FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Han, JB Zhang, JS Carey, JW AF Han, Jiabin Zhang, Jinsuo Carey, J. William TI Effect of bicarbonate on corrosion of carbon steel in CO2 saturated brines SO INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL LA English DT Article DE Bicarbonate; Carbon dioxide; Corrosion; Carbon steel; Modeling ID MILD-STEEL; DIOXIDE CORROSION; CHEMISTRY; CHLORIDE; MODEL; IONS; FILM; OIL AB The effect of bicarbonate concentration (HCO3-) on bare steel surface corrosion was investigated experimentally in ambient CO2-saturated solutions. In the presence of CO2, pH was adjusted by adding NaHCO3 solution or powder. Corrosion rate decreased with pH increasing at the range of pH 4-5, was little changed at pH 5-6 and interestingly increased at pH 6-8. Thermodynamic calculations of CO2 aqueous speciation showed that only bicarbonate concentration increased as pH increased from 4 to 8 while the other corrosion-active species including proton and carbonic acid either decreased or changed little, respectively. Thus we have demonstrated that bicarbonate is an active corrosion species and is important to corrosion at pH 6-8. Our earlier mechanistic corrosion model (Han et al., 2011a) was modified to incorporate bicarbonate-induced corrosion and demonstrated good agreement with experimental observations. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Han, Jiabin; Carey, J. William] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Zhang, Jinsuo] Los Alamos Natl Lab, Decis & Applicat Div, Los Alamos, NM 87545 USA. RP Han, JB (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM jiabin.han@gmail.com RI Lujan Center, LANL/G-4896-2012; Zhang, Jinsuo/H-4717-2012 OI Zhang, Jinsuo/0000-0002-3412-7769 FU Baker Hughes; BG Group; BP; Champion Technologies,; Chevron; Clariant; Columbia Gas Transmission; ConocoPhillips; Encana; Eni; ExxonMobil; INPEX; IONIK Consulting; MI-Swaco Production Chemicals; Nalco; Occidental Oil Company; Petronas; Petrobras; PTTEP; Saudi Aramco; Shell; Tenaris; Department of Energy [FE-10-001] FX The experimental data were taken from Jiabin Han's PhD project at Ohio University sponsored from the Corrosion Center Joint Industry Project advisory board members, namely Baker Hughes, BG Group, BP, Champion Technologies, Chevron, Clariant, Columbia Gas Transmission, ConocoPhillips, Encana, Eni, ExxonMobil, INPEX, IONIK Consulting, MI-Swaco Production Chemicals, Nalco, Occidental Oil Company, Petronas, Petrobras, PTTEP, Saudi Aramco, Shell, Tenaris and Total. The model was developed at Los Alamos National Laboratory sponsored by the Fossil Energy program of the Department of Energy (FE-10-001). NR 19 TC 20 Z9 20 U1 0 U2 15 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1750-5836 J9 INT J GREENH GAS CON JI Int. J. Greenh. Gas Control PD NOV PY 2011 VL 5 IS 6 BP 1680 EP 1683 DI 10.1016/j.ijggc.2011.08.003 PG 4 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Environmental SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 862VY UT WOS:000298123400030 ER PT J AU Gainer, JS Kumar, K Low, I Vega-Morales, R AF Gainer, James S. Kumar, Kunal Low, Ian Vega-Morales, Roberto TI Improving the sensitivity of Higgs boson searches in the golden channel SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Higgs Physics; Standard Model ID DYNAMIC LIKELIHOOD METHOD; TOP-QUARK MASS; STANDARD MODEL; MISSING MOMENTUM; COLLIDERS; EVENTS; DECAY; RECONSTRUCTION; PAIRS; SPIN AB Leptonic decays of the Higgs boson in the ZZ(*) channel yield what is known as the golden channel due to its clean signature and good total invariant mass resolution. In addition, the full kinematic distribution of the decay products can be reconstructed, which, nonetheless, is not taken into account in traditional search strategy relying only on measurements of the total invariant mass. In this work we implement a type of multivariate analysis known as the matrix element method, which exploits differences in the full production and decay matrix elements between the Higgs boson and the dominant irreducible background from q (q) over bar -> ZZ(*). Analytic expressions of the differential distributions for both the signal and the background are also presented. We perform a study for the Large Hadron Collider at root s = 7 TeV for Higgs masses between 175 and 350 GeV. We find that, with an integrated luminosity of 2.5 fb(-1) or higher, improvements in the order of 10-20% could be obtained for both discovery significance and exclusion limits in the high mass region, where the differences in the angular correlations between signal and background are most pronounced. C1 [Gainer, James S.; Low, Ian] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Gainer, James S.; Kumar, Kunal; Low, Ian; Vega-Morales, Roberto] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Gainer, JS (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM j-gainer@northwestern.edu; KunalKumar2011@u.northwestern.edu; ilow@northwestern.edu; RobertoVegaMorales2010@u.northwestern.edu OI Gainer, James/0000-0002-8872-0664 FU GAANN; U.S. Department of Energy [DE-AC02-06CH11357, DE-FC02-91ER40684] FX We would like to thank Johan Alwall, Pierre Artoisenet, Pushpa Bhat, Qinghong Cao, Johannes Heinonen, Wai-Yee Keung Jen Kile, Andrew Kobach, Andrew Kubik, Tom LeCompte, Joe Lykken, Olivier Mattelaer, Frank Petriello, Seth Quackenbush, Heidi Schellman, Michael Schmitt, Shashank Shalgar, Gabe Shaughnessy, Tim Tait, and Nhan Tran for useful conversations and/or correspondence. RVM acknowledges the support of a GAANN fellowship. This work was supported in part by the U.S. Department of Energy under contract numbers DE-AC02-06CH11357 and DE-FC02-91ER40684. NR 71 TC 26 Z9 26 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV PY 2011 IS 11 AR 027 DI 10.1007/JHEP11(2011)027 PG 27 WC Physics, Particles & Fields SC Physics GA 855OB UT WOS:000297572900050 ER PT J AU Nomura, Y AF Nomura, Yasunori TI Physical theories, eternal inflation, and the quantum universe SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Cosmology of Theories beyond the SM; Superstring Vacua; dS vacua in string theory; Models of Quantum Gravity ID BLACK-HOLE COMPLEMENTARITY; STATIONARY UNIVERSE; PARTICLE CREATION; PHASE-TRANSITION; THERMODYNAMICS; PERTURBATIONS; FLUCTUATIONS; EVAPORATION; COSMOLOGY; PRINCIPLE AB Infinities in eternal inflation have long been plaguing cosmology, making any predictions highly sensitive to how they are regulated. The problem exists already at the level of semi-classical general relativity, and has a priori nothing to do with quantum gravity. On the other hand, we know that certain problems in semi-classical gravity, for example physics of black holes and their evaporation, have led to understanding of surprising, quantum natures of spacetime and gravity, such as the holographic principle and horizon complementarity. In this paper, we present a framework in which well-defined predictions are obtained in an eternally inflating multiverse, based on the principles of quantum mechanics. We propose that the entire multiverse is described purely from the viewpoint of a single "observer," who describes the world as a quantum state defined on his/her past light cones bounded by the (stretched) apparent horizons. We find that quantum mechanics plays an essential role in regulating infinities. The framework is " gauge invariant," i.e. predictions do not depend on how spacetime is parametrized, as it should be in a theory of quantum gravity. Our framework provides a fully unified treatment of quantum measurement processes and the multiverse. We conclude that the eternally inflating multiverse and many worlds in quantum mechanics are the same. Other important implications include: global spacetime can be viewed as a derived concept; the multiverse is a transient phenomenon during the world relaxing into a supersymmetric Minkowski state. We also present a model of "initial conditions" for the multiverse. By extrapolating our framework to the extreme, we arrive at a picture that the entire multiverse is a fluctuation in the stationary, fractal "mega-multiverse," in which an infinite sequence of multiverse productions occurs. The framework discussed here does not suffer from problems/paradoxes plaguing other measures proposed earlier, such as the youngness paradox and the Boltzmann brain problem. C1 [Nomura, Yasunori] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Nomura, Yasunori] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Nomura, Y (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. EM ynomura@berkeley.edu OI Nomura, Yasunori/0000-0002-1497-1479 FU Office of Science, Office of High Energy and Nuclear Physics, of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation [PHY-0855653] FX I am grateful for stimulating discussions with Raphael Bousso, Clifford Cheung, Ben Freivogel, Alan Guth, and Vladimir Rosenhaus. This work was supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, of the US Department of Energy under Contract DE-AC02-05CH11231, and in part by the National Science Foundation under grants PHY-0855653. NR 124 TC 24 Z9 24 U1 1 U2 5 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV PY 2011 IS 11 AR 063 DI 10.1007/JHEP11(2011)063 PG 68 WC Physics, Particles & Fields SC Physics GA 855OB UT WOS:000297572900015 ER PT J AU Goodding, JC Ardelean, EV Babuska, V Robertson, LM Lane, SA AF Goodding, James C. Ardelean, Emil V. Babuska, Vit Robertson, Lawrence M., III Lane, Steven A. TI Experimental Techniques and Structural Parameter Estimation Studies of Spacecraft Cables SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article AB Signal and electrical power cables pose unique challenges to spacecraft structural design and are often poorly modeled or even neglected. The objective of this research was to develop test methods and analysis techniques to accurately model cable-loaded spacecraft, using linear finite element models. Test methods were developed to characterize cable extensional and bending properties when subjected to low-level lateral dynamic loads. Timoshenko beam theory, including shear and bending, was used to model cable lateral dynamics, and the model formulation applicability was validated through experiment. An algorithm was developed to estimate cable area moment of inertia and shear area factor, shear modulus product, from a single driving point mobility function. Test methods and the parameter estimation algorithm were validated, using metallic rod test specimens. Experiments were performed on cables of differing constructions and spans, to develop a database for finite element modeling validation experiments. C1 [Goodding, James C.] CSA Engn, Albuquerque, NM 87123 USA. [Ardelean, Emil V.] Schafer Corp, Albuquerque, NM 87106 USA. [Babuska, Vit] Sandia Natl Labs, Dept 1525, Albuquerque, NM 87185 USA. [Robertson, Lawrence M., III; Lane, Steven A.] USAF, Res Lab, Space Vehicles Directorate, Kirtland AFB, NM 87117 USA. RP Goodding, JC (reprint author), CSA Engn, 1451 Innovat Pkwy SE,Suite 100, Albuquerque, NM 87123 USA. FU Air Force Office of Scientific Research; U.S. Department of Energy [DE-AC04-94AL85000] FX The authors would like to acknowledge the support of the Air Force Office of Scientific Research. The authors are also indebted to our colleagues with The Aerospace Corporation, for their technical oversight of this research. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the U.S. Department of Energy under contract DE-AC04-94AL85000. NR 19 TC 13 Z9 13 U1 3 U2 8 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV-DEC PY 2011 VL 48 IS 6 BP 942 EP 957 DI 10.2514/1.49346 PG 16 WC Engineering, Aerospace SC Engineering GA 862UZ UT WOS:000298120900005 ER PT J AU Coombs, DM Goodding, JC Babuska, V Ardelean, EV Robertson, LM Lane, SA AF Coombs, Douglas M. Goodding, James C. Babuska, Vit Ardelean, Emil V. Robertson, Lawrence M. Lane, Steven A. TI Dynamic Modeling and Experimental Validation of a Cable-Loaded Panel SO JOURNAL OF SPACECRAFT AND ROCKETS LA English DT Article ID BEAM THEORY AB Power and signal cable harnesses on spacecraft are often at 10% of the total mass and can be as much as 30%. These cable harnesses can impact the structural dynamics of spacecraft significantly, specifically by damping the response. Past efforts have looked at how to calculate cable properties and the validation of these cable models on one-dimensional beam structures with uniform cable lengths. This paper looks at how to extend that process to two-dimensional spacecraftlike panels with nonuniform cable lengths. A shear beam model is used for cable properties. Two methods of calculating the tiedown stiffness are compared. Of particular interest is whether or not handbooks of cable properties can be created ahead of time and applied with confidence. There are three frequency bands in which cable effects can be described. Before any cables become resonant, the cable effects are dominated by mass and static stiffness. After all the cables become resonant, the effect is dominated by increased damping in the structure. In between these two frequency cutoff points, there is a transition zone. The dynamic cable modeling method is validated as a distinct improvement over the lumped-mass characterization of cables commonly used today. C1 [Coombs, Douglas M.; Goodding, James C.] CSA Engn, Albuquerque, NM 87123 USA. [Babuska, Vit] Sandia Natl Labs, Dept 1525, Albuquerque, NM 87185 USA. [Ardelean, Emil V.] Schafer Corp, Albuquerque, NM 87106 USA. [Robertson, Lawrence M.; Lane, Steven A.] USAF, Res Lab, Space Vehicles Directorate, Kirtland AFB, NM 87117 USA. RP Coombs, DM (reprint author), CSA Engn, 1451 Innovat Pkwy SE,Suite 100, Albuquerque, NM 87123 USA. FU U.S. Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under contract DE-AC04-94AL85000. NR 20 TC 12 Z9 12 U1 2 U2 8 PU AMER INST AERONAUT ASTRONAUT PI RESTON PA 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA SN 0022-4650 J9 J SPACECRAFT ROCKETS JI J. Spacecr. Rockets PD NOV-DEC PY 2011 VL 48 IS 6 BP 958 EP 973 DI 10.2514/1.51021 PG 16 WC Engineering, Aerospace SC Engineering GA 862UZ UT WOS:000298120900006 ER PT J AU Borgonovo, E Smith, CL AF Borgonovo, E. Smith, C. L. TI A Study of Interactions in the Risk Assessment of Complex Engineering Systems: An Application to Space PSA SO OPERATIONS RESEARCH LA English DT Article ID JOINT RELIABILITY-IMPORTANCE; SENSITIVITY-ANALYSIS; EVENT TREES; SAFETY ASSESSMENT; COHERENT-SYSTEM; COMPONENTS; MODELS; OPTIMIZATION; DIAGRAMS; NETWORK AB Risk managers are often confronted with the evaluation of operational policies in which two or more system components are simultaneously affected by a change. In these instances, the decision-making process should be informed by the relevance of interactions. However, because of system and model complexity, a rigorous study for determining whether and how interactions quantitatively impact operational choices has not been developed yet. In light of the central role played by the multilinearity of the decision support models, we investigate the presence of interactions in multilinear functions first. We identify interactions that can be a priori excluded from the analysis. We introduce sensitivity measures that apportion the model output change to individual factors and interaction contributions in an exact fashion. The sensitivity measures are linked to graphical representation methods as tornado diagrams and Pareto charts, and a systematic way of inferring managerial insights is presented. We then specialize the findings to reliability and probabilistic safety assessment (PSA) problems. We set forth a procedure for determining the magnitude of changes that make interactions relevant in the analysis. Quantitative results are discussed by application to a PSA model developed at NASA to support decision making in space mission planning and design. Numerical findings show that suboptimal decisions concerning the components on which to focus managerial attention can be made, if the decision-making process is not informed by the relevance of interactions. C1 [Borgonovo, E.] Bocconi Univ, Dept Decis Sci, I-20136 Milan, Italy. [Borgonovo, E.] Bocconi Univ, ELEUSI Res Ctr, I-20136 Milan, Italy. [Smith, C. L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Borgonovo, E (reprint author), Bocconi Univ, Dept Decis Sci, I-20136 Milan, Italy. EM emanuele.borgonovo@unibocconi.it; curtis.smith@inl.gov FU Idaho National Laboratory; ELEUSI Research Center of Bocconi University FX The authors thank the editor and the associate editor for their careful editorial assistance, and the anonymous referees for very perceptive suggestions that have greatly contributed to improving the manuscript. Financial support from the Faculty Staff Exchange program of the Idaho National Laboratory is gratefully acknowledged. E. Borgonovo also gratefully acknowledges financial support from the ELEUSI Research Center of Bocconi University. NR 62 TC 12 Z9 14 U1 0 U2 9 PU INFORMS PI CATONSVILLE PA 5521 RESEARCH PARK DR, SUITE 200, CATONSVILLE, MD 21228 USA SN 0030-364X J9 OPER RES JI Oper. Res. PD NOV-DEC PY 2011 VL 59 IS 6 BP 1461 EP 1476 DI 10.1287/opre.1110.0973 PG 16 WC Management; Operations Research & Management Science SC Business & Economics; Operations Research & Management Science GA 871OD UT WOS:000298746600013 ER PT J AU Egbendewe-Mondzozo, A Swinton, SM Izaurralde, CR Manowitz, DH Zhang, XS AF Egbendewe-Mondzozo, Aklesso Swinton, Scott M. Izaurralde, Cesar R. Manowitz, David H. Zhang, Xuesong TI Biomass supply from alternative cellulosic crops and crop residues: A spatially explicit bioeconomic modeling approach SO BIOMASS & BIOENERGY LA English DT Article DE Biomass production; Biofuel policy; Cellulosic ethanol; Agro-ecosystem economics; Environmental impacts ID UNITED-STATES; RENEWABLE ENERGY; AGRICULTURE; FEEDSTOCK; COST; SEQUESTRATION; MISCANTHUS; DELIVERY; EROSION; YIELDS AB This paper introduces a spatially-explicit bioeconomic model for the study of potential cellulosic biomass supply. For biomass crops to begin to replace current crops, farmers must earn more from them than from current crops. Using weather, topographic and soil data, the terrestrial ecosystem model, EPIC, dynamically simulates multiple cropping systems that vary bycrop rotation, tillage, fertilization and residue removal rate. EPIC generates predicted crop yield and environmental outcomes over multiple watersheds. These EPIC results are used to parameterize a regional profit-maximization mathematical programming model that identifies profitable cropping system choices. The bioeconomic model is calibrated to 2007-09 crop production in a 9-county region of southwest Michigan. A simulation of biomass supply in response to rising biomass prices shows that cellulosic residues from corn stover and wheat straw begin to be supplied at minimum delivered biomass:corn grain price ratios of 0.15 and 0.18, respectively. At the mean corn price of $162.6/Mg ($4.13 per bushel) at commercial moisture content during 2007-2009, these ratios correspond to stover and straw prices of $24 and $29 per dry Mg. Perennial bioenergy crops begin to be supplied at price levels 2-3 times higher. Average biomass transport costs to the biorefinery plant range from $6 to $20/Mg compared to conventional crop production practices in the area, biomass supply from annual crop residues increased greenhouse gas emissions and reduced water quality through increased nutrient loss. By contrast, perennial cellulosic biomass crop production reduced greenhouse gas emissions and improved water quality. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Egbendewe-Mondzozo, Aklesso; Swinton, Scott M.] Michigan State Univ, Great Lakes Bioenergy Res Ctr GLBRC, E Lansing, MI 48823 USA. [Egbendewe-Mondzozo, Aklesso; Swinton, Scott M.] Michigan State Univ, Dept Agr Food & Resource Econ, E Lansing, MI 48823 USA. [Izaurralde, Cesar R.; Manowitz, David H.; Zhang, Xuesong] Pacific NW Natl Lab, Joint Global Change Res Inst JGCRI, College Pk, MD 20740 USA. [Izaurralde, Cesar R.; Manowitz, David H.; Zhang, Xuesong] Univ Maryland, College Pk, MD 20740 USA. RP Egbendewe-Mondzozo, A (reprint author), Michigan State Univ, Great Lakes Bioenergy Res Ctr GLBRC, 86 Agr Hall, E Lansing, MI 48823 USA. EM aklesso@msu.edu; swintons@msu.edu; cesar.izaurralde@pnl.gov; David.Manowitz@pnl.gov; Xuesong.Zhang@pnl.gov RI Izaurralde, Roberto/E-5826-2012; zhang, xuesong/B-7907-2009 FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494, DOE EERE OBP 20469-19145] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494, DOE BER Office of Science KP1601050, DOE EERE OBP 20469-19145). For data and comments, the authors wish to thank Sarah AcMoody, Kurt Thelen, Dennis Stein, Eric Wittenberg, Robin Graham, Burton English, Charles Noon, Bruce Dale, Seth Meyer, Bryan Bals, Josh Posner and all the participants at the 2010 Michigan State University, University of Michigan and Wayne State University environmental and energy economics seminar. NR 59 TC 22 Z9 22 U1 6 U2 44 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0961-9534 J9 BIOMASS BIOENERG JI Biomass Bioenerg. PD NOV PY 2011 VL 35 IS 11 BP 4636 EP 4647 DI 10.1016/j.biombioe.2011.09.010 PG 12 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 868KE UT WOS:000298521400018 ER PT J AU Dibble, CJ Shatova, TA Jorgenson, JL Stickel, JJ AF Dibble, Clare J. Shatova, Tatyana A. Jorgenson, Jennie L. Stickel, Jonathan J. TI Particle morphology characterization and manipulation in biomass slurries and the effect on rheological properties and enzymatic conversion SO BIOTECHNOLOGY PROGRESS LA English DT Article DE corn stover hydrolysis; particle size distribution; image processing; yield stress; cellulase ID HIGH-SOLIDS LOADINGS; YIELD-STRESS; CORN STOVER; SIZE; SUSPENSIONS; CELLULOSE; SACCHARIFICATION; PRETREATMENT; DIGESTIBILITY; HYDROLYSIS AB An improved understanding of how particle size distribution relates to enzymatic hydrolysis performance and rheological properties could enable enhanced biochemical conversion of lignocellulosic feedstocks. Particle size distribution can change as a result of either physical or chemical manipulation of a biomass sample. In this study, we employed image processing techniques to measure slurry particle size distribution and validated the results by showing that they are comparable to those from laser diffraction and sieving. Particle size and chemical changes of biomass slurries were manipulated independently and the resulting yield stress and enzymatic digestibility of slurries with different size distributions were measured. Interestingly, reducing particle size by mechanical means from about 1 mm to 100 mu m did not reduce the yield stress of the slurries over a broad range of concentrations or increase the digestibility of the biomass over the range of size reduction studied here. This is in stark contrast to the increase in digestibility and decrease in yield stress when particle size is reduced by dilute-acid pretreatment over similar size ranges. (C) 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011 C1 [Dibble, Clare J.; Shatova, Tatyana A.; Jorgenson, Jennie L.; Stickel, Jonathan J.] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Dibble, CJ (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. EM clare.dibble@nrel.gov FU U.S. Department of Energy through the Office of the Biomass; David H. Koch School of Chemical Engineering Practice at MIT; U.S. Department of Energy through the Office of Workforce Development for Teachers and Scientists FX This work was supported by the U.S. Department of Energy through the Office of the Biomass Program. Tatyana Shatova's contribution was supported by the David H. Koch School of Chemical Engineering Practice at MIT. Jennie L. Jorgenson's work was funded by the U.S. Department of Energy through the Office of Workforce Development for Teachers and Scientists in the form of a Science Undergraduate Laboratory Internship. The authors wish to thank James Lischeske for volume fraction determination and related error analysis, Heidi Pilath for providing sieved poplar chips, Jessica Olstad and Yves Parent for laser diffraction measurements, and Sravani Kanamarlapudi, Xianwen Mao, Kristin Vicari, and Gregg Beckham and the fall 2009 NREL-MIT practice school station for particle size work and development. NR 33 TC 8 Z9 8 U1 1 U2 31 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 8756-7938 J9 BIOTECHNOL PROGR JI Biotechnol. Prog. PD NOV-DEC PY 2011 VL 27 IS 6 BP 1751 EP 1759 DI 10.1002/btpr.669 PG 9 WC Biotechnology & Applied Microbiology; Food Science & Technology SC Biotechnology & Applied Microbiology; Food Science & Technology GA 855GH UT WOS:000297551300026 PM 21812118 ER PT J AU Rasley, A AF Rasley, Amy TI Editorial SO BRIEFINGS IN FUNCTIONAL GENOMICS LA English DT Editorial Material C1 Lawrence Livermore Natl Lab, Host Pathogen Biol Grp, Livermore, CA USA. RP Rasley, A (reprint author), Lawrence Livermore Natl Lab, Host Pathogen Biol Grp, Livermore, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 2041-2649 J9 BRIEF FUNCT GENOMICS JI Brief. Funct. Genomics PD NOV PY 2011 VL 10 IS 6 SI SI BP 321 EP 321 DI 10.1093/bfgp/elr043 PG 1 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 866NF UT WOS:000298387100001 PM 22199375 ER PT J AU Hu, B Xie, G Lo, CC Starkenburg, SR Chain, PSG AF Hu, Bin Xie, Gary Lo, Chien-Chi Starkenburg, Shawn R. Chain, Patrick S. G. TI Pathogen comparative genomics in the next-generation sequencing era: genome alignments, pangenomics and metagenomics SO BRIEFINGS IN FUNCTIONAL GENOMICS LA English DT Article DE comparative genomics; whole-genome alignment; next-generation sequencing; pathogen pangenomics; bioinformatics ID BACTERIAL PAN-GENOME; SHORT READ ALIGNMENT; YERSINIA-PESTIS; ESCHERICHIA-COLI; BACILLUS-ANTHRACIS; STREPTOCOCCUS-PNEUMONIAE; GENE-EXPRESSION; DNA; DIVERSITY; EVOLUTION AB As soon as whole-genome sequencing entered the scene in the mid-1990s and demonstrated its use in revealing the entire genetic potential of any given microbial organism, this technique immediately revolutionized the way pathogen (and many other fields of) research was carried out. The ability to perform whole-genome comparisons further transformed the field and allowed scientists to obtain information linking phenotypic dissimilarities among closely related organisms and their underlying genetic mechanisms. Such comparisons have become commonplace in examining strain-to-strain variability, as well as comparing pathogens to less, or nonpathogenic near neighbors. In recent years, a bloom in novel sequencing technologies along with continuous increases in throughput has occurred, inundating the field with various types of massively parallel sequencing data and further transforming comparative genomics research. Here, we review the evolution of comparative genomics, its impact in understanding pathogen evolution and physiology and the opportunities and challenges presented by next-generation sequencing as applied to pathogen genome comparisons. C1 [Chain, Patrick S. G.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. RP Chain, PSG (reprint author), Los Alamos Natl Lab, Biosci Div, MS-M888,HRL, Los Alamos, NM 87545 USA. EM pchain@lanl.gov RI chain, patrick/B-9777-2013; OI Chain, Patrick/0000-0003-3949-3634; xie, gary/0000-0002-9176-924X FU Los Alamos National Laboratory [20100034DR, 20110051DR]; US Department of Energy Joint Genome Institute through the Office of Science of the US Department of Energy [DE-AC02-05CH11231]; US Defense Threat Reduction Agency [B104153I, B084531I] FX This study was supported in part by Los Alamos National Laboratory Laboratory-Directed Research and Development grants (numbers 20100034DR and 20110051DR); the US Department of Energy Joint Genome Institute through the Office of Science of the US Department of Energy (under Contract No. DE-AC02-05CH11231); the US Defense Threat Reduction Agency (contract numbers B104153I and B084531I). NR 118 TC 13 Z9 14 U1 1 U2 19 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 2041-2649 EI 2041-2657 J9 BRIEF FUNCT GENOMICS JI Brief. Funct. Genomics PD NOV PY 2011 VL 10 IS 6 SI SI BP 322 EP 333 DI 10.1093/bfgp/elr042 PG 12 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 866NF UT WOS:000298387100002 PM 22199376 ER PT J AU McLoughlin, KS AF McLoughlin, Kevin S. TI Microarrays for Pathogen Detection and Analysis SO BRIEFINGS IN FUNCTIONAL GENOMICS LA English DT Article DE microarrays; pathogens; genomics ID RESEQUENCING DNA MICROARRAYS; POLYMERASE CHAIN-REACTION; OLIGONUCLEOTIDE ARRAY; MICROBIAL DETECTION; IDENTIFICATION; MICROORGANISMS; NORMALIZATION; AMPLIFICATION; DIAGNOSIS; PATTERNS AB DNA microarrays have emerged as a viable platform for detection of pathogenic organisms in clinical and environmental samples. These microbial detection arrays occupy a middle ground between low cost, narrowly focused assays such as multiplex PCR and more expensive, broad-spectrum technologies like high-throughput sequencing. While pathogen detection arrays have been used primarily in a research context, several groups are aggressively working to develop arrays for clinical diagnostics, food safety testing, environmental monitoring and biodefense. Statistical algorithms that can analyze data from microbial detection arrays and provide easily interpretable results are absolutely required in order for these efforts to succeed. In this article, we will review the most promising array designs and analysis algorithms that have been developed to date, comparing their strengths and weaknesses for pathogen detection and discovery. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP McLoughlin, KS (reprint author), Lawrence Livermore Natl Lab, POB 808,L-174, Livermore, CA 94551 USA. EM mcloughlin2@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Lawrence Livermore National Laboratory [08-SI-002]; National Biodefense Analysis and Countermeasures Center [L164212/F0901] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.; This work was supported by Laboratory Directed Research and Development (grant number 08-SI-002) from Lawrence Livermore National Laboratory, and by the National Biodefense Analysis and Countermeasures Center (award number L164212/F0901). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the National Biodefense Analysis and Countermeasures Center (NBACC), Department of Homeland Security (DHS), or Battelle National Biodefense Institute (BNBI). NR 37 TC 27 Z9 29 U1 3 U2 16 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 2041-2649 J9 BRIEF FUNCT GENOMICS JI Brief. Funct. Genomics PD NOV PY 2011 VL 10 IS 6 SI SI BP 342 EP 353 DI 10.1093/bfgp/elr027 PG 12 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 866NF UT WOS:000298387100004 PM 21930658 ER PT J AU Navid, A AF Navid, Ali TI Applications of system-level models of metabolism for analysis of bacterial physiology and identification of new drug targets SO BRIEFINGS IN FUNCTIONAL GENOMICS LA English DT Article DE flux balance analysis; systems biology; drug target identification; bacterial metabolism; constraint-based modeling ID GENOME-SCALE RECONSTRUCTION; ESCHERICHIA-COLI METABOLISM; HAEMOPHILUS-INFLUENZAE RD; GENE KNOCKOUT SIMULATION; FLUX-BALANCE ANALYSIS; PSEUDOMONAS-AERUGINOSA; OPTIMIZATION FRAMEWORK; NETWORK RECONSTRUCTION; STOICHIOMETRIC MODEL; BIOMASS COMPOSITION AB For nearly all of the 20th century, biologists gained considerable insights into the fundamental principles of cellular dynamics by examining select modules of biochemical processes. This form of analysis provides detailed information about the workings of the examined pathways. However, any attempt to alter the normal function of bacteria (perhaps for industrial or medicinal goals) requires a detailed global understanding of cellular mechanisms. The reductionist mode of analysis cannot provide the required information for developing the needed perspective on the complex interactions of biochemical pathways. Thankfully, the increasing availability of microbial genomic, transcriptomic, proteomic and other high-throughput data permits system-level analyses of microbiology. During the past two decades, systems biologists have developed constraint-based genome-scale models (GSM) of metabolism for a variety of pathogens. These models are important tools for assessing the metabolic capabilities of various genotypes. Simultaneously, new computational methods have been developed that use these network reconstructions to answer an array of important immunological questions. The objective of this article is to briefly review some of the uses of GSMs for studying bacterial metabolism under different conditions and to discuss how the calculated solutions can be used for rational design of drugs. C1 Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Phys & Life Sci Directorate, Livermore, CA 94551 USA. RP Navid, A (reprint author), Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Phys & Life Sci Directorate, Livermore, CA 94551 USA. EM navid1@llnl.gov RI Navid, Ali/A-1336-2013 OI Navid, Ali/0000-0003-2560-6984 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Lawrence Livermore National Laboratory [10-ERD-054 (LLNL-JRNL-483102)] FX This work performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.; The Laboratory Directed Research and Development Program at Lawrence Livermore National Laboratory under project tracking code 10-ERD-054 (LLNL-JRNL-483102). NR 95 TC 4 Z9 4 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 2041-2649 J9 BRIEF FUNCT GENOMICS JI Brief. Funct. Genomics PD NOV PY 2011 VL 10 IS 6 SI SI BP 354 EP 364 DI 10.1093/bfgp/elr034 PG 11 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 866NF UT WOS:000298387100005 PM 22199377 ER PT J AU Weilhammer, DR Rasley, A AF Weilhammer, Dina R. Rasley, Amy TI Genetic approaches for understanding virulence in Toxoplasma gondii SO BRIEFINGS IN FUNCTIONAL GENOMICS LA English DT Article DE Toxoplasma gondii; virulence; ROP2 family ID DEVELOPMENTALLY-REGULATED GENES; QUANTITATIVE TRAIT LOCI; SELECTABLE MARKER; DIFFERENTIATION MUTANTS; PROTOZOAN PARASITE; PSEUDOACTIVE SITE; HOST; FAMILY; RESISTANCE; IDENTIFICATION AB Virulence of the protozoan parasite Toxoplasma gondii is highly variable and dependent upon the genotype of the parasite. The application of forward and reverse genetic approaches for understanding the genetic basis of virulence has resulted in the identification of several members of the ROP family as key mediators of virulence. More recently, modern genomic techniques have been used to address strain differences in virulence and have also identified additional members of the ROP family as likely mediators. The development of forward and reverse genetic, as well as modern genomic techniques, and the path to the discovery of the ROP genes as virulence factors is reviewed here. C1 [Weilhammer, Dina R.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94550 USA. RP Weilhammer, DR (reprint author), Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, 7000 East Ave, Livermore, CA 94550 USA. EM weilhammer1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Lawrence Livermore National Laboratory [11-ERD-016] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and supported by Laboratory Directed Research and Development grant 11-ERD-016 from Lawrence Livermore National Laboratory to A.R. NR 77 TC 3 Z9 5 U1 1 U2 12 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 2041-2649 EI 2041-2657 J9 BRIEF FUNCT GENOMICS JI Brief. Funct. Genomics PD NOV PY 2011 VL 10 IS 6 SI SI BP 365 EP 373 DI 10.1093/bfgp/elr028 PG 9 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 866NF UT WOS:000298387100006 PM 21930659 ER PT J AU Whiteside, A Xantheas, SS Gutowski, M AF Whiteside, Alexander Xantheas, Sotiris S. Gutowski, Maciej TI Is Electronegativity a Useful Descriptor for the Pseudo-Alkali Metal NH4? SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE alkali metals; ammonium; computational chemistry; electronegativity; ion pairs ID GAUSSIAN-BASIS SETS; CORRELATED MOLECULAR CALCULATIONS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; AB-INITIO; PAULING UNITS; GROUND-STATE; ATOMS; HYDROGEN; CHEMISTRY AB Molecular ions in the form of pseudo-atoms are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined one such property-the electronegativity-for the pseudo-alkali metal ammonium (NH4), and evaluated its reliability as a descriptor versus the electronegativities of the alkali metals. The computed properties of ammoniums binary complexes with astatine and of selected borohydrides confirm the similarity of NH4 to the alkali metal atoms, although the electronegativity of NH4 is relatively large in comparison to its cationic radius. We have paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation and reactivity), which can cause deviations from the behaviour expected of a conceptual true alkali metal with this electronegativity. These deviations allow for the discrimination of effects associated with the molecular nature of NH4. C1 [Whiteside, Alexander; Gutowski, Maciej] Heriot Watt Univ, Dept Chem, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland. [Xantheas, Sotiris S.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99352 USA. RP Gutowski, M (reprint author), Heriot Watt Univ, Dept Chem, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland. EM m.gutowski@hw.ac.uk RI Xantheas, Sotiris/L-1239-2015 FU Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy; Department of Energy's Office of Biological and Environmental Research [GC20901]; EPSRC FX This research was initiated as part of the Pacific Northwest National Laboratory's "Summer Research Institute" in 2008. Part of this work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, U.S. Department of Energy. Battelle operates the Pacific Northwest National Laboratory for the U. S. Department of Energy. This research was performed in part using the Molecular Science Computing Facility (MSCF) in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research under Grand Challenge project GC20901, "Reliable Electronic Structure Prediction of Molecular Properties". Additional computer resources were provided by Heriot-Watt University. A.W. is funded by an EPSRC studentship. NR 66 TC 3 Z9 3 U1 0 U2 17 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 J9 CHEM-EUR J JI Chem.-Eur. J. PD NOV PY 2011 VL 17 IS 47 BP 13197 EP 13205 DI 10.1002/chem.201101949 PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 861ZB UT WOS:000298058500016 PM 21928287 ER PT J AU Ebeida, MS Mitchell, SA Davidson, AA Patney, A Knupp, PM Owens, JD AF Ebeida, Mohamed S. Mitchell, Scott A. Davidson, Andrew A. Patney, Anjul Knupp, Patrick M. Owens, John D. TI Efficient and good Delaunay meshes from random points SO COMPUTER-AIDED DESIGN LA English DT Article; Proceedings Paper CT Joint Conference of the SIAM Conference on Geometric and Physical Modeling/SIAM Conference on Geometric Design/Annual Symposium on Solid and Physical Modeling CY OCT 24-27, 2011 CL Orlando, FL SP SIAM DE Computer-aided design, engineering, and manufacturing; Computational geometry and topology; Product and assembly modeling; Geophysical applications; Mesh generation ID GENERATION; REFINEMENT; ALGORITHMS; FRACTURE AB We present a Conforming Delaunay Triangulation (CDT) algorithm based on maximal Poisson disk sampling. Points are unbiased, meaning the probability of introducing a vertex in a disk-free subregion is proportional to its area, except in a neighborhood of the domain boundary. In contrast, Delaunay refinement CDT algorithms place points dependent on the geometry of empty circles in intermediate triangulations, usually near the circle centers. Unconstrained angles in our mesh are between 30 and 120, matching some biased CDT methods. Points are placed on the boundary using a one-dimensional maximal Poisson disk sampling. Any triangulation method producing angles bounded away from 0 and 180 must have some bias near the domain boundary to avoid placing vertices infinitesimally close to the boundary. Random meshes are preferred for some simulations, such as fracture simulations where cracks must follow mesh edges, because deterministic meshes may introduce non-physical phenomena. An ensemble of random meshes aids simulation validation. Poisson-disk triangulations also avoid some graphics rendering artifacts, and have the blue-noise property. We mesh two-dimensional domains that may be non-convex with holes, required points, and multiple regions in contact. Our algorithm is also fast and uses little memory. We have recently developed a method for generating a maximal Poisson distribution of n output points, where n = Theta(Area/r(2)) and r is the sampling radius. It takes O(n) memory and O(n log n) expected time; in practice the time is nearly linear. This, or a similar subroutine, generates our random points. Except for this subroutine, we provably use O(n) time and space. The subroutine gives the location of points in a square background mesh. Given this, the neighborhood of each point can be meshed independently in constant time. These features facilitate parallel and GPU implementations. Our implementation works well in practice as illustrated by several examples and comparison to Triangle. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Ebeida, Mohamed S.; Mitchell, Scott A.; Knupp, Patrick M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Davidson, Andrew A.; Patney, Anjul; Owens, John D.] Univ Calif Davis, Elect & Comp Engn Dept, Davis, CA 95616 USA. RP Mitchell, SA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM msebeid@sandia.gov; samitch@sandia.gov RI Owens, John/A-1256-2012 OI Owens, John/0000-0001-6582-8237 NR 41 TC 14 Z9 15 U1 0 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0010-4485 J9 COMPUT AIDED DESIGN JI Comput.-Aided Des. PD NOV PY 2011 VL 43 IS 11 SI SI BP 1506 EP 1515 DI 10.1016/j.cad.2011.08.012 PG 10 WC Computer Science, Software Engineering SC Computer Science GA 854LE UT WOS:000297495200021 ER PT J AU Nichols, J Kang, S Post, W Wang, D Bandaru, V Manowitz, D Zhang, X Izaurralde, R AF Nichols, J. Kang, S. Post, W. Wang, D. Bandaru, V. Manowitz, D. Zhang, X. Izaurralde, R. TI HPC-EPIC for high resolution simulations of environmental and sustainability assessment SO COMPUTERS AND ELECTRONICS IN AGRICULTURE LA English DT Article DE EPIC model; High-resolution spatial simulation; Sustainability assessment modeling; Agroecosystem; High performance computing (HPC) ID INFORMATION AB Multiple concerns over the impact of wide scale changes in land management have motivated comprehensive analyses of environmental sustainability of food and biofuel production. These call for high-resolution land management tools that enable comprehensive analyses of natural resources for decision-making. The agroecosystem simulation models with the most biophysical detail are point models, which often have a user interface that allows users to provide inputs and examine results for agricultural field scale analyses. These are not able to meet the needs of high-resolution regional or national simulations. We describe an efficient computational approach for deployment of the Environmental Policy Integrated Climate (EPIC) model at high-resolution spatial scales using high performance computing (HPC) techniques. We developed an integrated procedure for executing the millions of simulations required for high-resolution, regional studies, and also address building databases for model initialization, model forcing data, and model outputs. We first ported EPIC from Windows to an HPC platform and validated output from both platforms. We then developed methods of packaging simulations for efficient, unattended parallel execution on the HPC cluster. The job queuing system, Portable Batch System (PBS) is employed to control job submission. Simulation outputs are extracted to PostgreSQL database for analysis. In a case study covering four counties in central Wisconsin using HPC-EPIC, we finished over 140 K simulations in a total of 10 h on an HPC cluster using 20 nodes. This is a speedup of 40 times. More nodes could be used to achieve larger speedups. The HPC-EPIC model developed in this study is anticipated to provide information useful for high-resolution land use management and decision making. The framework for high-performance computing can be extended to other traditional, point-based biophysical simulation models. (C) 2011 Elsevier B.V. All rights reserved. C1 [Nichols, J.; Kang, S.; Post, W.; Wang, D.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Bandaru, V.; Manowitz, D.; Zhang, X.; Izaurralde, R.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. RP Nichols, J (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008, Oak Ridge, TN 37831 USA. EM nicholsja2@ornl.gov RI Wang, Dali /B-4829-2012; Post, Wilfred/B-8959-2012; novacescu, florica/B-4503-2011; zhang, xuesong/B-7907-2009 OI novacescu, florica/0000-0001-5561-4956; FU DOE Great Lakes Bioenergy Research Center; US Department of Energy, Office of Science, Office of Biological and Environmental Research [DEFC02-07ER64494]; US Department of Energy [DE-AC05-00OR22725] FX This work was funded by DOE Great Lakes Bioenergy Research Center (http://www.greatlakesbioenergy.org) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through Cooperative Agreement DEFC02-07ER64494. Oak Ridge National Laboratory is managed by UT-Battelle LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. NR 7 TC 17 Z9 17 U1 2 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0168-1699 J9 COMPUT ELECTRON AGR JI Comput. Electron. Agric. PD NOV PY 2011 VL 79 IS 2 BP 112 EP 115 DI 10.1016/j.compag.2011.08.012 PG 4 WC Agriculture, Multidisciplinary; Computer Science, Interdisciplinary Applications SC Agriculture; Computer Science GA 868PU UT WOS:000298536000002 ER PT J AU Mikaelian, KO AF Mikaelian, Karnig O. TI Testing diamond strength at high pressure SO DIAMOND AND RELATED MATERIALS LA English DT Article DE Diamond strength; Improved Steinberg-Guinan model; High-Power Lasers; Rayleigh-Taylor instability with Strength ID TAYLOR INSTABILITY; LASER; STATE AB We present two designs to measure the strength of diamond, natural or synthetic, above 30 Mbar. Both designs are based on the Rayleigh-Taylor instability carried out on a laser system providing a truncated ignition pulse. The first is an indentation technique which can be challenging to diagnose because of the low-Z value of carbon. The second is similar to that used in DAC (diamond anvil cell) experiments with a flat diamond squeezing a highly perturbed gold foil and provides the required high-Z diagnostics. Based on two-dimensional hydrocode simulations we conclude that the second technique is superior because of its sensitivity to diamond strength coupled with the benefit of diagnostics at these extremely high pressures. (C) 2011 Elsevier B.V. All rights reserved. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Mikaelian, KO (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM mikaelian1@llnl.gov FU U. S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX I am grateful to Dan Clark for providing the ignition pulse, a photon-frequency dependent source. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 29 TC 0 Z9 0 U1 1 U2 12 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-9635 J9 DIAM RELAT MATER JI Diam. Relat. Mat. PD NOV PY 2011 VL 20 IS 10 BP 1340 EP 1343 DI 10.1016/j.diamond.2011.09.005 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA 868GX UT WOS:000298512800008 ER PT J AU Lucas, CA Thompson, P Grunder, Y Markovic, NM AF Lucas, Christopher A. Thompson, Paul Gruender, Yvonne Markovic, Nenad M. TI The structure of the electrochemical double layer: Ag(111) in alkaline electrolyte SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE X-ray scattering; Silver; Cations; Interface structure; Hydroxide; Alkaline electrolyte ID IN-SITU; NONCOVALENT INTERACTIONS; CYCLIC VOLTAMMETRY; RAMAN-SPECTROSCOPY; INTERFACES; FACES AB The structure of the electrochemical double layer at the interface between a Ag(111) electrode and 0.1 M KOH electrolyte has been probed using in-situ surface X-ray scattering (SXS). Detailed modeling of the SXS data at negative potential (E = -1.0 V versus SCE) is consistent with the presence of an hydrated K(+) cation layer at a distance of 4.1 +/- 0.3 angstrom from the Ag surface and at positive potential (E = -0.2 V), indicates that the presence of OH(ad) stabilizes the hydrated K(+) cations through a non-covalent interaction forming a compact double layer structure in which the Ag-K(+) distance is reduced to 3.6 +/- 0.2 angstrom. (C) 2011 Elsevier B.V. All rights reserved. C1 [Lucas, Christopher A.; Thompson, Paul] Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. [Thompson, Paul; Gruender, Yvonne] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Markovic, Nenad M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Lucas, CA (reprint author), Univ Liverpool, Dept Phys, Liverpool L69 7ZE, Merseyside, England. EM clucas@liv.ac.uk RI Grunder, Yvonne/C-6137-2011; OI Grunder, Yvonne/0000-0002-5295-0927; Lucas, Christopher/0000-0001-5743-3868 FU Office of Science, Office of Basic Energy Sciences, Materials Science Division (MSD), US Department of Energy (DOE) [DE-AC03-76SF00098]; EPSRC FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science Division (MSD), US Department of Energy (DOE) under contract no. DE-AC03-76SF00098. The X-ray scattering experiments were performed on the EPSRC-funded XMaS CRG beamline (BM 28) at the ESRF, Grenoble and on beamline I07 at the Diamond Light Source. NR 15 TC 11 Z9 11 U1 2 U2 31 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD NOV PY 2011 VL 13 IS 11 BP 1205 EP 1208 DI 10.1016/j.elecom.2011.08.043 PG 4 WC Electrochemistry SC Electrochemistry GA 854KG UT WOS:000297492800015 ER PT J AU Lucas, IT Syzdek, J Kostecki, R AF Lucas, Ivan T. Syzdek, Jaroslaw Kostecki, Robert TI Interfacial processes at single-crystal beta-Sn electrodes in organic carbonate electrolytes SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Li-ion battery; Sn anode; SEI layer; Single crystal electrode; Organic electrolyte ID IN-SITU AFM; ELECTROCHEMICAL REACTION; IRREVERSIBLE CAPACITY; ANODE; LITHIUM; LI; ELLIPSOMETRY; BATTERIES; FILMS; FTIR AB In situ atomic force microscopy (AFM) and spectroscopic ellipsometry were used to study the mechanism of organic carbonate electrolytes decomposition and surface layer (re)formation at beta-Sn(001) and (100) single crystal electrodes. Interfacial phenomena were investigated at potentials above 0.8 V vs. Li/Li(+), i.e. where no Sn-Li alloying takes place. The Sn(001) electrode tends to form a protective surface layer of electrolyte reduction products during the first cathodic CV scan, which effectively inhibits further reduction of the electrolyte upon cycling. In contrast, the Sn(100) electrode produces a thick, inhomogeneous and unstable surface layer. The observed significant difference of Sn reactivity toward the electrolyte as a function of Sn surface crystalline orientation suggests radically different reaction paths, reduction products, and properties of the surface film. (C) 2011 Elsevier B.V. All rights reserved. C1 [Lucas, Ivan T.; Syzdek, Jaroslaw; Kostecki, Robert] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Kostecki, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM r_kostecki@lbl.gov RI LUCAS, Ivan /S-5742-2016 OI LUCAS, Ivan /0000-0001-8930-0437 FU Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We would like to thank Dr. Frank McLarnon for helpful comments and suggestions during preparation of this manuscript. NR 19 TC 21 Z9 21 U1 2 U2 62 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD NOV PY 2011 VL 13 IS 11 BP 1271 EP 1275 DI 10.1016/j.elecom.2011.08.026 PG 5 WC Electrochemistry SC Electrochemistry GA 854KG UT WOS:000297492800032 ER PT J AU Liu, C Qu, YY Luo, Y Fang, N AF Liu, Chang Qu, Yueyang Luo, Yong Fang, Ning TI Recent advances in single-molecule detection on micro- and nano-fluidic devices SO ELECTROPHORESIS LA English DT Review DE Lab-on-a-chip; Microfluidics; Miniaturization; Single-molecule detection; Ultra-sensitive detection ID OPTICAL RECONSTRUCTION MICROSCOPY; METHACRYLATE MICROFLUIDIC CHIP; LIQUID-SOLID INTERFACE; DNA-MOLECULES; CAPILLARY-ELECTROPHORESIS; PROTEIN MOLECULES; WAVE-GUIDES; CORRELATION SPECTROSCOPY; NANOFLUIDIC CHANNELS; LATEST DEVELOPMENTS AB Single-molecule detection (SMD) allows static and dynamic heterogeneities from seemingly equal molecules to be revealed in the studies of molecular structures and intra- and inter-molecular interactions. Micro- and nanometer-sized structures, including channels, chambers, droplets, etc., in microfluidic and nanofluidic devices allow diffusion-controlled reactions to be accelerated and provide high signal-to-noise ratio for optical signals. These two active research frontiers have been combined to provide unprecedented capabilities for chemical and biological studies. This review summarizes the advances of SMD performed on microfluidic and nanofluidic devices published in the past five years. The latest developments on optical SMD methods, microfluidic SMD platforms, and on-chip SMD applications are discussed herein and future development directions are also envisioned. C1 [Qu, Yueyang; Luo, Yong] Dalian Univ Technol, Sch Pharmaceut Sci & Technol, Dalian, Liaoning, Peoples R China. [Liu, Chang; Fang, Ning] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA USA. [Liu, Chang; Fang, Ning] Iowa State Univ, Dept Chem, Ames, IA USA. [Liu, Chang] Univ British Columbia, Dept Chem, Vancouver, BC, Canada. RP Luo, Y (reprint author), Dalian Univ Technol, Sch Pharmaceut Sci & Technol, Dalian, Liaoning, Peoples R China. EM yluo@dlut.edu.cn; nfang@iastate.edu RI Liu, Chang/F-5472-2011; Fang, Ning/A-8456-2011; OI Liu, Chang/0000-0003-0508-4357 FU Fundamental Research Funds for the Central Universities, China [DUT10RC(3)92, DUT11SM11]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory; Iowa State University [DE-AC02-07CH11358]; University of British Columbia FX This work was supported by the "Fundamental Research Funds for the Central Universities, China" (DUT10RC(3)92 and DUT11SM11) and U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract no. DE-AC02-07CH11358. The authors specially thank Prof. David Chen of University of British Columbia for his financial support for Chang Liu's visit to Ames Lab. NR 137 TC 18 Z9 18 U1 8 U2 89 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0173-0835 J9 ELECTROPHORESIS JI Electrophoresis PD NOV PY 2011 VL 32 IS 23 SI SI BP 3308 EP 3318 DI 10.1002/elps.201100159 PG 11 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 865HD UT WOS:000298300900002 PM 22134976 ER PT J AU Hughes, JS Deng, ZD Weiland, MA Martinez, JJ Yuan, Y AF Hughes, James S. Deng, Z. Daniel Weiland, Mark A. Martinez, Jayson J. Yuan, Yong TI Water Velocity Measurements on a Vertical Barrier Screen at the Bonneville Dam Second Powerhouse SO ENERGIES LA English DT Article DE acoustic Doppler velocimetry; fish screen; juvenile bypass system; powerhouse ID FISH SCREEN; TURBULENCE; FLOW; ADV AB Fish screens at hydroelectric dams help to protect rearing and migrating fish by preventing them from passing through the turbines and directing them towards the bypass channels by means of a sweeping flow parallel to the screen. However, fish screens may actually be harmful to fish if the fish become impinged on the surface of the screen or become disoriented due to poor flow conditions near the screen. Recent modifications to the vertical barrier screens (VBS) in the gate wells at the Bonneville Dam second powerhouse (B2) were intended to increase the guidance of juvenile salmonids into the juvenile bypass system but have resulted in higher mortality and descaling rates of hatchery subyearling Chinook salmon during the 2008 juvenile salmonid passage season. To investigate the potential cause of the high mortality and descaling rates, an in situ water velocity measurement study was conducted using acoustic Doppler velocimeters in the gate well slots at turbine units 12A and 14A of B2. From the measurements collected, the average approach velocity, sweep velocity, and the root mean square value of the velocity fluctuations were calculated. The approach velocities measured across the face of the VBS were variable and typically less than 0.3 m/s, but fewer than 50% were less than or equal to 0.12 m/s. There was also large variance in sweep velocities across the face of the VBS with most measurements recorded at less than 1.5 m/s. Results of this study revealed that the approach velocities in the gate wells exceeded criteria intended to improve fish passage conditions that were recommended by National Marine Fisheries Service and the Washington State Department of Fish and Wildlife. The turbulence measured in the gate well may also result in suboptimal fish passage conditions but no established guidelines to contrast those results have been published. C1 [Hughes, James S.; Deng, Z. Daniel; Weiland, Mark A.; Martinez, Jayson J.; Yuan, Yong] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hughes, JS (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM james.hughes@pnnl.gov; zhiqun.deng@pnnl.gov; Mark.Weiland@pnnl.gov; Jayson.Martinez@pnnl.gov; Yong.Yuan@pnnl.gov RI Deng, Daniel/A-9536-2011 OI Deng, Daniel/0000-0002-8300-8766 FU U.S. Army Corps of Engineers (USACE), Portland District FX The work described in this article was funded by the U.S. Army Corps of Engineers (USACE), Portland District. The study was conducted at Pacific Northwest National Laboratory (PNNL), operated by Battelle for the U.S. Department of Energy. The authors thank Dennis Schwartz, Randy Lee, Jon Rerecich, Ben Hausmann, and Kasey Welch (USACE) and Gene Ploskey, Bob Mueller, Eric Fischer, Geoff McMichael, and Shon Zimmerman (PNNL) for their help with this study. NR 19 TC 0 Z9 0 U1 3 U2 14 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD NOV PY 2011 VL 4 IS 11 BP 2038 EP 2048 DI 10.3390/en4112038 PG 11 WC Energy & Fuels SC Energy & Fuels GA 857CT UT WOS:000297693000011 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbia, E Acharya, BS Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auge, E Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bolnet, NM Bona, M Bondarenko, VG Bondioli, M Boonekamp, M Boorman, G Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cambiaghi, M Cameron, D Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Consorti, V Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Silva, PVM Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davison, AR Davygora, Y Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDCF De Cecco, S de Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lotto, B De Mora, L De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dean, S Debbe, R Dedovich, DV Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M Della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, ADV Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Edwards, NC Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Fengd, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferraria, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordanic, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert Goldfarb, S Golling, T Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Grishkevich, YV Grivaz, JF Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamal, P Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayashi, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegia, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Homma, Y Hong, TM van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Quiles, AI Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Plante, IJL Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-Anda, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Jovin, T Ju, X Jung, CA Juranek, V Jussel, P Rozas, AJ Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, J Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Keung, J Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, LE Kiryunin, AE Kishimoto, T Kisielewska, D Kittelmann, T Kiver, AM Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, J Kraus, JK Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuze, M Kuzhir, P Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Laurelli, P Lavrijsen, W Laycock, P Lazarev, AB Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Leltchouk, M Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liao, H Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meiera, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micua, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morley, AK Mornacchi, G Morozov, SV Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muir, A Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforou, N Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Paige, F Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadelis, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Peshekhonov, VD Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piec, SM Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Ramstedt, M Randle-Conde, AS Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romano, M Romanov, VM Romeo, G Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Scott, WG Searcy, J Sedov, G Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, K Sherman, D Sherwood, P Shibata, A Shichi, H Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simica, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soualah, R Soukharev, A Spagnolo, S Spano, F Spighia, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stillings, JA Stockmanns, T Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, HS Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tian, F Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorachea, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E Van Der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Weydert, C Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A Nedden, MZ Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbia, E. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bona, M. Bondarenko, V. G. Bondioli, M. Boonekamp, M. Boorman, G. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Urban, S. Cabrera Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cambiaghi, M. Cameron, D. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Consonni, M. Consorti, V. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lotto, B. De Mora, L. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Debbe, R. Dedovich, D. V. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. Della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Fengd, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferraria, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J-C. Gazis, E. N. Ge, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordanic, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert Goldfarb, S. Golling, T. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grafstroem, P. Grah, C. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamal, P. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayashi, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez, C. M. Jimenez, Y. Hernandez Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegia, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. Hong, T. M. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J-Y. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Irles Quiles, A. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Plante, I. Jen-La Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-Anda, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Jovin, T. Ju, X. Jung, C. A. Juranek, V. Jussel, P. Juste Rozas, A. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Keung, J. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, L. E. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kraus, J. K. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuze, M. Kuzhir, P. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Laurelli, P. Lavrijsen, W. Laycock, P. Lazarev, A. B. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Leltchouk, M. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J-R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Machado Miguens, J. Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Martin, V. J. Latour, B. Martin dit Martin-Haugh, S. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meiera, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micua, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Miralles Verge, L. Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjornmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morii, M. Morin, J. Morley, A. K. Mornacchi, G. Morozov, S. V. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muir, A. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Griso, S. Pagan Paganis, E. Paige, F. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piec, S. M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Ramstedt, M. Randle-Conde, A. S. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romano, M. Romanov, V. M. Romeo, G. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schoning, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shichi, H. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simica, Lj. Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soualah, R. Soukharev, A. Spagnolo, S. Spano, F. Spighia, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, H. S. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tian, F. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorachea, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. Van Der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. Nedden, M. zur Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurement of the jet fragmentation function and transverse profile in proton-proton collisions at a center-of-mass energy of 7 TeV with the ATLAS detector SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID SCALING VIOLATIONS; Q2 DEPENDENCE; HERA; QCD; DISTRIBUTIONS; ANNIHILATION; SCATTERING; QUARK AB The jet fragmentation function and transverse profile for jets with 25 GeV < p(Tjet) < 500 GeV and |eta(jet)| < 1.2 produced in proton-proton collisions with a center-of-mass energy of 7 TeV are presented. The measurement is performed using data with an integrated luminosity of 36 pb(-1). Jets are reconstructed and their momentum measured using calorimetric information. The momenta of the charged particle constituents are measured using the tracking system. The distributions corrected for detector effects are compared with various Monte Carlo event generators and generator tunes. Several of these choices show good agreement with the measured fragmentation function. None of these choices reproduce both the transverse profile and fragmentation function over the full kinematic range of the measurement. C1 [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Consorti, V.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alam, M. S.; Ernst, J.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS, LAPP, IN2P3, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Huseynov, N.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Martinez, M.; Meoni, E.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] ICREA, Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Martinez, M.; Meoni, E.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Martinez, M.; Meoni, E.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simica, Lj.; Vranjes, N.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Jovin, T.; Mamuzic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Hodgkinson, M. C.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Griso, S. Pagan; Quarrie, D. R.; Rammes, M.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Brandt, G.; Diglio, S.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; Nedden, M. zur] Humboldt Univ, Dept Phys, Berlin, Germany. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Rolli, S.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Rolli, S.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Hillier, S. J.; Lenzen, G.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.; Zeller, M.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, M.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Ferraria, R.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighia, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Ist Nazl Fis Nucl, Sez Bologna, Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Alhroob, M.; Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Runolfsson, O.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Schwindt, T.; Stillings, J. A.; Stockmanns, T.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Cerqueira, A. S.; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE EE IF, Rio De Janeiro, Brazil. Univ Fed Juiz de Fora, Juiz de Fora, Brazil. Univ Fed Sao Joao del Rei, Sao Joao del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Trivedi, A.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micua, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorachea, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politeh Bucharest, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Khakzad, M.; Koffas, T.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anastopoulos, C.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Banfi, D.; Battistin, M.; Bellina, F.; Bellomo, M.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Barajas, C. A. Chavez; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobos, D.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Garelli, N.; Garonne, V.; Gayde, J-C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Grafstroem, P.; Gray, H. M.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, P.; Jonsson, O.; Joram, C.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koeneke, K.; Kollar, D.; Kotamaeki, M. J.; Kvita, J.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Magnoni, L.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Marshall, Z.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stewart, G. A.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Plante, I. Jen-La; Ju, X.; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Miller, D. W.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Wang, H.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Yu, J.; Zhong, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Fengd, C.; Ge, P.; He, M.; Liu, D.; Meng, Z.; Miao, J.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Clermont Univ, Lab Phys Corpusculaire, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Univ Clermont Ferrand, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] CNRS, IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Ist Nazl Fis Nucl, Grp Coll Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Ciba, K.; Dabrowski, W.; Dwuznik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Randle-Conde, A. S.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Dallas, TX 75230 USA. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Sedov, G.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Katzy, J.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Mijovic, L.; Moenig, K.; Petschull, D.; Rubinskiy, I.; Sedov, G.; Tackmann, K.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klaiber-Lodewigs, J.; Klingenberg, R.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Friedrich, F.; Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Rudolph, C.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphy, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Harrington, R. D.; Martin, V. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. Fachhochschule Wiener Neustadt, Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.; Wen, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Iacobucci, G.; Leger, A.; Lister, A.; Latour, B. Martin dit; Herrera, C. Mora; Nektarijevic, S.; Nessi, M.; Nikolics, K.; Pasztor, G.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Univ Genoa, Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy. [Barberis, D.; Caso, C.; Coccaro, A.; Cornelissen, T.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Georgian Acad Sci, E Andronikashvili Inst Phys, GE-380060 Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Georgian Acad Sci, Inst High Energy Phys, GE-380060 Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Moeller, V.; Morii, M.; Prasad, S.; Skottowe, H. P.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Childers, J. T.; Davygora, Y.; Dietzsch, T. A.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meiera, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schmitt, S.; Schoning, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; Dudziak, F.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Akiyama, A.; Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kishimoto, T.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Suzuki, Y.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.; Wiglesworth, C.] Queen Mary Univ London, Dept Phys, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Misiejuk, A.; Pastore, Fr.; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Campanelli, M.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris Diderot, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Inst Fys, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Llorente Merino, J.; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arik, E.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pueschel, E.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Borroni, S.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Wu, Y.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys, E Lansing, MI 48824 USA. [Acerbia, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Univ Milan, Ist Nazl Fis Nucl, Sez Milano, Milan, Italy. [Acerbia, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Giunta, M.; Guler, H.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; de Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert; Groh, M.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Stonjek, S.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Okumura, Y.; Shichi, H.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; Della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Univ Naples Federico II, Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; Della Volpe, D.; Giordano, R.; Iengo, P.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gorini, B.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gorini, B.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys BINP, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Davies, E.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Korn, A.; Kundu, N.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.] Univ Oxford, Dept Phys, Oxford, England. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Univ Pavia, Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Ist Nazl Fis Nucl, Sez Pisa, I-56100 Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Wemans, A. Do Valle; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Machado Miguens, J.; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Vacek, V.; Valenta, J.; Vrba, V.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Borisov, A.; Minaenko, A. A.; Solodkov, A. A.] State Res Ctr Inst High Energy Phys, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Inst Particle Phys, Didcot OX11 0QX, Oxon, England. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Benslama, K.; Ming, Y.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mastrandrea, P.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Mastrandrea, P.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Stanescu, C.] Univ Roma Tre, Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Biglietti, M.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Reseau Univ Phys Hautes Energies, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [Cherkaoui El Moursli, R.; El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Dept Phys, Fac Sci Semlalia, Marrakech 40000, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Mansoulie, B.; Meyer, J-P.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Xu, C.; Yu, J.] CEA Saclay Commissariat Energie Atom, DSM IRFU Inst Rech Lois Fondament Univ, Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Nicolas, L.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] Fermilab Natl Accelerator Lab, SLAC, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.; Yacoob, S.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegia, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-Anda, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Boeriu, O. E. Vickey; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Jon-Anda, K.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Strandberg, S.; Tylmad, M.; Boeriu, O. E. Vickey; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, H.; Wang, J.; Wang, S. M.; Weng, Z.; Zhang, D.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Keung, J.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Schouten, D.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navarro, G.; Rodriguez, D.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Bold, T.; Bondioli, M.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Coll Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Giordanic, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Amoros, G.; Urban, S. Cabrera; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Jimenez, Y. Hernandez; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Banerjee, Sw.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Guida, A.; Gutzwiller, O.; Ji, H.; Kashif, L.; La Rosa, A.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Morales, M. I. Pedraza; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Lenzen, G.; Maettig, P.; Mechtel, M.; Pataraia, S.