 33 TC 69 Z9 69 U1 5 U2 89 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD SEP PY 2011 VL 5 IS 9 BP 7532 EP 7538 DI 10.1021/nn202515z PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 824FI UT WOS:000295187400088 PM 21838293 ER PT J AU Wichelecki, DJ McNew, TM Aygun, A Torrey, K Stephenson, LD AF Wichelecki, Daniel J. McNew, Trisha M. Aygun, Aysegul Torrey, Kathryn Stephenson, Larry D. TI Detection of Liposome Lysis Utilizing an Enzyme-Substrate System SO APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY LA English DT Article DE beta-Galactosidase; Encapsulation; Liposome; Lysis; ONP; ONPG ID SILICA NANOPARTICLES; QUANTUM DOTS; MODEL; PHOSPHOLIPIDS; ENCAPSULATION; FORMULATION; DYES AB A novel optical reporter system was developed to verify encapsulation and subsequent release of a foreign molecule in liposomes. The protocol utilizes a single enzyme and substrate. We encapsulate o-nitrophenyl-beta,d-galactopyranoside (ONPG) and measure its release by detecting the levels of o-nitrophenol created when the encapsulated ONPG is released and hydrolyzed by beta-galactosidase. Using this method, liposome formation and subsequent lysis with Triton X-100 were verified. This new protocol eliminates the complications of multiple reaction enzyme detection methods, along with the chance for false negatives and unreliable data seen when using fluorescent particles as reporters. C1 [Aygun, Aysegul; Torrey, Kathryn; Stephenson, Larry D.] USA, CERL, ERDC, Champaign, IL 61822 USA. [Wichelecki, Daniel J.; McNew, Trisha M.; Torrey, Kathryn] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP Stephenson, LD (reprint author), USA, CERL, ERDC, Champaign, IL 61822 USA. EM Larry.D.Stephenson@usace.army.mil FU USACE [6.1] FX This work was all done at ERDC-CERL and was funded by USACE 6.1 funds. The authors would also like to thank Ms. K. L. Whalen for aid in editing the paper. NR 20 TC 1 Z9 1 U1 1 U2 7 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DRIVE SUITE 208, TOTOWA, NJ 07512 USA SN 0273-2289 J9 APPL BIOCHEM BIOTECH JI Appl. Biochem. Biotechnol. PD SEP PY 2011 VL 165 IS 2 BP 548 EP 558 DI 10.1007/s12010-011-9274-3 PG 11 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 823ZB UT WOS:000295166400014 PM 21607678 ER PT J AU Carrieri, D Wawrousek, K Eckert, C Yu, JP Maness, PC AF Carrieri, Damian Wawrousek, Karen Eckert, Carrie Yu, Jianping Maness, Pin-Ching TI The role of the bidirectional hydrogenase in cyanobacteria SO BIORESOURCE TECHNOLOGY LA English DT Article DE Cyanobacteria; Hydrogen; Hydrogenase; Hox hydrogenase; Bidirectional hydrogenase ID SP STRAIN PCC-6803; SYNECHOCYSTIS SP PCC-6803; GLOEOCAPSA-ALPICOLA CALU-743; ESCHERICHIA-COLI; TRANSCRIPTIONAL REGULATION; ANABAENA-VARIABILIS; CHLAMYDOMONAS-REINHARDTII; REVERSIBLE HYDROGENASE; NICKEL INCORPORATION; NIFE-HYDROGENASE AB Cyanobacteria have tremendous potential to produce clean, renewable fuel in the form of hydrogen gas derived from solar energy and water. Of the two cyanobacterial enzymes capable of evolving hydrogen gas (nitrogenase and the bidirectional hydrogenase), the box-encoded bidirectional Ni-Fe hydrogenase has a high theoretical potential. The physiological role of this hydrogenase is a highly debated topic and is poorly understood relative to that of the nitrogenase. Here the structure, assembly, and expression of this enzyme, as well as its probable roles in metabolism, are discussed and analyzed to gain perspective on its physiological role. It is concluded that the bidirectional hydrogenase in cyanobacteria primarily functions as a redox regulator for maintaining a proper oxidation/reduction state in the cell. Recommendations for future research to test this hypothesis are discussed. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Carrieri, Damian; Wawrousek, Karen; Eckert, Carrie; Yu, Jianping; Maness, Pin-Ching] Natl Renewable Energy Lab, Biosci Ctr, Golden, CO 80401 USA. RP Carrieri, D (reprint author), 1617 Cole Blvd,Mail Stop 3313, Golden, CO 80401 USA. EM Damian.Carrieri@nrel.gov FU NREL LDRD Program; DOE FX This work was supported by NREL LDRD Program. Moreover, K.W., J.Y., and P.-C. M. are also supported by the DOE Fuel Cell Technologies Program. The authors are grateful to Nicholas Bennette of G. Charles Dismukes' lab for providing the template for assembling Fig. 2. NR 74 TC 38 Z9 39 U1 1 U2 47 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD SEP PY 2011 VL 102 IS 18 SI SI BP 8368 EP 8377 DI 10.1016/j.biortech.2011.03.103 PG 10 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 823FF UT WOS:000295107200005 PM 21514820 ER PT J AU Gaudet, P Livstone, MS Lewis, SE Thomas, PD AF Gaudet, Pascale Livstone, Michael S. Lewis, Suzanna E. Thomas, Paul D. TI Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium SO BRIEFINGS IN BIOINFORMATICS LA English DT Article DE gene ontology; genome annotation; reference genome; gene function prediction; phylogenetics ID TREES; PROTEINS; TOOL AB The goal of the Gene Ontology (GO) project is to provide a uniform way to describe the functions of gene products from organisms across all kingdoms of life and thereby enable analysis of genomic data. Protein annotations are either based on experiments or predicted from protein sequences. Since most sequences have not been experimentally characterized, most available annotations need to be based on predictions. To make as accurate inferences as possible, the GO Consortium's Reference Genome Project is using an explicit evolutionary framework to infer annotations of proteins from a broad set of genomes from experimental annotations in a semi-automated manner. Most components in the pipeline, such as selection of sequences, building multiple sequence alignments and phylogenetic trees, retrieving experimental annotations and depositing inferred annotations, are fully automated. However, the most crucial step in our pipeline relies on software-assisted curation by an expert biologist. This curation tool, Phylogenetic Annotation and INference Tool (PAINT) helps curators to infer annotations among members of a protein family. PAINT allows curators to make precise assertions as to when functions were gained and lost during evolution and record the evidence (e.g. experimentally supported GO annotations and phylogenetic information including orthology) for those assertions. In this article, we describe how we use PAINT to infer protein function in a phylogenetic context with emphasis on its strengths, limitations and guidelines. We also discuss specific examples showing how PAINT annotations compare with those generated by other highly used homology-based methods. C1 [Livstone, Michael S.] Princeton Univ, Genome Databases Grp, Princeton, NJ 08544 USA. [Lewis, Suzanna E.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Thomas, Paul D.] Univ So Calif, Div Bioinformat, Dept Prevent Med, Los Angeles, CA 90089 USA. RP Gaudet, P (reprint author), CMU, Swiss Inst Bioinformat, CALIPHO Grp, 1 Rue Michel Servet, CH-1211 Geneva 4, Switzerland. EM pascale.gaudet@isb-sib.ch OI Lewis, Suzanna/0000-0002-8343-612X FU National Institute of General Medical Sciences [R01-GM081084]; National Institute of Human Genome Research [P41-HG002273]; Gene Ontology Consortium FX This work is funded by the National Institute of General Medical Sciences (R01-GM081084, to P. D. T., M. L., P. G. and S. L.) receive additional support from a National Institute of Human Genome Research grant (P41-HG002273) and supplements (M. L.) in support of the Gene Ontology Consortium. NR 16 TC 43 Z9 43 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1467-5463 J9 BRIEF BIOINFORM JI Brief. Bioinform. PD SEP PY 2011 VL 12 IS 5 SI SI BP 449 EP 462 DI 10.1093/bib/bbr042 PG 14 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 824AS UT WOS:000295171700010 PM 21873635 ER PT J AU Kim, T Assary, RS Marshall, CL Gosztola, DJ Curtiss, LA Stair, PC AF Kim, Taejin Assary, Rajeev S. Marshall, Christopher L. Gosztola, David J. Curtiss, Larry A. Stair, Peter C. TI Acid-Catalyzed Furfuryl Alcohol Polymerization: Characterizations of Molecular Structure and Thermodynamic Properties SO CHEMCATCHEM LA English DT Article DE density functional theory; diene; furfuryl alcohol; polymerization; Raman spectroscopy ID LEVULINIC ACID; MICROPOROUS CARBON; RAMAN; CONVERSION; ZEOLITE; REGULARITY; GLUCOSE; FURAN; BANDS AB The liquid-phase polymerization of furfuryl alcohol catalyzed by sulfuric acid catalysts and the identities of molecular intermediates were investigated by using Raman spectroscopy and density functional theory calculation. At room temperature, with an acid catalyst, a vigorous furfuryl alcohol polymerization reaction was observed, whereas even at a high water concentration, furfuryl alcohol was very stable in the absence of an acid catalyst. Theoretical studies were carried out to investigate the thermodynamics of protonation of furfuryl alcohol, initiation of polymerization, and formation of conjugated dienes and diketonic species by using the B3LYP level of theory. A strong aliphatic C=C band observed in the calculated and measured Raman spectra provided crucial evidence to understand the polymerization reaction mechanism. It is confirmed that the formation of a conjugated diene structure rather than a diketone structure is involved in the furfuryl alcohol polymerization reaction. C1 [Gosztola, David J.; Curtiss, Larry A.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Kim, Taejin; Marshall, Christopher L.; Stair, Peter C.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Assary, Rajeev S.; Curtiss, Larry A.] Argonne Natl Lab, Dept Mat Sci, Argonne, IL 60439 USA. [Assary, Rajeev S.] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA. [Stair, Peter C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Curtiss, LA (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. EM curtiss@anl.gov; pstair@northwestern.edu RI KIM, TAE JIN/M-7994-2014; Gosztola, David/D-9320-2011; Surendran Assary, Rajeev/E-6833-2012; Marshall, Christopher/D-1493-2015 OI KIM, TAE JIN/0000-0002-0096-303X; Gosztola, David/0000-0003-2674-1379; Surendran Assary, Rajeev/0000-0002-9571-3307; Marshall, Christopher/0000-0002-1285-7648 FU Institute for Atom-efficient Chemical Transformations (IACT); Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Argonne is managed by UChicago Argonne, LLC, for the U.S. Department of Energy under Contract DE-AC02-06CH11357. NR 39 TC 34 Z9 34 U1 4 U2 53 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1867-3880 J9 CHEMCATCHEM JI ChemCatChem PD SEP PY 2011 VL 3 IS 9 BP 1451 EP 1458 DI 10.1002/cctc.201100098 PG 8 WC Chemistry, Physical SC Chemistry GA 824UT UT WOS:000295228400013 ER PT J AU White, JA Borja, RI AF White, Joshua A. Borja, Ronaldo I. TI Block-preconditioned Newton-Krylov solvers for fully coupled flow and geomechanics SO COMPUTATIONAL GEOSCIENCES LA English DT Article DE Newton-Krylov; Coupled geomechanics; Algebraic multigrid; Mixed finite elements ID FINITE-ELEMENT APPROXIMATIONS; UNSATURATED POROUS CONTINUA; SADDLE-POINT PROBLEMS; EFFECTIVE STRESS; 3-DIMENSIONAL CONSOLIDATION; ELLIPTIC PROBLEMS; STOKES EQUATIONS; CO2 INJECTION; DEFORMATION; STABILITY AB The focus of this work is efficient solution methods for mixed finite element models of variably saturated fluid flow through deformable porous media. In particular, we examine preconditioning techniques to accelerate the convergence of implicit Newton-Krylov solvers. We highlight an approach in which preconditioners are built from block-factorizations of the coupled system. The key result of the work is the identification of effective preconditioners for the various sub-problems that appear within the block decomposition. We use numerical examples drawn from both linear and nonlinear hydromechanical models to test the robustness and scalability of the proposed methods. Results demonstrate that an algebraic multigrid variant of the block preconditioner leads to mesh-independent convergence, good parallel efficiency, and insensitivity to the material parameters of the medium. C1 [White, Joshua A.] Lawrence Livermore Natl Lab, Computat Geosci Grp, Livermore, CA 94551 USA. [Borja, Ronaldo I.] Stanford Univ, Stanford, CA 94305 USA. RP White, JA (reprint author), Lawrence Livermore Natl Lab, Computat Geosci Grp, POB 808,L-286, Livermore, CA 94551 USA. EM jawhite@llnl.gov; borja@stanford.edu RI White, Joshua/H-4306-2012 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Lawrence Postdoctoral Fellowship Program; US National Science Foundation [CMMI-0824440, CMMI-0936421] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The first author is grateful for the support of the Lawrence Postdoctoral Fellowship Program. The second author was supported by the US National Science Foundation under Contract Numbers CMMI-0824440 and CMMI-0936421 to Stanford University. NR 49 TC 23 Z9 23 U1 0 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1420-0597 EI 1573-1499 J9 COMPUTAT GEOSCI JI Comput. Geosci. PD SEP PY 2011 VL 15 IS 4 BP 647 EP 659 DI 10.1007/s10596-011-9233-7 PG 13 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 823ZF UT WOS:000295166900005 ER PT J AU Martinez-Moyano, IJ Conrad, SH Andersen, DF AF Martinez-Moyano, Ignacio J. Conrad, Stephen H. Andersen, David F. TI Modeling behavioral considerations related to information security SO COMPUTERS & SECURITY LA English DT Article DE Computer security; Learning; Threat detection; Judgment and decision-making; System dynamics; Modeling; Computer simulation; Information security; Theory integration; Experimental data ID PROBABILISTIC ENVIRONMENTS; DECISION THRESHOLD; SIGNAL-DETECTION; SYSTEM DYNAMICS; UNCERTAINTY; GAMES; CATEGORIZATION; PERSPECTIVE; VALIDATION; PSYCHOLOGY AB The authors present experimental and simulation results of an outcome-based learning model for the identification of threats to security systems. This model integrates judgment, decision-making, and learning theories to provide a unified framework for the behavioral study of upcoming threats. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Martinez-Moyano, Ignacio J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Martinez-Moyano, Ignacio J.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Conrad, Stephen H.] Sandia Natl Labs, Livermore, CA 94550 USA. [Andersen, David F.] SUNY Albany, Albany, NY 12222 USA. RP Martinez-Moyano, IJ (reprint author), Argonne Natl Lab, 9700 S Cass Ave,Bldg 221-D-248, Argonne, IL 60439 USA. EM imartinez@anl.gov; shconra@sandia.gov; david.andersen@albany.edu FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; U.S. Department of Homeland Security FX This manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.; This work was funded in part by the U.S. Department of Homeland Security. NR 72 TC 5 Z9 5 U1 2 U2 13 PU ELSEVIER ADVANCED TECHNOLOGY PI OXFORD PA OXFORD FULFILLMENT CENTRE THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0167-4048 EI 1872-6208 J9 COMPUT SECUR JI Comput. Secur. PD SEP-OCT PY 2011 VL 30 IS 6-7 BP 397 EP 409 DI 10.1016/j.cose.2011.03.001 PG 13 WC Computer Science, Information Systems SC Computer Science GA 822TQ UT WOS:000295072900004 ER PT J AU Wong, PC Chen, CM Gorg, C Shneiderman, B Stasko, J Thomas, J AF Wong, Pak Chung Chen, Chaomei Goerg, Carsten Shneiderman, Ben Stasko, John Thomas, Jim TI Graph Analytics-Lessons Learned and Challenges Ahead SO IEEE COMPUTER GRAPHICS AND APPLICATIONS LA English DT Article ID VISUAL ANALYTICS; VISUALIZATION C1 [Wong, Pak Chung; Thomas, Jim] Pacific NW Natl Lab, Richland, WA 99352 USA. [Chen, Chaomei] Drexel Univ, Coll Informat Sci & Technol, Philadelphia, PA USA. [Goerg, Carsten] Univ Colorado Denver, Denver, CO USA. [Shneiderman, Ben] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA. [Stasko, John] Georgia Inst Technol, Atlanta, GA 30332 USA. RP Wong, PC (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM pak.wong@pnl.gov; chaomei.chen@cis.drexel.edu; carsten.goerg@ucdenver.edu; ben@cs.umd.edu; stasko@cc.gatech.edu RI Chen, Chaomei/A-1252-2007 OI Chen, Chaomei/0000-0001-8584-1041 FU US Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability; National Visualization and Analytics Center (NVAC); US Department of Homeland Security (DHS) at the Pacific Northwest National Laboratory (PNNL); DOE [DE-AC05-76RL01830]; US National Science Foundation (NSF) [IIS-0414667, CCF-0808863, IIS-0915788]; NVAC, under of the Southeast Regional Visualization and Analytics Center; Vaccine (Visual Analytics for Command, Control, and Interoperability Environments); DHS Center of Excellence in Command, Control and Interoperability; NSF [IIS-0612129]; DHS through NVAC FX Green Grid's development has been supported partly by the US Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability and the National Visualization and Analytics Center (NVAC), a US Department of Homeland Security (DHS) program at the Pacific Northwest National Laboratory (PNNL). The Battelle Memorial Institute manages PNNL for the DOE under contract DE-AC05-76RL01830. Jigsaw's development has been supported partly by the US National Science Foundation (NSF) via awards IIS-0414667 CCF-0808863, and IIS-0915788; by NVAC, under the auspices of the Southeast Regional Visualization and Analytics Center; and by Vaccine (Visual Analytics for Command, Control, and Interoperability Environments), a DHS Center of Excellence in Command, Control and Interoperability. CiteSpace's development has been supported partly by the NSF under grant IIS-0612129 and by DHS through NVAC. The Network Visualization by Semantic Substrates research has been supported partly by the NSF grant "Inter-court Relations in the American Legal System: Using New Technologies to Examine Communication of Precedent II." NR 16 TC 1 Z9 1 U1 4 U2 22 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0272-1716 J9 IEEE COMPUT GRAPH JI IEEE Comput. Graph. Appl. PD SEP-OCT PY 2011 VL 31 IS 5 BP 18 EP 29 PG 12 WC Computer Science, Software Engineering SC Computer Science GA 823SN UT WOS:000295146100005 ER PT J AU Filho, F Tolbert, LM Cao, Y Ozpineci, B AF Filho, Faete Tolbert, Leon M. Cao, Yue Ozpineci, Burak TI Real-Time Selective Harmonic Minimization for Multilevel Inverters Connected to Solar Panels Using Artificial Neural Network Angle Generation SO IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS LA English DT Article DE Artificial neural network; cascade; genetic algorithm; harmonic elimination; multilevel inverter; photovoltaic ID POWER-SYSTEMS; ELIMINATION; CONVERTERS AB This work approximates the selective harmonic elimination problem using artificial neural networks (ANNs) to generate the switching angles in an 11-level full-bridge cascade inverter powered by five varying dc input sources. Each of the five full bridges of the cascade inverter was connected to a separate 195-W solar panel. The angles were chosen such that the fundamental was kept constant and the low-order harmonics were minimized or eliminated. A nondeterministic method is used to solve the system for the angles and to obtain the data set for the ANN training. The method also provides a set of acceptable solutions in the space where solutions do not exist by analytical methods. The trained ANN is a suitable tool that brings a small generalization effect on the angles' precision and is able to perform in real time (50-/60-Hz time window). C1 [Filho, Faete; Tolbert, Leon M.; Cao, Yue] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Tolbert, Leon M.] Oak Ridge Natl Lab, Power Elect & Elect Machinery Res Ctr, Knoxville, TN 37932 USA. [Ozpineci, Burak] Oak Ridge Natl Lab, Power Elect & Elect Machinery Grp, Oak Ridge, TN 37831 USA. RP Filho, F (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. EM ffilho@utk.edu; tolbert@utk.edu; ycao6@utk.edu; burak@ornl.gov OI Ozpineci, Burak/0000-0002-1672-3348; Tolbert, Leon/0000-0002-7285-609X NR 26 TC 42 Z9 44 U1 1 U2 5 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-9994 J9 IEEE T IND APPL JI IEEE Trans. Ind. Appl. PD SEP-OCT PY 2011 VL 47 IS 5 BP 2117 EP 2124 DI 10.1109/TIA.2011.2161533 PG 8 WC Engineering, Multidisciplinary; Engineering, Electrical & Electronic SC Engineering GA 823QW UT WOS:000295139500014 ER PT J AU Trolier-McKinstry, S Griggio, F Yaeger, C Jousse, P Zhao, DL Bharadwaja, SSN Jackson, TN Jesse, S Kalinin, SV Wasa, K AF Trolier-McKinstry, Susan Griggio, Flavio Yaeger, Charles Jousse, Pierre Zhao, Dalong Bharadwaja, Srowthi S. N. Jackson, Thomas N. Jesse, Stephen Kalinin, Sergei V. Wasa, Kiyotaka TI Designing Piezoelectric Films for Micro Electromechanical Systems SO IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL LA English DT Article; Proceedings Paper CT Joint Meeting of the 19th IEEE International Symposium on the Applications of Ferroelectrics/10th European Conference on the Applications of Polar Dielectrics CY AUG 09-12, 2010 CL Edinburgh, SCOTLAND SP IEEE ID LEAD-ZIRCONATE-TITANATE; SCANNING FORCE MICROSCOPY; FERROELECTRIC THIN-FILMS; DIELECTRIC-PROPERTIES; PZT FILMS; MEMS; SENSORS; TRANSDUCERS; COMPOSITES; DEPENDENCE AB Piezoelectric thin films are of increasing interest in low-voltage micro electromechanical systems for sensing, actuation, and energy harvesting. They also serve as model systems to study fundamental behavior in piezoelectrics. Next-generation technologies such as ultrasound pill cameras, flexible ultrasound arrays, and energy harvesting systems for unattended wireless sensors will all benefit from improvements in the piezoelectric properties of the films. This paper describes tailoring the composition, microstructure, orientation of thin films, and substrate choice to optimize the response. It is shown that increases in the grain size of lead-based perovskite films from 75 to 300 nm results in 40 and 20% increases in the permittivity and piezoelectric coefficients, respectively. This is accompanied by an increase in the nonlinearity in the response. Band excitation piezoresponse force microscopy was used to interrogate the nonlinearity locally. It was found that chemical solution-derived PbZr0.52Ti0.48O3 thin films show clusters of larger nonlinear response embedded in a more weakly nonlinear matrix. The scale of the clusters significantly exceeds that of the grain size, suggesting that collective motion of many domain walls contributes to the observed Rayleigh behavior in these films. Finally, it is shown that it is possible to increase the energy-harvesting figure of merit through appropriate materials choice, strong imprint, and composite connectivity patterns. C1 [Trolier-McKinstry, Susan; Griggio, Flavio; Yaeger, Charles; Jousse, Pierre; Zhao, Dalong; Bharadwaja, Srowthi S. N.; Jackson, Thomas N.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Trolier-McKinstry, Susan; Griggio, Flavio; Yaeger, Charles; Jousse, Pierre; Zhao, Dalong; Bharadwaja, Srowthi S. N.; Jackson, Thomas N.] Mat Res Inst, University Pk, PA USA. [Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. [Jesse, Stephen; Kalinin, Sergei V.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. [Wasa, Kiyotaka] Kyoto Univ, Grad Sch Engn, Microengn Div, Sakyo Ku, Kyoto, Japan. RP Trolier-McKinstry, S (reprint author), Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. EM STMcKinstry@psu.edu RI Jackson, Thomas/A-4224-2012; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; OI Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Trolier-McKinstry, Susan/0000-0002-7267-9281 NR 52 TC 22 Z9 24 U1 3 U2 65 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-3010 EI 1525-8955 J9 IEEE T ULTRASON FERR JI IEEE Trans. Ultrason. Ferroelectr. Freq. Control PD SEP PY 2011 VL 58 IS 9 BP 1782 EP 1792 DI 10.1109/TUFFC.2011.2015 PG 11 WC Acoustics; Engineering, Electrical & Electronic SC Acoustics; Engineering GA 823DE UT WOS:000295101600009 PM 21937309 ER PT J AU Collins, AM Ruffing, AM Odenbach, KJ Jones, H Timlin, JA Powell, AJ AF Collins, A. M. Ruffing, A. M. Odenbach, K. J. Jones, H. D. Timlin, J. A. Powell, A. J. TI PROGRAMMED CELL DEATH-LIKE RESPONSES IN CHLAMYDOMONAS REINHARDTII SO JOURNAL OF PHYCOLOGY LA English DT Meeting Abstract C1 [Collins, A. M.; Ruffing, A. M.; Odenbach, K. J.; Jones, H. D.; Timlin, J. A.; Powell, A. J.] Sandia Natl Labs, Livermore, CA 94550 USA. EM amcolli@sandia.gov; aruffin@sandia.gov; kjodenb@sandia.gov; hdjones@sandia.gov; jatimli@sandia.gov; ajpowel@sandia.gov NR 0 TC 0 Z9 0 U1 1 U2 6 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-3646 J9 J PHYCOL JI J. Phycol. PD SEP PY 2011 VL 47 SU 2 SI SI BP S81 EP S81 PG 1 WC Plant Sciences; Marine & Freshwater Biology SC Plant Sciences; Marine & Freshwater Biology GA 822ZO UT WOS:000295090200243 ER PT J AU James, ER Harper, JT Gile, GH Saldarriaga, JF Horak, A Carpenter, KJ Scheffrahn, RH Keeling, PJ AF James, E. R. Harper, J. T. Gile, G. H. Saldarriaga, J. F. Horak, A. Carpenter, K. J. Scheffrahn, R. H. Keeling, P. J. TI A SURVEY OF PITFALLS IN PARABASALID DIVERSITY AND PHYLOGENY IN THE HINDGUT OF LOWER TERMITES SO JOURNAL OF PHYCOLOGY LA English DT Meeting Abstract C1 [James, E. R.; Harper, J. T.; Saldarriaga, J. F.; Horak, A.; Keeling, P. J.] UBC, Victoria, BC, Canada. [Gile, G. H.] Dalhousie Univ, Halifax, NS B3H 3J5, Canada. [Carpenter, K. J.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Scheffrahn, R. H.] Univ Florida, Gainesville, FL 32611 USA. EM erjames@mail.ubc.ca; harpert@douglas.bc.ca; g.gile@Dal.ca; jsalda@interchange.ubc.ca; horak@interchange.ubc.ca; carpenter37@llnl.gov; rhsc@ufl.edu; pkeeling@mail.ubc.ca NR 0 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-3646 J9 J PHYCOL JI J. Phycol. PD SEP PY 2011 VL 47 SU 2 SI SI BP S90 EP S90 PG 1 WC Plant Sciences; Marine & Freshwater Biology SC Plant Sciences; Marine & Freshwater Biology GA 822ZO UT WOS:000295090200271 ER PT J AU Kuo, A Grigoriev, I AF Kuo, A. Grigoriev, I TI SEQUENCING THE ALGAL TREE OF LIFE SO JOURNAL OF PHYCOLOGY LA English DT Meeting Abstract C1 [Kuo, A.; Grigoriev, I] DOE Joint Genome Inst, Walnut Creek, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-3646 J9 J PHYCOL JI J. Phycol. PD SEP PY 2011 VL 47 SU 2 SI SI BP S91 EP S91 PG 1 WC Plant Sciences; Marine & Freshwater Biology SC Plant Sciences; Marine & Freshwater Biology GA 822ZO UT WOS:000295090200274 ER PT J AU Ruffing, AM Raymer, M Garcia, OF Jones, HD AF Ruffing, A. M. Raymer, M. Garcia, O. F. Jones, H. D. TI CHARACTERIZATION OF GENETICALLY ENGINEERED SYNECHOCOCCUS ELONGATUS PCC 7942 FOR BIOFUEL PRODUCTION SO JOURNAL OF PHYCOLOGY LA English DT Meeting Abstract C1 [Ruffing, A. M.; Raymer, M.; Garcia, O. F.; Jones, H. D.] Sandia Natl Labs, Livermore, CA 94550 USA. EM aruffin@sandia.gov NR 0 TC 0 Z9 0 U1 0 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0022-3646 J9 J PHYCOL JI J. Phycol. PD SEP PY 2011 VL 47 SU 2 SI SI BP S56 EP S56 PG 1 WC Plant Sciences; Marine & Freshwater Biology SC Plant Sciences; Marine & Freshwater Biology GA 822ZO UT WOS:000295090200169 ER PT J AU Urbanova, I Svec, F AF Urbanova, Iva Svec, Frantisek TI Monolithic polymer layer with gradient of hydrophobicity for separation of peptides using two-dimensional thin layer chromatography and MALDI-TOF-MS detection SO JOURNAL OF SEPARATION SCIENCE LA English DT Article DE 2-D separation; Monolith; Photografting; Separation of peptides; Thin-layer chromatography ID CAPILLARY ELECTROCHROMATOGRAPHY; PLANAR CHROMATOGRAPHY; SURFACE-CHEMISTRY; MASS-SPECTROMETRY; PHASE; FILMS AB Superhydrophobic monolithic porous polymer layers supported onto glass plates with a gradient of hydrophobicity have been prepared and used for 2-D thin layer chromatography of peptides. The 50 mu m-thin poly(glycidyl methacrylate-co-ethylene dimethacrylate) layers prepared using UV-initiated polymerization in a simple mold were first hydrolyzed using dilute sulfuric acid and then hydrophilized via two-step grafting of poly(ethylene glycol) methacrylate to obtain superhydrophilic plates. The hydrophobicity was then formed by photografting of lauryl methacrylate. The exposure to UV light that initiates photografting was spatially controlled using moving shutter that enabled forming of the diagonal gradient of hydrophobicity. This new concept enables the solutes to encounter the gradient for each of the two sequential developments. Practical application of our novel plates was demonstrated with a rapid 2-D separation of a mixture of model peptides gly-tyr, val-tyr-val, leucine enkephalin, and oxytocin in dual reversed-phase mode using different mobile phases in each direction. Detection of fluorescent-labeled peptides was achieved through UV light visualization while separation of native leucine enkephalin and oxytocin was monitored directly using MALDI mass spectrometry. C1 [Urbanova, Iva; Svec, Frantisek] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Svec, F (reprint author), EO Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM fsvec@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 26 TC 25 Z9 25 U1 3 U2 38 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1615-9306 J9 J SEP SCI JI J. Sep. Sci. PD SEP PY 2011 VL 34 IS 16-17 SI SI BP 2345 EP 2351 DI 10.1002/jssc.201100202 PG 7 WC Chemistry, Analytical SC Chemistry GA 824GC UT WOS:000295189400049 PM 21695684 ER PT J AU Patterson, WM Stark, PC Yoshida, TM Sheik-Bahae, M Hehlen, MP AF Patterson, Wendy M. Stark, Peter C. Yoshida, Thomas M. Sheik-Bahae, Mansoor Hehlen, Markus P. TI Preparation and Characterization of High-Purity Metal Fluorides for Photonic Applications SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID VAPOR-DEPOSITION PROCESS; GLASS INFRARED FIBERS; ZIRCONIUM TETRAFLUORIDE; ABSORPTION; PURIFICATION; EXTRACTION; CRYSTALS; LASERS; STATE AB We combine chelate-assisted solvent extraction (CASE) and hot hydrogen fluoride gas treatment to enable a general method for the preparation of high-purity binary metal fluorides. The fluorozirconate glass ZBLANI:Yb(3+) (ZrF(4)-BaF(2)-LaF(3)-AlF(3)-NaF-InF(3)-YbF(3)), a solid-state laser-cooling material, is used as a test case to quantitatively assess the effectiveness of the purification method. The reduction of transition-metal and oxygen-based impurities is quantified directly by inductively coupled plasma mass spectrometry (ICP-MS) and indirectly by laser-induced cooling, respectively. The concentrations of Cu, Fe, Co, Ni, V, Cr, Mn, and Zn impurities in the ZrCl(2)O precursor solution were measured individually by ICP-MS at various stages of the purification process. CASE was found to reduce the total transition-metal concentration from 72500 to similar to 100 ppb. Laser cooling was most efficient in ZBLANI:Yb(3+) glass fabricated from CASE-purified metal fluoride precursors, confirming the results of the ICP-MS analysis and demonstrating the effectiveness of the purification methods in a finished optical material. High-purity metal fluorides prepared by the methods presented herein will enable new high-performance optical materials for solid-state optical refrigerators, crystals for vacuum ultraviolet (VUV) spectroscopy of the Thorium-229 nucleus, VUV optics, fibers, and thin-film coatings. C1 [Patterson, Wendy M.; Sheik-Bahae, Mansoor] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Stark, Peter C.; Yoshida, Thomas M.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Hehlen, Markus P.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Patterson, WM (reprint author), Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. EM wendy5@unm.edu OI Yoshida, Thomas/0000-0002-2333-7904; Patterson, Wendy/0000-0002-8761-8457 FU Air Force Office of Scientific Research under the Multidisciplinary University Research Initiative (MURI) FX We thank Dr. Karl Kramer at the Department of Chemistry and Biochemistry, University of Bern, Switzerland, for his assistance with the design of the hydrogen fluoride gas drying apparatus and for providing the sublimated ZrF4 used for the synthesis of Sample 6. We gratefully acknowledge the support of the Air Force Office of Scientific Research under the Multidisciplinary University Research Initiative (MURI) program. NR 42 TC 11 Z9 11 U1 1 U2 23 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD SEP PY 2011 VL 94 IS 9 BP 2896 EP 2901 DI 10.1111/j.1551-2916.2011.04641.x PG 6 WC Materials Science, Ceramics SC Materials Science GA 824QB UT WOS:000295215900036 ER PT J AU Park, TJ Garino, TJ Nenoff, TM Rademacher, D Navrotsky, A AF Park, Tae-Jin Garino, Terry J. Nenoff, Tina M. Rademacher, David Navrotsky, Alexandra TI The Effect of Vacancy and Barium Substitution on the Stability of the Cesium Titanium Silicate Pollucite SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID HIGH-TEMPERATURE CALORIMETRY; CSALSI2O6-CSTISI2O6.5 JOIN; POWDER DIFFRACTION; PHASE-TRANSITIONS; CRYSTAL-CHEMISTRY; NUCLEAR WASTE; THERMOCHEMISTRY; IMMOBILIZATION; CSTISI2O6.5; CRYSTALLIZATION AB Cesium titanium silicate (CsTiSi2O6.5) is a titanium analogue of pollucite CsAlSi2O6 and a possible ceramic form for immobilization of short-lived fission products in radioactive waste. Through beta decay, cesium (Cs) decays to barium. Therefore, not only the stability of Cs-loaded waste forms, but also that of a potential decay product series is of fundamental importance. Ba-substituted CsTiSi2O6.5 is a potential beta decay product with the pollucite structure. Here, we report the effects of the reaction synthesis condition and the study of the thermodynamic stability of potential intermediates in the decay product series (1) with charge-balance in pollucite as two Cs ions are replaced by one Ba and a vacancy and (2) with one-to-one replacement of Cs by Ba. The enthalpies of formation of Ba-substituted CsTiSi2O6.5 were obtained from drop solution calorimetry in a molten lead borate solvent at 702 degrees C. The enthalpies of formation, from constituent oxides, are exothermic and it decreases with increasing Ba content. The effect of vacancies in the pollucite structure is a more dominant factor in the energetics than that of Ba replacement. The thermodynamic effects of acetate and/or nitrate precursors and of adding acetic acid during synthesis of single phase Ba-substituted CsTiSi2O6.5 pollucite are insignificant except for the sample prepared from acetate precursors without acid treatment. C1 [Park, Tae-Jin; Navrotsky, Alexandra] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA. [Park, Tae-Jin; Navrotsky, Alexandra] Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA. [Garino, Terry J.; Nenoff, Tina M.; Rademacher, David] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Navrotsky, A (reprint author), Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA. EM anavrotsky@ucdavis.edu FU U.S. Department of Energy [DE-FC07-07ID14830]; Nuclear Energy, Separations and Waste Forms Campaign; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the U.S. Department of Energy (NERI Program Grant: DE-FC07-07ID14830) and Nuclear Energy, Separations and Waste Forms Campaign.; Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lock-heed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 25 TC 5 Z9 5 U1 1 U2 10 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD SEP PY 2011 VL 94 IS 9 BP 3053 EP 3059 DI 10.1111/j.1551-2916.2011.04521.x PG 7 WC Materials Science, Ceramics SC Materials Science GA 824QB UT WOS:000295215900059 ER PT J AU Yang, J Goldstein, JI Scott, ERD Michael, JR Kotula, PG Pham, T McCoy, TJ AF Yang, J. Goldstein, J. I. Scott, E. R. D. Michael, J. R. Kotula, P. G. Pham, T. McCoy, T. J. TI Thermal and impact histories of reheated group IVA, IVB, and ungrouped iron meteorites and their parent asteroids SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID FE-NI-P; METALLOGRAPHIC COOLING RATES; CHEMICAL CLASSIFICATION; GE CONCENTRATIONS; PHASE-DIAGRAM; MICROSTRUCTURE; SYSTEM; IIIAB; METAL; PLANETESIMALS AB The microstructures of six reheated iron meteoritesotwo IVA irons, Maria Elena (1935), Fuzzy Creek; one IVB iron, Ternera; and three ungrouped irons, Hammond, Babb's Mill (Blake's Iron), and Babb's Mill (Troost's Iron)owere characterized using scanning and transmission electron microscopy, electron-probe microanalysis, and electron backscatter diffraction techniques to determine their thermal and shock history and that of their parent asteroids. Maria Elena and Hammond were heated below approximately 700-750 degrees C, so that kamacite was recrystallized and taenite was exsolved in kamacite and was spheroidized in plessite. Both meteorites retained a record of the original Widmanstitten pattern. The other four, which show no trace of their original microstructure, were heated above 600-700 degrees C and recrystallized to form 10-20 mu m wide homogeneous taenite grains. On cooling, kamacite formed on taenite grain boundaries with their close-packed planes aligned. Formation of homogeneous 20 mu m wide taenite grains with diverse orientations would have required as long as approximately 800 yr at 600 degrees C or approximately 1 h at 1300 degrees C. All six irons contain approximately 5-10 mu m wide taenite grains with internal microprecipitates of kamacite and nanometer-scale M-shaped Ni profiles that reach approximately 40% Ni indicating cooling over 100-10,000 yr. Un-decomposed high-Ni martensite (alpha(2)) in taeniteothe first occurrence in ironsoappears to be a characteristic of strongly reheated irons. From our studies and published work, we identified four progressive stages of shock and reheating in IVA irons using these criteria: cloudy taenite, M-shaped Ni profiles in taenite, Neumann twin lamellae, martensite, shock-hatched kamacite, recrystallization, microprecipitates of taenite, and shock-melted troilite. Maria Elena and Fuzzy Creek represent stages 3 and 4, respectively. Although not all reheated irons contain evidence for shock, it was probably the main cause of reheating. Cooling over years rather than hours precludes shock during the impacts that exposed the irons to cosmic rays. If the reheated irons that we studied are representative, the IVA irons may have been shocked soon after they cooled below 200 degrees C at 4.5 Gyr in an impact that created a rubblepile asteroid with fragments from diverse depths. The primary cooling rates of the IVA irons and the proposed early history are remarkably consistent with the Pb-Pb ages of troilite inclusions in two IVA irons including the oldest known differentiated meteorite (Blichert-Toft et al. 2010). C1 [Yang, J.; Goldstein, J. I.; Pham, T.] Univ Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USA. [Yang, J.] Carl Zeiss NTS LLC, Peabody, MA 01960 USA. [Scott, E. R. D.] Univ Hawaii Manoa, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Michael, J. R.; Kotula, P. G.] Sandia Natl Labs, Mat Characterizat Dept, Albuquerque, NM 87185 USA. [McCoy, T. J.] Smithsonian Inst, Dept Mineral Sci, Natl Museum Nat Hist, Washington, DC 20560 USA. RP Yang, J (reprint author), Univ Massachusetts, Dept Mech & Ind Engn, Amherst, MA 01003 USA. EM jiyang@ecs.umass.edu RI Kotula, Paul/A-7657-2011 OI Kotula, Paul/0000-0002-7521-2759 FU NASA [NNX08AG53G, NNG06GF56G, NNX08AI43G] FX Financial support from NASA through grants NNX08AG53G (J. I. Goldstein, P. I.), NNG06GF56G (T. J. McCoy), and NNX08AI43G (E. R. D. Scott, P. I.) is acknowledged. We thank Laurence Garvie (Arizona State University), Joseph Boesenberg and Denton Ebel (American Museum of Natural History), and Valerie Reynolds (Colby College) for helpful discussions and assistance with the source(s) of the Babb's Mill specimens. We thank Alice Kilgo (Sandia) for metallographic preparation, and Michael Rye and Garry Bryant (both from Sandia) for FIB preparation. Our research was aided considerably by Vagn Buchwald's Handbook of Iron Meteorites, as it contributed enormously to our understanding of cosmically and terrestrially reheated iron meteorites. We thank Henning Haack, Alan Rubin, and an anonymous referee for their helpful and detailed reviews. NR 66 TC 13 Z9 13 U1 3 U2 17 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1086-9379 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2011 VL 46 IS 9 BP 1227 EP 1252 DI 10.1111/j.1945-5100.2011.01210.x PG 26 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 822MY UT WOS:000295053300001 ER PT J AU De Gregorio, BT Stroud, RM Cody, GD Nittler, LR Kilcoyne, ALD Wirick, S AF De Gregorio, Bradley T. Stroud, Rhonda M. Cody, George D. Nittler, Larry R. Kilcoyne, A. L. David Wirick, Sue TI Correlated microanalysis of cometary organic grains returned by Stardust SO METEORITICS & PLANETARY SCIENCE LA English DT Article ID X-RAY SPECTROMICROSCOPY; TRANSMISSION ELECTRON-MICROSCOPY; INTERPLANETARY DUST PARTICLES; MOLECULAR-CLOUD MATERIAL; INNER-SHELL EXCITATION; ISOTOPIC COMPOSITIONS; 81P/WILD 2; INFRARED-SPECTROSCOPY; HYPERVELOCITY CAPTURE; CORE EXCITATION AB Carbonaceous matter in Stardust samples returned from comet 81P/Wild 2 is observed to contain a wide variety of organic functional chemistry. However, some of this chemical variety may be due to contamination or alteration during particle capture in aerogel. We investigated six carbonaceous Stardust samples that had been previously analyzed and six new samples from Stardust Track 80 using correlated transmission electron microscopy (TEM), X-ray absorption near-edge structure spectroscopy (XANES), and secondary ion mass spectroscopy (SIMS). TEM revealed that samples from Track 35 containing abundant aliphatic XANES signatures were predominantly composed of cometary organic matter infilling densified silica aerogel. Aliphatic organic matter from Track 16 was also observed to be soluble in the epoxy embedding medium. The nitrogen-rich samples in this study (from Track 22 and Track 80) both contained metal oxide nanoparticles, and are likely contaminants. Only two types of cometary organic matter appear to be relatively unaltered during particle capture. These are (1) polyaromatic carbonyl-containing organic matter, similar to that observed in insoluble organic matter (IOM) from primitive meteorites, interplanetary dust particles (IDPs), and in other carbonaceous Stardust samples, and (2) highly aromatic refractory organic matter, which primarily constitutes nanoglobule-like features. Anomalous isotopic compositions in some of these samples also confirm their cometary heritage. There also appears to be a significant labile aliphatic component of Wild 2 organic matter, but this material could not be clearly distinguished from carbonaceous contaminants known to be present in the Stardust aerogel collector. C1 [De Gregorio, Bradley T.; Stroud, Rhonda M.] USN, Mat Sci & Technol Div, Res Lab, Washington, DC USA. [De Gregorio, Bradley T.] NASA Johnson Space Ctr, ESCG, Houston, TX USA. [Cody, George D.] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [Nittler, Larry R.] Carnegie Inst Sci, Dept Terr Magnetism, Washington, DC 20015 USA. [Kilcoyne, A. L. David] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA. [Wirick, Sue] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP De Gregorio, BT (reprint author), USN, Mat Sci & Technol Div, Res Lab, Washington, DC USA. EM brad.degregorio@gmail.com RI De Gregorio, Bradley/B-8465-2008; Kilcoyne, David/I-1465-2013; Stroud, Rhonda/C-5503-2008 OI De Gregorio, Bradley/0000-0001-9096-3545; Stroud, Rhonda/0000-0001-5242-8015 FU Office of Naval Research; NASA; NASA Astrobiology Institute; U.S. Department of Energy; Natural Sciences and Engineering Research Council of Canada; National Research Council Canada; Canadian Institutes of Health Research; Province of Saskatchewan; Western Economic Diversification Canada; University of Saskatchewan FX This work was funded by the Office of Naval Research, NASA Discovery Data Analysis and Origins of Solar Systems Program, and NASA Astrobiology Institute. This research was conducted while the primary author held a National Research Council Research Associateship at the U.S. Naval Research Laboratory. Use of the Advanced Light Source and the National Synchrotron Light Source was supported by the U.S. Department of Energy. Use of the Canadian Light Source was supported by the Natural Sciences and Engineering Research Council of Canada, the National Research Council Canada, the Canadian Institutes of Health Research, the Province of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. The authors gratefully acknowledge the support of Thomas Zega and Nabil Bassim with the acquisition of STXM data. NR 85 TC 16 Z9 16 U1 1 U2 26 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1086-9379 EI 1945-5100 J9 METEORIT PLANET SCI JI Meteorit. Planet. Sci. PD SEP PY 2011 VL 46 IS 9 BP 1376 EP 1396 DI 10.1111/j.1945-5100.2011.01237.x PG 21 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 822MY UT WOS:000295053300010 ER PT J AU Oliker, L Nishtala, R Biswas, R AF Oliker, Leonid Nishtala, Rajesh Biswas, Rupak TI Emerging programming paradigms for large-scale scientific computing SO PARALLEL COMPUTING LA English DT Editorial Material C1 [Oliker, Leonid] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, NERSC, Berkeley, CA 94720 USA. [Nishtala, Rajesh] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Biswas, Rupak] NASA, Ames Res Ctr, NAS Div, Moffett Field, CA 94035 USA. RP Oliker, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, NERSC, Berkeley, CA 94720 USA. EM rupak.biswas@nasa.gov NR 0 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD SEP PY 2011 VL 37 IS 9 SI SI BP 499 EP 500 DI 10.1016/j.parco.2011.07.002 PG 2 WC Computer Science, Theory & Methods SC Computer Science GA 823TW UT WOS:000295150400001 ER PT J AU Madduri, K Im, EJ Ibrahim, KZ Williams, S Ethier, S Oliker, L AF Madduri, Kamesh Im, Eun-Jin Ibrahim, Khaled Z. Williams, Samuel Ethier, Stephane Oliker, Leonid TI Gyrokinetic particle-in-cell optimization on emerging multi- and manycore platforms SO PARALLEL COMPUTING LA English DT Article DE Particle-in-cell; Multicore; Manycore; Code optimization; Graphic processing units; Fermi ID SIMULATIONS; MICROTURBULENCE; PLASMAS; CODE AB The next decade of high-performance computing (HPC) systems will see a rapid evolution and divergence of multi- and manycore architectures as power and cooling constraints limit increases in microprocessor clock speeds. Understanding efficient optimization methodologies on diverse multicore designs in the context of demanding numerical methods is one of the greatest challenges faced today by the HPC community. In this work, we examine the efficient multicore optimization of GTC, a petascale gyrokinetic toroidal fusion code for studying plasma microturbulence in tokamak devices. For GTC's key computational components (charge deposition and particle push), we explore efficient parallelization strategies across a broad range of emerging multicore designs, including the recently-released Intel Nehalem-EX, the AMD Opteron Istanbul, and the highly multithreaded Sun UltraSparc T2+. We also present the first study on tuning gyrokinetic particle-in-cell (PIC) algorithms for graphics processors, using the NVIDIA C2050 (Fermi). Our work discusses several novel optimization approaches for gyrokinetic PIC, including mixed-precision computation, particle binning and decomposition strategies, grid replication, SIMDized atomic floating-point operations, and effective CPU texture memory utilization. Overall, we achieve significant performance improvements of 1.3-4.7x on these complex PIC kernels, despite the inherent challenges of data dependency and locality. Our work also points to several architectural and programming features that could significantly enhance PIC performance and productivity on next-generation architectures. (C) 2011 Elsevier B.V. All rights reserved. C1 [Madduri, Kamesh; Ibrahim, Khaled Z.; Williams, Samuel; Oliker, Leonid] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. [Im, Eun-Jin] Kookmin Univ, Sch Comp Sci, Seoul 136702, South Korea. [Ethier, Stephane] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Ibrahim, KZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. EM kzibrahim@lbl.gov FU DOE Office of Advanced Scientific Computing Research [DE-AC02-05CH11231]; National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology [2009-0083600, 2010-0003044]; Kookmin University; DOE Office of Fusion Energy Sciences [DE-AC02-09CH11466]; Microsoft [024263]; Intel [024894]; U.C. Discovery [DIG07-10227] FX All authors from Lawrence Berkeley National Laboratory were supported by the DOE Office of Advanced Scientific Computing Research under Contract No. DE-AC02-05CH11231. Dr. Im was supported by Mid-career Researcher Program and by Basic Science Research Program through National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology under Contract Nos. 2009-0083600 and 2010-0003044, and by research program 2010 of Kookmin University. Dr. Ethier was supported by the DOE Office of Fusion Energy Sciences under Contract No. DE-AC02-09CH11466. Additional support comes from Microsoft (Award #024263) and Intel (Award #024894) funding, and by matching funding by U.C. Discovery (Award #DIG07-10227). Further support comes from Par Lab affiliates National Instruments, NEC, Nokia, NVIDIA, Samsung, and Sun Microsystems. We would like to express our gratitude to Intel and Sun for their hardware donations. Access to the Istanbul and CPU resources were made possible through the DOE/ASCR Computer Science Research Testbeds program and NERSC. NR 33 TC 14 Z9 14 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD SEP PY 2011 VL 37 IS 9 SI SI BP 501 EP 520 DI 10.1016/j.parco.2011.02.001 PG 20 WC Computer Science, Theory & Methods SC Computer Science GA 823TW UT WOS:000295150400002 ER PT J AU Kerbyson, DJ Lang, M Pakin, S AF Kerbyson, Darren J. Lang, Michael Pakin, Scott TI Adapting wave-front algorithms to efficiently utilize systems with deep communication hierarchies SO PARALLEL COMPUTING LA English DT Article DE High performance computing; Hybrid systems; Performance analysis; Performance modeling; Programming models ID CELL MULTIPROCESSOR AB Large-scale systems increasingly exhibit a differential between intra-chip and inter-chip communication performance especially in hybrid systems using accelerators. Processor-cores on the same socket are able to communicate at lower latencies, and with higher bandwidths, than cores on different sockets either within the same node or between nodes. A key challenge is to efficiently use this communication hierarchy and hence optimize performance. We consider here the class of applications that contains wave-front processing. In these applications data can only be processed after their upstream neighbors have been processed. Similar dependencies result between processors in which communication is required to pass boundary data downstream and whose cost is typically impacted by the slowest communication channel in use. In this work we develop a novel hierarchical wave-front approach that reduces the use of slower communications in the hierarchy but at the cost of additional steps in the parallel computation and higher use of on-chip communications. This tradeoff is explored using a performance model. An implementation using the reverse-acceleration programming model on the petascale Roadrunner system demonstrates a 27% performance improvement at full system-scale on a kernel application. The approach is generally applicable to large-scale multi-core and accelerated systems where a differential in communication performance exists. (C) 2011 Elsevier B.V. All rights reserved. C1 [Kerbyson, Darren J.] Pacific NW Natl Lab, Richland, WA 99353 USA. [Lang, Michael; Pakin, Scott] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Kerbyson, DJ (reprint author), Pacific NW Natl Lab, Richland, WA 99353 USA. EM darren.kerbyson@pnl.gov OI Pakin, Scott/0000-0002-5220-1985 FU Advanced Simulation and Computing program; Office of Science of the Department of Energy; US Department of Energy [DE-AC05-76RL01830, DE-AC52-06NA25396] FX This work was funded in part by the Advanced Simulation and Computing program and the Office of Science of the Department of Energy. It has been authored in part by Battelle Memorial Institute, Pacific Northwest Division, under Contract No. DE-AC05-76RL01830 with the US Department of Energy. Los Alamos National Laboratory is operated by Los Alamos National Security LLC for the US Department of Energy under contract DE-AC52-06NA25396. NR 18 TC 4 Z9 4 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD SEP PY 2011 VL 37 IS 9 SI SI BP 550 EP 561 DI 10.1016/j.parco.2011.02.008 PG 12 WC Computer Science, Theory & Methods SC Computer Science GA 823TW UT WOS:000295150400005 ER PT J AU Nishtala, R Zheng, YL Hargrove, PH Yelick, KA AF Nishtala, Rajesh Zheng, Yili Hargrove, Paul H. Yelick, Katherine A. TI Tuning collective communication for Partitioned Global Address Space programming models SO PARALLEL COMPUTING LA English DT Article DE Partitioned Global Address Space languages; Collective communication; One-sided communication AB Partitioned Global Address Space (PGAS) languages offer programmers the convenience of a shared memory programming style combined with locality control necessary to run on large-scale distributed memory systems. Even within a PGAS language programmers often need to perform global communication operations such as broadcasts or reductions, which are best performed as collective operations in which a group of threads work together to perform the operation. In this paper we consider the problem of implementing collective communication within PGAS languages and explore some of the design trade-offs in both the interface and implementation. In particular, PGAS collectives have semantic issues that are different than in send-receive style message passing programs, and different implementation approaches that take advantage of the one-sided communication style in these languages. We present an implementation framework for PGAS collectives as part of the GASNet communication layer, which supports shared memory, distributed memory and hybrids. The framework supports a broad set of algorithms for each collective, over which the implementation may be automatically tuned. Finally, we demonstrate the benefit of optimized GASNet collectives using application benchmarks written in UPC, and demonstrate that the GASNet collectives can deliver scalable performance on a variety of state-of-the-art parallel machines including a Cray XT4, an IBM BlueGene/P, and a Sun Constellation system with InfiniBand interconnect. Published by Elsevier B.V. C1 [Nishtala, Rajesh; Yelick, Katherine A.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Zheng, Yili; Hargrove, Paul H.; Yelick, Katherine A.] Univ Calif Berkeley, Lawrence Berkeley Lab, CRD NERSC, Berkeley, CA 94720 USA. RP Nishtala, R (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM rajeshn@cs.berkeley.edu; yzheng@lbl.gov; phhargrove@lbl.gov; kayelick@lbl.gov FU Department of Energy [DE-FC03-01ER25509, DE-FC02-07ER25799, DE-AC02-05CH11231]; National Science Foundation [OCI-0749190]; Office of Science of the US Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357, DE-AC05-00OR22725] FX This research was supported in part by the Department of Energy (DE-FC03-01ER25509, DE-FC02-07ER25799, DE-AC02-05CH11231) and by the National Science Foundation (OCI-0749190). It made use of resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, the National Energy Research Scientific Computing Facility (NERSC) at Lawrence Berkeley National Laboratory, and the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory, which are supported by the Office of Science of the US Department of Energy under contracts DE-AC02-06CH11357, DE-AC02-05CH11231 and DE-AC05-00OR22725, respectively. It also used resources at the Texas Advanced Computing Center (TACC) at the University of Texas at Austin. NR 17 TC 12 Z9 12 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD SEP PY 2011 VL 37 IS 9 SI SI BP 576 EP 591 DI 10.1016/j.parco.2011.05.006 PG 16 WC Computer Science, Theory & Methods SC Computer Science GA 823TW UT WOS:000295150400007 ER PT J AU Plimpton, SJ Devine, KD AF Plimpton, Steven J. Devine, Karen D. TI MapReduce in MPI for Large-scale graph algorithms SO PARALLEL COMPUTING LA English DT Article DE MapReduce; Message-passing; MPI; Graph algorithms; R-MAT matrices AB We describe a parallel library written with message-passing (MPI) calls that allows algorithms to be expressed in the Map Reduce paradigm. This means the calling program does not need to include explicit parallel code, but instead provides "map" and "reduce" functions that operate independently on elements of a data set distributed across processors. The library performs needed data movement between processors. We describe how typical Map Reduce functionality can be implemented in an MPI context, and also in an out-of-core manner for data sets that do not fit within the aggregate memory of a parallel machine. Our motivation for creating this library was to enable graph algorithms to be written as MapReduce operations, allowing processing of terabyte-scale data sets on traditional MPI-based clusters. We outline MapReduce versions of several such algorithms: vertex ranking via PageRank, triangle finding, connected component identification, Luby's algorithm for maximally independent sets, and single-source shortest-path calculation. To test the algorithms on arbitrarily large artificial graphs we generate randomized R-MAT matrices in parallel; a MapReduce version of this operation is also described. Performance and scalability results for the various algorithms are presented for varying size graphs on a distributed-memory cluster. For some cases, we compare the results with non-MapReduce algorithms, different machines, and different MapReduce software, namely Hadoop. Our open-source library is written in C++, is callable from C++, C, Fortran, or scripting languages such as Python, and can run on any parallel platform that supports MPI. (C) 2011 Elsevier B.V. All rights reserved. C1 [Plimpton, Steven J.; Devine, Karen D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Devine, KD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sjplimp@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The MR-MPI library is open-source software, which can be downloaded from http://www.sandia.gov/sjplimp/mapreduce.html. It is freely available under the terms of a BSD license. Benchmark programs that implement the algorithms in Section 4 are included in the distribution. We thank the following individuals for their contributions to this paper: Greg Bayer and Todd Plantenga (Sandia) for explaining Hadoop concepts to us, and for the Hadoop implementations and timings of Section 5; Jon Cohen (DoD) for fruitful discussions about his MapReduce graph algorithms [8]; Brian Barrett (Sandia) for the PBGL results of Section 5; Jon Berry (Sandia) for the MTGL results of Section 5, and for his overall support of this work and many useful discussions. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 21 TC 55 Z9 55 U1 2 U2 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 J9 PARALLEL COMPUT JI Parallel Comput. PD SEP PY 2011 VL 37 IS 9 SI SI BP 610 EP 632 DI 10.1016/j.parco.2011.02.004 PG 23 WC Computer Science, Theory & Methods SC Computer Science GA 823TW UT WOS:000295150400009 ER PT J AU Wilde, M Hategan, M Wozniak, JM Clifford, B Katz, DS Foster, I AF Wilde, Michael Hategan, Mihael Wozniak, Justin M. Clifford, Ben Katz, Daniel S. Foster, Ian TI Swift: A language for distributed parallel scripting SO PARALLEL COMPUTING LA English DT Article DE Swift; Parallel programming; Scripting; Dataflow ID CLUSTERS AB Scientists, engineers, and statisticians must execute domain-specific application programs many times on large collections of file-based data. This activity requires complex orchestration and data management as data is passed to, from, and among application invocations. Distributed and parallel computing resources can accelerate such processing, but their use further increases programming complexity. The Swift parallel scripting language reduces these complexities by making file system structures accessible via language constructs and by allowing ordinary application programs to be composed into powerful parallel scripts that can efficiently utilize parallel and distributed resources. We present Swift's implicitly parallel and deterministic programming model, which applies external applications to file collections using a functional style that abstracts and simplifies distributed parallel execution. (C) 2011 Elsevier B.V. All rights reserved. C1 [Wilde, Michael; Hategan, Mihael; Katz, Daniel S.; Foster, Ian] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Wilde, Michael; Wozniak, Justin M.; Foster, Ian] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Foster, Ian] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA. [Clifford, Ben] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. RP Wilde, M (reprint author), Univ Chicago, Computat Inst, Chicago, IL 60637 USA. EM wilde@mcs.anl.gov OI Katz, Daniel S./0000-0001-5934-7525 FU NSF [OCI-721939, OCI-0944332]; US Department of Energy [DE-AC02-06CH11357] FX This research was supported in part by NSF Grants OCI-721939 and OCI-0944332 and by the US Department of Energy under contract DE-AC02-06CH11357. Computing resources were provided by the Argonne Leadership Computing Facility, TeraGrid, the Open Science Grid, the UChicago/Argonne Computation Institute Petascale Active Data Store, and the Amazon Web Services Education allocation program. NR 46 TC 95 Z9 97 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD SEP PY 2011 VL 37 IS 9 SI SI BP 633 EP 652 DI 10.1016/j.parco.2011.05.005 PG 20 WC Computer Science, Theory & Methods SC Computer Science GA 823TW UT WOS:000295150400010 ER PT J AU Lee, SJ Bush, B George, R AF Lee, Seung-Jae Bush, Brian George, Ray TI Analytic science for geospatial and temporal variability in renewable energy: A case study in estimating photovoltaic output in Arizona SO SOLAR ENERGY LA English DT Article DE Photovoltaic; Extrapolation; Space/time analysis; Data quality; Geostatistics ID IRRADIANCE; NETWORK; WATER AB To assess the electric power grid environment under the high penetration of photovoltaic (PV) generation, it is important to construct an accurate representation of PV power output for any location in the southwestern United States at resolutions down to 10-min time steps. Existing analyses, however, typically depend on sparsely spaced measurements and often include modeled data as a basis for extrapolation. Consequentially, analysts have been confronted with inaccurate analytic outcomes due to both the quality of the modeled data and the approximations introduced when combining data with differing space/time attributes and resolutions. This study proposes an accurate methodology for 10-min PV estimation based on the self-consistent combination of data with disparate spatial and temporal characteristics. Our Type I estimation uses the nearby locations of temporally detailed PV measurements, whereas our Type II estimation goes beyond the spatial range of the measured PV incorporating alternative data set(s) for areas with no PV measurements; those alternative data sets consist of: (1) modeled PV output and secondary cloud cover information around space/time estimation points, and (2) their associated uncertainty. The Type I estimation identifies a spatial range from existing PV sites (30-40 km), which is used to estimate accurately 10-min PV output performance. Beyond that spatial range, the data-quality-control estimation (Type II) demonstrates increasing improvement over the Type I estimation that does not assimilate the uncertainty of data sources. The methodology developed herein can assist the evaluation of the impact of PV generation on the electric power grid, quantify the value of measured data, and optimize the placement of new measurement sites. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Lee, Seung-Jae] Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA. [Bush, Brian] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO 80401 USA. [George, Ray] Natl Renewable Energy Lab, Elect Resources & Bldg Syst Integrat Ctr, Golden, CO 80401 USA. RP Lee, SJ (reprint author), Univ Calif Berkeley, Sch Publ Hlth, Berkeley, CA 94720 USA. EM seungjae.lee@alumni.unc.edu OI Bush, Brian/0000-0003-2864-7028 FU US Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the US Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. NR 33 TC 4 Z9 4 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD SEP PY 2011 VL 85 IS 9 BP 1945 EP 1956 DI 10.1016/j.solener.2011.05.005 PG 12 WC Energy & Fuels SC Energy & Fuels GA 824WT UT WOS:000295233600023 ER PT J AU Carlsson, P Iisa, K Gebart, R AF Carlsson, Per Iisa, Kristiina Gebart, Rikard TI Computational Fluid Dynamics Simulations of Raw Gas Composition from a Black Liquor Gasifier-Comparison with Experiments SO ENERGY & FUELS LA English DT Article ID GASIFICATION CHARACTERISTICS; COMBUSTION; PARAMETERS; CONVERSION; PYROLYSIS; METHANE; CARBON; MODEL AB Pressurized entrained flow high temperature black liquor gasification can be used as a complement or a substitute to the Tomlinson boiler used in the chemical recovery process at kraft pulp mills. The technology has been proven on the development scale, but there are still no full scale plants. This work is intended to aid in the development by providing computational tools that can be used in scale up of the existing technology. In this work, an existing computational fluid dynamics (CFD) model describing the gasification reactor is refined. First, one-dimensional (1D) plug flow reactor calculations with a comprehensive reaction mechanism are performed to judge the validity of the global homogeneous reaction mechanism used in the CFD simulations in the temperature range considered. On the basis of the results from the comparison, an extinction temperature modification of the steam-methane reforming reaction was introduced in the CFD model. An extinction temperature of 1400 K was determined to give the best overall agreement between the two models. Next, the results from simulations of the flow in a 3 MW pilot gasifier with the updated CFD model are compared to experimental results in which pressure, oxygen to black liquor equivalence ratio, and residence time have been varied. The results show that the updated CFD model can predict the main gas components (H(2), CO, CO(2)) within an absolute error of 2.5 mol %. CH(4) can be predicted within an absolute error of 1 mol %, and most of the trends when process conditions are varied are captured by the model. C1 [Carlsson, Per; Gebart, Rikard] ETC, S-94128 Pitea, Sweden. [Iisa, Kristiina] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Carlsson, Per; Gebart, Rikard] Lulea Univ Technol, S-95187 Lulea, Sweden. RP Carlsson, P (reprint author), ETC, Box 726, S-94128 Pitea, Sweden. EM per.carlsson@etcpitea.se RI Gebart, Rikard/H-5210-2011; OI Gebart, Rikard/0000-0002-6958-5508 FU Swedish Energy Agency [32705-1]; U.S. Department of Energy [DE-AC36-08GO28308]; National Renewable Energy Laboratory; Bio4Energy program; Nordsyngas project; Mistra; Smurfit Kappa Kraftliner AB; SCA Packaging AB; Sodra Cell AB; Sveaskog AB; Chemrec AB; County Administrative Board of Norrbotten FX The authors of this paper would like to thank the Swedish Energy Agency (project 32705-1) for supporting this work through the Swedish American bilateral agreement. This work was also supported by the U.S. Department of Energy under Contract No. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. Partial funding was obtained from the Bio4Energy program, the Nordsyngas project, Mistra, Smurfit Kappa Kraftliner AB, SCA Packaging AB, Sodra Cell AB, Sveaskog AB, Chemrec AB, and the County Administrative Board of Norrbotten. NR 27 TC 2 Z9 2 U1 0 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD SEP PY 2011 VL 25 IS 9 BP 4122 EP 4128 DI 10.1021/ef2003798 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 819ZJ UT WOS:000294874800031 ER PT J AU Ginosar, DM Petkovic, LM Guillen, DP AF Ginosar, Daniel M. Petkovic, Lucia M. Guillen, Donna Post TI Thermal Stability of Cyclopentane as an Organic Rankine Cycle Working Fluid SO ENERGY & FUELS LA English DT Article ID DECOMPOSITION; HYDROCARBONS; PYROLYSIS AB Laboratory experiments were performed to determine the maximum operating temperature for cyclopentane as an organic Rankine cycle working fluid. The thermochemical decomposition of cyclopentane was measured in a recirculation loop at 240, 300, and 350 degrees C at 43 bar in a glass-lined heated tube. It was determined that, in the absence of air at the two lower temperatures, decomposition was minor after more than 12 days of continuous operation. At 240 degrees C, the total cyclopentane decomposition products were approximately 65 ppm, and at 300 degrees C, the total decomposition products were on the order of 270 ppm at the end of the experiment. At 350 degrees C, the decomposition products were significantly higher and reached 1500 ppm. When the feed was saturated with air under prevailing atmospheric conditions, the decomposition rate increased dramatically. Residues found in the reactor after the decomposition experiments were examined by a number of different techniques. The mass of the residues increased with experimental temperature but was lower at the same temperature when the feed was saturated with air. Analysis of the residues suggested that the residues were primarily heavy saturated hydrocarbons. C1 [Ginosar, Daniel M.; Petkovic, Lucia M.; Guillen, Donna Post] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Guillen, DP (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Donna.Guillen@inl.gov RI Petkovic, Lucia/E-9092-2011; Guillen, Donna/B-9681-2017 OI Petkovic, Lucia/0000-0002-0870-3355; Guillen, Donna/0000-0002-7718-4608 FU U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy [DE-PS36-08GO98014] FX This work was supported by the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, Industrial Technologies Program, under Contract No. DE-PS36-08GO98014. NR 12 TC 19 Z9 20 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD SEP PY 2011 VL 25 IS 9 BP 4138 EP 4144 DI 10.1021/ef200639r PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 819ZJ UT WOS:000294874800033 ER PT J AU Wong, MH de Pater, I Asay-Davis, X Marcus, PS Go, CY AF Wong, Michael H. de Pater, Imke Asay-Davis, Xylar Marcus, Philip S. Go, Christopher Y. TI Vertical structure of Jupiter's Oval BA before and after it reddened: What changed? SO ICARUS LA English DT Article DE Jupiter, Atmosphere; Atmospheres, Structure; Atmospheres, Dynamics; Abundances, Atmospheres; Hubble Space Telescope observations ID GREAT-RED-SPOT; PROBE MASS-SPECTROMETER; JOVIAN WHITE OVALS; 5-MICRON HOT-SPOTS; GALILEO PROBE; HIGH-RESOLUTION; CLOUD STRUCTURE; NONLINEAR SIMULATIONS; CHEMICAL-COMPOSITION; UPPER TROPOSPHERE AB To constrain the properties of Oval BA before and after it reddened, we use Hubble methane band images from 1994 to 2009 to find that the distribution of upper tropospheric haze atop the oval and its progenitors remained unchanged, with reflectivity variations of less than 10% over this time span. We quantify measurement uncertainties and short-term fluctuations in velocity fields extracted from Cassini and Hubble data, and show that there were no significant changes in the horizontal velocity field of Oval BA in 2000, 2006, and 2009. Based on models of the oval's dynamics, the static stability of the oval's surroundings was also unchanged. The vertical extent of the oval did not change, based on the unchanged haze reflectivity and unchanged stratification. Published vortex models require Brunt-Vaisala frequencies of about 0.08 s(-1) at the base of the vortex, and we combine this value with a review of prior constraints on the vertically variable static stability in Jupiter's troposphere to show that the vortex must extend down to the condensation level of water in supersolar abundance. The only observable change was an increase in short-wavelength optical absorption that appeared not at the core of the oval, but in a red annulus. The secondary circulation in the vortex keeps this red annulus warmer than the vortex core. Although the underlying cause of the color change cannot be proven, we explore the idea that the new chromophores in the red annulus may be related to a global or hemispheric temperature change. (C) 2011 Elsevier Inc. All rights reserved. C1 [Wong, Michael H.; de Pater, Imke] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Asay-Davis, Xylar] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Marcus, Philip S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Go, Christopher Y.] Univ San Carlos, Dept Phys, Cebu 6000, Philippines. RP Wong, MH (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM mikewong@astro.berkeley.edu OI Asay-Davis, Xylar/0000-0002-1990-892X FU NASA through Space Telescope Science Institute (STScI [10782, 11102, 11559]; NSF; Berkeley-France fund FX The jovian cloud imaging data presented in this paper were obtained with the NASA/ESA Hubble Space Telescope. These observations are associated with HST GO Programs 10782, 11102, and 11559, with support provided by NASA through a grant from the Space Telescope Science Institute (STScI), which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. Additional archival WFPC2 and ACS observations were obtained from the Data Archive at STScI, associated with the programs listed in Table 1. Analysis was supported by the Astronomy and Astrophysics Program of NSF and by the Berkeley-France fund. We thank Sean Lockwood and Patrick Lii for developing HST data reduction code, Ashwin Vasavada for sharing processed Cassini imaging data, William Januszewski (STScI) for his patience and effort in accommodating the strict timing constraints of our Jupiter observations, Mona Delitsky for helpful discussions about chromophore chemistry, and Erich Karkoschka for insight into the characteristics of WFPC2's methane-band filter. The helpful and collegial comments from two anonymous reviewers led to major improvements in this paper. NR 94 TC 13 Z9 13 U1 0 U2 5 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD SEP PY 2011 VL 215 IS 1 BP 211 EP 225 DI 10.1016/j.icarus.2011.06.032 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 821NJ UT WOS:000294981400017 ER PT J AU Corgnale, C Summers, WA AF Corgnale, Claudio Summers, William A. TI Solar hydrogen production by the Hybrid Sulfur process SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen; Thermochemical; Hybrid Sulfur; Solar; Design; Cost ID ACID DECOMPOSITION; THERMOCHEMICAL HYDROGEN; CATALYSTS; REACTOR; PLANT; WATER; POWER AB A conceptual design and economic analysis are presented for a hydrogen production plant based on the use of thermochemical water splitting combined with a solar central receiver. The reference design consists of a Hybrid Sulfur thermochemical process coupled to a solar plant, based on the particle receiver concept, for a yearly average hydrogen production rate of 100 tons per day. The Hybrid Sulfur plant has been designed on the basis of results obtained from a new flowsheet ASPEN Plus (R) simulation, carrying out specific evaluations for the Sulfur dioxide Depolarized Electrolyzer, being developed and constructed at Savannah River National Laboratory, and for the sulfuric acid decomposition bayonet-based reactor, investigated at Sandia National Laboratory. Solar hydrogen production costs have been estimated considering two different scenarios in the medium to long term period, assuming the financing and economic guidelines from DOE's H2A model and performing ad hoc detailed evaluations for unconventional equipment. A minimum hydrogen production specific cost of 3.19 $/kg (2005 US $) has been assessed for the long term period. The costs, so obtained, are strongly affected by some quantities, parameters and assumptions, influence of which has also been investigated and discussed. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Corgnale, Claudio; Summers, William A.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Summers, WA (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM william.summers@srnl.doe.gov NR 30 TC 14 Z9 14 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD SEP PY 2011 VL 36 IS 18 BP 11604 EP 11619 DI 10.1016/j.ijhydene.2011.05.173 PG 16 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 821NX UT WOS:000294982800013 ER PT J AU Poutsma, ML AF Poutsma, Marvin L. TI Chain elongation during thermolysis of tetrafluoroethylene and hexafluoropropylene: Modeling of mechanistic hypotheses and elucidation of data needs SO JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS LA English DT Article DE Tetrafluoroethylene; Hexafluoropropylene; Thermolysis; Perfluoro-olefins; Mechanisms ID GAS-PHASE PYROLYSIS; INFRARED MULTIPHOTON DISSOCIATION; MULTI-PHOTON DISSOCIATION; PULSE SHOCK TUBE; THERMAL-DECOMPOSITION; PHOTOELECTRON-SPECTROSCOPY; STANDARD ENTHALPIES; HIGH-TEMPERATURES; CF2 REACTIONS; REAL-TIME AB Thermolysis of tetrafluoroethylene at >= 500 degrees C is well-known to lead to equilibration with octafluorocyclobutane; at approximate to 600 degrees C this mixture forms hexafluoropropylene; and at slightly more forcing conditions the latter is converted to octafluoroisobutylene (and/or octafluoro-2-butene). This chain-elongation behavior contrasts with the familiar cracking of non-fluorinated olefins and the thermodynamic rationale is provided herein. Several mechanisms have been proposed in the literature without a clear choice. Kinetic modeling herein of available product/kinetic data with use of current thermochemical and kinetic parameters supports a key role for difluorocarbene formed from dissociation of tetrafluoroethylene. Arbitrary selection between unfortunately inconsistent available measurements and/or computations of elementary rate constants, with modest adjustments, allowed data matches with either a direct insertion into an olefinic C-F bond or an addition to the olefin to give a 1,3-biradical followed by a 1,2-fluorine shift. In contrast, a 1,2-fluorine shift in the starting olefin to generate a carbene, followed by carbene combination, seems unlikely. However, the modeling was only partially successful, especially for hexafluoropropylene as feed which seems a comparatively inefficient source of difluorocarbene. This highlights the need for improved experimental thermolysis data at low conversion, independent elementary rate constants for key steps, and enthalpies of formation of fluorocarbons and their reactive intermediates, especially C3F6. (C) 2011 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Poutsma, ML (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008, Oak Ridge, TN 37831 USA. EM poutsmaml@ornl.gov FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy FX This research was sponsored by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. NR 120 TC 5 Z9 5 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0165-2370 J9 J ANAL APPL PYROL JI J. Anal. Appl. Pyrolysis PD SEP PY 2011 VL 92 IS 1 BP 25 EP 42 DI 10.1016/j.jaap.2011.04.006 PG 18 WC Chemistry, Analytical; Spectroscopy SC Chemistry; Spectroscopy GA 820VG UT WOS:000294933600005 ER PT J AU Chang, HJ Kalinin, SV Yang, S Yu, P Bhattacharya, S Wu, PP Balke, N Jesse, S Chen, LQ Ramesh, R Pennycook, SJ Borisevich, AY AF Chang, Hyejung Kalinin, Sergei V. Yang, Seungyeul Yu, Pu Bhattacharya, Saswata Wu, Ping P. Balke, Nina Jesse, Stephen Chen, Long Q. Ramesh, Ramamoorthy Pennycook, Stephen J. Borisevich, Albina Y. TI Watching domains grow: In-situ studies of polarization switching by combined scanning probe and scanning transmission electron microscopy SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 9th Workshop on Piezoresponse Force Microscopy (PFM)/10th International Symposium on Ferroic Domains CY SEP 22-24, 2010 CL Prague, CZECH REPUBLIC ID RHOMBOHEDRAL FERROELECTRIC-FILMS; PHASE-TRANSITIONS; TEM; NA0.5BI0.5TIO3; CERAMICS; CRYSTALS; LINBO3; FIELD AB Ferroelectric domain nucleation and growth in multiferroic BiFeO3 films is observed directly by applying a local electric field with a conductive tip inside a scanning transmission electron microscope. The nucleation and growth of a ferroelastic domain and its interaction with pre-existing 71 degrees domain walls are observed and compared with the results of phase-field modeling. In particular, a preferential nucleation site and direction-dependent pinning of domain walls are observed due to slow kinetics of metastable switching in the sample without a bottom electrode. These in situ spatially resolved observations of a first-order bias-induced phase transition reveal the mesoscopic mechanisms underpinning functionality of a wide range of multiferroic materials. (C) 2011 American Institute of Physics. [doi:10.1063/1.3623779] C1 [Chang, Hyejung; Kalinin, Sergei V.; Balke, Nina; Jesse, Stephen; Pennycook, Stephen J.; Borisevich, Albina Y.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Yang, Seungyeul; Yu, Pu; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Yang, Seungyeul; Yu, Pu; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Bhattacharya, Saswata; Wu, Ping P.; Chen, Long Q.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. RP Borisevich, AY (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM albinab@ornl.gov RI Kalinin, Sergei/I-9096-2012; Chen, LongQing/I-7536-2012; Borisevich, Albina/B-1624-2009; Yu, Pu/F-1594-2014; Balke, Nina/Q-2505-2015; Jesse, Stephen/D-3975-2016 OI Kalinin, Sergei/0000-0001-5354-6152; Chen, LongQing/0000-0003-3359-3781; Borisevich, Albina/0000-0002-3953-8460; Balke, Nina/0000-0001-5865-5892; Jesse, Stephen/0000-0002-1168-8483 NR 34 TC 28 Z9 28 U1 7 U2 90 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2011 VL 110 IS 5 AR 052014 DI 10.1063/1.3623779 PG 6 WC Physics, Applied SC Physics GA 821IP UT WOS:000294968600015 ER PT J AU Franco, A Machado, FLA Zapf, VS AF Franco, A., Jr. Machado, F. L. A. Zapf, V. S. TI Magnetic properties of nanoparticles of cobalt ferrite at high magnetic field SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID TEMPERATURE-DEPENDENCE; COFE2O4 POWDERS; ANISOTROPY; ORIGIN AB In this paper we report high magnetic field (-140 <= H <= 140 kOe) magnetization data for cobalt ferrites (crystallites size similar to 42 nm) for temperatures (T) varying from 5 to 340 K. The T-dependence for the cubic magnetocrystalline anisotropy constant K-1 was determined by using the "law of approach" (LA) to saturation. The values of K-1 were found to be substantially different from previously reported values obtained using the same procedure but with H up to 50 kOe. By properly choosing the quantum parameters we found a very good agreement between the values calculated by using the model proposed by Tachiki [Prog. Theor. Phys. 23, 1055 (1960)] and the K-1 versus T data. For instance, the values of K-1 measured (calculated) for 5 K and 340 K were 28.3 x 10(6) erg/cm(3) (27.7 x 10(6) erg/cm(3)) and 7.4 x 10(6) erg/cm(3) (6.8 x 10(6) erg/cm(3)), respectively. The values of the parameters used to fit the data in both magnetic field regimes were chosen based on cation distribution over the A and B-sites on the spinel structure of the nanoparticles. (C) 2011 American Institute of Physics. [doi:10.1063/1.3626931] C1 [Franco, A., Jr.] Univ Fed Goias, Inst Fis, BR-74001970 Goiania, GO, Brazil. [Machado, F. L. A.] Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil. [Zapf, V. S.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. RP Franco, A (reprint author), Univ Fed Goias, Inst Fis, CP 131, BR-74001970 Goiania, GO, Brazil. EM franco@if.ufg.br RI Zapf, Vivien/K-5645-2013; Franco Jr, Adolfo/L-3515-2014; Machado, Fernando/A-5443-2009; OI Zapf, Vivien/0000-0002-8375-4515; Franco Jr, Adolfo/0000-0001-6428-6640; Machado, Fernando/0000-0002-6498-7751; Araujo, Fernando/0000-0001-6471-5564 NR 31 TC 12 Z9 12 U1 1 U2 17 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2011 VL 110 IS 5 AR 053913 DI 10.1063/1.3626931 PG 6 WC Physics, Applied SC Physics GA 821IP UT WOS:000294968600091 ER PT J AU Hanafusa, A Muramatsu, Y Kaburagi, Y Yoshida, A Hishiyama, Y Yang, WL Denlinger, JD Gullikson, EM AF Hanafusa, Atsushi Muramatsu, Yasuji Kaburagi, Yutaka Yoshida, Akira Hishiyama, Yoshihiro Yang, Wanli Denlinger, Jonathan D. Gullikson, Eric M. TI Local structure analysis of boron-doped graphite by soft x-ray emission and absorption spectroscopy using synchrotron radiation SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID ALPHA CLUSTER CALCULATIONS; ELECTRONIC-STRUCTURE; MAGNETORESISTANCE AB The local structure of boron-doped highly oriented graphite films was determined via soft x-ray emission and absorption spectroscopy using synchrotron radiation. Analysis of the BK and CK x-ray emission spectra using the discrete variational-X alpha molecular orbital method clarified that boron atoms are chemisorbed onto graphite by substituting for carbon atoms in the carbon hexagonal rings. Compared to graphite, boron-doped graphite exhibits spectral differences in the higher edge of the CK x-ray emission spectrum and the CK x-ray absorption edge. Such a spectral profile of boron-doped graphite, which reflects the band structure, is well explained by the chemisorbed boron structure. (C) 2011 American Institute of Physics. [doi:10.1063/1.3631108] C1 [Hanafusa, Atsushi; Muramatsu, Yasuji] Univ Hyogo, Grad Sch Engn, Himeji, Hyogo 6712201, Japan. [Kaburagi, Yutaka; Yoshida, Akira; Hishiyama, Yoshihiro] Tokyo City Univ, Grad Sch Engn, Setagaya Ku, Tokyo 1588557, Japan. [Yang, Wanli; Denlinger, Jonathan D.; Gullikson, Eric M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Muramatsu, Y (reprint author), Univ Hyogo, Grad Sch Engn, 2167 Shosha, Himeji, Hyogo 6712201, Japan. EM murama@eng.u-hyogo.ac.jp RI Yang, Wanli/D-7183-2011 OI Yang, Wanli/0000-0003-0666-8063 NR 24 TC 7 Z9 7 U1 1 U2 13 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2011 VL 110 IS 5 AR 053504 DI 10.1063/1.3631108 PG 6 WC Physics, Applied SC Physics GA 821IP UT WOS:000294968600043 ER PT J AU Kalinin, SV Kholkin, AL AF Kalinin, Sergei V. Kholkin, Andrei L. TI Preface to special topic: Piezoresponse force microscopy and nanoscale phenomena in polar materials SO JOURNAL OF APPLIED PHYSICS LA English DT Editorial Material ID FERROELECTRIC SURFACES; DOMAIN-WALLS; THIN-FILMS; POLARIZATION; TRANSPORT C1 [Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kalinin, Sergei V.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Kholkin, Andrei L.] Univ Aveiro, Dept Ceram & Glass Engn, P-3810193 Aveiro, Portugal. [Kholkin, Andrei L.] Univ Aveiro, CICECO, P-3810193 Aveiro, Portugal. RP Kalinin, SV (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov; kholkin@ua.pt RI Kalinin, Sergei/I-9096-2012; Kholkin, Andrei/G-5834-2010 OI Kalinin, Sergei/0000-0001-5354-6152; Kholkin, Andrei/0000-0003-3432-7610 NR 61 TC 2 Z9 2 U1 1 U2 23 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2011 VL 110 IS 5 AR 051901 DI 10.1063/1.3625609 PG 3 WC Physics, Applied SC Physics GA 821IP UT WOS:000294968600001 ER PT J AU Karapetian, E Kalinin, SV AF Karapetian, Edgar Kalinin, Sergei V. TI Point force and generalized point source on the surface of semi-infinite transversely isotropic material SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 9th Workshop on Piezoresponse Force Microscopy (PFM)/10th International Symposium on Ferroic Domains CY SEP 22-24, 2010 CL Prague, CZECH REPUBLIC ID HEATED PUNCH; HALF-SPACE; INFINITE; SOLIDS AB For a three-dimensional semi-infinite transversely isotropic material, Green's functions (that give the full set of coupled fields due to the arbitrarily oriented point force and concentrated generalized point source, that represents either the diffusive chemical substance concentration or heat applied at the boundary of the half-space) are derived in elementary functions in a simple way, using methods of the potential theory. In the course of the analysis we derived the general solution of the field equations, represented in terms of four harmonic potential functions, which may also be relevant to other problems of chemical concentration or heat diffusion. These solutions constitute generalization of Boussinesq's and Cerruti's problems of elasticity for the chemically diffusive and/or thermoelastic materials. (C) 2011 American Institute of Physics. [doi:10.1063/1.3624799] C1 [Karapetian, Edgar] Suffolk Univ, Dept Math & Comp Sci, Boston, MA 02114 USA. [Kalinin, Sergei V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Karapetian, E (reprint author), Suffolk Univ, Dept Math & Comp Sci, Boston, MA 02114 USA. EM edgark@mcs.suffolk.edu; sergei2@ornl.gov RI Kalinin, Sergei/I-9096-2012 OI Kalinin, Sergei/0000-0001-5354-6152 NR 29 TC 7 Z9 7 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2011 VL 110 IS 5 AR 052020 DI 10.1063/1.3624799 PG 9 WC Physics, Applied SC Physics GA 821IP UT WOS:000294968600021 ER PT J AU Morozovska, AN Eliseev, EA Bravina, SL Kalinin, SV AF Morozovska, A. N. Eliseev, E. A. Bravina, S. L. Kalinin, S. V. TI Landau-Ginzburg-Devonshire theory for electromechanical hysteresis loop formation in piezoresponse force microscopy of thin films SO JOURNAL OF APPLIED PHYSICS LA English DT Article; Proceedings Paper CT 9th Workshop on Piezoresponse Force Microscopy (PFM)/10th International Symposium on Ferroic Domains CY SEP 22-24, 2010 CL Prague, CZECH REPUBLIC ID FERROELECTRIC MEMORY CELLS; DOMAIN-WALLS; NANOSCALE FERROELECTRICS; PIEZOELECTRIC PROPERTIES; POLARIZATION REVERSAL; BARIUM TITANATE; SWITCHING TIME; FIELD; 180-DEGREES; RELAXATION AB Electromechanical hysteresis loop formation in piezoresponse force microscopy of thin ferroelectric films is studied with special emphasis on the effects of tip size and film thickness, as well as dependence on the tip voltage frequency. Here, we use a combination of Landau-Ginzburg-Devonshire (LGD) theory for the description of the local polarization reversal, with decoupling approximation for the calculation of the local piezoresponse loops shape, coercive voltages, and amplitude. LGD approach enables addressing both thermodynamics and kinetics of hysteresis loop formation. In contrast to the "rigid" ferroelectric approximation, this approach allows for the piezoelectric tensor component's dependence on the ferroelectric polarization and dielectric permittivity. This model rationalizes the non-classical shape of the dynamic piezoelectric force microscopy loops. (C) 2011 American Institute of Physics. [doi:10.1063/1.3623763] C1 [Morozovska, A. N.] Natl Acad Sci Ukraine, Inst Semicond Phys, UA-03028 Kiev, Ukraine. [Eliseev, E. A.] Natl Acad Sci Ukraine, Inst Problems Mat Sci, UA-03142 Kiev, Ukraine. [Bravina, S. L.] Natl Acad Sci Ukraine, Inst Phys, UA-03028 Kiev, Ukraine. [Kalinin, S. V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37922 USA. RP Morozovska, AN (reprint author), Natl Acad Sci Ukraine, Inst Semicond Phys, 41 Pr Nauki, UA-03028 Kiev, Ukraine. EM morozo@i.com.ua RI Kalinin, Sergei/I-9096-2012 OI Kalinin, Sergei/0000-0001-5354-6152 NR 103 TC 12 Z9 12 U1 3 U2 39 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2011 VL 110 IS 5 AR 052011 DI 10.1063/1.3623763 PG 9 WC Physics, Applied SC Physics GA 821IP UT WOS:000294968600012 ER PT J AU Sun, Q Yerino, CD Leung, B Han, J Coltrin, ME AF Sun, Qian Yerino, Christopher D. Leung, Benjamin Han, Jung Coltrin, Michael E. TI Understanding and controlling heteroepitaxy with the kinetic Wulff plot: A case study with GaN SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID VAPOR-PHASE EPITAXY; LIGHT-EMITTING-DIODES; GALLIUM NITRIDE FILMS; R-PLANE SAPPHIRE; CRYSTAL-GROWTH; SELECTIVE GROWTH; DEFECT REDUCTION; SEMIPOLAR GAN; HIGH-POWER; POLARIZATION AB This work represents a comprehensive attempt to correlate the heteroepitaxial dynamics in experiments with fundamental principles in crystal growth using the kinetic Wulff plot (or v-plot). Selective area growth is employed to monitor the advances of convex and concave facets toward the construction of a comprehensive v-plot as a guidepost for GaN heteroepitaxy. A procedure is developed to apply the experimentally determined kinetic Wulff plots to the interpretation and the design of evolution dynamics in nucleation and island coalescence. This procedure offers a cohesive and rational model for GaN heteroepitaxy on polar, nonpolar, and semipolar orientations and is broadly extensible to other heteroepitaxial material systems. We demonstrate furthermore that the control of morphological evolution, based on invoking a detailed knowledge of the v-plots, holds a key to the reduction of microstructural defects through effective bending of dislocations and geometrical blocking of stacking faults, paving a way to device-quality heteroepitaxial nonpolar and semipolar GaN materials. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3632073] C1 [Sun, Qian; Yerino, Christopher D.; Leung, Benjamin; Han, Jung] Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA. [Coltrin, Michael E.] Sandia Natl Labs, Adv Mat Sci Dept, Albuquerque, NM 87185 USA. RP Sun, Q (reprint author), Yale Univ, Dept Elect Engn, New Haven, CT 06520 USA. EM qian.sun@aya.yale.edu; jung.han@yale.edu RI Sun, Qian/D-4052-2009; Leung, Benjamin/H-1728-2013 NR 69 TC 36 Z9 36 U1 5 U2 61 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 EI 1089-7550 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2011 VL 110 IS 5 AR 053517 DI 10.1063/1.3632073 PG 10 WC Physics, Applied SC Physics GA 821IP UT WOS:000294968600056 ER PT J AU Wei, Q Xu, HW Yu, XH Shimada, T Rearick, MS Hickmott, DD Zhao, YS Luo, SN AF Wei, Q. Xu, H. W. Yu, X. H. Shimada, T. Rearick, M. S. Hickmott, D. D. Zhao, Y. S. Luo, S. N. TI Shock resistance of metal-organic framework Cu-1,3,5-benzenetricarboxylate with and without ferrocene inclusion SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID UNCONFINED COMPRESSIVE STRENGTH; YOUNGS MODULUS AB A first-of-its-kind study on the shock response of a metal-organic framework (MOF) material to planar impact is reported. MOF Cu-1,3,5-benzenetricarboxylate (Cu-BTC) without and with ferrocene inclusion show anisotropic structural collapse under shock loading. The shock resistance of the Cu-BTC framework is enhanced drastically (by a factor of six) via molecular-level inclusion of ferrocene into the pore structures. (C) 2011 American Institute of Physics. [doi:10.1063/1.3631104] C1 [Wei, Q.; Xu, H. W.; Yu, X. H.; Shimada, T.; Rearick, M. S.; Hickmott, D. D.; Zhao, Y. S.; Luo, S. N.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Luo, SN (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM sluo@lanl.gov RI Hickmott, Donald/C-2886-2011; Luo, Sheng-Nian /D-2257-2010; Lujan Center, LANL/G-4896-2012; OI Luo, Sheng-Nian /0000-0002-7538-0541; Xu, Hongwu/0000-0002-0793-6923 NR 9 TC 4 Z9 4 U1 5 U2 34 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2011 VL 110 IS 5 AR 056102 DI 10.1063/1.3631104 PG 3 WC Physics, Applied SC Physics GA 821IP UT WOS:000294968600162 ER PT J AU Zhang, Y Kramer, MJ Banerjee, D Takeuchi, I Liu, JP AF Zhang, Ying Kramer, M. J. Banerjee, Debjani Takeuchi, Ichiro Liu, J. Ping TI Transmission electron microscopy study on Co/Fe interdiffusion in SmCo(5)/Fe and Sm(2)Co(7)/Fe/Sm(2)Co(7) thin films SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID FE-CO SYSTEM; PERMANENT-MAGNETS; EXCHANGE; TRANSFORMATIONS AB We demonstrate a sharp composition transition at the interface of an as-deposited SmCo(5)/Fe bilayer, while annealing results in measurable Co/Fe interdiffusion near the boundary. For the annealed SmCo(5)/Fe bilayer, phase separation occurs within the bcc-layer, forming regions with 3 different Fe:Co ratios. Depositing Fe between Sm-Co layers provides a realistic model for bulk systems. Co/Fe interdiffusion was observed by TEM in an annealed Sm(2)Co(7)/Fe/Sm(2)Co(7) "sandwich" thin film, confirming Co/Fe interdiffusion as the main mechanism controlling phase chemistry in Sm-Co/Fe bulk nanocomposites. The degree of Co/Fe interdiffusion is primarily chemically driven, and the approximate 20% Fe substitution for Co is thermodynamically stable. (C) 2011 American Institute of Physics. [doi:10.1063/1.3634063] C1 [Zhang, Ying; Kramer, M. J.] US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. [Zhang, Ying; Liu, J. Ping] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Banerjee, Debjani; Takeuchi, Ichiro] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. RP Kramer, MJ (reprint author), US DOE, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. EM mjkramer@ameslab.gov NR 15 TC 8 Z9 10 U1 2 U2 22 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD SEP 1 PY 2011 VL 110 IS 5 AR 053914 DI 10.1063/1.3634063 PG 4 WC Physics, Applied SC Physics GA 821IP UT WOS:000294968600092 ER PT J AU Kennedy, AD Dong, XQ Xi, BK Xie, SC Zhang, YY Chen, JY AF Kennedy, Aaron D. Dong, Xiquan Xi, Baike Xie, Shaocheng Zhang, Yunyan Chen, Junye TI A Comparison of MERRA and NARR Reanalyses with the DOE ARM SGP Data SO JOURNAL OF CLIMATE LA English DT Article ID AMERICAN REGIONAL REANALYSIS; OBJECTIVE ANALYSIS; CLIMATE RESEARCH; PRECIPITATION; FACILITY; RADAR; MODEL; SITE AB Atmospheric states from the Modern-Era Retrospective analysis for Research and Applications (MERRA) and the North American Regional Reanalysis (NARR) are compared with data from the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site, including the ARM continuous forcing product and Cloud Modeling Best Estimate (CMBE) soundings, during the period 1999-2001 to understand their validity for single-column model (SCM) and cloud-resolving model (CRM) forcing datasets. Cloud fraction, precipitation, and radiation information are also compared to determine what errors exist within these reanalyses. For the atmospheric state, ARM continuous forcing and the reanalyses have good agreement with the CMBE sounding information, with biases generally within 0.5 K for temperature, 0.5 m s(-1) for wind, and 5% for relative humidity. Larger disagreements occur in the upper troposphere (p < 300 hPa) for temperature, humidity, and zonal wind, and in the boundary layer (p > 800 hPa) for meridional wind and humidity. In these regions, larger errors may exist in derived forcing products. Significant differences exist for vertical pressure velocity, with the largest biases occurring during the spring upwelling and summer downwelling periods. Although NARR and MERRA share many resemblances to each other, ARM outperforms these reanalyses in terms of correlation with cloud fraction. Because the ARM forcing is constrained by observed precipitation that gives the adequate mass, heat, and moisture budgets, much of the precipitation (specifically during the late spring/early summer) is caused by smaller-scale forcing that is not captured by the reanalyses. While reanalysis-based forcing appears to be feasible for the majority of the year at this location, it may have limited usage during the late spring and early summer, when convection is common at the ARM SGP site. Both NARR and MERRA capture the seasonal variation of cloud fractions (CFs) observed by ARM radar-lidar and Geostationary Operational Environmental Satellite (GOES) with high correlations (0.92-0.78) but with negative biases of 14% and 3%, respectively. Compared to the ARM observations, MERRA shows better agreement for both shortwave (SW) and longwave (LW) fluxes except for LW-down (due to a negative bias in water vapor): NARR has significant positive bias for SW-down and negative bias for LW-down under clear-sky and all-sky conditions. The NARR biases result from a combination of too few clouds and a lack of sufficient extinction by aerosols and water vapor in the atmospheric column. The results presented here represent only one location for a limited period, and more comparisons at different locations and longer periods are needed. C1 [Kennedy, Aaron D.; Dong, Xiquan; Xi, Baike] Univ N Dakota, Dept Atmospher Sci, Grand Forks, ND 58202 USA. [Xie, Shaocheng; Zhang, Yunyan] Lawrence Livermore Natl Lab, Livermore, CA USA. [Chen, Junye] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. RP Kennedy, AD (reprint author), Univ N Dakota, Dept Atmospher Sci, 4149 Univ Ave,Box 9006, Grand Forks, ND 58202 USA. EM aaron.kennedy@und.edu RI Zhang, Yunyan/F-9783-2011; Chen, Junye/G-4301-2011; Xie, Shaocheng/D-2207-2013; OI Xie, Shaocheng/0000-0001-8931-5145; Dong, Xiquan/0000-0002-3359-6117 FU NASA NEWS [NNX07AW05G]; DOE ARM [DE-AC52-07NA27344/B589973]; NASA CERES [NNL04AA11G] FX The authors kindly acknowledge the anonymous reviewers, who provided helpful suggestions for this paper. NARR data were provided by NOAA/OAR/ESRL PSD, Boulder, Colorado, from their Web site (http://www.esrl.noaa.gov/psd). MERRA was obtained from the Goddard Earth Sciences Data and Information Services Center, Greenbelt, Maryland, from their Web site (http://disc.sci.gsfc.nasa.gov/mdisc). The University of North Dakota authors were supported by the NASA NEWS project under Grant NNX07AW05G, the DOE ARM under Grant DE-AC52-07NA27344/B589973, and the NASA CERES project under Grant NNL04AA11G. NR 27 TC 61 Z9 61 U1 0 U2 15 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD SEP PY 2011 VL 24 IS 17 BP 4541 EP 4557 DI 10.1175/2011JCLI3978.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 821SD UT WOS:000294993800001 ER PT J AU Chen, XY Beyerlein, IJ Brinson, LC AF Chen, Xinyu Beyerlein, Irene J. Brinson, L. Catherine TI Bridged crack models for the toughness of composites reinforced with curved nanotubes SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Fiber bridging; Toughness; Nanocomposites; Pull out; Nanotube strength ID CERAMIC-MATRIX COMPOSITES; TENSILE-STRENGTH DISTRIBUTION; MULTIWALLED CARBON NANOTUBES; PULL-OUT MODEL; MECHANICAL-PROPERTIES; FIBER COMPOSITES; MODULUS; NANOCOMPOSITES; WAVINESS; FRACTURE AB In this work, the effect of nanotube curvature on nanocomposite toughness is studied by considering a matrix crack bridged by curved nanotubes. The bridging nanotubes undergo a pull-out process as the crack opening displacement increases. An approximate analytical form for the pull-out force versus displacement relationship for a single curved fiber is derived here based on the numerical pull-out model of Chen et al. (2009b). This new analytical description accounts for the sequential elastic, debonding, and sliding response of the interface. When incorporated into a crack bridging model it becomes possible to predict the crack bridging stress and nanocomposite toughness as a function of nanotube curvature, nanotube strength, and interfacial friction resistance. Model predictions indicate that increases in nanotube curvature increase the peak bridging stress, but also decrease the average pull-out lengths. The overall effect can be a reduction in toughness as nanotube curvature increases depending on chosen parameters including interfacial friction properties, nanotube and matrix modulus, and even crack opening. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Chen, Xinyu; Brinson, L. Catherine] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. [Brinson, L. Catherine] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Beyerlein, Irene J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Brinson, LC (reprint author), Northwestern Univ, Dept Mech Engn, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM cbrinson@northwestern.edu RI Brinson, L. Catherine/B-6678-2009; Brinson, L Catherine/B-1315-2013; Beyerlein, Irene/A-4676-2011 OI Brinson, L Catherine/0000-0003-2551-1563; FU National Science Foundation [0404291]; Los Alamos National Laboratory [DR20110029] FX This work is supported by the National Science Foundation under Grant no. 0404291. We acknowledge Supinda Watcharotone for the SEM image shown in Fig. 1. I.J. Beyerlein acknowledges support provided by a Los Alamos National Laboratory Laboratory Directed Research and Development (LDRD) project DR20110029. NR 43 TC 12 Z9 12 U1 2 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD SEP PY 2011 VL 59 IS 9 BP 1938 EP 1952 DI 10.1016/j.jmps.2010.12.012 PG 15 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 822QI UT WOS:000295064300017 ER PT J AU Hu, YY Schmidt-Rohr, K AF Hu, Y. -Y. Schmidt-Rohr, K. TI Technical aspects of fast magic-angle turning NMR for dilute spin-1/2 nuclei with broad spectra SO SOLID STATE NUCLEAR MAGNETIC RESONANCE LA English DT Article DE (125)Te NMR; Broadband excitation; Chemical shift anisotropy; Off-resonance effect; Echo-matched filtering; Sideband suppression ID CHEMICAL-SHIFT ANISOTROPY; TENSOR PRINCIPAL VALUES; SPINNING NMR; SPECTROSCOPY; SEPARATION; SAMPLES; SOLIDS AB For obtaining sideband-free spectra of high-Z spin-1/2 nuclei with large (> 1000 ppm) chemical-shift anisotropies and broad isotropic-shift dispersion, we recently identified Can's modified five-pulse magic-angle turning (MAT) experiment as the best available broadband pulse sequence, and adapted it to fast magic-angle spinning. Here, we discuss technical aspects such as pulse timings that compensate for off-resonance effects and are suitable for large CSAs over a range of 1.8 gamma B(1): methods to minimize the duration of z-periods by cyclic decrementation: shearing without digitization artifacts, by sharing between channels (points): and maximizing the sensitivity by echo-matched full-Gaussian filtering. The method is demonstrated on a model sample of mixed amino acids and its large bandwidth is highlighted by comparison with the multiple-it-pulse PASS technique. Applications to various tellurides are shown; these include GeTe, Sb(2)Te(3) and Ag(0.53)Pb(18)Sb(1.2)Te(20), with spectra spanning up to 190 kHz, at 22 kHz MAS. We have also determined the (125)Te chemical shift anisotropies from the intensities of the spinning sidebands resolved by isotropic-shift separation. (C) 2011 Published by Elsevier Inc. C1 [Schmidt-Rohr, K.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Schmidt-Rohr, K (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM srohr@iastate.edu RI Hu, Yan-Yan/A-1795-2015 OI Hu, Yan-Yan/0000-0003-0677-5897 FU U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; Iowa State University [DE-AC02-07CH11358] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. The research was performed at the Ames Laboratory. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract no. DE-AC02-07CH11358. NR 22 TC 5 Z9 5 U1 2 U2 17 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0926-2040 J9 SOLID STATE NUCL MAG JI Solid State Nucl. Magn. Reson. PD SEP PY 2011 VL 40 IS 2 BP 51 EP 59 DI 10.1016/j.ssnmr.2011.04.007 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Spectroscopy SC Chemistry; Physics; Spectroscopy GA 822CG UT WOS:000295020700004 PM 21782396 ER PT J AU Endrino, JL Arhammar, C Gutierrez, A Gago, R Horwat, D Soriano, L Fox-Rabinovich, G Marero, DMY Guo, J Rubensson, JE Andersson, J AF Endrino, J. L. Arhammar, C. Gutierrez, A. Gago, R. Horwat, D. Soriano, L. Fox-Rabinovich, G. Martin y Marero, D. Guo, J. Rubensson, J-E Andersson, J. TI Spectral evidence of spinodal decomposition, phase transformation and molecular nitrogen formation in supersaturated TiAlN films upon annealing SO ACTA MATERIALIA LA English DT Article DE TiAlN; Nanocrystalline materials; X-ray absorption near-edge structure; Resonant inelastic X-ray scattering ID X-RAY-ABSORPTION; THIN-FILMS; CUBIC TI1-XALXN; COATINGS; BEHAVIOR; STEEL; APPROXIMATION; SPECTROSCOPY; STABILITY; EVOLUTION AB Thermal treatment of supersaturated Ti(1-x)Al(x)N films (x approximate to 0.67) with a dominant ternary cubic-phase were performed in the 700-1000 degrees C range. Grazing incidence X-ray diffraction (GIXRD) shows that, for annealing temperatures up to 800 degrees C, the film structure undergoes the formation of coherent cubic AlN (c-AlN) and TiN (c-TiN) nanocrystallites via spinodal decomposition and, at higher temperatures (>= 900 degrees C), GIXRD shows that the c-AlN phase transforms into the thermodynamically more stable hexagonal AIN (h-AlN). X-ray absorption near-edge structure (XANES) at the Ti K-edge is consistent with spinodal decomposition taking place at 800 degrees C, while Al K-edge and N K-edge XANES and X-ray emission data show the nucleation of the h-AlN phase at temperatures >800 degrees C, in agreement with the two-step decomposition process for rock-salt structured TiAlN, which was also supported by X-ray diffraction patterns and first-principle calculations. Further, the resonant inelastic X-ray scattering technique near the N K-edge revealed that N(2) is formed as a consequence of the phase transformation process. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Endrino, J. L.; Gago, R.] Consejo Super Invest Cient, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain. [Arhammar, C.] Sandvik Tooling AB, R&D, S-12680 Stockholm, Sweden. [Gutierrez, A.; Soriano, L.; Martin y Marero, D.] Univ Autonoma Madrid, Dept Fis Aplicada, E-28049 Madrid, Spain. [Gutierrez, A.; Soriano, L.; Martin y Marero, D.] Univ Autonoma Madrid, Inst Ciencia Mat Nicolas Cabrera, E-28049 Madrid, Spain. [Horwat, D.] Ecole Mines, Inst Jean Lamour, F-54042 Nancy, France. [Fox-Rabinovich, G.] McMaster Univ, Hamilton, ON L8S 4L7, Canada. [Martin y Marero, D.] Fdn Parque Cient Madrid, Madrid 28049, Spain. [Martin y Marero, D.] Univ Autonoma Madrid, Ctr Microanal Mat, E-28049 Madrid, Spain. [Guo, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Rubensson, J-E] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Andersson, J.] Uppsala Univ, Angstrom Lab, S-75121 Uppsala, Sweden. RP Endrino, JL (reprint author), Consejo Super Invest Cient, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain. EM jlendrino@icmm.csic.es RI Andersson, Joakim/A-3017-2009; Endrino, Jose/G-1103-2011; Gutierrez, Alejandro/A-9092-2011; Martin y Marero, David/B-3094-2008; Fox-Rabinovich, German/A-6860-2011; Gago, Raul/C-6762-2008; Soriano, Leonardo/A-7664-2011; OI Andersson, Joakim/0000-0003-2991-1927; Horwat, David/0000-0001-7938-7647; Gutierrez, Alejandro/0000-0002-1150-0719; Martin y Marero, David/0000-0002-8969-0735; Gago, Raul/0000-0003-4388-8241; Soriano, Leonardo/0000-0001-5715-376X; Endrino, Jose/0000-0002-3084-7910 FU Spanish MICINN [MAT2007-66719-C03-03, FIS2009-12964-C05-04, CSD2008-00023]; Spanish Ministerio de Educacion y Ciencia (MEC); Wenner-Gren Foundations; SSF; NSERC; NRC; CIHR; University of Saskatchewan; EC [R II 3-CT-2004-506008]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was partially supported by the Spanish MICINN through projects MAT2007-66719-C03-03, FIS2009-12964-C05-04 and project Consolider Ingenio CSD2008-00023. One of the authors (J.L.E.) thanks the Spanish Ministerio de Educacion y Ciencia (MEC) for financial support through the "Ramon y Cajal" Programme. J.A. was supported by the Wenner-Gren Foundations and the SSF program MS2E. The authors also thank Mr. Y.S. Liu (ALS) for beamline assistance and Mr Jim Garrett (McMaster) for performing sample annealing in vacuum, the authors gratefully acknowledge beamtime at the 7.0.1 beamline (ALS, Berkeley), the SGM beamline at (CLS, Saskatoon) and the KMC-2 beamline (BESSY, Berlin). The research performed at the Canadian Light Source is supported by NSERC, NRC, CIHR and the University of Saskatchewan. The synchrotron work at BESSY-II was supported by the EC "Research Infrastructure Action" under the FP6 "Structuring the European Research Area Programme" through the "Integrated Infrastructure Initiative Integrating Activity on Synchrotron and Free Electron Laser Science" (Contract No. R II 3-CT-2004-506008). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contact No. DE-AC02-05CH11231. NR 36 TC 12 Z9 12 U1 2 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD SEP PY 2011 VL 59 IS 16 BP 6287 EP 6296 DI 10.1016/j.actamat.2011.06.039 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 820WK UT WOS:000294936600009 ER PT J AU Wei, QM Li, N Mara, N Nastasi, M Misra, A AF Wei, Q. M. Li, N. Mara, N. Nastasi, M. Misra, A. TI Suppression of irradiation hardening in nanoscale V/Ag multilayers SO ACTA MATERIALIA LA English DT Article DE Hardness; Nanoindentation; Transmission electron microscopy; Multilayers; Dislocation ID MECHANICAL-BEHAVIOR; STRENGTHENING MECHANISMS; DEFORMATION MECHANISMS; MOLECULAR-DYNAMICS; BCC METALS; HELIUM; DISLOCATIONS; COMPOSITES; FILMS; TOLERANCE AB Nanoindentation was used to measure hardness before and after room temperature He ion implantation on sputter-deposited V/Ag multilayers of different layer thickness as well as pure Ag and V. The radiation-induced hardening was found to decrease with decreasing individual layer thickness. No change in hardness after implantation was measured in multilayers with a layer thickness of less than 10 nm, which is of the order of the average spacing of He bubbles. The pure V films exhibit significant hardening due to a dense distribution of 0.8 nm diameter He bubbles, but in the nanocrystalline pure Ag films bubbles grow to a diameter of approximately 20 nm and become ineffective in causing hardening. A model describing layer-thickness-dependent radiation hardening in multilayers was developed by extending the Friedel model to take into account the layer thickness and the He bubble spacing. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wei, Q. M.; Li, N.; Mara, N.; Nastasi, M.; Misra, A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Wei, QM (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM qwei@umich.edu; amisra@lanl.gov RI Li, Nan /F-8459-2010; Misra, Amit/H-1087-2012; Mara, Nathan/J-4509-2014 OI Mara, Nathan/0000-0002-9135-4693; Li, Nan /0000-0002-8248-9027; FU Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center; US Department of Energy, Office of Basic Energy Sciences; LANL Laboratory Directed Research and Development (LDRD); National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX This material is based upon work supported as part of the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the US Department of Energy, Office of Basic Energy Sciences. The ion implantation and analysis work was supported by the LANL Laboratory Directed Research and Development (LDRD) program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. We thank J. Wang, X.Y. Liu, M.J. Demkowicz, R.G. Hoagland, and J.P. Hirth for insightful discussion. NR 65 TC 49 Z9 50 U1 4 U2 64 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD SEP PY 2011 VL 59 IS 16 BP 6331 EP 6340 DI 10.1016/j.actamat.2011.06.043 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 820WK UT WOS:000294936600013 ER PT J AU Li, N Wang, YD Peng, RL Sun, X Liaw, PK Wu, GL Wang, L Cai, HN AF Li, N. Wang, Y. D. Peng, R. Lin Sun, X. Liaw, P. K. Wu, G. L. Wang, L. Cai, H. N. TI Localized amorphism after high-strain-rate deformation in TWIP steel SO ACTA MATERIALIA LA English DT Article DE Shear band; Strain rate; TWIP steel; Amorphous; Nanocrystal ID ADIABATIC SHEAR BANDS; 316L STAINLESS-STEEL; MICROSTRUCTURAL EVOLUTION; TITANIUM-ALLOY; DYNAMIC DEFORMATION; FLOW LOCALIZATION; TEMPERATURE; NANOCRYSTALLINE; INSTABILITY; IMPACT AB The microstructural features of shear localization, generated by a high-strain-rate deformation (similar to 10(5) s(-1)), of a twinning-induced plasticity (TWIP) steel containing about 17.5 wt.% Mn were well characterized by means of optical microscopy, transmission electron microscopy and electron backscatter diffraction. The high deformation rate was obtained by a ballistic impact penetration test on the TWIP steel sheet. In addition to the deformation twins observed as the main microstructural characterization in the matrix, some shear bands consisting of complex microstructures were also evidenced in the highly deformed area. Inside the shear band, there exist a large region of amorphous phase and a smooth transition zone that also contains nanocrystalline phases. The grain size decreases gradually in the transition zone, changing from a coarse scale (>100 nm) to a fine scale (<10 nm) adjacent to the amorphous region. The coexistence of the amorphous state and the fine-scaled nanocrystalline phase clearly suggests that melting inside the shear bands occurred, which is corroborated by calculations showing a very high rise in temperature due to localized plastic deformation and extremely rapid cooling by heat dissipation into the specimen. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Li, N.; Wang, Y. D.; Wu, G. L.; Wang, L.; Cai, H. N.] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China. [Peng, R. Lin] Linkoping Univ, Dept Mech Engn, S-58183 Linkoping, Sweden. [Sun, X.] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. [Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Wang, YD (reprint author), Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China. EM ydwang@mail.neu.edu.cn RI Wu, Guilin/F-9606-2011; ran, shi/G-9380-2013; wang, yandong/G-9404-2013 FU National Natural Science Foundation of China [50725102, 51001016]; National High Technology Research and Development Program of China [2009AA03Z535]; US Department of Energy [DE-AC05-76RL01830]; Department of Energy Office of Freedom CAR and Vehicle Technologies; EYSRT of BIT; US National Science Foundation [CMMI-0900271, DMR-0909037] FX This work is supported by the National Natural Science Foundation of China (Grant No. 50725102) and the National High Technology Research and Development Program of China (2009AA03Z535). The Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the US Department of Energy under Contract No. of DE-AC05-76RL01830. This work was partially funded by the Department of Energy Office of Freedom CAR and Vehicle Technologies under the Automotive Light Weighting Materials Program managed by Dr. Joseph Carpenter. G.L.W. thanks the financial support from National Natural Science Foundation of China (Grant No. 51001016) and EYSRT of BIT. P.K.L. appreciates the support from the US National Science Foundation (CMMI-0900271 and DMR-0909037) with Dr. C.V. Cooper and A. Ardell as program directors. NR 37 TC 23 Z9 24 U1 3 U2 49 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD SEP PY 2011 VL 59 IS 16 BP 6369 EP 6377 DI 10.1016/j.actamat.2011.06.048 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 820WK UT WOS:000294936600017 ER PT J AU Niezgoda, SR Yabansu, YC Kalidindi, SR AF Niezgoda, Stephen R. Yabansu, Yuksel C. Kalidindi, Surya R. TI Understanding and visualizing microstructure and microstructure variance as a stochastic process SO ACTA MATERIALIA LA English DT Article DE Microstructure variance; Two-point correlations; Structure-property relationships; Principal component analysis; Property variance ID 2-POINT CORRELATION-FUNCTIONS; ORIENTATION DISTRIBUTION FUNCTION; TENSORIAL REPRESENTATION; HARMONIC POLYNOMIALS; PATTERN-RECOGNITION; STATISTICS; CLASSIFICATION; RECONSTRUCTION; BOOTSTRAP; DESIGN AB The study of microstructure property relationships is a defining concept in the field of materials science and engineering. Despite the paramount importance of microstructure to the field a rigorous systematic framework for the description of structural variance between samples of materials with the same processing history and between different materials classes has yet to be adopted. Here the authors utilize the formalism of stochastic processes to develop a statistical definition of microstructure and develop measures of structural variance in terms of the measured variance of estimators of higher order probability distributions. Principal component analysis (PCA) of higher order distributions is used to produce visualization of the space spanned by an ensemble of microstructure realizations and for quantification of the structural variance within the ensemble. The structural variance is correlated with the variance in properties and structure/property maps are produced in the PCA space. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Niezgoda, Stephen R.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Yabansu, Yuksel C.; Kalidindi, Surya R.] Drexel Univ, Dept Mech Engn & Mech, Philadelphia, PA 19104 USA. [Kalidindi, Surya R.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. RP Niezgoda, SR (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM niezgoda.s@gmail.com RI Kalidindi, Surya/A-1024-2007; Niezgoda, Stephen/I-6750-2013; OI Niezgoda, Stephen/0000-0002-7123-466X; Kalidindi, Surya/0000-0001-6909-7507; Yabansu, Yuksel/0000-0002-2709-2203 FU DARPA-ONR [N000140510504]; US Department of Energy through LANL/LDRD FX The authors acknowledge financial support for this work from the DARPA-ONR Dynamic 3D Digital Structure project, award no. N000140510504. S.R.N. acknowledges additional support for this work from the US Department of Energy through the LANL/LDRD Program. NR 50 TC 30 Z9 30 U1 1 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD SEP PY 2011 VL 59 IS 16 BP 6387 EP 6400 DI 10.1016/j.actamat.2011.06.051 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 820WK UT WOS:000294936600019 ER PT J AU Yan, F Winijkul, E Jung, S Bond, TC Streets, DG AF Yan, Fang Winijkul, Ekbordin Jung, Soonkyu Bond, Tami C. Streets, David G. TI Global emission projections of particulate matter (PM): I. Exhaust emissions from on-road vehicles SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Emission; Projection; Transportation; On-road vehicle; Particulate matter (PM); Technology ID DUTY DIESEL VEHICLES; BLACK CARBON; MOTOR-VEHICLES; AIR-POLLUTION; SCRAPPAGE; MODEL; DURATION; IMPACT; LOGIT; TRANSPORTATION AB We present global emission projections of primary particulate matter (PM) from exhaust of on-road vehicles under four commonly-used global fuel use scenarios from 2010 to 2050. The projections are based on a dynamic model of vehicle population linked to emission characteristics, SPEW-Trend. Unlike previous models of global emissions, this model incorporates more details on the technology stock, including the vehicle type and age, and the number of emitters with very high emissions ("superemitters"). However, our estimates of vehicle growth are driven by changes in predicted fuel consumption from macroeconomic scenarios, ensuring that PM projections are consistent with these scenarios. Total emissions are then obtained by integrating emissions of heterogeneous vehicle groups of all ages and types. Changes in types of vehicles in use are governed by retirement rates, timing of emission standards and the rate at which superemitters develop from normal vehicles. Retirement rates are modeled as a function of vehicle age and income level with a relationship based on empirical data, capturing the fact that people with lower income tend to keep vehicles longer. Adoption dates of emission standards are either estimated from planned implementation or from income levels. We project that global PM emissions range from 1100 Gg to 1360 Gg in 2030, depending on the scenario. An emission decrease is estimated until 2035 because emission standards are implemented and older engines built to lower standards are phased out. From 2010 to 2050, fuel consumption increases in all regions except North America, Europe and Pacific, according to all scenarios. Global emission intensities decrease continuously under all scenarios for the first 30 years due to the introduction of more advanced and cleaner emission standards. This leads to decreasing emissions from most regions. Emissions are expected to increase significantly in only Africa (1.2-3.1% per year). Because we have tied emission standards to income levels, Africa introduces those standards 30-40 years later than other regions and thus makes a remarkable contribution to the global emissions in 2050 (almost half). All Asian regions (South Asia, East Asia, and Southeast Asia) have a decreasing fractional contribution to global totals, from 32% in 2030 to around 22% in 2050. Total emissions from normal vehicles can decrease 1.3-2% per year. However, superemitters have a large effect on emission totals. They can potentially contribute more than 50% of global emissions around 2020, which suggests that they should be specifically addressed in modeling and mitigation policies. As new vehicles become cleaner, the majority of on-road emissions will come from the legacy fleet. This work establishes a modeling framework to explore policies targeted at that fleet. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Yan, Fang; Winijkul, Ekbordin; Jung, Soonkyu; Bond, Tami C.] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Streets, David G.] Argonne Natl Lab, Div Decis Informat Sci, Argonne, IL 60439 USA. RP Bond, TC (reprint author), Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. EM yark@illinois.edu RI Yan, Fang/F-2625-2010; Bond, Tami/A-1317-2013; Yan, Fang/F-4527-2014; OI Bond, Tami/0000-0001-5968-8928; Yan, Fang/0000-0002-1960-0511; Streets, David/0000-0002-0223-1350 FU U.S. Department of Energy [DE-AC02-06CH11357]; Argonne National Laboratory [DE-AC02-06CH11357]; Clean Air Task Force FX This work was funded by the U.S. Department of Energy through its operating contract with Argonne National Laboratory (DE-AC02-06CH11357) and by the Clean Air Task Force. We thank K. G. Duleep for providing vehicle age distributions from six regions (Africa, Asia, EU, FSU, North America, and South America). NR 73 TC 32 Z9 34 U1 6 U2 57 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD SEP PY 2011 VL 45 IS 28 BP 4830 EP 4844 DI 10.1016/j.atmosenv.2011.06.018 PG 15 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 807WN UT WOS:000293933800003 ER PT J AU Petrick, LM Sleiman, M Dubowski, Y Gundel, LA Destaillats, H AF Petrick, Lauren M. Sleiman, Mohamad Dubowski, Yael Gundel, Lara A. Destaillats, Hugo TI Tobacco smoke aging in the presence of ozone: A room-sized chamber study SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Nicotine; Heterogeneous chemistry; SVOC; Indoor surfaces; Sorption; Thirdhand tobacco smoke ID ORGANIC-COMPOUNDS; SECONDARY POLLUTANTS; INDOOR ENVIRONMENTS; INITIATED REACTIONS; EXPOSURES; CHEMISTRY; PRODUCTS; NICOTINE; ORGANOPHOSPHATE; GENERATION AB Exposure to tobacco pollutants that linger indoors after smoking has taken place (thirdhand smoke, THS) can occur over extended periods and is modulated by chemical processes involving atmospheric reactive species. This study investigates the role of ozone and indoor surfaces in chemical transformations of tobacco smoke residues. Gas and particle constituents of secondhand smoke (SHS) as well as sorbed SHS on chamber internal walls and model materials (cotton, paper, and gypsum wallboard) were characterized during aging. After smoldering similar to 10 cigarettes in a 24-m(3) room size chamber, gas-phase nicotine was rapidly removed by sorption to chamber surfaces, and subsequently re-emitted during ventilation with clean air to a level of 10% that during the smoking phase. During chamber ventilation in the presence of ozone (180 ppb), ozone decayed at a rate of 5.6 h(-1) and coincided with a factor of 5 less nicotine sorbed to wallboard. In the presence of ozone, no gas phase nicotine was detected as a result of re-emission, and higher concentrations of nicotine oxidation products were observed than when ventilation was performed with ozone-free air. Analysis of the model surfaces showed that heterogeneous nicotine-ozone reaction was faster on paper than cotton, and both were faster than on wallboard. However, wallboard played a dominant role in ozone-initiated reaction in the chamber due to its large total geometric surface area and sink potential compared to the other substrates. This study is the first to show in a room-sized environmental chamber that the heterogeneous ozone chemistry of sorbed nicotine generates THS constituents of concern, as observed previously in bench-top studies. In addition to the main oxidation products (cotinine, myosmine and N-methyl formamide), nicotine-l-oxide was detected for the first time. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Petrick, Lauren M.; Dubowski, Yael] Technion Israel Inst Technol, Dept Civil & Environm Engn, IL-32000 Haifa, Israel. [Sleiman, Mohamad; Gundel, Lara A.; Destaillats, Hugo] Lawrence Berkeley Natl Lab, Indoor Environm Dept, Berkeley, CA 94720 USA. [Destaillats, Hugo] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ 85287 USA. RP Dubowski, Y (reprint author), Technion Israel Inst Technol, Dept Civil & Environm Engn, IL-32000 Haifa, Israel. EM yaeld@tx.technion.ac.il; HDestaillats@lbl.gov RI Destaillats, Hugo/B-7936-2013 FU BSF [2006300]; GIF [2153-1678.3/2006]; UC Tobacco-Related Diseases Research Program [16RT-0158] FX This work was funded by BSF (Grant No. 2006300), GIF (Grant No. 2153-1678.3/2006), and the UC Tobacco-Related Diseases Research Program (Grant No. 16RT-0158). The authors thank Randy Maddalena, Marion Russell, Douglas Sullivan, and Raymond Dod from LBNL for assistance with the experimental work. We also thank Regine Goth-Goldstein and Odelle Hadley for helpful comments. NR 41 TC 19 Z9 19 U1 1 U2 34 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD SEP PY 2011 VL 45 IS 28 BP 4959 EP 4965 DI 10.1016/j.atmosenv.2011.05.076 PG 7 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 807WN UT WOS:000293933800016 ER PT J AU Raber, E AF Raber, Ellen TI THE CHALLENGE OF DETERMINING THE NEED FOR REMEDIATION FOLLOWING A WIDE-AREA BIOLOGICAL RELEASE SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE LA English DT Editorial Material ID WARFARE AGENTS; CLEAN ENOUGH; ANTHRAX; ISSUES AB Recovering from a biological attack is a complex process requiring the successful resolution of numerous challenges. The Interagency Biological Restoration Demonstration program is one of the first multiagency efforts to develop strategies and tools that could be effective following a wide-area release of B. anthracis spores. Nevertheless, several key policy issues and associated science and technology issues still need to be addressed. For example, more refined risk assessment and management approaches are needed to help evaluate "true'' public health risk. Once the risk is understood, that information can be considered along with the types of characterization activities deemed necessary to determine whether the cost and time of decontamination are actually warranted. This commentary offers 5 recommendations associated with decision making regarding decontamination and clearance options that should accompany a comprehensive risk analysis leading to more effective risk management decisions. It summarizes some of the most important technological gaps that still need to be addressed to help decision makers in their objective of reducing health risks to an acceptable level. The risk management approach described should enable decision makers to improve credibility and gain public acceptance, especially when an adequate science and technology base is available to support the required decisions. C1 Lawrence Livermore Natl Lab, Deputy Program, Livermore, CA 94551 USA. RP Raber, E (reprint author), Lawrence Livermore Natl Lab, Deputy Program, Livermore, CA 94551 USA. EM raber1@llnl.gov NR 16 TC 9 Z9 9 U1 0 U2 3 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1538-7135 J9 BIOSECUR BIOTERROR JI Biosecur. Bioterror. PD SEP PY 2011 VL 9 IS 3 BP 257 EP 261 DI 10.1089/bsp.2011.0045 PG 5 WC Public, Environmental & Occupational Health; International Relations SC Public, Environmental & Occupational Health; International Relations GA 818PU UT WOS:000294767100010 PM 21882967 ER PT J AU Krauter, P Edwards, D Yang, L Tucker, M AF Krauter, Paula Edwards, Donna Yang, Lynn Tucker, Mark TI A SYSTEMATIC METHODOLOGY FOR SELECTING DECONTAMINATION STRATEGIES FOLLOWING A BIOCONTAMINATION EVENT SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE LA English DT Editorial Material ID CLOSTRIDIUM-DIFFICILE INFECTION; SPORES; DISINFECTANTS; DETERGENT; AGENTS AB Decontamination and recovery of a facility or outdoor area after a wide-area biological incident involving a highly persistent agent (eg, Bacillus anthracis spores) is a complex process that requires extensive information and significant resources, which are likely to be limited, particularly if multiple facilities or areas are affected. This article proposes a systematic methodology for evaluating information to select the decontamination or alternative treatments that optimize use of resources if decontamination is required for the facility or area. The methodology covers a wide range of approaches, including volumetric and surface decontamination, monitored natural attenuation, and seal and abandon strategies. A proposed trade-off analysis can help decision makers understand the relative appropriateness, efficacy, and labor, skill, and cost requirements of the various decontamination methods for the particular facility or area needing treatment-whether alone or as part of a larger decontamination effort. Because the state of decontamination knowledge and technology continues to evolve rapidly, the methodology presented here is designed to accommodate new strategies and materials and changing information. C1 [Krauter, Paula; Edwards, Donna; Yang, Lynn] Sandia Natl Labs, Livermore, CA 94551 USA. [Tucker, Mark] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Krauter, P (reprint author), Sandia Natl Labs, 7011 East Ave, Livermore, CA 94551 USA. EM pkraute@sandia.gov NR 46 TC 7 Z9 7 U1 0 U2 4 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1538-7135 J9 BIOSECUR BIOTERROR JI Biosecur. Bioterror. PD SEP PY 2011 VL 9 IS 3 BP 262 EP 270 DI 10.1089/bsp.2010.0071 PG 9 WC Public, Environmental & Occupational Health; International Relations SC Public, Environmental & Occupational Health; International Relations GA 818PU UT WOS:000294767100011 PM 21823924 ER PT J AU Raber, E Hibbard, WJ Greenwalt, R AF Raber, Ellen Hibbard, Wilthea J. Greenwalt, Robert TI THE NATIONAL FRAMEWORK AND CONSEQUENCE MANAGEMENT GUIDANCE FOLLOWING A BIOLOGICAL ATTACK SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE LA English DT Editorial Material AB Consequence management following a release of aerosolized Bacillus anthracis spores requires a high level of technical understanding and direction. National policies and regulations address the topics of preparedness goals and organizational structure, but they do not tell responders how to perform remediation. Essential considerations include determining what must be cleaned, evaluating health risks, ascertaining the priority of cleanup, and selecting appropriate decontamination technologies to meet consensus and risk-derived clearance goals. This article highlights key features of a national-level framework that has been developed to guide a risk-based decision process and inform technical personnel of the best practices to follow during each activity leading to the restoration of functions at affected facilities or areas. The framework and associated guidance follows the scheme of 6 phases for response and recovery arrived at through interagency consensus and approval. Each phase is elaborated in a series of detailed decision flowcharts identifying key questions that must be addressed and answered from the time that first indications of a credible biological attack are received to final reoccupancy of affected areas and a return to normal daily functions. C1 [Raber, Ellen] Lawrence Livermore Natl Lab, Deputy Program, Global Secur Directorate, Livermore, CA 94551 USA. [Greenwalt, Robert] Lawrence Livermore Natl Lab, Consequence Countermeasures Program, Global Secur Directorate, Livermore, CA 94551 USA. RP Raber, E (reprint author), Lawrence Livermore Natl Lab, Deputy Program, Global Secur Directorate, Livermore, CA 94551 USA. EM raber1@llnl.gov NR 17 TC 5 Z9 5 U1 0 U2 3 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1538-7135 J9 BIOSECUR BIOTERROR JI Biosecur. Bioterror. PD SEP PY 2011 VL 9 IS 3 BP 271 EP 279 DI 10.1089/bsp.2011.0035 PG 9 WC Public, Environmental & Occupational Health; International Relations SC Public, Environmental & Occupational Health; International Relations GA 818PU UT WOS:000294767100012 PM 21882968 ER PT J AU Lesperance, AM Olson, J Stein, S Clark, R Kelly, H Sheline, J Tietje, G Williamson, M Woodcock, J AF Lesperance, Ann M. Olson, Jarrod Stein, Steve Clark, Rebecca Kelly, Heather Sheline, Jim Tietje, Grant Williamson, Mark Woodcock, Jody TI DEVELOPING A REGIONAL RECOVERY FRAMEWORK SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE LA English DT Editorial Material AB A biological attack would present an unprecedented challenge for local, state, and federal agencies, the military, the private sector, and individuals on many fronts, ranging from vaccination and treatment to prioritization of cleanup actions to waste disposal. To prepare for recovery from this type of incident, the Seattle Urban Area Security Initiative (UASI) partners collaborated with military and federal agencies to develop a regional recovery framework. The goal was to identify key information that will assist policymakers and emergency managers in shortening the timeline for recovery and minimizing the economic and public health impacts of a catastrophic anthrax attack. Based on discussions in workshops, tabletop exercises, and interviews with local, state, federal, military, and private sector entities responsible for recovery, the authors identified goals, assumptions, and concepts of operation for various areas to address critical issues the region will face as recovery progresses. Although the framework is specific to a catastrophic, wide-area biological attack using anthrax, it was designed to be flexible and scalable so it could also serve as the recovery framework for an all-hazards approach in other regions and jurisdictions. Benefits from this process include enhanced coordination and collaboration across agencies, a more thorough understanding of the anthrax threat, an opportunity to proactively consider long-term recovery, and a better understanding of the specific policy questions requiring resolution. C1 [Lesperance, Ann M.] Pacific NW Natl Lab, NW Reg Technol Ctr, Reg Programs, Seattle, WA 98109 USA. [Clark, Rebecca] Emergency Preparedness Div, Urban Area Secur Initiat, Bellevue, WA USA. [Kelly, Heather] King Cty Off Emergency Management, Emergency Management Project, Renton, WA USA. [Tietje, Grant] City Seattle Off Emergency Management, Seattle, WA USA. [Woodcock, Jody] Pierce Cty Dept Emergency Management, Tacoma, WA USA. RP Lesperance, AM (reprint author), Pacific NW Natl Lab, NW Reg Technol Ctr, Reg Programs, 1100 Dexter Ave N,Suite 400, Seattle, WA 98109 USA. EM ann.lesperance@pnl.gov NR 6 TC 2 Z9 2 U1 0 U2 4 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1538-7135 J9 BIOSECUR BIOTERROR JI Biosecur. Bioterror. PD SEP PY 2011 VL 9 IS 3 BP 280 EP 287 DI 10.1089/bsp.2011.0031 PG 8 WC Public, Environmental & Occupational Health; International Relations SC Public, Environmental & Occupational Health; International Relations GA 818PU UT WOS:000294767100013 PM 21882969 ER PT J AU Van Cuyk, S Veal, LAB Simpson, B Omberg, KM AF Van Cuyk, Sheila Veal, Lee Ann B. Simpson, Beverley Omberg, Kristin M. TI TRANSPORT OF BACILLUS THURINGIENSIS VAR. KURSTAKI VIA FOMITES SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE LA English DT Editorial Material ID ANTHRAX; ENVIRONMENT; SPORES AB The intentional and controlled release of an aerosolized bacterium provides an opportunity to investigate the implications of a biological attack. Since 2006, Los Alamos National Laboratory has worked with several urban areas, including Fairfax County, VA, to design experiments to evaluate biodefense concepts of operations using routine spraying of Bacillus thuringiensis var. kurstaki (Btk). Btk is dispersed in large quantities as a slurry to control the gypsy moth, Lymantria dispar. Understanding whether personnel and equipment pick up residual contamination during sampling activities and transport it to other areas is critical for the formulation of appropriate response and recovery plans. While there is a growing body of literature surrounding the transmission of viral diseases via fomites, there is limited information on the transport of Bacillus species via this route. In 2008, LANL investigated whether field sampling activities conducted near sprayed areas, postspray, resulted in measurable cross-contamination of sampling personnel, equipment, vehicles, and hotel rooms. Viable Btk was detected in all sample types, indicating transport of the agent occurred via fomites. C1 [Omberg, Kristin M.] Los Alamos Natl Lab, Syst Engn & Integrat Grp, Deputy Div, Los Alamos, NM 87544 USA. [Simpson, Beverley] Los Alamos Med Ctr, Los Alamos, NM USA. [Veal, Lee Ann B.] US EPA, Ctr Radiol Emergency Response, Radiat Protect Div, Washington, DC 20460 USA. RP Omberg, KM (reprint author), Los Alamos Natl Lab, Syst Engn & Integrat Grp, Deputy Div, POB 1663,MS F607, Los Alamos, NM 87544 USA. EM komberg@lanl.gov RI Omberg, Kristin/I-5972-2013 NR 18 TC 4 Z9 4 U1 0 U2 2 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1538-7135 J9 BIOSECUR BIOTERROR JI Biosecur. Bioterror. PD SEP PY 2011 VL 9 IS 3 BP 288 EP 300 DI 10.1089/bsp.2010.0073 PG 13 WC Public, Environmental & Occupational Health; International Relations SC Public, Environmental & Occupational Health; International Relations GA 818PU UT WOS:000294767100014 PM 21882970 ER PT J AU Krauter, P Tucker, M AF Krauter, Paula Tucker, Mark TI A BIOLOGICAL DECONTAMINATION PROCESS FOR SMALL, PRIVATELY OWNED BUILDINGS SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE LA English DT Editorial Material AB An urban wide-area recovery and restoration effort following a large-scale biological release will require extensive resources and tax the capabilities of government authorities. Further, the number of private decontamination contractors available may not be sufficient to respond to the needs. These resource limitations could create the need for decontamination by the building owner/occupant. This article provides owners/occupants with a simple method to decontaminate a building or area following a wide-area release of Bacillus anthracis using liquid sporicidal decontamination materials, such as pH-amended bleach or activated peroxide; simple application devices; and high-efficiency particulate air-filtered vacuums. Owner/occupant decontamination would be recommended only after those charged with overseeing decontamination-the Unified Command/Incident Command-identify buildings and areas appropriate for owner/occupant decontamination based on modeling and environmental sampling and conduct health and safety training for cleanup workers. C1 [Krauter, Paula; Tucker, Mark] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Krauter, P (reprint author), Sandia Natl Labs, POB 969,MS 9406, Livermore, CA 94551 USA. EM pkraute@sandia.gov NR 25 TC 5 Z9 5 U1 0 U2 2 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1538-7135 J9 BIOSECUR BIOTERROR JI Biosecur. Bioterror. PD SEP PY 2011 VL 9 IS 3 BP 301 EP 309 DI 10.1089/bsp.2011.0025 PG 9 WC Public, Environmental & Occupational Health; International Relations SC Public, Environmental & Occupational Health; International Relations GA 818PU UT WOS:000294767100015 PM 21882971 ER PT J AU Lesperance, AM Stein, S Upton, JF Toomey, C AF Lesperance, Ann M. Stein, Steve Upton, Jaki F. Toomey, Chris TI CHALLENGES IN DISPOSING OF ANTHRAX WASTE SO BIOSECURITY AND BIOTERRORISM-BIODEFENSE STRATEGY PRACTICE AND SCIENCE LA English DT Editorial Material AB Disasters often create large amounts of waste that must be managed as part of both immediate response and long-term recovery. While many federal, state, and local agencies have debris management plans, these plans often do not address chemical, biological, and radiological contamination. The Interagency Biological Restoration Demonstration's (IBRD) purpose was to holistically assess all aspects of an anthrax incident and assist in the development of a plan for long-term recovery. In the case of wide-area anthrax contamination and the follow-on response and recovery activities, a significant amount of material would require decontamination and disposal. Accordingly, IBRD facilitated the development of debris management plans to address contaminated waste through a series of interviews and workshops with local, state, and federal representatives. The outcome of these discussions was the identification of 3 primary topical areas that must be addressed: planning, unresolved research questions, and resolving regulatory issues. C1 [Lesperance, Ann M.] Pacific NW Natl Lab, NW Reg Technol Ctr, Reg Programs, Seattle, WA 98109 USA. [Upton, Jaki F.; Toomey, Chris] Pacific NW Natl Lab, Global Secur Technol & Policy Grp, Seattle, WA 98109 USA. RP Lesperance, AM (reprint author), Pacific NW Natl Lab, NW Reg Technol Ctr, Reg Programs, 1100 Dexter Ave N,Suite 400, Seattle, WA 98109 USA. EM ann.lesperance@pnl.gov NR 4 TC 2 Z9 2 U1 1 U2 4 PU MARY ANN LIEBERT INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 1538-7135 J9 BIOSECUR BIOTERROR JI Biosecur. Bioterror. PD SEP PY 2011 VL 9 IS 3 BP 310 EP 314 DI 10.1089/bsp.2011.0033 PG 5 WC Public, Environmental & Occupational Health; International Relations SC Public, Environmental & Occupational Health; International Relations GA 818PU UT WOS:000294767100016 PM 21882972 ER PT J AU Raftery, P Keane, M O'Donnell, J AF Raftery, Paul Keane, Marcus O'Donnell, James TI Calibrating whole building energy models: An evidence-based methodology SO ENERGY AND BUILDINGS LA English DT Article DE Methodology; Calibration; Simulation; Whole building energy model; Version control; Retrofit ID SIMULATION PROGRAMS; CONSERVATION MEASURES; OFFICE BUILDINGS; PART II; PERFORMANCE; INFORMATION; CLIMATES; RP-1051; SYSTEM AB This paper reviews existing case studies and methods for calibrating whole building energy models to measured data. This research describes a systematic, evidence-based methodology for the calibration of these models. Under this methodology, parameter values in the final calibrated model reference the source of information used to make changes to the initial model. Thus, the final model is based solely on evidence. Version control software stores a complete record of the calibration process, and the evidence on which the final model is based. Future users can review the changes made throughout the calibration process along with the supporting evidence. In addition to the evidence-based methodology, this paper also describes a new zoning process that represents the real building more closely than the typical core and four perimeter zone approach. Though the methodology is intended to apply to detailed calibration studies with high resolution measured data, the primary aspects of the methodology (evidence-based approach, version control, and zone-typing) are independent of the available measured data. (C) 2011 Elsevier B.V. All rights reserved. C1 [Raftery, Paul; Keane, Marcus] Natl Univ Ireland, Informat Res Unit Sustainable Engn, Galway, Ireland. [O'Donnell, James] Lawrence Berkeley Natl Lab, Div Bldg Technol, Berkeley, CA 94720 USA. RP Raftery, P (reprint author), Natl Univ Ireland, Informat Res Unit Sustainable Engn, Galway, Ireland. EM research@paulraftery.com; marcus.keane@nuigalway.ie; jtodonnell@lbl.gov FU Irish Research Council for Science, Engineering and Technology (IRCSET) Embark Initiative; Fulbright Commission in Ireland FX This work was funded by the Irish Research Council for Science, Engineering and Technology (IRCSET) Embark Initiative and the Fulbright Commission in Ireland. NR 43 TC 71 Z9 72 U1 2 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 J9 ENERG BUILDINGS JI Energy Build. PD SEP PY 2011 VL 43 IS 9 BP 2356 EP 2364 DI 10.1016/j.enbuild.2011.05.020 PG 9 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA 819NZ UT WOS:000294834900035 ER PT J AU Liu, HH Mukhopadhyay, S Spycher, N Kennedy, BM AF Liu, Hui-Hai Mukhopadhyay, Sumit Spycher, Nicolas Kennedy, Burton M. TI Analytical solutions of tracer transport in fractured rock associated with precipitation-dissolution reactions SO HYDROGEOLOGY JOURNAL LA English DT Article DE Radioactive isotopes; Fractured rocks; Precipitation-dissolution modeling; Matrix diffusion; Solute transport ID CONTAMINANT TRANSPORT; POROUS-MEDIA; DIFFUSION; MATRIX AB Precipitation-dissolution reactions are important for a number of applications such as isotopic tracer transport in the subsurface. Analytical solutions have been developed for tracer transport in both single-fracture and multiple-fracture systems associated with these reactions under transient and steady-state transport conditions. These solutions also take into account advective transport in fractures and molecular diffusion in the rock matrix. For studying distributions of disturbed tracer concentration (the difference between actual concentration and its equilibrium value), effects of precipitation-dissolution reactions are mathematically equivalent to a "decay" process with a decay constant proportional to the corresponding bulk reaction rate. This important feature significantly simplifies the derivation procedure by taking advantage of the existence of analytical solutions for tracer transport associated with radioactive decay in fractured rock. It is also useful for interpreting tracer breakthrough curves, because the impact of a decay process is relatively easy to analyze. Several illustrative examples are presented, which show that the results are sensitive to fracture spacing, matrix diffusion coefficient (fracture surface area), and bulk reaction rate (or "decay" constant), indicating that the relevant flow and transport parameters may be estimated by analyzing tracer signals. C1 [Liu, Hui-Hai; Mukhopadhyay, Sumit; Spycher, Nicolas; Kennedy, Burton M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Liu, HH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM hhliu@lbl.gov RI Spycher, Nicolas/E-6899-2010 FU American Recovery and Reinvestment Act (ARRA), through the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), Office of Technology Development, of the US Department of Energy [DE-AC02-05CH11231] FX The original version of the manuscript was reviewed by Drs. Dan Hawkes and Dmitriy Silin at LBNL. We also appreciate the constructive comments from Prof. Maria-Theresia Schafmeister, Dr. Jerry Fairley and two anonymous reviewers. This work was supported by the American Recovery and Reinvestment Act (ARRA), through the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), Office of Technology Development, Geothermal Technologies Program, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 11 TC 7 Z9 7 U1 0 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1431-2174 J9 HYDROGEOL J JI Hydrogeol. J. PD SEP PY 2011 VL 19 IS 6 BP 1151 EP 1160 DI 10.1007/s10040-011-0749-7 PG 10 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 817WK UT WOS:000294707100004 ER PT J AU Landon, MK Green, CT Belitz, K Singleton, MJ Esser, BK AF Landon, Matthew K. Green, Christopher T. Belitz, Kenneth Singleton, Michael J. Esser, Bradley K. TI Relations of hydrogeologic factors, groundwater reduction-oxidation conditions, and temporal and spatial distributions of nitrate, Central-Eastside San Joaquin Valley, California, USA SO HYDROGEOLOGY JOURNAL LA English DT Article DE Groundwater monitoring; Hydrochemistry; Groundwater protection; Nitrate; USA ID SHALLOW GROUNDWATER; UNITED-STATES; WATER-QUALITY; NATURAL ATTENUATION; AGRICULTURAL AREAS; REDOX CONDITIONS; SATURATED ZONE; NOBLE-GASES; DENITRIFICATION; AQUIFER AB In a 2,700-km(2) area in the eastern San Joaquin Valley, California (USA), data from multiple sources were used to determine interrelations among hydrogeologic factors, reduction-oxidation (redox) conditions, and temporal and spatial distributions of nitrate (NO3), a widely detected groundwater contaminant. Groundwater is predominantly modern, or mixtures of modern water, with detectable NO3 and oxic redox conditions, but some zones have anoxic or mixed redox conditions. Anoxic conditions were associated with long residence times that occurred near the valley trough and in areas of historical groundwater discharge with shallow depth to water. Anoxic conditions also were associated with interactions of shallow, modern groundwater with soils. NO3 concentrations were significantly lower in anoxic than oxic or mixed redox groundwater, primarily because residence times of anoxic waters exceed the duration of increased pumping and fertilizer use associated with modern agriculture. Effects of redox reactions on NO3 concentrations were relatively minor. Dissolved N-2 gas data indicated that denitrification has eliminated > 5 mg/L NO3-N in about 10% of 39 wells. Increasing NO3 concentrations over time were slightly less prevalent in anoxic than oxic or mixed redox groundwater. Spatial and temporal trends of NO3 are primarily controlled by water and NO3 fluxes of modern land use. C1 [Landon, Matthew K.; Belitz, Kenneth] US Geol Survey, San Diego, CA 92101 USA. [Green, Christopher T.] US Geol Survey, Menlo Pk, CA 94025 USA. [Singleton, Michael J.; Esser, Bradley K.] Lawrence Livermore Natl Lab, Environm Radiochem Grp, Livermore, CA 94550 USA. RP Landon, MK (reprint author), US Geol Survey, 4165 Spruance Rd,Suite 200, San Diego, CA 92101 USA. EM landon@usgs.gov RI Esser, Bradley/G-4283-2010 OI Esser, Bradley/0000-0002-3219-4298 FU US Geological Survey; California Groundwater Ambient Monitoring and Assessment Program FX This study was funded by the US Geological Survey National Water Quality Assessment (NAWQA) Program study of groundwater trends, and by the California Groundwater Ambient Monitoring and Assessment Program. We thank the large number of people involved in collecting the data for these programs as well as the California Department of Public Health for providing access to data utilized in this study. We thank the NAWQA trends team for ideas and suggestions and Barbara Dawson and Claudia Faunt for data and analysis that assisted with this study. This manuscript benefited from reviews by Frank Chapelle, Steve Phillips, and two anonymous reviewers. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government. NR 115 TC 20 Z9 21 U1 6 U2 34 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1431-2174 EI 1435-0157 J9 HYDROGEOL J JI Hydrogeol. J. PD SEP PY 2011 VL 19 IS 6 BP 1203 EP 1224 DI 10.1007/s10040-011-0750-1 PG 22 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 817WK UT WOS:000294707100009 ER PT J AU Dickson, A Maienschein-Cline, M Tovo-Dwyer, A Hammond, JR Dinner, AR AF Dickson, Alex Maienschein-Cline, Mark Tovo-Dwyer, Allison Hammond, Jeff R. Dinner, Aaron R. TI Flow-Dependent Unfolding and Refolding of an RNA by Nonequilibrium Umbrella Sampling SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID SINGLE-MOLECULE EXPERIMENTS; RARE EVENTS; DYNAMICS; SIMULATION; MODEL; ENSEMBLE AB Nonequilibrium experiments of single biomolecules such as force-induced unfolding reveal details about a few degrees of freedom of a complex system. Molecular dynamics simulations can provide complementary information, but exploration of the space of possible configurations is often hindered by large barriers in phase space that separate metastable regions. To solve this problem, enhanced sampling methods have been developed that divide a phase space into regions and integrate trajectory segments in each region. These methods boost the probability of passage over barriers and facilitate parallelization since integration of the trajectory segments does not require communication, aside from their initialization and termination. Here, we present a parallel version of an enhanced sampling method suitable for systems driven far from equilibrium: nonequilibrium umbrella sampling (NEUS). We apply this method to a coarse-grained model of a 262-nucleotide RNA molecule that unfolds and refolds in an explicit flow field modeled with stochastic rotation dynamics. Using NEUS, we are able to observe extremely rare unfolding events that have mean first passage times as long as 45 s (1.1 x 10(15) dynamics steps). We examine the unfolding process for a range of flow : rates of the medium, and we describe two competing pathways in which different intramolecular contacts are broken. C1 [Dickson, Alex; Maienschein-Cline, Mark; Tovo-Dwyer, Allison; Dinner, Aaron R.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Hammond, Jeff R.] Argonne Natl Lab, Leadership Comp Facil, Argonne, IL 60439 USA. RP Dinner, AR (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM dinner@uchicago.edu RI Hammond, Jeff/G-8607-2013 OI Hammond, Jeff/0000-0003-3181-8190 FU National Science Foundation [MCB-0547854]; Argonne-University of Chicago; Natural Sciences and Engineering Research Council; Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357]; NIH FX We would like to thank Nicholas Guttenberg and Jonathan Weare for useful discussions on the algorithm and Glenna Smith and Norbert Scherer for help with the RNA model. We would also like to thank Lorenzo Pesce for help running NEUS on the Beagle Cray XE6 Supercomputer. This work was supported by National Science Foundation grant no. MCB-0547854, an Argonne-University of Chicago Strategic Collaborative Initiative Award, and the Natural Sciences and Engineering Research Council. Most of the calculations were run on "Fusion," a 320-node computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. Scaling data were obtained for Intrepid, a Blue Gene/P supercomputer at the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357, and for Beagle, a Cray XE6 supercomputer, which is supported in part by NIH through resources provided by the Computation Institute, University of Chicago and Argonne National Laboratory, under grant S10 RR029030-01. NR 38 TC 19 Z9 19 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD SEP PY 2011 VL 7 IS 9 BP 2710 EP 2720 DI 10.1021/ct200371n PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 818XQ UT WOS:000294790400008 PM 26605464 ER PT J AU Zhang, FX Lang, M Zhang, JM Ewing, RC Nyman, M AF Zhang, F. X. Lang, M. Zhang, J. M. Ewing, R. C. Nyman, M. TI Structural changes of (K,Gd)(2)Ta2O7 pyrochlore at high pressure SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Tantalate pyrochlore; High pressure; XRD; Raman ID GADOLINIUM ZIRCONATE; NUCLEAR-WASTE; PLUTONIUM; OXIDES; IMMOBILIZATION; A(2)B(2)O(7); IRRADIATION; CERAMICS; DISORDER; SYSTEM AB The structure of K-bearing tantalate pyrochlore (K2-xGdx)Ta2O6+x(x similar to 0.4) was studied at high pressures using in situ X-ray diffraction and Raman scattering methods. Experimental results indicated that (K2-xGdx)Ta2O6+x(x similar to 0.4) retains the pyrochlore structure up to 40 GPa, but partial amorphization occurred at pressures above 23 GPa. The amorphous phase was also confirmed in the quenched sample by means of transmission electron microscopy. The tantalate pyrochlore lattice is more stable than pyrochlore compounds in other systems, such as rare earth titanates, zirconates and stannates. The structural stability of pyrochlore tantalate may be mainly related to the size ratio of cations on the 16d and 16c sites in the lattice. Published by Elsevier Inc. C1 [Zhang, F. X.; Lang, M.; Zhang, J. M.; Ewing, R. C.] Univ Michigan, Dept Geol Sci, Ann Arbor, MI 48109 USA. [Nyman, M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Zhang, FX (reprint author), Univ Michigan, Dept Geol Sci, 1006 CC Little Bldg, Ann Arbor, MI 48109 USA. EM zhangfx@umich.edu; rodewing@umich.edu RI Lang, Maik/F-9939-2012; Zhang, Jiaming/H-5591-2012; Zhang, Fuxiang/P-7365-2015 OI Zhang, Fuxiang/0000-0003-1298-9795 FU Materials Science of Actinides, an Energy Frontier Research Center; Office of Basic Energy Sciences [DE-SC0001089]; NSF [COMPRES EAR01-35554]; US-DOE [DE-AC02-10886] FX This work was supported as part of the Materials Science of Actinides, an Energy Frontier Research Center, funded by the Office of Basic Energy Sciences under Award Number DE-SC0001089.The use of X-ray beam line at X17C station of NSLS is supported by NSF COMPRES EAR01-35554 and by US-DOE contract DE-AC02-10886. NR 37 TC 3 Z9 3 U1 1 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD SEP PY 2011 VL 184 IS 9 BP 2329 EP 2332 DI 10.1016/j.jssc.2011.06.040 PG 4 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 819OH UT WOS:000294835700003 ER PT J AU Gateshki, M Suescun, L Kolesnik, S Mais, J Dabrowski, B AF Gateshki, M. Suescun, L. Kolesnik, S. Mais, J. Dabrowski, B. TI Structural and magnetic study of RFe0.5V0.5O3 (R=Y, Eu, Nd, La) perovskite compounds SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Perovskite; Magnetic structure; Rietveld analysis; Neutron powder diffraction; Antiferromagnetic; Cation ordering ID NEUTRON-DIFFRACTION; LAVO3 AB B-site disordered RFe0.5V0.5O3 compounds, with R=La, Nd, Eu and Y, have been prepared by solid-state reaction technique and their structures and magnetic properties have been investigated through X-ray powder diffraction, time-of-flight neutron powder diffraction and magnetization measurements at temperatures ranging from 5 to 700 K. The four compounds can be described as distorted perovskites with space group symmetry Pbnm and a(+)b(-)b(-) tilt system. The studied compounds also show antiferromagnetic ordering with Neel temperatures of 299, 304, 304, and 335 K respectively. The magnetic structures of R=La, Nd and Y compounds were determined from the neutron powder diffraction as G, with observed magnetic moments of 2.55, 2.54 and 2.69 mu(B) at 30, 40 and 40 K. respectively. (C) 2011 Elsevier Inc. All rights reserved. C1 [Suescun, L.] Univ Republica, Fac Quim, Cryssmat Lab Detema, Montevideo, Uruguay. [Gateshki, M.] Australian Nucl Sci & Technol Org, Bragg Inst, Menai, NSW 2234, Australia. [Kolesnik, S.; Mais, J.; Dabrowski, B.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Dabrowski, B.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Suescun, L (reprint author), Univ Republica, Fac Quim, Cryssmat Lab Detema, POB 1157, Montevideo, Uruguay. EM leopoldo@fq.edu.uy OI Suescun, Leopoldo/0000-0002-7606-8074 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; [NSF-DMR-0706610] FX Work at NIU was supported by the NSF-DMR-0706610 (B.D., S.K., J.M.). Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357 (B.D.). L.S. is indebted to PEDECIBA, CSIC and ANII (Uruguayan organizations). NR 22 TC 1 Z9 1 U1 1 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD SEP PY 2011 VL 184 IS 9 BP 2374 EP 2380 DI 10.1016/j.jssc.2011.06.025 PG 7 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 819OH UT WOS:000294835700010 ER PT J AU Hilgart, MC Sanishvili, R Ogata, CM Becker, M Venugopalan, N Stepanov, S Makarov, O Smith, JL Fischetti, RF AF Hilgart, Mark C. Sanishvili, Ruslan Ogata, Craig M. Becker, Michael Venugopalan, Nagarajan Stepanov, Sergey Makarov, Oleg Smith, Janet L. Fischetti, Robert F. TI Automated sample-scanning methods for radiation damage mitigation and diffraction-based centering of macromolecular crystals SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE macromolecular crystallography; beamline automation; data acquisition; high-throughput crystallography; crystal centering; radiation damage; rastering ID PROTEIN-COUPLED RECEPTOR; A(2A) ADENOSINE RECEPTOR; MEMBRANE-PROTEINS; CONTROL-SYSTEM; BEAM; CRYSTALLOGRAPHY; COMPLEX; ADRENOCEPTOR; ANTAGONIST; BEAMLINES AB Automated scanning capabilities have been added to the data acquisition software, JBluIce-EPICS, at the National Institute of General Medical Sciences and the National Cancer Institute Collaborative Access Team (GM/CA CAT) at the Advanced Photon Source. A 'raster' feature enables sample centering via diffraction scanning over two-dimensional grids of simple rectangular or complex polygonal shape. The feature is used to locate crystals that are optically invisible owing to their small size or are visually obfuscated owing to properties of the sample mount. The raster feature is also used to identify the best-diffracting regions of large inhomogeneous crystals. Low-dose diffraction images taken at grid positions are automatically processed in real time to provide a quick quality ranking of potential data-collection sites. A 'vector collect' feature mitigates the effects of radiation damage by scanning the sample along a user-defined three-dimensional vector during data collection to maximize the use of the crystal volume and the quality of the collected data. These features are integrated into the JBluIce-EPICS data acquisition software developed at GM/CA CAT where they are used in combination with a robust mini-beam of rapidly changeable diameter from 5 mm to 20 mm. The powerful software-hardware combination is being applied to challenging problems in structural biology. C1 [Hilgart, Mark C.; Sanishvili, Ruslan; Ogata, Craig M.; Becker, Michael; Venugopalan, Nagarajan; Stepanov, Sergey; Makarov, Oleg; Fischetti, Robert F.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Smith, Janet L.] Univ Michigan, Dept Biol Chem, Inst Life Sci, Ann Arbor, MI 48109 USA. RP Hilgart, MC (reprint author), Argonne Natl Lab, Biosci Div, 9700 S Cass Ave,Bldg 436D, Argonne, IL 60439 USA. EM mhilgart@anl.gov FU National Cancer Institute [Y1-CO-1020]; National Institute of General Medical Science of the NIH [Y1-GM-1104]; US Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357] FX We thank GM/CA CAT users and especially Peter Kuhn and colleagues (The Scripps Research Institute) for helpful discussions and feedback. GM/CA CAT is supported by the National Cancer Institute (Y1-CO-1020) and the National Institute of General Medical Science (Y1-GM-1104) of the NIH. Use of the Advanced Photon Source was supported by the US Department of Energy, Basic Energy Sciences, Office of Science, under contract No. DE-AC02-06CH11357. NR 28 TC 35 Z9 35 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2011 VL 18 BP 717 EP 722 DI 10.1107/S0909049511029918 PN 5 PG 6 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 819JQ UT WOS:000294821600005 PM 21862850 ER PT J AU Meirer, F Cabana, J Liu, YJ Mehta, A Andrews, JC Pianetta, P AF Meirer, Florian Cabana, Jordi Liu, Yijin Mehta, Apurva Andrews, Joy C. Pianetta, Piero TI Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray microscopy; synchrotron X-ray imaging; Li-ion battery; XANES ID LITHIUM-ION BATTERIES; ELECTRON TOMOGRAPHY; PERFORMANCE; SPECTROMICROSCOPY; RESOLUTION AB The ability to probe morphology and phase distribution in complex systems at multiple length scales unravels the interplay of nano-and micrometer-scale factors at the origin of macroscopic behavior. While different electron-and X-ray-based imaging techniques can be combined with spectroscopy at high resolutions, owing to experimental time limitations the resulting fields of view are too small to be representative of a composite sample. Here a new X-ray imaging set-up is proposed, combining full-field transmission X-ray microscopy (TXM) with X-ray absorption near-edge structure (XANES) spectroscopy to follow two-dimensional and three-dimensional morphological and chemical changes in large volumes at high resolution (tens of nanometers). TXM XANES imaging offers chemical speciation at the nanoscale in thick samples (> 20 mu m) with minimal preparation requirements. Further, its high throughput allows the analysis of large areas (up to millimeters) in minutes to a few hours. Proof of concept is provided using battery electrodes, although its versatility will lead to impact in a number of diverse research fields. C1 [Liu, Yijin; Mehta, Apurva; Andrews, Joy C.; Pianetta, Piero] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Meirer, Florian] Fdn Bruno Kessler, I-38050 Povo, Italy. [Cabana, Jordi; Pianetta, Piero] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Andrews, JC (reprint author), SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. EM jandrews@slac.stanford.edu RI Cabana, Jordi/G-6548-2012; Liu, Yijin/O-2640-2013; Meirer, Florian/H-7642-2016 OI Cabana, Jordi/0000-0002-2353-5986; Liu, Yijin/0000-0002-8417-2488; Meirer, Florian/0000-0001-5581-5790 FU Assistant Secretary for Energy Efficiency and Renewable Energy (Office of Vehicle Technologies of the US Department of Energy) [DE-AC02-05CH11231]; US Department of Energy (Office of Science, Office of Basic Energy Sciences) [DE-SC0001294]; National Institutes of Health (NIH)/National Institute of Biomedical Imaging and Bioengineering (NIBIB) [5R01EB004321]; Department of Energy, Office of Basic Energy Sciences FX We acknowledge Martin George and Sean Brennan of SSRL, and Jeff Gelb and others from Xradia for their assistance interfacing microscope software with optics motors for XANES imaging. JC acknowledges funding support for the 2D work on full electrodes by the Assistant Secretary for Energy Efficiency and Renewable Energy (Office of Vehicle Technologies of the US Department of Energy) under contract number DE-AC02-05CH11231, and for the 3D XANES microscopy as part of the Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the US Department of Energy (Office of Science, Office of Basic Energy Sciences) under award number DE-SC0001294. He is also thankful to Dr Marca M. Doeff (LBNL) for providing laboratory access. The transmission X-ray microscope at SSRL has been supported by the National Institutes of Health (NIH)/National Institute of Biomedical Imaging and Bioengineering (NIBIB) grant number 5R01EB004321. SSRL is supported by the Department of Energy, Office of Basic Energy Sciences. NR 31 TC 82 Z9 83 U1 2 U2 73 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2011 VL 18 BP 773 EP 781 DI 10.1107/S0909049511019364 PN 5 PG 9 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 819JQ UT WOS:000294821600014 PM 21862859 ER PT J AU Sergueev, I Wille, HC Hermann, RP Bessas, D Shvyd'ko, YV Zajac, M Ruffer, R AF Sergueev, I. Wille, H. -C. Hermann, R. P. Bessas, D. Shvyd'ko, Yu V. Zajac, M. Rueffer, R. TI Milli-electronvolt monochromatization of hard X-rays with a sapphire backscattering monochromator SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray optics; monochromator; energy resolution; sapphire; backscattering; inelastic scattering ID NUCLEAR RESONANT SCATTERING; MOSSBAUER WAVELENGTH STANDARD; DENSITY-OF-STATES; SYNCHROTRON-RADIATION; BRAGG BACKSCATTERING; ENERGY RESOLUTION; EU-151; SPECTROSCOPY; SM-149; DY-161 AB A sapphire backscattering monochromator with 1.1 (1) meV bandwidth for hard X-rays (20-40 keV) is reported. The optical quality of several sapphire crystals has been studied and the best crystal was chosen to work as the monochromator. The small energy bandwidth has been obtained by decreasing the crystal volume impinged upon by the beam and by choosing the crystal part with the best quality. The monochromator was tested at the energies of the nuclear resonances of (121)Sb at 37.13 keV, (125)Te at 35.49 keV, (119)Sn at 23.88 keV, (149)Sm at 22.50 keV and (151)Eu at 21.54 keV. For each energy, specific reflections with sapphire temperatures in the 150-300 K region were chosen. Applications to nuclear inelastic scattering with these isotopes are demonstrated. C1 [Sergueev, I.; Zajac, M.; Rueffer, R.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Wille, H. -C.] DESY, D-22607 Hamburg, Germany. [Hermann, R. P.; Bessas, D.] Forschungszentrum Julich, Julich Ctr Neutron Sci JCNS, D-52425 Julich, Germany. [Hermann, R. P.; Bessas, D.] Forschungszentrum Julich, Peter Grunberg Inst PGI, JARA FIT, D-52425 Julich, Germany. [Hermann, R. P.; Bessas, D.] Univ Liege, Fac Sci, B-4000 Liege, Belgium. [Shvyd'ko, Yu V.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Zajac, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, PL-30059 Krakow, Poland. RP Sergueev, I (reprint author), European Synchrotron Radiat Facil, BP 220, F-38043 Grenoble, France. EM sergueev@esrf.fr RI Wille, Hans-Christian/C-3881-2013; Hermann, Raphael/F-6257-2013; Bessas, Dimitrios/I-5262-2013; Sergueev, Ilya/N-6591-2013 OI Hermann, Raphael/0000-0002-6138-5624; Bessas, Dimitrios/0000-0003-0240-2540; Sergueev, Ilya/0000-0002-7614-2238 FU Helmholtz Gemeinschaft Deutscher Forschungzentren for the Helmholtz University Young Investigator Group Lattice Dynamic in Emerging Functional Materials; DFG [SPP1386] FX The authors are very grateful to A. I. Chumakov for support during the experiment and for helpful discussions. RPH and DB acknowledge support from the Helmholtz Gemeinschaft Deutscher Forschungzentren for the Helmholtz University Young Investigator Group Lattice Dynamic in Emerging Functional Materials and from the DFG priority program SPP1386 'Nanostructured Thermoelectrics'. NR 44 TC 25 Z9 25 U1 2 U2 17 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2011 VL 18 BP 802 EP 810 DI 10.1107/S090904951102485X PN 5 PG 9 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 819JQ UT WOS:000294821600017 PM 21862862 ER PT J AU Kastengren, A Powell, CF Dufresne, EM Walko, DA AF Kastengren, Alan Powell, Christopher F. Dufresne, Eric M. Walko, Donald A. TI Application of X-ray fluorescence to turbulent mixing SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE fluorescence spectroscopy; X-ray absorption; turbulent flow ID RADIOGRAPHY; JETS; BEHAVIOR; DENSITY; SPRAYS AB Combined measurements of X-ray absorption and fluorescence have been performed in jets of pure and diluted argon gas to demonstrate the feasibility of using X-ray fluorescence to study turbulent mixing. Measurements show a strong correspondence between the absorption and fluorescence measurements for high argon concentration. For lower argon concentration, fluorescence provides a much more robust measurement than absorption. The measurements agree well with the accepted behavior of turbulent jets. C1 [Kastengren, Alan; Powell, Christopher F.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Dufresne, Eric M.; Walko, Donald A.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Kastengren, A (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM akastengren@anl.gov FU US Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX This research was performed at the 7BM beamline of the Advanced Photon Source, Argonne National Laboratory. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ('Argonne'). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 12 TC 8 Z9 8 U1 0 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2011 VL 18 BP 811 EP 815 DI 10.1107/S0909049511024435 PN 5 PG 5 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 819JQ UT WOS:000294821600018 PM 21862863 ER PT J AU Shibata, T Zyryanov, VN Chattopadhyay, S AF Shibata, Tomohiro Zyryanov, Vladislav N. Chattopadhyay, Soma TI Design of an anaerobic sample chamber for fluorescence measurements compatible with the Lytle detector SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE XAFS; instrumentation AB A sample chamber has been developed that is compatible with the commercially available Lytle ion chamber with soller slits. The key features are (i) the sample position can be shifted vertically without changing the geometry with respect to the soller slits and ion chamber, (ii) the gas-tight structure makes it possible for experiments to work with samples that require anaerobic conditions. C1 [Shibata, Tomohiro; Zyryanov, Vladislav N.; Chattopadhyay, Soma] IIT, BCPS Dept, Chicago, IL 60616 USA. [Shibata, Tomohiro; Zyryanov, Vladislav N.; Chattopadhyay, Soma] Argonne Natl Lab, Adv Photon Source, MRCAT, Argonne, IL 60439 USA. RP Shibata, T (reprint author), IIT, BCPS Dept, Chicago, IL 60616 USA. EM shibata@iit.edu FU DOE FX The authors acknowledge Dr Carlo Segre for encouragement of the project and Thomas Torres for machining the parts. MRCAT is supported by DOE and member institutions. NR 1 TC 0 Z9 0 U1 1 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD SEP PY 2011 VL 18 BP 816 EP 817 DI 10.1107/S0909049511027956 PN 5 PG 2 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 819JQ UT WOS:000294821600019 PM 21862864 ER PT J AU Cai, XM Hejazi, MI Wang, D AF Cai, Ximing Hejazi, Mohamad I. Wang, Dingbao TI Value of Probabilistic Weather Forecasts: Assessment by Real-Time Optimization of Irrigation Scheduling SO JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE LA English DT Article DE Irrigation scheduling; Weather forecast; Optimization; Real-time modeling ID SUPPLEMENTAL IRRIGATION; MANAGEMENT; FARMERS; CLIMATE; MODEL; RISK AB This paper presents a modeling framework for real-time decision support for irrigation scheduling using the National Oceanic and Atmospheric Administration's (NOAA's) probabilistic rainfall forecasts. The forecasts and their probability distributions are incorporated into a simulation-optimization modeling framework. In this study, modeling irrigation is determined by a stochastic optimization program based on the simulated soil moisture and crop water-stress status and the forecasted rainfall for the next 1-7 days. The modeling framework is applied to irrigated corn in Mason County, Illinois. It is found that there is ample potential to improve current farmers' practices by simply using the proposed simulation-optimization framework, which uses the present soil moisture and crop evapotranspiration information even without any forecasts. It is found that the values of the forecasts vary across dry, normal, and wet years. More significant economic gains are found in normal and wet years than in dry years under the various forecast horizons. To mitigate drought effect on crop yield through irrigation, medium- or long-term climate predictions likely play a more important role than short-term forecasts. NOAA's imperfect 1-week forecast is still valuable in terms of both profit gain and water saving. Compared with the no-rain forecast case, the short-term imperfect forecasts could lead to additional 2.4-8.5% gain in profit and 11.0-26.9% water saving. However, the performance of the imperfect forecast is only slightly better than the ensemble weather forecast based on historical data and slightly inferior to the perfect forecast. It seems that the 1-week forecast horizon is too limited to evaluate the role of the various forecast scenarios for irrigation scheduling, which is actually a seasonal decision issue. For irrigation scheduling, both the forecast quality and the length of forecast time horizon matter. Thus, longer forecasts might be necessary to evaluate the role of forecasts for irrigation scheduling in a more effective way. DOI: 10.1061/(ASCE)WR.1943-5452.0000126. (C) 2011 American Society of Civil Engineers. C1 [Cai, Ximing; Hejazi, Mohamad I.; Wang, Dingbao] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Hejazi, Mohamad I.] Univ Maryland, Joint Global Change Res Inst, Pacific NW Natl Lab, College Pk, MD 20740 USA. [Wang, Dingbao] Univ Cent Florida, Dept Civil Environm & Construct Engn, Orlando, FL 32816 USA. RP Cai, XM (reprint author), Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. EM xmcai@illinois.edu RI Wang, Dingbao/B-6948-2012 OI Wang, Dingbao/0000-0003-4822-7485 FU National Aeronautics and Space Administration (NASA) [NNX08AL94G]; National Science Foundation (NSF) [CMMI-0825654] FX The authors are grateful to two anonymous reviewers, especially for the detailed, insightful comments and suggestions from one reviewer, which have led to considerable improvement to the early version of the manuscript. This study was supported by the National Aeronautics and Space Administration (NASA) grant NNX08AL94G and the National Science Foundation (NSF) grant CMMI-0825654. NR 21 TC 8 Z9 9 U1 4 U2 26 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9496 J9 J WATER RES PL-ASCE JI J. Water Resour. Plan. Manage.