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys, Wuppertal, Germany. [Adelman, J.; Atoian, G.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hsu, P. J.; Kaplan, B.; Lee, L.; Loginov, A.; Martin, A. J.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS, Ctr Calcul, IN2P3, Domaine Sci Doua, Villeurbanne, France. [Amorim, A.; Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Bold, T.; Grabowska-Bold, I.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Canelli, F.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Smirnova, Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Kuzhir, Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Fazio, Salvatore /G-5156-2010; Gutierrez, Phillip/C-1161-2011; Ferrando, James/A-9192-2012; collins-tooth, christopher/A-9201-2012; Perrino, Roberto/B-4633-2010; De Cecco, Sandro/B-1016-2012; Stoicea, Gabriel/B-6717-2011; branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; Rotaru, Marina/A-3097-2011; valente, paolo/A-6640-2010; Buttar, Craig/D-3706-2011; Takai, Helio/C-3301-2012; Li, Xuefei/C-3861-2012; Juste, Aurelio/I-2531-2015; Grinstein, Sebastian/N-3988-2014; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Doyle, Anthony/C-5889-2009; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Goncalo, Ricardo/M-3153-2016; Canelli, Florencia/O-9693-2016; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Tikhomirov, Vladimir/M-6194-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Lokajicek, Milos/G-7800-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Tudorache, Valentina/D-2743-2012; Marti-Garcia, Salvador/F-3085-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Robson, Aidan/G-1087-2011; Ancu, Lucian Stefan/F-1812-2010; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Pina, Joao /C-4391-2012; Vanyashin, Aleksandr/H-7796-2013; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Liu, Sheng/K-2815-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Veneziano, Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; messina, andrea/C-2753-2013; Amorim, Antonio/C-8460-2013; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Brooks, William/C-8636-2013 OI Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; Kuzhir, Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805; Ferrando, James/0000-0002-1007-7816; Perrino, Roberto/0000-0002-5764-7337; Stoicea, Gabriel/0000-0002-7511-4614; Rotaru, Marina/0000-0003-3303-5683; valente, paolo/0000-0002-5413-0068; Takai, Helio/0000-0001-9253-8307; Belanger-Champagne, Camille/0000-0003-2368-2617; Prokofiev, Kirill/0000-0002-2177-6401; Chen, Chunhui /0000-0003-1589-9955; Filthaut, Frank/0000-0003-3338-2247; abi, babak/0000-0001-7036-9645; Castro, Nuno/0000-0001-8491-4376; Farrington, Sinead/0000-0001-5350-9271; Turra, Ruggero/0000-0001-8740-796X; Robson, Aidan/0000-0002-1659-8284; Weber, Michele/0000-0002-2770-9031; Strube, Jan/0000-0001-7470-9301; Beck, Hans Peter/0000-0001-7212-1096; Salamanna, Giuseppe/0000-0002-0861-0052; Evans, Harold/0000-0003-2183-3127; De Lotto, Barbara/0000-0003-3624-4480; Cristinziani, Markus/0000-0003-3893-9171; Chromek-Burckhart, Doris/0000-0003-4243-3288; Qian, Jianming/0000-0003-4813-8167; Haas, Andrew/0000-0002-4832-0455; Cranmer, Kyle/0000-0002-5769-7094; Klinkby, Esben Bryndt/0000-0002-1908-5644; Pomarede, Daniel/0000-0003-2038-0488; Vos, Marcel/0000-0001-8474-5357; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; Vari, Riccardo/0000-0002-2814-1337; Di Micco, Biagio/0000-0002-4067-1592; Nisati, Aleandro/0000-0002-5080-2293; Gray, Heather/0000-0002-5293-4716; Mincer, Allen/0000-0002-6307-1418; Grinstein, Sebastian/0000-0002-6460-8694; Osculati, Bianca Maria/0000-0002-7246-060X; Adye, Tim/0000-0003-0627-5059; Monzani, Simone/0000-0002-0479-2207; Bailey, David C/0000-0002-7970-7839; Doyle, Anthony/0000-0001-6322-6195; Nielsen, Jason/0000-0002-9175-4419; Grancagnolo, Francesco/0000-0002-9367-3380; Chen, Hucheng/0000-0002-9936-0115; Cataldi, Gabriella/0000-0001-8066-7718; Sawyer, Lee/0000-0001-8295-0605; Korol, Aleksandr/0000-0001-8448-218X; Giordani, Mario/0000-0002-0792-6039; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Goncalo, Ricardo/0000-0002-3826-3442; Canelli, Florencia/0000-0001-6361-2117; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Camarri, Paolo/0000-0002-5732-5645; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Tikhomirov, Vladimir/0000-0002-9634-0581; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Mikestikova, Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Ancu, Lucian Stefan/0000-0001-5068-6723; Villa, Mauro/0000-0002-9181-8048; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Veneziano, Stefano/0000-0002-2598-2659; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Cascella, Michele/0000-0003-2091-2501; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Brooks, William/0000-0001-6161-3570 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; NWO, Netherlands; FOM, Netherlands; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; the Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 45 TC 15 Z9 15 U1 4 U2 58 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD NOV PY 2011 VL 71 IS 11 AR 1795 DI 10.1140/epjc/s10052-011-1795-y PG 25 WC Physics, Particles & Fields SC Physics GA 857GT UT WOS:000297706700015 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Andari, N Andeen, T Anders, CF Anderson, KJ Andreazza, A Andreia, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonelli, S Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arika, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auerbach, B Auge, E Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, MD Baker, S Pedrosa, FBDS Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Be-Dikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagambaa, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benedict, BH Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingulc, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, J Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bolnet, NM Bona, M Bondarenko, VG Boonekamp, M Boorman, G Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Boulahouache, C Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byatt, T Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cambiaghi, M Cameron, D Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Caramarcu, C Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Consorti, V Constantinescu, S Conta, C Con-Venti, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Torres, RC Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Cuneo, S Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Silva, PVM Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davison, AR Davygora, Y Dawe, E Dawson, I Dawson, JW Daya, RK De, K De Asmundis, R De Castro, S Salgado, PEDCF De Cecco, S de Graat, J De Groot, N de Jong, P De la Taille, C De la Torre, H De Lotto, B De Mora, L De Nooij, L Branco, MDO De Pedis, D De Saintignon, P De Salvo, A De Sanctis, U De Santo, A De Regie, JBDV Dean, S Dedovich, DV Degenhardt, J Dehchar, M Deile, M Del Papa, C Del Peso, J Del Prete, T Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djilkibaev, R Djobava, T do Vale, MAB Wemans, ADV Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Dzahini, D Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Edwards, NC Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Ely, R Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Falou, AC Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Fellmann, D Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fohlisch, F Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallas, MV Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ged, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedta, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Goldin, D Golling, T Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Gouanere, M Eschrich, IG Gouighri, M Goujdamic, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grabski, V Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Grishkevich, YV Grivaz, JF Grognuz, J Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamal, P Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, D Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, M Hellman, S Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmes, A Holmgren, SO Holtsch, A Holy, T Holzbauer, JL Homma, Y Hong, TM van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Idzik, M Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imhaeuser, M Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodicea, M Ionescu, G Quiles, AI Ishii, K Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istin, S Itoh, Y Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Plante, IJL Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jonand, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Ju, X Juranek, V Jussel, P Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Keung, J Khakzad, M Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomicha, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, GP Kirsch, LE Kiryunin, AE Kisielewska, D Kittelmann, T Kiver, AM Kiyamura, H Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komaragiri, JR Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasel, O Krasny, MW Krasznahorkay, A Kraus, J Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugelc, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuykendall, W Kuze, M Kuzhir, P Kvasnicka, O Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Laria, T Larionov, AV Larner, A Lasseur, C Lassnig, M Lau, W Laurelli, P Lavorato, A Lavrijsen, W Laycock, P Lazarev, AB Lazzaro, A Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Lebedev, A Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Lellouch, J Leltchouk, M Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Lockwitz, S Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminaria, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Macina, D Mackeprang, R Madaras, RJ Mader, WF Maennerc, R Maeno, T Mattig, P Mattig, S Martins, PJM Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Latour, BMD Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzanoa, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Mass, M Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, J Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meiera, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meuser, S Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohn, B Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morais, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morita, Y Morley, AK Mornacchi, G Morone, MC Morozov, SV Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muijs, A Muir, A Munwes, Y Murakami, K Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozicka, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohska, TK Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Ortega, EO Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Oye, OK Ozcan, VE Ozturk, N Pages, AP Aranda, CP Paganis, E Paige, F Pajchel, K Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadelis, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Peshekhonov, VD Peters, O Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piec, SM Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Plano, WG Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Porter, R Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Ramstedt, M Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Garcia, YR Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romanov, VM Romeo, G Maltrana, DR Roos, L Ros, E Rosati, S Rosbach, K Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, G Ruhr, F Ruggieria, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, JB Savard, P Savinov, V Savu, DO Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schneider, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Scott, WG Searcy, J Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, C Shaw, K Sherman, D Sherwood, P Shibata, A Shichi, H Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Si-Monyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloan, TJ Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B Denis, RDS Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stillings, JA Stockmanns, T Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, HS Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Svatos, M Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taga, A Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarellia, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Taylor, C Taylor, FE Taylor, GN Taylorb, W Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tuggle, JM Turala, M Turecek, D Cakire, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E van der Leeuw, R van der Poel, E van der Ster, D Van Eijk, B van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varnes, EW Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Viret, S Virzi, J Vitale, A Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Weydert, C Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yamada, M Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, WM Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zemla, A Zendler, C Zenin, AV Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Andari, N. Andeen, T. Anders, C. F. Anderson, K. J. Andreazza, A. Andreia, V. Andrieux, M. -L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonelli, S. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J. -F. Arika, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auerbach, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, M. D. Baker, S. Pedrosa, F. Baltasar Dos Santos Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Be-Dikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benedict, B. H. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingulc, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bona, M. Bondarenko, V. G. Boonekamp, M. Boorman, G. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boulahouache, C. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byatt, T. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cambiaghi, M. Cameron, D. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Caramarcu, C. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. Cherkaoui El Moursli, R. Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, M. Consorti, V. Constantinescu, S. Conta, C. Con-Venti, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Coura Torres, R. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cuneo, S. Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. De Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De la Taille, C. De la Torre, H. De Lotto, B. De Mora, L. De Nooij, L. Branco, M. De Oliveira De Pedis, D. De Saintignon, P. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Dedovich, D. V. Degenhardt, J. Dehchar, M. Deile, M. Del Papa, C. Del Peso, J. Del Prete, T. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djilkibaev, R. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M. -A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dzahini, D. Duren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Ely, R. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Falou, A. C. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Fellmann, D. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Foehlisch, F. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallas, M. V. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J. -C. Gazis, E. N. Ged, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedta, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Goldin, D. Golling, T. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Gouanere, M. Eschrich, I. Gough Gouighri, M. Goujdamic, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grabski, V. Grafstroem, P. Grah, C. Grahn, K. -J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Grognuz, J. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamal, P. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, M. Hellman, S. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmes, A. Holmgren, S. O. Holtsch, A. Holy, T. Holzbauer, J. L. Homma, Y. Hong, T. M. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J. -Y. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Idzik, M. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imhaeuser, M. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodicea, M. Ionescu, G. Irles Quiles, A. Ishii, K. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istin, S. Itoh, Y. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Plante, I. Jen-La Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jonand, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Ju, X. Juranek, V. Jussel, P. Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Keung, J. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomicha, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, G. P. Kirsch, L. E. Kiryunin, A. E. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kiyamura, H. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komaragiri, J. R. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasel, O. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugelc, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuykendall, W. Kuze, M. Kuzhir, P. Kvasnicka, O. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Laria, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Lau, W. Laurelli, P. Lavorato, A. Lavrijsen, W. Laycock, P. Lazarev, A. B. Lazzaro, A. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebedev, A. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Lellouch, J. Leltchouk, M. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J. -R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Lockwitz, S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminaria, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Macina, D. Mackeprang, R. Madaras, R. J. Mader, W. F. Maennerc, R. Maeno, T. Maettig, P. Maettig, S. Magalhaes Martins, P. J. Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph. Martin, T. A. Latour, B. Martin dit Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzanoa, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Mass, M. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meiera, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Mendoza Navas, L. Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meuser, S. Meyer, C. Meyer, J. -P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Miralles Verge, L. Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjornmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohn, B. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morais, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morii, M. Morin, J. Morita, Y. Morley, A. K. Mornacchi, G. Morone, M. -C. Morozov, S. V. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muijs, A. Muir, A. Munwes, Y. Murakami, K. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu. Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozicka, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohska, T. K. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Ortega, E. O. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Oye, O. K. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Paganis, E. Paige, F. Pajchel, K. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadelis, A. Papadopoulou, Th. D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr. Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Peters, O. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piec, S. M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Plano, W. G. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Porter, R. Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Ramstedt, M. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Garcia, Y. Rodriguez Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romanov, V. M. Romeo, G. Maltrana, D. Romero Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, G. Ruehr, F. Ruggieria, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F. -W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schneider, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph. Schwanenberger, C. Schwartzman, A. Schwemling, Ph. Schwienhorst, R. Schwierz, R. Schwindling, J. Scott, W. G. Searcy, J. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, C. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shichi, H. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj. Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj. Simion, S. Simmons, B. Si-Monyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sisakyan, A. N. Sivoklokov, S. Yu. Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloan, T. J. Sloper, J. Smakhtin, V. Smirnov, S. Yu. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. Denis, R. D. St. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, H. S. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Svatos, M. Sviridov, Yu. M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taga, A. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarellia, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Taylor, C. Taylor, F. E. Taylor, G. N. Taylorb, W. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C. -L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tuggle, J. M. Turala, M. Turecek, D. Cakire, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. van der Leeuw, R. van der Poel, E. van der Ster, D. Van Eijk, B. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varnes, E. W. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Viret, S. Virzi, J. Vitale, A. Vitells, O. Viti, M. Vivarelli, I. Vives Vaque, F. Vlachos, S. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yamada, M. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, W. -M. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zemla, A. Zendler, C. Zenin, A. V. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Measurement of multi-jet cross sections in proton-proton collisions at a 7 TeV center-of-mass energy SO EUROPEAN PHYSICAL JOURNAL C LA English DT Article ID ANTIPROTON COLLIDER; PHOTOPRODUCTION; SIMULATION; EVENTS; HERA; PHYSICS AB Inclusive multi-jet production is studied in proton-proton collisions at a center-of-mass energy of 7 TeV, using the ATLAS detector. The data sample corresponds to an integrated luminosity of 2.4 pb(-1). Results on multi-jet cross sections are presented and compared to both leading-order plus parton-shower Monte Carlo predictions and to next-to-leading-order QCD calculations. C1 [Aad, G.; Ahles, F.; Beckingham, M.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Consorti, V.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alam, M. S.; Ernst, J.; Rojo, V.] Univ Albany, Albany, NY USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, H. S.] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakire, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Gouanere, M.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Ionescu, G.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Sauvage, G.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] CNRS, LAPP, IN2P3, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Fellmann, D.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Alonso, A.; Brandt, A.; Brown, H.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th. D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Huseynov, N.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] ICREA, Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Univ Autonoma Barcelona, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vives Vaque, F.; Volpi, M.; Vorwerk, V.] Inst Fis Altes Energies, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj.; Simic, Lj.; Vranjes, N.; Milosavljevic, M. Vranjes] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Mamuzic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Mohn, B.; Oye, O. K.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J. -F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Ely, R.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Korn, A.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, W. -M.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Brandt, G.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Garcia, Y. Rodriguez; Schulz, H.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Schernau, M.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Schernau, M.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arika, E.; Arik, M.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingulc, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Sbarra, C.; Sbrizzi, A.; Spighi, R.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, INFN Sez Bologna, Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Vitale, A.; Zoccoli, A.] Univ Bologna, Dipartmento Fis, Bologna, Italy. [Alhroob, M.; Anders, C. F.; Anghinolfi, F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Havranek, M.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Meuser, S.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Hanninger, G. Nunes; Poghosyan, T.; Psoroulas, S.; Radics, B.; Runolfsson, O.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Stillings, J. A.; Stockmanns, T.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Harrington, R. D.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Cerqueira, A. S.; Coura Torres, R.; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed do Rio Janeiro COPPE EE IF, Rio De Janeiro, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, Rio De Janeiro, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Tarrade, F.; Trivedi, A.; Undrus, A.; Wenaus, T.; White, S.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Caramarcu, C.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Khakzad, M.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anastopoulos, C.; Andrieux, M. -L.; Antos, J.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Pedrosa, F. Baltasar Dos Santos; Banfi, D.; Battistin, M.; Bellina, F.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Branco, M. De Oliveira; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Gallas, M. V.; Garelli, N.; Garonne, V.; Gayde, J. -C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Grafstroem, P.; Gray, H. M.; Grognuz, J.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, P.; Jonsson, O.; Joram, C.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koeneke, K.; Koffas, T.; Kollar, D.; Kotamaeki, M. J.; Kvita, J.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Magnoni, L.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marchand, J. F.; Marshall, Z.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pastore, Fr.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stewart, G. A.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tappern, G. P.; Ten Kate, H.; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Anjos, N.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Maltrana, D. Romero; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.; Yu, J.; Zhong, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ged, P.; He, M.; Liu, D.; Meng, Z.; Miao, J.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Clermont Univ, Lab Phys Corpusculaire, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] Univ Clermont Ferrand, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.; Viret, S.] CNRS, IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Antonov, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Mateos, D. Lopez; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Spano, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Hansen, J. R.; Hansen, J. B.; Hansen, D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Si-Monyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] INFN Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Bold, T.; Ciba, K.; Dabrowski, W.; Dwuznik, M.; Grabowska-Bold, I.; Idzik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Richter-Was, E.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Goldin, D.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Reeves, K.] Univ Texas Dallas, Dept Phys, Dallas, TX 75230 USA. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K. -J.; Gregor, I. M.; Hiller, K. H.; Holtsch, A.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Schneider, M.; Stelzer, H. J.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K. -J.; Gregor, I. M.; Hiller, K. H.; Holtsch, A.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Nozicka, M.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Schneider, M.; Stelzer, H. J.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Dobos, D.; Goessling, C.; Hirsch, F.; Klaiber-Lodewigs, J.; Klingenberg, R.; Krasel, O.; Mass, M.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. Fachhochschule Wiener Neustadt, A-2700 Wiener Neustadt, Austria. [Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.; Wen, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Iacobucci, G.; Leger, A.; Lister, A.; Macina, D.; Latour, B. Martin dit; Herrera, C. Mora; Morone, M. -C.; Nektarijevic, S.; Nessi, M.; Pasztor, G.; Pohl, M.; Robichaud-Veronneau, A.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Caso, C.; Coccaro, A.; Cornelissen, T.; Cuneo, S.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Tbilisi State Univ, GE-380086 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, Inst Phys, GE-380077 Tbilisi, Rep of Georgia. [Chikovani, L.; Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.; Tskhadadze, E. G.] Georgian Acad Sci, HEP Inst, Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Duren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Saxon, D. H.; Shaw, C.; Smith, K. M.; Denis, R. D. St.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, C.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Ay, C.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Antonelli, M.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; De Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Antonelli, M.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; De Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Antonelli, M.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; De Saintignon, P.; Delsart, P. A.; Donini, J.; Dzahini, D.; Hostachy, J. -Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph.; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Antonaki, A.; Childers, J. T.; Davygora, Y.; Dietzsch, T. A.; Foehlisch, F.; Geweniger, C.; Hanke, P.; Henke, M.; Khomicha, A.; Kluge, E. -E.; Lendermann, V.; Meiera, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugelc, A.; Maennerc, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Marino, C. P.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; Dudziak, F.; Lebedev, A.; Mete, A. S.; Meyer, W. T.; Nelson, A.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Arai, Y.; Doi, Y.; Ekelof, T.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Ishii, K.; Ishino, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Morita, Y.; Murakami, K.; Nagano, K.; Nozaki, M.; Odaka, S.; Ohska, T. K.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Akiyama, A.; Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kiyamura, H.