-ASCE PD SEP-OCT PY 2011 VL 137 IS 5 BP 391 EP 403 DI 10.1061/(ASCE)WR.1943-5452.0000126 PG 13 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA 818WR UT WOS:000294787100002 ER PT J AU Trujillo, KA Hines, WC Vargas, KM Jones, AC Joste, NE Bisoffi, M Griffith, JK AF Trujillo, Kristina A. Hines, William C. Vargas, Keith M. Jones, Anna C. Joste, Nancy E. Bisoffi, Marco Griffith, Jeffrey K. TI Breast Field Cancerization: Isolation and Comparison of Telomerase-Expressing Cells in Tumor and Tumor Adjacent, Histologically Normal Breast Tissue SO MOLECULAR CANCER RESEARCH LA English DT Article ID EPITHELIAL-CELLS; SHORTENING OCCURS; CATALYTIC SUBUNIT; CANCER-CELLS; PROMOTER; GENE; TRANSFORMATION; ABNORMALITIES AB Telomerase stabilizes chromosomes by maintaining telomere length, immortalizes mammalian cells, and is expressed in more than 90% of human tumors. However, the expression of human telomerase reverse transcriptase (hTERT) is not restricted to tumor cells. We have previously shown that a subpopulation of human mammary epithelial cells (HMEC) in tumor-adjacent, histologically normal (TAHN) breast tissues expresses hTERT mRNA at levels comparable with levels in breast tumors. In the current study, we first validated a reporter for measuring levels of hTERT promoter activity in early-passage HMECs and then used this reporter to compare hTERT promoter activity in HMECs derived from tumor and paired TAHN tissues 1, 3, and 5 cm from the tumor (TAHN-1, TAHN-3, and TAHN-5, respectively). Cell sorting, quantitative real-time PCR, and microarray analyses showed that the 10% of HMECs with the highest hTERT promoter activity in both tumor and TAHN-1 tissues contain more than 95% of hTERT mRNA and overexpress many genes involved in cell cycle and mitosis. The percentage of HMECs within this subpopulation showing high hTERT promoter activity was significantly reduced or absent in TAHN-3 and TAHN-5 tissues. We conclude that the field of normal tissue proximal to the breast tumors contains a population of HMECs similar in hTERT expression levels and in gene expression to the HMECs within the tumor mass and that this population is significantly reduced in tissues more distal to the tumor. Mol Cancer Res; 9(9); 1209-21. (C) 2011 AACR. C1 [Griffith, Jeffrey K.] Univ New Mexico, Sch Med, Dept Biochem & Mol Biol, Albuquerque, NM 87131 USA. [Joste, Nancy E.] Univ New Mexico, Dept Pathol, Albuquerque, NM 87131 USA. [Hines, William C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Griffith, JK (reprint author), Univ New Mexico, Sch Med, Dept Biochem & Mol Biol, MSC08 4670, Albuquerque, NM 87131 USA. EM jkgriffith@salud.unm.edu FU American Cancer Society [PF-08-022-01]; DOD BCRP DAMD [17-02-1-0514]; NCRR [RR0164880]; NCI [P30CA118110]; University of New Mexico Health Sciences Center; University of New Mexico Cancer Center FX The study was supported by grants from American Cancer Society PF-08-022-01, DOD BCRP DAMD 17-02-1-0514, NCRR RR0164880, and NCI P30CA118110. The shared resources are supported by the University of New Mexico Health Sciences Center and the University of New Mexico Cancer Center NR 24 TC 11 Z9 11 U1 1 U2 2 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1541-7786 J9 MOL CANCER RES JI Mol. Cancer Res. PD SEP PY 2011 VL 9 IS 9 BP 1209 EP 1221 DI 10.1158/1541-7786.MCR-10-0424 PG 13 WC Oncology; Cell Biology SC Oncology; Cell Biology GA 820FM UT WOS:000294891000005 PM 21775421 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharyaa, BS Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, N Alessandriaa, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andeen, T Anders, CF Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, P Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, J Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, T Baker, OK Baker, MD Baker, S Pedrosa, FBD Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, P Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bartsch, V Bates, RL Batkovaa, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, H Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagambaa, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benedict, BH Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, S Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bolnet, NM Bona, M Bondarenko, VG Boonekamp, M Boorman, G Booth, N Booth, P Bordoni, S Borer, C Borisov, A Borissov, G Borjanovica, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Brett, ND Britton, D Brochu, M Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brown, H Brubaker, E de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Buis, EJ Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camard, A Camarri, P Cambiaghi, M Cameron, D Cammin, J Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprinia, M Capriotti, D Capua, M Caputo, R Caramarcua, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Carpentieri, C Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, R Cattai, A Cattani, G Caughron, S Cauz, D Cavallari, A Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Cazzato, A Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, W Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, L Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, A Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, C Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, G Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Comune, G Muno, PC Coniavitis, E Conidi, MC Consonni, M Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Cuneoa, S Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Mello, ADG Da Silvaa, PVM Da Via, C Dabrowski, W Dahlhoff, A Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dankers, R Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, M Davison, AR Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S de Graat, J De Groot, N de Jong, P De la Taille, C De la Torre, H De Lotto, B De Mora, L De Nooij, L Branco, MD De Pedis, D de Saintignon, P De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Dedovich, DV Degenhardt, J Dehchar, M Deile, M Del Papaa, C Del Peso, J Del Prete, T Dell' Acqua, A Asta, LD Della Pietra, M della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaouid, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietl, H Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Dogan, OB Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Drohan, JG Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimic, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Erikssona, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falcianoa, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fasching, D Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, I Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flammer, J Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fohlisch, F Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, M Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, L Gay, C Gaycken, G Gayde, JC Gazis, EN Ged, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gieraltowski, GF Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, K Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Goldin, D Golling, T Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, I Gouanere, M Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griesmayer, E Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Gris, PLY Grishkevich, YV Grivaz, JF Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Gruwe, M Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamal, P Hamilton, A Hamilton, S Hana, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, CJ Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heldmann, M Heller, M Hellman, S Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmes, A Holmgren, SO Holy, T Holzbauer, JL Homma, Y van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodicea, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istina, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Plante, IJL Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Ju, X Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Kazi, SI Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Khakzad, M Khalil-Zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kilvington, G Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Koblitz, B Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komaragiri, JR Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasel, O Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvasnicka, O Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lankford, AJ Lanni, F Lantzsch, K LapinO, VV Laplace, S Lapoire, C Laporte, F Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Lau, W Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Lebedev, A Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Lellouch, J Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lu, L Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Martins, PJM Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Mass, M Massa, I Massaro, G Massol, N Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzantia, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikulec, B Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohn, B Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Moneta, L Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morais, A Morange, N Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morone, MC Morozov, SV Morris, JD Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinicb, M Muellera, F Mueller, J Mueller, K Mulller, TA Muenstermann, D Muijs, A Muir, A Munwes, Y Murakami, K Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nomoto, H Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozicka, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T Brien, BJO Neale, SWO O'Neil, DC O'She, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Orama, CJ Oreglia, MJ Orellana, F Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchri, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oye, OK Ozcan, VE Ozturk, N Pages, AP Aranda, CP Paganis, E Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Paoloni, A Papadelis, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantonia, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Peric, I Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Peshekhonov, VD Peters, O Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piec, SM Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, M Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Ramstedt, M Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljica, D Rembser, C Ren, ZL Renaud, A Renkel, P Rensch, B Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Garcia, YR Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandhu, P Sandoval, T Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, JB Savar, P Savinov, V Savu, DO Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Scherzer, I Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmidt, MP Schmieden, K Schmitt, C Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soaresa, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stillings, JA Stockmanns, T Stockton, MC Stoerig, K Stoiceaa, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumero, I Stupak, J Sturm, P Soh, DA Su, D Subramania, H Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoyd, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Svatos, M Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, GN Taylor, W Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Tevlin, CM Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Treis, J Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Triplett, N Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valderanis, C Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van der Graaf, H Van der Kraaij, E Van Der Leeuw, R Van der Poel, E Van der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Viret, S Virzi, J Vitale, A Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vovenko, AS Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wesselsa, M Weydert, C Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, WM Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zema, PF Zemla, A Zendler, C Zenin, AV Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A Zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharyaa, B. S. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, N. Alessandriaa, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, P. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, T. Baker, O. K. Baker, M. D. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bartsch, V. Bates, R. L. Batkovaa, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagambaa, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bona, M. Bondarenko, V. G. Boonekamp, M. Boorman, G. Booth, C. N. Booth, P. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovica, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. . Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Brett, N. D. Britton, D. Brochu, M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. Brubaker, E. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Buis, E. J. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camard, A. Camarri, P. Cambiaghi, M. Cameron, D. Cammin, J. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprinia, M. Capriotti, D. Capua, M. Caputo, R. Caramarcua, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Carpentieri, C. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavallari, A. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Cazzato, A. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, L. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Comune, G. Muno, P. Conde Coniavitis, E. Conidi, M. C. Consonni, M. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Torres, R. Coura Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cuneoa, S. Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Mello, A. Da Rocha Gesualdi Da Silvaa, P. V. M. Da Via, C. Dabrowski, W. Dahlhoff, A. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dankers, R. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, M. Davison, A. R. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De la Taille, C. De la Torre, H. De Lotto, B. De Mora, L. De Nooij, L. Branco, M. De Oliveira De Pedis, D. de Saintignon, P. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedovich, D. V. Degenhardt, J. Dehchar, M. Deile, M. Del Papaa, C. Del Peso, J. Del Prete, T. Dell' Acqua, A. Dell' Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaouid, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietl, H. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Dogan, O. B. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Drohan, J. G. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimic, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Erikssona, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Curull, X. Espinal Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falcianoa, S. Falou, A. C. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fasching, D. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, I. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flammer, J. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Foehlisch, F. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, L. Gay, C. Gaycken, G. Gayde, J-C. Gazis, E. N. Ged, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gieraltowski, G. F. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Goldin, D. Golling, T. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Silva, M. L. Gonzalez Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, I. Gouanere, M. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griesmayer, E. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Gris, P. L. Y. Grishkevich, Y. V. Grivaz, J-F. Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Gruwe, M. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamal, P. Hamilton, A. Hamilton, S. Hana, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, C. J. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heldmann, M. Heller, M. Hellman, S. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez, C. M. Jimenez, Y. Hernandez Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmes, A. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J-Y. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodicea, M. Ionescu, G. Quiles, A. Irles Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istina, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Plante, I. Jen-La Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Ju, X. Juranek, V. Jussel, P. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Kazi, S. I. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Khakzad, M. Khalil-Zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kilvington, G. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kiyamura, H. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Koblitz, B. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasel, O. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvasnicka, O. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lankford, A. J. Lanni, F. Lantzsch, K. LapinO, V. V. Laplace, S. Lapoire, C. Laporte, F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Lau, W. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebedev, A. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Lellouch, J. Leltchouk, M. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J-R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lu, L. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Macina, D. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magalhaes Martins, P. J. Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Latour, B. Martin Dit Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Mass, M. Massa, I. Massaro, G. Massol, N. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzantia, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Navas, L. Mendoza Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikulec, B. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Miralles Verge, L. Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjoernmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohn, B. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Moneta, L. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morais, A. Morange, N. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morone, M-C. Morozov, S. V. Morris, J. D. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinicb, M. Muellera, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muijs, A. Muir, A. Munwes, Y. Murakami, K. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nomoto, H. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. Brien, B. J. O' Neale, S. W. O' O'Neil, D. C. O'She, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Orama, C. J. Oreglia, M. J. Orellana, F. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Garzon, G. Otero Y. Ottersbach, J. P. Ouchri, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oye, O. K. Ozcan, V. E. Ozturk, N. Pages, A. Pacheco Aranda, C. Padilla Paganis, E. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Paoloni, A. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantonia, M. Perez, K. Cavalcanti, T. Perez Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Peric, I. Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Peters, O. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piec, S. M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Ramstedt, M. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljica, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rensch, B. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Garcia, Y. Rodriguez Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Maltrana, D. Romero Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandhu, P. Sandoval, T. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, J. B. Savar, P. Savinov, V. Savu, D. O. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Scherzer, I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmidt, M. P. Schmieden, K. Schmitt, C. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, C. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjoelin, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soaresa, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoiceaa, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumero, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, Hs. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoyd, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Tevlin, C. M. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Pastor, E. Torr Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Treis, J. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Triplett, N. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valderanis, C. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. Van der Graaf, H. Van der Kraaij, E. Van Der Leeuw, R. Van der Poel, E. Van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Viret, S. Virzi, J. Vitale, A. Vitells, O. Viti, M. Vivarelli, I. Vives Vaque, F. Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vovenko, A. S. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wesselsa, M. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, W-M. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zema, P. F. Zemla, A. Zendler, C. Zenin, A. V. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurement of the inelastic proton-proton cross-section at root s=7 TeV with the ATLAS detector SO NATURE COMMUNICATIONS LA English DT Article ID ELASTIC-SCATTERING; DIFFRACTION DISSOCIATION; HIGH-ENERGIES; HARD; SOFT; PHOTOPRODUCTION; AMPLITUDES; MODEL; PP AB The dependence of the rate of proton-proton interactions on the centre-of-mass collision energy, root s, is of fundamental importance for both hadron collider physics and particle astrophysics. The dependence cannot yet be calculated from first principles; therefore, experimental measurements are needed. Here we present the first measurement of the inelastic proton-proton interaction cross-section at a centre-of-mass energy, root s, of 7 TeV using the ATLAS detector at the Large Hadron Collider. Events are selected by requiring hits on scintillation counters mounted in the forward region of the detector. An inelastic crosssection of 60.3 +/- 2.1 mb is measured for xi > 5x10(-6), where xi is calculated from the invariant mass, M-X, of hadrons selected using the largest rapidity gap in the event. For diffractive events, this corresponds to requiring at least one of the dissociation masses to be larger than 15.7 GeV. C1 [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Gregor, I. M.; Hiller, K. H.; Hristova, I.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lankford, A. J.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Stelzer, H. J.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Gregor, I. M.; Hiller, K. H.; Hristova, I.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lankford, A. J.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Stelzer, H. J.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [ATLAS Collaboration] CERN, EP PH, ATLAS Secretariat, CH-1211 Geneva, Switzerland. [Alam, M. S.; Ernst, J.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Chen, L.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, Hs.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Antonaki, A.; Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoyd, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fayard, L.; Fellmann, D.; Gieraltowski, G. F.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; Kaushik, V.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [George, M.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Khalil-Zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku, Azerbaijan. [Abdallah, J.; Abdesselam, A.; Bosman, M. .; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Perez Codina, E.; Riu, I.; Rizatdinova, F.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Inst Fis Altes Energies, Barcelona, Spain. [Abdallah, J.; Bosman, M. .; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Perez Codina, E.; Riu, I.; Rizatdinova, F.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M. .; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Curull, X. Espinal; Fiorini, L.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Perez Codina, E.; Riu, I.; Rizatdinova, F.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovica, I.; Krstic, J.; Popovic, D. S.; Reljica, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Mamuzic, J.; Mudrinicb, M.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Biglietti, M.; Buanes, T.; Burgess, T.; Chafaq, A.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Mohn, B.; Oye, O. K.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Spila, F.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Strandberg, S.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W-M.; Yao, Y.; Zenz, S.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA USA. [Abdesselam, A.; Ahmad, A.; Akiyama, A.; Aloisio, A.; Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Strandberg, S.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W-M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Aliev, M.; Brandt, G.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Schulz, H.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Laurelli, P.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; Brien, B. J. O'; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Dogan, O. B.; Istina, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagambaa, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Antonelli, S.; Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartmento Fis, Bologna, Italy. [Alhroob, M.; Anders, C. F.; Arfaoui, S.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cammin, J.; Cote, D.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hillert, S.; Huegging, F.; Ince, T.; Inigo-Golfin, J.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Laporte, F.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Peric, I.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Runolfsson, O.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Stillings, J. A.; Stockmanns, T.; Szeless, B.; Therhaag, J.; Treis, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, D-5300 Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Joram, C.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wang, H.; Wang, J.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Cerqueira, A. S.; Torres, R. Coura; Mello, A. Da Rocha Gesualdi; Da Silvaa, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantonia, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gershon, A.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lantzsch, K.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumero, I.; Takai, H.; Tamsett, M. C.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprinia, M.; Caramarcua, C.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoiceaa, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Silva, M. L. Gonzalez; Garzon, G. Otero Y.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Abdesselam, A.; Ahmad, A.; Akiyama, A.; Aloisio, A.; Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, P.; Cojocaru, C. D.; Gillberg, D.; Khakzad, M.; Liu, C.; McCarthy, T. G.; O'She, V.; Randrianarivony, K.; Trincaz-Duvoid, S.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Abdesselam, A.; Aleksa, M.; Amaral, P.; Anghinolfi, F.; Baak, M. A.; Bachas, K.; Bachy, G.; Pedrosa, F. Baltasar Dos Santos; Banfi, D.; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cook, J.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell' Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Fedorko, I.; Flammer, J.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J-C.; Gerlach, P.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Grafstroem, P.; Gray, H. M.; Grognuz, J.; Gruwe, M.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Jaekel, M. R.; Jenni, P.; Jonsson, O.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koblitz, B.; Koeneke, K.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; Kvita, J.; La Rosa, A.; Lamanna, M.; LapinO, V. V.; Lassnig, M.; Miotto, G. Lehmann; Lichard, P.; Magnoni, L.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stockton, M. C.; Sumida, T.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zema, P. F.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland. [Abdesselam, A.; Anderson, K. J.; Boveia, A.; Brubaker, E.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Maltrana, D. Romero; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Hana, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Zhong, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Febbraro, R.; Feng, C.; Ged, P.; He, M.; Liu, D.; Meng, Z.; Miao, J.; Richter-Was, E.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Angerami, A.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Ghodbane, N.; Gris, P. L. Y.; Guicheney, C.; Henry-Couannier, F.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Clermont Univ, Phys Corpusculaire Lab, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Ghodbane, N.; Gris, P. L. Y.; Guicheney, C.; Henry-Couannier, F.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Ghodbane, N.; Gris, P. L. Y.; Guicheney, C.; Henry-Couannier, F.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] CNRS IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Marshall, Z.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Guler, H.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Rensch, B.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN, Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Kowalski, T. Z.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Lu, L.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Krasel, O.; Mass, M.; Reisinger, I.; Walbersloh, J.; Weber, J.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Nyman, T.; Wynne, B. M.] Univ Edinburgh, SUPA, Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Griesmayer, E.] Fachhsch Wiener Neustadt, Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.; Wen, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Aad, G.; Abdesselam, A.; Ahles, F.; Ahmad, A.; Beckingham, M.; Bernhard, R.; Bruneliere, R.; Caron, S.; Carpentieri, C.; Christov, A.; Dahlhoff, A.; Dietrich, J.; Eckert, S.; Fatholahzadeh, B.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Heldmann, M.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Bueso, X. Portell; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Wilhelm, I.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, Freiburg, Germany. [Abdelalim, A. A.; Abdesselam, A.; Alexandre, G.; Backes, M.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Leger, A.; Lister, A.; Macina, D.; Latour, B. Martin Dit; Mikulec, B.; Moneta, L.; Herrera, C. Mora; Morone, M-C.; Nektarijevic, S.; Nessi, M.; Orellana, F.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneoa, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneoa, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, HEP Inst, GE-380060 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Prasad, S.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Blair, R. E.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Ferrag, S.; Ferrando, J.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Neil, D. C.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Sandstroem, R.; Saxon, D. H.; Shaw, C.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Stewart, G. A.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, Sch Phys & Astron, SUPA, Glasgow, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Magradze, E.; Mann, A.; Meyer, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Gusakov, Y.; Hostachy, J-Y.; Laisne, E.; Lazarev, A. B.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Gusakov, Y.; Hostachy, J-Y.; Laisne, E.; Lazarev, A. B.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; de Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J-Y.; Laisne, E.; Lazarev, A. B.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Andrei, V.; Childers, J. T.; Dietzsch, T. A.; Foehlisch, F.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Muellera, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wesselsa, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany. [Ohsugi, T.; Unal, G.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; Dudziak, F.; Lebedev, A.; Mete, A. S.; Minashvili, I. A.; Nelson, A.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Triplett, N.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Abdesselam, A.; Aleksandrov, N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Manjavidze, I. D.; Meyer, W. T.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Murakami, K.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KFK, Tsukuba, Ibaraki, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Limper, M.; Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Ridel, M.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, R.; Cheatham, S.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Cazzato, A.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Abdesselam, A.; Bianco, M.; Cazzato, A.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wiglesworth, C.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.] Queen Mary Univ London, Dept Phys, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; Goncalo, R.; Hayden, D.; Kilvington, G.; Misiejuk, A.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Drohan, J. G.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Lapoire, C.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Oberlack, H.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Vannucci, F.; Yuan, L.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Lapoire, C.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Oberlack, H.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Vannucci, F.; Yuan, L.] Univ Paris Diderot, Paris, France. [Abdesselam, A.; Beau, T.; Bordoni, S.; Calderini, G.; Camard, A.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Lapoire, C.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Oberlack, H.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Vannucci, F.; Yuan, L.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Groth-Jensen, J.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Rose, M.; Smirnova, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Abdesselam, A.; Ahmad, A.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Merino, J. Llorente; March, L.; Nebot, E.; Pralavorio, P.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Siragusa, G.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Miyagawa, P. S.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Tevlin, C. M.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Favareto, A.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Monnier, E.; Odier, J.; Petit, E.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Zhong, J.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Favareto, A.; Feligioni, L.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Monnier, E.; Odier, J.; Petit, E.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.; Zhong, J.] CNRS IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Chapleau, B.; Corriveau, F.; Di Mattia, A.; Dobbs, M.; Dufour, M-A.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Fazio, S.; Felzmann, C. U.; Kazi, S. I.; Limosani, A.; Moorhead, G. F.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Strandberg, J.; Thun, R. P.; Walch, S.; Wilson, A.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abdesselam, A.; Abolins, M.; Ahmad, A.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Comune, G.; Di Mattia, A.; Fassouliotis, D.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI USA. [Abdesselam, A.; Acerbi, E.; Ahmad, A.; Akiyama, A.; Alessandriaa, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Costa, G.; Dell' Asta, L.; Fanti, M.; Giugni, D.; Koletsou, I.; Larionov, A. V.; Lazzaro, A.; Mandelli, L.; Mazzantia, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Abdesselam, A.; Acerbi, E.; Ahmad, A.; Akiyama, A.; Aloisio, A.; Andreazza, A.; Besana, M. I.; Carminati, L.; Dell' Asta, L.; Fanti, M.; Lazzaro, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Deile, M.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dietl, H.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oakham, F. G.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Schacht, P.; Seuster, R.; Stonjek, S.; Valderanis, C.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Calkins, R.; Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Itoh, Y.; Ohshima, T.; Okumura, Y.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iacobucci, G.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Iengo, P.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Koenig, A. C.; Koetsveld, F.; Raas, M.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van der Graaf, H.; Van der Kraaij, E.; Van Der Leeuw, R.; Van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Abdesselam, A.; Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Buis, E. J.; Colijn, A. P.; Dankers, R.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Salamanna, G.; Sandstroem, R.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; Van der Graaf, H.; Van der Kraaij, E.; Van Der Leeuw, R.; Van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Kuykendall, W.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Pylypchenko, Y.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De la Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Falou, A. C.; Fournier, D.; Grivaz, J-F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Nakahama, Y.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Abreu, H.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De la Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Falou, A. C.; Fournier, D.; Grivaz, J-F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Nakahama, Y.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS IN2P3, Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Czyczula, Z.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Brett, N. D.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Holmes, A.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Kirsch, G. P.; Kundu, N.; Lasseur, C.; Lau, W.; Lavorato, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.] Univ Oxford, Dept Phys, Oxford, England. [Bellomo, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; George, S.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Primavera, M.; Roda, C.; Sarri, F.; Zenonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; George, S.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Muno, P. Conde; Wemans, A. Do Valle; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Konoplich, R.; Lopes, L.; Machado Miguens, J.; Magalhaes Martins, P. J.; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Santos, H.; Saraiva, J. G.; Silva, J.; Soaresa, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.; Amorim, A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.; Amorim, A.] Univ Granada, CAFPE, Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Larner, A.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Laplace, S.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Vovenko, A. S.; Zaets, V. G.; Zaitsev, A. M.; Zenin, A. V.; Zenin, O.; Zmouchko, V. V.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Baines, T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Ortega, E. O.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Cardarelli, R.; Cavallari, A.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falcianoa, S.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Passeri, A.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Cavallari, A.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Paoloni, A.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Paoloni, A.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodicea, M.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Biglietti, M.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; El Moursli, R. Cherkaoui; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Phys, Marrakech 40000, Morocco. [Derkaouid, J. E.; Ouchri, M.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaouid, J. E.; Ouchri, M.] LPTPM, Oujda, Morocco. Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Lancon, E.; Le Menedeu, E.; Legendre, M.; Lenzi, B.; Mansoulie, B.; Meyer, J-P.; Morange, N.; Nicolaidou, R.; Ouraou, A.; Pomarede, M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Yu, J.] CEA Saclay Commissariat Energie Atom, DSM IRFU Inst Rech Lois Fondamentales Univers, Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Anastopoulos, C.; Booth, C. N.; Booth, P.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Nicolas, L.; Owen, S.; Paganis, E.; Sutton, M. R.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; Komaragiri, J. R.; Neale, S. W. O'; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Holmgren, S. O.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkovaa, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Erikssona, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjoelin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Grahn, K-J.; Lund-Jensen, B.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Khodinov, A.; Potter, C. J.; Salvatore, F.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Collard, C.; Etzion, E.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Harpaz, S. Behar; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kaneda, M.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Kubota, T.; Mashimo, T.; Masubuchi, T.; Nakamura, K.; Ninomiya, Y.; Nomoto, H.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Geweniger, C.; Gibson, A.; Guo, B.; Jankowski, E.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Sandhu, P.; Savar, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Nugent, I. M.; O'She, V.; Orama, C. J.; Savar, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Sci & Technol Ctr, Medford, MA 02155 USA. [Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Benedict, B. H.; Bold, T.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lanni, F.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharyaa, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papaa, C.; Pinamonti, M.; Shaw, K.; Suruliz, K.] Ist Nazl Fis Nucl, Grp Collegato Udine, Udine, Italy. [Acharyaa, B. S.; Suruliz, K.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papaa, C.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; Losada, M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Belanger-Champagne, C.; Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.; Hansen, C. J.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torr; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torr; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torr; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Quiles, A. Irles; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torr; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Astbury, A.; Banerjee, Sw.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Fasching, D.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Kashif, L.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Flick, T.; Glitza, K. W.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Schmidt, M. P.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS IN2P3, Ctr Calcul, Villeurbanne, France. [Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.; Yuan, L.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.; Yuan, L.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Bawa, H. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Grabowska-Bold, I.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Fiolhais, M. C. N.; Magalhaes Martins, P. J.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Mateos, D. Lopez; Marshall, Z.; Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Park, W.; Purohit, M.; Trivedi, A.; Cakir, I. Turk] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. Jagiellonian Univ, Inst Phys, Krakow, Poland. RP Monig, K (reprint author), DESY, Notkestr 85, D-2000 Hamburg, Germany. EM atlas.publications@cern.ch RI Kuzhir, Polina/H-8653-2012; Weigell, Philipp/I-9356-2012; Veneziano, Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; M, Saleem/B-9137-2013; messina, andrea/C-2753-2013; de Groot, Nicolo/A-2675-2009; Orlov, Ilya/E-6611-2012; Doyle, Anthony/C-5889-2009; Laycock, Paul/F-7543-2011; valente, paolo/A-6640-2010; Robson, Aidan/G-1087-2011; Losada, Marta/B-2261-2010; De Cecco, Sandro/B-1016-2012; branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; McKee, Shawn/B-6435-2012; Rotaru, Marina/A-3097-2011; Bauer, Florian/G-8816-2011; Gutierrez, Phillip/C-1161-2011; collins-tooth, christopher/A-9201-2012; Ferrando, James/A-9192-2012; Buttar, Craig/D-3706-2011; Takai, Helio/C-3301-2012; Britton, David/F-2602-2010; Li, Xuefei/C-3861-2012; Smirnova, Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Annovi, Alberto/G-6028-2012; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Vanyashin, Aleksandr/H-7796-2013; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Marti-Garcia, Salvador/F-3085-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Staroba, Pavel/G-8850-2014; Lokajicek, Milos/G-7800-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; CARPENTIERI, CARMELA/E-2137-2015; Joergensen, Morten/E-6847-2015; Martins, Paulo/M-1844-2014; Riu, Imma/L-7385-2014; Ferrer, Antonio/H-2942-2015; Cavalli-Sforza, Matteo/H-7102-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Tikhomirov, Vladimir/M-6194-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Ventura, Andrea/A-9544-2015; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Morone, Maria Cristina/P-4407-2016; Goncalo, Ricardo/M-3153-2016; Canelli, Florencia/O-9693-2016; Idzik, Marek/A-2487-2017; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; OI Kuzhir, Polina/0000-0003-3689-0837; Veneziano, Stefano/0000-0002-2598-2659; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Doyle, Anthony/0000-0001-6322-6195; valente, paolo/0000-0002-5413-0068; McKee, Shawn/0000-0002-4551-4502; Rotaru, Marina/0000-0003-3303-5683; Ferrando, James/0000-0002-1007-7816; Takai, Helio/0000-0001-9253-8307; Britton, David/0000-0001-9998-4342; Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Annovi, Alberto/0000-0002-4649-4398; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; CARPENTIERI, CARMELA/0000-0002-2994-0317; Joergensen, Morten/0000-0002-6790-9361; Martins, Paulo/0000-0003-3753-3751; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Tikhomirov, Vladimir/0000-0002-9634-0581; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Ventura, Andrea/0000-0002-3368-3413; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Morone, Maria Cristina/0000-0002-0200-0632; Goncalo, Ricardo/0000-0002-3826-3442; Canelli, Florencia/0000-0001-6361-2117; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Conde Muino, Patricia/0000-0002-9187-7478 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC; NRC; CFI, Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIENCIAS, Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck Foundation, Denmark; ARTEMIS; European Union; IN2P3-CNRS; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF; DFG; HGF; MPG; AvH Foundation, Germany; GSRT, Greece; ISF; MINERVA; GIF; DIP; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC; Wallenberg Foundation, Sweden; SER; SNSF; Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United States of America FX We thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We also thank T. Sjostrand, M. Ryskin and V. Khoze for their help on the theoretical aspects of the analysis. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; and DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide. NR 38 TC 45 Z9 45 U1 6 U2 76 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2011 VL 2 AR 463 DI 10.1038/ncomms1472 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 819EC UT WOS:000294807200005 ER PT J AU Sebastian, SE Harrison, N Altarawneh, MM Liang, RX Bonn, DA Hardy, WN Lonzarich, GG AF Sebastian, Suchitra E. Harrison, N. Altarawneh, M. M. Liang, Ruixing Bonn, D. A. Hardy, W. N. Lonzarich, G. G. TI Chemical potential oscillations from nodal Fermi surface pocket in the underdoped high-temperature superconductor YBa2Cu3O6+x SO NATURE COMMUNICATIONS LA English DT Article ID T-C SUPERCONDUCTORS; QUANTUM OSCILLATIONS; STATE AB The electronic structure of the normal state of the underdoped cuprates has thus far remained mysterious, with neither the momentum space location nor the charge carrier type of constituent small Fermi surface pockets being resolved. Whereas quantum oscillations have been interpreted in terms of a nodal-antinodal Fermi surface including electrons at the antinodes, photoemission indicates a solely nodal density-of-states at the Fermi level. Here we examine both these possibilities using extended quantum oscillation measurements. Second harmonic quantum oscillations in underdoped YBa2Cu3O6+x are shown to arise chiefly from oscillations in the chemical potential. We show from the relationship between the phase and amplitude of the second harmonic with that of the fundamental quantum oscillations that there exists a single carrier Fermi surface pocket, likely located at the nodal region of the Brillouin zone, with the observed multiple frequencies arising from warping, bilayer splitting and magnetic breakdown. C1 [Sebastian, Suchitra E.; Lonzarich, G. G.] Univ Cambridge, Cavendish Lab, Cambridge CB3 OHE, England. [Harrison, N.; Altarawneh, M. M.] LANL, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Liang, Ruixing; Bonn, D. A.; Hardy, W. N.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Liang, Ruixing; Bonn, D. A.; Hardy, W. N.] Canadian Inst Adv Res, Toronto, ON M5G 1Z8, Canada. RP Sebastian, SE (reprint author), Univ Cambridge, Cavendish Lab, Madingley Rd,JJ Thomson Ave, Cambridge CB3 OHE, England. EM suchitra@phy.cam.ac.uk OI Harrison, Neil/0000-0001-5456-7756 FU Royal Society; NSF [DMR-0654118]; state of Florida; DOE FX S.E.S. acknowledges support from the Royal Society. N.H. acknowledges support from the DOE BES project 'Science at 100 Tesla.' A portion of this work was performed at the National High Magnetic Field Laboratory, which is supported by NSF co-operative agreement no. DMR-0654118, the state of Florida, and the DOE. NR 32 TC 20 Z9 20 U1 2 U2 26 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD SEP PY 2011 VL 2 AR 471 DI 10.1038/ncomms1468 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 819EC UT WOS:000294807200013 PM 21915113 ER PT J AU Hawryluk, RJ AF Hawryluk, R. J. TI 23rd IAEA Fusion Energy Conference: summary of sessions EX/C and ICC SO NUCLEAR FUSION LA English DT Article ID CHAPTER 1 AB An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Hawryluk, RJ (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM rhawryluk@pppl.gov FU U.S. DOE [DE-AC02-76CH03073] FX This paper is the result of the hard work of the authors at the IAEA meeting and I want to express my appreciation for permission to use their figures and many interesting discussions. The author of this report has also benefitted from the input of his colleagues, E. Belova, D. Gates, T. S. Hahm, S. Kaye, C. Kessel, R. Maingi, G. H. Neilson, S. Prager, T. Simonen, W. Solomon, J.R. Wilson and M. Zarnstorff who amidst a very busy conference provided valuable perspectives. Of course, the author is responsible for errors in describing the results of this meeting. The work was supported in part by U.S. DOE Contract DE-AC02-76CH03073. NR 97 TC 2 Z9 2 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2011 VL 51 IS 9 SI SI AR 094005 DI 10.1088/0029-5515/51/9/094005 PG 21 WC Physics, Fluids & Plasmas SC Physics GA 818DP UT WOS:000294731600006 ER PT J AU Kwon, M Oh, YK Yang, HL Na, HK Kim, YS Kwak, JG Kim, WC Kim, JY Ahn, JW Bae, YS Baek, SH Bak, JG Bang, EN Chang, CS Chang, DH Chavdarovski, I Chen, ZY Cho, KW Cho, MH Choe, W Choi, JH Chu, Y Chung, KS Diamond, P Do, HJ Eidietis, N England, AC Grisham, L Hahm, TS Hahn, SH Han, WS Hatae, T Hillis, D Hong, JS Hong, SH Hong, SR Humphrey, D Hwang, YS Hyatt, A In, YK Jackson, GL Jang, YB Jeon, YM Jeong, JI Jeong, NY Jeong, SH Jhang, HG Jin, JK Joung, M Ju, J Kawahata, K Kim, CH Kim, DH Kim, HS Kim, HS Kim, HK Kim, HT Kim, JH Kim, JC Kim, JS Kim, JS Kim, KM Kim, KM Kim, KP Kim, MK Kim, SH Kim, SS Kim, ST Kim, SW Kim, YJ Kim, YK Kim, YO Ko, WH Kogi, Y Kong, JD Kubo, S Kumazawa, R Kwak, SW Kwon, JM Kwon, OJ LeConte, M Lee, DG Lee, DK Lee, DR Lee, DS Lee, HJ Lee, JH Lee, KD Lee, KS Lee, SG Lee, SH Lee, SI Lee, SM Lee, TG Lee, WC Lee, WL Leur, J Lim, DS Lohr, J Mase, A Mueller, D Moon, KM Mutoh, T Na, YS Nagayama, Y Nam, YU Namkung, W Oh, BH Oh, SG Oh, ST Park, BH Park, DS Park, H Park, HT Park, JK Park, JS Park, KR Park, MK Park, SH Park, SI Park, YM Park, YS Patterson, B Sabbagh, S Saito, K Sajjad, S Sakamoto, K Seo, DC Seo, SH Seol, JC Shi, Y Song, NH Sun, HJ Terzolo, L Walker, M Wang, SJ Watanabe, K Welander, AS Woo, HJ Woo, IS Yagi, M Yaowei, Y Yonekawa, Y Yoo, KI Yoo, JW Yoon, GS Yoon, SW AF Kwon, M. Oh, Y. K. Yang, H. L. Na, H. K. Kim, Y. S. Kwak, J. G. Kim, W. C. Kim, J. Y. Ahn, J. W. Bae, Y. S. Baek, S. H. Bak, J. G. Bang, E. N. Chang, C. S. Chang, D. H. Chavdarovski, I. Chen, Z. Y. Cho, K. W. Cho, M. H. Choe, W. Choi, J. H. Chu, Y. Chung, K. S. Diamond, P. Do, H. J. Eidietis, N. England, A. C. Grisham, L. Hahm, T. S. Hahn, S. H. Han, W. S. Hatae, T. Hillis, D. Hong, J. S. Hong, S. H. Hong, S. R. Humphrey, D. Hwang, Y. S. Hyatt, A. In, Y. K. Jackson, G. L. Jang, Y. B. Jeon, Y. M. Jeong, J. I. Jeong, N. Y. Jeong, S. H. Jhang, H. G. Jin, J. K. Joung, M. Ju, J. Kawahata, K. Kim, C. H. Kim, D. H. Kim, Hee-Su Kim, H. S. Kim, H. K. Kim, H. T. Kim, J. H. Kim, J. C. Kim, Jong-Su Kim, Jung-Su Kim, Kyung-Min Kim, K. M. Kim, K. P. Kim, M. K. Kim, S. H. Kim, S. S. Kim, S. T. Kim, S. W. Kim, Y. J. Kim, Y. K. Kim, Y. O. Ko, W. H. Kogi, Y. Kong, J. D. Kubo, S. Kumazawa, R. Kwak, S. W. Kwon, J. M. Kwon, O. J. LeConte, M. Lee, D. G. Lee, D. K. Lee, D. R. Lee, D. S. Lee, H. J. Lee, J. H. Lee, K. D. Lee, K. S. Lee, S. G. Lee, S. H. Lee, S. I. Lee, S. M. Lee, T. G. Lee, W. C. Lee, W. L. Leur, J. Lim, D. S. Lohr, J. Mase, A. Mueller, D. Moon, K. M. Mutoh, T. Na, Y. S. Nagayama, Y. Nam, Y. U. Namkung, W. Oh, B. H. Oh, S. G. Oh, S. T. Park, B. H. Park, D. S. Park, H. Park, H. T. Park, J. K. Park, J. S. Park, K. R. Park, M. K. Park, S. H. Park, S. I. Park, Y. M. Park, Y. S. Patterson, B. Sabbagh, S. Saito, K. Sajjad, S. Sakamoto, K. Seo, D. C. Seo, S. H. Seol, J. C. Shi, Y. Song, N. H. Sun, H. J. Terzolo, L. Walker, M. Wang, S. J. Watanabe, K. Welander, A. S. Woo, H. J. Woo, I. S. Yagi, M. Yaowei, Y. Yonekawa, Y. Yoo, K. I. Yoo, J. W. Yoon, G. S. Yoon, S. W. CA KSTAR Team TI Overview of KSTAR initial operation SO NUCLEAR FUSION LA English DT Article ID TOKAMAK AB Since the successful first plasma generation in the middle of 2008, three experimental campaigns were successfully made for the KSTAR device, accompanied with a necessary upgrade in the power supply, heating, wall-conditioning and diagnostic systems. KSTAR was operated with the toroidal magnetic field up to 3.6 T and the circular and shaped plasmas with current up to 700 kA and pulse length of 7 s, have been achieved with limited capacity of PF magnet power supplies. The mission of the KSTAR experimental program is to achieve steady-state operations with high performance plasmas relevant to ITER and future reactors. The first phase (2008-2012) of operation of KSTAR is dedicated to the development of operational capabilities for a super-conducting device with relatively short pulse. Development of start-up scenario for a super-conducting tokamak and the understanding of magnetic field errors on start-up are one of the important issues to be resolved. Some specific operation techniques for a super-conducting device are also developed and tested. The second harmonic pre-ionization with 84 and 110 GHz gyrotrons is an example. Various parameters have been scanned to optimize the pre-ionization. Another example is the ICRF wall conditioning (ICWC), which was routinely applied during the shot to shot interval. The plasma operation window has been extended in terms of plasma beta and stability boundary. The achievement of high confinement mode was made in the last campaign with the first neutral beam injector and good wall conditioning. Plasma control has been applied in shape and position control and now a preliminary kinetic control scheme is being applied including plasma current and density. Advanced control schemes will be developed and tested in future operations including active profiles, heating and current drives and control coil-driven magnetic perturbation. C1 [Kwon, M.; Oh, Y. K.; Yang, H. L.; Na, H. K.; Kim, Y. S.; Kwak, J. G.; Kim, W. C.; Kim, J. Y.; Bae, Y. S.; Baek, S. H.; Bak, J. G.; Bang, E. N.; Chavdarovski, I.; Chen, Z. Y.; Cho, K. W.; Choi, J. H.; Chu, Y.; Do, H. J.; England, A. C.; Hahn, S. H.; Han, W. S.; Hong, J. S.; Hong, S. H.; Hong, S. R.; Jang, Y. B.; Jeon, Y. M.; Jeong, J. I.; Jeong, N. Y.; Jhang, H. G.; Jin, J. K.; Joung, M.; Ju, J.; Kim, C. H.; Kim, Hee-Su; Kim, H. K.; Kim, H. T.; Kim, J. H.; Kim, J. C.; Kim, Jong-Su; Kim, Jung-Su; Kim, Kyung-Min; Kim, K. P.; Kim, M. K.; Kim, S. S.; Kim, S. T.; Kim, S. W.; Kim, Y. J.; Kim, Y. O.; Ko, W. H.; Kong, J. D.; Kwak, S. W.; Kwon, J. M.; LeConte, M.; Lee, D. G.; Lee, D. K.; Lee, D. R.; Lee, D. S.; Lee, H. J.; Lee, J. H.; Lee, K. D.; Lee, K. S.; Lee, S. G.; Lee, S. I.; Lee, S. M.; Lee, T. G.; Lee, W. L.; Lim, D. S.; Moon, K. M.; Nam, Y. U.; Oh, S. T.; Park, B. H.; Park, D. S.; Park, H. T.; Park, J. S.; Park, K. R.; Park, M. K.; Park, S. H.; Park, S. I.; Park, Y. M.; Sajjad, S.; Seo, D. C.; Seo, S. H.; Seol, J. C.; Song, N. H.; Sun, H. J.; Terzolo, L.; Woo, I. S.; Yaowei, Y.; Yonekawa, Y.; Yoo, K. I.; Yoo, J. W.; Yoon, S. W.; KSTAR Team] Natl Fus Res Inst, Taejon, South Korea. [Chang, D. H.; Jeong, S. H.; Kim, S. H.; Oh, B. H.; Wang, S. J.] Korea Atom Energy Res Inst, Taejon, South Korea. [Hwang, Y. S.; Kim, D. H.; Kim, H. S.; Kim, K. M.; Na, Y. S.] Seoul Natl Univ, Seoul, South Korea. [Cho, M. H.; Lee, W. C.; Namkung, W.; Park, H.; Yoon, G. S.] Pohang Univ Sci & Technol, Pohang, South Korea. [Choe, W.; Lee, S. H.] Korea Adv Inst Sci & Technol, Taejon 305701, South Korea. [Chung, K. S.; Kim, Y. K.; Woo, H. J.] Hanyang Univ, Seoul 133791, South Korea. [Kwon, O. J.] Daegu Univ, Taegu, South Korea. [Chang, C. S.; Oh, S. G.] Ajou Univ, Sawon, Kyonggi, South Korea. [Diamond, P.] Univ San Diego, San Diego, CA 92110 USA. [Ahn, J. W.; Hillis, D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Grisham, L.; Hahm, T. S.; Mueller, D.; Park, J. K.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Eidietis, N.; Humphrey, D.; Hyatt, A.; Jackson, G. L.; Leur, J.; Lohr, J.; Walker, M.; Welander, A. S.] Gen Atom Co, San Diego, CA USA. [Park, Y. S.; Sabbagh, S.] Columbia Univ, New York, NY USA. [In, Y. K.] Fartech, San Diego, CA USA. [Hatae, T.; Sakamoto, K.; Watanabe, K.] Japan Atom Energy Agcy, Naka, Ibaraki, Japan. [Kawahata, K.; Kubo, S.; Kumazawa, R.; Mutoh, T.; Nagayama, Y.; Patterson, B.; Saito, K.] Natl Inst Fus Sci, Gifu, Japan. [Kogi, Y.] Fukuoka Inst Technol, Fukuoka, Japan. [Yagi, M.] Kyushu Univ, Fukuoka 812, Japan. [Mase, A.; Shi, Y.] Acad Sinica, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. RP Kwon, M (reprint author), Natl Fus Res Inst, Taejon, South Korea. EM kwonm@nfri.re.kr RI Choe, Wonho/C-1556-2011; Hwang, Yong-Seok/D-8347-2012 FU Ministry of the Education, Science and Technology of Korea FX The authors thank all of the technical and administrative staff to run the KSTAR program flawlessly and smoothly. The authors also thank M. Kikuchi and K. Ida for their effort in the internal review and for providing valuable comments. This work was possible by the close collaboration with many domestic and international institutes and their active and collaborative participation to the KSTAR program. The authors thank the officers in the administration and international affairs offices of all of the participating institutes for their role in making an environment where the practical collaboration happened. This work was supported by the Ministry of the Education, Science and Technology of Korea. NR 32 TC 11 Z9 11 U1 4 U2 19 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2011 VL 51 IS 9 SI SI PG 12 WC Physics, Fluids & Plasmas SC Physics GA 818DP UT WOS:000294731600007 ER PT J AU Lindl, JD Atherton, LJ Amednt, PA Batha, S Bell, P Berger, RL Betti, R Bleuel, DL Boehly, TR Bradley, DK Braun, DG Callahan, DA Celliers, PM Cerjan, CJ Clark, DS Collins, GW Cook, RC Dewald, EL Divol, L Dixit, SN Dzenitis, E Edwards, MJ Fair, JE Fortner, RJ Frenje, JA Glebov, VY Glenzer, SH Grim, G Haan, SW Hamza, AV Hammel, BA Harding, DR Hatchett, SP Haynam, CA Herrmann, HW Herrmann, MC Hicks, DG Hinkel, DE Ho, DD Hoffman, N Huang, H Izumi, N Jacoby, B Jones, OS Kalantar, DH Kauffman, R Kilkenny, JD Kirkwood, RK Kline, JL Knauer, JP Koch, JA Kozioziemski, BJ Kyrala, GA La Fortune, K Landen, OL Larson, D Lerche, R Le Pape, S London, R MacGowan, J MacKinnon, AJ Malsbury, TN Mapoles, ER Marinak, MM McKenty, PW Meezan, N Meyerhofer, DD Michel, P Milovich, J Moody, JD Moran, M Moreno, KA Moses, EI Munro, DH Nikroo, A Olson, RE Parham, T Patterson, RW Peterson, K Petrasso, R Pollaine, SM Ralph, JE Regan, SP Robey, HF Rosen, MD Sacks, R Salmonson, JD Sangster, TC Sepke, SM Schneider, DH Schneider, MB Shaw, M Spears, BK Springer, PT Stoeckl, C Suter, LJ Thomas, CA Tommasini, R Town, RP VanWonterghem, BM Vesey, R Weber, SV Wegner, PJ Widman, K Widmayer, CC Wilke, M Wilkens, HL Williams, EA Wilson, DC Young, BK AF Lindl, J. D. Atherton, L. J. Amednt, P. A. Batha, S. Bell, P. Berger, R. L. Betti, R. Bleuel, D. L. Boehly, T. R. Bradley, D. K. Braun, D. G. Callahan, D. A. Celliers, P. M. Cerjan, C. J. Clark, D. S. Collins, G. W. Cook, R. C. Dewald, E. L. Divol, L. Dixit, S. N. Dzenitis, E. Edwards, M. J. Fair, J. E. Fortner, R. J. Frenje, J. A. Glebov, V. Yu. Glenzer, S. H. Grim, G. Haan, S. W. Hamza, A. V. Hammel, B. A. Harding, D. R. Hatchett, S. P. Haynam, C. A. Herrmann, H. W. Herrmann, M. C. Hicks, D. G. Hinkel, D. E. Ho, D. D. Hoffman, N. Huang, H. Izumi, N. Jacoby, B. Jones, O. S. Kalantar, D. H. Kauffman, R. Kilkenny, J. D. Kirkwood, R. K. Kline, J. L. Knauer, J. P. Koch, J. A. Kozioziemski, B. J. Kyrala, G. A. La Fortune, K. Landen, O. L. Larson, D. Lerche, R. Le Pape, S. London, R. MacGowan, J. MacKinnon, A. J. Malsbury, T. N. Mapoles, E. R. Marinak, M. M. McKenty, P. W. Meezan, N. Meyerhofer, D. D. Michel, P. Milovich, J. Moody, J. D. Moran, M. Moreno, K. A. Moses, E. I. Munro, D. H. Nikroo, A. Olson, R. E. Parham, T. Patterson, R. W. Peterson, K. Petrasso, R. Pollaine, S. M. Ralph, J. E. Regan, S. P. Robey, H. F. Rosen, M. D. Sacks, R. Salmonson, J. D. Sangster, T. C. Sepke, S. M. Schneider, D. H. Schneider, M. B. Shaw, M. Spears, B. K. Springer, P. T. Stoeckl, C. Suter, L. J. Thomas, C. A. Tommasini, R. Town, R. P. VanWonterghem, B. M. Vesey, R. Weber, S. V. Wegner, P. J. Widman, K. Widmayer, C. C. Wilke, M. Wilkens, H. L. Williams, E. A. Wilson, D. C. Young, B. K. TI Progress towards ignition on the National Ignition Facility SO NUCLEAR FUSION LA English DT Article ID INERTIAL CONFINEMENT FUSION; PHYSICS BASIS; DRIVE; DETECTOR; DIAMOND; SYSTEM; OMEGA AB The National Ignition Facility at Lawrence Livermore National Laboratory was formally dedicated in May 2009. The hohlraum energetics campaign with all 192 beams began shortly thereafter and ran until early December 2009. These experiments explored hohlraum-operating regimes in preparation for experiments with layered cryogenic targets. The hohlraum energetic series culminated with an experiment that irradiated an ignition scale hohlraum with 1 MJ. The results demonstrated the ability to produce a 285 eV radiation environment in an ignition scale hohlraum while meeting ignition requirements for symmetry, backscatter and hot electron production. Complementary scaling experiments indicate that with similar to 1.3 MJ, the capsule drive temperature will reach 300 eV, the point design temperature for the first ignition campaign. Preparation for cryo-layered implosions included installation of a variety of nuclear diagnostics, cryogenic layering target positioner, advanced optics and facility modifications needed for tritium operations and for routine operation at laser energy greater than 1.3 MJ. The first cyro-layered experiment was carried out on 29 September 2010. The main purpose of this shot was to demonstrate the ability to integrate all of the laser, target and diagnostic capability needed for a successful cryo-layered experiment. This paper discusses the ignition point design as well as findings and conclusions from the hohlraum energetics campaign carried out in 2009. It also provides a brief summary of the initial cryo-layered implosion. C1 [Lindl, J. D.; Atherton, L. J.; Amednt, P. A.; Bell, P.; Berger, R. L.; Bleuel, D. L.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Cerjan, C. J.; Clark, D. S.; Collins, G. W.; Cook, R. C.; Dewald, E. L.; Divol, L.; Dixit, S. N.; Dzenitis, E.; Edwards, M. J.; Fair, J. E.; Fortner, R. J.; Glenzer, S. H.; Haan, S. W.; Hamza, A. V.; Hammel, B. A.; Hatchett, S. P.; Haynam, C. A.; Hicks, D. G.; Hinkel, D. E.; Ho, D. D.; Izumi, N.; Jacoby, B.; Jones, O. S.; Kalantar, D. H.; Kauffman, R.; Kirkwood, R. K.; Koch, J. A.; Kozioziemski, B. J.; La Fortune, K.; Landen, O. L.; Larson, D.; Lerche, R.; Le Pape, S.; London, R.; MacGowan, J.; MacKinnon, A. J.; Malsbury, T. N.; Mapoles, E. R.; Marinak, M. M.; Meezan, N.; Michel, P.; Milovich, J.; Moody, J. D.; Moran, M.; Moses, E. I.; Munro, D. H.; Parham, T.; Patterson, R. W.; Pollaine, S. M.; Ralph, J. E.; Robey, H. F.; Rosen, M. D.; Sacks, R.; Salmonson, J. D.; Sepke, S. M.; Schneider, D. H.; Schneider, M. B.; Shaw, M.; Spears, B. K.; Springer, P. T.; Suter, L. J.; Thomas, C. A.; Tommasini, R.; Town, R. P.; VanWonterghem, B. M.; Weber, S. V.; Wegner, P. J.; Widman, K.; Widmayer, C. C.; Williams, E. A.; Young, B. K.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Betti, R.; Boehly, T. R.; Glebov, V. Yu.; Harding, D. R.; Knauer, J. P.; McKenty, P. W.; Meyerhofer, D. D.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.] Univ Rochester, Laser Energet Lab, Rochester, NY USA. [Batha, S.; Grim, G.; Herrmann, H. W.; Hoffman, N.; Kline, J. L.; Kyrala, G. A.; Wilke, M.; Wilson, D. C.] Los Alamos Natl Lab, Los Alamos, NM USA. [Herrmann, M. C.; Olson, R. E.; Peterson, K.; Vesey, R.] Sandia Natl Labs, Albuquerque, NM USA. [Frenje, J. A.; Petrasso, R.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Huang, H.; Kilkenny, J. D.; Moreno, K. A.; Nikroo, A.; Wilkens, H. L.] Gen Atom Co, San Diego, CA USA. RP Lindl, JD (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM lindl1@llnl.gov RI Collins, Gilbert/G-1009-2011; Michel, Pierre/J-9947-2012; MacKinnon, Andrew/P-7239-2014; Hicks, Damien/B-5042-2015; IZUMI, Nobuhiko/J-8487-2016; Tommasini, Riccardo/A-8214-2009 OI Kline, John/0000-0002-2271-9919; MacKinnon, Andrew/0000-0002-4380-2906; Hicks, Damien/0000-0001-8322-9983; IZUMI, Nobuhiko/0000-0003-1114-597X; Tommasini, Riccardo/0000-0002-1070-3565 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 48 TC 18 Z9 21 U1 0 U2 31 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2011 VL 51 IS 9 SI SI AR 094024 DI 10.1088/0029-5515/51/9/094024 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 818DP UT WOS:000294731600025 ER PT J AU Lloyd, B Akers, RJ Alladio, F Allan, S Appel, LC Barnes, M Barratt, NC Ben Ayed, N Breizman, BN Cecconello, M Challis, CD Chapman, IT Ciric, D Colyer, G Connor, JW Conway, NJ Cox, M Cowley, SC Cunningham, G Darke, A De Bock, M Delchambre, E De Temmerman, G Dendy, RO Denner, P Driscoll, MD Dudson, B Dunai, D Dunstan, M Elmore, S Field, AR Fishpool, G Freethy, S Garzotti, L Gibson, KJ Gryaznevich, MP Guttenfelder, W Harrison, J Hastie, RJ Hawkes, NC Hender, TC Hnat, B Howell, DF Hua, MD Hubbard, A Huysmans, G Keeling, D Kim, YC Kirk, A Liang, Y Lilley, MK Lisak, M Lisgo, S Liu, YQ Maddison, GP Maingi, R Manhood, SJ Martin, R McArdle, GJ McCone, J Meyer, H Michael, C Mordijck, S Morgan, T Morris, AW Muir, DG Nardon, E Naylor, G O'Brien, MR O'Gorman, T Palenik, J Patel, A Pinches, SD Price, MN Roach, CM Rozhansky, V Saarelma, S Sabbagh, SA Saveliev, A Scannell, R Sharapov, SE Shevchenko, V Shibaev, S Stork, D Storrs, J Suttrop, W Sykes, A Tamain, P Taylor, D Temple, D Thomas-Davies, N Thornton, A Turnyanskiy, MR Valovic, M Vann, RGL Voss, G Walsh, MJ Warder, SEV Wilson, HR Windridge, M Wisse, M Zoletnik, S AF Lloyd, B. Akers, R. J. Alladio, F. Allan, S. Appel, L. C. Barnes, M. Barratt, N. C. Ben Ayed, N. Breizman, B. N. Cecconello, M. Challis, C. D. Chapman, I. T. Ciric, D. Colyer, G. Connor, J. W. Conway, N. J. Cox, M. Cowley, S. C. Cunningham, G. Darke, A. De Bock, M. Delchambre, E. De Temmerman, G. Dendy, R. O. Denner, P. Driscoll, M. D. Dudson, B. Dunai, D. Dunstan, M. Elmore, S. Field, A. R. Fishpool, G. Freethy, S. Garzotti, L. Gibson, K. J. Gryaznevich, M. P. Guttenfelder, W. Harrison, J. Hastie, R. J. Hawkes, N. C. Hender, T. C. Hnat, B. Howell, D. F. Hua, M. -D. Hubbard, A. Huysmans, G. Keeling, D. Kim, Y. C. Kirk, A. Liang, Y. Lilley, M. K. Lisak, M. Lisgo, S. Liu, Y. Q. Maddison, G. P. Maingi, R. Manhood, S. J. Martin, R. McArdle, G. J. McCone, J. Meyer, H. Michael, C. Mordijck, S. Morgan, T. Morris, A. W. Muir, D. G. Nardon, E. Naylor, G. O'Brien, M. R. O'Gorman, T. Palenik, J. Patel, A. Pinches, S. D. Price, M. N. Roach, C. M. Rozhansky, V. Saarelma, S. Sabbagh, S. A. Saveliev, A. Scannell, R. Sharapov, S. E. Shevchenko, V. Shibaev, S. Stork, D. Storrs, J. Suttrop, W. Sykes, A. Tamain, P. Taylor, D. Temple, D. Thomas-Davies, N. Thornton, A. Turnyanskiy, M. R. Valovic, M. Vann, R. G. L. Voss, G. Walsh, M. J. Warder, S. E. V. Wilson, H. R. Windridge, M. Wisse, M. Zoletnik, S. CA MAST Team NBI Team TI Overview of physics results from MAST SO NUCLEAR FUSION LA English DT Article ID TRANSPORT; MODEL AB Major developments on the Mega Amp Spherical Tokamak (MAST) have enabled important advances in support of ITER and the physics basis of a spherical tokamak (ST) based component test facility (CTF), as well as providing new insight into underlying tokamak physics. For example, L-H transition studies benefit from high spatial and temporal resolution measurements of pedestal profile evolution (temperature, density and radial electric field) and in support of pedestal stability studies the edge current density profile has been inferred from motional Stark effect measurements. The influence of the q-profile and E x B flow shear on transport has been studied in MAST and equilibrium flow shear has been included in gyro-kinetic codes, improving comparisons with the experimental data. H-modes exhibit a weaker q and stronger collisionality dependence of heat diffusivity than implied by IPB98(gamma, 2) scaling, which may have important implications for the design of an ST-based CTF. ELM mitigation, an important issue for ITER, has been demonstrated by applying resonant magnetic perturbations (RMPs) using both internal and external coils, but full stabilization of type-I ELMs has not been observed. Modelling shows the importance of including the plasma response to the RMP fields. MAST plasmas with q > 1 and weak central magnetic shear regularly exhibit a long-lived saturated ideal internal mode. Measured plasma braking in the presence of this mode compares well with neo-classical toroidal viscosity theory. In support of basic physics understanding, high resolution Thomson scattering measurements are providing new insight into sawtooth crash dynamics and neo-classical tearing mode critical island widths. Retarding field analyser measurements show elevated ion temperatures in the scrape-off layer of L-mode plasmas and, in the presence of type-I ELMs, ions with energy greater than 500 eV are detected 20 cm outside the separatrix. Disruption mitigation by massive gas injection has reduced divertor heat loads by up to 70%. C1 [Lloyd, B.; Akers, R. J.; Allan, S.; Appel, L. C.; Barnes, M.; Ben Ayed, N.; Challis, C. D.; Chapman, I. T.; Ciric, D.; Colyer, G.; Connor, J. W.; Conway, N. J.; Cox, M.; Cowley, S. C.; Cunningham, G.; Darke, A.; De Bock, M.; De Temmerman, G.; Dendy, R. O.; Driscoll, M. D.; Dunstan, M.; Field, A. R.; Fishpool, G.; Garzotti, L.; Gryaznevich, M. P.; Harrison, J.; Hastie, R. J.; Hawkes, N. C.; Hender, T. C.; Howell, D. F.; Keeling, D.; Kirk, A.; Lisgo, S.; Liu, Y. Q.; Maddison, G. P.; Manhood, S. J.; Martin, R.; McArdle, G. J.; Meyer, H.; Michael, C.; Morris, A. W.; Muir, D. G.; Nardon, E.; Naylor, G.; O'Brien, M. R.; Patel, A.; Pinches, S. D.; Price, M. N.; Roach, C. M.; Saarelma, S.; Scannell, R.; Sharapov, S. E.; Shevchenko, V.; Shibaev, S.; Stork, D.; Storrs, J.; Sykes, A.; Tamain, P.; Taylor, D.; Thomas-Davies, N.; Thornton, A.; Turnyanskiy, M. R.; Valovic, M.; Voss, G.; Walsh, M. J.; Warder, S. E. V.; Wisse, M.] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon, Oxon, England. [Alladio, F.] Assoc EURATOM ENEA Fus, Rome, Italy. [Barnes, M.; Kim, Y. C.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England. [Barratt, N. C.; Denner, P.; Dudson, B.; Freethy, S.; Gibson, K. J.; Harrison, J.; Morgan, T.; Thornton, A.; Vann, R. G. L.; Wilson, H. R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Breizman, B. N.] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA. [Cecconello, M.] Uppsala Univ, EURATOM VR Assoc, SE-75120 Uppsala, Sweden. [Delchambre, E.; Huysmans, G.] Assoc Euratom CEA, CEA Cadarache, F-13108 St Paul Les Durance, France. [Dunai, D.; Zoletnik, S.] EURATOM, KFKI RMKI, H-1525 Budapest, Hungary. [Elmore, S.] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3BX, Merseyside, England. [Guttenfelder, W.; Hnat, B.] Univ Warwick, Dept Phys, Ctr Fus Space & Astrophys, Coventry CV4 7AL, W Midlands, England. [Hua, M. -D.; Temple, D.; Windridge, M.] Univ London Imperial Coll Sci Technol & Med, London, England. [Hubbard, A.] MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Liang, Y.] Assoc EURATOM FZ Julich, D-52425 Julich, Germany. [Lilley, M. K.; Lisak, M.] Chalmers, S-41296 Gothenburg, Sweden. [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Mordijck, S.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Palenik, J.] Comenius Univ, EURATOM Assoc, Fac Math Phys & Informat, Bratislava 81806, Slovakia. [Rozhansky, V.] St Petersburg State Polytech Univ, St Petersburg, Russia. [Sabbagh, S. A.] Columbia Univ, Dept Appl Phys & Appl Maths, New York, NY USA. [Saveliev, A.] AF Ioffe Phys Tech Inst, St Petersburg, Russia. [Suttrop, W.] EURATOM, Max Planck Inst Plasmaphys, Garching, Germany. RP Lloyd, B (reprint author), EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon, Oxon, England. EM brian.lloyd@ccfe.ac.uk RI Roach, Colin/C-4839-2011; Barnes, Michael/F-4934-2011; Dendy, Richard/A-4533-2009; Ghim, Young-chul/A-4365-2009; Lilley, Matthew/I-1173-2013; Michael, Clive /M-1327-2013; Saveliev, Alexander/C-1095-2014; Urban, Jakub/B-5541-2008; Morgan, Thomas/B-3789-2017 OI Michael, Clive/0000-0003-1804-870X; Ghim, Young-chul/0000-0003-4123-9416; Urban, Jakub/0000-0002-1796-3597; Morgan, Thomas/0000-0002-5066-015X FU RCUK [EP/I501045]; European Community under EURATOM; CCFE FX This work was part-funded by the RCUK Energy Programme under grant EP/I501045 and the European Communities under the contract of Association between EURATOM and CCFE. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Part of the work was carried out within the framework of the European Fusion Development Agreement. NR 60 TC 18 Z9 18 U1 5 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2011 VL 51 IS 9 SI SI AR 094013 DI 10.1088/0029-5515/51/9/094013 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 818DP UT WOS:000294731600014 ER PT J AU Martin, P Adamek, J Agostinetti, P Agostini, M Alfier, A Angioni, C Antoni, V Apolloni, L Auriemma, F Barana, O Barison, S Baruzzo, M Bettini, P Boldrin, M Bolzonella, T Bonfiglio, D Bonomo, F Boozer, AH Brombin, M Brotankova, J Buffa, A Canton, A Cappello, S Carraro, L Cavazzana, R Cavinato, M Chacon, L Chitarin, G Cooper, WA Dal Bello, S Dalla Palma, M Delogu, R De Lorenzi, A De Masi, G Dong, JQ Drevlak, M Escande, DF Fantini, F Fassina, A Fellin, F Ferro, A Fiameni, S Fiorentin, A Franz, P Gaio, E Garbet, X Gazza, E Giudicotti, L Gnesotto, F Gobbin, M Grando, L Guo, SC Hirano, Y Hirshman, SP Ide, S Igochine, V In, Y Innocente, P Kiyama, S Liu, SF Liu, YQ Bruna, DL Lorenzini, R Luchetta, A Manduchi, G Mansfield, DK Marchiori, G Marcuzzi, D Marrelli, L Martini, S Matsunaga, G Martines, E Mazzitelli, G McCollam, K Menmuir, S Milani, F Momo, B Moresco, M Munaretto, S Novello, L Okabayashi, M Ortolani, S Paccagnella, R Pasqualotto, R Pavei, M Perverezev, GV Peruzzo, S Piovan, R Piovesan, P Piron, L Pizzimenti, A Pomaro, N Pomphrey, N Predebon, I Puiatti, ME Rigato, V Rizzolo, A Rostagni, G Rubinacci, G Ruzzon, A Sakakita, H Sanchez, R Sarff, JS Sattin, F Scaggion, A Scarin, P Schneider, W Serianni, G Sonato, P Spada, E Soppelsa, A Spagnolo, S Spolaore, M Spong, DA Spizzo, G Takechi, M Taliercio, C Terranova, D Toigo, V Valisa, M Veranda, M Vianello, N Villone, F Wang, Z White, RB Yadikin, D Zaccaria, P Zamengo, A Zanca, P Zaniol, B Zanotto, L Zilli, E Zollino, G Zuin, M AF Martin, P. Adamek, J. Agostinetti, P. Agostini, M. Alfier, A. Angioni, C. Antoni, V. Apolloni, L. Auriemma, F. Barana, O. Barison, S. Baruzzo, M. Bettini, P. Boldrin, M. Bolzonella, T. Bonfiglio, D. Bonomo, F. Boozer, A. H. Brombin, M. Brotankova, J. Buffa, A. Canton, A. Cappello, S. Carraro, L. Cavazzana, R. Cavinato, M. Chacon, L. Chitarin, G. Cooper, W. A. Dal Bello, S. Dalla Palma, M. Delogu, R. De Lorenzi, A. De Masi, G. Dong, J. Q. Drevlak, M. Escande, D. F. Fantini, F. Fassina, A. Fellin, F. Ferro, A. Fiameni, S. Fiorentin, A. Franz, P. Gaio, E. Garbet, X. Gazza, E. Giudicotti, L. Gnesotto, F. Gobbin, M. Grando, L. Guo, S. C. Hirano, Y. Hirshman, S. P. Ide, S. Igochine, V. In, Y. Innocente, P. Kiyama, S. Liu, S. F. Liu, Y. Q. Lopez Bruna, D. Lorenzini, R. Luchetta, A. Manduchi, G. Mansfield, D. K. Marchiori, G. Marcuzzi, D. Marrelli, L. Martini, S. Matsunaga, G. Martines, E. Mazzitelli, G. McCollam, K. Menmuir, S. Milani, F. Momo, B. Moresco, M. Munaretto, S. Novello, L. Okabayashi, M. Ortolani, S. Paccagnella, R. Pasqualotto, R. Pavei, M. Perverezev, G. V. Peruzzo, S. Piovan, R. Piovesan, P. Piron, L. Pizzimenti, A. Pomaro, N. Pomphrey, N. Predebon, I. Puiatti, M. E. Rigato, V. Rizzolo, A. Rostagni, G. Rubinacci, G. Ruzzon, A. Sakakita, H. Sanchez, R. Sarff, J. S. Sattin, F. Scaggion, A. Scarin, P. Schneider, W. Serianni, G. Sonato, P. Spada, E. Soppelsa, A. Spagnolo, S. Spolaore, M. Spong, D. A. Spizzo, G. Takechi, M. Taliercio, C. Terranova, D. Toigo, V. Valisa, M. Veranda, M. Vianello, N. Villone, F. Wang, Z. White, R. B. Yadikin, D. Zaccaria, P. Zamengo, A. Zanca, P. Zaniol, B. Zanotto, L. Zilli, E. Zollino, G. Zuin, M. TI Overview of the RFX fusion science program SO NUCLEAR FUSION LA English DT Article ID REVERSED-FIELD-PINCH; INTERNAL TRANSPORT BARRIER; PLASMAS; CONFINEMENT; STABILITY; MOD AB This paper summarizes the main achievements of the RFX fusion science program in the period between the 2008 and 2010 IAEA Fusion Energy Conferences. RFX-mod is the largest reversed field pinch in the world, equipped with a system of 192 coils for active control of MHD stability. The discovery and understanding of helical states with electron internal transport barriers and core electron temperature > 1.5 keV significantly advances the perspectives of the configuration. Optimized experiments with plasma current up to 1.8 MA have been realized, confirming positive scaling. The first evidence of edge transport barriers is presented. Progress has been made also in the control of first-wall properties and of density profiles, with initial first-wall lithization experiments. Micro-turbulence mechanisms such as ion temperature gradient and micro-tearing are discussed in the framework of understanding gradient-driven transport in low magnetic chaos helical regimes. Both tearing mode and resistive wall mode active control have been optimized and experimental data have been used to benchmark numerical codes. The RFX programme also provides important results for the fusion community and in particular for tokamaks and stellarators on feedback control of MHD stability and on three-dimensional physics. On the latter topic, the result of the application of stellarator codes to describe three-dimensional reversed field pinch physics will be presented. C1 [Martin, P.; Agostinetti, P.; Agostini, M.; Alfier, A.; Antoni, V.; Apolloni, L.; Auriemma, F.; Barana, O.; Baruzzo, M.; Bettini, P.; Boldrin, M.; Bolzonella, T.; Bonfiglio, D.; Bonomo, F.; Brombin, M.; Buffa, A.; Canton, A.; Cappello, S.; Carraro, L.; Cavazzana, R.; Cavinato, M.; Chitarin, G.; Dal Bello, S.; Dalla Palma, M.; Delogu, R.; De Lorenzi, A.; De Masi, G.; Fantini, F.; Fassina, A.; Fellin, F.; Ferro, A.; Fiorentin, A.; Franz, P.; Gaio, E.; Gazza, E.; Giudicotti, L.; Gnesotto, F.; Gobbin, M.; Grando, L.; Guo, S. C.; Innocente, P.; Lorenzini, R.; Luchetta, A.; Manduchi, G.; Marchiori, G.; Marcuzzi, D.; Marrelli, L.; Martini, S.; Martines, E.; Menmuir, S.; Milani, F.; Momo, B.; Moresco, M.; Munaretto, S.; Novello, L.; Ortolani, S.; Paccagnella, R.; Pasqualotto, R.; Pavei, M.; Peruzzo, S.; Piovan, R.; Piovesan, P.; Piron, L.; Pizzimenti, A.; Pomaro, N.; Predebon, I.; Puiatti, M. E.; Rigato, V.; Rizzolo, A.; Rostagni, G.; Ruzzon, A.; Sattin, F.; Scaggion, A.; Scarin, P.; Serianni, G.; Sonato, P.; Spada, E.; Soppelsa, A.; Spagnolo, S.; Spolaore, M.; Spizzo, G.; Taliercio, C.; Terranova, D.; Toigo, V.; Valisa, M.; Veranda, M.; Vianello, N.; Wang, Z.; Zaccaria, P.; Zamengo, A.; Zanca, P.; Zaniol, B.; Zanotto, L.; Zilli, E.; Zollino, G.; Zuin, M.] Assoc EURATOM ENEA Fus, Consorzio RFX, I-35137 Padua, Italy. [Adamek, J.; Brotankova, J.] Assoc EURATOM IPP CR, Inst Plasma Phys, Prague, Czech Republic. [Angioni, C.; Igochine, V.; Perverezev, G. V.; Yadikin, D.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Barison, S.; Fiameni, S.] CNR IENI, I-35127 Padua, Italy. [Boozer, A. H.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY USA. [Boozer, A. H.; Mansfield, D. K.; Okabayashi, M.; Pomphrey, N.; White, R. B.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Chacon, L.; Sanchez, R.; Spong, D. A.] ORNL Fus Energy Div, Oak Ridge, TN USA. [Cooper, W. A.] Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, Assoc Euratom Confederat Suisse, CH-1015 Lausanne, Switzerland. [Dong, J. Q.] Zhejiang Univ, Inst Fus Theory & Simulat, SW Inst Phys, Chengdu, Peoples R China. [Drevlak, M.; Schneider, W.] EURATOM, Max Planck Inst Plasmaphys, Greifswald, Germany. [Escande, D. F.] Univ Aix Marseille 1, CNRS, UMR 6633, Marseille, France. [Garbet, X.] CEA, IRFM, F-13108 St Paul Les Durance, France. [Hirano, Y.; Kiyama, S.; Sakakita, H.] Natl Inst Adv Ind Sci & Technol, Energy Technol Res Inst, Plasma Frontier Grp, Tsukuba, Ibaraki 3058568, Japan. [Ide, S.; Matsunaga, G.; Takechi, M.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [In, Y.] FAR TECH Inc, San Diego, CA 92121 USA. [Liu, S. F.] Nankai Univ, Dept Phys, Tianjin 300071, Peoples R China. [Liu, Y. Q.] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Lopez Bruna, D.] Asociac EURATOM CIEMAT, Lab Nacl Fus, Madrid, Spain. [Mazzitelli, G.] Assoc Euratom ENEA Fus, Ctr Ric Energia ENEA Frascati, Frascati, Italy. [McCollam, K.; Sarff, J. S.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Rubinacci, G.] Univ Naples Federico 2, Ass Euratom ENEA CREATE, DIEL, Naples, Italy. [Sanchez, R.] Univ Carlos III Madrid, Madrid, Spain. [Villone, F.] Univ Cassino, DAEIMI, Ass Euratom ENEA CREATE, I-03043 Cassino, Italy. RP Martin, P (reprint author), Assoc EURATOM ENEA Fus, Consorzio RFX, I-35137 Padua, Italy. EM piero.martin@igi.cnr.it RI zaniol, barbara/L-7745-2013; Soppelsa, Anton/G-6971-2011; Pasqualotto, Roberto/B-6676-2011; Martines, Emilio/B-1418-2009; Spong, Donald/C-6887-2012; Cappello, Susanna/H-9968-2013; Bonfiglio, Daniele/I-9398-2012; bettini, paolo/J-4062-2012; White, Roscoe/D-1773-2013; Sattin, Fabio/B-5620-2013; Marrelli, Lionello/G-4451-2013; Innocente, Paolo/G-4381-2013; Marchiori, Giuseppe/I-6853-2013; Luchetta, Adriano/I-8004-2013; Brotankova, Jana/M-6318-2014; Spizzo, Gianluca/B-7075-2009; Vianello, Nicola/B-6323-2008; Lopez Bruna, Daniel/L-6539-2014; Dalla Palma, Mauro/J-7709-2012; Adamek, Jiri/G-7421-2014; Momo, Barbara/I-7686-2015; Chitarin, Giuseppe/H-6133-2012; spagnolo, silvia/E-9384-2017; OI POMARO, NICOLA/0000-0002-5024-1457; Igochine, Valentin/0000-0003-2045-2998; antoni, vanni/0000-0002-4588-8168; Barison, Simona/0000-0002-6324-0859; , Vanni/0000-0002-4925-4752; zaniol, barbara/0000-0001-9934-8370; Martines, Emilio/0000-0002-4181-2959; Spong, Donald/0000-0003-2370-1873; Cappello, Susanna/0000-0002-2022-1113; Bonfiglio, Daniele/0000-0003-2638-317X; White, Roscoe/0000-0002-4239-2685; Marrelli, Lionello/0000-0001-5370-080X; Spizzo, Gianluca/0000-0001-8586-2168; Vianello, Nicola/0000-0003-4401-5346; Dalla Palma, Mauro/0000-0003-4239-8929; Momo, Barbara/0000-0001-7760-8960; Chitarin, Giuseppe/0000-0003-3060-8466; BETTINI, PAOLO/0000-0001-7084-4071; Escande, Dominique/0000-0002-0460-8385; AGOSTINI, MATTEO/0000-0002-3823-1002; Rigato, Valentino/0000-0003-0671-7750; Munaretto, Stefano/0000-0003-1465-0971 NR 49 TC 18 Z9 18 U1 6 U2 33 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2011 VL 51 IS 9 SI SI AR 094023 DI 10.1088/0029-5515/51/9/094023 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 818DP UT WOS:000294731600024 ER PT J AU Raman, R Ahn, JW Allain, JP Andre, R Bastasz, R Battaglia, D Beiersdorfer, P Bell, M Bell, R Belova, E Berkery, J Betti, R Bialek, J Bigelow, T Bitter, M Boedo, J Bonoli, P Boozer, A Bortolon, A Brennan, D Breslau, J Buttery, R Canik, J Caravelli, G Chang, C Crocker, NA Darrow, D Davis, W Delgado-Aparicio, L Diallo, A Ding, S D'Ippolito, D Domier, C Dorland, W Ethier, S Evans, T Ferron, J Finkenthal, M Foley, J Fonck, R Frazin, R Fredrickson, E Fu, G Gates, D Gerhardt, S Glasser, A Gorelenkov, N Gray, T Guo, Y Guttenfelder, W Hahm, T Harvey, R Hassanein, A Heidbrink, W Hill, K Hirooka, Y Hooper, EB Hosea, J Hu, B Humphreys, D Indireshkumar, K Jaeger, F Jarboe, T Jardin, S Jaworski, M Kaita, R Kallman, J Katsuro-Hopkins, O Kaye, S Kessel, C Kim, J Kolemen, E Krasheninnikov, S Kubota, S Kugel, H La Haye, R Lao, L LeBlanc, B Lee, W Lee, K Leuer, J Levinton, F Liang, Y Liu, D Luhmann, N Maingi, R Majeski, R Manickam, J Mansfield, D Maqueda, R Mazzucato, E McLean, A McCune, D McGeehan, B McKee, G Medley, S Menard, J Menon, M Meyer, H Mikkelsen, D Miloshevsky, G Mueller, D Munsat, T Myra, J Nelson, B Nishino, N Nygren, R Ono, M Osborne, T Park, H Park, J Paul, S Peebles, W Penaflor, B Phillips, C Pigarov, A Podesta, M Preinhaelter, J Ren, Y Reimerdes, H Rewoldt, G Ross, P Rowley, C Ruskov, E Russell, D Ruzic, D Ryan, P Sabbagh, SA Schaffer, M Schuster, E Scotti, F Shaing, K Shevchenko, V Shinohara, K Sizyuk, V Skinner, CH Smirnov, A Smith, D Snyder, P Solomon, W Sontag, A Soukhanovskii, V Stoltzfus-Dueck, T Stotler, D Stratton, B Stutman, D Takahashi, H Takase, Y Tamura, N Tang, X Taylor, CN Taylor, G Taylor, C Tritz, K Tsarouhas, D Umansky, M Urban, J Walker, M Wampler, W Wang, W Whaley, J White, R Wilgen, J Wilson, R Wong, KL Wright, J Xia, Z Youchison, D Yu, G Yuh, H Zakharov, L Zemlyanov, D Zimmer, G Zweben, SJ AF Raman, R. Ahn, J-W. Allain, J. P. Andre, R. Bastasz, R. Battaglia, D. Beiersdorfer, P. Bell, M. Bell, R. Belova, E. Berkery, J. Betti, R. Bialek, J. Bigelow, T. Bitter, M. Boedo, J. Bonoli, P. Boozer, A. Bortolon, A. Brennan, D. Breslau, J. Buttery, R. Canik, J. Caravelli, G. Chang, C. Crocker, N. A. Darrow, D. Davis, W. Delgado-Aparicio, L. Diallo, A. Ding, S. D'Ippolito, D. Domier, C. Dorland, W. Ethier, S. Evans, T. Ferron, J. Finkenthal, M. Foley, J. Fonck, R. Frazin, R. Fredrickson, E. Fu, G. Gates, D. Gerhardt, S. Glasser, A. Gorelenkov, N. Gray, T. Guo, Y. Guttenfelder, W. Hahm, T. Harvey, R. Hassanein, A. Heidbrink, W. Hill, K. Hirooka, Y. Hooper, E. B. Hosea, J. Hu, B. Humphreys, D. Indireshkumar, K. Jaeger, F. Jarboe, T. Jardin, S. Jaworski, M. Kaita, R. Kallman, J. Katsuro-Hopkins, O. Kaye, S. Kessel, C. Kim, J. Kolemen, E. Krasheninnikov, S. Kubota, S. Kugel, H. La Haye, R. Lao, L. LeBlanc, B. Lee, W. Lee, K. Leuer, J. Levinton, F. Liang, Y. Liu, D. Luhmann, N., Jr. Maingi, R. Majeski, R. Manickam, J. Mansfield, D. Maqueda, R. Mazzucato, E. McLean, A. McCune, D. McGeehan, B. McKee, G. Medley, S. Menard, J. Menon, M. Meyer, H. Mikkelsen, D. Miloshevsky, G. Mueller, D. Munsat, T. Myra, J. Nelson, B. Nishino, N. Nygren, R. Ono, M. Osborne, T. Park, H. Park, J. Paul, S. Peebles, W. Penaflor, B. Phillips, C. Pigarov, A. Podesta, M. Preinhaelter, J. Ren, Y. Reimerdes, H. Rewoldt, G. Ross, P. Rowley, C. Ruskov, E. Russell, D. Ruzic, D. Ryan, P. Sabbagh, S. A. Schaffer, M. Schuster, E. Scotti, F. Shaing, K. Shevchenko, V. Shinohara, K. Sizyuk, V. Skinner, C. H. Smirnov, A. Smith, D. Snyder, P. Solomon, W. Sontag, A. Soukhanovskii, V. Stoltzfus-Dueck, T. Stotler, D. Stratton, B. Stutman, D. Takahashi, H. Takase, Y. Tamura, N. Tang, X. Taylor, C. N. Taylor, G. Taylor, C. Tritz, K. Tsarouhas, D. Umansky, M. Urban, J. Walker, M. Wampler, W. Wang, W. Whaley, J. White, R. Wilgen, J. Wilson, R. Wong, K. L. Wright, J. Xia, Z. Youchison, D. Yu, G. Yuh, H. Zakharov, L. Zemlyanov, D. Zimmer, G. Zweben, S. J. TI Overview of physics results from NSTX SO NUCLEAR FUSION LA English DT Article ID TOROIDAL PLASMAS; WALL MODES AB In the last two experimental campaigns, the low aspect ratio NSTX has explored physics issues critical to both toroidal confinement physics and ITER. Experiments have made extensive use of lithium coatings for wall conditioning, correction of non-axisymmetric field errors and control of n = 1 resistive wall modes (RWMs) to produce high-performance neutral-beam heated discharges extending to 1.7 s in duration with non-inductive current fractions up to 0.7. The RWM control coils have been used to trigger repetitive ELMs with high reliability, and they have also contributed to an improved understanding of both neoclassical tearing mode and RWM stabilization physics, including the interplay between rotation and kinetic effects on stability. High harmonic fast wave (HHFW) heating has produced plasmas with central electron temperatures exceeding 6 keV. The HHFW heating was used to show that there was a 20-40% higher power threshold for the L-H transition for helium than for deuterium plasmas. A new diagnostic showed a depletion of the fast-ion density profile over a broad spatial region as a result of toroidicity-induced Alfven eigenmodes (TAEs) and energetic-particle modes (EPMs) bursts. In addition, it was observed that other modes (e. g. global Alfven eigenmodes) can trigger TAE and EPM bursts, suggesting that fast ions are redistributed by high-frequency AEs. The momentum pinch velocity determined by a perturbative technique decreased as the collisionality was reduced, although the pinch to diffusion ratio, V(pinch)/chi(phi), remained approximately constant. The mechanisms of deuterium retention by graphite and lithium-coated graphite plasma-facing components have been investigated. To reduce divertor heat flux, a novel divertor configuration, the 'snowflake' divertor, was tested in NSTX and many beneficial aspects were found. A reduction in the required central solenoid flux has been realized in NSTX when discharges initiated by coaxial helicity injection were ramped in current using induction. The resulting plasmas have characteristics needed to meet the objectives of the non-inductive start-up and ramp-up program of NSTX. C1 [Raman, R.; Glasser, A.; Jarboe, T.; Nelson, B.] Univ Washington, Seattle, WA 98195 USA. [Ahn, J-W.; Battaglia, D.; Bigelow, T.; Canik, J.; Gray, T.; Jaeger, F.; Maingi, R.; McLean, A.; Ryan, P.; Sontag, A.; Wilgen, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Allain, J. P.; Hassanein, A.; Miloshevsky, G.; Sizyuk, V.; Taylor, C. N.; Taylor, C.; Tsarouhas, D.; Zemlyanov, D.] Purdue Univ, W Lafayette, IN 47907 USA. [Andre, R.; Bell, M.; Bell, R.; Belova, E.; Betti, R.; Bitter, M.; Breslau, J.; Darrow, D.; Davis, W.; Delgado-Aparicio, L.; Diallo, A.; Ethier, S.; Fredrickson, E.; Fu, G.; Gates, D.; Gerhardt, S.; Gorelenkov, N.; Guttenfelder, W.; Hahm, T.; Hill, K.; Hosea, J.; Indireshkumar, K.; Jardin, S.; Jaworski, M.; Kaita, R.; Kallman, J.; Kaye, S.; Kessel, C.; Kolemen, E.; Kugel, H.; LeBlanc, B.; Majeski, R.; Manickam, J.; Mansfield, D.; Mazzucato, E.; McCune, D.; Medley, S.; Menard, J.; Mikkelsen, D.; Mueller, D.; Ono, M.; Park, J.; Paul, S.; Phillips, C.; Podesta, M.; Ren, Y.; Rewoldt, G.; Ross, P.; Rowley, C.; Scotti, F.; Skinner, C. H.; Solomon, W.; Stoltzfus-Dueck, T.; Stotler, D.; Stratton, B.; Takahashi, H.; Taylor, G.; Wang, W.; White, R.; Wilson, R.; Wong, K. L.; Zakharov, L.; Zimmer, G.; Zweben, S. J.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Bastasz, R.; Nygren, R.; Wampler, W.; Whaley, J.; Youchison, D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Beiersdorfer, P.; Hooper, E. B.; Soukhanovskii, V.; Umansky, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Berkery, J.; Bialek, J.; Boozer, A.; Katsuro-Hopkins, O.; Reimerdes, H.; Sabbagh, S. A.] Columbia Univ, New York, NY 10027 USA. [Betti, R.; Hu, B.] Univ Rochester, Rochester, NY 14623 USA. [Boedo, J.; Krasheninnikov, S.; Pigarov, A.; Yu, G.] Univ Calif San Diego, San Diego, CA 92093 USA. [Bonoli, P.; Wright, J.] MIT, Cambridge, MA 02139 USA. [Bortolon, A.; Domier, C.; Lee, K.; Liang, Y.; Luhmann, N., Jr.; Xia, Z.] Univ Calif Davis, Davis, CA 95616 USA. [Brennan, D.] Univ Tulsa, Tulsa, OK 74104 USA. [Buttery, R.; Evans, T.; Ferron, J.; Humphreys, D.; La Haye, R.; Lao, L.; Leuer, J.; Osborne, T.; Penaflor, B.; Schaffer, M.; Snyder, P.; Walker, M.] Gen Atom Co, San Diego, CA 92186 USA. [Caravelli, G.; Finkenthal, M.; Stutman, D.; Tritz, K.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Chang, C.] NYU, New York, NY 10012 USA. [Crocker, N. A.; Kubota, S.; Peebles, W.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Ding, S.; Guo, Y.] Acad Sinica, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. [D'Ippolito, D.; Myra, J.; Russell, D.] Lodestar Res Corp, Boulder, CO 80301 USA. [Dorland, W.] Univ Maryland, College Pk, MD 20742 USA. [Foley, J.; Levinton, F.; Maqueda, R.; Yuh, H.] Nova Photon Inc, Princeton, NJ 08543 USA. [Fonck, R.; McKee, G.; Shaing, K.; Smith, D.] Univ Wisconsin, Madison, WI 53706 USA. [Frazin, R.; Ruzic, D.] Univ Illinois, Champaign, IL 61820 USA. [Harvey, R.; Smirnov, A.] CompX, Del Mar, CA 92014 USA. [Heidbrink, W.; Liu, D.; Ruskov, E.] Univ Calif Irvine, Irvine, CA 92697 USA. [Hirooka, Y.; Tamura, N.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Kim, J.; Lee, W.; Park, H.] Pohang Univ Sci & Technol POSTECH, Pohang, Gyungbuk, South Korea. [McGeehan, B.] Dickinson Coll, Carlisle, PA 17013 USA. [Menon, M.] Think Tank Inc, Silver Spring, MD 20910 USA. [Meyer, H.; Shevchenko, V.] UK Atom Energy Agcy, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Munsat, T.] Univ Colorado, Boulder, CO 80301 USA. [Nishino, N.] Hiroshima Univ, Hiroshima 7390046, Japan. [Preinhaelter, J.; Urban, J.] AS CR, Inst Plasma Phys, Prague 8, Czech Republic. [Schuster, E.] Lehigh Univ, Bethlehem, PA 18015 USA. [Shinohara, K.] Japan Atom Energy Agcy, Ibaraki, Tokaimura, Japan. [Takase, Y.] Univ Tokyo, Chiba 2778561, Japan. [Tang, X.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Raman, R (reprint author), Univ Washington, Seattle, WA 98195 USA. RI Nishino, Nobuhiro/D-6390-2011; Frazin, Richard/J-2625-2012; Dorland, William/B-4403-2009; Rowley, Clarence/F-9068-2013; Diallo, Ahmed/M-7792-2013; Smirnov, Alexander /A-4886-2014; White, Roscoe/D-1773-2013; Preinhaelter, Josef/H-1394-2014; Urban, Jakub/B-5541-2008; Bortolon, Alessandro/H-5764-2015; Stotler, Daren/J-9494-2015; Stutman, Dan/P-4048-2015; Liu, Deyong/Q-2797-2015 OI Canik, John/0000-0001-6934-6681; Walker, Michael/0000-0002-4341-994X; Youchison, Dennis/0000-0002-7366-1710; Davis, William/0000-0003-0666-7247; Menard, Jonathan/0000-0003-1292-3286; Allain, Jean Paul/0000-0003-1348-262X; Solomon, Wayne/0000-0002-0902-9876; Dorland, William/0000-0003-2915-724X; White, Roscoe/0000-0002-4239-2685; Urban, Jakub/0000-0002-1796-3597; Bortolon, Alessandro/0000-0002-0094-0209; Stotler, Daren/0000-0001-5521-8718; Liu, Deyong/0000-0001-9174-7078 FU US Department of Energy [DE-AC02-09CH11466, DE-FG02-99ER54519 AM08] FX This paper has been authored by Princeton University and collaborators under contract number(s) DE-AC02-09CH11466 and DE-FG02-99ER54519 AM08 with the US Department of Energy. The publisher, by accepting this paper for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 53 TC 9 Z9 9 U1 4 U2 29 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD SEP PY 2011 VL 51 IS 9 SI SI AR 094011 DI 10.1088/0029-5515/51/9/094011 PG 18 WC Physics, Fluids & Plasmas SC Physics GA 818DP UT WOS:000294731600012 ER PT J AU Adak, S Nakotte, H de Chatel, PF Kiefer, B AF Adak, S. Nakotte, H. de Chatel, P. F. Kiefer, B. TI Uranium at high pressure from first principles SO PHYSICA B-CONDENSED MATTER LA English DT Article DE Uranium; Equation of state; First principles; DFT ID GENERALIZED GRADIENT APPROXIMATION; AUGMENTED-WAVE METHOD; ULTRASOFT PSEUDOPOTENTIALS; CRYSTAL-STRUCTURES; ALPHA-URANIUM; METALS; TRANSITION; TEMPERATURES AB The equation of state, structural behavior and phase stability of alpha-uranium have been investigated up to 1.3 TPa using the density functional theory, adopting a simple description of electronic structure that neglects the spin-orbit coupling and strong electronic correlations. Comparison of the enthalpies of Cmcm (alpha-U), bcc, hcp, fcc and bct reveals that the alpha-U phase is stable up to a pressure of similar to 285 GPa, above which it transforms to a bct-U phase. The enthalpy differences between the bct and bcc phases decrease with pressure but bcc is energetically unfavorable at least up to 1.3 TPa, the upper pressure limit of this study. The enthalpies of the close-packed hcp and fcc phases are 0.7 and 1.0 eV higher than that of the stable bct-U phase at a pressure of 1.3 TPa, supporting the wide stability field of the bcc phase. The equation of state, the lattice parameters and the anisotropic compression parameters are in good agreement with experiment up to 100 GPa and previous theory. The elastic constants at the equilibrium volume of alpha-U confirm our bulk modulus. This suggests that our simplified description of electronic structure of uranium captures the relevant physics and may be used to describe bonding and other light actinides that show itinerant electronic behavior especially at high pressure. (C) 2011 Elsevier B.V. All rights reserved. C1 [Adak, S.; Nakotte, H.; de Chatel, P. F.; Kiefer, B.] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. [Adak, S.; Nakotte, H.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Kiefer, B (reprint author), New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. EM bkiefer@nmsu.edu FU National Science Foundation [DMR 0804032] FX This work was supported by National Science Foundation under Grant no. DMR 0804032. The authors would like to acknowledge insightful discussions with Per Soderlind (LLNL). NR 28 TC 12 Z9 13 U1 3 U2 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4526 J9 PHYSICA B JI Physica B PD SEP 1 PY 2011 VL 406 IS 17 BP 3342 EP 3347 DI 10.1016/j.physb.2011.05.057 PG 6 WC Physics, Condensed Matter SC Physics GA 796DJ UT WOS:000293030100042 ER PT J AU Dugger, M AF Dugger, Michael TI A premier event SO TRIBOLOGY & LUBRICATION TECHNOLOGY LA English DT Editorial Material C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Dugger, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mtdugge@sandia.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU SOC TRIBOLOGISTS & LUBRICATION ENGINEERS PI PARK RIDGE PA 840 BUSSE HIGHWAY, PARK RIDGE, IL 60068 USA SN 1545-858X J9 TRIBOL LUBR TECHNOL JI Tribol. Lubr. Technol. PD SEP PY 2011 VL 67 IS 9 BP 4 EP 4 PG 1 WC Engineering, Mechanical SC Engineering GA 820YW UT WOS:000294943000001 ER PT J AU Zhang, YHP AF Zhang, Y. -H. Percival TI Simpler Is Better: High-Yield and Potential Low-Cost Biofuels Production through Cell-Free Synthetic Pathway Biotransformation (SyPaB) SO ACS CATALYSIS LA English DT Article DE artificial photosynthesis; biofuels; biological CO2 fixation; hydrogen; in vitro synthetic biology; biocatalysis and biotransformation; synthetic pathway biotransformation (SyPaB) ID RIBULOSE MONOPHOSPHATE PATHWAY; IN-VITRO RECONSTITUTION; ONE-POT SYNTHESIS; COFACTOR REGENERATION; HYDROGEN-PRODUCTION; CARBON-DIOXIDE; PYROCOCCUS-FURIOSUS; ENZYMATIC PATHWAY; CARBOHYDRATE ECONOMY; AFFINITY ADSORPTION AB The production of biofuels from renewable sugars isolated from plants or produced through artificial photosynthesis would provide a sustainable transportation fuel alternative for decreasing reliance on crude oil, mitigating greenhouse gas emissions, creating new manufacturing jobs, and enhancing national energy security. Since sugar costs usually account for at least 50% of biofuels' selling prices, it is vital to produce desired biofuels with high product yields and at low production costs. Here I suggest high-product yield and potentially low-cost biofuels production through cell-free synthetic enzymatic pathway biotransformation (SyPaB) by in vitro assembly of stable enzymes and (biomimetic) coenzymes. SyPaB can achieve high product yields or high energy efficiencies that living entities cannot achieve. Great potentials of SyPaB, from chiral compounds, biodegradable sugar batteries, sulfur-free jet fuel, hydrogen, sugar hydrogen fuel cell vehicles, high-density electricity storage, to synthetic starch, are motivation to solve the remaining obstacles by using available technologies, such as protein engineering, enzyme immobilization, unit operations, and technology integration. The biotransformation through in vitro assembly of numerous enhanced performance and stable enzymes in one bioreactor that can last a very long reaction time (e g, several months or even years) would be an out-of-the-box solution for high-yield and low-cost biofuels production. C1 [Zhang, Y. -H. Percival] Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] Virginia Tech, ICTAS, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] DOE Bioenergy Sci Ctr, Oak Ridge, TN 37831 USA. [Zhang, Y. -H. Percival] Gate Fuels Inc, Blacksburg, VA 24060 USA. RP Zhang, YHP (reprint author), Virginia Tech, Dept Biol Syst Engn, 210-A Seitz Hall, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu FU AFOSR; DOE BioEnergy Science Center (BESC); VT GALS Bioprocessing and Biodesign Center FX The author is grateful for support by the AFOSR, DOE BioEnergy Science Center (BESC), and VT GALS Bioprocessing and Biodesign Center. NR 131 TC 36 Z9 37 U1 6 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD SEP PY 2011 VL 1 IS 9 BP 998 EP 1009 DI 10.1021/cs200218f PG 12 WC Chemistry, Physical SC Chemistry GA 817VK UT WOS:000294704500003 ER PT J AU Stacy, R Begley, DW Phan, I Staker, BL Van Voorhis, WC Varani, G Buchko, GW Stewart, LJ Myler, PJ AF Stacy, Robin Begley, Darren W. Phan, Isabelle Staker, Bart L. Van Voorhis, Wesley C. Varani, Gabriele Buchko, Garry W. Stewart, Lance J. Myler, Peter J. TI Structural genomics of infectious disease drug targets: the SSGCID introduction SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Editorial Material ID PROTEIN CRYSTALLIZATION SYSTEM; NON-MEVALONATE PATHWAY; ISOPRENOID BIOSYNTHESIS; DATA-BANK; CRYSTALLOGRAPHY; INHIBITORS; CONSORTIUM; DISCOVERY; SLIPCHIP C1 [Stacy, Robin; Begley, Darren W.; Phan, Isabelle; Staker, Bart L.; Van Voorhis, Wesley C.; Varani, Gabriele; Buchko, Garry W.; Stewart, Lance J.; Myler, Peter J.] ASeattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA. [Stacy, Robin; Phan, Isabelle; Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Begley, Darren W.; Staker, Bart L.; Stewart, Lance J.] Emerald BioStruct, Bainbridge Isl, WA 98110 USA. [Van Voorhis, Wesley C.] Univ Washington, Dept Med, Div Allergy & Infect Dis, Seattle, WA 98195 USA. [Varani, Gabriele] Univ Washington, Dept Chem, Seattle, WA 98185 USA. [Varani, Gabriele] Univ Washington, Dept Biochem, Seattle, WA 98185 USA. [Buchko, Garry W.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99354 USA. [Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. [Myler, Peter J.] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA. RP Myler, PJ (reprint author), ASeattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA. EM peter.myler@seattlebiomed.org RI Buchko, Garry/G-6173-2015 OI Buchko, Garry/0000-0002-3639-1061 FU NIAID NIH HHS [HHSN272200700057C]; PHS HHS [HHSN272200700057C] NR 32 TC 21 Z9 22 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2011 VL 67 BP 979 EP 984 DI 10.1107/S1744309111029204 PN 9 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 817QZ UT WOS:000294690300001 PM 21904037 ER PT J AU Edwards, TE Bryan, CM Leibly, DJ Dieterich, SH Abendroth, J Sankaran, B Sivam, D Staker, BL Van Voorhis, WC Myler, PJ Stewart, LJ AF Edwards, Thomas E. Bryan, Cassie M. Leibly, David J. Dieterich, Shellie H. Abendroth, Jan Sankaran, Banumathi Sivam, Dhileep Staker, Bart L. Van Voorhis, Wesley C. Myler, Peter J. Stewart, Lance J. TI Structures of a putative zeta-class glutathione S-transferase from the pathogenic fungus Coccidioides immitis SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID STRUCTURE VALIDATION; CRYSTAL-STRUCTURES; ENZYME; CRYSTALLOGRAPHY; ARCHITECTURE; MOLPROBITY; CHITINASE; MECHANISM; REVEALS; DISEASE AB Coccidioides immitis is a pathogenic fungus populating the southwestern United States and is a causative agent of coccidioidomycosis, sometimes referred to as Valley Fever. Although the genome of this fungus has been sequenced, many operons are not properly annotated. Crystal structures are presented for a putative uncharacterized protein that shares sequence similarity with zeta-class glutathione S-transferases (GSTs) in both apo and glutathione-bound forms. The apo structure reveals a nonsymmetric homodimer with each protomer comprising two subdomains: a C-terminal helical domain and an N-terminal thioredoxin-like domain that is common to all GSTs. Half-site binding is observed in the glutathione-bound form. Considerable movement of some components of the active site relative to the glutathione-free form was observed, indicating an induced-fit mechanism for cofactor binding. The sequence homology, structure and half-site occupancy imply that the protein is a zeta-class glutathione S-transferase, a maleylacetoacetate isomerase (MAAI). C1 [Edwards, Thomas E.; Bryan, Cassie M.; Leibly, David J.; Dieterich, Shellie H.; Abendroth, Jan; Sivam, Dhileep; Staker, Bart L.; Van Voorhis, Wesley C.; Myler, Peter J.; Stewart, Lance J.] Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA. [Edwards, Thomas E.; Dieterich, Shellie H.; Abendroth, Jan; Staker, Bart L.; Stewart, Lance J.] Emerald BioStruct Inc, Bainbridge Isl, WA 98110 USA. [Bryan, Cassie M.; Leibly, David J.; Van Voorhis, Wesley C.] Univ Washington, Dept Med, Div Allergy & Infect Dis, Sch Med, Seattle, WA 98195 USA. [Sankaran, Banumathi] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. [Sivam, Dhileep; Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. [Myler, Peter J.] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA. RP Edwards, TE (reprint author), Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA. EM tedwards@embios.com FU National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272200700057C]; National Institutes of Health; National Institute of General Medical Sciences; Howard Hughes Medical Institute; Office of Science, Office of Basic Energy Sciences; US Department of Energy [DE-AC02-05CH11231] FX The authors thank the whole SSGCID team. This research was funded under Federal Contract No. HHSN272200700057C from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services. The Berkeley Center for Structural Biology is supported in part by the National Institutes of Health, National Institute of General Medical Sciences and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences and the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 37 TC 2 Z9 2 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2011 VL 67 BP 1038 EP 1043 DI 10.1107/S1744309111009493 PN 9 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 817QZ UT WOS:000294690300011 PM 21904047 ER PT J AU Gardberg, A Abendroth, J Bhandari, J Sankaran, B Staker, B AF Gardberg, Anna Abendroth, Jan Bhandari, Janhavi Sankaran, Banumathi Staker, Bart TI Structure of fructose bisphosphate aldolase from Bartonella henselae bound to fructose 1,6-bisphosphate SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article AB Fructose bisphosphate aldolase (FBPA) enzymes have been found in a broad range of eukaryotic and prokaryotic organisms. FBPA catalyses the cleavage of fructose 1,6-bisphosphate into glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. The SSGCID has reported several FBPA structures from pathogenic sources, including the bacterium Brucella melitensis and the protozoan Babesia bovis. Bioinformatic analysis of the Bartonella henselae genome revealed an FBPA homolog. The B. henselae FBPA enzyme was recombinantly expressed and purified for X-ray crystallographic studies. The purified enzyme crystallized in the apo form but failed to diffract; however, well diffracting crystals could be obtained by cocrystallization in the presence of the native substrate fructose 1,6-bisphosphate. A data set to 2.35 angstrom resolution was collected from a single crystal at 100 K. The crystal belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 72.39, b = 127.71, c = 157.63 angstrom. The structure was refined to a final free R factor of 22.2%. The structure shares the typical barrel tertiary structure and tetrameric quaternary structure reported for previous FBPA structures and exhibits the same Schiff base in the active site. C1 [Gardberg, Anna; Abendroth, Jan; Staker, Bart] Emerald BioStruct, Bainbridge Isl, WA 98110 USA. [Bhandari, Janhavi] Univ Washington, Sch Med, Dept Allergy & Infect Dis, Seattle, WA USA. [Sankaran, Banumathi] Adv Light Source, Berkeley, CA USA. RP Gardberg, A (reprint author), Emerald BioStruct, 7869 NE Day Rd W, Bainbridge Isl, WA 98110 USA. EM agardberg@embios.com FU National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272200700057C]; National Institutes of Health, National Institute of General Medical Sciences; Howard Hughes Medical Institute; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231] FX The authors thank the SSGCID teams at SBRI, UW and Emerald BioStructures. This research was funded under Federal Contract No. HHSN272200700057C from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services. The Berkeley Center for Structural Biology is supported in part by the National Institutes of Health, National Institute of General Medical Sciences and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 15 TC 2 Z9 2 U1 1 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2011 VL 67 BP 1051 EP 1054 DI 10.1107/S174430911101894X PN 9 PG 4 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 817QZ UT WOS:000294690300013 PM 21904049 ER PT J AU Buchko, GW Edwards, TE Abendroth, J Arakaki, TL Law, L Napuli, AJ Hewitt, SN Van Voorhis, WC Stewart, LJ Staker, BL Myler, PJ AF Buchko, Garry W. Edwards, Thomas E. Abendroth, Jan Arakaki, Tracy L. Law, Laura Napuli, Alberto J. Hewitt, Stephen N. Van Voorhis, Wesley C. Stewart, Lance J. Staker, Bart L. Myler, Peter J. TI Structure of a Nudix hydrolase (MutT) in the Mg2+-bound state from Bartonella henselae, the bacterium responsible for cat scratch fever SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID DEINOCOCCUS-RADIODURANS; CIRCULAR-DICHROISM; MACROMOLECULAR CRYSTALLOGRAPHY; PROTEIN; PYROPHOSPHOHYDROLASE; TRIPHOSPHATE; FAMILY; ENZYME; IDENTIFICATION; SOFTWARE AB Cat scratch fever (also known as cat scratch disease and bartonellosis) is an infectious disease caused by the proteobacterium Bartonella henselae following a cat scratch. Although the infection usually resolves spontaneously without treatment in healthy adults, bartonellosis may lead to severe complications in young children and immunocompromised patients, and there is new evidence suggesting that B. henselae may be associated with a broader range of clinical symptoms then previously believed. The genome of B. henselae contains genes for two putative Nudix hydrolases, BH02020 and BH01640 (KEGG). Nudix proteins play an important role in regulating the intracellular concentration of nucleotide cofactors and signaling molecules. The amino-acid sequence of BH02020 is similar to that of the prototypical member of the Nudix superfamily, Escherichia coli MutT, a protein that is best known for its ability to neutralize the promutagenic compound 7,8-dihydro-8-oxoguanosine triphosphate. Here, the crystal structure of BH02020 (Bh-MutT) in the Mg2+-bound state was determined at 2.1 angstrom resolution (PDB entry 3hhj). As observed in all Nudix hydrolase structures, the alpha-helix of the highly conserved 'Nudix box' in Bh-MutT is one of two helices that sandwich a four-stranded mixed beta-sheet with the central two beta-strands parallel to each other. The catalytically essential divalent cation observed in the Bh-MutT structure, Mg2+, is coordinated to the side chains of Glu57 and Glu61. The structure is not especially robust; a temperature melt obtained using circular dichroism spectroscopy shows that Bh-MutT irreversibly unfolds and precipitates out of solution upon heating, with a T-m of 333 K. C1 [Buchko, Garry W.; Edwards, Thomas E.; Abendroth, Jan; Arakaki, Tracy L.; Law, Laura; Napuli, Alberto J.; Hewitt, Stephen N.; Van Voorhis, Wesley C.; Stewart, Lance J.; Staker, Bart L.; Myler, Peter J.] Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA. [Buchko, Garry W.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Edwards, Thomas E.; Abendroth, Jan; Arakaki, Tracy L.; Law, Laura; Stewart, Lance J.; Staker, Bart L.] Emerald BioStruct, Bainbridge Isl, WA USA. [Napuli, Alberto J.; Hewitt, Stephen N.; Van Voorhis, Wesley C.] Univ Washington, Dept Med, Seattle, WA USA. [Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Myler, Peter J.] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA. [Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. RP Buchko, GW (reprint author), Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA. EM garry.buchko@pnnl.gov; tedwards@embios.com RI Buchko, Garry/G-6173-2015; OI Buchko, Garry/0000-0002-3639-1061; Myler, Peter/0000-0002-0056-0513 FU National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272200700057C]; US Department of Energy's Office of Biological and Environmental Research (BER) at Pacific Northwest National Laboratory (PNNL) FX This research was funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services under Federal Contract No. HHSN272200700057C. The SSGCID internal ID for Bh-MutT is BaheA.00264.a. Part of this research was conducted at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). Battelle operates PNNL for the US Department of Energy. NR 45 TC 2 Z9 3 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2011 VL 67 BP 1078 EP 1083 DI 10.1107/S1744309111011559 PN 9 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 817QZ UT WOS:000294690300017 PM 21904053 ER PT J AU Leibly, DJ Abendroth, J Bryan, CM Sankaran, B Kelley, A Barrett, LK Stewart, L Van Voorhis, WC AF Leibly, David J. Abendroth, Jan Bryan, Cassie M. Sankaran, Banumathi Kelley, Angela Barrett, Lynn K. Stewart, Lance Van Voorhis, Wesley C. TI Structure of thymidylate kinase from Ehrlichia chaffeensis SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID HETEROLOGOUS EXPRESSION; PROTEIN-PRODUCTION; CRYSTAL-STRUCTURES; CRYSTALLOGRAPHY; SOFTWARE AB The enzyme thymidylate kinase phosphorylates the substrate thymidine 5'-phosphate (dTMP) to form thymidine 5'-diphosphate (dTDP), which is further phosphorylated to dTTP for incorporation into DNA. Ehrlichia chaffeensis is the etiologic agent of human monocytotropic erlichiosis (HME), a potentially life-threatening tick-borne infection. HME is endemic in the United States from the southern states up to the eastern seaboard. HME is transmitted to humans via the lone star tick Amblyomma americanum. Here, the 2.15 angstrom resolution crystal structure of thymidylate kinase from E. chaffeensis in the apo form is presented. C1 [Leibly, David J.; Abendroth, Jan; Bryan, Cassie M.; Kelley, Angela; Barrett, Lynn K.; Stewart, Lance; Van Voorhis, Wesley C.] SSGCID, Seattle, WA 98125 USA. [Leibly, David J.; Bryan, Cassie M.; Kelley, Angela; Barrett, Lynn K.; Van Voorhis, Wesley C.] Univ Washington, Dept Allergy & Infect Dis, Sch Med, Seattle, WA 98195 USA. [Abendroth, Jan; Stewart, Lance] Emerald BioStruct Inc, Bainbridge Isl, WA 98110 USA. [Sankaran, Banumathi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. RP Van Voorhis, WC (reprint author), SSGCID, Seattle, WA 98125 USA. EM wesley@u.washington.edu FU National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Department of Health and Human Services [HHSN272200700057C] FX The authors wish to thank all of the members of the SSGCID team. This research was funded under Federal Contract No. HHSN272200700057C from the National Institute of Allergy and Infectious Diseases, the National Institutes of Health, Department of Health and Human Services. NR 25 TC 2 Z9 2 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2011 VL 67 BP 1090 EP 1094 DI 10.1107/S174430911101493X PN 9 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 817QZ UT WOS:000294690300019 PM 21904055 ER PT J AU Zhang, Y Edwards, TE Begley, DW Abramov, A Thompkins, KB Ferrell, M Guo, WJ Phan, I Olsen, C Napuli, A Sankaran, B Stacy, R Van Voorhis, WC Stewart, LJ Myler, PJ AF Zhang, Y. Edwards, T. E. Begley, D. W. Abramov, A. Thompkins, K. B. Ferrell, M. Guo, W. J. Phan, I. Olsen, C. Napuli, A. Sankaran, B. Stacy, R. Van Voorhis, W. C. Stewart, L. J. Myler, P. J. TI Structure of nitrilotriacetate monooxygenase component B from Mycobacterium thermoresistibile SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID FLAVIN REDUCTASE; 4-HYDROXYPHENYLACETATE 3-MONOOXYGENASE; STREPTOMYCES-COELICOLOR; STRUCTURE VALIDATION; CRYSTAL-STRUCTURES; TUBERCULOSIS; MECHANISM; CLONING; OXIDOREDUCTASE; MACROPHAGES AB Mycobacterium tuberculosis belongs to a large family of soil bacteria which can degrade a remarkably broad range of organic compounds and utilize them as carbon, nitrogen and energy sources. It has been proposed that a variety of mycobacteria can subsist on alternative carbon sources during latency within an infected human host, with the help of enzymes such as nitrilotriacetate monooxygenase (NTA-Mo). NTA-Mo is a member of a class of enzymes which consist of two components: A and B. While component A has monooxygenase activity and is responsible for the oxidation of the substrate, component B consumes cofactor to generate reduced flavin mononucleotide, which is required for component A activity. NTA-MoB from M. thermoresistibile, a rare but infectious close relative of M. tuberculosis which can thrive at elevated temperatures, has been expressed, purified and crystallized. The 1.6 angstrom resolution crystal structure of component B of NTA-Mo presented here is one of the first crystal structures determined from the organism M. thermoresistibile. The NTA-MoB crystal structure reveals a homodimer with the characteristic split-barrel motif typical of flavin reductases. Surprisingly, NTA-MoB from M. thermoresistibile contains a C-terminal tail that is highly conserved among mycobacterial orthologs and resides in the active site of the other protomer. Based on the structure, the C-terminal tail may modulate NTA-MoB activity in mycobacteria by blocking the binding of flavins and NADH. C1 [Zhang, Y.; Edwards, T. E.; Begley, D. W.; Abramov, A.; Thompkins, K. B.; Ferrell, M.; Guo, W. J.; Phan, I.; Olsen, C.; Napuli, A.; Stacy, R.; Van Voorhis, W. C.; Stewart, L. J.; Myler, P. J.] SSGCID, Seattle, WA 98125 USA. [Zhang, Y.; Abramov, A.; Thompkins, K. B.; Ferrell, M.; Guo, W. J.; Phan, I.; Olsen, C.; Stacy, R.; Myler, P. J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Edwards, T. E.; Begley, D. W.; Stewart, L. J.] Emerald BioStruct Inc, Bainbridge Isl, WA 98110 USA. [Napuli, A.; Van Voorhis, W. C.] Univ Washington, Sch Med, Seattle, WA 98195 USA. [Sankaran, B.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. RP Zhang, Y (reprint author), SSGCID, Seattle, WA 98125 USA. EM sunny.zhang@seattlebiomed.org OI Myler, Peter/0000-0002-0056-0513 FU National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272200700057C]; National Institutes of Health, National Institute of General Medical Sciences; Howard Hughes Medical Institute; Office of Science, Office of Basic Energy Sciences; US Department of Energy [DE-AC02-05CH11231] FX The authors thank the whole SSGCID team. This research was funded under Federal Contract No. HHSN272200700057C from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services. The Berkeley Centre for Structural Biology is supported in part by the National Institutes of Health, National Institute of General Medical Sciences and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences and the US Department of Energy under Contract No. DE-AC02-05CH11231. We thank Dr Christoph Grundner for providing genomic information on M. thermoresistibile Tsukamura strain, for helpful discussions and valuable insights into the TubercuList database. NR 42 TC 9 Z9 9 U1 0 U2 4 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2011 VL 67 BP 1100 EP 1105 DI 10.1107/S1744309111012541 PN 9 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 817QZ UT WOS:000294690300021 PM 21904057 ER PT J AU Abendroth, J Sankaran, B Edwards, TE Gardberg, AS Dieterich, S Bhandari, J Napuli, AJ Van Voorhis, WC Staker, BL Myler, PJ Stewart, LJ AF Abendroth, Jan Sankaran, Banumathi Edwards, Thomas E. Gardberg, Anna S. Dieterich, Shellie Bhandari, Janhavi Napuli, Alberto J. Van Voorhis, Wesley C. Staker, Bart L. Myler, Peter J. Stewart, Lance J. TI BrabA.11339.a: anomalous diffraction and ligand binding guide towards the elucidation of the function of a 'putative beta-lactamase-like protein' from Brucella melitensis SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID CRYSTALLOGRAPHY; GENERATION AB The crystal structure of a beta-lactamase-like protein from Brucella melitensis was initially solved by SAD phasing from an in-house data set collected on a crystal soaked with iodide. A high-resolution data set was collected at a synchroton at the Se edge wavelength, which also provided an independent source of phasing using a small anomalous signal from metal ions in the active site. Comparisons of anomalous peak heights at various wavelengths allowed the identification of the active-site metal ions as manganese. In the native data set a partially occupied GMP could be identified. When co-crystallized with AMPPNP or GMPPNP, clear density for the hydrolyzed analogs was observed, providing hints to the function of the protein. C1 [Abendroth, Jan; Edwards, Thomas E.; Gardberg, Anna S.; Dieterich, Shellie; Bhandari, Janhavi; Napuli, Alberto J.; Van Voorhis, Wesley C.; Staker, Bart L.; Myler, Peter J.; Stewart, Lance J.] SSGCID, Seattle, WA 98125 USA. [Abendroth, Jan; Edwards, Thomas E.; Gardberg, Anna S.; Dieterich, Shellie; Staker, Bart L.; Stewart, Lance J.] Emerald BioStruct Inc, Bainbridge Isl, WA 98110 USA. [Sankaran, Banumathi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. [Bhandari, Janhavi; Napuli, Alberto J.; Van Voorhis, Wesley C.] Univ Washington, Sch Med, Dept Allergy & Infect Dis, Seattle, WA 98195 USA. [Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. RP Abendroth, J (reprint author), SSGCID, Seattle, WA 98125 USA. EM jabendroth@embios.com FU National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272200700057C]; National Institutes of Health, National Institute of General Medical Sciences; Howard Hughes Medical Institute; Office of Science, Office of Basic Energy Sciences; US Department of Energy [DE-AC02-05CH11231] FX The authors thank the whole SSGCID team. This research was funded under Federal Contract No. HHSN272200700057C from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services. The Berkeley Center for Structural Biology is supported in part by the National Institutes of Health, National Institute of General Medical Sciences and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences and the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 27 TC 2 Z9 2 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2011 VL 67 BP 1106 EP 1112 DI 10.1107/S1744309111010220 PN 9 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 817QZ UT WOS:000294690300022 PM 21904058 ER PT J AU Ferrell, M Abendroth, J Zhang, Y Sankaran, B Edwards, TE Staker, BL Van Voorhis, WC Stewart, LJ Myler, PJ AF Ferrell, M. Abendroth, J. Zhang, Y. Sankaran, B. Edwards, T. E. Staker, B. L. Van Voorhis, W. C. Stewart, L. J. Myler, P. J. TI Structure of aldose reductase from Giardia lamblia SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID CRYSTAL-STRUCTURE; MOLECULAR-GRAPHICS; KINETIC MECHANISM; PROTEIN; BINDING; METABOLISM; INHIBITOR; ENZYME; SITE; CRYSTALLOGRAPHY AB Giardia lamblia is an anaerobic aerotolerant eukaryotic parasite of the intestines. It is believed to have diverged early from eukarya during evolution and is thus lacking in many of the typical eukaryotic organelles and biochemical pathways. Most conspicuously, mitochondria and the associated machinery of oxidative phosphorylation are absent; instead, energy is derived from substrate-level phosphorylation. Here, the 1.75 angstrom resolution crystal structure of G. lamblia aldose reductase heterologously expressed in Escherichia coli is reported. As in other oxidoreductases, G. lamblia aldose reductase adopts a TIM-barrel conformation with the NADP(+)-binding site located within the eight beta-strands of the interior. C1 [Ferrell, M.; Abendroth, J.; Zhang, Y.; Edwards, T. E.; Staker, B. L.; Van Voorhis, W. C.; Stewart, L. J.; Myler, P. J.] Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA. [Ferrell, M.; Zhang, Y.; Myler, P. J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Abendroth, J.; Edwards, T. E.; Staker, B. L.; Stewart, L. J.] Emerald BioStruct Inc, Bainbridge Isl, WA 98110 USA. [Sankaran, B.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. [Van Voorhis, W. C.] Univ Washington, Sch Med, Seattle, WA 98195 USA. RP Ferrell, M (reprint author), Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA. EM micah.ferrell@seattlebiomed.org OI Myler, Peter/0000-0002-0056-0513 FU National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272200700057C]; National Institutes of Health, National Institute of General Medical Sciences; Howard Hughes Medical Institute; Office of Science, Office of Basic Energy Sciences; US Department of Energy [DE-AC02-05CH11231] FX The authors wish to thank all of the members of the SSGCID team. This research was funded under Federal Contract No. HHSN272200700057C from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services. The Berkeley Centre for Structural Biology is supported in part by the National Institutes of Health, National Institute of General Medical Sciences and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences and the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 37 TC 2 Z9 2 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2011 VL 67 BP 1113 EP 1117 DI 10.1107/S1744309111030879 PN 9 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 817QZ UT WOS:000294690300023 PM 21904059 ER PT J AU Buchko, GW Hewitt, SN Napuli, AJ Van Voorhis, WC Myler, PJ AF Buchko, Garry W. Hewitt, Stephen N. Napuli, Alberto J. Van Voorhis, Wesley C. Myler, Peter J. TI Solution structure of an arsenate reductase-related protein, YffB, from Brucella melitensis, the etiological agent responsible for brucellosis SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID N-15 NMR RELAXATION; CHEMICAL-SHIFT; TRANSCRIPTIONAL CONTROL; CIRCULAR-DICHROISM; INFECTIOUS-DISEASE; GENOMICS CENTER; MECHANISM; SEQUENCE; DOMAIN; SERVER AB Brucella melitensis is the etiological agent responsible for brucellosis. Present in the B. melitensis genome is a 116-residue protein related to arsenate reductases (Bm-YffB; BR0369). Arsenate reductases (ArsC) convert arsenate ion (H2AsO4-), a compound that is toxic to bacteria, to arsenite ion (AsO2-), a product that may be efficiently exported out of the cell. Consequently, Bm-YffB is a potential drug target because if arsenate reduction is the protein's major biological function then disabling the cell's ability to reduce arsenate would make these cells more sensitive to the deleterious effects of arsenate. Size-exclusion chromatography and NMR spectroscopy indicate that Bm-YffB is a monomer in solution. The solution structure of Bm-YffB (PDB entry 2kok) shows that the protein consists of two domains: a four-stranded mixed beta-sheet flanked by two alpha-helices on one side and an alpha-helical bundle. The alpha/beta domain is characteristic of the fold of thioredoxin-like proteins and the overall structure is generally similar to those of known arsenate reductases despite the marginal sequence similarity. Chemical shift perturbation studies with N-15-labeled Bm-YffB show that the protein binds reduced glutathione at a site adjacent to a region similar to the HX3CX3R catalytic sequence motif that is important for arsenic detoxification activity in the classical arsenate-reductase family of proteins. The latter observation supports the hypothesis that the ArsC-YffB family of proteins may function as glutathione-dependent thiol reductases. However, comparison of the structure of Bm-YffB with the structures of proteins from the classical ArsC family suggest that the mechanism and possibly the function of Bm-YffB and other related proteins (ArsC-YffB) may differ from those of the ArsC family of proteins. C1 [Buchko, Garry W.; Hewitt, Stephen N.; Napuli, Alberto J.; Van Voorhis, Wesley C.; Myler, Peter J.] Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA. [Buchko, Garry W.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Hewitt, Stephen N.; Napuli, Alberto J.; Van Voorhis, Wesley C.] Univ Washington, Dept Med, Seattle, WA USA. [Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Myler, Peter J.] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA. [Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. RP Buchko, GW (reprint author), Seattle Struct Genom Ctr Infect Dis, Seattle, WA 98125 USA. EM garry.buchko@pnnl.gov RI Buchko, Garry/G-6173-2015; OI Buchko, Garry/0000-0002-3639-1061; Myler, Peter/0000-0002-0056-0513 FU National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Services [HHSN272200700057C]; US Department of Energy's Office of Biological and Environmental Research (BER) at Pacific Northwest National Laboratory (PNNL) FX This research was funded by the National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Services under Federal Contract No. HHSN272200700057C. The SSGCID internal ID for Bm-YffB is BrabA.00007.a. The majority of the research presented here was conducted at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). Battelle operates PNNL for the US Department of Energy. NR 35 TC 0 Z9 0 U1 0 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2011 VL 67 BP 1129 EP 1136 DI 10.1107/S1744309111006336 PN 9 PG 8 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 817QZ UT WOS:000294690300026 PM 21904062 ER PT J AU Buchko, GW Hewitt, SN Napuli, AJ Van Voorhis, WC Myler, PJ AF Buchko, Garry W. Hewitt, Stephen N. Napuli, Alberto J. Van Voorhis, Wesley C. Myler, Peter J. TI Solution-state NMR structure and biophysical characterization of zinc-substituted rubredoxin B (Rv3250c) from Mycobacterium tuberculosis SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID CHEMICAL-SHIFT; PROTEIN; RESISTANCE; DYNAMICS; DOMAIN AB Owing to the evolution of multi-drug-resistant and extremely drug-resistant Mycobacterium tuberculosis strains, there is an urgent need to develop new antituberculosis strategies to prevent TB epidemics in the industrial world. Among the potential new drug targets are two small nonheme iron-binding proteins, rubredoxin A (Rv3251c) and rubredoxin B (Rv3250c), which are believed to play a role in electron-transfer processes. Here, the solution structure and biophysical properties of one of these two proteins, rubredoxin B (Mt-RubB), determined in the zinc-substituted form are reported. The zinc-substituted protein was prepared by expressing Mt-RubB in minimal medium containing excess zinc acetate. Size-exclusion chromatography and NMR spectroscopy indicated that Mt-RubB was a monomer in solution. The structure (PDB entry 2kn9) was generally similar to those of other rubredoxins, containing a three-stranded antiparallel beta-sheet (beta 2-beta 1-beta 3) and a metal tetrahedrally coordinated to the S atoms of four cysteine residues (Cys9, Cys12, Cys42 and Cys45). The first pair of cysteine residues is at the C-terminal end of the first beta-strand and the second pair of cysteine residues is towards the C-terminal end of the loop between beta 2 and beta 3. The structure shows the metal buried deeply within the protein, an observation that is supported by the inability to remove the metal with excess EDTA at room temperature. Circular dichroism spectroscopy shows that this stability extends to high temperature, with essentially no change being observed in the CD spectrum of Mt-RubB upon heating to 353 K. C1 [Buchko, Garry W.; Hewitt, Stephen N.; Napuli, Alberto J.; Van Voorhis, Wesley C.; Myler, Peter J.] Seattle Struct Genom Ctr Infect Dis, Seattle, WA USA. [Buchko, Garry W.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Hewitt, Stephen N.; Napuli, Alberto J.; Van Voorhis, Wesley C.] Univ Washington, Dept Med, Seattle, WA USA. [Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Myler, Peter J.] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA. [Myler, Peter J.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. RP Buchko, GW (reprint author), Seattle Struct Genom Ctr Infect Dis, Seattle, WA USA. EM garry.buchko@pnnl.gov RI Buchko, Garry/G-6173-2015; OI Buchko, Garry/0000-0002-3639-1061; Myler, Peter/0000-0002-0056-0513 FU National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Services [HHSN272200700057C]; US Department of Energy's Office of Biological and Environmental Research FX This research was funded by the National Institute of Allergy and Infectious Diseases, National Institute of Health, Department of Health and Human Services under Federal Contract No. HHSN272200700057C. The SSGCID internal ID for Mt-RubB is MytuD.01635.a. Much of the research presented here was conducted at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the US Department of Energy's Office of Biological and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL). Battelle operates PNNL for the US Department of Energy. NR 33 TC 3 Z9 3 U1 0 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD SEP PY 2011 VL 67 BP 1148 EP 1153 DI 10.1107/S1744309111008189 PN 9 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 817QZ UT WOS:000294690300029 PM 21904065 ER PT J AU Klaas, M Yang, BC Bosch, M Thorogood, D Manzanares, C Armstead, IP Franklin, FCH Barth, S AF Klaas, Manfred Yang, Bicheng Bosch, Maurice Thorogood, Daniel Manzanares, Chloe Armstead, Ian P. Franklin, F. C. H. Barth, Susanne TI Progress towards elucidating the mechanisms of self-incompatibility in the grasses: further insights from studies in Lolium SO ANNALS OF BOTANY LA English DT Article DE Lolium perenne; perennial ryegrass; grasses; Poaceae; self-incompatibility; calcium inhibitors; lanthanum chloride; verapamil ID POLLEN-STIGMA INTERACTION; SECALE-CEREALE L.; PERENNE L; PHALARIS-COERULESCENS; S-LOCUS; MULTIFLORUM LAM; GENETIC-CONTROL; PAPAVER-RHOEAS; TUBE GROWTH; RYEGRASS AB Background and Scope Self-incompatibility (SI) in flowering plants ensures the maintenance of genetic diversity by ensuring outbreeding. Different genetic and mechanistic systems of SI among flowering plants suggest either multiple origins of SI or considerable evolutionary diversification. In the grasses, SI is based on two loci, S and Z, which are both polyallelic: an incompatible reaction occurs only if both S and Z alleles are matched in individual pollen with alleles of the pistil on which they alight. Such incompatibility is referred to as gametophytic SI (GSI). The mechanics of grass GSI is poorly understood relative to the well-characterized S-RNase-based single-locus GSI systems (Solanaceae, Rosaceae, Plantaginaceae), or the Papaver recognition system that triggers a calcium-dependent signalling network culminating in programmed cell death. There is every reason to suggest that the grass SI system represents yet another mechanism of SI. S and Z loci have been mapped using isozymes to linkage groups C1 and C2 of the Triticeae consensus maps in Secale, Phalaris and Lolium. Recently, in Lolium perenne, in order to finely map and identify S and Z, more closely spaced markers have been developed based on cDNA and repeat DNA sequences, in part from genomic regions syntenic between the grasses. Several genes tightly linked to the S and Z loci were identified, but so far no convincing candidate has emerged. Research and Progress From subtracted Lolium immature stigma cDNA libraries derived from S and Z genotyped individuals enriched for SI potential component genes, kinase enzyme domains, a calmodulin-dependent kinase and a peptide with several calcium (Ca(2+)) binding domains were identified. Preliminary findings suggest that Ca(2+) signalling and phosphorylation may be involved in Lolium GSI. This is supported by the inhibition of Lolium SI by Ca(2+) channel blockers lanthanum (La(3+)) and verapamil, and by findings of increased phosphorylation activity during an SI response. C1 [Yang, Bicheng; Manzanares, Chloe; Barth, Susanne] Teagasc Crops, Environm & Land Use Programme, Oak Pk Res Ctr, Carlow, Ireland. [Klaas, Manfred] Natl Univ Ireland Maynooth, Plant Cell Lab, Maynooth, Kildare, Ireland. [Yang, Bicheng; Bosch, Maurice; Thorogood, Daniel; Manzanares, Chloe; Armstead, Ian P.] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Aberystwyth SY23 3EB, Ceredigion, Wales. [Yang, Bicheng; Manzanares, Chloe; Franklin, F. C. H.] Univ Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England. RP Barth, S (reprint author), Teagasc Crops, Environm & Land Use Programme, Oak Pk Res Ctr, Carlow, Ireland. EM susanne.barth@teagasc.ie RI Bosch, Maurice/C-6400-2008; Barth, Susanne/P-3366-2014; OI Barth, Susanne/0000-0002-4104-5964; Franklin, F. Chris H./0000-0003-3507-722X; thorogood, Daniel/0000-0003-0148-5719 FU Teagasc FX Funding was provided through Teagasc core funding through the National Development Plan of Ireland. B.Y. and C.M. were financed by a Teagasc Walsh Fellow PhD studentship. NR 59 TC 20 Z9 21 U1 2 U2 43 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-7364 J9 ANN BOT-LONDON JI Ann. Bot. PD SEP PY 2011 VL 108 IS 4 SI SI BP 677 EP 685 DI 10.1093/aob/mcr186 PG 9 WC Plant Sciences SC Plant Sciences GA 818EZ UT WOS:000294735500010 PM 21798860 ER PT J AU DeAngelis, KM Wu, CH Beller, HR Brodie, EL Chakraborty, R DeSantis, TZ Fortney, JL Hazen, TC Osman, SR Singer, ME Tom, LM Andersen, GL AF DeAngelis, Kristen M. Wu, Cindy H. Beller, Harry R. Brodie, Eoin L. Chakraborty, Romy DeSantis, Todd Z. Fortney, Julian L. Hazen, Terry C. Osman, Shariff R. Singer, Mary E. Tom, Lauren M. Andersen, Gary L. TI PCR Amplification-Independent Methods for Detection of Microbial Communities by the High-Density Microarray PhyloChip SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID 16S RIBOSOMAL-RNA; GROWTH-RATE; POPULATION-DYNAMICS; METABOLIC-ACTIVITY; CLONE LIBRARIES; SOIL DNA; BACTERIA; DIVERSITY; ORGANISMS; GENES AB Environmental microbial community analysis typically involves amplification by PCR, despite well-documented biases. We have developed two methods of PCR-independent microbial community analysis using the high-density microarray PhyloChip: direct hybridization of 16S rRNA (dirRNA) or rRNA converted to double-stranded cDNA (dscDNA). We compared dirRNA and dscDNA communities to PCR-amplified DNA communities using a mock community of eight taxa, as well as experiments derived from three environmental sample types: chromium-contaminated aquifer groundwater, tropical forest soil, and secondary sewage in seawater. Community profiles by both direct hybridization methods showed differences that were expected based on accompanying data but that were missing in PCR-amplified communities. Taxon richness decreased in RNA compared to that in DNA communities, suggesting a subset of 20% in soil and 60% in groundwater that is active; secondary sewage showed no difference between active and inactive populations. Direct hybridization of dscDNA and RNA is thus a viable alternative to PCR-amplified microbial community analysis, providing identification of the active populations within microbial communities that attenuate pollutants, drive global biogeochemical cycles, or proliferate disease states. C1 [DeAngelis, Kristen M.; Wu, Cindy H.; Beller, Harry R.; Brodie, Eoin L.; Chakraborty, Romy; DeSantis, Todd Z.; Fortney, Julian L.; Hazen, Terry C.; Osman, Shariff R.; Singer, Mary E.; Tom, Lauren M.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Div Earth Sci, Berkeley, CA 94720 USA. [DeAngelis, Kristen M.; Hazen, Terry C.] Joint BioEnergy Inst, Microbial Communities Div, Emeryville, CA USA. [Beller, Harry R.] Joint BioEnergy Inst, Fuels Synth Div, Emeryville, CA USA. RP Andersen, GL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Div Earth Sci, 1 Cyclotron Rd,MS 70A-3317, Berkeley, CA 94720 USA. EM GLAndersen@lbl.gov RI Beller, Harry/H-6973-2014; Chakraborty, Romy/D-9230-2015; Tom, Lauren/E-9739-2015; Andersen, Gary/G-2792-2015; Brodie, Eoin/A-7853-2008; Hazen, Terry/C-1076-2012; OI Chakraborty, Romy/0000-0001-9326-554X; Andersen, Gary/0000-0002-1618-9827; Brodie, Eoin/0000-0002-8453-8435; Hazen, Terry/0000-0002-2536-9993; DeAngelis, Kristen/0000-0002-5585-4551 FU Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231]; California State Water Resources Control Board Proposition 50 Clean Beaches initiative; Seaborg Fellowship; LBNL FX This work was conducted in part by the Joint BioEnergy Institute, the Sustainable Systems Science Focus Area in Subsurface Biogeochemical Research Program, and by ENIGMA Scientific Focus Area, a Genomics Foundational Science Program. These programs are part of the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under contract DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory (LBNL). This work was also supported in part by the California State Water Resources Control Board Proposition 50 Clean Beaches initiative grant, a Seaborg Fellowship to K. M. D., and an LBNL contractor-supported research grant to C.H.W. NR 60 TC 31 Z9 32 U1 3 U2 31 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD SEP PY 2011 VL 77 IS 18 BP 6313 EP 6322 DI 10.1128/AEM.05262-11 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 817RJ UT WOS:000294691400001 PM 21764955 ER PT J AU Farkas, J Chung, DW DeBarry, M Adams, MWW Westpheling, J AF Farkas, Joel Chung, Daehwan DeBarry, Megan Adams, Michael W. W. Westpheling, Janet TI Defining Components of the Chromosomal Origin of Replication of the Hyperthermophilic Archaeon Pyrococcus furiosus Needed for Construction of a Stable Replicating Shuttle Vector SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID ROLLING-CIRCLE REPLICATION; EUKARYOTIC DNA-REPLICATION; CELL-DIVISION CYCLE; SULFOLOBUS-SOLFATARICUS; AUTONOMOUS REPLICATION; HALOBACTERIUM-VOLCANII; NUCLEOTIDE-SEQUENCE; HYDROTHERMAL VENT; GENETIC-CONTROL; BACTERIAL MODE AB We report the construction of a series of replicating shuttle vectors that consist of a low-copy-number cloning vector for Escherichia coli and functional components of the origin of replication (oriC) of the chromosome of the hyperthermophilic archaeon Pyrococcus furiosus. In the process of identifying the minimum replication origin sequence required for autonomous plasmid replication in P. furiosus, we discovered that several features of the origin predicted by bioinformatic analysis and in vitro binding studies were not essential for stable autonomous plasmid replication. A minimum region required to promote plasmid DNA replication was identified, and plasmids based on this sequence readily transformed P. furiosus. The plasmids replicated autonomously and existed in a single copy. In contrast to shuttle vectors based on a plasmid from the closely related hyperthermophile Pyrococcus abyssi for use in P. furiosus, plasmids based on the P. furiosus chromosomal origin were structurally unchanged after transformation and were stable without selection for more than 100 generations. C1 [Farkas, Joel; Chung, Daehwan; DeBarry, Megan; Westpheling, Janet] Univ Georgia, Dept Genet, Athens, GA 30602 USA. [Adams, Michael W. W.] Univ Georgia, Dept Biochem & Mol Biol, Athens, GA 30602 USA. [Farkas, Joel; Chung, Daehwan; DeBarry, Megan; Adams, Michael W. W.; Westpheling, Janet] Oak Ridge Natl Lab, Dept Energy, BioEnergy Sci Ctr, Oak Ridge, TN USA. RP Westpheling, J (reprint author), Univ Georgia, Dept Genet, Athens, GA 30602 USA. EM janwest@uga.edu FU BioEnergy Science Center [DE-PS02-06ER64304]; Office of Biological and Environmental Research in the DOE Office of Science [FG02-08ER64690] FX This work was supported by a grant to M. W. W. A. and J.W. from the BioEnergy Science Center (DE-PS02-06ER64304), administered by the Oak Ridge National Laboratory, and by the Office of Biological and Environmental Research (FG02-08ER64690) in the DOE Office of Science. NR 51 TC 14 Z9 14 U1 0 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD SEP PY 2011 VL 77 IS 18 BP 6343 EP 6349 DI 10.1128/AEM.05057-11 PG 7 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 817RJ UT WOS:000294691400004 PM 21784908 ER PT J AU Miletto, M Williams, KH N'Guessan, AL Lovley, DR AF Miletto, M. Williams, K. H. N'Guessan, A. L. Lovley, D. R. TI Molecular Analysis of the Metabolic Rates of Discrete Subsurface Populations of Sulfate Reducers SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SULFITE REDUCTASE GENE; URANIUM-CONTAMINATED AQUIFER; MICROBIAL U(VI) REDUCTION; FE(III) OXIDE REDUCTION; REDUCING BACTERIA; QUANTIFYING EXPRESSION; HARVESTING ELECTRODES; COMMUNITY STRUCTURE; FLORIDA EVERGLADES; BIOREMEDIATION AB Elucidating the in situ metabolic activity of phylogenetically diverse populations of sulfate-reducing microorganisms that populate anoxic sedimentary environments is key to understanding subsurface ecology. Previous pure culture studies have demonstrated that the transcript abundance of dissimilatory (bi)sulfite reductase genes is correlated with the sulfate-reducing activity of individual cells. To evaluate whether expression of these genes was diagnostic for subsurface communities, dissimilatory (bi) sulfite reductase gene transcript abundance in phylogenetically distinct sulfate-reducing populations was quantified during a field experiment in which acetate was added to uranium-contaminated groundwater. Analysis of dsrAB sequences prior to the addition of acetate indicated that Desulfobacteraceae, Desulfobulbaceae, and Syntrophaceae-related sulfate reducers were the most abundant. Quantifying dsrB transcripts of the individual populations suggested that Desulfobacteraceae initially had higher dsrB transcripts per cell than Desulfobulbaceae or Syntrophaceae populations and that the activity of Desulfobacteraceae increased further when the metabolism of dissimilatory metal reducers competing for the added acetate declined. In contrast, dsrB transcript abundance in Desulfobulbaceae and Syntrophaceae remained relatively constant, suggesting a lack of stimulation by added acetate. The indication of higher sulfate-reducing activity in the Desulfobacteraceae was consistent with the finding that Desulfobacteraceae became the predominant component of the sulfate-reducing community. Discontinuing acetate additions resulted in a decline in dsrB transcript abundance in the Desulfobacteraceae. These results suggest that monitoring transcripts of dissimilatory (bi) sulfite reductase genes in distinct populations of sulfate reducers can provide insight into the relative rates of metabolism of different components of the sulfate-reducing community and their ability to respond to environmental perturbations. C1 [Miletto, M.; Lovley, D. R.] Univ Massachusetts, Amherst, MA 01003 USA. [Williams, K. H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [N'Guessan, A. L.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Miletto, M (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, 111 Koshland Hall, Berkeley, CA 94720 USA. EM mmiletto@berkeley.edu RI Williams, Kenneth/O-5181-2014 OI Williams, Kenneth/0000-0002-3568-1155 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-SC0004814, DE-AC02-05CH11231]; Rifle IFRC; LBNL FX The U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, funded the work under grant number DE-SC0004814 (University of Massachusetts) and contract number DE-AC02-05CH11231 (Lawrence Berkeley National Laboratory [LBNL; operated by the University of California], with support derived equally from the Rifle IFRC and oLBNL Sustainable System Science Focus Area research programs). NR 64 TC 18 Z9 18 U1 0 U2 22 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD SEP PY 2011 VL 77 IS 18 BP 6502 EP 6509 DI 10.1128/AEM.00576-11 PG 8 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 817RJ UT WOS:000294691400023 PM 21764959 ER PT J AU Letant, SE Murphy, GA Alfaro, TM Avila, JR Kane, SR Raber, E Bunt, TM Shah, SR AF Letant, Sonia E. Murphy, Gloria A. Alfaro, Teneile M. Avila, Julie R. Kane, Staci R. Raber, Ellen Bunt, Thomas M. Shah, Sanjiv R. TI Rapid-Viability PCR Method for Detection of Live, Virulent Bacillus anthracis in Environmental Samples SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID BIOLOGICAL WARFARE AGENTS; SWAB PROTOCOL; VIABLE SPORES; CLEAN ENOUGH; CULTURE; INHIBITION; RECOVERY; SURFACE AB In the event of a biothreat agent release, hundreds of samples would need to be rapidly processed to characterize the extent of contamination and determine the efficacy of remediation activities. Current biological agent identification and viability determination methods are both labor- and time-intensive such that turnaround time for confirmed results is typically several days. In order to alleviate this issue, automated, high-throughput sample processing methods were developed in which real-time PCR analysis is conducted on samples before and after incubation. The method, referred to as rapid-viability (RV)-PCR, uses the change in cycle threshold after incubation to detect the presence of live organisms. In this article, we report a novel RV-PCR method for detection of live, virulent Bacillus anthracis, in which the incubation time was reduced from 14 h to 9 h, bringing the total turnaround time for results below 15 h. The method incorporates a magnetic bead-based DNA extraction and purification step prior to PCR analysis, as well as specific real-time PCR assays for the B. anthracis chromosome and pXO1 and pXO2 plasmids. A single laboratory verification of the optimized method applied to the detection of virulent B. anthracis in environmental samples was conducted and showed a detection level of 10 to 99 CFU/sample with both manual and automated RV-PCR methods in the presence of various challenges. Experiments exploring the relationship between the incubation time and the limit of detection suggest that the method could be further shortened by an additional 2 to 3 h for relatively clean samples. C1 [Letant, Sonia E.; Murphy, Gloria A.; Alfaro, Teneile M.; Avila, Julie R.; Kane, Staci R.; Raber, Ellen; Bunt, Thomas M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Shah, Sanjiv R.] US EPA, Natl Homeland Secur Res Ctr, Washington, DC 20460 USA. RP Letant, SE (reprint author), Lawrence Livermore Natl Lab, L-236,7000 East Ave, Livermore, CA 94550 USA. EM letant1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Environmental Protection Agency through its Office of Research and Development FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.; The U.S. Environmental Protection Agency through its Office of Research and Development funded and managed the research described here. It has been subjected to the Agency's administrative review and approved for publication. NR 19 TC 14 Z9 14 U1 0 U2 14 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD SEP PY 2011 VL 77 IS 18 BP 6570 EP 6578 DI 10.1128/AEM.00623-11 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 817RJ UT WOS:000294691400031 PM 21764960 ER PT J AU Siemons, W Biegalski, MD Nam, JH Christen, HM AF Siemons, Wolter Biegalski, Michael D. Nam, Joong Hee Christen, Hans M. TI Temperature-Driven Structural Phase Transition in Tetragonal-Like BiFeO3 SO APPLIED PHYSICS EXPRESS LA English DT Article ID THIN-FILMS; STRAIN; POLARIZATION; MECHANISM AB Highly strained BiFeO3 exhibits a "tetragonal-like, monoclinic" crystal structure found only in epitaxial films (with an out-of-plane lattice parameter exceeding the in-plane value by > 20%). Previous work has shown that this phase is properly described as an M-C monoclinic structure at room temperature [with a (010)(pc) symmetry plane, which contains the ferroelectric polarization]. Here, we show detailed temperature-dependent X-ray diffraction data that reveal a structural phase transition at similar to 100 degrees C to a high-temperature M-A phase ["tetragonal-like" but with a ((1) over bar 10)(pc) symmetry plane]. These results indicate that the ferroelectric properties and domain structures of the strained BiFeO3 are strongly temperature dependent. (C) 2011 The Japan Society of Applied Physics C1 [Siemons, Wolter; Nam, Joong Hee; Christen, Hans M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Biegalski, Michael D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Nam, Joong Hee] KICET, Opt & Elect Ceram Div, Seoul 153801, South Korea. RP Christen, HM (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM christenhm@ornl.gov RI Siemons, Wolter/B-3808-2011; Christen, Hans/H-6551-2013 OI Christen, Hans/0000-0001-8187-7469 FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; Center for Nanophase Materials Sciences (CNMS); Office of Basic Energy Sciences, US Department of Energy; Republic of Korea, Ministry of Knowledge and Economy [IAN:16B642601]; US Department of Energy FX W.S. and H.M.C. acknowledge support by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. X-ray diffraction (M.D.B.) was supported by the Center for Nanophase Materials Sciences (CNMS), which is sponsored by the Office of Basic Energy Sciences, US Department of Energy. J.H.N. was supported by the Republic of Korea, Ministry of Knowledge and Economy, Visiting Scientists Program, under IAN:16B642601, with the US Department of Energy. NR 20 TC 35 Z9 35 U1 2 U2 32 PU JAPAN SOC APPLIED PHYSICS PI TOKYO PA KUDAN-KITA BUILDING 5TH FLOOR, 1-12-3 KUDAN-KITA, CHIYODA-KU, TOKYO, 102-0073, JAPAN SN 1882-0778 J9 APPL PHYS EXPRESS JI Appl. Phys. Express PD SEP PY 2011 VL 4 IS 9 AR 095801 DI 10.1143/APEX.4.095801 PG 3 WC Physics, Applied SC Physics GA 817LE UT WOS:000294673300038 ER PT J AU Wang, K Vineyard, EA AF Wang, Kai Vineyard, Edward A. TI New Opportunities for Solar Adsorption Refrigeration SO ASHRAE JOURNAL LA English DT Article ID COMPOSITE ADSORBENT; FISHING BOATS; WAVE ANALYSIS; HEAT-PUMPS; ICE MAKER; PERFORMANCE; SYSTEMS; SORPTION; CHILLER; CYCLES C1 [Wang, Kai; Vineyard, Edward A.] Oak Ridge Natl Lab, Bldg Equipment Res Grp, Oak Ridge, TN 37831 USA. RP Wang, K (reprint author), Oak Ridge Natl Lab, Bldg Equipment Res Grp, Oak Ridge, TN 37831 USA. RI Wang, Kai/A-9527-2010 FU Shanghai Jiao Tong University, Shanghai; Oak Ridge National Laboratory, Oak Ridge, Tenn. FX The authors would like to acknowledge Dr. Liwei Wang and Dr. Ruzhu Wang of Shanghai Jiao Tong University, Shanghai, and Dr. Abdolreza Zaltash, Dr. Moonis R. Ally and Erica Atkin of Oak Ridge National Laboratory, Oak Ridge, Tenn., for their support, enlightening discussions and insights. NR 29 TC 1 Z9 1 U1 0 U2 10 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD SEP PY 2011 VL 53 IS 9 BP 14 EP + PG 8 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 819NW UT WOS:000294834600005 ER PT J AU Kotwal, T Ponoum, R Brodrick, J AF Kotwal, Thomas Ponoum, Ratcharit Brodrick, James TI BIM for Energy Savings SO ASHRAE JOURNAL LA English DT Article C1 [Kotwal, Thomas; Ponoum, Ratcharit] TIAX LLC, Elect Syst Grp, Lexington, MA USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP Kotwal, T (reprint author), TIAX LLC, Elect Syst Grp, Lexington, MA USA. NR 11 TC 2 Z9 2 U1 1 U2 4 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD SEP PY 2011 VL 53 IS 9 BP 81 EP + PG 4 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 819NW UT WOS:000294834600012 ER PT J AU Eisenstein, DJ Weinberg, DH Agol, E Aihara, H Prieto, CA Anderson, SF Arns, JA Aubourg, E Bailey, S Balbinot, E Barkhouser, R Beers, TC Berlind, AA Bickerton, SJ Bizyaev, D Blanton, MR Bochanski, JJ Bolton, AS Bosman, CT Bovy, J Brandt, WN Breslauer, B Brewington, HJ Brinkmann, J Brown, PJ Brownstein, JR Burger, D Busca, NG Campbell, H Cargile, PA Carithers, WC Carlberg, JK Carr, MA Chang, L Chen, YM Chiappini, C Comparat, J Connolly, N Cortes, M Croft, RAC Cunha, K da Costa, LN Davenport, JRA Dawson, K De Lee, N de Mello, GFP de Simoni, F Dean, J Dhital, S Ealet, A Ebelke, GL Edmondson, EM Eiting, JM Escoffier, S Esposito, M Evans, ML Fan, XH Castella, BF Ferreira, LD Fitzgerald, G Fleming, SW Font-Ribera, A Ford, EB Frinchaboy, PM Perez, AEG Gaudi, BS Ge, J Ghezzi, L Gillespie, BA Gilmore, G Girardi, L Gott, JR Gould, A Grebel, EK Gunn, JE Hamilton, JC Harding, P Harris, DW Hawley, SL Hearty, FR Hennawi, JF Hernandez, JIG Ho, S Hogg, DW Holtzman, JA Honscheid, K Inada, N Ivans, II Jiang, LH Jiang, P Johnson, JA Jordan, C Jordan, WP Kauffmann, G Kazin, E Kirkby, D Klaene, MA Knapp, GR Kneib, JP Kochanek, CS Koesterke, L Kollmeier, JA Kron, RG Lampeitl, H Lang, D Lawler, JE Le Goff, JM Lee, BL Lee, YS Leisenring, JM Lin, YT Liu, J Long, DC Loomis, CP Lucatello, S Lundgren, B Lupton, RH Ma, B Ma, ZB MacDonald, N Mack, C Mahadevan, S Maia, MAG Majewski, SR Makler, M Malanushenko, E Malanushenko, V Mandelbaum, R Maraston, C Margala, D Maseman, P Masters, KL McBride, CK McDonald, P McGreer, ID McMahon, RG Requejo, OM Menard, B Miralda-Escude, J Morrison, HL Mullally, F Muna, D Murayama, H Myers, AD Naugle, T Neto, AF Nguyen, DC Nichol, RC Nidever, DL O'Connell, RW Ogando, RLC Olmstead, MD Oravetz, DJ Padmanabhan, N Paegert, M Palanque-Delabrouille, N Pan, KK Pandey, P Parejko, JK Paris, I Pellegrini, P Pepper, J Percival, WJ Petitjean, P Pfaffenberger, R Pforr, J Phleps, S Pichon, C Pieri, MM Prada, F Price-Whelan, AM Raddick, MJ Ramos, BHF Reid, IN Reyle, C Rich, J Richards, GT Rieke, GH Rieke, MJ Rix, HW Robin, AC Rocha-Pinto, HJ Rockosi, CM Roe, NA Rollinde, E Ross, AJ Ross, NP Rossetto, B Sanchez, AG Santiago, B Sayres, C Schiavon, R Schlegel, DJ Schlesinger, KJ Schmidt, SJ Schneider, DP Sellgren, K Shelden, A Sheldon, E Shetrone, M Shu, YP Silverman, JD Simmerer, J Simmons, AE Sivarani, T Skrutskie, MF Slosar, A Smee, S Smith, VV Snedden, SA Stassun, KG Steele, O Steinmetz, M Stockett, MH Stollberg, T Strauss, MA Szalay, AS Tanaka, M Thakar, AR Thomas, D Tinker, JL Tofflemire, BM Tojeiro, R Tremonti, CA Magana, MV Verde, L Vogt, NP Wake, DA Wan, XK Wang, J Weaver, BA White, M White, SDM Wilson, JC Wisniewski, JP Wood-Vasey, WM Yanny, B Yasuda, N Yeche, C York, DG Young, E Zasowski, G Zehavi, I Zhao, B AF Eisenstein, Daniel J. Weinberg, David H. Agol, Eric Aihara, Hiroaki Allende Prieto, Carlos Anderson, Scott F. Arns, James A. Aubourg, Eric Bailey, Stephen Balbinot, Eduardo Barkhouser, Robert Beers, Timothy C. Berlind, Andreas A. Bickerton, Steven J. Bizyaev, Dmitry Blanton, Michael R. Bochanski, John J. Bolton, Adam S. Bosman, Casey T. Bovy, Jo Brandt, W. N. Breslauer, Ben Brewington, Howard J. Brinkmann, J. Brown, Peter J. Brownstein, Joel R. Burger, Dan Busca, Nicolas G. Campbell, Heather Cargile, Phillip A. Carithers, William C. Carlberg, Joleen K. Carr, Michael A. Chang, Liang Chen, Yanmei Chiappini, Cristina Comparat, Johan Connolly, Natalia Cortes, Marina Croft, Rupert A. C. Cunha, Katia da Costa, Luiz N. Davenport, James R. A. Dawson, Kyle De Lee, Nathan de Mello, Gustavo F. Porto de Simoni, Fernando Dean, Janice Dhital, Saurav Ealet, Anne Ebelke, Garrett L. Edmondson, Edward M. Eiting, Jacob M. Escoffier, Stephanie Esposito, Massimiliano Evans, Michael L. Fan, Xiaohui Femenia Castella, Bruno Ferreira, Leticia Dutra Fitzgerald, Greg Fleming, Scott W. Font-Ribera, Andreu Ford, Eric B. Frinchaboy, Peter M. Perez, Ana Elia Garcia Gaudi, B. Scott Ge, Jian Ghezzi, Luan Gillespie, Bruce A. Gilmore, G. Girardi, Leo Gott, J. Richard Gould, Andrew Grebel, Eva K. Gunn, James E. Hamilton, Jean-Christophe Harding, Paul Harris, David W. Hawley, Suzanne L. Hearty, Frederick R. Hennawi, Joseph F. Gonzalez Hernandez, Jonay I. Ho, Shirley Hogg, David W. Holtzman, Jon A. Honscheid, Klaus Inada, Naohisa Ivans, Inese I. Jiang, Linhua Jiang, Peng Johnson, Jennifer A. Jordan, Cathy Jordan, Wendell P. Kauffmann, Guinevere Kazin, Eyal Kirkby, David Klaene, Mark A. Knapp, G. R. Kneib, Jean-Paul Kochanek, C. S. Koesterke, Lars Kollmeier, Juna A. Kron, Richard G. Lampeitl, Hubert Lang, Dustin Lawler, James E. Le Goff, Jean-Marc Lee, Brian L. Lee, Young Sun Leisenring, Jarron M. Lin, Yen-Ting Liu, Jian Long, Daniel C. Loomis, Craig P. Lucatello, Sara Lundgren, Britt Lupton, Robert H. Ma, Bo Ma, Zhibo MacDonald, Nicholas Mack, Claude Mahadevan, Suvrath Maia, Marcio A. G. Majewski, Steven R. Makler, Martin Malanushenko, Elena Malanushenko, Viktor Mandelbaum, Rachel Maraston, Claudia Margala, Daniel Maseman, Paul Masters, Karen L. McBride, Cameron K. McDonald, Patrick McGreer, Ian D. McMahon, Richard G. Mena Requejo, Olga Menard, Brice Miralda-Escude, Jordi Morrison, Heather L. Mullally, Fergal Muna, Demitri Murayama, Hitoshi Myers, Adam D. Naugle, Tracy Fausti Neto, Angelo Duy Cuong Nguyen Nichol, Robert C. Nidever, David L. O'Connell, Robert W. Ogando, Ricardo L. C. Olmstead, Matthew D. Oravetz, Daniel J. Padmanabhan, Nikhil Paegert, Martin Palanque-Delabrouille, Nathalie Pan, Kaike Pandey, Parul Parejko, John K. Paris, Isabelle Pellegrini, Paulo Pepper, Joshua Percival, Will J. Petitjean, Patrick Pfaffenberger, Robert Pforr, Janine Phleps, Stefanie Pichon, Christophe Pieri, Matthew M. Prada, Francisco Price-Whelan, Adrian M. Raddick, M. Jordan Ramos, Beatriz H. F. Reid, I. Neill Reyle, Celine Rich, James Richards, Gordon T. Rieke, George H. Rieke, Marcia J. Rix, Hans-Walter Robin, Annie C. Rocha-Pinto, Helio J. Rockosi, Constance M. Roe, Natalie A. Rollinde, Emmanuel Ross, Ashley J. Ross, Nicholas P. Rossetto, Bruno Sanchez, Ariel G. Santiago, Basilio Sayres, Conor Schiavon, Ricardo Schlegel, David J. Schlesinger, Katharine J. Schmidt, Sarah J. Schneider, Donald P. Sellgren, Kris Shelden, Alaina Sheldon, Erin Shetrone, Matthew Shu, Yiping Silverman, John D. Simmerer, Jennifer Simmons, Audrey E. Sivarani, Thirupathi Skrutskie, M. F. Slosar, Anze Smee, Stephen Smith, Verne V. Snedden, Stephanie A. Stassun, Keivan G. Steele, Oliver Steinmetz, Matthias Stockett, Mark H. Stollberg, Todd Strauss, Michael A. Szalay, Alexander S. Tanaka, Masayuki Thakar, Aniruddha R. Thomas, Daniel Tinker, Jeremy L. Tofflemire, Benjamin M. Tojeiro, Rita Tremonti, Christy A. Magana, Mariana Vargas Verde, Licia Vogt, Nicole P. Wake, David A. Wan, Xiaoke Wang, Ji Weaver, Benjamin A. White, Martin White, Simon D. M. Wilson, John C. Wisniewski, John P. Wood-Vasey, W. Michael Yanny, Brian Yasuda, Naoki Yeche, Christophe York, Donald G. Young, Erick Zasowski, Gail Zehavi, Idit Zhao, Bo TI SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS SO ASTRONOMICAL JOURNAL LA English DT Article DE cosmology: observations; Galaxy: evolution; planets and satellites: detection; surveys ID DIGITAL SKY SURVEY; BARYON ACOUSTIC-OSCILLATIONS; SURVEY COMMISSIONING DATA; LUMINOUS RED GALAXIES; LENS ACS SURVEY; STELLAR ATMOSPHERIC PARAMETERS; SAGITTARIUS DWARF GALAXY; VELOCITY EXPERIMENT RAVE; ULTRACOOL WHITE-DWARFS; INFRARED CAII TRIPLET AB Building on the legacy of the Sloan Digital Sky Survey (SDSS-I and II), SDSS-III is a program of four spectroscopic surveys on three scientific themes: dark energy and cosmological parameters, the history and structure of the Milky Way, and the population of giant planets around other stars. In keeping with SDSS tradition, SDSS-III will provide regular public releases of all its data, beginning with SDSS Data Release 8 (DR8), which was made public in 2011 January and includes SDSS-I and SDSS-II images and spectra reprocessed with the latest pipelines and calibrations produced for the SDSS-III investigations. This paper presents an overview of the four surveys that comprise SDSS-III. The Baryon Oscillation Spectroscopic Survey will measure redshifts of 1.5 million massive galaxies and Ly alpha forest spectra of 150,000 quasars, using the baryon acoustic oscillation feature of large-scale structure to obtain percent-level determinations of the distance scale and Hubble expansion rate at z < 0.7 and at z approximate to 2.5. SEGUE-2, an already completed SDSS-III survey that is the continuation of the SDSS-II Sloan Extension for Galactic Understanding and Exploration (SEGUE), measured medium-resolution (R = lambda/lambda Delta approximate to 1800) optical spectra of 118,000 stars in a variety of target categories, probing chemical evolution, stellar kinematics and substructure, and the mass profile of the dark matter halo from the solar neighborhood to distances of 100 kpc. APOGEE, the Apache Point Observatory Galactic Evolution Experiment, will obtain high-resolution (R approximate to 30,000), high signal-to-noise ratio (S/N >= 100 per resolution element), H-band (1.51 mu m < lambda < 1.70 mu m) spectra of 105 evolved, late-type stars, measuring separate abundances for similar to 15 elements per star and creating the first high-precision spectroscopic survey of all Galactic stellar populations (bulge, bar, disks, halo) with a uniform set of stellar tracers and spectral diagnostics. The Multi-object APO Radial Velocity Exoplanet Large-area Survey (MARVELS) will monitor radial velocities of more than 8000 FGK stars with the sensitivity and cadence (10-40 ms(-1), similar to 24 visits per star) needed to detect giant planets with periods up to two years, providing an unprecedented data set for understanding the formation and dynamical evolution of giant planet systems. As of 2011 January, SDSS-III has obtained spectra of more than 240,000 galaxies, 29,000 z >= 2.2 quasars, and 140,000 stars, including 74,000 velocity measurements of 2580 stars for MARVELS. C1 [Eisenstein, Daniel J.; Fan, Xiaohui; Jiang, Linhua; Maseman, Paul; McGreer, Ian D.; Rieke, George H.; Rieke, Marcia J.; Young, Erick] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Eisenstein, Daniel J.] Harvard Coll Observ, Cambridge, MA 02138 USA. [Weinberg, David H.; Gaudi, B. Scott; Gould, Andrew; Johnson, Jennifer A.; Kochanek, C. S.; Pieri, Matthew M.; Schlesinger, Katharine J.; Sellgren, Kris] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Weinberg, David H.; Honscheid, Klaus; Johnson, Jennifer A.; Kochanek, C. S.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Agol, Eric; Anderson, Scott F.; Davenport, James R. A.; Evans, Michael L.; Hawley, Suzanne L.; MacDonald, Nicholas; Sayres, Conor; Schmidt, Sarah J.; Tofflemire, Benjamin M.; Wisniewski, John P.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Aihara, Hiroaki; Lin, Yen-Ting; Murayama, Hitoshi; Silverman, John D.; Tanaka, Masayuki; Yasuda, Naoki] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778583, Japan. [Allende Prieto, Carlos; Esposito, Massimiliano; Femenia Castella, Bruno; Gonzalez Hernandez, Jonay I.] Inst Astrofis Canarias, E-38205 Tenerife, Spain. [Allende Prieto, Carlos; Esposito, Massimiliano; Femenia Castella, Bruno] Univ La Laguna, Dept Astron, E-38206 Tenerife, Spain. [Arns, James A.] Kaiser Opt Syst, Ann Arbor, MI 48103 USA. [Aubourg, Eric; Busca, Nicolas G.; Hamilton, Jean-Christophe; Magana, Mariana Vargas] Univ Paris Diderot, F-75205 Paris 13, France. [Aubourg, Eric; Le Goff, Jean-Marc; Palanque-Delabrouille, Nathalie; Rich, James; Yeche, Christophe] CEA, Ctr Saclay, Irfu SPP, F-91191 Gif Sur Yvette, France. [Bailey, Stephen; Carithers, William C.; Cortes, Marina; Ho, Shirley; McDonald, Patrick; Roe, Natalie A.; Ross, Nicholas P.; Schlegel, David J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Balbinot, Eduardo; Fausti Neto, Angelo; Santiago, Basilio] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. [Balbinot, Eduardo; Chiappini, Cristina; da Costa, Luiz N.; de Mello, Gustavo F. Porto; de Simoni, Fernando; Ferreira, Leticia Dutra; Ghezzi, Luan; Girardi, Leo; Maia, Marcio A. G.; Makler, Martin; Fausti Neto, Angelo; Ogando, Ricardo L. C.; Pellegrini, Paulo; Ramos, Beatriz H. F.; Rocha-Pinto, Helio J.; Rossetto, Bruno; Santiago, Basilio] Lab Interinst E Astron LIneA, BR-20921400 Rio De Janeiro, Brazil. [Barkhouser, Robert; Menard, Brice; Raddick, M. Jordan; Smee, Stephen; Szalay, Alexander S.; Thakar, Aniruddha R.] Johns Hopkins Univ, Dept Phys & Astron, Ctr Astrophys Sci, Baltimore, MD 21218 USA. [Beers, Timothy C.; Lee, Young Sun] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Beers, Timothy C.; Lee, Young Sun] Michigan State Univ, JINA Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Berlind, Andreas A.; Burger, Dan; Cargile, Phillip A.; Dhital, Saurav; Mack, Claude; McBride, Cameron K.; Paegert, Martin; Pepper, Joshua; Stassun, Keivan G.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Bickerton, Steven J.; Carr, Michael A.; Gott, J. Richard; Gunn, James E.; Knapp, G. R.; Lang, Dustin; Loomis, Craig P.; Lupton, Robert H.; Mandelbaum, Rachel; Mullally, Fergal; Strauss, Michael A.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Bizyaev, Dmitry; Brewington, Howard J.; Brinkmann, J.; Ebelke, Garrett L.; Gillespie, Bruce A.; Jordan, Cathy; Jordan, Wendell P.; Klaene, Mark A.; Long, Daniel C.; Malanushenko, Elena; Malanushenko, Viktor; Naugle, Tracy; Oravetz, Daniel J.; Pan, Kaike; Shelden, Alaina; Simmons, Audrey E.; Snedden, Stephanie A.] Apache Point Observ, Sunspot, NM 88349 USA. [Blanton, Michael R.; Bovy, Jo; Hogg, David W.; Kazin, Eyal; Muna, Demitri; Price-Whelan, Adrian M.; Tinker, Jeremy L.; Weaver, Benjamin A.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Bochanski, John J.; Brandt, W. N.; Mahadevan, Suvrath; Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Bolton, Adam S.; Brown, Peter J.; Brownstein, Joel R.; Dawson, Kyle; Harris, David W.; Ivans, Inese I.; Olmstead, Matthew D.; Pandey, Parul; Shu, Yiping; Simmerer, Jennifer] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Bosman, Casey T.; Chang, Liang; De Lee, Nathan; Fleming, Scott W.; Ford, Eric B.; Ge, Jian; Jiang, Peng; Lee, Brian L.; Liu, Jian; Ma, Bo; Duy Cuong Nguyen; Sivarani, Thirupathi; Wan, Xiaoke; Wang, Ji; Zhao, Bo] Univ Florida, Dept Astron, Bryant Space Sci Ctr, Gainesville, FL 32611 USA. [Brandt, W. N.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Breslauer, Ben; Carlberg, Joleen K.; Dean, Janice; Perez, Ana Elia Garcia; Hearty, Frederick R.; Leisenring, Jarron M.; Majewski, Steven R.; Maseman, Paul; Nidever, David L.; O'Connell, Robert W.; Skrutskie, M. F.; Wilson, John C.; Zasowski, Gail] Univ Virginia, Dept Astron, Charlottesville, VA 22904 USA. [Campbell, Heather; Edmondson, Edward M.; Lampeitl, Hubert; Maraston, Claudia; Masters, Karen L.; Nichol, Robert C.; Percival, Will J.; Pforr, Janine; Ross, Ashley J.; Steele, Oliver; Thomas, Daniel; Tojeiro, Rita] Univ Portsmouth, ICG, Portsmouth PO1 3FX, Hants, England. [Chang, Liang] Chinese Acad Sci, Yunnan Astron Observ, Beijing 100864, Yunnan, Peoples R China. [Chen, Yanmei; Tremonti, Christy A.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Chiappini, Cristina; Steinmetz, Matthias] Leibniz Inst Astrophys Potsdam AIP, D-14482 Potsdam, Germany. [Chiappini, Cristina] 3 Ist Nazl Astrofis OATrieste, I-34143 Trieste, Italy. [Comparat, Johan; Kneib, Jean-Paul] Univ Aix Marseille 1, CNRS, Lab Astrophys Marseille, F-13388 Marseille 13, France. [Connolly, Natalia] Hamilton Coll, Dept Phys, Clinton, NY 13323 USA. [Croft, Rupert A. C.] Carnegie Mellon Univ, Bruce & Astrid McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [da Costa, Luiz N.; de Simoni, Fernando; Ghezzi, Luan; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Ramos, Beatriz H. F.] Observ Nacl, BR-20921400 Rio De Janeiro, Brazil. [de Mello, Gustavo F. Porto; Ferreira, Leticia Dutra; Rocha-Pinto, Helio J.; Rossetto, Bruno] Univ Fed Rio de Janeiro, Observ Valongo, BR-20080090 Rio De Janeiro, Brazil. [Ealet, Anne; Escoffier, Stephanie] Aix Marseille Univ, CNRS, IN2P3, Ctr Phys Particules Marseille, Marseille, France. [Ebelke, Garrett L.; Holtzman, Jon A.; Jordan, Wendell P.; Pfaffenberger, Robert; Vogt, Nicole P.] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Eiting, Jacob M.; Honscheid, Klaus] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Fitzgerald, Greg; Stollberg, Todd] New England Opt Syst, Marlborough, MA 01752 USA. [Font-Ribera, Andreu] CSIC, IEEC, Inst Ciencies Espai, Barcelona 08193, Spain. [Frinchaboy, Peter M.] Texas Christian Univ, Dept Phys & Astron, Ft Worth, TX 76129 USA. [Gilmore, G.; McMahon, Richard G.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Girardi, Leo; Lucatello, Sara] Osservatorio Astron Padova INAF, I-35122 Padua, Italy. [Grebel, Eva K.] Univ Heidelberg, Zentrum Astron, Astron Rech Inst, D-69120 Heidelberg, Germany. [Harding, Paul; Ma, Zhibo; Morrison, Heather L.; Zehavi, Idit] Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA. [Hennawi, Joseph F.; Rix, Hans-Walter] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Inada, Naohisa] Univ Tokyo, Grad Sch Sci, Res Ctr Early Universe, Bunkyo Ku, Tokyo 1130033, Japan. [Jiang, Peng] Chinese Acad Sci, Univ Sci & Technol China, Key Lab Res Galaxies & Cosmol, Hefei 230026, Anhui, Peoples R China. [Kauffmann, Guinevere; White, Simon D. M.] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Kirkby, David; Margala, Daniel] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Koesterke, Lars] Univ Texas Austin, Texas Adv Comp Ctr, Austin, TX 78758 USA. [Kollmeier, Juna A.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Kron, Richard G.; Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Kron, Richard G.; York, Donald G.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Lawler, James E.; Stockett, Mark H.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Lin, Yen-Ting] Acad Sinica, Inst Astron & Astrophys, Taipei 10617, Taiwan. [Lundgren, Britt; Padmanabhan, Nikhil; Parejko, John K.; Wake, David A.] Yale Univ, Yale Ctr Astron & Astrophys, New Haven, CT 06520 USA. [Mahadevan, Suvrath; Schneider, Donald P.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [Makler, Martin] ICRA Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil. [Mena Requejo, Olga] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Valencia, Spain. [Menard, Brice] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Miralda-Escude, Jordi; Verde, Licia] Inst Catalana Recerca & Estudis Avancats, Barcelona, Spain. [Miralda-Escude, Jordi; Verde, Licia] Univ Barcelona, IEEC, Inst Ciencies Cosmos, E-08028 Barcelona, Spain. [Mullally, Fergal] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Myers, Adam D.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Paris, Isabelle; Petitjean, Patrick; Pichon, Christophe; Rollinde, Emmanuel] Univ Paris 06, UMR7095, CNRS, Inst Astrophys Paris, F-75014 Paris, France. [Phleps, Stefanie; Sanchez, Ariel G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Prada, Francisco] CSIC, Inst Astrofis Andalucia, E-18008 Granada, Spain. [Pieri, Matthew M.] Univ Colorado, CASA, Boulder, CO 80309 USA. [Reid, I. Neill] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Reyle, Celine; Robin, Annie C.] Univ Franche Comte, Observ Besancon, Inst Utinam, F-25010 Besancon, France. [Richards, Gordon T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Rockosi, Constance M.] Univ Calif Santa Cruz, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Schiavon, Ricardo] Gemini Observ, Hilo, HI 96720 USA. [Shetrone, Matthew] Univ Texas Austin, McDonald Observ, Ft Davis, TX 79734 USA. [Sivarani, Thirupathi] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Stassun, Keivan G.] Fisk Univ, Dept Phys, Nashville, TN USA. [White, Martin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Wood-Vasey, W. Michael] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [York, Donald G.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Young, Erick] NASA, SOFIA Sci Ctr, USRA, Ames Res Ctr, Moffett Field, CA 94035 USA. [McDonald, Patrick; Sheldon, Erin; Slosar, Anze] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Cunha, Katia; Smith, Verne V.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. RP Eisenstein, DJ (reprint author), Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. RI Kneib, Jean-Paul/A-7919-2015; Pforr, Janine/J-3967-2015; White, Martin/I-3880-2015; Brandt, William/N-2844-2015; Rocha-Pinto, Helio/C-2719-2008; Jiang, Linhua/H-5485-2016; Croft, Rupert/N-8707-2014; Ogando, Ricardo/A-1747-2010; Mandelbaum, Rachel/N-8955-2014; Padmanabhan, Nikhil/A-2094-2012; Roe, Natalie/A-8798-2012; Yasuda, Naoki/A-4355-2011; Makler, Martin/G-2639-2012; Gaudi, Bernard/I-7732-2012; Aihara, Hiroaki/F-3854-2010; Agol, Eric/B-8775-2013; Murayama, Hitoshi/A-4286-2011; Le Goff, Jean-Marc/E-7629-2013; Balbinot, Eduardo/E-8019-2015; Gonzalez Hernandez, Jonay I./L-3556-2014 OI Kneib, Jean-Paul/0000-0002-4616-4989; Pforr, Janine/0000-0002-3414-8391; White, Martin/0000-0001-9912-5070; Brandt, William/0000-0002-0167-2453; Jiang, Linhua/0000-0003-4176-6486; Croft, Rupert/0000-0003-0697-2583; Cortes, Marina/0000-0003-0485-3767; Escoffier, Stephanie/0000-0002-2847-7498; Kirkby, David/0000-0002-8828-5463; Fleming, Scott/0000-0003-0556-027X; Miralda-Escude, Jordi/0000-0002-2316-8370; Schmidt, Sarah/0000-0002-7224-7702; Bovy, Jo/0000-0001-6855-442X; Verde, Licia/0000-0003-2601-8770; McMahon, Richard/0000-0001-8447-8869; /0000-0002-1891-3794; Masters, Karen/0000-0003-0846-9578; Hogg, David/0000-0003-2866-9403; Davenport, James/0000-0002-0637-835X; /0000-0001-6545-639X; Pepper, Joshua/0000-0002-3827-8417; Stockett, Mark/0000-0003-4603-5172; McDonald, Patrick/0000-0001-8346-8394; Ogando, Ricardo/0000-0003-2120-1154; Mandelbaum, Rachel/0000-0003-2271-1527; Makler, Martin/0000-0003-2206-2651; Aihara, Hiroaki/0000-0002-1907-5964; Agol, Eric/0000-0002-0802-9145; Balbinot, Eduardo/0000-0002-1322-3153; Gonzalez Hernandez, Jonay I./0000-0002-0264-7356 FU Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; University of Cambridge; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University FX Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III Web site is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 169 TC 733 Z9 737 U1 12 U2 83 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD SEP PY 2011 VL 142 IS 3 AR 72 DI 10.1088/0004-6256/142/3/72 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 817JY UT WOS:000294669700006 ER PT J AU Krisciunas, K Li, WD Matheson, T Howell, DA Stritzinger, M Aldering, G Berlind, PL Calkins, M Challis, P Chornock, R Conley, A Filippenko, AV Ganeshalingam, M Germany, L Gonzalez, S Gooding, SD Hsiao, E Kasen, D Kirshner, RP Marion, GHH Muena, C Nugent, PE Phelps, M Phillips, MM Qiu, YL Quimby, R Rines, K Silverman, JM Suntzeff, NB Thomas, RC Wang, LF AF Krisciunas, Kevin Li, Weidong Matheson, Thomas Howell, D. Andrew Stritzinger, Maximilian Aldering, Greg Berlind, Perry L. Calkins, M. Challis, Peter Chornock, Ryan Conley, Alexander Filippenko, Alexei V. Ganeshalingam, Mohan Germany, Lisa Gonzalez, Sergio Gooding, Samuel D. Hsiao, Eric Kasen, Daniel Kirshner, Robert P. Marion, G. H. Howie Muena, Cesar Nugent, Peter E. Phelps, M. Phillips, Mark M. Qiu, Yulei Quimby, Robert Rines, K. Silverman, Jeffrey M. Suntzeff, Nicholas B. Thomas, Rollin C. Wang, Lifan TI THE MOST SLOWLY DECLINING TYPE Ia SUPERNOVA 2001ay SO ASTRONOMICAL JOURNAL LA English DT Article DE supernovae: individual (SN 2001ay); techniques: photometric; techniques: spectroscopic ID MASS WHITE-DWARF; LIGHT CURVES; STANDARD STARS; MAXIMUM LIGHT; K-CORRECTIONS; FACTORY OBSERVATIONS; INFRARED PHOTOMETRY; ABSOLUTE MAGNITUDES; HUBBLE CONSTANT; LUMINOSITY AB We present optical and near-infrared photometry, as well as ground-based optical spectra and Hubble Space Telescope ultraviolet spectra, of the Type Ia supernova (SN) 2001ay. At maximum light the Si II and Mg II lines indicated expansion velocities of 14,000 km s-(1), while Si III and S II showed velocities of 9000 km s(-1). There is also evidence for some unburned carbon at 12,000 km s(-1). SN 2001ay exhibited a decline-rate parameter of Delta m(15)(B) = 0.68 +/- 0.05 mag; this and the B-band photometry at t greater than or similar to + 25 day past maximum make it the most slowly declining Type Ia SN yet discovered. Three of the four super-Chandrasekhar-mass candidates have decline rates almost as slow as this. After correction for Galactic and host-galaxy extinction, SN 2001ay had M-B = -19.19 and M-V = -19.17 mag at maximum light; thus, it was not overluminous in optical bands. In near-infrared bands it was overluminous only at the 2 sigma level at most. For a rise time of 18 days (explosion to bolometric maximum) the implied Ni-56 yield was (0.58 +/- 0.15)/alpha M-circle dot, with alpha = L-max/E-Ni probably in the range 1.0-1.2. The Ni-56 yield is comparable to that of many Type Ia SNe. The "normal" Ni-56 yield and the typical peak optical brightness suggest that the very broad optical light curve is explained by the trapping of gamma rays in the inner regions. C1 [Krisciunas, Kevin; Gooding, Samuel D.; Suntzeff, Nicholas B.; Wang, Lifan] Texas A&M Univ, Dept Phys & Astron, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Li, Weidong; Filippenko, Alexei V.; Ganeshalingam, Mohan; Silverman, Jeffrey M.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Matheson, Thomas] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Howell, D. Andrew] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Howell, D. Andrew] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Stritzinger, Maximilian] Stockholm Univ, Dept Astron, Oskar Klein Ctr, S-10691 Stockholm, Sweden. [Stritzinger, Maximilian] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark. [Aldering, Greg; Hsiao, Eric; Nugent, Peter E.; Thomas, Rollin C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Berlind, Perry L.; Calkins, M.; Phelps, M.; Rines, K.] Fred L Whipple Observ, Amado, AZ 85645 USA. [Challis, Peter; Chornock, Ryan; Kirshner, Robert P.; Marion, G. H. Howie] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Conley, Alexander] Univ Colorado, Dept Astron, Boulder, CO 80309 USA. [Germany, Lisa] Swinburne Univ Technol, Ctr Astrophys & Supercomp, Hawthorn, Vic 3122, Australia. [Gonzalez, Sergio; Muena, Cesar; Phillips, Mark M.] Las Campanas Observ, La Serena, Chile. [Kasen, Daniel] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Qiu, Yulei] Chinese Acad Sci, Natl Astron Observ China, Beijing 100012, Peoples R China. [Quimby, Robert] CALTECH, Dept Astron, Pasadena, CA 91125 USA. RP Krisciunas, K (reprint author), Texas A&M Univ, Dept Phys & Astron, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. EM krisciunas@physics.tamu.edu; weidong@astro.berkeley.edu; matheson@noao.edu; ahowell@lcogt.net; max.stritzinger@astro.su.se; galdering@lbl.gov; berlind@cfa.harvard.edu; pchallis@cfa.harvard.edu; rchornock@cfa.harvard.edu; alexander.conley@colorado.edu; alex@astro.berkeley.edu; mganesh@astro.berkeley.edu; lgermany@swin.edu.au; sam.gooding86@gmail.com; ehsiao@lbl.gov; kasen@berkeley.edu; kirshner@cfa.harvard.edu; hman@astro.as.utexas.edu; penugent@lbl.gov; mmp@lco.cl; qiuyl@bao.ac.cn; quimby@astro.caltech.edu; jsilverman@astro.berkeley.edu; suntzeff@physics.tamu.edu; rcthomas@lbl.gov; wang@physics.tamu.edu OI stritzinger, maximilian/0000-0002-5571-1833 FU NASA [NAS5-26555, NAS 5-26555]; NSF; W. M. Keck Foundation; NSF [AST-0908886, AST-0709181, AST-0907903]; TABASGO Foundation; NASA from the Space Telescope Science Institute [AR-11248, AR-12126]; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The work presented here is based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555; the Cerro Tololo Inter-American Observatory and the Kitt Peak National Observatory of the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the NSF; the MMTObservatory, a joint facility of the Smithsonian Institution and the University of Arizona; the Fred L. Whipple Observatory; the Lick Observatory of the University of California; the Las Campanas Observatory; the Beijing Astronomical Observatory; and the W. M. Keck Observatory, which was generously funded by the W. M. Keck Foundation and is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. We thank the staffs at these observatories for their efficient assistance, Don Groom for taking some of the Nickel 1 m images, and Rachel Gibbons, Maryam Modjaz, Isobel Hook, and Saul Perlmutter for other observational assistance. We are grateful to Peter Hoflich, Alexei Khokhlov, and Eddie Baron for comments on Section 4.3.; The supernova research of A.V.F.'s group at U. C. Berkeley is supported by NSF grant AST-0908886 and by the TABASGO Foundation, as well as by NASA through grants AR-11248 and AR-12126 from the Space Telescope Science Institute, which is operated by Associated Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. KAIT and its ongoing operation were made possible by donations from Sun Microsystems, Inc., the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory, the NSF, the University of California, the Sylvia & Jim Katzman Foundation, and the TABASGO Foundation. J. M. S. is grateful to Marc J. Staley for a Graduate Fellowship. K. K., L. W., and N. B. S. are supported in part by NSF grant AST-0709181. Supernova research at Harvard is supported by NSF grant AST-0907903. This work was also supported by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 91 TC 19 Z9 19 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD SEP PY 2011 VL 142 IS 3 AR 74 DI 10.1088/0004-6256/142/3/74 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 817JY UT WOS:000294669700008 ER PT J AU Hurley, K Briggs, MS Kippen, RM Kouveliotou, C Fishman, G Meegan, C Cline, T Trombka, J McClanahan, T Boynton, W Starr, R McNutt, R Boer, M AF Hurley, K. Briggs, M. S. Kippen, R. M. Kouveliotou, C. Fishman, G. Meegan, C. Cline, T. Trombka, J. McClanahan, T. Boynton, W. Starr, R. McNutt, R. Boer, M. TI THE INTERPLANETARY NETWORK SUPPLEMENT TO THE BURST AND TRANSIENT SOURCE EXPERIMENT 5B CATALOG OF COSMIC GAMMA-RAY BURSTS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; gamma-ray burst: general AB We present Interplanetary Network localization information for 343 gamma-ray bursts observed by the Burst and Transient Source Experiment (BATSE) between the end of the 4th BATSE catalog and the end of the Compton Gamma-Ray Observatory (CGRO) mission, obtained by analyzing the arrival times of these bursts at the Ulysses, Near Earth Asteroid Rendezvous (NEAR), and CGRO spacecraft. For any given burst observed by CGRO and one other spacecraft, arrival time analysis (or "triangulation") results in an annulus of possible arrival directions whose half-width varies between 11 arcsec and 21 degrees, depending on the intensity, time history, and arrival direction of the burst, as well as the distance between the spacecraft. This annulus generally intersects the BATSE error circle, resulting in an average reduction of the area of a factor of 20. When all three spacecraft observe a burst, the result is an error box whose area varies between 1 and 48,000 arcmin(2), resulting in an average reduction of the BATSE error circle area of a factor of 87. C1 [Hurley, K.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Briggs, M. S.] Univ Alabama, NSSTC, Huntsville, AL 35805 USA. [Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kouveliotou, C.; Fishman, G.] NASA, George C Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [Meegan, C.] Univ Space Res Assoc, NSSTC, Huntsville, AL 35805 USA. [Cline, T.; Trombka, J.; McClanahan, T.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Boynton, W.] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA. [Starr, R.] Catholic Univ Amer, Dept Phys, Washington, DC 20064 USA. [McNutt, R.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Boer, M.] CNRS, Observ Haute Provence, F-04870 St Michel lObservatoire, France. RP Hurley, K (reprint author), Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA. EM khurley@ssl.berkeley.edu RI McClanahan, Timothy/C-8164-2012; McNutt, Ralph/E-8006-2010 OI McNutt, Ralph/0000-0002-4722-9166 FU JPL [958056]; NASA [NAG 5-1560, NAG5-9701, NAG 5-3500, NAG 5-9503] FX Support for the Ulysses GRB experiment was provided by JPL Contract 958056. Joint analysis of Ulysses and BATSE data was supported by NASA Grants NAG 5-1560 and NAG5-9701. NEAR data analysis was supported under NASA Grants NAG 5-3500 and NAG 5-9503. We are also grateful to the NEAR team for their modifications to the XGRS experiment which made gamma-ray burst detection possible. NR 45 TC 6 Z9 6 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD SEP PY 2011 VL 196 IS 1 AR UNSP 1 DI 10.1088/0067-0049/196/1/1 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 818RT UT WOS:000294773400001 ER PT J AU Najera, M Solunke, R Gardner, T Veser, G AF Najera, Michelle Solunke, Rahul Gardner, Todd Veser, Goetz TI Carbon capture and utilization via chemical looping dry reforming SO CHEMICAL ENGINEERING RESEARCH & DESIGN LA English DT Article DE Chemical looping; CO2 utilization; Nanomaterials; Fixed bed reactors; Periodic reactor operation ID FIXED-BED REACTOR; DIOXIDE REDUCTION; PARTIAL OXIDATION; OXYGEN CARRIERS; SYNTHESIS GAS; SOLID FUELS; COMBUSTION; METHANE; TECHNOLOGY; SYNGAS AB Chemical looping combustion (CLC) is a clean energy technology for CO2 capture that uses periodic oxidation and reduction of an oxygen carrier with air and a fuel, respectively, to achieve flameless combustion and yield sequestration-ready CO2 streams. While CLC allows for highly efficient CO2 capture, it does not, however, provide a solution for CO2 sequestration. Here, we propose chemical looping dry reforming (CLDR) as an alternative to CLC by replacing air with CO2 as the oxidant. CLDR extends the chemical looping principle to achieve CO2 reduction to CO, which opens a pathway to CO2 utilization as an alternative to sequestration. The feasibility of CLDR is studied through thermodynamic screening calculations for oxygen carrier selection, synthesis and kinetic experiments of nanostructured carriers using cyclic thermogravimetric analysis (TGA) and fixed-bed reactor studies, and a brief model-based analysis of the thermal aspects of a fixed-bed CLDR process. Overall, our results indicate that it is indeed possible to reduce CO2 to CO with high reaction rates through the use of appropriately designed nanostructured carriers, and to integrate this reaction into a cyclic redox ("looping") process. (C) 2011 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved. C1 [Najera, Michelle; Solunke, Rahul; Veser, Goetz] Univ Pittsburgh, Dept Chem Engn, Pittsburgh, PA 15261 USA. [Gardner, Todd; Veser, Goetz] US DOE Natl Energy Technol Lab, Pittsburgh, PA USA. [Najera, Michelle; Veser, Goetz] Univ Pittsburgh, Mascara Ctr Sustainable Innovat, Pittsburgh, PA 15261 USA. RP Veser, G (reprint author), Univ Pittsburgh, Dept Chem Engn, 1249 Benedum Hall, Pittsburgh, PA 15261 USA. EM gveser@pitt.edu RI Veser, Goetz/I-5727-2013 FU U.S. Department of Energy's National Energy Technology Laboratory [DE-AC26-04NT41817]; DOE-NETL; University of Pittsburgh's Swanson School of Engineering; U.S. Department of Education through the University of Pittsburgh's Mascaro Center for Sustainable Innovation FX This technical effort was performed in support of the U.S. Department of Energy's National Energy Technology Laboratory's on-going research under the RDS contract DE-AC26-04NT41817. G.V. gratefully acknowledges support through faculty fellowships from DOE-NETL and from the University of Pittsburgh's Swanson School of Engineering. M.N. gratefully acknowledges support through a GAANN-fellowship from the U.S. Department of Education through the University of Pittsburgh's Mascaro Center for Sustainable Innovation. NR 31 TC 38 Z9 39 U1 9 U2 78 PU INST CHEMICAL ENGINEERS PI RUGBY PA 165-189 RAILWAY TERRACE, DAVIS BLDG, RUGBY CV21 3HQ, ENGLAND SN 0263-8762 J9 CHEM ENG RES DES JI Chem. Eng. Res. Des. PD SEP PY 2011 VL 89 IS 9 SI SI BP 1533 EP 1543 DI 10.1016/j.cherd.2010.12.017 PG 11 WC Engineering, Chemical SC Engineering GA 817BJ UT WOS:000294645500009 ER PT J AU Xu, JL Guan, MY Yang, CG Wang, YF Zhang, JW Lu, CG McDonald, K Hackenburg, R Lau, K Lebanowski, L Newsom, C Lin, SK Link, J Ma, LH Pec, V Vorobel, V Chen, J Liu, JC Zhou, YZ Liang, H AF Xu Ji-Lei Guan Meng-Yun Yang Chang-Gen Wang Yi-Fang Zhang Jia-Wen Lu Chang-Guo McDonald, Kirk Hackenburg, Robert Lau, Kwong Lebanowski, Logan Newsom, Cullen Lin Shih-Kai Link, Jonathan Ma Lie-Hua Pec, Viktor Vorobel, Vit Chen Jin Liu Jin-Chang Zhou Yong-Zhao Liang Hao TI Design and preliminary test results of Daya Bay RPC modules SO CHINESE PHYSICS C LA English DT Article DE RPC; RPC modules; module efficiency; dead area; Daya Bay neutrino experiment ID DETECTOR AB Resistive Plate Chamber (RPC) modules will be used as one part of the cosmic muon veto system in the Daya Bay reactor neutrino experiment. A total of 189 RPC modules will cover the three water pools in the experiment. To achieve track reconstruction and high efficiency, each module consists of 4 layers, each of which contains two sizes of bare chambers. The placement of bare chambers is reversed in different layers to reduce the overlapping dead areas. The module efficiency and patch efficiency were studied both in simulation and test of the data analysis. 143 modules have been constructed and tested. The preliminary study shows that the module and patch 3 out of 4 layers efficiency reaches about 98%. C1 [Xu Ji-Lei; Guan Meng-Yun; Yang Chang-Gen; Wang Yi-Fang; Zhang Jia-Wen; Ma Lie-Hua; Chen Jin; Liu Jin-Chang] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Xu Ji-Lei; Ma Lie-Hua] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China. [Lu Chang-Guo; McDonald, Kirk] Princeton Univ, Joseph Henry Labs, Princeton, NJ 08544 USA. [Hackenburg, Robert] Brookhaven Natl Lab, Upton, NY 11973 USA. [Lau, Kwong; Lebanowski, Logan; Newsom, Cullen; Lin Shih-Kai] Univ Houston, Dept Phys, Houston, TX 77204 USA. [Link, Jonathan] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA. [Pec, Viktor; Vorobel, Vit] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Zhou Yong-Zhao; Liang Hao] Univ Sci & Technol China, Hefei 230026, Peoples R China. RP Xu, JL (reprint author), Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. EM xujl@ihep.ac.cn OI Xu, Jilei/0000-0001-5743-6807 FU Ministry of Science and Technology of People's Republic of China [2006CB808102]; United States Department of Energy; Ministry of Education, Youth and Sports of Czech Republic [MSM0021620859, ME08076]; Czech Science Foundation [202/08/0760] FX Supported by Ministry of Science and Technology of People's Republic of China (2006CB808102), United States Department of Energy, Projects MSM0021620859 and ME08076 of Ministry of Education, Youth and Sports of Czech Republic and 202/08/0760 of Czech Science Foundation NR 13 TC 7 Z9 7 U1 1 U2 5 PU CHINESE PHYSICAL SOC PI BEIJING PA P O BOX 603, BEIJING 100080, PEOPLES R CHINA SN 1674-1137 J9 CHINESE PHYS C JI Chin. Phys. C PD SEP PY 2011 VL 35 IS 9 BP 844 EP 850 DI 10.1088/1674-1137/35/9/011 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 818YW UT WOS:000294793600011 ER PT J AU Gil-Alvaradejo, G Ruiz-Arellano, RR Owen, C Rodriguez-Romero, A Rudino-Pinera, E Antwi, MK Stojanoff, V Moreno, A AF Gil-Alvaradejo, Gabriela Ruiz-Arellano, Rayana R. Owen, Christopher Rodriguez-Romero, Adela Rudino-Pinera, Enrique Antwi, Moriamou K. Stojanoff, Vivian Moreno, Abel TI Novel Protein Crystal Growth Electrochemical Cell For Applications In X-ray Diffraction and Atomic Force Microscopy SO CRYSTAL GROWTH & DESIGN LA English DT Article ID EXTERNAL ELECTRIC-FIELD; WHITE LYSOZYME CRYSTALS; PRESSURE FIELDS; CRYSTALLIZATION; NUCLEATION AB A new crystal growth cell based on transparent indium tin oxide (ITO) glass-electrodes for electrochemically assisted protein crystallization allows for reduced nucleation and crystal quality enhancement. The crystallization behavior of lysozyme and ferritin was monitored as a function of the electric current applied to the growth cell. The X-ray diffraction analysis showed that for specific currents, the crystal quality is substantially improved. No conformational changes were observed in the 3D crystallographic structures determined for crystals grown under different electric current regimes. Finally, the strong crystal adhesion on the surface of ITO electrode because of the electroadhesion allows a sufficiently strong fixing of the protein crystals, to undergo atomic force microscopy investigations in a fluid cell. C1 [Gil-Alvaradejo, Gabriela; Ruiz-Arellano, Rayana R.; Rodriguez-Romero, Adela; Moreno, Abel] Univ Nacl Autonoma Mexico, Inst Quim, Mexico City 04510, DF, Mexico. [Owen, Christopher; Stojanoff, Vivian] Brookhaven Natl Lab, Upton, NY 11873 USA. [Rudino-Pinera, Enrique] Univ Nacl Autonoma Mexico, Inst Biotecnol, Dept Med Mol & Bioproc, Cuernavaca 62210, Morelos, Mexico. [Antwi, Moriamou K.] St Josephs Coll, Brooklyn, NY 11205 USA. RP Moreno, A (reprint author), Univ Nacl Autonoma Mexico, Inst Quim, Circuito Exterior Cu Mex 04510, DF, Mexico. EM carcamo@unam.mx RI stojanoff, vivian /I-7290-2012; RODRIGUEZ-ROMERO, ADELA/C-7723-2015 OI stojanoff, vivian /0000-0002-6650-512X; FU NIGMS; DOE [GM-0080, DE-AC02-98CH10886]; DGAPA-UNAM [IN201811-3] FX The authors acknowledge the X-ray diffraction from the Laboratorio de Estructura de Proteinas-LANEM at UNAM (Mexico) and the help from M. Sci. Georgina E. Espinosa-Perez. X-ray experiments were carried out at the X6A beamline at the National Synchrotron Light Source supported by the NIGMS and DOE under contract GM-0080 and DE-AC02-98CH10886. We acknowledge the professional grammar and style English revision done by Ms. Antonia Sanchez-Marin. We sincerely thank the help of Dr. Juan Pablo Reyes-Grajeda from the National Institute of the Genomic Medicine (INMEGEN) for processing high quality crystallographic images of Lysozyme crystals grown at different currents. One of the authors (RRR-A) acknowledges the PhD schoolarship from the Institute of Science and Technology of Mexico City (ICyTDF) as well as C.LAF., and schoolarship as research assistant from the SNI-CONACYT(Mexico). Finally one of the authors (A.M.) acknowledges the finantial support from DGAPA-UNAM Project PAPIIT No. IN201811-3. NR 34 TC 6 Z9 6 U1 1 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD SEP PY 2011 VL 11 IS 9 BP 3917 EP 3922 DI 10.1021/cg200485v PG 6 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 817CE UT WOS:000294647600038 ER PT J AU Duerr, RE Downs, RR Tilmes, C Barkstrom, B Lenhardt, WC Glassy, J Bermudez, LE Slaughter, P AF Duerr, Ruth E. Downs, Robert R. Tilmes, Curt Barkstrom, Bruce Lenhardt, W. Christopher Glassy, Joseph Bermudez, Luis E. Slaughter, Peter TI On the utility of identification schemes for digital earth science data: an assessment and recommendations SO EARTH SCIENCE INFORMATICS LA English DT Review DE Digital identifiers; Unique Identifiers; Permanent identifiers; Global unique persistent identifiers ID INFORMATION; SYSTEM AB In recent years, a number of data identification technologies have been developed which purport to permanently identify digital objects. In this paper, nine technologies and systems for assigning persistent identifiers are assessed for their applicability to Earth science data (ARKs, DOIs, XRIs, Handles, LSIDs, OIDs, PURLs, URIs/URNs/URLs, and UUIDs). The evaluation used four use cases that focused on the suitability of each scheme to provide Unique Identifiers for Earth science data objects, to provide Unique Locators for the objects, to serve as Citable Locators, and to uniquely identify the scientific contents of data objects if the data were reformatted. Of all the identifier schemes assessed, the one that most closely meets all of the requirements for an Unique Identifier is the UUID scheme. Any of the URL/URI/IRI-based identifier schemes assessed could be used for Unique Locators. Since there are currently no strong market leaders to help make the choice among them, the decision must be based on secondary criteria. While most publications now allow the use of URLs in citations, so that all of the URL/URI/IRI based identification schemes discussed in this paper could potentially be used as a Citable Locator, DOIs are the identification scheme currently adopted by most commercial publishers. None of the identifier schemes assessed here even minimally address identification of scientifically identical numerical data sets under reformatting. C1 [Duerr, Ruth E.] Univ Colorado, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA. [Downs, Robert R.] Columbia Univ, CIESIN, Palisades, NY 10964 USA. [Tilmes, Curt] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bermudez, Luis E.] OGC, Herndon, VA 20170 USA. [Slaughter, Peter] Univ Calif Santa Barbara, Earth Res Inst, Santa Barbara, CA 93106 USA. [Barkstrom, Bruce] NASA NOAA, Asheville, NC 28804 USA. [Lenhardt, W. Christopher] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Glassy, Joseph] Lupine Log Inc, R&D, Missoula, MT 59802 USA. RP Duerr, RE (reprint author), Univ Colorado, Natl Snow & Ice Data Ctr, Boulder, CO 80309 USA. EM rduerr@nsidc.org; rdowns@ciesin.columbia.edu; Curt.Tilmes@nasa.gov; brbarkstrom@gmail.com; ledhardtc@ornl.gov; jglassy@lupinelogic.com; lbermudez@opengeospatial.org; peter@eri.ucsb.edu RI Tilmes, Curt/D-5637-2012; Downs, Robert/B-4153-2013; Lenhardt, W Christopher/H-3257-2016; OI Downs, Robert/0000-0002-8595-5134; Lenhardt, W Christopher/0000-0001-9677-784X; Slaughter, Peter/0000-0002-2192-403X; Tilmes, Curt/0000-0002-6512-0287; Duerr, Ruth/0000-0003-4808-4736 FU National Aeronautics and Space Administration (NASA) [NNG08HZ11C, NNG08HZ07C, NNX08AN99A, NNX10AE07A]; National Science Foundation [ARC 0946625] FX The authors are grateful for the support received from the National Aeronautics and Space Administration (NASA), including support received for Robert Downs under contract NNG08HZ11C and the support for Ruth Duerr received under contract NNG08HZ07C and grants NNX08AN99A and NNX10AE07A. The authors are also grateful for the support received from the National Science Foundation under grant ARC 0946625. Lastly, the authors are grateful to the members of NASA's TIWG and the ESIP Stewardship Cluster who materially contributed to the results of the paper through many discussions during monthly teleconferences, list serve discussions and twice yearly meetings. NR 102 TC 9 Z9 9 U1 2 U2 10 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1865-0473 EI 1865-0481 J9 EARTH SCI INFORM JI Earth Sci. Inform. PD SEP PY 2011 VL 4 IS 3 BP 139 EP 160 DI 10.1007/s12145-011-0083-6 PG 22 WC Computer Science, Interdisciplinary Applications; Geosciences, Multidisciplinary SC Computer Science; Geology GA 818VT UT WOS:000294784700004 ER PT J AU Kim, J Henao, CA Johnson, TA Dedrick, DE Miller, JE Stechel, EB Maravelias, CT AF Kim, Jiyong Henao, Carlos A. Johnson, Terry A. Dedrick, Daniel E. Miller, James E. Stechel, Ellen B. Maravelias, Christos T. TI Methanol production from CO2 using solar-thermal energy: process development and techno-economic analysis SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID GAS-SHIFT REACTION; CARBON-DIOXIDE; CAMERE PROCESS; CHALLENGES; HYDROGENATION; OPPORTUNITIES; CATALYSIS; FUELS AB We describe a novel solar-based process for the production of methanol from carbon dioxide and water. The system utilizes concentrated solar energy in a thermochemical reactor to reenergize CO2 into CO and then water gas shift (WGS) to produce syngas (a mixture of CO and H-2) to feed a methanol synthesis reactor. Aside from the thermochemical reactor, which is currently under development, the full system is based on well-established industrial processes and component designs. This work presents an initial assessment of energy efficiency and economic feasibility of this baseline configuration for an industrial-scale methanol plant. Using detailed sensitivity calculations, we determined that a break-even price of the methanol produced using this approach would be 1.22 USD/kg; which while higher than current market prices is comparable to other renewable-resource-based alternatives. We also determined that if solar power is the sole primary energy source, then an overall process energy efficiency (solar-to-fuel) of 7.1% could be achieved, assuming the solar collector, solar thermochemical reactor sub-system operates at 20% sunlight to chemical energy efficiency. This 7.1% system efficiency is significantly higher than can currently be achieved with photosynthesis-based processes, and illustrates the potential for solar thermochemical based strategies to overcome the resource limitations that arise for low-efficiency approaches. Importantly, the analysis here identifies the primary economic drivers as the high capital investment associated with the solar concentrator/reactor sub-system, and the high utility consumption for CO/CO2 separation. The solar concentrator/reactor sub-system accounts for more than 90% of the capital expenditure. A life cycle assessment verifies the opportunity for significant improvements over the conventional process for manufacturing methanol from natural gas in global warming potential, acidification potential and non-renewable primary energy requirement provided balance of plant utilities for the solar thermal process are also from renewable (solar) resources. The analysis indicates that a solar-thermochemical pathway to fuels has significant potential, and points towards future research opportunities to increase efficiency, reduce balance of plant utilities, and reduce cost from this baseline. Particularly, it is evident that there is much room for improvement in the development of a less expensive solar concentrator/reactor sub-system; an opportunity that will benefit from the increasing deployment of concentrated solar power (electricity). In addition, significant advances are achievable through improved separations, combined CO2 and H2O splitting, different end products, and greater process integration and distribution. The baseline investigation here establishes a methodology for identifying opportunities, comparison, and assessment of impact on the efficiency, lifecycle impact, and economics for advanced system designs. C1 [Kim, Jiyong; Henao, Carlos A.; Maravelias, Christos T.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Johnson, Terry A.; Dedrick, Daniel E.] Sandia Natl Labs, Transportat Energy Ctr, Livermore, CA 94551 USA. [Miller, James E.] Sandia Natl Labs, Ctr Mat Sci & Engn, Albuquerque, NM 87123 USA. [Stechel, Ellen B.] Sandia Natl Labs, Energy Technol & Syst Solut Ctr, Albuquerque, NM 87123 USA. RP Kim, J (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. EM maravelias@wisc.edu RI Stechel, Ellen/B-1253-2012; Miller, James/C-1128-2011; Maravelias, Christos/B-1376-2009; OI Miller, James/0000-0001-6811-6948; Maravelias, Christos/0000-0002-4929-1748; Kim, Jiyong/0000-0002-9999-736X FU Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, in the form of a Grand Challenge project entitled Reimagining Liquid Transportation Fuels: Sunshine to Petrol. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 28 TC 49 Z9 50 U1 15 U2 105 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD SEP PY 2011 VL 4 IS 9 BP 3122 EP 3132 DI 10.1039/c1ee01311d PG 11 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 812QB UT WOS:000294306900003 ER PT J AU Darling, SB You, FQ Veselka, T Velosa, A AF Darling, Seth B. You, Fengqi Veselka, Thomas Velosa, Alfonso TI Assumptions and the levelized cost of energy for photovoltaics SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article AB Photovoltaic electricity is a rapidly growing renewable energy source and will ultimately assume a major role in global energy production. The cost of solar-generated electricity is typically compared to electricity produced by traditional sources with a levelized cost of energy (LCOE) calculation. Generally, LCOE is treated as a definite number and the assumptions lying beneath that result are rarely reported or even understood. Here we shed light on some of the key assumptions and offer a new approach to calculating LCOE for photovoltaics based on input parameter distributions feeding a Monte Carlo simulation. In this framework, the influence of assumptions and confidence intervals C1 [Darling, Seth B.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [You, Fengqi] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [You, Fengqi] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL USA. [Veselka, Thomas] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Velosa, Alfonso] Gartner Inc, Semicond & Solar, Stamford, CT USA. RP Darling, SB (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM darling@anl.gov RI You, Fengqi/F-6894-2011; You, Fengqi/B-5040-2011 OI You, Fengqi/0000-0001-9609-4299 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 12 TC 87 Z9 87 U1 5 U2 41 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD SEP PY 2011 VL 4 IS 9 BP 3133 EP 3139 DI 10.1039/c0ee00698j PG 7 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 812QB UT WOS:000294306900004 ER PT J AU Galazka, JM Cate, JHD AF Galazka, Jonathan M. Cate, Jamie H. D. TI Improving the bioconversion of plant biomass to biofuels: A multidisciplinary approach SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Review ID SACCHAROMYCES-CEREVISIAE; XYLOSE FERMENTATION; TRICHODERMA-REESEI; LIGNOCELLULOSIC BIOMASS; XYLITOL DEHYDROGENASE; ENZYMATIC-HYDROLYSIS; ETHANOL-PRODUCTION; NEUROSPORA-CRASSA; PICHIA-STIPITIS; CELLULASE AB In 2010 our group reported the discovery of two cellodextrin transporter families, and soon after demonstrated the utility of these transporters in the production of lignocellulosic biofuel. These discoveries required diverse insights from multiple research groups, highlighting the need for multidisciplinary teams to tackle the most pressing research problems in bioenergy. C1 [Galazka, Jonathan M.; Cate, Jamie H. D.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Cate, Jamie H. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Galazka, JM (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM jcate@lbl.gov RI Galazka, Jonathan Galazka/K-4847-2012 OI Galazka, Jonathan Galazka/0000-0002-4153-0249 NR 51 TC 4 Z9 4 U1 1 U2 23 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD SEP PY 2011 VL 4 IS 9 BP 3329 EP 3333 DI 10.1039/c1ee01569a PG 5 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 812QB UT WOS:000294306900016 ER PT J AU Teplin, CW Paranthaman, MP Fanning, TR Alberi, K Heatherly, L Wee, SH Kim, K List, FA Pineau, J Bornstein, J Bowers, K Lee, DF Cantoni, C Hane, S Schroeter, P Young, DL Iwaniczko, E Jones, KM Branz, HM AF Teplin, Charles W. Paranthaman, M. Parans Fanning, Thomas R. Alberi, Kirstin Heatherly, Lee Wee, Sung-Hun Kim, Kyunghoon List, Frederick A. Pineau, Jerry Bornstein, Jon Bowers, Karen Lee, Dominic F. Cantoni, Claudia Hane, Steve Schroeter, Paul Young, David L. Iwaniczko, Eugene Jones, Kim M. Branz, Howard M. TI Heteroepitaxial film crystal silicon on Al2O3: new route to inexpensive crystal silicon photovoltaics SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID ALUMINUM-INDUCED CRYSTALLIZATION; POLYCRYSTALLINE SILICON; SOLAR-CELLS; GLASS; YBCO; PARAMETERS; DEPOSITION; GROWTH; LAYERS AB Crystal silicon (c-Si) film photovoltaics (PV) fabricated on inexpensive substrates could retain the desirable qualities of silicon wafer PV-including high efficiency and abundant environmentally-benign raw materials-at a fraction of the cost. We report two related advances toward film c-Si PV on inexpensive metal foils. First, we grow heteroepitaxial silicon solar cells on 2 kinds of single-crystal Al2O3 layers from silane gas, using the rapid and scalable hot-wire chemical vapor deposition technique. Second, we fabricate heteroepitaxial c-Si layers on large-grained, cube-textured NiW metal foils coated with Al2O3. In both experiments, the deposition temperature is held below 840 degrees C, compatible with low fabrication costs. The film c-Si solar cells are fabricated on both single-crystal sapphire wafer substrates and single-crystal gamma-Al2O3-buffered SrTiO3 wafer substrates. We achieve similar to 400 mV of open-circuit voltage despite crystallographic defects caused by lattice mismatch between the silicon and underlying substrate. With improved epitaxy and defect passivation, it is likely that the voltages can be improved further. On the inexpensive NiW metal foils, we grow MgO and gamma-Al2O3 buffer layers before depositing silicon. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) confirm that the silicon layers are epitaxial and retain the similar to 50 mu m grain size and biaxial orientation of the foil substrate. With the addition of light-trapping, >15% film c-Si PV on metal foils is achievable. C1 [Teplin, Charles W.; Alberi, Kirstin; Young, David L.; Iwaniczko, Eugene; Jones, Kim M.; Branz, Howard M.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Paranthaman, M. Parans; Heatherly, Lee; Wee, Sung-Hun; Kim, Kyunghoon; List, Frederick A.; Lee, Dominic F.; Cantoni, Claudia] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Fanning, Thomas R.; Pineau, Jerry; Bornstein, Jon; Bowers, Karen; Hane, Steve; Schroeter, Paul] Ampulse Corp, Golden, CO 80401 USA. RP Teplin, CW (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. RI Paranthaman, Mariappan/N-3866-2015; Cantoni, Claudia/G-3031-2013 OI Paranthaman, Mariappan/0000-0003-3009-8531; Cantoni, Claudia/0000-0002-9731-2021 FU U.S. Department of Energy (DOE); Office of Energy; EERE; Ampulse Corporation; DOE [DE-A AC36-08-GO28308] FX The authors thank Anna Duda (NREL) for growing the metal contact layers, Lorenzo Roybal (NREL) for growing ITO layers, Bobby To (NREL) for SEM analysis and Paul Stradins and Manuel Romero (NREL) for helpful discussions. Support for research at NREL and ORNL was provided by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE) Technology Commercialization and Development Fund, the EERE Solar Energy Technologies Program and the Ampulse Corporation. DOE funds NREL under Contract No. DE-A AC36-08-GO28308. NR 31 TC 26 Z9 26 U1 2 U2 28 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD SEP PY 2011 VL 4 IS 9 BP 3346 EP 3350 DI 10.1039/c1ee01555a PG 5 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 812QB UT WOS:000294306900019 ER PT J AU Ji, LW Tan, ZK Kuykendall, T An, EJ Fu, YB Battaglia, V Zhang, YG AF Ji, Liwen Tan, Zhongkui Kuykendall, Tevye An, Eun Ji Fu, Yanbao Battaglia, Vincent Zhang, Yuegang TI Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high-capacity lithium storage SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID ION BATTERIES; ANODE MATERIAL; HOLLOW CARBON; SECONDARY BATTERIES; TIN-NANOPARTICLES; FILM FORMATION; PERFORMANCE; NANOFIBERS; ELECTRODE; ENCAPSULATION AB Sn nanopillar arrays embedded between graphene sheets were assembled using a conventional film deposition and annealing process. The as-formed three-dimensional (3D) multilayered nanostructure was directly used as an anode material for rechargeable lithium-ion batteries without adding any polymer binder and carbon black. Electrochemical measurements showed very high reversible capacity and excellent cycling performance at a current density as high as 5 A g(-1). These results demonstrated that nanocomposite materials with highly functional 1D and 2D components can be synthesized by employing conventional top-down manufacturing methods and self-assembly principles. C1 [Ji, Liwen; Tan, Zhongkui; Kuykendall, Tevye; An, Eun Ji; Zhang, Yuegang] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Fu, Yanbao; Battaglia, Vincent] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Energy Technol Dept, Berkeley, CA 94720 USA. RP Ji, LW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM yzhang5@lbl.gov RI Zhang, Y/E-6600-2011; Fu, Yanbao/F-9583-2011 OI Zhang, Y/0000-0003-0344-8399; Fu, Yanbao/0000-0001-7752-680X FU Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under contract No. DE-AC02-05CH11231. NR 51 TC 133 Z9 134 U1 10 U2 128 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD SEP PY 2011 VL 4 IS 9 BP 3611 EP 3616 DI 10.1039/c1ee01592c PG 6 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 812QB UT WOS:000294306900058 ER PT J AU Mutoro, E Crumlin, EJ Biegalski, MD Christen, HM Shao-Horn, Y AF Mutoro, Eva Crumlin, Ethan J. Biegalski, Michael D. Christen, Hans M. Shao-Horn, Yang TI Enhanced oxygen reduction activity on surface-decorated perovskite thin films for solid oxide fuel cells SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID SR-DOPED LAMNO3; LA1-XSRXMN1-YCOYO3+/-DELTA PEROVSKITES; STABILIZED ZIRCONIA; CATHODES; ACTIVATION; PERFORMANCE; EXCHANGE; POLARIZATION; ELECTRODES; (LA,SR)COO3/(LA,SR)(2)COO4 AB Surface-decoration of perovskites can strongly affect the oxygen reduction activity, and therefore is a new and promising approach to improve SOFC cathode materials. In this study, we demonstrate that a small amount of secondary phase on a (001) La(0.8)Sr(0.2)CoO(3-delta) (LSC) surface can either significantly activate or passivate the electrode. LSC (001) microelectrodes prepared by pulsed laser deposition on a (001)-oriented yttria-stabilized zirconia (YSZ) substrate were decorated with La-, Co-, and Sr-(hydr) oxides/carbonates. "Sr''-decoration with nanoparticle coverage in the range from 50% to 80% of the LSC surface enhanced the surface exchange coefficient, k(q), by an order of magnitude while "La''-decoration and "Co''-decoration led to no change and reduction in k(q), respectively. Although the physical origin for the enhancement is not fully understood, results from atomic force microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy suggest that the observed k(q) enhancement for "Sr''-decorated surfaces can be attributed largely to catalytically active interface regions between surface Sr-enriched particles and the LSC surface. C1 [Mutoro, Eva; Crumlin, Ethan J.; Shao-Horn, Yang] MIT, Electrochem Energy Lab, Cambridge, MA 02139 USA. [Biegalski, Michael D.; Christen, Hans M.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Mutoro, E (reprint author), MIT, Electrochem Energy Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM shaohorn@mit.edu RI Christen, Hans/H-6551-2013 OI Christen, Hans/0000-0001-8187-7469 FU DOE [SISGR DE-SC0002633]; King Abdullah University of Science and Technology; German Research Foundation (DFG); King Fahd University of Petroleum and Minerals in Dharam, Saudi Arabia; Scientific User Facilities Division, Office of Basic Energy Science, U.S. DOE FX This work was supported in part by DOE (SISGR DE-SC0002633) and King Abdullah University of Science and Technology. E. Mutoro is grateful for financial support from the German Research Foundation (DFG research scholarship). The authors like to thank the King Fahd University of Petroleum and Minerals in Dharam, Saudi Arabia, for funding the research reported in this paper through the Center for Clean Water and Clean Energy at MIT and KFUPM. The PLD preparation performed at the Center of Nanophase Materials Sciences was sponsored by the Scientific User Facilities Division, Office of Basic Energy Science, U.S. DOE. The authors thank Prof. C. Ross (MIT) for the usage of PLD. NR 59 TC 74 Z9 74 U1 8 U2 109 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD SEP PY 2011 VL 4 IS 9 BP 3689 EP 3696 DI 10.1039/c1ee01245b PG 8 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 812QB UT WOS:000294306900069 ER PT J AU Wang, YF Zheng, D Yang, XQ Qu, DY AF Wang, Yufei Zheng, Dong Yang, Xiao-Qing Qu, Deyang TI High rate oxygen reduction in non-aqueous electrolytes with the addition of perfluorinated additives SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID LI-AIR BATTERIES; LITHIUM/AIR BATTERIES AB The discharge rate capability of Li-air batteries is substantially increased by using perfluorinated compounds as oxygen carriers. The solubility of oxygen in a non-aqueous electrolyte can be significantly increased by the introduction of such compounds, which leads to the increase in the diffusion-limited current of oxygen reduction on the gas diffusion electrode in a Li-air battery. The perfluorinated compound is found to be stable within the electrochemical window of the electrolyte. A powder microelectrode and a rotating disk electrode were used to study the gas diffusion-limited current together with a rotating disk electrode. A 5 mA cm(-2) discharge rate is demonstrated in a lab Li-O-2 cell. C1 [Wang, Yufei; Zheng, Dong; Qu, Deyang] Univ Massachusetts, Dept Chem, 100 Morrissey Blvd, Boston, MA 02125 USA. [Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Wang, YF (reprint author), Univ Massachusetts, Dept Chem, 100 Morrissey Blvd, Boston, MA 02125 USA. EM deyang.qu@umb.edu RI Zheng, Dong/J-9975-2015 OI Zheng, Dong/0000-0002-5824-3270 FU Office of Vehicle Technologies, U. S. Department of Energy [DEAC02-98CII10886] FX The work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, under the program "Hybrid and Electric Systems,'' of the U. S. Department of Energy under Contract Number DEAC02-98CII10886. The financial support is gratefully acknowledged. NR 19 TC 51 Z9 55 U1 3 U2 53 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD SEP PY 2011 VL 4 IS 9 BP 3697 EP 3702 DI 10.1039/c1ee01556g PG 6 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 812QB UT WOS:000294306900070 ER PT J AU Darghouth, NR Barbose, G Wiser, R AF Darghouth, Naim R. Barbose, Galen Wiser, Ryan TI The impact of rate design and net metering on the bill savings from distributed PV for residential customers in California SO ENERGY POLICY LA English DT Article DE Photovoltaics; Retail rate design; Net metering AB Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Darghouth, Naim R.] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA. RP Darghouth, NR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS 90R4000, Berkeley, CA 94720 USA. EM ndarghouth@lbl.gov FU Office of Energy Efficiency and Renewable Energy; Office of Electricity Delivery and Energy Reliability (Permitting, Siting, and Analysis Division) of the U.S. Department of Energy [DE-AC02-05CH11231] FX The work described in this article was funded by the Office of Energy Efficiency and Renewable Energy (Solar Energy Technologies Program) and the Office of Electricity Delivery and Energy Reliability (Permitting, Siting, and Analysis Division) of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. NR 17 TC 46 Z9 46 U1 3 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD SEP PY 2011 VL 39 IS 9 BP 5243 EP 5253 DI 10.1016/j.enpol.2011.05.040 PG 11 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 816JJ UT WOS:000294594200055 ER PT J AU Swinton, SM Babcock, BA James, LK Bandaru, V AF Swinton, Scott M. Babcock, Bruce A. James, Laura K. Bandaru, Varaprasad TI Higher US crop prices trigger little area expansion so marginal land for biofuel crops is limited SO ENERGY POLICY LA English DT Article DE Marginal land; Cellulosic ethanol; Supply elasticity ID AGRICULTURE; ETHANOL; BIOMASS; ENERGY AB By expanding energy biomass production on marginal lands that are not currently used for crops, food prices increase and indirect climate change effects can be mitigated. Studies of the availability of marginal lands for dedicated bioenergy crops have focused on biophysical land traits, ignoring the human role in decisions to convert marginal land to bioenergy crops. Recent history offers insights about farmer willingness to put non-crop land into crop production. The 2006-09 leap in field crop prices and the attendant 64% gain in typical profitability led to only a 2% increase in crop planted area, mostly in the prairie states. At this rate, a doubling of expected profitability from biomass crops would expand cropland supply by only 3.2%. Yet targets for cellulosic ethanol production in the US Energy Independence and Security Act imply boosting US planted area by 10% or more with perennial biomass crops. Given landowner reluctance to expand crop area with familiar crops in the short run, large scale expansion of the area in dedicated bioenergy crops will likely be difficult and costly to achieve. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Swinton, Scott M.; James, Laura K.] Michigan State Univ, Dept Agr Food & Resource Econ, E Lansing, MI 48824 USA. [Swinton, Scott M.; James, Laura K.] Michigan State Univ, GLBRC, E Lansing, MI 48824 USA. [Babcock, Bruce A.] Iowa State Univ, Ctr Agr & Rural Dev, Ames, IA USA. [Babcock, Bruce A.] Iowa State Univ, GLBRC, Ames, IA USA. [Bandaru, Varaprasad] US DOE, PNNL, College Pk, MD USA. [Bandaru, Varaprasad] GLBRC, College Pk, MD USA. RP Swinton, SM (reprint author), Michigan State Univ, Dept Agr Food & Resource Econ, 202 Agr Hall, E Lansing, MI 48824 USA. EM swintons@msu.edu FU US Department of Energy Great Lakes Bioenergy Research Center (DOE Office of Science BER) [DE-FC02- 07ER64494]; National Aeronautics and Space Administration's Earth Science Division FX This work was funded by the US Department of Energy Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02- 07ER64494). Processing of MODIS land cover data was supported by the National Aeronautics and Space Administration's Earth Science Division. Thanks to T. Dietz, N. Hayden and two anonymous reviewers for helpful comments. NR 23 TC 33 Z9 34 U1 1 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD SEP PY 2011 VL 39 IS 9 BP 5254 EP 5258 DI 10.1016/j.enpol.2011.05.039 PG 5 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 816JJ UT WOS:000294594200056 ER PT J AU Kessides, IN Wade, DC AF Kessides, Ioannis N. Wade, David C. TI Towards a sustainable global energy supply infrastructure: Net energy balance and density considerations SO ENERGY POLICY LA English DT Article DE Energy sustainability; Renewables; Nuclear power ID GENERATION AB This paper employs a framework of dynamic energy analysis to model the growth potential of alternative electricity supply infrastructures as constrained by innate physical energy balance and dynamic response limits. Coal-fired generation meets the criteria of longevity (abundance of energy source) and scalability (ability to expand to the multi-terawatt level) which are critical for a sustainable energy supply chain, but carries a very heavy carbon footprint. Renewables and nuclear power, on the other hand, meet both the longevity and environmental friendliness criteria. However, due to their substantially different energy densities and load factors, they vary in terms of their ability to deliver net excess energy and attain the scale needed for meeting the huge global energy demand. The low power density of renewable energy extraction and the intermittency of renewable flows limit their ability to achieve high rates of indigenous infrastructure growth. A significant global nuclear power deployment, on the other hand, could engender serious risks related to proliferation, safety, and waste disposal. Unlike renewable sources of energy, nuclear power is an unforgiving technology because human lapses and errors can have ecological and social impacts that are catastrophic and irreversible. Thus, the transition to a low carbon economy is likely to prove much more challenging than early optimists have claimed. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Kessides, Ioannis N.] World Bank, Washington, DC 20433 USA. [Wade, David C.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kessides, IN (reprint author), World Bank, 1818 H St NW, Washington, DC 20433 USA. EM ikessides@worldbank.org FU Regulatory Governance Harmonization for promoting Trade and Deepening Economic Integration in West Africa project FX The authors gratefully acknowledge funding from the Bank Netherlands Partnership Program (BNPP) under the Regulatory Governance Harmonization for promoting Trade and Deepening Economic Integration in West Africa project. They thank Vivek Ghosal, Jean-Michel Glachant, Christine Kessides, Jon Strand, Michael Toman, an anonymous referee, and seminar participants at the World Bank, Georgia Institute of Technology, and the European University for helpful comments. NR 44 TC 5 Z9 5 U1 4 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD SEP PY 2011 VL 39 IS 9 BP 5322 EP 5334 DI 10.1016/j.enpol.2011.05.032 PG 13 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 816JJ UT WOS:000294594200063 ER PT J AU Ellison, CE Stajich, JE Jacobson, DJ Natvig, DO Lapidus, A Foster, B Aerts, A Riley, R Lindquist, EA Grigoriev, IV Taylor, JW AF Ellison, Christopher E. Stajich, Jason E. Jacobson, David J. Natvig, Donald O. Lapidus, Alla Foster, Brian Aerts, Andrea Riley, Robert Lindquist, Erika A. Grigoriev, Igor V. Taylor, John W. TI Massive Changes in Genome Architecture Accompany the Transition to Self-Fertility in the Filamentous Fungus Neurospora tetrasperma SO GENETICS LA English DT Article ID MATING-TYPE CHROMOSOMES; CODON USAGE BIAS; SEX-DETERMINING REGIONS; HET-C LOCUS; Y-CHROMOSOME; DROSOPHILA-MELANOGASTER; MICROBOTRYUM-VIOLACEUM; EVOLUTIONARY STRATA; NATURAL-SELECTION; GENE CONVERSION AB A large region of suppressed recombination surrounds the sex-determining locus of the self-fertile fungus Neurospora tetrasperma. This region encompasses nearly one-fifth of the N. tetrasperma genome and suppression of recombination is necessary for self-fertility. The similarity of the N. tetrasperma mating chromosome to plant and animal sex chromosomes and its recent origin (<5 MYA), combined with a long history of genetic and cytological research, make this fungus an ideal model for studying the evolutionary consequences of suppressed recombination. Here we compare genome sequences from two N. tetrasperma strains of opposite mating type to determine whether structural rearrangements are associated with the nonrecombining region and to examine the effect of suppressed recombination for the evolution of the genes within it. We find a series of three inversions encompassing the majority of the region of suppressed recombination and provide evidence for two different types of rearrangement mechanisms: the recently proposed mechanism of inversion via staggered single-strand breaks as well as ectopic recombination between transposable elements. In addition, we show that the N. tetrasperma mat a mating-type region appears to be accumulating deleterious substitutions at a faster rate than the other mating type (mat A) and thus may be in the early stages of degeneration. C1 [Ellison, Christopher E.; Jacobson, David J.; Taylor, John W.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Stajich, Jason E.] Univ Calif Riverside, Dept Plant Pathol & Microbiol, Riverside, CA 92521 USA. [Natvig, Donald O.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. [Lapidus, Alla; Foster, Brian; Aerts, Andrea; Riley, Robert; Lindquist, Erika A.; Grigoriev, Igor V.] Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Ellison, CE (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, 321 Koshland Hall, Berkeley, CA 94720 USA. EM cellison@berkeley.edu RI Lapidus, Alla/I-4348-2013; Stajich, Jason/C-7297-2008 OI Lapidus, Alla/0000-0003-0427-8731; Stajich, Jason/0000-0002-7591-0020 FU National Science Foundation [DEB-0516511]; National Institutes of Health-National Institute of General Medical Sciences [R01RGM081597]; Chang-Lin Tien Graduate Fellowship; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Deborah Charlesworth for comments on a previous version of this manuscript and Brian Charlesworth for helpful discussion. This work was supported by National Science Foundation grant DEB-0516511 (to J.W.T.), National Institutes of Health-National Institute of General Medical Sciences grant R01RGM081597 (to J.W.T.), and the Chang-Lin Tien Graduate Fellowship (to C.E.E.). The work conducted by the U. S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 99 TC 39 Z9 40 U1 2 U2 19 PU GENETICS SOC AM PI BETHESDA PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA SN 0016-6731 J9 GENETICS JI Genetics PD SEP PY 2011 VL 189 IS 1 BP 55 EP U652 DI 10.1534/genetics.111.130690 PG 24 WC Genetics & Heredity SC Genetics & Heredity GA 818AQ UT WOS:000294721600006 PM 21750257 ER PT J AU Wasserburg, GJ Hutcheon, ID Aleon, J Ramon, EC Krot, AN Nagashima, K Brearley, AJ AF Wasserburg, G. J. Hutcheon, I. D. Aleon, J. Ramon, E. C. Krot, A. N. Nagashima, K. Brearley, A. J. TI Extremely Na- and Cl-rich chondrule from the CV3 carbonaceous chondrite Allende SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID EARLY SOLAR-SYSTEM; SHORT-LIVED NUCLIDES; DARK INCLUSIONS; NEUTRON-CAPTURE; AQUEOUS ALTERATION; EXTINCT CL-36; METEORITE; ORIGIN; CONSTRAINTS; OLIVINE AB We report on a study of Al3509, a large Na- and Cl-rich, radially-zoned object from the oxidized CV carbonaceous chondrite Allende. Al3509 consists of fine-grained ferroan olivine, ferroan Al-diopside, nepheline, sodalite, and andradite, and is crosscut by numerous veins of nepheline, sodalite, and ferroan Al-diopside. Some poorly-characterized phases of fine-grained material are also present; these phases contain no significant H(2)O. The minerals listed above are commonly found in Allende CAIs and chondrules and are attributed to late-stage iron-alkali-halogen metasomatic alteration of primary high-temperature minerals. Textural observations indicate that Al3509 is an igneous object. However, no residual crystals that might be relicts of pre-existing CAI or chondrule minerals were identified. To establish the levels of (26)Al and (36)Cl originally present, (26)Al-(26)Mg and (36)Cl-(36)S isotopic systematics in sodalite were investigated. Al3509 shows no evidence of radiogenic (26)Mg*, establishing an upper limit of the initial (26)Al/(27)Al ratio of 3 x 10(-6). All sodalite grains measured show large but variable excesses of (36)S, which, however, do not correlate with (35)Cl/(34)S ratio. If these excesses are due to decay of (36)Cl, local redistribution of radiogenic (36)S* after (36)Cl had decayed is required. The oxygen-isotope pattern in Al3509 is the same as found in secondary minerals resulting from iron-alkali-halogen metasomatic alteration of Allende CAIs and chondrules and in melilite and anorthite of most CAIs in Allende. The oxygen-isotope data suggest that the secondary minerals precipitated from or equilibrated with a fluid of similar oxygen-isotope composition. These observations suggest that the formation of Al3509 and alteration products in CAIs and chondrules in Allende requires a very similar fluid phase, greatly enriched in volatiles (e. g., Na and Cl) and with Delta(17)O similar to -3 parts per thousand. We infer that internal heating of planetesimals by (26)Al would efficiently transfer volatiles to their outer portions and enhance the formation of volatile-enriched minerals there. We conclude that the site for the production of Na- and Cl-rich fluids responsible for the formation of Al3509 and the alteration of the Allende CAIs and chondrules must have been on a protoplanetary body prior to incorporation into the Allende meteorite. Galactic cosmic rays cannot be the source of the inferred initial (36)Cl in Allende. The problem of (36)Cl production by solar energetic particle (SEP) bombardment and the possibility that (36)Cl and (41)Ca might be the product of neutron capture resulting from SEP bombardment of protoplanetary surfaces are discussed. This hypothesis can be tested comparing inferred "initial" (36)Cl with neutron fluencies measured on the same samples and on phases showing (36)S* by Sm and Gd isotopic measurements. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Krot, A. N.; Nagashima, K.] Univ Hawaii Manoa, Sch Ocean Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Wasserburg, G. J.] CALTECH, Pasadena, CA 91125 USA. [Hutcheon, I. D.; Ramon, E. C.] Lawrence Livermore Natl Lab, Glenn Seaborg Inst, Livermore, CA 94551 USA. [Aleon, J.] CNRS, CSNSM IN2P3, F-91405 Orsay, France. [Brearley, A. J.] Univ New Mexico, Albuquerque, NM 87131 USA. RP Krot, AN (reprint author), Univ Hawaii Manoa, Sch Ocean Earth Sci & Technol, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. EM sasha@higp.hawaii.edu FU NASA [NAG5-10610, NNX07AI81G, NAG5-4212, NNG06GG37G, NNH04AB47I]; Glenn Seaborg Institute; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NASA Cosmochemistry RTOP; Epsilon Foundation FX We acknowledge discussions with Lars Borg and Meenakshi Wadhwa. The constructive reviews by Makoto Kimura, Roger Hewins and Greg Herzog are appreciated. This work was supported by NASA Grants NAG5-10610 and NNX07AI81G (A.N. Krot, P. I.), NAG5-4212 (K. Keil, P. I.), NNG06GG37G (A.J. Brearley, P. I.) and NNH04AB47I (I. D. Hutcheon, P. I.) and by the Glenn Seaborg Institute. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This is Hawaii Institute of Geophysics and Planetology Publication No. 8210 and School of Ocean and Earth Science and Technology Publication No. 8212. G.J. Wasserburg acknowledges support by a NASA Cosmochemistry RTOP to J. Nuth, at GSFC, and by the Epsilon Foundation. NR 72 TC 9 Z9 9 U1 2 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD SEP 1 PY 2011 VL 75 IS 17 BP 4752 EP 4770 DI 10.1016/j.gca.2011.06.004 PG 19 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 805MZ UT WOS:000293732500004 ER PT J AU Scheibe, TD Hubbard, SS Onstott, TC DeFlaun, MF AF Scheibe, Timothy D. Hubbard, Susan S. Onstott, Tullis C. DeFlaun, Mary F. TI Lessons Learned from Bacterial Transport Research at the South Oyster Site SO GROUND WATER LA English DT Review ID ADHESION-DEFICIENT BACTERIA; HIGHLY CONTAMINATED AQUIFER; CHANNEL FOCUS AREA; POROUS-MEDIA; COLLOID TRANSPORT; INTACT CORES; HYDRAULIC CONDUCTIVITY; SUBSURFACE SEDIMENTS; COLLISION EFFICIENCY; MICROBIAL TRANSPORT AB This paper provides a review of bacterial transport experiments conducted by a multiinvestigator, multiinstitution, multidisciplinary team of researchers under the auspices of the U. S. Department of Energy (DOE). The experiments were conducted during the time period 1999-2001 at a field site near the town of Oyster, Virginia known as the South Oyster Site, and included four major experimental campaigns aimed at understanding and quantifying bacterial transport in the subsurface environment. Several key elements of the research are discussed here: (1) quantification of bacterial transport in physically, chemically, and biologically heterogeneous aquifers, (2) evaluation of the efficacy of conventional colloid filtration theory, (3) scale effects in bacterial transport, (4) development of new methods for microbial enumeration and screening for low adhesion strains, (5) application of novel hydrogeophysical techniques for aquifer characterization, and (6) experiences regarding management of a large field research effort. Lessons learned are summarized in each of these areas. The body of literature resulting from South Oyster Site research has been widely cited and continues to influence research into the controls exerted by aquifer heterogeneity on reactive transport (including microbial transport). It also served as a model (and provided valuable experience) for subsequent and ongoing highly-instrumented field research efforts conducted by DOE-sponsored investigators. C1 [Scheibe, Timothy D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hubbard, Susan S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Onstott, Tullis C.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. [DeFlaun, Mary F.] Geosyntec Consultants, Ewing, NJ 08626 USA. RP Scheibe, TD (reprint author), Pacific NW Natl Lab, POB 999,MS K9-36, Richland, WA 99352 USA. EM tim.scheibe@pnl.gov; sshubbard@lbl.gov; tullis@princeton.edu; MDeFlaun@geosyntec.com RI Scheibe, Timothy/A-8788-2008; Hubbard, Susan/E-9508-2010 OI Scheibe, Timothy/0000-0002-8864-5772; FU U.S. DOE, Office of Biological and Environmental Research FX The research reported herein was supported by the U.S. DOE, Office of Biological and Environmental Research, NABIR Program (predecessor of the current DOE Subsurface Biogeochemical Research program). The authors would like to acknowledge the leadership of Frank Wobber, the program manager for the Acceleration element of NABIR at the time the research was performed. Access to the field site was generously granted by The Nature Conservancy, Virginia Coast Reserve. The authors thank John McCray and two anonymous reviewers for their thoughtful comments and suggestions. Special thanks are due to our many colleagues who participated in the South Oyster Site project, and whose hard work is reflected in the body of research summarized here. NR 90 TC 11 Z9 11 U1 1 U2 24 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0017-467X EI 1745-6584 J9 GROUND WATER JI Ground Water PD SEP-OCT PY 2011 VL 49 IS 5 BP 745 EP 763 DI 10.1111/j.1745-6584.2011.00831.x PG 19 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 818FU UT WOS:000294737800009 PM 21671936 ER PT J AU Tan, ZF Li, L Wang, JH Chen, YS AF Tan, Zhongfu Li, Li Wang, Jianhui Chen, Yihsu TI Examining Economic and Environmental Impacts of Differentiated Pricing on the Energy-Intensive Industries in China: Input-Output Approach SO JOURNAL OF ENERGY ENGINEERING LA English DT Article DE Differentiated price; Energy-intensive industries; Input-output model; Electric demand-price elasticity; CPI ID CO2 EMISSIONS; SYSTEM; MODEL; DYNAMICS AB As the energy supply shortage and environmental pollution have increasingly become the major obstacles to China's economic development, the Chinese government has proposed various policies to reduce energy consumption, one of which is to implement a differentiated electric power price scheme (DEPP) on the energy-intensive industries (EIs). Although it is only imposed on EIs, its indirect impact on other sectors or national economy could be profound. This paper applies an input-output (IO) model, which composes 42 sectors calibrated with data in 2002 to examine the potential impact of DEPP. The results show that DEPP would result in significant energy savings at the expense of declines in gross domestic product (GDP) and increases in consumer price index (CPI). The ancillary benefits include reduction of emissions from the energy-intensive sector. DOI:10.1061/(ASCE)EY.1943-7897.0000018. (C) 2011 American Society of Civil Engineers. C1 [Chen, Yihsu] Univ Calif Merced, Sierra Nevada Res Inst, Merced, CA 95344 USA. [Tan, Zhongfu; Li, Li] N China Elect Power Univ, Sch Business & Econ, Beijing 102206, Peoples R China. [Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Chen, YS (reprint author), Univ Calif Merced, Sierra Nevada Res Inst, Merced, CA 95344 USA. EM zhongfutan@gmail.com; liliemail2006@gmail.com; Jianhui.wang@anl.gov; ychen26@ucmerced.edu FU Chinese National Natural Science Foundation [71071053]; Chinese Fundamental Research Funds for the Central Universities [09QX68] FX This paper is supported by the Chinese National Natural Science Foundation (71071053) and the Chinese Fundamental Research Funds for the Central Universities (09QX68). NR 27 TC 2 Z9 3 U1 0 U2 11 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9402 EI 1943-7897 J9 J ENERG ENG JI J. Energy Eng.-ASCE PD SEP PY 2011 VL 137 IS 3 SI SI BP 130 EP 137 DI 10.1061/(ASCE)EY.1943-7897.0000018 PG 8 WC Energy & Fuels; Engineering, Civil SC Energy & Fuels; Engineering GA 818VH UT WOS:000294783400003 ER PT J AU Hou, JC Tan, ZF Wang, JH Xie, PJ AF Hou, Jianchao Tan, Zhongfu Wang, Jianhui Xie, Pinjie TI Government Policy and Future Projection for Nuclear Power in China SO JOURNAL OF ENERGY ENGINEERING-ASCE LA English DT Article DE China; Nuclear power; Policy AB The Chinese government has set ambitious goals for nuclear power. By 2020, China must reach a 40-GW nuclear power generation capacity, have 18 GW of additional nuclear power capacity under construction, and ensure that approximately 4% of electricity generation (i.e., 260-280 billion kWh) comes from nuclear power. This paper provides an overview of nuclear power development in China and analyzes the roles of nuclear power manufacturers and investors. This paper further discusses current government policies, potential changes to current policy, the future of nuclear power, and the barriers to nuclear power development in China. The paper then summarizes the experiences of other countries with successful stories in developing nuclear power. Finally, recommendations for overcoming the various obstacles to nuclear power development in China are proposed, such as reforming the structure of China's nuclear power industry, establishing an effective legal system for nuclear power safety, and improving China's technology development. DOI:10.1061/(ASCE)EY.19437897.0000049. (C) 2011 American Society of Civil Engineers. C1 [Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Hou, Jianchao; Xie, Pinjie] Shanghai Univ Elect Power, Sch Econ & Management, Shanghai 200090, Peoples R China. [Tan, Zhongfu] N China Elect Power Univ, Inst Elect Econ, Beijing 102206, Peoples R China. RP Wang, JH (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jianhui.wang@anl.gov NR 10 TC 4 Z9 4 U1 0 U2 12 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9402 J9 J ENERG ENG-ASCE JI J. Energy Eng.-ASCE PD SEP PY 2011 VL 137 IS 3 SI SI BP 151 EP 158 DI 10.1061/(ASCE)EY.1943-7897.0000049 PG 8 WC Energy & Fuels; Engineering, Civil SC Energy & Fuels; Engineering GA 818VH UT WOS:000294783400005 ER PT J AU Koirala, SR Gentry, RW Perfect, E Mulholland, PJ Schwartz, JS AF Koirala, Shesh R. Gentry, Randall W. Perfect, Edmund Mulholland, Patrick J. Schwartz, John S. TI Hurst Analysis of Hydrologic and Water Quality Time Series SO JOURNAL OF HYDROLOGIC ENGINEERING LA English DT Article DE Spectral analysis; Hurst analysis; Persistence; Time series ID STREAM CHEMISTRY; TRANSPORT; PERSISTENCE; DEPENDENCE; FLOWS AB A continued important area of research in hydrologic modeling is the issue of spatial and temporal scaling of biogeochemical properties and processes. Hurst analysis, which is a fractal-based scale invariant approach for analyzing long-term time series data, can provide insight into this issue as a quantitative approach for evaluating temporal scale in time series. The objectives of this paper were to compute the Hurst coefficient (H) for hydrologic and water quality variables, to study the effects of seasonality on H, and to determine how the H for the water quality indicators are related to that of the hydrologic parameters (e.g., discharge and rainfall). Two sites were investigated, Little River and Walker Branch, both located in east Tennessee. The water quality indicators include total coliform for Little River data and nitrate, chloride, sulfate, and calcium concentrations for Walker Branch data. H was estimated using spectral analysis. It was found that H for water quality indicators were significantly different from hydrologic parameters in an untransformed series, whereas it is not different in deseasonalized series (except total coliform). The comparison of untransformed and deseasonalized data series showed that there is no statistically significant value to deseasonalize the data, although the data series appears to shift toward random scaling after deseasonalization. DOI: 10.1061/(ASCE)HE.1943-5584.0000357. (C) 2011 American Society of Civil Engineers. C1 [Koirala, Shesh R.; Gentry, Randall W.] Univ Tennessee, Inst Secure & Sustainable Environm & Civil & Envi, Knoxville, TN 37996 USA. [Perfect, Edmund] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA. [Mulholland, Patrick J.] Oak Ridge Natl Lab, Earth Sci Div, Oak Ridge, TN USA. RP Koirala, SR (reprint author), Univ Tennessee, Inst Secure & Sustainable Environm & Civil & Envi, Knoxville, TN 37996 USA. EM skoirala@utk.edu RI Mulholland, Patrick/C-3142-2012; Gentry, Randall/J-8177-2012 OI Gentry, Randall/0000-0003-2477-8127 FU Center for Environmental Biotechnology; Inst. for a Secure and Sustainable Environment at the Univ. of Tennessee; U.S. Department of Energy in the Office of Science, Office of Biological and Environmental Research; U.S. Department of Energy [DE-AC05-00OR22725] FX Funding for this research was also provided by the Center for Environmental Biotechnology and the Inst. for a Secure and Sustainable Environment at the Univ. of Tennessee. We thank Doyle Prince, City of Maryville, TN for providing the coliform data for analysis. Some data were also collected as part of the long-term Walker Branch Watershed project at Oak Ridge National Laboratory and supported by the U.S. Department of Energy's Program for Ecosystem Research, in the Office of Science, Office of Biological and Environmental Research. Oak Ridge National Laboratory is managed by University of Tennessee-Battelle LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 28 TC 4 Z9 4 U1 0 U2 23 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 1084-0699 J9 J HYDROL ENG JI J. Hydrol. Eng. PD SEP PY 2011 VL 16 IS 9 BP 717 EP 724 DI 10.1061/(ASCE)HE.1943-5584.0000357 PG 8 WC Engineering, Civil; Environmental Sciences; Water Resources SC Engineering; Environmental Sciences & Ecology; Water Resources GA 818UH UT WOS:000294780800003 ER PT J AU Yacovitch, TI Wende, T Jiang, L Heine, N Meijer, G Neumark, DM Asmis, KR AF Yacovitch, Tara I. Wende, Torsten Jiang, Ling Heine, Nadja Meijer, Gerard Neumark, Daniel M. Asmis, Knut R. TI Infrared Spectroscopy of Hydrated Bisulfate Anion Clusters: HSO4-(H2O)(1-16) SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID SULFURIC-ACID; OPTICAL-CONSTANTS; PHOTOELECTRON-SPECTROSCOPY; ABSORPTION-SPECTRA; AEROSOL FORMATION; HYDROGEN BROMIDE; WATER CLUSTERS; ION; TEMPERATURE; H2SO4 AB Gas-phase infrared photodissociation spectra of the microhydrated bisulfate anions HSO4-(H2O)(n), with n = 1-16, are reported in the spectral range of 550-1800 cm(-1). The spectra show extensive vibrational structure assigned to stretching and bending modes of the bisulfate core, as well as to water bending and librational modes. Comparison with electronic structure calculations suggests that the acidic proton of HSO4- is involved in the formation of a hydrogen bond from n >= 1 and that water-water hydrogen bonds form for n >= 2. The water network for the larger dusters forms hydrogen-bonded "bands" about the bisulfate core. The blue shifting of the SOH bending mode from 1193 (n = 1) to 1381 cm(-1) (n = 12) accompanied by a dramatic decrease in its IR intensity suggests increased incorporation of the bisulfate hydrogen atom into the hydrogen-bonding network, the first step toward acid dissociation. C1 [Yacovitch, Tara I.; Neumark, Daniel M.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Wende, Torsten; Jiang, Ling; Heine, Nadja; Meijer, Gerard; Asmis, Knut R.] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany. [Neumark, Daniel M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Neumark, DM (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM dneumark@berkeley.edu; asmis@fhi-berlin.mpg.de RI Meijer, Gerard/D-2141-2009; Neumark, Daniel/B-9551-2009; Heine, Nadja/G-8839-2013; Asmis, Knut/N-5408-2014 OI Neumark, Daniel/0000-0002-3762-9473; Asmis, Knut/0000-0001-6297-5856 FU European Community [226716]; Air Force Office of Scientific Research [FA9550-09-1-0343]; National Science and Engineering Research Council of Canada (NSERC); NSF [CHE-0840505]; Alexander von Humboldt Foundation FX We thank the Stichting voor Fundamenteel Onderzoek der Materie (FOM) for granting the required beam time and highly appreciate the skill and assistance of the FELIX staff. This research is funded by the European Community's Seventh Framework Programme (FP7/2007-2013, Grant 226716). T.I.Y. and D.M.N. were supported by the Air Force Office of Scientific Research under Grant No. FA9550-09-1-0343. T.I.Y. thanks the National Science and Engineering Research Council of Canada (NSERC) for a post-graduate scholarship. Electronic structure calculations were performed at the Molecular Dynamics and Computational Facility at the University of California, Berkeley, which is supported by the NSF CHE-0840505 grant. L.J. thanks the Alexander von Humboldt Foundation for a postdoctoral scholarship. NR 45 TC 44 Z9 44 U1 4 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD SEP 1 PY 2011 VL 2 IS 17 BP 2135 EP 2140 DI 10.1021/jz200917f PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 817UJ UT WOS:000294701800011 ER PT J AU DeFusco, A Minezawa, N Slipchenko, LV Zahariev, F Gordon, MS AF DeFusco, Albert Minezawa, Noriyuki Slipchenko, Lyudmila V. Zahariev, Federico Gordon, Mark S. TI Modeling Solvent Effects on Electronic Excited States SO JOURNAL OF PHYSICAL CHEMISTRY LETTERS LA English DT Article ID FRAGMENT POTENTIAL METHOD; COUPLED-CLUSTER THEORY; PHOTOSYNTHETIC REACTION-CENTER; POLARIZABLE CONTINUUM MODEL; DENSITY-FUNCTIONAL THEORY; MOLECULAR-ORBITAL METHOD; EXCITATION-ENERGIES; CONFIGURATION-INTERACTION; SOLVATOCHROMIC SHIFTS; LINEAR-RESPONSE AB The effects of solvents on electronic spectra can be treated efficiently by combining an accurate quantum mechanical (QM) method for the solute with an efficient and accurate method for the solvent molecules. One of the most sophisticated approaches for treating solvent effects is the effective fragment potential (EFP) method. The EFP method has been interfaced with several QM methods, including configuration interaction, time-dependent density functional theory, multiconfigurational methods, and equations-of-motion coupled cluster methods. These combined QM-EFP methods provide a range of efficient and accurate methods for studying the impact of solvents on electronic excited states. An energy decomposition analysis in terms of physically meaningful components is presented in order to analyze these solvent effects. Several factors that must be considered when one investigates solvent effects on electronic spectra are discussed, and several examples are presented. C1 [DeFusco, Albert; Minezawa, Noriyuki; Zahariev, Federico; Gordon, Mark S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [DeFusco, Albert; Minezawa, Noriyuki; Zahariev, Federico; Gordon, Mark S.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Slipchenko, Lyudmila V.] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA. RP Gordon, MS (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM mark@si.msg.chem.iastate.edu RI Slipchenko, Lyudmila/G-5182-2012; Minezawa, Noriyuki/C-6067-2016 OI Minezawa, Noriyuki/0000-0003-0054-713X FU National Science Foundation; Air Force Office of Scientific Research FX This work was supported by grants from the National Science Foundation and the Air Force Office of Scientific Research (to MSG) and from a National Science Foundation Career grant to L.V.S. NR 78 TC 38 Z9 38 U1 3 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1948-7185 J9 J PHYS CHEM LETT JI J. Phys. Chem. Lett. PD SEP 1 PY 2011 VL 2 IS 17 BP 2184 EP 2192 DI 10.1021/jz200947j PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 817UJ UT WOS:000294701800020 ER PT J AU Patel, RJ Tighe, TB Ivanov, IN Hickner, MA AF Patel, Romesh J. Tighe, Timothy B. Ivanov, Ilia N. Hickner, Michael A. TI Electro-Optical Properties of Electropolymerized Poly(3-hexylthiophene)/Carbon Nanotube Composite Thin Films SO JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS LA English DT Article DE carbon nanotubes; composite materials; electro-optical materials; poly(3-hexylthiophene); Raman spectroscopy ID FUNCTIONALIZED CARBON NANOTUBES; ORGANIC SOLAR-CELLS; CHARGE-TRANSFER; NANOCOMPOSITES; POLYTHIOPHENE; TRANSPARENT; MOBILITY; DIODES; FIELD AB 3-hexylthiophene was electropolymerized on a carbon nanotube (CNT)-laden fluorine-doped tin oxide substrate. Scanning electron microscopy and Raman spectroscopy revealed that the polymer was infused throughout the thickness of the 150-nm thick CNT mat, resulting in a conducting composite film with a dense CNT network. The electropolymerized poly(3-hexylthiophene) (e-P3HT)/CNT composites exhibited photoluminescence intensity quenching by as much as 92% compared to the neat e-P3HT, which provided evidence of charge transfer from the polymer phase to the CNT phase. Through-film impedance and J-V measurements of the composites gave a conductivity (sigma) of 1.2 x 10-(10) S cm(-1) and zero-field mobility (mu(0)) of 8.5 x 10(-4) cm(2) V(-1) s(-1), both of which were higher than those of neat e-P3HT films (sigma = 9.9 x 10(-12) S cm(-1), mu(0) = 3 x 10(-5) cm(2) V(-1) s(-1)). In electropolymerized samples, the thiophene rings were oriented in the (010) direction (thiophene rings parallel to substrate), which resulted in a broader optical absorbance than for spin coated samples, however, the lack of long-range conjugation caused a blueshift in the absorbance maximum from 523 nm for unannealed regioregular P3HT (rr-P3HT) to 470 nm for e-P3HT. Raman spectroscopy revealed that pi-pi stacking in e-P3HT was comparable to that in rr-P3HT and significantly higher than in regiorandom P3HT (ran-P3HT) as shown by the principal Raman peak shift from 1444 to 1446 cm(-1) for e-P3HT and rr-P3HT to 1473 cm(-1) for ran-P3HT. This work demonstrates that these polymer/CNT composites may have interesting properties for electro-optical applications. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1269-1275, 2011 C1 [Patel, Romesh J.; Tighe, Timothy B.; Hickner, Michael A.] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Ivanov, Ilia N.] Oak Ridge Natl Lab, Funct Hybrid Nanostruct Grp, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Hickner, MA (reprint author), Penn State Univ, Dept Mat Sci & Engn, 310 Steidle Bldg, University Pk, PA 16802 USA. EM hickner@matse.psu.edu RI ivanov, ilia/D-3402-2015 OI ivanov, ilia/0000-0002-6726-2502 FU Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy; U.S. National Science Foundation [CMMI-1038007]; NSF [DMR-0820404] FX Part of this research was conducted at the Center for Nanophase Materials Sciences, which was sponsored at the Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. Department of Energy. This work was partially supported by the U.S. National Science Foundation (CMMI-1038007) and the Center for Nanoscale Science (Penn State MRSEC) funded by the NSF under grant DMR-0820404. The authors acknowledge the use of facilities at Materials Characterization Laboratory at Penn State University. NR 29 TC 7 Z9 7 U1 2 U2 40 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0887-6266 J9 J POLYM SCI POL PHYS JI J. Polym. Sci. Pt. B-Polym. Phys. PD SEP 1 PY 2011 VL 49 IS 17 BP 1269 EP 1275 DI 10.1002/polb.22307 PG 7 WC Polymer Science SC Polymer Science GA 813QW UT WOS:000294383600008 ER PT J AU Shanks, T Croom, SM Fine, S Ross, NP Sawangwit, U AF Shanks, T. Croom, S. M. Fine, S. Ross, N. P. Sawangwit, U. TI Do all QSOs have the same black hole mass? SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE quasars: general ID ACTIVE GALACTIC NUCLEI; X-RAY VARIABILITY; DIGITAL SKY SURVEY; REDSHIFT-SPACE DISTORTIONS; OPTICALLY SELECTED QSOS; QUASI-STELLAR OBJECTS; LUMINOUS RED GALAXIES; DARK-MATTER HALOES; DEEP ROSAT SURVEY; HOST GALAXIES AB Quasi-stellar objects (QSOs) from SDSS, 2QZ and 2SLAQ covering an order of magnitude in luminosity at fixed redshift exhibit similar amplitudes of clustering, with the brightest sample showing a clustering length only 11 +/- 9 per cent higher than the faintest sample. In addition, QSO clustering evolution at z > 0.5 is well fitted by a model that assumes a fixed host halo mass. If halo and black hole (BH) masses are related, then this may imply that QSOs occur in a relatively narrow range of halo masses with a correspondingly narrow range of BH mass. Hubble Space Telescope and Gemini high-resolution imaging of QSOs covering a large range in luminosity also show a relatively narrow range in QSO host galaxy luminosity. We argue that the slow evolution of early-type galaxies out to z approximate to 1-2 may also provide further support for a slow evolution of QSO host BH masses. The result would mean that if high-z QSOs radiate at Eddington rates then low-z type 1 Seyfert galaxy must radiate at approximate to 100 times less than Eddington. We discuss the consequences in terms of four empirical models where (i) QSOs radiate at a fixed fraction of L-Edd, (ii) QSO luminosity 'flickers' over time, (iii) QSOs have a single BH mass and (iv) QSOs are long lived and evolve via pure luminosity evolution (PLE). We conclude that the L-Edd model requires M-BH and M-halo to be decoupled to circumvent the clustering results. While the single BH mass and flickering models fit the z > 0.5 clustering results, they appear to be rejected by the M-BH-L relation found from reverberation mapping at z approximate to 0. We find that the inclusion of z < 0.5 QSO clustering data improves the fit of a long-lived QSO model and suggest that the predictions of the PLE model for QSO BH masses agree reasonably with ultraviolet bump and reverberation estimates. C1 [Shanks, T.; Fine, S.; Sawangwit, U.] Univ Durham, Dept Phys, Durham DH1 3LE, England. [Croom, S. M.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Ross, N. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Shanks, T (reprint author), Univ Durham, Dept Phys, South Rd, Durham DH1 3LE, England. EM tom.shanks@durham.ac.uk FU Institute for the Promotion of Teaching Science and Technology (IPST) of The Royal Thai Government; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England FX US acknowledges financial support from the Institute for the Promotion of Teaching Science and Technology (IPST) of The Royal Thai Government.; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the US Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England. The SDSS website is http://www.sdss.org/. NR 68 TC 14 Z9 14 U1 0 U2 1 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD SEP PY 2011 VL 416 IS 1 BP 650 EP 659 DI 10.1111/j.1365-2966.2011.19076.x PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808YD UT WOS:000294017000060 ER PT J AU Loch, RA Dubrouil, A Sobierajski, R Descamps, D Fabre, B Lidon, P van de Kruijs, RWE Boekhout, F Gullikson, E Gaudin, J Louis, E Bijkerk, F Mevel, E Petit, S Constant, E Mairesse, Y AF Loch, R. A. Dubrouil, A. Sobierajski, R. Descamps, D. Fabre, B. Lidon, P. van de Kruijs, R. W. E. Boekhout, F. Gullikson, E. Gaudin, J. Louis, E. Bijkerk, F. Mevel, E. Petit, S. Constant, E. Mairesse, Y. TI Phase characterization of the reflection on an extreme UV multilayer: comparison between attosecond metrology and standing wave measurements SO OPTICS LETTERS LA English DT Article ID MIRRORS; SYNCHRONIZATION; PULSES AB We characterize the phase shift induced by reflection on a multilayer mirror in the extreme UV range (80-93 eV) using two techniques: one based on high order harmonic generation and attosecond metrology (reconstruction of attosecond beating by interference of two-photon transitions), and a second based on synchrotron radiation and measurements of standing waves (total electron yield). We find an excellent agreement between the results from the two measurements and a flat group delay shift (+/- 40 as) over the main reflectivity peak of the mirror. (C) 2011 Optical Society of America C1 [Loch, R. A.; Sobierajski, R.; van de Kruijs, R. W. E.; Boekhout, F.; Louis, E.; Bijkerk, F.] FOM Inst Plasma Phys Rijnhuizen, NL-3430 BE Nieuwegein, Netherlands. [Dubrouil, A.; Descamps, D.; Fabre, B.; Lidon, P.; Mevel, E.; Petit, S.; Constant, E.; Mairesse, Y.] Univ Bordeaux, CNRS, CEA, CELIA, F-33405 Talence, France. [Sobierajski, R.] Polish Acad Sci, Inst Phys, PL-02668 Warsaw, Poland. [Gullikson, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Gaudin, J.] European XFEL GmbH, D-22761 Hamburg, Germany. [Bijkerk, F.] Univ Twente, LPNO, MESA Inst Nanotechnol, NL-7500 AE Enschede, Netherlands. RP Loch, RA (reprint author), FOM Inst Plasma Phys Rijnhuizen, Edisonbaan 14, NL-3430 BE Nieuwegein, Netherlands. EM r.a.loch@rijnhuizen.nl RI Sobierajski, Ryszard/E-7619-2012; Mairesse, Yann/B-3049-2015; FABRE, Baptiste/E-3815-2015; Descamps, Dominique/A-6826-2017; Petit, Stephane/A-6578-2017 OI FABRE, Baptiste/0000-0001-9843-8139; Descamps, Dominique/0000-0003-0474-0551; Petit, Stephane/0000-0003-0573-8592 FU European Union (EU); Agence nationale de la recherche (ANR) [ANR-08-JCJC-0029, ANR-09-BLAN-0031-01]; Stichting voor Fundamenteel Onderzoek der Materie (FOM) FX We acknowledge financial support from the European Union (EU) LASERLAB program, the Agence nationale de la recherche (ANR) (ANR-08-JCJC-0029 HarMoDyn and ANR-09-BLAN-0031-01 Attowave) and the "Stichting voor Fundamenteel Onderzoek der Materie (FOM)" for funding the pilot FEL optics activity at FOM Institute for Plasma Physics Rijnhuizen. We also acknowledge Christian Buchholz and Christian Laubis of PTB/BESSY, Berlin, Germany, for their measurements. NR 11 TC 12 Z9 12 U1 2 U2 15 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD SEP 1 PY 2011 VL 36 IS 17 BP 3386 EP 3388 PG 3 WC Optics SC Optics GA 817JC UT WOS:000294667100028 PM 21886219 ER PT J AU Tao, XD Azucena, O Fu, M Zuo, Y Chen, DC Kubby, J AF Tao, Xiaodong Azucena, Oscar Fu, Min Zuo, Yi Chen, Diana C. Kubby, Joel TI Adaptive optics microscopy with direct wavefront sensing using fluorescent protein guide stars SO OPTICS LETTERS LA English DT Article ID 2-PHOTON MICROSCOPY; SENSOR AB We introduce a direct wavefront sensing method using structures labeled with fluorescent proteins in tissues as guide stars. An adaptive optics confocal microscope using this method is demonstrated for imaging of mouse brain tissue. A dendrite and a cell body of a neuron labeled with yellow fluorescent protein are tested as guide stars without injection of other fluorescent labels. Photobleaching effects are also analyzed. The results shows increased image contrast and 3x improvement in the signal intensity for fixed mouse tissues at depths of 70 mu m. (C) 2011 Optical Society of America C1 [Tao, Xiaodong; Azucena, Oscar; Kubby, Joel] Univ Calif Santa Cruz, Jack Baskin Sch Engn, Santa Cruz, CA 95064 USA. [Chen, Diana C.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Tao, XD (reprint author), Univ Calif Santa Cruz, Jack Baskin Sch Engn, 1156 High St, Santa Cruz, CA 95064 USA. EM taoxd@soe.ucsc.edu FU National Science Foundation (NSF) [0852742]; W. M. Keck Center for Adaptive Optical Microscopy at UC Santa Cruz FX This material is based upon work supported by the National Science Foundation (NSF) under Award No. 0852742 and the W. M. Keck Center for Adaptive Optical Microscopy at UC Santa Cruz. NR 14 TC 30 Z9 32 U1 3 U2 15 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD SEP 1 PY 2011 VL 36 IS 17 BP 3389 EP 3391 PG 3 WC Optics SC Optics GA 817JC UT WOS:000294667100029 PM 21886220 ER PT J AU Buth, C Kohler, MC Ullrich, J Keitel, CH AF Buth, Christian Kohler, Markus C. Ullrich, Joachim Keitel, Christoph H. TI High-order harmonic generation enhanced by XUV light SO OPTICS LETTERS LA English DT Article ID IONIZATION AB The combination of high-order harmonic generation (HHG) with resonant XUV excitation of a core electron into the transient valence vacancy that is created in the course of the HHG process is investigated theoretically. In this setup, the first electron performs a HHG three-step process, whereas the second electron Rabi flops between the core and the valence vacancy. The modified HHG spectrum due to recombination with the valence and the core is determined and analyzed for krypton on the 3d -> 4p resonance in the ion. We assume an 800 nm laser with an intensity of about 10(14) W/cm(2) and XUV radiation from the Free Electron Laser in Hamburg (FLASH) with an intensity in the range 10(13)-10(16) W/cm(2). Our prediction opens perspectives for nonlinear XUV physics, attosecond x rays, and HHG-based spectroscopy involving core orbitals. (C) 2011 Optical Society of America C1 [Buth, Christian; Kohler, Markus C.; Ullrich, Joachim; Keitel, Christoph H.] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany. [Buth, Christian] Argonne Natl Lab, Argonne, IL 60439 USA. [Ullrich, Joachim] Ctr Free Electron Laser Sci, Max Planck Adv Study Grp, D-22607 Hamburg, Germany. RP Buth, C (reprint author), Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany. EM christian.buth@web.de RI Buth, Christian/A-2834-2017 OI Buth, Christian/0000-0002-5866-3443 FU European Community [FP7-PEOPLE-2010-RG, 266551]; Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357] FX C. Buth and M.C. Kohler were supported by a Marie Curie International Reintegration Grant within the 7th European Community Framework Program (call identifier: FP7-PEOPLE-2010-RG, proposal 266551). C. Buth's work was partially funded by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under contract DE-AC02-06CH11357. NR 18 TC 15 Z9 15 U1 0 U2 9 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 J9 OPT LETT JI Opt. Lett. PD SEP 1 PY 2011 VL 36 IS 17 BP 3530 EP 3532 PG 3 WC Optics SC Optics GA 817JC UT WOS:000294667100076 PM 21886267 ER PT J AU Dosch, H Long, GG AF Dosch, Helmut Long, Gabrielle G. TI Simon Charles Moss Obituary SO PHYSICS TODAY LA English DT Biographical-Item C1 [Dosch, Helmut] German Electron Synchrotron, Hamburg, Germany. [Long, Gabrielle G.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Dosch, H (reprint author), German Electron Synchrotron, Hamburg, Germany. NR 1 TC 0 Z9 0 U1 1 U2 1 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD SEP PY 2011 VL 64 IS 9 BP 73 EP 73 PG 1 WC Physics, Multidisciplinary SC Physics GA 818LF UT WOS:000294752500020 ER PT J AU Teeguarden, JG Calafat, AM Ye, XY Doerge, DR Churchwell, MI Gunawan, R Graham, MK AF Teeguarden, Justin G. Calafat, Antonia M. Ye, Xiaoyum Doerge, Daniel R. Churchwell, Mona I. Gunawan, Rudy Graham, Morgan K. TI Twenty-Four Hour Human Urine and Serum Profiles of Bisphenol A during High-Dietary Exposure SO TOXICOLOGICAL SCIENCES LA English DT Article DE bisphenol A; pharmacokinetics; exposure; biomonitoring; endocrine disruptors; urine; serum ID SPRAGUE-DAWLEY RATS; MASS-SPECTROMETRIC DETERMINATION; HPLC-MS/MS METHOD; LIQUID-CHROMATOGRAPHY; ENVIRONMENTAL PHENOLS; BLOOD-VISCOSITY; WATER-INTAKE; MONKEYS; PHARMACOKINETICS; DISPOSITION AB By virtue of its binding to steroid hormone receptors, bisphenol A (BPA, the unconjugated bioactive monomer) is hypothesized to be estrogenic when present in sufficient quantities in the body, raising concerns that widespread exposure to BPA may impact human health. To better understand the internal exposure of adult humans to BPA and the relationship between the serum and urinary pharmacokinetics of BPA, a clinical exposure study was conducted. Blood and urine samples were collected approximately hourly over a 24-h period from 20 adult volunteers who ingested 100% of one of three specified meals comprising standard grocery store food items for breakfast, lunch, and dinner. The volunteers' average consumption of BPA, estimated from the urinary excretion of total BPA ((TOT)BPA = conjugated BPA + BPA), was 0.27 mu g/kg body weight (range, 0.03-0.86), 21% greater than the 95th percentile of aggregate exposure in the adult U.S. population. A serum time course of (TOT)BPA was observable only in individuals with exposures 1.3-3.9 times higher than the 95th percentile of aggregate U.S. exposure. The (TOT)BPA urine concentration T(max) was 2.75 h (range, 0.75-5.75 h) post-meal, lagging the serum concentration T(max) by similar to 1 h. Serum (TOT)BPA area under the curve per unit BPA exposure was between 21.5 and 79.0 nM center dot h center dot kg/mu g BPA. Serum (TOT)BPA concentrations ranged from less than or equal to limit of detection (LOD, 1.3 nM) to 5.7 nM and were, on average, 42 times lower than urine concentrations. During these high dietary exposures, (TOT)BPA concentrations in serum were undetectable in 83% of the 320 samples collected and BPA concentrations were determined to be less than or equal to LOD in all samples. C1 [Teeguarden, Justin G.; Gunawan, Rudy; Graham, Morgan K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Calafat, Antonia M.; Ye, Xiaoyum] Ctr Dis Control & Prevent, Div Sci Lab, Natl Ctr Environm Hlth, Atlanta, GA 30341 USA. [Doerge, Daniel R.; Churchwell, Mona I.] US FDA, Div Biochem Toxicol, Natl Ctr Toxicol Res, Jefferson, AR 72079 USA. RP Teeguarden, JG (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM justin.teeguarden@pnl.gov OI Teeguarden, Justin/0000-0003-3817-4391 FU U.S. Enivronmental Protection Agency (EPA) [R83386701] FX U.S. Enivronmental Protection Agency (EPA), through STAR grant (R83386701). NR 36 TC 111 Z9 112 U1 1 U2 54 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1096-6080 J9 TOXICOL SCI JI Toxicol. Sci. PD SEP PY 2011 VL 123 IS 1 BP 48 EP 57 DI 10.1093/toxsci/kfr160 PG 10 WC Toxicology SC Toxicology GA 815VG UT WOS:000294557500005 PM 21705716 ER PT J AU Lopez, EP Vianco, PT AF Lopez, Edwin P. Vianco, Paul T. TI Select the Right Surface Finish to Improve Solderability SO WELDING JOURNAL LA English DT Editorial Material C1 [Lopez, Edwin P.; Vianco, Paul T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lopez, EP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM elopez@sandia.gov NR 7 TC 1 Z9 1 U1 0 U2 1 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD SEP PY 2011 VL 90 IS 9 BP 44 EP 46 PG 3 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 816DB UT WOS:000294577800015 ER PT J AU Vianco, PT AF Vianco, Paul T. TI Hand Soldering Basics SO WELDING JOURNAL LA English DT Editorial Material C1 [Vianco, Paul T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Vianco, Paul T.] AWS C3 Comm Brazing & Soldering, Albuquerque, NM USA. RP Vianco, PT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM ptvianc@sandia.gov NR 0 TC 1 Z9 1 U1 0 U2 0 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD SEP PY 2011 VL 90 IS 9 BP 47 EP 48 PG 2 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 816DB UT WOS:000294577800016 ER PT J AU Korinko, PS Adams, TM Malene, SH Gill, D Smugeresky, J AF Korinko, P. S. Adams, T. M. Malene, S. H. Gill, D. Smugeresky, J. TI Laser Engineered Net Shaping (R) for Repair and Hydrogen Compatibility SO WELDING JOURNAL LA English DT Article DE Laser Engineered Net Shaping (LENS); Reclamation Welding; Hydrogen; Baseline ID FRACTURE-TOUGHNESS; STAINLESS-STEEL; TESTS AB A method to repair mismachined or damaged components using Laser Engineered Net Shaping (R) (LENS) technology to apply material was investigated for its feasibility for components exposed to hydrogen. The mechanical properties of LENS bulk materials were also tested for hydrogen compatibility. The LENS process was used to repair simulated and actual mismachined components. These sample components were hydrogen charged and burst tested in the as-received, as-damaged, and as-repaired conditions. The testing showed that there was no apparent additional deficiency associated with hydrogen charging compared to the repair technique. The repair techniques resulted in some components meeting the requirements while others did not. Additional procedure/process development is required prior to recommending production use of LENS. C1 [Korinko, P. S.; Adams, T. M.; Malene, S. H.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Gill, D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Smugeresky, J.] Sandia Natl Labs, Livermore, CA USA. RP Korinko, PS (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. NR 30 TC 1 Z9 1 U1 2 U2 3 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD SEP PY 2011 VL 90 IS 9 BP 171S EP 181S PG 11 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 816DB UT WOS:000294577800022 ER PT J AU Reed, WA Oliver, AG Rao, LF AF Reed, Wendy A. Oliver, Allen G. Rao, Linfeng TI Tetrakis(tetramethylammonium) tricarbonatodioxidouranate octahydrate SO ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS LA English DT Editorial Material AB The environment of the U atom in the title compound, (C4H12N)(4)[UO2(CO3)(3)]center dot 8H(2)O, presents a typical hexagonal bipyramidal geometry found in many actinide complexes. It is a model for actinide species and consists of common environmental moieties (carbonate, water and ammonia species). The structure displays a sheet-like hydrogen-bonding network formed from crystallization water molecules and carbonate ligands. The compound is isomorphous with a previously described Np isolog [Grigorev et al. (1997). Radiokhimiya (Russ. Radiochem.), 39, 325-329]. C1 [Reed, Wendy A.; Rao, Linfeng] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Oliver, Allen G.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. RP Rao, LF (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM lrao@lbl.gov NR 10 TC 2 Z9 2 U1 2 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0108-2701 J9 ACTA CRYSTALLOGR C JI Acta Crystallogr. Sect. C-Cryst. Struct. Commun. PD SEP PY 2011 VL 67 BP M301 EP M303 DI 10.1107/S0108270111032641 PN 9 PG 3 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 814MB UT WOS:000294457200001 PM 21881176 ER PT J AU Du, D Wang, J Lu, DL Dohnalkova, A Lin, YH AF Du, Dan Wang, Jun Lu, Donglai Dohnalkova, Alice Lin, Yuehe TI Multiplexed Electrochemical Immunoassay of Phosphorylated Proteins Based on Enzyme-Functionalized Gold Nanorod Labels and Electric Field-Driven Acceleration SO ANALYTICAL CHEMISTRY LA English DT Article ID TUMOR-MARKERS; GAMMA-RADIATION; IMMUNOSENSOR ARRAY; P53 PROTEIN; DNA-DAMAGE; AMPLIFICATION; ACTIVATION; BIOMARKERS; STRATEGY AB A multiplexed electrochemical immunoassay integrating enzyme amplification and electric field-driven strategy was developed for fast and sensitive quantification of phosphorylated p53 at Ser392 (phospho-p53(392)), Ser15 (phospho-p53(15)), Ser46 (phospho-p53(46)), and total p53 simultaneously. The disposable sensor array has four spatially separated working electrodes, and each of them is modified with different capture antibody, which enables simultaneous immunoassay to be conducted without cross-talk between adjacent electrodes. The enhanced sensitivity was achieved by a multienzyme amplification strategy using gold nanorods (AuNRs) as nanocarrier for coimmobilization of horseradish peroxidase (HRP) and detection antibody (Ab(2)) at a high ratio of HRP/Ab(2), which produced an amplified electrocatalytic response by the reduction of HRP oxidized thionine in the presence of hydrogen peroxide. The immunoreaction processes were accelerated by applying +0.4 V for 3 min and then -0.2 V for 1.5 min; thus, the whole sandwich immunoreactions could be completed in less than 5 min. Under optimal conditions, this method could simultaneously detect phospho-p53(392), phospho-p53(15), phospho-p53(46), and total p53 ranging from 0.01 to 20 nM, 0.05 to 20 nM, 0.1 to 50 nM, and 0.05 to 20 nM with detection limits of 5 pM, 20 pM, 30 pM, and 10 pM, respectively. Accurate determinations of these proteins in human plasma samples were demonstrated by comparison to the standard ELISA method. The disposable immunosensor array shows excellent promise for clinical screening of phosphorylated proteins and convenient point-of-care diagnostics. C1 [Du, Dan] Cent China Normal Univ, Coll Chem, Minist Educ, Key Lab Pesticide & Chem Biol, Wuhan 430079, Peoples R China. [Du, Dan; Wang, Jun; Lu, Donglai; Dohnalkova, Alice; Lin, Yuehe] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Du, D (reprint author), Cent China Normal Univ, Coll Chem, Minist Educ, Key Lab Pesticide & Chem Biol, Wuhan 430079, Peoples R China. EM dudan@mail.ccnu.edu.cn; yuehe.lin@pnl.gov RI Lin, Yuehe/D-9762-2011; Du, Dan (Annie)/G-3821-2012 OI Lin, Yuehe/0000-0003-3791-7587; FU National Institute of Environmental Health Sciences [U54 ES16015]; National Institute of Health (NIH); NIH through the National Institute of Neurological Disorders and Stroke [U01 NS058161-01]; National Natural Science Foundation of China [21075047]; Program for Chenguang Young Scientist for Wuhan [200950431184]; Special Fund for Basic Scientific Research of Central Colleges [CCNU10A02005]; U.S. Department of Energy (DOE) [DE-AC05-76RL01830] FX This work was supported partially by Grant U54 ES16015 from the National Institute of Environmental Health Sciences, the National Institute of Health (NIH), and Grant U01 NS058161-01 from the NIH CounterACT Program through the National Institute of Neurological Disorders and Stroke. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the federal government. D.D. acknowledges the support from National Natural Science Foundation of China (21075047), the Program for Chenguang Young Scientist for Wuhan (200950431184), and the Special Fund for Basic Scientific Research of Central Colleges (CCNU10A02005). PNNL is operated for the U.S. Department of Energy (DOE) by Battelle under Contract DE-AC05-76RL01830. The materials characterization was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's office of Biological and Environmental Research located at PNNL. NR 38 TC 59 Z9 59 U1 12 U2 88 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD SEP 1 PY 2011 VL 83 IS 17 BP 6580 EP 6585 DI 10.1021/ac2009977 PG 6 WC Chemistry, Analytical SC Chemistry GA 812VX UT WOS:000294322100023 PM 21797208 ER PT J AU Techane, S Baer, DR Castner, DG AF Techane, Sirnegeda Baer, Donald R. Castner, David G. TI Simulation and Modeling of Self-Assembled Monolayers of Carboxylic Acid Thiols on Flat and Nanoparticle Gold Surfaces SO ANALYTICAL CHEMISTRY LA English DT Article ID RAY PHOTOELECTRON-SPECTROSCOPY; ORGANIZED MOLECULAR ASSEMBLIES; AUGER-ELECTRON-SPECTROSCOPY; OVERLAYER THICKNESS; XPS ANALYSIS; THIN-FILMS; ADSORPTION; CATALYSTS; SPECTRA; ELECTROCHEMISTRY AB Quantitative analysis of the 16-mercaptohexadecanoic acid self-assembled monolayer (C16 COOH-SAM) layer thickness on gold nanoparticles (AuNPs) was performed using simulation of electron spectra for surface analysis (SESSA) software and X-ray photoelectron spectroscopy (XPS) experimental measurements. XPS measurements of C16 COOH-SAMs on flat gold surfaces were made at nine different photoelectron emission angles (5-85 degrees in 10 degrees increments), corrected using geometric weighting factors and then summed together to approximate spherical AuNPs. The SAM thickness and relative surface roughness (RSA) in SESSA were optimized to determine the best agreement between simulated and experimental surface composition. On the basis of the glancing-angle results, it was found that inclusion of a hydrocarbon-contamination layer on top the C16 COOH-SAM was necessary to improve the agreement between the SESSA and XPS results. For the 16 COOH-SAMs on flat Au surfaces, using a SAM thickness of 1.1 angstrom/CH2 group, an RSA of 1.05, and a 1.5 angstrom CH2-contamination overlayer (total film thickness = 21.5 angstrom) for the SESSA calculations provided the best agreement with the experimental XPS data. After applying the appropriate geometric corrections and summing the SESSA flat-surface compositions, the best fit results for the 16 COOH-SAM thickness and surface roughness on the AuNPs indicated a slightly thinner overlayer with parameters of 0.9 angstrom/CH2 group in the SAM, an RSA of 1.06 RSA, and a 1.5 angstrom CH2-contamination overlayer (total film thickness = 18.5 angstrom). The 3 angstrom difference in SAM thickness between the flat Au and AuNP surfaces suggests that the alkyl chains of the SAM are slightly more tilted or disordered on the AuNP surfaces. C1 [Techane, Sirnegeda; Castner, David G.] Univ Washington, Natl ESCA, Seattle, WA 98195 USA. [Techane, Sirnegeda; Castner, David G.] Univ Washington, Surface Anal Ctr Biomed Problems, Dept Chem Engn, Seattle, WA 98195 USA. [Techane, Sirnegeda; Castner, David G.] Univ Washington, Surface Anal Ctr Biomed Problems, Dept Bioengn, Seattle, WA 98195 USA. [Baer, Donald R.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Castner, DG (reprint author), Univ Washington, Natl ESCA, POB 351750, Seattle, WA 98195 USA. EM castner@nb.uw.edu RI Baer, Donald/J-6191-2013 OI Baer, Donald/0000-0003-0875-5961 FU NIH [GM-074511, EB-002027, U19 ES019544]; NSF; Office of Basic Energy Sciences of the U.S. DOE; Intel FX This research was supported by NIH Grants GM-074511 and EB-002027 (NESAC/Bio). S.T. thanks NSF for an IGERT fellowship and Intel for a fellowship. D.R.B. acknowledges support for nanoparticle research from Office of Basic Energy Sciences of the U.S. DOE and NIH Grant U19 ES019544. Portions of this work were associated with the Environmental Molecular Sciences Laboratory (EMSL), a DOE user facility operated by Pacific Northwest National Laboratory for the Office of Biological and Environmental Research of the DOE. The authors gratefully acknowledge helpful discussions and encouragement from Dr. Cedric Powell of the National Institute of Standards and Technology. NR 49 TC 36 Z9 36 U1 6 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 EI 1520-6882 J9 ANAL CHEM JI Anal. Chem. PD SEP 1 PY 2011 VL 83 IS 17 BP 6704 EP 6712 DI 10.1021/ac201175a PG 9 WC Chemistry, Analytical SC Chemistry GA 812VX UT WOS:000294322100039 PM 21744862 ER PT J AU Mazzera, M Baraldi, A Buffagni, E Capelletti, R Beregi, E Foldvari, I Magnani, N AF Mazzera, M. Baraldi, A. Buffagni, E. Capelletti, R. Beregi, E. Foeldvari, I. Magnani, N. TI Spectroscopic analysis of Pr3+ crystal-field transitions in YAl3(BO3)(4) SO APPLIED PHYSICS B-LASERS AND OPTICS LA English DT Article ID SINGLE-CRYSTALS; HYPERFINE-STRUCTURE; OPTICAL-SPECTRA; GROWTH; LUMINESCENCE; FREQUENCY; PHONON; LASER; ER3+; MODEL AB Yttrium aluminium borate single crystals, doped with 1 and 4 mol% of Pr3+, were analyzed in the wave number range 500-25000 cm(-1) and temperature range 9-300 K by means of high-resolution Fourier transform spectroscopy. In spite of the complex spectra, exhibiting broad and split lines, the energy level scheme was obtained for several excited manifolds. The careful analysis of the spectra as a function of the temperature allowed us to identify most of the sublevels of the ground manifold. The thermally induced line shift, well described by a single-phonon coupling model, could be exploited to provide information about the energy of the phonons involved. The orientation of the dielectric ellipsoid and of the dipole moments associated to a few transitions was also determined from linear dichroism measurements. The experimental data were fitted in the framework of the crystal-field theory, but the agreement was not satisfactory, as already reported for Pr3+ ion in other matrices. Additional discrepancies came from the dichroic spectra analysis and the line splitting, possibly associated to hyperfine interaction. Some causes which might be responsible for the difficulties encountered in the Pr3+ ion theoretical modelling are discussed. C1 [Mazzera, M.; Baraldi, A.; Capelletti, R.] Univ Parma, Dept Phys, I-43124 Parma, Italy. [Buffagni, E.] IMEM CNR Inst, I-43124 Parma, Italy. [Beregi, E.; Foeldvari, I.] HAS, Res Inst Solid State Phys & Opt, H-1121 Budapest, Hungary. [Magnani, N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Mazzera, M (reprint author), Univ Parma, Dept Phys, Viale GP Usberti 7-A, I-43124 Parma, Italy. EM margherita.mazzera@fis.unipr.it; andrea.baraldi@fis.unipr.it; elisa.buffagni@imem.cnr.it; rosanna.capelletti@fis.unipr.it; beregi@szfki.hu; foldvari@szfki.hu; nmagnani@lbl.gov RI Baraldi, Andrea/G-7151-2012 NR 44 TC 2 Z9 2 U1 0 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-2171 J9 APPL PHYS B-LASERS O JI Appl. Phys. B-Lasers Opt. PD SEP PY 2011 VL 104 IS 3 SI SI BP 603 EP 617 DI 10.1007/s00340-011-4421-7 PG 15 WC Optics; Physics, Applied SC Optics; Physics GA 814YQ UT WOS:000294493600019 ER PT J AU Zhang, SJ Liu, Z Bucknall, DG He, LH Hong, KL Mays, JW Allen, MG AF Zhang, Shanju Liu, Zhan Bucknall, David G. He, Lihong Hong, Kunlun Mays, Jimmy W. Allen, Mark G. TI Thermally switchable thin films of an ABC triblock copolymer of poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) SO APPLIED SURFACE SCIENCE LA English DT Article DE Block copolymers; Thin films; Stimuli-sensitive polymers; Surface structure; Wettability ID RAY PHOTOELECTRON-SPECTROSCOPY; ATOMIC-FORCE MICROSCOPY; BLOCK-COPOLYMERS; POLY(VINYLIDENE FLUORIDE); SURFACE CHARACTERIZATION; MICROPHASE SEPARATION; RESPONSIVE SURFACES; DIBLOCK COPOLYMERS; HYDROPHOBIC BLOCK; POLYMERS AB The thermo-responsive behavior of polymer films consisting of novel linear triblock copolymers of poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBuMA-PMMA-P2FEMA) are reported using differential scanning calorimetry (DSC), atomic forcing microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contacting angle (CA) measurements. The surface morphology, wettability and chemical structure of thin films of these triblock copolymers on silicon wafers as a function of temperature have been investigated. It has been shown that the wettability of the films is thermally switchable. Detailed structural analysis shows that thermo-responsive surface composition changes are produced. The underlying mechanism of the thermoresponsive behavior is discussed. (C) 2011 Elsevier B.V. All rights reserved. C1 [Zhang, Shanju; Liu, Zhan; Bucknall, David G.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [He, Lihong; Hong, Kunlun; Mays, Jimmy W.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [He, Lihong; Hong, Kunlun; Mays, Jimmy W.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Allen, Mark G.] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. RP Bucknall, DG (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. EM shanju.zhang@yale.edu; bucknall@gatech.edu RI Bucknall, David/F-7568-2016; Hong, Kunlun/E-9787-2015; Zhang, Shanju/E-5119-2011 OI Bucknall, David/0000-0003-4558-6933; Hong, Kunlun/0000-0002-2852-5111; FU National Science Foundation [DMR-0710467]; U.S. Department of Energy through the CNMS at ORNL FX Financial support from the National Science Foundation under grant DMR-0710467 and partial support from the U.S. Department of Energy through the CNMS at ORNL for synthesis of the triblock copolymers used in this work are gratefully acknowledged. NR 35 TC 3 Z9 3 U1 3 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD SEP 1 PY 2011 VL 257 IS 22 BP 9673 EP 9677 DI 10.1016/j.apsusc.2011.06.098 PG 5 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 803OJ UT WOS:000293590300074 ER PT J AU Brandenberger, JM Louchouarn, P Crecelius, EA AF Brandenberger, Jill M. Louchouarn, Patrick Crecelius, Eric A. TI Natural and Post-Urbanization Signatures of Hypoxia in Two Basins of Puget Sound: Historical Reconstruction of Redox Sensitive Metals and Organic Matter Inputs SO AQUATIC GEOCHEMISTRY LA English DT Article DE Sediment cores; Redox sensitive metals; Organic matter; Hypoxia; Paleoecological indicators; Climatic cycles ID GULF-OF-MEXICO; CONTINENTAL-MARGIN SEDIMENTS; MARINE-SEDIMENTS; CHESAPEAKE BAY; COASTAL SEDIMENTS; BRITISH-COLUMBIA; TRACE-METALS; POSTDEPOSITIONAL MOBILITY; OCEANOGRAPHIC PROPERTIES; GEOCHEMICAL RECORD AB Hypoxia has been observed in Hood Canal, Puget Sound, WA, USA since the 1970s. Four long sediment cores were collected in 2005 and age-dated to resolve natural and post-urbanization signatures of hypoxia and organic matter (OM) sources in two contrasting basins of Puget Sound: Main Basin and Hood Canal. Paleoecological indicators used for sediment reconstructions included pollen, stable carbon and nitrogen isotopes (delta(13)C and delta(15)N), biomarkers of terrestrial OM (TOM), biogenic silica (BSi), and redox-sensitive metals (RSM). The sedimentary reconstructions illustrated a gradient in RSM enrichment factors as Hood Canal > Main Basin, southern > northern cores, and pre-1900s > 1900-2005. The urbanization of Puget Sound watersheds during the 1900s was reflected as shifts in all the paleoecological signatures. Pollen distributions shifted from predominantly old growth conifer to successional alder, dominant OM signatures recorded a decrease in the proportion of marine OM (MOM) concomitant with an increase in the proportion of TOM, and the weight % of BSi decreased. However, these shifts were not coincidental with an overall increase in the enrichment of RSM or delta(15)N signatures indicative of cultural eutrophication. The increased percentage of TOM was independently verified by both the elemental ratios and lignin yields. In addition, isotopic signatures, BSi, and RSMs all suggest that OM shifts may be due to a reduction in primary productivity rather than an increase in OM regeneration in the water column or at the sediment/water interface. Therefore, the reconstructions suggested the Hood Canal has been under a more oxygenated "stance" during the twentieth century compared to prior periods. However, these 2005 cores and their resolutions do not encompass the period of high resolution water column measurements that showed short-lived hypoxia events and fish kills in Hood Canal during the early twenty-first century. The decoupling between the increased watershed-scale anthropogenic alterations recorded in the OM signatures and the relatively depleted RSM during the twentieth century suggests that physical processes, such as deep-water ventilation, may be responsible for the historical variation in oxygen levels. Specifically, climate oscillations may influence the ventilation and/or productivity of deep water in Puget Sound and particularly their least mixed regions. C1 [Brandenberger, Jill M.; Crecelius, Eric A.] Battelle Marine Sci Lab, Pacific NW Natl Lab, Sequim, WA 98382 USA. [Louchouarn, Patrick] Texas A&M Univ, Dept Oceanog, College Stn, TX 77843 USA. [Louchouarn, Patrick] Texas A&M Univ, Dept Marine Sci, College Stn, TX 77843 USA. RP Brandenberger, JM (reprint author), Battelle Marine Sci Lab, Pacific NW Natl Lab, 1529 W Sequim Bay Rd, Sequim, WA 98382 USA. EM Jill.Brandenberger@pnl.gov; loup@tamug.edu; Eric.Crecelius@pnl.gov FU National Oceanic and Atmospheric Administration [NA05NOS4781203, CHRP 125] FX The authors would like to acknowledge the funding for this research from the National Oceanic and Atmospheric Administration, Coastal Hypoxia Research Program grant number: NA05NOS4781203 and publication number CHRP 125. In addition, the authors thank the other investigators working on this grant to support the multiple paleoindicator reconstructions including Dr. Sherri Cooper for the diatoms, Dr. Kristin McDougall for the foraminifera, and Dr. Estella Leopold and Dr. Gengwu Liu for the pollen. Finally, the authors extend their appreciation to the two anonymous reviewers that greatly contributed to the final manuscript by providing valuable comments. NR 125 TC 17 Z9 17 U1 1 U2 33 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1380-6165 J9 AQUAT GEOCHEM JI Aquat. Geochem. PD SEP PY 2011 VL 17 IS 4-5 SI SI BP 645 EP 670 DI 10.1007/s10498-011-9129-0 PG 26 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 814MY UT WOS:000294460900018 ER PT J AU Gurram, RN Datta, S Lin, YJ Snyder, SW Menkhaus, TJ AF Gurram, Raghu N. Datta, Saurav Lin, Yupo J. Snyder, Seth W. Menkhaus, Todd J. TI Removal of enzymatic and fermentation inhibitory compounds from biomass slurries for enhanced biorefinery process efficiencies SO BIORESOURCE TECHNOLOGY LA English DT Article DE Lignocelluosic biomass; Electrodeionization; Polyelectrolytes; Detoxification; Biorenewables ID CELLULOSIC ETHANOL-PRODUCTION; SACCHAROMYCES-CEREVISIAE; LIGNOCELLULOSIC BIOMASS; LODGEPOLE PINE; ORGANIC-ACIDS; ACETIC-ACID; DETOXIFICATION; PRETREATMENT; FERMENTABILITY; HYDROLYSIS AB Within the biorefinery paradigm, many non-monomeric sugar compounds have been shown to be inhibitory to enzymes and microbial organisms that are used for hydrolysis and fermentation. Here, two novel separation technologies, polyelectrolyte polymer adsorption and resin-wafer electrodeionization (RW-EDI), have been evaluated to detoxify a dilute acid pretreated biomass slurry. Results showed that detoxification of a dilute acid pretreated ponderosa pine slurry by sequential polyelectrolyte and RW-EDI treatments was very promising, with significant removal of acetic acid, 5-hydroxymethyl furfural, and furfural (up to 77%, 60%, and 74% removed, respectively) along with > 97% removal of sulfuric acid. Removal of these compounds increased the cellulose conversion to 94% and elevated the hydrolysis rate to 0.69 g glucose/L/h. When using Saccharomyces cerevisiae D(5)A for fermentation of detoxified slurry, the process achieved 99% of the maximum theoretical ethanol yield and an ethanol production rate nearly five-times faster than untreated slurry. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Gurram, Raghu N.; Menkhaus, Todd J.] S Dakota Sch Mines & Technol, Dept Chem & Biol Engn, Rapid City, SD 57701 USA. [Datta, Saurav; Lin, Yupo J.; Snyder, Seth W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Menkhaus, TJ (reprint author), S Dakota Sch Mines & Technol, Dept Chem & Biol Engn, 501 E St Joseph St, Rapid City, SD 57701 USA. EM Todd.Menkhaus@sdsmt.edu OI Snyder, Seth/0000-0001-6232-1668 FU USDA NIFA [2010-65504-20372]; South Dakota School of Mines and Technology; US Department of Energy, Office of the Biomass; US Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX Financial support for R. Gurram was provided by the USDA NIFA, AFRI Competitive Grant # 2010-65504-20372, and the South Dakota School of Mines and Technology. In addition, the work was partially supported by funding from the US Department of Energy, Office of the Biomass Program. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The US Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 36 TC 27 Z9 29 U1 1 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD SEP PY 2011 VL 102 IS 17 BP 7850 EP 7859 DI 10.1016/j.biortech.2011.05.043 PG 10 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 812FS UT WOS:000294277100033 PM 21683583 ER PT J AU Matt, GE Quintana, PJE Destaillats, H Gundel, LA Sleiman, M Singer, BC Jacob, P Benowitz, N Winickoff, JP Rehan, V Talbot, P Schick, S Samet, J Wang, YS Hang, B Martins-Green, M Pankow, JF Hovell, MF AF Matt, Georg E. Quintana, Penelope J. E. Destaillats, Hugo Gundel, Lara A. Sleiman, Mohamad Singer, Brett C. Jacob, Peyton, III Benowitz, Neal Winickoff, Jonathan P. Rehan, Virender Talbot, Prue Schick, Suzaynn Samet, Jonathan Wang, Yinsheng Hang, Bo Martins-Green, Manuela Pankow, James F. Hovell, Melbourne F. TI Thirdhand Tobacco Smoke: Emerging Evidence and Arguments for a Multidisciplinary Research Agenda SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Review DE aggregate exposures; biomarkers; cumulative exposure; exposure; housing; nicotine; policy; secondhand smoke; tobacco smoke ID BASIC ORGANIC POLLUTANT; GAS-PHASE ORGANICS; INDOOR ENVIRONMENTS; EMISSION FACTORS; CARBON-DIOXIDE; EXPOSURE; OZONE; NICOTINE; SURFACES; DUST AB BACKGROUND: There is broad consensus regarding the health impact of tobacco use and secondhand smoke exposure, yet considerable ambiguity exists about the nature and consequences of thirdhand smoke (THS). OBJECTIVES: We introduce definitions of THS and THS exposure and review recent findings about constituents, indoor sorption-desorption dynamics, and transformations of THS; distribution and persistence of THS in residential settings; implications for pathways of exposure; potential clinical significance and health effects; and behavioral and policy issues that affect and are affected by THS. DISCUSSION: Physical and chemical transformations of tobacco smoke pollutants take place over time scales ranging from seconds to months and include the creation of secondary pollutants that in some cases are more toxic (e. g., tobacco-specific nitrosamines). THS persists in real-world residential settings in the air, dust, and surfaces and is associated with elevated levels of nicotine on hands and cotinine in urine of nonsmokers residing in homes previously occupied by smokers. Much still needs to be learned about the chemistry, exposure, toxicology, health risks, and policy implications of THS. CONCLUSION: The existing evidence on THS provides strong support for pursuing a programmatic research agenda to close gaps in our current understanding of the chemistry, exposure, toxicology, and health effects of THS, as well as its behavioral, economic, and sociocultural considerations and consequences. Such a research agenda is necessary to illuminate the role of THS in existing and future tobacco control efforts to decrease smoking initiation and smoking levels, to increase cessation attempts and sustained cessation, and to reduce the cumulative effects of tobacco use on morbidity and mortality. C1 [Matt, Georg E.] San Diego State Univ, Dept Psychol, San Diego, CA 92182 USA. [Quintana, Penelope J. E.; Hovell, Melbourne F.] San Diego State Univ, Grad Sch Publ Hlth, San Diego, CA 92182 USA. [Destaillats, Hugo; Gundel, Lara A.; Sleiman, Mohamad; Singer, Brett C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Indoor Environm Dept, Berkeley, CA 94720 USA. [Jacob, Peyton, III; Benowitz, Neal; Schick, Suzaynn] Univ Calif San Francisco, San Francisco Gen Hosp, Med Ctr, San Francisco, CA 94143 USA. [Winickoff, Jonathan P.] Massachusetts Gen Hosp, Ctr Child & Adolescent Hlth Policy, Boston, MA 02114 USA. [Rehan, Virender] Univ Calif Los Angeles, David Geffen Sch Med, Los Angeles, CA 90095 USA. [Talbot, Prue] Univ Calif Riverside, Stem Cell Ctr, Riverside, CA 92521 USA. [Samet, Jonathan] Univ So Calif, Keck Sch Med, Los Angeles, CA 90033 USA. [Hang, Bo] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Canc & DNA Damage Responses, Berkeley, CA 94720 USA. [Martins-Green, Manuela] Univ Calif Riverside, Dept Cell Biol & Neurosci, Riverside, CA 92521 USA. [Pankow, James F.] Portland State Univ, Portland, OR 97207 USA. RP Matt, GE (reprint author), San Diego State Univ, Dept Psychol, 5500 Campanile Dr, San Diego, CA 92182 USA. EM gmatt@sciences.sdsu.edu RI Destaillats, Hugo/B-7936-2013 FU California Tobacco Related Disease Research Program; Flight Attendant Medical Research Institute; National Institutes of Health; Flight Attendant Medical Research Institute (FAMRI) FX Parts of the research reported here were supported by the California Tobacco Related Disease Research Program, the Flight Attendant Medical Research Institute, and the National Institutes of Health.; N. Benowitz, M. Hovell, P. Jacob, G. Matt, J. Samet, S. Schick, and J. Winickoff were funded in part by grants from Flight Attendant Medical Research Institute (FAMRI). NR 58 TC 125 Z9 128 U1 4 U2 64 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD SEP PY 2011 VL 119 IS 9 BP 1218 EP 1226 DI 10.1289/ehp.1103500 PG 9 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 814SV UT WOS:000294478400020 PM 21628107 ER PT J AU Jin, HJ Webb-Robertson, BJ Peterson, ES Tan, RM Bigelow, DJ Scholand, MB Hoidal, JR Pounds, JG Zangar, RC AF Jin, Hongjun Webb-Robertson, Bobbie-Jo Peterson, Elena S. Tan, Ruimin Bigelow, Diana J. Scholand, Mary Beth Hoidal, John R. Pounds, Joel G. Zangar, Richard C. TI Smoking, COPD, and 3-Nitrotyrosine Levels of Plasma Proteins SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Article DE cigarette smoke; COPD; ELISA; eNOS; nitrotyrosine; posttranslational modification ID NITRIC-OXIDE SYNTHASE; OBSTRUCTIVE PULMONARY-DISEASE; CIGARETTE-SMOKE; CARDIOVASCULAR-DISEASE; OXIDATIVE STRESS; PEROXYNITRITE; LUNG; ENDOTHELIUM; SUPEROXIDE; INFLAMMATION AB BACKGROUND: Nitric oxide is a physiological regulator of endothelial function and hemodynamics. Oxidized products of nitric oxide can form nitrotyrosine, which is a marker of nitrative stress. Cigarette smoking decreases exhaled nitric oxide, and the underlying mechanism may be important in the cardiovascular toxicity of smoking. Even so, it is unclear if this effect results from decreased nitric oxide production or increased oxidative degradation of nitric oxide to reactive nitrating species. These two processes would be expected to have opposite effects on nitrotyrosine levels, a marker of nitrative stress. OBJECTIVE: In this study, we evaluated associations of cigarette smoking and chronic obstructive pulmonary disease (COPD) with nitrotyrosine modifications of specific plasma proteins to gain insight into the processes regulating nitrotyrosine formation. METHODS: A custom antibody microarray platform was developed to analyze the levels of 3-nitrotyrosine modifications on 24 proteins in plasma. In a cross-sectional study, plasma samples from 458 individuals were analyzed. RESULTS: Average nitrotyrosine levels in plasma proteins were consistently lower in smokers and former smokers than in never smokers but increased in smokers with COPD compared with smokers who had normal lung-function tests. CONCLUSIONS: Smoking is associated with a broad decrease in 3-nitrotyrosine levels of plasma proteins, consistent with an inhibitory effect of cigarette smoke on endothelial nitric oxide production. In contrast, we observed higher nitrotyrosine levels in smokers with COPD than in smokers without COPD. This finding is consistent with increased nitration associated with inflammatory processes. This study provides insight into a mechanism through which smoking could induce endothelial dysfunction and increase the risk of cardiovascular disease. C1 [Jin, Hongjun; Webb-Robertson, Bobbie-Jo; Peterson, Elena S.; Tan, Ruimin; Bigelow, Diana J.; Pounds, Joel G.; Zangar, Richard C.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Scholand, Mary Beth; Hoidal, John R.] Univ Utah, Dept Internal Med, Hlth Sci Ctr, Div Pulm, Salt Lake City, UT 84112 USA. RP Zangar, RC (reprint author), Pacific NW Natl Lab, 790 6th St,J4-02, Richland, WA 99354 USA. EM richard.zangar@pnl.gov OI Pounds, Joel/0000-0002-6616-1566 FU National Institute of Environmental Health Sciences [U54/ES016015]; National Heart, Lung and Blood Institute [P01 HL072903]; U.S. Department of Defense [W81XWH-10-1-0031] FX This study was funded by cooperative agreement U54/ES016015 from the National Institute of Environmental Health Sciences, grant P01 HL072903 from the National Heart, Lung and Blood Institute, and a U.S. Department of Defense postdoctoral fellowship (W81XWH-10-1-0031, H.J.). NR 37 TC 11 Z9 11 U1 0 U2 8 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 EI 1552-9924 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD SEP PY 2011 VL 119 IS 9 BP 1314 EP 1320 DI 10.1289/ehp.1103745 PG 7 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 814SV UT WOS:000294478400034 PM 21652289 ER PT J AU Hayes, SM O'Day, PA Webb, SM Maier, RM Chorover, J AF Hayes, Sarah M. O'Day, Peggy A. Webb, Sam M. Maier, Raina M. Chorover, Jon TI Changes in Zinc Speciation with Mine Tailings Acidification in a Semiarid Weathering Environment SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID PRINCIPAL COMPONENT ANALYSIS; RAY-ABSORPTION SPECTROSCOPY; FINE-STRUCTURE SPECTROSCOPY; QUANTITATIVE ZN SPECIATION; EXAFS SPECTROSCOPY; CONTAMINATED SOIL; SULFIDE MINE; SORPTION; LEAD; PHYTOSTABILIZATION AB High concentrations of residual metal contaminants in mine tailings can be transported easily by wind and water, particularly when tailings remain unvegetated for decades following mining cessation, as is the case in semiarid landscapes. Understanding the speciation and mobility of contaminant metal(loid)s, particularly in surficial tailings, is essential to controlling their phytotoxicities and to revegetating impacted sites. In prior work, we showed that surficial tailings samples from the Klondyke State Superfund Site (AZ, USA), ranging in pH from 5.4 to 2.6, represent a weathering series, with acidification resulting from sulfide mineral oxidation, long-term Fe hydrolysis, and a concurrent decrease in total (6000 to 450 mg kg(-1));and plant-available (590 to 75 mg kg(-1)) Zn due to leaching losses and changes in Zn speciation. Here, we used bulk and microfocused Zn K-edge X-ray absorption spectroscopy (XAS) data and a six-step sequential extraction procedure to determine tailings solid phase Zn speciation. Bulk sample spectra were fit by linear combination using three references: Zn-rich phyllosilicate (Zn(0.8)talc), Zn sorbed to ferrihydrite (Zn(adsFeOx)), and zinc sulfate (ZnSO(4)center dot 7H(2)O). Analyses indicate that Zn sorbed in tetrahedral coordination to poorly crystalline Fe and Mn (oxyhydr)oxides decreases with acidification in the weathering sequence, whereas octahedral zinc in sulfate minerals and crystalline Fe oxides undergoes a relative accumulation. Microscale analyses identified hetaerolite (ZriMn2O(4)), hemimorphite (Zn(4)Si(2)O(7)(OH)(2)center dot H(2)O) and sphalerite (ZnS) as minor phases. Bulk and microfocused spectroscopy complement the chemical extraction results and highlight the importance of using a multimethod approach to interrogate complex tailings systems. C1 [Hayes, Sarah M.; Maier, Raina M.; Chorover, Jon] Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ 85721 USA. [O'Day, Peggy A.] Univ Calif, Sch Nat Sci, Merced, CA 95343 USA. [Webb, Sam M.] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Chorover, J (reprint author), Univ Arizona, Dept Soil Water & Environm Sci, Tucson, AZ 85721 USA. EM chorover@cals.arizona.edu RI Webb, Samuel/D-4778-2009 OI Webb, Samuel/0000-0003-1188-0464 FU National Institute of Environmental Health Sciences [2 P42 ES04940-11, 1 R01ES017079-01]; Department of Energy, Office of Biological and Environmental Research; National Institutes of Health, National Center for Research Resources, Biomedical Technology; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This research was supported by Grant Nos. 2 P42 ES04940-11 and 1 R01ES017079-01 from the National Institute of Environmental Health Sciences Superfund Basic Research Program, NIH. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a National User Facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the Department of Energy, Office of Biological and Environmental Research, and by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program. Other portions of this work were performed at the Advanced Photon Source, Argonne National Laboratory, Geo-Soil-Enviro-CARS, Beamline 13-BM-D, which is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We are grateful to John Bargar, Matt Newville, Robert Downs, Ken Domanik, Kira Runtzel, Nicolas Perdrial, and Mary Kay Amistadi for assistance with sample analyses. NR 35 TC 7 Z9 7 U1 4 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 1 PY 2011 VL 45 IS 17 BP 7166 EP 7172 DI 10.1021/es201006b PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 813NE UT WOS:000294373400013 PM 21761897 ER PT J AU Song, C Zaveri, RA Shilling, JE Alexander, ML Newburn, M AF Song, Chen Zaveri, Rahul A. Shilling, John E. Alexander, M. Lizabeth Newburn, Matt TI Effect of Hydrophilic Organic Seed Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of alpha-Pinene SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID DICARBOXYLIC-ACIDS; PARTICULATE MATTER; IONIZING COMPOUNDS; AMMONIUM-SULFATE; HUMIC-LIKE; PARTICLES; WATER; MODEL; PREDICTIONS; ATMOSPHERE AB Gas-particle partitioning theory is widely used in atmospheric models to predict organic aerosol loadings. This theory predicts that secondary organic aerosol (SOA) yield of an oxidized volatile organic compound product will increase as the mass loading of preexisting organic aerosol increases. In a previous work, we showed that the presence of model hydrophobic primary organic aerosol (POA) had no detectable effect on the SOA yields from ozonolysis of alpha-pinene, suggesting that the condensing SOA compounds form a separate phase from the preexisting POA. However, a substantial faction of atmospheric aerosol is composed of polar, hydrophilic organic compounds. In this work, we investigate the effects of model hydrophilic organic aerosol (OA) species such as fulvic acid, adipic acid, and citric acid on the gas-particle partitioning of SOA from alpha-pinene ozonolysis. The results show that only citric acid seed significantly enhances the absorption of alpha-pinene SOA into the particle-phase. The other two seed particles have a negligible effect on the alpha-pinene SOA yields, suggesting that alpha-pinene SOA forms a well-mixed organic aerosol phase with citric acid and a separate phase with adipic acid and fulvic acid. This finding highlights the need to improve the thermodynamics treatment of organics in current aerosol models that simply lump all hydrophilic organic species into a single phase, thereby potentially introducing an erroneous sensitivity of SOA mass to emitted OA species. C1 [Song, Chen; Zaveri, Rahul A.; Shilling, John E.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. [Alexander, M. Lizabeth; Newburn, Matt] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Song, C (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99352 USA. EM chen.song@pnnl.gov RI Song, Chen/H-3374-2011; Shilling, John/L-6998-2015; OI Shilling, John/0000-0002-3728-0195; Zaveri, Rahul/0000-0001-9874-8807 FU U.S. Department of Energy (DOE); Environmental Molecular Sciences Laboratory (EMSL); DOE's Office of Biological and Environmental Research and located at PNNL; U.S. Department of Energy [DE-AC06-76RLO 1830] FX This research was supported by the U.S. Department of Energy's (DOE) Atmospheric System Research (ASR) program and by the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. NR 47 TC 5 Z9 5 U1 1 U2 29 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 1 PY 2011 VL 45 IS 17 BP 7323 EP 7329 DI 10.1021/es201225c PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 813NE UT WOS:000294373400033 PM 21790137 ER PT J AU Pena, J Bargar, JR Sposito, G AF Pena, Jasquelin Bargar, John R. Sposito, Garrison TI Role of Bacterial Biomass in the Sorption of Ni by Biomass-Birnessite Assemblages SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID RAY-ABSORPTION SPECTROSCOPY; ZINC SORPTION; BINDING-SITES; XAFS ANALYSIS; BIOFILM; NICKEL; SPECIATION; PYROPHYLLITE; MECHANISMS; INTERFACE AB Birnessites precipitated by bacteria are typically poorly crystalline Mn (IV) oxides enmeshed within biofilms to form complex biomass-birnessite assemblages. The strong sorption affinity of bacteriogenic birnessites for environmentally important trace metals is relatively well understood mechanistically, but the role of bacterial cells and extracellular polymeric substances appears to vary among trace metals. To assess the role of biomass definitively, comparison between metal sorption by biomass at high metal loadings in the presence and absence of birnessite is required. We investigated the biomass effect on Ni sorption through laboratory experiments utilizing the birnessite produced by the model bacterium, Pseudomonas putida. Surface excess measurements at pH 6-8 showed that birnessite significantly enhanced Ni sorption at high loadings (up to nearly 4-fold) relative to biomass alone. This apparent large difference in affinity for Ni between the organic and mineral components was confirmed by extended X-ray absorption fine structure spectroscopy, which revealed preferential Ni binding to birnessite cation vacancy sites. At pH >= 7, Ni sorption involved both adsorption and precipitation reactions. Our results thus support the view that the biofilm does not block reactive mineral surface sites; instead, the organic material contributes to metal sorption once high-affinity sites on the mineral are saturated. C1 [Pena, Jasquelin; Sposito, Garrison] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Geochem, Berkeley, CA 94720 USA. [Bargar, John R.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Pena, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Dept Geochem, Berkeley, CA 94720 USA. EM jpena@lbl.gov FU University of California; Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by the University of California Toxic Substances Research and Teaching Program as well as by the Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. We are grateful to Prof. Timothy J. Strathmann and Dr. Mathew Marcus for providing EXAFS spectra of reference materials and S. Bone and R Sutton for helpful discussions. NR 35 TC 12 Z9 12 U1 2 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 1 PY 2011 VL 45 IS 17 BP 7338 EP 7344 DI 10.1021/es201446r PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 813NE UT WOS:000294373400035 PM 21780745 ER PT J AU Zhang, CY Oostrom, M Grate, JW Wietsma, TW Warner, MG AF Zhang, Changyong Oostrom, Mart Grate, Jay W. Wietsma, Thomas W. Warner, Marvin G. TI Liquid CO2 Displacement of Water in a Dual-Permeability Pore Network Micromodel SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID POROUS-MEDIA; 2-PHASE FLOW; STORAGE; SCALE; INJECTION; MECHANISMS; PRESSURE; MODELS; VISUALIZATION; TEMPERATURE AB Permeability contrasts exist in multilayer geological formations under consideration for carbon sequestration. To improve our understanding of heterogeneous pore-scale displacements, liquid CO2 (LCO2)-water displacement was evaluated in a pore network micromodel with two distinct permeability zones. Due to the low viscosity ratio (logM = -1.1), unstable displacement occurred at all injection rates over 2 orders of magnitude. LCO2 displaced water only in the high permeability zone at low injection rates with the mechanism shifting from capillary fingering to viscous fingering with increasing flow rate. At high injection rates, LCO2 displaced water in the low permeability zone with capillary fingering as the dominant mechanism. LCO2 saturation (S-LCO2) as a function of injection rate was quantified using fluorescent microscopy. In all experiments, more than 50% of LCO2 resided in the active flowpaths, and this fraction increased as displacement transitioned from capillary to viscous fingering. A continuum-scale two-phase flow model with independently determined fluid and hydraulic parameters was used to predict S-LCO2 in the dual-permeability field. Agreement with the micromodel experiments was obtained for low injection rates. However, the numerical model does not account for the unstable viscous fingering processes observed experimentally at higher rates and hence overestimated S-LCO2. C1 [Zhang, Changyong; Oostrom, Mart; Grate, Jay W.; Wietsma, Thomas W.; Warner, Marvin G.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, CY (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN K8-96, Richland, WA 99352 USA. EM Changyong.Zhang@pnnl.gov RI Zhang, Changyong/A-8012-2013 FU Pacific Northwest National Laboratory FX This research is supported by the Pacific Northwest National Laboratory Directed Research and Development Program under PNNL's Carbon Sequestration Initiative. The experiments were conducted in the William R Wiley Environmental Molecular Sciences Laboratory, a United States Department of Energy (DOE) scientific user facility operated for the DOE by PNNL. NR 51 TC 38 Z9 41 U1 2 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD SEP 1 PY 2011 VL 45 IS 17 BP 7581 EP 7588 DI 10.1021/es201858r PG 8 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 813NE UT WOS:000294373400068 PM 21774502 ER PT J AU Zhai, MY Fernandez-Martinez, JL Rector, JW AF Zhai, Ming-Yue Luis Fernandez-Martinez, Juan Rector, James W. TI A NEW FRACTAL INTERPOLATION ALGORITHM AND ITS APPLICATIONS TO SELF-AFFINE SIGNAL RECONSTRUCTION SO FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY LA English DT Article DE Fractal Interpolation; IFS; GA; Pointed Point Algorithm ID SEISMIC SEQUENCES; SPARSE INVERSION; PRIMARIES; MODEL AB A new fractal interpolation method called PPA (Pointed Point Algorithm) based on IFS is proposed to interpolate the self-affine signals with the expected interpolation error, solving the problem that the ordinary fractal interpolation can't get the value of any arbitrary point directly, which has not been found in the existing literatures. At the same time, a new method to calculate the vertical scaling factors is proposed based on the genetic algorithm, which works together with the PPA algorithm to get the better interpolation performance. Experiments on the theoretical data and real field seismic data show that the proposed interpolation schemes can not only get the expected point's value, but also get a great accuracy in reconstruction of the seismic profile, leading to a significant improvement over other trace interpolation methods. C1 [Zhai, Ming-Yue] N China Elect Power Univ, Sch Elect & Elect Engn, Beijing 102206, Peoples R China. [Luis Fernandez-Martinez, Juan] Univ Oviedo, Dept Math, Oviedo, Spain. [Rector, James W.] Univ Calif Berkeley, Dept Civil Engn, Berkeley, CA 94530 USA. [Rector, James W.] Lawrence Berkeley Natl Lab, Berkeley, CA 94530 USA. RP Zhai, MY (reprint author), N China Elect Power Univ, Sch Elect & Elect Engn, 17 Li Hua ChangPing, Beijing 102206, Peoples R China. EM mingyue.zhai@gmail.com OI zhai, ming-yue/0000-0003-3425-6111 FU National Natural Science Foundation of China [60972004, 60402004]; Fundamental Research Funds for the Central Universities [09MG02] FX Project supported by the National Natural Science Foundation of China (Grant Nos. 60972004 and 60402004) and the Fundamental Research Funds for the Central Universities (Grant No. 09MG02). NR 29 TC 2 Z9 2 U1 0 U2 8 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-348X J9 FRACTALS JI Fractals-Complex Geom. Patterns Scaling Nat. Soc. PD SEP PY 2011 VL 19 IS 3 BP 355 EP 365 DI 10.1142/S0218348X11005427 PG 11 WC Mathematics, Interdisciplinary Applications; Multidisciplinary Sciences SC Mathematics; Science & Technology - Other Topics GA 812RM UT WOS:000294310600010 ER PT J AU Ndoye, M Barker, AM Krogmeier, JV Bullock, DM AF Ndoye, Mandoye Barker, Alan M. Krogmeier, James V. Bullock, Darcy M. TI A Recursive Multiscale Correlation-Averaging Algorithm for an Automated Distributed Road-Condition-Monitoring System SO IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS LA English DT Article DE Data fusion; data modeling; data processing; intelligent systems; sensor data analytics; signal processing ID VEHICLE-INFRASTRUCTURE INTEGRATION AB A signal processing approach is proposed to jointly filter and fuse spatially indexed measurements captured from many vehicles. It is assumed that these measurements are influenced by both sensor noise and measurement indexing uncertainties. Measurements from low-cost vehicle-mounted sensors (e. g., accelerometers and Global Positioning System (GPS) receivers) are properly combined to produce higher quality road roughness data for cost-effective road surface condition monitoring. The proposed algorithms are recursively implemented and thus require only moderate computational power and memory space. These algorithms are important for future road management systems, which will use on-road vehicles as a distributed network of sensing probes gathering spatially indexed measurements for condition monitoring, in addition to other applications, such as environmental sensing and/or traffic monitoring. Our method and the related signal processing algorithms have been successfully tested using field data. C1 [Ndoye, Mandoye] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. [Barker, Alan M.] Oak Ridge Natl Lab, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37831 USA. [Krogmeier, James V.; Bullock, Darcy M.] Purdue Univ, W Lafayette, IN 47906 USA. RP Ndoye, M (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. EM mndoye@ecn.purdue.edu; barkeram@ornl.gov; jvk@ecn.purdue.edu; darcy@purdue.edu OI Bullock, Darcy/0000-0002-7365-1918 FU Motorola Foundation; Joint Transportation Research Program FX This work was supported in part by the Motorola Foundation and in part by the Joint Transportation Research Program administrated by the Indiana Department of Transportation and Purdue University. The Associate Editor for this paper was H. Dia. NR 27 TC 8 Z9 9 U1 2 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1524-9050 J9 IEEE T INTELL TRANSP JI IEEE Trans. Intell. Transp. Syst. PD SEP PY 2011 VL 12 IS 3 SI SI BP 795 EP 808 DI 10.1109/TITS.2011.2132799 PG 14 WC Engineering, Civil; Engineering, Electrical & Electronic; Transportation Science & Technology SC Engineering; Transportation GA 815SY UT WOS:000294550900015 ER PT J AU Wang, K Abdelaziz, O Kisari, P Vineyard, EA AF Wang, Kai Abdelaziz, Omar Kisari, Padmaja Vineyard, Edward A. TI State-of-the-art review on crystallization control technologies for water/LiBr absorption heat pumps SO INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID LA English DT Article; Proceedings Paper CT 23rd IIR International Congress of Refrigeration CY AUG 21-26, 2011 CL Prague, CZECH REPUBLIC DE Absorption system; Heat pump; Lithium bromide; Crystallization; Control ID BROMIDE PLUS ETHANOLAMINE; FALLING-FILM ABSORPTION; MASS-TRANSFER; VAPOR-PRESSURES; LITHIUM-NITRATE; BINARY NANOFLUIDS; WORKING FLUIDS; PERFORMANCE EVALUATION; REFRIGERATION SYSTEM; ETHYLENE-GLYCOL AB The key technical barrier to using water/lithium bromide (LiBr) as the working fluid in air-cooled absorption chillers and absorption heat-pump systems is the risk of crystallization when the absorber temperature rises at fixed evaporating pressure. This article reviews various crystallization control technologies available to resolve this problem: chemical inhibitors, heat and mass transfer enhancement methods, thermodynamic cycle modifications, and absorption system-control strategies. Other approaches, such as boosting absorber pressure and J-tube technology, are reviewed as well. This review can help guide future efforts to develop water/LiBr air-cooled absorption chillers and absorption heat-pump systems. (C) 2011 Elsevier Ltd and IIR. All rights reserved. C1 [Wang, Kai; Abdelaziz, Omar; Kisari, Padmaja; Vineyard, Edward A.] Oak Ridge Natl Lab, Bldg Equipment Res Grp, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. RP Wang, K (reprint author), Oak Ridge Natl Lab, Bldg Equipment Res Grp, Energy & Transportat Sci Div, 1 Bethel Valley Rd,POB 2008,MS-6067, Oak Ridge, TN 37831 USA. EM wangk@ornl.gov RI Wang, Kai/A-9527-2010; Abdelaziz, Omar/O-9542-2015; OI Abdelaziz, Omar/0000-0002-4418-0125; Vineyard, Edward/0000-0003-4695-7441 FU U.S. DOE Office of Energy Efficiency and Renewable Energy FX The authors would like to acknowledge Dr. Abdolreza Zaltash and Dr. Moonis R. Ally of Oak Ridge National Laboratory for their support, enlightening discussions and insights. This work was performed with funding from the U.S. DOE Office of Energy Efficiency and Renewable Energy, Building Technologies Program. NR 88 TC 23 Z9 25 U1 4 U2 30 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0140-7007 EI 1879-2081 J9 INT J REFRIG JI Int. J. Refrig.-Rev. Int. Froid PD SEP PY 2011 VL 34 IS 6 BP 1325 EP 1337 DI 10.1016/j.ijrefrig.2011.04.006 PG 13 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 813VJ UT WOS:000294398000002 ER PT J AU Chauhan, A Layton, AC Williams, DE Smartt, AE Ripp, S Karpinets, TV Brown, SD Sayler, GS AF Chauhan, Archana Layton, Alice C. Williams, Daniel E. Smartt, Abby E. Ripp, Steven Karpinets, Tatiana V. Brown, Steven D. Sayler, Gary S. TI Draft Genome Sequence of the Polycyclic Aromatic Hydrocarbon-Degrading, Genetically Engineered Bioluminescent Bioreporter Pseudomonas fluorescens HK44 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID MANUFACTURED-GAS PLANT; POROUS-MEDIA; BIODEGRADATION; NAPHTHALENE; MICROORGANISM; TRANSPORT; GROWTH; SOILS; FLOW AB Pseudomonas fluorescens strain HK44 (DSM 6700) is a genetically engineered lux-based bioluminescent bioreporter. Here we report the draft genome sequence of strain HK44. Annotation of similar to 6.1 Mb of sequence indicates that 30% of the traits are unique and distributed over five genomic islands, a prophage, and two plasmids. C1 [Chauhan, Archana; Layton, Alice C.; Williams, Daniel E.; Smartt, Abby E.; Ripp, Steven; Sayler, Gary S.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37996 USA. [Karpinets, Tatiana V.; Brown, Steven D.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Layton, AC (reprint author), Univ Tennessee, Ctr Environm Biotechnol, 676 Dabney Hall, Knoxville, TN 37996 USA. EM alayton@utk.edu RI Ripp, Steven/B-2305-2008; Brown, Steven/A-6792-2011 OI Ripp, Steven/0000-0002-6836-1764; Brown, Steven/0000-0002-9281-3898 FU USDA National Institute of Food and Agriculture [2009-39210-20230]; University of Tennessee Microbiology Across Campuses Educational and Research Venture; U.S. Department of Energy [DE-AC05-00OR22725] FX This project was supported by the Biotechnology Risk Assessment Program, grant 2009-39210-20230 from the USDA National Institute of Food and Agriculture and the University of Tennessee Microbiology Across Campuses Educational and Research Venture. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 16 TC 8 Z9 8 U1 0 U2 10 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD SEP PY 2011 VL 193 IS 18 BP 5009 EP 5010 DI 10.1128/JB.05530-11 PG 2 WC Microbiology SC Microbiology GA 812BC UT WOS:000294261700050 PM 21742869 ER PT J AU Oosterkamp, MJ Veuskens, T Plugge, CM Langenhoff, AAM Gerritse, J van Berkel, WJH Pieper, DH Junca, H Goodwin, LA Daligault, HE Bruce, DC Detter, JC Tapia, R Han, CS Land, ML Hauser, LJ Smidt, H Stams, AJM AF Oosterkamp, Margreet J. Veuskens, Teun Plugge, Caroline M. Langenhoff, Alette A. M. Gerritse, Jan van Berkel, Willem J. H. Pieper, Dietmar H. Junca, Howard Goodwin, Lynne A. Daligault, Hajnalka E. Bruce, David C. Detter, John C. Tapia, Roxanne Han, Cliff S. Land, Miriam L. Hauser, Loren J. Smidt, Hauke Stams, Alfons J. M. TI Genome Sequences of Alicycliphilus denitrificans Strains BC and K601(T) SO JOURNAL OF BACTERIOLOGY LA English DT Article ID CHLORATE AB Alicycliphilus denitrificans strain BC and A. denitrificans strain K601(T) degrade cyclic hydrocarbons. These strains have been isolated from a mixture of wastewater treatment plant material and benzene-polluted soil and from a wastewater treatment plant, respectively, suggesting their role in bioremediation of soil and water. Although the strains are phylogenetically closely related, there are some clear physiological differences. The hydrocarbon cyclohexanol, for example, can be degraded by strain K601(T) but not by strain BC. Furthermore, both strains can use nitrate and oxygen as an electron acceptor, but only strain BC can use chlorate as electron acceptor. To better understand the nitrate and chlorate reduction mechanisms coupled to the oxidation of cyclic compounds, the genomes of A. denitrificans strains BC and K601(T) were sequenced. Here, we report the complete genome sequences of A. denitrificans strains BC and K601(T). C1 [Oosterkamp, Margreet J.; Veuskens, Teun; Plugge, Caroline M.; Smidt, Hauke; Stams, Alfons J. M.] Wageningen Univ, Microbiol Lab, NL-6703 HB Wageningen, Netherlands. [van Berkel, Willem J. H.] Wageningen Univ, Biochem Lab, NL-6703 HB Wageningen, Netherlands. [Langenhoff, Alette A. M.; Gerritse, Jan] Deltares, NL-3584 CB Utrecht, Netherlands. [Pieper, Dietmar H.] HZI Helmholz Ctr Infect Res, Microbial Interact & Proc Res Grp, D-38124 Braunschweig, Germany. [Junca, Howard] CorpoGen, Res Grp Microbial Ecol Metab Genom & Evolut Commu, Bogota, Colombia. [Goodwin, Lynne A.; Daligault, Hajnalka E.; Bruce, David C.; Detter, John C.; Tapia, Roxanne; Han, Cliff S.] Los Alamos Natl Lab, Biosci Div B6, Joint Genome Inst, Los Alamos, NM 87545 USA. [Land, Miriam L.; Hauser, Loren J.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Land, Miriam L.; Hauser, Loren J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Oosterkamp, MJ (reprint author), Wageningen Univ, Microbiol Lab, Dreijenpl 10, NL-6703 HB Wageningen, Netherlands. EM marjet.oosterkamp@wur.nl RI Junca, Howard/K-5525-2014; Hauser, Loren/H-3881-2012; Langenhoff, Alette/J-5795-2012; van Berkel, Willem/O-2431-2014; Stams, Alfons/C-8167-2014; Land, Miriam/A-6200-2011 OI Junca, Howard/0000-0003-4546-6229; Langenhoff, Alette/0000-0002-9622-007X; van Berkel, Willem/0000-0002-6551-2782; Stams, Alfons/0000-0001-7840-6500; Smidt, Hauke/0000-0002-6138-5026; Land, Miriam/0000-0001-7102-0031 FU Technology Foundation; Technology Foundation, the Applied Science Division (STW) of the Netherlands Organization for Scientific Research (NWO) [08053]; Colombian Excellence Research Center GeBiX; Colciencias [427-2009, 718-2009]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by the Technology Foundation, the Applied Science Division (STW) of the Netherlands Organization for Scientific Research (NWO), project number 08053. H. Junca acknowledges financial support through Colombian Excellence Research Center GeBiX and to contracts 427-2009 and 718-2009 by Colciencias. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 8 TC 20 Z9 21 U1 1 U2 13 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD SEP PY 2011 VL 193 IS 18 BP 5028 EP 5029 DI 10.1128/JB.00365-11 PG 2 WC Microbiology SC Microbiology GA 812BC UT WOS:000294261700061 PM 21742888 ER PT J AU Kim, DH Jiang, S Lee, JH Cho, YJ Chun, J Choi, SH Park, HS Hur, HG AF Kim, Dong-Hun Jiang, Shenghua Lee, Ji-Hoon Cho, Yong-Joon Chun, Jongsik Choi, Sang-Haeng Park, Hong-Seog Hur, Hor-Gil TI Draft Genome Sequence of Shewanella sp Strain HN-41, Which Produces Arsenic-Sulfide Nanotubes SO JOURNAL OF BACTERIOLOGY LA English DT Article ID REDUCING BACTERIUM AB The dissimilatory metal reducing bacterium Shewanella sp. strain HN-41 was first reported to produce novel photoactive As-S nanotubes via reduction of As(V) and S(2)O(3)(2-) under anaerobic conditions. Here we report the draft genome sequence and annotation of strain HN-41. C1 [Kim, Dong-Hun; Jiang, Shenghua; Hur, Hor-Gil] Gwangju Inst Sci & Technol, Sch Environm Sci & Engn, Kwangju 500712, South Korea. [Hur, Hor-Gil] Gwangju Inst Sci & Technol, Int Environm Res Ctr, Kwangju 500712, South Korea. [Lee, Ji-Hoon] Pacific NW Natl Lab, Div Biol Sci, Richland, WA USA. [Cho, Yong-Joon; Chun, Jongsik] Seoul Natl Univ, Sch Biol Sci, Seoul 151747, South Korea. [Cho, Yong-Joon; Chun, Jongsik] Seoul Natl Univ, Inst Microbiol, Seoul 151747, South Korea. [Choi, Sang-Haeng; Park, Hong-Seog] Korea Res Inst Biosci & Biotechnol, Genome Resource Ctr, Taejon 305806, South Korea. RP Hur, HG (reprint author), Gwangju Inst Sci & Technol, Sch Environm Sci & Engn, Kwangju 500712, South Korea. EM hghur@gist.ac.kr FU National Research Foundation of Korea [NRF: 2010-0029224]; Ministry of Education, Science and Technology, Korea [11-2008-10-001-00, 2009-0084206] FX This work was supported by grants from the National Research Foundation of Korea (NRF: 2010-0029224) and the 21C Frontier Microbial Genomics and Applications Center Program (11-2008-10-001-00) and by grant 2009-0084206, funded by the Ministry of Education, Science and Technology, Korea. NR 13 TC 3 Z9 3 U1 3 U2 10 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD SEP PY 2011 VL 193 IS 18 BP 5039 EP 5040 DI 10.1128/JB.05578-11 PG 2 WC Microbiology SC Microbiology GA 812BC UT WOS:000294261700068 PM 21868804 ER PT J AU Kouvelis, VN Davenport, KW Brettin, TS Bruce, D Detter, C Han, CS Nolan, M Tapia, R Damoulaki, A Kyrpides, NC Typas, MA Pappas, KM AF Kouvelis, Vassili N. Davenport, Karen W. Brettin, Thomas S. Bruce, David Detter, Chris Han, Cliff S. Nolan, Matt Tapia, Roxanne Damoulaki, Agni Kyrpides, Nikos C. Typas, Milton A. Pappas, Katherine M. TI Genome Sequence of the Ethanol-Producing Zymomonas mobilis subsp pomaceae Lectotype Strain ATCC 29192 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID PROTEIN FAMILIES; FUEL ETHANOL; RNA GENES; ANNOTATION; DATABASE; TOOL AB Zymomonas mobilis is an alphaproteobacterium studied for bioethanol production. Different strains of this organism have been hitherto sequenced; they all belong to the Z. mobilis subsp. mobilis taxon. Here we report the finished and annotated genome sequence of strain ATCC 29192, a cider-spoiling agent isolated in the United Kingdom. ATCC 29192 is the lectotype of the second-best-characterized subspecies of Z. mobilis, Z. mobilis subsp. pomaceae. The nucleotide sequence of ATCC 29192 deviates from that of Z. mobilis subsp. mobilis representatives, which justifies its distinct taxonomic positioning and proves particularly useful for comparative and functional genomic analyses. C1 [Kouvelis, Vassili N.; Damoulaki, Agni; Typas, Milton A.; Pappas, Katherine M.] Univ Athens, Fac Biol, Dept Genet & Biotechnol, Athens 15701, Greece. [Davenport, Karen W.; Brettin, Thomas S.; Detter, Chris; Han, Cliff S.; Tapia, Roxanne] Los Alamos Natl Lab, DOE Joint Genome Inst, Biosci Div, Los Alamos, NM 87545 USA. [Bruce, David; Nolan, Matt; Kyrpides, Nikos C.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Pappas, KM (reprint author), Univ Athens, Fac Biol, Dept Genet & Biotechnol, Athens 15701, Greece. EM kmpappas@biol.uoa.gr RI Kyrpides, Nikos/A-6305-2014 OI Kyrpides, Nikos/0000-0002-6131-0462 FU U.S. DOE Office of Science, [DE-AC02-05CH11231]; NKUA Research Committee [70/4/7809] FX Work at JGI is financed by the U.S. DOE Office of Science, contract no. DE-AC02-05CH11231. K. M. P. acknowledges the NKUA Research Committee for providing award 70/4/7809. NR 23 TC 12 Z9 15 U1 1 U2 4 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD SEP PY 2011 VL 193 IS 18 BP 5049 EP 5050 DI 10.1128/JB.05273-11 PG 2 WC Microbiology SC Microbiology GA 812BC UT WOS:000294261700074 PM 21742897 ER PT J AU Pappas, KM Kouvelis, VN Saunders, E Brettin, TS Bruce, D Detter, C Balakireva, M Han, CS Savvakis, G Kyrpides, NC Typas, MA AF Pappas, Katherine M. Kouvelis, Vassili N. Saunders, Elizabeth Brettin, Thomas S. Bruce, David Detter, Chris Balakireva, Mariya Han, Cliff S. Savvakis, Giannis Kyrpides, Nikos C. Typas, Milton A. TI Genome Sequence of the Ethanol-Producing Zymomonas mobilis subsp mobilis Lectotype Strain ATCC 10988 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID PROTEIN FAMILIES; RNA GENES; PLASMIDS; ANNOTATION; DATABASE AB Zymomonas mobilis ATCC 10988 is the type strain of the Z. mobilis subsp. mobilis taxon, members of which are some of the most rigorous ethanol-producing bacteria. Isolated from Agave cactus fermentations in Mexico, ATCC 10988 is one of the first Z. mobilis strains to be described and studied. Its robustness in sucrose-substrate fermentations, physiological characteristics, large number of plasmids, and overall genomic plasticity render this strain important to the study of the species. Here we report the finishing and annotation of the ATCC 10988 chromosomal and plasmid genome. C1 [Pappas, Katherine M.; Kouvelis, Vassili N.; Savvakis, Giannis; Typas, Milton A.] Univ Athens, Fac Biol, Dept Genet & Biotechnol, Athens 15701, Greece. [Saunders, Elizabeth; Brettin, Thomas S.; Detter, Chris; Balakireva, Mariya; Han, Cliff S.] Los Alamos Natl Lab, DOE Joint Genome Inst, Biosci Div, Los Alamos, NM 87545 USA. [Bruce, David; Kyrpides, Nikos C.] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Pappas, KM (reprint author), Univ Athens, Fac Biol, Dept Genet & Biotechnol, Athens 15701, Greece. EM kmpappas@biol.uoa.gr RI Kyrpides, Nikos/A-6305-2014 OI Kyrpides, Nikos/0000-0002-6131-0462 FU U.S. DOE Office of Science [DE-AC02-05CH11231]; NKUA Research Committee [70/4/7809] FX Work at JGI is financed by the U.S. DOE Office of Science, contract no. DE-AC02-05CH11231. K. M. P. acknowledges the NKUA Research Committee for providing award 70/4/7809. NR 22 TC 16 Z9 27 U1 1 U2 4 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD SEP PY 2011 VL 193 IS 18 BP 5051 EP 5052 DI 10.1128/JB.05395-11 PG 2 WC Microbiology SC Microbiology GA 812BC UT WOS:000294261700075 PM 21725006 ER PT J AU Siranosian, AA Krstic, M Smyshlyaev, A Bement, M AF Siranosian, Antranik A. Krstic, Miroslav Smyshlyaev, Andrey Bement, Matt TI Gain Scheduling-Inspired Boundary Control for Nonlinear Partial Differential Equations SO JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME LA English DT Article DE gain scheduling; PDE backstepping; boundary control; nonlinear control; stabilization; motion planning; hyperbolic PDEs; wave equation; string; beam ID VOLTERRA NONLINEARITIES; LINEARIZATION FAMILIES; DIMENSIONAL CONTROL; FEEDBACK-CONTROL; STATE-FEEDBACK; PARABOLIC PDES; SYSTEMS; STABILIZATION; DESIGN; PLANTS AB We present a control design method for nonlinear partial differential equations (PDEs) based on a combination of gain scheduling and backstepping theory for linear PDEs. A benchmark first-order hyperbolic system with an in-domain nonlinearity is considered first. For this system a nonlinear feedback law, based on gain scheduling, is derived explicitly, and a proof of local exponential stability, with an estimate of the region of attraction, is presented for the closed-loop system. Control designs (without proofs) are then presented for a string PDE and a shear beam PDE, both with Kelvin-Voigt (KV) damping and free-end nonlinearities of a potentially destabilizing kind. String and beam simulation results illustrate the merits of the gain scheduling approach over the linearization based design. [DOI: 10.1115/1.4004065] C1 [Siranosian, Antranik A.; Krstic, Miroslav; Smyshlyaev, Andrey] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. [Bement, Matt] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Siranosian, AA (reprint author), Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA. EM aasiranosian@gmail.com OI Bement, Matthew/0000-0003-3577-3292 FU Los Alamos National Laboratory; National Science Foundation FX This research was supported by the Los Alamos National Laboratory and the National Science Foundation. NR 36 TC 3 Z9 3 U1 0 U2 5 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-0434 EI 1528-9028 J9 J DYN SYST-T ASME JI J. Dyn. Syst. Meas. Control-Trans. ASME PD SEP PY 2011 VL 133 IS 5 AR 051007 DI 10.1115/1.4004065 PG 12 WC Automation & Control Systems; Instruments & Instrumentation SC Automation & Control Systems; Instruments & Instrumentation GA 811YN UT WOS:000294254900007 ER PT J AU Darbah, JNT Jones, WS Burton, AJ Nagy, J Kubiske, ME AF Darbah, Joseph N. T. Jones, Wendy S. Burton, Andrew J. Nagy, John Kubiske, Mark E. TI Acute O-3 damage on first year coppice sprouts of aspen and maple sprouts in an open-air experiment SO JOURNAL OF ENVIRONMENTAL MONITORING LA English DT Article ID CO2 AND/OR O-3; ELEVATED ATMOSPHERIC CO2; STOMATAL CONDUCTANCE; POPULUS-TREMULOIDES; TROPOSPHERIC O-3; TREMBLING ASPEN; OZONE UPTAKE; CARBON-DIOXIDE; BIRCH FORESTS; WINTER-WHEAT AB We studied the effect of high ozone (O-3) concentration (110-490 nmol mol(-1)) on regenerating aspen (Populus tremuloides) and maple (Acer saccharum) trees at an open-air O-3 pollution experiment near Rhinelander WI USA. This study is the first of its kind to examine the effects of acute O-3 exposure on aspen and maple sprouts after the parent trees, which were grown under elevated O-3 and/or CO2 for 12 years, were harvested. Acute O-3 damage was not uniform within the crowns of aspen suckers; it was most severe in the mature, fully expanded photosynthesizing leaves. Young expanding leaves showed no visible signs of acute O-3 damage contrary to expectations. Stomatal conductance played a primary role in the severity of acute O-3 damage as it directly controlled O-3 uptake. Maple sprouts, which had lower stomatal conductance, smaller stomatal aperture, higher stomatal density and larger leaf surface area, were tolerant of acute O-3 exposure. Moreover, elevated CO2 did not ameliorate the adverse effects of acute O-3 dose on aspen and maple sprouts, in contrast to its ability to counteract the effects of long-term chronic exposure to lower O-3 levels. C1 [Darbah, Joseph N. T.; Kubiske, Mark E.] US Forest Serv, USDA, No Res Stn, Rhinelander, WI 54501 USA. [Darbah, Joseph N. T.; Jones, Wendy S.; Burton, Andrew J.] Michigan Technol Univ, Sch Forest Resources & Environm Sci, Houghton, MI 49931 USA. [Nagy, John] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. RP Darbah, JNT (reprint author), US Forest Serv, USDA, No Res Stn, Rhinelander, WI 54501 USA. EM jndarbah@mtu.edu FU USDA Forest Service Northern Research Station FX The Northern Forest Ecosystem Experiment was funded by the USDA Forest Service Northern Research Station. The authors gratefully acknowledge the contributions of Scott Jacobson in operating and maintaining the experimental infrastructure and Daniel Baumann who provided the wind data and produced the wind rose shown in Fig. 1. The authors are thankful to Brian McCarthy, Martha Bishop and Connie Pollard of the Plant Biology Department (Ohio University) for helping with the microscopy work. NR 63 TC 1 Z9 1 U1 1 U2 6 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1464-0325 J9 J ENVIRON MONITOR JI J. Environ. Monit. PD SEP PY 2011 VL 13 IS 9 BP 2436 EP 2442 DI 10.1039/c1em10269a PG 7 WC Chemistry, Analytical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 814GL UT WOS:000294436200008 PM 21750809 ER PT J AU Caldwell, E Duff, M Ferguson, C Coughlin, D AF Caldwell, Eric Duff, Martine Ferguson, Caitlin Coughlin, Daniel TI Plutonium uptake and behavior in vegetation of the desert southwest: A preliminary assessment SO JOURNAL OF ENVIRONMENTAL MONITORING LA English DT Article ID PLANT TRANSFER; 30-KM ZONE; SOILS; RADIONUCLIDES; ACCUMULATION; CHERNOBYL; PU; REINDEER; LICHENS; FOREST AB Eight species of desert vegetation and associated soils were collected from the Nevada National Security Site (N2S2) and analyzed for 238Pu and 239 + 240Pu concentrations. Amongst the plant species sampled were: atmospheric elemental accumulators (moss and lichen), the very slow growing, long-lived creosote bush and the rapidly growing, short-lived cheatgrass brome. The diversity of growth strategies provided insight into the geochemical behavior and bio-availability of Pu at the N2S2. The highest concentrations of Pu were measured in the onion moss (24.27 Bq kg-1 238Pu and 52.78 Bq kg-1 239 + 240Pu) followed by the rimmed navel lichen (8.18 Bq kg-1 and 18.4 Bq kg-1 respectively), pointing to the importance of colian transport of Pu. Brome and desert globemallow accumulated between 3 and 9 times higher concentrations of Pu than creosote and sage brush species. These results support the importance of species specific elemental accumulation strategies rather than exposure duration as the dominant variable influencing Pu concentrations in these plants. Total vegetation elemental concentrations of Ce, Fe, Al, Sm and others were also analyzed. Strong correlations were observed between Fe and Pu. This supports the conclusion that Pu was accumulated as a consequence of the active accumulation of Fe and other plant required nutrients. Cerium and Pu are considered to be chemical analogs. Strong correlations observed in plants support the conclusion that these elements displayed similar geochemical behavior in the environment as it related to the biochemical uptake process of vegetation. Soils were also sampled in association with vegetation samples. This allowed for the calculation of a concentration ratio (CR). The CR values for Pu in plants were highly influenced by the heterogeneity of Pu distribution among sites. Results from the naturally occurring elements of concern were more evenly distributed between sample sites. This allowed for the development of a pattern of plant species that accumulated Ce, Sm, Fe and Al. The highest accumulators of these elements were onion moss, lichen flowed by brome. The lowest accumulators were creosote bush and fourwing saltbush. This ranked order corresponds to plant accumulations of Pu. C1 [Caldwell, Eric; Duff, Martine; Ferguson, Caitlin; Coughlin, Daniel] Savannah River Natl Lab Environm Assessment, Aiken, SC 29808 USA. RP Caldwell, E (reprint author), Savannah River Natl Lab Environm Assessment, Bldg 773-42A,Room 234, Aiken, SC 29808 USA. FU U.S. Dept. of Energy - National Nuclear Security Administration, through the Office of Nonproliferation and Verification Research and Development [NA-22]; U.S. Dept. of Energy [DE-AC09-08SR22470] FX Work supported by the U.S. Dept. of Energy - National Nuclear Security Administration, through the Office of Nonproliferation and Verification Research and Development - NA-22. This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Dept. of Energy. We are grateful for the support of the following N2S2 staff for their assistance: K. Ostler, T. Sonnenburg, and M. Cabble. NR 36 TC 0 Z9 0 U1 2 U2 12 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1464-0325 J9 J ENVIRON MONITOR JI J. Environ. Monit. PD SEP PY 2011 VL 13 IS 9 BP 2575 EP 2581 DI 10.1039/c1em10208g PG 7 WC Chemistry, Analytical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 814GL UT WOS:000294436200026 PM 21796316 ER PT J AU Fessing, M Mardaryev, A Gdula, M Sharov, A Sharova, T Kohwi-Shigematsu, T Botchkarev, V AF Fessing, Michael Mardaryev, Andrei Gdula, Michal Sharov, Andrei Sharova, Tatyana Kohwi-Shigematsu, Terumi Botchkarev, Vladimir TI Genome organiser and special AT-rich binding protein Satb1 controls the establishing tissue-specific chromatin organization during development of the epidermis SO JOURNAL OF INVESTIGATIVE DERMATOLOGY LA English DT Meeting Abstract CT 41st Annual Meeting of the European-Society-for-Dermatological-Research CY SEP 07-10, 2011 CL Barcelona, SPAIN SP European Soc Dermatol Res C1 [Fessing, Michael; Mardaryev, Andrei; Botchkarev, Vladimir] Univ Bradford, Bradford BD7 1DP, W Yorkshire, England. [Gdula, Michal; Sharov, Andrei; Sharova, Tatyana] Boston Univ, Boston, MA 02215 USA. [Kohwi-Shigematsu, Terumi] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0022-202X J9 J INVEST DERMATOL JI J. Invest. Dermatol. PD SEP PY 2011 VL 131 SU 2 BP S76 EP S76 PG 1 WC Dermatology SC Dermatology GA 813IY UT WOS:000294361300453 ER PT J AU Weber, CF Kuske, CR AF Weber, Carolyn F. Kuske, Cheryl R. TI Reverse transcription-PCR methods significantly impact richness and composition measures of expressed fungal cellobiohydrolase I genes in soil and litter SO JOURNAL OF MICROBIOLOGICAL METHODS LA English DT Article DE Cellobiohydrolase I; Fungi; Gene expression; RT-PCR; SMART PCR; Soil ID SEQUENCE TAGS; FOREST SOIL; DIVERSITY; RNA; EXTRACTION; COMMUNITY AB The importance of soil fungi in complex carbon degradation and the recent identification of genes involved in this process have sparked considerable interest in examining fungal gene expression in situ. Expression of target eukaryotic genes is commonly examined using reverse transcription (RT)-PCR, during which single-stranded (ss) complementary DNA (cDNA) is synthesized from an oligo (dT) primer and the gene of interest is subsequently amplified by PCR using gene specific primers. Another method that is being increasingly employed in environmental gene expression studies is SMART PCR, which generates and amplifies double-stranded (ds) complementary DNA (cDNA) from sscDNA using PCR, prior to gene-specific PCR. We performed a replicated comparison of these two methods using RNA extracted from forest soil and litter to determine if the two approaches yielded comparable results. Richness, composition and reproducibility of gene expression profiles of the fungal glycosyl hydrolase family 7 (GH7) cellobiohydrolase I gene (cbhI) were examined when amplified from sscDNA or dscDNA synthesized using SMART PCR. In the dscDNA libraries from soil or litter samples, richness was significantly reduced and the composition was altered relative to sscDNA libraries. Library composition was significantly more reproducible among replicate sscDNA libraries than among parallel dscDNA libraries from litter. In sum, the reduced richness and altered composition produced in the dscDNA libraries could substantially influence ecological interpretations of the data. Defining the factors underpinning the methodological biases will potentially aid in optimizing the design of gene expression studies in soils and other complex environmental samples. Published by Elsevier B.V. C1 [Weber, Carolyn F.; Kuske, Cheryl R.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87544 USA. RP Kuske, CR (reprint author), Los Alamos Natl Lab, Biosci Div, Mail Stop 888, Los Alamos, NM 87544 USA. EM cweber@lanl.gov; kuske@lanl.gov FU U.S. Department of Energy, Biological and Environmental Research Office [2009LANLF260]; U.S. Department of Energy, Biological and Environmental Research Office through Los Alamos National Laboratory FX This work was funded by the U.S. Department of Energy, Biological and Environmental Research Office through a Science Focus Area grant (2009LANLF260) to CRK and through a Los Alamos National Laboratory Director's Postdoctoral Fellowship to CFW. Sanger sequencing was conducted by the U.S. DOE Joint Genome Institute at Los Alamos National Laboratory. The authors wish to thank Rytas Vilgalys, Robert B. Jackson and Charles "Will" Cook at Duke University for access to the Duke Forest FACE site. We also thank Monica Moya Balasch for excellent technical support and an anonymous colleague for thoughtful review of this work. NR 37 TC 3 Z9 3 U1 5 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-7012 J9 J MICROBIOL METH JI J. Microbiol. Methods PD SEP PY 2011 VL 86 IS 3 BP 344 EP 350 DI 10.1016/j.mimet.2011.06.011 PG 7 WC Biochemical Research Methods; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 815DX UT WOS:000294507400012 PM 21704085 ER PT J AU Kurdziel, KA Kalen, JD Hirsch, JI Wilson, JD Bear, HD Logan, J McCumisky, J Moorman-Sykes, K Adler, S Choyke, PL AF Kurdziel, Karen A. Kalen, Joseph D. Hirsch, Jerry I. Wilson, John D. Bear, Harry D. Logan, Jean McCumisky, James Moorman-Sykes, Kathy Adler, Stephen Choyke, Peter L. TI Human Dosimetry and Preliminary Tumor Distribution of F-18-Fluoropaclitaxel in Healthy Volunteers and Newly Diagnosed Breast Cancer Patients Using PET/CT SO JOURNAL OF NUCLEAR MEDICINE LA English DT Article DE F-18-fluoropaclitaxel (FPAC); multidrug resistance (MDR); PET/CT imaging; paclitaxel; dosimetry; breast cancer ID P-GLYCOPROTEIN; IN-VIVO; PACLITAXEL; BIODISTRIBUTION; TISSUES AB F-18-fluoropaclitaxel is a radiolabeled form of paclitaxel, a widely used chemotherapy agent. Preclinical data suggest that F-18-fluoropaclitaxel may be a reasonable surrogate for measuring the uptake of paclitaxel. As a substrate of P-glycoprotein, a drug efflux pump associated with multidrug resistance, F-18-fluoropaclitaxel may also be useful in identifying multidrug resistance and predicting tumor response for drugs other than paclitaxel. Methods: After informed consent was obtained, 3 healthy volunteers and 3 patients with untreated breast cancer (neoadjuvant chemotherapy candidates, tumor size. 2 cm) received an intravenous infusion of F-18-fluoropaclitaxel and then underwent PET/CT. Healthy volunteers underwent serial whole-body imaging over an approximately 3-h interval, and organ F-18 residence times were determined from the time-activity curves uncorrected for decay to determine dosimetry. Radiation dose estimates were calculated using OLINDA/EXM software. For breast cancer patients, dynamic imaging of the primary tumor was performed for 60 min, followed by static whole-body scans at 1 and 2 h after injection. Results: Dosimetry calculations showed that the gallbladder received the highest dose (229.50 mGy/MBq [0.849 rad/mCi]), followed by the small and large intestines (161.26 mGy/MBq [0.597 rad/mCi] and 184.59 mGy/MBq [0.683 rad/mCi]). The resultant effective dose was 28.79 mGy/MBq (0.107 rem/mCi). At approximately 1 h after injection, an average of 42% of the decay-corrected activity was in the gastrointestinal system, with a mean of 0.01% in the tumor. All 3 breast cancer patients showed retention of 18F-fluoropaclitaxel and ultimately demonstrated a complete pathologic response (no invasive cancer in the breast or axillary nodes) to chemotherapy that included a taxane (either paclitaxel or docetaxel) at surgical resection. The tumor-to-background ratio increased with time to a maximum of 7.7 at 20 min. Conclusion: This study demonstrates the feasibility of using F-18-fluoropaclitaxel PET/CT tumor imaging and provides radiation dosimetry measurements in humans. Although further study is needed, it is hoped that the measured intratumoral F-18-fluoropaclitaxel distribution can serve as a surrogate for paclitaxel, and potentially other chemotherapeutic agent retention, in solid tumors. C1 [Kurdziel, Karen A.; Choyke, Peter L.] NCI, Mol Imaging Program, Ctr Canc Res, NIH, Bethesda, MD 20892 USA. [Kalen, Joseph D.] SAIC Frederick Inc, Lab Anim Sci Program, Small Anim Imaging Program, Frederick, MD USA. [Hirsch, Jerry I.; Wilson, John D.; McCumisky, James; Moorman-Sykes, Kathy] Virginia Commonwealth Univ, Dept Radiol, Richmond, VA USA. [Bear, Harry D.] Virginia Commonwealth Univ, Dept Surg, Richmond, VA USA. [Bear, Harry D.] Virginia Commonwealth Univ, Massey Canc Ctr, Richmond, VA USA. [Logan, Jean] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Adler, Stephen] NCI, SAIC Fredrick Inc, Contractor Mol Imaging Program, Frederick, MD 20892 USA. RP Kurdziel, KA (reprint author), NCI, Mol Imaging Program, Ctr Canc Res, NIH, 10 Ctr Dr,Room B3B403, Bethesda, MD 20892 USA. EM kurdziek@mail.nih.gov OI Kalen, Joseph/0000-0002-7163-4604 FU American Cancer Society [IRG-100036]; NCI [1R21 CA098334-01A1] FX We thank William C. Eckelman for preliminary review of this manuscript. This work was funded in part by the American Cancer Society, IRG-100036, and NCI, 1R21 CA098334-01A1. No other potential conflict of interest relevant to this article was reported. NR 15 TC 6 Z9 6 U1 0 U2 3 PU SOC NUCLEAR MEDICINE INC PI RESTON PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA SN 0161-5505 J9 J NUCL MED JI J. Nucl. Med. PD SEP 1 PY 2011 VL 52 IS 9 BP 1339 EP 1345 DI 10.2967/jnumed.111.091587 PG 7 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 814TU UT WOS:000294480900026 PM 21849404 ER PT J AU Shen, YF Tolic, N Xie, F Zhao, R Purvine, SO Schepmoes, AA Ronald, JM Anderson, GA Smith, RD AF Shen, Yufeng Tolic, Nikola Xie, Fang Zhao, Rui Purvine, Samuel O. Schepmoes, Athena A. Ronald, J. Moore Anderson, Gordon A. Smith, Richard D. TI Effectiveness of CID, HCD, and ETD with FT MS/MS for Degradomic-Peptidomic Analysis: Comparison of Peptide Identification Methods SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE CID; HCD; ETD; FT MS/MS; FDR; protein UStags; de novo sequencing; peptides; peptidomic analysis; blood plasma ID ELECTRON-TRANSFER DISSOCIATION; UNIQUE SEQUENCE TAGS; TANDEM MASS-SPECTROMETRY; POSTTRANSLATIONAL MODIFICATIONS; PROTEOMICS; PROTEINS; QUANTIFICATION; DISCOVERY; SPECTRA AB We report on the effectiveness of CID, HCD, and ETD for LC-FT MS/MS analysis of peptides using a tandem linear ion trap-Orbitrap mass spectrometer. A range of software tools and analysis parameters were employed to explore the use of CID, HCD, and ETD to identify peptides (isolated from human blood plasma) without the use of specific "enzyme rules". In the evaluation of an FDR-controlled SEQUEST scoring method, the use of accurate masses for fragments increased the number of identified peptides (by similar to 50%) compared to the use of conventional low accuracy fragment mass information, and CID provided the largest contribution to the identified peptide data sets compared to HCD and ETD. The FDR-controlled Mascot scoring method provided significantly fewer peptide identifications than SEQUEST (by 1.3-2.3 fold) and CID, HCD, and ETD provided similar contributions to identified peptides. Evaluation of de novo sequencing and the UStags method for more intense fragment ions revealed that HCD afforded more contiguous residues (e.g., >= 7 amino acids) than either CID or ETD. Both the FDR-controlled SEQUEST and Mascot scoring methods provided peptide data sets that were affected by the decoy database used and mass tolerances applied (e.g., identical peptides between data sets could be limited to similar to 70%), while the UStags method provided the most consistent peptide data sets (>90% overlap). The m/z ranges in which CID, HCD, and ETD contributed the largest number of peptide identifications were substantially overlapping. This work suggests that the three peptide ion fragmentation methods are complementary and that maximizing the number of peptide identifications benefits significantly from a careful match with the informatics tools and methods applied. These results also suggest that the decoy strategy may inaccurately estimate identification FDRs. C1 [Shen, Yufeng; Xie, Fang; Schepmoes, Athena A.; Ronald, J. Moore; Anderson, Gordon A.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Tolic, Nikola; Zhao, Rui; Purvine, Samuel O.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Shen, YF (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM Yufeng.Shen@pnnl.gov; rds@pnnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NIH National Center for Research Resources [RR18522]; DOE [AC05-76RLO-1830] FX This research was supported by the NIH National Center for Research Resources (RR18522). Work was performed in the Environmental Molecular Science Laboratory, a U.S. Department of Energy (DOE/BER) national scientific user facility located on the campus of Pacific Northwest National Laboratory (PNNL) in Richland, Washington. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under contract DE-AC05-76RLO-1830. NR 35 TC 36 Z9 38 U1 3 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD SEP PY 2011 VL 10 IS 9 BP 3929 EP 3943 DI 10.1021/pr200052c PG 15 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 814JN UT WOS:000294446600008 PM 21678914 ER PT J AU Bagge-Hansen, M Outlaw, RA Seo, K Reece, CE Spradlin, J Manos, DM AF Bagge-Hansen, M. Outlaw, R. A. Seo, K. Reece, C. E. Spradlin, J. Manos, D. M. TI Thermal-vacuum stability of the surface oxide complex on Cu SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID COPPER; OXIDATION; SPECTROSCOPY; REDUCTION; ALLOYS; OXYGEN C1 [Bagge-Hansen, M.; Outlaw, R. A.; Manos, D. M.] Coll William & Mary, Dept Appl Sci, Williamsburg, VA 23187 USA. [Seo, K.] Norfolk State Univ, Ctr Mat Res, Norfolk, VA 23504 USA. [Reece, C. E.; Spradlin, J.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Manos, D. M.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. RP Bagge-Hansen, M (reprint author), Coll William & Mary, Dept Appl Sci, POB 8795, Williamsburg, VA 23187 USA. EM mxbagg@email.wm.edu NR 20 TC 2 Z9 2 U1 0 U2 5 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD SEP PY 2011 VL 29 IS 5 AR 053001 DI 10.1116/1.3608121 PG 3 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 814UH UT WOS:000294482200033 ER PT J AU Pienkos, T Czarnacki, M Durakiewicz, T Halas, S AF Pienkos, Tomasz Czarnacki, Maciej Durakiewicz, Tomasz Halas, Stanislaw TI Work function of 75W25Re alloy determined with thermionic emission method aided by computer simulation SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID METALS AB The work function of 75W25Re alloy has been determined by the thermionic emission method aided by computer simulation of resistive heating of a cathode made of the alloy wire. The obtained values are temperature dependent, which is due to desorption of oxygen atoms which enhance the work function. The lowest value of 4.7 eV was obtained for the highest temperature of 2550 K. The value calculated on the basis of the image-force model is 4.65 eV. In addition, the resistivity as a function of temperature, knowledge of which is necessary for work function determination, has been measured for this alloy. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3610984] C1 [Durakiewicz, Tomasz] Los Alamos Natl Lab, MPA CMMS Grp, Los Alamos, NM 87544 USA. [Pienkos, Tomasz; Czarnacki, Maciej; Halas, Stanislaw] Marie Curie Sklodowska Univ, Inst Phys, PL-20031 Lublin, Poland. RP Durakiewicz, T (reprint author), Los Alamos Natl Lab, MPA CMMS Grp, POB 1663, Los Alamos, NM 87544 USA. EM tomasz@lanl.gov OI Durakiewicz, Tomasz/0000-0002-1980-1874 NR 14 TC 0 Z9 0 U1 0 U2 7 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD SEP PY 2011 VL 29 IS 5 AR 051601 DI 10.1116/1.3610984 PG 4 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 814UH UT WOS:000294482200031 ER PT J AU Sharma, M Gazquez, J Varela, M Schmitt, J Leighton, C AF Sharma, M. Gazquez, J. Varela, M. Schmitt, J. Leighton, C. TI Growth temperature control of the epitaxy, magnetism, and transport in SrTiO3(001)/La0.5Sr0.5CoO3 thin films SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID PHASE-SEPARATION; OXYGEN VACANCY; LA1-XSRXCOO3; MAGNETORESISTANCE AB The authors report a detailed study of the influence of deposition temperature on the microstructure, phase purity, nanoscale chemical homogeneity, stoichiometry, and magnetic and electronic properties of epitaxial La0.5Sr0.5CoO3 thin films grown on SrTiO3(001) substrates via reactive dc magnetron sputtering. The results are interpreted in terms of the temperature-dependent interplay between crystallization, strain relaxation, and cation mobility (which improve with increasing deposition temperature), and oxygenation (which deteriorates at the highest deposition temperatures). In addition to the established approach to epitaxial sputter deposition based on high temperature deposition combined with subsequent ex situ annealing in O-2, our results also identify a narrow deposition temperature window similar to 600-625 degrees C, where single phase, highly crystalline, low surface roughness epitaxial films can be obtained with close to ideal stoichiometry without postdeposition annealing. Electronic and magnetic properties similar to bulk single crystals can be obtained in this region. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3622621] C1 [Sharma, M.; Schmitt, J.; Leighton, C.] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA. Univ Complutense Madrid, Dept Fis Aplicada 3, GFMC, E-28040 Madrid, Spain. Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Leighton, C (reprint author), Univ Minnesota, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA. EM leighton@umn.edu RI Gazquez, Jaume/C-5334-2012; Varela, Maria/H-2648-2012; Varela, Maria/E-2472-2014 OI Gazquez, Jaume/0000-0002-2561-328X; Varela, Maria/0000-0002-6582-7004 FU NSF [DMR-0804432]; DOE [DE-FG02-06ER46275]; U.S. DOE Office of Science, Division of Materials Science and Engineering; Spanish MEC [2007-0086]; European Research Council FX Work at UMN supported primarily by NSF (DMR-0804432), with additional support from DOE (DE-FG02-06ER46275, specifically scattering characterization). Research at ORNL (M.V.) supported by the U.S. DOE Office of Science, Division of Materials Science and Engineering. J.G. acknowledges the Spanish MEC 2007-0086 and the European Research Council Starting Investigator Award. The authors are grateful to J. T. Luck for STEM specimen preparation. NR 31 TC 4 Z9 4 U1 1 U2 18 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 EI 1520-8559 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD SEP PY 2011 VL 29 IS 5 AR 051511 DI 10.1116/1.3622621 PG 9 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 814UH UT WOS:000294482200026 ER PT J AU Ma, SM Garcia, DE Redding-Johanson, AM Friedland, GD Chan, R Batth, TS Haliburton, JR Chivian, D Keasling, JD Petzold, CJ Lee, TS Chhabra, SR AF Ma, Suzanne M. Garcia, David E. Redding-Johanson, Alyssa M. Friedland, Gregory D. Chan, Rossana Batth, Tanveer S. Haliburton, John R. Chivian, Dylan Keasling, Jay D. Petzold, Christopher J. Lee, Taek Soon Chhabra, Swapnil R. TI Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases SO METABOLIC ENGINEERING LA English DT Article DE Mevalonate pathway; Metabolic pathway optimization; HMG-CoA Reductase; E. coli; Cofactor regeneration; Mevalonate kinase ID COENZYME-A REDUCTASE; ENGINEERED ESCHERICHIA-COLI; ISOPRENOID BIOSYNTHETIC-PATHWAY; ENZYME INFORMATION-SYSTEM; 3-HYDROXY-3-METHYLGLUTARYL-COA REDUCTASE; PSEUDOMONAS-MEVALONII; ANAEROBIC REGULATION; METABOLIC FLUX; ADHE GENE; PURIFICATION AB Expression of foreign pathways often results in suboptimal performance due to unintended factors such as introduction of toxic metabolites, cofactor imbalances or poor expression of pathway components. In this study we report a 120% improvement in the production of the isoprenoid-derived sesquiterpene, amorphadiene, produced by an engineered strain of Escherichia coli developed to express the native seven-gene mevalonate pathway from Saccharomyces cerevisiae (Martin et al. 2003). This substantial improvement was made by varying only a single component of the pathway (HMG-CoA reductase) and subsequent host optimization to improve cofactor availability. We characterized and tested five variant HMG-CoA reductases obtained from publicly available genome databases with differing kinetic properties and cofactor requirements. The results of our in vitro and in vivo analyses of these enzymes implicate substrate inhibition of mevalonate kinase as an important factor in optimization of the engineered mevalonate pathway. Consequently, the NADH-dependent HMG-CoA reductase from Delftia acidovorans, which appeared to have the optimal kinetic parameters to balance HMG-CoA levels below the cellular toxicity threshold of E. coli and those of mevalonate below inhibitory concentrations for mevalonate kinase, was identified as the best producer for amorphadiene (54% improvement over the native pathway enzyme, resulting in 2.5 mM or 520 mg/L of amorphadiene after 48 h). We further enhanced performance of the strain bearing the D. acidovorans HMG-CoA reductase by increasing the intracellular levels of its preferred cofactor (NADH) using a NAD(+)-dependent formate dehydrogenase from Candida boidinii, along with formate supplementation. This resulted in an overall improvement of the system by 120% resulting in 3.5 mM or 700 mg/L amorphadiene after 48 h of fermentation. This comprehensive study incorporated analysis of several key parameters for metabolic design such as in vitro and in vivo kinetic performance of variant enzymes, intracellular levels of protein expression, in-pathway substrate inhibition and cofactor management to enable the observed improvements. These metrics may be applied to a broad range of heterologous pathways for improving the production of biologically derived compounds. (C) 2011 Elsevier Inc. All rights reserved. C1 [Ma, Suzanne M.; Garcia, David E.; Redding-Johanson, Alyssa M.; Friedland, Gregory D.; Chan, Rossana; Batth, Tanveer S.; Haliburton, John R.; Chivian, Dylan; Keasling, Jay D.; Petzold, Christopher J.; Lee, Taek Soon; Chhabra, Swapnil R.] Joint BioEnergy Inst, Emeryville, CA 94608 USA. [Ma, Suzanne M.; Redding-Johanson, Alyssa M.; Chan, Rossana; Batth, Tanveer S.; Haliburton, John R.; Chivian, Dylan; Keasling, Jay D.; Petzold, Christopher J.; Lee, Taek Soon; Chhabra, Swapnil R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Garcia, David E.; Keasling, Jay D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Garcia, David E.; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Friedland, Gregory D.] Sandia Natl Labs, Biomass Sci & Convers Technol Dept, Livermore, CA USA. [Garcia, David E.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Chhabra, SR (reprint author), Joint BioEnergy Inst, 5885 Hollis St, Emeryville, CA 94608 USA. EM srchhabra@lbl.gov RI Keasling, Jay/J-9162-2012 OI Keasling, Jay/0000-0003-4170-6088 FU Office of Science, Office of Biological and Environmental Research, of the US Department of Energy [DE-AC02-05CH11231] FX This work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under Contract no. DE-AC02-05CH11231. Purified mevalonate kinase was kindly provided by Amyris Biotechnologies. Special thanks to Mario Ouellet and Xinkai Xie for GC-MS experiments. We would like to thank Nathan Hillson and Harry Beller for helpful comments in improving this manuscript. We would also like thank the following people for helpful discussions during the course of this work: Adrienne McKee, Aindrila Mukhopadhyay, Sung Kuk Lee, Seon Won Kim, Li Feng Lee and Adam Arkin. NR 56 TC 54 Z9 59 U1 4 U2 50 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1096-7176 EI 1096-7184 J9 METAB ENG JI Metab. Eng. PD SEP PY 2011 VL 13 IS 5 BP 588 EP 597 DI 10.1016/j.ymben.2011.07.001 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 812KC UT WOS:000294291200015 PM 21810477 ER PT J AU Mohanty, SR Kollah, B Brodie, EL Hazen, TC Roden, EE AF Mohanty, Santosh R. Kollah, Bharati Brodie, Eoin L. Hazen, Terry C. Roden, Eric E. TI 16S rRNA Gene Microarray Analysis of Microbial Communities in Ethanol-Stimulated Subsurface Sediment SO MICROBES AND ENVIRONMENTS LA English DT Article DE microbial community; 16S rRNA gene; DNA microarray; terminal electron accepting process; uranium reduction ID URANIUM-CONTAMINATED AQUIFER; OLIGONUCLEOTIDE MICROARRAY; SUBMICROMOLAR LEVELS; RADIOACTIVE-WASTE; ESCHERICHIA-COLI; OXYGEN GRADIENT; REDUCTION; DIVERSITY; PCR; REOXIDATION AB A high-density 16S rRNA gene microarray was used to analyze microbial communities in a slurry of ethanolamended, uranium-contaminated subsurface sediment. Of specific interest was the extent to which the microarray could detect temporal patterns in the relative abundance of major metabolic groups (nitrate-reducing, metal-reducing, sulfate-reducing, and methanogenic taxa) that were stimulated by ethanol addition. The results show that the microarray, when used in conjunction with geochemical data and knowledge of the physiological properties of relevant taxa, provided accurate assessment of the response of key functional groups to biostimulation. C1 [Mohanty, Santosh R.; Kollah, Bharati; Roden, Eric E.] Univ Wisconsin, Dept Geosci, Madison, WI 53706 USA. [Brodie, Eoin L.; Hazen, Terry C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Ecol, Div Earth Sci, Berkeley, CA 94720 USA. RP Roden, EE (reprint author), Univ Wisconsin, Dept Geosci, 1215 W Dayton St, Madison, WI 53706 USA. EM eroden@geology.wisc.edu RI Brodie, Eoin/A-7853-2008; Hazen, Terry/C-1076-2012 OI Brodie, Eoin/0000-0002-8453-8435; Hazen, Terry/0000-0002-2536-9993 FU Office of Biological and Environmental Research, U.S. Department of Energy, Office of Science [DE-FG02-06ER64184, ER64172-1027487-001191]; U.S. Department of Energy [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory FX The work was supported by grants DE-FG02-06ER64184 and ER64172-1027487-001191 from the Environmental Remediation Science Program, Office of Biological and Environmental Research, U.S. Department of Energy, Office of Science. Part of this work was supported by the U.S. Department of Energy under contract no. DE-AC02-05CH11231 with the Lawrence Berkeley National Laboratory. NR 45 TC 1 Z9 1 U1 0 U2 9 PU JAPANESE SOC MICROBIAL ECOLOGY, DEPT BIORESOURCE SCIENCE PI IBARAKI PA C/O DR. HIROYUKI OHTA, SEC, IBARAKI UNIV COLLEGE OF AGRICULT, AMI-MACHI, IBARAKI, JAPAN SN 1342-6311 J9 MICROBES ENVIRON JI Microbes Environ. PD SEP 1 PY 2011 VL 26 IS 3 BP 261 EP 265 DI 10.1264/jsme2.ME11111 PG 5 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 814NG UT WOS:000294462200010 PM 21558677 ER PT J AU Borg, LE Connelly, JN Boyet, M Carlson, RW AF Borg, Lars E. Connelly, James N. Boyet, Maud Carlson, Richard W. TI Chronological evidence that the Moon is either young or did not have a global magma ocean SO NATURE LA English DT Article ID NORITIC ANORTHOSITE CLAST; LUNAR CRUST; SM-ND; FERROAN ANORTHOSITE-60025; IMPACT HISTORY; AGE; DIFFERENTIATION; ORIGIN; EARTH; VOLCANISM AB Chemical evolution of planetary bodies, ranging from asteroids to the large rocky planets, is thought to begin with differentiation through solidification of magma oceans many hundreds of kilometres in depth(1-3). The Earth's Moon is the archetypical example of this type of differentiation. Evidence for a lunar magma ocean is derived largely from the widespread distribution, compositional and mineralogical characteristics, and ancient ages inferred for the ferroan anorthosite (FAN) suite of lunar crustal rocks. The FANs are considered to be primary lunar flotation-cumulate crust that crystallized in the latter stages of magma ocean solidification. According to this theory, FANs represent the oldest lunar crustal rock type(2-4). Attempts to date this rock suite have yielded ambiguous results, however, because individual isochron measurements are typically incompatible with the geochemical make-up of the samples, and have not been confirmed by additional isotopic systems(5-9). By making improvements to the standard isotopic techniques, we report here the age of crystallization of FAN 60025 using the (207)Pb-(206)Pb, (147)Sm-(143)Nd and (146)Sm-(142)Nd isotopic systems to be 4,360 +/- 3 million years. This extraordinarily young age requires that either the Moon solidified significantly later than most previous estimates or the long-held assumption that FANs are flotation cumulates of a primordial magma ocean is incorrect. If the latter is correct, then much of the lunar crust may have been produced by non-magma-ocean processes, such as serial magmatism(10). C1 [Borg, Lars E.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94550 USA. [Connelly, James N.] Univ Copenhagen, Ctr Star & Planet Format, Copenhagen, Denmark. [Boyet, Maud] Univ Clermont Ferrand, Clermont Univ, Lab Magmas & Volcans, UMR CNRS 6524, F-63038 Clermont Ferrand, France. [Carlson, Richard W.] Carnegie Inst Washington, Dept Terr Magnetism, Washington, DC 20015 USA. RP Borg, LE (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, 7000 East Ave L-231, Livermore, CA 94550 USA. EM borg5@llnl.gov RI Connelly, James /O-7996-2015 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NASA [NNH08ZDA001N, NNX08AH65G]; Danish National Research Foundation; University of Copenhagen FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract number DE-AC52-07NA27344. The portion of the work performed at Lawrence Livermore National Laboratory and the Department of Terrestrial Magnetism were supported by NASA Cosmochemistry grants NNH08ZDA001N and NNX08AH65G, respectively. The Centre for Star and Planet Formation is funded by the Danish National Research Foundation and the University of Copenhagen's programme of excellence. We appreciate comments by A. Brandon. NR 33 TC 72 Z9 72 U1 4 U2 51 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 0028-0836 J9 NATURE JI Nature PD SEP 1 PY 2011 VL 477 IS 7362 BP 70 EP U150 DI 10.1038/nature10328 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 813XT UT WOS:000294404300032 PM 21849974 ER PT J AU Gando, A Gando, Y Ichimura, K Ikeda, H Inoue, K Kibe, Y Kishimoto, Y Koga, M Minekawa, Y Mitsui, T Morikawa, T Nagai, N Nakajima, K Nakamura, K Narita, K Shimizu, I Shimizu, Y Shirai, J Suekane, F Suzuki, A Takahashi, H Takahashi, N Takemoto, Y Tamae, K Watanabe, H Xu, BD Yabumoto, H Yoshida, H Yoshida, S Enomoto, S Kozlov, A Murayama, H Grant, C Keefer, G Piepke, A Banks, TI Bloxham, T Detwiler, JA Freedman, SJ Fujikawa, BK Han, K Kadel, R O'Donnell, T Steiner, HM Dwyer, DA McKeown, RD Zhang, C Berger, BE Lane, CE Maricic, J Miletic, T Batygov, M Learned, JG Matsuno, S Sakai, M Horton-Smith, GA Downum, KE Gratta, G Tolich, K Efremenko, Y Perevozchikov, O Karwowski, HJ Markoff, DM Tornow, W Heeger, KM Decowski, MP AF Gando, A. Gando, Y. Ichimura, K. Ikeda, H. Inoue, K. Kibe, Y. Kishimoto, Y. Koga, M. Minekawa, Y. Mitsui, T. Morikawa, T. Nagai, N. Nakajima, K. Nakamura, K. Narita, K. Shimizu, I. Shimizu, Y. Shirai, J. Suekane, F. Suzuki, A. Takahashi, H. Takahashi, N. Takemoto, Y. Tamae, K. Watanabe, H. Xu, B. D. Yabumoto, H. Yoshida, H. Yoshida, S. Enomoto, S. Kozlov, A. Murayama, H. Grant, C. Keefer, G. Piepke, A. Banks, T. I. Bloxham, T. Detwiler, J. A. Freedman, S. J. Fujikawa, B. K. Han, K. Kadel, R. O'Donnell, T. Steiner, H. M. Dwyer, D. A. McKeown, R. D. Zhang, C. Berger, B. E. Lane, C. E. Maricic, J. Miletic, T. Batygov, M. Learned, J. G. Matsuno, S. Sakai, M. Horton-Smith, G. A. Downum, K. E. Gratta, G. Tolich, K. Efremenko, Y. Perevozchikov, O. Karwowski, H. J. Markoff, D. M. Tornow, W. Heeger, K. M. Decowski, M. P. CA KamLAND Collaboration TI Partial radiogenic heat model for Earth revealed by geoneutrino measurements SO NATURE GEOSCIENCE LA English DT Article ID NEUTRON FISSION-PRODUCTS; INVERSE BETA-DECAY; GEO-NEUTRINOS; ANTINEUTRINO SPECTRA; KAMLAND; REACTOR; INTERIOR AB The Earth has cooled since its formation, yet the decay of radiogenic isotopes, and in particular uranium, thorium and potassium, in the planet's interior provides a continuing heat source. The current total heat flux from the Earth to space is 44.2 +/- 1.0 TW, but the relative contributions from residual primordial heat and radiogenic decay remain uncertain. However, radiogenic decay can be estimated from the flux of geoneutrinos, electrically neutral particles that are emitted during radioactive decay and can pass through the Earth virtually unaffected. Here we combine precise measurements of the geoneutrino flux from the Kamioka Liquid-Scintillator Antineutrino Detector, Japan, with existing measurements from the Borexino detector, Italy. We find that decay of uranium-238 and thorium-232 together contribute 20.0(-8.6)(+8.8) TW to Earth's heat flux. The neutrinos emitted from the decay of potassium-40 are below the limits of detection in our experiments, but are known to contribute 4 TW. Taken together, our observations indicate that heat from radioactive decay contributes about half of Earth's total heat flux. We therefore conclude that Earth's primordial heat supply has not yet been exhausted. C1 [Gando, A.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Morikawa, T.; Nagai, N.; Nakamura, K.; Narita, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suzuki, A.; Takahashi, H.; Takahashi, N.; Takemoto, Y.; Tamae, K.; Watanabe, H.; Xu, B. D.; Yabumoto, H.; Yoshida, H.; Yoshida, S.; KamLAND Collaboration] Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan. [Inoue, K.; Koga, M.; Nakamura, K.; Enomoto, S.; Kozlov, A.; Murayama, H.; Piepke, A.; Freedman, S. J.; Fujikawa, B. K.; Horton-Smith, G. A.; Efremenko, Y.; Heeger, K. M.; Decowski, M. P.] Univ Tokyo, Inst Phys & Math Universe, Kashiwa, Chiba 2778568, Japan. [Murayama, H.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Kadel, R.; O'Donnell, T.; Steiner, H. M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Murayama, H.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Kadel, R.; O'Donnell, T.; Steiner, H. M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Grant, C.; Keefer, G.; Piepke, A.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Dwyer, D. A.; McKeown, R. D.; Zhang, C.] CALTECH, WK Kellogg Radiat Lab, Pasadena, CA 91125 USA. [Berger, B. E.] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA. [Lane, C. E.; Maricic, J.; Miletic, T.] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA. [Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.] Univ Hawaii Manoa, Dept Phys & Astron, Honolulu, HI 96822 USA. [Horton-Smith, G. A.] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA. [Downum, K. E.; Gratta, G.; Tolich, K.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Efremenko, Y.; Perevozchikov, O.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Triangle Univ Nucl Lab, Res Triangle Pk, NC 27709 USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] N Carolina Cent Univ, Dept Phys, Durham, NC USA. [Karwowski, H. J.; Markoff, D. M.; Tornow, W.] Univ N Carolina, Dept Phys, Chapel Hill, NC USA. [Heeger, K. M.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Decowski, M. P.] Nikhef, NL-1098 XG Amsterdam, Netherlands. RP Shimizu, I (reprint author), Tohoku Univ, Res Ctr Neutrino Sci, Sendai, Miyagi 9808578, Japan. EM shimizu@awa.tohoku.ac.jp RI Murayama, Hitoshi/A-4286-2011; Horton-Smith, Glenn/A-4409-2011; Han, Ke/D-3697-2017; OI Horton-Smith, Glenn/0000-0001-9677-9167; Han, Ke/0000-0002-1609-7367; Zhang, Chao/0000-0003-2298-6272 FU Japanese Ministry of Education, Culture, Sports, Science and Technology [16002002]; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; US Department of Energy (DOE) [DEFG03-00ER41138, DE-AC02-05CH11231]; DOE FX We thank E. Ohtani and W. F. McDonough for advice and guidance. The KamLAND experiment is supported by a Grant-in-Aid for Specially Promoted Research under grant 16002002 of the Japanese Ministry of Education, Culture, Sports, Science and Technology; the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; and the US Department of Energy (DOE) grants DEFG03-00ER41138 and DE-AC02-05CH11231, as well as other DOE grants to individual institutions. The reactor data are provided by courtesy of the following electric associations in Japan: Hokkaido, Tohoku, Tokyo, Hokuriku, Chubu, Kansai, Chugoku, Shikokuand Kyushu Electric Power Companies, Japan Atomic Power Company and Japan Atomic Energy Agency. The Kamioka Mining and Smelting Company has provided service for activities in the mine. NR 27 TC 69 Z9 69 U1 5 U2 36 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 J9 NAT GEOSCI JI Nat. Geosci. PD SEP PY 2011 VL 4 IS 9 BP 647 EP 651 DI 10.1038/ngeo1205 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 814KY UT WOS:000294452400016 ER PT J AU Venken, KJT Schulze, KL Haelterman, NA Pan, HL He, YC Evans-Holm, M Carlson, JW Levis, RW Spradling, AC Hoskins, RA Bellen, HJ AF Venken, Koen J. T. Schulze, Karen L. Haelterman, Nele A. Pan, Hongling He, Yuchun Evans-Holm, Martha Carlson, Joseph W. Levis, Robert W. Spradling, Allan C. Hoskins, Roger A. Bellen, Hugo J. TI MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes SO NATURE METHODS LA English DT Article ID GREEN FLUORESCENT PROTEIN; SITE-SPECIFIC RECOMBINATION; REGULATORY FACTOR-X; DISRUPTION PROJECT; MAMMALIAN-CELLS; CHROMOSOMAL REARRANGEMENTS; IG SUPERFAMILY; EXPRESSION; INTEGRASE; PHI-C31 AB We demonstrate the versatility of a collection of insertions of the transposon Minos-mediated integration cassette (MiMIC), in Drosophila melanogaster. MiMIC contains a gene-trap cassette and the yellow(+) marker flanked by two inverted bacteriophage Phi C31 integrase attP sites. MiMIC integrates almost at random in the genome to create sites for DNA manipulation. The attP sites allow the replacement of the intervening sequence of the transposon with any other sequence through recombinase-mediated cassette exchange (RMCE). We can revert insertions that function as gene traps and cause mutant phenotypes to revert to wild type by RMCE and modify insertions to control GAL4 or QF overexpression systems or perform lineage analysis using the Flp recombinase system. Insertions in coding introns can be exchanged with protein-tag cassettes to create fusion proteins to follow protein expression and perform biochemical experiments. The applications of MiMIC vastly extend the D. melanogaster toolkit. C1 [Venken, Koen J. T.; Schulze, Karen L.; Haelterman, Nele A.; Pan, Hongling; He, Yuchun; Bellen, Hugo J.] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA. [Schulze, Karen L.; Pan, Hongling; He, Yuchun] Baylor Coll Med, Howard Hughes Med Inst, Houston, TX 77030 USA. [Evans-Holm, Martha; Carlson, Joseph W.; Hoskins, Roger A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Levis, Robert W.; Spradling, Allan C.] Carnegie Inst Sci, Howard Hughes Med Inst, Dept Embryol, Baltimore, MD USA. [Bellen, Hugo J.] Baylor Coll Med, Dept Neurosci, Houston, TX 77030 USA. [Bellen, Hugo J.] Baylor Coll Med, Program Dev Biol, Houston, TX 77030 USA. RP Venken, KJT (reprint author), Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA. EM kv134369@bcm.edu; hbellen@bcm.tmc.edu RI Venken, Koen/B-9909-2013; OI Venken, Koen/0000-0003-0741-4698; Bellen, Hugo/0000-0001-5992-5989 FU US National Institutes of Health [2R01 GM067858, T32 GM07526-33]; Howard Hughes Medical Institute FX We thank B. Al-Anzi (California Institute of Technology), K. Basler, J. Bischof (University of Zurich), J. Bateman (Bowdoin College), K. Broadie (Vanderbilt University), M. Calos, L. Luo, A. Okada (Stanford University), W. Chia (National University of Singapore), A. DiAntonio (Washington University), B. Durand, A. Laurencon (University of Lyon), F. Karch (University of Geneva), X. Morin (Institute of Developmental Biology of Marseille), A. Nose (University of Tokyo), S. Oehler (University of Crete), A. Pavlopoulos (University of Cambridge), C. Potter (Johns Hopkins University), Y. Rao (McGill University), M. Ringuette, J. Shahab (University of Toronto), C. Savakis (Biomedical Sciences Research Center Alexander Fleming), T. Suzuki (Max Planck Institute of Neurobiology), C. Tan (University of Missouri), G. Tear (King's College London), R. Tsien (University of California San Diego), T. Wu (Harvard University), L. Zipursky (University of California Los Angeles), members of the BDSC and the Drosophila Genomics Resource Center (Indiana University), Addgene and members of the Developmental Studies Hybridoma Bank for flies, plasmids, antibodies and communications; S. Park and K. Wan for assistance in mapping MiMIC insertions; D. Bei, Y. Fang, J. Li, Z. Wang, X. Zheng and J. Yue for generating fly stocks; and T. Suzuki for communication of unpublished results. This work was funded by US National Institutes of Health grants 2R01 GM067858 to A. C. S., R. A. H. and H. J. B., and T32 GM07526-33 to K. J. T. V.; A. C. S. and H. J. B. are funded by the Howard Hughes Medical Institute. NR 80 TC 128 Z9 129 U1 1 U2 25 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1548-7091 J9 NAT METHODS JI Nat. Methods PD SEP PY 2011 VL 8 IS 9 BP 737 EP U80 DI 10.1038/nmeth.1662 PG 11 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 814HL UT WOS:000294439100010 PM 21985007 ER PT J AU Qian, F Li, Y AF Qian, Fang Li, Yat TI BIOMATERIALS A natural source of nanowires SO NATURE NANOTECHNOLOGY LA English DT News Item C1 [Qian, Fang] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Li, Yat] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA. RP Qian, F (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. EM qian3@llnl.gov; yli@chemistry.ucsc.edu RI Zong, Xu/B-7149-2013; OI Li, Yat/0000-0002-8058-2084 NR 6 TC 10 Z9 10 U1 1 U2 14 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD SEP PY 2011 VL 6 IS 9 BP 538 EP 539 DI 10.1038/nnano.2011.148 PG 3 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 815ST UT WOS:000294550000005 PM 21897384 ER PT J AU Tang, JY Huo, ZY Brittman, S Gao, HW Yang, PD AF Tang, Jinyao Huo, Ziyang Brittman, Sarah Gao, Hanwei Yang, Peidong TI Solution-processed core-shell nanowires for efficient photovoltaic cells SO NATURE NANOTECHNOLOGY LA English DT Article ID SOLAR-CELLS; CATION-EXCHANGE; HETEROSTRUCTURES; SEMICONDUCTOR; NANOCRYSTALS; NANORODS; DESIGN; SINGLE; GROWTH AB Semiconductor nanowires are promising for photovoltaic applications(1-11), but, so far, nanowire-based solar cells have had lower efficiencies than planar cells made from the same materials(6-10,12,13), even allowing for the generally lower light absorption of nanowires. It is not clear, therefore, if the benefits of the nanowire structure, including better charge collection and transport(14) and the possibility of enhanced absorption through light trapping(4,15), can outweigh the reductions in performance caused by recombination at the surface of the nanowires and at p-n junctions. Here, we fabricate core-shell nanowire solar cells with open-circuit voltage and fill factor values superior to those reported for equivalent planar cells, and an energy conversion efficiency of similar to 5.4%, which is comparable to that of equivalent planar cells despite low light absorption levels(16). The device is made using a low-temperature solution-based cation exchange reaction(17-21) that creates a heteroepitaxial junction between a single-crystalline CdS core and single-crystalline Cu(2)S shell. We integrate multiple cells on single nanowires in both series and parallel configurations for high output voltages and currents, respectively. The ability to produce efficient nanowire-based solar cells with a solution-based process and Earth-abundant elements(22-24) could significantly reduce fabrication costs relative to existing high-temperature bulk material approaches. C1 [Tang, Jinyao; Huo, Ziyang; Brittman, Sarah; Gao, Hanwei; Yang, Peidong] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Yang, Peidong] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Tang, Jinyao; Huo, Ziyang; Brittman, Sarah; Gao, Hanwei; Yang, Peidong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Yang, PD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM p_yang@berkeley.edu RI Gao, Hanwei/B-3634-2010; Tang, Jinyao/I-3851-2012 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation (NSF) [0832819] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy (contract no. DE-AC02-05CH11231). The work on devices integrated in parallel and in series was supported by the National Science Foundation (NSF, contract no. 0832819). The authors thank the National Center for Electron Microscopy for use of their facilities. NR 31 TC 263 Z9 271 U1 25 U2 288 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD SEP PY 2011 VL 6 IS 9 BP 568 EP 572 DI 10.1038/NNANO.2011.139 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 815ST UT WOS:000294550000013 PM 21857684 ER PT J AU Xia, YS Nguyen, TD Yang, M Lee, B Santos, A Podsiadlo, P Tang, ZY Glotzer, SC Kotov, NA AF Xia, Yunsheng Trung Dac Nguyen Yang, Ming Lee, Byeongdu Santos, Aaron Podsiadlo, Paul Tang, Zhiyong Glotzer, Sharon C. Kotov, Nicholas A. TI Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles SO NATURE NANOTECHNOLOGY LA English DT Article ID BUILDING-BLOCKS; COLLOIDAL PARTICLES; CDTE NANOPARTICLES; MONTE-CARLO; SUPERLATTICES; NANOCRYSTALS; CRYSTALLIZATION; GOLD; ORGANIZATION; SIMULATION AB Nanoparticles are known to self-assemble into larger structures through growth processes that typically occur continuously and depend on the uniformity of the individual nanoparticles. Here, we show that inorganic nanoparticles with non-uniform size distributions can spontaneously assemble into uniformly sized supraparticles with core-shell morphologies. This self-limiting growth process is governed by a balance between electrostatic repulsion and van der Waals attraction, which is aided by the broad polydispersity of the nanoparticles. The generic nature of the interactions creates flexibility in the composition, size and shape of the constituent nanoparticles, and leads to a large family of self-assembled structures, including hierarchically organized colloidal crystals. C1 [Xia, Yunsheng; Tang, Zhiyong] Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China. [Trung Dac Nguyen; Yang, Ming; Santos, Aaron; Glotzer, Sharon C.; Kotov, Nicholas A.] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA. [Lee, Byeongdu] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Podsiadlo, Paul] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Glotzer, Sharon C.; Kotov, Nicholas A.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Tang, ZY (reprint author), Natl Ctr Nanosci & Technol, 11 Beiyitiao, Beijing 100190, Peoples R China. EM zytang@nanoctr.cn; sglotzer@umich.edu; kotov@umich.edu RI Nguyen, Trung/H-7008-2012; 夏, 云生/K-1806-2013; tang, zhiyong/A-8563-2008; Yang, Ming/O-6359-2014 OI Kotov, Nicholas/0000-0002-6864-5804; Lee, Byeongdu/0000-0003-2514-8805; Nguyen, Trung/0000-0002-5076-264X; 夏, 云生/0000-0002-7877-9718; tang, zhiyong/0000-0003-0610-0064; Yang, Ming/0000-0001-8844-069X FU Chinese Academy of Sciences; National Natural Science Foundation for Distinguished Youth Scholars of China [21025310]; National Research Fund for Fundamental Key Project [2009CB930401]; National Natural Science Foundation of China [91027011, 20973047]; US Army Research Office [W911NF-10-1-0518]; James S. McDonnell Foundation [220020139]; Department of Defense, Office of the Director, Defense Research and Engineering (DOD/DDRE) [N00244-09-1-0062]; US DOE [DE-AC02-06CH11357]; US DOE, Office of Science, Basic Energy Sciences [DE-SC0000957]; National Science Foundation [ECS-0601345, EFRI-BSBA 0938019, CBET 0933384, CBET 0932823]; NIH [1R21CA121841-01A2]; NSF [DMR-9871177]; Vietnam Education Foundation; Office of Science, Office of Basic Energy Sciences, of the US DOE [DE-AC02-06CH-11357]; Argonne National Laboratory FX The authors thank the 100 Talents Program of the Chinese Academy of Sciences (Z.Y.T.), the National Natural Science Foundation for Distinguished Youth Scholars of China (21025310, Z.Y.T.) the National Research Fund for Fundamental Key Project no. 2009CB930401 (Z.Y.T.), National Natural Science Foundation of China (nos 91027011 and 20973047, Z.Y.T.). This material is based on work supported in part by the US Army Research Office (grant award no. W911NF-10-1-0518, S. C. G. and N.A.K.). S. C. G. and T.D.N. also acknowledge support from the James S. McDonnell Foundation 21st Century Science Research Award/Studying Complex Systems (award no. 220020139). This material is based on work supported by the Department of Defense, Office of the Director, Defense Research and Engineering (DOD/DDRE) (award no. N00244-09-1-0062, S. C. G.). Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the DOD/DDRE. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE (contract no. DE-AC02-06CH11357). This material is based on work partially supported by the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US DOE, Office of Science, Basic Energy Sciences (award no. DE-SC0000957, N.A.K.). The authors acknowledge support from the National Science Foundation (grant nos ECS-0601345, EFRI-BSBA 0938019, CBET 0933384 and CBET 0932823, N.A.K.). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF. The work is also partially supported by NIH 1R21CA121841-01A2 (NAK). S. C. G. is grateful to the University of Michigan Center for Advanced Computing for cluster support. The authors thank the University of Michigan's EMAL for its assistance with electron microscopy, and for NSF grant no. DMR-9871177 for funding for the JEOL 2010F analytical electron microscope used in this work. T.D.N. acknowledges support from the Vietnam Education Foundation. B. L. thanks the Argonne National Laboratory for use of the APS. Work at the Center for Nanoscale Materials was supported by the Office of Science, Office of Basic Energy Sciences, of the US DOE (contract no. DE-AC02-06CH-11357). P. P. acknowledges the support of a Willard Frank Libby postdoctoral fellowship from Argonne National Laboratory. NR 39 TC 214 Z9 215 U1 34 U2 342 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD SEP PY 2011 VL 6 IS 9 BP 580 EP 587 DI 10.1038/NNANO.2011.121 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 815ST UT WOS:000294550000015 PM 21857686 ER PT J AU Soukoulis, CM Wegener, M AF Soukoulis, Costas M. Wegener, Martin TI Past achievements and future challenges in the development of three-dimensional photonic metamaterials SO NATURE PHOTONICS LA English DT Review ID NEGATIVE-INDEX METAMATERIALS; SPLIT-RING RESONATORS; OPTICAL METAMATERIALS; REFRACTIVE-INDEX; 2ND-HARMONIC GENERATION; MAGNETIC METAMATERIALS; SPHERICAL-PARTICLES; VISIBLE FREQUENCIES; BULK METAMATERIALS; COMPOSITE MEDIUM AB Photonic metamaterials are man-made structures composed of tailored micro- or nanostructured metallodielectric subwavelength building blocks. This deceptively simple yet powerful concept allows the realization of many new and unusual optical properties, such as magnetism at optical frequencies, negative refractive index, large positive refractive index, zero reflection through impedance matching, perfect absorption, giant circular dichroism and enhanced nonlinear optical properties. Possible applications of metamaterials include ultrahigh-resolution imaging systems, compact polarization optics and cloaking devices. This Review describes recent progress in the fabrication of three-dimensional metamaterial structures and discusses some of the remaining challenges. C1 [Soukoulis, Costas M.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Soukoulis, Costas M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Soukoulis, Costas M.] Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. [Wegener, Martin] Karlsruhe Inst Technol, Inst Nanotechnol, Inst Appl Phys, D-76128 Karlsruhe, Germany. [Wegener, Martin] Karlsruhe Inst Technol, DFG Ctr Funct Nanostruct, D-76128 Karlsruhe, Germany. RP Soukoulis, CM (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM soukoulis@ameslab.gov RI Soukoulis, Costas/A-5295-2008; Wegener, Martin/S-5456-2016 FU European Union [213390, 228637]; Ames Laboratory; Department of Energy (Basic Energy Sciences) [DE-AC02-07CH11358]; US Office of Naval Research [N000141010925]; AFOSR-MURI [FA9550-06-1-0337]; Deutsche Forschungsgemeinschaft through [CFN A1.4, A1.5]; Bundesministerium fur Bildung und Forschung FX The authors thank M. Decker, J. Zhou and T. Koschny for preparing the figures and providing useful discussions. This work is supported by the European Union Future and Emerging Technologies project PHOME (contract 213390), Ames Laboratory, the Department of Energy (Basic Energy Sciences) under contract DE-AC02-07CH11358, the US Office of Naval Research under grant N000141010925, AFOSR-MURI under grant FA9550-06-1-0337, the European Union project NIM_NIL (contract 228637), Deutsche Forschungsgemeinschaft through subprojects CFN A1.4 and A1.5, and Bundesministerium fur Bildung und Forschung through the project METAMAT. NR 110 TC 600 Z9 607 U1 97 U2 626 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 J9 NAT PHOTONICS JI Nat. Photonics PD SEP PY 2011 VL 5 IS 9 BP 523 EP 530 DI 10.1038/NPHOTON.2011.154 PG 8 WC Optics; Physics, Applied SC Optics; Physics GA 814AE UT WOS:000294412700009 ER PT J AU Shvyd'ko, Y Stoupin, S Blank, V Terentyev, S AF Shvyd'ko, Yuri Stoupin, Stanislav Blank, Vladimir Terentyev, Sergey TI Near-100% Bragg reflectivity of X-rays SO NATURE PHOTONICS LA English DT Article ID SYNCHROTRON-RADIATION; MONOCHROMATOR; CRYSTALS; DIAMONDS; OPTICS; BEAMS AB Ultrahigh-reflectance mirrors are essential optical elements of the most sophisticated optical instruments devised over the entire frequency spectrum. In the X-ray regime, super-polished mirrors with close to 100% reflectivity are routinely used at grazing angles of incidence. However, at large angles of incidence, and particularly at normal incidence, such high reflectivity has not yet been achieved. Here, we demonstrate by direct measurements that synthetic, nearly defect-free diamond crystals reflect more than 99% of hard X-ray photons backwards in Bragg diffraction, with a remarkably small variation in magnitude across the sample. This is a quantum leap in the largest reflectivity measured to date, which is at the limit of what is theoretically possible. This accomplishment is achieved under the most challenging conditions of normal incidence and with extremely hard X-ray photons. C1 [Shvyd'ko, Yuri; Stoupin, Stanislav] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Blank, Vladimir; Terentyev, Sergey] Technol Inst Super Hard & Novel Carbon Mat, Troitsk 142190, Russia. RP Shvyd'ko, Y (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM shvydko@aps.anl.gov RI Blank, Vladimir/A-5577-2014 FU US Department of Energy (DoE), Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; DoE [DE-AC02-98CH10886] FX The authors are grateful to Kwang-Je Kim (APS) for stimulating interest and discussions. We are indebted to V. Denisov, S. Polyakov and M. Kuznezov (TISNCM) for help in growing and characterizing the diamond crystals. D. Shu (APS) is acknowledged for the development of the 13.9 keV high-resolution X-ray monochromator crucial for the present studies. A. H. Said and D. Walko (APS) are acknowledged for the beamline support. Thanks go to X. Huang (APS), B. Raghothamachar and M. Dudley (SUNY) for supporting the white beam topography studies at beamline X19C of the National Synchrotron Light Source. The authors are indebted to R. Lindberg (APS) for reading the manuscript and providing valuable suggestions. Work was supported by the US Department of Energy (DoE), Office of Science, Office of Basic Energy Sciences (contract no. DE-AC02-06CH11357). Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the DoE (contract no. DE-AC02-98CH10886). This work is dedicated to the memory of Uwe van Burck. NR 23 TC 47 Z9 48 U1 0 U2 25 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 EI 1749-4893 J9 NAT PHOTONICS JI Nat. Photonics PD SEP PY 2011 VL 5 IS 9 BP 539 EP 542 DI 10.1038/NPHOTON.2011.197 PG 4 WC Optics; Physics, Applied SC Optics; Physics GA 814AE UT WOS:000294412700012 ER PT J AU Adams, B AF Adams, Bernhard TI NONLINEAR X-RAY OPTICS The next phase for X-rays SO NATURE PHYSICS LA English DT News Item ID EXTREME-ULTRAVIOLET; CONVERSION C1 Argonne Natl Lab, Lemont, IL 60564 USA. RP Adams, B (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60564 USA. EM adams@aps.anl.gov NR 6 TC 4 Z9 4 U1 0 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD SEP PY 2011 VL 7 IS 9 BP 675 EP 676 DI 10.1038/nphys2056 PG 3 WC Physics, Multidisciplinary SC Physics GA 814VN UT WOS:000294485400009 ER PT J AU Zhao, J Niestemski, FC Kunwar, S Li, SL Steffens, P Hiess, A Kang, HJ Wilson, SD Wang, ZQ Dai, PC Madhavan, V AF Zhao, Jun Niestemski, F. C. Kunwar, Shankar Li, Shiliang Steffens, P. Hiess, A. Kang, H. J. Wilson, Stephen D. Wang, Ziqiang Dai, Pengcheng Madhavan, V. TI Electron-spin excitation coupling in an electron-doped copper oxide superconductor SO NATURE PHYSICS LA English DT Article ID TRANSITION-TEMPERATURE SUPERCONDUCTOR; BI2SR2CACU2O8+DELTA; SPECTRUM; DENSITY AB High-temperature (high-T(c)) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and spin correlations, which provides clues to the mechanism of high-T(c) superconductivity. Here we use neutron scattering and scanning tunnelling spectroscopy (STS) to study the evolution of the bosonic excitations in electron-doped superconductor Pr(0.88)LaCe(0.12)CuO(4-delta) with different transition temperatures (T(c)) obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with T(c) in a remarkably similar fashion to the low-energy electron tunnelling modes detected by STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometre length scales, and the dominant electron-boson coupling at low energies originates from the electron-spin excitations. C1 [Zhao, Jun; Li, Shiliang; Dai, Pengcheng] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Niestemski, F. C.; Kunwar, Shankar; Wilson, Stephen D.; Wang, Ziqiang; Madhavan, V.] Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. [Li, Shiliang; Dai, Pengcheng] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China. [Steffens, P.; Hiess, A.] Inst Max Von Laue Paul Langevin, F-38042 Grenoble 9, France. [Kang, H. J.] Natl Inst Stand & Technol, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Dai, Pengcheng] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Dai, PC (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. EM pdai@utk.edu; madhavan@bc.edu RI Zhao, Jun/A-2492-2010; Sanders, Susan/G-1957-2011; Li, Shiliang/B-9379-2009; Dai, Pengcheng /C-9171-2012 OI Zhao, Jun/0000-0002-0421-8934; Dai, Pengcheng /0000-0002-6088-3170 FU US NSF [NSF-OISE-0968226]; US DOE, Division of Scientific User Facilities; DOE [DE-SC0002554]; US DOE BES [DE-FG02-05ER46202]; Chinese Academy of Sciences; Ministry of Science and Technology of China [2010CB833102, 2010CB923002]; Miller Institute of Basic Research in Science at Berkeley; [NSF-CAREER-0645299] FX The neutron scattering work at UT/ORNL is supported by the US NSF-OISE-0968226, and by the US DOE, Division of Scientific User Facilities (P.D.). Work at BC is supported by US NSF-CAREER-0645299 (V.M.) and DOE DE-SC0002554 (Z.W.). The single crystal PLCCO growth effort at UT is supported by US DOE BES under Grant No. DE-FG02-05ER46202 (P.D.). Work at IOP is supported by the Chinese Academy of Sciences, the Ministry of Science and Technology of China (973 Project nos. 2010CB833102 and 2010CB923002). J.Z. is supported by a fellowship from Miller Institute of Basic Research in Science at Berkeley NR 30 TC 13 Z9 13 U1 0 U2 37 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD SEP PY 2011 VL 7 IS 9 BP 719 EP 724 DI 10.1038/NPHYS2006 PG 6 WC Physics, Multidisciplinary SC Physics GA 814VN UT WOS:000294485400020 ER PT J AU Gerig, RE Gibson, JM Mills, DM Ruzicka, WG Young, L Zholents, A AF Gerig, R. E. Gibson, J. M. Mills, D. M. Ruzicka, W. G. Young, L. Zholents, A. TI Status of the Advanced Photon Source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Synchrotron radiation facility AB In the fall of 2010, the Advanced Photon Source (APS) will enter its fifteenth year of user operations. During fiscal year 2009, the APS delivered X-ray beam to the scientific community 97.7% of scheduled hours (availability) and with a mean time between faults of 77.5 h. The APS remains the most prolific source worldwide of structure deposits in the Protein Data Bank (1433 in 2009) and a leader in the field of high-pressure research, among others. However, to maintain its position as a state-of-the-art facility for hard X-ray science, it will be necessary to refresh and improve the APS X-ray source and beamlines. We are presently on the path to do that through the APS Upgrade Project. The US Department of Energy Office of Science has formally approved the start of this project with the issuance of Critical Decision-0, Approve of Mission Need. The APS staff, in collaboration with our user community, is now in the process of developing a Conceptual Design Report that documents the proposed scope of the APS Upgrade Project. Components of the Upgrade plan will be presented as well as science highlights from the past year. (C) 2010 Elsevier B.V. All rights reserved. C1 [Gerig, R. E.; Gibson, J. M.; Mills, D. M.; Ruzicka, W. G.; Young, L.; Zholents, A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Mills, DM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM dmm@aps.anl.gov RI Gibson, Murray/E-5855-2013 OI Gibson, Murray/0000-0002-0807-6224 NR 0 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 1 EP 2 DI 10.1016/j.nima.2010.12.063 PG 2 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100002 ER PT J AU Benson, SV Boyce, JR Douglas, DR Evtushenko, P Hannon, FE Hernandez-Garcia, C Klopf, JM Neil, GR Shinn, MD Tennant, CD Zhang, S Williams, GP AF Benson, S. V. Boyce, J. R. Douglas, D. R. Evtushenko, P. Hannon, F. E. Hernandez-Garcia, C. Klopf, J. M. Neil, G. R. Shinn, M. D. Tennant, C. D. Zhang, S. Williams, G. P. TI The VUV/IR/THz free electron laser program at Jefferson Lab SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Free electron Laser; Energy recovered linac AB Jefferson Lab operates a pair of oscillator-based continuous-wave free electron lasers (FELs) as a linac-based next generation light source with pulse repetition rates up to 75 MHz. The facility uses an energy recovered linac design for efficiency of operation. Recent advances in superconducting technology have been implemented to produce higher acceleration gradients in the linac to produce higher electron beam energies that result in higher photon energies. Thus, while the system originally operated only in the IR, it now covers the photon energy range from the UV to THz, with harmonics upwards of 10 eV with an average spectral flux that is calculated to be 5 x 10(17) photons/s/0.1% BW. Pulse lengths are in the sub-picosecond regime, and the fully coherent nature of the source, both transversely and longitudinally, results in peak and average brightness values that are several orders of magnitude higher than storage rings. The system provides an R&D test-bed for studies of electron beam dynamics in a regime appropriate for next generation light sources operating at MHz repetition rates. (C) 2010 Elsevier B.V. All rights reserved. C1 [Benson, S. V.; Boyce, J. R.; Douglas, D. R.; Evtushenko, P.; Hannon, F. E.; Hernandez-Garcia, C.; Klopf, J. M.; Neil, G. R.; Shinn, M. D.; Tennant, C. D.; Zhang, S.; Williams, G. P.] Jefferson Lab, Newport News, VA 23606 USA. RP Williams, GP (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM gwyn@jlab.org NR 13 TC 3 Z9 3 U1 2 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 9 EP 11 DI 10.1016/j.nima.2010.12.093 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100005 ER PT J AU Wang, J Nasta, K Kao, CC AF Wang, Jun Nasta, Kathleen Kao, Chi-Chang TI Industrial research enhancement program at the National Synchrotron Light Source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Industrial research; Industry; Synchrotron facility AB Industrial research has attracted more and more attention recently at synchrotron facilities. Bringing the state-of-the-art research capabilities provided by these facilities to the industrial user community will help this community to improve their products and processing methods, to foster competition and build the economy. The National Synchrotron Light Source (NSLS) has a long and celebrated history in research partnerships with industry since its inception more than 25 years ago, and both industry and the facility have benefited tremendously from these partnerships. Over the years, the ways in which industrial research is conducted at synchrotron facilities have evolved significantly, and a new paradigm of collaboration between industry and facilities is clearly needed to address this changing situation. In this presentation, the discussion will focus on an enhancement plan recently implemented at the NSLS to address industrial users' concerns and needs. The goal of NSLS Industrial Program Enhancement plan is to encourage greater use of synchrotron tools by industry researchers, improve access to NSLS beamlines by industrial researchers and facilitate research collaborations between industrial researchers and NSLS staff as well as researchers from university and government laboratories. Examples of recent developments in these areas will be presented. (C) 2011 Elsevier B.V. All rights reserved. C1 [Wang, Jun; Nasta, Kathleen; Kao, Chi-Chang] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Wang, J (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM junwang@bnl.gov NR 0 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 19 EP 21 DI 10.1016/j.nima.2010.12.105 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100008 ER PT J AU Mills, DM AF Mills, Dennis M. TI The Advanced Photon Source-where we are and where we are going SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Synchrotron radiation facility AB The U.S. Department of Energy's (DOE's) Advanced Photon Source (APS) at Argonne National Laboratory enters its fifteenth year of user operations as a highly productive facility. In order to sustain this nation's position at the technology frontier, DOE-BES has proposed to upgrade the APS. (C) 2010 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Mills, DM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM dmm@aps.anl.gov NR 0 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 22 EP 24 DI 10.1016/j.nima.2010.12.166 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100009 ER PT J AU Steier, C Madur, A Nishimura, H Robin, D Sannibale, F Sun, C Wan, W Yang, L AF Steier, C. Madur, A. Nishimura, H. Robin, D. Sannibale, F. Sun, C. Wan, W. Yang, L. TI Lattice and emittance optimization techniques and the ALS brightness upgrade SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Lattice design; Nonlinear dynamics; Emittance; Brightness; Synchrotron light source ID GLOBAL DYNAMICS AB An upgrade project is under way to further improve the brightness of the Advanced Light Source at Berkeley Lab by reducing its horizontal emittance from 6.3 to 2.2 nm (effective emittance in the straights from 6.4 to 2.5 nm). This will result in a brightness increase by a factor of three for bend magnet beamlines and at least a factor of two for insertion device beamlines and will keep the ALS competitive with newer sources. This paper presents an overview of the upgrade project with emphasis on the nonlinear beam dynamics simulations. It also discusses in a more general way the techniques used at LBNL for finding optimum lattices (e.g. the ones with maximum brightness) and optimizing the particle dynamics, thereby increasing beam lifetime and stability. (C) 2010 Elsevier B.V. All rights reserved. C1 [Steier, C.; Madur, A.; Nishimura, H.; Robin, D.; Sannibale, F.; Sun, C.; Wan, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Yang, L.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Steier, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM CSteier@lbl.gov NR 13 TC 2 Z9 2 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 25 EP 29 DI 10.1016/j.nima.2010.11.077 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100010 ER PT J AU Berman, LE Yin, Z AF Berman, L. E. Yin, Z. TI Off-axis viewing of radiation emission by long wiggler sources SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Wiggler radiation emission ID SYNCHROTRON-RADIATION; UNDULATOR; PERFORMANCE AB When high-brilliance radiation is needed for experiments, insertion device sources are generally viewed on-axis. Off-axis emission of flux can be prodigious especially from wiggler sources having large emission fans. The on-axis and off-axis radiation emission characteristics from insertion device sources have been calculated extensively and are well known, but experimental verifications of some characteristics, particularly those associated with off-axis emission, are relatively few. Here measurements of the flux spectrum and apparent source size are described, as a function of horizontal emission angle, from the former X25 hybrid wiggler at the National Synchrotron Light Source (NSLS). (C) 2011 Elsevier B.V. All rights reserved. C1 [Berman, L. E.; Yin, Z.] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. RP Berman, LE (reprint author), Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. EM berman@bnl.gov NR 11 TC 2 Z9 2 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 35 EP 38 DI 10.1016/j.nima.2010.12.245 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100012 ER PT J AU Madur, A Arbelaez, D Marks, S Prestemon, S Robin, D Schlueter, R Steier, C Wan, W AF Madur, A. Arbelaez, D. Marks, S. Prestemon, S. Robin, D. Schlueter, R. Steier, C. Wan, W. TI Harmonic sextupoles for the Advanced Light Source low emittance upgrade SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Harmonic sextupoles; Combined function magnets; ALS; Conventional electromagnets AB The Advanced Light Source is a 3rd generation light source in operation since 1993. This light source is providing state of the art performance to more than 40 beamlines and their users thanks to the upgrades that have been completed over the last few years. Higher photon beam brightness is expected to become available to users in the near future through a new upgrade with the introduction of 48 sextupoles in the ALS lattice. Introducing new combined function magnets in an existing storage ring is a challenge due to the limited space available and a balance had to be found between magnet performance and spatial constraints. Moreover, the existing steering magnets will be replaced by the harmonic sextupoles. Therefore predicting the hysteresis behavior of the harmonic sextupole steering functions became critical for those included in the fast-orbit feedback loop (22 of them). After a brief introduction to the motivation for the upgrade and the scope of the project, we develop in this paper the different constraints driving the three required combined function magnet designs as well as their expected performance. (C) 2011 Elsevier B.V. All rights reserved. C1 [Madur, A.; Arbelaez, D.; Marks, S.; Prestemon, S.; Robin, D.; Schlueter, R.; Steier, C.; Wan, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Madur, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM amadur@lbl.gov NR 8 TC 2 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 39 EP 41 DI 10.1016/j.nima.2010.12.157 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100013 ER PT J AU Temnykh, A Babzien, M Davis, D Fedurin, M Kusche, K Park, J Yakimenko, V AF Temnykh, A. Babzien, M. Davis, D. Fedurin, M. Kusche, K. Park, J. Yakimenko, V. TI Delta undulator model: Magnetic field and beam test results SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Undulator magnet AB A novel type of in-vacuum Elliptical Polarization Undulator (EPU) magnet optimized for linac beam (Delta undulator) was developed at the Laboratory for Elementary-Particle Physics (LEPP) at Cornell University as part of insertion device development for the future Cornell 5 GeV Energy Recovery Source of coherent hard X-rays [1,7]. To evaluate mechanical, vacuum and magnetic properties of the magnet, a short 30 cm model with a 5 mm diameter round gap and a 2.4 cm period was built and tested in LEPP. The beam test of the Delta undulator model was conducted at Accelerator Test Facility (ATF) in BNL with similar to 60 MeV linac beam. The beam testing results confirmed basic properties of the undulator magnet obtained through the magnetic field measurement. In the paper we describe the magnet design, techniques and setups used for the magnetic field measurement and the beam testing results. Published by Elsevier B.V. C1 [Temnykh, A.] Cornell Univ, Ithaca, NY 14850 USA. [Babzien, M.; Davis, D.; Fedurin, M.; Kusche, K.; Park, J.; Yakimenko, V.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Temnykh, A (reprint author), Cornell Univ, Ithaca, NY 14850 USA. EM abt6@cornell.edu NR 7 TC 2 Z9 2 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 42 EP 45 DI 10.1016/j.nima.2010.11.011 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100014 ER PT J AU De Andrade, V Thieme, J Northrup, P Yao, Y Lanzirotti, A Eng, P Shen, Q AF De Andrade, V. Thieme, J. Northrup, P. Yao, Y. Lanzirotti, A. Eng, P. Shen, Q. TI The sub-micron resolution X-ray spectroscopy beamline at NSLS-II SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE SRX; NSLS-II; Spectroscopy; Fluorescence; Imaging AB For many research areas such as life, environmental, earth or material sciences, novel analytical resources have to be developed for an advance understanding of complex natural and engineered systems that are heterogeneous on the micron to the tenths of microns scale. NSLS-II at BNL will be a synchrotron radiation source with an ultra-high brilliance delivering a high current (500 mA). One of the 1st six NSLS-II beamlines will be the Sub-micron Resolution X-ray spectroscopy beamline (SRX), dedicated as an analytical tool to study complex systems on a sub-micron length scale. SRX will comprise two branches thanks to a canted setup with two undulators: the first branch using Kirkpatrick-Baez mirrors as focusing optics will cover the energy range of 4.65-23 keV, allowing for XANES experiments from the Ti to the Rh K-edge. Thanks to a horizontally deflecting double crystal monochromator with maximum stability, a set of slits located on the secondary source, and two sets of complementary and quickly interchangeable KB mirrors, spectroscopy with very high spectral and spatial resolution will be achieved. The spot size will almost fully cover a range from 60 x 60 to 1300 x 500 nm(2), providing an attractive adaptability of the observation scale. A 1.5 m long IVU21 will serve as a light source. The expected high flux in a sub-micron-spot (5 x 10(12) and 7 x 10(13) ph s(-1) at maximum and lowest resolutions) will open new possibilities for spectromicroscopy of trace elements. The 2nd canted undulator will serve as an independent light source for the second branch designed for experiments with X-ray energies in the range of 2-15 key. Using Fresnel zone plates, the spatial resolution aimed for is around 30 nm with up to 7 x 10(9) ph s(-1) in the spot. This branch would be attractive for many biological applications from life and environmental science due to low-Z elements of interest within that energy range. In both experimental stations, X-ray fluorescence will be used for imaging, spectroscopy, tomography and mu-diffraction experiments. Published by Elsevier B.V. C1 [De Andrade, V.; Thieme, J.; Northrup, P.; Yao, Y.; Shen, Q.] Brookhaven Natl Lab, NSLS II, Upton, NY 11973 USA. [Lanzirotti, A.; Eng, P.] Univ Chicago, Consortium Adv Radiat Sources, Chicago, IL 60637 USA. RP De Andrade, V (reprint author), Brookhaven Natl Lab, NSLS II, Bldg 817, Upton, NY 11973 USA. EM vdeandrade@bnl.gov RI Thieme, Juergen/D-6814-2013 NR 4 TC 6 Z9 6 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 46 EP 48 DI 10.1016/j.nima.2010.11.154 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100015 ER PT J AU Reininger, R Woicik, JC Hulbert, SL Fischer, DA AF Reininger, R. Woicik, J. C. Hulbert, S. L. Fischer, D. A. TI NIST NSLS-II spectroscopy beamline optical plan for soft and tender X-ray spectroscopy and microscopy (100 eV to 7.5 keV) SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Beamline; Soft X-rays; Tender X-rays; Canted undulators ID SYNCHROTRON-RADIATION AB We describe the NIST multi-station beamline complex planned for NSLS-II. The beamline complex is based on two canted undulators, one for soft X-rays (0.1-2.0 key) and one for tender X-rays (2-7.5 key). The complex will have a total of six experimental stations, three on the soft X-ray branch and three on the tender X-ray branch, thereby serving a variety of soft and tender X-ray spectroscopy experiments. Two of the tender X-ray branch experimental endstations (HAXPES/NEXAFS and the XPS nanoscope) can be illuminated by both the soft and tender X-ray undulators, either sequentially or simultaneously, providing a continuous selection of X-rays from 100 eV to 7.5 keV. In this paper, the expected beamline performance at the XPS nanoscope endstation, for both the soft and tender X-ray sources, is presented. (C) 2010 Elsevier B.V. All rights reserved. C1 [Reininger, R.] Sci Amwers & Solut, Mt Sinai, NY 11766 USA. [Woicik, J. C.; Fischer, D. A.] NIST, Brookhaven Natl Lab, Upton, NY 11973 USA. [Hulbert, S. L.] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. RP Reininger, R (reprint author), Sci Amwers & Solut, 77 Constantine Way, Mt Sinai, NY 11766 USA. EM ruben@sas-rr.com NR 8 TC 7 Z9 7 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 49 EP 51 DI 10.1016/j.nima.2010.11.172 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100016 ER PT J AU Karapetrova, E Ice, G Tischler, J Hong, HW Zschack, P AF Karapetrova, Evguenia Ice, Gene Tischler, Jonathan Hong, Hawoong Zschack, Paul TI Design and performance of the 33-BM beamline at the Advanced Photon Source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE X-rays; Bending magnet; Sagittal focusing; Collimation; Flux AB The APS sector 33 bending magnet beamline was designed to provide high X-ray flux with relatively small focal spot (1 mm x 0.5 mm with similar to 10(12) ph/s/100 mA flux) and energy resolution limited mostly by the intrinsic resolution of the monochromator optics, delta E/E = 1.5 x 10(-4). The beamline accepts 4 mrad of the dipole radiation fan and uses a fixed offset design. A collimating mirror is followed by a double-crystal monochromator with a sagitally bent Si second crystal. A second mirror is dynamically bent to vertically focus or to collimate the beam at the experiment location. This design successfully delivers focused X-rays with an energy range from 5 to 38 keV for use in diffraction measurements of thin films, interface structures and bulk materials. The monochromator has scanning capabilities that also enable anomalous scattering techniques. Experiments that demonstrate the performance of the beamline will be described. (C) 2011 Elsevier B.V. All rights reserved. C1 [Karapetrova, Evguenia; Hong, Hawoong; Zschack, Paul] Argonne Natl Lab, Argonne, IL 60439 USA. [Ice, Gene; Tischler, Jonathan] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Karapetrova, E (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jenia@anl.gov NR 3 TC 14 Z9 14 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 52 EP 54 DI 10.1016/j.nima.2010.12.159 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100017 ER PT J AU Severson, M Bissen, M Fisher, MV Rogers, G Reininger, R Green, M Eisert, D Tredinnick, B AF Severson, M. Bissen, M. Fisher, M. V. Rogers, G. Reininger, R. Green, M. Eisert, D. Tredinnick, B. TI New SRC APPLE II variable polarization beamline SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Beamline; Polarization; SRC; Polarimeter ID PLANE GRATING MONOCHROMATOR; HIGH-RESOLUTION; UNDULATOR; ELETTRA; ALADDIN AB SRC has recently commissioned a new Varied Line-Spacing Plane Grating Monochromator (VLS-PGM) utilizing as its source a 1 m long APPLE II insertion device in short-straight-section 9 of the Aladdin storage ring. The insertion device reliably delivers horizontal, vertical, and right and left circularly polarized light to the beamline. Measurements from an in situ polarimeter can be used for undulator corrections to compensate for depolarizing effects of the beamline. The beamline has only three optical elements and covers the energy range from 11.1 to 270 eV using two varied line-spacing gratings. A plane mirror rotates to illuminate the gratings at the correct angle to cancel the defocus term at all photon energies. An exit slit and elliptical-toroid refocusing mirror complete the beamline. Using a 50 mu m exit slit, the beamline provides moderate to high resolution, with measured flux in the mid 10(12) (photons/s/200 mA) range, and a spot size of 400 mu m horizontal by 30 mu m vertical. (C) 2010 Elsevier B.V. All rights reserved. C1 [Severson, M.; Bissen, M.; Fisher, M. V.; Rogers, G.; Green, M.; Eisert, D.; Tredinnick, B.] Univ Wisconsin, Ctr Synchrotron Radiat, Stoughton, WI 53589 USA. [Reininger, R.] Brookhaven Natl Lab, NSLS II, Upton, NY 11973 USA. RP Severson, M (reprint author), Univ Wisconsin, Ctr Synchrotron Radiat, 3731 Schneider Dr, Stoughton, WI 53589 USA. EM severson@src.wisc.edu NR 13 TC 1 Z9 1 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 55 EP 57 DI 10.1016/j.nima.2010.12.029 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100018 ER PT J AU Weigand, SJ Keane, DT AF Weigand, Steven J. Keane, Denis T. TI DND-CAT's new triple area detector system for simultaneous data collection at multiple length scales SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE X-ray; SAXS; MAXS; WAXS; Detectors; CCD ID ZNS NANOPARTICLES AB The DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) built and currently manages sector 5 at the Advanced Photon Source (APS), Argonne National Laboratory. One of the principal techniques supported by DND-CAT is Small and Wide-Angle X-ray Scattering (SAXS/WAXS), with an emphasis on simultaneous data collection over a wide azimuthal and reciprocal space range using a custom SAXS/WAXS detector system. A new triple detector system is now in development, and we describe the key parameters and characteristics of the new instrument, which will be faster, more flexible, more robust, and will improve q-space resolution in a critical reciprocal space regime between the traditional WAXS and SAXS ranges. (C) 2010 Elsevier B.V. All rights reserved. C1 [Keane, Denis T.] Northwestern Univ, DND CAT, APS ANL Sect 5, Adv Photon Source,Argonne Natl Lab, Argonne, IL 60439 USA. [Keane, Denis T.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Keane, DT (reprint author), Northwestern Univ, DND CAT, APS ANL Sect 5, Adv Photon Source,Argonne Natl Lab, Bldg 432-A002,9700 S Cass Ave, Argonne, IL 60439 USA. EM weigansj@northwestern.edu; dtkeane@northwestern.edu NR 12 TC 9 Z9 9 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 61 EP 63 DI 10.1016/j.nima.2010.12.045 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100020 ER PT J AU Khalid, S Ehrlich, SN Lenhard, A Clay, B AF Khalid, S. Ehrlich, S. N. Lenhard, A. Clay, B. TI Hard X-rays QEXAFS instrumentation with scan range 20 to 4000 eV SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE QEXAFS; EXAFS; XANES ID ABSORPTION SPECTROSCOPY; ACQUISITION; CATALYSTS; EXAFS; XAS AB The Quick Extended Absorption Fine Structure (QEXAFS) spectroscopy was developed at the National Synchrotron Light Source (NSLS) to learn on seconds and sub-seconds time scale of the structural changes in the material. The initial system was developed at beamline X18B [1], however, two drawbacks with this original system were (1) problems with scan frequencies <0.1 Hz due to insufficient power of the DC motor and (2) rough operation at large angles due to gravity pulling on the monochromator arm, which is parallel to the beam, giving rise to different durations of low to high and high to low energy scans. The beamline was not focused so there was not enough flux to get good quality data. To overcome these problems we developed a new QEXAFS system at focused beamline X18A and changed the mechanical arrangement of data collection. The whole driving mechanism is still outside the vacuum environment and the mode of operation can be changed to conventional EXAFS in few minutes without venting the monochromator chamber. (C) 2010 Elsevier B.V. All rights reserved. C1 [Khalid, S.; Ehrlich, S. N.; Lenhard, A.; Clay, B.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. RP Khalid, S (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM khalid@bnl.gov NR 9 TC 1 Z9 2 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 64 EP 66 DI 10.1016/j.nima.2010.11.074 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100021 ER PT J AU Chollet, M Ahr, B Walko, DA Rose-Petruck, C Adams, B AF Chollet, M. Ahr, B. Walko, D. A. Rose-Petruck, C. Adams, B. TI Hard X-ray streak camera at the Advanced Photon Source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Streak camera; X-ray; Pump probe; Diffraction; Absorption spectroscopy AB An X-ray streak camera capable of 1 to 2 ps time resolution has been in operation for the past two years at Sector 7 of the Advanced Photon Source (APS). It is typically used for laser-pump and X-ray probe experiments by using the Ti:Sapphire laser system installed in Sector 7. Techniques currently supported through standardized and pre-aligned experimental setups are liquid-phase absorption spectroscopy, reflectivity, and diffraction. With the laser running at 1 or 5 kHz, about 30% of the laser power is split off to trigger a photoconductive switch generating the deflection voltage ramp in the streak camera. Alternatively, the laser oscillator can be used to excite the sample at a rate of 88 MHz corresponding to the 324-bunch fill pattern of the APS. The deflection voltage is then a 1.05 GHz signal amplified to 10 W, which is obtained by tripling the APS RF. Published by Elsevier B.V. C1 [Chollet, M.; Walko, D. A.; Adams, B.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ahr, B.; Rose-Petruck, C.] Brown Univ, Dept Chem, Providence, RI 02912 USA. RP Chollet, M (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM chollet@aps.anl.gov NR 11 TC 1 Z9 1 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 70 EP 72 DI 10.1016/j.nima.2010.11.052 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100023 ER PT J AU Ross, S Kline, D AF Ross, Steve Kline, David TI Developments in X-ray detectors at the Advanced Photon Source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE X-ray detector; Sensor; Semiconductor fabrication; Integrated circuit AB We present a progress report on some of the X-ray detector developments on-going at the Argonne National Laboratories Advanced Photon Source. We focus on pixel array detector architecture, and emphasize collaborations, particularly with industries and universities. We discuss our progress establishing a silicon-sensor fabrication facility at Northern Illinois University, our application specific integrated circuit design work. X-ray testing and detector calibration, and readout electronics based on a collection of interchangeable digital circuit boards. Published by Elsevier B.V. C1 [Ross, Steve; Kline, David] Argonne Natl Lab, Argonne, IL 60439 USA. RP Ross, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM skross@anl.gov NR 5 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 73 EP 74 DI 10.1016/j.nima.2011.01.013 PG 2 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100024 ER PT J AU Carini, GA Rehak, P Chen, W Siddons, DP AF Carini, Gabriella A. Rehak, Pavel Chen, Wei Siddons, D. Peter TI Charge-pump detector for X-ray correlation spectroscopy SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Fast readout pixelated detectors; X-ray Correlation Spectroscopy ID PN-CCDS AB A detector for the X-ray Correlation Spectroscopy (XCS) instrument at the Linac Coherent Light Source (LCLS) in Stanford (CA) is being developed at Brookhaven National Laboratory (BNL). The LCLS is the first operational X-ray free electron laser. It provides extremely bright coherent laser-like X-ray pulses with energy up to 8 key, shorter than 100 fs and with a repetition rate that will go up to 120 Hz. An ideal detector for XCS experiments should cover a large angular range with high efficiency and provide a proper resolution to resolve the speckle. The requirement for dynamic range is not particularly stringent while a fast readout is needed. In particular, the Charge Pump Detector has to be highly efficient at the energy of 8 keV, provide a dynamic range of 100 photons and a readout noise much better than one photon. The 1024 x 1024 pixels have to be read within the repetition rate of the laser pulses, that is faster than 8 ms. The pixel size of 56 mu m x 56 mu m is a compromise between charge sharing and small pixel. Working principle and details of the detector will be discussed. (C) 2011 Elsevier B.V. All rights reserved. C1 [Carini, Gabriella A.; Siddons, D. Peter] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Rehak, Pavel; Chen, Wei] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. RP Carini, GA (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. EM carini@bnl.gov NR 6 TC 3 Z9 3 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 75 EP 77 DI 10.1016/j.nima.2010.12.241 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100025 ER PT J AU Walko, DA Arms, DA Miceli, A Kastengren, AL AF Walko, D. A. Arms, D. A. Miceli, A. Kastengren, A. L. TI Empirical dead-time corrections for energy-resolving detectors at synchrotron sources SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Fluorescence detector; Efficiency; Dead-time; Synchrotron AB We examine the high count-rate performance of an energy-resolving detector in the three operating modes of the Advanced Photon Source CAPS). Specifically, we present the optimal dead-time corrections for the Sit Vortex silicon drift diode (SDD) detector using a digital pulse processor, highlighting the differences in operation between the 24-bunch, 324-bunch, and hybrid singlet modes of the APS. We analyze the input count rate (ICR), output count rate (OCR), and several regions of interest (ROIs). We find that the correct formula for dead-time correction can extend the use of the detector to significantly higher count rates. (C) 2010 Elsevier B.V. All rights reserved. C1 [Walko, D. A.; Arms, D. A.; Miceli, A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Kastengren, A. L.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Walko, DA (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM d-walko@anl.gov NR 6 TC 8 Z9 8 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 81 EP 83 DI 10.1016/j.nima.2010.12.059 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100027 ER PT J AU Williams, GJ Watson, MA Arms, DA Mooney, TM Walko, DA Landahl, EC AF Williams, G. Jackson Watson, Michael A. Arms, Dohn A. Mooney, Timothy M. Walko, Donald A. Landahl, Eric C. TI EPICS oscilloscope for time-resolved data acquisition SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE X-ray diffraction; Time-resolved; Synchrotron; Pump-probe; Oscilloscope; Avalanche photodiode; APD; EPICS; Ultrafast laser; Gallium arsenide AB The Sector 7 undulator beamline (7 ID) of the Advanced Photon Source CAPS) is dedicated to time-resolved X-ray research [1]. Silicon avalanche photodiodes (APDs) are used as the primary point detector for time-resolved Bragg diffraction experiments for their fast recovery time (< 100 ns) and ability to observe single photon events. For experiments with high photon flux (>= 10(5) photons/s) at the detector, however, deadtime corrections to the counting statistics become appreciable [2]. Common practice has been to attenuate the monochromatic beam entering the experimental hutch to an appropriately low flux [3]. For these high-flux experiments, an APD operated in proportional mode is a better detector choice due to a large dynamic range and linearity. With the ZT4212 ZTEC, EPICS based oscilloscope, the operating procedure to use an APD in proportional mode has been improved. This article shows the setup and operating procedure for this oscilloscope and demonstrates its application to measuring time-resolved rocking curves of laser excited semiconductors. (C) 2011 Elsevier B.V. All rights reserved. C1 [Williams, G. Jackson; Watson, Michael A.; Landahl, Eric C.] Depaul Univ, Dept Phys, Chicago, IL 60614 USA. [Williams, G. Jackson; Arms, Dohn A.; Mooney, Timothy M.; Walko, Donald A.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Landahl, EC (reprint author), Depaul Univ, Dept Phys, 2219 N Kenmore, Chicago, IL 60614 USA. EM elandahl@depaul.edu RI Williams, Gerald/G-7573-2012 NR 8 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 84 EP 86 DI 10.1016/j.nima.2010.12.243 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100028 ER PT J AU Makarov, O Hilgart, M Ogata, C Pothineni, S Cork, C AF Makarov, O. Hilgart, M. Ogata, C. Pothineni, S. Cork, C. TI Control system for the 2nd generation Berkeley automounters (BAM2) at GM/CA-CAT macromolecular crystallography beamlines SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Control software; Automounter; Macromolecular crystallography AB GM/CA-CAT at Sector 23 of the Advanced Photon Source CAPS) is an NIH funded facility for crystallographic structure determination of biological macromolecules by X-ray diffraction. A second-generation Berkeley automounter is being integrated into the beamline control system at the 23BM experimental station. This new device replaces the previous all-pneumatic gripper motions with a combination of pneumatics and XYZ motorized linear stages. The latter adds a higher degree of flexibility to the robot including auto-alignment capability, accommodation of a larger capacity sample Dewar of arbitrary shape, and support for advanced operations such as crystal washing, while preserving the overall simplicity and efficiency of the Berkeley automounter design. Published by Elsevier B.V. C1 [Makarov, O.; Hilgart, M.; Ogata, C.; Pothineni, S.] Argonne Natl Lab, GM CA CAT, Biosci Div, Argonne, IL 60439 USA. [Cork, C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Makarov, O (reprint author), Argonne Natl Lab, GM CA CAT, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM makarov@anl.gov FU NCI NIH HHS [Y01 CO1020-11]; NIGMS NIH HHS [Y01 GM1104-11] NR 6 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 87 EP 90 DI 10.1016/j.nima.2010.12.244 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100029 PM 21822343 ER PT J AU Keister, JW Smedley, J Muller, EM Bohon, J Heroux, A AF Keister, Jeffrey W. Smedley, John Muller, Erik M. Bohon, Jen Heroux, Annie TI Diamond X-ray photodiode for white and monochromatic SR beams SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Diamond; Synchrotron; Responsivity; X-ray; Detector; Diode; High flux; White beam; Position monitor ID RADIATION DETECTOR; CVD DIAMOND; DEVICES AB High-purity, single-crystal CVD diamond plates are screened for quality and instrumented into a sensor assembly for quantitative characterization of flux and position sensitivity. Initial investigations have yielded encouraging results and have led to further development. Several limiting complications are observed and discussed, as well as mitigations thereof. For example, diamond quality requirements for X-ray diodes include low nitrogen impurity and crystallographic defectivity. Thin electrode windows and electronic readout performance are ultimately also critical to device performance. Promising features observed so far from prototype devices include calculable responsivity, flux linearity, position sensitivity and timing performance. Recent results from testing in high-flux and high-speed applications are described. (C) 2010 Elsevier B.V. All rights reserved. C1 [Keister, Jeffrey W.] Brookhaven Natl Lab, NSLS Project 2, Upton, NY 11973 USA. [Smedley, John] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. [Muller, Erik M.] SUNY, Brookhaven Natl Lab, Dept Phys & Astron, Upton, NY 11973 USA. [Bohon, Jen] Case Western Reserve Univ, Brookhaven Natl Lab, Ctr Synchrotron Biosci, Upton, NY 11973 USA. [Heroux, Annie] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Keister, JW (reprint author), Brookhaven Natl Lab, NSLS Project 2, Bldg 703, Upton, NY 11973 USA. EM jkeister@bnl.gov; smedley@bnl.gov; emuller@bnl.gov; jbohon@bnl.gov; heroux@bnl.gov RI Muller, Erik/A-9790-2008 FU NCRR NIH HHS [P41 RR012408-15, P41 RR012408]; NIBIB NIH HHS [P30 EB009998] NR 13 TC 6 Z9 6 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 91 EP 93 DI 10.1016/j.nima.2010.11.135 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100030 PM 21822344 ER PT J AU Xu, SL Keefe, LJ Mulichak, A Yan, LF Alp, EE Zhao, JY Fischetti, RF AF Xu, Shenglan Keefe, Lisa J. Mulichak, Anne Yan, Lifen Alp, Ercan E. Zhao, Jiyong Fischetti, Robert F. TI Mini-beam collimator applications at the Advanced Photon Source SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Collimator; Kinematic mounting system; High resolution translation stages; Macromolecular crystallography AB In 2007, the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA CAT, Sector 23, Advanced Photon Source) began providing mini-beam collimators to its users. These collimators contained individual, 5- or 10-mu m pinholes and were rapidly exchangeable, thereby allowing users to tailor the beam size to their experimental needs. The use of these collimators provided a reduction in background noise, and thus improved the signal-to-noise ratio [1,2]. Recent improvements in the collimator design include construction of the device from a monolithic piece of molybdenum with multiple pinholes mounted inside In This allows users to select from various size options from within the beamline control software without the realignment that was previously necessary. In addition, a new, 20-mu m pinhole has been added to create a "quad-collimator", resulting in greater flexibility for the users. The mini-beam collimator is now available at multiple crystallographic beamlines and also is a part of the first Mossbauer Microscopic system at sector 3-ID. (C) 2010 Elsevier B.V. All rights reserved, C1 [Xu, Shenglan; Fischetti, Robert F.] Argonne Natl Lab, GM CA CAT, Biosci Div, Argonne, IL 60439 USA. [Keefe, Lisa J.; Mulichak, Anne] Argonne Natl Lab, IMCA CAT, Argonne, IL 60439 USA. [Yan, Lifen; Alp, Ercan E.; Zhao, Jiyong] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Xu, SL (reprint author), Argonne Natl Lab, GM CA CAT, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sxu@anl.gov NR 3 TC 6 Z9 6 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 104 EP 106 DI 10.1016/j.nima.2010.11.008 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100034 ER PT J AU Yoder, DW Makarov, O Corcoran, S Fischetti, RF AF Yoder, Derek W. Makarov, Oleg Corcoran, Stephen Fischetti, Robert F. TI PID feedback control of monochromator thermal stabilization SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Beamline optics; Thermal stabilization; PID feedback control; Double crystal monochromator ID GM/CA-CAT; CRYSTALLOGRAPHY; BEAMLINES; CRYSTALS AB The desire for increasingly smaller X-ray beams for macromolecular crystallography experiments also stimulates the need for improvements in beam stability. There are numerous sources of instability, which influence beam quality on the micron-size scale. Typically, the most problematic source is thermal drift within the double crystal monochromators. In addition to using liquid nitrogen to indirectly cool both the first and second crystals, GM/CA-CAT previously used a combination of flowing water at constant temperature and copper braiding to stabilize the mechanics, mounts, and the Compton scatter shielding. However, the copper braids inefficiently stabilized the temperature of components that were distant from the water lines. Additionally, vibrations in the water lines propagated throughout the vibrationally dampened monochromator, thereby introducing both positional and intensity instabilities in the transmitted X-ray beam. To address these problems, heating pads were placed directly onto the temperature-sensitive components, with output controlled by a PID-feedback loop. As a result, there is negligible temperature change in the first crystal radiation shielding over the entire range of operational heat loads. Additionally, the angular drift in the second crystal induced by temperature changes in other components is dramatically decreased. (C) 2010 Elsevier B.V. All rights reserved. C1 [Yoder, Derek W.; Makarov, Oleg; Corcoran, Stephen; Fischetti, Robert F.] Argonne Natl Lab, GM CA CAT, Biosci Div, Argonne, IL 60439 USA. RP Fischetti, RF (reprint author), Argonne Natl Lab, GM CA CAT, Biosci Div, 9700 S Cass Ave,Bldg 436D, Argonne, IL 60439 USA. EM rfischetti@anl.gov NR 9 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 107 EP 108 DI 10.1016/j.nima.2010.11.177 PG 2 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100035 ER PT J AU Gofron, KJ Molitsky, M Alkire, RW Joachimiak, A AF Gofron, K. J. Molitsky, M. Alkire, R. W. Joachimiak, A. TI On-axis viewing: Sample visualization along the synchrotron X-ray beam SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Synchrotron; X-ray; Scintillator; Fluorescence; Single crystal; On-axis AB The SBC on-axis visualization system allows viewing of biological crystal samples along the X-ray beam direction, without image degradation and without parallax distortion. The on-axis system was constructed using a long working distance Maksutov-Cassegrain (MC) reflective microscope, and a right angle (45 degrees) externally reflecting mirror. The minimum size of the right angle mirror and the maximum size of the hole through which X-rays pass depend on the sample to mirror distance as well as the required field of view and optics working distance. The on-axis system allows biological crystal visualization during diffraction data collection with full Kappa geometry without image degradation (paraxial cone rays are excluded from the image plane). On the basis of these observations it is recommended that users seriously consider on-axis reflective rather than refractive optics as the primary visualization technique. (C) 2010 Elsevier B.V. All rights reserved. C1 [Gofron, K. J.; Molitsky, M.; Alkire, R. W.; Joachimiak, A.] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA. RP Gofron, KJ (reprint author), Argonne Natl Lab, Struct Biol Ctr, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gofron@anl.gov NR 4 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 109 EP 111 DI 10.1016/j.nima.2010.12.085 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100036 ER PT J AU Alkire, RW Molitsky, M Rotella, FJ Lazarski, K Joachimiak, A AF Alkire, R. W. Molitsky, M. Rotella, F. J. Lazarski, K. Joachimiak, A. TI A new mini-beam device for protein crystallography SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Mini-beam; Micro-beam; Macromolecular crystallography AB A fully motorized mini-beam device has been constructed for use in protein crystallography. This device separates the beam-defining aperture from the guard aperture into two distinct components, removing the need for pitch and yaw adjustments. Each aperture can be scanned separately using only x and y translations, allowing independent positioning of the beam-defining and guard apertures. Switching from mini-beam to the existing slit system is controlled by a single mouse click. (C) 2010 Elsevier B.V. All rights reserved. C1 [Alkire, R. W.; Molitsky, M.; Rotella, F. J.; Lazarski, K.; Joachimiak, A.] Argonne Natl Lab, Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA. RP Alkire, RW (reprint author), Argonne Natl Lab, Struct Biol Ctr, Biosci Div, 9700 S Cass Ave,Bldg 435, Argonne, IL 60439 USA. EM alkire@anl.gov NR 3 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 112 EP 113 DI 10.1016/j.nima.2010.11.123 PG 2 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100037 ER PT J AU Shu, DM Lee, WK Liu, WJ Ice, GE Shvyd'ko, Y Kim, KJ AF Shu, Deming Lee, Wah-Keat Liu, Wenjun Ice, Gene E. Shvyd'ko, Yuri Kim, Kwang-Je TI Development and applications of a two-dimensional tip-tilting stage system with nanoradian-level positioning resolution SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Precision instrument; Tip-tilting stage; Nanopositioning; Microdiffraction; X-ray free-electron-laser oscillator ID SYNCHROTRON-RADIATION AB In this paper, designs of a novel rotary weak-link stage for a vertical rotation axis and a two-dimensional tip-tilting system are presented. Applications of these new stage systems include: an advanced X-ray stereo imaging instrument for particle tracking velocimetry, an alignment stage system for hard X-ray nano-focusing Montel mirror optics, and an ultra-precision crystal manipulator for cryo-cooling optical cavities of an X-ray free-electron-laser oscillator (XFELO). (C) 2011 Elsevier B.V. All rights reserved. C1 [Shu, Deming; Lee, Wah-Keat; Liu, Wenjun; Shvyd'ko, Yuri; Kim, Kwang-Je] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ice, Gene E.] Oak Ridge Natl Lab, MST Div, Oak Ridge, TN 37831 USA. RP Shu, DM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM shu@aps.anl.gov NR 12 TC 3 Z9 3 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 114 EP 117 DI 10.1016/j.nima.2011.01.039 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100038 ER PT J AU Chubar, O Chu, YS Kaznatcheev, K Yan, HF AF Chubar, Oleg Chu, Yong S. Kaznatcheev, Konstantine Yan, Hanfei TI Application of partially coherent wavefront propagation calculations for design of coherence-preserving synchrotron radiation beamlines SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Synchrotron radiation; Coherence; Wave optics; Microscopy ID FACILITY SOLEIL; CODE AB Ultra-low emittance third-generation synchrotron radiation (SR) sources, such as NSLS-II and MAX-IV, will offer excellent opportunities for further development of experimental techniques exploiting X-ray coherence. However, even in these new SR sources, the radiation produced by relativistic electrons (in undulators, wigglers and bending magnets) will remain only partially coherent in the X-ray spectral range. "Extraction" of "coherent portion" of the radiation flux and its transport to sample without loss of coherence must be performed by dedicated SR beamlines, optimized for particular types of experiments. Detailed quantitative prediction of partially coherent X-ray beam properties at propagation through optical elements, which is required for the optimization of such beamlines, can only be obtained from accurate and efficient physical-optics based numerical simulations. Examples of such simulations, made for NSLS-II beamlines, using "Synchrotron Radiation Workshop" (SRW) computer code, are presented. Special attention is paid to the numerical analysis of the basic properties of partially coherent undulator radiation beam and its distinctions from the Gaussian beam. Performance characteristics of importance for particular beamlines, such as radiation spot size and flux at sample vs size of secondary source aperture for high-resolution microscopy beamlines, are predicted by the simulations. (C) 2010 Elsevier B.V. All rights reserved. C1 [Chubar, Oleg; Chu, Yong S.; Kaznatcheev, Konstantine; Yan, Hanfei] Brookhaven Natl Lab, NSLS 2, Upton, NY 11973 USA. RP Chubar, O (reprint author), Brookhaven Natl Lab, NSLS 2, Upton, NY 11973 USA. EM chubar@bnl.gov RI Chubar, Oleg/B-6286-2014; Yan, Hanfei/F-7993-2011 OI Yan, Hanfei/0000-0001-6824-0367 NR 18 TC 11 Z9 12 U1 3 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 118 EP 122 DI 10.1016/j.nima.2010.11.134 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100039 ER PT J AU Heald, SM AF Heald, Steve M. TI Optics upgrades at the APS beamline 20-BM SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE X-ray optics; Reflectivity; Focusing; Microfocusing AB Recently, beamline 20-BM has been upgraded with new optics. A large bent cylindrical focusing mirror has been installed to provide an intense focused beam. It is designed to operate over the energy range 2.7-30 keV, and features a novel Al(2)O(3)/Pt coating. When operated near 2.6 mrad, the Pt coating provides good reflectivity up to 30 key. The Al(2)O(3) overlayer minimizes the influence of the Pt M and L edges. The second upgrade that is in progress is the development of longer KB mirrors. A prototype bender has achieved a focus of about 2.5 mu m using a 300 mm long mirror. Analysis of the focal spot indicates that the size is dominated by the slope errors of the mirror, and can be further reduced if these are minimized by better mirrors or by using differential coating methods. (C) 2010 Elsevier B.V. All rights reserved. C1 Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Heald, SM (reprint author), Argonne Natl Lab, Adv Photon Source, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM heald@aps.anl.gov NR 3 TC 8 Z9 8 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 128 EP 130 DI 10.1016/j.nima.2010.11.070 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100041 ER PT J AU Berman, LE Allaire, M Chance, MR Hendrickson, WA Heroux, A Jakoncic, J Liu, Q Orville, AM Robinson, HH Schneider, DK Shi, W Soares, AS Stojanoff, V Stoner-Ma, D Sweet, RM AF Berman, L. E. Allaire, M. Chance, M. R. Hendrickson, W. A. Heroux, A. Jakoncic, J. Liu, Q. Orville, A. M. Robinson, H. H. Schneider, D. K. Shi, W. Soares, A. S. Stojanoff, V. Stoner-Ma, D. Sweet, R. M. TI Optics concept for a pair of undulator beamlines for MX SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Canted undulator beamlines ID CRYSTALLOGRAPHY; ESRF AB We describe a concept for X-ray optics to feed a pair of macromolecular crystallography (MX) beamlines, which view canted undulator radiation sources in the same storage ring straight section. It can be deployed at NSLS-II and at other low-emittance third-generation synchrotron radiation sources where canted undulators are permitted, and makes the most of these sources and beamline floor space, even when the horizontal angle between the two canted undulator emissions is as little as 1-2 mrad. The concept adopts the beam-separation principles employed at the 23-ID (GM/CA-CAT) beamlines at the Advanced Photon Source (APS), wherein tandem horizontally deflecting mirrors separate one undulator beam from the other, following monochromatization by a double-crystal monochromator. The scheme described here would, in contrast, deliver the two tunable monochromatic undulator beams to separate endstations that address rather different and somewhat complementary purposes, with further beam conditioning imposed as required. A downstream micro-focusing beamline would employ dual-stage focusing for work at the micron scale and, unique to this design, switch to single-stage focusing for larger beams. On the other hand, the upstream, more highly automated beamline would only employ single-stage focusing. (C) 2011 Elsevier B.V. All rights reserved. C1 [Berman, L. E.; Allaire, M.; Heroux, A.; Jakoncic, J.; Orville, A. M.; Robinson, H. H.; Schneider, D. K.; Soares, A. S.; Stojanoff, V.; Stoner-Ma, D.; Sweet, R. M.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Chance, M. R.; Shi, W.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Hendrickson, W. A.; Liu, Q.] Columbia Univ, New York, NY 10032 USA. [Hendrickson, W. A.; Liu, Q.] New York Struct Biol Ctr, New York, NY 10032 USA. RP Berman, LE (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM berman@bnl.gov RI stojanoff, vivian /I-7290-2012; Liu, Qun/A-8757-2011; Soares, Alexei/F-4800-2014 OI stojanoff, vivian /0000-0002-6650-512X; Liu, Qun/0000-0002-1179-290X; Soares, Alexei/0000-0002-6565-8503 FU NCRR NIH HHS [P41 RR012408-15, P41 RR012408] NR 8 TC 3 Z9 5 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 131 EP 135 DI 10.1016/j.nima.2010.12.030 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100042 PM 21822346 ER PT J AU Reininger, R AF Reininger, R. TI The in-focus variable line spacing plane grating monochromator SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Variable-line-spacing grating; Beamline; Soft X-rays; Undulator radiation ID X-RAY MONOCHROMATOR; SYNCHROTRON-RADIATION; HIGH-RESOLUTION; UNDULATOR; BEAMLINE; DESIGN; OPTICS AB The in-focus variable line spacing plane grating monochromator is based on only two plane optical elements, a variable line spacing plane grating and a plane pre-mirror that illuminates the grating at the angle of incidence that will focus the required photon energy. A high throughput beamline requires only a third optical element after the exit slit, an aberration corrected elliptical toroid. Since plane elements can be manufactured with the smallest figure errors, this monochromator design can achieve very high resolving power. Furthermore, this optical design can correct the deformations induced by the heat load on the optics along the dispersion plane. This should allow obtaining a resolution of 10 meV at 1 key with currently achievable figure errors on plane optics. The position of the photon source when an insertion device center is not located at the center of the straight section, a common occurrence in new insertion device beamlines, is investigated. (C) 2010 Elsevier B.V. All rights reserved. C1 Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. RP Reininger, R (reprint author), Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. EM rreininger@bnl.gov NR 24 TC 6 Z9 6 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 139 EP 143 DI 10.1016/j.nima.2010.12.162 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100044 ER PT J AU Kaznatcheev, K Takacs, PZ AF Kaznatcheev, K. Takacs, P. Z. TI Optical metrology at the NSLS-II SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Optical metrology; Synchrotron radiation; X-ray mirrors ID RAY; INTERFEROMETER; ACCURACY; MIRRORS; NM AB Rapid progress in synchrotron optics performance places a high demand on optical characterization techniques used to validate surface parameters prior to installation of the X-ray optics. It is now necessary to characterize optical surface figure and slope errors and roughness on meter-long optics over spatial frequencies as short as 0.1 mu m The new NSLS-II Optical Metrology Laboratory (OML) includes instruments for measuring: (1) long spatial frequency figure errors with a ZYGO MST Fizeau-type 4 '' interferometer, capable of 0.1 nm sensitivity, (2) mid spatial frequencies with an upgraded ZYGO NewView 6300 white light interferometric microscope, capable of reaching 0.1 nm accuracy at a lateral resolution of 1 mu m, (3) high frequency roughness with an AFM (Nanosurf AG) with linearity better than 0.2% over the 80 mu m measurement area and sensitivity approaching 0.01 nm, and (4) slope errors with a long trace profiler currently under development that will be able to reach 50 nrad slope error accuracy. At present, the OML supports the NSLS-II R&D efforts and provides ongoing testing for NSLS optics. Future plans include the construction of a specialized metrology beamline for at-wavelength metrology, radiometry, in situ surface figuring, crystal optics characterization, and instrumentation development. Published by Elsevier B.V. C1 [Kaznatcheev, K.] Brookhaven Natl Lab, Photon Sci Div, Upton, NY 11973 USA. [Takacs, P. Z.] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. RP Kaznatcheev, K (reprint author), Brookhaven Natl Lab, Photon Sci Div, Upton, NY 11973 USA. EM kaznatch@bnl.gov NR 16 TC 0 Z9 0 U1 3 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 144 EP 146 DI 10.1016/j.nima.2010.11.140 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100045 ER PT J AU Yashchuk, VV Conley, R Anderson, EH Barber, SK Bouet, N McKinney, WR Takacs, PZ Voronov, DL AF Yashchuk, Valeriy V. Conley, Raymond Anderson, Erik H. Barber, Samuel K. Bouet, Nathalie McKinney, Wayne R. Takacs, Peter Z. Voronov, Dmitriy L. TI Characterization of electron microscopes with binary pseudo-random multilayer test samples SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Surface metrology; Surface profilometer; Interferometric microscope; Modulation transfer function; Power spectral density; Calibration; Error reduction; Fabrication tolerances; Metrology of X-ray optics ID ARRAYS AB Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested [1,2] and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [5]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanning (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi(2)/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress. (C) 2010 Elsevier B.V. All rights reserved. C1 [Yashchuk, Valeriy V.; Barber, Samuel K.; McKinney, Wayne R.; Voronov, Dmitriy L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Conley, Raymond; Bouet, Nathalie] Brookhaven Natl Lab, NSLS 2, Upton, NY 11973 USA. [Anderson, Erik H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. [Takacs, Peter Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Yashchuk, VV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. EM VVYashchuk@lbl.gov RI Conley, Ray/C-2622-2013; McKinney, Wayne/F-2027-2014; OI McKinney, Wayne/0000-0003-2586-3139; Bouet, Nathalie/0000-0002-5816-9429 NR 8 TC 4 Z9 4 U1 3 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 150 EP 152 DI 10.1016/j.nima.2010.11.124 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100047 ER PT J AU Yashchuk, VV Takacs, PZ McKinney, WR Assoufid, L Siewert, F Zeschke, T AF Yashchuk, Valeriy V. Takacs, Peter Z. McKinney, Wayne R. Assoufid, Lahsen Siewert, Frank Zeschke, Thomas TI Development of a new generation of optical slope measuring profiler SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE X-ray optics; Surface metrology; Surface slope measurement; Long trace profiler; LTP; NOM; Surface profilometer; Autocollimator ID LONG-TRACE-PROFILER; TOPOGRAPHY; AUTOCOLLIMATORS; CALIBRATION AB A collaboration including all DOE synchrotron laboratories and industrial vendors of X-ray optics, and with active participation of the HBZ-BESSY-II optics group, has been established to work together on a new slope measuring profiler-the Optical Slope Measuring System (OSMS). The slope measurement accuracy of the instrument is expected to be <50 nrad for the current and future metrology of X-ray optics for the next generation of light sources. The goals were to solidify a design that meets the needs of mirror specifications and also be affordable, and to create a common specification for fabrication of a multi-functional translation/scanning (MFTS) system for the OSMS. This was accomplished by two collaborative meetings at the ALS (March 26, 2010) and at the APS (May 6, 2010). (C) 2010 Elsevier B.V. All rights reserved. C1 [Yashchuk, Valeriy V.; McKinney, Wayne R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Takacs, Peter Z.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Assoufid, Lahsen] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Siewert, Frank; Zeschke, Thomas] Helmholtz Zentrum Berlin Mat & Energie, Elektronenspeicherring BESSY 2, D-12489 Berlin, Germany. RP Yashchuk, VV (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. EM vvyashchuk@lbl.gov RI McKinney, Wayne/F-2027-2014 OI McKinney, Wayne/0000-0003-2586-3139 NR 30 TC 7 Z9 7 U1 2 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 153 EP 155 DI 10.1016/j.nima.2010.10.063 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100048 ER PT J AU Voronov, DL Anderson, EH Cambie, R Dhuey, S Gullikson, EM Salmassi, F Warwick, T Yashchuk, VV Padmore, HA AF Voronov, Dmitriy L. Anderson, Erik H. Cambie, Rossana Dhuey, Scott Gullikson, Eric M. Salmassi, Farhad Warwick, Tony Yashchuk, Valeriy V. Padmore, Howard A. TI Fabrication and characterization of ultra-high resolution multilayer-coated blazed gratings SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Diffraction grating; Diffraction efficiency; Blazed grating; Multilayer coating; e-Beam lithography; Wet anisotropic etch; EUV; Soft X-rays; Atomic force microscopy AB Multilayer-coated blazed gratings with high groove density are the most promising candidates for ultra-high resolution soft X-ray spectroscopy. They combine the ability of blazed gratings to concentrate almost all diffraction energy in a desired high diffraction order with high reflectance soft X-ray multilayers. However in order to realize this potential, the grating fabrication process should provide a near perfect groove profile with an extremely smooth surface of the blazed facets. Here we report on the successful fabrication and testing of ultra-dense saw-tooth substrates with 5000 and 10,000 lines/mm. (C) 2010 Elsevier B.V. All rights reserved. C1 [Voronov, Dmitriy L.; Anderson, Erik H.; Cambie, Rossana; Dhuey, Scott; Gullikson, Eric M.; Salmassi, Farhad; Warwick, Tony; Yashchuk, Valeriy V.; Padmore, Howard A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Voronov, DL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM dlvoronov@lbl.gov NR 12 TC 0 Z9 0 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 156 EP 159 DI 10.1016/j.nima.2010.11.064 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100049 ER PT J AU Yuan, S Yashchuk, VV Goldberg, KA Celestre, R McKinney, WR Morrison, GY Warwick, T Padmore, HA AF Yuan, Sheng Yashchuk, Valeriy V. Goldberg, Kenneth A. Celestre, Richard McKinney, Wayne R. Morrison, Gregory Y. Warwick, Tony Padmore, Howard A. TI Development of in situ, at-wavelength metrology for soft X-ray nano-focusing SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE X-ray; Synchrotron radiation; KB mirror; Metrology; Wavefront measurements; Optical slope metrology; Long trace profiler ID ABERRATIONS AB At the Advanced Light Source (ALS), we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront slope measurement techniques for Kirkpatrick-Baez (KB) mirror nano-focusing. We describe here details of the metrology beamline endstation, the at-wavelength tests, and an original alignment method that have already allowed us to precisely set a bendable KB mirror to achieve a FWHM focused spot size of similar to 120 nm, at 1 nm soft X-ray wavelength. Published by Elsevier B.V. C1 [Yuan, Sheng; Yashchuk, Valeriy V.; Celestre, Richard; McKinney, Wayne R.; Morrison, Gregory Y.; Warwick, Tony; Padmore, Howard A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Yuan, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. EM syuan@lbl.gov RI McKinney, Wayne/F-2027-2014 OI McKinney, Wayne/0000-0003-2586-3139 NR 12 TC 10 Z9 10 U1 0 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 160 EP 162 DI 10.1016/j.nima.2010.10.134 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100050 ER PT J AU Alatas, A Leu, BM Zhao, J Yavas, H Toellner, TS Alp, EE AF Alatas, A. Leu, B. M. Zhao, J. Yavas, H. Toellner, T. S. Alp, E. E. TI Improved focusing capability for inelastic X-ray spectrometer at 3-ID of the APS: A combination of toroidal and Kirkpatrick-Baez (KB) mirrors SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Inelastic X-ray scattering; Phonons; High pressure; KB mirrors ID MEV ENERGY RESOLUTION; HIGH-PRESSURE; SPECTROSCOPY; SCATTERING; DENSITY; OPTICS; STATES; IRON AB We have combined a toroidal and a KB mirror system in tandem to improve the focal spot size for the momentum-resolved inelastic X-ray scattering (IXS) spectrometer at Sector 3 in APS. This combination provides a factor of 40 gain in flux density and 20 mu m (H) x 17 mu m (V) (FWHM) in beam size at the sample position, enhancing the capability of the beamline for high-pressure measurements. (C) 2010 Elsevier B.V. All rights reserved. C1 [Alatas, A.; Leu, B. M.; Zhao, J.; Yavas, H.; Toellner, T. S.; Alp, E. E.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Alatas, A (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM alatas@aps.anl.gov RI Yavas, Hasan/A-7164-2014 OI Yavas, Hasan/0000-0002-8940-3556 NR 15 TC 13 Z9 13 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 166 EP 168 DI 10.1016/j.nima.2010.11.068 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100052 ER PT J AU Liu, WJ Ice, GE Assoufid, L Liu, CA Shi, B Zschack, P Tischler, J Qian, J Khachartryan, R Shu, DM AF Liu, Wenjun Ice, Gene E. Assoufid, Lahsen Liu, Chian Shi, Bing Zschack, Paul Tischler, Jon Qian, Jun Khachartryan, Ruben Shu, Deming TI Hard X-ray nano-focusing with Montel mirror optics SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Montel mirrors; Hard X-ray nano-focusing; Achromatic AB Kirkpatrick-Baez mirrors in the Montel (or nested) configuration were tested for hard X-ray nanoscale focusing at a third generation synchrotron beamline. In this scheme, two mirrors, mounted side-by-side and perpendicular to each other, provide for a more compact focusing system and a much higher demagnification and flux than the traditional sequential K-B mirror arrangement, They can accept up to a 120 mu m x 120 mu m incident X-ray beam with a long working distance of 40 mm and broad-bandpass of energies up to similar to 30 keV. Initial test demonstrated a focal spot of about 150 nm in both horizontal and vertical directions with either polychromatic or monochromatic beam. Montel mirror optics is important and very appealing for achromatic X-ray nanoscale focusing in conventional non-extra-long synchrotron beamlines. (C) 2010 Elsevier B.V. All rights reserved. C1 [Liu, Wenjun; Assoufid, Lahsen; Liu, Chian; Shi, Bing; Zschack, Paul; Qian, Jun; Khachartryan, Ruben; Shu, Deming] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Ice, Gene E.; Tischler, Jon] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Liu, WJ (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM wjliu@anl.gov NR 12 TC 7 Z9 7 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 169 EP 171 DI 10.1016/j.nima.2010.11.080 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100053 ER PT J AU Wallace, BA Gekko, K Vronning Hoffmann, S Lin, YH Sutherland, JC Tao, Y Wien, F Janes, RW AF Wallace, B. A. Gekko, Kunihiko Vronning Hoffmann, Soren Lin, Yi-Hung Sutherland, John C. Tao, Ye Wien, Frank Janes, Robert W. TI Synchrotron radiation circular dichroism (SRCD) spectroscopy: An emerging method in structural biology for examining protein conformations and protein interactions SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Synchrotron radiation circular dichroism; spectroscopy; Protein secondary structure; Conformational changes; Macromolecular interactions ID SECONDARY-STRUCTURE; STANDARDIZATION; CALIBRATION; WAVELENGTH; BEAMLINES; LYSOZYME; FOLD AB Circular dichroism (CD) spectroscopy is a well-established technique in structural biology. The use of synchrotron radiation as an intense light source for these measurements extends the applications possible using lab-based instruments. In recent years, there has been a major growth in synchrotron radiation circular dichroism (SRCD) beamlines worldwide, including ones at the NSLS, ISA, SRS, HiSOR, BSRF, NSRRC, SOLEIL Diamond, TERAS, BESSYII, and ANKA synchrotrons. Through the coordinated efforts of beamline scientists and users at these sites, important proof-of-principle studies have been done enabling the method to be developed for novel and productive studies on biological systems. This paper describes the characteristics of SRCD beamlines and some of the new types of applications that have been undertaken using these beamlines. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wallace, B. A.] Univ London, Birkbeck Coll, Dept Crystallog, London WC1E 7HU, England. [Gekko, Kunihiko] Hiroshima Univ, Hiroshima Synchrotron Radiat Ctr, Hiroshima 730, Japan. [Vronning Hoffmann, Soren] Univ Aarhus, Inst Storage Ring Facil, DK-8000 Aarhus C, Denmark. [Lin, Yi-Hung] Natl Synchrotron Radiat Res Ctr, Hsinchu, Taiwan. [Sutherland, John C.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Sutherland, John C.] E Carolina Univ, Dept Phys, Greenville, NC 27858 USA. [Tao, Ye] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Janes, Robert W.] Univ London, Sch Biol & Chem Sci, London WC1E 7HU, England. RP Wallace, BA (reprint author), Univ London, Birkbeck Coll, Dept Crystallog, London WC1E 7HU, England. EM b.wallace@mail.cryst.bbk.ac.uk; r.w.janes@qmul.ac.uk RI Wien, Frank/B-7846-2012; Wallace, B. A./C-3753-2008 OI Wien, Frank/0000-0002-0752-8735; Wallace, B. A./0000-0001-9649-5092 NR 30 TC 8 Z9 8 U1 6 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 177 EP 178 DI 10.1016/j.nima.2010.10.135 PG 2 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100055 ER PT J AU Zhang, Z Zschack, P Fenter, P AF Zhang, Zhan Zschack, Paul Fenter, Paul TI Application of X-ray reflection interface microscopy to thin-film materials SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE X-ray reflection interface microscopy; X-ray surface/interface scattering; Oxide thin film ID CONTRAST AB New X-ray imaging techniques with excellent spatial resolution are under development for investigating surface and interface structures. X-ray reflection imaging microscopy (XRIM) applies full-field imaging to a specularly reflected X-ray beam from a surface or interface. This technique uses a zone plate objective lens to spatially resolve the reflected X-ray intensity and, by exploiting phase contrast, allows steps or terraces to be directly visualized. Thickness fringes caused by interferences in crystalline thin films grown on single-crystal substrates are observed near Bragg peaks and also carry information related to the termination of the film at either the surface or the film-substrate interface. We have applied the XRIM technique to image X-ray intensity along thickness fringes in complex oxide thin-film systems such as SrRuO(3) on SrTiO(3), EuTiO(3) on DyScO(3), and Bi(2)O(3) on SrTiO(3). Measurements of the contrast variations in the images as a function of momentum transfer. Q allow features to be identified as steps/terraces, or attributed to film inhomogeneities. Using both the Q-resolution and the excellent spatial resolution of the XRIM technique, images of fabricated systems with lateral structures are demonstrated. (C) 2010 Elsevier B.V. All rights reserved. C1 [Zhang, Zhan; Zschack, Paul] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Fenter, Paul] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Zhang, Z (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave,XSD 438,D005, Argonne, IL 60439 USA. EM zhanzhang@anl.gov RI Zhang, Zhan/A-9830-2008 OI Zhang, Zhan/0000-0002-7618-6134 NR 6 TC 1 Z9 1 U1 1 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 188 EP 190 DI 10.1016/j.nima.2010.11.159 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100058 ER PT J AU Dufresne, EM Adams, B Chollet, M Harder, R Li, YL Wen, HD Leake, SJ Beitra, L Huang, XJ Robinson, IK AF Dufresne, Eric M. Adams, Bernhard Chollet, Matthieu Harder, Ross Li, Yuelin Wen, Haidan Leake, Steven J. Beitra, Loren Huang, Xiaojing Robinson, Ian K. TI A technique for high-frequency laser-pump X-ray probe experiments at the APS SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Coherent diffraction imaging; Time-resolved diffraction; Ultrafast techniques ID NANOWIRES AB When a short-pulse laser beam is absorbed in a crystal, the heat or large electric field can induce time-dependent strain waves which propagate in the material at the speed of sound. At a synchrotron, the repetition rate of the X-ray source (MHz) and the laser (kHz) is often mismatched by several orders of magnitude leading to a very inefficient use of the X-ray probe beam. In this paper, we will show how one can synchronize a femtosecond 88 MHz Ti:Sapphire laser to the APS running at the same repetition rate in 324-bunch mode. This efficient use of the X-rays enabled us to measure coherent diffraction patterns from nanoparticle of ZnO as a function of the Bragg angle and time delay between the laser-pump and X-ray probe beams. Significant time-dependent strain can be created with a few nanoJoule per pulse when the nanoparticle is centered in a tight laser focus of a few microns. (C) 2011 Elsevier B.V. All rights reserved. C1 [Dufresne, Eric M.; Adams, Bernhard; Chollet, Matthieu; Harder, Ross; Li, Yuelin; Wen, Haidan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Leake, Steven J.; Beitra, Loren; Huang, Xiaojing; Robinson, Ian K.] UCL, Dept Phys & Astron, London WC1H 0AH, England. [Robinson, Ian K.] Diamond Light Source, Didcot OX11 0DE, Oxon, England. RP Dufresne, EM (reprint author), Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. EM dufresne@anl.gov RI Huang, Xiaojing/K-3075-2012; OI Huang, Xiaojing/0000-0001-6034-5893; Li, Yuelin/0000-0002-6229-7490 NR 6 TC 12 Z9 12 U1 2 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 191 EP 193 DI 10.1016/j.nima.2011.01.050 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100059 ER PT J AU Lin, KC Rajnicek, C McCall, J Carter, C Fezzaa, K AF Lin, Kuo-Cheng Rajnicek, Christopher McCall, Jonathan Carter, Campbell Fezzaa, Kamel TI Investigation of pure- and aerated-liquid jets using ultra-fast X-ray phase contrast imaging SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Ultra-fast X-ray imaging; Synchrotron radiation; Aerated-liquid jet; Liquid atomization; Air-breathing propulsion ID EFFERVESCENT ATOMIZER; FLOW; PERFORMANCE AB Pure- and aerated-liquid jets were observed using the ultra-fast X-ray phase contrast imaging technique. Highly convoluted wrinkle structures were seen on the column surface of a turbulent pure-liquid jet, gas bubbles were discovered inside droplets and ligaments of aerated-liquid sprays, and apparently homogenous two-phase mixtures were observed inside the aerated-liquid injector. The major limitation of this X-ray technique lies in its line-of-sight nature, which can create overlapped objects/interfaces on the X-ray images. (C) 2010 Elsevier B.V. All rights reserved. C1 [Lin, Kuo-Cheng] Taitech Inc, Beavercreek, OH 45430 USA. [Rajnicek, Christopher; McCall, Jonathan; Carter, Campbell] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA. [Fezzaa, Kamel] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Lin, KC (reprint author), Taitech Inc, Beavercreek, OH 45430 USA. EM Kuo-Cheng.Lin@wpafb.af.mil NR 10 TC 7 Z9 7 U1 2 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 194 EP 196 DI 10.1016/j.nima.2010.11.122 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100060 ER PT J AU Freelon, B Liu, YH Chen, J Rotundu, CR Valdivia, P Wilson, SD Gui, S Bourret, ED Yang, W Guo, JH Birgeneau, RJ AF Freelon, B. Liu, Y. H. Chen, J. Rotundu, C. R. Valdivia, P. Wilson, S. D. Gui, S. Bourret, E. D. Yang, W. Guo, J. H. Birgeneau, R. J. TI Soft X-ray absorption spectroscopy investigations of 1111 and 122 iron pnictides SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE X-ray absorption; Spectroscopy; Pnictides; Electronic structure; High-temperature superconductivity AB Soft X-ray absorption and emission spectroscopy was used to investigate the electronic structure of BaFe(2)As(2) and oxygen-vacated PrFeAsO iron pnictides. The effect of carrier doping on the conduction band was investigated. Iron-arsenic hybridized spectral features reveal that Fe-As bonding is involved in the process of electron addition near the Fermi-level for PrFeAsO. X-ray spectra reveals an increase in the Fe density of states at the PrFeAsO Fermi-level as the doping decreases. This doping dependent electronic behavior indicates the possibility of a magnetic instability in undoped PrFeAsO. Published by Elsevier B.V. C1 [Freelon, B.; Liu, Y. H.; Chen, J.; Gui, S.; Yang, W.; Guo, J. H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Valdivia, P.; Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Rotundu, C. R.; Wilson, S. D.; Bourret, E. D.; Birgeneau, R. J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Freelon, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. EM bkfreelon@lbl.gov RI Yang, Wanli/D-7183-2011; OI Yang, Wanli/0000-0003-0666-8063; Rotundu, Costel/0000-0002-1571-8352 NR 9 TC 0 Z9 0 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 197 EP 199 DI 10.1016/j.nima.2010.12.160 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100061 ER PT J AU Lee, S Lee, B Seifert, S Vajda, S Winans, RE AF Lee, Sungsik Lee, Byeongdu Seifert, Soenke Vajda, Stefan Winans, Randall E. TI Simultaneous measurement of X-ray small angle scattering, absorption and reactivity: A continuous flow catalysis reactor SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Continuous flow catalysis reactor; GISAXS (grazing incidence small angle X-ray scattering); GIXAS (grazing incidence X-ray absorption spectroscopy); TPR (temperature-programmed reaction); Nano-catalyst ID IN-SITU GISAXS; CLUSTERS; HYDROGEN; EPOXIDATION; STABILITY; SIZE AB A fixed-bed, continuous flow catalysis reactor is described, in which GISAXS (grazing incidence small angle X-ray scattering)/GIXAS (grazing incidence X-ray absorption spectroscopy) and TPR (temperature-programmed reaction) can be measured simultaneously on samples with low metal coverage. The capabilities offered by this setup are illustrated in the example of the dehydrogenation of cyclohexene, where the size, oxidation state and reactivity of supported cobalt clusters were investigated under ambient pressure conditions. The GIXAS data reveal an evolution of the oxidation state of the catalytic particles with temperature. Simultaneously recorded GISAXS data show stable clusters, without any indication of sintering under employed reaction conditions. (C) 2011 Elsevier B.V. All rights reserved. C1 [Lee, Sungsik; Lee, Byeongdu; Seifert, Soenke; Winans, Randall E.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Vajda, Stefan] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Vajda, Stefan] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Vajda, Stefan] Yale Univ, Dept Chem Engn, New Haven, CT 06520 USA. RP Winans, RE (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rewinans@anl.gov OI Lee, Byeongdu/0000-0003-2514-8805 NR 11 TC 28 Z9 28 U1 2 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 200 EP 203 DI 10.1016/j.nima.2010.12.172 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100062 ER PT J AU Marinkovic, NS Wang, Q Barrio, L Ehrlich, SN Khalid, S Cooper, C Frenkel, AI AF Marinkovic, N. S. Wang, Q. Barrio, L. Ehrlich, S. N. Khalid, S. Cooper, C. Frenkel, A. I. TI Combined in situ X-ray absorption and diffuse reflectance infrared spectroscopy: An attractive tool for catalytic investigations SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE X-ray absorption spectroscopy; Diffuse reflectance infrared; Fourier transform spectroscopy; Combined XAS/DRIFTS; Quick-EXAFS ID DISPERSIVE EXAFS; DRIFTS; HYDROGENATION; RHODIUM; NO AB Catalysis investigations are often followed in a range of spectroscopic techniques. While diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) can be done on a bench-top instrument, X-ray absorption spectroscopy (XAS) techniques, such as extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) require synchrotron light. In order to ensure the same conditions during in situ catalysis for each method, a combined XAS/DRIFTS has been developed at beamline X18A at the National Synchrotron Light Source, Brookhaven National Laboratory. A rapid-scan FTIR spectrometer capable of both mid- and far-infrared measurements is equipped with an arm to redirect the IR beam outside the spectrometer. An in situ reaction chamber, equipped with glassy carbon windows for X-ray light and a KBr window for IR light passage is installed firmly on the arm. The reaction cell can be heated to 600 degrees C and allows passage of gases through the catalyst so that both XAS and DRIFTS techniques can be done simultaneously in controlled environment conditions. Together with a fast-moving monochromator for quick-EXAFS and mass-spectrometric residual gas analysis, this new tool is a powerful method for testing catalytic reactions in real time. (C) 2010 Elsevier B.V. All rights reserved. C1 [Marinkovic, N. S.; Wang, Q.] Univ Delaware, Synchrotron Catalysis Consortium, Newark, DE 19716 USA. [Barrio, L.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Ehrlich, S. N.; Khalid, S.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Cooper, C.; Frenkel, A. I.] Yeshiva Univ, Dept Phys, New York, NY 10016 USA. RP Marinkovic, NS (reprint author), Univ Delaware, Synchrotron Catalysis Consortium, Newark, DE 19716 USA. EM marinkov@bnl.gov RI Wang, Qi/C-5478-2012; Frenkel, Anatoly/D-3311-2011; Barrio, Laura/A-9509-2008; Marinkovic, Nebojsa/A-1137-2016 OI Frenkel, Anatoly/0000-0002-5451-1207; Barrio, Laura/0000-0003-3496-4329; Marinkovic, Nebojsa/0000-0003-3579-3453 NR 11 TC 9 Z9 9 U1 1 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 204 EP 206 DI 10.1016/j.nima.2010.11.079 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100063 ER PT J AU Ehrlich, SN Hanson, JC Camara, AL Barrio, L Estrella, M Zhou, G Si, R Khalid, S Wang, Q AF Ehrlich, S. N. Hanson, J. C. Camara, A. Lopez Barrio, L. Estrella, M. Zhou, G. Si, R. Khalid, S. Wang, Q. TI Combined XRD and XAS SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE XRD; XAFS; Combined XRD/XAFS; Quick XAFS; Time-resolved XRD ID IN-SITU CHARACTERIZATION; CATALYSTS; EXAFS; GAS AB X-ray diffraction (XRD) and X-ray absorption fine structure (XAFS) are complementary techniques for investigating the structure of materials. XRD probes long range order and XAFS probes short range order. We have combined the two techniques at one synchrotron beamline, X18A at the NSLS, allowing samples to be studied in a single experiment. This beamline will allow for coordinated measurements of local and long range structural changes in chemical transformations and phase transitions using both techniques. (C) 2010 Elsevier B.V. All rights reserved. C1 [Ehrlich, S. N.; Khalid, S.] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. [Hanson, J. C.; Camara, A. Lopez; Barrio, L.; Estrella, M.; Zhou, G.; Si, R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Wang, Q.] Univ Delaware, Synchrotron Catalysis Consortium, Newark, DE 19716 USA. RP Ehrlich, SN (reprint author), Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. EM ehrlich@bnl.gov RI Wang, Qi/C-5478-2012; Barrio, Laura/A-9509-2008; Zhou, Gong/C-7085-2009; Hanson, jonathan/E-3517-2010 OI Barrio, Laura/0000-0003-3496-4329; NR 14 TC 3 Z9 3 U1 3 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 213 EP 215 DI 10.1016/j.nima.2010.11.076 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100066 ER PT J AU Gofron, KJ Duke, NEC AF Gofron, K. J. Duke, N. E. C. TI Using X-ray excited UV fluorescence for biological crystal location SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Synchrotron; X-ray; Scintillator; Fluorescence; UV, Single crystal; Crystal centering; Visualization ID PROTEIN CRYSTALLOGRAPHY AB We demonstrate a direct single-step method to locate a biological crystal using X-ray excited NUV fluorescence. Our technique is an extension of UV-excited NUV fluorescence from biological crystals, reported previously. Our technique has a unique capability of tracking the location of a biological crystal during crystallographic data collection. Published by Elsevier B.V. C1 [Gofron, K. J.; Duke, N. E. C.] Argonne Natl Lab, Struct Biol Ctr, Argonne, IL 60439 USA. RP Gofron, KJ (reprint author), Argonne Natl Lab, Struct Biol Ctr, 9700 S Cass Ave, Argonne, IL 60439 USA. EM gofron@anl.gov NR 8 TC 5 Z9 5 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 216 EP 218 DI 10.1016/j.nima.2010.12.025 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100067 ER PT J AU Lin, KC Ryan, M Carter, C Sandy, A Narayanan, S Ilavsky, J Wang, J AF Lin, Kuo-Cheng Ryan, Michael Carter, Campbell Sandy, Alec Narayanan, Suresh Ilavsky, Jan Wang, Jin TI Investigation of condensed supercritical ethylene jets using Small Angle X-ray Scattering (SAXS) technique SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Small Angle X-ray Scattering; Supercritical fluid; Droplet nucleation; Air-breathing propulsion ID NUCLEATION; MFI AB The ability of the Small Angle X-ray Scattering (SAXS) technique to measure small droplets generated by the nucleation process within a highly dynamic supercritical ethylene jet both inside and outside an injector was successfully demonstrated. Droplet nucleation, droplet size distribution, droplet growth, and the dependence of droplet nucleation/condensation on flow properties can be explored with the SAXS technique. (C) 2010 Elsevier B.V. All rights reserved. C1 [Lin, Kuo-Cheng] Taitech Inc, Beavercreek, OH 45430 USA. [Ryan, Michael] Universal Technol Corp, Beavercreek, OH 45430 USA. [Carter, Campbell] USAF, Res Lab, Wright Patterson AFB, OH 45433 USA. [Sandy, Alec; Narayanan, Suresh; Ilavsky, Jan; Wang, Jin] Argonne Natl Lab, Chicago, IL 60439 USA. RP Lin, KC (reprint author), Taitech Inc, Beavercreek, OH 45430 USA. EM Kuo-Cheng.Lin@wpafb.af.mil RI Ilavsky, Jan/D-4521-2013 OI Ilavsky, Jan/0000-0003-1982-8900 NR 11 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 219 EP 221 DI 10.1016/j.nima.2010.12.061 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100068 ER PT J AU Gasper, GL Takahashi, LK Zhou, J Ahmed, M Moore, JF Hanley, L AF Gasper, Gerald L. Takahashi, Lynelle K. Zhou, Jia Ahmed, Musahid Moore, Jerry F. Hanley, Luke TI Comparing vacuum and extreme ultraviolet radiation for postionization of laser desorbed neutrals from bacterial biofilms and organic fullerenes SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Biofilm; Mass spectrometry; Postionization; Synchrotron radiation; Extreme ultraviolet; Vacuum ultraviolet ID SINGLE-PHOTON IONIZATION; MASS-SPECTROMETRY; DESORPTION POSTIONIZATION; PHOTOIONIZATION; CLUSTERS; LIGHT; ION; MS AB Vacuum and extreme ultraviolet radiation from 8 to 24 eV generated at a synchrotron was used to postionize laser desorbed neutrals of antibiotic-treated biofilms and a modified fullerene using laser desorption postionization mass spectrometry (LDPI-MS). Results show detection of the parent ion, various fragments, and extracellular material from biofilms using LDPI-MS with both vacuum and extreme ultraviolet photons. Parent ions were observed for both cases, but extreme ultraviolet photons (16-24 eV) induced more fragmentation than vacuum ultraviolet (8-14 eV) photons. (C) 2010 Elsevier B.V. All rights reserved. C1 [Gasper, Gerald L.; Hanley, Luke] Univ Illinois, Dept Chem, Chicago, IL 60607 USA. [Takahashi, Lynelle K.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Takahashi, Lynelle K.; Zhou, Jia; Ahmed, Musahid] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Moore, Jerry F.] MassThink LLC, Naperville, IL 60563 USA. RP Hanley, L (reprint author), Univ Illinois, Dept Chem, 845 W Taylor St,M-C 111, Chicago, IL 60607 USA. EM lhanley@uic.edu RI Ahmed, Musahid/A-8733-2009 FU NIBIB NIH HHS [R01 EB006532, R01 EB006532-04] NR 16 TC 6 Z9 6 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 222 EP 224 DI 10.1016/j.nima.2010.12.024 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100069 PM 21822347 ER PT J AU Rotella, FJ Alkire, RW Duke, NEC Molitsky, MJ AF Rotella, F. J. Alkire, R. W. Duke, N. E. C. Molitsky, M. J. TI Diagnostic tools used in the calibration and verification of protein crystallography synchrotron beam lines and apparatus SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Diagnostic tools; Synchrotron beam lines; Macromolecular crystallography AB Diagnostic tools have been developed for use at the Structural Biology Center beam lines at the Advanced Photon Source. These tools are used in the calibration and operating verification of these synchrotron X-ray beam lines and constituent equipment. (C) 2011 Elsevier B.V. All rights reserved. C1 [Rotella, F. J.; Alkire, R. W.; Duke, N. E. C.; Molitsky, M. J.] Argonne Natl Lab, Struct Biol Ctr, Biosci Div, Argonne, IL 60439 USA. RP Rotella, FJ (reprint author), Argonne Natl Lab, Struct Biol Ctr, Biosci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM fjrotella@anl.gov NR 3 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 228 EP 230 DI 10.1016/j.nima.2010.12.193 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100071 ER PT J AU Sikorski, M Jiang, Z Sprung, M Narayanan, S Sandy, AR Tieman, B AF Sikorski, M. Jiang, Z. Sprung, M. Narayanan, S. Sandy, A. R. Tieman, B. TI A graphical user interface for real-time analysis of XPCS using HPC SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE X-ray photon correlation spectroscopy; Parallel computing; Cluster architecture AB With the development of third generation synchrotron radiation sources, X-ray photon correlation spectroscopy has emerged as a powerful technique for characterizing equilibrium and non-equilibrium dynamics in complex materials at nanometer length scales over a wide range of time-scales (0.001-1000 s). Moreover, the development of powerful new direct detection CCD cameras has allowed investigation of faster dynamical processes. A consequence of these technical improvements is the need to reduce a very large amount of area detector data within a short time. This problem can be solved by utilizing a large number of processors (32-64) in the cluster architecture to improve the efficiency of the calculations by 1-2 orders of magnitude [1] (Tieman et al., this issue). However, to make such a data analysis system operational, powerful and user-friendly control software needs to be developed. As a part of the effort to maintain a high data acquisition and reduction rate, we have developed a Matlab-based software that acts as an interface between the user and the high performance computing (HPC) cluster. (C) 2011 Elsevier B.V. All rights reserved. C1 [Sikorski, M.; Jiang, Z.; Narayanan, S.; Sandy, A. R.; Tieman, B.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Sprung, M.] DESY, HASYLAB, D-22607 Hamburg, Germany. RP Sikorski, M (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sikorski@aps.anl.gov RI Jiang, Zhang/A-3297-2012 OI Jiang, Zhang/0000-0003-3503-8909 NR 5 TC 4 Z9 4 U1 1 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 234 EP 236 DI 10.1016/j.nima.2010.12.173 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100073 ER PT J AU Madden, T Jemian, P Narayanan, S Sandy, AR Sikorski, M Sprung, M Weizeorick, J AF Madden, T. Jemian, P. Narayanan, S. Sandy, A. R. Sikorski, M. Sprung, M. Weizeorick, J. TI Real-time compression of streaming X-ray photon correlation spectroscopy area-detector data SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE X-ray photon correlation spectroscopy (XPCS); X-ray intensity fluctuation spectroscopy (XIFS); Field-programmable gate array (FPGA) AB We present a data acquisition system to perform on-the-fly background subtraction and lower-level discrimination compression of streaming X-ray photon correlation spectroscopy (XPCS) data from a fast charge-coupled device area detector. The system is built using a commercial frame grabber with an on-board field-programmable gate array (FPGA). The system is capable of continuously processing 60 CCD frames per second each consisting of 1024 x 1024 pixels with up to 64 512 photon hits per frame. (C) 2011 Elsevier B.V. All rights reserved. C1 [Madden, T.; Jemian, P.; Narayanan, S.; Sandy, A. R.; Sikorski, M.; Sprung, M.; Weizeorick, J.] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Madden, T (reprint author), Argonne Natl Lab, Xray Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tmadden@aps.anl.gov NR 5 TC 3 Z9 3 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 237 EP 239 DI 10.1016/j.nima.2010.11.161 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100074 ER PT J AU Tieman, B Narayanan, S Sandy, A Sikorski, M AF Tieman, Brian Narayanan, Suresh Sandy, Alec Sikorski, Marcin TI MPICorrelator: A parallel code for performing time correlations SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 16th Pan-American Conference on Synchrotron Radiation Instrumentation (SRI2010) CY SEP 21-24, 2010 CL Chicago, IL SP Blake Industries Inc, Dectris DE Multi-tau; Photon correlation spectroscopy; Multi-speckle; Time correlation AB The MPICorrelator application is a parallel application for processing multi-speckle X-ray photon correlation spectroscopy data via a data-parallelized implementation of the multi-tau algorithm. MPICorrelator spreads the analysis across a number of computing nodes in a cluster. Leveraging a number of computing nodes in this manner has led to a 30 times decrease in the amount of time required to analyze a multi-speckle time series. The system has recently gone operational at the 8 ID I beamline and has demonstrated the ability to keep up with acquisition rates of megapixel frames acquired at 60 Hz. Future improvements will increase the analysis rate to allow for real-time operation and feedback on live acquired data. (C) 2010 Elsevier B.V. All rights reserved. C1 [Tieman, Brian; Narayanan, Suresh; Sandy, Alec; Sikorski, Marcin] Argonne Natl Lab, Argonne, IL 60439 USA. RP Tieman, B (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tieman@aps.anl.gov NR 3 TC 2 Z9 2 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD SEP 1 PY 2011 VL 649 IS 1 BP 240 EP 242 DI 10.1016/j.nima.2010.11.062 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 813VA UT WOS:000294397100075 ER PT J AU Jessee, MA Turinsky, PJ Abdel-Khalik, HS AF Jessee, M. A. Turinsky, P. J. Abdel-Khalik, H. S. TI Many-Group Cross-Section Adjustment Techniques for Boiling Water Reactor Adaptive Simulation SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB Computational capability has been developed to adjust multigroup neutron cross sections, including self-shielding correction factors, to improve the fidelity of boiling water reactor (BWR) core modeling and simulation. The method involves propagating multigroup neutron cross-section uncertainties through various BWR computational models to evaluate uncertainties in key core attributes such as core k(eff), nodal power distributions, thermal margins, and in-core detector readings. Uncertainty-based inverse theory methods are then employed to adjust multigroup cross sections to minimize the disagreement between BWR core modeling predictions and observed (i.e., measured) plant data. For this paper, observed plant data are virtually simulated in the form of perturbed three-dimensional nodal power distributions with the perturbations sized to represent actual discrepancies between predictions and real plant data. The major focus of this work is to efficiently propagate multigroup neutron cross-section uncertainty through BWR lattice physics and core simulator calculations. The data adjustment equations are developed using a subspace approach that exploits the ill-conditioning of the multigroup cross-section covariance matrix to minimize computation and storage burden. Tikhonov regularization is also employed to improve the conditioning of the data adjustment equations. Expressions are also provided for posterior covariance matrices of both the multigroup cross-section and core attributes uncertainties. C1 [Jessee, M. A.; Turinsky, P. J.; Abdel-Khalik, H. S.] N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. RP Jessee, MA (reprint author), Oak Ridge Natl Lab, POB 2008,MS6172, Oak Ridge, TN 37831 USA. EM jesseema@ornl.gov OI Jessee, Matthew/0000-0003-2954-4995 FU U.S. Department of Energy's Office of Naval Reactors FX This research was sponsored by the U.S. Department of Energy's Office of Naval Reactors through the Naval Nuclear Propulsion Graduate Fellowship Program. NR 18 TC 4 Z9 4 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD SEP PY 2011 VL 169 IS 1 BP 40 EP 55 PG 16 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 816GF UT WOS:000294586000003 ER PT J AU Merzari, E Ninokata, H Mereu, R Colombo, E Inzoli, F AF Merzari, E. Ninokata, H. Mereu, R. Colombo, E. Inzoli, F. TI URANS SIMULATION OF CONFINED PARALLEL JET MIXING SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-13) CY SEP 27-OCT 02, 2009 CL Kanazawa, JAPAN SP Amer Nucl Soc, Atom Energy Soc, Canadian Nucl Soc, China Nucl Soc, European Nucl Soc, Korean Nucl Soc, Amer Inst Chem Engineers, French Nucl Energy Soc, Japan Soc Mech Engineers DE URANS methodology; jets; instability ID COHERENT STRUCTURES; FLOW AB Three-dimensional bounded jets are important in a variety of engineering applications. In nuclear engineering they are present in critical parts of several types of reactors (e.g., high-temperature gas-cooled reactors and boiling water reactors). The simulation of parallel jets through steady-state computational fluid dynamics has often proved to be problematic, in particular, when identical jets are simulated. In the present work the simulation of parallel jet mixing by the unsteady Reynolds-averaged Navier-Stokes (URANS) methodology has been carried out. Such methodology has the potential to improve the results of steady-state simulations at a limited computational cost. The experimental setup of Kunz et al., consisting of five parallel pipe jets mixing in a rectangular confinement, has been chosen as a benchmark test because of its similarity to the geometry of the IRIS reactor. The ensemble-averaged time-dependent Navier-Stokes equations have been solved through the finite volume code STAR-CD 4.06. Several computational models, mesh types, and resolutions have been tried. The results confirm that steadystate calculations tend to underestimate the spreading (mixing) of the jets. In particular, the spreading is acceptable in the near inlet region, while a strong discrepancy is observed far from the inlet. The results of the transient simulations indicate a stable oscillatory behavior downstream from the jet inlets, and the results are in better agreement with the test data. Additional large-eddy simulation calculations performed with the code FLUENT 6.3.26 have also been carried out in order to provide further insight into the URANS methodology results. C1 [Merzari, E.; Ninokata, H.] Tokyo Inst Technol, Meguro Ku, Tokyo 1528550, Japan. [Mereu, R.; Colombo, E.; Inzoli, F.] Politecn Milan, Dept Energy, I-20154 Milan, Italy. RP Merzari, E (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM emerzari@anl.gov OI Colombo, Emanuela/0000-0002-9747-5699; Inzoli, Fabio/0000-0003-0799-3458; Mereu, Riccardo/0000-0003-0544-595X NR 24 TC 1 Z9 1 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD SEP PY 2011 VL 175 IS 3 BP 538 EP 552 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 815MR UT WOS:000294530200005 ER PT J AU Rempe, JL Knudson, DL Daw, JE Condie, KG Wilkins, SC AF Rempe, J. L. Knudson, D. L. Daw, J. E. Condie, K. G. Wilkins, S. Curtis TI NEW SENSORS FOR IN-PILE TEMPERATURE MEASUREMENT AT THE ADVANCED TEST REACTOR NATIONAL SCIENTIFIC USER FACILITY SO NUCLEAR TECHNOLOGY LA English DT Article; Proceedings Paper CT 13th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-13) CY SEP 27-OCT 02, 2009 CL Kanazawa, JAPAN SP Amer Nucl Soc, Atom Energy Soc, Canadian Nucl Soc, China Nucl Soc, European Nucl Soc, Korean Nucl Soc, Amer Inst Chem Engineers, French Nucl Energy Soc, Japan Soc Mech Engineers DE in-pile sensors; high-temperature irradiation resistant instrumentation; silicon carbide temperature monitors ID THERMOCOUPLES; IRRADIATION AB The U.S. Department of Energy designated the Advanced Test Reactor (ATR) a National Scientific User Facility (NSUF) in April 2007 to support U.S. research in nuclear science and technology. As a user facility, the ATR is supporting new users from universities, laboratories, and industry, as they conduct basic and applied nuclear research and development to advance the nation's energy security needs. A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing measurements of key parameters during irradiation. This paper describes the strategy for determining what instrumentation is needed and the program for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available and under development for in-pile measurement of temperature at various irradiation locations in the ATR. C1 [Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Condie, K. G.] Idaho Natl Lab, Idaho Falls, ID 83404 USA. RP Rempe, JL (reprint author), Idaho Natl Lab, POB 1625,MS 3840, Idaho Falls, ID 83404 USA. EM Joy.Rempe@inl.gov OI Rempe, Joy/0000-0001-5527-3549 NR 22 TC 4 Z9 4 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD SEP PY 2011 VL 175 IS 3 BP 681 EP 691 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 815MR UT WOS:000294530200015 ER PT J AU Chang, SH Chang, YJ Jang, SY Jeong, DW Jung, CU Kim, YJ Chung, JS Noh, TW AF Chang, Seo Hyoung Chang, Young Jun Jang, S. Y. Jeong, D. W. Jung, C. U. Kim, Y. -J. Chung, J. -S. Noh, T. W. TI Thickness-dependent structural phase transition of strained SrRuO3 ultrathin films: The role of octahedral tilt SO PHYSICAL REVIEW B LA English DT Article ID THIN-FILMS; HETEROSTRUCTURES AB We grew epitaxial SrRuO3 (SRO) films on SrTiO3 (STO) (001) substrates with SRO layer thicknesses (t) between 10 and 200 pseudocubic unit cells (uc). Using the square net of the cubic STO surface, we were able to epi-stabilize the tetragonal SRO phase at room temperature for ultrathin films with t <= 17 uc. On the other hand thicker films with t >= 19 uc have an orthorhombic crystal structure similar to that of bulk SRO at room temperature. With increasing temperature, the orthorhombic films undergo a structural transition to the tetragonal phase at T-OT. The value of T-OT and the orthorhombicity factor at room temperature are reduced with decreasing film thickness. We also observed half-order Bragg reflections, indicating that the tetragonal structure arises from the suppression of the tilt angle of RuO6 octahedra. The observed critical thickness around t(c) similar to 18 uc is much larger than the recent theoretical prediction (i.e., less than 2 uc) [J. He, A. Borisevich, S. V. Kalinin, S. J. Pennycook, and S. T. Pantelides, Phys. Rev. Lett. 105, 227203 (2010)]. This work thus demonstrates that the lattice symmetry mismatch at the interface plays an important role in determining the structural properties of perovskite films. C1 [Chang, Seo Hyoung; Chang, Young Jun; Jang, S. Y.; Jeong, D. W.; Noh, T. W.] Seoul Natl Univ, Dept Phys & Astron, ReCFI, Seoul 151747, South Korea. [Chang, Young Jun] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Jung, C. U.] Hankuk Univ Foreign Studies, Dept Phys, Yongin 449791, Gyeonggi, South Korea. [Kim, Y. -J.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Chung, J. -S.] Soongsil Univ, Dept Phys, Seoul 156743, South Korea. RP Chang, SH (reprint author), Seoul Natl Univ, Dept Phys & Astron, ReCFI, Seoul 151747, South Korea. EM chungj@ssu.ac.kr RI Kim, Young-June /G-7196-2011; Noh, Tae Won /K-9405-2013; Chang, Young Jun/N-3440-2014 OI Kim, Young-June /0000-0002-1172-8895; Chang, Young Jun/0000-0001-5538-0643 FU Korean government (MEST) [2009-0080567, 2010-0020416, 2009-0074218, 2009-0077249]; Korean Federation of Science and Technology Societies FX This research was supported by the National Research Foundation of Korea (NRF) grants funded by the Korean government (MEST) [Grant Nos. 2009-0080567 and 2010-0020416 (T.W.N.), 2009-0074218 (C.U.J.), 2009-0077249 (J.-S.C.)]. Y.J.K. was supported by the Korean Federation of Science and Technology Societies through the Brainpool program. The experiments at Pohang Accelerator Laboratory were done at 10C1 beamline. NR 27 TC 29 Z9 29 U1 3 U2 53 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 1 PY 2011 VL 84 IS 10 AR 104101 DI 10.1103/PhysRevB.84.104101 PG 5 WC Physics, Condensed Matter SC Physics GA 813XC UT WOS:000294402500002 ER PT J AU Lin, SZ Hu, X Bulaevskii, L AF Lin, Shi-Zeng Hu, Xiao Bulaevskii, Lev TI Synchronization in a one-dimensional array of point Josephson junctions coupled to a common load SO PHYSICAL REVIEW B LA English DT Article ID I-V CHARACTERISTICS; LAYERED SUPERCONDUCTORS; PHASE-LOCKING; OSCILLATORS; TECHNOLOGY; RADIATION; EMISSION AB We study the synchronization in a one-dimensional array of point Josephson junctions coupled to a common capacitor, which establishes a long-range interaction between junctions and synchronizes them. The stability diagram of synchronization in a noise-free system is obtained. The current when junctions transform from resistive state into zero-voltage state is then calculated and its dependence on the shunt parameters and the dissipation of junctions is revealed. In the presence of thermal noise, the synchronized oscillations are destroyed at a critical temperature and the system undergoes a continuous phase transition of desynchronization. A possible stability diagram of the synchronized oscillations with respect to thermal noise, current, dissipations, and shunt capacitance is then constructed. Finally we investigate the dynamic relaxation from random oscillations into a synchronized state. The relaxation time increases with the system size and temperature, but is reduced by the shunt capacitor. C1 [Lin, Shi-Zeng; Hu, Xiao] Natl Inst Mat Sci, WPI Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 3050044, Japan. [Bulaevskii, Lev] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Lin, SZ (reprint author), Natl Inst Mat Sci, WPI Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki 3050044, Japan. RI Lin, Shi-Zeng/B-2906-2008 OI Lin, Shi-Zeng/0000-0002-4368-5244 FU WPI Initiative on Materials Nanoarchitronics, MEXT, Japan; CREST-JST, Japan; National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC5206NA25396]; LANL/LDRD Program FX S.-Z.L. and X.H. are supported by WPI Initiative on Materials Nanoarchitronics, MEXT, Japan, and CREST-JST, Japan. L.B. is supported by the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC5206NA25396 and by the LANL/LDRD Program. NR 47 TC 19 Z9 19 U1 1 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 1 PY 2011 VL 84 IS 10 AR 104501 DI 10.1103/PhysRevB.84.104501 PG 12 WC Physics, Condensed Matter SC Physics GA 813XC UT WOS:000294402500007 ER PT J AU Rotundu, CR Birgeneau, RJ AF Rotundu, C. R. Birgeneau, R. J. TI First- and second-order magnetic and structural transitions in BaFe2(1-x)Co2xAs2 SO PHYSICAL REVIEW B LA English DT Article ID TRICRITICAL POINT; NEUTRON-DIFFRACTION; HEAT; SUSCEPTIBILITY AB We present here high-resolution magnetization measurements on high-quality BaFe2(1-x)Co2xAs2, 0 <= x <= 0.046 as-grown single crystals. The results confirm the existence of a magnetic tricritical point in the (x, T) plane at x(tr)(m) approximate to 0.022 and reveal the emergence of the heat-capacity anomaly associated with the onset of the structural transition at x(s) approximate to 0.0064. We show that the extrapolated T-c onset doping could be close to the magnetic tricritical point x(tr)(m). C1 [Rotundu, C. R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Birgeneau, R. J.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Birgeneau, R. J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Rotundu, CR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM CRRotundu@lbl.gov OI Rotundu, Costel/0000-0002-1571-8352 FU Office of Science, Office of Basic Energy Sciences, US Department of Energy [DE-AC02-05CH11231]; Office of Basic Energy Sciences US DOE [DE-AC03-76SF008] FX We thank Dung-Hai Lee, Alan I. Goldman, and Jorg Schmalian for valuable communications about their results and to Edith Bourret and John Heron for assistance. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy, under Contract No. DE-AC02-05CH11231, and Office of Basic Energy Sciences US DOE DE-AC03-76SF008. NR 27 TC 29 Z9 29 U1 2 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD SEP 1 PY 2011 VL 84 IS 9 AR 092501 DI 10.1103/PhysRevB.84.092501 PG 4 WC Physics, Condensed Matter SC Physics GA 813WZ UT WOS:000294402200002 ER PT J AU Jones, KL Nunes, FM Adekola, AS Bardayan, DW Blackmon, JC Chae, KY Chipps, KA Cizewski, JA Erikson, L Harlin, C Hatarik, R Kapler, R Kozub, RL Liang, JF Livesay, R Ma, Z Moazen, B Nesaraja, CD Pain, SD Patterson, NP Shapira, D Shriner, JF Smith, MS Swan, TP Thomas, JS AF Jones, K. L. Nunes, F. M. Adekola, A. S. Bardayan, D. W. Blackmon, J. C. Chae, K. Y. Chipps, K. A. Cizewski, J. A. Erikson, L. Harlin, C. Hatarik, R. Kapler, R. Kozub, R. L. Liang, J. F. Livesay, R. Ma, Z. Moazen, B. Nesaraja, C. D. Pain, S. D. Patterson, N. P. Shapira, D. Shriner, J. F., Jr. Smith, M. S. Swan, T. P. Thomas, J. S. TI Direct reaction measurements with a Sn-132 radioactive ion beam SO PHYSICAL REVIEW C LA English DT Article ID INVERSE KINEMATICS; ELASTIC-SCATTERING; CHANNELS; STATES AB The (d,p) neutron transfer and (d, d) elastic scattering reactions were measured in inverse kinematics using a radioactive ion beam of Sn-132 at 630 MeV. The elastic scattering data were taken in a region where Rutherford scattering dominated the reaction, and nuclear effects account for less than 8% of the elastic scattering cross section. The magnitude of the nuclear effects, in the angular range studied, was found to be independent of the optical potential used, allowing the transfer data to be normalized in a reliable manner. The neutron-transfer reaction populated a previously unmeasured state at 1363 keV, which is most likely the single-particle 3p(1/2) state expected above the N = 82 shell closure. The data were analyzed using finite-range adiabatic-wave calculations and the results compared with the previous analysis using the distorted-wave Born approximation. Angular distributions for the ground and first-excited states are consistent with the previous tentative spin and parity assignments. Spectroscopic factors extracted from the differential cross sections are similar to those found for the one-neutron states beyond the benchmark doubly magic nucleus Pb-208. C1 [Jones, K. L.; Chae, K. Y.; Kapler, R.; Ma, Z.; Moazen, B.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Jones, K. L.; Cizewski, J. A.; Hatarik, R.; Pain, S. D.; Swan, T. P.] Rutgers State Univ, Dept Phys & Astron, New Brunswick, NJ 08903 USA. [Nunes, F. M.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Nunes, F. M.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Adekola, A. S.] Ohio Univ, Dept Phys & Astron, Athens, OH 45701 USA. [Bardayan, D. W.; Blackmon, J. C.; Chae, K. Y.; Liang, J. F.; Nesaraja, C. D.; Pain, S. D.; Shapira, D.; Smith, M. S.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Chipps, K. A.; Erikson, L.; Livesay, R.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Harlin, C.; Patterson, N. P.; Swan, T. P.; Thomas, J. S.] Univ Surrey, Dept Phys, Surrey GU2 7XH, England. [Kozub, R. L.; Shriner, J. F., Jr.] Tennessee Technol Univ, Dept Phys, Cookeville, TN 38505 USA. RP Jones, KL (reprint author), Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. RI Jones, Katherine/B-8487-2011; Pain, Steven/E-1188-2011; OI Nesaraja, Caroline/0000-0001-5571-8341; Jones, Katherine/0000-0001-7335-1379; Pain, Steven/0000-0003-3081-688X; Chipps, Kelly/0000-0003-3050-1298 FU US Department of Energy [DE-FG02-96ER40955, DE-AC05-00OR22725, DE-FG02-96ER40990, DE-FG03-93ER40789, DE-FG02-96ER40983, DE-AC02-06CH11357]; TORUS Collaboration [DE-SC0004087]; National Science Foundation [NSF-PHY0354870, NSF-PHY0757678, NSF-PHY-0555893]; UK Science and Technology Funding Council [PP/F000715/1]; National Nuclear Security Administration under the Stewardship Science Academic Alliances (Rutgers, ORAU, MSU) [DE-FG52-08NA28552] FX This work was supported by the US Department of Energy under Contract Nos. DE-FG02-96ER40955 (TTU), DE-AC05-00OR22725 (ORNL), DE-FG02-96ER40990 (TTU), DE-FG03-93ER40789 (Colorado School of Mines), DE-FG02-96ER40983 (UT), and DE-AC02-06CH11357 (MSU); TORUS Collaboration DE-SC0004087; the National Science Foundation under Contract Nos. NSF-PHY0354870 and NSF-PHY0757678 (Rutgers) and NSF-PHY-0555893 (MSU); and the UK Science and Technology Funding Council under Contract No. PP/F000715/1. This research was sponsored in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement No. DE-FG52-08NA28552 (Rutgers, ORAU, MSU). NR 37 TC 36 Z9 36 U1 1 U2 9 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD SEP 1 PY 2011 VL 84 IS 3 AR 034601 DI 10.1103/PhysRevC.84.034601 PG 9 WC Physics, Nuclear SC Physics GA 813XL UT WOS:000294403500004 ER PT J AU Appelquist, T Fleming, GT Lin, MF Neil, ET Schaich, DA AF Appelquist, T. Fleming, G. T. Lin, M. F. Neil, E. T. Schaich, D. A. TI Lattice simulations and infrared conformality SO PHYSICAL REVIEW D LA English DT Article AB We examine several recent lattice-simulation data sets, asking whether they are consistent with infrared conformality. We observe, in particular, that for an SU(3) gauge theory with 12 Dirac fermions in the fundamental representation, recent simulation data can be described assuming infrared conformality. Lattice simulations include a fermion mass m that is then extrapolated to zero, and we note that this data can be fit by a small-m expansion, allowing a controlled extrapolation. We also note that the conformal hypothesis does not work well for two theories that are known or expected to be confining and chirally broken, and that it does work well for another theory expected to be infrared conformal. C1 [Appelquist, T.; Fleming, G. T.; Lin, M. F.] Yale Univ, Dept Phys, Sloane Lab, New Haven, CT 06520 USA. [Neil, E. T.] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Schaich, D. A.] Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Appelquist, T (reprint author), Yale Univ, Dept Phys, Sloane Lab, New Haven, CT 06520 USA. RI Schaich, David/J-6644-2013; Fleming, George/L-6614-2013 OI Schaich, David/0000-0002-9826-2951; Fleming, George/0000-0002-4987-7167 FU DOE [DE-FG02-92ER-4074, DE-FG02-91ER40676]; NSF [PHY-0801068]; Fermi Research Alliance, LLC with U.S. Department of Energy [DE-AC02-07CH11359] FX We thank the members of the LSD Collaboration (R. Babich, M. I. Buchoff, R. C. Brower, M. Cheng, M. A. Clark, S. D. Cohen, J. Kiskis, J. C. Osborn, C. Rebbi, G. Voronov, and P. Vranas) for many helpful comments. We also thank Tom DeGrand and Biagio Lucini for useful exchanges, and one of us (T. A.) thanks L. Del Debbio for a very helpful discussion. This work was supported partially by DOE Grant Nos. DE-FG02-92ER-4074 (T. A.) and No. DE-FG02-91ER40676 (D. S.), and by NSF Grant No. PHY-0801068 (G. F. and M. L.). Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. NR 20 TC 59 Z9 59 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD SEP 1 PY 2011 VL 84 IS 5 AR 054501 DI 10.1103/PhysRevD.84.054501 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 813XX UT WOS:000294404700003 ER PT J AU Yang, LL Lunardini, C AF Yang, Lili Lunardini, Cecilia TI Revealing local failed supernovae with neutrino telescopes SO PHYSICAL REVIEW D LA English DT Article ID BLACK-HOLE FORMATION; DEPENDENCE; KAMIOKANDE; DYNAMICS; BURSTS; SIGNAL AB We study the detectability of neutrino bursts from nearby direct black hole-forming collapses (failed supernovae) at Megaton (Mt) detectors. Because of their high energetics, these bursts could be identified-by the time coincidence of N >= 2 or N >= 3 events within a similar to 1 s time window-from as far as similar to 4-5 Mpc away. This distance encloses several supernova-rich galaxies, so that failed supernova bursts could be detected at a rate of up to one per decade, comparable to the expected rate of the more common, but less energetic, neutron star-forming collapses. Thus, the detection of a failed supernova within the lifetime of a Mt detector is realistic. It might give the first evidence of direct black hole formation, with important implications on the physics of this phenomenon. C1 [Yang, Lili; Lunardini, Cecilia] Arizona State Univ, Tempe, AZ 85287 USA. [Lunardini, Cecilia] RIKEN BNL Res Ctr, Brookhaven Natl Lab, Upton, NY 11973 USA. RP Yang, LL (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. FU NSF [PHY-0854827] FX We are grateful to M. Kistler, D. Leonard, and T. Iida for useful exchanges, and acknowledge the support of the NSF under Grant No. PHY-0854827. NR 30 TC 9 Z9 9 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD SEP 1 PY 2011 VL 84 IS 6 AR 063002 DI 10.1103/PhysRevD.84.063002 PG 5 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 813YE UT WOS:000294405500004 ER PT J AU Jayaraman, S Thompson, AP von Lilienfeld, OA AF Jayaraman, Saivenkataraman Thompson, Aidan P. von Lilienfeld, O. Anatole TI Molten salt eutectics from atomistic simulations SO PHYSICAL REVIEW E LA English DT Article ID DENSITY-FUNCTIONAL THEORY; COMPUTATIONAL ALCHEMY; MOLECULAR-DYNAMICS; MIXTURES; DESIGN AB Despite their importance for solar thermal power applications, phase-diagrams of molten salt mixture heat transfer fluids (HTFs) are not readily accessible from first principles. We present a molecular dynamics scheme general enough to identify eutectics of any HTF candidate mixture. The eutectic mixture and temperature are located using the liquid mixture free energy and the pure component solid-liquid free energy differences. The liquid mixture free energy is obtained using thermodynamic integration over particle identity transmutations sampled with molecular dynamics at a single temperature. Drawbacks of conventional phase diagram mapping methodologies are avoided by not considering solid mixtures, thereby evading expensive computations of solid phase free energies. Numerical results for binary and ternary mixtures of alkali nitrates agree well with experimental measurements. C1 [Jayaraman, Saivenkataraman; Thompson, Aidan P.; von Lilienfeld, O. Anatole] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Jayaraman, S (reprint author), Sandia Natl Labs, Albuquerque, NM 87185 USA. EM sjayara@sandia.gov RI von Lilienfeld, O. Anatole/D-8529-2011 FU SNL [120209]; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX OAvL acknowledges support from SNL's Laboratory Directed Research & Development Truman program, No. 120209. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 33 TC 3 Z9 3 U1 2 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1539-3755 J9 PHYS REV E JI Phys. Rev. E PD SEP 1 PY 2011 VL 84 IS 3 AR 030201 DI 10.1103/PhysRevE.84.030201 PN 1 PG 4 WC Physics, Fluids & Plasmas; Physics, Mathematical SC Physics GA 815ZJ UT WOS:000294568200001 PM 22060319 ER PT J AU Ledbetter, MP Theis, T Blanchard, JW Ring, H Ganssle, P Appelt, S Blumich, B Pines, A Budker, D AF Ledbetter, M. P. Theis, T. Blanchard, J. W. Ring, H. Ganssle, P. Appelt, S. Bluemich, B. Pines, A. Budker, D. TI Near-Zero-Field Nuclear Magnetic Resonance SO PHYSICAL REVIEW LETTERS LA English DT Article ID LIQUID-STATE NMR; ATOMIC MAGNETOMETER; POLARIZATION; MRI AB We investigate nuclear magnetic resonance (NMR) in near zero field, where the Zeeman interaction can be treated as a perturbation to the electron mediated scalar interaction (J coupling). This is in stark contrast to the high-field case, where heteronuclear J couplings are normally treated as a small perturbation. We show that the presence of very small magnetic fields results in splitting of the zero-field NMR lines, imparting considerable additional information to the pure zero-field spectra. Experimental results are in good agreement with first-order perturbation theory and with full numerical simulation when perturbation theory breaks down. We present simple rules for understanding the splitting patterns in near-zero-field NMR, which can be applied to molecules with nontrivial spectra. C1 [Ledbetter, M. P.; Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Theis, T.; Blanchard, J. W.; Ring, H.; Ganssle, P.; Pines, A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Theis, T.; Blanchard, J. W.; Ring, H.; Ganssle, P.; Pines, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Appelt, S.] Res Ctr Julich, Cent Inst Elect, D-52425 Julich, Germany. [Bluemich, B.] Rhein Westfal TH Aachen, Inst Tech & Macromol Chem, D-52056 Aachen, Germany. [Budker, D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Ledbetter, MP (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM ledbetter@berkeley.edu RI Appelt, Stephan/I-3168-2012; Theis, Thomas/J-2304-2014; Budker, Dmitry/F-7580-2016; OI Theis, Thomas/0000-0001-6779-9978; Budker, Dmitry/0000-0002-7356-4814; Appelt, Stephan/0000-0001-6036-2167; Blanchard, John/0000-0002-1621-6637; Bluemich, Bernhard/0000-0002-1152-4438 FU National Science Foundation [CHE-0957655]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-05CH11231] FX This research was supported by the National Science Foundation under Grant No. CHE-0957655 (D. Budker and M. P. Ledbetter) and by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-05CH11231 (T. Theis, J. W. Blanchard, H. Ring, P. Ganssle, and A. Pines). We thank S. Knappe and J. Kitching for supplying the microfabricated vapor cell. NR 26 TC 32 Z9 33 U1 5 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 1 PY 2011 VL 107 IS 10 AR 107601 DI 10.1103/PhysRevLett.107.107601 PG 5 WC Physics, Multidisciplinary SC Physics GA 813YO UT WOS:000294406600017 PM 21981529 ER PT J AU Mumm, HP Chupp, TE Cooper, RL Coulter, KP Freedman, SJ Fujikawa, BK Garcia, A Jones, GL Nico, JS Thompson, AK Trull, CA Wilkerson, JF Wietfeldt, FE AF Mumm, H. P. Chupp, T. E. Cooper, R. L. Coulter, K. P. Freedman, S. J. Fujikawa, B. K. Garcia, A. Jones, G. L. Nico, J. S. Thompson, A. K. Trull, C. A. Wilkerson, J. F. Wietfeldt, F. E. TI New Limit on Time-Reversal Violation in Beta Decay SO PHYSICAL REVIEW LETTERS LA English DT Article ID NEUTRON DECAY; T-VIOLATION; INVARIANCE; SIMULATION AB We report the results of an improved determination of the triple correlation DP . (p(e) x p(v)) that can be used to limit possible time-reversal invariance in the beta decay of polarized neutrons and constrain extensions to the standard model. Our result is D = [-0.96 +/- 1.89(stat) +/- 1.01(sys)] x 10(-4). The corresponding phase between g(A) and g(V) is phi(AV) = 180.013 degrees +/- 0.028 degrees (68% confidence level). This result represents the most sensitive measurement of D in nuclear beta decay. C1 [Mumm, H. P.; Nico, J. S.; Thompson, A. K.] NIST, Gaithersburg, MD 20899 USA. [Mumm, H. P.; Garcia, A.; Wilkerson, J. F.] Univ Washington, CENPA, Seattle, WA 98195 USA. [Mumm, H. P.; Garcia, A.; Wilkerson, J. F.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Chupp, T. E.; Cooper, R. L.; Coulter, K. P.] Univ Michigan, Dept Phys, Ann Arbor, MI 48104 USA. [Freedman, S. J.; Fujikawa, B. K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Freedman, S. J.; Fujikawa, B. K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Garcia, A.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Jones, G. L.] Hamilton Coll, Dept Phys, Clinton, NY 13323 USA. [Trull, C. A.; Wietfeldt, F. E.] Tulane Univ, Dept Phys, New Orleans, LA 70118 USA. [Wilkerson, J. F.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. RP Mumm, HP (reprint author), NIST, Gaithersburg, MD 20899 USA. OI Wilkerson, John/0000-0002-0342-0217; Garcia, Alejandro/0000-0001-6056-6645 FU U.S. Department of Energy Office of Nuclear Physics; National Science Foundation FX The authors acknowledge the support of the NCNR, U.S. Department of Commerce, in providing the neutron facilities used in this work. This research was made possible by grants from the U.S. Department of Energy Office of Nuclear Physics and the National Science Foundation. NR 21 TC 27 Z9 27 U1 2 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 1 PY 2011 VL 107 IS 10 AR 102301 DI 10.1103/PhysRevLett.107.102301 PG 5 WC Physics, Multidisciplinary SC Physics GA 813YO UT WOS:000294406600004 PM 21981496 ER PT J AU Seshadhri, C Vorobeychik, Y Mayo, JR Armstrong, RC Ruthruff, JR AF Seshadhri, C. Vorobeychik, Yevgeniy Mayo, Jackson R. Armstrong, Robert C. Ruthruff, Joseph R. TI Influence and Dynamic Behavior in Random Boolean Networks SO PHYSICAL REVIEW LETTERS LA English DT Article ID MODELS AB We present a rigorous mathematical framework for analyzing dynamics of a broad class of Boolean network models. We use this framework to provide the first formal proof of many of the standard critical transition results in Boolean network analysis, and offer analogous characterizations for novel classes of random Boolean networks. We show that some of the assumptions traditionally made in the more common mean-field analysis of Boolean networks do not hold in general. For example, we offer evidence that imbalance (internal inhomogeneity) of transfer functions is a crucial feature that tends to drive quiescent behavior far more strongly than previously observed. C1 [Seshadhri, C.; Vorobeychik, Yevgeniy; Mayo, Jackson R.; Armstrong, Robert C.; Ruthruff, Joseph R.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Seshadhri, C (reprint author), Sandia Natl Labs, POB 969, Livermore, CA 94551 USA. OI Vorobeychik, Yevgeniy/0000-0003-2471-5345 FU U.S. Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy under Contract No. DE-AC04-94AL85000. NR 14 TC 5 Z9 6 U1 0 U2 15 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 1 PY 2011 VL 107 IS 10 AR 108701 DI 10.1103/PhysRevLett.107.108701 PG 5 WC Physics, Multidisciplinary SC Physics GA 813YO UT WOS:000294406600022 PM 21981539 ER PT J AU Vorobeychik, Y Mayo, JR Armstrong, RC Ruthruff, JR AF Vorobeychik, Yevgeniy Mayo, Jackson R. Armstrong, Robert C. Ruthruff, Joseph R. TI Noncooperatively Optimized Tolerance: Decentralized Strategic Optimization in Complex Systems SO PHYSICAL REVIEW LETTERS LA English DT Article ID SELF-ORGANIZED CRITICALITY; ROBUSTNESS AB We introduce noncooperatively optimized tolerance (NOT), a game theoretic generalization of highly optimized tolerance (HOT), which we illustrate in the forest fire framework. As the number of players increases, NOT retains features of HOT, such as robustness and self-dissimilar landscapes, but also develops features of self-organized criticality. The system retains considerable robustness even as it becomes fractured, due in part to emergent cooperation between players, and at the same time exhibits increasing resilience against changes in the environment, giving rise to intermediate regimes where the system is robust to a particular distribution of adverse events, yet not very fragile to changes. C1 [Vorobeychik, Yevgeniy; Mayo, Jackson R.; Armstrong, Robert C.; Ruthruff, Joseph R.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Vorobeychik, Y (reprint author), Sandia Natl Labs, POB 969, Livermore, CA 94551 USA. OI Vorobeychik, Yevgeniy/0000-0003-2471-5345 FU U.S. Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy under contract DE-AC04-94AL85000. NR 10 TC 3 Z9 3 U1 0 U2 13 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 1 PY 2011 VL 107 IS 10 AR 108702 DI 10.1103/PhysRevLett.107.108702 PG 5 WC Physics, Multidisciplinary SC Physics GA 813YO UT WOS:000294406600023 PM 21981540 ER PT J AU Weber, F Rosenkranz, S Castellan, JP Osborn, R Hott, R Heid, R Bohnen, KP Egami, T Said, AH Reznik, D AF Weber, F. Rosenkranz, S. Castellan, J. -P. Osborn, R. Hott, R. Heid, R. Bohnen, K. -P. Egami, T. Said, A. H. Reznik, D. TI Extended Phonon Collapse and the Origin of the Charge-Density Wave in 2H-NbSe2 SO PHYSICAL REVIEW LETTERS LA English DT Article ID SUPERCONDUCTORS; 2H-TASE2; DYNAMICS; MODE AB We report inelastic x-ray scattering measurements of the temperature dependence of phonon dispersion in the prototypical charge-density-wave (CDW) compound 2H-NbSe2. Surprisingly, acoustic phonons soften to zero frequency and become overdamped over an extended region around the CDW wave vector. This extended phonon collapse is dramatically different from the sharp cusp in the phonon dispersion expected from Fermi surface nesting. Instead, our experiments, combined with ab initio calculations, show that it is the wave vector dependence of the electron-phonon coupling that drives the CDW formation in 2H-NbSe2 and determines its periodicity. This mechanism explains the so far enigmatic behavior of CDW in 2H-NbSe2 and may provide a new approach to other strongly correlated systems where electron-phonon coupling is important. C1 [Weber, F.; Rosenkranz, S.; Castellan, J. -P.; Osborn, R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Weber, F.; Hott, R.; Heid, R.; Bohnen, K. -P.; Reznik, D.] Karlsruher Inst Technol, Inst Festkorperphys, D-76021 Karlsruhe, Germany. [Egami, T.] Univ Tennessee, Dept Mat & Engn, Knoxville, TN 37996 USA. [Said, A. H.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Reznik, D.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. RP Weber, F (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM frank.weber@kit.edu RI Rosenkranz, Stephan/E-4672-2011 OI Rosenkranz, Stephan/0000-0002-5659-0383 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF [DMR-0115852] FX We acknowledge valuable discussions with I. Mazin, J. van Wezel, M. Norman, and D. Dessau. We thank J. M. Tranquada for supplying us with a single crystal of 2H-NbSe2. Work at Argonne was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The construction of HERIX was partially supported by the NSF under Grant No. DMR-0115852. NR 31 TC 67 Z9 67 U1 4 U2 54 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD SEP 1 PY 2011 VL 107 IS 10 AR 107403 DI 10.1103/PhysRevLett.107.107403 PG 5 WC Physics, Multidisciplinary SC Physics GA 813YO UT WOS:000294406600016 PM 21981528 ER PT J AU Zimmerman, SRH Pearl, C Hemming, SR Tamulonis, K Hemming, NG Searle, SY AF Zimmerman, Susan R. H. Pearl, Crystal Hemming, Sidney R. Tamulonis, Kathryn Hemming, N. Gary Searle, Stephanie Y. TI Freshwater control of ice-rafted debris in the last glacial period at Mono Lake, California, USA SO QUATERNARY RESEARCH LA English DT Article DE Mono Lake; Late Pleistocene; IRD; Lake level; Paleoclimate; Ice rafting; Great Basin ID OWENS LAKE; SIERRA-NEVADA; DANSGAARD-OESCHGER; EASTERN CALIFORNIA; CLIMATE-CHANGE; RAPID CHANGES; GREAT-BASIN; CORE OL-92; ROCK-FLOUR; CHRONOLOGY AB The type section silts of the late Pleistocene Wilson Creek Formation at Mono Lake contain outsized clasts, dominantly well-rounded pebbles and cobbles of Sierran lithologies. Lithic grains >4251 mu m show a similar pattern of variability as the >10 mm clasts visible in the type section, with decreasing absolute abundance in southern and eastern outcrops. The largest concentrations of ice-rafted debris (IRD) occur at 67-57 ka and 46-32 ka, with strong millennial-scale variability, while little IRD is found during the last glacial maximum and deglaciation. Stratigraphic evidence for high lake level during high IRD intervals, and a lack of geomorphic evidence for coincidence of lake and glaciers, strongly suggests that rafting was by shore ice rather than icebergs. Correspondence of carbonate flux and IRD implies that both were mainly controlled by freshwater input, rather than disparate non-climatic controls. Conversely, the lack of IRD during the last glacial maximum and deglacial highstands may relate to secondary controls such as perennial ice cover or sediment supply. High IRD at Mono Lake corresponds to low glacial flour flux in Owens Lake, both correlative to high warm-season insolation. High-resolution, extra-basinal correlation of the millennial peaks awaits greatly improved age models for both records. (C) 2011 University of Washington. Published by Elsevier Inc. All rights reserved. C1 [Zimmerman, Susan R. H.] Columbia Univ, Dept Earth & Environm Sci, New York, NY 10027 USA. [Pearl, Crystal] CUNY, Queens Coll, Sch Earth & Environm Sci, Flushing, NY 11367 USA. [Hemming, Sidney R.; Searle, Stephanie Y.] Columbia Univ, Dept Earth & Environm Sci, Palisades, NY 10964 USA. [Zimmerman, Susan R. H.; Hemming, Sidney R.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Tamulonis, Kathryn] Dept Geol, Dickinson Coll, Carlisle, PA 17013 USA. [Hemming, N. Gary] CUNY, Queens Coll, Sch Earth & Environm Sci, Flushing, NY 11367 USA. RP Zimmerman, SRH (reprint author), Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. EM zimmerman17@llnl.gov RI Zimmerman, Susan/A-3351-2013 FU National Science Foundation (NSF) [OCE-9984989, OCE99-07290]; Geological Society of America; Climate Center Committee of Lamont-Doherty Earth Observatory; Columbia University; American Chemical Society; U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48]; [DE-AC52-07NA27344] FX Many thanks to Scott Stine for discussions and comments that greatly contributed to this work, and to two anonymous reviewers who improved the manuscript considerably. Initial separation and counting of the sediments for the coarse-fraction counts were diligently performed by Hae-Joon Kim and Emily Graney through NSF grant OCE-9984989 to Jean Lynch-Stieglitz. Fieldwork was funded by grants from the Geological Society of America and the Climate Center Committee of Lamont-Doherty Earth Observatory. SRHZ was supported by a National Science Foundation Graduate Research Fellowship and NSF grant OCE99-07290; SYS was supported by the Columbia University Earth Intern Program; additional funding by the American Chemical Society. Some work on this manuscript was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. LDEO contribution #7482. NR 45 TC 4 Z9 4 U1 2 U2 8 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0033-5894 J9 QUATERNARY RES JI Quat. Res. PD SEP PY 2011 VL 76 IS 2 BP 264 EP 271 DI 10.1016/j.yqres.2011.06.003 PG 8 WC Geography, Physical; Geosciences, Multidisciplinary SC Physical Geography; Geology GA 815NQ UT WOS:000294532700010 ER PT J AU Ciobanu, D AF Ciobanu, Doina TI Developing new diagnostic devices for single cell cancer profiling SO REVIEWS IN ENVIRONMENTAL SCIENCE AND BIO-TECHNOLOGY LA English DT Article DE Single cell; Micro-fluidics; qPCR ID ACUTE MYELOID-LEUKEMIA; MICROFLUIDIC DEVICES; THERAPY AB Detection of trace numbers of cancer cells is crucial for the recovery of the patients who have undergone drastic chemo or radio therapies. Attempting to diagnose complex cancer phenotypes clinicians face multiple problems, e.g.: the heterogeneity of cancer entities, the plasticity of the genotypes and phenotypes of cancer cells, and the low number of cancer cells relative to the normal cells in post-therapy samples. These problems are approached by molecular genetics studies, molecular biomarkers, imaging and importantly, the development of new devices suited to perform accurate, high-throughput quantitative and qualitative analysis of specimens. Interdisciplinary collaborations and the fusion of basic and applied research aimed towards advancing innovation have led to valuable improvements for clinical diagnostics. This paper highlights current advances in developing microfluidic devices for single cell or small sample analysis in biomedicine. C1 [Ciobanu, Doina] LBNL, Berkeley, CA USA. [Ciobanu, Doina] IGPPH, Kishinev, Moldova. RP Ciobanu, D (reprint author), LBNL, 1 Cyclotron Rd, Berkeley, CA USA. EM doina.ciobanu@yahoo.com NR 23 TC 0 Z9 0 U1 1 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1569-1705 J9 REV ENVIRON SCI BIO JI Rev. Environ. Sci. Bio-Technol. PD SEP PY 2011 VL 10 IS 3 BP 183 EP 186 DI 10.1007/s11157-011-9249-4 PG 4 WC Biotechnology & Applied Microbiology; Environmental Sciences SC Biotechnology & Applied Microbiology; Environmental Sciences & Ecology GA 814RH UT WOS:000294474300002 ER PT J AU Liu, X He, Q Deng, LW Zhai, SM Hu, XM Li, BS Zhang, LF Chen, ZQ Liu, Q AF Liu Xi He Qiang Deng LiWei Zhai ShuangMeng Hu XiaoMin Li BaoSheng Zhang LiFei Chen ZhiQiang Liu Qiong TI Equation of state of CAS phase to pressure of the uppermost lower mantle at ambient temperature SO SCIENCE CHINA-EARTH SCIENCES LA English DT Article DE anisotropic elasticity; CAS phase; equation of state; synchrotron X-ray radiation ID SUBDUCTED CONTINENTAL-CRUST; BASALTIC COMPOSITION; CRYSTAL-STRUCTURE; THERMAL EQUATION; DEEP MANTLE; 300 K; GPA; CAAL4SI2O11; COMPRESSIBILITY; CALIBRATION AB The CAS phase is a major constituent phase for the continental crust and basaltic compositions at the P-T conditions of the Earth's mantle, and potentially plays an important role in the geodynamic processes related to slab subduction. Its equation of state has been investigated here at ambient temperature up to about 25 GPa by using a diamond-anvil cell and synchrotron X-ray radiation. Its P-V data, fitted to the third-order Birch-Murnaghan equation, yield an isothermal bulk modulus (K (T) ) of 185 (9) GPa and first pressure derivative (K' (T) ) of 7.2 (12). If K' (T) is fixed at 4, the derived K (T) is 212 (4) GPa. Additionally, the CAS phase is strongly elastically anisotropic, with its a-axis direction much less compressible than c-axis direction: K (T-a) :K (T-c) = 2.19. C1 [Liu Xi; He Qiang; Deng LiWei; Zhai ShuangMeng; Hu XiaoMin; Zhang LiFei; Liu Qiong] Peking Univ, Key Lab Orogen Belts & Crustal Evolut, MOE, Beijing 100871, Peoples R China. [Liu Xi; He Qiang; Deng LiWei; Zhai ShuangMeng; Hu XiaoMin; Zhang LiFei; Liu Qiong] Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China. [Deng LiWei] Carnegie Inst Washington, Geophys Lab, Washington, DC 20015 USA. [Deng LiWei] Carnegie Inst Washington, Ctr High Pressure Res, Washington, DC 20015 USA. [Li BaoSheng] SUNY Stony Brook, Inst Mineral Phys, Stony Brook, NY 11794 USA. [Chen ZhiQiang] Brookhaven Natl Lab, Nat Synchrotron Light Source, Upton, NY 11973 USA. RP Liu, X (reprint author), Peking Univ, Key Lab Orogen Belts & Crustal Evolut, MOE, Beijing 100871, Peoples R China. EM xi.liu@pku.edu.cn RI Li, Baosheng/C-1813-2013; chen, zhiqiang/C-9134-2013; 中国科学院, 地球深部研究重点实验室/E-2300-2014; Liu, Xi/K-9845-2015 FU National Natural Science Foundation of China [40872033, 40821002]; Fundamental Research Funds for the Central Universities FX This study was financially supported by National Natural Science Foundation of China (Grant Nos. 40872033, 40821002), and Fundamental Research Funds for the Central Universities to Liu Xi. We thank the anonymous reviewers for their constructive comments which greatly improved our manuscript. NR 43 TC 1 Z9 2 U1 1 U2 8 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 1674-7313 J9 SCI CHINA EARTH SCI JI Sci. China-Earth Sci. PD SEP PY 2011 VL 54 IS 9 BP 1394 EP 1399 DI 10.1007/s11430-011-4262-6 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 815BA UT WOS:000294499900011 ER PT J AU Wiley, HS AF Wiley, H. Steven TI CRITIC AT LARGE SO SCIENTIST LA English DT Editorial Material C1 Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wiley, HS (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU SCIENTIST INC PI PHILADELPHIA PA 400 MARKET ST, STE 1250, PHILADELPHIA, PA 19106 USA SN 0890-3670 J9 SCIENTIST JI Scientist PD SEP PY 2011 VL 25 IS 9 BP 26 EP 26 PG 1 WC Information Science & Library Science; Multidisciplinary Sciences SC Information Science & Library Science; Science & Technology - Other Topics GA 812FA UT WOS:000294275300006 ER PT J AU Vitali, E Wei, CT Benson, DJ Meyers, MA AF Vitali, Efrem Wei, Chung-Ting Benson, David J. Meyers, Marc A. TI Effects of geometry and intermetallic bonding on the mechanical response, spalling and fragmentation of Ni-Al laminates SO ACTA MATERIALIA LA English DT Article DE Simulation; Laser; Shocks; Layered structures; Interface structures ID EULERIAN FORMULATIONS; DYNAMIC FRAGMENTATION; CONTACT; IMPACT AB Conventional uniaxial tension tests and laser-shock experiments were carried out to investigate the mechanical properties of aluminum-nickel laminates under quasi-static (,similar to 10(-3) s(-1)) and dynamic (similar to 10(5) s(-1)) loading conditions. A finite-element code was used to model the experiments and provide insights into the laminates' mechanical response. It was demonstrated that the geometry of the laminate constituents (i.e. the aluminum and nickel laminae) and the interlaminar bonding are the two critical parameters in determining the accuracy of the numerical calculations. These results are also useful to those interested in improving the mechanical properties of this class of materials since we demonstrate that a material with "perfect" laminae and "perfect bonding" is substantially stronger than the experimental material. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Benson, David J.] Univ Calif San Diego, Dept Struct Engn, San Diego, CA 92103 USA. [Vitali, Efrem] Lawrence Livermore Natl Lab, Livermore, CA USA. [Wei, Chung-Ting; Meyers, Marc A.] Univ Calif San Diego, Dept Mech & Aerosp Engn, San Diego, CA 92103 USA. RP Benson, DJ (reprint author), Univ Calif San Diego, Dept Struct Engn, San Diego, CA 92103 USA. EM dbenson@ucsd.edu RI Meyers, Marc/A-2970-2016 OI Meyers, Marc/0000-0003-1698-5396 FU ONR MURI [N00014-07-1-0740] FX This research was supported by ONR MURI Grant N00014-07-1-0740. We thank Prof. T. Weihs for providing us the specimens. We thank the Jupiter Laser Facility at LLNL for the use of the Janus platform for carrying out the laser shock experiments. They were carried out by Drs. B.R. Maddox and M.A. Meyers. Dr. D. Correll, Director of ILSA, was instrumental in enabling its use. Discussions with Prof. V.F. Nesterenko are gratefully acknowledged. NR 25 TC 12 Z9 12 U1 2 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD SEP PY 2011 VL 59 IS 15 BP 5869 EP 5880 DI 10.1016/j.actamat.2011.05.047 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 809WH UT WOS:000294086900001 ER PT J AU Gao, XJ Stebner, A Brown, DW Brinson, LC AF Gao, Xiujie Stebner, Aaron Brown, Donald W. Brinson, L. Catherine TI Neutron diffraction studies and multivariant simulations of shape memory alloys: Concurrent verification of texture development and mechanical response predictions SO ACTA MATERIALIA LA English DT Article DE Shape memory alloy; Texture evolution; Multivariant modeling; Micromechanical modeling; Diffraction ID MARTENSITIC-TRANSFORMATION; MICROMECHANICAL MODEL; PLASTIC-DEFORMATION; CONSTITUTIVE MODEL; NITI; BEHAVIOR; STRAIN; REORIENTATION; SMAS; CRYSTALLOGRAPHY AB A new methodology has been developed to compare texture development and macroscopic response predictions of micromechanical shape memory alloy models directly with diffraction data. Using these methods empirical neutron diffraction data from sequential, multiaxial, compressive loading schemes were compared with calculations from the simplified multivariant model. Through this process the ability of a multivariant model to predict both the texture development and mechanical response trends during the creation of complex stress states in martensitic polycrystalline NiTi was demonstrated for the first time. The result made it evident that a multivariant model is more completely validated through simultaneous verification of micro and macroscale predictions as opposed to only verifying macroscale predictions, as was the previous state of the art. The new methodology presented here provides the means to perform this multiscale verification for any multivariant model. It is also shown that in combining a multivariant model with diffraction techniques a new tool for examining the plausibility of variant growth and depletion mechanisms has been created. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Stebner, Aaron; Brinson, L. Catherine] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. [Gao, Xiujie] Gen Motors Res & Dev, Vehicle Dev Res Lab, Warren, MI 48090 USA. [Brown, Donald W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Brinson, L. Catherine] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Brinson, LC (reprint author), Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. EM cbrinson@northwestern.edu RI Brinson, L. Catherine/B-6678-2009; Brinson, L Catherine/B-1315-2013; Stebner, Aaron/A-7685-2015 OI Brinson, L Catherine/0000-0003-2551-1563; FU Office of Basic Energy Sciences of the Department of Energy; Northwestern University Predictive Science and Engineering Design Cluster and Initiative; Boeing Company; NASA Langley FX This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences of the Department of Energy. A.S. gratefully acknowledges funding from Telezygology Inc. A.S. and L.C.B. gratefully acknowledge funding from the Northwestern University Predictive Science and Engineering Design Cluster and Initiative for Sustainability and Energy at Northwestern (ISEN) programs, and the Boeing Company. X.G. and L.C.B. gratefully acknowledge funding from NASA Langley. The authors collectively thank Professor Raj Vaidyanathan at the University of Central Florida for many valued discussions and Dr. Carlos Tome for fielding questions and providing POLE7 [57] (used to create pole figures in preliminary analysis of the simulation data). The reviewer is also thanked for enhancing this article. NR 56 TC 10 Z9 10 U1 1 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD SEP PY 2011 VL 59 IS 15 BP 5924 EP 5937 DI 10.1016/j.actamat.2011.06.001 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 809WH UT WOS:000294086900006 ER PT J AU Li, N Wang, J Misra, A Zhang, X Huang, JY Hirth, JP AF Li, N. Wang, J. Misra, A. Zhang, X. Huang, J. Y. Hirth, J. P. TI Twinning dislocation multiplication at a coherent twin boundary SO ACTA MATERIALIA LA English DT Article DE Coherent twin boundary; In situ high-resolution transmission electron microscopy; Dislocation multiplication; Twin boundary migration ID NANOCRYSTALLINE FCC METALS; NANOSCALE GROWTH TWINS; CENTERED-CUBIC METALS; STEEL THIN-FILMS; DEFORMATION TWINS; LATTICE DISLOCATIONS; ROOM-TEMPERATURE; MAXIMUM STRENGTH; STRAIN-RATE; SLIP AB Using in situ nanoindentation in a high-resolution transmission electron microscope we have studied the interaction of glide dislocations with a Sigma 3 {1 1 1} coherent twin boundary (CTB) of growth type in Cu. These high-resolution observations indicate that, in addition to acting as barriers to slip transmission, CTB can react with a lattice dislocation to facilitate the multiplication of partial dislocations, resulting in translation of the CTB. On the basis of dislocation theory and molecular dynamics (MD) simulations we propose a dislocation multiplication mechanism by which successive dissociation reactions, starting with a single glide dislocation trapped at a CTB, can lead to a continuous source under certain applied stress states. No evidence of deformation twinning was noted in the nanotwinned lamellae in the indented foils. These findings provide insights into understanding the plastic deformation mechanisms, the migration of CTBs the high strength, and work hardening of highly twinned face-centered cubic metals. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Li, N.; Wang, J.; Misra, A.; Hirth, J. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Zhang, X.] Texas A&M Univ, Dept Mech Engn, Mat Sci & Engn Program, College Stn, TX 77843 USA. [Huang, J. Y.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Li, N (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM nanli@lanl.gov RI Li, Nan /F-8459-2010; Huang, Jianyu/C-5183-2008; Misra, Amit/H-1087-2012; Zhang, Xinghang/H-6764-2013; Wang, Jian/F-2669-2012 OI Li, Nan /0000-0002-8248-9027; Zhang, Xinghang/0000-0002-8380-8667; Wang, Jian/0000-0001-5130-300X FU DOE, Office of Science, Basic Energy Sciences, Division of Materials Science and Engineering; Los Alamos National Laboratory Directed Research and Development (LDRD) [ER20110573]; NSF-DMR [0644835]; US Department of Energy National Nuclear Security Administration [DE-AC04-94AL85000] FX N.L., J.W., A.M., and J.P.H. at Los Alamos National Laboratory are supported by the DOE, Office of Science, Basic Energy Sciences, Division of Materials Science and Engineering. J.W. also acknowledges support provided by the Los Alamos National Laboratory Directed Research and Development (LDRD) project ER20110573. X.Z. at Texas A&M University acknowledges financial support by the NSF-DMR Metallic Materials and Nanostructures program, under Grant No. 0644835. In situ TEM experiments (with J.H. at SNL) were performed at the Center for Integrated Nanotechnologies through a user project. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Co., for the US Department of Energy National Nuclear Security Administration under contract DE-AC04-94AL85000. Dr. Osman Anderoglu is acknowledged for his technical assistance with the sputter deposition of Cu films. NR 46 TC 74 Z9 75 U1 15 U2 138 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD SEP PY 2011 VL 59 IS 15 BP 5989 EP 5996 DI 10.1016/j.actamat.2011.06.007 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 809WH UT WOS:000294086900012 ER PT J AU Moore, KT Belhadi, L Decremps, F Farber, DL Bradley, JA Occelli, F Gauthier, M Polian, A Aracne-Ruddle, CM AF Moore, K. T. Belhadi, L. Decremps, F. Farber, D. L. Bradley, J. A. Occelli, F. Gauthier, M. Polian, A. Aracne-Ruddle, C. M. TI Watching a metal collapse: Examining cerium's gamma <-> alpha transformation using X-ray diffraction of compressed single and polycrystals SO ACTA MATERIALIA LA English DT Article DE Cerium; Rare earth; Phase transformation; X-ray diffraction; High pressure ID PU-GA ALLOYS; PHASE-TRANSITION; SPINODAL DECOMPOSITION; VOLUME-COLLAPSE; SPECTROSCOPY; DYNAMICS; LATTICE; CE AB Numerous investigations have been performed on Ce metal since the discovery of the gamma ->alpha phase transformation, where a face-centered cubic structure is believed to collapse isostructurally with a volume change of similar to 17%. However, two questions have yet to be answered definitively. First, is the transformation truly isostructural or is the face-centered cubic structure lost in alpha-Ce due to symmetry breaking? Second, if the transformation is isostructural does the face-centered cubic structure stay in crystallographic orientation through the volume collapse? Here, we use high-pressure and high-temperature X-ray diffraction measurements to examine single and polycrystalline samples of Ce in the vicinity of the gamma <->alpha transformation. This was achieved by successive continuous compression and decompression in a diamond anvil cell at temperatures under, at and above the critical point. Our results show that the crystal structure remains face-centered cubic for both the gamma and alpha phases. The results also show that the face-centered cubic structure retains its crystallographic orientation, simply reducing in volume during the gamma ->alpha phase transformation. Upon transformation to alpha, polycrystalline samples show increased diffraction peak broadening, while single crystals show increased streaking. These changes in diffraction can be attributed to increased damage and lattice misorientation from the transformation. Using a simple atomic lattice model, we show that a periodic array of misfit edge dislocation is necessary to accommodate the large volume difference at the gamma-alpha interface and this could act as a source of the edge dislocations needed to produced previously observed deformation bands. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Moore, K. T.; Farber, D. L.; Bradley, J. A.; Aracne-Ruddle, C. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Belhadi, L.; Decremps, F.; Gauthier, M.; Polian, A.] Univ Paris 06, IMPMC, F-75252 Paris 05, France. [Occelli, F.] DIF, DAM, CEA, F-91297 Arpajon, France. RP Moore, KT (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM moore78@llnl.gov RI Farber, Daniel/F-9237-2011; Polian, Alain/E-1555-2017 OI Polian, Alain/0000-0003-2261-9114 FU US Department of Energy, National Nuclear Security Administration [DE-AC52-07NA27344]; ANR [ANR-08-BLAN-0109-01] FX Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. This work was supported by an ANR contract (No. ANR-08-BLAN-0109-01). We thank D. Antonangelli, B. Amadon and C. Denoual for fruitful discussion and M. Hanfland at ESRF for his help with the experiments. NR 46 TC 4 Z9 4 U1 3 U2 26 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD SEP PY 2011 VL 59 IS 15 BP 6007 EP 6016 DI 10.1016/j.actamat.2011.06.009 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 809WH UT WOS:000294086900014 ER PT J AU Caballero, FG Yen, HW Miller, MK Yang, JR Cornide, J Garcia-Mateo, C AF Caballero, F. G. Yen, Hung-Wei Miller, M. K. Yang, Jer-Ren Cornide, J. Garcia-Mateo, C. TI Complementary use of transmission electron microscopy and atom probe tomography for the examination of plastic accommodation in nanocrystalline bainitic steels SO ACTA MATERIALIA LA English DT Article DE Steels; Bainite; Transmission electron microscopy; Three-dimensional atom probe ID LOW-CARBON-STEELS; INTERGRANULAR SEGREGATION; COTTRELL ATMOSPHERE; SILICON STEEL; TRANSFORMATION; MARTENSITE; CR; CRYSTALLOGRAPHY; DISLOCATION; PHOSPHORUS AB A displacive transformation involves the motion of a glissile interface. As in work hardening, its motion can be halted by defects such as dislocations, stacking faults or twins in the austenite. The defects are created when the shape deformation accompanying bainite growth is accommodated by plastic relaxation of the surrounding austenite. The growing plate stops when it collides with the austenite grain boundary. Because transformation from strong austenite leads to fine plates, alloys can be designed such that the bainite transformation is suppressed to low temperatures (125-350 degrees C), leading to a nanoscale bainitic microstructure. Complementary high-resolution transmission electron microscopy and atom probe tomography have provided new experimental evidence on the accommodation of transformation strain, a subject critically relevant to understanding the atomic mechanisms controlling bainitic ferrite growth. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Caballero, F. G.; Cornide, J.; Garcia-Mateo, C.] CSIC, CENIM, E-28040 Madrid, Spain. [Yen, Hung-Wei; Yang, Jer-Ren] Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 10617, Taiwan. [Miller, M. K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Caballero, FG (reprint author), CSIC, CENIM, Avda Gregorio del Amo 8, E-28040 Madrid, Spain. EM fgc@cenim.csic.es RI CABALLERO, FRANCISCA/A-4292-2008; Yen, Hung-Wei/D-8091-2011; Garcia-Mateo, Carlos/A-7752-2008; OI Garcia-Mateo, Carlos/0000-0002-4773-5077; Caballero, Francisca/0000-0002-5548-7659; Yen, Hung-Wei/0000-0002-7885-938X FU Office of Basic Energy Sciences, US Department of Energy; Research Fund for Coal and Steel; Spanish Ministry of Science and Innovation [RFSR-CT-2008-00022, MAT2007-63873] FX The APT research was supported by ORNL's Shared Research Equipment (SHaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, US Department of Energy. The authors gratefully acknowledge the support of the Research Fund for Coal and Steel and the Spanish Ministry of Science and Innovation for funding this research under the Contracts RFSR-CT-2008-00022 and MAT2007-63873, respectively. J. Cornide also acknowledges the Spanish Ministry of Science and Innovation for financial support in the form of a PhD research grant (FPI). NR 35 TC 28 Z9 29 U1 3 U2 36 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD SEP PY 2011 VL 59 IS 15 BP 6117 EP 6123 DI 10.1016/j.actamat.2011.06.024 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 809WH UT WOS:000294086900025 ER PT J AU Shi, XY Mao, JF Wang, YP Dai, YJ Tang, XL AF Shi Xiaoying Mao Jiafu Wang Yingping Dai Yongjiu Tang Xuli TI Coupling a terrestrial biogeochemical model to the common land model SO ADVANCES IN ATMOSPHERIC SCIENCES LA English DT Article DE CoLM_CASACNP model; terrestrial carbon cycle; carbon flux ID SURFACE PARAMETERIZATION SIB2; CARBON-NITROGEN INTERACTIONS; TEMPERATE DECIDUOUS FOREST; ATMOSPHERIC EXCHANGE; STOMATAL CONDUCTANCE; SEASONAL-VARIATIONS; TIBETAN PLATEAU; OAK FOREST; CO2; CLIMATE AB A terrestrial biogeochemical model (CASACNP) was coupled to a land surface model (the Common Land Model, CoLM) to simulate the dynamics of carbon substrate in soil and its limitation on soil respiration. The combined model, CoLM_CASACNP, was able to predict long-term carbon sources and sinks that CoLM alone could not. The coupled model was tested using measurements of belowground respiration and surface fluxes from two forest ecosystems. The combined model simulated reasonably well the diurnal and seasonal variations of net ecosystem carbon exchange, as well as seasonal variation in the soil respiration rate of both the forest sites chosen for this study. However, the agreement between model simulations and actual measurements was poorer under dry conditions. The model should be tested against more measurements before being applied globally to investigate the feedbacks between the carbon cycle and climate change. C1 [Shi Xiaoying] Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing 100081, Peoples R China. [Mao Jiafu] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing 100029, Peoples R China. [Shi Xiaoying; Mao Jiafu] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Wang Yingping] CSIRO Marine & Atmospher Res, Aspendale, Vic, Australia. [Dai Yongjiu] Beijing Normal Univ, Coll Global Change & Earth Syst Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing 100875, Peoples R China. [Tang Xuli] Chinese Acad Sci, S China Bot Garden, Guangzhou 510650, Guangdong, Peoples R China. RP Shi, XY (reprint author), Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing 100081, Peoples R China. EM sxymjf@gmail.com RI li, dongsheng/B-2285-2012; Mao, Jiafu/B-9689-2012; wang, yp/A-9765-2011; Shi, Xiaoying/C-4447-2012; AAS, AAS/C-2949-2014; Dai, Yongjiu/D-6261-2014 OI Mao, Jiafu/0000-0002-2050-7373; Shi, Xiaoying/0000-0001-8994-5032; Dai, Yongjiu/0000-0002-3588-6644 FU RAMP;D Special Fund for Nonprofit Industry (Meteorology) [GYHY200706025]; U.S. Department of Energy, Office of Science, Biological and Environmental Research; U.S. Department of Energy [DE-AC05-00OR22725] FX This work was supported by R&D Special Fund for Nonprofit Industry (Meteorology, GYHY200706025), the U.S. Department of Energy, Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. We would like to acknowledge the assistance and helpful discussions from Huilin GAO. We would also like to thank two anonymous reviewers for their thorough and constructive review. NR 56 TC 0 Z9 1 U1 4 U2 27 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 0256-1530 EI 1861-9533 J9 ADV ATMOS SCI JI Adv. Atmos. Sci. PD SEP PY 2011 VL 28 IS 5 BP 1129 EP 1142 DI 10.1007/s00376-010-0131-z PG 14 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 809PI UT WOS:000294068800014 ER PT J AU Mortensen, NP Schiellerup, P Boisen, N Klein, BM Locht, H Abuoun, M Newell, D Krogfelt, KA AF Mortensen, Ninell P. Schiellerup, Peter Boisen, Nadia Klein, Bjarke M. Locht, Henning Abuoun, Manal Newell, Diane Krogfelt, Karen A. TI The role of Campylobacter jejuni cytolethal distending toxin in gastroenteritis: toxin detection, antibody production, and clinical outcome SO APMIS LA English DT Article DE Campylobacter jejuni; cytolethal distending toxin; antibody neutralization; antibody; gastroenteritis ID ENTERIC PATHOGENS; INFECTIONS; GENES; CDTC; STRAINS; RISK AB Mortensen NP, Schiellerup P, Boisen N, Klein BM, Locht H, Abuoun M, Newell D, Krogfelt KA. The role of Campylobacter jejuni cytolethal distending toxin in gastroenteritis: toxin detection, antibody production, and clinical outcome. APMIS 2011; 119: 626-34. The role of Campylobacter jejuni cytolethal distending toxin (CDT) on clinical outcome after gastroenteritis was investigated. Clinical data, blood serum samples, and Campylobacter spp. isolated, from each of 30 patients were collected over a period of 6 months. The CDT encoding genes, cdtABC, characterized by PCR, revealed that all but one of the C. jejuni strains had the wild-type sequence. Sequencing of cdtABC from this strain showed two major deletions. From all of the strains, CDT titers were determined, and toxin neutralizing antibodies were documented using an in vitro assay. Three of the thirty clinical isolates, including the one with the mutant cdtABC coding genes, did not have a detectable CDT activity. Analyzing the relationship between CDT titer, serum neutralization of CDT, and the clinical outcome showed that campylobacteriosis caused by CDT-negative strains was clinically indistinguishable from that of patients infected with an isolate that produced high levels of CDT. These results suggest that CDT does not solely determine severity of infection and clinical outcome. C1 [Mortensen, Ninell P.; Schiellerup, Peter; Boisen, Nadia; Krogfelt, Karen A.] Statens Serum Inst, Dept Microbial Res & Surveillance, Copenhagen, Denmark. [Klein, Bjarke M.] Statens Serum Inst, Biostat Unit, DK-2300 Copenhagen, Denmark. [Locht, Henning] Statens Serum Inst, Dept Autoimmunol & Immunol, DK-2300 Copenhagen, Denmark. [Abuoun, Manal; Newell, Diane] Vet Labs Agcy Weybridge, Addlestone, Surrey, England. RP Mortensen, NP (reprint author), Oak Ridge Natl Lab, Biosci Div, Biol & Nanoscale Syst Grp, POB 2008,Bldg 1061,MS 6445, Oak Ridge, TN 37831 USA. EM mortensennp@ornl.gov RI ABUOUN, MANAL/D-8456-2011; APHA, Staff publications/E-6082-2010; Krogfelt , Karen Angeliki/O-8145-2016 OI Krogfelt , Karen Angeliki/0000-0001-7536-3453 FU Network of Excellence for Research on Zoonoses; MED-VET-NET FX The authors thank Dr. David P. Allison for valuable discussions. The Statens Serum Institute and the Veterinary Laboratories Agency are both partners in MED-VET-NET, a European Funded Network of Excellence for Research on Zoonoses (http://www.medvetnet.org). This study was partial supported by MED-VET-NET (to NB). NR 27 TC 2 Z9 2 U1 0 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0903-4641 J9 APMIS JI APMIS PD SEP PY 2011 VL 119 IS 9 BP 626 EP 634 DI 10.1111/j.1600-0463.2011.02781.x PG 9 WC Immunology; Microbiology; Pathology SC Immunology; Microbiology; Pathology GA 809RD UT WOS:000294073500009 PM 21851421 ER PT J AU Gottel, NR Castro, HF Kerley, M Yang, ZM Pelletier, DA Podar, M Karpinets, T Uberbacher, E Tuskan, GA Vilgalys, R Doktycz, MJ Schadt, CW AF Gottel, Neil R. Castro, Hector F. Kerley, Marilyn Yang, Zamin Pelletier, Dale A. Podar, Mircea Karpinets, Tatiana Uberbacher, Ed Tuskan, Gerald A. Vilgalys, Rytas Doktycz, Mitchel J. Schadt, Christopher W. TI Distinct Microbial Communities within the Endosphere and Rhizosphere of Populus deltoides Roots across Contrasting Soil Types SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID 16S RIBOSOMAL-RNA; BACTERIAL COMMUNITIES; FUNGAL COMMUNITIES; SEASONAL DYNAMICS; RARE BIOSPHERE; PLANT-ROOTS; DIVERSITY; POPLAR; COLONIZATION; ENDOPHYTES AB The root-rhizosphere interface of Populus is the nexus of a variety of associations between bacteria, fungi, and the host plant and an ideal model for studying interactions between plants and microorganisms. However, such studies have generally been confined to greenhouse and plantation systems. Here we analyze microbial communities from the root endophytic and rhizospheric habitats of Populus deltoides in mature natural trees from both upland and bottomland sites in central Tennessee. Community profiling utilized 454 pyrosequencing with separate primers targeting the V4 region for bacterial 16S rRNA and the D1/D2 region for fungal 28S rRNA genes. Rhizosphere bacteria were dominated by Acidobacteria (31%) and Alphaproteobacteria (30%), whereas most endophytes were from the Gammaproteobacteria (54%) as well as Alphaproteobacteria (23%). A single Pseudomonas-like operational taxonomic unit (OTU) accounted for 34% of endophytic bacterial sequences. Endophytic bacterial richness was also highly variable and 10-fold lower than in rhizosphere samples originating from the same roots. Fungal rhizosphere and endophyte samples had approximately equal amounts of the Pezizomycotina (40%), while the Agaricomycotina were more abundant in the rhizosphere (34%) than endosphere (17%). Both fungal and bacterial rhizosphere samples were highly clustered compared to the more variable endophyte samples in a UniFrac principal coordinates analysis, regardless of upland or bottomland site origin. Hierarchical clustering of OTU relative abundance patterns also showed that the most abundant bacterial and fungal OTUs tended to be dominant in either the endophyte or rhizosphere samples but not both. Together, these findings demonstrate that root endophytic communities are distinct assemblages rather than opportunistic subsets of the rhizosphere. C1 [Gottel, Neil R.; Castro, Hector F.; Kerley, Marilyn; Yang, Zamin; Pelletier, Dale A.; Podar, Mircea; Karpinets, Tatiana; Uberbacher, Ed; Tuskan, Gerald A.; Doktycz, Mitchel J.; Schadt, Christopher W.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Castro, Hector F.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37796 USA. [Podar, Mircea; Schadt, Christopher W.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37796 USA. [Karpinets, Tatiana; Tuskan, Gerald A.] Univ Tennessee, Dept Plant Sci, Knoxville, TN 37796 USA. [Vilgalys, Rytas] Duke Univ, Dept Biol, Durham, NC 27708 USA. RP Schadt, CW (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM schadtcw@ornl.gov RI Pelletier, Dale/F-4154-2011; Schadt, Christopher/B-7143-2008; Doktycz, Mitchel/A-7499-2011; Tuskan, Gerald/A-6225-2011; OI Schadt, Christopher/0000-0001-8759-2448; Doktycz, Mitchel/0000-0003-4856-8343; Tuskan, Gerald/0000-0003-0106-1289; Podar, Mircea/0000-0003-2776-0205; Vilgalys, Rytas/0000-0001-8299-3605 FU U.S. Department of Energy, Office of Science, Biological and Environmental Research; U.S. Department of Energy [DE-AC05-00OR22725] FX This research was sponsored by the Genomic Science Program, U.S. Department of Energy, Office of Science, Biological and Environmental Research, as part of the Plant Microbe Interfaces Scientific Focus Area (http://pmi.ornl.gov). Oak Ridge National Laboratory is managed by UT-Battelle LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 52 TC 115 Z9 116 U1 17 U2 153 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD SEP PY 2011 VL 77 IS 17 BP 5934 EP 5944 DI 10.1128/AEM.05255-11 PG 11 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 811JP UT WOS:000294205700012 PM 21764952 ER PT J AU Gihring, TM Zhang, GX Brandt, CC Brooks, SC Campbell, JH Carroll, S Criddle, CS Green, SJ Jardine, P Kostka, JE Lowe, K Mehlhorn, TL Overholt, W Watson, DB Yang, ZM Wu, WM Schadt, CW AF Gihring, Thomas M. Zhang, Gengxin Brandt, Craig C. Brooks, Scott C. Campbell, James H. Carroll, Susan Criddle, Craig S. Green, Stefan J. Jardine, Phil Kostka, Joel E. Lowe, Kenneth Mehlhorn, Tonia L. Overholt, Will Watson, David B. Yang, Zamin Wu, Wei-Min Schadt, Christopher W. TI A Limited Microbial Consortium Is Responsible for Extended Bioreduction of Uranium in a Contaminated Aquifer SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID IN-SITU BIOREDUCTION; CHAIN FATTY-ACIDS; ANAEROBIC BIOREMEDIATION; COMMUNITY STRUCTURE; SP NOV.; SUBMICROMOLAR LEVELS; GEN. NOV.; REDUCTION; SEDIMENTS; SUBSURFACE AB Subsurface amendments of slow-release substrates (e. g., emulsified vegetable oil [EVO]) are thought to be a pragmatic alternative to using short-lived, labile substrates for sustained uranium bioimmobilization within contaminated groundwater systems. Spatial and temporal dynamics of subsurface microbial communities during EVO amendment are unknown and likely differ significantly from those of populations stimulated by soluble substrates, such as ethanol and acetate. In this study, a one-time EVO injection resulted in decreased groundwater U concentrations that remained below initial levels for approximately 4 months. Pyrosequencing and quantitative PCR of 16S rRNA from monitoring well samples revealed a rapid decline in groundwater bacterial community richness and diversity after EVO injection, concurrent with increased 16S rRNA copy levels, indicating the selection of a narrow group of taxa rather than a broad community stimulation. Members of the Firmicutes family Veillonellaceae dominated after injection and most likely catalyzed the initial oil decomposition. Sulfate-reducing bacteria from the genus Desulforegula, known for long-chain fatty acid oxidation to acetate, also dominated after EVO amendment. Acetate and H(2) production during EVO degradation appeared to stimulate NO(3)(-), Fe(III), U(VI), and SO(4)(2-) reduction by members of the Comamonadaceae, Geobacteriaceae, and Desulfobacterales. Methanogenic archaea flourished late to comprise over 25% of the total microbial community. Bacterial diversity rebounded after 9 months, although community compositions remained distinct from the preamendment conditions. These results demonstrated that a one-time EVO amendment served as an effective electron donor source for in situ U(VI) bioreduction and that subsurface EVO degradation and metal reduction were likely mediated by successive identifiable guilds of organisms. C1 [Gihring, Thomas M.; Zhang, Gengxin; Brandt, Craig C.; Campbell, James H.; Carroll, Susan; Yang, Zamin; Schadt, Christopher W.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Brooks, Scott C.; Lowe, Kenneth; Mehlhorn, Tonia L.; Watson, David B.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Green, Stefan J.; Kostka, Joel E.; Overholt, Will] Florida State Univ, Dept Earth Ocean & Atmospher Sci, Tallahassee, FL 32306 USA. [Jardine, Phil] Univ Tennessee, Knoxville, TN 37996 USA. [Brandt, Craig C.; Wu, Wei-Min] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. RP Schadt, CW (reprint author), Oak Ridge Natl Lab, Biosci Div, Bethel Valley Rd,MS 6038, Oak Ridge, TN 37831 USA. EM schadtcw@ornl.gov RI Brooks, Scott/B-9439-2012; Schadt, Christopher/B-7143-2008; Watson, David/C-3256-2016; OI Brooks, Scott/0000-0002-8437-9788; Schadt, Christopher/0000-0001-8759-2448; Watson, David/0000-0002-4972-4136; Green, Stefan/0000-0003-2781-359X FU U.S. Department of Energy, Office of Science, Biological and Environmental Research; U.S. Department of Energy [DE-AC05-00OR22725] FX Research was sponsored by the U.S. Department of Energy, Office of Science, Biological and Environmental Research as part of the Oak Ridge Integrated Field Research Challenge (IFRC) project. Oak Ridge National Laboratory is managed by UT Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. NR 51 TC 45 Z9 45 U1 4 U2 36 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD SEP PY 2011 VL 77 IS 17 BP 5955 EP 5965 DI 10.1128/AEM.00220-11 PG 11 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 811JP UT WOS:000294205700014 PM 21764967 ER PT J AU Banning, NC Gleeson, DB Grigg, AH Grant, CD Andersen, GL Brodie, EL Murphy, DV AF Banning, Natasha C. Gleeson, Deirdre B. Grigg, Andrew H. Grant, Carl D. Andersen, Gary L. Brodie, Eoin L. Murphy, D. V. TI Soil Microbial Community Successional Patterns during Forest Ecosystem Restoration SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID 16S RIBOSOMAL-RNA; SOUTH-WESTERN-AUSTRALIA; FUNGAL COMMUNITIES; JARRAH FOREST; NITROGEN AVAILABILITY; BACTERIAL COMMUNITIES; MULTIVARIATE-ANALYSIS; DIVERSITY; RESPONSES; CHRONOSEQUENCE AB Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables. C1 [Banning, Natasha C.; Gleeson, Deirdre B.; Murphy, D. V.] Univ Western Australia, Sch Earth & Environm, Soil Biol Grp, Crawley, WA 6009, Australia. [Grigg, Andrew H.; Grant, Carl D.] Alcoa Australia, Huntly Mine, Pinjarra, WA 6208, Australia. [Andersen, Gary L.; Brodie, Eoin L.] Lawrence Berkeley Natl Lab, Dept Ecol, Div Earth Sci, Berkeley, CA 94720 USA. RP Banning, NC (reprint author), Univ Western Australia, Sch Earth & Environm, Soil Biol Grp, 35 Stirling Highway, Crawley, WA 6009, Australia. EM natasha.banning@uwa.edu.au RI Gleeson, Deirdre/F-9894-2011; Banning, Natasha/B-4253-2013; Andersen, Gary/G-2792-2015; Brodie, Eoin/A-7853-2008 OI Gleeson, Deirdre/0000-0002-9069-7723; Andersen, Gary/0000-0002-1618-9827; Brodie, Eoin/0000-0002-8453-8435 FU Australian Research Council [DP0985832]; UWA Faculty of Natural and Agricultural Sciences; U.S. Department of Energy [DE-AC02-05CH11231]; Laboratory Directed Research and Development; Alcoa of Australia FX This research was supported by the Australian Research Council under the Linkage Program scheme with the industry partner Alcoa of Australia and a UWA Faculty of Natural and Agricultural Sciences start-up grant to support the collaboration with the Lawrence Berkeley National Laboratory. Support for D.B.G. was provided by an Australian Research Council discovery grant (DP0985832). Part of this work was supported by the U.S. Department of Energy under contract no. DE-AC02-05CH11231 and by Laboratory Directed Research and Development awards to E.L.B. NR 64 TC 49 Z9 51 U1 8 U2 83 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD SEP PY 2011 VL 77 IS 17 BP 6158 EP 6164 DI 10.1128/AEM.00764-11 PG 7 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 811JP UT WOS:000294205700039 PM 21724890 ER PT J AU Pu, YQ Kosa, M Kalluri, UC Tuskan, GA Ragauskas, AJ AF Pu, Yunqiao Kosa, Matyas Kalluri, Udaya C. Tuskan, Gerald A. Ragauskas, Arthur J. TI Challenges of the utilization of wood polymers: how can they be overcome? SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Review DE Wood biopolymer; Biofuels; Genetic modification; Biodiesel ID CELLULOSE SYNTHASE-LIKE; SACCHAROMYCES-CEREVISIAE; BIODIESEL PRODUCTION; ETHANOL-PRODUCTION; DOWN-REGULATION; SIMULTANEOUS SACCHARIFICATION; LIPID PRODUCTION; HYBRID POPLAR; OLEAGINOUS MICROORGANISMS; DENSITY CULTIVATION AB Diminishing fossil fuel resources as well as growing environmental and energy security concerns, in parallel with growing demands on raw materials and energy, have intensified global efforts to utilize wood biopolymers as a renewable resource to produce biofuels and biomaterials. Wood is one of the most abundant biopolymer composites on earth that can be converted into biofuels as well as used as a platform to produce bio-based materials. The major biopolymers in wood are cellulose, hemicelluloses, and lignin which account for > 90% of dry weight. These polymers are generally associated with each other in wood cell walls resulting in an intricate and dynamic cell wall structure. This mini-review provides an overview of major wood biopolymers, their structure, and recent developments in their utilization to develop biofuels. Advances in genetic modifications to overcome the recalcitrance of woody biomass for biofuels are discussed and point to a promising future. C1 [Pu, Yunqiao; Kalluri, Udaya C.; Tuskan, Gerald A.; Ragauskas, Arthur J.] BioEnergy Sci Ctr, Oak Ridge, TN USA. [Pu, Yunqiao] Georgia Inst Technol, Inst Paper Sci & Technol, Atlanta, GA 30332 USA. [Kosa, Matyas; Ragauskas, Arthur J.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Kalluri, Udaya C.; Tuskan, Gerald A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Tuskan, GA (reprint author), BioEnergy Sci Ctr, Oak Ridge, TN USA. EM Tuskanga@ornl.gov; arthur.ragauskas@chemistry.gatech.edu RI Tuskan, Gerald/A-6225-2011; OI Tuskan, Gerald/0000-0003-0106-1289; Pu, Yunqiao/0000-0003-2554-1447; KALLURI, UDAYA/0000-0002-5963-8370; Ragauskas, Arthur/0000-0002-3536-554X FU BioEnergy Science Center; Office of Biological and Environmental Research in the DOE Office of Science; Georgia Tech FX This work was supported and performed as part of the BioEnergy Science Center. The BioEnergy Science Center is a US DOE Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. M. Kosa is thankful for the PSE (Paper Science and Engineering) scholarship at Georgia Tech for financial support. NR 118 TC 25 Z9 26 U1 2 U2 67 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7598 J9 APPL MICROBIOL BIOT JI Appl. Microbiol. Biotechnol. PD SEP PY 2011 VL 91 IS 6 BP 1525 EP 1536 DI 10.1007/s00253-011-3350-z PG 12 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 811MJ UT WOS:000294214900006 PM 21796383 ER PT J AU Wang, DL Post, WM Wilson, BE AF Wang, Dali Post, Wilfred M. Wilson, Bruce E. TI Climate Change Modeling: Computational Opportunities and Challenges SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article C1 [Wang, Dali; Post, Wilfred M.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN USA. [Wilson, Bruce E.] Oak Ridge Natl Lab, Client & Collaborat Technol Grp, Oak Ridge, TN USA. RP Wang, DL (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN USA. EM wangd@ornl.gov; postwmiii@ornl.gov; wilsobe@ornl.gov RI Wang, Dali /B-4829-2012; Post, Wilfred/B-8959-2012 FU US Department of Energy's Office of Science; NASA's Science Mission Directorate FX Portions of this work were funded by the US Department of Energy's Office of Science and NASA's Science Mission Directorate. NR 7 TC 3 Z9 3 U1 0 U2 1 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD SEP-OCT PY 2011 VL 13 IS 5 BP 36 EP 42 DI 10.1109/MCSE.2010.147 PG 7 WC Computer Science, Interdisciplinary Applications SC Computer Science GA 809ZW UT WOS:000294096200005 ER PT J AU Vetter, JS Glassbrook, R Dongarra, J Schwan, K Loftis, B McNally, S Meredith, J Rogers, J Roth, P Spafford, K Yalamanchili, S AF Vetter, Jeffrey S. Glassbrook, Richard Dongarra, Jack Schwan, Karsten Loftis, Bruce McNally, Stephen Meredith, Jeremy Rogers, James Roth, Philip Spafford, Kyle Yalamanchili, Sudhakar TI KEENELAND: BRINGING HETEROGENEOUS GPU COMPUTING TO THE COMPUTATIONAL SCIENCE COMMUNITY SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article ID GRAPHICS HARDWARE; OPENCL C1 [Vetter, Jeffrey S.; Glassbrook, Richard] Keeneland, Lexington, KY 40510 USA. [Dongarra, Jack] Univ Tennessee, Elect Engn & Comp Sci Dept, Knoxville, TN 37996 USA. [Vetter, Jeffrey S.; Schwan, Karsten] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA. [Vetter, Jeffrey S.; Meredith, Jeremy; Spafford, Kyle] Oak Ridge Natl Lab, Future Technol Grp, Oak Ridge, TN 37831 USA. [Dongarra, Jack] Univ Manchester, Sch Comp Sci, Manchester M13 9PL, Lancs, England. [Dongarra, Jack] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England. [Dongarra, Jack] Rice Univ, Dept Comp Sci, Houston, TX 77251 USA. [Schwan, Karsten] Georgia Inst Technol, Ctr Expt Res Comp Syst, Atlanta, GA 30332 USA. [Loftis, Bruce] Univ Tennessee, Oak Ridge Natl Lab, Natl Inst Computat Sci, Sci Support Grp, Knoxville, TN 37996 USA. [Yalamanchili, Sudhakar] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. RP Vetter, JS (reprint author), Keeneland, Lexington, KY 40510 USA. EM vetter@computer.org; glassbrook@computer.org; dongarra@eecs.utk.edu; schwan@cc.gatech.edu; bruce3@tennessee.edu; smcnally@utke.edu; jsmeredith@ornl.gov; rothpc@ornl.gov; spaffordkl@ornl.gov; sudha@ece.gatech.edu RI Dongarra, Jack/E-3987-2014 FU US National Science Foundation's Office of Cyberinfrastructure [0910735] FX Keeneland is funded by the US National Science Foundation's Office of Cyberinfrastructure under award 0910735. The Keeneland team includes members from the Georgia Institute of Technology, Oak Ridge National Laboratory, and the University of Tennessee at Knoxville. NR 19 TC 45 Z9 45 U1 0 U2 6 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD SEP-OCT PY 2011 VL 13 IS 5 BP 90 EP 95 PG 6 WC Computer Science, Interdisciplinary Applications SC Computer Science GA 809ZW UT WOS:000294096200011 ER PT J AU Chathoth, SM Mamontov, E Kolesnikov, AI Gogotsi, Y Wesolowski, DJ AF Chathoth, S. M. Mamontov, E. Kolesnikov, A. I. Gogotsi, Y. Wesolowski, D. J. TI Quasielastic neutron scattering study of water confined in carbon nanopores SO EPL LA English DT Article ID DOUBLE-LAYER CAPACITORS; SUPERCOOLED WATER; SILICA MATRICES; DYNAMICS; GLASS; DIFFUSION; CROSSOVER; BEHAVIOR; LIQUID; LICL AB Microscopic dynamics of water confined in nanometer and sub-nanometer pores of carbide-derived carbon (CDC) were investigated using quasielastic neutron scattering (QENS). The temperature dependence of the average relaxation time, , exhibits super-Arrhenius behavior that could be described by Vogel-Fulcher-Tammann (VFT) law in the range from 250 K to 190 K; below this temperature, follows Arrhenius temperature dependence. The temperature of the dynamic crossover between the two regimes in water confined in the CDC pores is similar to that observed for water in hydrophobic confinement of the larger size, such as 14 angstrom ordered mesoporous carbon (CMK) and 16 angstrom double-wall carbon nanotubes. Thus, the dynamical behavior of water remains qualitatively unchanged even in the very small hydrophobic pores. Copyright (C) EPLA, 2011 C1 [Chathoth, S. M.; Mamontov, E.; Kolesnikov, A. I.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37830 USA. [Gogotsi, Y.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Wesolowski, D. J.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37830 USA. RP Chathoth, SM (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37830 USA. EM mavilachaths@ornl.gov RI Mavila Chathoth, Suresh/E-7560-2010; Gogotsi, Yury/B-2167-2008; Kolesnikov, Alexander/I-9015-2012; Mamontov, Eugene/Q-1003-2015 OI Mavila Chathoth, Suresh/0000-0002-4120-6959; Gogotsi, Yury/0000-0001-9423-4032; Kolesnikov, Alexander/0000-0003-1940-4649; Mamontov, Eugene/0000-0002-5684-2675 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [ERKCC61]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE; U.S. DOE [DE-AC05-00OR22725] FX CDC samples were provided by Y-Carbon, PA (www.y-carbon.us). This material is based upon work supported as part of the Fluid interface Reactions, Structures and Transport (FIRST) Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. ERKCC61. The neutron scattering studies were conducted with support from the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for U.S. DOE under Contract No. DE-AC05-00OR22725. NR 30 TC 0 Z9 0 U1 0 U2 30 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD SEP PY 2011 VL 95 IS 5 AR 56001 DI 10.1209/0295-5075/95/56001 PG 6 WC Physics, Multidisciplinary SC Physics GA 812XC UT WOS:000294325500021 ER PT J AU Lei, HC Petrovic, C AF Lei, Hechang Petrovic, C. TI Upper critical fields and superconducting anisotropy of K0.70Fe1.55Se1.01S0.99 and K0.76Fe1.61Se0.96S1.04 single crystals SO EPL LA English DT Article AB We have investigated temperature and angular dependence of resistivity of K0.70(7)Fe1.55(7)Se1.01(2)S0.99(2) and K0.76(5)Fe1.61(5)Se0.96(4)S1.04(5) single crystals. The upper critical fields mu H-0(c2)(T) for both field directions decrease with the increase in S content. On the other hand, the angle-dependent magnetoresistivity for both compounds can be scaled onto one curve using the anisotropic Ginzburg-Landau theory. The obtained anisotropy of mu H-0(c2)(T) increases with S content, implying that S doping might decrease the dimensionality of certain Fermi surface parts, leading to stronger two-dimensional character. Copyright (C) EPLA, 2011 C1 [Lei, Hechang; Petrovic, C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Lei, HC (reprint author), Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. EM petrovic@bnl.gov RI Petrovic, Cedomir/A-8789-2009; LEI, Hechang/H-3278-2016 OI Petrovic, Cedomir/0000-0001-6063-1881; FU U.S. DOE [DE-AC02-98CH10886]; Center for Emergent Superconductivity; U.S. DOE, Office for Basic Energy Science FX We thank J. Warren for help with scanning electron microscopy measurements. Work at Brookhaven is supported by the U.S. DOE under Contract No. DE-AC02-98CH10886 and in part by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. DOE, Office for Basic Energy Science. NR 34 TC 9 Z9 9 U1 1 U2 15 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD SEP PY 2011 VL 95 IS 5 AR 57006 DI 10.1209/0295-5075/95/57006 PG 6 WC Physics, Multidisciplinary SC Physics GA 812XC UT WOS:000294325500030 ER PT J AU Commer, M AF Commer, Michael TI Three-dimensional gravity modelling and focusing inversion using rectangular meshes SO GEOPHYSICAL PROSPECTING LA English DT Article DE Gradiometry; Gravity; Inversion ID ELECTROMAGNETIC INVERSION; UNIFORM POLYHEDRA; ANOMALIES; BODIES AB Rectangular grid cells are commonly used for the geophysical modeling of gravity anomalies, owing to their flexibility in constructing complex models. The straightforward handling of cubic cells in gravity inversion algorithms allows for a flexible imposition of model regularization constraints, which are generally essential in the inversion of static potential field data. The first part of this paper provides a review of commonly used expressions for calculating the gravity of a right polygonal prism, both for gravity and gradiometry, where the formulas of Plouff and Forsberg are adapted. The formulas can be cast into general forms practical for implementation. In the second part, a weighting scheme for resolution enhancement at depth is presented. Modelling the earth using highly digitized meshes, depth weighting schemes are typically applied to the model objective functional, subject to minimizing the data misfit. The scheme proposed here involves a non-linear conjugate gradient inversion scheme with a weighting function applied to the non-linear conjugate gradient scheme's gradient vector of the objective functional. The low depth resolution due to the quick decay of the gravity kernel functions is counteracted by suppressing the search directions in the parameter space that would lead to near-surface concentrations of gravity anomalies. Further, a density parameter transformation function enabling the imposition of lower and upper bounding constraints is employed. Using synthetic data from models of varying complexity and a field data set, it is demonstrated that, given an adequate depth weighting function, the gravity inversion in the transform space can recover geologically meaningful models requiring a minimum of prior information and user interaction. C1 Lawrence Berkeley Natl Labs, Div Earth Sci, Berkeley, CA 94720 USA. RP Commer, M (reprint author), Lawrence Berkeley Natl Labs, Div Earth Sci, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA. EM mcommer@lbl.gov RI Commer, Michael/G-3350-2015 OI Commer, Michael/0000-0003-0015-9217 NR 31 TC 8 Z9 10 U1 4 U2 24 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0016-8025 J9 GEOPHYS PROSPECT JI Geophys. Prospect. PD SEP PY 2011 VL 59 IS 5 SI SI BP 966 EP 979 DI 10.1111/j.1365-2478.2011.00969.x PG 14 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 810KN UT WOS:000294124300012 ER PT J AU Henderson, AD Hauschild, MZ van de Meent, D Huijbregts, MAJ Larsen, HF Margni, M McKone, TE Payet, J Rosenbaum, RK Jolliet, O AF Henderson, Andrew D. Hauschild, Michael Z. van de Meent, Dik Huijbregts, Mark A. J. Larsen, Henrik Fred Margni, Manuele McKone, Thomas E. Payet, Jerome Rosenbaum, Ralph K. Jolliet, Olivier TI USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties SO INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT LA English DT Article DE Characterization factors; Fate modeling; Freshwater ecotoxicity; Life Cycle Impact Assessment; Model comparison; USEtox ID DIFFERENT LCIA METHODS; MULTIMEDIA FATE; FRESH-WATER; EFFECT INDICATORS; IMPACT ASSESSMENT; RISK-ASSESSMENT; ASSESSMENT LCA; MODEL; POLLUTANTS; TRANSPORT AB The USEtox model was developed in a scientific consensus process involving comparison of and harmonization between existing environmental multimedia fate models. USEtox quantitatively models the continuum from chemical emission to freshwater ecosystem toxicity via chemical-specific characterization factors (CFs) for Life Cycle Impact Assessment (LCIA). This work provides understanding of the key mechanisms and chemical parameters influencing fate in the environment and impact on aquatic ecosystems. USEtox incorporates a matrix framework for multimedia modeling, allowing separation of fate, exposure, and ecotoxicity effects in the determination of an overall CF. Current best practices, such as incorporation of intermittent rain and effect factors (EF) based on substance toxicity across species, are implemented in the model. The USEtox database provides a dataset of over 3,000 organic chemicals, of which approximately 2,500 have freshwater EFs. Freshwater characterization factors for these substances, with a special focus on a subset of chemicals with characteristic properties, were analyzed to understand the contributions of fate, exposure, and effect on the overall CFs. The approach was based on theoretical interpretation of the multimedia model components as well as multidimensional graphical analysis. For direct emission of a substance to water, the EF strongly controls freshwater ecotoxicity, with a range of up to 10 orders of magnitude. In this release scenario, chemical-specific differences in environmental fate influence the CF for freshwater emissions by less than 2 orders of magnitude. However, for an emission to air or soil, the influence of the fate is more pronounced. Chemical partitioning properties between water, air, and soil may drive intermedia transfer, which may be limited by the often uncertain, media-specific degradation half-life. Intermedia transfer may be a function of landscape parameters as well; for example, direct transfer from air to freshwater is limited by the surface area of freshwater. Overall, these altered fate factors may decrease the CF up to 8 orders of magnitude. This work brings new clarity to the relative contributions of fate and freshwater ecotoxicity to the calculation of CFs. In concert with the USEtox database, which provides the most extensive compilation of CFs to date, these findings enable those undertaking LCIA to understand and contextualize existing and newly calculated CFs. C1 [Henderson, Andrew D.; Jolliet, Olivier] Univ Michigan, Sch Publ Hlth, Dept Environm Hlth Sci, Ann Arbor, MI 48109 USA. [Hauschild, Michael Z.; Larsen, Henrik Fred; Rosenbaum, Ralph K.] Tech Univ Denmark, Dept Engn Management, DK-2800 Lyngby, Denmark. [van de Meent, Dik; Huijbregts, Mark A. J.] Radboud Univ Nijmegen, Dept Environm Sci, NL-6500 GL Nijmegen, Netherlands. [van de Meent, Dik] Natl Inst Publ Hlth & Environm RIVM, NL-3720 BA Bilthoven, Netherlands. [Margni, Manuele] Ecole Polytech Montreal, CIRAIG, Stn Ctr Ville, Montreal, PQ H3C 3A7, Canada. [McKone, Thomas E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Payet, Jerome] Cycleco, F-01500 Amberieu, France. RP Henderson, AD (reprint author), Univ Michigan, Sch Publ Hlth, Dept Environm Hlth Sci, 109 S Observ, Ann Arbor, MI 48109 USA. EM henderad@umich.edu RI Hauschild, Michael/G-4335-2011; van de Meent, Dik/C-3982-2011; QSA, DTU/J-4787-2014; Huijbregts, Mark/B-8971-2011; Hauschild, Michael /L-6059-2015; OI Hauschild, Michael /0000-0002-8331-7390; Jolliet, Olivier/0000-0001-6955-4210; Rosenbaum, Ralph/0000-0002-7620-1568 FU UNEP-SETAC Life Cycle Initiative; American Chemical Council (ACC); International Council on Mining and Metals (ICMM) FX Most of the work for this project was carried out on a voluntary basis and financed by in-kind contributions from the authors' home institutions which are therefore gratefully acknowledged. The work was performed under the auspices of the UNEP-SETAC Life Cycle Initiative, which also provided logistic and financial support and facilitated stakeholder consultations. Financial support from American Chemical Council (ACC) and International Council on Mining and Metals (ICMM) is also gratefully acknowledged. NR 38 TC 54 Z9 56 U1 6 U2 46 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0948-3349 J9 INT J LIFE CYCLE ASS JI Int. J. Life Cycle Assess. PD SEP PY 2011 VL 16 IS 8 SI SI BP 701 EP 709 DI 10.1007/s11367-011-0294-6 PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 809MM UT WOS:000294060700002 ER PT J AU Rosenbaum, RK Huijbregts, MAJ Henderson, AD Margni, M McKone, TE van de Meent, D Hauschild, MZ Shaked, S Li, DS Gold, LS Jolliet, O AF Rosenbaum, Ralph K. Huijbregts, Mark A. J. Henderson, Andrew D. Margni, Manuele McKone, Thomas E. van de Meent, Dik Hauschild, Michael Z. Shaked, Shanna Li, Ding Sheng Gold, Lois S. Jolliet, Olivier TI USEtox human exposure and toxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties SO INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT LA English DT Article DE Consensus; Human exposure; Human health; LCIA; Life cycle impact assessment; Toxicity; USEtox ID LIPOPHILIC ORGANIC CONTAMINANTS; NESTED MULTIMEDIA FATE; DIFFERENT LCIA METHODS; HUMAN HEALTH RESPONSE; IMPACT ASSESSMENT; RISK-ASSESSMENT; CARCINOGENIC POTENCY; INTAKE FRACTION; EFFECTS MODEL; USES-LCA AB The aim of this paper is to provide science-based consensus and guidance for health effects modelling in comparative assessments based on human exposure and toxicity. This aim is achieved by (a) describing the USEtox (TM) exposure and toxicity models representing consensus and recommended modelling practice, (b) identifying key mechanisms influencing human exposure and toxicity effects of chemical emissions, (c) extending substance coverage. The methods section of this paper contains a detailed documentation of both the human exposure and toxic effects models of USEtox (TM), to determine impacts on human health per kilogram substance emitted in different compartments. These are considered as scientific consensus and therefore recommended practice for comparative toxic impact assessment. The framework of the exposure model is described in details including the modelling of each exposure pathway considered (i.e. inhalation through air, ingestion through (a) drinking water, (b) agricultural produce, (c) meat and milk, and (d) fish). The calculation of human health effect factors for cancer and non-cancer effects via ingestion and inhalation exposure respectively is described. This section also includes discussions regarding parameterisation and estimation of input data needed, including route-to-route and acute-to-chronic extrapolations. For most chemicals in USEtox (TM), inhalation, above-ground agricultural produce, and fish are the important exposure pathways with key driving factors being the compartment and place of emission, partitioning, degradation, bioaccumulation and bioconcentration, and dietary habits of the population. For inhalation, the population density is the key factor driving the intake, thus the importance to differentiate emissions in urban areas, except for very persistent and mobile chemicals that are taken in by the global population independently from their place of emission. The analysis of carcinogenic potency (TD50) when volatile chemicals are administrated to rats and mice by both inhalation and an oral route suggests that results by one route can reasonably be used to represent another route. However, we first identify and mark as interim chemicals for which observed tumours are directly related to a given exposure route (e.g. for nasal or lung, or gastrointestinal cancers) or for which absorbed fraction by inhalation and by oral route differ greatly. A documentation of the human exposure and toxicity models of USEtox (TM) is provided, and key factors driving the human health characterisation factor are identified. Approaches are proposed to derive human toxic effect factors and expand the number of chemicals in USEtox (TM), primarily by extrapolating from an oral route to exposure in air (and optionally acute-to-chronic). Some exposure pathways (e.g. indoor inhalation, pesticide residues, dermal exposure) will be included in a later stage. USEtox (TM) is applicable in various comparative toxicity impact assessments and not limited to LCA. C1 [Rosenbaum, Ralph K.; Hauschild, Michael Z.] Tech Univ Denmark DTU, Sect Quantitat Sustainabil Assessment, Dept Engn Management, DK-2800 Lyngby, Denmark. [Margni, Manuele] Ecole Polytech Montreal, Dept Chem Engn, CIRAIG, Stn Ctr Ville, Montreal, PQ H3C 3A7, Canada. [McKone, Thomas E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Henderson, Andrew D.; Shaked, Shanna; Li, Ding Sheng; Jolliet, Olivier] Univ Michigan, Sch Publ Hlth, Dept Environm Hlth Sci, Ann Arbor, MI 48109 USA. [Huijbregts, Mark A. J.; van de Meent, Dik] Radboud Univ Nijmegen, Dept Environm Sci, NL-6500 GL Nijmegen, Netherlands. [van de Meent, Dik] Natl Inst Publ Hlth & Environm RIVM, NL-3720 Bilthoven, Netherlands. [Gold, Lois S.] Univ Calif Berkeley, Oakland, CA USA. [Gold, Lois S.] CHORI, Oakland, CA USA. RP Rosenbaum, RK (reprint author), Tech Univ Denmark DTU, Sect Quantitat Sustainabil Assessment, Dept Engn Management, Bldg 426, DK-2800 Lyngby, Denmark. EM rros@man.dtu.dk RI Huijbregts, Mark/B-8971-2011; Hauschild, Michael /L-6059-2015; Li, Dingsheng/D-1187-2010; Hauschild, Michael/G-4335-2011; van de Meent, Dik/C-3982-2011; QSA, DTU/J-4787-2014 OI Hauschild, Michael /0000-0002-8331-7390; Li, Dingsheng/0000-0002-8432-4023; Jolliet, Olivier/0000-0001-6955-4210; Rosenbaum, Ralph/0000-0002-7620-1568; FU UNEP-SETAC Life Cycle Initiative; ACC (American Chemical Council); ICMM (International Council on Mining and Metals) FX Most of the work for this project was carried out on a voluntary basis and financed by in-kind contributions from the authors' home institutions which are therefore gratefully acknowledged. The work was performed under the auspices of the UNEP-SETAC Life Cycle Initiative which also provided logistic and financial support and facilitated stakeholder consultations. The financial support for the USEtox (TM) consortium from ACC (American Chemical Council) and ICMM (International Council on Mining and Metals) is also gratefully acknowledged. NR 67 TC 50 Z9 50 U1 4 U2 52 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0948-3349 J9 INT J LIFE CYCLE ASS JI Int. J. Life Cycle Assess. PD SEP PY 2011 VL 16 IS 8 SI SI BP 710 EP 727 DI 10.1007/s11367-011-0316-4 PG 18 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 809MM UT WOS:000294060700003 ER PT J AU Gopalakrishnan, G Negri, MC Snyder, SW AF Gopalakrishnan, Gayathri Negri, M. Cristina Snyder, Seth W. TI A Novel Framework to Classify Marginal Land for Sustainable Biomass Feedstock Production SO JOURNAL OF ENVIRONMENTAL QUALITY LA English DT Article ID WASTE-WATER; BIOFUELS; STATES; REUSE AB To achieve food and energy security, sustainable bioenergy has become an important goal for many countries. The use of marginal lands to produce energy crops is one strategy for achieving this goal, but what is marginal land? Current definitions generally focus on a single criterion, primarily agroeconomic profitability. Herein, we present a framework that incorporates multiple criteria including profitability of current land use, soil health indicators (erosion, flooding, drainage, or high slopes), and environmental degradation resulting from contamination of surface water or groundwater resources. We tested this framework for classifying marginal land in the state of Nebraska and estimated the potential for using marginal land to produce biofuel crops. Our results indicate that approximately 1.6 million ha, or 4 million acres, of land (-8% of total land area) could be classified as marginal on the basis of at least two criteria. Second-generation lignocellulosic bioenergy crops such as switchgrass (Panicum virgatum L.), miscanthus (Miscanthus giganteus), native prairie grasses, and short-rotation woody crops could be grown on this land in redesigned landscapes that meet energy and environmental needs, without significant impacts on food or feed production. Calculating tradeoffs between the economics of redesigned landscapes and current practices at the field scale is the next step for determining functional designs for integrating biofuel feedstock production into current land management practices. C1 [Gopalakrishnan, Gayathri; Negri, M. Cristina; Snyder, Seth W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Gopalakrishnan, G (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ggopalakrishnan@anl.gov OI Snyder, Seth/0000-0001-6232-1668 FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX Funding from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy is gratefully acknowledged. The submitted manuscript was created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 38 TC 46 Z9 46 U1 1 U2 46 PU AMER SOC AGRONOMY PI MADISON PA 677 S SEGOE RD, MADISON, WI 53711 USA SN 0047-2425 J9 J ENVIRON QUAL JI J. Environ. Qual. PD SEP PY 2011 VL 40 IS 5 BP 1593 EP 1600 DI 10.2134/jeq2010.0539 PG 8 WC Environmental Sciences SC Environmental Sciences & Ecology GA 811VR UT WOS:000294244800027 PM 21869522 ER PT J AU Chang, CH Xin, J Latsha, T Otruba, E Wang, Z Hall, GE Sears, TJ Chang, BC AF Chang, Chih-Hsuan Xin, Ju Latsha, Tyler Otruba, Eric Wang, Zhong Hall, Gregory E. Sears, Trevor J. Chang, Bor-Chen TI CH2(b)over-tilde(1)B(1)-(a)over-tilde(1)A(1) Band Origin at 1.20 mu m SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID OPTICAL DOUBLE-RESONANCE; MAGNETIC-ROTATION SPECTROSCOPY; ORBITAL ANGULAR-MOMENTUM; SINGLET METHYLENE; RENNER-TELLER; ABSORPTION-SPECTROSCOPY; VIBRATIONAL RESONANCES; VISIBLE ABSORPTION; 1A1 STATE; CH2 AB The origin band in the (b) over tilde B-1(1)-(a) over tilde (1)A(1) transition of CH2 near 1.2 mu m has been recorded at Doppler-limited resolution using diode laser transient absorption spectroscopy. The assignments of rotational transitions terminating in upper state levels with K-a = 0 and 1, were confirmed by ground state combination differences and extensive optical-optical double resonance experiments. The assigned lines are embedded in a surprisingly dense spectral region, which includes a strong hot band, (b) over tilde (0,1,0) K-a = 0-(a) over tilde (0,1,0) K-a = 1 sub-band lines, with combination or overtone transitions in the (a) over tilde (1)A(1), state likely responsible for the majority of unassigned transitions in this region. From measured line intensities and an estimate of the concentration of CH2 in the sample, we find the transition moment square for the 0(00)<- 1(10) transition in the (b) over tilde B-1(1)(0,0,0)(0)-(a) over tilde (1)A(1)(0,0,0)(1) sub-band is 0.005(1) D-2. Prominent (b) over tilde B-1(1)(0,1,0)(0)-(a) over tilde (1)A(1)(0,1,0)(1) hot band lines were observed in the same spectral region. Comparison of the intensities of corresponding rotational transitions in the two bands suggests the hot band has an intrinsic strength approximately 28 times larger than the origin band. Perturbations of the excited state K-a = 0 and 1 levels are observed and discussed. The new measurements will lead to improved future theoretical modeling and calculations of the Renner-Teller effect between the (a) over tilde and (b) over tilde states in CH2. C1 [Chang, Chih-Hsuan; Hall, Gregory E.; Sears, Trevor J.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Xin, Ju; Latsha, Tyler; Otruba, Eric] Bloomsburg Univ, Dept Phys, Bloomsburg, PA 17815 USA. [Wang, Zhong] Suffolk Cty Community Coll, Math & Sci Dept, Riverhead, NY 11901 USA. [Sears, Trevor J.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Chang, Bor-Chen] Natl Cent Univ, Dept Chem, Jhongli 32001, Taiwan. RP Sears, TJ (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RI Hall, Gregory/D-4883-2013; Sears, Trevor/B-5990-2013 OI Hall, Gregory/0000-0002-8534-9783; Sears, Trevor/0000-0002-5559-0154 FU U.S. Department of Energy [DE-AC02-98CH10886]; Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences; National Science Council, Taiwan [NSC 96-2113-M-008-004-MY3] FX Work at Brookhaven National Laboratory was under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences. B.C.C. acknowledges the support from the National Science Council, Taiwan, via Grant No. NSC 96-2113-M-008-004-MY3. NR 31 TC 4 Z9 4 U1 1 U2 4 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 1 PY 2011 VL 115 IS 34 SI SI BP 9440 EP 9446 DI 10.1021/jp1115965 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 810SC UT WOS:000294146400013 PM 21314141 ER PT J AU Voora, VK Al-Saidi, WA Jordan, KD AF Voora, Vamsee K. Al-Saidi, W. A. Jordan, Kenneth D. TI Density Functional Theory Study of Pyrophyllite and M-Montmorillonites (M = Li, Na, K, Mg, and Ca): Role of Dispersion Interactions SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID DIOCTAHEDRAL 2/1 PHYLLOSILICATES; QUANTUM-MECHANICAL CALCULATIONS; SMECTITE HYDRATION PROPERTIES; AB-INITIO CALCULATIONS; COMPUTER-SIMULATION; MOLECULAR-DYNAMICS; CLAY-MINERALS; LAYER CHARGE; WATER-VAPOR; FORCE-FIELD AB The stacking parameters, lattice constants, bond lengths, and bulk moduli of pyrophyllite and montmorillonites (MMTs), with alkali and alkali earth metal ions, are investigated using density functional theory with and without dispersion corrections. For pyrophyllite, it is found that the inclusion of the dispersion corrections significantly improves the agreement of the calculated values of the lattice parameters and bulk modulus with the experimental values. For the MMTs, the calculations predict that the interlayer spacing varies approximately linearly with the cation radius. The inclusion of dispersion corrections leads to sizable shifts of the interlayer spacings to shorter values. In Li-MMT, compaction of the interlayer distance triggers migration of the Li ion into the tetrahedral sheet and close coordination with basal oxygen atoms. Analysis of electron density distributions shows that the isomorphic octahedral Al3+/Mg2+ substitution in MMT causes an increase of electron density on the basal oxygen atoms of the tetrahedral sheets. C1 [Voora, Vamsee K.; Al-Saidi, W. A.; Jordan, Kenneth D.] Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. [Voora, Vamsee K.; Al-Saidi, W. A.; Jordan, Kenneth D.] Univ Pittsburgh, Ctr Mol & Mat Simulat, Pittsburgh, PA 15260 USA. [Voora, Vamsee K.; Jordan, Kenneth D.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Al-Saidi, W. A.] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. RP Jordan, KD (reprint author), Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA. FU National Energy Technology Laboratory's Office of Research and Development [Subtask 4000.4.600.251.002.005.000.006]; [DE-FE0004000] FX The authors are thankful to Drs. Evgeniy Myshakin, Vyacheslav Romanov, and Randall Cygan for fruitful discussions and comments on the manuscript. We acknowledge a grant of computer time at Pittsburgh Supercomputer Center and the use of computers at the University of Pittsburgh's Center for Simulation and Modeling. The research was performed under Contract DE-FE0004000, Subtask 4000.4.600.251.002.005.000.006, in support of the National Energy Technology Laboratory's Office of Research and Development. Reference in this report to any specific product, process, or service is to facilitate understanding and does not imply its endorsement or favoring by the United States Department of Energy. NR 88 TC 31 Z9 32 U1 3 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD SEP 1 PY 2011 VL 115 IS 34 SI SI BP 9695 EP 9703 DI 10.1021/jp201277f PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 810SC UT WOS:000294146400044 PM 21520925 ER PT J AU Liu, HB Sale, KL Simmons, BA Singh, S AF Liu, Hanbin Sale, Kenneth L. Simmons, Blake A. Singh, Seema TI Molecular Dynamics Study of Polysaccharides in Binary Solvent Mixtures of an Ionic Liquid and Water SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID NANOSTRUCTURAL ORGANIZATION; ENZYMATIC-HYDROLYSIS; CELLULOSE; DISSOLUTION; PRETREATMENT; WOOD; TETRAFLUOROBORATE; SACCHARIFICATION; RECALCITRANCE; SIMULATIONS AB Some ionic liquids (LLs) have great promise as effective solvents for biomass pretreatment, and there are several that have been reported that can dissolve large amounts of cellulose. The solubilized cellulose can then be recovered by addition of antisolvents, such as water or ethanol, and this regeneration process plays an important role in the subsequent enzymatic saccharification reactions and in the recovery of the ionic liquid. To date, little is known about the fundamental intermolecular interactions that drive the dissolution and subsequent regeneration of cellulose in complex mixtures of ionic liquids, water, and cellulose. To investigate these interactions, in this work, molecular dynamics (MD) simulations were carried out to study binary and ternary mixtures of the ionic liquid 1-ethy1-3-methylimidazolium acetate ([C2mim] [OAc]) with water and a cellulose oligomer. Simulations of a cellulose oligomer dissolved in three concentrations of binary mixtures of [C2mim] [OAc] and water were used to represent the ternary system in the dissolution phase (high [C2mim] [OAc] concentration) and present during the initial phase of the regeneration step (intermediate and low [C2mim] [OAc] concentrations). The MD analysis of the structure and dynamics that exist in these binary and ternary mixtures provides information on the key intermolecular interactions between cellulose and [C2mim][OAc] that lead to dissolution of cellulose and the key intermolecular interactions in the intermediate states of cellulose precipitation as a function of water content in the cellulose/IL/water system. The analysis of this intermediate state provides new insight into the molecular driving forces present in this ternary system. C1 [Liu, Hanbin; Sale, Kenneth L.; Simmons, Blake A.; Singh, Seema] Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA USA. [Liu, Hanbin; Sale, Kenneth L.; Simmons, Blake A.; Singh, Seema] Sandia Natl Labs, Biomass Sci & Convers Technol Dept, Livermore, CA USA. RP Singh, S (reprint author), Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA USA. EM seesing@sandia.gov OI Simmons, Blake/0000-0002-1332-1810 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory; U.S. Department of Energy FX This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through Contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy. This research used resources of the National Energy Research Scientific Computing Center (NERSC). We thank Dr. Harvey Blanch for his advice and for reviewing the manuscript and Drs. Brad Holmes, Ning Sun, and Gang Cheng for their discussion on this topic. NR 44 TC 40 Z9 40 U1 2 U2 61 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD SEP 1 PY 2011 VL 115 IS 34 BP 10251 EP 10258 DI 10.1021/jp111738q PG 8 WC Chemistry, Physical SC Chemistry GA 810SA UT WOS:000294146200007 PM 21827163 ER PT J AU Alfonso, DR AF Alfonso, Dominic R. TI Computational Studies of Experimentally Observed Structures of Sulfur on Metal Surfaces SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DENSITY-FUNCTIONAL THEORY; RAY STANDING-WAVE; SCANNING-TUNNELING-MICROSCOPY; ROOT 3)R30 DEGREES; ADSORBATE-SUBSTRATE; FIELD ABSORPTION; ADSORPTION SITE; RH(111) SURFACE; PD(111) SURFACE; ION-SCATTERING AB First-principles electronic structure calculations were carried out to examine the experimentally observed structures of sulfur on close-packed surfaces of a number of important metals -Ag(111), Cu(111), Ni(111), Pt(111), Rh(111), Re(0001), and Ru(0001). At low coverages (<= 1/3 ML), the prediction is consistent with the typical pattern of preferred sulfur occupancy of 3-fold hollow sites, notably the fcc site on the (111) surfaces and the hcp site on the (0001) surfaces. Theoretical confirmation for the existence of pure sulfur overlayer phases on Pt(111), Rh(111), Re(0001), and Ru(0001) at higher coverages (>1/3 ML) was provided. For the (root 7 x root 7) phase seen on Ag(111), the most preferred structure identified for the adsorbed S trimer consists of a S atom on the top site bonded to two S atoms situated on the nearest neighbor off-bridge site positions. Among the different densely packed mixed sulfur-metal overlayer models suggested for the (root 7 x root 7) phase on Cu(111), the structure which consists of metal and S atoms in a hexagonal-like arrangement on the top substrate was found to be the most energetically favorable. For the (5 root 3 x 2) phase on Ni(111), the calculations confirm the existence of clock-reconstructed top layer metal atoms onto which sulfur atoms are adsorbed. C1 US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Alfonso, DR (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. NR 76 TC 5 Z9 5 U1 2 U2 27 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD SEP 1 PY 2011 VL 115 IS 34 BP 17077 EP 17091 DI 10.1021/jp2048426 PG 15 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 810SF UT WOS:000294146700042 ER PT J AU Arai, Y Rick, AR Saylor, T Faas, E Tappero, R Lanzirotti, A AF Arai, Yuji Rick, Allison R. Saylor, Tessa Faas, Emily Tappero, Ryan Lanzirotti, Antonio TI Macroscopic and molecular-scale assessment of soil lead contamination impacted by seasonal dove hunting activities SO JOURNAL OF SOILS AND SEDIMENTS LA English DT Article DE Ammunition; Chemical speciation; Contamination; Fate; Lead; Soil; XAS; X-ray microprobe ID RAY-ABSORPTION SPECTROSCOPY; BOND-VALENCE DETERMINATION; PB(II) SORPTION PRODUCTS; OXIDE-WATER INTERFACES; SHOOTING-RANGE SOILS; SURFACE COMPLEXATION; ORGANIC-MATTER; ADSORPTION; PB; CU AB Environmental contamination of lead (Pb) in soils and sediments poses serious threats to human and ecological health. The objective of this study is to investigate the effect of seasonal dove sports hunting activities on Pb contamination in acid forest soils. A grid sampling method was used to investigate the spatial distribution of Pb contamination in surface soils. Soils were analyzed for total metal(loid) concentration and characterized for physicochemical properties and mineralogy. Adsorption isotherm experiments were also conducted to understand the reactivity and retention capacity of Pb(II) in soils. Finally, synchrotron-based X-ray microprobe and X-ray absorption spectroscopy were used to understand the chemical speciation of Pb that controls the retention/release mechanisms of Pb in soils. There was no excessive accumulation of Pb at the site. However, the concentration of Pb in surface soils was greater than the background level (< 16 mg kg(-1)). The contamination level of Pb was as high as 67 mg kg(-1) near a patch of corn field where lime was frequently applied. A microfocused X-ray microprobe analysis showed the presence of Pb pellet fragments that predominantly contain oxidized Pb(II), suggesting that oxidative dissolution was occurring in soils. Dissolved Pb(II) can be readily retained in soils up to similar to 3,600 mg kg(-1) via inner-sphere and outer-sphere surface complexation on carbon and aluminol functional groups of soil components, suggesting that partitioning reactions control the concentration of Pb in soil solution. The fate of Pb is likely to be controlled by (1) oxidative dissolution process of Pb(0) pellets and (2) the release of outer-sphere and/or inner-sphere Pb surface complexes in humic substances and aluminosilicate/Al oxyhydroxides. Although no remedial actions are immediately required, the long-term accumulation of Pb in soils should be carefully monitored in protecting ecosystem and water quality at the dove hunting field. C1 [Arai, Yuji; Rick, Allison R.] Clemson Univ, Dept Entomol Soils & Plant Sci, Poole Agr Ctr 270, Clemson, SC 29634 USA. [Saylor, Tessa] Clemson Univ, Dept Environm Engn & Earth Sci, Clemson, SC 29634 USA. [Faas, Emily] Clemson Univ, Dept Biosyst Engn, Clemson, SC 29634 USA. [Tappero, Ryan] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Lanzirotti, Antonio] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA. RP Arai, Y (reprint author), Clemson Univ, Dept Entomol Soils & Plant Sci, Poole Agr Ctr 270, Clemson, SC 29634 USA. EM yarai@clemson.edu FU Clemson University; U.S. Department of Energy (DOE), geosciences [DE-FG02-92ER14244]; Brookhaven National Laboratory, Department of Environmental Sciences; U.S. DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This research was supported in part by the Clemson University Undergraduate Creative Inquiry research funds. The authors thank the undergraduate students from the Department of Biosystems Engineering for assisting the sieving and drying processes of soils. Portions of this research were performed at BL X27A, NSLS, Brookhaven National Laboratory. The BL X27A is supported in part by the U.S. Department of Energy (DOE), geosciences (DE-FG02-92ER14244 to the University of Chicago-CARS) and Brookhaven National Laboratory, Department of Environmental Sciences. The use of the NSLS was supported by the U.S. DOE, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. NR 46 TC 1 Z9 1 U1 4 U2 16 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1439-0108 J9 J SOIL SEDIMENT JI J. Soils Sediments PD SEP PY 2011 VL 11 IS 6 BP 968 EP 979 DI 10.1007/s11368-011-0374-z PG 12 WC Environmental Sciences; Soil Science SC Environmental Sciences & Ecology; Agriculture GA 809OC UT WOS:000294065600010 ER PT J AU Liu, Y Liang, X Xu, LZ Staples, M Zhu, LM AF Liu, Yan Liang, Xin Xu, Lingzhi Staples, Mark Zhu, Liming TI Composing enterprise mashup components and services using architecture integration patterns SO JOURNAL OF SYSTEMS AND SOFTWARE LA English DT Article; Proceedings Paper CT Joint Working IEEE/IFIP Conference on Software Architecture/European Conference on Software Architecture CY SEP 14-17, 2009 CL Cambridge, ENGLAND SP IEEE, IFIP DE Software architecture; Design; Patterns; Mashup AB Enterprise mashups leverage various source of information to compose new situational applications. The architecture of such applications must address integration issues: it needs to deal with heterogeneous local and/or public data sources, and build value-added applications on existing corporate IT systems. In this paper, we leverage enterprise architecture integration patterns to compose reusable mashup components. We present a service oriented architecture that addresses reusability and integration needs for building enterprise mashup applications. Key techniques to customize this architecture are developed for mashups with themed data on location maps. The usage of this architecture is illustrated by a property valuation application derived from a real-world scenario. We demonstrate and discuss how this state-of-the-art architecture design method can be applied to enhance the design and development of emerging enterprise mashups. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved. C1 [Liu, Yan] Pacific NW Natl Lab, Richland, WA 99352 USA. [Liu, Yan; Liang, Xin; Staples, Mark; Zhu, Liming] Univ New S Wales, Sydney, NSW 2052, Australia. [Xu, Lingzhi; Staples, Mark; Zhu, Liming] NICTA, Eveleigh, NSW 2015, Australia. RP Liu, Y (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM yan.liu@pnl.gov NR 22 TC 9 Z9 9 U1 1 U2 8 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0164-1212 J9 J SYST SOFTWARE JI J. Syst. Softw. PD SEP PY 2011 VL 84 IS 9 SI SI BP 1436 EP 1446 DI 10.1016/j.jss.2011.01.030 PG 11 WC Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 809UC UT WOS:000294081200003 ER PT J AU Orr, GA Chrisler, WB Cassens, KJ Tan, R Tarasevich, BJ Markillie, LM Zangar, RC Thrall, BD AF Orr, Galya A. Chrisler, William B. Cassens, Kaylyn J. Tan, Ruimin Tarasevich, Barbara J. Markillie, Lye Meng Zangar, Richard C. Thrall, Brian D. TI Cellular recognition and trafficking of amorphous silica nanoparticles by macrophage scavenger receptor A SO NANOTOXICOLOGY LA English DT Article DE Scavenger receptor; silica; nanoparticle; endocytosis; macrophage ID ALVEOLAR MACROPHAGES; MEDIATED ENDOCYTOSIS; DIFFERENTIAL BINDING; MARCO; LIVER; PARTICLES; IDENTIFICATION; TOXICITY; PROTEINS; PATHWAY AB The cellular uptake of engineered nanoparticles (ENPs) is known to involve active transport mechanisms, yet the biological molecules involved are poorly understood. We demonstrate that the uptake of amorphous silica ENPs by macrophage cells, and the secretion of proinflammatory cytokines, is strongly inhibited by silencing expression of scavenger receptor A (SR-A). Conversely, ENP uptake is augmented by introducing SR-A expression into human cells that are normally non-phagocytic. Confocal microscopy analyses show that the majority of single or small clusters of silica ENPs co-localize with SR-A and are internalized through a pathway characteristic of clathrin-dependent endocytosis. In contrast, larger silica ENP agglomerates (>500 nm) are poorly co-localized with the receptor, suggesting that the physical agglomeration state of an ENP influences its cellular trafficking. As SR-A is expressed in macrophages throughout the reticulo-endothelial system, this pathway is likely an important determinant of the biological response to ENPs. C1 [Thrall, Brian D.] Pacific NW Natl Lab, Cell Biol & Biochem Grp, Richland, WA 99352 USA. RP Thrall, BD (reprint author), Pacific NW Natl Lab, Cell Biol & Biochem Grp, Box 999,Mail Stop J4-02, Richland, WA 99352 USA. EM brian.thrall@pnl.gov FU National Institutes of Health [ES016212]; Environmental Protection Agency [RD833338]; Air Force Research Laboratory [FA8650-05-1-504]; Battelle Memorial Institute [PNNL/284]; U.S. Department of Energy [AC06-76RLO 1830] FX The authors thank Dr Joel Pounds for critical review and discussions, and Mr Matt Littke for experimental support. Support for this work was provided by the National Institutes of Health (ES016212, BDT), the Environmental Protection Agency (STAR grant RD833338, GO), Air Force Research Laboratory (FA8650-05-1-504 to ONAMI-SNNI), and the Multi-scale Toxicology Research Initiative sponsored by Battelle Memorial Institute (CRADA #PNNL/284). Portions of this work were conducted at the Environmental Molecular Science Laboratory at Pacific Northwest National Laboratory, a U.S. Department of Energy national user facility. PNNL is operated by Battelle for the U.S. Department of Energy under contract AC06-76RLO 1830. NR 39 TC 26 Z9 26 U1 1 U2 17 PU INFORMA HEALTHCARE PI NEW YORK PA 52 VANDERBILT AVE, NEW YORK, NY 10017 USA SN 1743-5390 J9 NANOTOXICOLOGY JI Nanotoxicology PD SEP PY 2011 VL 5 IS 3 BP 296 EP 311 DI 10.3109/17435390.2010.513836 PG 16 WC Nanoscience & Nanotechnology; Toxicology SC Science & Technology - Other Topics; Toxicology GA 811PS UT WOS:000294225600002 PM 20849212 ER PT J AU Kumar, A Ciucci, F Morozovska, AN Kalinin, SV Jesse, S AF Kumar, Amit Ciucci, Francesco Morozovska, Anna N. Kalinin, Sergei V. Jesse, Stephen TI Measuring oxygen reduction/evolution reactions on the nanoscale SO NATURE CHEMISTRY LA English DT Article ID YTTRIA-STABILIZED ZIRCONIA; OXIDE; REDUCTION; BATTERIES; TRANSFORMATION; SPECTROSCOPY; CONDUCTORS; DIFFUSION; IMPEDANCE; TRANSPORT AB The efficiency of fuel cells and metal-air batteries is significantly limited by the activation of oxygen reduction and evolution reactions. Despite the well-recognized role of oxygen reaction kinetics on the viability of energy technologies, the governing mechanisms remain elusive and until now have been addressable only by macroscopic studies. This lack of nanoscale understanding precludes optimization of material architecture. Here, we report direct measurements of oxygen reduction/evolution reactions and oxygen vacancy diffusion on oxygen-ion conductive solid surfaces with sub-10 nm resolution. In electrochemical strain microscopy, the biased scanning probe microscopy tip acts as a moving, electrocatalytically active probe exploring local electrochemical activity. The probe concentrates an electric field in a nanometre-scale volume of material, and bias-induced, picometre-level surface displacements provide information on local electrochemical processes. Systematic mapping of oxygen activity on bare and platinum-functionalized yttria-stabilized zirconia surfaces is demonstrated. This approach allows direct visualization of the oxygen reduction/evolution reaction activation process at the triple-phase boundary, and can be extended to a broad spectrum of oxygen-conductive and electrocatalytic materials. C1 [Kumar, Amit; Kalinin, Sergei V.; Jesse, Stephen] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Ciucci, Francesco] Heidelberg Univ, Inst Angew Math, Heidelberg Grad Sch Math & Computat Methods, D-69120 Heidelberg, Germany. [Morozovska, Anna N.] Natl Acad Sci Ukraine, Inst Semicond Phys, UA-03028 Kiev, Ukraine. RP Kumar, A (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM ka7@ornl.gov; sergei2@ornl.gov RI Kumar, Amit/C-9662-2012; Kalinin, Sergei/I-9096-2012; Jesse, Stephen/D-3975-2016; Ciucci, Francesco/H-4786-2012 OI Kumar, Amit/0000-0002-1194-5531; Kalinin, Sergei/0000-0001-5354-6152; Jesse, Stephen/0000-0002-1168-8483; Ciucci, Francesco/0000-0003-0614-5537 FU Oak Ridge National Laboratory by the Scientific User Facilities Division, US Department of Energy; Marie Curie Reintegration Grant [FastCell-256583] FX This research was conducted (A.K., S.J., S.V.K.) at the Center for Nanophase Materials Sciences, which is sponsored at the Oak Ridge National Laboratory by the Scientific User Facilities Division, US Department of Energy. F.C. acknowledges support from a Marie Curie Reintegration Grant FastCell-256583. The authors are grateful to P. Rack and J. Fowlkes for deposition of platinum nanoparticles. NR 33 TC 128 Z9 128 U1 30 U2 258 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1755-4330 EI 1755-4349 J9 NAT CHEM JI Nat. Chem. PD SEP PY 2011 VL 3 IS 9 BP 707 EP 713 DI 10.1038/NCHEM.1112 PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 810WM UT WOS:000294159300019 PM 21860460 ER PT J AU Snezhko, A Aranson, IS AF Snezhko, Alexey Aranson, Igor S. TI Magnetic manipulation of self-assembled colloidal asters SO NATURE MATERIALS LA English DT Article AB Self-assembled materials(1-4) must actively consume energy and remain out of equilibrium to support structural complexity and functional diversity(1,5). Here we show that a magnetic colloidal suspension confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters, which exhibit locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, we show that asters can capture, transport, and position target microparticles. The ability to manipulate colloidal structures is crucial for the further development of self-assembled microrobots. C1 [Snezhko, Alexey; Aranson, Igor S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Snezhko, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM snezhko@anl.gov RI Aranson, Igor/I-4060-2013 FU US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE AC02-06CH11357] FX We thank S. Swaminathan for careful reading of the manuscript and useful comments. The research was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357. NR 30 TC 93 Z9 94 U1 4 U2 77 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD SEP PY 2011 VL 10 IS 9 BP 698 EP 703 DI 10.1038/NMAT3083 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 810VU UT WOS:000294156800015 PM 21822260 ER PT J AU Radmilovic, V Ophus, C Marquis, EA Rossell, MD Tolley, A Gautam, A Asta, M Dahmen, U AF Radmilovic, V. Ophus, C. Marquis, E. A. Rossell, M. D. Tolley, A. Gautam, A. Asta, M. Dahmen, U. TI Highly monodisperse core-shell particles created by solid-state reactions SO NATURE MATERIALS LA English DT Article ID INITIO MOLECULAR-DYNAMICS; AUGMENTED-WAVE METHOD; AL-LI ALLOYS; ALUMINUM-ALLOYS; SC ALLOY; PRECIPITATION; DIFFUSION; KINETICS; INTERFACE; SCANDIUM AB The size distribution of particles, which is essential for many properties of nanomaterials, is equally important for the mechanical behaviour of the class of alloys whose strength derives from a dispersion of nanoscale precipitates. However, particle size distributions formed by solid-state precipitation are generally not well controlled. Here we demonstrate, through the example of core-shell precipitates in Al-Sc-Li alloys, an approach to forming highly monodisperse particle size distributions by simple solid-state reactions. The approach involves the use of a two-step heat treatment, whereby the core formed at high temperature provides a template for growth of the shell at lower temperature. If the core is allowed to grow to a sufficient size, the shell develops in a 'size focusing' regime, where smaller particles grow faster than larger ones. These results suggest strategies for manipulating precipitate size distributions in similar systems through simple variations in thermal treatments. C1 [Radmilovic, V.; Ophus, C.; Rossell, M. D.; Tolley, A.; Gautam, A.; Asta, M.; Dahmen, U.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Radmilovic, V.] Univ Belgrade, Fac Technol & Met, Nanotechnol & Funct Mat Ctr, Belgrade 11000, Serbia. [Marquis, E. A.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Rossell, M. D.] ETH, Dept Mat, CH-8093 Zurich, Switzerland. [Tolley, A.] Comis Nacl Energia Atom, San Carlos De Bariloche, Rio Negro, Argentina. [Asta, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Radmilovic, V (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. EM VRRadmilovic@lbl.gov RI Ophus, Colin/H-2350-2013; Marquis, Emmanuelle/O-5647-2014; Rossell, Marta/E-9785-2017; OI Marquis, Emmanuelle/0000-0002-6476-2835; Ophus, Colin/0000-0003-2348-8558 FU Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division of the US Department of Energy [DE-AC02-05CH11231, DE-FG02-06ER46282]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; National Sciences and Engineering Research Council of Canada; European FP7 project [245916]; Ministry of Education and Science of the Republic of Serbia [172054] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division of the US Department of Energy under Contracts # DE-AC02-05CH11231 (V.R., A.T., A.G., U.D.) and DE-FG02-06ER46282 (M.A.). Electron microscopy was performed at the National Center for Electron Microscopy, which is supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. C.O. acknowledges funding from the National Sciences and Engineering Research Council of Canada. V.R. acknowledges support of Nanotechnology and Functional Materials Center, funded by the European FP7 project No. 245916, and support from the Ministry of Education and Science of the Republic of Serbia, under project No. 172054. M. Watanabe, R. Erni and Z. Lee are acknowledged for their assistance to M.D.R. in TEM/STEM/EELS data acquisition/reconstruction. We acknowledge Mr. J. Wu of LBNL, Materials Science Division, for alloy preparation. NR 39 TC 30 Z9 34 U1 8 U2 115 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD SEP PY 2011 VL 10 IS 9 BP 710 EP 715 DI 10.1038/NMAT3077 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 810VU UT WOS:000294156800017 PM 21822262 ER PT J AU Vugrin, ED Warren, DE Ehlen, MA AF Vugrin, Eric D. Warren, Drake E. Ehlen, Mark A. TI A Resilience Assessment Framework for Infrastructure and Economic Systems: Quantitative and Qualitative Resilience Analysis of Petrochemical Supply Chains to a Hurricane SO PROCESS SAFETY PROGRESS LA English DT Article DE resilience; petrochemical supply chain; hurricane; infrastructure protection; disruptions; critical infrastructure; key resource AB In recent years, the nation has recognized that critical infrastructure protection should consider not only the prevention of disruptive events but also the processes that infrastructure systems undergo to maintain functionality following disruptions. This more comprehensive approach has been termed critical infrastructure resilience. Given the occurrence of a particular disruptive event, the resilience of a system to that event is the system's ability to reduce efficiently both the magnitude and duration of the deviation from targeted system performance levels. Under the direction of the U. S. Department of Homeland Security's Science and Technology Directorate, Sandia National Laboratories has developed a comprehensive resilience assessment framework for evaluating the resilience of infrastructure and economic systems. The framework includes a quantitative methodology that measures resilience costs that result from a disruption to infrastructure function. The framework also includes a qualitative analysis methodology that assesses system characteristics affecting resilience to provide insight and direction for potential improvements. This article describes the resilience assessment framework and demonstrates the utility of the assessment framework through application to two hypothetical scenarios involving the disruption of a petrochemical supply chain by hurricanes. (C) 2011 American Institute of Chemical Engineers Process Saf Prog 30: 280-290, 2011 C1 [Vugrin, Eric D.; Warren, Drake E.; Ehlen, Mark A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Vugrin, ED (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM edvugri@sandia.gov FU U.S. Government [DE-AC04-94AL85000]; Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; DHS Science and Technology Directorate FX Conflict of Interest: The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC04-94AL85000. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.; Sandia is a multiprogram laboratory operated by Sandia Corporation for the Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. The authors performed this work with funding from the DHS Science and Technology Directorate. NR 6 TC 34 Z9 34 U1 11 U2 49 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1066-8527 J9 PROCESS SAF PROG JI Process Saf. Prog. PD SEP PY 2011 VL 30 IS 3 BP 280 EP 290 DI 10.1002/prs.10437 PG 11 WC Engineering, Chemical SC Engineering GA 811LT UT WOS:000294212800012 ER PT J AU Leonard, PW Pollard, CJ Chavez, DE Rice, BM Parrish, DA AF Leonard, Philip W. Pollard, Colin J. Chavez, David E. Rice, Betsy M. Parrish, Damon A. TI 3,6-Bis(4-nitro-1,2,5-oxadiazol-3-yl)-1,4,2,5-dioxadiazene (BNDD): A Powerful Sensitive Explosive SO SYNLETT LA English DT Article DE explosives; furazan; heterocycles; nitrogen; oxidation AB The explosive 3,6-bis(4-nitro-1,2,5-oxadiazol-3-yl)1,4,2,5- dioxadiazene (BNDD) was synthesized by oxidation of the corresponding diamine using hydrogen peroxide in sulfuric acid with sodium tungstate. The product exhibited detonations during sensitivity testing at low insult; the material is shock and friction sensitive. The synthesis of BNDD should only be pursued by knowledgeable researchers exercising extreme caution. C1 [Leonard, Philip W.; Pollard, Colin J.; Chavez, David E.] Los Alamos Natl Lab, Weap Expt Div, Los Alamos, NM 87545 USA. [Rice, Betsy M.] USA, Res Lab, Aberdeen, MD 20783 USA. [Parrish, Damon A.] USN, Res Lab, Struct Matter Lab, Washington, DC 20375 USA. RP Leonard, PW (reprint author), Los Alamos Natl Lab, Weap Expt Div, POB 1663, Los Alamos, NM 87545 USA. EM philipl@lanl.gov FU Joint Munitions Program; U.S. Department of Energy [DE-AC52-06NA25396] FX The authors would like to thank the Los Alamos National Laboratory Analytical team, particularly Annie Giambra for Elemental Analysis, Mary Sandstrom for DSC, and Daniel Preston for impact, friction, and spark sensitivity testing. This work was funded by the Joint Munitions Program. Except where indicated, this information has been authored by employees of the Los Alamos National Security, LLC. (LANS), operator of the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with the U.S. Department of Energy. Released for unlimited audience: LA-UR 11-00570. NR 13 TC 11 Z9 11 U1 0 U2 7 PU GEORG THIEME VERLAG KG PI STUTTGART PA RUDIGERSTR 14, D-70469 STUTTGART, GERMANY SN 0936-5214 J9 SYNLETT JI Synlett PD SEP PY 2011 IS 14 BP 2097 EP 2099 DI 10.1055/s-0030-1261169 PG 3 WC Chemistry, Organic SC Chemistry GA 810WZ UT WOS:000294161400031 ER PT J AU McCluskey, K Wiest, AE Grigoriev, IV Lipzen, A Martin, J Schackwitz, W Baker, SE AF McCluskey, Kevin Wiest, Aric E. Grigoriev, Igor V. Lipzen, Anna Martin, Joel Schackwitz, Wendy Baker, Scott E. TI Rediscovery by Whole Genome Sequencing: Classical Mutations and Genome Polymorphisms in Neurospora crassa SO G3-GENES GENOMES GENETICS LA English DT Article DE single nucleotide polymorphism; SNP; indel; comparative genomics; classical mutant ID SACCHAROMYCES-CEREVISIAE; LINKAGE DATA; FUNGUS; MUTANTS; MARKERS; GROWTH; DNA; MORPHOGENESIS; METABOLISM; STERILITY AB Classical forward genetics has been foundational to modern biology, and has been the paradigm for characterizing the role of genes in shaping phenotypes for decades. In recent years, reverse genetics has been used to identify the functions of genes, via the intentional introduction of variation and subsequent evaluation in physiological, molecular, and even population contexts. These approaches are complementary and whole genome analysis serves as a bridge between the two. We report in this article the whole genome sequencing of eighteen classical mutant strains of Neurospora crassa and the putative identification of the mutations associated with corresponding mutant phenotypes. Although some strains carry multiple unique nonsynonymous, nonsense, or frameshift mutations, the combined power of limiting the scope of the search based on genetic markers and of using a comparative analysis among the eighteen genomes provides strong support for the association between mutation and phenotype. For ten of the mutants, the mutant phenotype is recapitulated in classical or gene deletion mutants in Neurospora or other filamentous fungi. From thirteen to 137 nonsense mutations are present in each strain and indel sizes are shown to be highly skewed in gene coding sequence. Significant additional genetic variation was found in the eighteen mutant strains, and this variability defines multiple alleles of many genes. These alleles may be useful in further genetic and molecular analysis of known and yet-to-be-discovered functions and they invite new interpretations of molecular and genetic interactions in classical mutant strains. C1 [McCluskey, Kevin; Wiest, Aric E.] Univ Missouri, Fungal Genet Stock Ctr, Sch Biol Sci, Kansas City, MO 64110 USA. [Grigoriev, Igor V.; Lipzen, Anna; Martin, Joel; Schackwitz, Wendy; Baker, Scott E.] US Dept Energy Joint Genome Inst, Walnut Creek, CA 94598 USA. [Baker, Scott E.] Pacific NW Natl Lab, Chem & Biol Proc Dev Grp, Richland, WA 99354 USA. RP McCluskey, K (reprint author), Univ Missouri, Fungal Genet Stock Ctr, Sch Biol Sci, 5007 Rockhill Rd, Kansas City, MO 64110 USA. EM mccluskeyk@umkc.edu; scott.baker@pnnl.gov FU U.S. National Science Foundation [742713]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank Michael Freitag, Kristina Smith, Kyle Pomraning, N. Louise Glass, and Gerry Wyckoff for helpful comments. The FGSC is supported by U.S. National Science Foundation Grant no. 742713. The DOE Office of the Biomass Program provided support for genome analysis by S.E.B. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 55 TC 37 Z9 37 U1 7 U2 19 PU GENETICS SOC AM PI BETHESDA PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA SN 2160-1836 J9 G3-GENES GENOM GENET JI G3-Genes Genomes Genet. PD SEP 1 PY 2011 VL 1 IS 4 BP 303 EP 316 DI 10.1534/g3.111.000307 PG 14 WC Genetics & Heredity SC Genetics & Heredity GA 055HZ UT WOS:000312407600007 PM 22384341 ER PT J AU Weier, HUG Ito, Y Kwan, J Smida, J Weier, JF Hieber, L Lu, CM Lehmann, L Wang, M Kassabian, HJ Zeng, H O'Brien, B AF Weier, Heinz-Ulrich G. Ito, Yuko Kwan, Johnson Smida, Jan Weier, Jingly F. Hieber, Ludwig Lu, Chun-Mei Lehmann, Lars Wang, Mei Kassabian, Haig J. Zeng, Hui O'Brien, Benjamin TI Delineating Chromosomal Breakpoints in Radiation-Induced Papillary Thyroid Cancer SO GENES LA English DT Article DE Chernobyl; neoplastic disease; papillary thyroid cancer; translocation; molecular cytogenetics; breakpoint delineation; fluorescence in situ hybridization; bacterial artificial chromosomes AB Recurrent translocations are well known hallmarks of many human solid tumors and hematological disorders, where patient-and breakpoint-specific information may facilitate prognostication and individualized therapy. In thyroid carcinomas, the proto-oncogenes RET and NTRK1 are often found to be activated through chromosomal rearrangements. However, many sporadic tumors and papillary thyroid carcinomas (PTCs) arising in patients with a history of exposure to elevated levels of ionizing irradiation do not carry these known abnormalities. We developed a rapid scheme to screen tumor cell metaphase spreads and identify candidate genes of tumorigenesis and neoplastic progression for subsequent functional studies. Using a series of overnight fluorescence in situ hybridization (FISH) experiments with pools comprised of bacterial artificial chromosome (BAC) clones, it now becomes possible to rapidly refine breakpoint maps and, within one week, progress from the low resolution Spectral Karyotyping (SKY) maps or Giemsa-banding (G-banding) karyotypes to fully integrated, high resolution physical maps including a list of candiate genes in the critical regions. C1 [Weier, Heinz-Ulrich G.; Ito, Yuko; Kwan, Johnson; Weier, Jingly F.; Lu, Chun-Mei; Lehmann, Lars; Kassabian, Haig J.; Zeng, Hui; O'Brien, Benjamin] EO Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Ito, Yuko] Natl Inst Sci & Technol Policy NISTEP, Minist Educ Culture Sports Sci & Technol, Tokyo 1000005, Japan. [Smida, Jan] Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Clin Cooperat Grp Osteosarcoma, D-85764 Neuherberg, Germany. [Weier, Jingly F.] Univ Calif San Francisco, Clin Labs Cytogenet, San Francisco, CA 94143 USA. [Hieber, Ludwig; Lehmann, Lars] Helmholtz Zentrum Munchen, German Res Ctr Environm Hlth, Dept Radiat Cytogenet, D-85764 Neuherberg, Germany. [Lu, Chun-Mei] Natl Chin Yi Univ Technol, Dept Chem & Mat Engn, Taichung 411, Taiwan. [Lehmann, Lars] Roche Diagnost GmbH, D-82377 Penzberg, Germany. [Wang, Mei] City Hope Natl Med Ctr, Dept Diabet, Duarte, CA 91010 USA. [O'Brien, Benjamin] Barts & London Queen Marys Sch Med & Dent, William Harvey Res Inst, London EC1M 6BQ, England. [O'Brien, Benjamin] German Heart Inst Berlin, Dept Anesthesiol, D-13353 Berlin, Germany. RP O'Brien, B (reprint author), EO Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM ugweier@lbl.gov; itoh@nistep.go.jp; kwanj@mail.amc.edu; smida@helmholtz-muenchen.de; jinglyw@gmail.com; ludwig.hieber@helmholtz-muenchen.de; lucm@ncut.edu.tw; lars.lehmann@roche.com; mwang@coh.org; hjkassabian@gmail.com; hzeng@lbl.gov; benobrien@doctors.org.uk RI Smida, Jan/P-2486-2014 FU Leonard Rosenman Fund; NIH [HD45736, CA123370, CA132815, CA136685, HD41425]; [DE-AC02-05CH11231] FX The skillful assistance of guests and staff of the Weier laboratory, LBNL, is gratefully acknowledged. This work was supported in parts by a grant from the Leonard Rosenman Fund (BOB) and NIH grants HD45736, CA123370, CA132815 and CA136685 (HUW) carried out at the Lawrence Berkeley National Laboratory under contract DE-AC02-05CH11231. JLF was supported in part by NIH grant HD41425. We would like to thank the Mapping Core and Map Finishing groups of the Wellcome Trust Sanger Institute for initial clone supply and verification [47,74]. NR 74 TC 2 Z9 4 U1 0 U2 0 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 2073-4425 J9 GENES-BASEL JI Genes PD SEP PY 2011 VL 2 IS 3 BP 397 EP 419 DI 10.3390/genes2030397 PG 23 WC Genetics & Heredity SC Genetics & Heredity GA V36XY UT WOS:000209242100001 PM 22096618 ER PT J AU Oldenburg, CM AF Oldenburg, Curtis M. TI Improved understanding of geologic CO2 storage processes requires risk-driven field experiments SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Editorial Material C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Oldenburg, CM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM cmoldenburg@lbl.gov RI Oldenburg, Curtis/L-6219-2013 OI Oldenburg, Curtis/0000-0002-0132-6016 NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD SEP PY 2011 VL 1 IS 3 BP 191 EP 193 DI 10.1002/ghg.032 PG 3 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA V27LS UT WOS:000208615300001 ER PT J AU Pruess, K AF Pruess, Karsten TI Integrated modeling of CO2 storage and leakage scenarios including transitions between super- and subcritical conditions, and phase change between liquid and gaseous CO2 SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Article DE CO2 storage and leakage; Joule-Thomson effect; non-isothermal effects; numerical simulation; self-enhancing and self limiting effects; three-phase flow AB Storage of CO2 in saline aquifers is intended to be at supercritical pressure and temperature conditions, but CO2 leaking from a geologic storage reservoir and migrating toward the land surface (through faults, fractures, or improperly abandoned wells) would reach subcritical conditions at depths shallower than 500-750 m. At these and shallower depths, subcritical CO2 can form two-phase mixtures of liquid and gaseous CO2, with significant latent heat effects during boiling and condensation. Additional strongly non-isothermal effects can arise from decompression of gas-like subcritical CO2, the so-called Joule-Thomson effect. Integrated modeling of CO2 storage and leakage requires the ability to model non-isothermal flows of brine and CO2 at conditions that range from supercritical to subcritical, including three-phase flow of aqueous phase, and both liquid and gaseous CO2. In this paper, we describe and demonstrate comprehensive simulation capabilities that can cope with all possible phase conditions in brine-CO2 systems. Our model formulation includes: an accurate description of thermophysical properties of aqueous and CO2-rich phases as functions of temperature, pressure, salinity and CO2 content, including the mutual dissolution of CO2 and H2O; transitions between super- and subcritical conditions, including phase change between liquid and gaseous CO2; one-, two-, and three-phase flow of brine-CO2 mixtures, including heat flow; non-isothermal effects associated with phase change, mutual dissolution of CO2 and water, and (de-) compression effects; and the effects of dissolved NaCl, and the possibility of precipitating solid halite, with associated porosity and permeability change. Applications to specific leakage scenarios demonstrate that the peculiar thermophysical properties of CO2 provide a potential for positive as well as negative feedbacks on leakage rates, with a combination of self-enhancing and self-limiting effects. Lower viscosity and density of CO2 as compared to aqueous fluids provides a potential for self-enhancing effects during leakage, while strong cooling effects from liquid CO2 boiling into gas, and from expansion of gas rising towards the land surface, act to self-limit discharges. Strong interference between fluid phases under three-phase conditions (aqueous - liquid CO2 - gaseous CO2) also tends to reduce CO2 fluxes. Feedback on different space and time scales can induce non-monotonic behavior of CO2 flow rates. (c) 2011 Society of Chemical Industry and John Wiley & Sons, Ltd C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Pruess, K (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM K_Pruess@lbl.gov FU Office of Coal and Power R&D, through the National Energy Technology Laboratory; Zero Emission Research and Technology project (ZERT) [DE-AC02-05CH11231] FX Thanks are due to Curt Oldenburg for a careful review of the manuscript and the suggestion of improvements. We also thank anonymous reviewers for constructive suggestions. This work was supported by the Assistant Secretary for Fossil Energy, Office of Coal and Power R&D, through the National Energy Technology Laboratory, and by the Zero Emission Research and Technology project (ZERT) under Contract No. DE-AC02-05CH11231 between the U.S. Department of Energy and the Lawrence Berkeley National Laboratory. NR 28 TC 14 Z9 15 U1 1 U2 24 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD SEP PY 2011 VL 1 IS 3 BP 237 EP 247 DI 10.1002/ghg.024 PG 11 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA V27LS UT WOS:000208615300007 ER PT J AU Ellis, BR Peters, CA Fitts, J Bromhal, G McIntyre, D Warzinski, R Rosenbaum, E AF Ellis, Brian R. Peters, Catherine A. Fitts, Jeffrey Bromhal, Grant McIntyre, Dustin Warzinski, Robert Rosenbaum, Eilis TI Deterioration of a fractured carbonate caprock exposed to CO2-acidified brine flow SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Article DE caprock fracture; carbonate dissolution; CO2 sequestration; fracture flow; leakage; risk assessment AB A flow-through experiment was performed to investigate evolution of a fractured carbonate caprock during flow of CO2-acidified brine. A core was taken from the Amherstburg limestone, a caprock formation overlying the Bois Blanc and Bass Islands formations, which have been used to demonstrate CO2 storage in the Michigan basin. The inlet brine was representative of deep saline brines saturated with CO2, resulting in a starting pH of 4.4. Experimental conditions were 27 degrees C and 10 MPa. X-ray computed tomography and scanning electron microscopy were used to observe evolution of fracture geometry and to investigate mineralogical changes along the fracture surface. The initial brine flow corresponded to an average fluid velocity of 110 cm hr(-1). After one week, substantial mineral dissolution caused the average cross-sectional area of the fracture to increase from 0.09 cm(2) to 0.24 cm(2). This demonstrates that carbonate caprocks, if fractured, can erode quickly and may jeopardize sealing integrity when hydrodynamic conditions promote flow of CO2-acidified brine. However, changes to fracture permeability due to mineral dissolution may be offset by unaltered constrictions along the flow path and by increases in surface roughness. In this experiment, preferential dissolution of calcite over dolomite led to uneven erosion of the fracture surface and an increase in roughness. In areas with clay minerals, calcite dissolution left behind a silicate mineral-rich microporous coating along the fracture wall. Thus, the evolution of fracture permeability will depend in a complex way on the carbonate content, as well as the heterogeneity of the minerals and their spatial patterning. (c) 2011 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Peters, Catherine A.] Princeton Univ, Civil & Environm Engn Dept, Princeton, NJ 08544 USA. [Fitts, Jeffrey] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. RP Peters, CA (reprint author), Princeton Univ, Civil & Environm Engn Dept, Princeton, NJ 08544 USA. EM cap@princeton.edu RI Fitts, Jeffrey/J-3633-2012; Peters, Catherine/B-5381-2013; OI Peters, Catherine/0000-0003-2418-795X; McIntyre, Dustin/0000-0003-4907-9576 FU US Department of Energy National Energy Technology Laboratory; ORISE professional internship; ASCE Freeman Fellowship; US Department of Energy [DE-FE0000749]; Brookhaven National Lab [DE-AC02-98CH10886]; NSF MRSEC program through the Princeton Center for Complex Materials [DMR-0819860] FX The authors would like thank Dr William Harrison, III, (Michigan Basin Core Research Laboratory) for his help in obtaining the core samples used in this study, and Dr Hema Siriwardane (West Virginia University) for his help in fracturing the core. This project was supported through funding from the US Department of Energy National Energy Technology Laboratory, ORISE professional internship, ASCE Freeman Fellowship, US Department of Energy award number DE-FE0000749 and at Brookhaven National Lab under Contract No. DE-AC02-98CH10886. We also acknowledge the use of PRISM Imaging and Analysis Center which is supported in part by the NSF MRSEC program through the Princeton Center for Complex Materials (grant DMR-0819860). Finally, we acknowledge the perspectives and insights of the manuscript reviewers whose suggestions led to significant improvements in the presentation of this work. NR 33 TC 41 Z9 41 U1 4 U2 36 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD SEP PY 2011 VL 1 IS 3 BP 248 EP 260 DI 10.1002/ghg.25 PG 13 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA V27LS UT WOS:000208615300008 ER PT J AU Mathieu, JL Price, PN Kiliccote, S Piette, MA AF Mathieu, Johanna L. Price, Phillip N. Kiliccote, Sila Piette, Mary Ann TI Quantifying Changes in Building Electricity Use, With Application to Demand Response SO IEEE TRANSACTIONS ON SMART GRID LA English DT Article DE Data visualization; demand forecasting; demand response; energy efficiency; energy management; load management; regression analysis AB We present methods for analyzing commercial and industrial facility 15-min-interval electric load data. These methods allow building managers to better understand their facility's electricity consumption over time and to compare it to other buildings, helping them to "ask the right questions" to discover opportunities for demand response, energy efficiency, electricity waste elimination, and peak load management. We primarily focus on demand response. Methods discussed include graphical representations of electric load data, a regression-based electricity load model that uses a time-of-week indicator variable and a piecewise linear and continuous outdoor air temperature dependence and the definition of various parameters that characterize facility electricity loads and demand response behavior. In the future, these methods could be translated into easy-to-use tools for building managers. C1 [Mathieu, Johanna L.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Mathieu, Johanna L.; Price, Phillip N.; Kiliccote, Sila; Piette, Mary Ann] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Mathieu, JL (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM jmathieu@berkeley.edu; pnprice@lbl.gov; skiliccote@lbl.gov; mapiette@lbl.gov FU U.S. Department of Energy [DE-AC02-05CH11231]; California Energy Commission (CEC) [500-03-026]; University of California, Berkeley FX Manuscript received November 17, 2010; revised March 13, 2011; accepted April 13, 2011. Date of publication May 23, 2011; date of current version August 24, 2011. This work was conducted at the Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract DE-AC02-05CH11231. It was supported in part by the California Energy Commission (CEC) under Contract 500-03-026. The work of J. Mathieu was supported by a University of California, Berkeley, Chancellor's Fellowship. Paper no. TSG-00213-2010. NR 33 TC 79 Z9 82 U1 2 U2 13 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3053 J9 IEEE T SMART GRID JI IEEE Trans. Smart Grid PD SEP PY 2011 VL 2 IS 3 BP 507 EP 518 DI 10.1109/TSG.2011.2145010 PG 12 WC Engineering, Electrical & Electronic SC Engineering GA V29ZZ UT WOS:000208787600010 ER PT J AU Booske, JH Dobbs, RJ Joye, CD Kory, CL Neil, GR Park, GS Park, J Temkin, RJ AF Booske, John H. Dobbs, Richard J. Joye, Colin D. Kory, Carol L. Neil, George R. Park, Gun-Sik Park, Jaehun Temkin, Richard J. TI Vacuum Electronic High Power Terahertz Sources SO IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY LA English DT Article DE High power terahertz (THz) radiation; terahertz (THz); vacuum electronic devices ID DYNAMIC NUCLEAR-POLARIZATION; COHERENT TRANSITION RADIATION; TRAVELING-WAVE TUBES; HIGH-ASPECT-RATIO; HIGH-FREQUENCY; SUBMILLIMETER WAVELENGTHS; RELATIVISTIC ELECTRONS; GYROTRON OSCILLATOR; PROBE SPECTROSCOPY; LASER AB Recent research and development has been incredibly successful at advancing the capabilities for vacuum electronic device (VED) sources of powerful terahertz (THz) and near-THz coherent radiation, both CW or average and pulsed. Currently, the VED source portfolio covers over 12 orders of magnitude in power (mW-to-GW) and two orders of magnitude in frequency (from < 0.1 to > 10 THz). Further advances are still possible and anticipated. They will be enabled by improved understanding of fundamental beam-wave interactions, electromagnetic mode competition and mode control, along with research and development of new materials, fabrication methods, cathodes, electron beam alignment and focusing, magnet technologies, THz metrology and advanced, broadband output radiation coupling techniques. C1 [Booske, John H.] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA. [Dobbs, Richard J.] CPI Canada, Georgetown, ON L7G 2J4, Canada. [Joye, Colin D.] USN, Res Lab, Washington, DC 20375 USA. [Kory, Carol L.] Teraphys Inc, Cleveland, OH 44143 USA. [Neil, George R.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Park, Gun-Sik] Seoul Natl Univ, Dept Phys & Astron, Ctr THz Bio Applicat Syst, Seoul 151747, South Korea. [Park, Jaehun] Pohang Univ Sci & Technol, Pohang Accelerator Lab, Pohang 790784, South Korea. [Temkin, Richard J.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Temkin, Richard J.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Booske, JH (reprint author), Univ Wisconsin, Dept Elect & Comp Engn, 1415 Johnson Dr, Madison, WI 53706 USA. EM booske@engr.wisc.edu; Richard.dobbs@cpii.com; colin.joye@nrl.navy.mil; ckory@teraphysics.com; neil@jlab.org; gunsik@snu.ac.kr; Jae-hunpa@postech.ac.kr; temkin@mit.edu RI Park, Gunsik/A-1415-2014 NR 201 TC 255 Z9 288 U1 12 U2 80 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-342X J9 IEEE T THZ SCI TECHN JI IEEE Trans. Terahertz Sci. Technol. PD SEP PY 2011 VL 1 IS 1 SI SI BP 54 EP 75 DI 10.1109/TTHZ.2011.2151610 PG 22 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA V28TJ UT WOS:000208702800007 ER PT J AU McCloy, JS Schweiger, MJ Rodriguez, CP Vienna, JD AF McCloy, John S. Schweiger, Michael J. Rodriguez, Carmen P. Vienna, John D. TI Nepheline Crystallization in Nuclear Waste Glasses: Progress Toward Acceptance of High-Alumina Formulations SO INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE LA English DT Article ID HIGH-RESOLUTION B-11; OPTICAL BASICITY; ALUMINOBOROSILICATE GLASSES; BOROSILICATE GLASSES; SILICATE-GLASSES; REFRACTIVITY; SPECTROSCOPY; SLAGS; MODEL; NMR AB Historical data have been critically compiled and analyzed for investigating the quantity of nepheline (NaAlSiO4) precipitated as a function of composition in simulated nuclear waste glasses. To understand compositional effects two primary methods were used: (1) investigating the Al2O3-SiO2-Na2O ternary while filtering for different B2O3 levels and (2) creating a quadrant system consisting of compositions reduced to two representations: (i) the nepheline discriminator (ND) which depends only on the SiO2 content by weight normalized to the total weight of the Al2O3-SiO2-Na2O submixture and (ii) the optical basicity (OB) which contains contributions from all constituents in the glass. Nepheline precipitation is expected to be suppressed at high SiO2 levels (ND > 0.62) or at low basicities (OB < 0.55-0.57). Changes in sodium aluminosilicate glass OB values due to additions of CaO and B2O3 correlate with the observed effects on nepheline formation. It is proposed that additional composition space is available for formulating high waste loading, high-Al2O3 nuclear waste glasses when consideration is given to location on the Al2O3-SiO2-Na2O submixture as well as OB. C1 [McCloy, John S.; Schweiger, Michael J.; Rodriguez, Carmen P.; Vienna, John D.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP McCloy, JS (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM john.mccloy@pnl.gov RI McCloy, John/D-3630-2013 OI McCloy, John/0000-0001-7476-7771 FU Battelle [DE-AC05-76RL01830]; Department of Energy-Office of Environmental Management, Office of Technology Innovation and Development FX The authors would like to acknowledge fruitful discussions with Kevin Fox, Dong-Sang Kim, Hong Li, David Peeler, Jarrod Crum, Pavel Hrma, Amanda Billings, Hao Gan, and Jake Amoroso. The authors also express their thanks to Kevin Fox and David Peeler for the SRNL NE3, NP2, and SB5NEPH glass samples, and to Ian Pegg, Wing Kot, and Hao Gan for the VSL HWI-Al and HLW-E-Al glass samples. The authors thank summer students at PNNL, Kevin Swearingen, Rachel Anheier, and Abigail Winschell, who helped in this study, and all the scientists, researchers, and students who made and tested the many glasses whose data are used in this study. Pacific Northwest National Laboratory is operated for the U. S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. This work funded in part by the Department of Energy-Office of Environmental Management, Office of Technology Innovation and Development. NR 81 TC 8 Z9 9 U1 3 U2 11 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2041-1286 J9 INT J APPL GLASS SCI JI Int. J. Appl. Glass Sci. PD SEP PY 2011 VL 2 IS 3 SI SI BP 201 EP 214 DI 10.1111/j.2041-1294.2011.00055.x PG 14 WC Materials Science, Ceramics SC Materials Science GA 034CT UT WOS:000310848400005 ER PT J AU Buenzli, PR Pivonka, P Jeon, J Smith, DW Cummings, PT AF Buenzli, P. R. Pivonka, P. Jeon, J. Smith, D. W. Cummings, P. T. TI A COMPUTATIONAL APPROACH TO UNDERSTANDING FUNCTIONAL BEHAVIOUR OF BONE MULTICELLULAR UNITS SO OSTEOPOROSIS INTERNATIONAL LA English DT Meeting Abstract CT IOF Regionals 2nd Asia-Pacific Osteoporosis and Bone Meeting / ANZBMS Annual Scientific Meeting held with the JSBMR CY SEP 04-08, 2011 CL Gold Coast, AUSTRALIA SP ANZBMS, JSBMR, IOF Reg C1 [Buenzli, P. R.; Pivonka, P.; Smith, D. W.] Univ Western Australia, Fac Engn Comp & Math, Crawley, WA, Australia. [Jeon, J.; Cummings, P. T.] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN USA. [Cummings, P. T.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA. RI Cummings, Peter/B-8762-2013 OI Cummings, Peter/0000-0002-9766-2216 NR 1 TC 0 Z9 0 U1 0 U2 3 PU SPRINGER LONDON LTD PI LONDON PA 236 GRAYS INN RD, 6TH FLOOR, LONDON WC1X 8HL, ENGLAND SN 0937-941X J9 OSTEOPOROSIS INT JI Osteoporosis Int. PD SEP PY 2011 VL 22 SU 4 MA 63 BP S541 EP S541 PG 1 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 012SZ UT WOS:000309258200082 ER PT J AU Thomas, DG Klaessig, F Harper, SL Fritts, M Hoover, MD Gaheen, S Stokes, TH Reznik-Zellen, R Freund, ET Klemm, JD Paik, DS Baker, NA AF Thomas, Dennis G. Klaessig, Fred Harper, Stacey L. Fritts, Martin Hoover, Mark D. Gaheen, Sharon Stokes, Todd H. Reznik-Zellen, Rebecca Freund, Elaine T. Klemm, Juli D. Paik, David S. Baker, Nathan A. TI Informatics and standards for nanomedicine technology SO WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY LA English DT Review ID MEDICAL INFORMATICS; DRUG-DELIVERY; BIOMEDICAL INFORMATICS; IMAGING INFORMATICS; BIOLOGICAL INTEREST; CHEMICAL ENTITIES; CANCER-THERAPY; ONTOLOGY; NANOTECHNOLOGY; NANOPARTICLES AB There are several issues to be addressed concerning the management and effective use of information (or data), generated from nanotechnology studies in biomedical research and medicine. These data are large in volume, diverse in content, and are beset with gaps and ambiguities in the description and characterization of nanomaterials. In this work, we have reviewed three areas of nanomedicine informatics: information resources; taxonomies, controlled vocabularies, and ontologies; and information standards. Informatics methods and standards in each of these areas are critical for enabling collaboration; data sharing; unambiguous representation and interpretation of data; semantic (meaningful) search and integration of data; and for ensuring data quality, reliability, and reproducibility. In particular, we have considered four types of information standards in this article, which are standard characterization protocols, common terminology standards, minimum information standards, and standard data communication (exchange) formats. Currently, because of gaps and ambiguities in the data, it is also difficult to apply computational methods and machine learning techniques to analyze, interpret, and recognize patterns in data that are high dimensional in nature, and also to relate variations in nanomaterial properties to variations in their chemical composition, synthesis, characterization protocols, and so on. Progress toward resolving the issues of information management in nanomedicine using informatics methods and standards discussed in this article will be essential to the rapidly growing field of nanomedicine informatics. (C) 2011 JohnWiley & Sons, Inc. WIREs Nanomed Nanobiotechnol 2011 3 511-532 DOI: 10.1002/wnan.152 C1 [Thomas, Dennis G.; Baker, Nathan A.] Pacific NW Natl Lab, Knowledge Discovery & Informat Grp, Richland, WA 99352 USA. [Klaessig, Fred] Penn Bio Nano Syst LLC, Doylestown, PA USA. [Harper, Stacey L.] Oregon State Univ, Sch Chem Biol & Environm Engn, Corvallis, OR 97331 USA. [Fritts, Martin] NCI, SAIC Frederick, Frederick, MD 21701 USA. [Hoover, Mark D.] NIOSH, Morgantown, WV USA. [Gaheen, Sharon] SAIC, Hlth Solut Business Unit, Rockville, MD USA. [Stokes, Todd H.] Emory Univ, Dept Biomed Engn, Atlanta, GA 30322 USA. [Stokes, Todd H.] Georgia Tech, Atlanta, GA USA. [Reznik-Zellen, Rebecca] Univ Massachusetts, Ctr Hierarch Mfg, Amherst, MA 01003 USA. [Freund, Elaine T.] 3rd Millenium Inc, Waltham, MA USA. [Klemm, Juli D.] NCI, Ctr Biomed Informat & Informat Technol, Bethesda, MD 20892 USA. [Paik, David S.] Stanford Univ, Radiol Sci Lab, Stanford, CA 94305 USA. RP Baker, NA (reprint author), Pacific NW Natl Lab, Knowledge Discovery & Informat Grp, Richland, WA 99352 USA. EM nathan.baker@pnl.gov RI Hoover, Mark/I-4201-2012; Baker, Nathan/A-8605-2010; OI Hoover, Mark/0000-0002-8726-8127; Baker, Nathan/0000-0002-5892-6506; Reznik-Zellen, Rebecca/0000-0001-9321-8284 FU NIH NCI caBIG(R) Working Group; Pacific Northwest National Laboratory; NIH [U54 HG004028, U54 CA11934205, U01 NS073457]; Environmental Health and Sciences Center [P30 ES03850]; EPA [STAR RD-833320]; Safer Nanomaterials and Nanomanufacturing Initiative of the Oregon Nanoscience and Microtechnologies Institute [FA8650-05-1-5041] FX We are grateful to the participants of the caBIG (R) Nanotechnology Working Group for their comments and contributions to the working group activities as well as the National Center for Biomedical Ontology for their support of nanomedicine informatics through the NCBO Bioportal, Resource Index, and caOBR (R) N.A.B. and D.G.T. acknowledge support from the NIH NCI caBIG (R) Working Group, Pacific Northwest National Laboratory HHS sector LDRD funds, as well as NIH grants U54 HG004028, U54 CA11934205, and U01 NS073457. S.L.H. acknowledges support from NIH NCI caBIG (R) Working Group, Environmental Health and Sciences Center P30 ES03850, EPA STAR RD-833320, and the Safer Nanomaterials and Nanomanufacturing Initiative of the Oregon Nanoscience and Microtechnologies Institute FA8650-05-1-5041. The views, opinions, and content in this article are those of the authors and do not necessarily represent the views, opinions, or policies of their respective employers or organizations. Mention of company names or products does not constitute endorsement. NR 93 TC 17 Z9 17 U1 1 U2 19 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1939-5116 EI 1939-0041 J9 WIRES NANOMED NANOBI JI Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol. PD SEP-OCT PY 2011 VL 3 IS 5 BP 511 EP 532 DI 10.1002/wnan.152 PG 22 WC Nanoscience & Nanotechnology; Medicine, Research & Experimental SC Science & Technology - Other Topics; Research & Experimental Medicine GA 864RX UT WOS:000298258800007 PM 21721140 ER PT J AU White, SR Blaiszik, BJ Kramer, SLB Olugebefola, SC Moore, JS Sottos, NR AF White, Scott R. Blaiszik, Benjamin J. Kramer, Sharlotte L. B. Olugebefola, Solar C. Moore, Jeffrey S. Sottos, Nancy R. TI Self-healing Polymers and Composites SO AMERICAN SCIENTIST LA English DT Article ID MICROVASCULAR NETWORKS C1 [White, Scott R.] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA. [Blaiszik, Benjamin J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP White, SR (reprint author), Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA. EM swhite@illinois.edu RI Blaiszik, Ben/K-6204-2012 NR 20 TC 10 Z9 10 U1 5 U2 59 PU SIGMA XI-SCI RES SOC PI RES TRIANGLE PK PA PO BOX 13975, RES TRIANGLE PK, NC 27709 USA SN 0003-0996 J9 AM SCI JI Am. Scientist PD SEP-OCT PY 2011 VL 99 IS 5 BP 392 EP 399 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 807WJ UT WOS:000293933400017 ER PT J AU Acciari, VA Aliu, E Arlen, T Aune, T Beilicke, M Benbow, W Boltuch, D Bradbury, SM Buckley, JH Bugaev, V Byrum, K Cannon, A Cesarini, A Ciupik, L Cui, W Dickherber, R Duke, C Falcone, A Finley, JP Finnegan, G Fortson, L Furniss, A Galante, N Gall, D Gillanders, GH Godambe, S Grube, J Guenette, R Gyuk, G Hanna, D Holder, J Hui, CM Humensky, TB Imran, A Kaaret, P Karlsson, N Kertzman, M Kieda, D Konopelko, A Krawczynski, H Krennrich, F Lang, MJ Maier, G McArthur, S McCutcheon, M Moriarty, P Ong, RA Otte, AN Ouellette, M Pandel, D Perkins, JS Pichel, A Pohl, M Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rose, HJ Rovero, AC Schroedter, M Sembroski, GH Senturk, GD Steele, D Swordy, SP Theiling, M Thibadeau, S Varlotta, A Vassiliev, VV Vincent, S Wagner, RG Wakely, SP Ward, JE Weekes, TC Weinstein, A Weisgarber, T Williams, DA Wissel, S Wood, M Zitzer, B Garson, A Lee, K Sadun, AC Carini, M Barnaby, D Cook, K Maune, J Pease, A Smith, S Walters, R Berdyugin, A Lindfors, E Nilsson, K Pasanen, M Sainio, J Sillanpaa, A Takalo, LO Villforth, C Montaruli, T Baker, M Lahteenmaki, A Tornikoski, M Hovatta, T Nieppola, E Aller, HD Aller, MF AF Acciari, V. A. Aliu, E. Arlen, T. Aune, T. Beilicke, M. Benbow, W. Boltuch, D. Bradbury, S. M. Buckley, J. H. Bugaev, V. Byrum, K. Cannon, A. Cesarini, A. Ciupik, L. Cui, W. Dickherber, R. Duke, C. Falcone, A. Finley, J. P. Finnegan, G. Fortson, L. Furniss, A. Galante, N. Gall, D. Gillanders, G. H. Godambe, S. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Holder, J. Hui, C. M. Humensky, T. B. Imran, A. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Konopelko, A. Krawczynski, H. Krennrich, F. Lang, M. J. Maier, G. McArthur, S. McCutcheon, M. Moriarty, P. Ong, R. A. Otte, A. N. Ouellette, M. Pandel, D. Perkins, J. S. Pichel, A. Pohl, M. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rose, H. J. Rovero, A. C. Schroedter, M. Sembroski, G. H. Senturk, G. Demet Steele, D. Swordy, S. P. Theiling, M. Thibadeau, S. Varlotta, A. Vassiliev, V. V. Vincent, S. Wagner, R. G. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Weisgarber, T. Williams, D. A. Wissel, S. Wood, M. Zitzer, B. Garson, A., III Lee, K. Sadun, A. C. Carini, M. Barnaby, D. Cook, K. Maune, J. Pease, A. Smith, S. Walters, R. Berdyugin, A. Lindfors, E. Nilsson, K. Pasanen, M. Sainio, J. Sillanpaa, A. Takalo, L. O. Villforth, C. Montaruli, T. Baker, M. Lahteenmaki, A. Tornikoski, M. Hovatta, T. Nieppola, E. Aller, H. D. Aller, M. F. TI TeV AND MULTI-WAVELENGTH OBSERVATIONS OF Mrk 421 IN 2006-2008 SO ASTROPHYSICAL JOURNAL LA English DT Article DE BL Lacertae objects: individual (Mrk 421); galaxies: jets; galaxies: nuclei; gamma rays: galaxies; X-rays: galaxies ID ACTIVE GALACTIC NUCLEI; BL-LACERTAE OBJECTS; RAY TIMING EXPLORER; ENERGY GAMMA-RAYS; LOG-PARABOLIC SPECTRA; LARGE-AREA TELESCOPE; X-RAY; PARTICLE-ACCELERATION; BLAZAR MARKARIAN-421; CORRELATED VARIABILITY AB We report on TeV gamma-ray observations of the blazar Mrk 421 (redshift of 0.031) with the VERITAS observatory and the Whipple 10m Cherenkov telescope. The excellent sensitivity of VERITAS allowed us to sample the TeV gamma-ray fluxes and energy spectra with unprecedented accuracy where Mrk 421 was detected in each of the pointings. A total of 47.3 hr of VERITAS and 96 hr of Whipple 10m data were acquired between 2006 January and 2008 June. We present the results of a study of the TeV gamma-ray energy spectra as a function of time and for different flux levels. On 2008 May 2 and 3, bright TeV gamma-ray flares were detected with fluxes reaching the level of 10 Crab. The TeV gamma-ray data were complemented with radio, optical, and X-ray observations, with flux variability found in all bands except for the radio wave band. The combination of the Rossi X-ray Timing Explorer and Swift X-ray data reveal spectral hardening with increasing flux levels, often correlated with an increase of the source activity in TeV gamma-rays. Contemporaneous spectral energy distributions were generated for 18 nights, each of which are reasonably described by a one-zone synchrotron self-Compton model. C1 [Acciari, V. A.; Beilicke, M.; Galante, N.; Perkins, J. S.; Roache, E.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Aliu, E.] Columbia Univ, Barnard Coll, Dept Phys & Astron, New York, NY 10027 USA. [Arlen, T.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.; Wood, M.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.; McArthur, S.; Thibadeau, S.; Garson, A., III; Lee, K.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Boltuch, D.; Holder, J.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Boltuch, D.; Holder, J.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Byrum, K.; Wagner, R. G.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cannon, A.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.; Gillanders, G. H.; Lang, M. J.] Natl Univ Ireland Univ Coll Galway, Sch Phys, Galway, Ireland. [Ciupik, L.; Fortson, L.; Grube, J.; Gyuk, G.; Karlsson, N.; Steele, D.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Finley, J. P.; Sembroski, G. H.; Varlotta, A.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Falcone, A.] Penn State Univ, Davey Lab 525, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Finnegan, G.; Godambe, S.; Hui, C. M.; Kieda, D.; Vincent, S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Guenette, R.; Hanna, D.; Maier, G.; McCutcheon, M.; Ragan, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Humensky, T. B.; Swordy, S. P.; Wakely, S. P.; Weisgarber, T.; Wissel, S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Imran, A.; Krennrich, F.; Pohl, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Gall, D.; Kaaret, P.; Pandel, D.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] Depauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Konopelko, A.] Pittsburg State Univ, Dept Phys, Pittsburg, KS 66762 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Ouellette, M.] Calif Polytech State Univ San Luis Obispo, Dept Phys, San Luis Obispo, CA 94307 USA. [Reyes, L. C.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Senturk, G. Demet] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Sadun, A. C.] Univ Colorado, Dept Phys, Denver, CO 80217 USA. [Carini, M.; Barnaby, D.; Cook, K.; Maune, J.; Pease, A.; Smith, S.; Walters, R.] Western Kentucky Univ, Dept Phys & Astron, Bowling Green, KY 42103 USA. [Berdyugin, A.; Lindfors, E.; Nilsson, K.; Pasanen, M.; Sainio, J.; Sillanpaa, A.; Takalo, L. O.; Villforth, C.] Univ Turku, Tuorla Observ, Dept Phys & Astron, SF-20500 Turku, Finland. [Montaruli, T.; Baker, M.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Lahteenmaki, A.; Tornikoski, M.; Hovatta, T.; Nieppola, E.] Aalto Univ, Metsahovi Radio Observ, FIN-02540 Kylmala, Finland. [Aller, H. D.; Aller, M. F.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Pichel, A.; Rovero, A. C.] Inst Astron & Fis Espacio, RA-1428 Buenos Aires, DF, Argentina. RP Acciari, VA (reprint author), Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. EM beilicke@physics.wustl.edu RI Lahteenmaki, Anne/L-5987-2013; OI Cui, Wei/0000-0002-6324-5772; Cesarini, Andrea/0000-0002-8611-8610; Ward, John E/0000-0003-1973-0794; Pandel, Dirk/0000-0003-2085-5586; Lang, Mark/0000-0003-4641-4201 FU U.S. Department of Energy; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland; STFC in the U.K; Academy of Finland; NSF; University of Michigan; NASA [NNX08AV77G, NNX08AT31G, NNX08AZ76G] FX VERITAS is supported by grants from the U.S. Department of Energy, the U.S. National Science Foundation and the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland, and by the STFC in the U.K. We acknowledge the excellent work of the technical support staff at the FLWO and the collaborating institutions in the construction and operation of the instrument. The authors are grateful to the RXTE Science Operations Facility and GOF. The Metsahovi team acknowledges the support from the Academy of Finland. The UMRAO is funded by the NSF and the University of Michigan. Swift/BAT transient monitor results provided by the Swift/BAT team. We also acknowledge Swift/XRT monitoring program and target of opportunity support provided by the Swift Team and supported by NASA grants NNX08AV77G and NNX08AT31G. We gratefully acknowledge useful discussions with Erik Hoversten regarding Swift/UVOT analysis. H. K and A. G. acknowledge support from the NASA grant NNX08AZ76G for the analysis of the Suzaku data. NR 92 TC 44 Z9 44 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2011 VL 738 IS 1 AR 25 DI 10.1088/0004-637X/738/1/25 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808XO UT WOS:000294015500025 ER PT J AU Acciari, VA Aliu, E Arlen, T Aune, T Beilicke, M Benbow, W Bradbury, SM Buckley, JH Bugaev, V Byrum, K Cannon, A Cesarini, A Ciupik, L Collins-Hughes, E Connolly, MP Cui, W Dickherber, R Duke, C Errando, M Falcone, A Finley, JP Finnegan, G Fortson, L Furniss, A Galante, N Gall, D Gillanders, GH Godambe, S Griffin, S Grube, J Guenette, R Gyuk, G Hanna, D Holder, J Hughes, G Hui, CM Humensky, TB Kaaret, P Karlsson, N Kertzman, M Kieda, D Krawczynski, H Krennrich, F Lang, MJ LeBohec, S Maier, G Majumdar, P McArthur, S McCann, A Moriarty, P Mukherjee, R Ong, RA Orr, M Otte, AN Park, N Perkins, JS Pohl, M Prokoph, H Quinn, J Ragan, K Reyes, LC Reynolds, PT Roache, E Rose, HJ Ruppel, J Saxon, DB Schroedter, M Sembroski, GH Senturk, GD Smith, AW Staszak, D Tesic, G Theiling, M Thibadeau, S Tsurusaki, K Varlotta, A Vassiliev, VV Vincent, S Vivier, M Wakely, SP Ward, JE Weekes, TC Weinstein, A Weisgarber, T Williams, DA Zitzer, B AF Acciari, V. A. Aliu, E. Arlen, T. Aune, T. Beilicke, M. Benbow, W. Bradbury, S. M. Buckley, J. H. Bugaev, V. Byrum, K. Cannon, A. Cesarini, A. Ciupik, L. Collins-Hughes, E. Connolly, M. P. Cui, W. Dickherber, R. Duke, C. Errando, M. Falcone, A. Finley, J. P. Finnegan, G. Fortson, L. Furniss, A. Galante, N. Gall, D. Gillanders, G. H. Godambe, S. Griffin, S. Grube, J. Guenette, R. Gyuk, G. Hanna, D. Holder, J. Hughes, G. Hui, C. M. Humensky, T. B. Kaaret, P. Karlsson, N. Kertzman, M. Kieda, D. Krawczynski, H. Krennrich, F. Lang, M. J. LeBohec, S. Maier, G. Majumdar, P. McArthur, S. McCann, A. Moriarty, P. Mukherjee, R. Ong, R. A. Orr, M. Otte, A. N. Park, N. Perkins, J. S. Pohl, M. Prokoph, H. Quinn, J. Ragan, K. Reyes, L. C. Reynolds, P. T. Roache, E. Rose, H. J. Ruppel, J. Saxon, D. B. Schroedter, M. Sembroski, G. H. Senturk, G. D. Smith, A. W. Staszak, D. Tesic, G. Theiling, M. Thibadeau, S. Tsurusaki, K. Varlotta, A. Vassiliev, V. V. Vincent, S. Vivier, M. Wakely, S. P. Ward, J. E. Weekes, T. C. Weinstein, A. Weisgarber, T. Williams, D. A. Zitzer, B. TI VERITAS OBSERVATIONS OF THE TeV BINARY LS I+61 degrees 303 DURING 2008-2010 SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: general; gamma rays: general; X-rays: binaries ID HIGH-ENERGY EMISSION; GAMMA-RAY EMISSION; X-RAY; ORBITAL MODULATION; MICROQUASAR; SPECTRUM; LS-I-+61-303; RADIO; JET AB We present the results of observations of the TeV binary LS I + 61 degrees 303 with the VERITAS telescope array between 2008 and 2010, at energies above 300 GeV. In the past, both ground-based gamma-ray telescopes VERITAS and MAGIC have reported detections of TeV emission near the apastron phases of the binary orbit. The observations presented here show no strong evidence for TeV emission during these orbital phases; however, during observations taken in late 2010, significant emission was detected from the source close to the phase of superior conjunction (much closer to periastron passage) at a 5.6 standard deviation (5.6 sigma) post-trials significance. In total, between 2008 October and 2010 December a total exposure of 64.5 hr was accumulated with VERITAS on LS I + 61 degrees 303, resulting in an excess at the 3.3 sigma significance level for constant emission over the entire integrated data set. The flux upper limits derived for emission during the previously reliably active TeV phases (i.e., close to apastron) are less than 5% of the Crab Nebula flux in the same energy range. This result stands in apparent contrast to previous observations by both MAGIC and VERITAS which detected the source during these phases at 10% of the Crab Nebula flux. During the two year span of observations, a large amount of X-ray data were also accrued on LS I + 61 degrees 303 by the Swift X-ray Telescope and the Rossi X-ray Timing Explorer Proportional Counter Array. We find no evidence for a correlation between emission in the X-ray and TeV regimes during 20 directly overlapping observations. We also comment on data obtained contemporaneously by the Fermi Large Area Telescope. C1 [Holder, J.; Saxon, D. B.; Vivier, M.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Holder, J.; Saxon, D. B.; Vivier, M.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Acciari, V. A.; Benbow, W.; Galante, N.; Perkins, J. S.; Roache, E.; Theiling, M.; Weekes, T. C.] Harvard Smithsonian Ctr Astrophys, Fred Lawrence Whipple Observ, Amado, AZ 85645 USA. [Aliu, E.; Errando, M.; Mukherjee, R.] Columbia Univ, Dept Phys & Astron, Barnard Coll, New York, NY 10027 USA. [Arlen, T.; Majumdar, P.; Ong, R. A.; Vassiliev, V. V.; Weinstein, A.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Aune, T.; Furniss, A.; Otte, A. N.; Williams, D. A.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz, CA 95064 USA. [Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Krawczynski, H.; McArthur, S.; Thibadeau, S.] Washington Univ, Dept Phys, St Louis, MO 63130 USA. [Bradbury, S. M.; Rose, H. J.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Byrum, K.; Smith, A. W.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cannon, A.; Collins-Hughes, E.; Quinn, J.; Ward, J. E.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Cesarini, A.; Connolly, M. P.; Gillanders, G. H.; Lang, M. J.] Natl Univ Ireland Galway, Sch Phys, Galway, Ireland. [Ciupik, L.; Grube, J.; Gyuk, G.] Adler Planetarium & Astron Museum, Dept Astron, Chicago, IL 60605 USA. [Cui, W.; Finley, J. P.; Gall, D.; Sembroski, G. H.; Varlotta, A.; Zitzer, B.] Purdue Univ, Dept Phys, W Lafayette, IN 47907 USA. [Duke, C.] Grinnell Coll, Dept Phys, Grinnell, IA 50112 USA. [Falcone, A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Finnegan, G.; Godambe, S.; Hui, C. M.; Kieda, D.; LeBohec, S.; Vincent, S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Fortson, L.; Karlsson, N.] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Griffin, S.; Guenette, R.; Hanna, D.; McCann, A.; Ragan, K.; Staszak, D.; Tesic, G.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Hughes, G.; Maier, G.; Pohl, M.; Prokoph, H.] DESY, D-15738 Zeuthen, Germany. [Humensky, T. B.; Park, N.; Reyes, L. C.; Wakely, S. P.; Weisgarber, T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Kaaret, P.; Tsurusaki, K.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Kertzman, M.] DePauw Univ, Dept Phys & Astron, Greencastle, IN 46135 USA. [Krennrich, F.; Orr, M.; Schroedter, M.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Moriarty, P.] Galway Mayo Inst Technol, Dept Life & Phys Sci, Galway, Ireland. [Pohl, M.; Ruppel, J.] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany. [Reynolds, P. T.] Cork Inst Technol, Dept Appl Phys & Instrumentat, Cork, Ireland. [Senturk, G. D.] Columbia Univ, Columbia Astrophys Lab, New York, NY 10027 USA. [Smith, A. W.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Holder, J (reprint author), Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. EM jholder@physics.udel.edu; awsmith@hep.anl.gov OI Cui, Wei/0000-0002-6324-5772; Cesarini, Andrea/0000-0002-8611-8610; Ward, John E/0000-0003-1973-0794 FU U.S. Department of Energy; U.S. National Science Foundation; Smithsonian Institution; NSERC in Canada; Science Foundation Ireland (SFI) [10/RFP/AST2748]; STFC in the U.K; Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; NASA [NNX09AR91G] FX This research is supported by grants from the U.S. Department of Energy, the U.S. National Science Foundation, the Smithsonian Institution, by NSERC in Canada, by Science Foundation Ireland (SFI 10/RFP/AST2748), and by STFC in the U. K. We acknowledge the excellent work of the technical support staff at the Fred Lawrence Whipple Observatory and the collaborating institutions in the construction and operation of the instrument.; The submitted manuscript has been created by employees of UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne") in conjunction with the VERITAS collaboration. Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.; J. Holder acknowledges the support of the NASA Fermi Cycle 2 Guest Investigator Program (grant number NNX09AR91G). NR 42 TC 23 Z9 23 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2011 VL 738 IS 1 AR 3 DI 10.1088/0004-637X/738/1/3 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808XO UT WOS:000294015500003 ER PT J AU Andersson, K Benson, BA Ade, PAR Aird, KA Armstrong, B Bautz, M Bleem, LE Brodwin, M Carlstrom, JE Chang, CL Crawford, TM Crites, AT de Haan, T Desai, S Dobbs, MA Dudley, JP Foley, RJ Forman, WR Garmire, G George, EM Gladders, MD Halverson, NW High, FW Holder, GP Holzapfel, WL Hrubes, JD Jones, C Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Lueker, M Marrone, DP McMahon, JJ Mehl, J Meyer, SS Mohr, JJ Montroy, TE Murray, SS Padin, S Plagge, T Pryke, C Reichardt, CL Rest, A Ruel, J Ruhl, JE Schaffer, KK Shaw, L Shirokoff, E Song, J Spieler, HG Stalder, B Staniszewski, Z Stark, AA Stubbs, CW Vanderlinde, K Vieira, JD Vikhlinin, A Williamson, R Yang, Y Zahn, O Zenteno, A AF Andersson, K. Benson, B. A. Ade, P. A. R. Aird, K. A. Armstrong, B. Bautz, M. Bleem, L. E. Brodwin, M. Carlstrom, J. E. Chang, C. L. Crawford, T. M. Crites, A. T. de Haan, T. Desai, S. Dobbs, M. A. Dudley, J. P. Foley, R. J. Forman, W. R. Garmire, G. George, E. M. Gladders, M. D. Halverson, N. W. High, F. W. Holder, G. P. Holzapfel, W. L. Hrubes, J. D. Jones, C. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Lueker, M. Marrone, D. P. McMahon, J. J. Mehl, J. Meyer, S. S. Mohr, J. J. Montroy, T. E. Murray, S. S. Padin, S. Plagge, T. Pryke, C. Reichardt, C. L. Rest, A. Ruel, J. Ruhl, J. E. Schaffer, K. K. Shaw, L. Shirokoff, E. Song, J. Spieler, H. G. Stalder, B. Staniszewski, Z. Stark, A. A. Stubbs, C. W. Vanderlinde, K. Vieira, J. D. Vikhlinin, A. Williamson, R. Yang, Y. Zahn, O. Zenteno, A. TI X-RAY PROPERTIES OF THE FIRST SUNYAEV-ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTER SAMPLE FROM THE SOUTH POLE TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: clusters: intracluster medium; X-rays: galaxies: clusters ID SCALING RELATIONS; COSMOLOGICAL SIMULATIONS; RELATIVISTIC CORRECTIONS; LENSING MEASUREMENTS; INTRACLUSTER MEDIUM; POWER SPECTRUM; VIRIAL RADIUS; MASS; GAS; CONSTRAINTS AB We present results of X-ray observations of a sample of 15 clusters selected via their imprint on the cosmic microwave background from the thermal Sunyaev-Zel'dovich (SZ) effect. These clusters are a subset of the first SZ-selected cluster catalog, obtained from observations of 178 deg(2) of sky surveyed by the South Pole Telescope (SPT). Using X-ray observations with Chandra and XMM-Newton, we estimate the temperature, T-X, and mass, M-g, of the intracluster medium within r(500) for each cluster. From these, we calculate Y-X = MgTX and estimate the total cluster mass using an M-500-Y-X scaling relation measured from previous X-ray studies. The integrated Comptonization, Y-SZ, is derived from the SZ measurements, using additional information from the X-ray-measured gas density profiles and a universal temperature profile. We calculate scaling relations between the X-ray and SZ observables and find results generally consistent with other measurements and the expectations from simple self-similar behavior. Specifically, we fit a Y-SZ-Y-X relation and find a normalization of 0.82 +/- 0.07, marginally consistent with the predicted ratio of Y-SZ/Y-X = 0.91 +/- 0.01 that would be expected from the density and temperature models used in this work. Using the Y-X-derived mass estimates, we fit a Y-SZ-M-500 relation and find a slope consistent with the self-similar expectation of Y-SZ proportional to M-5/3 with a normalization consistent with predictions from other X-ray studies. We find that the SZ mass estimates, derived from cosmological simulations of the SPT survey, are lower by a factor of 0.78 +/- 0.06 relative to the X-ray mass estimates. This offset is at a level of 1.3 sigma when considering the similar to 15% systematic uncertainty for the simulation-based SZ masses. Overall, the X-ray measurements confirm that the scaling relations of the SZ-selected clusters are consistent with the properties of other X-ray-selected samples of massive clusters, even allowing for the broad redshift range (0.29 < z < 1.08) of the sample. C1 [Andersson, K.; Bautz, M.] MIT, MIT Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Andersson, K.; Mohr, J. J.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; Keisler, R.; Leitch, E. M.; Marrone, D. P.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Padin, S.; Pryke, C.; Schaffer, K. K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; McMahon, J. J.; Meyer, S. S.; Pryke, C.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Ade, P. A. R.] Cardiff Univ, Dept Phys & Astron, Cardiff CF24 3YB, S Glam, Wales. [Aird, K. A.; Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; Hrubes, J. D.; Leitch, E. M.; Marrone, D. P.; Mehl, J.; Meyer, S. S.; Padin, S.; Plagge, T.; Pryke, C.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Armstrong, B.; Desai, S.; Song, J.; Yang, Y.] Univ Illinois, Dept Astron, Urbana, IL 61801 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Brodwin, M.; Foley, R. J.; Forman, W. R.; Jones, C.; Murray, S. S.; Stalder, B.; Stark, A. A.; Stubbs, C. W.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [de Haan, T.; Dobbs, M. A.; Dudley, J. P.; Holder, G. P.; Shaw, L.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Garmire, G.] Penn State Univ, Dept Astron & Astrophys, Davey Lab 525, University Pk, PA 16802 USA. [George, E. M.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Plagge, T.; Reichardt, C. L.; Shirokoff, E.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [High, F. W.; Rest, A.; Ruel, J.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Joy, M.] NASA, Marshall Space Flight Ctr, Dept Space Sci, VP62, Huntsville, AL 35812 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.; Spieler, H. G.] Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [McMahon, J. J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.; Zenteno, A.] Excellence Cluster Universe, D-85748 Garching, Germany. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Montroy, T. E.; Ruhl, J. E.; Staniszewski, Z.] Case Western Reserve Univ, CERCA, Cleveland, OH 44106 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Vieira, J. D.] CALTECH, Pasadena, CA 91125 USA. [Vikhlinin, A.] Space Res Inst IKI, Moscow, Russia. RP Andersson, K (reprint author), MIT, MIT Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM kanderss@space.mit.edu RI Stubbs, Christopher/C-2829-2012; Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; OI Stubbs, Christopher/0000-0003-0347-1724; Williamson, Ross/0000-0002-6945-2975; Marrone, Daniel/0000-0002-2367-1080; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996 FU National Science Foundation [ANT-0638937]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; NASA through Chandra X-ray Observatory Center [GO0-11143]; NASA [NAS8-03060, NNX09AQ04G, 2834-MIT-SAO-4018]; Chandra Award [AR0-11015A]; DFG "The Dark Universe" [TRR33]; Excellence Cluster Universe; National Sciences and Engineering Research Council of Canada; Quebec Fonds de recherche sur la nature et les technologies; Canadian Institute for Advanced Research; Brinson Foundation; KICP; Clay Fellowship; Hubble Fellowship [HF-51259.01-A]; Alfred P. Sloan Research Fellowship; Keck Foundation FX The South Pole Telescope is supported by the National Science Foundation through grant ANT-0638937. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation.; Support for X-ray analysis was provided by NASA through Chandra Award Number GO0-11143 issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. Additional support is provided by,NASA through XMM-Newton Award NNX09AQ04G and Chandra Award AR0-11015A. K. Andersson is supported in part by NASA through SAO Award Number 2834-MIT-SAO-4018 issued by the Chandra X-ray Observatory Center.; The Munich group is supported by the DFG through TRR33 "The Dark Universe" and the Excellence Cluster Universe. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, the Quebec Fonds de recherche sur la nature et les technologies and the Canadian Institute for Advanced Research. The following individuals acknowledge additional support: B. Stalder from the Brinson Foundation, B. Benson from a KICP Fellowship, R. Foley from a Clay Fellowship, D. Marrone from Hubble Fellowship grant HF-51259.01-A, N. W. Halverson acknowledges support from an Alfred P. Sloan Research Fellowship. M. Brodwin from the Keck Foundation, and A. T. Lee from the Miller Institute for Basic Research in Science, University of California Berkeley. NR 91 TC 93 Z9 93 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2011 VL 738 IS 1 AR 48 DI 10.1088/0004-637X/738/1/48 PG 25 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808XO UT WOS:000294015500048 ER PT J AU Aspden, AJ Bell, JB Dong, S Woosley, SE AF Aspden, A. J. Bell, J. B. Dong, S. Woosley, S. E. TI BURNING THERMALS IN TYPE Ia SUPERNOVAE SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; methods: numerical; supernovae: general; turbulence; white dwarfs ID ADAPTIVE MESH REFINEMENT; WHITE-DWARFS; SIMULATIONS; CONVECTION; DETONATION; EVOLUTION; MODEL; DEFLAGRATIONS; HYDRODYNAMICS; PROPAGATION AB We develop a one-dimensional theoretical model for thermals burning in Type Ia supernovae based on the entrainment assumption of Morton, Taylor, and Turner. Extensions of the standard model are required to account for the burning and for the expansion of the thermal due to changes in the background stratification found in the full star. The model is compared with high-resolution three-dimensional numerical simulations, both in a uniform environment and a full-star setting. The simulations in a uniform environment present compelling agreement with the predicted power laws and provide model constants for the full-star model, which then provides excellent agreement with the full-star simulation. The importance of the different components in the model is compared, and are all shown to be relevant. An examination of the effect of initial conditions was then conducted using the one-dimensional model, which would have been infeasible in three dimensions. More mass was burned when the ignition kernel was larger and closer to the center of the star. The turbulent flame speed was found to be important during the early-time evolution of the thermal, but played a diminished role at later times when the evolution is dominated by the large-scale hydrodynamics responsible for entrainment. However, a higher flame speed effectively gave a larger initial ignition kernel and so resulted in more mass burned. This suggests that future studies should focus on the early-time behavior of these thermals (in particular, the transition to turbulence), and that the choice of turbulent flame speed does not play a significant role in the dynamics once the thermal has become established. C1 [Aspden, A. J.; Bell, J. B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Dong, S.; Woosley, S. E.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. RP Aspden, AJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd,MS 50A-1148, Berkeley, CA 94720 USA. RI Aspden, Andy/A-7391-2017 OI Aspden, Andy/0000-0002-2970-4824 FU Office of Advanced Scientific Computing Research of the U.S. Department of Energy [DE-AC02-05CH11231]; DOE Office of High Energy Physics; DOE Office of Advanced Scientific Computing Research [DE-AC02-05CH11231]; NASA [NNX09AK36G]; DOE [DE-FC02-06ER41438]; NSF [AST 0909129] FX The authors thank Mike Zingale for his useful discussions. Support for A.J.A. was provided by the Applied Mathematics Program of the Office of Advanced Scientific Computing Research of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Support for J.B.B. was provided by the SciDAC Program of the DOE Office of High Energy Physics and the Applied Mathematics Program of the DOE Office of Advanced Scientific Computing Research under Contract No. DE-AC02-05CH11231. At UCSC, this research has been supported by the NASA Theory Program NNX09AK36G, the DOE SciDAC Program (DE-FC02-06ER41438), and NSF grant AST 0909129. The computations presented here were performed on the ATLAS Linux Cluster at LLNL as part of a Grand Challenge Project. NR 29 TC 6 Z9 6 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2011 VL 738 IS 1 AR 194 DI 10.1088/0004-637X/738/1/94 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808XO UT WOS:000294015500094 ER PT J AU Bandstra, MS Bellm, EC Boggs, SE Perez-Becker, D Zoglauer, A Chang, HK Chiu, JL Liang, JS Chang, YH Liu, ZK Hung, WC Huang, MHA Chiang, SJ Run, RS Lin, CH Amman, M Luke, PN Jean, P von Ballmoos, P Wunderer, CB AF Bandstra, M. S. Bellm, E. C. Boggs, S. E. Perez-Becker, D. Zoglauer, A. Chang, H. -K. Chiu, J. -L. Liang, J. -S. Chang, Y. -H. Liu, Z. -K. Hung, W. -C. Huang, M. -H. A. Chiang, S. J. Run, R. -S. Lin, C. -H. Amman, M. Luke, P. N. Jean, P. von Ballmoos, P. Wunderer, C. B. TI DETECTION AND IMAGING OF THE CRAB NEBULA WITH THE NUCLEAR COMPTON TELESCOPE SO ASTROPHYSICAL JOURNAL LA English DT Article DE balloons; gamma rays: general; ISM: individual objects (Crab Nebula); methods: data analysis; techniques: imaging spectroscopy; telescopes ID ATMOSPHERIC GAMMA-RAYS; PERFORMANCE; RESOLUTION; SCATTERING; RADIATION; EMISSION; NCT; RECONSTRUCTION; SPECTROMETER; SPECTROSCOPY AB The Nuclear Compton Telescope (NCT) is a balloon-borne Compton telescope designed for the study of astrophysical sources in the soft gamma-ray regime (200 keV-20 MeV). NCT's 10 high-purity germanium crossed-strip detectors measure the deposited energies and three-dimensional positions of gamma-ray interactions in the sensitive volume, and this information is used to restrict the initial photon to a circle on the sky using the Compton scatter technique. Thus NCT is able to perform spectroscopy, imaging, and polarization analysis on soft gamma-ray sources. NCT is one of the next generation of Compton telescopes-the so-called compact Compton telescopes (CCTs)-which can achieve effective areas comparable to the Imaging Compton Telescope's with an instrument that is a fraction of the size. The Crab Nebula was the primary target for the second flight of the NCT instrument, which occurred on 2009 May 17 and 18 in Fort Sumner, New Mexico. Analysis of 29.3 ks of data from the flight reveals an image of the Crab at a significance of 4 sigma. This is the first reported detection of an astrophysical source by a CCT. C1 [Bandstra, M. S.; Bellm, E. C.; Boggs, S. E.; Perez-Becker, D.; Zoglauer, A.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Chang, H. -K.; Chiu, J. -L.; Liang, J. -S.] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan. [Chang, Y. -H.; Liu, Z. -K.; Hung, W. -C.] Natl Cent Univ, Dept Phys, Tao Yuan 32001, Taiwan. [Huang, M. -H. A.] Natl United Univ, Dept Energy Engn, Miaoli 36003, Taiwan. [Chiang, S. J.; Run, R. -S.] Natl United Univ, Dept Elect Engn, Miaoli 36003, Taiwan. [Lin, C. -H.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Amman, M.; Luke, P. N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Jean, P.; von Ballmoos, P.] Ctr Etud Spatiale Rayonnements CESR, F-31028 Toulouse 4, France. [Wunderer, C. B.] Deutsch Elektronensynchrotron DESY, D-22607 Hamburg, Germany. RP Bandstra, MS (reprint author), Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. EM bandstra@ssl.berkeley.edu RI Boggs, Steven/E-4170-2015; OI Boggs, Steven/0000-0001-9567-4224; Bellm, Eric/0000-0001-8018-5348 FU NASA [NNG04WC38G]; National Space Organization (NSPO) in Taiwan [96-NSPO(B)-SP-FA04-01, 98-NSPO-145] FX The NCT project is funded by NASA under grant No. NNG04WC38G for the NCT-US team and by the National Space Organization (NSPO) in Taiwan under grants 96-NSPO(B)-SP-FA04-01 and 98-NSPO-145 for the NCT-Taiwan team. The team is grateful to Steve McBride, Jane Hoberman, and C.-H. Lin for their design of the NCT electronics. We also thank the anonymous referee, whose comments greatly clarified this paper. NR 55 TC 12 Z9 12 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2011 VL 738 IS 1 AR 8 DI 10.1088/0004-637X/738/1/8 PG 9 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808XO UT WOS:000294015500008 ER PT J AU Hansen, CE Mckee, CF Klein, RI AF Hansen, Charles E. McKee, Christopher F. Klein, Richard I. TI ANISOTROPY LENGTHENS THE DECAY TIME OF TURBULENCE IN MOLECULAR CLOUDS SO ASTROPHYSICAL JOURNAL LA English DT Article DE hydrodynamics; ISM: clouds; ISM: kinematics and dynamics; turbulence ID COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE; ADAPTIVE MESH REFINEMENT; INITIAL MASS FUNCTION; STAR-FORMATION; INTERSTELLAR TURBULENCE; SUPERSONIC TURBULENCE; ISOTHERMAL TURBULENCE; DRIVEN TURBULENCE; SIMULATIONS; II. AB The decay of isothermal turbulence with velocity anisotropy is investigated using computational simulations and synthetic observations. We decompose the turbulence into isotropic and anisotropic components with total velocity dispersions sigma(iso) and sigma(ani), respectively. We find that the decay rate of the turbulence depends on the crossing time of the isotropic component only. A cloud of size L with significant anisotropy in its turbulence has a dissipation time, t(diss) = L/(2 sigma(iso)). This translates into turbulent energy decay rates on the cloud scale that can be much lower for anisotropic turbulence than for isotropic turbulence. To help future observations determine whether observed molecular clouds have the level of anisotropy required to maintain the observed level of turbulence over their lifetimes, we performed a principal component analysis on our simulated clouds. Even with projection effects washing out the anisotropic signal, there is a measurable difference in the axis-constrained principal component analysis performed in directions parallel and perpendicular to the direction of maximum velocity dispersion. When this relative difference, psi , is 0.1, there is enough anisotropy for the dissipation time to triple the expected isotropic value. We provide a fit for converting psi into an estimate for the dissipation time, t(diss). C1 [Hansen, Charles E.; McKee, Christopher F.; Klein, Richard I.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [McKee, Christopher F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Klein, Richard I.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Hansen, CE (reprint author), Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. FU NSF [AST-0908553]; U.S. Department of Energy at LLNL [DE-AC52-07NA]; NSF; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors acknowledge helpful discussions with Philip Chang and improvements suggested by our anonymous referee and by Eve Ostriker. This research has been supported by the NSF through grant AST-0908553 (C.E.H., C.F.M., and R.I.K.). Support for this work was also provided by the U.S. Department of Energy at LLNL under contract DE-AC52-07NA (R.I.K.). Support for computer simulations was provided by an LRAC grant from the NSF through Teragrid resources. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 59 TC 7 Z9 7 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2011 VL 738 IS 1 AR 88 DI 10.1088/0004-637X/738/1/88 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808XO UT WOS:000294015500088 ER PT J AU Leauthaud, A Tinker, J Behroozi, PS Busha, MT Wechsler, RH AF Leauthaud, Alexie Tinker, Jeremy Behroozi, Peter S. Busha, Michael T. Wechsler, Risa H. TI A THEORETICAL FRAMEWORK FOR COMBINING TECHNIQUES THAT PROBE THE LINK BETWEEN GALAXIES AND DARK MATTER SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; dark matter; gravitational lensing: weak ID HALO OCCUPATION DISTRIBUTION; DIGITAL SKY SURVEY; LARGE-SCALE STRUCTURE; STELLAR MASS; SATELLITE KINEMATICS; DISSIPATIONLESS SIMULATIONS; NONPARAMETRIC MODEL; HALO/SUBHALO MASS; COSMIC TIME; LUMINOSITY AB We develop a theoretical framework that combines measurements of galaxy-galaxy lensing, galaxy clustering, and the galaxy stellar mass function in a self-consistent manner. While considerable effort has been invested in exploring each of these probes individually, attempts to combine them are still in their infancy. These combinations have the potential to elucidate the galaxy-dark matter connection and the galaxy formation physics responsible for it, as well as to constrain cosmological parameters and to test the nature of gravity. In this paper, we focus on a theoretical model that describes the galaxy-dark matter connection based on standard halo occupation distribution techniques. Several key modifications enable us to extract additional parameters that determine the stellar-to-halo mass relation and to simultaneously fit data from multiple probes while allowing for independent binning schemes for each probe. We construct mock catalogs from numerical simulations to investigate the effects of sample variance and covariance for each probe. Finally, we analyze how trends in each of the three observables impact the derived parameters of the model. In particular, we investigate various features of the observed galaxy stellar mass function (low-mass slope, "plateau," knee, and high-mass cutoff) and show how each feature is related to the underlying relationship between stellar and halo mass. We demonstrate that the observed "plateau" feature in the stellar mass function at M-* similar to 2 x 10(10) M-circle dot is due to the transition that occurs in the stellar-to-halo mass relation at M-h similar to 10(12) M-circle dot from a low-mass power-law regime to a sub-exponential function at higher stellar mass. C1 [Leauthaud, Alexie] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Leauthaud, Alexie] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Tinker, Jeremy] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Behroozi, Peter S.; Busha, Michael T.; Wechsler, Risa H.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, Stanford, CA 94305 USA. [Behroozi, Peter S.; Busha, Michael T.; Wechsler, Risa H.] SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Busha, Michael T.] Univ Zurich, Inst Theoret Phys, Dept Phys, CH-8057 Zurich, Switzerland. RP Leauthaud, A (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM asleauthaud@lbl.gov FU U.S. Department of Energy [DE-AC02-76SF00515]; Space Telescope Science Institute [HST-AR-12159.A]; NASA [NAS5-26555] FX We thank Jaiyul Yoo for help with the Appendix and Kevin Bundy for useful discussions and for reading the manuscript. A. L. acknowledges support from the Chamberlain Fellowship at LBNL and from the Berkeley Center for Cosmological Physics. This research received partial support from the U.S. Department of Energy under contract No. DE-AC02-76SF00515. R.H.W. and P.S B. received additional support from NASA Program HST-AR-12159.A, provided through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. M. T. B. and R. H. W. also thank their collaborators on the LasDamas project for critical input on the Consuelo simulation, which was performed on the Orange cluster at SLAC. NR 79 TC 58 Z9 58 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2011 VL 738 IS 1 AR 45 DI 10.1088/0004-637X/738/1/45 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808XO UT WOS:000294015500045 ER PT J AU Skowron, J Udalski, A Gould, A Dong, SB Monard, LAG Han, C Nelson, CR McCormick, J Moorhouse, D Thornley, G Maury, A Bramich, DM Greenhill, J Kozlowski, S Bond, I Poleski, R Wyrzykowski, L Ulaczyk, K Kubiak, M Szymanski, MK Pietrzynski, G Soszynski, I Gaudi, BS Yee, JC Hung, LW Pogge, RW Depoy, DL Lee, CU Park, BG Allen, W Mallia, F Drummond, J Bolt, G Allan, A Browne, P Clay, N Dominik, M Fraser, S Horne, K Kains, N Mottram, C Snodgrass, C Steele, I Street, RA Tsapras, Y Abe, F Bennett, DP Botzler, CS Douchin, D Freeman, M Fukui, A Furusawa, K Hayashi, F Hearnshaw, JB Hosaka, S Itow, Y Kamiya, K Kilmartin, PM Korpela, A Lin, W Ling, CH Makita, S Masuda, K Matsubara, Y Muraki, Y Nagayama, T Miyake, N Nishimoto, K Ohnishi, K Perrott, YC Rattenbury, N Saito, T Skuljan, L Sullivan, DJ Sumi, T Suzuki, D Sweatman, WL Tristram, PJ Wada, K Yock, PCM Beaulieu, JP Fouque, P Albrow, MD Batista, V Brillant, S Caldwell, JAR Cassan, A Cole, A Cook, KH Coutures, C Dieters, S Prester, DD Donatowicz, J Kane, SR Kubas, D Marquette, JB Martin, R Menzies, J Sahu, KC Wambsganss, J Williams, A Zub, M AF Skowron, J. Udalski, A. Gould, A. Dong, Subo Monard, L. A. G. Han, C. Nelson, C. R. McCormick, J. Moorhouse, D. Thornley, G. Maury, A. Bramich, D. M. Greenhill, J. Kozlowski, S. Bond, I. Poleski, R. Wyrzykowski, L. Ulaczyk, K. Kubiak, M. Szymanski, M. K. Pietrzynski, G. Soszynski, I. Gaudi, B. S. Yee, J. C. Hung, L. -W. Pogge, R. W. Depoy, D. L. Lee, C. -U. Park, B. -G. Allen, W. Mallia, F. Drummond, J. Bolt, G. Allan, A. Browne, P. Clay, N. Dominik, M. Fraser, S. Horne, K. Kains, N. Mottram, C. Snodgrass, C. Steele, I. Street, R. A. Tsapras, Y. Abe, F. Bennett, D. P. Botzler, C. S. Douchin, D. Freeman, M. Fukui, A. Furusawa, K. Hayashi, F. Hearnshaw, J. B. Hosaka, S. Itow, Y. Kamiya, K. Kilmartin, P. M. Korpela, A. Lin, W. Ling, C. H. Makita, S. Masuda, K. Matsubara, Y. Muraki, Y. Nagayama, T. Miyake, N. Nishimoto, K. Ohnishi, K. Perrott, Y. C. Rattenbury, N. Saito, To. Skuljan, L. Sullivan, D. J. Sumi, T. Suzuki, D. Sweatman, W. L. Tristram, P. J. Wada, K. Yock, P. C. M. Beaulieu, J. -P. Fouque, P. Albrow, M. D. Batista, V. Brillant, S. Caldwell, J. A. R. Cassan, A. Cole, A. Cook, K. H. Coutures, Ch. Dieters, S. Prester, D. Dominis Donatowicz, J. Kane, S. R. Kubas, D. Marquette, J. -B. Martin, R. Menzies, J. Sahu, K. C. Wambsganss, J. Williams, A. Zub, M. CA Ogle Collaboration Collaboration, F Robonet Collaboration Moa Collaboration Planet Collaboration TI BINARY MICROLENSING EVENT OGLE-2009-BLG-020 GIVES VERIFIABLE MASS, DISTANCE, AND ORBIT PREDICTIONS SO ASTROPHYSICAL JOURNAL LA English DT Article DE binaries: general; Galaxy: bulge; gravitational lensing: micro ID DIFFERENCE IMAGE-ANALYSIS; GALACTIC BULGE; JUPITER/SATURN ANALOG; PLANET PHOTOMETRY; LENS; STARS; DISCOVERY; CALIBRATION; DEGENERACY; ASTROMETRY AB We present the first example of binary microlensing for which the parameter measurements can be verified (or contradicted) by future Doppler observations. This test is made possible by a confluence of two relatively unusual circumstances. First, the binary lens is bright enough (I = 15.6) to permit Doppler measurements. Second, we measure not only the usual seven binary-lens parameters, but also the "microlens parallax" (which yields the binary mass) and two components of the instantaneous orbital velocity. Thus, we measure, effectively, six "Kepler+1" parameters (two instantaneous positions, two instantaneous velocities, the binary total mass, and the mass ratio). Since Doppler observations of the brighter binary component determine five Kepler parameters (period, velocity amplitude, eccentricity, phase, and position of periapsis), while the same spectroscopy yields the mass of the primary, the combined Doppler + microlensing observations would be overconstrained by 6 + (5 + 1) - (7 + 1) = 4 degrees of freedom. This makes possible an extremely strong test of the microlensing solution. We also introduce a uniform microlensing notation for single and binary lenses, define conventions, summarize all known microlensing degeneracies, and extend a set of parameters to describe full Keplerian motion of the binary lenses. C1 [Skowron, J.; Gould, A.; Nelson, C. R.; Kozlowski, S.; Gaudi, B. S.; Yee, J. C.; Hung, L. -W.; Pogge, R. W.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Udalski, A.; Kozlowski, S.; Poleski, R.; Wyrzykowski, L.; Ulaczyk, K.; Kubiak, M.; Szymanski, M. K.; Pietrzynski, G.; Soszynski, I.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. [Dong, Subo] Inst Adv Study, Princeton, NJ 08540 USA. [Monard, L. A. G.] Ctr Backyard Astrophys Pretoria, Bronberg Observ, Pretoria, South Africa. [Han, C.] Chungbuk Natl Univ, Dept Phys, Cheongju 361763, South Korea. [McCormick, J.] Ctr Backyard Astrophys, Farm Cove Observ, Auckland, New Zealand. [Moorhouse, D.; Thornley, G.] Kumeu Observ, Kumeu, New Zealand. [Maury, A.; Mallia, F.] Campo Catino Austral Observ, San Pedro De Atacama, Chile. [Bramich, D. M.; Kains, N.] European So Observ, D-85748 Garching, Germany. [Greenhill, J.; Cole, A.; Dieters, S.] Univ Tasmania, Sch Math & Phys, Gpo Hobart, Tas 7001, Australia. [Bond, I.; Lin, W.; Ling, C. H.; Skuljan, L.; Sweatman, W. L.] Massey Univ, Inst Informat & Math Sci, N Shore Mail Ctr, Auckland, New Zealand. [Wyrzykowski, L.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Depoy, D. L.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Lee, C. -U.; Park, B. -G.] Korea Astron & Space Sci Inst, Taejon 305348, South Korea. [Allen, W.] Vintage Lane Observ, Blenheim, New Zealand. [Drummond, J.] Possum Observ, Gisborne, New Zealand. [Bolt, G.] Craigie Observ, Perth, WA, Australia. [Allan, A.] Univ Exeter, Sch Phys, Exeter EX4 4QL, Devon, England. [Browne, P.; Dominik, M.; Horne, K.] Univ St Andrews, SUPA, Sch Phys & Astron, St Andrews KY16 9SS, Fife, Scotland. [Clay, N.; Fraser, S.; Mottram, C.; Steele, I.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Snodgrass, C.] MPI Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Street, R. A.; Tsapras, Y.] Global Telescope Network, Las Cumbres Observ, Goleta, CA 93117 USA. [Street, R. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Tsapras, Y.] Univ London, Sch Math Sci, London E1 4NS, England. [Abe, F.; Fukui, A.; Furusawa, K.; Hayashi, F.; Hosaka, S.; Itow, Y.; Kamiya, K.; Makita, S.; Masuda, K.; Matsubara, Y.; Miyake, N.; Nishimoto, K.; Sumi, T.; Suzuki, D.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Bennett, D. P.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46530 USA. [Botzler, C. S.; Douchin, D.; Freeman, M.; Perrott, Y. C.; Rattenbury, N.; Yock, P. C. M.] Univ Auckland, Dept Phys, Auckland, New Zealand. [Hearnshaw, J. B.; Albrow, M. D.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Kilmartin, P. M.; Tristram, P. J.] Univ Canterbury, Mt John Univ Observ, Lake Tekapo 8770, New Zealand. [Korpela, A.; Sullivan, D. J.] Victoria Univ, Sch Chem & Phys Sci, Wellington, New Zealand. [Muraki, Y.; Wada, K.] Konan Univ, Kobe, Hyogo, Japan. [Nagayama, T.] Nagoya Univ, Fac Sci, Dept Phys & Astrophys, Nagoya, Aichi 4648602, Japan. [Ohnishi, K.] Nagano Natl Coll Technol, Nagano 3818550, Japan. [Saito, To.] Tokyo Metropolitan Coll Aeronaut, Tokyo 1168523, Japan. [Beaulieu, J. -P.; Batista, V.; Cassan, A.; Coutures, Ch.; Dieters, S.; Kubas, D.; Marquette, J. -B.] Univ Paris 06, Inst Astrophys Paris, CNRS, UMR7095, F-75014 Paris, France. [Fouque, P.] Univ Toulouse, CNRS, LATT, F-75700 Paris, France. [Menzies, J.] S African Astron Observ, ZA-7925 Observatory, South Africa. [Brillant, S.] European So Observ, Santiago, Chile. [Caldwell, J. A. R.] Univ Texas, McDonald Observ, Ft Davis, TX 79734 USA. [Cassan, A.; Wambsganss, J.; Zub, M.] Heidelberg Univ, Zentrum Astron, ARI, D-69120 Heidelberg, Germany. [Cook, K. H.] Inst Geophys & Planetary Phys IGPP, Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Prester, D. Dominis] Univ Rijeka, Phys Dept, Fac Arts & Sci, Rijeka 51000, Croatia. [Donatowicz, J.] Vienna Univ Technol, Dept Comp, Vienna, Austria. [Kane, S. R.] CALTECH, NASA Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Martin, R.; Williams, A.] Perth Observ, Perth, WA 6076, Australia. [Sahu, K. C.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. RP Skowron, J (reprint author), Ohio State Univ, Dept Astron, 140 W 18th Ave, Columbus, OH 43210 USA. EM jskowron@astronomy.ohio-state.edu RI Gaudi, Bernard/I-7732-2012; Dong, Subo/J-7319-2012; Kane, Stephen/B-4798-2013; Greenhill, John/C-8367-2013; Kozlowski, Szymon/G-4799-2013; Williams, Andrew/K-2931-2013; Skowron, Jan/M-5186-2014; OI Snodgrass, Colin/0000-0001-9328-2905; Kozlowski, Szymon/0000-0003-4084-880X; Williams, Andrew/0000-0001-9080-0105; Skowron, Jan/0000-0002-2335-1730; Dominik, Martin/0000-0002-3202-0343; Cole, Andrew/0000-0003-0303-3855 FU The Ohio State University [1277721]; NSF [AST-0757888]; NASA [NNX06AF40G]; European Research Council under the European Community [246678]; JSPS [20340052, 18253002]; National Research Foundation of Korea [2009-0081561]; Ohio Supercomputer Center [PAS0367]; National Aeronautics and Space Administration FX We acknowledge following support: J.S.: NASA grant 1277721 issued by JPL/Caltech and Space Exploration Research Fund of The Ohio State University; A.G.: NSF grant AST-0757888; A.G., R.P., and S.G.: NASA grant NNX06AF40G.; Work by S.D. was performed under contract with the California Institute of Technology (Caltech) funded by NASA through the Sagan Fellowship Program. The OGLE project has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 246678 to A.U. The MOA project acknowledges support of the JSPS 20340052 and JSPS 18253002 grants. Work by C.H. was supported by the grant 2009-0081561 of the National Research Foundation of Korea.; This work was supported in part by an allocation of computing time from the Ohio Supercomputer Center under the project PAS0367. We thank David Will for administering and maintaining the computer cluster at the OSU Department of Astronomy, which was extensively used for the purpose of this work. J.S. thanks Dr. Martin D. Weinberg for helpful discussions.; This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. NR 56 TC 47 Z9 47 U1 0 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2011 VL 738 IS 1 AR 87 DI 10.1088/0004-637X/738/1/87 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808XO UT WOS:000294015500087 ER PT J AU Waldman, R Sauer, D Livne, E Perets, H Glasner, A Mazzali, P Truran, JW Gal-Yam, A AF Waldman, Roni Sauer, Daniel Livne, Eli Perets, Hagai Glasner, Ami Mazzali, Paolo Truran, James W. Gal-Yam, Avishay TI HELIUM SHELL DETONATIONS ON LOW-MASS WHITE DWARFS AS A POSSIBLE EXPLANATION FOR SN 2005E SO ASTROPHYSICAL JOURNAL LA English DT Article DE supernovae: individual (SN 2005E); white dwarfs ID MONTE-CARLO TECHNIQUES; OFF-CENTER DETONATION; IA SUPERNOVAE; ABUNDANCE STRATIFICATION; NONTHERMAL EXCITATION; RADIATIVE-TRANSFER; ENERGY DEPOSITION; SYNTHETIC SPECTRA; LIGHT CURVES; MODELS AB Recently, several Type Ib supernovae (SNe; with the prototypical SN 2005E) have been shown to have atypical properties. These SNe are faint (absolute peak magnitude of similar to-15) and fast SNe that show unique composition. They are inferred to have low ejecta mass (a few tenths of a solar mass) and to be highly enriched in calcium, but poor in silicon elements and nickel. These SNe were therefore suggested to belong to a new class of calcium-rich faint SNe explosions. Their properties were proposed to be the result of helium detonations that may occur on helium accreting white dwarfs. In this paper, we theoretically study the scenario of helium detonations and focus on the results of detonations in accreted helium layers on low-mass carbon-oxygen (CO) cores. We present new results from one-dimensional simulations of such explosions, including their light curves and spectra. We find that when the density of the helium layer is low enough the helium detonation produces large amounts of intermediate elements, such as calcium and titanium, together with a large amount of unburnt helium. Alternatively, enough carbon enrichment of the accreted helium as a result of convective undershoot at the early stages of the runaway can avoid the production of iron group elements as the alpha particles are consumed avoiding iron production. Our results suggest that the properties of calcium-rich faint SNe could indeed be consistent with the helium-detonation scenario on small CO cores. Above a certain density (larger CO cores) the detonation leaves mainly Ni-56 and unburnt helium, and the predicted spectrum will unlikely fit the unique features of this class of SNe. Finally, none of our studied models reproduces the bright, fast-evolving light curves of another type of peculiar SNe suggested to originate in helium detonations (SNe 1885A, 1939B, and 2002bj). C1 [Waldman, Roni; Livne, Eli; Glasner, Ami] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Sauer, Daniel] Stockholm Univ, Dept Astron, AlbaNova Univ Ctr, S-10691 Stockholm, Sweden. [Perets, Hagai] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Mazzali, Paolo] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Mazzali, Paolo] Scuola Normale Super Pisa, I-56126 Pisa, Italy. [Mazzali, Paolo] Ist Naz Astrofis Oss Astron, I-35122 Padua, Italy. [Truran, James W.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Truran, James W.] Univ Chicago, Dept Astron & Astrophys, Enrico Fermi Inst, Chicago, IL 60637 USA. [Truran, James W.] Univ Chicago, Joint Inst Nucl Astrophys, Chicago, IL 60637 USA. [Gal-Yam, Avishay] Weizmann Inst Sci, Benoziyo Ctr Astrophys, Fac Phys, IL-76100 Rehovot, Israel. RP Waldman, R (reprint author), Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. RI Sauer, Daniel/A-3033-2012; Perets, Hagai/K-9605-2015 OI Sauer, Daniel/0000-0002-0317-5063; Perets, Hagai/0000-0002-5004-199X FU Weizmann-Minerva grant; Israeli Science Foundation; EU; Peter and Patricia Gruber Awards; DOE at the Argonne National Laboratory [DE-AC02-06CH11357]; NSF at the University of Chicago [PHY 08-22648] FX We thank Stefano Valenti for computing the quasi-bolometric light curve of SN 2005E from the observed data. We are grateful for Stuart Sim and Markus Kromer at the Max-Planck Institute for Astrophysics for computing a radiative transfer model to cross-check our model results. Nuclear half-lives and decay energies used in the light curve model calculations have been compiled using NuDat 2.5 (http://www.nndc.bnl.gov/nudat2) and the Web-based Table of Nuclides of the Korea Atomic Energy Research Institute (http://atom.kaeri.re.kr). Joint research by A. G. and P. A. M. is supported by a Weizmann-Minerva grant. The work of A. G. is also supported by the Israeli Science Foundation, an EU FP7 Marie Curie IRG fellowship, and a research grant from the Peter and Patricia Gruber Awards. This work is supported in part at the Argonne National Laboratory by the DOE under contract No. DE-AC02-06CH11357, and at the University of Chicago by the NSF under grant PHY 08-22648 for the Physics Frontier Center "Joint Institute for Nuclear Astrophysics" (JINA). NR 45 TC 43 Z9 43 U1 1 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2011 VL 738 IS 1 AR 21 DI 10.1088/0004-637X/738/1/21 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808XO UT WOS:000294015500021 ER PT J AU Xue, XX Rix, HW Yanny, B Beers, TC Bell, EF Zhao, G Bullock, JS Johnston, KV Morrison, H Rockosi, C Koposov, SE Kang, X Liu, C Luo, A Lee, YS Weaver, BA AF Xue, Xiang-Xiang Rix, Hans-Walter Yanny, Brian Beers, Timothy C. Bell, Eric F. Zhao, Gang Bullock, James S. Johnston, Kathryn V. Morrison, Heather Rockosi, Constance Koposov, Sergey E. Kang, Xi Liu, Chao Luo, Ali Lee, Young Sun Weaver, Benjamin A. TI QUANTIFYING KINEMATIC SUBSTRUCTURE IN THE MILKY WAY'S STELLAR HALO SO ASTROPHYSICAL JOURNAL LA English DT Article DE galaxies: individual (MilkyWay); Galaxy: halo; Galaxy: structure; stars: horizontal-branch; stars: kinematics and dynamics ID DIGITAL SKY SURVEY; HORIZONTAL-BRANCH STARS; SURVEY COMMISSIONING DATA; TRACING GALAXY FORMATION; COLD DARK-MATTER; DATA RELEASE; GALACTIC HALO; CIRCULAR VELOCITY; DWARF GALAXY; 1ST DATA AB We present and analyze the positions, distances, and radial velocities for over 4000 blue horizontal-branch (BHB) stars in the Milky Way's halo, drawn from SDSS DR8. We search for position-velocity substructure in these data, a signature of the hierarchical assembly of the stellar halo. Using a cumulative "close pair distribution" as a statistic in the four-dimensional space of sky position, distance, and velocity, we quantify the presence of position-velocity substructure at high statistical significance among the BHB stars: pairs of BHB stars that are close in position on the sky tend to have more similar distances and radial velocities compared to a random sampling of these overall distributions. We make analogous mock observations of 11 numerical halo formation simulations, in which the stellar halo is entirely composed of disrupted satellite debris, and find a level of substructure comparable to that seen in the actually observed BHB star sample. This result quantitatively confirms the hierarchical build-up of the stellar halo through a signature in phase (position-velocity) space. In detail, the structure present in the BHB stars is somewhat less prominent than that seen in most simulated halos, quite possibly because BHB stars represent an older sub-population. BHB stars located beyond 20 kpc from the Galactic center exhibit stronger substructure than at r(gc) < 20 kpc. C1 [Xue, Xiang-Xiang; Zhao, Gang; Luo, Ali] Chinese Acad Sci, Key Lab Opt Astron, Natl Astron Observ, Beijing 100012, Peoples R China. [Xue, Xiang-Xiang; Rix, Hans-Walter; Bell, Eric F.; Koposov, Sergey E.; Kang, Xi; Liu, Chao] Max Planck Inst Astron, D-69117 Heidelberg, Germany. [Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Beers, Timothy C.; Lee, Young Sun] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Bell, Eric F.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Bullock, James S.] Univ Calif Irvine, Ctr Cosmol, Dept Phys & Astron, Irvine, CA 92697 USA. [Johnston, Kathryn V.] Columbia Univ, Dept Astron, New York, NY 10027 USA. [Morrison, Heather] Case Western Reserve Univ, Dept Astron, Cleveland, OH 44106 USA. [Rockosi, Constance] Univ Calif Santa Cruz, Lick Observ, Santa Cruz, CA 95060 USA. [Koposov, Sergey E.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Koposov, Sergey E.] Moscow MV Lomonosov State Univ, Sternberg Astron Inst, Moscow 119992, Russia. [Kang, Xi] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Weaver, Benjamin A.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Beers, Timothy C.] Michigan State Univ, JINA Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. RP Xue, XX (reprint author), Chinese Acad Sci, Key Lab Opt Astron, Natl Astron Observ, 20A Datun Rd, Beijing 100012, Peoples R China. RI Koposov, Sergey/F-2754-2012; Bullock, James/K-1928-2015; OI Koposov, Sergey/0000-0003-2644-135X; Bullock, James/0000-0003-4298-5082; Bell, Eric/0000-0002-5564-9873 FU Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; University of Arizona; Brazilian Participation Grou; Brookhaven National Laboratory; University of Cambridge; University of Florida; French Participation Group; German Participation Group; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; New Mexico State University; NewYork University; Ohio State University; University of Portsmouth; Princeton University; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; Max-Planck-Institute for Astronomy; National Natural Science Foundation of China (NSFC) [10821061, 10876040, 10973021]; Young Researcher Grant of National Astronomical Observatories; Chinese Academy of Sciences; National Basic Research Program of China [2007CB815103]; NSF [AST 1008342, AST-0098435]; U.S. National Science Foundation [PHY 02-16783, PHY 08-22648] FX Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy. The SDSS-III Web site is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, University of Florida, the French Participation Group, the German Participation Group, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, New Mexico State University, NewYork University, the Ohio State University, University of Portsmouth, Princeton University, University of Tokyo, the University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University.; This work was made possible by the support of the Max-Planck-Institute for Astronomy, and was funded by the National Natural Science Foundation of China (NSFC) under Nos. 10821061, 10876040, and 10973021, and supported by the Young Researcher Grant of National Astronomical Observatories, Chinese Academy of Sciences. This work was also supported by the National Basic Research Program of China under grant 2007CB815103.; E.F.B. acknowledges NSF grant AST 1008342.; T.C.B. and Y.S.L. acknowledge partial funding of this work from grants PHY 02-16783 and PHY 08-22648: Physics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA), awarded by the U.S. National Science Foundation.; H. Morrison acknowledges funding of this work from NSF grant AST-0098435. NR 72 TC 59 Z9 60 U1 0 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD SEP 1 PY 2011 VL 738 IS 1 AR 79 DI 10.1088/0004-637X/738/1/79 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 808XO UT WOS:000294015500079 ER PT J AU Jin, L Harley, RA Brown, NJ AF Jin, Ling Harley, Robert A. Brown, Nancy J. TI Ozone pollution regimes modeled for a summer season in California's San Joaquin Valley: A cluster analysis SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Seasonal ozone; Central California; Cluster analysis; Photochemical modeling ID WIND PATTERNS; FRANCISCO AB This study demonstrates an application of cluster analysis to model simulation data for California's San Joaquin Valley (SJV) for the purpose of identifying meteorologically representative pollution regimes. Principal component analysis is employed to facilitate exploring and visualizing temporal variations in highly resolved gridded model data. Six regimes are clustered according to the spatial distribution of SJV 8 h ozone maxima. Meteorological effects (temperature and winds) are shown to explain the observed ozone spatial distributions in the SJV, and their relationship to those in upwind San Francisco Bay Area air basin (SFB) under certain prevailing wind flow patterns. In general, average ozone levels in the SJV increase with temperature, while their spatial distributions depend on flow regimes, especially the strength of sea breezes and upslope flows. More ventilated flow regimes, associated with stronger sea breeze and upslope flows, cause eastward transport of pollutants, increasing ozone in the southeastern SJV and decreasing it in the northwest SJV. The opposite occurs during the most stagnant conditions associated with the weakest sea breeze and upslope flows. The two most prominent relationships between the SFB and SJV were found to be associated with the most ventilated and the most stagnant conditions, respectively, indicating a strong inter-basin transport (or the lack thereof) event. Spatial representativeness of existing measurement sites and the confounding influences of emission changes on clustering results are also investigated. Existing measurement sites are able to capture ozone spatial patterns in the SFB and Sacramento Valley (SV), whereas those along the western side of the SJV are under-represented. Differences in day-of-week emissions produce minor effects on spatial ozone distributions and the clusters are largely stable under these changes. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Jin, Ling; Harley, Robert A.; Brown, Nancy J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Atmospher Sci, Berkeley, CA 94720 USA. [Harley, Robert A.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. RP Brown, NJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Dept Atmospher Sci, Berkeley, CA 94720 USA. EM njbrown@lbl.gov RI Harley, Robert/C-9177-2016 OI Harley, Robert/0000-0002-0559-1917 FU Assistant Secretary of Fossil Energy, Office of Natural Gas and Petroleum Technology through the National Energy Technology Laboratory under the U.S. Department of Energy [DE-AC020-5CH11231]; California Energy Commission; Central California Air Quality Study Agency FX The authors thank the Technical Committee overseeing the Central California Ozone Study for helpful comments at many stages of this research. This research was supported by the Assistant Secretary of Fossil Energy, Office of Natural Gas and Petroleum Technology through the National Energy Technology Laboratory under the U.S. Department of Energy Contract No. DE-AC020-5CH11231, California Energy Commission, and the Central California Air Quality Study Agency. Statements and conclusions in this paper are those of the authors, and do not necessarily reflect the views of the sponsoring agencies. NR 21 TC 6 Z9 6 U1 0 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD SEP PY 2011 VL 45 IS 27 BP 4707 EP 4718 DI 10.1016/j.atmosenv.2011.04.064 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 807VM UT WOS:000293931100018 ER PT J AU Reddy, AP Allgaier, M Singer, SW Hazen, TC Simmons, BA Hugenholtz, P VanderGheynst, JS AF Reddy, Amitha P. Allgaier, Martin Singer, Steven W. Hazen, Terry C. Simmons, Blake A. Hugenholtz, Philip VanderGheynst, Jean S. TI Bioenergy Feedstock-Specific Enrichment of Microbial Populations During High-Solids Thermophilic Deconstruction SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE switchgrass; corn stover; solid state fermentation; compost; xylanase; endoglucanase ID CELLULOSIC ETHANOL; TRICHODERMA-REESEI; PRETREATMENT; SWITCHGRASS; CELLULASES; XYLANASE; SOIL; FERMENTATION; INHIBITION; HYDROLYSIS AB Thermophilic microbial communities that are active in a high-solids environment offer great potential for the discovery of industrially relevant enzymes that efficiently deconstruct bioenergy feedstocks. In this study, finished green waste compost was used as an inoculum source to enrich microbial communities and associated enzymes that hydrolyze cellulose and hemicellulose during thermophilic high-solids fermentation of the bioenergy feedstocks switch-grass and corn stover. Methods involving the disruption of enzyme and plant cell wall polysaccharide interactions were developed to recover xylanase and endoglucanase activity from deconstructed solids. Xylanase and endoglucanase activity increased by more than a factor of 5, upon four successive enrichments on switchgrass. Overall, the changes for switchgrass were more pronounced than for corn stover; solids reduction between the first and second enrichments increased by a factor of four for switchgrass while solids reduction remained relatively constant for corn stover. Amplicon pyrosequencing analysis of small-subunit ribosomal RNA genes recovered from enriched samples indicated rapid changes in the microbial communities between the first and second enrichment with the simplified communities achieved by the third enrichment. The results demonstrate a successful approach for enrichment of unique microbial communities and enzymes active in a thermophilic high-solids environment. Biotechnol. Bioeng. 2011; 108: 2088-2098. (C) 2011 Wiley Periodicals, Inc. C1 [Reddy, Amitha P.; Allgaier, Martin; Singer, Steven W.; Hazen, Terry C.; Simmons, Blake A.; Hugenholtz, Philip; VanderGheynst, Jean S.] Joint BioEnergy Inst, Emeryville, CA USA. [Reddy, Amitha P.; VanderGheynst, Jean S.] Univ Calif Davis, Davis, CA 95616 USA. [Allgaier, Martin; Hugenholtz, Philip] DOE Joint Genome Inst, Walnut Creek, CA USA. [Singer, Steven W.; Hazen, Terry C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Simmons, Blake A.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. [Simmons, Blake A.] Sandia Natl Labs, Biomass Sci & Convers Technol Dept, Livermore, CA USA. [Hugenholtz, Philip] Univ Queensland, Sch Chem & Mol Biosci, Australian Ctr Ecogen, St Lucia, Qld, Australia. RP VanderGheynst, JS (reprint author), Dept Biol & Agr Engn, 1 Shields Ave, Davis, CA 95161 USA. EM jsvander@ucdavis.edu RI Hugenholtz, Philip/G-9608-2011; Hazen, Terry/C-1076-2012; OI Hazen, Terry/0000-0002-2536-9993; Simmons, Blake/0000-0002-1332-1810 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Office of Science of the US Department of Energy [DE-AC02-05CH11231]; National Laboratory; US Department of Energy FX We thank Dean C. Dibble, Josh Claypool, Hiroyuki Kashima, and Lauren Jabusch for assistance with experiments. Tijana Glavina del Rio, Susannah Tringe, and Crystal Wright of the DOE Joint Genome Institute are acknowledged for their assistance in obtaining pyrotag sequencing data. This work was performed as part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. Pyrotag sequencing was conducted by the Joint Genome Institute which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 39 TC 12 Z9 12 U1 4 U2 27 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0006-3592 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD SEP PY 2011 VL 108 IS 9 BP 2088 EP 2098 DI 10.1002/bit.23176 PG 11 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 804XB UT WOS:000293686900010 PM 21520015 ER PT J AU Tomasi, D Volkow, ND AF Tomasi, Dardo Volkow, Nora D. TI Association between Functional Connectivity Hubs and Brain Networks SO CEREBRAL CORTEX LA English DT Article DE functional connectivity; 1000 functional connectomes ID RESTING-STATE NETWORKS; VISUAL-ATTENTION TASKS; DEFAULT NETWORK; ALZHEIMERS-DISEASE; WORKING-MEMORY; SMALL-WORLD; ACTIVATION PATTERNS; MOTOR CORTEX; IMAGES; MRI AB Functional networks are usually accessed with "resting-state" functional magnetic resonance imaging using preselected "seeds" regions. Frequently, however, the selection of the seed locations is arbitrary. Recently, we proposed local functional connectivity density mapping (FCDM), an ultrafast data-driven to locate highly connected brain regions (functional hubs). Here, we used the functional hubs obtained from local FCDM to determine the functional networks of the resting state in 979 healthy subjects without a priori hypotheses on seed locations. In addition, we computed the global functional connectivity hubs. Seven networks covering 80% of the gray matter volume were identified. Four major cortical hubs (ventral precuneus/posterior cingulate, inferior parietal cortex, cuneus, and postcentral gyrus) were linked to 4 cortical networks (default mode, dorsal attention, visual, and somatosensory). Three subcortical networks were associated to the major subcortical hubs (cerebellum, thalamus, and amygdala). The networks differed in their resting activity and topology. The higher coupling and overlap of subcortical networks was associated to higher contribution of short-range functional connectivity in thalamus and cerebellum. Whereas cortical local FCD hubs were also hubs of long-range connectivity, which corroborates the key role of cortical hubs in network architecture, subcortical hubs had minimal long-range connectivity. The significant variability among functional networks may underlie their sensitivity/resilience to neuropathology. C1 [Tomasi, Dardo; Volkow, Nora D.] NIAAA, Bethesda, MD 20892 USA. [Volkow, Nora D.] NIDA, Bethesda, MD 20892 USA. RP Tomasi, D (reprint author), Brookhaven Natl Lab, Lab Neuroimaging LNI NIAAA, Dept Med, Bldg 490,30 Bell Ave, Upton, NY 11973 USA. EM tomasi@bnl.gov RI Tomasi, Dardo/J-2127-2015 FU National Institutes of Alcohol Abuse and Alcoholism [2RO1AA09481] FX National Institutes of Alcohol Abuse and Alcoholism (2RO1AA09481). NR 63 TC 114 Z9 117 U1 3 U2 19 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 1047-3211 J9 CEREB CORTEX JI Cereb. Cortex PD SEP PY 2011 VL 21 IS 9 BP 2003 EP 2013 DI 10.1093/cercor/bhq268 PG 11 WC Neurosciences SC Neurosciences & Neurology GA 807PH UT WOS:000293911700005 PM 21282318 ER PT J AU Brandao, FGSL Christandl, M Yard, J AF Brandao, Fernando G. S. L. Christandl, Matthias Yard, Jon TI Faithful Squashed Entanglement SO COMMUNICATIONS IN MATHEMATICAL PHYSICS LA English DT Article ID QUANTUM SEPARABILITY PROBLEM; MIXED-STATE ENTANGLEMENT; CONDITIONAL INFORMATION; STRONG SUBADDITIVITY; RELATIVE ENTROPY; STRONG CONVERSE; SYSTEMS; THEOREM; DISTILLATION; COMPLEXITY AB Squashed entanglement is a measure for the entanglement of bipartite quantum states. In this paper we present a lower bound for squashed entanglement in terms of a distance to the set of separable states. This implies that squashed entanglement is faithful, that is, it is strictly positive if and only if the state is entangled. We derive the lower bound on squashed entanglement from a lower bound on the quantum conditional mutual information which is used to define squashed entanglement. The quantum conditional mutual information corresponds to the amount by which strong subadditivity of von Neumann entropy fails to be saturated. Our result therefore sheds light on the structure of states that almost satisfy strong subadditivity with equality. The proof is based on two recent results from quantum information theory: the operational interpretation of the quantum mutual information as the optimal rate for state redistribution and the interpretation of the regularised relative entropy of entanglement as an error exponent in hypothesis testing. The distance to the set of separable states is measured in terms of the LOCC norm, an operationally motivated norm giving the optimal probability of distinguishing two bipartite quantum states, each shared by two parties, using any protocol formed by local quantum operations and classical communication (LOCC) between the parties. A similar result for the Frobenius or Euclidean norm follows as an immediate consequence. The result has two applications in complexity theory. The first application is a quasipolynomial-time algorithm solving the weak membership problem for the set of separable states in LOCC or Euclidean norm. The second application concerns quantum Merlin-Arthur games. Here we show that multiple provers are not more powerful than a single prover when the verifier is restricted to LOCC operations thereby providing a new characterisation of the complexity class QMA. C1 [Brandao, Fernando G. S. L.] Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil. [Christandl, Matthias] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Yard, Jon] Los Alamos Natl Lab, Comp Computat & Stat Sci CCS 3, Ctr Nonlinear Studies CNLS, Los Alamos, NM 87545 USA. RP Brandao, FGSL (reprint author), Univ Fed Minas Gerais, Dept Fis, Caixa Postal 702, BR-30123970 Belo Horizonte, MG, Brazil. EM fgslbrandao@gmail.com; christandl@phys.ethz.ch; jtyard@lanl.gov RI 1, INCT/G-5846-2013; Informacao quantica, Inct/H-9493-2013; Christandl, Matthias/L-8830-2014 OI Christandl, Matthias/0000-0003-2281-3355 FU Brazilian agency Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG); Swiss National Science Foundation [PP00P2-128455]; German Science Foundation [CH 843/1-1, CH 843/2-1]; United States Department of Energy FX We thank Mario Berta, Aram Harrow and Andreas Winter for helpful discussions and in particular David Reeb for pointing out that our LOCC norm bound on squashed entanglement would extend to a bound on the conditional mutual information. FB is supported by a "Conhecimento Novo" fellowship from the Brazilian agency Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG). MC is supported by the Swiss National Science Foundation (grant PP00P2-128455) and the German Science Foundation (grants CH 843/1-1 and CH 843/2-1). JY is supported by a grant through the LDRD program of the United States Department of Energy. FB and JY thank the Institute Mittag Leffler, where part of this work was done, for their hospitality. NR 85 TC 52 Z9 52 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0010-3616 EI 1432-0916 J9 COMMUN MATH PHYS JI Commun. Math. Phys. PD SEP PY 2011 VL 306 IS 3 BP 805 EP 830 DI 10.1007/s00220-011-1302-1 PG 26 WC Physics, Mathematical SC Physics GA 808VR UT WOS:000294010400009 ER PT J AU Atamturktur, S Bornn, L Hemez, F AF Atamturktur, Sezer Bornn, Luke Hemez, Francois TI Vibration characteristics of vaulted masonry monuments undergoing differential support settlement SO ENGINEERING STRUCTURES LA English DT Article DE Gothic Cathedral; Historic masonry monuments; Vaulted structures; Structural damage; Sabouret cracks; Dynamic testing; Feature extraction ID IMPACT-ECHO; DYNAMIC-RESPONSE; ARCH BRIDGE; IDENTIFICATION; QUALITY AB This paper assesses the feasibility of vibration testing to detect structural damage caused by the settlement of buttresses in the Beverley Minster, a Gothic church located in the UK. Over the past eight centuries, the accumulated support settlements of the buttresses of Beverley Minster have pulled the main nave walls outward, causing severe separation along the edges of the masonry vaults. Bays closer to the main crossing tower have remained intact: however, at the west end of the Minster, the crack width between the walls and vaults has reached about 150 mm, leading to approximately 200 mm of sag at the crown of the vaults. Due to uneven settlement of buttresses along the nave of the church, the Minster now has ten nominally identical vaults at different damage states. In this work, two of these vaults representing the two extremes, the most damaged and undamaged structural states, are subjected to vibration testing with impact hammer excitation. From these vibration measurements, damage indicators are extracted in the modal, frequency, and time domains. In the modal domain, the differences between modal parameters are observed to be comparable to measurement uncertainty and hence insufficient to reach conclusions about the presence of vault damage. However, the amplitudes of frequency response functions in the frequency domain are observed to indicate a clear difference between the damaged and undamaged states of the structure. A time domain autoregressive model, support vector machine regression, is also found to be successful at indicating the differences between the two structural states of the vaults. We conclude that vibration measurements offer a practical solution to detect wall-vault separation in historic masonry monuments, provided that multiple damage indicators are evaluated. Published by Elsevier Ltd C1 [Atamturktur, Sezer] Clemson Univ, Dept Civil Engn, Clemson, SC 29634 USA. [Bornn, Luke] Univ British Columbia, Dept Stat, Vancouver, BC V6T 1Z2, Canada. [Hemez, Francois] Los Alamos Natl Lab, XTD 3, Los Alamos, NM 87545 USA. RP Atamturktur, S (reprint author), Clemson Univ, Dept Civil Engn, Lowry Hall, Clemson, SC 29634 USA. EM sez@clemson.edu; l.bornn@stat.ubc.ca; hemez@lanl.gov OI Hemez, Francois/0000-0002-5319-4078 FU National Center for Preservation Technology and Training (NCPTT) of the Department of Interior [MT-2210-10-NC-01] FX Part of this work is performed under the auspices of the PTTGrants program of the National Center for Preservation Technology and Training (NCPTT) of the Department of Interior: the Grant Agreement Number MT-2210-10-NC-01. The authors wish to thank Minster personnel, Steve Everett and Steve Riall, for their support and welcoming attitude during site visits. The first author wishes to thank Price and Meyers for sharing their drawings and reports; Chris Middleton, Stefanie Terentiuk and Eunice Lawton for their help during the field test, and Prasenjit Mohanty and Donald Nyawako for their help during the preparation phase of the test. The first author also gratefully acknowledges the work of Sally Gimbert in completing the geometric survey, Prof. Thomas E. Boothby for initiating the project and Paul Reynolds and Alex Pavic for supporting this research program. The first two authors wish to express their gratitude to Charles Farrar, Dave Higdon, and Todd Graves from the Los Alamos National Laboratory for their support and mentoring. The first author also wishes to convey her warmest appreciation to Godfrey Kimball of Clemson University for his editorial assistance. NR 34 TC 17 Z9 17 U1 0 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-0296 J9 ENG STRUCT JI Eng. Struct. PD SEP PY 2011 VL 33 IS 9 BP 2472 EP 2484 DI 10.1016/j.engstruct.2011.04.020 PG 13 WC Engineering, Civil SC Engineering GA 807BW UT WOS:000293869400005 ER PT J AU Kattge, J Diaz, S Lavorel, S Prentice, C Leadley, P Bonisch, G Garnier, E Westoby, M Reich, PB Wright, IJ Cornelissen, JHC Violle, C Harrison, SP van Bodegom, PM Reichstein, M Enquist, BJ Soudzilovskaia, NA Ackerly, DD Anand, M Atkin, O Bahn, M Baker, TR Baldocchi, D Bekker, R Blanco, CC Blonder, B Bond, WJ Bradstock, R Bunker, DE Casanoves, F Cavender-Bares, J Chambers, JQ Chapin, FS Chave, J Coomes, D Cornwell, WK Craine, JM Dobrin, BH Duarte, L Durka, W Elser, J Esser, G Estiarte, M Fagan, WF Fang, J Fernandez-Mendez, F Fidelis, A Finegan, B Flores, O Ford, H Frank, D Freschet, GT Fyllas, NM Gallagher, RV Green, WA Gutierrez, AG Hickler, T Higgins, SI Hodgson, JG Jalili, A Jansen, S Joly, CA Kerkhoff, AJ Kirkup, D Kitajima, K Kleyer, M Klotz, S Knops, JMH Kramer, K Kuhn, I Kurokawa, H Laughlin, D Lee, TD Leishman, M Lens, F Lenz, T Lewis, SL Lloyd, J Llusia, J Louault, F Ma, S Mahecha, MD Manning, P Massad, T Medlyn, BE Messier, J Moles, AT Muller, SC Nadrowski, K Naeem, S Niinemets, U Nollert, S Nuske, A Ogaya, R Oleksyn, J Onipchenko, VG Onoda, Y Ordonez, J Overbeck, G Ozinga, WA Patino, S Paula, S Pausas, JG Penuelas, J Phillips, OL Pillar, V Poorter, H Poorter, L Poschlod, P Prinzing, A Proulx, R Rammig, A Reinsch, S Reu, B Sack, L Salgado-Negre, B Sardans, J Shiodera, S Shipley, B Siefert, A Sosinski, E Soussana, JF Swaine, E Swenson, N Thompson, K Thornton, P Waldram, M Weiher, E White, M White, S Wright, SJ Yguel, B Zaehle, S Zanne, AE Wirth, C AF Kattge, J. Diaz, S. Lavorel, S. Prentice, C. Leadley, P. Boenisch, G. Garnier, E. Westoby, M. Reich, P. B. Wright, I. J. Cornelissen, J. H. C. Violle, C. Harrison, S. P. van Bodegom, P. M. Reichstein, M. Enquist, B. J. Soudzilovskaia, N. A. Ackerly, D. D. Anand, M. Atkin, O. Bahn, M. Baker, T. R. Baldocchi, D. Bekker, R. Blanco, C. C. Blonder, B. Bond, W. J. Bradstock, R. Bunker, D. E. Casanoves, F. Cavender-Bares, J. Chambers, J. Q. Chapin, F. S., III Chave, J. Coomes, D. Cornwell, W. K. Craine, J. M. Dobrin, B. H. Duarte, L. Durka, W. Elser, J. Esser, G. Estiarte, M. Fagan, W. F. Fang, J. Fernandez-Mendez, F. Fidelis, A. Finegan, B. Flores, O. Ford, H. Frank, D. Freschet, G. T. Fyllas, N. M. Gallagher, R. V. Green, W. A. Gutierrez, A. G. Hickler, T. Higgins, S. I. Hodgson, J. G. Jalili, A. Jansen, S. Joly, C. A. Kerkhoff, A. J. Kirkup, D. Kitajima, K. Kleyer, M. Klotz, S. Knops, J. M. H. Kramer, K. Kuehn, I. Kurokawa, H. Laughlin, D. Lee, T. D. Leishman, M. Lens, F. Lenz, T. Lewis, S. L. Lloyd, J. Llusia, J. Louault, F. Ma, S. Mahecha, M. D. Manning, P. Massad, T. Medlyn, B. E. Messier, J. Moles, A. T. Mueller, S. C. Nadrowski, K. Naeem, S. Niinemets, Ue. Noellert, S. Nueske, A. Ogaya, R. Oleksyn, J. Onipchenko, V. G. Onoda, Y. Ordonez, J. Overbeck, G. Ozinga, W. A. Patino, S. Paula, S. Pausas, J. G. Penuelas, J. Phillips, O. L. Pillar, V. Poorter, H. Poorter, L. Poschlod, P. Prinzing, A. Proulx, R. Rammig, A. Reinsch, S. Reu, B. Sack, L. Salgado-Negre, B. Sardans, J. Shiodera, S. Shipley, B. Siefert, A. Sosinski, E. Soussana, J. -F. Swaine, E. Swenson, N. Thompson, K. Thornton, P. Waldram, M. Weiher, E. White, M. White, S. Wright, S. J. Yguel, B. Zaehle, S. Zanne, A. E. Wirth, C. TI TRY - a global database of plant traits SO GLOBAL CHANGE BIOLOGY LA English DT Article DE comparative ecology; database; environmental gradient; functional diversity; global analysis; global change; interspecific variation; intraspecific variation; plant attribute; plant functional type; plant trait; vegetation model ID RELATIVE GROWTH-RATE; TROPICAL RAIN-FOREST; HAWAIIAN METROSIDEROS-POLYMORPHA; LITTER DECOMPOSITION RATES; LEAF ECONOMICS SPECTRUM; OLD-FIELD SUCCESSION; SUB-ARCTIC FLORA; FUNCTIONAL TRAITS; WIDE-RANGE; TERRESTRIAL BIOSPHERE AB Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs - determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world's 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation - but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models. C1 [Kattge, J.; Boenisch, G.; Reichstein, M.; Frank, D.; Mahecha, M. D.; Massad, T.; Noellert, S.; Nueske, A.; Reu, B.; Zaehle, S.] Max Planck Inst Biogeochem, D-07745 Jena, Germany. [Diaz, S.] Univ Nacl Cordoba, Inst Multidisciplinario Biol Vegetal, RA-5000 Cordoba, Argentina. [Lavorel, S.] CNRS, Lab Ecol Alpine LECA, Grenoble, France. [Prentice, C.; Westoby, M.; Wright, I. J.; Harrison, S. P.; Gallagher, R. V.; Leishman, M.; Lenz, T.; Medlyn, B. E.] Macquarie Univ, Dept Biol Sci, Sydney, NSW 2109, Australia. [Leadley, P.] Univ Paris 11, Lab Ecol Systemat & Evolut ESE, Paris, France. [Garnier, E.; Violle, C.] CNRS, Ctr Ecol Fonct & Evolut, F-34293 Montpellier, France. [Reich, P. B.] Univ Minnesota, Dept Forest Resources, St Paul, MN 55108 USA. [Reich, P. B.] Univ Minnesota, Inst Environm, St Paul, MN 55108 USA. [Reich, P. B.; Freschet, G. T.] Univ Western Sydney, Hawkesbury Inst Environm, Richmond, NSW 2753, Australia. [Cornelissen, J. H. C.; van Bodegom, P. M.; Soudzilovskaia, N. A.; Cornwell, W. K.] Vrije Univ Amsterdam, Fac Earth & Life Sci, NL-1081 HV Amsterdam, Netherlands. [Enquist, B. J.; Blonder, B.; Dobrin, B. H.; Messier, J.] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA. [Ackerly, D. D.] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. [Anand, M.; White, S.] Univ Guelph, Sch Environm Sci, Guelph, ON N1G 2W1, Canada. [Atkin, O.] Australian Natl Univ, Res Sch Biol, Canberra, ACT 0200, Australia. [Bahn, M.] Univ Innsbruck, Inst Ecol, A-6020 Innsbruck, Austria. [Baker, T. R.; Fyllas, N. M.; Lewis, S. L.; Lloyd, J.; Patino, S.; Phillips, O. L.] Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England. [Baldocchi, D.; Ma, S.] Univ Calif Berkeley, Dept Environm Sci, Berkeley, CA 94720 USA. [Baldocchi, D.] Univ Calif Berkeley, Ctr Atmospher Sci, Berkeley, CA 94720 USA. [Bekker, R.] Univ Groningen, Ctr Life Sci, NL-9700 CC Groningen, Netherlands. [Blanco, C. C.; Mueller, S. C.; Pillar, V.] Univ Fed Rio Grande do Sul, Dept Ecol, BR-91501970 Porto Alegre, RS, Brazil. [Bond, W. J.] Univ Cape Town, Dept Bot, ZA-7701 Rondebosch, South Africa. [Bradstock, R.] Univ Wollongong, Sch Biol Sci, Wollongong, NSW 2522, Australia. [Bunker, D. E.] New Jersey Inst Technol, Dept Biol Sci, Newark, NJ 07102 USA. [Casanoves, F.; Finegan, B.; Salgado-Negre, B.] Trop Agr Ctr Res & Higher Educ CATIE, Turrialba 937170, Costa Rica. [Cavender-Bares, J.] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA. [Chambers, J. Q.] Univ Calif Berkeley, Lawrence Berkeley Lab, Climate Sci Dept, Berkeley, CA 94720 USA. [Chapin, F. S., III] Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK 99775 USA. [Chave, J.] CNRS, Lab Evolut & Diversite Biol, Toulouse, France. [Coomes, D.] Univ Cambridge, Dept Plant Sci, Cambridge CB3 2EA, England. [Craine, J. M.] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA. [Duarte, L.; Fang, J.; Kuehn, I.] Univ Fed Rio Grande do Sul, Dept Ecol, BR-91540000 Porto Alegre, RS, Brazil. [Durka, W.; Klotz, S.] UFZ Helmholtz Ctr Environm Res, Dept Community Ecol, D-06120 Halle, Germany. [Elser, J.] Arizona State Univ, Sch Life Sci, Tempe, AZ 85287 USA. [Esser, G.] Univ Giessen, Inst Plant Ecol, D-35392 Giessen, Germany. [Estiarte, M.; Llusia, J.; Ogaya, R.; Penuelas, J.; Sardans, J.] Univ Autonoma Barcelona, Global Ecol Unit CREAF CEAB CSIC, E-08193 Barcelona, Spain. [Fagan, W. F.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA. Peking Univ, Dept Ecol, Beijing 100871, Peoples R China. [Fernandez-Mendez, F.] Univ Tolima, Dept Ciencias Forestales, Tolima, Colombia. [Fidelis, A.] Univ Sao Paulo, Dept Ecol, BR-05508900 Sao Paulo, Brazil. [Flores, O.] Univ Reunion, PVBMT, F-97410 St Pierre, France. [Ford, H.] Univ York, Dept Biol, Bath, Avon, England. [Green, W. A.] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA. [Gutierrez, A. G.] UFZ Helmholtz Ctr Environm Res, Dept Ecol Modelling, D-04318 Leipzig, Germany. [Hickler, T.] LOEWE Biodivers & Climate Res Ctr, D-60325 Frankfurt, Germany. [Higgins, S. I.] Goethe Univ Frankfurt, Inst Phys Geog, D-60438 Frankfurt, Germany. [Hodgson, J. G.] Univ Sheffield, Dept Bot, Sheffield, S Yorkshire, England. [Jalili, A.] Res Inst Forests & Rangelands, Dept Bot, Tehran, Iran. [Jansen, S.] Univ Ulm, Inst Systemat Bot & Ecol, D-89081 Ulm, Germany. [Joly, C. A.] Univ Estadual Campinas, Dept Plant Biol, Campinas, SP, Brazil. Kenyon Coll, Dept Biol, Gambier, OH 43022 USA. [Kerkhoff, A. J.] Kenyon Coll, Dept Math, Gambier, OH 43022 USA. [Kirkup, D.] Royal Bot Gardens, Herbarium Lib Art & Archives, London TW9 3AE, England. [Kitajima, K.] Univ Florida, Dept Biol, Gainesville, FL USA. [Kleyer, M.] Carl von Ossietzky Univ Oldenburg, Inst Biol & Environm Sci, D-26129 Oldenburg, Germany. [Knops, J. M. H.] Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA. [Kramer, K.] Alterra, Vegetat & Landscape Ecol, NL-6700 Wageningen, Netherlands. [Kurokawa, H.] Tohoku Univ, Grad Sch Life Sci, Sendai, Miyagi 9808578, Japan. [Laughlin, D.] No Arizona Univ, Sch Forestry, Flagstaff, AZ 86011 USA. [Lee, T. D.; Weiher, E.] Univ Wisconsin, Dept Biol, Eau Claire, WI 54701 USA. [Lens, F.] Netherlands Ctr Biodivers Nat, NL-2300 RA Leiden, Netherlands. [Lloyd, J.] James Cook Univ, Cairns, Qld 4870, Australia. [Louault, F.; Soussana, J. -F.] INRA, F-63100 Clermont Ferrand, France. [Manning, P.] Newcastle Univ, Sch Agr, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England. [Moles, A. T.] Univ New S Wales, Sch Biol Earth & Environm Sci, Sydney, NSW 2031, Australia. [Nadrowski, K.] Univ Leipzig, Inst Special Bot & Funct Biodiver, D-04103 Leipzig, Germany. [Naeem, S.] Columbia Univ, Dept Ecol Evolut & Environm Biol, New York, NY 10027 USA. [Niinemets, Ue.] Estonian Univ Life Sci, Dept Plant Physiol, EE-51014 Tartu, Estonia. [Oleksyn, J.] Polish Acad Sci, Inst Dendrol, PL-62035 Kornik, Poland. [Onipchenko, V. G.] Moscow MV Lomonosov State Univ, Dept Geobot, Moscow 119991, Russia. [Onoda, Y.; Wirth, C.] Kyushu Univ, Fac Sci, Dept Biol, Fukuoka 8128581, Japan. [Ordonez, J.] Wageningen Univ, Law & Governance Grp, NL-6706 KN Wageningen, Netherlands. [Overbeck, G.] Univ Fed Rio Grande do Sul, Dept Bot, BR-91501970 Porto Alegre, RS, Brazil. [Ozinga, W. A.] Alterra, Ctr Ecosyst Studies, NL-6700 Wageningen, Netherlands. [Paula, S.; Pausas, J. G.] Spanish Natl Res Council, Ctr Invest Desertificacio, Valencia 46113, Spain. [Poorter, H.] Forschungszentrum Julich, D-52428 Julich, Germany. [Poorter, L.] Wageningen Univ, Ctr Ecosyst Studies, Wageningen, Netherlands. [Poschlod, P.] Univ Regensburg, Inst Bot, D-93040 Regensburg, Germany. [Prinzing, A.] Univ Rennes, Lab Ecobio, F-35042 Rennes, France. [Proulx, R.] Univ Quebec Trois Rivieres, Trois Rivieres, PQ GA9 5H7, Canada. [Rammig, A.] Potsdam Inst Climate Impact Res, D-14412 Potsdam, Germany. [Reinsch, S.] Riso Natl Lab Sustainable Energy, Biosyst Div, DK-4000 Roskilde, Denmark. [Sack, L.] Univ Calif Los Angeles, Dept Ecol & Evolutionary Biol, Los Angeles, CA 90095 USA. [Shiodera, S.] Hokkaido Univ, Ctr Sustainabil Sci, Sapporo, Hokkaido 060080, Japan. [Siefert, A.] Syracuse Univ, Dept Biol, New York, NY 13244 USA. [Shipley, B.] Univ Sherbrooke, Dept Biol, Sherbrooke, PQ J1K 2R1, Canada. [Sosinski, E.] Embrapa Temperate Agr, Lab Environm Planning, BR-96010971 Pelotas, Brazil. [Swaine, E.] Univ Aberdeen, Aberdeen AB25 2ZD, Scotland. [Swenson, N.] Michigan State Univ, Dept Plant Biol & Ecol, E Lansing, MI 48824 USA. [Thompson, K.] Univ Sheffield, Dept Anim & Plant Sci, Sheffield S10 2TN, S Yorkshire, England. [Thornton, P.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Waldram, M.] Univ Leicester, Dept Geog, Leicester LE1 7RH, Leics, England. [White, M.] Utah State Univ, Dept Watershed Sci, Logan, UT 84322 USA. [Wright, S. J.] Smithsonian Trop Res Inst, Balboa 084303092, Panama. [Yguel, B.] Lab Ecobio Univ Rennes, CNRS, F-35042 Rennes, France. [Zanne, A. E.] Univ Missouri, Dept Biol, St Louis, MO 63121 USA. RP Kattge, J (reprint author), Max Planck Inst Biogeochem, Hans Knoll Str 10, D-07745 Jena, Germany. EM jkattge@bgc-jena.mpg.de RI Oleksyn, Jacek/I-4539-2012; Manning, Peter/I-6523-2012; Messier, Julie/K-3133-2012; Niinemets, Ulo/A-3816-2008; Reichstein, Markus/A-7494-2011; JOLY, Carlos/C-4523-2012; Duarte, Leandro/B-6552-2012; Overbeck, Gerhard/D-8695-2013; Leishman, Michelle/G-9726-2012; Bahn, Michael/I-3536-2013; Cavender-Bares, Jeannine/K-5716-2013; Phillips, Oliver/A-1523-2011; Wright, Ian/G-4979-2012; Fidelis, Alessandra/B-9769-2012; Biodiversity & Climate Res Ctr, BiK-F/C-4266-2012; Garnier, Eric/D-1650-2012; Lloyd, Jonathan/F-8893-2010; Leadley, Paul/E-4773-2012; Kitajima, Kaoru/E-8877-2012; Laughlin, Daniel/G-8855-2012; Muller, Sandra/G-3739-2012; Durka, Walter/E-4667-2010; JOLY, Carlos/H-7925-2012; Pillar, Valerio/B-9872-2008; Higgins, Steven/A-5138-2012; Jansen, Steven/A-9868-2012; James Cook University, TESS/B-8171-2012; Craine, Joseph/D-4569-2009; Gutierrez, Alvaro/C-1979-2009; Mahecha, Miguel/F-2443-2010; Lens, Frederic/B-8482-2011; Ozinga, Wim/F-1640-2011; Elser, James/A-7082-2008; Poorter, Hendrik/B-8062-2010; Coomes, David/H-5630-2011; Swenson, Nathan/A-3514-2012; Thornton, Peter/B-9145-2012; Ackerly, David/A-1247-2009; Wright, Stuart/M-3311-2013; Pausas, Juli/C-5794-2008; Chambers, Jeffrey/J-9021-2014; Baldocchi, Dennis/A-1625-2009; Onoda, Yusuke/L-7179-2015; Soudzilovskaia, Nadejda/N-4140-2015; van Bodegom, Peter/N-8150-2015; U-ID, Kyushu/C-5291-2016; Penuelas, Josep/D-9704-2011; Estiarte, Marc/G-2001-2016; Kattge, Jens/J-8283-2016; Moles, Angela/C-3083-2008; Soussana, Jean-Francois/P-2094-2016; Atkin, Owen/C-8415-2009; Hickler, Thomas/S-6287-2016; Kuhn, Ingolf /B-9756-2009; Sack, Lawren/A-5492-2008; Zaehle, Sonke/C-9528-2017; Soussana, Jean-Francois/E-2543-2012; OI Manning, Peter/0000-0002-7940-2023; Niinemets, Ulo/0000-0002-3078-2192; Reichstein, Markus/0000-0001-5736-1112; JOLY, Carlos/0000-0002-7945-2805; Duarte, Leandro/0000-0003-1771-0407; Overbeck, Gerhard/0000-0002-8716-5136; Leishman, Michelle/0000-0003-4830-5797; Bahn, Michael/0000-0001-7482-9776; Phillips, Oliver/0000-0002-8993-6168; Wright, Ian/0000-0001-8338-9143; Garnier, Eric/0000-0002-9392-5154; Lloyd, Jonathan/0000-0002-5458-9960; Muller, Sandra/0000-0002-6316-2897; Durka, Walter/0000-0002-6611-2246; Pillar, Valerio/0000-0001-6408-2891; Higgins, Steven/0000-0001-5695-9665; Jansen, Steven/0000-0002-4476-5334; Craine, Joseph/0000-0001-6561-3244; Mahecha, Miguel/0000-0003-3031-613X; Lens, Frederic/0000-0002-5001-0149; Ozinga, Wim/0000-0002-6369-7859; Elser, James/0000-0002-1460-2155; Poorter, Hendrik/0000-0001-9900-2433; Swenson, Nathan/0000-0003-3819-9767; Thornton, Peter/0000-0002-4759-5158; Ackerly, David/0000-0002-1847-7398; Wright, Stuart/0000-0003-4260-5676; Pausas, Juli/0000-0003-3533-5786; Chambers, Jeffrey/0000-0003-3983-7847; Baldocchi, Dennis/0000-0003-3496-4919; Onoda, Yusuke/0000-0001-6245-2342; van Bodegom, Peter/0000-0003-0771-4500; Penuelas, Josep/0000-0002-7215-0150; Estiarte, Marc/0000-0003-1176-8480; Kattge, Jens/0000-0002-1022-8469; Moles, Angela/0000-0003-2041-7762; Soussana, Jean-Francois/0000-0002-1932-6583; Atkin, Owen/0000-0003-1041-5202; Hickler, Thomas/0000-0002-4668-7552; Kuhn, Ingolf /0000-0003-1691-8249; Sack, Lawren/0000-0002-7009-7202; Zaehle, Sonke/0000-0001-5602-7956; White, Michael/0000-0002-0238-8913; Fernandez Mendez, Fernando/0000-0001-8693-790X; Cornwell, Will/0000-0003-4080-4073; Harrison, Sandy/0000-0001-5687-1903; Medlyn, Belinda/0000-0001-5728-9827; Chapin III, F Stuart/0000-0002-2558-9910; Lewis, Simon/0000-0002-8066-6851; Enquist, Brian/0000-0002-6124-7096; Fyllas, Nikolaos/0000-0002-5651-5578; Sardans, Jordi/0000-0003-2478-0219; Flores, Olivier/0000-0002-1416-0449 FU DIVERSITAS; IGBP; Global Land Project; UK Natural Environment Research Council (NERC); French Foundation for Biodiversity Research (FRB); GIS 'Climat, Environnement et Societe' France FX We would like to thank the subject editor, the publisher for caution and patience, two anonymous reviewers for supportive comments. The TRY initiative and database is hosted, developed and maintained at the Max-Planck-Institute for Biogeochemistry (MPI-BGC) in Jena, Germany. TRY is or has been supported by DIVERSITAS, IGBP, the Global Land Project, the UK Natural Environment Research Council (NERC) through its programme QUEST (Quantifying and Understanding the Earth System), the French Foundation for Biodiversity Research (FRB), and GIS 'Climat, Environnement et Societe' France. We wish to thank John Dickie and Kenwin Liu for making the data from the KEW Seed Information Database available in the context of the TRY initiative, Alastair Fitter, Henry Ford and Helen Peat for making the Ecological Flora of the British Isles available, and Andy Gillison for the VegClass database. We wish to thank Brad Boyle and the SALVIAS project for building and making available a global checklist of plant species names, and GBIF (Andrea Hahn) for making the species occurrence data available. The authors thank the NSF LTER program DEB 0620652 and the NSF LTREB program DEB 0716587 for making data on plant traits available. NR 253 TC 540 Z9 564 U1 79 U2 815 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD SEP PY 2011 VL 17 IS 9 BP 2905 EP 2935 DI 10.1111/j.1365-2486.2011.02451.x PG 31 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 800WS UT WOS:000293399000011 ER PT J AU Farfan, EB Gaschak, SP Maksymenko, AM Donnelly, EH Bondarkov, MD Jannik, GT Marra, JC AF Farfan, Eduardo B. Gaschak, Sergey P. Maksymenko, Andrey M. Donnelly, Elizabeth H. Bondarkov, Mikhail D. Jannik, G. Tim Marra, James C. TI ASSESSMENT OF (SR)-S-90 AND (CS)-C-137 PENETRATION INTO REINFORCED CONCRETE (EXTENT OF "DEEPENING") UNDER NATURAL ATMOSPHERIC CONDITIONS SO HEALTH PHYSICS LA English DT Article DE Cs-137; Sr-90, Chernobyl; contamination, environmental AB When assessing the feasibility of remediation following the detonation of a radiological dispersion device or improvised nuclear device in a large city, several issues should be considered, including the levels and characteristics of the radioactive contamination, the availability of resources required for decontamination and the planned future use of the city's structures and buildings. Currently, little is known about radionuclide penetration into construction materials in an urban environment. Knowledge in this area would be useful when considering costs of a thorough decontamination of buildings, artificial structures and roads in an affected urban environment. Pripyat, a city substantially contaminated by the Chernobyl Nuclear Power Plant accident in April 1986, may provide some answers. The main objective of this study was to assess the depth of Sr-90 and Cs-137 penetration into reinforced concrete structures in a highly contaminated urban environment under natural weather conditions. Thirteen reinforced concrete core samples were obtained from external surfaces of a contaminated building in Pripyat. The concrete cores were drilled to obtain sample layers of 0-5, 5-10, 10-15, 15-20, 20-30, 30-40 and 40-50 mm. Both Sr-90 and Cs-137 were detected in the entire 0-50 mm profile of the reinforced cores sampled. In most of the cores, over 90% of the total Cs-137 inventory and 70% of the total Sr-90 inventory was found in the first 0-5 mm layer of the reinforced concrete. Strontium-90 (Sr-90) had penetrated markedly deeper into the reinforced concrete structures than Cs-137. Health Phys. 101(3):311-320; 2011 C1 [Farfan, Eduardo B.] Savannah River Nucl Solut LLC, Environm Dosimetry Grp, Environm Sci & Biotechnol, Savannah River Natl Lab, Aiken, SC 29808 USA. [Gaschak, Sergey P.; Maksymenko, Andrey M.; Bondarkov, Mikhail D.] Int Radioecol Lab, Chernobyl Ctr Nucl Safety Radioact Waste & Radioe, UA-07100 Slavutych, Ukraine. [Donnelly, Elizabeth H.] Ctr Dis Control & Prevent, Atlanta, GA 30333 USA. RP Farfan, EB (reprint author), Savannah River Nucl Solut LLC, Environm Dosimetry Grp, Environm Sci & Biotechnol, Savannah River Natl Lab, Bldg 773-42A,Room 236, Aiken, SC 29808 USA. EM Eduardo.Farfan@srnl.doe.gov FU U.S. Department of Energy Office of Environmental Management; SRNL's Laboratory Directed Research and Development (LDRD) [DE-AC09-08SR22470]; U.S. Department of Energy [DE-AC09-08SR22470] FX The authors would like to thank Ines Triay, Cynthia Anderson, Yvette Collazo, Kurt Gerdes, and Ana Han for their support of the U.S. Department of Energy Office of Environmental Management's International Cooperative Program with IRL. The authors would also like to thank Jason Davis (SRNL Records and Document Control) for his help with the development of graphical representations and Tatyana Albert (Thomas E. Albert and Associates, Inc.) for translating documents and reports prepared at IRL. This research was supported by the SRNL's Laboratory Directed Research and Development (LDRD) program in conjunction with work accomplished under contract No. DE-AC09-08SR22470 with the U.S. Department of Energy.; Disclaimer-This manuscript has been co-authored by Savannah River Nuclear Solutions, LLC under Contract No. DE-AC09-08SR22470 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the authors or their corresponding organizations. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the authors or their corresponding organizations. NR 13 TC 2 Z9 2 U1 1 U2 8 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD SEP PY 2011 VL 101 IS 3 BP 311 EP 320 DI 10.1097/HP.0b013e3182103242 PG 10 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 799EH UT WOS:000293266100010 PM 21799347 ER PT J AU Miller, ML AF Miller, Mark L. TI Prescription for the Planet: The Painless Remedy for Our Energy & Environmental Crisis SO HEALTH PHYSICS LA English DT Book Review C1 [Miller, Mark L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Miller, ML (reprint author), Sandia Natl Labs, POB 5800,MS-0729, Albuquerque, NM 87185 USA. EM mmiller@sandia.gov NR 1 TC 0 Z9 0 U1 0 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD SEP PY 2011 VL 101 IS 3 BP 321 EP 322 DI 10.1097/HP.0b013e31820313a2 PG 2 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 799EH UT WOS:000293266100012 ER PT J AU Kim, N Cha, S Peng, H AF Kim, Namwook Cha, Sukwon Peng, Huei TI Optimal Control of Hybrid Electric Vehicles Based on Pontryagin's Minimum Principle SO IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY LA English DT Article DE Cost optimal control; dynamic programming (DP); fuel optimal control; Pontryagin maximum principle; road vehicle control ID POWER-SPLIT; OPTIMAL OPERATION; OPTIMIZATION; MANAGEMENT; STRATEGY AB A number of strategies for the power management of hybrid electric vehicles (HEVs) are proposed in the literature. A key challenge is to achieve near-optimality while keeping the methodology simple. The Pontryagin's minimum principle (PMP) is suggested as a viable real-time strategy. In this brief, the global optimality of the principle under reasonable assumptions is described from a mathematical viewpoint. Instantaneous optimal control with an appropriate equivalent parameter for battery usage is shown to be possibly a global optimal solution under the assumption that the internal resistance and open-circuit voltage of a battery are independent of the state-of-charge (SOC). This brief also demonstrates that the optimality of the equivalent consumption minimization strategy (ECMS) results from the close relation of ECMS to the optimal-control-theoretic concept of PMP. In static simulation for a power-split hybrid vehicle, the fuel economy of the vehicle using the control algorithm proposed in this brief is found to be very close-typically within 1%-to the fuel economy through global optimal control that is based on dynamic programming (DP). C1 [Kim, Namwook; Cha, Sukwon] Seoul Natl Univ, Sch Mech & Aerosp Engn, Seoul 151744, South Korea. [Kim, Namwook] Argonne Natl Lab, Transportat Technol R&D Ctr, Argonne, IL 60439 USA. [Peng, Huei] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. RP Kim, N (reprint author), Seoul Natl Univ, Sch Mech & Aerosp Engn, Seoul 151744, South Korea. EM alde1@snu.ac.kr; swcha@snu.ac.kr; hpeng@umich.edu FU Korean Government (MOEHRD) [KRF-2007-612-D00081]; Korea Ministry of Knowledge Economy [0420-20090041] FX This work was supported in part by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) under KRF-2007-612-D00081 and by Korea Ministry of Knowledge Economy for the development project of industry core technologies under 0420-20090041. NR 26 TC 167 Z9 181 U1 4 U2 54 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1063-6536 J9 IEEE T CONTR SYST T JI IEEE Trans. Control Syst. Technol. PD SEP PY 2011 VL 19 IS 5 BP 1279 EP 1287 DI 10.1109/TCST.2010.2061232 PG 9 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA 808MQ UT WOS:000293982200030 ER PT J AU Razgon, A Anstey, MR Yakelis, NA Bergman, RG Sukenik, CN AF Razgon, Anna Anstey, Mitchell R. Yakelis, Neal A. Bergman, Robert G. Sukenik, Chaim N. TI Surface immobilization of an organo-iridium complex through a carbon-metal bond SO INORGANICA CHIMICA ACTA LA English DT Article DE Organo-iridium chemistry; Self-assembled monolayers; Metal-carbon bond; Surface-anchored organometallic ID SELF-ASSEMBLED MONOLAYERS; GAS-PHASE OZONE; ACTIVATION; DEVICES AB A new approach to the immobilization of organometallic complexes to monolayer surfaces is demonstrated using aldehyde-terminated self-assembled monolayers and a Cp*Ir complex. The iridium complex is anchored to the surface by direct attachment of the metal to the carbon chain of the monolayer film. (C) 2011 Elsevier B.V. All rights reserved. C1 [Razgon, Anna; Sukenik, Chaim N.] Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel. [Razgon, Anna; Sukenik, Chaim N.] Bar Ilan Univ, Inst Nanotechnol & Adv Mat, IL-52900 Ramat Gan, Israel. [Anstey, Mitchell R.; Yakelis, Neal A.; Bergman, Robert G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Anstey, Mitchell R.; Yakelis, Neal A.; Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Sukenik, CN (reprint author), Bar Ilan Univ, Dept Chem, IL-52900 Ramat Gan, Israel. EM chaim.sukenik@biu.ac.il FU US Israel Binational Science Foundation; Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the US Department of Energy [DE-AC03-7600098] FX We thank the US Israel Binational Science Foundation for support of this work. R. G. B. and M. R. A. acknowledge partial support by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the US Department of Energy under Contract No. DE-AC03-7600098. C.N.S. acknowledges support of the Edward and Judith Steinberg Chair in Nanotechnology. NR 22 TC 1 Z9 1 U1 1 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0020-1693 J9 INORG CHIM ACTA JI Inorg. Chim. Acta PD SEP 1 PY 2011 VL 375 IS 1 BP 305 EP 307 DI 10.1016/j.ica.2011.04.042 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 806CZ UT WOS:000293783900041 ER PT J AU Song, B Park, H Lu, WY Chen, WN AF Song, Bo Park, Hwun Lu, Wei-Yang Chen, Weinong TI Transverse Impact Response of a Linear Elastic Ballistic Fiber Yarn SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME LA English DT Article DE Kevlar fiber yarn; transverse impact; longitudinal wave; transverse wave; ballistic performance ID SINGLE-FIBER AB Transverse impact response of a linear elastic Kevlar (R) KM2 fiber yarn was determined at various striking speeds from Hopkinson bar and gas gun experiments incorporated with high-speed photography techniques. Upon transverse impact, a triangle shape was formed in the fiber yarn. Both longitudinal and transverse waves were produced and propagated outwards the fiber yarn. Both the angle of the triangle and Euler transverse wave speed vary with striking speeds. The relationship between the Euler transverse wave speed and the striking speed was determined. The transverse impact response of the fiber yarn was also analyzed with a model, which agrees well with the experimental results. The model shows that the longitudinal wave speed is critical in the ballistic performance of the fiber yarn. At a certain striking speed, a higher longitudinal wave speed produces a higher Euler transverse wave speed, enabling us to spread the load and dissipate the impact energy faster, such that the ballistic performance of the fiber yarn is improved. [DOI: 10.1115/1.4004310] C1 [Song, Bo; Lu, Wei-Yang] Sandia Natl Labs, Livermore, CA 94551 USA. [Park, Hwun; Chen, Weinong] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA. RP Song, B (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. RI Song, Bo/D-3945-2011 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 18 TC 2 Z9 2 U1 2 U2 13 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0021-8936 J9 J APPL MECH-T ASME JI J. Appl. Mech.-Trans. ASME PD SEP PY 2011 VL 78 IS 5 AR 051023 DI 10.1115/1.4004310 PG 9 WC Mechanics SC Mechanics GA 806GT UT WOS:000293795000023 ER PT J AU Klippel, B Lochner, A Bruce, DC Davenport, KW Detter, C Goodwin, LA Han, J Han, SS Hauser, L Land, ML Nolan, M Ovchinnikova, G Pennacchio, L Pitluck, S Tapia, R Woyke, T Wiebusch, S Basner, A Abe, F Horikoshi, K Keller, M Antranikian, G AF Klippel, Barbara Lochner, Adriane Bruce, David C. Davenport, Karen Walston Detter, Chris Goodwin, Lynne A. Han, James Han, Shunsheng Hauser, Loren Land, Miriam L. Nolan, Matt Ovchinnikova, Galina Pennacchio, Len Pitluck, Sam Tapia, Roxanne Woyke, Tanja Wiebusch, Sigrid Basner, Alexander Abe, Fumiyoshi Horikoshi, Koki Keller, Martin Antranikian, Garabed TI Complete Genome Sequences of Krokinobacter sp Strain 4H-3-7-5 and Lacinutrix sp Strain 5H-3-7-4, Polysaccharide-Degrading Members of the Family Flavobacteriaceae SO JOURNAL OF BACTERIOLOGY LA English DT Article AB Two members of the family Flavobacteriaceae were isolated from subseafloor sediments using artificial seawater with cellulose, xylan, and chitin as the sole carbon and energy sources. Here, we present the complete genome sequences of Krokinobacter sp. strain 4H-3-7-5 and Lacinutrix sp. strain 5H-3-7-4, which both encode putatively novel enzymes involved in cellulose, hemicellulose, and chitin metabolism. C1 [Klippel, Barbara; Lochner, Adriane; Wiebusch, Sigrid; Basner, Alexander; Antranikian, Garabed] Hamburg Univ Technol, Inst Tech Microbiol, D-21073 Hamburg, Germany. [Lochner, Adriane; Hauser, Loren; Land, Miriam L.; Keller, Martin] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bruce, David C.; Davenport, Karen Walston; Detter, Chris; Han, Shunsheng; Tapia, Roxanne] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Goodwin, Lynne A.; Han, James; Nolan, Matt; Ovchinnikova, Galina; Pennacchio, Len; Pitluck, Sam; Woyke, Tanja] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Abe, Fumiyoshi; Horikoshi, Koki] Japan Agcy Marine Earth Sci & Technol JAMSTEC, XBR, Extremobiosphere Res Ctr, Yokosuka, Kanagawa, Japan. [Abe, Fumiyoshi] Aoyama Gakuin Univ, Coll Sci & Engn, Sagamihara, Kanagawa, Japan. RP Antranikian, G (reprint author), Hamburg Univ Technol, Inst Tech Microbiol, Kasernenstr 12, D-21073 Hamburg, Germany. EM antranikian@tuhh.de RI Keller, Martin/C-4416-2012; Hauser, Loren/H-3881-2012; Land, Miriam/A-6200-2011 OI Land, Miriam/0000-0001-7102-0031 FU BioEnergy Science Center, a U.S. DOE Bioenergy Research Center; DOE [DOE-AC05-00OR22725]; Office of Science of the U.S. DOE [DE-AC02-05CH11231] FX This study was funded in part by the BioEnergy Science Center, a U.S. DOE Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. The Oak Ridge National Laboratory is managed by University of Tennessee-Battelle LLC for the DOE under contract DOE-AC05-00OR22725. The work conducted by the U.S. DOE JGI is supported by the Office of Science of the U.S. DOE under contract DE-AC02-05CH11231. NR 5 TC 11 Z9 11 U1 2 U2 9 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD SEP PY 2011 VL 193 IS 17 BP 4545 EP 4546 DI 10.1128/JB.05518-11 PG 2 WC Microbiology SC Microbiology GA 806EE UT WOS:000293788300031 PM 21725025 ER PT J AU Klippel, B Lochner, A Bruce, DC Davenport, KW Detter, C Goodwin, LA Han, J Han, SS Land, ML Mikhailova, N Nolan, M Pennacchio, L Pitluck, S Tapia, R Woyke, T Wiebusch, S Basner, A Abe, F Horikoshi, K Keller, M Antranikian, G AF Klippel, Barbara Lochner, Adriane Bruce, David C. Davenport, Karen Walston Detter, Chris Goodwin, Lynne A. Han, James Han, Shunsheng Land, Miriam L. Mikhailova, Natalia Nolan, Matt Pennacchio, Len Pitluck, Sam Tapia, Roxanne Woyke, Tanja Wiebusch, Sigrid Basner, Alexander Abe, Fumiyoshi Horikoshi, Koki Keller, Martin Antranikian, Garabed TI Complete Genome Sequence of the Marine Cellulose- and Xylan-Degrading Bacterium Glaciecola sp Strain 4H-3-7+YE-5 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID SP-NOV.; SEAWATER; SEA AB Glaciecola sp. strain 4H-3-7+YE-5 was isolated from subseafloor sediments at Suruga Bay in Japan and is capable of efficiently hydrolyzing cellulose and xylan. The complete genome sequence of Glaciecola sp. 4H-37+YE-5 revealed several genes encoding putatively novel glycoside hydrolases, offering a high potential for plant biomass degradation. C1 [Klippel, Barbara; Lochner, Adriane; Wiebusch, Sigrid; Basner, Alexander; Antranikian, Garabed] Hamburg Univ Technol, Inst Tech Microbiol, D-21073 Hamburg, Germany. [Lochner, Adriane; Land, Miriam L.; Keller, Martin] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Bruce, David C.; Davenport, Karen Walston; Detter, Chris; Han, Shunsheng; Tapia, Roxanne] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Goodwin, Lynne A.; Han, James; Mikhailova, Natalia; Nolan, Matt; Pennacchio, Len; Pitluck, Sam; Woyke, Tanja] DOE Joint Genome Inst, Walnut Creek, CA 94598 USA. [Abe, Fumiyoshi; Horikoshi, Koki] Japan Agcy Marine Earth Sci & Technol JAMSTEC, XBR, Extremobiosphere Res Ctr, Yokosuka, Kanagawa, Japan. RP Antranikian, G (reprint author), Hamburg Univ Technol, Inst Tech Microbiol, Kasernenstr 12, D-21073 Hamburg, Germany. EM antranikian@tuhh.de RI Keller, Martin/C-4416-2012; Land, Miriam/A-6200-2011 OI Land, Miriam/0000-0001-7102-0031 FU BioEnergy Science Center, a U.S. Department of Energy Bioenergy Research Center [DOE-AC05-00OR22725]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This study was funded in part by the BioEnergy Science Center, a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science under contract DOE-AC05-00OR22725. Oak Ridge National Laboratory is managed by University of Tennessee-Battelle LLC for the Department of Energy. The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 18 TC 12 Z9 12 U1 1 U2 8 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD SEP PY 2011 VL 193 IS 17 BP 4547 EP 4548 DI 10.1128/JB.05468-11 PG 2 WC Microbiology SC Microbiology GA 806EE UT WOS:000293788300032 PM 21705587 ER PT J AU Sales, CM Mahendra, S Grostern, A Parales, RE Goodwin, LA Woyke, T Nolan, M Lapidus, A Chertkov, O Ovchinnikova, G Sczyrba, A Alvarez-Cohen, L AF Sales, Christopher M. Mahendra, Shaily Grostern, Ariel Parales, Rebecca E. Goodwin, Lynne A. Woyke, Tanja Nolan, Matt Lapidus, Alla Chertkov, Olga Ovchinnikova, Galina Sczyrba, Alexander Alvarez-Cohen, Lisa TI Genome Sequence of the 1,4-Dioxane-Degrading Pseudonocardia dioxanivorans Strain CB1190 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID TETRAHYDROFURAN DEGRADATION; SP-NOV.; BACTERIA; BIODEGRADATION; ACTINOMYCETE; K1 AB Pseudonocardia dioxanivorans CB1190 is the first bacterium reported to be capable of growth on the environmental contaminant 1,4-dioxane and the first member of the genus Pseudonocardia for which there is an annotated genome sequence. Preliminary analysis of the genome (chromosome and three plasmids) indicates that strain CB1190 possesses several multicomponent monooxygenases that could be involved in the aerobic degradation of 1,4-dioxane and other environmental contaminants. C1 [Mahendra, Shaily] Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA. [Sales, Christopher M.; Grostern, Ariel; Alvarez-Cohen, Lisa] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Parales, Rebecca E.] Univ Calif Davis, Dept Microbiol, Davis, CA 95616 USA. [Goodwin, Lynne A.; Chertkov, Olga] Los Alamos Natl Lab, Joint Genome Inst, Biosci Div Genome Sci B6, Los Alamos, NM 87545 USA. [Woyke, Tanja; Nolan, Matt; Lapidus, Alla; Ovchinnikova, Galina; Sczyrba, Alexander] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Alvarez-Cohen, Lisa] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Mahendra, S (reprint author), Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USA. EM mahendra@seas.ucla.edu RI Mahendra, Shaily/F-2759-2012; Lapidus, Alla/I-4348-2013; Sales, Christopher/N-6560-2013; OI Lapidus, Alla/0000-0003-0427-8731; Sales, Christopher/0000-0002-1781-8752; Grostern, Ariel/0000-0002-9792-8977 FU Strategic Environmental Research and Development Program [SERDP ER-1417]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This project was funded by the Strategic Environmental Research and Development Program (SERDP ER-1417). The work conducted by the U.S. Department of Energy Joint Genome Institute was supported by the Office of Science of the U.S. Department of Energy under contract number DE-AC02-05CH11231. NR 18 TC 19 Z9 19 U1 1 U2 31 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD SEP PY 2011 VL 193 IS 17 BP 4549 EP 4550 DI 10.1128/JB.00415-11 PG 2 WC Microbiology SC Microbiology GA 806EE UT WOS:000293788300033 PM 21725009 ER PT J AU Starkenburg, SR Reitenga, KG Freitas, T Johnson, S Chain, PSG Garcia-Pichel, F Kuske, CR AF Starkenburg, Shawn R. Reitenga, Krista G. Freitas, Tracey Johnson, Shannon Chain, Patrick S. G. Garcia-Pichel, Ferran Kuske, Cheryl R. TI Genome of the Cyanobacterium Microcoleus vaginatus FGP-2, a Photosynthetic Ecosystem Engineer of Arid Land Soil Biocrusts Worldwide SO JOURNAL OF BACTERIOLOGY LA English DT Article ID OSMOTIC-STRESS; PATHWAYS; ALKANES; DESERT AB The filamentous cyanobacterium Microcoleus vaginatus is found in arid land soils worldwide. The genome of M. vaginatus strain FGP-2 allows exploration of genes involved in photosynthesis, desiccation tolerance, alkane production, and other features contributing to this organism's ability to function as a major component of biological soil crusts in arid lands. C1 [Starkenburg, Shawn R.; Reitenga, Krista G.; Freitas, Tracey; Johnson, Shannon; Chain, Patrick S. G.; Kuske, Cheryl R.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Chain, Patrick S. G.] Los Alamos Natl Lab, Joint Genome Inst, Los Alamos, NM 87545 USA. [Garcia-Pichel, Ferran] Arizona State Univ, Sch Life Sci, Tempe, AZ 85281 USA. RP Kuske, CR (reprint author), M888 Biosci Div, Los Alamos, NM 87545 USA. EM kuske@lanl.gov RI chain, patrick/B-9777-2013; OI Johnson, Shannon/0000-0002-3972-9208; Chain, Patrick/0000-0003-3949-3634 FU U.S. Department of Energy Office of Biological and Environmental Research FX This project was funded by the U.S. Department of Energy Office of Biological and Environmental Research through an LSP grant to C.R.K. NR 15 TC 18 Z9 18 U1 3 U2 18 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD SEP PY 2011 VL 193 IS 17 BP 4569 EP 4570 DI 10.1128/JB.05138-11 PG 2 WC Microbiology SC Microbiology GA 806EE UT WOS:000293788300043 PM 21705610 ER PT J AU Lin, WP Wesolowski, DE Lee, CC AF Lin, Wen P. Wesolowski, Daniel E. Lee, Chin C. TI Barrier/bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules SO JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS LA English DT Article ID DEVICES AB In this research, a fundamental study is conducted to identify the materials and develop the processes for producing barrier/bonding composite on Bi2Te3 for high temperature thermoelectric applications. The composite must meet four basic requirements: (a) prevent inter-diffusion between the electrode material, for our design, silver(Ag) and Bi2Te3, (b) bond well to Bi2Te3, (c) bond well to Ag electrode, and (d) do not themselves diffuse into Bi2Te3. The composites investigated include palladium (Pd), nickel/gold (Ni/Au), Ag, and titanium/gold (Ti/Au). After annealing at 250 A degrees C for 200 h, only the Ti/Au design meets all four requirements. The thickness of Ti and Au, respectively, is only 100 nm. Other than meeting these four requirements, the Ti/Au layers exhibit excellent step coverage on the rough Bi2Te3 surface even after the annealing process. C1 [Lin, Wen P.; Lee, Chin C.] Univ Calif Irvine, Irvine, CA 92697 USA. [Wesolowski, Daniel E.] Sandia Natl Labs, Power Sources Technol Grp, Albuquerque, NM 87185 USA. RP Lin, WP (reprint author), Univ Calif Irvine, Irvine, CA 92697 USA. EM michellelin.tw@gmail.com; dewesol@sandia.gov FU Sandia National Laboratories; University of California, Irvine; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This project was supported by Sandia National Laboratories. Wen P. Lin was partly supported by Materials and Manufacturing Technology fellowship at the University of California, Irvine. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 17 TC 25 Z9 25 U1 3 U2 40 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0957-4522 J9 J MATER SCI-MATER EL JI J. Mater. Sci.-Mater. Electron. PD SEP PY 2011 VL 22 IS 9 BP 1313 EP 1320 DI 10.1007/s10854-011-0306-0 PG 8 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA 806AO UT WOS:000293773500021 ER PT J AU Arbelaez, P Han, BG Typke, D Lim, J Glaeser, RM Malik, J AF Arbelaez, Pablo Han, Bong-Gyoon Typke, Dieter Lim, Joseph Glaeser, Robert M. Malik, Jitendra TI Experimental evaluation of support vector machine-based and correlation-based approaches to automatic particle selection SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE Support vector machine; Texture analysis; Particle boxing ID ELECTRON-MICROGRAPHS; SINGLE-PARTICLE; RECONSTRUCTION; MICROSCOPY; PROTEIN; TEXTONS; SYSTEM AB The goal of this study is to evaluate the performance of software for automated particle-boxing, and in particular the performance of a new tool (TextonSVM) that recognizes the characteristic texture of particles of interest. As part of a high-throughput protocol, we use human editing that is based solely on class-average images to create final data sets that are enriched in what the investigator considers to be true-positive particles. The Fourier shell correlation (FSC) function is then used to characterize the homogeneity of different single-particle data sets that are derived from the same micrographs by two or more alternative methods. We find that the homogeneity is generally quite similar for class-edited data sets obtained by the texture-based method and by SIGNATURE, a cross-correlation-based method. The precision recall characteristics of the texture-based method are, on the other hand, significantly better than those of the cross-correlation based method; that is to say, the texture-based approach produces a smaller fraction of false positives in the initial set of candidate particles. The computational efficiency of the two approaches is generally within a factor of two of one another. In situations when it is helpful to use a larger number of templates (exemplars), however, TextonSVM scales in a much more efficient way than do boxing programs that are based on localized cross-correlation. (C) 2011 Elsevier Inc. All rights reserved. C1 [Han, Bong-Gyoon; Typke, Dieter; Glaeser, Robert M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Arbelaez, Pablo; Lim, Joseph; Malik, Jitendra] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. RP Glaeser, RM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. EM rmglaeser@lbl.gov OI Arbelaez, Pablo/0000-0001-5244-2407 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research; Genomics: GTL Foundational Science [DE-AC02-05CH11231]; US Department of Energy; Lawrence Berkeley National Laboratory FX This work was performed as part of the research program of ENIGMA (http://www.enigma.lbl.gov), a Scientific Focus Area Program supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics: GTL Foundational Science through Contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. We are pleased to thank Dr. Ming Dong and Dr. Swapnil R. Chhabra for providing purified samples of the biological macromolecules used for this work. NR 20 TC 13 Z9 13 U1 1 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 J9 J STRUCT BIOL JI J. Struct. Biol. PD SEP PY 2011 VL 175 IS 3 BP 319 EP 328 DI 10.1016/j.jsb.2011.05.017 PG 10 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 806KR UT WOS:000293807000007 PM 21640190 ER PT J AU Lee, MW Park, JJ Kim, DY Yoon, SS Kim, HY James, SC Chandra, S Coyle, T AF Lee, Min-Wook Park, Jung-Jae Kim, Do-Yeon Yoon, Sam S. Kim, Ho-Young James, Scott C. Chandra, Sanjeev Coyle, Thomas TI Numerical Studies on the Effects of Stagnation Pressure and Temperature on Supersonic Flow Characteristics in Cold Spray Applications SO JOURNAL OF THERMAL SPRAY TECHNOLOGY LA English DT Article DE cold spray; diamond shock structure; supersonic nozzle; thin-film coating ID AEROSOL DEPOSITION; PARTICLE-VELOCITY; ROOM-TEMPERATURE; NOZZLE; INSTABILITY; SIMULATION; MECHANISM; COATINGS; POWDER; IMPACT AB Low-temperature particle coating requires supersonic flow. The characteristics of this supersonic flow are investigated using a nonlinear turbulence model. The low-temperature, supersonic particle deposition technique is valuable because its rapid and dense coating minimizes thermal damage to both particles and substrate. It has excellent potential for industrial production of low-cost thin films. Stagnation pressures and temperatures of the supersonic nozzle range from 4 < P (o) < 45 bar and 300 < T (o) < 1500 K, respectively. The exit Mach number, M (e), and velocity, V (e), range from 0.6 to 3.5 and 200 to 1400 m/s, respectively. The effects of stagnation pressure (P (o)) and stagnation temperature (T (o)) on supersonic flow impinging upon a substrate are described. In other words, the energy loss through shockwaves and shear interactions between the streaming jet and surrounding gas are quantified as functions of P (o) and T (o). P (o) is decreased because of friction (loss ranges from 40 to 60%) while T (o) is nearly conserved. To realize the nozzle exit condition of P (e) = P (amb), we demonstrate that P (o) should be adjusted rather than T (o), as T (o) has little effect on exit pressures. On the other hand, T (o) is more influential than P (o) for varying the exit velocity. Various nozzle geometries yielding different flow characteristics, and hence, different operating conditions and coating performances are investigated. The corresponding supersonic flows for three types of nozzles (under-, correctly , and over-expanded) are simulated, and their correctly expanded (or shock-free) operating conditions are identified. Diamond shock structures induced by the pressure imbalance between the exiting gas and the surrounding atmosphere are captured. C1 [Lee, Min-Wook; Park, Jung-Jae; Kim, Do-Yeon; Yoon, Sam S.; Kim, Ho-Young] Korea Univ, Dept Mech Engn, Seoul 136713, South Korea. [James, Scott C.] Sandia Natl Labs, Livermore, CA USA. [Chandra, Sanjeev; Coyle, Thomas] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON, Canada. RP Lee, MW (reprint author), Korea Univ, Dept Mech Engn, Seoul 136713, South Korea. EM skyoon@korea.ac.kr RI Lee, MW/F-2120-2013; OI James, Scott/0000-0001-7955-0491 FU Korea Institute of Energy Technology Evaluation and Planning (KETEP) [2010-3010010011, 10035397-2010-01]; NRF of Korea [2010-0010217, 2011-0007182] FX This study was supported by the New & Renewable Energy Program through the Korea Institute of Energy Technology Evaluation and Planning (KETEP, 2010-3010010011) grant and Technology Innovation Program (KETEP, 10035397-2010-01). The corresponding author also acknowledges that a partial support was made for this project by the NRF Grant of Korea (2010-0010217 and 2011-0007182). NR 30 TC 8 Z9 9 U1 0 U2 20 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1059-9630 J9 J THERM SPRAY TECHN JI J. Therm. Spray Technol. PD SEP PY 2011 VL 20 IS 5 BP 1085 EP 1097 DI 10.1007/s11666-011-9641-1 PG 13 WC Materials Science, Coatings & Films SC Materials Science GA 808IK UT WOS:000293971200012 ER PT J AU Shanker, S Choi, JM Sankaran, B Atmar, RL Estes, MK Prasad, BVV AF Shanker, Sreejesh Choi, Jae-Mun Sankaran, Banumathi Atmar, Robert L. Estes, Mary K. Prasad, B. V. Venkataram TI Structural Analysis of Histo-Blood Group Antigen Binding Specificity in a Norovirus GII.4 Epidemic Variant: Implications for Epochal Evolution SO JOURNAL OF VIROLOGY LA English DT Article ID NORWALK VIRUS-INFECTION; HUMAN-POPULATIONS; CLASSIFICATION; RECOGNITION; PERSISTENCE; MECHANISMS; RECEPTORS; PHENOTYPE; EVASION; SYSTEM AB Susceptibility to norovirus (NoV), a major pathogen of epidemic gastroenteritis, is associated with histo-blood group antigens (HBGAs), which are also cell attachment factors for this virus. GII.4 NoV strains are predominantly associated with worldwide NoV epidemics with a periodic emergence of new variants. The sequence variations in the surface-exposed P domain of the capsid protein resulting in differential HBGA binding patterns and antigenicity are suggested to drive GII.4 epochal evolution. To understand how temporal sequence variations affect the P domain structure and contribute to epochal evolution, we determined the P domain structure of a 2004 variant with ABH and secretor Lewis HBGAs and compared it with the previously determined structure of a 1996 variant. We show that temporal sequence variations do not affect the binding of monofucosyl ABH HBGAs but that they can modulate the binding strength of difucosyl Lewis HBGAs and thus could contribute to epochal evolution by the potentiated targeting of new variants to Lewis-positive, secretor-positive individuals. The temporal variations also result in significant differences in the electrostatic landscapes, likely reflecting antigenic variations. The proximity of some of these changes to the HBGA binding sites suggests the possibility of a coordinated interplay between antigenicity and HBGA binding in epochal evolution. From the observation that the regions involved in the formation of the HBGA binding sites can be conformationally flexible, we suggest a plausible mechanism for how norovirus disassociates from salivary mucin-linked HBGA before reassociating with HBGAs linked to intestinal epithelial cells during its passage through the gastrointestinal tract. C1 [Shanker, Sreejesh; Choi, Jae-Mun; Prasad, B. V. Venkataram] Baylor Coll Med, Verna Marrs Mclean Dept Biochem & Mol Biol, Houston, TX 77030 USA. [Atmar, Robert L.; Estes, Mary K.; Prasad, B. V. Venkataram] Baylor Coll Med, Dept Mol Virol & Microbiol, Houston, TX 77030 USA. [Atmar, Robert L.] Baylor Coll Med, Dept Med, Houston, TX 77030 USA. [Sankaran, Banumathi] Lawrence Berkeley Natl Lab, Berkeley Ctr Struct Biol, Berkeley, CA 94720 USA. RP Prasad, BVV (reprint author), Baylor Coll Med, Dept Biochem & Mol Biol, 1 Baylor Plaza, Houston, TX 77030 USA. EM vprasad@bcm.tmc.edu FU NIH [PO1 AI057788, P30DK5638]; Robert Welch Foundation [Q1292]; NIH, National Institute of General Medical Sciences; Howard Hughes Medical Institute; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Energy, Basic Energy Sciences, Office of Science [W-31-109-Eng-38] FX This work was supported by grants from the NIH (PO1 AI057788 to M. K. E., R. L. A., and B. V. V. P. and P30DK5638 to M. K. E.) and the Robert Welch Foundation (Q1292 to B. V. V. P.). The Berkeley Center for Structural Biology is supported in part by the NIH, National Institute of General Medical Sciences, and the Howard Hughes Medical Institute. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. SBC-CAT 19ID at Advanced Photon Source is supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under contract no. W-31-109-Eng-38. NR 44 TC 73 Z9 75 U1 1 U2 9 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD SEP PY 2011 VL 85 IS 17 BP 8635 EP 8645 DI 10.1128/JVI.00848-11 PG 11 WC Virology SC Virology GA 804AO UT WOS:000293626100017 PM 21715503 ER PT J AU Rubenstein, R Chang, BG Gray, P Piltch, M Bulgin, MS Sorensen-Melson, S Miller, MW AF Rubenstein, Richard Chang, Binggong Gray, Perry Piltch, Martin Bulgin, Marie S. Sorensen-Melson, Sharon Miller, Michael W. TI Prion Disease Detection, PMCA Kinetics, and IgG in Urine from Sheep Naturally/Experimentally Infected with Scrapie and Deer with Preclinical/Clinical Chronic Wasting Disease SO JOURNAL OF VIROLOGY LA English DT Article ID CREUTZFELDT-JAKOB-DISEASE; BLOOD-TRANSFUSION; SPONGIFORM ENCEPHALOPATHY; IN-VITRO; PROTEIN; TRANSMISSION; INFECTIVITY; EXCRETION; HAMSTERS; ANIMALS AB Prion diseases, also known as transmissible spongiform encephalopathies, are fatal neurodegenerative disorders. Low levels of infectious agent and limited, infrequent success of disease transmissibility and PrPSc detection have been reported with urine from experimentally infected clinical cervids and rodents. We report the detection of prion disease-associated seeding activity (PASA) in urine from naturally and orally infected sheep with clinical scrapie agent and orally infected preclinical and infected white-tailed deer with clinical chronic wasting disease (CWD). This is the first report on PASA detection of PrP(Sc) from the urine of naturally or preclinical prion-diseased ovine or cervids. Detection was achieved by using the surround optical fiber immunoassay (SOFIA) to measure the products of limited serial protein misfolding cyclic amplification (sPMCA). Conversion of PrP(C) to PrP(Sc) was not influenced by the presence of poly(A) during sPMCA or by the homogeneity of the PrP genotypes between the PrP(C) source and urine donor animals. Analysis of the sPMCA-SOFIA data resembled a linear, rather than an exponential, course. Compared to uninfected animals, there was a 2- to 4-log increase of proteinase K-sensitive, light chain immunoglobulin G (IgG) fragments in scrapie-infected sheep but not in infected CWD-infected deer. The higher-than-normal range of IgG levels found in the naturally and experimentally infected clinical scrapie-infected sheep were independent of their genotypes. Although analysis of urine samples throughout the course of infection would be necessary to determine the usefulness of altered IgG levels as a disease biomarker, detection of PrP(Sc) from PASA in urine points to its potential value for antemortem diagnosis of prion diseases. C1 [Rubenstein, Richard; Chang, Binggong] Suny Downstate Med Ctr, Dept Neurol, Brooklyn, NY 11203 USA. [Rubenstein, Richard; Chang, Binggong] Suny Downstate Med Ctr, Dept Physiol Pharmacol, Brooklyn, NY 11203 USA. [Gray, Perry; Piltch, Martin] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Bulgin, Marie S.; Sorensen-Melson, Sharon] Univ Idaho, Caine Vet Teaching & Res Ctr, Caldwell, ID 83607 USA. [Miller, Michael W.] Colorado Div Wildlife, Wildlife Res Ctr, Ft Collins, CO 80526 USA. RP Rubenstein, R (reprint author), Suny Downstate Med Ctr, Dept Neurol, Box 1213,450 Clarkson Ave, Brooklyn, NY 11203 USA. EM richard.rubenstein@downstate.edu RI chang, binggong/F-5043-2014 FU SUNY Downstate Medical Center; Idaho Agricultural Experiment Station (University of Idaho) [BGH145]; Colorado Division of Wildlife; U.S. Department of Defense [NP020048, NP020152, DAMD17-03-1-0746]; Talecris Biotherapeutics IIT program; Los Alamos National Laboratory; NINDS [N01-NS-0-2327]; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported in part by the SUNY Downstate Medical Center, Hatch Research Fund from Idaho Agricultural Experiment Station (University of Idaho; BGH145), Colorado Division of Wildlife, U.S. Department of Defense National Prion Research Program (NP020048, NP020152, and DAMD17-03-1-0746), Talecris Biotherapeutics IIT program, and the Los Alamos National Laboratory Technology Maturation program. Support provided by DAMD17-03-1-0746 and an NINDS contract (N01-NS-0-2327) was distributed through the Baltimore Research and Education Foundation. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 36 TC 22 Z9 22 U1 1 U2 22 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD SEP PY 2011 VL 85 IS 17 BP 9031 EP 9038 DI 10.1128/JVI.05111-11 PG 8 WC Virology SC Virology GA 804AO UT WOS:000293626100052 PM 21715495 ER PT J AU Tang, HL Robinson, JE Gnanakaran, S Li, M Rosenberg, ES Perez, LG Haynes, BF Liao, HX LaBranche, CC Korber, BT Montefiori, DC AF Tang, Haili Robinson, James E. Gnanakaran, S. Li, Ming Rosenberg, Eric S. Perez, Lautaro G. Haynes, Barton F. Liao, Hua-Xin LaBranche, Celia C. Korber, Bette T. Montefiori, David C. TI Epitopes Immediately below the Base of the V3 Loop of gp120 as Targets for the Initial Autologous Neutralizing Antibody Response in Two HIV-1 Subtype B-Infected Individuals SO JOURNAL OF VIROLOGY LA English DT Article ID HUMAN-IMMUNODEFICIENCY-VIRUS; HUMAN MONOCLONAL-ANTIBODY; ENVELOPE GLYCOPROTEIN; TYPE-1 INFECTION; C INFECTION; CLADE-C; MOLECULAR-DYNAMICS; RECEPTOR-BINDING; RHESUS MACAQUES; VIREMIA CONTROL AB Epitopes that drive the initial autologous neutralizing antibody response in HIV-1-infected individuals could provide insights for vaccine design. Although highly strain specific, these epitopes are immunogenic, vulnerable to antibody attack on infectious virus, and could be involved in the ontogeny of broadly neutralizing antibody responses. To delineate such epitopes, we used site-directed mutagenesis, autologous plasma samples, and autologous monoclonal antibodies to map the amino acid changes that led to escape from the initial autologous neutralizing antibody response in two HIV-1 subtype B-infected individuals. Additional mapping of the epitopes was accomplished by using alanine scanning mutagenesis. Escape in the two individuals occurred by different pathways, but the responses in both cases appeared to be directed against the same region of gp120. In total, three amino acid positions were identified that were independently associated with autologous neutralization. Positions 295 and 332 are located immediately before and after the N- and C-terminal cysteines of the V3 loop, respectively, the latter of which affected an N-linked glycan that was critical to the neutralization epitope. Position 415 affected an N-linked glycan at position 413 in the C terminus of V4 that might mask epitopes near the base of V3. All three sites lie in close proximity on a four-stranded antiparallel sheet on the outer domain of gp120. We conclude that a region just below the base of the V3 loop, near the coreceptor binding domain of gp120, can be a target for autologous neutralization. C1 [Tang, Haili; Li, Ming; Perez, Lautaro G.; LaBranche, Celia C.; Montefiori, David C.] Duke Univ, Med Ctr, Dept Surg, Durham, NC 27710 USA. [Haynes, Barton F.; Liao, Hua-Xin] Duke Univ, Med Ctr, Dept Med, Durham, NC 27710 USA. [Robinson, James E.] Tulane Univ, Med Ctr, Dept Pediat, New Orleans, LA 70118 USA. [Gnanakaran, S.; Korber, Bette T.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM USA. [Rosenberg, Eric S.] Massachusetts Gen Hosp, Pathol Serv, Boston, MA 02114 USA. [Rosenberg, Eric S.] Massachusetts Gen Hosp, Div Infect Dis, Boston, MA 02114 USA. [Rosenberg, Eric S.] Harvard Univ, Sch Med, Boston, MA USA. RP Montefiori, DC (reprint author), Duke Univ, Med Ctr, Dept Surg, Box 2926, Durham, NC 27710 USA. EM monte@duke.edu OI Gnanakaran, S/0000-0002-9368-3044; Korber, Bette/0000-0002-2026-5757 FU National Institutes of Health, National Institutes of Allergy and Infectious Diseases, Division of AIDS, Center for HIV/AIDS Vaccine Immunology (CHAVI) [AI0678501] FX This work was funded by the National Institutes of Health, National Institutes of Allergy and Infectious Diseases, Division of AIDS, Center for HIV/AIDS Vaccine Immunology (CHAVI), grant AI0678501. NR 107 TC 17 Z9 17 U1 0 U2 0 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD SEP PY 2011 VL 85 IS 18 BP 9286 EP 9299 DI 10.1128/JVI.02286-10 PG 14 WC Virology SC Virology GA 808DM UT WOS:000293956400004 PM 21734041 ER PT J AU Geiger, EJ Mair, DA Svec, F Pisano, AP AF Geiger, Emil J. Mair, Dieudonne A. Svec, Frank Pisano, Albert P. TI Development of an injection molding tool for complex microfluidic geometries SO MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS LA English DT Article ID POLYMER; CHIPS; FABRICATION; DEVICES AB This paper will track the design and results of an injection molding tool developed to manufacture microfluidic chips. The mold design and injection molding process was complicated by the presence of integrated capillary fluidic interconnects. We determined that design of the runner and gate system responsible for delivering molten plastic to the cavity had a significant impact on the quality of parts produced by the mold and the size of the process window. Numerical results confirm our findings that reducing gate lengths and increasing part thickness dramatically improved the filling profile and lowered injection pressures by 37%. Finally, the influence of gate location on part shrinkage is analyzed and discussed. C1 [Geiger, Emil J.] Univ Nevada, Dept Mech Engn, Reno, NV 89557 USA. [Mair, Dieudonne A.] Exponent, Menlo Pk, CA 94025 USA. [Svec, Frank] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Pisano, Albert P.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Geiger, EJ (reprint author), Univ Nevada, Dept Mech Engn, Reno, NV 89557 USA. EM ejg@unr.edu RI Geiger, Emil/G-5341-2015 OI Geiger, Emil/0000-0001-5828-805X FU NSF; FANUC Corporation; Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy [E-AC02-05CH11231] FX This work was supported in part by the NSF Graduate Research Fellowship for E. Geiger, and the FANUC Corporation. The fabrication steps performed at the Molecular Foundry, Lawrence Berkeley National Laboratory and F. Svec were supported by the Office of Science, Office of Basic Energy Sciences, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. We would also like to thank Phil Perry for his assistance in preparing the images for publication. NR 17 TC 2 Z9 2 U1 1 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-7076 J9 MICROSYST TECHNOL JI Microsyst. Technol. PD SEP PY 2011 VL 17 IS 9 BP 1537 EP 1540 DI 10.1007/s00542-011-1323-x PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Science & Technology - Other Topics; Materials Science; Physics GA 809NF UT WOS:000294063300017 ER PT J AU Lloyd, JT Zimmerman, JA Jones, RE Zhou, XW McDowell, DL AF Lloyd, J. T. Zimmerman, J. A. Jones, R. E. Zhou, X. W. McDowell, D. L. TI Finite element analysis of an atomistically derived cohesive model for brittle fracture SO MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING LA English DT Article ID MOLECULAR-DYNAMICS; CRACK-TIP; DISLOCATION NUCLEATION; INTERGRANULAR FRACTURE; INTERFACIAL FRACTURE; ZONE; REPRESENTATION; DECOHESION; ALUMINUM; SPEED AB In order to apply information from molecular dynamics (MD) simulations in problems governed by engineering length and time scales, a coarse graining methodology must be used. In previous work by Zhou et al (2009 Acta Mater. 57 4671-86), a traction-separation cohesive model was developed using results from MD simulations with atomistic-to-continuum measures of stress and displacement. Here, we implement this cohesive model within a combined finite element/cohesive surface element framework (referred to as a finite element approach or FEA), and examine the ability for the atomistically informed FEA to directly reproduce results from MD. We find that FEA shows close agreement of both stress and crack opening displacement profiles at the cohesive interface, although some differences do exist that can be attributed to the stochastic nature of finite temperature MD. The FEA methodology is then used to study slower loading rates that are computationally expensive for MD. We find that the crack growth process initially exhibits a rate-independent relationship between crack length and boundary displacement, followed by a rate-dependent regime where, at a given amount of boundary displacement, a lower applied strain rate produces a longer crack length. Our method is also extended to larger length scales by simulating a compact tension fracture-mechanics specimen with sub-micrometer dimensions. Such a simulation shows a computational speedup of approximately four orders of magnitude over conventional atomistic simulation, while exhibiting the expected fracture-mechanics response. Finally, differences between FEA and MD are explored with respect to ensemble and temperature effects in MD, and their impact on the cohesive model and crack growth behavior. These results enable us to make several recommendations to improve the methodology used to derive cohesive laws from MD simulations. In light of this work, which has critical implications for efforts to derive continuum laws from MD simulations, it is shown care must be taken when using a similar approach, and effects of ensemble, temperature and strain rate must be considered. C1 [Lloyd, J. T.; McDowell, D. L.] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Zimmerman, J. A.; Jones, R. E.; Zhou, X. W.] Lawrence Livermore Natl Lab, Mech Mat Dept, Livermore, CA 94550 USA. RP Lloyd, JT (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. EM jzimmer@sandia.gov RI Zimmerman, Jonathan/A-8019-2012 FU Sandia National Laboratories' Engineering Science Research Foundation; Enabling Predictive Simulation Research Institute; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We greatly appreciate discussions and assistance from James W Foulk III, Alex J Lindblad and Alejandro Mota, all from Sandia National Laboratories. This work was supported by Sandia National Laboratories' Engineering Science Research Foundation and Enabling Predictive Simulation Research Institute. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 21 TC 8 Z9 8 U1 0 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0965-0393 J9 MODEL SIMUL MATER SC JI Model. Simul. Mater. Sci. Eng. PD SEP PY 2011 VL 19 IS 6 AR 065007 DI 10.1088/0965-0393/19/6/065007 PG 18 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 809JC UT WOS:000294048100007 ER PT J AU Weston, DJ Karve, AA Gunter, LE Jawdy, SS Yang, XH Allen, SM Wullschleger, SD AF Weston, David J. Karve, Abhijit A. Gunter, Lee E. Jawdy, Sara S. Yang, Xiaohan Allen, Sara M. Wullschleger, Stan D. TI Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max SO PLANT CELL AND ENVIRONMENT LA English DT Article DE network analysis; photosynthesis; ROS; systems biology ID PHOTOSYNTHETIC ELECTRON-TRANSPORT; RAFFINOSE FAMILY OLIGOSACCHARIDES; THERMALLY CONTRASTING GENOTYPES; OXYGEN GENE NETWORK; HIGH-TEMPERATURE; PHOTOSYSTEM-II; IN-VIVO; MOLECULAR CHAPERONES; ASCORBATE PEROXIDASE; ENVIRONMENTAL-STRESS AB The heat shock response continues to be layered with additional complexity as interactions and crosstalk among heat shock proteins (HSPs), the reactive oxygen network and hormonal signalling are discovered. However, comparative analyses exploring variation in each of these processes among species remain relatively unexplored. In controlled environment experiments, photosynthetic response curves were conducted from 22 to 42 degrees C and indicated that temperature optimum of light-saturated photosynthesis was greater for Glycine max relative to Arabidopsis thaliana or Populus trichocarpa. Transcript profiles were taken at defined states along the temperature response curves, and inferred pathway analysis revealed species-specific variation in the abiotic stress and the minor carbohydrate raffinose/galactinol pathways. A weighted gene co-expression network approach was used to group individual genes into network modules linking biochemical measures of the antioxidant system to leaf-level photosynthesis among P. trichocarpa, G. max and A. thaliana. Network-enabled results revealed an expansion in the G. max HSP17 protein family and divergence in the regulation of the antioxidant and heat shock modules relative to P. trichocarpa and A. thaliana. These results indicate that although the heat shock response is highly conserved, there is considerable species-specific variation in its regulation. C1 [Weston, David J.; Karve, Abhijit A.; Gunter, Lee E.; Jawdy, Sara S.; Yang, Xiaohan; Allen, Sara M.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Wullschleger, Stan D.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Weston, DJ (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM westondj@ornl.gov RI Weston, David/A-9116-2011; Wullschleger, Stan/B-8297-2012; Gunter, Lee/L-3480-2016; Yang, Xiaohan/A-6975-2011 OI Weston, David/0000-0002-4794-9913; Wullschleger, Stan/0000-0002-9869-0446; Gunter, Lee/0000-0003-1211-7532; Yang, Xiaohan/0000-0001-5207-4210 FU Oak Ridge National Laboratory FX We thank Dr Elizabeth Ainsworth for assistance in soybean gene annotation, Julia Gouffon from the University of Tennessee Affymetrix Core Lab for aid in Arabidopsis and soybean microarray hybridization and scanning, Dr Stephen DiFazio for the poplar array design, Axel Nagel and the MapMan team for assistance with PageMan and inferred pathway analysis, and Dr David Hyten for soybean seed. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-000R22725. NR 99 TC 26 Z9 26 U1 2 U2 22 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0140-7791 EI 1365-3040 J9 PLANT CELL ENVIRON JI Plant Cell Environ. PD SEP PY 2011 VL 34 IS 9 BP 1488 EP 1506 DI 10.1111/j.1365-3040.2011.02347.x PG 19 WC Plant Sciences SC Plant Sciences GA 806GK UT WOS:000293794100007 PM 21554326 ER PT J AU Vadivel, V Nandety, A Biesalski, HK AF Vadivel, Vellingiri Nandety, Aruna Biesalski, Hans Konrad TI Antioxidant Potential and Health Relevant Functionality of Traditionally Processed Cassia hirsuta L. Seeds: An Indian Underutilized Food Legume SO PLANT FOODS FOR HUMAN NUTRITION LA English DT Article DE alpha-Amylase inhibition; Antioxidant activity; Cassia hirsuta seeds; alpha-glucosidase inhibition; Indigenous processing methods; Total free phenolics ID TOTAL PHENOLIC CONTENT; ALPHA-GLUCOSIDASE; EXTRACTS; POLYPHENOLS; CAPACITY; RAW; AMYLASE; SPROUTS; MILLET; COAT AB The methanolic extract of Cassia hirsuta L. seed materials, an underutilized food legume collected from India, was analyzed for antioxidant activity and health relevant functionality. The methanolic extract of raw seeds contained a total free phenolic content of 15.82 +/- 1.69 g catechin equivalent/100 g extract DM. Encouraging levels of ferric reducing/antioxidant power (FRAP, 1,446 mmol Fe[II]/mg extract), inhibition of -carotene degradation (48.81%) and scavenging activity against DPPH (64.40%) and superoxide (43.78%) radicals were exhibited by the raw samples. Further, 83.11% of alpha-amylase and 62.79% of alpha-glucosidase enzyme inhibition characteristics under in vitro starch digestion bioassay were also recorded. Sprouting + oil-frying caused an apparent increase on the total free phenolic content and a significant improvement in the antioxidant and free radical scavenging capacity of methanolic extract of C. hirsuta seeds, while soaking + cooking as well as open-pan roasting treatments showed diminishing effects. The analysis of the phenolic profile revealed the presence of gallic acid, p-coumaric acid and (+)-catechin in the methanolic extract of these seeds. C1 [Vadivel, Vellingiri; Biesalski, Hans Konrad] Univ Hohenheim, Inst Biol Chem & Nutr, D-7000 Stuttgart, Germany. [Nandety, Aruna] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI USA. RP Vadivel, V (reprint author), Univ Hohenheim, Inst Biol Chem & Nutr, Garbenstr 30, D-7000 Stuttgart, Germany. EM vadivelvellingiri@gmail.com FU Alexander von Humboldt (AvH) Foundation, Bonn, Germany FX One of the authors (VV) is thankful to Alexander von Humboldt (AvH) Foundation, Bonn, Germany for the award of Post Doctoral Research Fellowship NR 37 TC 9 Z9 9 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0921-9668 J9 PLANT FOOD HUM NUTR JI Plant Food Hum. Nutr. PD SEP PY 2011 VL 66 IS 3 BP 245 EP 253 DI 10.1007/s11130-011-0237-1 PG 9 WC Plant Sciences; Chemistry, Applied; Food Science & Technology; Nutrition & Dietetics SC Plant Sciences; Chemistry; Food Science & Technology; Nutrition & Dietetics GA 808LI UT WOS:000293978800007 PM 21667144 ER PT J AU Bettencourt, LMA West, GB AF Bettencourt, Luis M. A. West, Geoffrey B. TI Bigger Cities Do More with Less New science reveals why cities become more productive and efficient as they grow SO SCIENTIFIC AMERICAN LA English DT Editorial Material C1 [Bettencourt, Luis M. A.; West, Geoffrey B.] Santa Fe Inst, Santa Fe, NM 87501 USA. [Bettencourt, Luis M. A.; West, Geoffrey B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bettencourt, LMA (reprint author), Santa Fe Inst, Santa Fe, NM 87501 USA. NR 0 TC 5 Z9 5 U1 0 U2 27 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0036-8733 J9 SCI AM JI Sci.Am. PD SEP PY 2011 VL 305 IS 3 DI 10.1038/scientificamerican0911-52 PG 2 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 808UK UT WOS:000294004900026 PM 21870443 ER PT J AU Wang, ZG Bei, H George, EP Pharr, GM AF Wang, Zhigang Bei, H. George, E. P. Pharr, G. M. TI Influences of surface preparation on nanoindentation pop-in in single-crystal Mo SO SCRIPTA MATERIALIA LA English DT Article DE Nanoindentation; Elastic behavior; Plasticity; Dislocation nucleation; Pop-in ID INITIAL YIELD-POINT; DISLOCATION NUCLEATION; INCIPIENT PLASTICITY; THIN-FILMS; MECHANICAL-PROPERTIES; DEFORMATION; INDENTATION; BEHAVIOR; TUNGSTEN; LOAD AB Influences of surface preparation on the pop-in behavior of single-crystal Mo were examined in nanoindentation experiments. The Mo surface was prepared by electropolishing and then damaged in a controlled way by polishing with 0.05 mu m alumina. The damaged layer was systematically removed in steps by chemo-mechanical polishing with the pop-in behavior statistically characterized at each step. The observations show how the statistics of pop-in can be used as a sensitive indicator of the state of mechanical damage in very thin surface layers. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wang, Zhigang; George, E. P.; Pharr, G. M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Bei, H.; George, E. P.; Pharr, G. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Pharr, GM (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM pharr@utk.edu RI Bei, Hongbin/I-6576-2012; George, Easo/L-5434-2014; OI Bei, Hongbin/0000-0003-0283-7990 FU National Science Foundation [CMMI-0800168]; U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX This research was sponsored by the National Science Foundation under contract CMMI-0800168 (Z.W. and G.M.P.) and by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (H.B. and E.P.G.). NR 36 TC 20 Z9 20 U1 2 U2 39 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD SEP PY 2011 VL 65 IS 6 BP 469 EP 472 DI 10.1016/j.scriptamat.2011.05.030 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 807WE UT WOS:000293932900003 ER PT J AU Pramanick, A An, K Stoica, AD Wang, XL AF Pramanick, A. An, K. Stoica, A. D. Wang, X. -L. TI In situ neutron diffraction study of twin reorientation and pseudoplastic strain in Ni-Mn-Ga single crystals SO SCRIPTA MATERIALIA LA English DT Article DE Magnetic shape memory alloys; Neutron diffraction; Twinning; Heusler alloys; Transition metals ID FIELD-INDUCED STRAIN; SHAPE-MEMORY ALLOYS; MARTENSITIC PHASES; FORM-FACTOR; MAGNETIZATION AB Twin variant reorientation in single-crystal Ni-Mn-Ga during quasi-static mechanical compression was studied using in situ neutron diffraction. The volume fraction of reoriented twin variants for different stress amplitudes were obtained from the changes in integrated intensities of high-order neutron diffraction peaks. It is shown that, during compressive loading, similar to 85% of the twins were reoriented parallel to the loading direction resulting in a maximum pseudoplastic strain of similar to 5.5%, which is in agreement with measured macroscopic strain. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Pramanick, A.; An, K.; Stoica, A. D.; Wang, X. -L.] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Wang, XL (reprint author), Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. EM wangxl@ornl.gov RI Pramanick, Abhijit/D-9578-2011; Stoica, Alexandru/K-3614-2013; An, Ke/G-5226-2011; SNS, VULCAN/C-2061-2012; Wang, Xun-Li/C-9636-2010 OI Pramanick, Abhijit/0000-0003-0687-4967; Stoica, Alexandru/0000-0001-5118-0134; An, Ke/0000-0002-6093-429X; Wang, Xun-Li/0000-0003-4060-8777 FU Oak Ridge National Laboratory; Office of Basic Energy Sciences, U.S. Department of Energy FX The authors thank Prof. T.G. Nieh from the University of Tennessee, Knoxville for providing the load-frame that was adapted for use in this work. AP acknowledges the support from a Laboratory Directed Research and Development Fund of Oak Ridge National Laboratory. The neutron scattering measurements were carried out at the Spallation Neutron Source, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 22 TC 7 Z9 7 U1 0 U2 19 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD SEP PY 2011 VL 65 IS 6 BP 540 EP 543 DI 10.1016/j.scriptamat.2011.06.022 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 807WE UT WOS:000293932900021 ER PT J AU Sutter, E Albrecht, P Wang, B Bocquet, ML Wu, LJ Zhu, YM Sutter, P AF Sutter, Eli Albrecht, Peter Wang, Bin Bocquet, Marie-Laure Wu, Lijun Zhu, Yimei Sutter, Peter TI Arrays of Ru nanoclusters with narrow size distribution templated by monolayer graphene on Ru SO SURFACE SCIENCE LA English DT Article DE Monolayer graphene; Ru(0001); Ru nanoclusters; Oxygen-intercalated graphene; Scanning tunneling microscopy; Transmission electron microscopy ID EPITAXIAL GRAPHENE; RU(0001); LAYER AB Ru nanoclusters self-assemble over macroscopic sample areas during vapor deposition of Ru on monolayer graphene (MLG) on Ru(0001). The Ru nanoclusters form arrays with a mean lateral cluster diameter of similar to 20 angstrom. cluster heights of 1 or 2 ML, and a size distribution that remains nearly constant with increasing coverage. Combined scanning tunneling microscopy and density functional theory (DFT) show that the clusters are templated by the MLG/Ru(0001) moire unit cell and identify the preferred binding site of the clusters as the low fcc region of the moire. Cross-sectional transmission electron microscopy (TEM) and high-resolution TEM contrast simulations experimentally demonstrate that the interaction of the Ru clusters with the underlying MLG/Ru(0001) leads to a local lifting of the graphene layer of the template. DFT calculations confirm this mechanism of interaction of the Ru clusters with the strongly coupled MLG/Ru(0001). Weakening of the graphene-support coupling via oxygen intercalation is shown to have a major effect on the assembly of Ru nanocluster arrays. With a preferred binding site lacking on decoupled graphene, the Ru nanoclusters grow significantly larger, and clusters with 1 to 4 ML height can coexist. (C) 2011 Elsevier B.V. All rights reserved. C1 [Sutter, Eli; Albrecht, Peter; Zhu, Yimei; Sutter, Peter] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Wang, Bin; Bocquet, Marie-Laure] Univ Lyon, Ecole Normale Super Lyon, Chim Lab, F-69364 Lyon, France. [Wang, Bin; Bocquet, Marie-Laure] CNRS, F-69364 Lyon, France. [Wu, Lijun; Zhu, Yimei] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Sutter, E (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM esutter@bnl.gov RI Wang, Bin/E-8301-2011; BOCQUET, MARIE-LAURE/A-7810-2011 OI Wang, Bin/0000-0001-8246-1422; FU U.S. Department of Energy [DE-AC02-98CH1-886] FX The authors would like to thank Kim Kiss linger for technical support. Work performed under the auspices of the U.S. Department of Energy under contract No. DE-AC02-98CH1-886. NR 34 TC 44 Z9 44 U1 3 U2 51 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD SEP PY 2011 VL 605 IS 17-18 BP 1676 EP 1684 DI 10.1016/j.susc.2011.01.026 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 807XY UT WOS:000293937500013 ER PT J AU Emery, JD Wang, QH Zarrouati, M Fenter, P Hersam, MC Bedzyk, MJ AF Emery, Jonathan D. Wang, Qing Hua Zarrouati, Marie Fenter, Paul Hersam, Mark C. Bedzyk, Michael J. TI Structural analysis of PTCDA monolayers on epitaxial graphene with ultra-high vacuum scanning tunneling microscopy and high-resolution X-ray reflectivity SO SURFACE SCIENCE LA English DT Article DE XRR; STM; FTCDA; Epitaxial graphene; Silicon carbide ID ELECTRONIC-PROPERTIES; IN-SITU; SURFACE; DIFFRACTION; GRAPHITE; INTERFACES; SCATTERING; SIC(0001); AG(111); FILMS AB Epitaxial graphene, grown by thermal decomposition of the SIC (0001) surface, is a promising material for future applications due to its unique and superlative electronic properties. However, the innate chemical passivity of graphene presents challenges for integration with other materials for device applications. Here, we present structural characterization of epitaxial graphene functionalized by the organic semiconductor perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). A combination of ultra-high vacuum scanning tunneling microscopy (STM) and high-resolution X-ray reflectivity (XRR) is used to extract lateral and vertical structures of 0, 1, and 2 monolayer (ML) PTCDA on epitaxial graphene. Both Fienup-based phase-retrieval algorithms and model-based least-squares analyses of the XRR data are used to extract an electron density profile that is interpreted in terms of a stacking sequence of molecular layers with specific interlayer spacings. Features in the STM and XRR analysis indicate long-range molecular ordering and weak pi-pi* interactions binding PTCDA molecules to the graphene surface. The high degree of both lateral and vertical ordering of the self-assembled film demonstrates PTCDA functionalization as a viable route for templating graphene for the growth and deposition of additional materials required for next-generation electronics and sensors. (C) 2010 Elsevier B.V. All rights reserved. C1 [Emery, Jonathan D.; Wang, Qing Hua; Hersam, Mark C.; Bedzyk, Michael J.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Emery, Jonathan D.; Wang, Qing Hua; Hersam, Mark C.; Bedzyk, Michael J.] Northwestern Univ, Mat Res Sci & Engn Ctr, Evanston, IL 60208 USA. [Zarrouati, Marie] ParisTech, Ecole Super Phys & Chim Ind Ville Paris, F-75231 Paris, France. [Fenter, Paul] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60208 USA. [Hersam, Mark C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Hersam, MC (reprint author), 2220 Campus Dr, Evanston, IL 60208 USA. EM m-hersam@northwestern.edu RI Bedzyk, Michael/B-7503-2009; Hersam, Mark/B-6739-2009; Bedzyk, Michael/K-6903-2013; Wang, Qing Hua/G-1596-2016 OI Wang, Qing Hua/0000-0002-7982-7275 FU National Science Foundation [DMR-0520513, EEC-0647560]; Office of Naval Research [N00014-09-1-0180]; Department of Energy [DE-SC0001785, DE-AC02-06CH11357] FX This work received partial support from the National Science Foundation (Award Numbers: DMR-0520513 to the MRSEC at NU and EEC-0647560), the Office of Naval Research (Award Number N00014-09-1-0180), and the Department of Energy (Award Numbers: DE-SC0001785, DE-AC02-06CH11357 to the CEES-EFRC, and DE-AC02-06CH11357 to the APS at ANL). In particular, the X-ray characterization and analysis by P. F. was funded by DE-AC02-06CH11357 to the CEES-EFRC. We thank Evguenia Karapetrova and Zhan Zhang of the APS XOR Sector 33 for beamline assistance. NR 59 TC 36 Z9 37 U1 10 U2 113 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD SEP PY 2011 VL 605 IS 17-18 BP 1685 EP 1693 DI 10.1016/j.susc.2010.11.008 PG 9 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 807XY UT WOS:000293937500014 ER PT J AU Hennebel, T Van Nevel, S Verschuere, S De Corte, S De Gusseme, B Cuvelier, C Fitts, JP Van der Lelie, D Boon, N Verstraete, W AF Hennebel, Tom Van Nevel, Sam Verschuere, Stephanie De Corte, Simon De Gusseme, Bart Cuvelier, Claude Fitts, Jeffrey P. Van der Lelie, Daniel Boon, Nico Verstraete, Willy TI Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Article DE Palladium nanoparticles; Green nanotechnology; Fermentation; Iodinated contrast media ID SULFATE-REDUCING BACTERIA; SHEWANELLA-ONEIDENSIS; ESCHERICHIA-COLI; BIOCATALYTIC DECHLORINATION; DESULFOVIBRIO-DESULFURICANS; POLYCHLORINATED-BIPHENYLS; BIOINORGANIC CATALYST; IMMOBILIZED CELLS; REDUCTION; DEHALOGENATION AB A new biological inspired method to produce nanopalladium is the precipitation of Pd on a bacterium, i.e., bio-Pd. This bio-Pd can be applied as catalyst in dehalogenation reactions. However, large amounts of hydrogen are required as electron donor in these reactions resulting in considerable costs. This study demonstrates how bacteria, cultivated under fermentative conditions, can be used to reductively precipitate bio-Pd catalysts and generate the electron donor hydrogen. In this way, one could avoid the costs coupled to hydrogen supply. The catalytic activities of Pd(0) nanoparticles produced by different strains of bacteria (bio-Pd) cultivated under fermentative conditions were compared in terms of their ability to dehalogenate the recalcitrant aqueous pollutants diatrizoate and trichloroethylene. While all of the fermentative bio-Pd preparations followed first order kinetics in the dehalogenation of diatrizoate, the catalytic activity differed systematically according to hydrogen production and starting Pd(II) concentration in solution. Batch reactors with nanoparticles formed by Citrobacter braakii showed the highest diatrizoate dehalogenation activity with first order constants of 0.45 +/- 0.02 h(-1) and 5.58 +/- 0.6 h(-1) in batches with initial concentrations of 10 and 50 mg L(-1) Pd, respectively. Nanoparticles on C. braakii, used in a membrane bioreactor treating influent containing 20 mg L(-1) diatrizoate, were capable of dehalogenating 22 mg diatrizoate mg(-1) Pd over a period of 19 days before bio-Pd catalytic activity was exhausted. This study demonstrates the possibility to use the combination of Pd(II), a carbon source and bacteria under fermentative conditions for the abatement of environmental halogenated contaminants. C1 [Hennebel, Tom; Van Nevel, Sam; De Corte, Simon; De Gusseme, Bart; Boon, Nico; Verstraete, Willy] Univ Ghent, Dept Biochem & Microbial Technol, Lab Microbial Ecol & Technol LabMET, B-9000 Ghent, Belgium. [Verschuere, Stephanie; Cuvelier, Claude] Univ Ghent, Dept Pathol, B-9000 Ghent, Belgium. [Fitts, Jeffrey P.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Van der Lelie, Daniel] Res Triangle Inst RTI Int, Ctr Agr & Environm Biotechnol Discovery & Analyt, Res Triangle Pk, NC 27709 USA. RP Verstraete, W (reprint author), Univ Ghent, Dept Biochem & Microbial Technol, Lab Microbial Ecol & Technol LabMET, Coupure Links 653, B-9000 Ghent, Belgium. EM Willy.Verstraete@Ugent.be RI Hennebel, Tom/C-2176-2009; De Corte, Simon/G-7256-2011; De Gusseme, Bart/C-6854-2008; Boon, Nico/B-4083-2011; Fitts, Jeffrey/J-3633-2012 OI Hennebel, Tom/0000-0002-8346-5983; Boon, Nico/0000-0002-7734-3103; FU Ghent University [01 MRA 510W]; FWO [G.0808.10 N, 7741-02]; Scientific Research (FWO)-Flanders; DOE Office of Science, Office of Biological and Environmental Research [KPCH137] FX Tom Hennebel was supported by Ghent University Multidisciplinary Research Partnership (MRP) - Biotechnology for a sustainable economy (01 MRA 510W). Sam Van Nevel (FWO, G.0808.10 N), Simon De Corte (aspirant) and Bart De Gusseme (aspirant) were supported by the Fund of Scientific Research (FWO)-Flanders. Jeff Fitts and Daniel Van der Lelie were funded by the DOE Office of Science, Office of Biological and Environmental Research, under project KPCH137. This research was also part of FWO project no. 7741-02. NR 31 TC 30 Z9 31 U1 2 U2 59 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7598 J9 APPL MICROBIOL BIOT JI Appl. Microbiol. Biotechnol. PD SEP PY 2011 VL 91 IS 5 BP 1435 EP 1445 DI 10.1007/s00253-011-3329-9 PG 11 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 805TI UT WOS:000293751500017 PM 21590286 ER PT J AU Kumari, SS Eswaramoorthy, S Mathias, RT Varadaraj, K AF Kumari, S. Sindhu Eswaramoorthy, Subramaniam Mathias, Richard T. Varadaraj, Kulandaiappan TI Unique and analogous functions of aquaporin 0 for fiber cell architecture and ocular lens transparency SO BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE LA English DT Article DE AQP0; Lens cataract; Cell-to-cell adhesion; Analogous function; Unique function; Lenticular architecture and transparency ID MAJOR INTRINSIC PROTEIN; HUMAN SENILE CATARACTOGENESIS; WATER PERMEABILITY; POLYPEPTIDE MIP26K; COVALENT CHANGE; MEMBRANE; MICE; CALMODULIN; ADHESION; AQP0 AB Aquaporin (AQP) 1 and AQP0 water channels are expressed in lens epithelial and fiber cells, respectively, facilitating fluid circulation for nourishing the avascular lens to maintain transparency. Even though AQP0 water permeability is 40-fold less than AQP1, AQP0 is selectively expressed in the fibers. Delimited AQP0 fiber expression is attributed to a unique structural role as an adhesion protein. To validate this notion, we determined if wild type (WT) lens ultrastructure and fiber cell adhesion are different in AQP0(-/-), and TgAQP1(+/+)/AQP0(-/-) mice that transgenically express AQP1 (TgAQP1) in fiber cells without AQP0 (AQP0(-/-)). In WT, lenses were transparent with sutures. Fibers contained opposite end curvature, lateral interdigitations, hexagonal shape, and were arranged as concentric growth shells. AQP0(-/-) lenses were cataractous, lacked 'Y' sutures, ordered packing and well-defined lateral interdigitations. TgAQP1(+/+)/AQP0(-/-) lenses showed improvement in transparency and lateral interdigitations in the outer cortex while inner cortex and nuclear fibers were severely disintegrated. Transmission electron micrographs exhibited tightly packed fiber cells in WT whereas AQP0(-/-) and TgAQP1(+/+)/AQP0(-/-) lenses had wide extracellular spaces. Fibers were easily separable by teasing in AQP0(-/-) and TgAQP1(+/+)/AQP0(-/-) lenses compared to WT. Our data suggest that the increased water permeability through AQP1 does not compensate for loss of AQP0 expression in TgAQP1(+/+)/AQP0(-/-) mice. Fiber cell AQP0 expression is required to maintain their organization, which is a requisite for lens transparency. AQP0 appears necessary for cell-to-cell adhesion and thereby to minimize light scattering since in the AQP0(-/-) and TgAQP1(+/+)/AQP0(-/-) lenses, fiber cell disorganization was evident. (C) 2011 Elsevier B.V. All rights reserved. C1 [Kumari, S. Sindhu; Mathias, Richard T.; Varadaraj, Kulandaiappan] SUNY Stony Brook, Dept Physiol & Biophys, Stony Brook, NY 11794 USA. [Eswaramoorthy, Subramaniam] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Varadaraj, K (reprint author), SUNY Stony Brook, Dept Physiol & Biophys, BST-6,Room 165, Stony Brook, NY 11794 USA. EM kvaradaraj@notes.cc.sunysb.edu FU NIH - NEI [R01: EY20506, EY06391]; Alcon Research Ltd. [39733] FX This work was supported by NIH - NEI grants R01: EY20506 (to K. Varadaraj), and EY06391 (to R. T. Mathias), and by a grant from Alcon Research Ltd., (# 39733: to K. Varadaraj). NR 61 TC 12 Z9 13 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0925-4439 J9 BBA-MOL BASIS DIS JI Biochim. Biophys. Acta-Mol. Basis Dis. PD SEP PY 2011 VL 1812 IS 9 BP 1089 EP 1097 DI 10.1016/j.bbadis.2011.04.001 PG 9 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 805HP UT WOS:000293717800003 PM 21511033 ER PT J AU Deo, RP Rittmann, BE Reed, DT AF Deo, Randhir P. Rittmann, Bruce E. Reed, Donald T. TI Bacterial Pu(V) reduction in the absence and presence of Fe(III)-NTA: modeling and experimental approach SO BIODEGRADATION LA English DT Article DE Plutonium; Shewanella alga; Bacterial reduction; NTA; Iron; Bioreduction; Modeling ID METAL-REDUCING BACTERIA; SHEWANELLA-ONEIDENSIS; SPECIATION; PLUTONIUM; URANIUM; PRECIPITATION; DISSOLUTION; SYSTEMS; NEPTUNIUM(V); ENVIRONMENT AB Plutonium (Pu), a key contaminant at sites associated with the manufacture of nuclear weapons and with nuclear-energy wastes, can be precipitated to "immobilized" plutonium phases in systems that promote bioreduction. Ferric iron (Fe(3+)) is often present in contaminated sites, and its bioreduction to ferrous iron (Fe(2+)) may be involved in the reduction of Pu to forms that precipitate. Alternately, Pu can be reduced directly by the bacteria. Besides Fe, contaminated sites often contain strong complexing ligands, such as nitrilotriacetic acid (NTA). We used biogeochemical modeling to interpret the experimental fate of Pu in the absence and presence of ferric iron (Fe(3+)) and NTA under anaerobic conditions. In all cases, Shewanella alga BrY (S. alga) reduced Pu(V)(PuO(2) (+)) to Pu(III), and experimental evidence indicates that Pu(III) precipitated as PuPO(4(am).) In the absence of Fe(3+) and NTA, reduction of PuO(2) (+) was directly biotic, but modeling simulations support that PuO(2) (+) reduction in the presence of Fe(3+) and NTA was due to an abiotic stepwise reduction of PuO(2) (+) to Pu(4+), followed by reduction of Pu(4+) to Pu(3+), both through biogenically produced Fe(2+). This means that PuO(2) (+) reduction was slowed by first having Fe(3+) reduced to Fe(2+). Modeling results also show that the degree of PuPO(4(am)) precipitation depends on the NTA concentration. While precipitation out-competes complexation when NTA is present at the same or lower concentration than Pu, excess NTA can prevent precipitation of PuPO(4(am)). C1 [Deo, Randhir P.] Univ Guam, Dept Chem, Div Nat Sci, Coll Nat & Appl Sci, Mangilao, GU 96923 USA. [Rittmann, Bruce E.] Arizona State Univ, Biodesign Inst, Ctr Environm Biotechnol, Tempe, AZ 85287 USA. [Reed, Donald T.] Los Alamos Natl Lab, Environm & Earth Sci Div, Carlsbad Environm Monitoring & Res Ctr, Carlsbad, NM 88220 USA. RP Deo, RP (reprint author), Univ Guam, Dept Chem, Div Nat Sci, Coll Nat & Appl Sci, Mangilao, GU 96923 USA. EM rdeo@uguam.uog.edu FU United States Department of Energy FX The authors are grateful to Los Alamos National Laboratory for laboratory facilities. The research was supported, in part, by Environmental Remediation Sciences Program (ERSP) of the United States Department of Energy. NR 39 TC 5 Z9 5 U1 2 U2 13 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0923-9820 J9 BIODEGRADATION JI Biodegradation PD SEP PY 2011 VL 22 IS 5 BP 921 EP 929 DI 10.1007/s10532-010-9451-z PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 804CT UT WOS:000293632400008 PM 21234648 ER PT J AU Gerlach, R Field, EK Viamajala, S Peyton, BM Apel, WA Cunningham, AB AF Gerlach, Robin Field, Erin K. Viamajala, Sridhar Peyton, Brent M. Apel, William A. Cunningham, Al B. TI Influence of carbon sources and electron shuttles on ferric iron reduction by Cellulomonas sp strain ES6 SO BIODEGRADATION LA English DT Article DE Fermenters; Anthraquinone-2,6-disulfonate (AQDS); Humics; HFO; Ferrihydrite; Goethite; Magnetite; Maghemite; Hematite ID ORGANIC-MATTER MINERALIZATION; BEARING SOIL MINERALS; HUMIC SUBSTANCES; MICROBIAL REDUCTION; FE(III) REDUCTION; PROPIONIBACTERIUM-FREUDENREICHII; DISSIMILATORY REDUCTION; CHLORINATED ETHYLENES; OXIDE REDUCTION; GREEN RUST AB Microbially reduced iron minerals can reductively transform a variety of contaminants including heavy metals, radionuclides, chlorinated aliphatics, and nitroaromatics. A number of Cellulomonas spp. strains, including strain ES6, isolated from aquifer samples obtained at the U.S. Department of Energy's Hanford site in Washington, have been shown to be capable of reducing Cr(VI), TNT, natural organic matter, and soluble ferric iron [Fe(III)]. This research investigated the ability of Cellulomonas sp. strain ES6 to reduce solid phase and dissolved Fe(III) utilizing different carbon sources and various electron shuttling compounds. Results suggest that Fe(III) reduction by and growth of strain ES6 was dependent upon the type of electron donor, the form of iron present, and the presence of synthetic or natural organic matter, such as anthraquinone-2,6-disulfonate (AQDS) or humic substances. This research suggests that Cellulomonas sp. strain ES6 could play a significant role in metal reduction in the Hanford subsurface and that the choice of carbon source and organic matter addition can allow for independent control of growth and iron reduction activity. C1 [Gerlach, Robin; Peyton, Brent M.] Montana State Univ, Dept Chem & Biol Engn, Bozeman, MT 59717 USA. [Gerlach, Robin; Field, Erin K.; Peyton, Brent M.; Cunningham, Al B.] Montana State Univ, Ctr Biofilm Engn, Bozeman, MT 59717 USA. [Field, Erin K.] Montana State Univ, Dept Microbiol, Bozeman, MT 59717 USA. [Viamajala, Sridhar] Univ Toledo, Dept Chem & Environm Engn, Toledo, OH 43606 USA. [Apel, William A.] Idaho Natl Lab, Biol Syst Dept, Idaho Falls, ID 83415 USA. [Cunningham, Al B.] Montana State Univ, Dept Civil Engn, Bozeman, MT 59717 USA. RP Gerlach, R (reprint author), Montana State Univ, Dept Chem & Biol Engn, Bozeman, MT 59717 USA. EM robin_g@biofilm.montana.edu RI Gerlach, Robin/A-9474-2012; Peyton, Brent/G-5247-2015 OI Peyton, Brent/0000-0003-0033-0651 FU U.S. Department of Energy, Office of Science [DE-FG02-03ER63582]; DOE-NE Idaho Operations Office [DE-AC07-05ID14517]; Inland Northwest Research Alliance (INRA) [MSU 002] FX The authors thank Kristy Weaver and Laura Jennings for their assistance in the laboratory. This research was supported by the U.S. Department of Energy, Office of Science, Environmental Management Science Program, under Grant No. DE-FG02-03ER63582 and DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517. Partial financial support was provided by a grant from the Inland Northwest Research Alliance (INRA) under contract MSU 002. NR 56 TC 5 Z9 6 U1 4 U2 29 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0923-9820 J9 BIODEGRADATION JI Biodegradation PD SEP PY 2011 VL 22 IS 5 BP 983 EP 995 DI 10.1007/s10532-011-9457-1 PG 13 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 804CT UT WOS:000293632400014 PM 21318474 ER PT J AU Padilla, H Lambros, J Beaudoin, A Robertson, I AF Padilla, H. Lambros, J. Beaudoin, A. Robertson, I. TI Spatiotemporal Thermal Inhomogeneities During Compression of Highly Textured Zirconium SO EXPERIMENTAL MECHANICS LA English DT Article DE Infrared; Multiscale; Plastic bursts; Highly textured Zr ID INFRARED THERMOGRAPHY; PLASTIC-DEFORMATION; ENERGY-DISSIPATION; STORED ENERGY; STRAIN; FLOW; MULTICRYSTAL; LOCALIZATION; FIELDS; COPPER AB Using a focal plane array infrared camera, the heat generated during large strain compression (at a rate of 1 s(-1)) is used to study the characteristics of plastic flow for hcp zirconium. Heat generation during plastic flow in a reference material, copper, was seen to develop uniformly both at the lower (40 mu m/pixel) and higher (8 mu m/pixel) magnifications used in this study. The thermomechanical response of Zr, however, was seen to depend on the loading direction with respect to the specimen texture. Highly textured zirconium compressed along nonbasal oriented grains results in a homogeneous thermal response at both scales. However, compression along basal (0001) oriented grains shows evidence of inhomogeneous deformation at small strains that lead to macroscale localization and failure at large strains. The conversion of plastic work into heat is observed to be a dynamic process, both in the time-dependent nature of the energy conversion, but also in the passage of waves and 'bursts' of plastic heating. Basal compression also showed evidence of small scale localization at strains far below macroscale localization, even below 10%. These localizations at the lower strain levels eventually dominate the response, and form the shear band that is responsible for the softening of the macroscopic stress-strain curve. C1 [Lambros, J.; Beaudoin, A.; Robertson, I.] Univ Illinois, Champaign, IL 61820 USA. [Padilla, H.] Sandia Natl Labs, Albuquerque, NM USA. RP Lambros, J (reprint author), Univ Illinois, Champaign, IL 61820 USA. EM hapadil@sandia.gov; lambros@illinois.edu; abeaudoi@illinois.edu; ianr@illinois.edu FU U.S. Department of Energy [DEFG03-02-NA00072, DEFG02-91-ER45439]; [DEFG52-06-NA26150] FX This work was supported by the U.S. Department of Energy under grant DEFG03-02-NA00072, which is administered by the Center for the Simulation of Advanced Rockets (CSAR) at the University of Illinois at Urbana, as well as grant DEFG52-06-NA26150. The microscopy was carried out with the assistance of James Mabon in the Center for Microanalysis of Materials, University of Illinois, which is partially supported by the U.S. Department of Energy under grant DEFG02-91-ER45439. The assistance of Dr. Gavin Horn with the performance of the thermal measurements is also greatly appreciated. The authors would also like to thank Dr. George Kaschner for many helpful discussions. Finally, the authors would like to acknowledge the excellent comments from the unknown reviewer, which considerably improved the final outcome of this effort. NR 36 TC 4 Z9 4 U1 1 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 J9 EXP MECH JI Exp. Mech. PD SEP PY 2011 VL 51 IS 7 BP 1061 EP 1073 DI 10.1007/s11340-010-9425-4 PG 13 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 803AU UT WOS:000293552900005 ER PT J AU Hosemann, P Dai, Y Stergar, E Leitner, H Olivas, E Nelson, AT Maloy, SA AF Hosemann, P. Dai, Y. Stergar, E. Leitner, H. Olivas, E. Nelson, A. T. Maloy, S. A. TI Large and Small Scale Materials Testing of HT-9 Irradiated in the STIP Irradiation Program SO EXPERIMENTAL MECHANICS LA English DT Article DE Micro compression testing; Atom probe tomography (ATP); Local electrode atom probe (LEAP); Irradiated materials; HT-9; Ferritic Martensitic Steel; Reactor materials; Small scale materials testing ID TARGET AB The Fuel Cycle R&D (FCRD) initiative is investigating methods of burning minor actinides in a transmutation fuel. To achieve this goal, the fast reactor core materials must withstand very high doses. Small scale materials testing methods in addition to large scale materials testing allows one to gain more insight by providing more data on the same sample while being able to probe areas of interest which are not accessible otherwise. Furthermore, the sample volumes were so small that the tests could be considered a non destructive test since the amount of material needed is so small that a macroscopic structure would not be affected. Tensile testing, micro hardness testing and micro compression testing on focused ion beam (FIB) microscope manufactured pillars were performed on remaining parts of tensile test specimens tested and irradiated in the Spallation Target Irradiation Program (STIP). It is shown that the increases of yield strength measured by tensile testing, micro compression testing and micro hardness testing all showed the same trend. In addition FIB based techniques also allowed fabrication of LEAP samples of such a small size that their residual activity was below detectable levels thus allowing them to be handled and analyzed in a manner comparable to inactive specimens. C1 [Hosemann, P.; Stergar, E.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. [Dai, Y.] Paul Scherrer Inst, Villigen, Switzerland. [Stergar, E.; Leitner, H.] Univ Min & Met Leoben, A-8700 Leoben, Austria. [Olivas, E.; Nelson, A. T.; Maloy, S. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hosemann, P (reprint author), Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. EM peterh@berkeley.edu RI Maloy, Stuart/A-8672-2009; OI Maloy, Stuart/0000-0001-8037-1319; Leitner, Harald/0000-0001-6110-5410; Olivas, Eric/0000-0002-7721-6622; Hosemann, Peter/0000-0003-2281-2213; Nelson, Andrew/0000-0002-4071-3502 FU National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under Contract DE-AC52-06NA25396. The University of Leoben, and in particular Dr. Harald Leitner and Prof. Dr. Helmut Clemens were supportive of this work by allowing an extensive student exchange. The Energy Frontier Research Center (EFRC) lead by Michael Nastasi allowed for further information exchange and support. NR 19 TC 13 Z9 13 U1 2 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 J9 EXP MECH JI Exp. Mech. PD SEP PY 2011 VL 51 IS 7 BP 1095 EP 1102 DI 10.1007/s11340-010-9419-2 PG 8 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 803AU UT WOS:000293552900007 ER PT J AU Pagliaro, P Prime, MB Robinson, JS Clausen, B Swenson, H Steinzig, M Zuccarello, B AF Pagliaro, P. Prime, M. B. Robinson, J. S. Clausen, B. Swenson, H. Steinzig, M. Zuccarello, B. TI Measuring Inaccessible Residual Stresses Using Multiple Methods and Superposition SO EXPERIMENTAL MECHANICS LA English DT Article DE Residual stress; Contour method; Neutron diffraction; Superposition; Sectioning; Hole; Drilling; X-ray diffraction ID LASER SPECKLE INTERFEROMETRY; HOLE DRILLING METHOD; MULTIAXIAL CONTOUR METHOD; NEUTRON-DIFFRACTION; RAILWAY RAIL; CIRCUMFERENTIAL CRACKS; BUTT-WELD; FIELD; REFINEMENT; PREDICTION AB The traditional contour method maps a single component of residual stress by cutting a body carefully in two and measuring the contour of the cut surface. The cut also exposes previously inaccessible regions of the body to residual stress measurement using a variety of other techniques, but the stresses have been changed by the relaxation after cutting. In this paper, it is shown that superposition of stresses measured post-cutting with results from the contour method analysis can determine the original (pre-cut) residual stresses. The general superposition theory using Bueckner's principle is developed and limitations are discussed. The procedure is experimentally demonstrated by determining the triaxial residual stress state on a cross section plane. The 2024-T351 aluminum alloy test specimen was a disk plastically indented to produce multiaxial residual stresses. After cutting the disk in half, the stresses on the cut surface of one half were determined with X-ray diffraction and with hole drilling on the other half. To determine the original residual stresses, the measured surface stresses were superimposed with the change stress calculated by the contour method. Within uncertainty, the results agreed with neutron diffraction measurements taken on an uncut disk. C1 [Prime, M. B.; Clausen, B.; Swenson, H.; Steinzig, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Pagliaro, P.; Zuccarello, B.] Univ Palermo, Dipartimento Meccan, I-90128 Palermo, Italy. [Robinson, J. S.] Univ Limerick, Dept Mat Sci & Technol, Limerick, Ireland. RP Prime, MB (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM prime@lanl.gov RI Pagliaro, Pierluigi/H-1644-2011; MA&BE, Department/A-5579-2012; Robinson, Jeremy/D-1730-2009; Clausen, Bjorn/B-3618-2015; OI Robinson, Jeremy/0000-0001-9469-5760; Clausen, Bjorn/0000-0003-3906-846X; Prime, Michael/0000-0002-4098-5620 FU National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396]; Department of Energy's Office of Basic Energy Sciences; Universita degli Studi di Palermo FX MBP would like to thank Iain Finnie of U.C. Berkeley for two decades of mentorship and friendship. Professor Finnie passed away in December 2009. Some of this work was performed at Los Alamos National Laboratory, operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, funded by the Department of Energy's Office of Basic Energy Sciences. Dr. Pagliaro's work was sponsored by a fellowship from the Universita degli Studi di Palermo. NR 58 TC 25 Z9 26 U1 3 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 EI 1741-2765 J9 EXP MECH JI Exp. Mech. PD SEP PY 2011 VL 51 IS 7 BP 1123 EP 1134 DI 10.1007/s11340-010-9424-5 PG 12 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 803AU UT WOS:000293552900010 ER PT J AU Shi, SJ Richardson, AE O'Callaghan, M DeAngelis, KM Jones, EE Stewart, A Firestone, MK Condron, LM AF Shi, Shengjing Richardson, Alan E. O'Callaghan, Maureen DeAngelis, Kristen M. Jones, Eirian E. Stewart, Alison Firestone, Mary K. Condron, Leo M. TI Effects of selected root exudate components on soil bacterial communities SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE rRNA-DGGE; organic acids; Pinus radiata; rRNA-PhyloChip; microarray; root exudates ID POLYMERASE-CHAIN-REACTION; 16S RIBOSOMAL-RNA; MICROBIAL COMMUNITIES; ORGANIC-ACIDS; CO2 EVOLUTION; RHIZOSPHERE; PLANT; GROWTH; MICROARRAY; NITROGEN AB Low-molecular-weight organic compounds in root exudates play a key role in plant-microorganism interactions by influencing the structure and function of soil microbial communities. Model exudate solutions, based on organic acids (OAs) (quinic, lactic, maleic acids) and sugars (glucose, sucrose, fructose), previously identified in the rhizosphere of Pinus radiata, were applied to soil microcosms. Root exudate compound solutions stimulated soil dehydrogenase activity and the addition of OAs increased soil pH. The structure of active bacterial communities, based on reverse-transcribed 16S rRNA gene PCR, was assessed by denaturing gradient gel electrophoresis and PhyloChip microarrays. Bacterial taxon richness was greater in all treatments than that in control soil, with a wide range of taxa (88-1043) responding positively to exudate solutions and fewer (<24) responding negatively. OAs caused significantly greater increases than sugars in the detectable richness of the soil bacterial community and larger shifts of dominant taxa. The greater response of bacteria to OAs may be due to the higher amounts of added carbon, solubilization of soil organic matter or shifts in soil pH. Our results indicate that OAs play a significant role in shaping soil bacterial communities and this may therefore have a significant impact on plant growth. C1 [Jones, Eirian E.; Condron, Leo M.] Lincoln Univ, Fac Agr & Life Sci, Christchurch 7647, New Zealand. [Shi, Shengjing; Stewart, Alison; Condron, Leo M.] Lincoln Univ, Bioprotect Res Ctr, Christchurch 7647, New Zealand. [Richardson, Alan E.] CSIRO Plant Ind, Canberra, ACT, Australia. [O'Callaghan, Maureen] AgResearch, Christchurch, New Zealand. [Shi, Shengjing; Firestone, Mary K.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [DeAngelis, Kristen M.; Firestone, Mary K.] Lawrence Berkeley Natl Lab, Dept Ecol, Berkeley, CA USA. RP Condron, LM (reprint author), Lincoln Univ, Fac Agr & Life Sci, POB 84, Christchurch 7647, New Zealand. EM leo.condron@lincoln.ac.nz RI O'Callaghan, Maureen /J-2809-2013; Richardson, Alan/I-1903-2012; Jones, Eirian/K-6721-2012; Condron, Leo/E-9458-2013 OI O'Callaghan, Maureen /0000-0001-7406-3854; DeAngelis, Kristen/0000-0002-5585-4551; Jones, Eirian/0000-0002-1879-4537; FU New Zealand Tertiary Education Commission; Bio-Protection Research Centre; Seaborg Fellowship; DOE-LBNL [DE-AC02-05CH11231] FX This work was funded by the New Zealand Tertiary Education Commission and a travel grant from the Bio-Protection Research Centre to Shengjing Shi for a 4-week visit to Berkeley. This work was also funded in part by a Seaborg Fellowship to KMD, and in part under DOE-LBNL contract DE-AC02-05CH11231. We thank Drs Darren Smalley (AgResearch, New Zealand) and Christian Walter (Scion, New Zealand) for helpful discussions during experiments. We also thank Dr Susan Worner (Lincoln University) for assistance with the PRIMER 5 statistical package and Dr Steve Wakelin (AgResearch, New Zealand) for helpful comments on the manuscript. NR 55 TC 82 Z9 87 U1 15 U2 168 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0168-6496 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD SEP PY 2011 VL 77 IS 3 BP 600 EP 610 DI 10.1111/j.1574-6941.2011.01150.x PG 11 WC Microbiology SC Microbiology GA 804WJ UT WOS:000293684700012 PM 21658090 ER PT J AU LePoire, DJ AF LePoire, David J. TI Exploring New Energy Alternatives SO FUTURIST LA English DT Article C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP LePoire, DJ (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM dlepoire@anl.gov NR 0 TC 1 Z9 1 U1 0 U2 0 PU WORLD FUTURE SOC PI BETHESDA PA 7910 WOODMONT AVE, STE 450, BETHESDA, MD 20814 USA SN 0016-3317 J9 FUTURIST JI Futurist PD SEP-OCT PY 2011 VL 45 IS 5 BP 34 EP 38 PG 5 WC Social Issues SC Social Issues GA 805ZL UT WOS:000293769500010 ER PT J AU Pfeifer, KB Yelton, WG Kerr, DR AF Pfeifer, Kent B. Yelton, W. Graham Kerr, Dayle R. TI Two-Dimensional Peclet Numbers for Peak Quality Scoring SO IEEE SENSORS JOURNAL LA English DT Article DE Moment analysis; multicomponent analysis; Peclet number AB We have developed a tool we call Two-Dimensional Peclet analysis to help in determining optimum operational parameters for analytical systems that require automated analysis of large numbers of analyte data peaks. In this paper, we derive the technique from moment analysis of the peaks and single-dimensional Peclet theory. Two-Dimensional Peclet analysis allows automated comparison of response peaks with differing shapes and amplitudes to be compared simultaneously in multicomponent mixtures. In addition to peak resolution and fidelity, individual two-dimensional moment components can provide feedback to total mass (zero moment), centroid location in time space (first moment), and two-dimensional spread of data (second moment). C1 [Pfeifer, Kent B.; Yelton, W. Graham; Kerr, Dayle R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Pfeifer, KB (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM kbpfeif@sandia.gov; wgyelto@sandia.gov; drkerr@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. The associate editor coordinating the review of this paper and approving it for publication was Prof. Kiseon Kim. NR 7 TC 0 Z9 0 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1530-437X J9 IEEE SENS J JI IEEE Sens. J. PD SEP PY 2011 VL 11 IS 9 BP 2108 EP 2110 DI 10.1109/JSEN.2011.2112345 PG 3 WC Engineering, Electrical & Electronic; Instruments & Instrumentation; Physics, Applied SC Engineering; Instruments & Instrumentation; Physics GA 805TK UT WOS:000293751700007 ER PT J AU Scott, BL Kiplinger, JL AF Scott, Brian L. Kiplinger, Jaqueline L. TI A New Actinide Bis(Ketimide) Platform for the Construction of Multimetallic Complexes: Synthesis and Crystal Structure of (C5Me5)(2)Th[-N=C(C6H5)(2,2 ':6 ',2 ''-terpyridine)](2) SO JOURNAL OF CHEMICAL CRYSTALLOGRAPHY LA English DT Article DE Single crystal X-ray study; Thorium; Metallocene; Nitrile insertion; Phenyl-terpyridyl-substituted ketimide ligand ID THORIUM(IV); BONDS; COMMUNICATION; CHEMISTRY; INSERTION; LIGANDS; URANIUM AB The title compound (C5Me5)(2)Th[-N=C(Ph)(tpy)](2) (1) (Ph=C6H5, tpy=2,2':6',2aEuro(3)-terpyridine) was synthesized and characterized by NMR spectroscopy, elemental analysis, and X-ray crystallography. This system represents the first example of an actinide complex featuring ketimide ligands with both a phenyl group and a terpyridyl group. The complex crystallizes in the monoclinic space group P2(1)/c with unit cell parameters a = 10.7037(6) , b = 32.0735(16) , c = 34.6506(18) , beta = 90.127(3)A degrees, V = 11895.7(11) (3), Z = 8, D (calc) = 1.406 Mg/m(3). The thorium(IV) complex adopts a pseudo-tetrahedral geometry, with the two ketimide ligands occupying the plane bisecting the metallocene unit. Structural comparisons of the title complex are made with related metallocene thorium(IV) bis(ketimide) derivatives. C1 [Scott, Brian L.; Kiplinger, Jaqueline L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kiplinger, JL (reprint author), Los Alamos Natl Lab, Mail Stop J514, Los Alamos, NM 87545 USA. EM kiplinger@lanl.gov RI G, Neela/H-3016-2014; Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017 OI Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396 FU Division of Chemical Sciences, Office of Basic Energy Science; Los Alamos National Laboratory FX For financial support of this work, we acknowledge the Division of Chemical Sciences, Office of Basic Energy Science, Heavy Element Chemistry program and the Los Alamos National Laboratory LDRD program. NR 24 TC 3 Z9 3 U1 0 U2 13 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1074-1542 J9 J CHEM CRYSTALLOGR JI J. Chem. Crystallogr. PD SEP PY 2011 VL 41 IS 9 BP 1301 EP 1304 DI 10.1007/s10870-011-0091-x PG 4 WC Crystallography; Spectroscopy SC Crystallography; Spectroscopy GA 805VI UT WOS:000293756700010 ER PT J AU Pan, WX Fedosov, DA Caswell, B Karniadakis, GE AF Pan, Wenxiao Fedosov, Dmitry A. Caswell, Bruce Karniadakis, George Em TI Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells SO MICROVASCULAR RESEARCH LA English DT Article ID DISSIPATIVE PARTICLE DYNAMICS; FREE LAYER; ERYTHROCYTE DEFORMABILITY; LARGE-DEFORMATION; TUBE FLOW; VISCOSITY; MICROVESSELS; SIMULATION; MICROCIRCULATION; CYTOSKELETON AB We compare the predictive capability of two mathematical models for red blood cells (RBCs) focusing on blood flow in capillaries and arterioles. Both RBC models as well as their corresponding blood flows are based on the dissipative particle dynamics (DPD) method, a coarse-grained molecular dynamics approach. The first model employs a multiscale description of the RBC (MS-RBC), with its membrane represented by hundreds or even thousands of DPD-particles connected by springs into a triangular network in combination with out-of-plane elastic bending resistance. Extra dissipation within the network accounts for membrane viscosity, while the characteristic biconcave RBC shape is achieved by imposition of constraints for constant membrane area and constant cell volume. The second model is based on a low-dimensional description (LD-RBC) constructed as a closed torus-like ring of only 10 large DPD colloidal particles. They are connected into a ring by worm-like chain (WLC) springs combined with bending resistance. The LD-RBC model can be fitted to represent the entire range of nonlinear elastic deformations as measured by optical-tweezers for healthy and for infected RBCs in malaria. MS-RBCs suspensions model the dynamics and rheology of blood flow accurately for any vessel size but this approach is computationally expensive for vessel diameters above 100 mu m. Surprisingly, the much more economical suspensions of LD-RBCs also capture the blood flow dynamics and rheology accurately except for small-size vessels comparable to RBC diameter. In particular, the LD-RBC suspensions are shown to properly capture the experimental data for the apparent viscosity of blood and its cell-free layer (CFL) in tube flow. Taken together, these findings suggest a hierarchical approach in modeling blood flow in the arterial tree, whereby the MS-RBC model should be employed for capillaries and arterioles below 100 mu m, the LD-RBC model for arterioles, and the continuum description for arteries. (C) 2011 Elsevier Inc. All rights reserved. C1 [Pan, Wenxiao; Fedosov, Dmitry A.; Karniadakis, George Em] Brown Univ, Div Appl Math, Providence, RI 02912 USA. [Caswell, Bruce] Brown Univ, Div Engn, Providence, RI 02912 USA. [Pan, Wenxiao] Pacific NW Natl Lab, Richland, WA 99352 USA. [Fedosov, Dmitry A.] Forschungszentrum Julich, Inst Festkorperforsch, D-52425 Julich, Germany. RP Karniadakis, GE (reprint author), Brown Univ, Div Appl Math, Providence, RI 02912 USA. EM george_karniadakis@brown.edu RI Fedosov, Dmitry/G-4110-2013 OI Fedosov, Dmitry/0000-0001-7469-9844 FU [NSFCBET-0852948]; [NIHR01HL094270] FX This work was supported by the NSFCBET-0852948 and NIHR01HL094270 grants. Computations were performed at the NSF's NICS facilities. NR 40 TC 24 Z9 25 U1 1 U2 38 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0026-2862 J9 MICROVASC RES JI Microvasc. Res. PD SEP PY 2011 VL 82 IS 2 BP 163 EP 170 DI 10.1016/j.mvr.2011.05.006 PG 8 WC Peripheral Vascular Disease SC Cardiovascular System & Cardiology GA 806PN UT WOS:000293820200010 PM 21640731 ER PT J AU Palacios, RDY Campo, A Henningsen, K Verhoye, M Poot, D Dijkstra, J Van Audekerke, J Benveniste, H Sijbers, J Wiborg, O Van der Linden, A AF Delgado y Palacios, Rafael Campo, Adriaan Henningsen, Kim Verhoye, Marleen Poot, Dirk Dijkstra, Jouke Van Audekerke, Johan Benveniste, Helene Sijbers, Jan Wiborg, Ove Van der Linden, Annemie TI Magnetic Resonance Imaging and Spectroscopy Reveal Differential Hippocampal Changes in Anhedonic and Resilient Subtypes of the Chronic Mild Stress Rat Model SO BIOLOGICAL PSYCHIATRY LA English DT Article DE Chronic stress; diffusion kurtosis imaging (DKI); hippocampus; magnetic resonance imaging (MRI); magnetic resonance spectroscopy (MRS); major depressive disorder (MDD) ID MAJOR DEPRESSIVE DISORDER; PITUITARY-ADRENOCORTICAL AXIS; DIFFUSION KURTOSIS ANALYSIS; ANTERIOR CINGULATE CORTEX; GAMMA-AMINOBUTYRIC-ACID; MOOD DISORDERS; ESCITALOPRAM TREATMENT; LEARNED HELPLESSNESS; TREATMENT RESISTANCE; ADULT NEUROGENESIS AB Background: Repeated exposure to mild stressors induces anhedonia-a core symptom of major depressive disorder-in up to 70% of the stress-exposed rats, whereas the remaining show resilience to stress. This chronic mild stress (CMS) model is well documented as an animal model of major depressive disorder. We examined the morphological, microstructural, and metabolic characteristics of the hippocampus in anhedonic and stress resilient rats that may mark the differential behavioral outcome. Methods: Anhedonic (n = 8), resilient ( n = 8), and control ( n = 8) rats were subjected to in vivo diffusion kurtosis imaging, high-resolution three-dimensional magnetic resonance imaging and proton magnetic resonance spectroscopy. Results: Diffusion kurtosis parameters were decreased in both CMS-exposed groups. A significant inward displacement in the ventral part of the right hippocampus was apparent in the resilient subjects and an increase of the glutamate: total creatine ratio and N-acetylaspartyl-glutamate:total creatine was observed in the anhedonic subjects. Conclusions: Diffusion kurtosis imaging discloses subtle substructural changes in the hippocampus of CMS-exposed animals irrespective of their anhedonic or resilient nature. In contrast, proton magnetic resonance spectroscopy and magnetic resonance imaging-based shape change analysis of the hippocampus allowed discrimination of these two subtypes of stress sensitivity. Although the precise mechanism discriminating their behavior is yet to be elucidated, the present study underlines the role of the hippocampus in the etiology of depression and the induction of anhedonia. Our results reflect the potency of noninvasive magnetic resonance methods in preclinical settings with key translational benefit to and from the clinic. C1 [Delgado y Palacios, Rafael; Campo, Adriaan; Verhoye, Marleen; Van Audekerke, Johan; Van der Linden, Annemie] Univ Antwerp, Bio Imaging Lab, B-2610 Antwerp, Belgium. [Poot, Dirk; Sijbers, Jan] Univ Antwerp, Vis Lab, B-2610 Antwerp, Belgium. [Henningsen, Kim; Wiborg, Ove] Aarhus Univ Hosp, Ctr Psychiat Res, Risskov, Denmark. [Dijkstra, Jouke] Leiden Univ, Med Ctr, Dept Radiol, Div Image Proc, Leiden, Netherlands. [Benveniste, Helene] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. RP Palacios, RDY (reprint author), Univ Antwerp, Bio Imaging Lab, Univ Pl 1, B-2610 Antwerp, Belgium. EM Rafael.Delgadoypalacios@ua.ac.be RI Dijkstra, Jouke/C-2917-2012; Poot, Dirk /A-1182-2013; Sijbers, Jan/H-4324-2015; Sijbers, Jan/A-5531-2012 OI Dijkstra, Jouke/0000-0002-8666-3731; Poot, Dirk /0000-0003-0656-2963; Sijbers, Jan/0000-0003-4225-2487; Sijbers, Jan/0000-0003-4225-2487 FU EC-FP6-project Diagnostic Molecular Imaging [LSHB-CT-2005-512146]; Flemish Institute [IWT-60838]; Inter University Attraction Poles [IUAP-NIMI-P6/38] FX This study was funded, in part, by the EC-FP6-project Diagnostic Molecular Imaging, LSHB-CT-2005-512146; the Strategisch Basisch Onderzoek Grant (IWT-60838: BRAINSTIM) from the Flemish Institute supporting scientific-technological research in industry Innovatie door Wetenschap en Techniek); and the Inter University Attraction Poles (IUAP-NIMI-P6/38). NR 85 TC 26 Z9 26 U1 5 U2 20 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0006-3223 J9 BIOL PSYCHIAT JI Biol. Psychiatry PD SEP 1 PY 2011 VL 70 IS 5 BP 449 EP 457 DI 10.1016/j.biopsych.2011.05.014 PG 9 WC Neurosciences; Psychiatry SC Neurosciences & Neurology; Psychiatry GA 803JE UT WOS:000293576800015 ER PT J AU Yoo, CS Lu, TF Chen, JH Law, CK AF Yoo, Chun Sang Lu, Tianfeng Chen, Jacqueline H. Law, Chung K. TI Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume: Parametric study SO COMBUSTION AND FLAME LA English DT Article DE HCCI; DNS; n-Heptane reduced mechanism; Thermal stratification; Auto-ignition; Chemical explosive mode analysis ID HYDROGEN JET FLAME; HEATED COFLOW; COUNTERFLOW FLAMES; FRONT PROPAGATION; AIR COUNTERFLOW; HCCI COMBUSTION; AUTOIGNITION; MECHANISMS; REDUCTION; OXIDATION AB The effect of thermal stratification on the ignition of a lean homogeneous n-heptane/air mixture at constant volume and high pressure is investigated by direct numerical simulations (DNS) with a new 58-species reduced kinetic mechanism developed for very lean mixtures from the detailed LLNL mechanism (H.J. Curran et al., Combust. Flame 129 (2002) 253-280). Two-dimensional DNS are performed in a fixed volume with a two-dimensional isotropic velocity spectrum and temperature fluctuations superimposed on the initial scalar fields. The influence of variations in the initial temperature field, imposed by changing the mean and variance of temperature, and the ratio of turbulence to ignition delay timescale on multi-stage ignition of a lean n-heptane/air mixture is studied. In general, the mean heat release rate increases more slowly with increasing thermal stratification regardless of the mean initial temperature. Ignition delay decreases with increasing thermal stratification for high mean initial temperature relative to the negative temperature coefficient (NTC) regime. It is, however, increased with increasing thermal fluctuations for relatively low mean initial temperature resulting from a longer overall ignition delay of the mixture. Displacement speed and Damkohler number analyses reveal that the high degree of thermal stratification induces deflagration rather than spontaneous ignition at the reaction fronts, and hence, the mean heat release rate is smoother subsequent to thermal runaway occurring at the highest temperature regions in the domain. Chemical explosive mode analysis (CEMA) also verifies that mixing counterbalances chemical explosion at the reaction fronts for cases with large temperature fluctuation. It is also found that if the ratio of turbulence to ignition delay timescale is short, resultant diminished scalar fluctuations cause the overall ignition to occur by spontaneous ignition. However, the overall effect of turbulence is small compared to the effect of thermal stratification. These results suggest that the critical degree of thermal stratification for smooth operation of homogeneous charge compression-ignition (HCCI) engines depends on both the mean and fluctuations in initial temperature which should be considered in controlling ignition timing and preventing an overly rapid increase in pressure in HCCI combustion. (C) 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Yoo, Chun Sang] UNIST, Sch Mech & Adv Mat Engn, Ulsan 689798, South Korea. [Lu, Tianfeng] Univ Connecticut, Dept Mech Engn, Storrs, CT 06269 USA. [Chen, Jacqueline H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Law, Chung K.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. RP Yoo, CS (reprint author), UNIST, Sch Mech & Adv Mat Engn, Ulsan 689798, South Korea. EM csyoo@unist.ac.kr RI Yoo, Chun Sang/E-5900-2010; Law, Chung /E-1206-2013; Lu, Tianfeng/D-7455-2014 OI Yoo, Chun Sang/0000-0003-1094-4016; Lu, Tianfeng/0000-0001-7536-1976 FU Ulsan National Institute of Science and Technology (UNIST); National Science Foundation [0904771]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences,; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001198]; US Department of Energy [DE-AC04-94AL85000]; Air Force Office of Scientific Research; Office of Advanced Scientific Computing Research of the US Department of Energy FX The work at Ulsan National Institute of Science and Technology (UNIST) was supported by the 2009 Research Fund of UNIST. The work at University of Connecticut was supported by the National Science Foundation under Grant No. 0904771. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The work at Sandia National Laboratories (SNL) was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, and Office of Advanced Scientific Computing Research of the US Department of Energy. JHC was also supported as part of the Combustion Energy Frontier Research Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001198. SNL is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract DE-AC04-94AL85000. The work at Princeton University was supported by the Air Force Office of Scientific Research under the technical monitoring of Dr. Julian M. Tishkoff, and by the Combustion Energy Frontier Research Center sponsored by the US Department of Energy. NR 61 TC 83 Z9 87 U1 7 U2 63 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD SEP PY 2011 VL 158 IS 9 BP 1727 EP 1741 DI 10.1016/j.combustflame.2011.01.025 PG 15 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 801IM UT WOS:000293431800008 ER PT J AU Munoz, E Kirtman, B Weijer, W AF Munoz, Ernesto Kirtman, Ben Weijer, Wilbert TI Varied representation of the Atlantic Meridional Overturning across multidecadal ocean reanalyses SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Thermohaline circulation; Heat transport; Streamfunction; Physical oceanography; lnterannual variability; Climate dynamics ID DATA ASSIMILATION SYSTEM; HEAT-TRANSPORT; NORTH-ATLANTIC; CIRCULATION; VARIABILITY; CLIMATE; MECHANISMS; CYCLES; MODEL AB The Atlantic Meridional Overturning Circulation (AMOC) is an integral part of the circulation in the Atlantic Ocean. The AMOC is typically characterized by the meridional streamfunction, which is also an indicator of the thermohaline circulation. This paper explores the mean state and long-term variability of the Atlantic meridional streamfunction and Atlantic meridional heat transport from six multidecadal ocean reanalysis. Statistics based on the meridional overturning streamfunction and the meridional heat transport are computed in the same manner across the products, and analyzed. The maximum streamfunction values in the Atlantic are located between 35 degrees N and 50 degrees N for the various ocean reanalyses. The Atlantic heat transport is greater between the Greater Antilles (at about 20 degrees N) and 25 degrees N, similar to the observations. The streamfunction and heat transport have stronger seasonality in the deep tropics. In the North Atlantic the annual harmonic of the streamfunction has greater amplitude in July between 40 degrees N and 50 degrees N. Even though there are differences in the mean strength of the streamfunction and the heat transport, there are robust similarities in their seasonal cycle across ocean reanalyses. Furthermore, although the year-to-year variability of the meridional heat transport is not consistent across products, there are other aspects that are consistent. The relationship between streamfunction and meridional heat transport at 30 degrees N (i.e., in the northern hemisphere) shows greater consistency than that between streamfunction and meridional heat transport at 30 degrees S (i.e., in the southern hemisphere). Also, even though the North Atlantic sea surface temperature (SST) anomalies are greatly consistent, their relationship with the meridional streamfunction is disparate. However, the relationship between North Atlantic SST anomalies and meridional heat transport shows some consistency with respect to the meridional profile. The greater numbers of temperature data assimilated may help in constraining the meridional heat transport more than the streamfunction, thereby indicating the meridional heat transport to be an important field to analyze with respect to observed changes in the AMOC. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Kirtman, Ben] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Coral Gables, FL 33124 USA. [Munoz, Ernesto] New Mexico Consortium, Los Alamos, NM 87544 USA. [Weijer, Wilbert] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Munoz, E (reprint author), New Mexico Consortium, 4200 W Jemez Rd,Suite 301, Los Alamos, NM 87544 USA. EM emunoz@newmexicoconsortium.org RI Weijer, Wilbert/A-7909-2010 FU EU [505539]; National Science Foundation [0928473]; Cooperative Institute for Marine and Atmospheric Studies (CIMAS), a cooperative institute of the University of Miami; National Oceanic and Atmospheric Administration FX We are thankful to the sources of the data from the ocean reanalyses used in this project. The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract number 505539), whose support is gratefully acknowledged. We thank James Carton and Gennady Chepurin for providing the SODA data. We also thank the staff of the KlimaCampus of the University of Hamburg for providing the data from GECCO. The GFDL data was provided by GFDL. This research was carried out in part under the auspices of the Cooperative Institute for Marine and Atmospheric Studies (CIMAS), a cooperative institute of the University of Miami and the National Oceanic and Atmospheric Administration. Some of this research was also supported by a grant from the National Science Foundation, NSF-OCE award 0928473. The findings and conclusions in this report are those of the authors and do not necessarily represent the view of the funding agencies. We thank the comments and suggestions of the anonymous reviewers and of the Guest Editors James Carton and Sirpa Hakkinen. NR 38 TC 29 Z9 29 U1 0 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 EI 1879-0100 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD SEP PY 2011 VL 58 IS 17-18 BP 1848 EP 1857 DI 10.1016/j.dsr2.2010.10.064 PG 10 WC Oceanography SC Oceanography GA 801ZY UT WOS:000293480300010 ER PT J AU Heimbach, P Wunsch, C Ponte, RM Forget, G Hill, C Utke, J AF Heimbach, Patrick Wunsch, Carl Ponte, Rui M. Forget, Gael Hill, Chris Utke, Jean TI Timescales and regions of the sensitivity of Atlantic meridional volume and heat transport: Toward observing system design SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE Meridional overturning circulation; Poleward heat transport; Decadal variability; Adjoint sensitivities; Dual state space; Observing system design; Oceanic teleconnections ID GENERAL-CIRCULATION MODEL; OVERTURNING CIRCULATION; ROSSBY WAVES; DECADAL VARIABILITY; OPTIMAL EXCITATION; OCEAN CIRCULATION; ADJOINT ANALYSIS; TRANSIT-TIME; GLOBAL OCEAN; SEA AB A dual (adjoint) model is used to explore elements of the oceanic state influencing the meridional volume and heat transports (MVT and MHT) in the sub-tropical North Atlantic so as to understand their variability and to provide the elements of useful observational program design. Focus is on the effect of temperature (and salinity) perturbations. On short timescales (months), as expected, the greatest sensitivities are to local disturbances, but as the timescales extend back to a decade and longer, the region of influence expands to occupy much of the Atlantic basin and significant areas of the global ocean, although the influence of any specific point or small area tends to be quite weak. The propagation of information in the dual solution is a clear manifestation of oceanic teleconnections. It takes place through identifiable "dual" Kelvin, Rossby, and continental shelf-waves with an interpretable physics, in particular in terms of dual expressions of barotropic and baroclinic adjustment processes. Among the notable features are the relatively fast timescales of influence (albeit weak in amplitude) between 26 degrees N and the tropical Pacific and Indian Ocean, the absence of dominance of the sub-polar North Atlantic, significant connections to the Agulhas leakage region in the southeast Atlantic on timescales of 5-10 years, and the marked sensitivity propagation of Doppler-shifted Rossby waves in the Southern Ocean on timescales of a decade and beyond. Regional, as well as time-dependent, differences between MVT and MHT sensitivities highlight the lack of a simple correspondence between their variability. Some implications for observing systems for the purpose of climate science are discussed. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Heimbach, Patrick; Wunsch, Carl; Forget, Gael; Hill, Chris] MIT, EAPS, Cambridge, MA 02139 USA. [Ponte, Rui M.] AER, Lexington, MA USA. [Utke, Jean] ANL, Chicago, IL USA. RP Heimbach, P (reprint author), MIT, EAPS, Room 54-1518,77 Massachusetts Ave, Cambridge, MA 02139 USA. EM heimbach@mit.edu; cwunsch@mit.edu; rponte@aer.com; gforget@mit.edu; cnh@mit.edu; utke@mcs.anl.gov RI Heimbach, Patrick/K-3530-2013; OI Heimbach, Patrick/0000-0003-3925-6161; Ponte, Rui/0000-0001-7206-6461 FU National Oceanographic Partnership Program (NOPP); NASA; NSF FX We are grateful for useful comments from Martin Losch, and from two anonymous reviewers. Supported in part through the "Estimating the Circulation and Climate of the Ocean" (ECCO) and the "Atlantic MOC Observing System Studies Using Adjoint Models" projects of National Oceanographic Partnership Program (NOPP) with funding from NASA, and the NSF Collaboration in Mathematics and Geoscience (CMG) project "Uncertainty Quantification in Geophysical State Estimation". Computing support came through facilities at the NASA Advanced Supercomputing (NAS) division and the NCAR Scientific Computing Division (SCD). NR 69 TC 27 Z9 27 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD SEP PY 2011 VL 58 IS 17-18 BP 1858 EP 1879 DI 10.1016/j.dsr2.2010.10.065 PG 22 WC Oceanography SC Oceanography GA 801ZY UT WOS:000293480300011 ER PT J AU Mahajan, S Zhang, R Delworth, TL Zhang, SQ Rosati, AJ Chang, YS AF Mahajan, Salil Zhang, Rong Delworth, Thomas L. Zhang, Shaoqing Rosati, Anthony J. Chang, You-Soon TI Predicting Atlantic meridional overturning circulation (AMOC) variations using subsurface and surface fingerprints SO DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY LA English DT Article DE AMOC fingerprints; AMOC prediction; AMOC variability; GFDL CM2.1 ID THERMOHALINE CIRCULATION; MULTIDECADAL VARIABILITY; CLIMATE; PREDICTABILITY AB Recent studies have suggested that the leading modes of North Atlantic subsurface temperature (T-sub) and sea surface height (SSH) anomalies are induced by Atlantic meridional overturning circulation (AMOC) variations and can be used as fingerprints of AMOC variability. Based on these fingerprints of the AMOC in the GFDL CM2.1 coupled climate model, a linear statistical predictive model of observed fingerprints of AMOC variability is developed in this study. The statistical model predicts a weakening of AMOC strength in a few years after its peak around 2005. Here, we show that in the GFDL coupled climate model assimilated with observed subsurface temperature data, including recent Argo network data (2003-2008), the leading mode of the North Atlantic T-sub anomalies is similar to that found with the objectively analyzed T-sub data and highly correlated with the leading mode of altimetry SSH anomalies for the period 1993-2008. A statistical auto-regressive (AR) model is fit to the time-series of the leading mode of objectively analyzed detrended North Atlantic T-sub anomalies (1955-2003) and is applied to assimilated T-sub and altimetry SSH anomalies to make predictions. A similar statistical AR model, fit to the time-series of the leading mode of modeled T-sub anomalies from the 1000-year GFDL CM2.1 control simulation, is applied to predict modeled T-sub, SSH, and AMOC anomalies. The two AR models show comparable skills in predicting observed T-sub and modeled T-sub, SSH and AMOC variations. Published by Elsevier Ltd. C1 [Mahajan, Salil] Princeton Univ, Atmospher & Ocean Sci Program, Princeton, NJ 08544 USA. [Zhang, Rong; Delworth, Thomas L.; Zhang, Shaoqing; Rosati, Anthony J.; Chang, You-Soon] Geophys Fluid Dynam Lab, Princeton, NJ USA. RP Mahajan, S (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. EM mahajans@ornl.gov RI Delworth, Thomas/C-5191-2014; Zhang, Rong/D-9767-2014; OI Zhang, Rong/0000-0002-8493-6556; Mahajan, Salil/0000-0001-5767-8590 FU Princeton University; GFDL/NOAA; CNES FX Mahajan S. is supported by the Visiting Scientist Program jointly sponsored by Princeton University and GFDL/NOAA. Chang Y.-S. is supported by the GFDL/NOAA Visiting Scientist Program administered by UCAR. The altimeter products were produced by SSALTO/DUACS and distributed by AVISO with support from CNES. NR 26 TC 15 Z9 15 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0645 EI 1879-0100 J9 DEEP-SEA RES PT II JI Deep-Sea Res. Part II-Top. Stud. Oceanogr. PD SEP PY 2011 VL 58 IS 17-18 BP 1895 EP 1903 DI 10.1016/j.dsr2.2010.10.067 PG 9 WC Oceanography SC Oceanography GA 801ZY UT WOS:000293480300013 ER PT J AU Bremer, PT Weber, GH Tierny, J Pascucci, V Day, MS Bell, JB AF Bremer, Peer-Timo Weber, Gunther H. Tierny, Julien Pascucci, Valerio Day, Marcus S. Bell, John B. TI Interactive Exploration and Analysis of Large-Scale Simulations Using Topology-Based Data Segmentation SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article DE Topology; Morse theory; merge trees; segmentation; streaming algorithms; combustion ID MORSE-SMALE COMPLEXES; TURBULENT FLAMES; CONTOUR TREES; TRACKING; SWIRL; VISUALIZATION; FEATURES AB Large-scale simulations are increasingly being used to study complex scientific and engineering phenomena. As a result, advanced visualization and data analysis are also becoming an integral part of the scientific process. Often, a key step in extracting insight from these large simulations involves the definition, extraction, and evaluation of features in the space and time coordinates of the solution. However, in many applications, these features involve a range of parameters and decisions that will affect the quality and direction of the analysis. Examples include particular level sets of a specific scalar field, or local inequalities between derived quantities. A critical step in the analysis is to understand how these arbitrary parameters/decisions impact the statistical properties of the features, since such a characterization will help to evaluate the conclusions of the analysis as a whole. We present a new topological framework that in a single-pass extracts and encodes entire families of possible features definitions as well as their statistical properties. For each time step we construct a hierarchical merge tree a highly compact, yet flexible feature representation. While this data structure is more than two orders of magnitude smaller than the raw simulation data it allows us to extract a set of features for any given parameter selection in a postprocessing step. Furthermore, we augment the trees with additional attributes making it possible to gather a large number of useful global, local, as well as conditional statistic that would otherwise be extremely difficult to compile. We also use this representation to create tracking graphs that describe the temporal evolution of the features over time. Our system provides a linked-view interface to explore the time-evolution of the graph interactively alongside the segmentation, thus making it possible to perform extensive data analysis in a very efficient manner. We demonstrate our framework by extracting and analyzing burning cells from a large-scale turbulent combustion simulation. In particular, we show how the statistical analysis enabled by our techniques provides new insight into the combustion process. C1 [Bremer, Peer-Timo] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp CASC, Livermore, CA 94550 USA. [Bremer, Peer-Timo] Univ Utah, Sci Comp & Imaging SCI Inst, Salt Lake City, UT 84112 USA. [Weber, Gunther H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Visualizat Grp, Computat Res Div CRD, Berkeley, CA 94720 USA. [Weber, Gunther H.] Univ Calif Davis, Inst Data Anal & Visualizat, Dept Comp Sci, Davis, CA 95616 USA. [Tierny, Julien] French Natl Ctr Sci Res CNRS, Paris, France. [Tierny, Julien] Telecom ParisTech, Paris, France. [Pascucci, Valerio] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA. [Day, Marcus S.; Bell, John B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Computat Sci & Engn CCSE, Computat Res Div CRD, Berkeley, CA 94720 USA. RP Bremer, PT (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp CASC, L-560,7000 East Ave, Livermore, CA 94550 USA. EM bremer5@llnl.gov; ghweber@lbl.gov; tierny@telecom-paristech.fr; pascucci@sci.utah.edu; MSDay@lbl.gov; JBBell@lbl.gov OI Weber, Gunther/0000-0002-1794-1398 FU US Department of Energy, Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-447214]; Office of Advanced Scientific Computing Research, Office of Science, of the US Department of Energy [DE-AC02-05CH11231]; DOE Office of Mathematics, Information, and Computational Sciences under the US Department of Energy [DE-AC02-05CH11231]; NERSC; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-447214. This work was supported by: The Director, Office of Advanced Scientific Computing Research, Office of Science, of the US Department of Energy under Contract No. DE-AC02-05CH11231 through the Scientific Discovery through Advanced Computing (SciDAC) program's Visualization and Analytics Center for Enabling Technologies (VACET); The SciDAC Program of the DOE Office of Mathematics, Information, and Computational Sciences under the US Department of Energy under contract No. DE-AC02-05CH11231. Computational resources have been made available on the Fraklin machine at NERSC as part of an INCITE award and on the Columbia machine at NASA as part of an National Leadership Class System allocation; and The National Science Foundation (NSF) through the Topology-based Methods for Analysis and Visualization of Noisy Data project. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 65 TC 18 Z9 18 U1 1 U2 8 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 EI 1941-0506 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD SEP PY 2011 VL 17 IS 9 BP 1307 EP 1324 DI 10.1109/TVCG.2010.253 PG 18 WC Computer Science, Software Engineering SC Computer Science GA 801QP UT WOS:000293455600011 PM 21149885 ER PT J AU Horgan, FG AF Horgan, F. G. TI Outbreak of an invasive paropsine beetle in south-west Ireland: preference, performance and damage to Eucalyptus SO JOURNAL OF APPLIED ENTOMOLOGY LA English DT Article DE Paropsisterna gloriosa Blackburn; Chrysomelidae; Coleoptera; cut-foliage industry; Eucalyptus spp.; invasive species ID LEAF BEETLE; POPULATION-DYNAMICS; OLIVIER COLEOPTERA; CHRYSOMELIDAE; JUVENILE; GLOBULUS; LEAVES; OVIPOSITION; PROTECTION; SURVIVAL AB An exotic, paropsine beetle - Paropsisterna nr. gloriosa Blackburn - occurred at high densities in south-west Ireland in 2007. In bioassays, adults and larvae fed on foliage from a variety of eucalypt species. Eggs and neonates occurred only in association with new foliage. Despite their ability to consume old foliage, adult beetles had a high preference for new leaves with low specific leaf weights (softer leaves). In choice tests, adults that depleted new foliage of their preferred host, moved to new foliage of a second host but not older foliage of the preferred host. A 2008 survey of southern Ireland indicated that P. nr. gloriosa was restricted to County Kerry, largely associated with foliage plantations in that county. The distribution of damage suggests that the initial spread of the beetle was facilitated by foliage-trade activities. Eucalyptus parvula L.A.S. Johnson & K.D. Hill was the most heavily damaged species at many plantations. Eucalyptus pulverulenta Sims and Eucalyptus cordata La-bill. were highly resistant to the beetle as indicated by low levels of damage in the field and reduced fitness of larvae in feeding trials. Nevertheless, at the plantation with the highest overall levels of damage, adult beetles moved to feed on E. pulverulenta. A progressive dispersal from plantations also caused slight damage to neighbouring ornamental eucalypts. Clear preferences by P. nr. gloriosa for new foliage, irrespective of eucalypt species, suggests that pollarding - the removal of top branches to produce dense juvenile foliage - accelerated population build-up during 2007. C1 [Horgan, F. G.] Oak Pk Res Ctr, Teagasc Agri Res & Advisory Author, Carlow, County Carlow, Ireland. RP Horgan, FG (reprint author), Int Rice Res Inst, Crop & Environm Sci Div, DAPO Box 7777, Manila, Philippines. EM f.horgan@cgiar.org FU Irish Department of Agriculture, Food and Fisheries [07 533] FX I thank Andy Whelton (Teagasc) - who collected the first specimens at site KM1 and helped sample plantations in Kerry and Limerick, and Chris Reid (Australian Museum, Sydney) who identified the beetle. Pauline Martin, Andreas Frohlich and Ritchie Hackett (Teagasc) for leaf analyses; David Thompson (Coillte) for help in sampling Coillte forests, and all property owners for access to their eucalypt stands. I am grateful to three anonymous reviewers for helpful comments. This project was partially funded through a Research Stimulus Grant (07 533) from the Irish Department of Agriculture, Food and Fisheries. NR 25 TC 6 Z9 6 U1 1 U2 10 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0931-2048 J9 J APPL ENTOMOL JI J. Appl. Entomol. PD SEP PY 2011 VL 135 IS 8 BP 621 EP 633 DI 10.1111/j.1439-0418.2010.01589.x PG 13 WC Entomology SC Entomology GA 801MT UT WOS:000293444200006 ER PT J AU Helton, JC Pilch, M AF Helton, Jon C. Pilch, Martin TI Quantification of Margins and Uncertainties SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Editorial Material ID REACTOR SAFETY MARGINS; SENSITIVITY ANALYSIS TECHNIQUES; PROBABILISTIC RISK ASSESSMENTS; RADIOACTIVE-WASTE DISPOSAL; LARGE-SCALE SYSTEMS; PERFORMANCE ASSESSMENTS; COMPLEX-SYSTEMS; STATISTICAL-METHODS; INPUT VARIABLES; COMPUTER-MODELS C1 [Helton, Jon C.] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA. [Pilch, Martin] Sandia Natl Labs, Dept 1514, Albuquerque, NM 87185 USA. RP Helton, JC (reprint author), Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA. EM jchelto@sandia.gov NR 107 TC 7 Z9 8 U1 0 U2 5 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD SEP PY 2011 VL 96 IS 9 SI SI BP 959 EP 964 DI 10.1016/j.ress.2011.03.015 PG 6 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 797ES UT WOS:000293107900001 ER PT J AU Pilch, M Trucano, TG Helton, JC AF Pilch, Martin Trucano, Timothy G. Helton, Jon C. TI Ideas underlying the Quantification of Margins and Uncertainties SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Aleatory uncertainty; Epistemic uncertainty; Margins; Performance assessment; QMU; Reliability; Risk analysis ID PROBABILISTIC RISK-ASSESSMENT; RADIOACTIVE-WASTE DISPOSAL; ISOLATION PILOT-PLANT; SENSITIVITY-ANALYSIS; PERFORMANCE ASSESSMENTS; COMPLEX-SYSTEMS; EPISTEMIC UNCERTAINTY; SAFETY DECISIONS; YUCCA MOUNTAIN; PROPAGATION AB Key ideas underlying the application of Quantification of Margins and Uncertainties (QMU) to nuclear weapons stockpile lifecycle decisions are described. While QMU is a broad process and methodology for generating critical technical information to be used in U.S. nuclear weapon stockpile management, this paper emphasizes one component, which is information produced by computational modeling and simulation. In particular, the following topics are discussed: (i) the key principles of developing QMU information in the form of Best Estimate Plus Uncertainty, (ii) the need to separate aleatory and epistemic uncertainty in QMU, and (iii) the properties of risk-informed decision making (MUM) that are best suited for effective application of QMU. The paper is written at a high level, but provides an extensive bibliography of useful papers for interested readers to deepen their understanding of the presented ideas. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Pilch, Martin] Sandia Natl Labs, Dept 1514, Albuquerque, NM 87185 USA. [Trucano, Timothy G.] Sandia Natl Labs, Dept 1411, Albuquerque, NM 87185 USA. [Helton, Jon C.] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA. RP Pilch, M (reprint author), Sandia Natl Labs, Dept 1514, POB 5800, Albuquerque, NM 87185 USA. EM mpilch@sandia.gov FU U.S. Department of Energy's (DOE's) National Nuclear Security Administration [DE-AC04-94AL85000] FX Work performed at Sandia National Laboratories (SNL), which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article, or allow others to do so, for United States Government purposes. The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the DOE or SNL NR 95 TC 9 Z9 11 U1 0 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD SEP PY 2011 VL 96 IS 9 SI SI BP 965 EP 975 DI 10.1016/j.ress.2011.03.016 PG 11 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 797ES UT WOS:000293107900002 ER PT J AU Helton, JC AF Helton, Jon C. TI Quantification of margins and uncertainties: Conceptual and computational basis SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Aleatory uncertainty; Epistemic uncertainty; Performance assessment; Quantification of margins and uncertainties; Risk assessment; Sensitivity analysis; Uncertainty analysis ID REACTOR SAFETY MARGINS; SENSITIVITY ANALYSIS TECHNIQUES; RADIOACTIVE-WASTE DISPOSAL; RESPONSE-SURFACE METHODOLOGY; PREDICTOR SMOOTHING METHODS; 1996 PERFORMANCE ASSESSMENT; SAMPLING-BASED METHODS; ISOLATION PILOT-PLANT; LARGE-SCALE SYSTEMS; COMPUTER-MODELS AB In 2001, the National Nuclear Security Administration of the U.S. Department of Energy in conjunction with the national security laboratories (i.e., Los Alamos National Laboratory, Lawrence Livermore National Laboratory and Sandia National Laboratories) initiated development of a process designated Quantification of Margins and Uncertainties (QMU) for the use of risk assessment methodologies in the certification of the reliability and safety of the nation's nuclear weapons stockpile. This presentation discusses and illustrates the conceptual and computational basis of QMU in analyses that use computational models to predict the behavior of complex systems. The following topics are considered: (i) the role of aleatory and epistemic uncertainty in QMU, (ii) the representation of uncertainty with probability, (iii) the probabilistic representation of uncertainty in QMU analyses involving only epistemic uncertainty, and (iv) the probabilistic representation of uncertainty in QMU analyses involving aleatory and epistemic uncertainty. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Helton, Jon C.] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA. RP Helton, JC (reprint author), Sandia Natl Labs, Dept 1545, MS 0748, Albuquerque, NM 87185 USA. EM jchelto@sandia.gov RI Barley, Kamal/F-9579-2011 OI Barley, Kamal/0000-0003-1874-9813 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Work performed at Sandia National Laboratories (SNL), which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract no. DE-AC04-94AL85000. The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article, or allow others to do so, for United States Government purposes. Review provided by LP. Swiler and T.G. Trucano at SNL and by K. Sentz at Los Alamos National Laboratory. Technical support on graphics provided by J.D. Johnson at ProStat. Editorial support provided by F. Puffer and J. Ripple of Tech Reps, a division of Ktech Corporation. This presentation is an independent product of the author and does not necessarily reflect views held by either SNL or the U.S. Department of Energy. NR 115 TC 26 Z9 30 U1 1 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD SEP PY 2011 VL 96 IS 9 SI SI BP 976 EP 1013 DI 10.1016/j.ress.2011.03.017 PG 38 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 797ES UT WOS:000293107900003 ER PT J AU Helton, JC Johnson, JD Sallaberry, CJ AF Helton, Jon C. Johnson, Jay D. Sallaberry, Cedric J. TI Quantification of margins and uncertainties: Example analyses from reactor safety and radioactive waste disposal involving the separation of aleatory and epistemic uncertainty SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Aleatory uncertainty; Epistemic uncertainty; Performance assessment; Quantification of margins and uncertainties; Radioactive waste disposal; Reactor safety; Risk assessment; Uncertainty analysis ID ISOLATION PILOT-PLANT; 1996 PERFORMANCE ASSESSMENT; PROBABILISTIC RISK ASSESSMENT; CUMULATIVE DISTRIBUTION-FUNCTIONS; SENSITIVITY ANALYSIS TECHNIQUES; NUCLEAR-REGULATORY-COMMISSION; PREDICTOR SMOOTHING METHODS; SAMPLING-BASED METHODS; LARGE-SCALE SYSTEMS; COMPLEX-SYSTEMS AB In 2001, the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE) in conjunction with the national security laboratories (i.e., Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and Sandia National Laboratories) initiated development of a process designated quantification of margins and uncertainties (QMU) for the use of risk assessment methodologies in the certification of the reliability and safety of the nation's nuclear weapons stockpile. A previous presentation, "Quantification of Margins and Uncertainties: Conceptual and Computational Basis," describes the basic ideas that underlie QMU and illustrates these ideas with two notional examples. The basic ideas and challenges that underlie NNSA's mandate for QMU are present, and have been successfully addressed, in a number of past analyses for complex systems. To provide perspective on the implementation of a requirement for QMU in the analysis of a complex system, three past analyses are presented as examples: (i) the probabilistic risk assessment carried out for the Surry Nuclear Power Station as part of the U.S. Nuclear Regulatory Commission's (NRC's) reassessment of the risk from commercial nuclear power in the United States (i.e., the NUREG-1150 study), (ii) the performance assessment for the Waste Isolation Pilot Plant carried out by the DOE in support of a successful compliance certification application to the U.S. Environmental Agency, and (iii) the performance assessment for the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, carried out by the DOE in support of a license application to the NRC. Each of the preceding analyses involved a detailed treatment of uncertainty and produced results used to establish compliance with specific numerical requirements on the performance of the system under study. As a result, these studies illustrate the determination of both margins and the uncertainty in margins in real analyses. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Helton, Jon C.] Sandia Natl Labs, Dept 1545, Albuquerque, NM 87185 USA. [Helton, Jon C.] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA. [Johnson, Jay D.] ProStat, Mesa, AZ 85204 USA. RP Helton, JC (reprint author), Sandia Natl Labs, Dept 1545, MS 0748, Albuquerque, NM 87185 USA. EM jchelto@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Work performed at Sandia National Laboratories (SNL), which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract no. DE-AC04-94AL85000. The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article, or allow others to do so, for United States Government purposes. Review provided by LP. Swiler and T.G. Trucano at SNL and by L.P Sentz at Los Alamos National Laboratory. Editorial support provided by F. Puffer and J. Ripple of Tech Reps, a division of Ktech Corporation. This presentation is an independent product of the authors and does not necessarily reflect views held by either SNL or the U.S. Department of Energy. NR 103 TC 18 Z9 19 U1 1 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 EI 1879-0836 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD SEP PY 2011 VL 96 IS 9 SI SI BP 1014 EP 1033 DI 10.1016/j.ress.2011.02.012 PG 20 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 797ES UT WOS:000293107900004 ER PT J AU Helton, JC Johnson, JD AF Helton, Jon C. Johnson, Jay D. TI Quantification of margins and uncertainties: Alternative representations of epistemic uncertainty SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Aleatory uncertainty; Epistemic uncertainty; Evidence theory; Interval analysis; Possibility theory; Probability theory; Quantification of margins and uncertainties; Uncertainty analysis ID RISK ANALYSIS; PERFORMANCE ASSESSMENTS; SENSITIVITY-ANALYSIS; MODEL PREDICTIONS; BELIEF FUNCTIONS; COMPLEX-SYSTEMS; FUZZY-SETS; PROBABILITY; VARIABILITY; KNOWLEDGE AB In 2001, the National Nuclear Security Administration of the U.S. Department of Energy in conjunction with the national security laboratories (i.e., Los Alamos National Laboratory, Lawrence Livermore National Laboratory and Sandia National Laboratories) initiated development of a process designated Quantification of Margins and Uncertainties (QMU) for the use of risk assessment methodologies in the certification of the reliability and safety of the nation's nuclear weapons stockpile. A previous presentation, "Quantification of Margins and Uncertainties: Conceptual and Computational Basis," describes the basic ideas that underlie QMU and illustrates these ideas with two notional examples that employ probability for the representation of aleatory and epistemic uncertainty. The current presentation introduces and illustrates the use of interval analysis, possibility theory and evidence theory as alternatives to the use of probability theory for the representation of epistemic uncertainty in QMU-type analyses. The following topics are considered: the mathematical structure of alternative representations of uncertainty, alternative representations of epistemic uncertainty in QMU analyses involving only epistemic uncertainty, and alternative representations of epistemic uncertainty in QMU analyses involving a separation of aleatory and epistemic uncertainty. Analyses involving interval analysis, possibility theory and evidence theory are illustrated with the same two notional examples used in the presentation indicated above to illustrate the use of probability to represent aleatory and epistemic uncertainty in QMU analyses. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Helton, Jon C.] Arizona State Univ, Dept Math & Stat, Tempe, AZ 85287 USA. [Johnson, Jay D.] ProStat, Mesa, AZ 85204 USA. RP Helton, JC (reprint author), Sandia Natl Labs, Dept 1544, MS 0748, Albuquerque, NM 87185 USA. EM jchelto@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Work performed at Sandia National Laboratories (SNL), which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The United States Government retains and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this article, or allow others to do so, for United States Government purposes. Review provided by LP. Swiler and T.G. Trucano at SNL and by K. Sentz at Los Alamos National Laboratory. Editorial support provided by F. Puffer and J. Ripple of Tech Reps, a division of Ktech Corporation. This presentation is an independent product of the authors and does not necessarily reflect views held by either SNL or the U.S. Department of Energy. NR 82 TC 25 Z9 26 U1 2 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 EI 1879-0836 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD SEP PY 2011 VL 96 IS 9 SI SI BP 1034 EP 1052 DI 10.1016/j.ress.2011.02.013 PG 19 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 797ES UT WOS:000293107900005 ER PT J AU Wallstrom, TC AF Wallstrom, Timothy C. TI Quantification of margins and uncertainties: A probabilistic framework SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE QMU; Graphical model; Bayesian network; System reliability ID BAYESIAN NETWORKS; SYSTEMS AB Quantification of margins and uncertainties (QMU) was originally introduced as a framework for assessing confidence in nuclear weapons, and has since been extended to more general complex systems. We show that when uncertainties are strictly bounded, QMU is equivalent to a graphical model, provided confidence is identified with reliability one. In the more realistic case that uncertainties have long tails, we find that QMU confidence is not always a good proxy for reliability, as computed from the graphical model. We explore the possibility of defining QMU in terms of the graphical model, rather than through the original procedures. The new formalism, which we call probabilistic QMU, or pQMU, is fully probabilistic and mathematically consistent, and shows how QMU may be interpreted within the framework of system reliability theory. (C) 2011 Elsevier Ltd. All rights reserved. C1 Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Wallstrom, TC (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM tcw@lanl.gov OI Wallstrom, Timothy/0000-0002-9295-2441 FU Department of Energy [DE-AC52-06NA25396]; NNSA's Advanced Simulation and Computing (ASC) FX I thank Mark Chadwick, Jon Helton, Dave Higdon, and David Sharp for helpful comments, Jim Glimm for the invitation to the Stanford conference where these ideas were first presented 1181, and two anonymous referees, whose criticisms greatly improved the paper. I acknowledge support from the Department of Energy under contract DE-AC52-06NA25396, and from NNSA's Advanced Simulation and Computing (ASC), Verification and Validation Program. NR 29 TC 3 Z9 3 U1 2 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD SEP PY 2011 VL 96 IS 9 SI SI BP 1053 EP 1062 DI 10.1016/j.ress.2011.01.001 PG 10 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 797ES UT WOS:000293107900006 ER PT J AU Anderson-Cook, CM Crowder, S Huzurbazar, AV Lorio, J Ringland, J Wilson, AG AF Anderson-Cook, Christine M. Crowder, Stephen Huzurbazar, Aparna V. Lorio, John Ringland, James Wilson, Alyson G. TI Quantifying reliability uncertainty from catastrophic and margin defects: A proof of concept SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Method of moments; Bayesian analysis; Bootstrap; System reliability; Catastrophic and margins failure modes AB We aim to analyze the effects of component level reliability data, including both catastrophic failures and margin failures, on system level reliability. While much work has been done to analyze margins and uncertainties at the component level, a gap exists in relating this component level analysis to the system level. We apply methodologies for aggregating uncertainty from component level data to quantify overall system uncertainty. We explore three approaches towards this goal, the classical Method of Moments (MOM), Bayesian, and Bootstrap methods. These three approaches are used to quantify the uncertainty in reliability for a system of mixed series and parallel components for which both pass/fail and continuous margin data are available. This paper provides proof of concept that uncertainty quantification methods can be constructed and applied to system reliability problems. In addition, application of these methods demonstrates that the results from the three fundamentally different approaches can be quite comparable. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Crowder, Stephen; Lorio, John] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Anderson-Cook, Christine M.; Huzurbazar, Aparna V.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. [Ringland, James] Sandia Natl Labs, Livermore, CA 94550 USA. [Wilson, Alyson G.] Iowa State Univ, Dept Stat, Ames, IA 50011 USA. RP Lorio, J (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jflorio@sandia.gov OI Wilson, Alyson/0000-0003-1461-6212 FU United States Department of Energy [W-7405-ENG-36]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was performed under the auspices of the Los Alamos National Laboratory, operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36.; Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 23 TC 0 Z9 0 U1 0 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD SEP PY 2011 VL 96 IS 9 SI SI BP 1063 EP 1075 DI 10.1016/j.ress.2010.10.006 PG 13 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 797ES UT WOS:000293107900007 ER PT J AU Wilson, AG Anderson-Cook, CM Huzurbazar, AV AF Wilson, Alyson G. Anderson-Cook, Christine M. Huzurbazar, Aparna V. TI A case study for quantifying system reliability and uncertainty SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Bayesian; Multilevel data; Reliability block diagram; Monte Carlo ID QUANTIFICATION AB The ability to estimate system reliability with an appropriate measure of associated uncertainty is important for understanding its expected performance over time. Frequently, obtaining full-system data is prohibitively expensive, impractical, or not permissible. Hence, methodology which allows for the combination of different types of data at the component or subsystem levels can allow for improved estimation at the system level. We apply methodologies for aggregating uncertainty from component-level data to estimate system reliability and quantify its overall uncertainty. This paper provides a proof-of-concept that uncertainty quantification methods using Bayesian methodology can be constructed and applied to system reliability problems for a system with both series and parallel structures. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Wilson, Alyson G.] Iowa State Univ, Ames, IA 50011 USA. [Anderson-Cook, Christine M.; Huzurbazar, Aparna V.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Wilson, AG (reprint author), Iowa State Univ, Ames, IA 50011 USA. EM agw@iastate.edu; c-and-cook@lanl.gov; aparna@lanl.gov OI Wilson, Alyson/0000-0003-1461-6212 NR 27 TC 8 Z9 9 U1 2 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD SEP PY 2011 VL 96 IS 9 SI SI BP 1076 EP 1084 DI 10.1016/j.ress.2010.09.012 PG 9 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 797ES UT WOS:000293107900008 ER PT J AU Eldred, MS Swiler, LP Tang, G AF Eldred, M. S. Swiler, L. P. Tang, G. TI Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Uncertainty quantification; Epistemic; Aleatory; Polynomial chaos expansion; Stochastic collocation; Interval optimization; Second-order probability; Dempster-Shafer evidence theory ID DIFFERENTIAL-EQUATIONS; NUMERICAL-INTEGRATION; GLOBAL OPTIMIZATION; POLYNOMIAL CHAOS; SPARSE GRIDS; REPRESENTATION; PREDICTIONS; SYSTEMS; MODELS; BOUNDS AB Uncertainty quantification (UQ) is the process of determining the effect of input uncertainties on response metrics of interest. These input uncertainties may be characterized as either aleatory uncertainties, which are irreducible variabilities inherent in nature, or epistemic uncertainties, which are reducible uncertainties resulting from a lack of knowledge. When both aleatory and epistemic uncertainties are mixed, it is desirable to maintain a segregation between aleatory and epistemic sources such that it is easy to separate and identify their contributions to the total uncertainty. Current production analyses for mixed UQ employ the use of nested sampling, where each sample taken from epistemic distributions at the outer loop results in an inner loop sampling over the aleatory probability distributions. This paper demonstrates new algorithmic capabilities for mixed UQ in which the analysis procedures are more closely tailored to the requirements of aleatory and epistemic propagation. Through the combination of stochastic expansions for computing statistics and interval optimization for computing bounds, interval-valued probability, second-order probability, and Dempster-Shafer evidence theory approaches to mixed UQ are shown to be more accurate and efficient than previously achievable. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Eldred, M. S.; Swiler, L. P.] Sandia Natl Labs, Optimizat & Uncertainty Quantificat Dept, Albuquerque, NM 87185 USA. [Tang, G.] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. RP Eldred, MS (reprint author), Sandia Natl Labs, Optimizat & Uncertainty Quantificat Dept, POB 5800, Albuquerque, NM 87185 USA. EM mseldre@sandia.gov; lpswile@sandia.gov; garytang@stanford.edu FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 61 TC 37 Z9 39 U1 1 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD SEP PY 2011 VL 96 IS 9 SI SI BP 1092 EP 1113 DI 10.1016/j.ress.2010.11.010 PG 22 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 797ES UT WOS:000293107900010 ER PT J AU Urbina, A Mahadevan, S Paez, TL AF Urbina, Angel Mahadevan, Sankaran Paez, Thomas L. TI Quantification of margins and uncertainties of complex systems in the presence of aleatoric and epistemic uncertainty SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Margin and uncertainty quantification; Aleatoric and epistemic uncertainty; Bayes networks ID BAYESIAN NETWORKS AB Performance assessment of complex systems is ideally done through full system-level testing which is seldom available for high consequence systems. Further, a reality of engineering practice is that some features of system behavior are not known from experimental data, but from expert assessment, only. On the other hand, individual component data, which are part of the full system are more readily available. The lack of system level data and the complexity of the system lead to a need to build computational models of a system in a hierarchical or building block approach (from simple components to the full system). The models are then used for performance prediction in lieu of experiments, to estimate the confidence in the performance of these systems. Central to this are the need to quantify the uncertainties present in the system and to compare the system response to an expected performance measure. This is the basic idea behind Quantification of Margins and Uncertainties (QMU). QMU is applied in decision making-there are many uncertainties caused by inherent variability (aleatoric) in materials, configurations, environments, etc., and lack of information (epistemic) in models for deterministic and random variables that influence system behavior and performance. This paper proposes a methodology to quantify margins and uncertainty in the presence of both aleatoric and epistemic uncertainty. It presents a framework based on Bayes networks to use available data at multiple levels of complexity (i.e. components, subsystem, etc.) and demonstrates a method to incorporate epistemic uncertainty given in terms of intervals on a model parameter. Published by Elsevier Ltd. C1 [Urbina, Angel] Sandia Natl Labs, UQ & Model Validat Dept, Albuquerque, NM 87185 USA. [Mahadevan, Sankaran] Vanderbilt Univ, Nashville, TN USA. [Paez, Thomas L.] Thomas Paez Consulting, Durango, CO USA. RP Urbina, A (reprint author), Sandia Natl Labs, UQ & Model Validat Dept, MS 0828, Albuquerque, NM 87185 USA. EM aurbina@sandia.gov FU Sandia National Laboratories [BG-7732]; Sandia's Doctoral Studies Program; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This study was partly supported by funds from Sandia National Laboratories to Vanderbilt University (Contract no. BG-7732) and partly through Sandia's Doctoral Studies Program for the first author. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 31 TC 19 Z9 19 U1 4 U2 10 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD SEP PY 2011 VL 96 IS 9 SI SI BP 1114 EP 1125 DI 10.1016/j.ress.2010.08.010 PG 12 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 797ES UT WOS:000293107900011 ER PT J AU Sentz, K Ferson, S AF Sentz, Kari Ferson, Scott TI Probabilistic bounding analysis in the Quantification of Margins and Uncertainties SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Quantification of Margins and Uncertainties; QMU; Probability bounds analysis; Dempster-Shafer theory; Uncertainty analysis ID RANDOM SET-THEORY; EPISTEMIC UNCERTAINTY; MODEL PREDICTIONS; REPRESENTATION; VARIABILITY; SENSITIVITY; ASSESSMENTS AB The current challenge of nuclear weapon stockpile certification is to assess the reliability of complex, high-consequent, and aging systems without the benefit of full-system test data. In the absence of full-system testing, disparate kinds of information are used to inform certification assessments such as archival data, experimental data on partial systems, data on related or similar systems, computer models and simulations, and expert knowledge. In some instances, data can be scarce and information incomplete. The challenge of Quantification of Margins and Uncertainties (QMU) is to develop a methodology to support decision-making in this informational context. Given the difficulty presented by mixed and incomplete information, we contend that the uncertainty representation for the QMU methodology should be expanded to include more general characterizations that reflect imperfect information. One type of generalized uncertainty representation, known as probability bounds analysis, constitutes the union of probability theory and interval analysis where a class of distributions is defined by two bounding distributions. This has the advantage of rigorously bounding the uncertainty when inputs are imperfectly known. We argue for the inclusion of probability bounds analysis as one of many tools that are relevant for QMU and demonstrate its usefulness as compared to other methods in a reliability example with imperfect input information. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Sentz, Kari] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ferson, Scott] Appl Biomath, Setauket, NY 11733 USA. RP Sentz, K (reprint author), Los Alamos Natl Lab, POB 1663,MS F609, Los Alamos, NM 87545 USA. EM ksentz@lanl.gov NR 56 TC 15 Z9 17 U1 2 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 EI 1879-0836 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD SEP PY 2011 VL 96 IS 9 SI SI BP 1126 EP 1136 DI 10.1016/j.ress.2011.02.014 PG 11 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 797ES UT WOS:000293107900012 ER PT J AU Iaccarino, G Pecnik, R Glimm, J Sharp, D AF Iaccarino, Gianluca Pecnik, Rene Glimm, James Sharp, David TI A QMU approach for characterizing the operability limits of air-breathing hypersonic vehicles SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE QMU; Hypersonics; Scramjet; Intervals ID QUANTIFICATION; UNCERTAINTY AB The operability limits of a supersonic combustion engine for an air-breathing hypersonic vehicle are characterized using numerical simulations and an uncertainty quantification methodology. The time-dependent compressible flow equations with heat release are solved in a simplified configuration. Verification, calibration and validation are carried out to assess the ability of the model to reproduce the flow/thermal interactions that occur when the engine unstarts due to thermal choking. quantification of margins and uncertainty (QMU) is used to determine the safe operation region for a range of fuel flow rates and combustor geometries. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Iaccarino, Gianluca; Pecnik, Rene] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. [Glimm, James] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Sharp, David] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Iaccarino, G (reprint author), Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA. EM giaccarino@gmail.com RI Iaccarino, Gianluca/H-5284-2011 FU Department of Energy [National Nuclear Security Administration] [NA28614] FX This material is based upon work supported by the Department of Energy [National Nuclear Security Administration] under Award number NA28614. NR 22 TC 5 Z9 5 U1 0 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD SEP PY 2011 VL 96 IS 9 SI SI BP 1150 EP 1160 DI 10.1016/j.ress.2010.06.030 PG 11 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 797ES UT WOS:000293107900014 ER PT J AU Williams, BJ Loeppky, JL Moore, LM Macklem, MS AF Williams, Brian J. Loeppky, Jason L. Moore, Leslie M. Macklem, Mason S. TI Batch sequential design to achieve predictive maturity with calibrated computer models SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Computer experiment; Gaussian process; Calibration Sequential experiment design; Expected improvement; Maximin distance; Entropy ID BLACK-BOX FUNCTIONS; GLOBAL OPTIMIZATION; SIMULATIONS; VARIABLES; OUTPUT AB Sequential experiment design strategies have been proposed for efficiently augmenting initial designs to solve many problems of interest to computer experimenters, including optimization, contour and threshold estimation, and global prediction. We focus on batch sequential design strategies for achieving maturity in global prediction of discrepancy inferred from computer model calibration. Predictive maturity focuses on adding field experiments to efficiently improve discrepancy inference. Several design criteria are extended to allow batch augmentation, including integrated and maximum mean square error, maximum entropy, and two expected improvement criteria. In addition, batch versions of maximin distance and weighted distance criteria are developed. Two batch optimization algorithms are considered: modified Fedorov exchange and a binning methodology motivated by optimizing augmented fractional factorial skeleton designs. Published by Elsevier Ltd. C1 [Williams, Brian J.; Moore, Leslie M.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. [Loeppky, Jason L.; Macklem, Mason S.] Univ British Columbia, Dept Math & Stat, Okanagan, BC V1V 1V7, Canada. RP Williams, BJ (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663, Los Alamos, NM 87545 USA. EM brianw@lanl.gov; jason@stat.ubc.ca; lmoore@lanl.gov; mason.macklem@ubc.ca OI Williams, Brian/0000-0002-3465-4972 FU Cetin Unal of Los Alamos National Laboratory, through the Nuclear Energy Advanced Modeling and Simulation Campaign of the U.S. Department of Energy's Advanced Fuel Cycle Initiative; Natural Sciences and Engineering Research Council of Canada FX The research of Williams and Moore was supported by Cetin Unal of Los Alamos National Laboratory, through the Nuclear Energy Advanced Modeling and Simulation Campaign of the U.S. Department of Energy's Advanced Fuel Cycle Initiative. The research of Loeppky and Macklem was supported by a grant from the Natural Sciences and Engineering Research Council of Canada. The authors thank two anonymous reviewers for providing comments that improved the presentation of this article. NR 42 TC 11 Z9 11 U1 1 U2 8 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD SEP PY 2011 VL 96 IS 9 SI SI BP 1208 EP 1219 DI 10.1016/j.ress.2010.04.017 PG 12 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 797ES UT WOS:000293107900019 ER PT J AU Hemez, FM Atamturktur, S AF Hemez, Francois M. Atamturktur, Sezer TI The dangers of sparse sampling for the quantification of margin and uncertainty SO RELIABILITY ENGINEERING & SYSTEM SAFETY LA English DT Article DE Sparse sampling; Gaussian process modeling; Statistical emulator ID COMPUTER CODE; OUTPUT AB Activities such as global sensitivity analysis, statistical effect screening, uncertainty propagation, or model calibration have become integral to the Verification and Validation (V&V) of numerical models and computer simulations. One of the goals of V&V is to assess prediction accuracy and uncertainty, which feeds directly into reliability analysis or the Quantification of Margin and Uncertainty (QMU) of engineered systems. Because these analyses involve multiple runs of a computer code, they can rapidly become computationally expensive. An alternative to Monte Carlo-like sampling is to combine a design of computer experiments to meta-modeling, and replace the potentially expensive computer simulation by a fast-running emulator. The surrogate can then be used to estimate sensitivities, propagate uncertainty, and calibrate model parameters at a fraction of the cost it would take to wrap a sampling algorithm or optimization solver around the physics-based code. Doing so, however, offers the risk to develop an incorrect emulator that erroneously approximates the "true-but-unknown" sensitivities of the physics-based code. We demonstrate the extent to which this occurs when Gaussian Process Modeling (GPM) emulators are trained in high-dimensional spaces using too-sparsely populated designs-of-experiments. Our illustration analyzes a variant of the Rosenbrock function in which several effects are made statistically insignificant while others are strongly coupled, therefore, mimicking a situation that is often encountered in practice. In this example, using a combination of GPM emulator and design-of-experiments leads to an incorrect approximation of the function. A mathematical proof of the origin of the problem is proposed. The adverse effects that too-sparsely populated designs may produce are discussed for the coverage of the design space, estimation of sensitivities, and calibration of parameters. This work attempts to raise awareness to the potential dangers of not allocating enough resources when exploring a design space to develop fast-running emulators. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Hemez, Francois M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Atamturktur, Sezer] Clemson Univ, Dept Civil Engn, Clemson, SC 29634 USA. RP Hemez, FM (reprint author), Los Alamos Natl Lab, XTD-3,Mail Stop T087, Los Alamos, NM 87545 USA. EM hemez@lanl.gov; sez@clemson.edu OI Hemez, Francois/0000-0002-5319-4078 FU Los Alamos National Laboratory; U.S. Department of Energy [DE-AC52-06NA25396] FX This work is performed under the auspices of the Verification and Validation (V&V) program for Advanced Scientific Computing (ASC) at Los Alamos National Laboratory. The first author is grateful to Mark Anderson, V&V program manager at LANL, for his continuing support. The authors also express their gratitude to Professor Derek Bingham, Simon-Frasier University, Vancouver, Canada, for his kind willingness to share his insight with them. Los Alamos National Laboratory is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 33 TC 6 Z9 6 U1 2 U2 7 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0951-8320 EI 1879-0836 J9 RELIAB ENG SYST SAFE JI Reliab. Eng. Syst. Saf. PD SEP PY 2011 VL 96 IS 9 SI SI BP 1220 EP 1231 DI 10.1016/j.ress.2011.02.015 PG 12 WC Engineering, Industrial; Operations Research & Management Science SC Engineering; Operations Research & Management Science GA 797ES UT WOS:000293107900020 ER PT J AU Sun, Y Hoffman, EN Lam, PS Li, XD AF Sun, Yong Hoffman, Elizabeth N. Lam, Poh-Sang Li, Xiaodong TI Evaluation of local strain evolution from metallic whisker formation SO SCRIPTA MATERIALIA LA English DT Article DE Coatings; Lead-free solder; Metallic whiskers; Digital image correlation; Thin films ID DIGITAL IMAGE CORRELATION; ATOMIC-FORCE MICROSCOPY; LEAD-FREE SOLDER; TIN WHISKERS; GROWTH; DEFORMATION; FIELD; SN; CU AB The evolution of local strain on electrodeposited tin films upon aging has been monitored by digital image correlation (DIC) for the first time. Maps of principal strains adjacent to whisker locations were constructed by comparing pre- and post-growth scanning electron microscopy images. Results showed that the magnitude of the strain gradient plays an important role in whisker growth. DIC visualized the dynamic growth process in which the alteration of strain field has been identified as causing growth of subsequent whiskers. (C) 2011 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Hoffman, Elizabeth N.; Lam, Poh-Sang] Savannah River Natl Lab, Aiken, SC 29808 USA. [Sun, Yong; Li, Xiaodong] Univ S Carolina, Dept Mech Engn, Columbia, SC 29202 USA. RP Hoffman, EN (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM elizabeth.hoffman@srnl.doe.gov; lixiao@cec.sc.edu RI Sun, Yong/B-7594-2008 FU DoD [WP-1754] FX This work has been funded through DoD Strategic Environmental Research and Development Program (SERDP) under project WP-1754. NR 20 TC 13 Z9 14 U1 0 U2 21 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD SEP PY 2011 VL 65 IS 5 BP 388 EP 391 DI 10.1016/j.scriptamat.2011.05.007 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 797DV UT WOS:000293105600004 ER PT J AU Fu, CX Xiao, XR Xi, YJ Ge, YX Chen, F Bouton, J Dixon, RA Wang, ZY AF Fu, Chunxiang Xiao, Xirong Xi, Yajun Ge, Yaxin Chen, Fang Bouton, Joseph Dixon, Richard A. Wang, Zeng-Yu TI Downregulation of Cinnamyl Alcohol Dehydrogenase (CAD) Leads to Improved Saccharification Efficiency in Switchgrass SO BIOENERGY RESEARCH LA English DT Article DE Cinnamyl alcohol dehydrogenase; Lignin modification; Panicum virgatum; Saccharification; Switchgrass; Transgenic plant ID MEDICAGO-SATIVA L.; BIOFUEL PRODUCTION; CELLULOSIC ETHANOL; TALL FESCUE; LIGNIN; GENE; ALFALFA; PLANTS; FORAGE; BIOSYNTHESIS AB The bioconversion of carbohydrates in the herbaceous bioenergy crop, switchgrass (Panicum virgatum L.), is limited by the associated lignins in the biomass. The cinnamyl alcohol dehydrogenase (CAD) gene encodes a key enzyme which catalyzes the last step of lignin monomer biosynthesis. Transgenic switchgrass plants were produced with a CAD RNAi gene construct under the control of the maize ubiquitin promoter. The transgenic lines showed reduced CAD expression levels, reduced enzyme activities, reduced lignin content, and altered lignin composition. The modification of lignin biosynthesis resulted in improved sugar release and forage digestibility. Significant increases of saccharification efficiency were obtained in most of the transgenic lines with or without acid pretreatment. A negative correlation between lignin content and sugar release was found among these transgenic switchgrass lines. The transgenic materials have the potential to allow for improved efficiency of cellulosic ethanol production. C1 [Fu, Chunxiang; Xiao, Xirong; Xi, Yajun; Ge, Yaxin; Bouton, Joseph; Wang, Zeng-Yu] Samuel Roberts Noble Fdn Inc, Forage Improvement Div, Ardmore, OK 73401 USA. [Chen, Fang; Dixon, Richard A.] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. [Xiao, Xirong; Chen, Fang; Dixon, Richard A.; Wang, Zeng-Yu] BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Wang, ZY (reprint author), Samuel Roberts Noble Fdn Inc, Forage Improvement Div, 2510 Sam Noble Pkwy, Ardmore, OK 73401 USA. EM zywang@noble.org FU US Department of Agriculture; US Department of Energy Biomass Initiative [2009-10003-05140]; BioEnergy Science Center; Samuel Roberts Noble Foundation; Office of Biological and Environmental Research in the DOE Office of Science FX We thank Ko Shimamoto for providing the pANDA vector, Human David for assistance with GC-MS and LC-MS analysis, Stacy Allen and Tui Ray for assistance with real-time RT-PCR analysis, and Dennis Walker for assistance with forage digestibility analysis. The work was supported by the US Department of Agriculture and US Department of Energy Biomass Initiative (project no. 2009-10003-05140), the BioEnergy Science Center and the Samuel Roberts Noble Foundation. The BioEnergy Science Center is supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 50 TC 68 Z9 70 U1 1 U2 44 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1939-1234 J9 BIOENERG RES JI BioEnergy Res. PD SEP PY 2011 VL 4 IS 3 BP 153 EP 164 DI 10.1007/s12155-010-9109-z PG 12 WC Energy & Fuels; Environmental Sciences SC Energy & Fuels; Environmental Sciences & Ecology GA 795ZD UT WOS:000293018200001 ER PT J AU Shi, DL He, P Zhao, P Guo, FF Wang, F Huth, C Chaud, X Bud'ko, SL Lian, J AF Shi, Donglu He, Peng Zhao, Peng Guo, Fang Fang Wang, Feng Huth, Chris Chaud, Xavier Bud'ko, Sergey L. Lian, Jie TI Magnetic alignment of Ni/Co-coated carbon nanotubes in polystyrene composites SO COMPOSITES PART B-ENGINEERING LA English DT Article DE Polymer-matrix composites (PMCs); Nano-structures; Mechanical properties; Anisotropy; Magnetic alignment ID ULTRATHIN POLYMER-FILMS; MECHANICAL-PROPERTIES; NANOTUBE/POLYMER COMPOSITES; NICKEL NANOPARTICLES; AL2O3 NANOPARTICLES; NANOFIBERS; DEPOSITION; DISPERSION; FIELD AB Multiwall carbon nanotubes (MWCNT) are coated with ferromagnetic nickel and cobalt by a solution method. It results in a coating on the carbon nanotube surfaces in form of Ni/CoO nanoparticles. As a result of nano-scale Ni/CoO coating, MWCNT-polystyrene composites exhibit superparamagnetism at room temperature. As 3 wt.% of Ni/CoO coated MWCNT is dispersed in polystyrene matrix, a viscous liquid with solvent is developed for magnetic alignment. It is found that the Ni/CoO coated MWCNT respond to magnetic field susceptibly in the viscous liquid and arrange themselves in the direction of the applied field up to 5 T. Upon drying with magnetic field on, MWCNT are found to be well aligned in the direction of the field in the polystyrene matrices, as evidenced in the SEM and TEM experiments. As a result, strong anisotropy in tensile strength has been observed in the MWCNT-polystyrene composites. Magnetic alignment mechanism, surface coating microstructure of MWCNT, and related mechanical behaviors are discussed. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Shi, Donglu; He, Peng; Wang, Feng; Huth, Chris] Univ Cincinnati, Sch Energy Environm Biol & Med Engn, Cincinnati, OH 45221 USA. [Shi, Donglu; Zhao, Peng; Guo, Fang Fang] Tongji Univ, Inst Adv Mat & Nano Biomed, Shanghai 200092, Peoples R China. [Chaud, Xavier] CNRS, Consortium Rech Emergence Technol Avancees, F-38042 Grenoble 9, France. [Bud'ko, Sergey L.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Bud'ko, Sergey L.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Lian, Jie] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA. RP Shi, DL (reprint author), Univ Cincinnati, Sch Energy Environm Biol & Med Engn, Cincinnati, OH 45221 USA. EM donglu.shi@uc.edu RI Wang, Feng/P-3082-2015; OI Wang, Feng/0000-0003-1133-2804; Wang, Feng/0000-0002-6979-0368 FU Shanghai Nanotechnology [0952nm04800, 1052nm01600]; National High-tech R&D Program (863 Program) [2008AA09Z111] FX The TEM and SEM analyses were conducted at the Electron Microbeam Analysis Laboratory at the University of Michigan. The magnetization measurements were conducted at Ames Laboratory. Part of this research is supported by Shanghai Nanotechnology (0952nm04800, 1052nm01600) and National High-tech R&D Program (863 Program, 2008AA09Z111). NR 25 TC 19 Z9 21 U1 1 U2 29 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-8368 J9 COMPOS PART B-ENG JI Compos. Pt. B-Eng. PD SEP PY 2011 VL 42 IS 6 BP 1532 EP 1538 DI 10.1016/j.compositesb.2011.04.014 PG 7 WC Engineering, Multidisciplinary; Materials Science, Composites SC Engineering; Materials Science GA 799BY UT WOS:000293259700024 ER PT J AU Artel, A Teymour, F North, M Cinar, A AF Artel, Arsun Teymour, Fouad North, Michael Cinar, Ali TI A multi-agent approach using perceptron-based learning for robust operation of distributed chemical reactor networks SO ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE LA English DT Article DE Agent-based systems; Distributed AI; Chemical reactor networks; Grade transition; Disturbance rejection; Decentralized online learning ID AGENT; SYSTEMS AB Controlling the individual reactors of a chemical reactor network producing different grades of a product requires intelligent reconfiguration strategies. Agent-based approaches are ideal for such distributed manufacturing processes, since they provide flexible, robust, and emergent solutions under dynamically changing process conditions. This paper proposes a multi-layered, multi-agent framework based on a decentralized online learning approach for the supervision of grade transitions in autocatalytic reactor networks. The values for the manipulated variables and the path to the target reactor are determined to give the least disturbance to the system. Case studies illustrate the performance of the approach in managing grade transition and disturbance rejection in a reactor network. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Artel, Arsun; Teymour, Fouad; Cinar, Ali] IIT, Chicago, IL 60616 USA. [North, Michael] Argonne Natl Lab, Argonne, IL 60439 USA. RP Artel, A (reprint author), TUBITAK Marmara Res Ctr, TR-41470 Gebze, Turkey. EM arsun.artel@mam.gov.tr; teymour@iit.edu; north@anl.gov; cinar@iit.edu OI Cinar, Ali/0000-0002-1607-9943 FU National Science Foundation [CTS-0325378] FX This material is based on work supported by the National Science Foundation under Grant No. CTS-0325378 of the ITR program. NR 22 TC 4 Z9 4 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0952-1976 J9 ENG APPL ARTIF INTEL JI Eng. Appl. Artif. Intell. PD SEP PY 2011 VL 24 IS 6 BP 1035 EP 1045 DI 10.1016/j.engappai.2011.05.014 PG 11 WC Automation & Control Systems; Computer Science, Artificial Intelligence; Engineering, Multidisciplinary; Engineering, Electrical & Electronic SC Automation & Control Systems; Computer Science; Engineering GA 798JO UT WOS:000293202200011 ER PT J AU Stengle, G McEnerney, J AF Stengle, G. McEnerney, J. TI A semialgebraic closure for commutative algebra SO JOURNAL OF PURE AND APPLIED ALGEBRA LA English DT Article AB Let A subset of R be rings containing the rationals. In R let S be a multiplicatively closed subset such that 1 is an element of S and 0 is not an element of S, T a preorder of R (a proper subsemiring containing the squares) such that S subset of T and I an A-submodule of R. Define rho(I) (or rho(S,T) (I)) to be rho(I) = {a is an element of R|sa(2m) + t is an element of I(2m) for some m is an element of N, s is an element of S and t is an element of T}. We show that rho is a closure operator on A-submodules, establish some of its properties, and motivate its introduction by considering the assignment of characteristically real multiplicities to points of real varieties and semialgebraic sets. (C) 2011 Elsevier B.V. All rights reserved. C1 [McEnerney, J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP McEnerney, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM mcenerney1@llnl.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-4049 J9 J PURE APPL ALGEBRA JI J. Pure Appl. Algebr. PD SEP PY 2011 VL 215 IS 9 BP 2257 EP 2261 DI 10.1016/j.jpaa.2011.02.014 PG 5 WC Mathematics, Applied; Mathematics SC Mathematics GA 796FH UT WOS:000293036700020 ER PT J AU Thanos, PK Bermeo, C Wang, GJ Volkow, ND AF Thanos, Panayotis K. Bermeo, Carlos Wang, Gene-Jack Volkow, Nora D. TI D-Cycloserine Facilitates Extinction of Cocaine Self-Administration in Rats SO SYNAPSE LA English DT Article DE learning; glutamate; withdrawal; abstinence; drug abuse; NMDA; addiction; substance abuse ID CONDITIONED PLACE PREFERENCE; FEAR EXTINCTION; NUCLEUS-ACCUMBENS; RECEPTORS; REINSTATEMENT; PSYCHOTHERAPY; POTENTIATION; ADDICTION; BEHAVIOR; SEEKING AB Previous research has indicated that D-cycloserine [DCS; a N-methyl-D-aspartate (NMDA) partial agonist] facilitates the extinction of conditioned fear as well as the extinction of cocaine conditioned place preference. Sprague Dawley rats were first trained to self-administer cocaine and then we compared their extinction behavior (lever pressing) following treatment with vehicle; 15 mg/kg DCS; or 30 mg/kg DCS. We showed that 30 mg/kg DCS, but not 15 mg/kg significantly accelerated extinction of cocaine self-administration behavior when compared with saline by almost half (4 days vs. 9 days). At 2 weeks when all animals had extinguished, there were no longer differences between the groups. The present findings support of the potential of NMDA partial agonists as prospectively valuable in facilitating the extinction of cocaine-seeking behavior. More specifically, we demonstrate that 30 mg/kg DCS was effective at significantly accelerating the extinction of cocaine self-administration behavior in rats. These results provide further support for the potential of DCS as a treatment strategy for addiction. Synapse 65:938-944, 2011. (C) 2011 Wiley-Liss, Inc. C1 [Thanos, Panayotis K.; Volkow, Nora D.] NIAAA, Neuroimaging Lab, Intramural Program, NIH, Bethesda, MD USA. [Thanos, Panayotis K.; Bermeo, Carlos; Wang, Gene-Jack] Brookhaven Natl Lab, Dept Med, Behav Pharmacol & Neuroimaging Lab, Upton, NY 11973 USA. RP Thanos, PK (reprint author), NIAAA, Neuroimaging Lab, Intramural Program, NIH, Bethesda, MD USA. EM thanos@bnl.gov9Z FU NIAAA at the National Institute of Health (NIH); NIDA FX Contract grant sponsor: The Intramural Research Program of NIAAA at the National Institute of Health (NIH); Contract grant sponsor: The NIDA summer research program to C.B. NR 33 TC 21 Z9 22 U1 2 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0887-4476 J9 SYNAPSE JI Synapse PD SEP PY 2011 VL 65 IS 9 BP 938 EP 944 DI 10.1002/syn.20922 PG 7 WC Neurosciences SC Neurosciences & Neurology GA 799GU UT WOS:000293275200010 PM 21360592 ER PT J AU Tsai, CH Vivero-Escoto, JL Slowing, II Fang, IJ Trewyn, BG Lin, VSY AF Tsai, Chih-Hsiang Vivero-Escoto, Juan L. Slowing, Igor I. Fang, I-Ju Trewyn, Brian G. Lin, Victor S. -Y. TI Surfactant-assisted controlled release of hydrophobic drugs using anionic surfactant templated mesoporous silica nanoparticles SO BIOMATERIALS LA English DT Article DE Mesoporous silica nanoparticles; Anionic surfactant; Drug delivery system; Surfactant-assisted drug release; Non-cytotoxic nanomaterials; Intracellular drug delivery ID RESPONSIVE CONTROLLED-RELEASE; DELIVERY-SYSTEM; MAGNETIC NANOPARTICLES; HEMOLYTIC-ACTIVITY; CANCER-CELLS; RESVERATROL; SPHERES; ROUTE; GOLD; BIOAVAILABILITY AB A series of mesoporous silica nanoparticles (MSNs) were synthesized using the co-structure directing method. A non-cytotoxic anionic surfactant, undec-1-en-11-yltetra(ethylene glycol) phosphate monoester surfactant (PMES), was used as a structure directing agent (SDA) together with aminopropyltrimethoxysilane that functioned as a co-structure directing agent (CSDA). The morphology and mesoporous structure of these materials were tuned by changing the molar ratio of CSDA and SDA. These mesoporous nanomaterials containing PMES inside the pores showed excellent biocompatibility in vitro. The cellular internalization and endosome escape of PMES-MSNs in cervical cancer cells (HeLa) was demonstrated by flow cytometry and confocal microscopy, respectively. The PMES-MSNs were used as drug delivery carriers for resveratrol, a low water solubility drug, by taking advantage of the hydrophobic environment created by the PMES micelle inside the pores. This surfactant-assisted delivery strategy was tested under physiological conditions showing an increase of the drug loading compared to the material without surfactant and steady release of resveratrol. Finally, the therapeutic properties of resveratrol-loaded PMES-MSNs were evaluated in vitro using HeLa and Chinese hamster ovarian cells. We envision that this surfactant-assisted drug delivery method using MSNs as nanovehicles would lead to a new generation of carrier materials for intracellular delivery of a variety of hydrophobic therapeutic agents. Published by Elsevier Ltd. C1 [Tsai, Chih-Hsiang; Vivero-Escoto, Juan L.; Slowing, Igor I.; Fang, I-Ju; Trewyn, Brian G.; Lin, Victor S. -Y.] Iowa State Univ, Dept Chem, US Dept Energy, Ames Lab, Ames, IA 50011 USA. RP Vivero-Escoto, JL (reprint author), Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA. EM chtsai@iastate.edu; jlvivero@email.unc.edu; islowing@iastate.edu; ijufang@iastate.edu; bgtrewyn@iastate.edu RI Vivero-Escoto, Juan/I-8015-2014; OI Slowing, Igor/0000-0002-9319-8639 FU U.S. National Science Foundation [CHE-0809521]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358] FX J. L V.-E., I.-J. F. and B. G. T. would like to acknowledge the U.S. National Science Foundation (CHE-0809521) for supporting this research. C.-H. T and I. I. S. would like to thank the US Department of Energy, Office of Basic Energy Sciences, Catalysis Science Grant Contract (No. DE-AC02-07CH11358) for funding. NR 64 TC 39 Z9 41 U1 3 U2 71 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-9612 J9 BIOMATERIALS JI Biomaterials PD SEP PY 2011 VL 32 IS 26 BP 6234 EP 6244 DI 10.1016/j.biomaterials.2011.04.077 PG 11 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 794NH UT WOS:000292904100030 PM 21684000 ER PT J AU Luo, XL Matranga, C Tan, SS Alba, N Cui, XYT AF Luo, Xiliang Matranga, Christopher Tan, Susheng Alba, Nicolas Cui, Xinyan T. TI Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone SO BIOMATERIALS LA English DT Article DE Carbon nanotubes; Drug nanoreservior; Conducting polymer; Drug release; Dexamethasone ID DRUG-DELIVERY; IN-VITRO; DEPOSITION; CHEMISTRY; OXIDATION; NANOHORNS; POLYMERS; NANOPARTICLES; PARTICLES; CISPLATIN AB On demand release of anti-inflammatory drug or neurotropic factors have great promise for maintaining a stable chronic neural interface. Here we report the development of an electrically controlled drug release system based on conducting polymer and carbon nanotubes. Drug delivery research using carbon nanotubes (CNTs) has taken advantage of the ability of CNTs to load large amounts of drug molecules on their outer surface. However, the utility of the inner cavity of CNTs, which can increase the drug loading capacity, has not yet been explored. In this paper, the use of multi-wall CNTs as nanoreserviors for drug loading and controlled release is demonstrated. The CNTs are pretreated with acid sonication to open their ends and make their outer and inner surfaces more hydrophilic. When dispersed and sonicated in a solution containing the anti-inflammatory drug dexamethasone, experiments show that the pretreated CNTs are filled with the drug solution. To prevent the unwanted release of the drug, the open ends of the drug-filled CNTs are then sealed with polypyrrole (PPy) films formed through electropolymerization. The prepared electrode coating significantly reduced the electrode impedance, which is desired for neural recording and stimulation. More importantly, the coating can effectively store drug molecules and release the bioactive drug in a controlled manner using electrical stimulation. The dexamethasone released from the PPy/CNT film was able to reduce lipopolysaccharide induced microglia activation to the same degree as the added dexamethasone. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Luo, Xiliang; Alba, Nicolas; Cui, Xinyan T.] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15260 USA. [Matranga, Christopher] US DOE, Chem & Surface Sci Div, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Tan, Susheng] Univ Pittsburgh, NanoScale Fabricat & Characterizat Facil, Petersen Inst NanoSci & Engn, Pittsburgh, PA 15261 USA. [Tan, Susheng] Univ Pittsburgh, Dept Elect & Comp Engn, Pittsburgh, PA 15261 USA. [Cui, Xinyan T.] Univ Pittsburgh, Ctr Neural Basis Cognit, Pittsburgh, PA 15260 USA. [Cui, Xinyan T.] Univ Pittsburgh, McGowan Inst Regenerat Med, Pittsburgh, PA 15260 USA. RP Cui, XYT (reprint author), Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15260 USA. EM xic11@pitt.edu RI Luo, Xiliang/B-4764-2008; Matranga, Christopher/E-4741-2015; OI Luo, Xiliang/0000-0001-6075-7089; Cui, Xinyan/0000-0002-0470-2005; Matranga, Christopher/0000-0001-7082-5938; Alba, Nicolas/0000-0002-5762-969X FU National Science Foundation [0748001, 0729869]; National Institute of Health [R01NS062019]; Department of Defense TATRC [WB1XWH-07-1-0716]; DARPA MTO [N66001-11-1-4014] FX The project described was supported by the National Science Foundation Grant 0748001 and 0729869, National Institute of Health R01NS062019, the Department of Defense TATRC grant WB1XWH-07-1-0716 and DARPA MTO N66001-11-1-4014. NR 47 TC 85 Z9 86 U1 6 U2 87 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-9612 J9 BIOMATERIALS JI Biomaterials PD SEP PY 2011 VL 32 IS 26 BP 6316 EP 6323 DI 10.1016/j.biomaterials.2011.05.020 PG 8 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 794NH UT WOS:000292904100038 PM 21636128 ER PT J AU Scotto-Lavino, E Bai, M Zhang, YB Freimuth, P AF Scotto-Lavino, Elizabeth Bai, Mei Zhang, Yian-Biao Freimuth, Paul TI Export is the default pathway for soluble unfolded polypeptides that accumulate during expression in Escherichia coli SO PROTEIN EXPRESSION AND PURIFICATION LA English DT Article DE Protein folding; Overexpression; Export; GroEL; Molecular chaperones ID PEPTIDE BINDING SPECIFICITIES; OSMOTIC SHOCK; IN-VIVO; PERIPLASMIC PROTEINS; MOLECULAR CHAPERONES; RNA-POLYMERASE; MEMBRANE; ADENOVIRUS; GROEL; CELLS AB Several E. coli endogenous, cytoplasmic proteins that are known clients of the chaperonin GroEL were overexpressed to examine the fate of accumulated unfolded polypeptides. Substantial fractions of about half of the proteins formed insoluble aggregates, consistent with the hypothesis that these proteins were produced at rates or in amounts that exceeded the protein-folding capacity of GroEL. In addition, large fractions of three overexpressed GroEL client proteins were localized in an extra-cytoplasmic, osmotically-sensitive compartment, suggesting they had initially accumulated in the cytoplasm as soluble unfolded polypeptides and thus were able to access a protein export pathway. Consistent with this model, an intrinsically unfoldable, hydrophilic, non-secretory polypeptide was quantitatively exported from the E. coli cytoplasm into an osmotically-sensitive compartment. Our results support the conclusion that a soluble, unfolded conformation alone may be sufficient to direct non-secretory polypeptides into a protein export pathway for signal peptide-independent translocation across the inner membrane, and that export rather than degradation by cytoplasmic proteases is the preferred fate for newly-synthesized, soluble, unfolded polypeptides that accumulate in the cytoplasm. The stable folded conformation of exported GroEL client proteins further suggests that the requirement for GroEL may be conditional on protein folding in the molecularly-crowded environment of the cytoplasm. (C) 2011 Elsevier Inc. All rights reserved. C1 [Scotto-Lavino, Elizabeth; Bai, Mei; Zhang, Yian-Biao; Freimuth, Paul] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Freimuth, P (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM escottol@notes.cc.sunysb.edu; bai@ORTpa-tent.com; freimuth@bnl.gov FU US Department of Energy, Division of Materials Sciences and Division Chemical Sciences [DE-AC02-98CH10886]; US D.O.E. Laboratory-Directed Research and Development, Brookhaven National Laboratory [10-052] FX We thank C. Anderson and J. Dunn for critical reading of the manuscript; W. Sherman and O. Gang for assistance with CD spectroscopy; and M. Blewitt for technical help with DNA sequence analysis. CD spectroscopy was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Division of Materials Sciences and Division Chemical Sciences, under Contract No. DE-AC02-98CH10886. This research was supported by US D.O.E. Laboratory-Directed Research and Development Grant 10-052 at Brookhaven National Laboratory. NR 32 TC 2 Z9 2 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1046-5928 J9 PROTEIN EXPRES PURIF JI Protein Expr. Purif. PD SEP PY 2011 VL 79 IS 1 BP 137 EP 141 DI 10.1016/j.pep.2011.03.011 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 795SM UT WOS:000292996100019 PM 21443953 ER PT J AU Estep, D Pernice, M Tavener, S Wang, HY AF Estep, Don Pernice, Michael Tavener, Simon Wang, Haiying TI A posteriori error analysis for a cut cell finite volume method SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING LA English DT Article DE Cut cell problem; Discontinuous diffusion; A posteriori error analysis; Adjoint problem; Finite volume method; Modeling error ID LEVEL-SET METHOD; CONDITION CAPTURING METHOD; PROPELLANT COMBUSTION; NUMERICAL-SIMULATION; ELLIPTIC PROBLEMS; INTERFACES; EQUATIONS; ELEMENTS; FLOWS AB We study the solution of a diffusive process in a domain where the diffusion coefficient changes discontinuously across a curved interface. We consider discretizations that use regularly-shaped meshes, so that the interface "cuts" through the cells (elements Or volumes) without respecting the regular geometry of the mesh. Consequently, the discontinuity in the diffusion coefficients has a strong impact on the accuracy and convergence of the numerical method. This motivates the derivation of computational error estimates that yield accurate estimates for specified quantities of interest. For this purpose, we adapt the well-known adjoint based a posteriori error analysis technique used for finite element methods. In order to employ this method, we describe a systematic approach to discretizing a cut-cell problem that handles complex geometry in the interface in a natural fashion yet reduces to the well-known Ghost Fluid Method in simple cases. We test the accuracy of the estimates in a series of examples. (C) 2010 Elsevier B.V. All rights reserved. C1 [Wang, Haiying] Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA. [Estep, Don; Tavener, Simon] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA. [Estep, Don] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA. [Pernice, Michael] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Wang, HY (reprint author), Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USA. EM haiyingw@mtu.edu FU Defense Threat Reduction Agency [HDTRA1-09-1-0036]; Department of Energy [DE-FG02-04ER25620, DE-FG02-05ER25699, DE-FC02-07ER54909, DE-SC0001724]; Lawrence Livermore National Laboratory [B573139, B584647]; National Aeronautics and Space Administration [NNG04GH63G]; National Science Foundation [DMS-0107832, DMS-0715135, DGE-0221595003, MSPA-CSE-0434354, ECCS-0700559]; Idaho National Laboratory [00069249]; Sandia Corporation [PO299784] FX Estep's work is supported in part by the Defense Threat Reduction Agency (HDTRA1-09-1-0036); Department of Energy (DE-FG02-04ER25620, DE-FG02-05ER25699, DE-FC02-07ER54909, DE-SC0001724); Lawrence Livermore National Laboratory (B573139, B584647); the National Aeronautics and Space Administration (NNG04GH63G); the National Science Foundation (DMS-0107832, DMS-0715135, DGE-0221595003, MSPA-CSE-0434354, ECCS-0700559); Idaho National Laboratory (00069249); and the Sandia Corporation (PO299784). Tavener's work is supported in part by the Department of Energy (DE-FG02-04ER25620). NR 30 TC 2 Z9 2 U1 2 U2 4 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0045-7825 J9 COMPUT METHOD APPL M JI Comput. Meth. Appl. Mech. Eng. PD SEP 1 PY 2011 VL 200 IS 37-40 SI SI BP 2768 EP 2781 DI 10.1016/j.cma.2010.11.015 PG 14 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics SC Engineering; Mathematics; Mechanics GA 791KJ UT WOS:000292663800011 ER PT J AU Burrows, A Nordhaus, J Almgren, A Bell, J AF Burrows, Adam Nordhaus, Jason Almgren, Ann Bell, John TI The potential role of spatial dimension in the neutrino-driving mechanism of core-collapse supernova explosions SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Hydrodynamics, supernovae; General, stars; Interiors, neutrinos ID HYDRODYNAMICS AB We have hydrodynamically explored the dependence on spatial dimension of the viability of the neutrino heating mechanism of core-collapse supernova explosions and find that the tendency to explode is a monotonically increasing function of dimension. Moreover, we find that the delay to explosion for a given neutrino luminosity is always shorter in 3D than 2D, sometimes by many hundreds of milliseconds. The magnitude of this dimensional effect is much larger than the purported magnitude of a variety of other effects sometimes invoked to bridge the gap between the current ambiguous and uncertain theoretical situation and the fact of robust supernova explosions in Nature. Our finding, facilitated by access to state-of-the-art codes and large computers, may be an important step towards unraveling one of the most problematic puzzles in stellar astrophysics. (C) 2010 Elsevier By. All rights reserved. C1 [Burrows, Adam; Nordhaus, Jason] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Almgren, Ann; Bell, John] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Burrows, A (reprint author), Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. EM burrows@astro.princeton.edu NR 6 TC 1 Z9 1 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD SEP PY 2011 VL 182 IS 9 SI SI BP 1764 EP 1766 DI 10.1016/j.cpc.2010.10.014 PG 3 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 791OS UT WOS:000292675100004 ER PT J AU Kanarska, Y Lomov, I Antoun, T AF Kanarska, Y. Lomov, I. Antoun, T. TI Mesoscale simulations of particulate flows with parallel distributed Lagrange multiplier technique SO COMPUTERS & FLUIDS LA English DT Article DE Lagrange multiplier; Particulate flows ID FICTITIOUS DOMAIN; NUMERICAL-METHOD; SYSTEMS; PARTICLES; DYNAMICS; VERSION; TESTS; MODEL AB Fluid particulate flows are common phenomena in nature and industry. Modeling of such flows at micro and macro levels as well establishing relationships between these approaches are needed to understand properties of the particulate matter. We propose a computational technique based on the direct numerical simulation of the particulate flows. The numerical method is based on the distributed Lagrange multiplier technique following the ideas of Glowinski et al. [16] and Patankar [30]. Each particle is explicitly resolved on an Eulerian grid as a separate domain, using solid volume fractions. The fluid equations are solved through the entire computational domain, however, Lagrange multiplier constrains are applied inside the particle domain such that the fluid within any volume associated with a solid particle moves as an incompressible rigid body. Mutual forces for the fluid-particle interactions are internal to the system. Particles interact with the fluid via fluid dynamic equations, resulting in implicit fluid-rigid body coupling relations that produce realistic fluid flow around the particles (i.e., no-slip boundary conditions). The particle-particle interactions are implemented using explicit force-displacement interactions for frictional inelastic particles similar to the DEM method of Cundall et al. [10] with some modifications using a volume of an overlapping region as an input to the contact forces. The method is flexible enough to handle arbitrary particle shapes and size distributions. A parallel implementation of the method is based on the SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) library, which allows handling of large amounts of rigid particles and enables local grid refinement. Accuracy and convergence of the presented method has been tested against known solutions for a falling particle as well as by examining fluid flows through stationary particle beds (periodic and cubic packing). To evaluate code performance and validate particle contact physics algorithm, we performed simulations of a representative experiment conducted at the U.C. Berkeley Thermal Hydraulic Lab for pebble flow through a narrow opening. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Kanarska, Y.; Lomov, I.; Antoun, T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Kanarska, Y (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-286, Livermore, CA 94550 USA. EM kanarska1@llnl.gov FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We greatly appreciate experimental data provided y U.C. Berkeley Thermal Hydraulics Lab guided by Professor Per F. Peterson, especially Mike Laufer who did experiments for benchmark comparisons in Section 3.4. We also thank to Otis Walton for useful discussions about particle methods. NR 43 TC 7 Z9 7 U1 2 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-7930 J9 COMPUT FLUIDS JI Comput. Fluids PD SEP PY 2011 VL 48 IS 1 BP 16 EP 29 DI 10.1016/j.compfluid.2011.03.010 PG 14 WC Computer Science, Interdisciplinary Applications; Mechanics SC Computer Science; Mechanics GA 793YN UT WOS:000292860400002 ER PT J AU Smith, E Naik, D Cumming, JR AF Smith, Ernest Naik, Dhiraj Cumming, Jonathan R. TI Genotypic variation in aluminum resistance, cellular aluminum fractions, callose and pectin formation and organic acid accumulation in roots of Populus hybrids SO ENVIRONMENTAL AND EXPERIMENTAL BOTANY LA English DT Article DE Aluminum tolerance; Aluminum toxicity; Organic acids; Poplar; Callose; Pectin ID NORWAY SPRUCE SEEDLINGS; WALL PECTIN; AL RESISTANCE; QUANTITATIVE-DETERMINATION; TRITICUM-AESTIVUM; TREE ROOTS; TOLERANCE; TOXICITY; PLANTS; STRESS AB Soil acidity and aluminum (Al) toxicity are major factors limiting crop yield and forest productivity worldwide. Hybrid poplar (Populus spp.) was used as a model to assess genotypic variation in Al resistance and physiological stress responses to Al in a woody tree species. Eight hybrid crosses of P. trichocarpa, P. deltoides and P. nigra were exposed to Al in solution culture. Resistance to Al varied by genotype and hybrid cross, with P. trichocarpa x P. deltoides crosses being most resistant, P. trichocarpa x P. nigra being intermediate and P. deltoides x P. nigra being most sensitive to Al. Total root Al accumulation was not a good indicator of Al resistance/sensitivity. However, the partitioning of Al into apoplastic and symplastic fractions indicated that differences in sensitivity among genotypes were associated with Al uptake into the symplasm. Aluminum treatment increased callose and pectin concentrations of root tips in all genotypes, but more prominently in Al sensitive genotypes/hybrids. In Al sensitive genotypes, higher levels of symplastic Al accumulation correlated with elevated concentrations of citrate, malate, succinate or formate in root tips, whereas organic acid accumulation was not as pronounced in Al resistant genotypes. These findings suggest that exclusion of Al from the symplast is associated with Al resistance. Further screening of Al tolerant poplar genotypes could yield successful candidates to be utilized for sustainable reforestation/reclamation and carbon sequestration projects where soil acidity may limit tree growth. Published by Elsevier B.V. C1 [Smith, Ernest; Naik, Dhiraj; Cumming, Jonathan R.] W Virginia Univ, Dept Biol, Morgantown, WV 26506 USA. [Naik, Dhiraj] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. RP Cumming, JR (reprint author), W Virginia Univ, Dept Biol, POB 6057, Morgantown, WV 26506 USA. EM jcumming@wvu.edu RI naik, dhiraj/G-9571-2011; OI Naik, Dhiraj/0000-0002-1226-2337 FU West Virginia University Research Corporation; United States Department of Energy (DOE) [FG02-06ER64148] FX We thank Joshua Smith, Shalaka Desai, Chara Lemley and Nathaniel Chapman for their excellent technical support. The West Virginia University Research Corporation (PSCoR Grant Program) and the United States Department of Energy (DOE) (FG02-06ER64148) provided financial support for this work. NR 64 TC 16 Z9 19 U1 2 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0098-8472 J9 ENVIRON EXP BOT JI Environ. Exp. Bot. PD SEP PY 2011 VL 72 IS 2 BP 182 EP 193 DI 10.1016/j.envexpbot.2011.03.003 PG 12 WC Plant Sciences; Environmental Sciences SC Plant Sciences; Environmental Sciences & Ecology GA 788FT UT WOS:000292431500010 ER PT J AU Jones, D Bhattacharyya, D Turton, R Zitney, SE AF Jones, Dustin Bhattacharyya, Debangsu Turton, Richard Zitney, Stephen E. TI Optimal design and integration of an air separation unit (ASU) for an integrated gasification combined cycle (IGCC) power plant with CO2 capture SO FUEL PROCESSING TECHNOLOGY LA English DT Article DE Elevated-pressure; ASU; IGCC; Pumped liquid oxygen (PLOX); Optimization; Integration ID GAS-TURBINES; SYSTEM; PERFORMANCE AB The air separation unit (ASU) plays a key role in improving the efficiency, availability, and operability of an oxygen-fed integrated gasification combined cycle (IGCC) power plant. An optimal integration between the ASU and the balance of the plant, especially the gasifier and the gas turbine (GT), has significant potential for enhancing the overall plant efficiency. Considering the higher operating pressure of the GT, an elevated-pressure air separation unit (EP-ASU) is usually favored instead of the conventional low-pressure air separation units (LP-ASU). In addition, a pumped liquid oxygen (PLOX) cycle is usually chosen if the operating pressure of the gasifier is high. A PLOX cycle helps to improve plant safety and availability and to decrease the capital cost by reducing the size of the oxygen compressor or by eliminating it completely. However, the refrigeration lost in withdrawn liquid oxygen must be efficiently recovered. This paper considers five different configurations of an ASU with PLOX cycle and compares their power consumptions with an EP-ASU with a traditional gaseous oxygen (GOX) cycle. The study shows that an optimally designed EP-ASU with a PLOX cycle can have similar power consumption to that of an EP-ASU with GOX cycle in the case of 100% nitrogen integration. In the case of an IGCC with pre-combustion CO2 capture, the lower heating value (LHV) of the shifted syngas, both on a mass and volumetric basis, is in between the LHV of the unshifted syngas from an IGCC plant and the LHV of natural gas, for which the GTs are generally designed. The optimal air integration in the case of a shifted syngas is found to be much lower than that of an unshifted syngas. This paper concurs with the existing literature that the optimal integration occurs when air extracted from the GT can be replaced with the nitrogen from the ASU without exceeding mass/volumetric flow limitations of the GT. Considering nitrogen and air integration between the ASU and the GT, this paper compares the power savings in an LP-ASU with a PLOX cycle to the power savings in an EP-ASU with COX cycle and EP-ASU with PLOX cycle. The results show that an LP-ASU with a PLOX cycle has less power consumption if the nitrogen integration levels are less than 50-60%. In addition, a study is carried out by varying the concentration of nitrogen and steam in the fuel diluents to the GT while the NOx level was maintained constant. The study shows that when the nitrogen injection rate exceeds 50%, an EP-ASU with a PLOX cycle is a better option than an LP-ASU with a PLOX cycle. This paper shows that an optimal design and integration of an ASU with the balance of the plant can help to increase the net power generation from an IGCC plant with CO2 capture. (C) 2011 Elsevier B.V. All rights reserved. C1 [Jones, Dustin; Bhattacharyya, Debangsu; Turton, Richard] W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. [Zitney, Stephen E.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Bhattacharyya, D (reprint author), W Virginia Univ, Dept Chem Engn, Morgantown, WV 26506 USA. EM debangsu.bhattacharyya@mail.wvu.edu NR 30 TC 34 Z9 35 U1 2 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3820 J9 FUEL PROCESS TECHNOL JI Fuel Process. Technol. PD SEP PY 2011 VL 92 IS 9 BP 1685 EP 1695 DI 10.1016/j.fuproc.2011.04.018 PG 11 WC Chemistry, Applied; Energy & Fuels; Engineering, Chemical SC Chemistry; Energy & Fuels; Engineering GA 791NW UT WOS:000292672900003 ER PT J AU Ciricosta, O Chung, HK Lee, RW Wark, JS AF Ciricosta, Orlando Chung, Hyun-Kyung Lee, Richard W. Wark, Justin S. TI Simulations of neon irradiated by intense X-ray laser radiation SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE X-ray laser; Collisional-radiative code ID FREE-ELECTRON LASER; ATOMS AB We present simulations of the charge states produced by the interaction of intense X-ray laser radiation with a neon gas. We model the results of a recent experiment (Young et al., Nature 466, 56 (2010)), where mJ pulses of X-rays, with photon energies ranging from 800 to 2000 eV and pulse lengths ranging from 70 to 340 fs were incident on neon atoms at intensities of up to 10(18) W cm(-2). Simulations using an adapted version of the SCFLY collisional-radiative code, which included the effect of electron collisions and a simple self-consistent temperature model, result in charge state distributions that are in good agreement with the experimental data. We calculate the electron temperature of the system during the evolution of the plasma, and comment upon the role that collisions may play in determining the charge state distributions as a function of the neon ion number density. (C) 2011 Elsevier B. V. All rights reserved. C1 [Ciricosta, Orlando; Wark, Justin S.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Chung, Hyun-Kyung] IAEA, Nucl Data Sect, Atom & Mol Data Unit, A-1400 Vienna, Austria. [Lee, Richard W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Ciricosta, O (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM Orlando.Ciricosta@physics.ox.ac.uk FU U.K. EPSRC [EP/H035877/1] FX O.C. and J.S.W. are grateful to the U.K. EPSRC for support under grant number EP/H035877/1. H-K. C. would like to acknowledge useful discussions and encouragement from B. J. Braams and R. A. Forrest in the Nuclear Data Section of the International Atomic Energy Agency. NR 9 TC 15 Z9 15 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2011 VL 7 IS 3 BP 111 EP 116 DI 10.1016/j.hedp.2011.02.003 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 791WU UT WOS:000292700200001 ER PT J AU Sperling, P Thiele, R Holst, B Fortmann, C Glenzer, SH Toleikis, S Tschentscher, T Redmer, R AF Sperling, P. Thiele, R. Holst, B. Fortmann, C. Glenzer, S. H. Toleikis, S. Tschentscher, Th. Redmer, R. TI Two-color Thomson scattering at FLASH SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Warm dense matter; VUV-FEL; Thomson scattering ID X-RAY-SCATTERING; INITIO MOLECULAR-DYNAMICS; DENSITY PLASMAS; LIQUID-METALS; PHOTOABSORPTION; ELECTRONS; MATTER AB We propose a two-color pump-probe Thomson scattering experiment at the FLASH facility in Hamburg to characterize warm dense matter states. The fundamental free electron laser wavelength of 40.5 nm is used to pump a liquid hydrogen jet that is subsequently probed with the third harmonic at 13.5 nm. We have considered the laser-target interaction in the pump and probe phase by using the radiation hydrodynamics code HELIOS. The calculation of the Thomson scattering spectrum is based on the Chihara formula which is evaluated using the Born-Mermin approximation for the free electron dynamic structure factor and the Debye-Huckel static structure factor for the elastic scattering part. We consider the full density- and temperature-dependent Thomson scattering cross section throughout the inhomogeneous target. The results indicate that the electron-ion equilibration rate can be extracted by measuring the electron and ion feature with varying time delays between the pump and the probe pulse. (C) 2011 Elsevier B. V. All rights reserved. C1 [Sperling, P.; Thiele, R.; Holst, B.; Redmer, R.] Univ Rostock, Inst Phys, D-18051 Rostock, Germany. [Fortmann, C.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Fortmann, C.; Glenzer, S. H.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Toleikis, S.] DESY, D-22607 Hamburg, Germany. [Tschentscher, Th.] European XFEL GmbH, D-22761 Hamburg, Germany. RP Sperling, P (reprint author), Univ Rostock, Inst Phys, D-18051 Rostock, Germany. EM philipp.sperling@uni-rostock.de RI Holst, Bastian/D-2217-2011; Redmer, Ronald/F-3046-2013; OI Holst, Bastian/0000-0002-2369-3730; Thiele, Robert/0000-0001-8350-9942 FU DFG [SFB 652]; Federal Ministry for Education and Science (BMBF) [FSP 301-FLASH, 05KS7HRA]; Alexander von Humboldt-Foundation FX We thank Th. Bornath, E. Forster, G. Gregori, H. Reinholz, G. Ropke, and U. Zastrau for helpful discussions. This work was supported by the DFG within the SFB 652 "Strong correlations and collective effects in radiation fields: Coulomb systems, clusters, and particles" and the Federal Ministry for Education and Science (BMBF) under Grant No. FSP 301-FLASH and Project No. 05KS7HRA. C.F. acknowledges support by the Alexander von Humboldt-Foundation. NR 42 TC 9 Z9 9 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2011 VL 7 IS 3 BP 145 EP 149 DI 10.1016/j.hedp.2011.04.001 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 791WU UT WOS:000292700200006 ER PT J AU Seely, JF Szabo, CI Feldman, U Chen, H Hudson, LT Henins, A AF Seely, J. F. Szabo, C. I. Feldman, Uri Chen, Hui Hudson, L. T. Henins, A. TI Gamma ray spectra from targets irradiated by picosecond lasers SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Gamma ray; Positron; Picosecond laser AB Photon spectra in the energy range 60 keV to 1 MeV were recorded from targets irradiated by the LLNL Titan and LLE EP picosecond lasers. The radiation consisted of K-shell radiation, bremsstrahlung radiation from MeV electrons, and preliminary evidence for 511 keV positron annihilation radiation. The spectra were recorded by two instruments, an energy-dispersive CCD detector with a CsI phosphor coating that operated in the single-hit per pixel mode and was absolutely calibrated using a Cs-137 662 keV source, and a wavelength-dispersive Cauchois type spectrometer employing a curved Ge(220) transmission crystal that operated in the first and second diffraction orders with high spectral resolution. The calibrated photon energy distributions from Au, Eu, and Al targets are compared to the energetic electron distributions emerging from the targets. Published by Elsevier B. V. C1 [Seely, J. F.] USN, Res Lab, Washington, DC 20375 USA. [Szabo, C. I.; Feldman, Uri] Artep Inc, Ellicott City, MD 21042 USA. [Chen, Hui] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hudson, L. T.; Henins, A.] NIST, Gaithersburg, MD 20899 USA. RP Seely, JF (reprint author), USN, Res Lab, Washington, DC 20375 USA. EM john.seely@nrl.navy.mil FU U.S. DOE by LLNL [DE-AC52-07NA27344]; Office of Naval Research FX We thank Drs. J. Schumer, C. Boyer, and N. Pereira of the NRL Plasma Physics Division for contributions to the CCD detector. The work at NRL was supported by the Office of Naval Research. H. C. was funded under the auspices of the U.S. DOE by LLNL under DE-AC52-07NA27344. Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the U.S. government, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose. NR 8 TC 2 Z9 2 U1 0 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2011 VL 7 IS 3 BP 150 EP 154 DI 10.1016/j.hedp.2011.04.002 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 791WU UT WOS:000292700200007 ER PT J AU Kress, JD Cohen, JS Kilcrease, DP Horner, DA Collins, LA AF Kress, J. D. Cohen, James S. Kilcrease, D. P. Horner, D. A. Collins, L. A. TI Orbital-free molecular dynamics simulations of transport properties in dense-plasma uranium SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Orbital-free molecular dynamics; Dense plasma; Transport properties ID ONE-COMPONENT PLASMA; STATISTICAL-MECHANICS; SHEAR VISCOSITY; IONIZED MATTER; LIQUID URANIUM; TEMPERATURES; COEFFICIENTS; SYSTEMS AB We have calculated the self-diffusion coefficients and shear viscosity of dense-plasma uranium using orbital-free molecular dynamics (OFMD) at the Thomas-Fermi-Dirac level. The transport properties of uranium in this regime have not previously been investigated experimentally or theoretically. The OFMD calculations were performed for temperatures from 50 to 5000 eV and densities from ambient to 10 times compressed. The results are compared with the one-component-plasma (OCP) model, using effective charges given by the average-atom code INFERNO and by the regularization procedure from the OFMD method. The latter generally showed better agreement with the OFMD for viscosity and the former for diffusion. A Stokes-Einstein relationship of the OFMD viscosities and diffusion coefficients is found to hold fairly well with a constant of 0.075 +/- 0.10, while the OCP/INFERNO model yields 0.13 +/- 0.10. (C) 2011 Elsevier B. V. All rights reserved. C1 [Kress, J. D.; Cohen, James S.; Kilcrease, D. P.; Horner, D. A.; Collins, L. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Collins, LA (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM lac@lanl.gov OI Kilcrease, David/0000-0002-2319-5934 FU Advanced Simulation and Computing Program and Campaign; U.S. Department of Energy [DE-AC52-06NA25396] FX We wish to acknowledge useful conversations and suggestions by Brad Holian. This work was supported by the Advanced Simulation and Computing Program and Campaign 4. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 36 TC 9 Z9 9 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2011 VL 7 IS 3 BP 155 EP 160 DI 10.1016/j.hedp.2011.03.007 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 791WU UT WOS:000292700200008 ER PT J AU Wilson, BG Sonnad, V AF Wilson, B. G. Sonnad, V. TI A note on generalized radial mesh generation for plasma electronic Structure SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Electronic structure AB Precise electronic structure calculations of ions in plasmas benefit from optimized numerical radial meshes. A new closed form expression for obtaining non-linear parameters for the efficient generation of analytic log-linear radial meshes is presented. (C) 2011 Elsevier B. V. All rights reserved. C1 [Wilson, B. G.; Sonnad, V.] Lawrence Livermore Natl Lab, Div 5, Livermore, CA 94550 USA. RP Wilson, BG (reprint author), Lawrence Livermore Natl Lab, Div 5, POB 808, Livermore, CA 94550 USA. EM wilson9@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 0 TC 1 Z9 1 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2011 VL 7 IS 3 BP 161 EP 162 DI 10.1016/j.hedp.2011.04.004 PG 2 WC Physics, Fluids & Plasmas SC Physics GA 791WU UT WOS:000292700200009 ER PT J AU Rosen, MD Scott, HA Hinkel, DE Williams, EA Callahan, DA Town, RPJ Divol, L Michel, PA Kruer, WL Suter, LJ London, RA Harte, JA Zimmerman, GB AF Rosen, M. D. Scott, H. A. Hinkel, D. E. Williams, E. A. Callahan, D. A. Town, R. P. J. Divol, L. Michel, P. A. Kruer, W. L. Suter, L. J. London, R. A. Harte, J. A. Zimmerman, G. B. TI The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums SO HIGH ENERGY DENSITY PHYSICS LA English DT Review DE Ignition; Hohlraum; Non-LTE; High-Z ions; Electron conduction ID LASER; RADIATION; WORKSHOP; TARGETS; CODES AB In 2009 the National Ignition Campaign (NIC) gas-filled/capsule-imploding hohlraum energetics campaign showed good laser-hohlraum coupling, reasonably high drive, and implosion symmetry control via cross-beam transfer. There were, however, discrepancies with expectations from the standard simulation model including: the level and spectrum of the Stimulated Raman light; the tendency towards pancake-shaped implosions; and drive that exceeded predictions early in the campaign, and lagged those predictions late in the campaign. We review here the origins/development path of the "high flux model" (HFM). The HFM contains two principal changes from the standard model: 1) It uses a detailed configuration accounting (DCA) atomic physics non-local-thermodynamic-equilibrium (NLTE) model, and 2) It uses a generous electron thermal flux limiter, f = 0.15, that is consistent with a non-local electron transport model. Both elements make important contributions to the HFM's prediction of a hohlraum plasma that is cooler than that predicted by the standard model, which uses an NLTE average atom approach, and a value of f = 0.05 for the flux limiter. This cooler plasma is key in eliminating most of the discrepancies between the NIC data and revised expectations based on this new simulation model. The HFM had previously been successfully deployed in correctly modeling Omega Laser illuminated gold sphere x-ray emission data, and NIC empty hohlraum drive. However, when the HFM was first applied to this energetics campaign, the model lacked some credibility/acceptance compared to the standard model, because it actually worsened the discrepancy between the observed hohlraum drive for the 1 MJ class experiments performed late in the campaign and the revised expectation of higher drive based on the HFM. Essentially, the HFM was making a prediction that the laser-hohlraum coupling was less than that assumed at that time. Its credibility was then boosted when a re-evaluation of the laser light losses from the hohlraum due to laser plasma interactions matched its prediction. (C) 2011 Elsevier B. V. All rights reserved. C1 [Rosen, M. D.; Scott, H. A.; Hinkel, D. E.; Williams, E. A.; Callahan, D. A.; Town, R. P. J.; Divol, L.; Michel, P. A.; Kruer, W. L.; Suter, L. J.; London, R. A.; Harte, J. A.; Zimmerman, G. B.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Rosen, MD (reprint author), Lawrence Livermore Natl Lab, L-039,7000 East Ave,POB 808, Livermore, CA 94551 USA. EM rosen2@llnl.gov RI Michel, Pierre/J-9947-2012 FU DoE [DE-AC52-07NA27344] FX This work was performed by LLNL for the DoE under contract #DE-AC52-07NA27344. NR 41 TC 68 Z9 69 U1 2 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2011 VL 7 IS 3 BP 180 EP 190 DI 10.1016/j.hedp.2011.03.008 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 791WU UT WOS:000292700200012 ER PT J AU Ellis, IN Graziani, FR Glosli, JN Strozzi, DJ Surh, MP Richards, DF Decyk, VK Mori, WB AF Ellis, Ian N. Graziani, Frank R. Glosli, James N. Strozzi, David J. Surh, Michael P. Richards, David F. Decyk, Viktor K. Mori, Warren B. TI Studies of particle wake potentials in plasmas SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Particle simulation; Langmuir wave; Vlasov theory; Particle wake; PIC; PPPM AB A detailed understanding of electron stopping and scattering in plasmas with variable values for the number of particles within a Debye sphere is still not at hand. Presently, there is some disagreement in the literature concerning the proper description of these processes. Theoretical models assume electrostatic (Coulomb force) interactions between particles and neglect magnetic effects. Developing and validating proper descriptions requires studying the processes using first-principle plasma simulations. We are using the particle-particle particle-mesh (PPPM) code ddcMD and the particle-in-cell (PIC) code BEPS to perform these simulations. As a starting point in our study, we examine the wake of a particle passing through a plasma in 3D electrostatic simulations performed with ddcMD and BEPS. In this paper, we compare the wakes observed in these simulations with each other and predictions from collisionless kinetic theory. The relevance of the work to Fast Ignition is discussed. (C) 2011 Elsevier B. V. All rights reserved. C1 [Ellis, Ian N.; Graziani, Frank R.; Glosli, James N.; Strozzi, David J.; Surh, Michael P.; Richards, David F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Ellis, Ian N.; Decyk, Viktor K.; Mori, Warren B.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. RP Ellis, IN (reprint author), Lawrence Livermore Natl Lab, POB 808,L-415, Livermore, CA 94551 USA. EM ellis@physics.ucla.edu OI Strozzi, David/0000-0001-8814-3791 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; University of California, Los Angeles [DE-FG52-09NA29552]; LLNL [09-SI-011, 11-SI-002] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and by the University of California, Los Angeles under Grant DE-FG52-09NA29552. This work was funded by the Laboratory Directed Research and Development Program at LLNL under project tracking codes 09-SI-011 and 11-SI-002. Work by Ian N. Ellis was supported by the Lawrence Scholar Program at LLNL. NR 16 TC 2 Z9 2 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2011 VL 7 IS 3 BP 191 EP 196 DI 10.1016/j.hedp.2011.04.007 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 791WU UT WOS:000292700200013 ER PT J AU Ng, SF Barnard, JJ Leung, PT Yu, SS AF Ng, Siu-Fai Barnard, J. J. Leung, P. T. Yu, S. S. TI Collapsing bubble in metal for high energy density physics study SO HIGH ENERGY DENSITY PHYSICS LA English DT Article DE Bubbles; Ion beams; Shock waves; Plasma ID HEAVY-ION; SONOLUMINESCENCE; MATTER; EQUATION; STATE; ALUMINUM; MODEL; CODE; QEOS AB This paper presents a new idea to produce matter in the high energy density physics (HEDP) regime in the laboratory using an intense ion beam. A gas bubble created inside a solid metal may collapse by driving it with an intense ion beam. The melted metal will compress the gas bubble and supply extra energy to it. Simulations show that the spherical implosion ratio can be about 5 and at the stagnation point, the maximum density, temperature and pressure inside the gas bubble can go up to nearly 2 times solid density, 10 eV and a few megabar (Mbar) respectively. The proposed experiment is the first to permit access into the Mbar regime with existing or near-term ion facilities, and opens up possibilities for new physics gained through careful comparisons of simulations with measurements of quantities like stagnation radius, peak temperature and peak pressure at the metal wall. (C) 2011 Elsevier B. V. All rights reserved. C1 [Ng, Siu-Fai; Leung, P. T.; Yu, S. S.] Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Ng, Siu-Fai; Leung, P. T.; Yu, S. S.] Chinese Univ Hong Kong, Inst Theoret Phys, Hong Kong, Hong Kong, Peoples R China. [Ng, Siu-Fai; Yu, S. S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Barnard, J. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Leung, PT (reprint author), Chinese Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. EM ptleung@phy.cuhk.edu.hk NR 40 TC 1 Z9 1 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1818 J9 HIGH ENERG DENS PHYS JI High Energy Density Phys. PD SEP PY 2011 VL 7 IS 3 BP 203 EP 215 DI 10.1016/j.hedp.2011.04.005 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 791WU UT WOS:000292700200015 ER PT J AU Zarzycki, P Kerisit, S Rosso, KM AF Zarzycki, Piotr Kerisit, Sebastien Rosso, Kevin M. TI Computational methods for intramolecular electron transfer in a ferrous-ferric iron complex SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE Adiabatic electron transfer; External reorganization energy; Umbrella sampling; Electron transfer entropy; Gaussian fluctuations; Solvent linear response; Electronic coupling matrix element ID REORGANIZATION FREE-ENERGIES; CONTINUUM SOLVATION MODELS; TRANSITION-METAL IONS; GAUSSIAN-BASIS SETS; AB-INITIO; SOLVENT REORGANIZATION; MOLECULAR-DYNAMICS; CHARGE-TRANSFER; POLAR-SOLVENTS; EXCHANGE REACTIONS AB The limitations of common theoretical and molecular computational approaches for predicting electron transfer quantities were assessed, using an archetypal bridged ferrous-ferric electron transfer system in aqueous solution. The basis set effect on the magnitude of the electronic coupling matrix element computed using the quasi-diabatic method was carefully examined, and it was found that the error related to a poor basis set could exceed the thermal energy at room temperature. A range of approaches to determining the external (solvent) reorganization energy were also investigated. Significant improvements from the Marcus continuum model can be obtained by including dipolar Born-Kirkwood-Onsager correction. In this regard, we also found that Klamt's Conductor-Like Screening Model (COSMO) yields estimations of the external reorganization energy similar to those obtained with explicit solvent molecular dynamics simulations if the fast-frequency modes are neglected, which makes it an attractive alternative to laborious umbrella sampling simulations. By using the COSMO model, we also confirm that a decrease in curvature of the potential energy surface is a manifestation of the dielectric saturation observed in the first solvation layer. The linearity of solvent response to the charge redistribution was assessed by analyzing the energy gap autocorrelation function as well as the solvent density and dipole moment fluctuations. Molecular dynamics was also used to evaluate the sign and magnitude of the solvent reorganization entropy and to determine its effect on the predicted electron transfer rate. Finally, we present a simple way of estimating the vibration frequency along the reaction coordinate, which also enables prediction of the mass-dependent isotopic signature of electron transfer reactions. (C) 2011 Elsevier Inc. All rights reserved. C1 [Zarzycki, Piotr] Polish Acad Sci, Inst Phys Chem, PL-01224 Warsaw, Poland. [Zarzycki, Piotr; Kerisit, Sebastien; Rosso, Kevin M.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Zarzycki, P (reprint author), Polish Acad Sci, Inst Phys Chem, Kasprzaka 44-52, PL-01224 Warsaw, Poland. EM zarzycki.piotrek@gmail.com OI Zarzycki, Piotr/0000-0003-3891-7159 FU US Department of Energy, Office of Basic Energy Sciences FX This work was supported by a grant from the US Department of Energy, Office of Basic Energy Sciences, Geosciences Program. The research was performed using Environmental Molecular Sciences Laboratory, a national scientific user facility, sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. NR 93 TC 6 Z9 6 U1 3 U2 35 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD SEP 1 PY 2011 VL 361 IS 1 BP 293 EP 306 DI 10.1016/j.jcis.2011.05.070 PG 14 WC Chemistry, Physical SC Chemistry GA 790ZE UT WOS:000292628500038 PM 21696749 ER PT J AU Fraboni, B Cosseddu, P Wang, YQ Schulze, RK Di, ZF Cavallini, A Nastasi, M Bonfiglio, A AF Fraboni, B. Cosseddu, P. Wang, Y. Q. Schulze, R. K. Di, Z. F. Cavallini, A. Nastasi, M. Bonfiglio, A. TI Aging control of organic thin film transistors via ion-implantation SO ORGANIC ELECTRONICS LA English DT Article DE Organic electronics; Ion implantation; Thin film transistor degradation; Electronic transport in thin films ID FIELD-EFFECT TRANSISTORS; LIGHT-EMITTING DEVICES; ELECTRIC-FIELD; PENTACENE; MORPHOLOGY; DISPLAYS; LAYER AB One of the open issues in organic electronics is the long-term stability of devices based on organic materials, as oxidation is believed to be a major reason for early device failure. The focus of our research is to investigate the effects of low energy ion implantation (N and Ne) in the reduction and control of the degradation of pentacene organic thin film transistors (OTFTs) due to the exposure to atmosphere (i.e. oxygen and water). Despite the strong molecular structure modifications induced by ion implantation, we have observed that a controlled damage depth distribution preserves the functionality of the device. The electrical properties of the pentacene layer and of the OTFT have been investigated by means of current-voltage and photocurrent spectroscopy analyses. We have characterized the structural modification induced by ion implantation and we have monitored the effectiveness of this process in stabilizing the device carrier mobility and threshold voltage over a long time (over 2000 h). In particular, we have assessed by depth resolved X-ray photoemission spectroscopy analyses that, by selectively implanting with ions that can react with the hydrocarbon matrix (e. g. N(+)), it is possible to locally modify the charge distribution within the organic layer. (C) 2011 Elsevier B.V. All rights reserved. C1 [Fraboni, B.; Cavallini, A.] Univ Bologna, Dipartimento Fis, I-40127 Bologna, Italy. [Cosseddu, P.; Bonfiglio, A.] Univ Cagliari, Dipartimento Ingn Elettr & Elettron, I-09123 Cagliari, Italy. [Cosseddu, P.; Bonfiglio, A.] CNR INFM S3, I-41100 Modena, Italy. [Wang, Y. Q.; Schulze, R. K.; Di, Z. F.; Nastasi, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Fraboni, B (reprint author), Univ Bologna, Dipartimento Fis, Viale Berti Pichat 6-2, I-40127 Bologna, Italy. EM beatrice.fraboni@unibo.it RI Fraboni, Beatrice/I-8356-2012; Bonfiglio, Annalisa/J-7232-2012; OI COSSEDDU, Piero/0000-0003-4896-504X; Schulze, Roland/0000-0002-6601-817X FU Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396]; European Commission [231500]; Regione Autonoma della Sardegna (RAS) [L.R.7/2007]; Promozione della ricerca scientifica e dell'innovazione tecnologica in Sardegna [1399/207] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. A. B. and P. C. acknowledge financial support by the European Commission, VII FP, under the Project "Roboskin", Contract # 231500. PC acknowledges Regione Autonoma della Sardegna (RAS) for funding his research activity under the PO Sardegna FSE 2007-2013, L.R.7/2007 "Promozione della ricerca scientifica e dell'innovazione tecnologica in Sardegna" CRP Prot. No. 1399/207. NR 40 TC 7 Z9 7 U1 1 U2 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1566-1199 J9 ORG ELECTRON JI Org. Electron. PD SEP PY 2011 VL 12 IS 9 BP 1552 EP 1559 DI 10.1016/j.orgel.2011.05.018 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 791SQ UT WOS:000292685700014 ER PT J AU Brown, NJ Bastien, LAJ Price, PN AF Brown, Nancy J. Bastien, Lucas A. J. Price, Phillip N. TI Transport properties for combustion modeling SO PROGRESS IN ENERGY AND COMBUSTION SCIENCE LA English DT Review DE Transport properties; Combustion modeling; Intermolecular potential; Collision integrals ID ELASTIC SCATTERING MEASUREMENTS; POTENTIAL-ENERGY SURFACE; POLYATOMIC-GAS MIXTURES; BINARY GASEOUS MIXTURES; RANGE 25-700 DEGREES; LOW-DENSITY; NOBLE-GASES; DIFFUSION-COEFFICIENTS; VISCOSITY MEASUREMENTS; COLLISION INTEGRALS AB This review examines current approximations and approaches that underlie the evaluation of transport properties for combustion modeling applications. Discussed in the review are: the intermolecular potential and its descriptive molecular parameters; various approaches to evaluating collision integrals; supporting data required for the evaluation of transport properties; commonly used computer programs for predicting transport properties; the quality of experimental measurements and their importance for validating or rejecting approximations to property estimation; the interpretation of corresponding states; combination rules that yield pair molecular potential parameters for unlike species from like species parameters; and mixture approximations. The insensitivity of transport properties to the intermolecular forces is noted, especially the non-uniqueness of the supporting potential parameters. Viscosity experiments of pure substances and binary mixtures measured post 1970 are used to evaluate a number of approximations; the intermediate temperature range 1 <1* < 10, where T* is kT/epsilon, is emphasized since this is where rich data sets are available. When suitable potential parameters are used, errors in transport property predictions for pure non-polar substances and their binary mixtures are less than 5% when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe; Paul and Warnatz; or Em and Giovangigli. Recommendations stemming from the review include (1) revisiting the supporting data required by the various computational approaches, and updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; (2) characterizing the range of parameter space over which the fit to experimental data is good, rather than the current practice of reporting only the parameter set that best fits the data; (3) looking for improved combining rules, since existing rules were found to under-predict the viscosity of mixtures in most cases; (4) performing more transport property measurements for mixtures that include radical species, an important but neglected area; (5) using the TRANLIB approach for treating polar molecules; (6) continuing to evaluate whether a different parameterization is required for the intermolecular potential for T* > 10; (7) performing more accurate measurements of the molecular parameters used to evaluate the molecular heat capacity and the rotational relaxation collision number, since they affect thermal conductivity; and (8) using the EGLIB approach and computer program with improved supporting data to evaluate transport properties. EGLIB uses the TRANLIB methodology for collision integral evaluation. (C) 2010 Published by Elsevier Ltd. C1 [Brown, Nancy J.; Bastien, Lucas A. J.; Price, Phillip N.] Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Dept Atmospher Sci, Berkeley, CA 94707 USA. RP Brown, NJ (reprint author), MS 90 K-110, Berkeley, CA 94720 USA. EM njbrown@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division of the U.S., Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division of the U.S., Department of Energy, under contract No. DE-AC02-05CH11231. NR 90 TC 35 Z9 36 U1 1 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1285 J9 PROG ENERG COMBUST JI Prog. Energy Combust. Sci. PD SEP PY 2011 VL 37 IS 5 BP 565 EP 582 DI 10.1016/j.pecs.2010.12.001 PG 18 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 793FY UT WOS:000292807000002 ER PT J AU Weinberger, CR AF Weinberger, Christopher R. TI The structure and energetics of, and the plasticity caused by, Eshelby dislocations SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Microstructures; Dislocations; Grain boundaries; Torsion ID STRAIN-GRADIENT PLASTICITY; CLASSICAL ELECTROSTATICS; DYNAMICS SIMULATIONS; CRYSTAL PLASTICITY; NANOWIRES; TORSION; TWIST; INDENTATION; SIZE AB The structure of coaxial, or Eshelby, dislocations are computed using isotropic elasticity for arrays of up to 500 dislocations. The energies of these arrays are determined in order to predict the lowest energy configuration and multiple meta-stable configurations are often found. The energy from these elasticity predictions shows good agreement with molecular statics simulations of aluminum. From these simulations, the torque-twist curves are predicted and compared with molecular dynamics simulations. (C) 2011 Elsevier Ltd. All rights reserved. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Weinberger, CR (reprint author), Sandia Natl Labs, POB 5800,MS1411, Albuquerque, NM 87185 USA. EM crweinb@sandia.gov RI Weinberger, Christopher/E-2602-2011 OI Weinberger, Christopher/0000-0001-9550-6992 FU U.S. Department of Energy [DE-AC04-94AL85000]; Sandia Corporation FX This research was supported in part by an appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering, sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of Sandia National Laboratories under its U.S. Department of Energy Contract No. DE-AC04-94AL85000. NR 37 TC 9 Z9 9 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 J9 INT J PLASTICITY JI Int. J. Plast. PD SEP PY 2011 VL 27 IS 9 BP 1391 EP 1408 DI 10.1016/j.ijplas.2011.03.004 PG 18 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 788ER UT WOS:000292428700005 ER PT J AU Zhang, LZ Dingreville, R Bartel, T Lusk, MT AF Zhang, Liangzhe Dingreville, Remi Bartel, Timothy Lusk, Mark T. TI A stochastic approach to capture crystal plasticity SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Crystal plasticity; Monte Carlo; Rate independent; Single slip; Efficiency ID SINGLE-CRYSTAL; CONSTITUTIVE RELATIONS; TEXTURE DEVELOPMENT; POLYCRYSTALS; DEFORMATION; STRAIN; INTEGRATION; ALGORITHM; STRESS; SHEAR AB A stochastic crystal plasticity model is proposed and applied within the rate-independent regime. As opposed to conventional deterministic algorithms wherein multiple slip systems are activated and redundant constraints may exist, the new Monte Carlo plasticity (MCP) paradigm is based on a stochastic chain of singly activated slip systems and thus avoids the possible ill-condition associated with multi-slip algorithms. The choice of the activated slip system is made at each Monte Carlo (MC) step based on the Metropolis algorithm. The MCP model is implemented within a Material Point Method (MPM) as a constitutive model to capture the elasto-plastic behavior of polycrystalline materials. A comparison with a commonly used singular value decomposition (SVD) algorithm indicates that MCP offers superior computational efficiency while maintaining comparable accuracy. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Zhang, Liangzhe; Lusk, Mark T.] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. [Zhang, Liangzhe; Dingreville, Remi] NYU Poly, Dept Mech & Aerosp Engn, Brooklyn, NY 11201 USA. [Bartel, Timothy] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Zhang, LZ (reprint author), Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA. EM liangzhezhang@gmail.com; mlusk@mines.edu OI Dingreville, Remi/0000-0003-1613-695X FU Sandia National Laboratories under LDRD [09-0298]; National Science Foundation; National Renewable Energy Laboratories FX The research is supported by Sandia National Laboratories under LDRD contract 09-0298. Sandia National Laboratories are operated by the Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy. We also acknowledge the Golden Energy Computing Organization at the Colorado School of Mines for the use of resources acquired with financial assistance from the National Science Foundation and the National Renewable Energy Laboratories. NR 60 TC 5 Z9 5 U1 0 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 J9 INT J PLASTICITY JI Int. J. Plast. PD SEP PY 2011 VL 27 IS 9 BP 1432 EP 1444 DI 10.1016/j.ijplas.2011.04.002 PG 13 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 788ER UT WOS:000292428700007 ER PT J AU Kim, YS Mun, BS Ross, PN AF Kim, Yong Su Mun, Bongjin Simon Ross, Philip N. TI Photoemission study of Pd thin films on Ru(0001) surface SO CURRENT APPLIED PHYSICS LA English DT Article DE XPS; Pd; Ru; Electronic structures ID BIMETALLIC SURFACES; CHEMISORPTION; INTERFACES; OVERLAYERS AB At monolayer coverage of Pd on Ru(0001) surface, the core-level spectra of Pd 3d shows a positive core-level shift of X-ray photoelectron spectroscopy (XPS) while the d-band center of valence band spectra moves away from Fermi level in comparison of bulk Pd(111). The modification of electronic structures, displayed in core-level and valence band XPS spectra can be explained with substrate-induced charge polarization effect in Pd layer, resulting in lowering average potential around atom. (C) 2011 Elsevier B.V. All rights reserved. C1 [Kim, Yong Su; Mun, Bongjin Simon] Hanyang Univ, Dept Appl Phys, Erica, South Korea. [Ross, Philip N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Mun, BS (reprint author), Hanyang Univ, Dept Appl Phys, Erica, South Korea. EM bsmun@hanyang.ac.kr RI Mun, Bongjin /G-1701-2013 FU Hanyang University [HY-20090546-N] FX This work was supported by the research fund of Hanyang University (HY-20090546-N). NR 16 TC 2 Z9 2 U1 1 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1567-1739 EI 1878-1675 J9 CURR APPL PHYS JI Curr. Appl. Phys. PD SEP PY 2011 VL 11 IS 5 BP 1179 EP 1182 DI 10.1016/j.cap.2011.02.015 PG 4 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 782QG UT WOS:000292023800012 ER PT J AU Rong, CB Zhang, Y Poudyal, N Szlufarska, I Hebert, RJ Kramer, MJ Liu, JP AF Rong, Chuanbing Zhang, Ying Poudyal, Narayan Szlufarska, Izabela Hebert, Rainer J. Kramer, M. J. Liu, J. Ping TI Self-nanoscaling of the soft magnetic phase in bulk SmCo/Fe nanocomposite magnets SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID PERMANENT-MAGNETS; REMANENCE ENHANCEMENT; ENERGY PRODUCT; DEFORMATION; MULTILAYERS; INSTABILITY; COMPOSITES; MICROSTRUCTURE; ANISOTROPY; GEOMETRY AB Fabrication of bulk nanocomposite materials, which contain a magnetically hard phase and a magnetically soft phase with desired nanoscale morphology and composition distribution has proven to be challenging. Here we demonstrate that SmCo/Fe(Co) hard/soft nanocomposite materials can be produced by distributing the soft magnetic alpha-Fe(Co) phase particles homogenously in a hard magnetic SmCo phase matrix through a combination of high-energy ball milling and a warm compaction. Severe plastic deformation during the ball milling results in nanoscaling of the soft phase with size reduction from micrometers to similar to 15 nm. Up to 35% of the soft phase can be incorporated into the composites without coarsening. This process produces fully dense bulk isotropic nanocomposite materials with remarkable energy-product enhancement (up to 300%) owing to effective inter-phase exchange coupling. C1 [Rong, Chuanbing; Zhang, Ying; Poudyal, Narayan; Liu, J. Ping] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Zhang, Ying; Kramer, M. J.] Iowa State Univ, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. [Szlufarska, Izabela] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA. [Hebert, Rainer J.] Univ Connecticut, Dept Chem Mat & Biomol Engn, Storrs, CT 06269 USA. RP Liu, JP (reprint author), Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. EM pliu@uta.edu FU US Office of Naval Research/MURI [N00014-05-1-049]; US DoD/DARPA/ARO [W911NF-08-1-0249]; University of Texas-Arlington; US Department of Energy, Office of Basic Energy Science [DE-AC02-07CH11358] FX This work has been supported in part by the US Office of Naval Research/MURI project under Grant N00014-05-1-049, US DoD/DARPA/ARO under Grant W911NF-08-1-0249, and by the University of Texas-Arlington. Work at the Ames laboratory was supported in part by the US Department of Energy, Office of Basic Energy Science, under contract DE-AC02-07CH11358. NR 50 TC 22 Z9 22 U1 6 U2 53 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD SEP PY 2011 VL 46 IS 18 BP 6065 EP 6074 DI 10.1007/s10853-011-5568-7 PG 10 WC Materials Science, Multidisciplinary SC Materials Science GA 781RT UT WOS:000291951900019 ER PT J AU Jeong, YS Jeong, MK Omitaomu, OA AF Jeong, Young-Seon Jeong, Myong K. Omitaomu, Olufemi A. TI Weighted dynamic time warping for time series classification SO PATTERN RECOGNITION LA English DT Article DE Dynamic time warping; Adaptive weights; Weighted dynamic time warping; Modified logistic weight function; Time series classification; Time series clustering ID IDENTIFICATION; RECOGNITION; SYSTEM AB Dynamic time warping (DTW), which finds the minimum path by providing non-linear alignments between two time series, has been widely used as a distance measure for time series classification and clustering. However, DTW does not account for the relative importance regarding the phase difference between a reference point and a testing point. This may lead to misclassification especially in applications where the shape similarity between two sequences is a major consideration for an accurate recognition. Therefore, we propose a novel distance measure, called a weighted DTW (WDTW), which is a penalty-based DTW. Our approach penalizes points with higher phase difference between a reference point and a testing point in order to prevent minimum distance distortion caused by outliers. The rationale underlying the proposed distance measure is demonstrated with some illustrative examples. A new weight function, called the modified logistic weight function (MLWF), is also proposed to systematically assign weights as a function of the phase difference between a reference point and a testing point. By applying different weights to adjacent points, the proposed algorithm can enhance the detection of similarity between two time series. We show that some popular distance measures such as DTW and Euclidean distance are special cases of our proposed WDTW measure. We extend the proposed idea to other variants of DTW such as derivative dynamic time warping (DDTW) and propose the weighted version of DDTW. We have compared the performances of our proposed procedures with other popular approaches using public data sets available through the UCR Time Series Data Mining Archive for both time series classification and clustering problems. The experimental results indicate that the proposed approaches can achieve improved accuracy for time series classification and clustering problems. (C) 2011 Published by Elsevier Ltd. C1 [Jeong, Young-Seon; Jeong, Myong K.] Rutgers State Univ, Dept Ind & Syst Engn, Piscataway, NJ 08854 USA. [Jeong, Myong K.] Rutgers State Univ, Rutgers Ctr Operat Res, Piscataway, NJ 08854 USA. [Jeong, Myong K.] Korea Adv Inst Sci & Technol, Dept Ind & Syst Engn, Taejon, South Korea. [Omitaomu, Olufemi A.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Geog Informat Sci & Technol Grp, Oak Ridge, TN USA. RP Jeong, MK (reprint author), Rutgers State Univ, Dept Ind & Syst Engn, 640 Bartholomew Rd,Room 115, Piscataway, NJ 08854 USA. EM mjeong@rci.rutgers.edu FU National Science Foundation (NSF) [CMMI-0853894] FX The authors acknowledge the support of Dr. Eamonn Keogh in providing us the experimental data set. Also, the authors would like to thank the anonymous reviewers for their valuable comments that improved our paper dramatically. The part of this work was supported by the National Science Foundation (NSF) Grant no. CMMI-0853894. Dr. Olufemi A. Omitaomu acts in his own independent capacity and not on behalf of UT-Battelle, LLC, or its affiliates or successors. NR 28 TC 80 Z9 92 U1 6 U2 52 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0031-3203 J9 PATTERN RECOGN JI Pattern Recognit. PD SEP PY 2011 VL 44 IS 9 SI SI BP 2231 EP 2240 DI 10.1016/j.patcog.2010.09.022 PG 10 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 780DN UT WOS:000291834800035 ER PT J AU McBride, AC Dale, VH Baskaran, LM Downing, ME Eaton, LM Efroymson, RA Garten, CT Kline, KL Jager, HI Mulholland, PJ Parish, ES Schweizer, PE Storey, JM AF McBride, Allen C. Dale, Virginia H. Baskaran, Latha M. Downing, Mark E. Eaton, Laurence M. Efroymson, Rebecca A. Garten, Charles T., Jr. Kline, Keith L. Jager, Henriette I. Mulholland, Patrick J. Parish, Esther S. Schweizer, Peter E. Storey, John M. TI Indicators to support environmental sustainability of bioenergy systems SO ECOLOGICAL INDICATORS LA English DT Article DE Bioenergy; Biofuel; Sustainability; Environment; Indicator; Feedstock ID IMPACTING MODEL PERFORMANCE; GREENHOUSE-GAS EMISSIONS; NET PRIMARY PRODUCTIVITY; LIFE-CYCLE ASSESSMENT; REED CANARY-GRASS; AIR-QUALITY; CARBON-MONOXIDE; SOIL QUALITY; TERRESTRIAL ECOSYSTEMS; PARTICULATE MATTER AB Indicators are needed to assess environmental sustainability of bioenergy systems. Effective indicators will help in the quantification of benefits and costs of bioenergy options and resource uses. We identify 19 measurable indicators for soil quality, water quality and quantity, greenhouse gases, biodiversity, air quality, and productivity, building on existing knowledge and on national and international programs that are seeking ways to assess sustainable bioenergy. Together, this suite of indicators is hypothesized to reflect major environmental effects of diverse feedstocks, management practices, and post-production processes. The importance of each indicator is identified. Future research relating to this indicator suite is discussed, including field testing, target establishment, and application to particular bioenergy systems. Coupled with such efforts, we envision that this indicator suite can serve as a basis for the practical evaluation of environmental sustainability in a variety of bioenergy systems. (C) 2011 Elsevier Ltd. All rights reserved. C1 [McBride, Allen C.; Dale, Virginia H.; Baskaran, Latha M.; Downing, Mark E.; Eaton, Laurence M.; Efroymson, Rebecca A.; Garten, Charles T., Jr.; Kline, Keith L.; Jager, Henriette I.; Mulholland, Patrick J.; Parish, Esther S.; Schweizer, Peter E.] Oak Ridge Natl Lab, Ctr Bioenergy Sustainabil, Div Environm Sci, Oak Ridge, TN 37831 USA. [Storey, John M.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Oak Ridge, TN 37831 USA. RP Dale, VH (reprint author), Oak Ridge Natl Lab, Ctr Bioenergy Sustainabil, Div Environm Sci, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM dalevh@ornl.gov RI Parish, Esther/B-9443-2012; Mulholland, Patrick/C-3142-2012; Baskaran, Latha/D-9754-2016; Eaton, Laurence/E-1471-2012; OI Parish, Esther/0000-0001-9264-6295; Baskaran, Latha/0000-0001-8487-3914; Eaton, Laurence/0000-0003-1270-9626; Kline, Keith/0000-0003-2294-1170; Efroymson, Rebecca/0000-0002-3190-880X FU U.S. Department of Energy (DOE) under the Office of the Biomass Program; DOE [DE-AC05-00OR22725] FX Robin Graham, Gbadebo Oladosu, Andy Aden, and two anonymous referees provided helpful comments on earlier versions of this paper. Tristram West provided advice on greenhouse gas accounting. Jennifer Smith helped organize references. This research was supported by the U.S. Department of Energy (DOE) under the Office of the Biomass Program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725. NR 140 TC 78 Z9 78 U1 6 U2 69 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1470-160X EI 1872-7034 J9 ECOL INDIC JI Ecol. Indic. PD SEP PY 2011 VL 11 IS 5 BP 1277 EP 1289 DI 10.1016/j.ecolind.2011.01.010 PG 13 WC Biodiversity Conservation; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 774TO UT WOS:000291409700030 ER PT J AU Cochran, KB Dodds, RH Hjelmstad, KD AF Cochran, Kristine B. Dodds, Robert H. Hjelmstad, Keith D. TI The role of strain ratcheting and mesh refinement in finite element analyses of plasticity induced crack closure SO INTERNATIONAL JOURNAL OF FATIGUE LA English DT Article DE Crack closure; Small-scale yielding; Finite element analysis; Mesh dependence; Cycle dependence; Nonlinear plasticity ID NUMERICAL-SIMULATION; STRESS; GROWTH; PROPAGATION; EMPHASIS AB Numerical investigations of plasticity induced crack closure using the finite element method typically assume: (1) the opening behavior remains independent of the simulated rate of crack growth, and (2) a threshold element size exists below which crack opening loads become mesh independent. Nevertheless, examples in the recent literature and also in the present work indicate these assumptions do not always hold. The current work demonstrates the field results (displacements, stress-strain) for cyclic loading of stationary cracks converge with mesh refinement. However, when the cyclic load regime includes systematic crack extension, certain conditions lead to highly mesh dependent fields and opening loads. The cyclic accumulation of permanent deformation (strain ratcheting) necessarily produces mesh dependence when the finite element size dictates the rate of crack growth. Moreover, extensive ratcheting leads to physically unrealistic shapes of the crack opening profiles. This work explores the link between strain ratcheting, mesh dependence and load-cycle effects within a small-scale yielding framework, including the influence of plane strain vs. plane stress constraints, constitutive definition (non-hardening, linear kinematic hardening and nonlinear kinematic hardening) and the monotonic flow properties. Key conclusions from this work include: (1) near-tip strain ratcheting generally increases with decreased hardening and can be much more pronounced in plane strain than in plane stress; (2) for models with significant ratcheting, slower rates of simulated growth due to smaller element size and/or more load cycles between crack advancements generally reduce the opening loads; and (3) the computed opening loads depend intrinsically on the amount of ratcheting, and the rate of crack growth as determined by the element size and number of load cycles between crack advancements. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Dodds, Robert H.] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. [Cochran, Kristine B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Hjelmstad, Keith D.] Arizona State Univ, Mesa, AZ 85212 USA. RP Dodds, RH (reprint author), Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. EM cochrankb@ornl.gov; rdodds@illinois.edu; Keith.Hjelmstad@asu.edu FU Department of Energy; NASA Marshall Space Flight Center [NNM04AA37G]; University of Illinois FX The Department of Energy provided funding for this work through the Computational Science Graduate Fellowship. Additional support was provided by the NASA Marshall Space Flight Center through Grant NNM04AA37G (MSFC, Mr. D.N. Wells, Technical Monitor), and by the M.T. Geoffrey Yeh Fund at the University of Illinois. The information presented in this paper is the sole opinion of the authors and does not necessarily reflect the views of the sponsoring agencies. We also thank Dr. James Sobotka for his help with the figures. NR 27 TC 15 Z9 15 U1 0 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-1123 J9 INT J FATIGUE JI Int. J. Fatigue PD SEP PY 2011 VL 33 IS 9 BP 1205 EP 1220 DI 10.1016/j.ijfatigue.2011.03.005 PG 16 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 777NM UT WOS:000291628400006 ER PT J AU Bozic, G Kook, S Ekoto, IW Petersen, BR Miles, PC AF Bozic, Goran Kook, Sanghoon Ekoto, Isaac W. Petersen, Ben R. Miles, Paul C. TI Optical Investigation Into Wall Wetting From Late-Cycle Post-Injections Used for Diesel Particulate Filter Regeneration SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article AB Wall wetting phenomena were investigated in a light-duty diesel optical engine, operating under typical diesel particulate filter regeneration conditions, through the use of liquid spray imaging during late-cycle post-injections. Three post-injection timings were explored: (1) an "early" timing (44.5 deg after top dead center (aTDC)) where high ambient temperatures and densities were expected to decrease the liquid penetration, (2) a "conventional" timing (78.5 deg aTDC) that is typically used to produce the necessary aftertreatment regeneration exhaust conditions, and (3) a "late" timing (133.5 deg aTDC) where in-cylinder flows generated by exhaust valve opening-induced blowdown can disrupt the liquid penetration. In addition to a 2007 U. S. certification diesel fuel, a palm-derived B20 biodiesel blend and a soy-derived B100 biodiesel were examined since liquid spray impingement is thought to worsen for biodiesel blends due to higher fuel distillation temperature, density, and viscosity. No significant wall wetting was observed for the early post-injection. However, considerable impingement occurred for the conventional and late post-injections. Liquid penetration and persistence of liquid fuel in the cylinder were found to increase with biodiesel content, while exhaust blowdown flows were ineffective in reducing the severity of wall wetting. Negligible distortion of jet structure was observed for the liquid spray at the late post-injection. Short pulse durations decreased the severity of liquid penetration with the soy-derived biodiesel during the early post-injection but were otherwise ineffective. C1 [Bozic, Goran; Kook, Sanghoon] Univ New S Wales, Sydney, NSW 2052, Australia. [Ekoto, Isaac W.; Petersen, Ben R.; Miles, Paul C.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Bozic, G (reprint author), Univ New S Wales, Sydney, NSW 2052, Australia. RI Kook, Sanghoon/C-5372-2009 OI Kook, Sanghoon/0000-0002-7620-9789 FU United States Department of Energy (Office of Vehicle Technologies); United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Support for this research was provided by the United States Department of Energy (Office of Vehicle Technologies). This study was performed at the Combustion Research Facility, Sandia National Laboratories in Livermore, CA. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors thank the many members of the GM-UW Cooperative Research Laboratory program for their comments and insight into appropriate post-injection conditions. NR 14 TC 2 Z9 2 U1 1 U2 10 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD SEP PY 2011 VL 133 IS 9 AR 092803 DI 10.1115/1.4002917 PG 7 WC Engineering, Mechanical SC Engineering GA 762QP UT WOS:000290494800015 ER PT J AU Ciatti, S Subramanian, SN AF Ciatti, Stephen Subramanian, Swami Nathan TI An Experimental Investigation of Low-Octane Gasoline in Diesel Engines SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article AB Conventional combustion techniques struggle to meet the current emissions norms. In particular, oxides of nitrogen (NO(x)) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines. Advance combustion concepts have proved the potential to combine fuel efficiency and improved emission performance. Low-temperature combustion (LTC) offers reduced NOx and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NOx emissions is dependent on achieving optimal combustion phasing. Diesel operated LTC is limited by early knocking combustion, whereas conventional gasoline operated LTC is limited by misfiring. So the concept of using an unconventional fuel with the properties in between those two boundary fuels has been experimented in this paper. Low-octane (84 RON) gasoline has shown comparable diesel efficiencies with the lowest NO(x) emissions at reasonable high power densities (NOx emission was 1 g/kW h at 12 bar BMEP and 2750 rpm). C1 [Ciatti, Stephen; Subramanian, Swami Nathan] Argonne Natl Lab, Argonne, IL 60439 USA. RP Ciatti, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. OI Ciatti, Stephen/0000-0003-3792-9473 FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; GMPTE-Italy; GM Advanced Engineering Detroit FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. We acknowledge helpful discussions and support from GMPTE-Italy and GM Advanced Engineering Detroit. We would also like to acknowledge support from Tim Rutter in this project. NR 20 TC 14 Z9 14 U1 0 U2 10 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD SEP PY 2011 VL 133 IS 9 AR 092802 DI 10.1115/1.4002915 PG 11 WC Engineering, Mechanical SC Engineering GA 762QP UT WOS:000290494800014 ER PT J AU Devarakonda, M Tonkyn, R Tran, D Lee, J Herling, D AF Devarakonda, Maruthi Tonkyn, Russell Tran, Diana Lee, Jong Herling, Darrell TI Modeling Species Inhibition of NO Oxidation in Urea-SCR Catalysts for Diesel Engine NOx Control SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article DE Fe-zeolite; urea-SCR; species inhibition; diesel engine; NOx control; modeling and simulation ID NITROGEN-OXIDES; NH3; ADSORPTION; REDUCTION; CU-ZSM-5; FE-ZSM5 AB Urea-selective catalytic reduction (SCR) catalysts are regarded as the leading NOx aftertreatment technology to meet the 2010 NOx emission standards for on-highway vehicles running on heavy duty diesel engines. However, issues such as low NOx conversion at low temperature conditions still exist due to various factors, including incomplete urea thermolysis, inhibition of SCR reactions by hydrocarbons, and H2O. We have observed a noticeable reduction in the standard SCR reaction efficiency at low temperature with increasing water content. We observed a similar effect when hydrocarbons are present in the stream. This effect is absent under fast SCR conditions where NO similar to NO2 in the feed gas. As a first step in understanding the effects of such inhibition on SCR reaction steps, kinetic models that predict the inhibition behavior of H2O and hydrocarbons on NO oxidation are presented in the paper. A one-dimensional SCR model was developed based on the conservation of species equations and was coded as a C-language S-function and implemented in MATLAB/SIMULINK environment. NO oxidation and NO2 dissociation kinetics were defined as a function of the respective adsorbate's storage in the Fe-zeolite SCR catalyst. The corresponding kinetic models were then validated on temperature ramp tests that showed good match with the test data. Such inhibition models will improve the accuracy of the model based control design for integrated diesel particulate filter-SCR aftertreatment systems. C1 [Devarakonda, Maruthi; Tonkyn, Russell; Tran, Diana; Lee, Jong; Herling, Darrell] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Devarakonda, M (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM maruthi.devarakonda@pnl.gov FU U.S. Department of Energy; Department of Energy's Office of Biological and Environmental Research; U.S. Department of Energy by the Battelle Memorial Institute [DE-AC05-76RLO1830] FX The authors thank the Cross-cut Lean Exhaust Emission Reduction Simulation (CLEERS) team for the support. CLEERS is a R&D focus project of a team comprising the national laboratories, universities, and the industry supported by the U.S. Department of Energy. One author (M.D.) would like to thank Kalyan Chakravarthy of Oak Ridge National Laboratory for helpful technical discussions. A portion of this research was performed at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. PNNL is operated for the U.S. Department of Energy by the Battelle Memorial Institute under Contract No. DE-AC05-76RLO1830. NR 26 TC 4 Z9 4 U1 5 U2 29 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD SEP PY 2011 VL 133 IS 9 AR 092805 DI 10.1115/1.4002894 PG 6 WC Engineering, Mechanical SC Engineering GA 762QP UT WOS:000290494800017 ER PT J AU Karaivanov, VG Slaughter, WS Siw, S Chyu, MK Alvin, MA AF Karaivanov, Ventzislav G. Slaughter, William S. Siw, Sean Chyu, Minking K. Alvin, Mary Anne TI Compressive Creep Testing of Thermal Barrier Coated Nickel-Based Superalloys SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article ID CYCLIC OXIDATION; MECHANICAL-PROPERTIES; COATINGS; CRACKING; SYSTEMS AB Turbine airfoils have complex geometries and, during service operation, are subjected to complex loadings. In most publications, results are typically reported for either uniaxial, isothermal tensile creep or for thermal cyclic tests. The former generally provides data for creep of the superalloy and the overall performance, and the later provide data for thermal barrier coating (TBC) spallation as a function of thermally grown oxide thickness, surface roughness, temperature, and thermal mismatch between the layers. Both tests provide valuable data but little is known about the effect of compressive creep strain on the performance of the superalloy/protective system at elevated temperatures. In conjunction with computational model development, laboratory-scale experimental validation was undertaken to verify the viability of the underlying damage mechanics concepts for the evolution of TBC damage. Nickel-based single crystal Rene N5 coupons that were coated with a similar to 150-200 mu m MCrAlY bond coat and a similar to 200-240 mu m 7-YSZ APS top coat were used in this effort. The coupons were exposed to 900 degrees C, 1000 degrees C, and 1100 degrees C, for periods of 100 h, 300 h, 1000 h, and 3000 h in slotted silicon carbide fixtures. The difference in the coefficients of thermal expansion of the Rene N5 substrate and the test fixture introduces thermally induced compressive stress in the coupon samples. Exposed samples were cross sectioned and evaluated using scanning electron microscopy. Performance data were collected based on image analysis. Energy-dispersive X-ray was employed to study the elemental distribution in the TBC system after exposure. To better understand the loading and failure mechanisms of the coating system under loading conditions, nanoindentation was used to study the mechanical properties (Young's modulus and hardness) of the components in the TBC system and their evolution with temperature and time. The effect of uniaxial in-plane compressive creep strain on the rate of growth of the thermally grown oxide layer, the time to coating failure in TBC systems, and the evolution in the mechanical properties are presented. C1 [Karaivanov, Ventzislav G.; Slaughter, William S.; Siw, Sean; Chyu, Minking K.] Univ Pittsburgh, Pittsburgh, PA 15261 USA. [Alvin, Mary Anne] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Slaughter, WS (reprint author), Univ Pittsburgh, Pittsburgh, PA 15261 USA. EM wss@pitt.edu FU National Energy Technology Laboratory [DE-AC26-04NT41817.606.01.08] FX This research effort was performed in support of the National Energy Technology Laboratory under Contract No. DE-AC26-04NT41817.606.01.08. The authors wish to thank Mr. Richard Dennis at DOE NETL for his continued support. The authors acknowledge the facilities, scientific and technical assistance of the Materials Micro-Characterization Laboratory of the Department of Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, specifically to the Director of MMCL Dr. Jorg M.K. Wiezorek and Mr. Albert Stewart. NR 17 TC 1 Z9 1 U1 2 U2 18 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD SEP PY 2011 VL 133 IS 9 AR 091301 DI 10.1115/1.4002816 PG 9 WC Engineering, Mechanical SC Engineering GA 762QP UT WOS:000290494800001 ER PT J AU Maziasz, PJ Pint, BA AF Maziasz, Philip J. Pint, Bruce A. TI High-Temperature Performance of Cast CF8C-Plus Austenitic Stainless Steel SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article ID WATER-VAPOR; OXIDATION BEHAVIOR; COATINGS; ALLOYS AB Covers and casings of small to medium size gas turbines can be made from cast austenitic stainless steels, including grades such as CF8C, CF3M, or CF10M. Oak Ridge National Laboratory and Caterpillar have developed a new cast austenitic stainless steel, CF8C-Plus, which is a fully austenitic stainless steel, based on additions of Mn and N to the standard Nb-stabilized CF8C steel grade. The Mn addition improves castability, as well as increases the alloy solubility for N, and both Mn and N synergistically act to boost mechanical properties. CF8C-Plus steel has outstanding creep-resistance at 600-900 degrees C, which compares well with Ni-based superalloys such as alloys X, 625, 617, and 230. CF8C-Plus also has very good fatigue and thermal fatigue resistance. It is used in the as-cast condition, with no additional heat-treatments. While commercial success for CF8C-Plus has been mainly for diesel exhaust components, this steel can also be considered for gas turbine and microturbine casings. The purposes of this paper are to demonstrate some of the mechanical properties, to update the long-term creep-rupture data, and to present new data on the high-temperature oxidation behavior of these materials, particularly in the presence of water vapor. C1 [Maziasz, Philip J.; Pint, Bruce A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Maziasz, PJ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM pintba@ornl.gov RI Pint, Bruce/A-8435-2008; OI Pint, Bruce/0000-0002-9165-3335; Maziasz, Philip/0000-0001-8207-334X FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy FX The author would like to thank G. W. Garner, J. L. Moser, T. Brummett, and H. Longmire at ORNL for the assistance with the experimental work and N. Evans and S. Dryepondt for comments on the manuscript. This research was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Technology Commercialization and Deployment, and Industrial Technologies programs. NR 23 TC 4 Z9 4 U1 1 U2 17 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD SEP PY 2011 VL 133 IS 9 AR 092102 DI 10.1115/1.4002828 PG 5 WC Engineering, Mechanical SC Engineering GA 762QP UT WOS:000290494800008 ER PT J AU Aaltonen, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bauer, G Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Bland, KR Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brigliadori, L Brisuda, A Bromberg, C Brucken, E Bucciantonio, M Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clarke, C Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Dagenhart, D d'Ascenzo, N Datta, M de Barbaro, P De Cecco, S De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Devoto, F d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, M Dorigo, T Ebina, K Elagin, A Eppig, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Funakoshi, Y Furic, I Gallinaro, M Galyardt, J Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Hamaguchi, A Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Hewamanage, S Hidas, D Hocker, A Hopkins, W Horn, D Hou, S Hughes, RE Hurwitz, M Husemann, U Hussain, N Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Karchin, PE Kasmi, A Kato, Y Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirby, M Klimenko, S Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leo, S Leone, S Lewis, JD Limosani, A Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, Q Liu, T Lockwitz, S Loginov, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maeshima, K Makhoul, K Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Martinez, M Martinez-Ballarin, R Mastrandrea, P Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Rescigno, M Riddick, T Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rubbo, F Ruffini, F Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Sakurai, Y Santi, L Sartori, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shreyber, I Simonenko, A Sinervo, P Sissakian, A Sliwa, K Smith, JR Snider, FD Soha, A Somalwar, S Sorin, V Squillacioti, P Stancari, M Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tu, Y Ukegawa, F Uozumi, S Varganov, A Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wagner, RL Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Wick, F Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamaoka, J Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zucchelli, S AF Aaltonen, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bauer, G. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brigliadori, L. Brisuda, A. Bromberg, C. Brucken, E. Bucciantonio, M. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clarke, C. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Dagenhart, D. d'Ascenzo, N. Datta, M. de Barbaro, P. De Cecco, S. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Devoto, F. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, M. Dorigo, T. Ebina, K. Elagin, A. Eppig, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Funakoshi, Y. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Hamaguchi, A. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Hewamanage, S. Hidas, D. Hocker, A. Hopkins, W. Horn, D. Hou, S. Hughes, R. E. Hurwitz, M. Husemann, U. Hussain, N. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Karchin, P. E. Kasmi, A. Kato, Y. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirby, M. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leo, S. Leone, S. Lewis, J. D. Limosani, A. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, Q. Liu, T. Lockwitz, S. Loginov, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maeshima, K. Makhoul, K. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Rescigno, M. Riddick, T. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rubbo, F. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Sakurai, Y. Santi, L. Sartori, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shreyber, I. Simonenko, A. Sinervo, P. Sissakian, A. Sliwa, K. Smith, J. R. Snider, F. D. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stancari, M. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tu, Y. Ukegawa, F. Uozumi, S. Varganov, A. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wagner, R. L. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Wick, F. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamaoka, J. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zucchelli, S. CA CDF Collaboration TI Observation of the Xi(0)(b) Baryon SO PHYSICAL REVIEW LETTERS LA English DT Article AB The observation of the bottom, strange baryon Xi(0)(b) through the decay chain Xi(0)(b) -> Xi(+)(c)pi(-), where Xi(+)(c) -> Xi(-) pi(+) pi(+), Xi(-) -> Lambda pi(-), and Lambda -> p pi(-), is reported by using data corresponding to an integrated luminosity of 4.2 fb(-1) from p (p) over bar collisions at root s = 1.96 TeV recorded with the Collider Detector at Fermilab. A signal of 25.3(-5.4)(+5.6) candidates is observed whose probability of arising from a background fluctuation is 3.6 x 10(-12), corresponding to 6.8 Gaussian standard deviations. The Xi(0)(b) mass is measured to be 5787.8 +/- 5.0(stat) +/- 1.3(syst) MeV/c(2). In addition, the Xi(-)(b) baryon is observed through the process Xi(-)(b) -> Xi(0)(c)pi(-), where Xi(0)(c) -> Xi(-) pi(+), Xi(-) -> Lambda pi(-), and Lambda -> p pi(-). C1 [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Carrillo, S.; Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Vazquez, F.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [LeCompte, T.; Nodulman, L.; Paramonov, A. A.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, ICREA, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Kasmi, A.; Krumnack, N.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.; Vizan, J.] Univ Cantabria, Inst Fis Cantabria, CSIC, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sissakian, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; Hopkins, W.; James, E.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Morello, M. J.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ristori, L.; Roser, R.; Rubbo, F.; Rusu, V.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Soha, A.; Stancari, M.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Klimenko, S.; Konigsberg, J.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Convery, M. E.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Catastini, P.; Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Budd, S.; Carls, B.; Cavaliere, V.; Errede, D.; Errede, S.; Gerberich, H.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Thompson, G. A.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Horn, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Morlock, J.; Muller, Th.; Schmidt, A.; Wick, F.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Fang, H. C.; Haber, C.; Lin, C. -J.; Lujan, P.; Lys, J.; Nielsen, J.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Nurse, E.; Riddick, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Eppig, A.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Wilson, J. S.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Hamaguchi, A.; Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Lucchesi, D.; Griso, S. Pagan; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Ershaidat, N.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Bucciantonio, M.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leo, S.; Leone, S.; Menzione, A.; Piacentino, G.; Punzi, G.; Ristori, L.; Ruffini, F.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Bucciantonio, M.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Latino, G.; Leo, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Ciocci, M. A.; Garosi, P.; Ruffini, F.; Scribano, A.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.] Scuola Normale Superiore, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Goldin, D.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Nett, J.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Dorigo, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Pauletta, G.; Santi, L.] Univ Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.; Whitehouse, B.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.] Tufts Univ, Medford, MA 02155 USA. [Group, R. C.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.] Univ Wisconsin, Madison, WI 53706 USA. [Auerbach, B.; Almenar, C. Cuenca; Husemann, U.; Lockwitz, S.; Loginov, A.; Schmidt, M. P.; Stanitzki, M.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Div High Energy Phys, Dept Phys, FIN-00014 Helsinki, Finland. RI Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Ruiz, Alberto/E-4473-2011; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Robson, Aidan/G-1087-2011; Scodellaro, Luca/K-9091-2014; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014 OI Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Ruiz, Alberto/0000-0002-3639-0368; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Scodellaro, Luca/0000-0002-4974-8330; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829 FU U.S. Department of Energy and National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean World Class University; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, United Kingdom; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland; Australian Research Council FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council. NR 16 TC 26 Z9 26 U1 2 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 31 PY 2011 VL 107 IS 10 AR 102001 DI 10.1103/PhysRevLett.107.102001 PG 7 WC Physics, Multidisciplinary SC Physics GA 902PU UT WOS:000301051200003 ER PT J AU Tang, ML Liu, N Dionne, JA Alivisatos, AP AF Tang, Ming L. Liu, Na Dionne, Jennifer A. Alivisatos, A. Paul TI Observations of Shape-Dependent Hydrogen Uptake Trajectories from Single Nanocrystals SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID PD-AU ALLOY; THIN-FILMS; ROOM-TEMPERATURE; PALLADIUM; INTERDIFFUSION; CATALYSTS; SYSTEM; GOLD; DIFFRACTION; SELECTIVITY AB In this work, H-2 absorption and desorption in faceted, crystalline Au/Pd core/shell nanocrystals and their interaction with a SiOx/Si support were studied at the single-particle level. Dark-field microscopy was used to monitor the changing optical properties of these Au/Pd nanoparticles (NPs) upon exposure to H-2 as reversible H-2 uptake from the Pd shell proceeded. Analysis of the heterogeneous ensemble of NPs revealed the H-2 uptake trajectory of each nanocrystal to be shape-dependent. Differences in particle uptake trajectories were observed for individual particles with different shapes, faceting, and Pd shell thickness. In addition to palladium hydride formation, the single-particle trajectories were able to decipher specific instances where palladium silicide formation and Au/Pd interdiffusion occurred and helped us determine that this was more frequently seen in those particles within an ensemble having thicker Pd shells. This noninvasive, plasmonic-based direct sensing technique shows the importance of single-particle experiments in catalytically active systems and provides a foundation for studying more complex catalytic processes in inhomogeneous NP systems. C1 [Tang, Ming L.; Liu, Na; Dionne, Jennifer A.; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Tang, Ming L.; Liu, Na; Dionne, Jennifer A.; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Alivisatos, AP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM alivis@berkeley.edu RI Liu, Na/C-8190-2014; Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU U.S. Department of Energy [DE-AC03-76SF00098]; Air Force Office of Science Research [FA9550-10-1-0504]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-05CH11231] FX The authors thank Dr. Yimin Li and Prof. Gabor A. Somorjai for valuable discussions and close reading of this manuscript. We thank David C. Grauer for performing the XPS sputtering experiments. This work was supported by the grant "A Synergistic Approach to the Development of New Classes of Hydrogen Storage Materials" from the U.S. Department of Energy (DE-AC03-76SF00098). Chemicals were procured through the Plasmonic-Enhanced Catalysis Project of the Air Force Office of Science Research (Award FA9550-10-1-0504). SEM and XPS studies were performed at the Imaging and Manipulation Facility at the Molecular Foundry, and TEM work was done at the National Center for Electron Microscopy at the Lawrence Berkeley National Laboratory, supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (Contract DE-AC02-05CH11231). NR 39 TC 71 Z9 71 U1 6 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 31 PY 2011 VL 133 IS 34 BP 13220 EP 13223 DI 10.1021/ja203215b PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 829BZ UT WOS:000295551600004 PM 21793566 ER PT J AU Dambournet, D Chapman, KW Chupas, PJ Gerald, RE Penin, N Labrugere, C Demourgues, A Tressaud, A Amine, K AF Dambournet, Damien Chapman, Karena W. Chupas, Peter J. Gerald, Rex E., II Penin, Nicolas Labrugere, Christine Demourgues, Alain Tressaud, Alain Amine, Khalil TI Dual Lithium Insertion and Conversion Mechanisms in a Titanium-Based Mixed-Anion Nanocomposite SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID LI-ION BATTERIES; ELECTRODE MATERIALS; METAL FLUORIDES; OXYFLUORIDES AB The electrochemical reaction of lithium with a vacancy-containing titanium hydroxyfluoride was studied. On the basis of pair distribution function analysis, NMR, and X-ray photoelectron spectroscopy, we propose that the material undergoes partitioning upon initial discharge to form a nanostructured composite containing crystalline Li(x)TiO(2), surrounded by a Ti(0) and LiF layer. The Ti(0) is reoxidized upon reversible charging to an amorphous TiF(3) phase via a conversion reaction. The crystalline Li(x)TiO(2) is involved in an insertion reaction. The resulting composite electrode, Ti(0)-LiF/Li(x)TiO(2) double left right arrow TiF(3)/ Li(y)TiO(2), allows reaction of more than one Li per Ti, providing a route to higher capacities while improving the energy efficiency compared to pure conversion chemistries. C1 [Dambournet, Damien; Gerald, Rex E., II; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Chapman, Karena W.; Chupas, Peter J.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. [Penin, Nicolas; Labrugere, Christine; Demourgues, Alain; Tressaud, Alain] Univ Bordeaux, CNRS, Inst Chim Mat Condensee Bordeaux, F-33607 Pessac, France. RP Dambournet, D (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM damien_dambournet@yahoo.fr; chapmank@aps.anl.gov RI Chapman, Karena/G-5424-2012; Amine, Khalil/K-9344-2013 FU U.S. Department of Energy (DOE) [AC02-06CH11357]; FreedomCAR; Vehicle Technologies Office; French Centre National de la Recherche Scientifique (CNRS) FX This work was funded, in part, by the U.S. Department of Energy (DOE), FreedomCAR, and Vehicle Technologies Office. Work done at Argonne and use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. DOE Office of Science by Argonne National Laboratory, were supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. We acknowledge support from the French Centre National de la Recherche Scientifique (CNRS) and discussions with I. Belharouak, N. Karan, and M. Balasubramanian. NR 27 TC 23 Z9 23 U1 3 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 31 PY 2011 VL 133 IS 34 BP 13240 EP 13243 DI 10.1021/ja204284h PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 829BZ UT WOS:000295551600009 PM 21809881 ER PT J AU Dong, AG Chen, J Ye, XC Kikkawa, JM Murray, CB AF Dong, Angang Chen, Jun Ye, Xingchen Kikkawa, James M. Murray, Christopher B. TI Enhanced Thermal Stability and Magnetic Properties in NaCl-Type FePt-MnO Binary Nanocrystal Superlattices SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ORDERING TEMPERATURE; NANOPARTICLES; REDUCTION; MEDIA; MEMBRANES; PHASE AB We report the growth of NaCl-type binary nanocrystal (NC) superlattice membranes by coassembly of FePt and MnO NCs at the liquid-air interface. The constituent FePt NCs were converted into the hard magnetic L1(0) phase by thermal annealing at 650 degrees C without degradation of the long-range NC ordering. In contrast, both FePt-only NC superlattices and FePt-MnO disordered NC mixtures showed substantial FePt sintering under the same annealing conditions. Our results demonstrate that the incorporation of FePt NCs into binary superlattices can solve the problems of FePt sintering during conversion to the L1(0) phase, opening a new route to the fabrication of ordered ferromagnetic NC arrays on a desired substrate for high-density data storage applications. C1 [Dong, Angang] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Chen, Jun; Murray, Christopher B.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Ye, Xingchen; Murray, Christopher B.] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. [Kikkawa, James M.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. RP Dong, AG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. EM adong@lbl.gov; cbmurray@sas.upenn.edu RI Dong, Angang/C-5308-2014; Chen, Jun/F-7103-2014; Ye, Xingchen/D-3202-2017; OI Ye, Xingchen/0000-0001-6851-2721; Dong, Angang/0000-0002-9677-8778 FU U.S. Army Research Office (ARO) [MURI W911NF-08-1-0364]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division [DE-AC02-05CH11231]; DOE Office of ARPA-E [DE-AR0000123]; Department of Energy Basic Energy Sciences Division [DE-SC0002158]; NSF MRSEC [DMR-0520020]; Richard Perry University FX The authors acknowledge the support from the U.S. Army Research Office (ARO) under Award MURI W911NF-08-1-0364. The work performed at the Molecular Foundry was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, under Contract DE-AC02-05CH11231. J.C. acknowledges the DOE Office of ARPA-E for partial support under Award DE-AR0000123. X.Y. acknowledges support from the Department of Energy Basic Energy Sciences Division through Award DE-SC0002158. J.M.K. acknowledges the support from the NSF MRSEC Program under Award DMR-0520020. C.B.M. is grateful to the Richard Perry University Professorship for the support of his supervisor role. NR 31 TC 19 Z9 19 U1 5 U2 68 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 31 PY 2011 VL 133 IS 34 BP 13296 EP 13299 DI 10.1021/ja2057314 PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 829BZ UT WOS:000295551600023 PM 21800910 ER PT J AU Li, YM Liu, JHC Witham, CA Huang, WY Marcus, MA Fakra, SC Alayoglu, P Zhu, ZW Thompson, CM Arjun, A Lee, K Gross, E Toste, FD Somorjai, GA AF Li, Yimin Liu, Jack Hung-Chang Witham, Cole A. Huang, Wenyu Marcus, Matthew A. Fakra, Sirine C. Alayoglu, Pinar Zhu, Zhongwei Thompson, Christopher M. Arjun, Arpana Lee, Kihong Gross, Elad Toste, F. Dean Somorjai, Gabor A. TI A Pt-Cluster-Based Heterogeneous Catalyst for Homogeneous Catalytic Reactions: X-ray Absorption Spectroscopy and Reaction Kinetic Studies of Their Activity and Stability against Leaching SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID RECOVERABLE CATALYSTS; PALLADIUM ACETATE; NANOPARTICLES; DENDRIMERS; REAGENTS; HECK AB The design and development of metal-cluster-based heterogeneous catalysts wit l high activity, selectivity, and stability under solution-phase reaction conditions will enable their applications as recyclable catalysts in large-scale fine chemicals production. To achieve these required catalytic properties, a heterogeneous catalyst must contain specific catalytically active species in high concentration, and the active species must be stabilized on a solid catalyst support under solution-phase reaction conditions. These requirements pose a great challenge for catalysis research to design metal-cluster-based catalysts for solution-phase catalytic processes. Here, we focus on a silica-supported, polymer-encapsulated Pt catalyst for an electrophilic hydroalkoxylation reaction in toluene, which exhibits superior selectivity and stability against leaching under mild reaction conditions. We unveil the key factors leading to the observed superior catalytic performance by combining X-ray absorption spectroscopy (XAS) and reaction kinetic studies. On the basis of the mechanistic understandings obtained in this work, we also provide useful guidelines for designing metal-cluster-based catalyst for a broader range of reactions in the solution phase. C1 [Toste, F. Dean] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Toste, FD (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM fdtoste@berkeley.edu; somorjai@berkeley.edu RI Li, Yimin/F-5817-2012; Li, Yimin/F-5821-2012; Huang, Wenyu/L-3784-2014; OI Huang, Wenyu/0000-0003-2327-7259; Toste, F. Dean/0000-0001-8018-2198 FU Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences of the U.S. DOE [DE-AC02-05CH11231] FX We acknowledge support from the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences of the U.S. DOE under Contract No. DE-AC02-05CH11231. NR 32 TC 51 Z9 51 U1 3 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 31 PY 2011 VL 133 IS 34 BP 13527 EP 13533 DI 10.1021/ja204191t PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 829BZ UT WOS:000295551600053 PM 21721543 ER PT J AU Wang, JX Ma, C Choi, YM Su, D Zhu, YM Liu, P Si, R Vukmirovic, MB Zhang, Y Adzic, RR AF Wang, Jia X. Ma, Chao Choi, YongMan Su, Dong Zhu, Yimei Liu, Ping Si, Rui Vukmirovic, Miomir B. Zhang, Yu Adzic, Radoslav R. TI Kirkendall Effect and Lattice Contraction in Nanocatalysts: A New Strategy to Enhance Sustainable Activity SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID OXYGEN REDUCTION ELECTROCATALYSTS; DEALLOYED PT-CU; AB-INITIO; FUEL-CELLS; PLATINUM; NANOPARTICLES; ALLOYS; HOLLOW; DISSOLUTION; STABILITY AB Core-shell nanoparticles increasingly are found to be effective in enhancing catalytic performance through the favorable influence of the core materials on the active components at the surface. Yet, sustaining high activities under operating conditions often has proven challenging. Here we explain how differences in the components' diffusivity affect the formation and stability of the core-shell and hollow nanostructures, which we ascribe to the Kirkendall effect. Using Ni nanoparticles as the templates, we fabricated compact and smooth Pt hollow nanocrystals that exhibit a sustained enhancement in Pt mass activity for oxygen reduction in acid fuel cells. This is achieved by the hollow-induced lattice contraction, high surface area per mass, and oxidation-resistant surface morphology-a new route for enhancing both the catalysts' activity and durability. The results indicate challenges and opportunities brought by the nanoscale Kirkendall effect for designing, at the atomic level, nanostructures with a wide range of novel properties. C1 [Wang, Jia X.; Choi, YongMan; Liu, Ping; Si, Rui; Vukmirovic, Miomir B.; Zhang, Yu; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Ma, Chao; Zhu, Yimei] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Ma, Chao] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. RP Wang, JX (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM jia@bnl.gov; adzic@bnl.gov RI Su, Dong/A-8233-2013; Wang, Jia/B-6346-2011; Choi, YongMan/N-3559-2014; Ma, Chao/J-4569-2015; OI Su, Dong/0000-0002-1921-6683; Choi, YongMan/0000-0003-4276-1599; Zhang, Yu/0000-0002-0814-2965 FU U.S. Department of Energy, Basic Energy Sciences, Divisions of Chemical and Material Sciences, Material Sciences and Engineering Division [DE-AC02-98CH10886] FX This work is supported by U.S. Department of Energy, Basic Energy Sciences, Divisions of Chemical and Material Sciences, Material Sciences and Engineering Division, under the Contract No. DE-AC02-98CH10886. DFT calculations were performed at the Center for Functional Nanomaterials, Brookhaven National Laboratory and the National Energy Research Scientific Computing (NERSC) Center. We thank Prof. M. C. Lin for CPU time and Jonathan Hanson and Hugh Isaacs for discussions. NR 48 TC 137 Z9 138 U1 20 U2 199 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD AUG 31 PY 2011 VL 133 IS 34 BP 13551 EP 13557 DI 10.1021/ja204518x PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 829BZ UT WOS:000295551600057 PM 21780827 ER PT J AU Cinotti, L Smith, CF Sekimoto, H Mansani, L Reale, M Sienicki, JJ AF Cinotti, Luciano Smith, Craig F. Sekimoto, Hiroshi Mansani, Luigi Reale, Marco Sienicki, James J. TI Lead-cooled system design and challenges in the frame of Generation IV International Forum SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB The Generation IV International Forum (GIF) Technology Roadmap identified the Lead-cooled Fast Reactor (LFR) as a technology well suited for electricity generation, hydrogen production and actinide management in a closed fuel cycle. One of the most important features of the LFR is the fact that lead is a relatively inert coolant, a feature that conveys significant advantages in terms of safety, system simplification, and the consequent potential for economic performance. In 2004, the GIF LFR Provisional System Steering Committee was organized and began to develop the LFR System Research Plan. The committee selected two pool-type reactor concepts as candidates for international cooperation and joint development in the GIF framework: these are the Small Secure Transportable Autonomous Reactor (SSTAR); and the European Lead-cooled System (ELSY). The high boiling point (1745 degrees C) of lead has a beneficial impact to the safety of the system, whereas its high melting point (327.4 degrees C) requires new engineering strategies, especially for In-Service-Inspection and refuelling. Lead, especially at high temperatures, is also relatively corrosive towards structural materials. This necessitates that coolant purity and the level of dissolved oxygen be carefully controlled, in addition to the proper selection of structural materials. For the GIF LFR concepts, lead has been chosen as the coolant rather than Lead-Bismuth Eutectic primarily because of its greatly reduced generation of the alpha-emitting (210)Po isotope formed in the coolant. This results in significantly reduced levels of radioactive contamination of the coolant while minimizing the effect of decay power in the coolant from such contaminants; an additional consideration is the desire to eliminate dependence on bismuth which might be a limited resource. This paper provides an overview of the historical development of the LFR, a summary of the advantages and challenges associated with heavy liquid metal coolants, and an update of the current status of development of LFR concepts under consideration. The main characteristics of the SSTAR and ELSY systems are summarized, and the current status of design of each system is presented. Because of the significant recent efforts in the ELSY system design, greater emphasis is placed on the ELSY plant, with focus on the technological development and design provisions intended to overcome or alleviate recognized drawbacks to the use of heavy liquid metal coolants. In the case of the SSTAR system for which development has proceeded more slowly, a more limited summary is provided. It is noted that both systems share many of the same research needs and objectives thus providing a strong basis for international collaboration. (C) 2011 Elsevier B.V. All rights reserved. C1 [Cinotti, Luciano] ME Rivus, I-00186 Rome, Italy. [Smith, Craig F.] Lawrence Livermore Natl Lab, Monterey, CA 93943 USA. [Smith, Craig F.] USN, Postgrad Sch, Monterey, CA 93943 USA. [Sekimoto, Hiroshi] Tokyo Inst Technol, Meguro Ku, Tokyo 1528550, Japan. [Mansani, Luigi; Reale, Marco] Ansaldo Nucl SpA, I-16161 Genoa, Italy. [Sienicki, James J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Cinotti, L (reprint author), ME Rivus, Piazza Campitelli 2, I-00186 Rome, Italy. EM luciano.cinotti@merivus.it; cfsmith@nps.edu; hsekimot@nr.titech.ac.jp; luigi.mansani@ann.ansaldo.it; marco.reale@ann.ansaldo.it; sienicki@anl.gov NR 10 TC 21 Z9 21 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD AUG 31 PY 2011 VL 415 IS 3 BP 245 EP 253 DI 10.1016/j.jnucmat.2011.04.042 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 827QG UT WOS:000295442400004 ER PT J AU Van den Bosch, J Almazouzi, A Mueller, G Rusanov, A AF Van den Bosch, J. Almazouzi, A. Mueller, G. Rusanov, A. TI Production and preliminary characterization of ferritic-martensitic steel T91 cladding tubes for LBE or Pb cooled nuclear systems SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID IRRADIATION CREEP; LEAD-BISMUTH; CORROSION; ALLOYS AB Thin wall tubes with suitable dimensions for possible future use as nuclear fuel cladding based on ferritic-martensitic steel T91 have been produced. Several rolling routes for thin wall tube rolling have been successfully explored to produce T91 tubes of 8.5 mm OD and 0.5 mm wall thickness as well as 6.5 mm OD and 0.5 mm wall thickness. The results show that the cold rolled T91 steel thin walled tubes remain ductile and the material easily carries fractional strains. Finally the microstructure of the resulting tubes was examined and preliminary burst and tensile tests were performed showing properties comparable to those of T91 plate material. (C) 2011 Elsevier B.V. All rights reserved. C1 [Van den Bosch, J.; Almazouzi, A.] CEN SCK, B-2400 Mol, Belgium. [Van den Bosch, J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Almazouzi, A.] EDF R&D, F-77818 Moret Sur Loing, France. [Mueller, G.] Karlsruhe Inst Technol, D-76344 Eggenstein Leopoldshafen, Germany. [Rusanov, A.] IPPE, Obninsk 249020, Kaluga Region, Russia. RP Van den Bosch, J (reprint author), CEN SCK, Boeretang 200, B-2400 Mol, Belgium. EM jvdbosch@sckcen.be NR 15 TC 4 Z9 4 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD AUG 31 PY 2011 VL 415 IS 3 BP 276 EP 283 DI 10.1016/j.jnucmat.2011.04.053 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 827QG UT WOS:000295442400008 ER PT J AU Maloy, SA Toloczko, M Cole, J Byun, TS AF Maloy, S. A. Toloczko, M. Cole, J. Byun, T. S. TI Core materials development for the fuel cycle R&D program SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB The Fuel Cycle Research and Development program is investigating methods of burning minor actinides in a transmutation fuel. One of the challenges of achieving this goal is to develop fuels capable of reaching extreme burnup levels (e.g. 40%). To achieve such high burnup levels' fast reactor core materials (cladding and duct) must be able to withstand very high doses (>300 dpa design goal) while in contact with the coolant and the fuel. Thus, these materials must withstand radiation effects that promote low temperature embrittlement, radiation induced segregation, high temperature helium embrittlement, swelling, accelerated creep, corrosion with the coolant, and chemical interaction with the fuel (FCCI). To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Test specimens of ferritic/martensitic alloys (T91/HT-9) previously irradiated in the FFTF reactor up to 210 dpa at a temperature range of 350-750 degrees C are presently being tested. This includes analysis of a duct made of HT-9 after irradiation to a total dose of 155 dpa at temperatures from 370 to 510 degrees C. Compact tension, charpy and tensile specimens have been machined from this duct and mechanical testing as well as SANS and Mossbauer spectroscopy are currently being performed. Initial results from compression testing and Charpy testing reveal a strong increase in yield stress (similar to 400 MPa) and a large increase in DBTT (up to 230 degrees C) for specimens irradiated at 383 degrees C to a dose of 28 dpa. Less hardening and a smaller increase in DBTT was observed for specimens irradiated at higher temperatures up to 500 degrees C. Advanced radiation tolerant materials are also being developed to enable the desired extreme fuel burnup levels. Specifically, coatings are being developed to minimize FCCI, and research is underway to fabricate large heats of radiation tolerant oxide dispersion steels with homogeneous oxide dispersions. Published by Elsevier B.V. C1 [Maloy, S. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Toloczko, M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Cole, J.] Idaho Natl Lab, Idaho Falls, ID USA. [Byun, T. S.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Maloy, SA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM maloy@lanl.gov RI Maloy, Stuart/A-8672-2009; OI Maloy, Stuart/0000-0001-8037-1319; Cole, James/0000-0003-1178-5846 NR 2 TC 17 Z9 17 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD AUG 31 PY 2011 VL 415 IS 3 BP 302 EP 305 DI 10.1016/j.jnucmat.2011.04.027 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 827QG UT WOS:000295442400011 ER PT J AU Dhere, RG Bonnet-Eymard, M Charlet, E Peter, E Duenow, JN Li, JV Kuciauskas, D Gessert, TA AF Dhere, Ramesh G. Bonnet-Eymard, Maximilien Charlet, Emilie Peter, Emmanuelle Duenow, Joel N. Li, Jian V. Kuciauskas, Darius Gessert, Timothy A. TI CdTe solar cell with industrial Al:ZnO on soda-lime glass SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT 10th Symposium M of the 2010 E-MRS on Thin Film Chalcogenide Photovoltaic Materials CT EMRS Spring Meeting Symposium M - Thin Film Chalcogenide Photovoltaic Materials CY 2010 CY JUN 07-11, 2010 CL San Francisco, CA CL Strasburg, FRANCE DE CdTe; CdS; Al:ZnO; Close-spaced sublimation; Thin-film solar-cell AB One avenue to enhance CdTe cell performance is to improve the optical transmission of the transparent conductive oxide (TCO)/window layer stack. In this paper, we examine soda-lime float glass coated with an Al-doped ZnO layer and a buffer layer. The possible advantages of using a ZnO-based TCO include reduced surface roughness, improved transparency, and an integrated buffer layer that can be optimized for use in a CdTe PV device. Device processing was modified to address the chemical and thermal differences between the ZnO-based TCO stack produced by Saint-Gobain and the TCOs previously used at the National Renewable Energy Laboratory (NREL). These process modifications produced similar to 8% efficiency for devices without a buffer layer. Incorporation of buffer layers has already produced devices with similar to 11% and >12% efficiency for CdTe deposition temperatures of 570 degrees and 500 degrees C, respectively. Published by Elsevier B.V. C1 [Dhere, Ramesh G.; Duenow, Joel N.; Li, Jian V.; Kuciauskas, Darius; Gessert, Timothy A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Bonnet-Eymard, Maximilien] St Gobain Herzogenrath Res Ctr, Herzogenrath, Germany. [Charlet, Emilie; Peter, Emmanuelle] St Gobain Res, F-93300 Aubervilliers, France. RP Dhere, RG (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM Ramesh.Dhere@nrel.gov RI oudin, olivier/G-4613-2015; Li, Jian/B-1627-2016 FU Saint-Gobain HRDC, Germany FX This work has been supported by Saint-Gobain HRDC, Germany. The authors would like to thank Andreas Nositschka and Jean-Christophe Giron at HRDC. NR 5 TC 19 Z9 19 U1 2 U2 22 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD AUG 31 PY 2011 VL 519 IS 21 SI SI BP 7142 EP 7145 DI 10.1016/j.tsf.2010.11.095 PG 4 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 826IL UT WOS:000295347700004 ER PT J AU Gessert, TA Burst, J Li, X Scott, M Coutts, TJ AF Gessert, T. A. Burst, J. Li, X. Scott, M. Coutts, T. J. TI Advantages of transparent conducting oxide thin films with controlled permittivity for thin film photovoltaic solar cells SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT 10th Symposium M of the 2010 E-MRS on Thin Film Chalcogenide Photovoltaic Materials CT EMRS Spring Meeting Symposium M - Thin Film Chalcogenide Photovoltaic Materials CY 2010 CY JUN 07-11, 2010 CL San Francisco, CA CL Strasburg, FRANCE DE Transparent conducting oxides; CdTe thin film photovoltaic solar cells AB Our recent investigations have identified a pathway to produce transparent conducting oxide (TCO) films that demonstrate higher infrared transparency. The technique involves controlling the dielectric permittivity of the TCO film such that the electrical properties are maintained, but the plasma frequency (omega(p)) is shifted to longer wavelength. This has the effect of reducing free-carrier absorption in the visible and near-infrared spectral region, thus producing a TCO film with higher optical transmission. The technique has been demonstrated for sputtered films of indium tin oxide by adding small amounts of ZrO2 to a ceramic sputtering target, and for SnO2:F films deposited by chemical vapor deposition using a metalorganic Zr source. (C) 2011 Elsevier B.V. All rights reserved. C1 [Gessert, T. A.; Burst, J.; Li, X.; Scott, M.; Coutts, T. J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Gessert, TA (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM tim_gessert@nrel.gov FU DOE [DE-AC36-08-GO28308] FX This research was supported under DOE Contract No. DE-AC36-08-GO28308 to NREL. NR 11 TC 13 Z9 13 U1 0 U2 18 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD AUG 31 PY 2011 VL 519 IS 21 SI SI BP 7146 EP 7148 DI 10.1016/j.tsf.2011.01.143 PG 3 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 826IL UT WOS:000295347700005 ER PT J AU Yan, YF Jones, KM Al-Jassim, MM Dhere, R Wu, XZ AF Yan, Yanfa Jones, Kim M. Al-Jassim, Mowafak M. Dhere, Ramesh Wu, Xuanzhi TI Transmission electron microscopy study of dislocations and interfaces in CdTe solar cells SO THIN SOLID FILMS LA English DT Article; Proceedings Paper CT 10th Symposium M of the 2010 E-MRS on Thin Film Chalcogenide Photovoltaic Materials CT EMRS Spring Meeting Symposium M - Thin Film Chalcogenide Photovoltaic Materials CY 2010 CY JUN 07-11, 2010 CL San Francisco, CA CL Strasburg, FRANCE DE TEM; CdTe; Defects; Interface ID POSITIONING TWIN BOUNDARIES; FILM; OXYGEN AB We report on our transmission electron microscopy study of dislocations and interfaces in CdTe solar cells. The atomic structure of dislocations formed inside CdTe grains have been determined by atomic-resolution transmission electron microscopy. We discuss the electronic properties of the dislocations and explore the effects of oxygen on the interdiffusion at CdS/CdTe interface. We find that the presence of oxygen in either CdS or CdTe suppresses the interdiffusion at the CdS/CdTe interface. We have further investigated interdiffusion at the CdS/Zn2SnO4 interface. We find that Zn diffuses into CdS from Zn2SnO4 and Cd diffuses into Zn2SnO4 from CdS. The possible effects of the interdiffusion are discussed. Finally, we have examined the distribution of intentionally introduced Cu at the CdTe/CdS junction, and we find that Cu is distributed uniformly in the CdS layer. (C) 2011 Elsevier B.V. All rights reserved. C1 [Yan, Yanfa; Jones, Kim M.; Al-Jassim, Mowafak M.; Dhere, Ramesh; Wu, Xuanzhi] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Yan, YF (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM yanfa.yan@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308] FX This work was supported by the U.S. Department of Energy under contract no. DE-AC36-08GO28308. NR 11 TC 7 Z9 7 U1 4 U2 34 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD AUG 31 PY 2011 VL 519 IS 21 SI SI BP 7168 EP 7172 DI 10.1016/j.tsf.2010.12.108 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 826IL UT WOS:000295347700011 ER PT J AU Sidheswaran, MA Destaillats, H Sullivan, DP Larsen, J Fisk, WJ AF Sidheswaran, Meera A. Destaillats, Hugo Sullivan, Douglas P. Larsen, Joern Fisk, William J. TI Quantitative room-temperature mineralization of airborne formaldehyde using manganese oxide catalysts SO APPLIED CATALYSIS B-ENVIRONMENTAL LA English DT Article DE Manganese oxide catalysts; Room-temperature oxidation; Mineralization; Indoor air; Formaldehyde ID COMPLETE OXIDATION; SECONDARY POLLUTANTS; OZONE; DEGRADATION; PERFORMANCE; EMISSIONS; REMOVAL; AIR AB Manganese oxide-based catalysts have been synthesized and tested for the abatement of formaldehyde, an ubiquitous indoor pollutant which is not effectively eliminated by most air cleaning technologies. Catalysts were prepared by co-precipitation of MnSO(4) and NaMnO(4) followed by curing at 100, 200 and 400 degrees C. Characterization was performed using X-ray diffractometry (XRD), porosimetry, scanning electron microscopy (SEM), and inductively coupled plasma-mass spectrometry (ICP-MS). Diffractograms of samples treated at 100 and 200 degrees C matched those of nsutite and cryptomelane/manjiroite structures, with high BET surface area (up to 149 m(2) g(-1)) and small particle size (<50 nm), while curing at 400 degrees C yielded pyrolusite with lower effective surface area. Room temperature catalytic oxidation of airborne formaldehyde was studied by supporting the catalyst on a particulate filter media placed in a flow system, under stable upstream formaldehyde concentrations between 30 and 200 ppb. Two different face velocities (nu = 0.2 and 50 cm s(-1)) were studied to evaluate the oxidation efficiency under different flow regimes using formaldehyde-enriched laboratory air at 25-30% relative humidity. Results showed consistent single-pass formaldehyde oxidation efficiency greater than 80% for the synthesized catalysts, which remained active over at least 35 days of continuous operation at nu = 0.2 cm s(-1) and were able to process up to 400 m(3) of air at nu = 50 cm s(-1) without appreciable deactivation. Operation under high relative humidity (>90% RH) produced only a small reversible reduction in formaldehyde removal. Most significantly, 100% mineralization yields were verified by quantifying CO(2) formation downstream of the catalyst for upstream formaldehyde concentrations as high as 6 ppm and a face velocity of nu = 13 cm s(-1). In contrast, a filter loaded with commercially available MnO(2) did not remove appreciable amounts of formaldehyde at nu = 50 cm s(-1), and yielded <20% initial removal when operated at a very low face velocity (nu = 0.03 cm s(-1)). Due to the relatively low costs of synthesis and deployment of these catalysts, this technology is promising for maintaining low indoor formaldehyde levels, enabling energy-saving reductions of building ventilation rates. (C) 2011 Elsevier B.V. All rights reserved. C1 [Sidheswaran, Meera A.; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Destaillats, Hugo] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ USA. [Larsen, Joern] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Destaillats, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM HDestaillats@lbl.gov RI Destaillats, Hugo/B-7936-2013 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The authors thank Jerome Lam, Colin McCormick, and Joe Hagerman of DOE for program management, M. Fischer, K. Reichl, R. Maddalena, M. Sleiman, M. Russell, T. Hotchi, M. Spears, A. Montalbano, S. Cohn, X. Song, W. Lukens and Q. Fu (LBNL) for technical assistance, J. Pena, A. Fernandez-Martinez and R. Maddalena for helpful suggestions, and L. Gundel, M. Apte and M. Sleiman for reviewing the draft report on which this paper was based. NR 38 TC 27 Z9 29 U1 10 U2 86 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-3373 J9 APPL CATAL B-ENVIRON JI Appl. Catal. B-Environ. PD AUG 31 PY 2011 VL 107 IS 1-2 BP 34 EP 41 DI 10.1016/j.apcatb.2011.06.032 PG 8 WC Chemistry, Physical; Engineering, Environmental; Engineering, Chemical SC Chemistry; Engineering GA 820CO UT WOS:000294883300005 ER PT J AU Chen, XM Yang, S Kim, JH Kim, HD Kim, JS Rojas, G Skomski, R Lu, HD Bhattacharya, A Santos, T Guisinger, N Bode, M Gruverman, A Enders, A AF Chen, Xumin Yang, Seolun Kim, Ji-Hyun Kim, Hyung-Do Kim, Jae-Sung Rojas, Geoffrey Skomski, Ralph Lu, Haidong Bhattacharya, Anand Santos, Tiffany Guisinger, Nathan Bode, Matthias Gruverman, Alexei Enders, Axel TI Ultrathin BaTiO3 templates for multiferroic nanostructures SO NEW JOURNAL OF PHYSICS LA English DT Article ID SCANNING-TUNNELING-MICROSCOPY; MOLECULAR-BEAM-EPITAXY; THIN-FILMS; ELECTRONIC-STRUCTURE; 001 SI; SRTIO3; GROWTH; SPECTROSCOPY; SURFACE; FERROELECTRICITY AB The structural, electronic and dielectric properties of high-quality ultrathin BaTiO3 films were investigated. The films, which were grown by ozone-assisted molecular beam epitaxy on Nb-doped SrTiO3(001) substrates and have thicknesses as low as 8 unit cells (u.c.) (3.2 nm), are unreconstructed and atomically smooth with large crystalline terraces. A strain-driven transition to three-dimensional (3D) island formation is observed for films of 13 u.c. thickness (5.2 nm). The high structural quality of the surfaces, together with dielectric properties similar to bulk BaTiO3 and dominantly TiO2 surface termination, makes these films suitable templates for the synthesis of high-quality metal-oxide multiferroic heterostructures for the fundamental study and exploitation of magneto-electric effects, such as a recently proposed interface effect in Fe/BaTiO3 heterostructures based on Fe-Ti interface bonds. C1 [Chen, Xumin; Rojas, Geoffrey; Skomski, Ralph; Lu, Haidong; Gruverman, Alexei; Enders, Axel] Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. [Yang, Seolun; Kim, Ji-Hyun; Kim, Jae-Sung] Sook Myung Womens Univ, Dept Phys, Seoul 140742, South Korea. [Kim, Hyung-Do] PAL, Beamline Div, Pohang 790784, South Korea. [Skomski, Ralph; Enders, Axel] Univ Nebraska, NCMN, Lincoln, NE 68588 USA. [Bhattacharya, Anand; Santos, Tiffany; Guisinger, Nathan; Bode, Matthias] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Enders, A (reprint author), Univ Nebraska, Dept Phys & Astron, Lincoln, NE 68588 USA. EM a.enders@me.com RI Bhattacharya, Anand/G-1645-2011; Gruverman, alexei/P-3537-2014; Bode, Matthias/S-3249-2016 OI Bhattacharya, Anand/0000-0002-6839-6860; Gruverman, alexei/0000-0003-0492-2750; Bode, Matthias/0000-0001-7514-5560 FU NSF [DMR-0747704]; MRSEC [DMR-0213808]; US Department of Energy [DE-SC0004876]; NRF [2007-0055035]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the NSF through CAREER (DMR-0747704) and MRSEC (DMR-0213808), by the US Department of Energy (DE-SC0004876) and by the NRF (2007-0055035). The use of the facilities at the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. NR 36 TC 2 Z9 2 U1 3 U2 40 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD AUG 31 PY 2011 VL 13 AR 083037 DI 10.1088/1367-2630/13/8/083037 PG 10 WC Physics, Multidisciplinary SC Physics GA 817LC UT WOS:000294673100003 ER PT J AU Wang, YJ Lin, H Das, T Hasan, MZ Bansil, A AF Wang, Y. J. Lin, H. Das, Tanmoy Hasan, M. Z. Bansil, A. TI Topological insulators in the quaternary chalcogenide compounds and ternary famatinite compounds SO NEW JOURNAL OF PHYSICS LA English DT Article ID SINGLE DIRAC CONE; CRYSTAL-STRUCTURE; PHASE-DIAGRAM; ELECTRONIC-STRUCTURE; SURFACE; SYSTEM; ALLOYS; REFINEMENT; CU2HGGES4; BI2TE3 AB We present first-principles calculations to predict several three-dimensional (3D) topological insulators in quaternary chalcogenide compounds of compositions I-2-II-IV-VI4 and ternary famatinite compounds of compositions I-3-V-VI4. Among the large number of members of these two families, we give examples of naturally occurring compounds that are mainly Cu-based chalcogenides. We show that these materials are candidates for 3D topological insulators or can be tuned to obtain topologically interesting phases by manipulating the atomic number of the various cations and anions. A band inversion can occur at a single point 0 with large inversion strength, in addition to the opening of a bulk bandgap throughout the Brillouin zone. We discuss how the two investigated families of compounds are related to each other by cross-substitution of cations in the underlying tetragonal structure. C1 [Wang, Y. J.; Lin, H.; Das, Tanmoy; Bansil, A.] Northeastern Univ, Dept Phys, Boston, MA 02115 USA. [Das, Tanmoy] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Hasan, M. Z.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. RP Lin, H (reprint author), Northeastern Univ, Dept Phys, Boston, MA 02115 USA. EM nilnish@gmail.com RI HASAN, M. Zahid/D-8237-2012; Lin, Hsin/F-9568-2012 OI Lin, Hsin/0000-0002-4688-2315 FU Division of Materials Science and Engineering, Basic Energy Sciences, US Department of Energy [DE-FG02-07ER46352, DE-FG-02-05ER46200, AC03-76SF00098] FX The work at Northeastern and Princeton is supported by the Division of Materials Science and Engineering, Basic Energy Sciences, US Department of Energy through grants numbers DE-FG02-07ER46352, DE-FG-02-05ER46200 and AC03-76SF00098 and has benefited from the allocation of supercomputer time at NERSC and Northeastern University's Advanced Scientific Computation Center. NR 57 TC 17 Z9 17 U1 4 U2 26 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD AUG 31 PY 2011 VL 13 AR 085017 DI 10.1088/1367-2630/13/8/085017 PG 10 WC Physics, Multidisciplinary SC Physics GA 817LC UT WOS:000294673100005 ER PT J AU Renfrew, PD Campbell, G Strauss, CEM Bonneau, R AF Renfrew, P. Douglas Campbell, Gabrielle Strauss, Charlie E. M. Bonneau, Richard TI The 2010 Rosetta Developers Meeting: Macromolecular Prediction and Design Meets Reproducible Publishing SO PLOS ONE LA English DT Editorial Material ID PROTEIN-STRUCTURE PREDICTION; SEQUENCES C1 [Renfrew, P. Douglas; Bonneau, Richard] NYU, Dept Biol, Ctr Genom & Syst Biol, New York, NY 10003 USA. [Strauss, Charlie E. M.] Los Alamos Natl Labs, Biosci Div, Los Alamos, NM USA. [Bonneau, Richard] NYU, Courant Inst Math Sci, Dept Comp Sci, New York, NY 10012 USA. [Bonneau, Richard] NYU, Computat Biol Program, New York, NY USA. [Campbell, Gabrielle] Assoc Amer Med Coll, Washington, DC USA. RP Renfrew, PD (reprint author), NYU, Dept Biol, Ctr Genom & Syst Biol, New York, NY 10003 USA. EM cems@lanl.gov; bonneau@cs.nyu.edu FU NCI NIH HHS [U54 CA143907, I U54CA143907-01]; NIAID NIH HHS [RC4 AI092765-01, RC4 AI092765] NR 26 TC 1 Z9 1 U1 0 U2 4 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 31 PY 2011 VL 6 IS 8 AR e22431 DI 10.1371/journal.pone.0022431 PG 5 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 817NM UT WOS:000294680800002 PM 21909349 ER PT J AU Wallace, E Dranow, D Laible, PD Christensen, J Nollert, P AF Wallace, Ellen Dranow, David Laible, Philip D. Christensen, Jeff Nollert, Peter TI Monoolein Lipid Phases as Incorporation and Enrichment Materials for Membrane Protein Crystallization SO PLOS ONE LA English DT Article ID CUBIC PHASES; CRYSTAL-STRUCTURE; IN-CUBO; MESOPHASES; MECHANISM; RECEPTOR; SYSTEM; ANTAGONIST; DIAGRAM AB The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive crystallization parameters. Finally, we provide a model that explains the incorporation of the membrane protein from solution into the lipid phase via a portal lamellar phase. C1 [Wallace, Ellen; Dranow, David; Christensen, Jeff; Nollert, Peter] Emerald BioStruct, Bainbridge Isl, WA 98110 USA. [Laible, Philip D.] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. RP Wallace, E (reprint author), Emerald BioStruct, Bainbridge Isl, WA 98110 USA. EM pnollert@embios.com FU NIH [P01 GM075913] FX This work was funded by the NIH Roadmap grant P01 GM075913. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 35 TC 10 Z9 10 U1 0 U2 18 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 31 PY 2011 VL 6 IS 8 AR e24488 DI 10.1371/journal.pone.0024488 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 817NM UT WOS:000294680800092 PM 21909395 ER PT J AU Bagriantsev, SN Peyronnet, R Clark, KA Honore, E Minor, DL AF Bagriantsev, Sviatoslav N. Peyronnet, Remi Clark, Kimberly A. Honore, Eric Minor, Daniel L., Jr. TI Multiple modalities converge on a common gate to control K-2P channel function SO EMBO JOURNAL LA English DT Article DE K-2P channel C-type gate; mechanical gating; pH gating; potassium channel; temperature gating ID SHAKER POTASSIUM CHANNELS; C-TYPE-INACTIVATION; DEPRESSION-RESISTANT PHENOTYPE; K+ CHANNEL; PORE DOMAIN; ION-CHANNEL; EXTRACELLULAR HISTIDINE; MOLECULAR RELATIONSHIPS; SELECTIVITY FILTER; TREK-1 AB Members of the K-2P potassium channel family regulate neuronal excitability and are implicated in pain, anaesthetic responses, thermosensation, neuroprotection, and mood. Unlike other potassium channels, K(2P)s are gated by remarkably diverse stimuli that include chemical, thermal, and mechanical modalities. It has remained unclear whether the various gating inputs act through separate or common channel elements. Here, we show that protons, heat, and pressure affect activity of the prototypical, polymodal K-2P, K(2P)2.1 (KCNK2/TREK-1), at a common molecular gate that comprises elements of the pore-forming segments and the N-terminal end of the M4 transmembrane segment. We further demonstrate that the M4 gating element is conserved among K(2P)s and is employed regardless of whether the gating stimuli are inhibitory or activating. Our results define a unique gating mechanism shared by K-2P family members and suggest that their diverse sensory properties are achieved by coupling different molecular sensors to a conserved core gating apparatus. The EMBO Journal (2011) 30, 3594-3606. doi:10.1038/emboj.2011.230; Published online 15 July 2011 C1 [Minor, Daniel L., Jr.] Univ Calif San Francisco, Dept Biochem & Biophys, Cardiovasc Res Inst, San Francisco, CA 94158 USA. [Minor, Daniel L., Jr.] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94158 USA. [Peyronnet, Remi; Honore, Eric] Univ Nice Sophia Antipolis, Inst Pharmacol Mol & Cellulaire, CNRS, UMR, Valbonne, France. [Minor, Daniel L., Jr.] Univ Calif San Francisco, Calif Inst Quantitat Biomed Res, San Francisco, CA 94158 USA. [Minor, Daniel L., Jr.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Minor, DL (reprint author), Univ Calif San Francisco, Dept Biochem & Biophys, Cardiovasc Res Inst, San Francisco, CA 94158 USA. EM daniel.minor@ucsf.edu OI Peyronnet, Remi/0000-0002-5708-6410; Bagriantsev, Sviatoslav/0000-0002-6661-3403 FU NIH [R01 MH093603, R01 NS49272]; American Heart Association [0740019N]; Life Sciences Research Foundation FX This work was supported by grants to DLM from NIH, R01 MH093603 and R01 NS49272, and the American Heart Association 0740019N and to SNB from the Life Sciences Research Foundation. We thank L Jan, E Gracheva, P Lishko, A Moroni, and G Thiel for comments on the manuscript and members of the Minor laboratory for support throughout these studies. DLM is an AHA Established Investigator. SNB is a Genentech Fellow of the Life Sciences Research Foundation. NR 75 TC 43 Z9 43 U1 0 U2 6 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0261-4189 J9 EMBO J JI Embo J. PD AUG 31 PY 2011 VL 30 IS 17 BP 3594 EP 3606 DI 10.1038/emboj.2011.230 PG 13 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 814MR UT WOS:000294460000013 PM 21765396 ER PT J AU Aaltonen, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bauer, G Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Bland, KR Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Brisuda, A Bromberg, C Brucken, E Bucciantonio, M Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Dagenhart, D d'Ascenzo, N Datta, M de Barbaro, P De Cecco, S De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Devoto, F d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, M Dorigo, T Ebina, K Elagin, A Eppig, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Funakoshi, Y Furic, I Gallinaro, M Galyardt, J Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Gresele, A Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Hamaguchi, A Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Hewamanage, S Hidas, D Hocker, A Hopkins, W Horn, D Hou, S Hughes, RE Hurwitz, M Husemann, U Hussain, N Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Karchin, PE Kato, Y Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirby, M Klimenko, S Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G Lazzizzera, I LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leo, S Leone, S Lewis, JD Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, Q Liu, T Lockwitz, S Lockyer, NS Loginov, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Rescigno, M Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rubbo, F Ruffini, F Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Sakurai, Y Santi, L Sartori, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shreyber, I Simonenko, A Sinervo, P Sissakian, A Sliwa, K Smith, JR Snider, FD Soha, A Somalwar, S Sorin, V Squillacioti, P Stancari, M Stanitzki, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Tipton, P Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tu, Y Ukegawa, F Uozumi, S Varganov, A Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wagner, RL Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Wick, F Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamaoka, J Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zucchelli, S AF Aaltonen, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bauer, G. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Brisuda, A. Bromberg, C. Brucken, E. Bucciantonio, M. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Dagenhart, D. d'Ascenzo, N. Datta, M. de Barbaro, P. De Cecco, S. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Devoto, F. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, M. Dorigo, T. Ebina, K. Elagin, A. Eppig, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Funakoshi, Y. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Gresele, A. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Hamaguchi, A. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Hewamanage, S. Hidas, D. Hocker, A. Hopkins, W. Horn, D. Hou, S. Hughes, R. E. Hurwitz, M. Husemann, U. Hussain, N. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirby, M. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. Lazzizzera, I. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leo, S. Leone, S. Lewis, J. D. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, Q. Liu, T. Lockwitz, S. Lockyer, N. S. Loginov, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Rescigno, M. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rubbo, F. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Sakurai, Y. Santi, L. Sartori, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shreyber, I. Simonenko, A. Sinervo, P. Sissakian, A. Sliwa, K. Smith, J. R. Snider, F. D. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stancari, M. Stanitzki, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Tipton, P. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tu, Y. Ukegawa, F. Uozumi, S. Varganov, A. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wagner, R. L. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C. Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Wick, F. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamaoka, J. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zucchelli, S. CA CDF Collaboration TI Evidence for t(t)over-bar gamma production and measurement of sigma(t(t)over-bar gamma)/sigma(t(t)over-bar) SO PHYSICAL REVIEW D LA English DT Article ID DETECTOR; CALORIMETER; PERFORMANCE; GENERATION; PYTHIA-5.7 AB Using data corresponding to 6.0 fb(-1) of p (p) over bar collisions at root s = 1.96 TeV collected by the CDF II detector, we present a cross section measurement of top-quark pair production with an additional radiated photon in the central region with 10 GeV or more of transverse energy t (t) over bar gamma. The events are selected by looking for a lepton (l or mu), a photon (gamma), significant transverse momentum imbalance (is not an element of(T)), large total transverse energy, and three or more jets, with at least one identified as containing a b quark (b). Using an event selection optimized for the t (t) over bar gamma candidate sample, we also measure the cross section of t (t) over bar (sigma(t (t) over bar)). We measure the t (t) over bar gamma cross section (sigma(t (t) over bar gamma)) to be 0.18 +/- 0.08 pb, and the ratio of sigma(t (t) over bar gamma) to sigma(t (t) over bar) to be 0.024 +/- 0.009. We observe a probability of 0.0015 (3.0 standard deviations) of the background (non-t (t) over bar gamma events alone producing 30 events or more. C1 [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Carrillo, S.; Chen, Y. C.; Hou, S.; Mondragon, M. N.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [LeCompte, T.; Nodulman, L.; Paramonov, A. A.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, ICREA, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl Bologna, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.; Vizan, J.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Brisuda, A.; Canelli, F.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Brisuda, A.; Canelli, F.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sissakian, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Annovi, A.; Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Brau, B.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Catastini, P.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Hahn, S. R.; Hocker, A.; Hopkins, W.; James, E.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Morello, M. J.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ristori, L.; Roser, R.; Rubbo, F.; Rusu, V.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Soha, A.; Squillacioti, P.; Stancari, M.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C.; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Klimenko, S.; Konigsberg, J.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Thompson, G. A.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Horn, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Morlock, J.; Muller, Th.; Schmidt, A.; Wick, F.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Barbaro-Galtieri, A.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Fang, H. C.; Haber, C.; Lin, C. -J.; Lujan, P.; Lys, J.; Nielsen, J.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Eppig, A.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Wilson, J. S.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Hamaguchi, A.; Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Gresele, A.; Lazzizzera, I.; Lucchesi, D.; Griso, S. Pagan] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Ershaidat, N.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, CNRS, IN2P3, LPNHE,UMR7585, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Bucciantonio, M.; Carosi, R.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leo, S.; Leone, S.; Menzione, A.; Piacentino, G.; Punzi, G.; Ruffini, F.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Trovato, M.; Volpi, G.] Ist Nazl Fis Nucl Pisa, I-56127 Pisa, Italy. [Bellettini, G.; Bucciantonio, M.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Leo, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Cavaliere, V.; Ciocci, M. A.; Garosi, P.; Latino, G.; Ruffini, F.; Scribano, A.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Liu, C.; Rahaman, A.; Ristori, L.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Goldin, D.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Nett, J.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Dorigo, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Cauz, D.; Dorigo, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Totaro, P.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-33100 Udine, Italy. [Pauletta, G.; Santi, L.; Totaro, P.] Univ Trieste Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Mitra, A.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Group, R. C.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.] Univ Wisconsin, Madison, WI 53706 USA. [Auerbach, B.; Almenar, C. Cuenca; Husemann, U.; Lockwitz, S.; Loginov, A.; Schmidt, M. P.; Stanitzki, M.; Tipton, P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Lazzizzera, Ignazio/E-9678-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Introzzi, Gianluca/K-2497-2015; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Robson, Aidan/G-1087-2011; De Cecco, Sandro/B-1016-2012; St.Denis, Richard/C-8997-2012; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Ruiz, Alberto/E-4473-2011; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016 OI Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; Lazzizzera, Ignazio/0000-0001-5092-7531; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Introzzi, Gianluca/0000-0002-1314-2580; Punzi, Giovanni/0000-0002-8346-9052; Ruiz, Alberto/0000-0002-3639-0368; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117 FU U. S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean World Class University Program; National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland; Australian Research Council (ARC) FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. Uli Baur, Frank Petriello, Alexander Belyaev, Edward Boos, Lev Dudko, Tim Stelzer, and Steve Mrenna were extraordinarily helpful with the SM predictions. This work was supported by the U. S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC). NR 33 TC 39 Z9 39 U1 5 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 31 PY 2011 VL 84 IS 3 AR 031104 DI 10.1103/PhysRevD.84.031104 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 813XU UT WOS:000294404400001 ER PT J AU Kang, ZB Metz, A Qiu, JW Zhou, J AF Kang, Zhong-Bo Metz, Andreas Qiu, Jian-Wei Zhou, Jian TI Exploring the structure of the proton through polarization observables in l p -> jet X SO PHYSICAL REVIEW D LA English DT Article ID TRANSVERSE-SPIN ASYMMETRY; DEEP-INELASTIC SCATTERING; HADRONIC PION-PRODUCTION; CHIRAL-ODD CONTRIBUTION; DRELL-YAN PROCESSES; SINGLE-SPIN; AZIMUTHAL ASYMMETRY; HARD-SCATTERING; UP-ARROW; QCD AB We present results for a complete set of polarization observables for jet production in lepton-proton collision, where the final-state lepton is not observed. The calculations are carried out in collinear factorization at the level of Born diagrams. For all the observables we also provide numerical estimates for typical kinematics of a potential future electron-ion collider. On the basis of this numerical study, the prospects for the transverse single target spin asymmetry are particularly promising. This observable is given by a certain quark-gluon correlation function, which has a direct relation to the transverse momentum dependent Sivers parton distribution. C1 [Kang, Zhong-Bo] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Metz, Andreas; Zhou, Jian] Temple Univ, Dept Phys 2, Philadelphia, PA 19122 USA. [Qiu, Jian-Wei] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Qiu, Jian-Wei] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA. RP Kang, ZB (reprint author), Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RI Kang, Zhongbo/P-3645-2014 FU U.S. Department of Energy [DE-AC02-98CH10886]; NSF [PHY-0855501] FX We thank Naomi Makins, Werner Vogelsang, and Feng Yuan for helpful discussions. We are grateful to RIKEN, Brookhaven National Laboratory, and the U.S. Department of Energy (Contract No. DE-AC02-98CH10886) for providing the facilities essential for the completion of this work. A. M. acknowledges the support of the NSF under Grant No. PHY-0855501. NR 101 TC 28 Z9 28 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD AUG 31 PY 2011 VL 84 IS 3 AR 034046 DI 10.1103/PhysRevD.84.034046 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 813XU UT WOS:000294404400003 ER PT J AU Ganter, MJ DiLeo, RA Schauerman, CM Rogers, RE Raffaelle, RP Landi, BJ AF Ganter, Matthew J. DiLeo, Roberta A. Schauerman, Christopher M. Rogers, Reginald E. Raffaelle, Ryne P. Landi, Brian J. TI Differential scanning calorimetry analysis of an enhanced LiNi0.8Co0.2O2 cathode with single wall carbon nanotube conductive additives SO ELECTROCHIMICA ACTA LA English DT Article DE Nanotube; DSC; Additive; Lithium; Battery ID ION BATTERY CATHODES; LITHIUM BATTERIES; ELEVATED-TEMPERATURES; THERMAL-STABILITY; CELLS; SAFETY; PERFORMANCE; ELECTRODES AB The replacement of traditional conductive carbon additives with single wall carbon nanotubes (SWCNTs) in lithium metal oxide cathode composites has been shown to enhance thermal stability as well as power capability and electrode energy density. The dispersion of 1 wt% high purity laser-produced SWCNTs in a LiNi0.8Co0.2O2 electrode created an improved percolation network over an equivalent composite electrode using 4 wt% Super C65 carbon black; evidenced by additive connectivity in SEM images and an order of magnitude increase in electrode electrical conductivity. The cathode with 1 wt% SWCNT additives showed comparable active material capacity (185-188 mAh g(-1)), at a low rate, and Coulombic efficiency to the cathode composite with 4 wt% Super C65. At increased cycling rates, the cathode with SWCNT additives had higher capacity retention with more than three times the capacity at 10C(16.4 mA cm(-2)). The thermal stability of the electrodes was evaluated by differential scanning calorimetry after charging to 4.3 V and float charging for 12 h. A 40% reduction of the cathode exothermic energy released was measured when using 1 wt% SWCNTs as the additive. Thus, the results demonstrate that replacing traditional conductive carbon additives with a lower weight loading of SWCNTs is a simple way to improve the thermal transport, safety, power, and energy characteristics of cathode composites for lithium ion batteries. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Ganter, Matthew J.; Schauerman, Christopher M.; Rogers, Reginald E.; Landi, Brian J.] Rochester Inst Technol, Golisano Inst Sustainabil, Rochester, NY 14623 USA. [Raffaelle, Ryne P.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Landi, BJ (reprint author), Rochester Inst Technol, Golisano Inst Sustainabil, 111 Lomb Mem Dr, Rochester, NY 14623 USA. EM mjg9074@rit.edu; rad0468@rit.edu; cms3176@rit.edu; rerche@rit.edu; ryne.raffaelle@nrel.gov; bjlsps@rit.edu RI Rogers Jr, Reginald/F-4757-2012 FU US Government; Lockheed Martin; GAANN FX The authors acknowledge financial support from the US Government and Lockheed Martin. R.A. DiLeo acknowledges graduate student funding from a GAANN fellowship through the RIT Microsystems Engineering Ph.D program. The authors would like to thank Tom Mastrangelo for his experimental assistance with synthesis of the SWCNTs. NR 29 TC 12 Z9 12 U1 5 U2 44 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD AUG 30 PY 2011 VL 56 IS 21 BP 7272 EP 7277 DI 10.1016/j.electacta.2011.06.052 PG 6 WC Electrochemistry SC Electrochemistry GA 821NW UT WOS:000294982700005 ER PT J AU Khare, B Krishnan, V Rajashankar, KR I-Hsiu, H Xin, M Ton-That, H Narayana, SV AF Khare, B. Krishnan, V. Rajashankar, K. R. I-Hsiu, H. Xin, M. Ton-That, H. Narayana, S. V. TI Structural Differences between the Streptococcus agalactiae Housekeeping and Pilus-Specific Sortases: SrtA and SrtC1 SO PLOS ONE LA English DT Article ID GRAM-POSITIVE BACTERIA; GROUP-B STREPTOCOCCUS; SORTING SIGNAL BINDING; STAPHYLOCOCCUS-AUREUS; CELL-WALL; SURFACE-PROTEINS; CORYNEBACTERIUM-DIPHTHERIAE; ACTIVE-SITE; ACTINOMYCES-NAESLUNDII; SUBSTRATE-SPECIFICITY AB The assembly of pili on the cell wall of Gram-positive bacteria requires transpeptidase enzymes called sortases. In Streptococcus agalactiae, the PI-1 pilus island of strain 2603V/R encodes two pilus-specific sortases (SrtC1 and SrtC2) and three pilins (GBS80, GBS52 and GBS104). Although either pilus-specific sortase is sufficient for the polymerization of the major pilin, GBS80, incorporation of the minor pilins GBS52 and GBS104 into the pilus structure requires SrtC1 and SrtC2, respectively. The S. agalactiae housekeeping sortase, SrtA, whose gene is present at a different location and does not catalyze pilus polymerization, was shown to be involved in cell wall anchoring of pilus polymers. To understand the structural basis of sortases involved in such diverse functions, we determined the crystal structures of S. agalactiae SrtC1 and SrtA. Both enzymes are made of an eight-stranded beta-barrel core with variations in their active site architecture. SrtA exhibits a catalytic triad arrangement similar to that in Streptococcus pyogenes SrtA but different from that in Staphylococcus aureus SrtA. In contrast, the SrtC1 enzyme contains an N-terminal helical domain and a 'lid' in its putative active site, which is similar to that seen in Streptococcus pneumoniae pilus-specific sortases, although with subtle differences in positioning and composition. To understand the effect of such differences on substrate recognition, we have also determined the crystal structure of a SrtC1 mutant, in which the conserved DP(W/F/Y) motif was replaced with the sorting signal motif of GBS80, IPNTG. By comparing the structures of WT wild type SrtA and SrtC1 and the 'lid' mutant of SrtC1, we propose that structural elements within the active site and the lid may be important for defining the role of specific sortase in pili biogenesis. C1 [Khare, B.; Krishnan, V.; Narayana, S. V.] Univ Alabama, Birmingham, AL 35233 USA. [I-Hsiu, H.; Xin, M.; Ton-That, H.] Univ Texas Hlth Sci Ctr, Houston, TX USA. [Rajashankar, K. R.] Argonne Natl Lab, Adv Photon Source, NE CAT, Chicago, IL USA. RP Khare, B (reprint author), Univ Alabama, Birmingham, AL 35233 USA. EM narayana@uab.edu OI Ton-That, Hung/0000-0003-1611-0469 FU U.S. Public Health Service [AI073521, AI061381]; National Institute of Allergy and Infectious Diseases FX This work was supported by the U.S. Public Health Service grants AI073521 to SVN and AI061381 to HT-T from the National Institute of Allergy and Infectious Diseases. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 70 TC 10 Z9 10 U1 0 U2 6 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD AUG 30 PY 2011 VL 6 IS 8 AR e22995 DI 10.1371/journal.pone.0022995 PG 14 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 817MS UT WOS:000294678300001 PM 21912586 ER PT J AU Kim, EH Johnson, JR Lee, KD AF Kim, Eun-Hwa Johnson, Jay R. Lee, Kyung-Dong TI ULF wave absorption at Mercury SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID MAGNETIC-FIELD; MAGNETOSPHERE; EXOSPHERE; PLASMA; RESONANCES; SURFACE AB The field line resonance at Mercury is expected to occur when the ion-ion hybrid (IIH) and/or Alfven resonance conditions are satisfied. However, the relative efficiency of wave energy absorption at these resonances has not been studied in the context of Mercury's magnetosphere. To understand the efficiency of wave absorption, we evaluate absorption coefficients at the IIH and Alfven resonances for variable concentrations of sodium and azimuthal and field-aligned wave numbers in 1D multi-ion plasmas. The results show that wave absorption is much more efficient at the IIH resonance than at the Alfven resonance at Mercury. Our results suggest that the mode conversion efficiency is sensitive to the azimuthal and field aligned wave numbers as well as heavy ion concentration ratio. Therefore, the radial profile of field-line resonances at Mercury can exhibit complex, discontinuous structure. Citation: Kim, E.-H., J. R. Johnson, and K.-D. Lee (2011), ULF wave absorption at Mercury, Geophys. Res. Lett., 38, L16111, doi:10.1029/2011GL048621. C1 [Kim, Eun-Hwa; Johnson, Jay R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Lee, Kyung-Dong] Kyung Hee Univ, Dept Astron & Space Sci, Yongin 446701, Gyeonggi, South Korea. RP Kim, EH (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ehkim@pppl.gov FU NASA [NNG07EK69I, NNH07AF37I, NNH09AM53I, NNH09AK63I, NNH11AQ46I]; NSF [ATM0902730]; DOE [DE-AC02-09CH11466] FX This work was supported by NASA grants (NNG07EK69I, NNH07AF37I, NNH09AM53I, NNH09AK63I, and NNH11AQ46I), NSF grant ATM0902730, and DOE contract DE-AC02-09CH11466. NR 20 TC 11 Z9 11 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 30 PY 2011 VL 38 AR L16111 DI 10.1029/2011GL048621 PG 6 WC Geosciences, Multidisciplinary SC Geology GA 816PU UT WOS:000294615400006 ER PT J AU Rougier, E Patton, HJ Knight, EE Bradley, CR AF Rougier, Esteban Patton, Howard J. Knight, Earl E. Bradley, Christopher R. TI Constraints on burial depth and yield of the 25 May 2009 North Korean test from hydrodynamic simulations in a granite medium SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID UNDERGROUND NUCLEAR DETONATIONS; EXPLOSIONS AB Yield : depth of burial (DoB) tradeoff curves (TOCs) based on seismic magnitudes of the 25 May 2009 North Korean test depend strongly on the choice of empirical cavity radius (Rc) scaling model. Ambiguities over Rc scaling, particularly at large scaled DoB (SDoB), translate into unacceptably large systematic errors on yield estimates for this test. Hydrodynamic calculations involving realistic material response models offer a viable alternative to characterize Rc scaling for a range of SDoB where limited data from past nuclear tests exist. Results of such calculations are presented for a granite medium with a material response validated by modeling four phenomenological criteria for past nuclear tests in granite (free field velocity, energy partitioning into the seismic wavefield, velocity attenuation, and measured Rc). These results unambiguously favor the Rc scaling model of Denny and Johnson (DJ91) and the TOC based on that model. Lower bounds on yield and DoB of the North Korean test are constrained by predictions of an SDoB threshold for free surface damage from 2-D simulations since no such reported damage was observed for this test. Constrained by the hydrodynamic simulations, the DJ91 model indicates the minimum yield and DoB for the 25 May 2009 North Korean test is 5.7 kilotons and 375 m. Citation: Rougier, E., H. J. Patton, E. E. Knight, and C. R. Bradley (2011), Constraints on burial depth and yield of the 25 May 2009 North Korean test from hydrodynamic simulations in a granite medium, Geophys. Res. Lett., 38, L16316, doi:10.1029/2011GL048269. C1 [Rougier, Esteban; Patton, Howard J.; Knight, Earl E.; Bradley, Christopher R.] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM 87545 USA. RP Rougier, E (reprint author), Los Alamos Natl Lab, Geophys Grp, POB 1663, Los Alamos, NM 87545 USA. EM erougier@lanl.gov RI Rougier, Esteban/C-9946-2015; OI Rougier, Esteban/0000-0002-4624-2844; Knight, Earl/0000-0003-0461-0714 FU Department of Energy [DE-AC52-06BA25396] FX The authors wish to thank our Los Alamos National Laboratory colleagues Thomas N. Dey, Randall J. Bos, Theodore C. Carney, Doran R. Greening, and Hans E. Hartse for their collaboration and help during the development of this research project. The work in this paper was performed under the auspices of the Department of Energy for the Los Alamos National Laboratory under contract DE-AC52-06BA25396. NR 20 TC 17 Z9 17 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD AUG 30 PY 2011 VL 38 AR L16316 DI 10.1029/2011GL048269 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 816PU UT WOS:000294615400002 ER PT J AU Anand, VK Adroja, DT Hillier, AD Taylor, J Andre, G AF Anand, V. K. Adroja, D. T. Hillier, A. D. Taylor, J. Andre, G. TI Signatures of spin-glass behavior in the induced magnetic moment system PrRuSi3 SO PHYSICAL REVIEW B LA English DT Article ID REMANENT MAGNETIZATION; ELECTRONIC-PROPERTIES; HEAT-CAPACITY; TRANSITION; PRAU2SI2; DISORDER; URH2GE2; PHASE; METAL; TIME AB We have investigated the magnetic and transport properties of a ternary intermetallic compound PrRuSi3 using dc magnetization, ac susceptibility, specific heat, electrical resistivity, neutron diffraction, inelastic neutron scattering, and mu SR measurements. The magnetic susceptibility and specific heat data reveal the signatures of spin-glass behavior in PrRuSi3 with a freezing temperature of 9.8 K. At low magnetic fields, we observe two sharp anomalies (at 4.9 and 8.6 K) in magnetic susceptibility data. In contrast, the specific heat data show only a broad Schottky-type anomaly centered around 10 K. However, mu SR reveals very low frequency coherent oscillations at 1.8 K with an onset of fast relaxation below 12 K indicating a long-range magnetically ordered ground state with very small moment. On the other hand, no magnetic Bragg peaks are observed in low-temperature neutron diffraction data at 1.8 K. These two contradictory ground states, spin glass versus magnetic order, can be explained if the spin-glass behavior in PrRuSi3 is considered due to the dynamic fluctuations of the crystal field levels as has been proposed for spin-glass behavior in PrAu2Si2. Two sharp inelastic excitations near 2.4 meV and 14.7 meV are observed in the inelastic neutron scattering (INS) spectra between 4 K and 50 K. Further, exchange coupling J(ex) obtained from the analysis of INS data with the CEF model provides evidence for the spontaneously induced magnetic order with a CEF-split singlet (Gamma(t4)) ground state. However, the exchange coupling seems to be close to the critical value for the induced moment magnetism; therefore we tend to believe that the dynamic fluctuations between the ground-state singlet and excited doublet CEF levels is responsible for spin-glass behavior in PrRuSi3. C1 [Anand, V. K.; Adroja, D. T.; Hillier, A. D.; Taylor, J.] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England. [Andre, G.] CEA Saclay, CNRS, CEA, Lab Leon Brillouin, F-91191 Gif Sur Yvette, France. RP Anand, VK (reprint author), Iowa State Univ, Dept Phys & Astron, Ames Lab, Ames, IA 50011 USA. EM vivekkranand@gmail.com; devashibhai.adroja@stfc.ac.uk RI Anand, Vivek Kumar/J-3381-2013; Hillier, Adrian/A-9331-2015 OI Anand, Vivek Kumar/0000-0003-2023-7040; Hillier, Adrian/0000-0002-2391-8581 FU CMPC-STFC [CMPC-09108] FX Authors V. K. A., D. T. A., and A. D. H. would like to acknowledge financial assistance from CMPC-STFC Grant No. CMPC-09108. We would like to thank Eugene Goremychkin for an interesting discussion. NR 31 TC 18 Z9 18 U1 1 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 30 PY 2011 VL 84 IS 6 AR 064440 DI 10.1103/PhysRevB.84.064440 PG 10 WC Physics, Condensed Matter SC Physics GA 813WQ UT WOS:000294401300008 ER PT J AU Colombier, E Knebel, G Salce, B Mun, ED Lin, X Bud'ko, SL Canfield, PC AF Colombier, E. Knebel, G. Salce, B. Mun, E. D. Lin, X. Bud'ko, S. L. Canfield, P. C. TI Phase diagram of CeVSb3 under pressure and its dependence on pressure conditions SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC-PROPERTIES; HYDROSTATIC-PRESSURE; KONDO-LATTICE; SUPERCONDUCTIVITY; SM; ND; FERROMAGNETISM; RESISTIVITY; TRANSPORT; CERU2GE2 AB We present temperature dependent resistivity and ac-calorimetry measurements of CeVSb3 under pressure up to 8 GPa in a Bridgman anvil cell modified to use a liquid medium and in a diamond anvil cell using argon as a pressure medium. An initial increase of the ferromagnetic transition temperature T-C with pressures up to 4.5 GPa is observed, followed by decrease of T-C on further increase of pressure and finally its disappearance, in agreement with the Doniach model. We infer a ferromagnetic quantum phase transition around 7 GPa under hydrostatic pressure conditions from the extrapolation to 0 K of T-C and the maximum of the A coefficient from low temperature fits of the resistivity rho(T) = rho(0) + AT(n). No superconductivity under pressure was observed down to 0.35 K for this compound. In addition, differences in the T-C(P) behavior when a slight uniaxial component is present are noticed and are correlated to the choice of pressure medium. C1 [Colombier, E.; Mun, E. D.; Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Knebel, G.; Salce, B.] UJF Grenoble 1, INAC, UMR CEA E, SPSMS, F-38054 Grenoble, France. [Mun, E. D.; Lin, X.; Bud'ko, S. L.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Colombier, E (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Knebel, Georg/A-3294-2012; Canfield, Paul/H-2698-2014 FU Ames Laboratory, US DOE [DE-AC02-07CH11358]; French ANR; AFOSR-MURI [FA9550-09-1-0603]; State of Iowa through the Iowa State University FX This work was performed in part at Ames Laboratory, US DOE, under contract no. DE-AC02-07CH11358 (E. C., E. D. M., S. L. B., and P. C. C.). This project has been supported by the French ANR programs DELICE and CORMAT (G. K. and B. S.). Part of this work was carried out at the Iowa State University and supported by the AFOSR-MURI grant no. FA9550-09-1-0603 (X. L. and P. C. C.). S. L. B. was also partially supported by the State of Iowa through the Iowa State University. We would also like to acknowledge Stella Kim (I. S. U.) for her assistance with pressure cells measurements and for providing a critical review of the text. NR 32 TC 5 Z9 5 U1 2 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 30 PY 2011 VL 84 IS 6 AR 064442 DI 10.1103/PhysRevB.84.064442 PG 10 WC Physics, Condensed Matter SC Physics GA 813WQ UT WOS:000294401300010 ER PT J AU Haberkorn, N Maiorov, B Jaime, M Usov, I Miura, M Chen, GF Yu, W Civale, L AF Haberkorn, N. Maiorov, B. Jaime, M. Usov, I. Miura, M. Chen, G. F. Yu, W. Civale, L. TI Effect of doping on structural and superconducting properties in Ca1-xNaxFe2As2 single crystals (x=0.5, 0.6, 0.75) SO PHYSICAL REVIEW B LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTORS; COATED CONDUCTORS; II SUPERCONDUCTORS; PINNING MECHANISMS; CURRENT DENSITIES; MAGNETIC-FIELDS; THIN-FILMS; YBA2CU3O7 AB We study the correlation between crystalline structure and superconducting properties in Na-doped Ca1-xNaxFe2As2 single crystals for three chemical compositions (x = 0.5, 0.6, 0.75). We find the maximum superconducting transition temperature T-c similar to 33.4 K at x similar to 0.75. The Na substitution causes the decrease of the a-b crystallographic axes and the increase of the c axis in the tetragonal phase. The single crystals show perfect diamagnetism, indicating full superconducting volume. The anisotropy ratio for the upper critical field near the superconducting transition temperature is gamma = 1.85 +/- 0.05, independently of the Na content. A narrow vortex liquid phase was detected in the sample with highest T-c (x = 0.75), consistent with the expectations based on a Lindemann criterion. The analysis of the critical currents shows no evidence of correlated pinning and indicates that the pinning arises from a combination of several mechanisms. At low fields, pinning by random nanoparticles dominates. At higher fields, a small and field independent J(c) in the optimally doped crystal may originate in the simultaneous presence of sparse large nanoparticles and a much denser distribution of smaller particles, with the sparse pins producing a caging effect that constrains the volume of the vortex bundle associated with the denser and weaker defects. C1 [Haberkorn, N.; Maiorov, B.; Miura, M.; Civale, L.] Los Alamos Natl Lab, MPA STC, Los Alamos, NM 87545 USA. [Jaime, M.] Los Alamos Natl Lab, MPA CMMS, Los Alamos, NM 87545 USA. [Usov, I.] Los Alamos Natl Lab, MST 7, Los Alamos, NM 87545 USA. [Chen, G. F.; Yu, W.] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. RP Haberkorn, N (reprint author), Los Alamos Natl Lab, MPA STC, POB 1663, Los Alamos, NM 87545 USA. RI 石, 源/D-5929-2012; Yu, Weiqiang/E-9722-2012; ruc, phy/E-4170-2012; Jaime, Marcelo/F-3791-2015; OI Jaime, Marcelo/0000-0001-5360-5220; Maiorov, Boris/0000-0003-1885-0436; Civale, Leonardo/0000-0003-0806-3113 FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; NSF-DMR [0654118]; DOE; State of Florida (National High Magnetic Field Laboratory - Pulsed Field Facility at LANL); NSFC [10974254, 11074304]; National Basic Research Program of China [2010CB923000, 2011CBA00100] FX We thank Cristian Batista for useful discussions and a careful reading of the manuscript. Research at LANL was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (XRD, EDX, Rutherford backscattering, magnetometry, data analysis, manuscript preparation), and by NSF-DMR-0654118, DOE, and the State of Florida (transport measurements at The National High Magnetic Field Laboratory - Pulsed Field Facility at LANL). Work by G. F. C. and W.Y. (fabrication of samples) was supported by the NSFC under Grants No. 10974254 and No. 11074304, and by the National Basic Research Program of China under Grants No. 2010CB923000 and No. 2011CBA00100. N. H. is member of CONICET (Argentina). NR 46 TC 18 Z9 18 U1 0 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 30 PY 2011 VL 84 IS 6 AR 064533 DI 10.1103/PhysRevB.84.064533 PG 10 WC Physics, Condensed Matter SC Physics GA 813WQ UT WOS:000294401300014 ER PT J AU Boughezal, R Melnikov, K Petriello, F AF Boughezal, Radja Melnikov, Kirill Petriello, Frank TI Four-dimensional helicity scheme and dimensional reconstruction SO PHYSICAL REVIEW D LA English DT Article ID GAUGE-THEORIES; AMPLITUDES; REDUCTION; ORDER; FORM AB The four-dimensional helicity regularization scheme is often used in one-loop QCD computations. It was recently argued in by [W. B. Kilgore, Phys. Rev. D 83, 114005 (2011)] that this scheme is inconsistent beyond the one-loop order in perturbation theory. In this paper, we clarify the reason for this inconsistency by studying the perturbative expansion of the vector current correlator in one-flavor QED through three-loop order. We develop a simple, practical way to fix the four-dimensional helicity scheme using the idea of dimensional reconstruction and demonstrate its application in several illustrative examples. C1 [Boughezal, Radja; Petriello, Frank] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Melnikov, Kirill] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Petriello, Frank] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Boughezal, R (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM rboughezal@hep.anl.gov; melnikov@phys.jhu.edu; f-petriello@northwestern.edu FU U.S. DOE [DE-AC02-06CH11357]; NSF [PHY-0855365, PHY05-51164]; Northwestern University FX K. M. gratefully acknowledges useful discussions with Z. Kunszt. K. M. would like to thank the KITP at UCSB for hospitality during the completion of this paper. This research is supported by the U.S. DOE under Contract No. DE-AC02-06CH11357, by the NSF under Grants No. PHY-0855365 and No. PHY05-51164, and with funds provided by Northwestern University. NR 29 TC 8 Z9 8 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 30 PY 2011 VL 84 IS 3 AR 034044 DI 10.1103/PhysRevD.84.034044 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 813XS UT WOS:000294404200002 ER PT J AU Lees, JP Poireau, V Tisserand, V Tico, JG Grauges, E Martinelli, M Milanes, DA Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Brown, DN Kerth, LT Kolomensky, YG Lynch, G Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Kirkby, D Lankford, AJ Mandelkern, M Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD West, CA Eisner, AM Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Cheng, CH Doll, DA Echenard, B Flood, KT Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Spaan, B Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Fioravanti, E Garzia, I Luppi, E Munerato, M Negrini, M Piemontese, L Baldini-Ferroli, R Calcaterra, A de Sangro, R Finocchiaro, G Nicolaci, M Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Bhuyan, B Prasad, V Lee, CL Morii, M Edwards, AJ Adametz, A Marks, J Uwer, U Bernlochner, FU Ebert, M Lacker, HM Lueck, T Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Guo, ZJ Arnaud, N Davier, M Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Roudeau, P Schune, MH Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Chavez, CA Coleman, JP Fry, JR Gabathuler, E Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Prencipe, E Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD Cenci, R Hamilton, B Jawahery, A Roberts, DA Simi, G Dallapiccola, C Cowan, R Dujmic, D Sciolla, G Lindemann, D Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Neri, N Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Nguyen, X Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Honscheid, K Kass, R Brau, J Frey, R Sinev, NB Strom, D Torrence, E Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bomben, M Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Sitt, S Biasini, M Manoni, E Pacetti, S Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Oberhof, B Paoloni, E Perez, A Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Bunger, C Grunberg, O Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Aston, D Bard, DJ Bartoldus, R Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Lewis, P Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Muller, DR Neal, H Nelson, S Ofte, I Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Santoro, V Schindler, RH Snyder, A Su, D Sullivan, MK Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Park, W Purohit, MV White, RM Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Benitez, JF Burchat, PR Miyashita, TS Alam, MS Ernst, JA Gorodeisky, R Guttman, N Peimer, DR Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Lanceri, L Vitale, L Martinez-Vidal, F Oyanguren, A Ahmed, H Albert, J Banerjee, S Choi, HHF King, GJ Kowalewski, R Lewczuk, MJ Lindsay, C Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Latham, TE Puccio, EMT Band, HR Dasu, S Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Lees, J. P. Poireau, V. Tisserand, V. Garra Tico, J. Grauges, E. Martinelli, M. Milanes, D. A. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Brown, D. N. Kerth, L. T. Kolomensky, Yu G. Lynch, G. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu. I. Solodov, E. P. Todyshev, K. Yu. Yushkov, A. N. Bondioli, M. Kirkby, D. Lankford, A. J. Mandelkern, M. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. A. Eisner, A. M. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Cheng, C. H. Doll, D. A. Echenard, B. Flood, K. T. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Spaan, B. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Fioravanti, E. Garzia, I. Luppi, E. Munerato, M. Negrini, M. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. de Sangro, R. Finocchiaro, G. Nicolaci, M. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Bhuyan, B. Prasad, V. Lee, C. L. Morii, M. Edwards, A. J. Adametz, A. Marks, J. Uwer, U. Bernlochner, F. U. Ebert, M. Lacker, H. M. Lueck, T. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Roudeau, P. Schune, M. H. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Prencipe, E. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. Cenci, R. Hamilton, B. Jawahery, A. Roberts, D. A. Simi, G. Dallapiccola, C. Cowan, R. Dujmic, D. Sciolla, G. Lindemann, D. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Neri, N. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Nguyen, X. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Honscheid, K. Kass, R. Brau, J. Frey, R. Sinev, N. B. Strom, D. Torrence, E. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bomben, M. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph. Marchiori, G. Ocariz, J. Sitt, S. Biasini, M. Manoni, E. Pacetti, S. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Oberhof, B. Paoloni, E. Perez, A. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Buenger, C. Gruenberg, O. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch. Aston, D. Bard, D. J. Bartoldus, R. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Lewis, P. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Muller, D. R. Neal, H. Nelson, S. Ofte, I. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Santoro, V. Schindler, R. H. Snyder, A. Su, D. Sullivan, M. K. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Benitez, J. F. Burchat, P. R. Miyashita, T. S. Alam, M. S. Ernst, J. A. Gorodeisky, R. Guttman, N. Peimer, D. R. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Lanceri, L. Vitale, L. Martinez-Vidal, F. Oyanguren, A. Ahmed, H. Albert, J. Banerjee, Sw. Choi, H. H. F. King, G. J. Kowalewski, R. Lewczuk, M. J. Lindsay, C. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Latham, T. E. Puccio, E. M. T. Band, H. R. Dasu, S. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Search for CP violation using T-odd correlations in D+ -> (K+KS0) pi(+)pi(-) and D-s(+) -> (K+KS0) pi(+)pi(-) decays SO PHYSICAL REVIEW D LA English DT Article ID TRIPLE-PRODUCT CORRELATIONS AB We search for CP violation in a sample of 20 000 Cabibbo-suppressed decays, D+ -> (K+KS0)pi(+)pi(-), and 30 000 Cabibbo-favored decays, D+ -> (K+KS0)pi(+)pi(-). We use 520 fb(-1) of data recorded by the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider operating at center of mass energies near 10.6 GeV. We search for CP violation in the difference between the T-odd asymmetries obtained using triple product correlations of the D+(D-s(+)) and D-(D-s(-)) decays, respectively. The T violation parameter values obtained are A(T)(D+) = (-12.0 +/- 10.0(stat) +/- 4.6(syst)) x 10(-3) and A(T)(D-s(+)) = (-13.6 +/- 7.7(stat) +/- 3.4(syst)) x 10(-3), which are consistent with the standard model expectations. C1 [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, Lab Annecy Le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. [Garra Tico, J.; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu G.; Lynch, G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys 1, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Spaan, B.] Tech Univ Dortmund, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Piemontese, L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Lee, C. L.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Edwards, A. J.] Harvey Mudd Coll, Claremont, CA 91711 USA. [Adametz, A.; Marks, J.; Uwer, U.] Univ Heidelberg, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Prencipe, E.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Simi, G.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Sciolla, G.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Neri, N.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Neri, N.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico 2, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.] Univ Oregon, Eugene, OR 97403 USA. [Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, CNRS, Lab Phys Nucl & Hautes Energies,IN2P3, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Godang, R.; Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Oberhof, B.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Faccini, R.; Ferroni, F.; Gaspero, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Buenger, C.; Gruenberg, O.; Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch.] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Aston, D.; Bard, D. J.; Bartoldus, R.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Benitez, J. F.; Burchat, P. R.; Miyashita, T. S.] Stanford Univ, Stanford, CA 94305 USA. [Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA. [Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.; Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.; Lanceri, L.; Vitale, L.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Martinez-Vidal, F.; Oyanguren, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain. [Ahmed, H.; Albert, J.; Banerjee, Sw.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Lees, JP (reprint author), Univ Savoie, Lab Annecy Le Vieux Phys Particules LAPP, CNRS, IN2P3, F-74941 Annecy Le Vieux, France. RI Rizzo, Giuliana/A-8516-2015; Neri, Nicola/G-3991-2012; Martinez Vidal, F*/L-7563-2014; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Kravchenko, Evgeniy/F-5457-2015; Calabrese, Roberto/G-4405-2015; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Morandin, Mauro/A-3308-2016; Lusiani, Alberto/A-3329-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; OI Cibinetto, Gianluigi/0000-0002-3491-6231; Rizzo, Giuliana/0000-0003-1788-2866; Faccini, Riccardo/0000-0003-2613-5141; Raven, Gerhard/0000-0002-2897-5323; Neri, Nicola/0000-0002-6106-3756; Martinez Vidal, F*/0000-0001-6841-6035; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Lusiani, Alberto/0000-0002-6876-3288; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Paoloni, Eugenio/0000-0001-5969-8712; Pacetti, Simone/0000-0002-6385-3508 FU DOE (USA); NSF (USA); NSERC (Canada); CEA (France); CNRS-IN2P3 (France); BMBF (Germany); DFG (Germany); INFN (Italy); FOM (The Netherlands); NFR (Norway); MES (Russia); MICIIN (Spain); STFC (United Kingdom); European Union; A. P. Sloan Foundation (USA); Binational Science Foundation (USA-Israel) FX We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MICIIN (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel). NR 20 TC 8 Z9 8 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD AUG 30 PY 2011 VL 84 IS 3 AR 031103 DI 10.1103/PhysRevD.84.031103 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 813XS UT WOS:000294404200001 ER PT J AU Petri, M Fallon, P Macchiavelli, AO Paschalis, S Starosta, K Baugher, T Bazin, D Cartegni, L Clark, RM Crawford, HL Cromaz, M Dewald, A Gade, A Grinyer, GF Gros, S Hackstein, M Jeppesen, HB Lee, IY McDaniel, S Miller, D Rajabali, MM Ratkiewicz, A Rother, W Voss, P Walsh, KA Weisshaar, D Wiedeking, M Brown, BA AF Petri, M. Fallon, P. Macchiavelli, A. O. Paschalis, S. Starosta, K. Baugher, T. Bazin, D. Cartegni, L. Clark, R. M. Crawford, H. L. Cromaz, M. Dewald, A. Gade, A. Grinyer, G. F. Gros, S. Hackstein, M. Jeppesen, H. B. Lee, I. Y. McDaniel, S. Miller, D. Rajabali, M. M. Ratkiewicz, A. Rother, W. Voss, P. Walsh, K. A. Weisshaar, D. Wiedeking, M. Brown, B. A. TI Lifetime Measurement of the 2(1)(+) State in C-20 SO PHYSICAL REVIEW LETTERS LA English DT Article ID INTERACTION CROSS-SECTIONS; NEUTRON-RICH NUCLEI; REGION; RADII; CORE; HALO AB Establishing how and when large N/Z values require modified or new theoretical tools is a major quest in nuclear physics. Here we report the first measurement of the lifetime of the 2(1)(+) state in the near-dripline nucleus C-20. The deduced value of tau(+)(21) = 9.8 +/- 2.8(stat)(-1.1)(+0.5)(syst) ps gives a reduced transition probability of B(E2; 2(1)(+) -> 0(g.s).(+)) - 7.5(-1.7)(+3.0)(stat)(-0.4)(+1.0)(syst) e(2) fm(4) in good agreement with a shell model calculation using isospin-dependent effective charges. C1 [Petri, M.; Fallon, P.; Macchiavelli, A. O.; Paschalis, S.; Clark, R. M.; Cromaz, M.; Gros, S.; Jeppesen, H. B.; Lee, I. Y.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. [Starosta, K.] Simon Fraser Univ, Dept Chem, Burnaby, BC V5A 1S6, Canada. [Starosta, K.; Baugher, T.; Bazin, D.; Crawford, H. L.; Gade, A.; Grinyer, G. F.; McDaniel, S.; Miller, D.; Ratkiewicz, A.; Voss, P.; Walsh, K. A.; Weisshaar, D.] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Starosta, K.; Baugher, T.; Gade, A.; McDaniel, S.; Miller, D.; Ratkiewicz, A.; Voss, P.; Walsh, K. A.; Brown, B. A.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Cartegni, L.; Rajabali, M. M.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Crawford, H. L.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Dewald, A.; Hackstein, M.; Rother, W.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany. [Wiedeking, M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Petri, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM MPetri@lbl.gov RI Gade, Alexandra/A-6850-2008; Dewald, Alfred/O-5810-2015; Miller, David/B-5372-2012; Petri, Marina/H-4630-2016; Paschalis, Stefanos/H-8758-2016 OI Gade, Alexandra/0000-0001-8825-0976; Miller, David/0000-0002-0426-974X; Petri, Marina/0000-0002-3740-6106; Paschalis, Stefanos/0000-0002-9113-3778 FU Department of Energy, Office of Nuclear Physics [DE-AC0205CH11231, DE-AC52-07NA27344]; National Science Foundation [PHY-0606007, PHY-0758099] FX This work is supported in part by the Department of Energy, Office of Nuclear Physics under contracts No. DE-AC0205CH11231 and No. DE-AC52-07NA27344, and by the National Science Foundation under grants PHY-0606007 and PHY-0758099. NR 35 TC 24 Z9 24 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 30 PY 2011 VL 107 IS 10 AR 102501 DI 10.1103/PhysRevLett.107.102501 PG 4 WC Physics, Multidisciplinary SC Physics GA 813YJ UT WOS:000294406100003 PM 21981497 ER PT J AU Zimmermann, EA Schaible, E Bale, H Barth, HD Tang, SY Reichert, P Busse, B Alliston, T Ager, JW Ritchie, RO AF Zimmermann, Elizabeth A. Schaible, Eric Bale, Hrishikesh Barth, Holly D. Tang, Simon Y. Reichert, Peter Busse, Bjoern Alliston, Tamara Ager, Joel W., III Ritchie, Robert O. TI Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article ID COLLAGEN CROSS-LINKING; NONENZYMATIC GLYCATION; MICRODAMAGE ACCUMULATION; BIOMECHANICAL PROPERTIES; MECHANICAL-PROPERTIES; POSTMENOPAUSAL WOMEN; SKELETAL FRAGILITY; CANCELLOUS BONE; ORGANIC MATRIX; COMPACT-BONE AB The structure of human cortical bone evolves over multiple length scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at near-millimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bone's toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural scales typically below a micrometer and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple length scales. Using in situ small-angle X-ray scattering and wide-angle X-ray diffraction to characterize submicrometer structural changes and synchrotron X-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micrometer scales, we show how these age-related structural changes at differing size scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased nonenzymatic collagen cross-linking, which suppresses plasticity at nanoscale dimensions, and to an increased osteonal density, which limits the potency of crack-bridging mechanisms at micrometer scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by "plastic" deformation at higher structural levels, which occurs by the process of microcracking. C1 [Zimmermann, Elizabeth A.; Barth, Holly D.; Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Reichert, Peter; Busse, Bjoern; Ager, Joel W., III; Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Tang, Simon Y.; Alliston, Tamara] Univ Calif San Francisco, Dept Orthopaed Surg, San Francisco, CA 94143 USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM roritchie@lbl.gov RI Ritchie, Robert/A-8066-2008; Zimmermann, Elizabeth/A-4010-2015; Busse, Bjorn/O-8462-2016; OI Ritchie, Robert/0000-0002-0501-6998; Busse, Bjorn/0000-0002-3099-8073; Ager, Joel/0000-0001-9334-9751; Tang, Simon/0000-0002-5570-3921; Alliston, Tamara/0000-0001-9992-2897 FU National Institutes of Health (NIH/National Institute of Dental and Craniofacial Research) [5R01 DE015633]; NIH [R01DE019284, F32AR059497]; Office of Science of the US Department of Energy [DE AC02 05CH11231] FX The authors thank Drs. Tony Tomsia and Maximilien Launey at Lawrence Berkeley National Laboratory (LBNL) for many helpful discussions, and the scientific expertise of Drs. Alex Hexemer and Alastair MacDowell at the ALS. This work was supported by the National Institutes of Health (NIH/National Institute of Dental and Craniofacial Research) Grant 5R01 DE015633 to the LBNL; support for S.Y.T. and T.A. was additionally provided by NIH Grants R01DE019284 and F32AR059497. We acknowledge the use of the two X-ray synchrotron beamlines 7.3.3 (SAXS/WAXD) and 8.3.2 (microtomography) at the ALS at LBNL, which is supported by the Office of Science of the US Department of Energy under Contract DE AC02 05CH11231. NR 63 TC 102 Z9 103 U1 2 U2 54 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD AUG 30 PY 2011 VL 108 IS 35 BP 14416 EP 14421 DI 10.1073/pnas.1107966108 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 814DH UT WOS:000294425900017 PM 21873221 ER PT J AU Salve, R AF Salve, Rohit TI A sensor array system for profiling moisture in unsaturated rock and soil SO HYDROLOGICAL PROCESSES LA English DT Article DE monitoring soil and rock; sensor; unsaturated zone ID TIME-DOMAIN REFLECTOMETRY; WATER-CONTENT; PERMITTIVITY AB As the scope of hydrologic investigations extend deeper into the subsurface profile, and increasingly include fractured rock, there is a growing need for techniques that can accurately monitor saturation changes at a high spatial and temporal resolution in this environment. We have developed a technique, the Electrical Resistance Sensor Array System (ERSAS), to track moisture dynamics in vadose zone regions that include both fractured rock and soil. The performance of ERSAS was compared with the time domain reflectometry (TDR) technique under controlled and field conditions. We found that ERSAS was effective in determining patterns of saturation changes along vertical soil/rock profiles. Because of the small size of individual sensors, it was able to resolve travel times associated with a wetting front and peak saturation better than TDR. In addition, ERSAS is significantly cheaper than the TDR system, and the sensor arrays are relatively easier to install in the subsurface profile. Published in (C) 2011 by John Wiley & Sons, Ltd. C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Salve, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, MS 14RO108,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM R_Salve@lbl.gov FU U.S. Department of Energy FX This work was supported by the Laboratory Directed Research and Development Program, U.S. Department of Energy. Reviews by Dan Hawkes are gratefully acknowledged. NR 20 TC 2 Z9 3 U1 1 U2 10 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0885-6087 J9 HYDROL PROCESS JI Hydrol. Process. PD AUG 30 PY 2011 VL 25 IS 18 BP 2907 EP 2915 DI 10.1002/hyp.8053 PG 9 WC Water Resources SC Water Resources GA 811ID UT WOS:000294201200012 ER PT J AU Berryman, EM Marshall, JD Rahn, T Cook, SP Litvak, M AF Berryman, E. M. Marshall, J. D. Rahn, T. Cook, S. P. Litvak, M. TI Adaptation of continuous-flow cavity ring-down spectroscopy for batch analysis of delta C-13 of CO2 and comparison with isotope ratio mass spectrometry SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID KEELING PLOT APPLICATIONS; TUNABLE DIODE-LASER; SOIL-RESPIRED CO2; ECOSYSTEM RESPIRATION; FOREST SOIL; CARBON; ATMOSPHERE; EFFLUX; SYSTEM AB Measurements of delta C-13 in CO2 have traditionally relied on samples stored in sealed vessels and subsequently analyzed using magnetic sector isotope ratio mass spectrometry (IRMS), an accurate but expensive and high-maintenance analytical method. Recent developments in optical spectroscopy have yielded instruments that can measure delta(CO2)-C-13 in continuous streams of air with precision and accuracy approaching those of IRMS, but at a fraction of the cost. However, continuous sampling is unsuited for certain applications, creating a need for conversion of these instruments for batch operation. Here, we present a flask (syringe) adaptor that allows the collection and storage of small aliquots (20-30mL air) for injection into the cavity ring-down spectroscopy (CRDS) instrument. We demonstrate that the adaptor's precision is similar to that of traditional IRMS (standard deviation of 0.3 parts per thousand for 385ppm CO2 standard gas). In addition, the concentration precision (+/- 0.3% of sample concentration) was higher for CRDS than for IRMS (+/- 7% of sample concentration). Using the adaptor in conjunction with CRDS, we sampled soil chambers and found that soil-respired delta C-13 varied between two different locations in a pinon-juniper woodland. In a second experiment, we found no significant discrimination between the respiration of a small beetle (similar to 5mm) and its diet. Our work shows that the CRDS system is flexible enough to be used for the analysis of batch samples as well as for continuous sampling. This flexibility broadens the range of applications for which CRDS has the potential to replace magnetic sector IRMS. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Berryman, E. M.; Marshall, J. D.] Univ Idaho, Dept Forest Ecol & Biogeosci, Moscow, ID 83843 USA. [Cook, S. P.] Univ Idaho, Dept Plant Soil & Entomol Sci, Moscow, ID 83843 USA. [Rahn, T.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Litvak, M.] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA. RP Berryman, EM (reprint author), POB 441133, Moscow, ID 83844 USA. EM erinberryman@vandals.uidaho.edu RI Rahn, Thom/C-5211-2012 FU Los Alamos National Lab's Institute for Geophysics and Planetary Physics [11-10329] FX The authors would like to recognize the Los Alamos National Lab's Institute for Geophysics and Planetary Physics Mini-grant Program for funding this research (LA-UR# 11-10329). We also sincerely thank Leo Stoscheck for help collecting field samples, Kalina Jordanova for instrument technical help, Aaron Van Pelt of PicarroInstruments for invaluable assistance, and the Grouse Creek Seed Orchard of the USDA-Forest Service for allowing us to collect infested cone material. NR 22 TC 10 Z9 10 U1 0 U2 37 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0951-4198 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD AUG 30 PY 2011 VL 25 IS 16 BP 2355 EP 2360 DI 10.1002/rcm.5108 PG 6 WC Biochemical Research Methods; Chemistry, Analytical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 805PB UT WOS:000293740100012 PM 21766378 ER PT J AU Carlsten, BE Bishofberger, KA Russell, SJ Yampolsky, NA AF Carlsten, Bruce E. Bishofberger, Kip A. Russell, Steven J. Yampolsky, Nikolai A. TI Using an emittance exchanger as a bunch compressor SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID COHERENT SYNCHROTRON-RADIATION; ELECTRON BUNCHES AB A general architecture of an emittance exchanger (EEX) is considered, where the horizontal and longitudinal phase spaces are exchanged. A family of designs is described which can lead to extremely short final longitudinal lengths, even subfemtosecond. Using higher-order particle simulations, a preferred configuration is found, which has better compression capability and less emittance growth than the standard EEX design at high beam energy. An alternative design is also found which eliminates any final energy-phase coupling. Features of compression using an EEX are significantly different than with a chicane because the final longitudinal phase space is decoupled from the initial longitudinal phase space. Advantages of using an EEX for compression include less susceptibility to the coherent synchrotron radiation (CSR) microbunch instability, less susceptibility to bunch length broadening from CSR effects, and elimination of the initial energy-phase correlation that is needed for compression using a chicane as well as any residual energy-phase correlation after compression. A key disadvantage of using an EEX is that the final horizontal emittance tends to strongly depend on the initial bunch length and beam energy. C1 [Carlsten, Bruce E.; Bishofberger, Kip A.; Russell, Steven J.; Yampolsky, Nikolai A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Carlsten, BE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Yampolsky, Nikolai/A-7521-2011; OI Carlsten, Bruce/0000-0001-5619-907X NR 29 TC 10 Z9 10 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG 29 PY 2011 VL 14 IS 8 AR 084403 DI 10.1103/PhysRevSTAB.14.084403 PG 15 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 812YB UT WOS:000294328900002 ER PT J AU Choi, H Hong, S Sung, TH No, K AF Choi, Hyunwoo Hong, Seungbum Sung, Tae-Hyun No, Kwangsoo TI Effects of surface morphology on retention loss of ferroelectric domains in poly(vinylidenefluoride-co-trifluoroethylene) thin films SO APPLIED PHYSICS LETTERS LA English DT Article AB Effects of surface morphology on the retention loss of ferroelectric domains of poly(vinylidenefluoride-co-trifluoroethylene) thin films were investigated using piezoresponse force microscopy. We found that the retention loss occurred by nucleation of opposite domains at the regions with morphological gradients between 0.079 and 0.146. In addition, we observed collective decreases in piezoresponse amplitude of the opposite domains after 0.8 x 10(6) s, although each reversed domain showed different growth rate as evidenced by different threshold time for phase reversal. These results suggest that the surface morphology has a strong influence in determining the nucleation and growth kinetics by which the retention loss occurs. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3632042] C1 [Choi, Hyunwoo; Hong, Seungbum] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. [Choi, Hyunwoo; No, Kwangsoo] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. [Sung, Tae-Hyun] Hanyang Univ, Dept Elect Engn, Seoul 133791, South Korea. RP Hong, S (reprint author), Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. EM hong@anl.gov; ksno@kaist.ac.kr RI Choi, Hyunwoo/B-8669-2011; No, Kwangsoo/C-1983-2011; Hong, Seungbum/B-7708-2009 OI Hong, Seungbum/0000-0002-2667-1983 FU National Research Foundation of Korea [NRF-2008-314-D00172, 2010-0019123, 2010-0015063]; Ministry of Education, Science and Technology and New & Renewable Energy of the Korea Institute of Energy Technology Evaluation and Panning (KETEP); Ministry of Knowledge Economy, Republic of Korea [20103020060010]; U.S. DOE Office of Science [DE-AC02-06CII11357] FX This research was supported by Basic Science Research Program (NRF-2008-314-D00172), Nano R&D Program (2010-0019123), and Mid-career Researcher Program (2010-0015063) through the National Research Foundation of Korea funded by Ministry of Education, Science and Technology and New & Renewable Energy of the Korea Institute of Energy Technology Evaluation and Panning (KETEP) grant funded by the Ministry of Knowledge Economy, Republic of Korea (No. 20103020060010). Work at Argonne National Laboratory (S.H. and H.C., PFM data analysis and manuscript writing) was supported by the U.S. DOE Office of Science under Contract No. DE-AC02-06CII11357. NR 11 TC 6 Z9 6 U1 3 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 29 PY 2011 VL 99 IS 9 AR 092905 DI 10.1063/1.3632042 PG 3 WC Physics, Applied SC Physics GA 814XA UT WOS:000294489300053 ER PT J AU Kapetanakis, MD Lingos, PC Piermarocchi, C Wang, J Perakis, IE AF Kapetanakis, M. D. Lingos, P. C. Piermarocchi, C. Wang, J. Perakis, I. E. TI All-optical four-state magnetization reversal in (Ga,Mn)As ferromagnetic semiconductors SO APPLIED PHYSICS LETTERS LA English DT Article ID ULTRAFAST; DYNAMICS; ANISOTROPY; SPIN AB Using density matrix equations of motion and a tight-binding band calculation, we predict all-optical switching between four metastable magnetic states of (III,Mn)As ferromagnets. This switching is initiated non-thermally within 100 fs, during nonlinear coherent photoexcitation. For a single optical pulse, magnetization reversal is completed after similar to 100 ps and controlled by the coherent femtosecond photoexcitation. Our predicted switching comes from magnetic nonlinearities triggered by a femtosecond magnetization tilt that is sensitive to un-adiabatic light-induced spin interactions. (C) 2011 American Institute of Physics. [doi:10.1063/1.3634031] C1 [Kapetanakis, M. D.; Lingos, P. C.; Perakis, I. E.] Univ Crete, Dept Phys, Iraklion 71110, Crete, Greece. [Kapetanakis, M. D.; Lingos, P. C.; Perakis, I. E.] Fdn Res & Technol Hellas, Inst Elect Struct & Laser, Iraklion 71110, Crete, Greece. [Piermarocchi, C.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Wang, J.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Wang, J.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Perakis, IE (reprint author), Univ Crete, Dept Phys, Iraklion 71110, Crete, Greece. EM ilias@physics.uoc.gr RI Perakis, Ilias/G-9186-2011; Piermarocchi, Carlo/A-2427-2008; OI Piermarocchi, Carlo/0000-0003-2762-8562; KAPETANAKIS, MYRON/0000-0003-1503-9787 FU EU; U.S. National Science Foundation [DMR-1055352]; U.S. Department of Energy-Basic Energy Sciences [DE-AC02-7CH11358] FX This work was supported by the EU ITN program ICA-RUS, the U.S. National Science Foundation Grant No. DMR-1055352, and the U.S. Department of Energy-Basic Energy Sciences under Contract No. DE-AC02-7CH11358. NR 33 TC 9 Z9 9 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0003-6951 EI 1077-3118 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 29 PY 2011 VL 99 IS 9 AR 091111 DI 10.1063/1.3634031 PG 3 WC Physics, Applied SC Physics GA 814XA UT WOS:000294489300010 ER PT J AU Liu, R Xu, C Biswas, R Shinar, J Shinar, R AF Liu, Rui Xu, Chun Biswas, Rana Shinar, Joseph Shinar, Ruth TI MoO3 as combined hole injection layer and tapered spacer in combinatorial multicolor microcavity organic light emitting diodes SO APPLIED PHYSICS LETTERS LA English DT Article ID ELECTROLUMINESCENT DEVICE; FILMS AB Multicolor microcavity (mu C) organic light-emitting diode (OLED) arrays were fabricated simply by controlling the hole injection and spacer MoO3 layer thickness. The normal emission was tunable from similar to 490 to 640 nm and can be further expanded. A compact, integrated spectrometer with two-dimensional combinatorial arrays of mu C OLEDs was realized. The MoO3 yields more efficient and stable devices, revealing a new breakdown mechanism. The pixel current density reaches similar to 4 A/cm(2) and a maximal normal brightness similar to 140 000 Cd/m(2), which improves photoluminescence-based sensing and absorption measurements. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3623482] C1 [Liu, Rui; Xu, Chun; Biswas, Rana; Shinar, Joseph] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Liu, Rui; Xu, Chun; Biswas, Rana; Shinar, Joseph] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Xu, Chun; Biswas, Rana; Shinar, Ruth] Iowa State Univ, Microelect Res Ctr, Ames, IA 50011 USA. [Xu, Chun; Biswas, Rana; Shinar, Ruth] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. RP Biswas, R (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM biswasr@iastate.edu; jshinar@iastate.edu; rshinar@iastate.edu FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC 02-07CH11358] FX We thank R. W. Mayer for film thickness measurements. Research supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-07CH11358. NR 28 TC 11 Z9 11 U1 2 U2 32 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 29 PY 2011 VL 99 IS 9 AR 093305 DI 10.1063/1.3623482 PG 3 WC Physics, Applied SC Physics GA 814XA UT WOS:000294489300069 ER PT J AU Wood, AW Weng, X Wang, YQ Goldman, RS AF Wood, A. W. Weng, X. Wang, Y. Q. Goldman, R. S. TI Formation mechanisms of embedded wurtzite and zincblende indium nitride nanocrystals SO APPLIED PHYSICS LETTERS LA English DT Article ID OPTICAL-PROPERTIES; BAND-GAP; INN AB We have examined the formation of InN nanocrystals embedded in InAs. Low temperature (77K) N ion implantation into InAs leads to the formation of an amorphous layer with crystalline InAs remnants. Rapid thermal annealing up to 550 degrees C leads to the nucleation of zincblende InN nanocrystals with a maximum likelihood radius of 1.3 +/- 0.2 nm. Rapid thermal annealing at 600 degrees C leads to nucleation of zincblende and wurtzite InN, with an increase in maximum likelihood radius to 2.6 +/- 0.4 nm. These results are consistent with the predictions of a thermodynamic model for the nanoscale-size-dependence of zincblende and wurtzite InN nucleation. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3617464] C1 [Wood, A. W.; Goldman, R. S.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Weng, X.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Wang, Y. Q.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Goldman, R. S.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. RP Goldman, RS (reprint author), Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. EM rsgold@umich.edu RI weng, xiaojun/D-5096-2011; Goldman, Rachel/J-9091-2012 FU AFOSR through the MURI [FA9950-08-1-0340]; U.S. DoD [HM1582-05-1-2027, 2007-0919714-000]; NSF [CMMI 0700301]; DOE Center for Integrated nanotechnologies (CINT) FX This work was supported in part by the AFOSR through the MURI program under Grant No. FA9950-08-1-0340, the U.S. DoD under IC Grant No. HM1582-05-1-2027, CIA Contract No. 2007-0919714-000, and by NSF under Grant No. CMMI 0700301. We also acknowledge the support of the DOE Center for Integrated nanotechnologies (CINT) jointly operated by Los Alamos and Sandia National Laboratories. NR 18 TC 9 Z9 9 U1 1 U2 14 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD AUG 29 PY 2011 VL 99 IS 9 AR 093108 DI 10.1063/1.3617464 PG 3 WC Physics, Applied SC Physics GA 814XA UT WOS:000294489300064 ER PT J AU Brissinger, D Lereu, AL Salomon, L Charvolin, T Cluzel, B Dumas, C Passian, A de Fornel, F AF Brissinger, D. Lereu, A. L. Salomon, L. Charvolin, T. Cluzel, B. Dumas, C. Passian, A. de Fornel, F. TI Discontinuity induced angular distribution of photon plasmon coupling SO OPTICS EXPRESS LA English DT Article ID SURFACE-PLASMONS; THIN-FILMS; LOSSES; SILVER AB Metal-dielectric transitions are important structures that can display a host of optical characteristics including excitation of plasmons. Metal-dielectric discontinuities can furthermore support plasmon excitation without a severe condition on the incident angle of the exciting photons. Using a semi-infinite thin gold film, we study surface plasmon (SP) excitation and the associated electromagnetic near-field distribution by recording the resulting plasmon interference patterns. In particular, we measure interference periods involving SPs at the scanable metal/air interface and the buried metal/glass one. Supported by optical near-field simulations and experiments, we demonstrate that the metal/glass surface plasmon is observable over a wide range of incident angles encompassing values above and below the critical incident angle. As a result, it is shown that scanning near-field microscopy can provide quantitative evaluation of the real part of the buried surface plasmon wavevector. (C) 2011 Optical Society of America C1 [Brissinger, D.; Salomon, L.; Cluzel, B.; Dumas, C.; de Fornel, F.] Univ Bourgogne, Grp Opt Champ Proche, LICB, UMR CNRS 5209, F-21078 Dijon, France. [Lereu, A. L.] CINaM CNRS UPR 3118, F-13288 Marseille 9, France. [Charvolin, T.] CEA, SiNaPS, INAC SP2M, F-38054 Grenoble 9, France. [Passian, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Brissinger, D (reprint author), Univ Bourgogne, Grp Opt Champ Proche, LICB, UMR CNRS 5209, 9 Ave A Savary,BP 47870, F-21078 Dijon, France. EM damien.brissinger@u-bourgogne.fr RI Lereu, Aude/P-6414-2016 OI Lereu, Aude/0000-0001-7390-7832 NR 22 TC 4 Z9 4 U1 1 U2 5 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1094-4087 J9 OPT EXPRESS JI Opt. Express PD AUG 29 PY 2011 VL 19 IS 18 BP 17750 EP 17757 DI 10.1364/OE.19.017750 PG 8 WC Optics SC Optics GA 814XE UT WOS:000294489700109 PM 21935142 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hansel, S Hoch, M Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Krammer, M Liko, D Mikulec, I Pernicka, M Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Taurok, A Teischinger, F Wagner, P Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Bansal, S Benucci, L De Wolf, EA Janssen, X Maes, T Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Blekman, F Blyweert, S D'Hondt, J Devroede, O Suarez, RG Kalogeropoulos, A Maes, M Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hammad, GH Hreus, T Marage, PE Raval, A Thomas, L Vander Velde, C Vanlaer, P Adler, V Cimmino, A Costantini, S Grunewald, M Klein, B Lellouch, J Marinov, A Mccartin, J Ryckbosch, D Thyssen, F Tytgat, M Vanelderen, L Verwilligen, P Walsh, S Zaganidis, N Basegmez, S Bruno, G Caudron, J Ceard, L Gil, EC De Jeneret, JD Delaere, C Favart, D Giammanco, A Gregoire, G Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Ovyn, S Pagano, D Pin, A Piotrzkowski, K Schul, N Beliy, N Caebergs, T Daubie, E Alves, GA Brito, L Damiao, DD Pol, ME Souza, MHG Alda, WL Carvalho, W Da Costa, EM Martins, CD De Souza, SF Mundim, L Nogima, H Oguri, V Da Silva, WLP Santoro, A Do Amaral, SMS Sznajder, A Bernardes, CA Dias, FA Costa, TD Tomei, TRFP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Darmenov, N Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Dimitrov, A Hadjiiska, R Karadzhinova, A Kozhuharov, V Litov, L Mateev, M Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Zang, J Zhang, Z Ban, Y Guo, S Guo, Y Li, W Mao, Y Qian, SJ Teng, H Zhu, B Zou, W Cabrera, A Moreno, BG Rios, AAO Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Lelas, K Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Brigljevic, V Duric, S Kadija, K Morovic, S Attikis, A Galanti, M Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Kamel, AE Khalil, S Mahmoud, MA Hektor, A Kadastik, M Muntel, M Raidal, M Rebane, L Tiko, A Azzolini, V Eerola, P Fedi, G Czellar, S Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Karjalainen, A Korpela, A Tuuva, T Sillou, D Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Gentit, FX Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Marionneau, M Millischer, L Rander, J Rosowsky, A Shreyber, I Titov, M Verrecchia, P Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Dahms, T Dobrzynski, L Elgammal, S de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Thiebaux, C Wyslouch, B Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Greder, S Juillot, P Karim, M Le Bihan, AC Mikami, Y Van Hove, P Fassi, F Mercier, D Baty, C Beauceron, S Beaupere, N Bedjidian, M Bondu, O Boudoul, G Boumediene, D Brun, H Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Ille, B Kurca, T Le Grand, T Lethuillier, M Mirabito, L Perries, S Sordini, V Tosi, S Tschudi, Y Verdier, P Lomidze, D Anagnostou, G Beranek, S Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Mohr, N Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Weber, M Wittmer, B Ata, M Dietz-Laursonn, E Erdmann, M Hebbeker, T Heidemann, C Hinzmann, A Hoepfner, K Klimkovich, T Klingebiel, D Kreuzer, P Lanske, D Lingemann, J Magass, C Merschmeyer, M Meyer, A Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Bontenackels, M Davids, M Duda, M Flugge, G Geenen, H Giffels, M Ahmad, WH Heydhausen, D Hoehle, F Kargoll, B Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Rennefeld, J Sauerland, P Stahl, A Tornier, D Zoeller, MH Martin, MA Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Cakir, A Campbell, A Castro, E Dammann, D Eckerlin, G Eckstein, D Flossdorf, A Flucke, G Geiser, A Hauk, J Jung, H Kasemann, M Katkov, I Katsas, P Kleinwort, C Kluge, H Knutsson, A Kramer, M Krucker, D Kuznetsova, E Lange, W Lohmann, W Mankel, R Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Olzem, J Petrukhin, A Pitzl, D Raspereza, A Rosin, M Schmidt, R Schoerner-Sadenius, T Sen, N Spiridonov, A Stein, M Tomaszewska, J Walsh, R Wissing, C Autermann, C Blobel, V Bobrovskyi, S Draeger, J Enderle, H Gebbert, U Gorner, M Hermanns, T Kaschube, K Kaussen, G Kirschenmann, H Klanner, R Lange, J Mura, B Naumann-Emme, S Nowak, F Pietsch, N Sander, C Schettler, H Schleper, P Schlieckau, E Schroder, M Schum, T Stadie, H Steinbruck, G Thomsen, J Barth, C Bauer, J Berger, J Buege, V Chwalek, T De Boer, W Dierlamm, A Dirkes, G Feindt, M Gruschke, J Hackstein, C Hartmann, F Heinrich, M Held, H Hoffmann, KH Honc, S Komaragiri, JR Kuhr, T Martschei, D Mueller, S Muller, T Niegel, M Oberst, O Oehler, A Ott, J Peiffer, T Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Renz, M Saout, C Scheurer, A Schieferdecker, P Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Wagner-Kuhr, J Weiler, T Zeise, M Zhukov, V Ziebarth, EB Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Ntomari, E Petrakou, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Stiliaris, E Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Triantis, FA Aranyi, A Bencze, G Boldizsar, L Hajdu, C Hidas, P Horvath, D Kapusi, A Krajczar, K Sikler, F Veres, GI Vesztergombi, G Beni, N Molnar, J Palinkas, J Szillasi, Z Veszpremi, V Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, AP Singh, J Singh, SP Ahuja, S Choudhary, BC Gupta, P Jain, S Kumar, A Naimuddin, M Ranjan, K Shivpuri, RK Banerjee, S Bhattacharya, S Dutta, S Gomber, B Jain, S Khurana, R Sarkar, S Choudhury, RK Dutta, D Kailas, S Kumar, V Mehta, P Mohanty, AK Pant, LM Shukla, P Aziz, T Guchait, M Gurtu, A Maity, M Majumder, D Majumder, G Mazumdar, K Mohanty, GB Saha, A Sudhakar, K Wickramage, N Banerjee, S Dugad, S Mondal, NK Arfaei, H Bakhshiansohi, H Etesami, M Fahim, A Hashemi, M Hesari, H Jafari, A Khakzad, M Mohammadi, A Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Manna, N Marangelli, B My, S Nuzzo, S Pacifico, N Pierro, GA Pompili, A Pugliese, G Romano, F Roselli, G Selvaggi, G Silvestris, L Trentadue, R Tupputi, S Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Giunta, M Grandi, C Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, G Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A De Guio, F Di Matteo, L Gennai, S Ghezzi, A Malvezzi, S Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Buontempo, S Montoya, CAC Cavallo, N De Cosa, A Fabozzi, F Iorio, AOM Lista, L Merola, M Paolucci, P Azzi, P Bacchetta, N Bellan, P Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Dosselli, U Fanzago, F Gasparini, F Gasparini, U Gozzelino, A Lacaprara, S Lazzizzera, I Margoni, M Mazzucato, M Meneguzzo, AT Nespolo, M Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Baesso, P Berzano, U Ratti, SP Riccardi, C Torre, P Vitulo, P Viviani, C Biasini, M Bilei, GM Caponeri, B Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Romeo, F Santocchia, A Taroni, S Valdata, M Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Palmonari, F Segneri, G Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Di Marco, E Diemoz, M Franci, D Grassi, M Longo, E Meridiani, P Nourbakhsh, S Organtini, G Pandolfi, F Paramatti, R Rahatlou, S Rovelli, C Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Botta, C Cartiglia, N Castello, R Costa, M Demaria, N Graziano, A Mariotti, C Marone, M Maselli, S Migliore, E Mila, G Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Sola, V Solano, A Staiano, A Pereira, AV Belforte, S Cossutti, F Della Ricca, G Gobbo, B Montanino, D Penzo, A Heo, SG Nam, SK Chang, S Chung, J Kim, DH Kim, GN Kim, JE Kong, DJ Park, H Ro, SR Son, DC Son, T Kim, Z Kim, JY Song, S Choi, S Hong, B Jo, M Kim, H Kim, JH Kim, TJ Lee, KS Moon, DH Park, SK Sim, KS Choi, M Kang, S Kim, H Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kim, MS Lee, B Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Martisiute, D Petrov, P Polujanskas, M Sabonis, T Castilla-Valdez, H De La Cruz-Burelo, E Heredia-De La Cruz, I Lopez-Fernandez, R Villalba, RM Sanchez-Hernandez, A Villasenor-Cendejas, LM Carrillo Moreno, S Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Tam, J Butler, PH Doesburg, R Silverwood, H Ahmad, M Ahmed, I Asghar, MI Hoorani, HR Doroba, K Kalinowski, A Konecki, M Krolikowski, J Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Almeida, N Bargassa, P David, A Faccioli, P Parracho, PGF Gallinaro, M Musella, P Nayak, A Pela, J Ribeiro, PQ Seixas, J Varela, J Afanasiev, S Bunin, P Golutvin, I Karjavin, V Konoplyanikov, V Kozlov, G Lanev, A Moisenz, P Palichik, V Perelygin, V Savina, M Shmatov, S Smirnov, V Volodko, A Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Toropin, A Troitsky, S Epshteyn, V Gavrilov, V Kaftanov, V Kossov, M Krokhotin, A Lychkovskaya, N Popov, V Safronov, G Semenov, S Stolin, V Vlasov, E Zhokin, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kodolova, O Lokhtin, I Markina, A Obraztsov, S Perfilov, M Petrushanko, S Sarycheva, L Savrin, V Snigirev, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Rusakov, SV Vinogradov, A Azhgirey, I Bayshev, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Korablev, A Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cepeda, M Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Pardos, CD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C Codispoti, G de Troconiz, JF Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Garcia, JMV Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Jorda, C Pardo, PL Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Baillon, P Ball, AH Barney, D Bell, AJ Benedetti, D Bernet, C Bialas, W Bloch, P Bocci, A Bolognesi, S Bona, M Breuker, H Bunkowski, K Camporesi, T Cerminara, G Christiansen, T Perez, JAC Cure, B D'Enterria, D De Roeck, A Di Guida, S Dupont-Sagorin, N Elliott-Peisert, A Frisch, B Funk, W Gaddi, A Georgiou, G Gerwig, H Gigi, D Gill, K Giordano, D Glege, F Garrido, RGR Gouzevitch, M Govoni, P Gowdy, S Guiducci, L Hansen, M Hartl, C Harvey, J Hegeman, J Hegner, B Hoffmann, HF Honma, A Innocente, V Janot, P Kaadze, K Karavakis, E Lecoq, P Lourenco, C Maki, T Malberti, M Malgeri, L Mannelli, M Masetti, L Maurisset, A Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Nesvold, E Nguyen, M Orimoto, T Orsini, L Cortezon, EP Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Polese, G Racz, A Reece, W Antunes, JR Rolandi, G Rommerskirchen, T Rovere, M Sakulin, H Schafer, C Schwick, C Segoni, I Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiropulu, M Stoye, M Tropea, P Tsirou, A Vichoudis, P Voutilainen, M Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Starodumov, A Bani, L Bortignon, P Caminada, L Casal, B Chanon, N Chen, Z Cittolin, S Dissertori, G Dittmar, M Eugster, J Freudenreich, K Grab, C Hintz, W Lecomte, P Lustermann, W Marchica, C del Arbol, PMR Milenovic, P Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pape, L Pauss, F Punz, T Rizzi, A Ronga, FJ Rossini, M Sala, L Sanchez, AK Sawley, MC Stieger, B Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, M Wehrli, L Weng, J Aguilo, E Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Mejias, BM Otiougova, P Robmann, P Schmidt, A Snoek, H Chang, YH Chen, KH Kuo, CM Li, SW Lin, W Liu, ZK Lu, YJ Mekterovic, D Volpe, R Wu, JH Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Shiu, JG Tzeng, YM Wan, X Wang, M Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Uzun, D Vergili, LN Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Yildirim, E Zeyrek, M Deliomeroglu, M Demir, D Gulmez, E Isildak, B Kaya, M Kaya, O Ozbek, M Ozkorucuklu, S Sonmez, N Levchuk, L Bostock, F Brooke, JJ Cheng, TL Clement, E Cussans, D Frazier, R Goldstein, J Grimes, M Hartley, D Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Camanzi, B Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Worm, SD Bainbridge, R Ball, G Ballin, J Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Lyons, L MacEvoy, BC Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rompotis, N Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Tapper, A Tourneur, S Acosta, MV Virdee, T Wakefield, S Wardle, N Wardrope, D Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Martin, W Reid, ID Teodorescu, L Hatakeyama, K Liu, H Henderson, C Bose, T Jarrin, EC Fantasia, C Heister, A St John, J Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Avetisyan, A Bhattacharya, S Chou, JP Cutts, D Ferapontov, A Heintz, U Jabeen, S Kukartsev, G Landsberg, G Luk, M Narain, M Nguyen, D Segala, M Sinthuprasith, T Speer, T Tsang, KV Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Cox, PT Dolen, J Erbacher, R Friis, E Ko, W Kopecky, A Lander, R Liu, H Maruyama, S Miceli, T Nikolic, M Pellett, D Robles, J Rutherford, B Salur, S Schwarz, T Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Veelken, C Andreev, V Arisaka, K Cline, D Cousins, R Deisher, A Duris, J Erhan, S Farrell, C Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Tucker, J Valuev, V Babb, J Chandra, A Clare, R Ellison, J Gary, JW Giordano, F Hanson, G Jeng, GY Kao, SC Liu, F Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Shen, BC Stringer, R Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Mangano, B Padhi, S Palmer, C Petrucciani, G Pi, H Pieri, M Ranieri, R Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lowette, S Mccoll, N Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W Vlimant, JR Apresyan, A Bornheim, A Bunn, J Chen, Y Gataullin, M Ma, Y Mott, A Newman, HB Rogan, C Shin, K Timciuc, V Traczyk, P Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Carroll, R Ferguson, T Iiyama, Y Jang, DW Jun, SY Liu, YF Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Dinardo, ME Drell, BR Edelmaier, CJ Ford, WT Gaz, A Heyburn, B Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Zang, SL Agostino, L Alexander, J Chatterjee, A Eggert, N Gibbons, LK Heltsley, B Henriksson, K Hopkins, W Khukhunaishvili, A Kreis, B Liu, Y Kaufman, GN Patterson, JR Puigh, D Ryd, A Saelim, M Salvati, E Shi, X Sun, W Teo, WD Thom, J Thompson, J Vaughan, J Weng, Y Winstrom, L Wittich, P Biselli, A Cirino, G Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Atac, M Bakken, JA Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Borcherding, F Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Cooper, W Eartly, DP Elvira, VD Esen, S Fisk, I Freeman, J Gao, Y Gottschalk, E Green, D Gunthoti, K Gutsche, O Hanlon, J Harris, RM Hirschauer, J Hooberman, B Jensen, H Johnson, M Joshi, U Khatiwada, R Klima, B Kousouris, K Kunori, S Kwan, S Leonidopoulos, C Limon, P Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Mason, D McBride, P Miao, T Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Pivarski, J Pordes, R Prokofyev, O Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kyprcos, T Low, JF Matchev, K Mitselmakher, G Muniz, L Prescott, C Remington, R Rinkevicius, A Schmitt, M Scurlock, B Sellers, P Skhirtladze, N Snowball, M Wang, D Yelton, J Zakaria, M Gaultney, V Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Quertenmont, L Sekmen, S Veeraraghavan, V Baarmand, MM Dorney, B Guragain, S Hohlmann, M Kalakhety, H Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kunde, GJ Lacroix, F Malek, M O'Brien, C Silkworth, C Silvestre, C Smoron, A Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Duru, F Lae, CK McCliment, E Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bonato, A Eskew, C Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Tran, NV Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Iii, RPK Murray, M Noonan, D Sanders, S Wood, JS Zhukova, V Barfuss, AF Bolton, T Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Wan, Z Gronberg, J Lange, D Wright, D Baden, A Boutemeur, M Eno, SC Ferencek, D Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Lu, Y Mignerey, AC Rossato, K Rumerio, P Santanastasio, F Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Alver, B Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Everaerts, P Ceballos, GG Goncharov, M Hahn, KA Harris, P Kim, Y Klute, M Lee, YJ Li, W Loizides, C Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Stockli, F Sumorok, K Sung, K Velicanu, D Wenger, EA Wolf, R Xie, S Yang, M Yilmaz, Y Yoon, AS Zanetti, M Cooper, SI Cushman, P Dahmes, B De Benedetti, A Dudero, PR Franzoni, G Gude, A Haupt, J Klapoetke, K Kubota, Y Mans, J Pastika, N Rekovic, V Rusack, R Sasseville, M Singovsky, A Tambe, N Cremaldi, LM Godang, R Kroeger, R Perera, L Rahmat, R Sanders, DA Summers, D Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Jindal, P Keller, J Kelly, T Kravchenko, I Lazo-Flores, J Malbouisson, H Malik, S Snow, GR Baur, U Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Shipkowski, SP Smith, K Alverson, G Barberis, E Baumgartel, D Boeriu, O Chasco, M Reucroft, S Swain, J Trocino, D Wood, D Zhang, J Anastassov, A Kubik, A Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Brinkerhoff, A Hildreth, M Jessop, C Karmgard, DJ Kolb, J Kolberg, T Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Ruchti, R Slaunwhite, J Valls, N Wayne, M Ziegler, J Bylsma, B Durkin, LS Gu, J Hill, C Killewald, P Kotov, K Ling, TY Rodenburg, M Vuosalo, C Williams, G Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hebda, P Hunt, A Laird, E Pegna, DL Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Safdi, B Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatserklyaniy, A Alagoz, E Barnes, VE Bolla, G Borrello, L Bortoletto, D De Mattia, M Everett, A Garfinkel, AF Gutay, L Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Liu, C Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Yoo, HD Zablocki, J Zheng, Y Parashar, N Adair, A Boulahouache, C Ecklund, KM Geurts, FJM Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R de Barbaro, P Demina, R Eshaq, Y Flacher, H Garcia-Bellido, A Goldenzweig, P Gotra, Y Han, J Harel, A Miner, DC Orbaker, D Petrillo, G Sakumoto, W Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Atramentov, O Barker, A Duggan, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hits, D Lath, A Panwalkar, S Patel, R Richards, A Rose, K Schnetzer, S Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Gurrola, A Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Safonov, A Sengupta, S Suarez, I Tatarinov, A Toback, D Weinberger, M Akchurin, N Bardak, C Damgov, J Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Mane, P Roh, Y Sill, A Volobouev, I Wigmans, R Yazgan, E Appelt, E Brownson, E Engh, D Florez, C Gabella, W Issah, M Johns, W Kurt, P Maguire, C Melo, A Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Yohay, R Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Mattson, M Milstene, C Sakharov, A Anderson, M Bachtis, M Belknap, D Bellinger, JN Carlsmith, D Dasu, S Efron, J Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Loveless, R Mohapatra, A Ojalvo, I Reeder, D Ross, I Savin, A Smith, WH Swanson, J Weinberg, M AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Haensel, S. Hoch, M. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rahbaran, B. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Teischinger, F. Wagner, P. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Bansal, S. Benucci, L. De Wolf, E. A. Janssen, X. Maes, T. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Blekman, F. Blyweert, S. D'Hondt, J. Devroede, O. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, M. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hammad, G. H. Hreus, T. Marage, P. E. Raval, A. Thomas, L. Vander Velde, C. Vanlaer, P. Adler, V. Cimmino, A. Costantini, S. Grunewald, M. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Ryckbosch, D. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, P. Walsh, S. Zaganidis, N. Basegmez, S. Bruno, G. Caudron, J. Ceard, L. Gil, E. Cortina De Jeneret, J. De Favereau Delaere, C. Favart, D. Giammanco, A. Gregoire, G. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Ovyn, S. Pagano, D. Pin, A. Piotrzkowski, K. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Alves, G. A. Brito, L. De Jesus Damiao, D. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Da Costa, E. M. De Oliveira Martins, C. Fonseca De Souza, S. Mundim, L. Nogima, H. Oguri, V. Prado Da Silva, W. L. Santoro, A. Silva Do Amaral, S. M. Sznajder, A. Bernardes, C. A. Dias, F. A. Dos Anjos Costa, T. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Darmenov, N. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Dimitrov, A. Hadjiiska, R. Karadzhinova, A. Kozhuharov, V. Litov, L. Mateev, M. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Zang, J. Zhang, Z. Ban, Y. Guo, S. Guo, Y. Li, W. Mao, Y. Qian, S. J. Teng, H. Zhu, B. Zou, W. Cabrera, A. Moreno, B. Gomez Rios, A. A. Ocampo Oliveros, A. F. Osorio Sanabria, J. C. Godinovic, N. Lelas, D. Lelas, K. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Brigljevic, V. Duric, S. Kadija, K. Morovic, S. Attikis, A. Galanti, M. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Kamel, A. Ellithi Khalil, S. Mahmoud, M. A. Hektor, A. Kadastik, M. Muentel, M. Raidal, M. Rebane, L. Tiko, A. Azzolini, V. Eerola, P. Fedi, G. Czellar, S. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Karjalainen, A. Korpela, A. Tuuva, T. Sillou, D. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Gentit, F. X. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Marionneau, M. Millischer, L. Rander, J. Rosowsky, A. Shreyber, I. Titov, M. Verrecchia, P. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Dahms, T. Dobrzynski, L. Elgammal, S. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Thiebaux, C. Wyslouch, B. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Greder, S. Juillot, P. Karim, M. Le Bihan, A. -C. Mikami, Y. Van Hove, P. Fassi, F. Mercier, D. Baty, C. Beauceron, S. Beaupere, N. Bedjidian, M. Bondu, O. Boudoul, G. Boumediene, D. Brun, H. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Ille, B. Kurca, T. Le Grand, T. Lethuillier, M. Mirabito, L. Perries, S. Sordini, V. Tosi, S. Tschudi, Y. Verdier, P. Lomidze, D. Anagnostou, G. Beranek, S. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Mohr, N. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Weber, M. Wittmer, B. Ata, M. Dietz-Laursonn, E. Erdmann, M. Hebbeker, T. Heidemann, C. Hinzmann, A. Hoepfner, K. Klimkovich, T. Klingebiel, D. Kreuzer, P. Lanske, D. Lingemann, J. Magass, C. Merschmeyer, M. Meyer, A. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Bontenackels, M. Davids, M. Duda, M. Fluegge, G. Geenen, H. Giffels, M. Ahmad, W. Haj Heydhausen, D. Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Rennefeld, J. Sauerland, P. Stahl, A. Tornier, D. Zoeller, M. H. Martin, M. Aldaya Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Cakir, A. Campbell, A. Castro, E. Dammann, D. Eckerlin, G. Eckstein, D. Flossdorf, A. Flucke, G. Geiser, A. Hauk, J. Jung, H. Kasemann, M. Katkov, I. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Lohmann, W. Mankel, R. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Olzem, J. Petrukhin, A. Pitzl, D. Raspereza, A. Rosin, M. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Spiridonov, A. Stein, M. Tomaszewska, J. Walsh, R. Wissing, C. Autermann, C. Blobel, V. Bobrovskyi, S. Draeger, J. Enderle, H. Gebbert, U. Goerner, M. Hermanns, T. Kaschube, K. Kaussen, G. Kirschenmann, H. Klanner, R. Lange, J. Mura, B. Naumann-Emme, S. Nowak, F. Pietsch, N. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schroeder, M. Schum, T. Stadie, H. Steinbrueck, G. Thomsen, J. Barth, C. Bauer, J. Berger, J. Buege, V. Chwalek, T. De Boer, W. Dierlamm, A. Dirkes, G. Feindt, M. Gruschke, J. Hackstein, C. Hartmann, F. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Komaragiri, J. R. Kuhr, T. Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Renz, M. Saout, C. Scheurer, A. Schieferdecker, P. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Wagner-Kuhr, J. Weiler, T. Zeise, M. Zhukov, V. Ziebarth, E. B. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Ntomari, E. Petrakou, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Stiliaris, E. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Triantis, F. A. Aranyi, A. Bencze, G. Boldizsar, L. Hajdu, C. Hidas, P. Horvath, D. Kapusi, A. Krajczar, K. Sikler, F. Veres, G. I. Vesztergombi, G. Beni, N. Molnar, J. Palinkas, J. Szillasi, Z. Veszpremi, V. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, A. P. Singh, J. Singh, S. P. Ahuja, S. Choudhary, B. C. Gupta, P. Jain, S. Kumar, A. Naimuddin, M. Ranjan, K. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Dutta, S. Gomber, B. Jain, S. Khurana, R. Sarkar, S. Choudhury, R. K. Dutta, D. Kailas, S. Kumar, V. Mehta, P. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Guchait, M. Gurtu, A. Maity, M. Majumder, D. Majumder, G. Mazumdar, K. Mohanty, G. B. Saha, A. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Mondal, N. K. Arfaei, H. Bakhshiansohi, H. Etesami, M. Fahim, A. Hashemi, M. Hesari, H. Jafari, A. Khakzad, M. Mohammadi, A. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. iaselli, G. Lusito, L. Maggi, G. Maggi, M. Manna, N. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pierro, G. A. Pompili, A. Pugliese, G. Romano, F. Roselli, G. Selvaggi, G. Silvestris, L. Trentadue, R. Tupputi, S. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Giunta, M. Grandi, C. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. De Guio, F. Di Matteo, L. Gennai, S. Ghezzi, A. Malvezzi, S. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Buontempo, S. Montoya, C. A. Carrillo Cavallo, N. De Cosa, A. Fabozzi, F. Iorio, A. O. M. Lista, L. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Dosselli, U. Fanzago, F. Gasparini, F. Gasparini, U. Gozzelino, A. Lacaprara, S. Lazzizzera, I. Margoni, M. Mazzucato, M. Meneguzzo, A. T. Nespolo, M. Perrozzi, L. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Baesso, P. Berzano, U. Ratti, S. P. Riccardi, C. Torre, P. Vitulo, P. Viviani, C. Biasini, M. Bilei, G. M. Caponeri, B. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Santocchia, A. Taroni, S. Valdata, M. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Palmonari, F. Segneri, G. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Di Marco, E. Diemoz, M. Franci, D. Grassi, M. Longo, E. Meridiani, P. Nourbakhsh, S. Organtini, G. Pandolfi, F. Paramatti, R. Rahatlou, S. Rovelli, C. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Botta, C. Cartiglia, N. Castello, R. Costa, M. Demaria, N. Graziano, A. Mariotti, C. Marone, M. Maselli, S. Migliore, E. Mila, G. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Sola, V. Solano, A. Staiano, A. Pereira, A. Vilela Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Montanino, D. Penzo, A. Heo, S. G. Nam, S. K. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Park, H. Ro, S. R. Son, D. C. Son, T. Kim, Zero Kim, J. Y. Song, S. Choi, S. Hong, B. Jo, M. Kim, H. Kim, J. H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Sim, K. S. Choi, M. Kang, S. Kim, H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Martisiute, D. Petrov, P. Polujanskas, M. Sabonis, T. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Magana Villalba, R. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Tam, J. Butler, P. H. Doesburg, R. Silverwood, H. Ahmad, M. Ahmed, I. Asghar, M. I. Hoorani, H. R. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. Bargassa, P. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Musella, P. Nayak, A. Pela, J. Ribeiro, P. Q. Seixas, J. Varela, J. Afanasiev, S. Bunin, P. Golutvin, I. Karjavin, V. Konoplyanikov, V. Kozlov, G. Lanev, A. Moisenz, P. Palichik, V. Perelygin, V. Savina, M. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Toropin, A. Troitsky, S. Epshteyn, V. Gavrilov, V. Kaftanov, V. Kossov, M. Krokhotin, A. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Stolin, V. Vlasov, E. Zhokin, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Perfilov, M. Petrushanko, S. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Korablev, A. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cepeda, M. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Diez Pardos, C. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Lopez, O. Gonzalez Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Vizan Garcia, J. M. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Jorda, C. Lobelle Pardo, P. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Sobron Sanudo, M. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Baillon, P. Ball, A. H. Barney, D. Bell, A. J. Benedetti, D. Bernet, C. Bialas, W. Bloch, P. Bocci, A. Bolognesi, S. Bona, M. Breuker, H. Bunkowski, K. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Cure, B. D'Enterria, D. De Roeck, A. Di Guida, S. Dupont-Sagorin, N. Elliott-Peisert, A. Frisch, B. Funk, W. Gaddi, A. Georgiou, G. Gerwig, H. Gigi, D. Gill, K. Giordano, D. Glege, F. Garrido, R. Gomez-Reino Gouzevitch, M. Govoni, P. Gowdy, S. Guiducci, L. Hansen, M. Hartl, C. Harvey, J. Hegeman, J. Hegner, B. Hoffmann, H. F. Honma, A. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Lecoq, P. Lourenco, C. Maeki, T. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Maurisset, A. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Nesvold, E. Nguyen, M. Orimoto, T. Orsini, L. Cortezon, E. Palencia Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Polese, G. Racz, A. Reece, W. Antunes, J. Rodrigues Rolandi, G. Rommerskirchen, T. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Segoni, I. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiropulu, M. Stoye, M. Tropea, P. Tsirou, A. Vichoudis, P. Voutilainen, M. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Starodumov, A. Baeni, L. Bortignon, P. Caminada, L. Casal, B. Chanon, N. Chen, Z. Cittolin, S. Dissertori, G. Dittmar, M. Eugster, J. Freudenreich, K. Grab, C. Hintz, W. Lecomte, P. Lustermann, W. Marchica, C. del Arbol, P. Martinez Ruiz Milenovic, P. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pape, L. Pauss, F. Punz, T. Rizzi, A. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Sawley, M. -C. Stieger, B. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, M. Wehrli, L. Weng, J. Aguilo, E. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Mejias, B. Millan Otiougova, P. Robmann, P. Schmidt, A. Snoek, H. Chang, Y. H. Chen, K. H. Kuo, C. M. Li, S. W. Lin, W. Liu, Z. K. Lu, Y. J. Mekterovic, D. Volpe, R. Wu, J. H. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Shiu, J. G. Tzeng, Y. M. Wan, X. Wang, M. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Uzun, D. Vergili, L. N. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Yildirim, E. Zeyrek, M. Deliomeroglu, M. Demir, D. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozbek, M. Ozkorucuklu, S. Sonmez, N. Levchuk, L. Bostock, F. Brooke, J. J. Cheng, T. L. Clement, E. Cussans, D. Frazier, R. Goldstein, J. Grimes, M. Hartley, D. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Camanzi, B. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Worm, S. D. Bainbridge, R. Ball, G. Ballin, J. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Guneratne Bryer, A. Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Lyons, L. MacEvoy, B. C. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Tourneur, S. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Wardrope, D. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Martin, W. Reid, I. D. Teodorescu, L. Hatakeyama, K. Liu, H. Henderson, C. Bose, T. Jarrin, E. Carrera Fantasia, C. Heister, A. St John, J. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Avetisyan, A. Bhattacharya, S. Chou, J. P. Cutts, D. Ferapontov, A. Heintz, U. Jabeen, S. Kukartsev, G. Landsberg, G. Luk, M. Narain, M. Nguyen, D. Segala, M. Sinthuprasith, T. Speer, T. Tsang, K. V. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Cox, P. T. Dolen, J. Erbacher, R. Friis, E. Ko, W. Kopecky, A. Lander, R. Liu, H. Maruyama, S. Miceli, T. Nikolic, M. Pellett, D. Robles, J. Rutherford, B. Salur, S. Schwarz, T. Searle, M. Smith, J. Squires, M. Tripathi, M. Vasquez Sierra, R. Veelken, C. Andreev, V. Arisaka, K. Cline, D. Cousins, R. Deisher, A. Duris, J. Erhan, S. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Babb, J. Chandra, A. Clare, R. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Jeng, G. Y. Kao, S. C. Liu, F. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Shen, B. C. Stringer, R. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pi, H. Pieri, M. Ranieri, R. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lowette, S. Mccoll, N. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. Vlimant, J. R. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Gataullin, M. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Shin, K. Timciuc, V. Traczyk, P. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Jun, S. Y. Liu, Y. F. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Dinardo, M. E. Drell, B. R. Edelmaier, C. J. Ford, W. T. Gaz, A. Heyburn, B. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Zang, S. L. Agostino, L. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Heltsley, B. Henriksson, K. Hopkins, W. Khukhunaishvili, A. Kreis, B. Liu, Y. Kaufman, G. Nicolas Patterson, J. R. Puigh, D. Ryd, A. Saelim, M. Salvati, E. Shi, X. Sun, W. Teo, W. D. Thom, J. Thompson, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Biselli, A. Cirino, G. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Atac, M. Bakken, J. A. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Borcherding, F. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Cooper, W. Eartly, D. P. Elvira, V. D. Esen, S. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Green, D. Gunthoti, K. Gutsche, O. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. Jensen, H. Johnson, M. Joshi, U. Khatiwada, R. Klima, B. Kousouris, K. Kunori, S. Kwan, S. Leonidopoulos, C. Limon, P. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Mason, D. McBride, P. Miao, T. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Pivarski, J. Pordes, R. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kyprcos, T. Low, J. F. Matchev, K. Mitselmakher, G. Muniz, L. Prescott, C. Remington, R. Rinkevicius, A. Schmitt, M. Scurlock, B. Sellers, P. Skhirtladze, N. Snowball, M. Wang, D. Yelton, J. Zakaria, M. Gaultney, V. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Quertenmont, L. Sekmen, S. Veeraraghavan, V. Baarmand, M. M. Dorney, B. Guragain, S. Hohlmann, M. Kalakhety, H. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kunde, G. J. Lacroix, F. Malek, M. O'Brien, C. Silkworth, C. Silvestre, C. Smoron, A. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Duru, F. Lae, C. K. McCliment, E. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bonato, A. Eskew, C. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Tran, N. V. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Iii, R. P. Kenny Murray, M. Noonan, D. Sanders, S. Wood, J. S. Zhukova, V. Barfuss, A. F. Bolton, T. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Wan, Z. Gronberg, J. Lange, D. Wright, D. Baden, A. Boutemeur, M. Eno, S. C. Ferencek, D. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Lu, Y. Mignerey, A. C. Rossato, K. Rumerio, P. Santanastasio, F. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Alver, B. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Everaerts, P. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Harris, P. Kim, Y. Klute, M. Lee, Y. -J. Li, W. Loizides, C. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Velicanu, D. Wenger, E. A. Wolf, R. Xie, S. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cooper, S. I. Cushman, P. Dahmes, B. De Benedetti, A. Dudero, P. R. Franzoni, G. Gude, A. Haupt, J. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rekovic, V. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Cremaldi, L. M. Godang, R. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Jindal, P. Keller, J. Kelly, T. Kravchenko, I. Lazo-Flores, J. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Shipkowski, S. P. Smith, K. Alverson, G. Barberis, E. Baumgartel, D. Boeriu, O. Chasco, M. Reucroft, S. Swain, J. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Brinkerhoff, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Kolberg, T. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Ziegler, J. Bylsma, B. Durkin, L. S. Gu, J. Hill, C. Killewald, P. Kotov, K. Ling, T. Y. Rodenburg, M. Vuosalo, C. Williams, G. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hebda, P. Hunt, A. Laird, E. Pegna, D. Lopes Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Safdi, B. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatserklyaniy, A. Alagoz, E. Barnes, V. E. Bolla, G. Borrello, L. Bortoletto, D. De Mattia, M. Everett, A. Garfinkel, A. F. Gutay, L. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Liu, C. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Adair, A. Boulahouache, C. Ecklund, K. M. Geurts, F. J. M. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Flacher, H. Garcia-Bellido, A. Goldenzweig, P. Gotra, Y. Han, J. Harel, A. Miner, D. C. Orbaker, D. Petrillo, G. Sakumoto, W. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Atramentov, O. Barker, A. Duggan, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hits, D. Lath, A. Panwalkar, S. Patel, R. Richards, A. Rose, K. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Gurrola, A. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Safonov, A. Sengupta, S. Suarez, I. Tatarinov, A. Toback, D. Weinberger, M. Akchurin, N. Bardak, C. Damgov, J. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Mane, P. Roh, Y. Sill, A. Volobouev, I. Wigmans, R. Yazgan, E. Appelt, E. Brownson, E. Engh, D. Florez, C. Gabella, W. Issah, M. Johns, W. Kurt, P. Maguire, C. Melo, A. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Yohay, R. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Mattson, M. Milstene, C. Sakharov, A. Anderson, M. Bachtis, M. Belknap, D. Bellinger, J. N. Carlsmith, D. Dasu, S. Efron, J. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Loveless, R. Mohapatra, A. Ojalvo, I. Reeder, D. Ross, I. Savin, A. Smith, W. H. Swanson, J. Weinberg, M. CA CMS Collaboration TI Search for Three-Jet Resonances in pp Collisions at root s=7 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID CHIRAL COLOR; PHYSICS AB A search for three-jet hadronic resonance production in pp collisions at a center-of-mass energy of 7 TeV has been conducted by the CMS Collaboration at the LHC, using a data sample corresponding to an integrated luminosity of 35 pb(-1). Events with high jet multiplicity and a large scalar sum of jet transverse momenta are analyzed using a signature-based approach. The number of expected standard model background events is found to be in good agreement with the observed events. Limits on the cross section times branching ratio are set in a model of gluino pair production with an R-parity-violating decay to three quarks, and the data rule out such particles within the mass range of 200 to 280 GeV/c(2). C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Bansal, S.; Benucci, L.; De Wolf, E. A.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Adiguzel, A.] Univ Antwerp, Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Raval, A.; Thomas, L.; Vander Velde, C.; Vanlaer, P.] Univ Libre Brussels, Brussels, Belgium. [Adler, V.; Cimmino, A.; Costantini, S.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Caudron, J.; Ceard, L.; Gil, E. Cortina; De Jeneret, J. De Favereau; Delaere, C.; Favart, D.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.] Catholic Univ Louvain, B-3000 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Brito, L.; De Jesus Damiao, D.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Bernardes, C. A.; Dias, F. A.; Dos Anjos Costa, T.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Darmenov, N.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Karadzhinova, A.; Kozhuharov, V.; Litov, L.; Mateev, M.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhu, B.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Tech, Beijing 100871, Peoples R China. [Cabrera, A.; Moreno, B. Gomez; Rios, A. A. Ocampo; Oliveros, A. F. Osorio; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kamel, A. Ellithi; Khalil, S.; Mahmoud, M. A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Hektor, A.; Kadastik, M.; Muentel, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Azzolini, V.; Eerola, P.; Fedi, G.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Czellar, S.; Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Sillou, D.] IN2P3 CNRS, Lab Annecy Le Vieux Phys Particules, Annecy Le Vieux, France. [Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Verrecchia, P.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dahms, T.; Dobrzynski, L.; Elgammal, S.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Wyslouch, B.; Zabi, A.; Bernet, C.] IN2P3 CNRS, Ecole Polytech, Lab Leprince Ringuet, Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A. -C.; Mikami, Y.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, CNRS IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Fassi, F.; Mercier, D.] IN2P3, Ctr Calcul, Villeurbanne, France. [Baty, C.; Beauceron, S.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Bethani, A.; Bonato, A.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Lomidze, D.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Dietz-Laursonn, E.; Erdmann, M.; Hebbeker, T.; Heidemann, C.; Hinzmann, A.; Hoepfner, K.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Lingemann, J.; Magass, C.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.] Rhein Westfal TH Aachen, Inst Phys A 3, Aachen, Germany. [Bontenackels, M.; Davids, M.; Duda, M.; Fluegge, G.; Geenen, H.; Giffels, M.; Ahmad, W. Haj; Heydhausen, D.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Tornier, D.; Zoeller, M. H.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Cakir, A.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Eckstein, D.; Flossdorf, A.; Flucke, G.; Geiser, A.; Hauk, J.; Jung, H.; Kasemann, M.; Katkov, I.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Rosin, M.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Tomaszewska, J.; Walsh, R.; Wissing, C.; Adair, A.] DESY, Hamburg, Germany. [Autermann, C.; Blobel, V.; Bobrovskyi, S.; Draeger, J.; Enderle, H.; Gebbert, U.; Goerner, M.; Hermanns, T.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schroeder, M.; Schum, T.; Stadie, H.; Steinbrueck, G.; Thomsen, J.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Bauer, J.; Berger, J.; Buege, V.; Chwalek, T.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Komaragiri, J. R.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Renz, M.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Weiler, T.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.; Adair, A.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Petrakou, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece. [Aranyi, A.; Bencze, G.; Boldizsar, L.; Hajdu, C.; Hidas, P.; Horvath, D.; Kapusi, A.; Krajczar, K.; Sikler, F.; Veres, G. I.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, A. P.; Singh, J.; Singh, S. P.] Panjab Univ, Chandigarh 160014, India. [Ahuja, S.; Choudhary, B. C.; Gupta, P.; Jain, S.; Kumar, A.; Naimuddin, M.; Ranjan, K.; Shivpuri, R. K.; Bhattacharya, S.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Dutta, S.; Gomber, B.; Jain, S.; Khurana, R.; Sarkar, S.] Saha Inst Nucl Phys, Kolkata, India. [Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India. [Guchait, M.; Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Res HECR, Bombay, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi, A.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res & Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; De Palma, M.; Lusito, L.; Manna, N.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Roselli, G.; Selvaggi, G.; Tupputi, S.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; iaselli, G.; Maggi, G.; My, S.; Pugliese, G.; Romano, F.; Adair, A.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Masetti, G.; Meneghelli, M.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Gennai, S.; Ghezzi, A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Montoya, C. A. Carrillo; De Cosa, A.; Iorio, A. O. M.; Merola, M.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Mazzucato, M.; Meneguzzo, A. T.; Nespolo, M.; Perrozzi, L.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bellan, P.; Bisello, D.; Carlin, R.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Baesso, P.; Berzano, U.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Baesso, P.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bernardini, J.; Fiori, F.; Messineo, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Meridiani, P.; Nourbakhsh, S.; Organtini, G.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.; Rovelli, C.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Di Marco, E.; Franci, D.; Longo, E.; Organtini, G.; Pandolfi, F.; Rahatlou, S.] Univ Roma La Sapienza, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Pereira, A. Vilela] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Marone, M.; Migliore, E.; Mila, G.; Monaco, V.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Adair, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Montanino, D.; Penzo, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Della Ricca, G.; Montanino, D.] Univ Trieste, Trieste, Italy. [Heo, S. G.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, Zero; Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Hong, B.; Jo, M.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Sim, K. S.] Korea Univ, Seoul, South Korea. [Choi, M.; Kang, S.; Kim, H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Martisiute, D.; Petrov, P.; Polujanskas, M.; Sabonis, T.] Vilnius Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magana Villalba, R.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.; Tam, J.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Doesburg, R.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ahmed, I.; Asghar, M. I.; Hoorani, H. R.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Musella, P.; Nayak, A.; Pela, J.; Ribeiro, P. Q.; Seixas, J.; Varela, J.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Bunin, P.; Golutvin, I.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Kaftanov, V.; Kossov, M.; Krokhotin, A.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Zhukov, V.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cepeda, M.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Diez Pardos, C.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Hammer, J.; Iaydjiev, P.; Mohanty, A. K.; De Filippis, N.; Chiorboli, M.; De Guio, F.; Nespolo, M.; Perrozzi, L.; Lucaroni, A.; Taroni, S.; Boccali, T.; Tonelli, G.; Venturi, A.; Grassi, M.; Pandolfi, F.; Rovelli, C.; Botta, C.; Graziano, A.; Gallinaro, M.; Kossov, M.; Grishin, V.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bell, A. J.; Benedetti, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Bona, M.; Breuker, H.; Bunkowski, K.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Cure, B.; D'Enterria, D.; De Roeck, A.; Di Guida, S.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Gaddi, A.; Georgiou, G.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Garrido, R. Gomez-Reino; Gouzevitch, M.; Govoni, P.; Gowdy, S.; Guiducci, L.; Hansen, M.; Hartl, C.; Harvey, J.; Hegeman, J.; Hegner, B.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Lecoq, P.; Lourenco, C.; Maeki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Maurisset, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Nguyen, M.; Orimoto, T.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Polese, G.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rommerskirchen, T.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiropulu, M.; Stoye, M.; Tropea, P.; Tsirou, A.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.; Adiguzel, A.; Adair, A.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Starodumov, A.; Caminada, L.; Marchica, C.; Naegeli, C.; Belyaev, A.] Paul Scherrer Inst, Villigen, Switzerland. [Baeni, L.; Bortignon, P.; Caminada, L.; Casal, B.; Chanon, N.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; del Arbol, P. Martinez Ruiz; Milenovic, P.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Sawley, M. -C.; Stieger, B.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, M.; Wehrli, L.; Weng, J.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Aguilo, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Schmidt, A.; Snoek, H.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Volpe, R.; Wu, J. H.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Demir, D.; Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozbek, M.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Levchuk, L.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Bostock, F.; Brooke, J. J.; Cheng, T. L.; Clement, E.; Cussans, D.; Frazier, R.; Goldstein, J.; Grimes, M.; Hartley, D.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Adair, A.] Univ Bristol, Bristol, Avon, England. [Newbold, D. M.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; MacEvoy, B. C.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Wardrope, D.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.; Liu, H.] Baylor Univ, Waco, TX 76706 USA. [Henderson, C.] Univ Alabama, Tuscaloosa, AL 35487 USA. [Bose, T.; Jarrin, E. Carrera; Fantasia, C.; Heister, A.; St John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Avetisyan, A.; Bhattacharya, S.; Chou, J. P.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Rutherford, B.; Salur, S.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Veelken, C.] Univ Calif Davis, Davis, CA 95616 USA. [Felcini, M.; Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Duris, J.; Erhan, S.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Babb, J.; Chandra, A.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Spiropulu, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Shin, K.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Lopez, E. Luiggi; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Henriksson, K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Liu, Y.; Kaufman, G. Nicolas; Patterson, J. R.; Puigh, D.; Ryd, A.; Saelim, M.; Salvati, E.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY 14853 USA. [Biselli, A.; Cirino, G.; Winn, D.] Fairfield Univ, Fairfield, CT 06824 USA. [Apresyan, A.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Borcherding, F.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cooper, W.; Eartly, D. P.; Elvira, V. D.; Esen, S.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gunthoti, K.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jensen, H.; Johnson, M.; Joshi, U.; Khatiwada, R.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Limon, P.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Pivarski, J.; Pordes, R.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.; Askew, A.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kyprcos, T.; Low, J. F.; Matchev, K.; Mitselmakher, G.; Muniz, L.; Prescott, C.; Remington, R.; Rinkevicius, A.; Schmitt, M.; Scurlock, B.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL 32611 USA. [Gaultney, V.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Quertenmont, L.; Sekmen, S.; Veeraraghavan, V.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kunde, G. J.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Silvestre, C.; Smoron, A.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL 60607 USA. [Ozturk, S.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA 52242 USA. [Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Iii, R. P. Kenny; Murray, M.; Noonan, D.; Sanders, S.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA 94720 USA. [Baden, A.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Lu, Y.; Mignerey, A. C.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Wyslouch, B.; Katkov, I.; Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Everaerts, P.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y. -J.; Li, W.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Dudero, P. R.; Franzoni, G.; Gude, A.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.] Univ Minnesota, Minneapolis, MN 55455 USA. [Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Jindal, P.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska Lincoln, Lincoln, NE 68588 USA. [Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Chasco, M.; Reucroft, S.; Swain, J.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Kubik, A.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL 60208 USA. [Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Gu, J.; Hill, C.; Killewald, P.; Kotov, K.; Ling, T. Y.; Rodenburg, M.; Vuosalo, C.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hunt, A.; Laird, E.; Pegna, D. Lopes; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR 00680 USA. [Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; De Mattia, M.; Everett, A.; Garfinkel, A. F.; Gutay, L.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, IN 46323 USA. [Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX 77251 USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Flacher, H.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Sakumoto, W.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Atramentov, O.; Barker, A.; Duggan, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Patel, R.; Richards, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ 08854 USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN 37996 USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Safonov, A.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Akchurin, N.; Bardak, C.; Damgov, J.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.] Texas Tech Univ, Lubbock, TX 79409 USA. [Piccolo, D.; Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Issah, M.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.] Vanderbilt Univ, Nashville, TN 37235 USA. [Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Yohay, R.] Univ Virginia, Charlottesville, VA 22901 USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Mattson, M.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI 48202 USA. [Anderson, M.; Bachtis, M.; Belknap, D.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Efron, J.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Reeder, D.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.] Univ Wisconsin, Madison, WI 53706 USA. [Bernardes, C. A.; Dos Anjos Costa, T.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Khalil, S.] British Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Conte, E.; Drouhin, F.; Fontaine, J. -C.; Karim, M.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. Inst Nucl Res ATOMKI, Debrecen, Hungary. [Krajczar, K.] Eotvos Lorand Univ, Budapest, Hungary. Visva Bharati Univ, Santini Ketan, W Bengal, India. [Bakhshiansohi, H.; Fahim, A.; Jafari, A.] Sharif Univ Technol, Tehran, Iran. [Mohammadi, A.] Shiraz Univ, Shiraz, Iran. [Zeinali, M.] Isfahan Univ Technol, Esfahan, Iran. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Univ Basilicata, I-85100 Potenza, Italy. [Pacifico, N.] Univ Siena, I-53100 Siena, Italy. [Bell, A. J.] Univ Geneva, Geneva, Switzerland. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Super Pisa, Pisa, Italy. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Demir, D.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Pioppi, M.] Univ Perugia, INFN, Sez Perugia, I-06100 Perugia, Italy. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Krammer, Manfred/A-6508-2010; Tinoco Mendes, Andre David/D-4314-2011; Lokhtin, Igor/D-7004-2012; Kodolova, Olga/D-7158-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Hektor, Andi/G-1804-2011; Wulz, Claudia-Elisabeth/H-5657-2011; Chen, Jie/H-6210-2011; Bolton, Tim/A-7951-2012; Stahl, Achim/E-8846-2011; Yang, Fan/B-2755-2012; buotempo, salvatore/B-5210-2012; Belyaev, Andrey/E-1540-2012; Katkov, Igor/E-2627-2012; Boos, Eduard/D-9748-2012; Snigirev, Alexander/D-8912-2012; Tomei, Thiago/E-7091-2012; Focardi, Ettore/E-7376-2012; Novaes, Sergio/D-3532-2012; Padula, Sandra /G-3560-2012; Fruhwirth, Rudolf/H-2529-2012; Azzi, Patrizia/H-5404-2012; Torassa, Ezio/I-1788-2012; Giacomelli, Paolo/B-8076-2009; Jeitler, Manfred/H-3106-2012; Venturi, Andrea/J-1877-2012; de Jesus Damiao, Dilson/G-6218-2012; Montanari, Alessandro/J-2420-2012; Amapane, Nicola/J-3683-2012; tosi, mia/J-5777-2012; Petrushanko, Sergey/D-6880-2012; Raidal, Martti/F-4436-2012; Mercadante, Pedro/K-1918-2012; Della Ricca, Giuseppe/B-6826-2013; Kadastik, Mario/B-7559-2008; Mundim, Luiz/A-1291-2012; Santaolalla, Javier/C-3094-2013; Alves, Gilvan/C-4007-2013; Rolandi, Luigi (Gigi)/E-8563-2013; Zalewski, Piotr/H-7335-2013; Ivanov, Andrew/A-7982-2013; Hill, Christopher/B-5371-2012; Markina, Anastasia/E-3390-2012; Troitsky, Sergey/C-1377-2014; Marlow, Daniel/C-9132-2014; Oguri, Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Santoro, Alberto/E-7932-2014; Codispoti, Giuseppe/F-6574-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Marinho, Franciole/N-8101-2014; Ferguson, Thomas/O-3444-2014; Ragazzi, Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Grandi, Claudio/B-5654-2015; Leonidov, Andrey/P-3197-2014; Bernardes, Cesar Augusto/D-2408-2015; Ahmed, Ijaz/E-9144-2015; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; Matorras, Francisco/I-4983-2015; My, Salvatore/I-5160-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Ozdemir, Kadri/P-8058-2014; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Gerbaudo, Davide/J-4536-2012; Azarkin, Maxim/N-2578-2015; Menasce, Dario Livio/A-2168-2016; Bargassa, Pedrame/O-2417-2016; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Fassi, Farida/F-3571-2016; Varela, Joao/K-4829-2016; OI Krammer, Manfred/0000-0003-2257-7751; Tinoco Mendes, Andre David/0000-0001-5854-7699; Dudko, Lev/0000-0002-4462-3192; Hektor, Andi/0000-0001-7873-8118; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Stahl, Achim/0000-0002-8369-7506; Katkov, Igor/0000-0003-3064-0466; Tomei, Thiago/0000-0002-1809-5226; Focardi, Ettore/0000-0002-3763-5267; Novaes, Sergio/0000-0003-0471-8549; Azzi, Patrizia/0000-0002-3129-828X; de Jesus Damiao, Dilson/0000-0002-3769-1680; Montanari, Alessandro/0000-0003-2748-6373; Amapane, Nicola/0000-0001-9449-2509; Della Ricca, Giuseppe/0000-0003-2831-6982; Mundim, Luiz/0000-0001-9964-7805; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Ivanov, Andrew/0000-0002-9270-5643; Hill, Christopher/0000-0003-0059-0779; Troitsky, Sergey/0000-0001-6917-6600; Codispoti, Giuseppe/0000-0003-0217-7021; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Marinho, Franciole/0000-0002-7327-0349; Ferguson, Thomas/0000-0001-5822-3731; Ragazzi, Stefano/0000-0001-8219-2074; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; Matorras, Francisco/0000-0003-4295-5668; My, Salvatore/0000-0002-9938-2680; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Ozdemir, Kadri/0000-0002-0103-1488; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Gerbaudo, Davide/0000-0002-4463-0878; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Bargassa, Pedrame/0000-0001-8612-3332; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Safdi, Benjamin R./0000-0001-9531-1319; Lloret Iglesias, Lara/0000-0002-0157-4765; Carrera, Edgar/0000-0002-0857-8507; Sguazzoni, Giacomo/0000-0002-0791-3350; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Fassi, Farida/0000-0002-6423-7213; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Martelli, Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Varela, Joao/0000-0003-2613-3146; Heath, Helen/0000-0001-6576-9740 FU FMSR (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences (Estonia); Academy of Finland (Finland); ME (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NKTH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); WCU (Korea); LAS (Lithuania); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST (Russia); MAE (Russia); MSTD (Serbia); MICINN (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK (Turkey); TAEK (Turkey); STFC (United Kingdom); DOE (USA); NSF (USA); NICPB (Estonia) FX The authors would like to thank Michael Park and Yue Zhao for providing theoretical calculations. We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). NR 20 TC 28 Z9 28 U1 0 U2 42 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 29 PY 2011 VL 107 IS 10 AR 101801 DI 10.1103/PhysRevLett.107.101801 PG 15 WC Physics, Multidisciplinary SC Physics GA 812XY UT WOS:000294328500004 PM 21981492 ER PT J AU Kroupp, E Osin, D Starobinets, A Fisher, V Bernshtam, V Weingarten, L Maron, Y Uschmann, I Forster, E Fisher, A Cuneo, ME Deeney, C Giuliani, JL AF Kroupp, E. Osin, D. Starobinets, A. Fisher, V. Bernshtam, V. Weingarten, L. Maron, Y. Uschmann, I. Foerster, E. Fisher, A. Cuneo, M. E. Deeney, C. Giuliani, J. L. TI Ion Temperature and Hydrodynamic-Energy Measurements in a Z-Pinch Plasma at Stagnation SO PHYSICAL REVIEW LETTERS LA English DT Article AB The time history of the local ion kinetic energy in a stagnating plasma was determined from Doppler-dominated line shapes. Using independent determination of the plasma properties for the same plasma region, the data allowed for inferring the time-dependent ion temperature, and for discriminating the temperature from the total ion kinetic energy. It is found that throughout most of the stagnation period the ion thermal energy constitutes a small fraction of the total ion kinetic energy; the latter is dominated by hydrodynamic motion. Both the ion hydrodynamic and thermal energies are observed to decrease to the electron thermal energy by the end of the stagnation period. It is confirmed that the total ion kinetic energy available at the stagnating plasma and the total radiation emitted are in balance, as obtained in our previous experiment. The dissipation time of the hydrodynamic energy thus appears to determine the duration (and power) of the K emission. C1 [Kroupp, E.; Osin, D.; Starobinets, A.; Fisher, V.; Bernshtam, V.; Weingarten, L.; Maron, Y.] Weizmann Inst Sci, IL-76100 Rehovot, Israel. [Uschmann, I.; Foerster, E.] Univ Jena, Jena, Germany. [Foerster, E.] Helmholtz Inst Jena, D-07743 Jena, Germany. [Fisher, A.] Technion Israel Inst Technol, Fac Phys, Haifa, Israel. [Cuneo, M. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Deeney, C.] Dept Energy, Washington, DC USA. [Giuliani, J. L.] USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA. RP Kroupp, E (reprint author), Weizmann Inst Sci, IL-76100 Rehovot, Israel. FU U.S. DOE Center for High-Energy-Density; Minerva foundation; Israel Science Foundation FX We are very grateful to J. P. Apruzese, H. Strauss, A. L. Velikovich, E. Waisman, and N. Zabusky for invaluable discussions and reading the manuscript. We thank P. Meiri for skilled assistance. This work was supported by the U.S. DOE Center for High-Energy-Density, by the Minerva foundation, and by the Israel Science Foundation. NR 12 TC 18 Z9 18 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD AUG 29 PY 2011 VL 107 IS 10 AR 105001 DI 10.1103/PhysRevLett.107.105001 PG 5 WC Physics, Multidisciplinary SC Physics GA 812XY UT WOS:000294328500005 PM 21981506 ER PT J AU Jeong, IK Lee, S Jeong, SY Won, CJ Hur, N Llobet, A AF Jeong, I. -K. Lee, Seunghun Jeong, Se-Young Won, C. J. Hur, N. Llobet, A. TI Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO3-delta studied using neutron total scattering and Rietveld analysis SO PHYSICAL REVIEW B LA English DT Article AB Oxygen-deficient BaTiO3-delta exhibits an insulator-metal transition with increasing delta. We performed neutron total scattering measurements to study structural evolution across an insulator-metal transition in BaTiO3-delta. Despite its significant impact on resistivity, slight oxygen reduction (delta = 0.09) caused only a small disturbance on the local doublet splitting of Ti-O bond. This finding implies that local polarization is well preserved under marginal electric conduction. In the highly oxygen-deficient metallic state (delta = 0.25), however, doublet splitting of the Ti-O bond became smeared. The smearing of the local Ti-O doublet is complemented with long-range structural analysis and demonstrates that the metallic conduction in the highly oxygen-reduced BaTiO3-delta is due to the appearance of nonferroelectric cubic lattice. C1 [Jeong, I. -K.] Pusan Natl Univ, Dept Phys Educ, Pusan 609735, South Korea. [Jeong, I. -K.] Pusan Natl Univ, Res Ctr Dielectr & Adv Matter Phys, Pusan 609735, South Korea. [Lee, Seunghun; Jeong, Se-Young] Pusan Natl Univ, Dept Cognomechatron Engn, Miryang 627706, South Korea. [Won, C. J.; Hur, N.] Inha Univ, Dept Phys, Inchon 402751, South Korea. [Llobet, A.] Los Alamos Natl Lab, Lujan Neutron Sci Ctr, Los Alamos, NM 87545 USA. RP Jeong, IK (reprint author), Pusan Natl Univ, Dept Phys Educ, Pusan 609735, South Korea. EM Jeong@pusan.ac.kr RI Llobet, Anna/B-1672-2010; Lujan Center, LANL/G-4896-2012; Hur, Namjung/G-3752-2013 FU National Research Foundation of Korea [2009-0073785, 2010-00001198]; Korean Government (MEST); DOE Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396]; NSF [DMR 00-76488] FX This work was supported by the National Research Foundation of Korea Grants No. 2009-0073785 and No. 2010-00001198, funded by the Korean Government (MEST). Neutron diffraction measurements have benefited from the use of NPDF and HIPD at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by the Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. The upgrade of NPDF was funded by the NSF through Grant No. DMR 00-76488. NR 19 TC 20 Z9 20 U1 3 U2 19 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD AUG 29 PY 2011 VL 84 IS 6 AR 064125 DI 10.1103/PhysRevB.84.064125 PG 5 WC Physics, Condensed Matter SC Physics GA 812XF UT WOS:000294325900004 ER PT J AU Kay, BP Schiffer, JP Freeman, SJ Hoffman, CR Back, BB Baker, SI Bedoor, S Bloxham, T Clark, JA Deibel, CM Howard, AM Lighthall, JC Marley, ST Rehm, KE Sharp, DK Shetty, DV Thomas, JS Wuosmaa, AH AF Kay, B. P. Schiffer, J. P. Freeman, S. J. Hoffman, C. R. Back, B. B. Baker, S. I. Bedoor, S. Bloxham, T. Clark, J. A. Deibel, C. M. Howard, A. M. Lighthall, J. C. Marley, S. T. Rehm, K. E. Sharp, D. K. Shetty, D. V. Thomas, J. S. Wuosmaa, A. H. TI Single-neutron energies outside Xe-136 SO PHYSICAL REVIEW C LA English DT Article ID UNIFIED-MODEL INTERPRETATION; INVERSE KINEMATICS; D,P; NUCLEI; STATES AB The single-neutron properties of the N = 83 nucleus Xe-137 have been studied using the Xe-136(d, p) reaction in inverse kinematics at a beam energy of 10 MeV/u. The helical-orbit spectrometer, HELIOS, at Argonne National Laboratory was used to analyze the outgoing protons, achieving an excitation-energy resolution of similar to 100 keV. Extraction of absolute cross sections, angular distributions, and spectroscopic factors has led to a more complete understanding of the single-neutron strength in Xe-137. In particular, the centroids of the vh(9/2) and vi(13/2) strengths appear to evolve through the N = 83 isotones in a manner consistent with the action of the tensor force. C1 [Kay, B. P.; Schiffer, J. P.; Hoffman, C. R.; Back, B. B.; Baker, S. I.; Clark, J. A.; Deibel, C. M.; Lighthall, J. C.; Marley, S. T.; Rehm, K. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Freeman, S. J.; Howard, A. M.; Sharp, D. K.; Thomas, J. S.] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Bedoor, S.; Lighthall, J. C.; Marley, S. T.; Shetty, D. V.; Wuosmaa, A. H.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Bloxham, T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Deibel, C. M.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. RP Kay, BP (reprint author), Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. EM benjamin.kay@york.ac.uk RI Kay, Benjamin/F-3291-2011; Freeman, Sean/B-1280-2010 OI Kay, Benjamin/0000-0002-7438-0208; Freeman, Sean/0000-0001-9773-4921 FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357, DE-FG02-04ER41320]; NSF [PHY-08022648 (JINA)]; UK Science and Technology Facilities Council FX The authors would like to thank the ATLAS operations crew, J. P. Greene for the preparation of targets, and T. Otsuka for providing the matrix elements used. This work was supported by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and Grant No. DE-FG02-04ER41320, and NSF Grant No. PHY-08022648 (JINA), and the UK Science and Technology Facilities Council. NR 31 TC 24 Z9 24 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD AUG 29 PY 2011 VL 84 IS 2 AR 024325 DI 10.1103/PhysRevC.84.024325 PG 6 WC Physics, Nuclear SC Physics GA 812XN UT WOS:000294326900002 ER PT J AU Ranjbar, VH Tan, CY AF Ranjbar, V. H. Tan, C. Y. TI Effect of impedance and higher order chromaticity on the measurement of linear chromaticity SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article AB The combined effect of impedance and higher order chromaticity can act on the beam in a nontrivial manner which can cause a tune shift which depends on the relative momenta with respect to the "on momentum" particle (Delta p/p). Experimentally, this tune shift affects the measurement of the linear chromaticity which is traditionally measured with a change of Delta p/p. The theory behind this effect will be derived in this paper. Computer simulations and experimental data from the Tevatron will be used to support the theory. C1 [Ranjbar, V. H.] Tech X, Boulder, CO 80303 USA. [Tan, C. Y.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Ranjbar, VH (reprint author), Tech X, Boulder, CO 80303 USA. FU United States Department of Energy [DE-AC02-07CH11359]; SBIR-DOE-NP [DE-FG02-08ER85183]; Tech-X Corp.; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy, was also supported by SBIR-DOE-NP Grant No. DE-FG02-08ER85183, and had partial support from Tech-X Corp. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 9 TC 0 Z9 0 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD AUG 29 PY 2011 VL 14 IS 8 AR 082802 DI 10.1103/PhysRevSTAB.14.082802 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 812YB UT WOS:000294328900001 ER PT J AU Wood, BC Ogitsu, T Schwegler, E AF Wood, Brandon C. Ogitsu, Tadashi Schwegler, Eric TI Ab initio modeling of water-semiconductor interfaces for photocatalytic water splitting: role of surface oxygen and hydroxyl SO JOURNAL OF PHOTONICS FOR ENERGY LA English DT Article DE photoelectrochemical; hydrogen production; III-V semiconductors; indium phosphide ID DENSITY-FUNCTIONAL THEORY; INFRARED-SPECTROSCOPY; HYDROGEN-PRODUCTION; MOLECULAR-DYNAMICS; INP-SURFACES; SOLAR-CELLS AB We perform extensive density-functional theory total-energy calculations and ab initio molecular-dynamics simulations to evaluate the structure, stability, and reactivity of oxygen-and hydroxyl-decorated InP(001) surfaces for photoelectrochemical water cleavage. Surface oxygen is adsorbed in one of two primary local bond topologies: In-O-P and In-O-In. We show that the chemical activity of the oxygen-decorated surface toward water dissociation can be connected to the local oxygen bond topology, with In-O-In bridges promoting spontaneous water dissociation. Surface hydroxyl groups tend to form either In-OH-In bridges, though the second of the two In-OH bonds is easily broken. Dynamics simulations of the full water-semiconductor interface show surface proton transfer when the surface is hydroxylated, facilitated by strong hydrogen bonding between atop OH groups and with interfacial water molecules. Implications for understanding the reaction dynamics at InP(001)-water interfaces are discussed. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3625563] C1 [Wood, Brandon C.; Ogitsu, Tadashi; Schwegler, Eric] Lawrence Livermore Natl Lab, Quantum Simulat Grp, Livermore, CA 94550 USA. RP Wood, BC (reprint author), Lawrence Livermore Natl Lab, Quantum Simulat Grp, 7000 East Ave, Livermore, CA 94550 USA. EM wood37@llnl.gov RI Schwegler, Eric/A-2436-2016 OI Schwegler, Eric/0000-0003-3635-7418 FU U.S. Department of Energy Fuel Cell Technologies Program; U.S. Department of Energy by LLNL [DE-AC52-07NA27344] FX Funding for this work was provided by the U.S. Department of Energy Fuel Cell Technologies Program. Computing support came from the Lawrence Livermore National Laboratory (LLNL) Institutional Computing Grand Challenge program. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344. NR 28 TC 11 Z9 11 U1 7 U2 37 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 1947-7988 J9 J PHOTON ENERGY JI J. Photonics Energy PD AUG 29 PY 2011 VL 1 AR 016002 DI 10.1117/1.3625563 PG 11 WC Materials Science, Multidisciplinary; Optics; Physics, Applied SC Materials Science; Optics; Physics GA 011LP UT WOS:000309166600001 ER PT J AU Abdelsayed, V Shekhawat, D Berry, DA Spivey, JJ AF Abdelsayed, Victor Shekhawat, Dushyant Berry, David A. Spivey, James J. TI Synthesis and characterization of Rh-substituted pyrochlores for higher alcohol synthesis SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 242nd National Meeting of the American-Chemical-Society (ACS) CY AUG 28-SEP 01, 2011 CL Denver, CO SP Amer Chem Soc (ACS) C1 [Abdelsayed, Victor; Shekhawat, Dushyant; Berry, David A.; Spivey, James J.] Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Abdelsayed, Victor] URS RES Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Spivey, James J.] Louisiana State Univ, Dept Chem, Baton Rouge, LA 70803 USA. EM victor.abdelsayed@netl.doe.gov NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 28 PY 2011 VL 242 MA 219-FUEL PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 880BE UT WOS:000299378303134 ER PT J AU Acharya, K Jankowiak, R Neupane, B Koirala, M Picorel, R Seibert, M AF Acharya, Khem Jankowiak, Ryszard Neupane, Bhanu Koirala, Mukund Picorel, Rafael Seibert, Michael TI On the primary electron acceptor in the reaction center of Photosystem II from Chlamydomonas reinhardtii SO ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY LA English DT Meeting Abstract CT 242nd National Meeting of the American-Chemical-Society (ACS) CY AUG 28-SEP 01, 2011 CL Denver, CO SP Amer Chem Soc (ACS) C1 [Acharya, Khem; Jankowiak, Ryszard; Neupane, Bhanu; Koirala, Mukund] Kansas State Univ, Dept Chem, Manhattan, KS 66506 USA. [Picorel, Rafael; Seibert, Michael] Natl Renewable Energy Lab, Golden, CO 80401 USA. EM khem@ksu.edu; ryszard@ksu.edu RI PICOREL, RAFAEL/K-7930-2014 OI PICOREL, RAFAEL/0000-0003-3791-129X NR 0 TC 0 Z9 0 U1 0 U2 3 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0065-7727 J9 ABSTR PAP AM CHEM S JI Abstr. Pap. Am. Chem. Soc. PD AUG 28 PY 2011 VL 242 MA 84-PHYS PG 1 WC Chemistry, Multidisciplinary SC Chemistry GA 880BE UT WOS:000299378306373 ER EF