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Antonelli, S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Antonelli, S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Sloan, T. J.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, Ist Nazl Fis Nucl, Sez Lecce, Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Cindro, V.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.; Wiglesworth, C.] Queen Mary Univ London, Dept Phys, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Misiejuk, A.; Rose, M.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Byatt, T.; Campanelli, M.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] CNRS, IN2P3, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris Diderot, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Lellouch, J.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph.; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] UPMC, Lab Phys Nucl & & Hautes Energies, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Merino, J. Llorente; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Miyagawa, P. S.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Plano, W. G.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Arfaoui, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Li, S.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M. -A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wu, Y.; Yang, H.; Zhou, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbi, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Annovi, A.; Baccaglioni, G.; Battistoni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Laria, T.; Lazzaro, A.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarellia, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Univ Milan, INFN, Sez Milano, Milan, Italy. [Acerbi, E.; Andreazza, A.; Annovi, A.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Lazzaro, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Inst Phys, Minsk, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Gingrich, D. M.; Gutierrez, A.; Kantserov, V. A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Oakham, F. G.; Savard, P.; Scallon, O.; Vetterli, M. C.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu.; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys ITEP, Moscow, Russia. [Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Khodinov, A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu.; Soldatov, E.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu.; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Akimov, A. V.; Biebel, O.; Calfayan, P.; de Graat, J.; Deile, M.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fac Phys, Munich, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Stonjek, S.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Werner Heisenberg Inst, Max Planck Inst Phys, Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Itoh, Y.; Morvaj, L.; Ohshima, T.; Okumura, Y.; Shichi, H.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Con-Venti, F.; De Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.; Sekhniaidze, G.] Univ Naples Federico II, Ist Nazl Fis Nucl, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Iengo, P.; Merola, L.; Musto, E.; Patricelli, S.; Rossi, E.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, NL-6525 ED Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Muijs, A.; Mussche, I.; Ottersbach, J. P.; Peters, O.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Leeuw, R.; van der Poel, E.; Van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Vreeswijk, M.] Nikhef Natl Inst Subat Phys, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] Univ Illinois, Dept Phys, De Kalb, IL USA. [Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] Budker Inst Nucl Phys BINP, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Djilkibaev, R.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Andari, N.; Anduaga, X. S.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De la Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Abreu, H.; Andari, N.; Anduaga, X. S.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De la Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Falou, A. C.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Veillet, J. J.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Czyczula, Z.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.; Taga, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Davies, E.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Holmes, A.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Kirsch, G. P.; Kundu, N.; Larner, A.; Lau, W.; Lavorato, A.; Lewis, A.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Ryder, N. C.; Short, D.; Tseng, J. C. -L.; Vickey, T.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Wooden, G.] Univ Oxford, Dept Phys, Oxford, England. [Bellomo, M.; Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Univ Pavia, Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hance, M.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Ist Nazl Fis Nucl, Sez Pisa, I-56100 Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Boulahouache, C.; Cleland, W.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Tsulaia, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.; Amorim, A.; Anulli, F.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Wemans, A. Do Valle; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Magalhaes Martins, P. J.; Maio, A.; Maneira, J.; Morais, A.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.; Yuan, L.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Kvasnicka, O.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu. M.; Vorobiev, A. P.; Zaets, V. G.; Zaitsev, A. M.; Zenin, A. V.; Zenin, O.; Zmouchko, V. V.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, J. T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; Mattravers, C.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Ortega, E. O.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Artoni, G.; Bagnaia, P.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminaria, L.; Maiani, C.; Marzanoa, F.; Mastrandrea, P.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Borroni, S.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Giunta, M.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Mastrandrea, P.; Rosati, S.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bini, C.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodicea, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieria, F.; Spiriti, E.; Stanescu, C.] Univ Roma Tre, INFN, Sez Roma Tre, Rome, Italy. [Bacci, C.; Biglietti, M.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieria, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Reseau Univ Phys Hautes Energies Univ Hassan II, Fac Sci Ain Chock, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [Cherkaoui El Moursli, R.; El Kacimi, M.; Goujdamic, D.] Univ Cadi Ayyad, Dept Phys, Fac Sci Semlalia, Marrakech 40000, Morocco. [Derkaoui, J. E.; Ouchrif, M.] LPTPM, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Mansoulie, B.; Meyer, J. -P.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph.; Schwindling, J.; Simard, O.; Virchaux, M.; Xu, C.; Yu, J.] CEA Saclay Commissariat Energie Atom, DSM IRFU Inst Rech Lois Fondamentales Univ, Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F. -W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Kuykendall, W.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Nicolas, L.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Sipica, V.; Stahl, T.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; Komaragiri, J. R.; O'Neil, D. C.; Petteni, M.; Schouten, D.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Miller, D. W.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnuclear Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedta, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jonand, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedta, K.; Hellman, S.; Johansen, M.; Jonand, K.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, H.; Wang, J.; Wang, S. M.; Weng, Z.; Zhang, D.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Andreia, V.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamamoto, S.; Yamamura, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Keung, J.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Solodkov, A. A.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Taylorb, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Ibaraki, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Sci & Technol Ctr, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Mendoza Navas, L.; Navarro, G.; Rodriguez, D.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Benedict, B. H.; Bold, T.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Okawa, H.; Porter, R.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Ist Nazl Fis Nucl, Grp Coll Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ellert, M.; Ferrari, A.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingenier Elect, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Gimenez, V. Castillo; Costa, M. J.; Escobar, C.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Astbury, A.; Banerjee, Sw.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J. -R.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Kashif, L.; La Rosa, A.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Pataraia, S.; Morales, M. I. Pedraza; Peng, H.; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zhu, Y.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Imhaeuser, M.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Kuhl, T.; Lenz, T.; Lenzen, G.; Maettig, P.; Mechtel, M.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Atoian, G.; Auerbach, B.; Baker, O. K.; Be-Dikian, S.; Almenar, C. Cuenca; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hsu, P. J.; Kaplan, B.; Lee, L.; Lockwitz, S.; Loginov, A.; Martin, A. J.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Grabski, V.; Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS, Ctr Calcul, IN2P3, Villeurbanne, France. [Amorim, A.; Carvalho, J.; Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Carvalho, J.; Gomes, A.; Jorge, P. M.; Lopes, L.; Maio, A.; Morais, A.; Palma, A.; Pina, J.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, CFNUL, Lisbon, Portugal. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Con-Venti, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Mateos, D. Lopez] CALTECH, Pasadena, CA 91125 USA. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] Inst Particle & Nucl Phys, KFKI Res Inst, Budapest, Hungary. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI branchini, paolo/A-4857-2011; Wolter, Marcin/A-7412-2012; Rotaru, Marina/A-3097-2011; Doyle, Anthony/C-5889-2009; valente, paolo/A-6640-2010; Buttar, Craig/D-3706-2011; Takai, Helio/C-3301-2012; Gutierrez, Phillip/C-1161-2011; collins-tooth, christopher/A-9201-2012; Ferrando, James/A-9192-2012; Perrino, Roberto/B-4633-2010; De Cecco, Sandro/B-1016-2012; Stoicea, Gabriel/B-6717-2011; Britton, David/F-2602-2010; Grinstein, Sebastian/N-3988-2014; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Leyton, Michael/G-2214-2016; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Prokoshin, Fedor/E-2795-2012; Morone, Maria Cristina/P-4407-2016; Goncalo, Ricardo/M-3153-2016; Canelli, Florencia/O-9693-2016; Idzik, Marek/A-2487-2017; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Jones, Roger/H-5578-2011; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Tikhomirov, Vladimir/M-6194-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Martins, Paulo/M-1844-2014; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Cavalli-Sforza, Matteo/H-7102-2015; Ferrer, Antonio/H-2942-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; Shmeleva, Alevtina/M-6199-2015; Lokajicek, Milos/G-7800-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Santamarina Rios, Cibran/K-4686-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Ventura, Andrea/A-9544-2015; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Solfaroli Camillocci, Elena/J-1596-2012; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Morozov, Sergey/C-1396-2014; Robson, Aidan/G-1087-2011; Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Orlov, Ilya/E-6611-2012; Annovi, Alberto/G-6028-2012; Brooks, William/C-8636-2013; Pina, Joao /C-4391-2012; Vanyashin, Aleksandr/H-7796-2013; La Rosa, Alessandro/I-1856-2013; Casadei, Diego/I-1785-2013; Moraes, Arthur/F-6478-2010; Conde Muino, Patricia/F-7696-2011; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kuzhir, Polina/H-8653-2012; Delmastro, Marco/I-5599-2012; Weigell, Philipp/I-9356-2012; Veneziano, Stefano/J-1610-2012; Di Micco, Biagio/J-1755-2012; spagnolo, stefania/A-6359-2012; Di Nardo, Roberto/J-4993-2012; Della Pietra, Massimo/J-5008-2012; Andreazza, Attilio/E-5642-2011; Bergeaas Kuutmann, Elin/A-5204-2013; Cascella, Michele/B-6156-2013; messina, andrea/C-2753-2013; Amorim, Antonio/C-8460-2013; Fazio, Salvatore /G-5156-2010; Smirnova, Lidia/D-8089-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Barreiro, Fernando/D-9808-2012; Kramarenko, Victor/E-1781-2012; Alexa, Calin/F-6345-2010; Moorhead, Gareth/B-6634-2009; Petrucci, Fabrizio/G-8348-2012; Wemans, Andre/A-6738-2012; Fabbri, Laura/H-3442-2012; Li, Xuefei/C-3861-2012; Kurashige, Hisaya/H-4916-2012 OI Strube, Jan/0000-0001-7470-9301; Beck, Hans Peter/0000-0001-7212-1096; Prokofiev, Kirill/0000-0002-2177-6401; Chen, Chunhui /0000-0003-1589-9955; Filthaut, Frank/0000-0003-3338-2247; abi, babak/0000-0001-7036-9645; Rotaru, Marina/0000-0003-3303-5683; Doyle, Anthony/0000-0001-6322-6195; valente, paolo/0000-0002-5413-0068; Takai, Helio/0000-0001-9253-8307; Ferrando, James/0000-0002-1007-7816; Perrino, Roberto/0000-0002-5764-7337; Stoicea, Gabriel/0000-0002-7511-4614; Britton, David/0000-0001-9998-4342; Cranmer, Kyle/0000-0002-5769-7094; Vos, Marcel/0000-0001-8474-5357; Castro, Nuno/0000-0001-8491-4376; Farrington, Sinead/0000-0001-5350-9271; Turra, Ruggero/0000-0001-8740-796X; Robson, Aidan/0000-0002-1659-8284; Weber, Michele/0000-0002-2770-9031; Nisati, Aleandro/0000-0002-5080-2293; Gray, Heather/0000-0002-5293-4716; Mincer, Allen/0000-0002-6307-1418; Grinstein, Sebastian/0000-0002-6460-8694; Adye, Tim/0000-0003-0627-5059; Cristinziani, Markus/0000-0003-3893-9171; Chromek-Burckhart, Doris/0000-0003-4243-3288; Haas, Andrew/0000-0002-4832-0455; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Sawyer, Lee/0000-0001-8295-0605; Begel, Michael/0000-0002-1634-4399; Bailey, David C/0000-0002-7970-7839; Qian, Jianming/0000-0003-4813-8167; Evans, Harold/0000-0003-2183-3127; Nielsen, Jason/0000-0002-9175-4419; Chen, Hucheng/0000-0002-9936-0115; Cataldi, Gabriella/0000-0001-8066-7718; Vari, Riccardo/0000-0002-2814-1337; Leyton, Michael/0000-0002-0727-8107; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Prokoshin, Fedor/0000-0001-6389-5399; Morone, Maria Cristina/0000-0002-0200-0632; Goncalo, Ricardo/0000-0002-3826-3442; Canelli, Florencia/0000-0001-6361-2117; Camarri, Paolo/0000-0002-5732-5645; Jones, Roger/0000-0002-6427-3513; Gorelov, Igor/0000-0001-5570-0133; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Tikhomirov, Vladimir/0000-0002-9634-0581; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Martins, Paulo/0000-0003-3753-3751; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; Mikestikova, Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Santamarina Rios, Cibran/0000-0002-9810-1816; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Morozov, Sergey/0000-0002-6748-7277; Villa, Mauro/0000-0002-9181-8048; Orlov, Ilya/0000-0003-4073-0326; Annovi, Alberto/0000-0002-4649-4398; Brooks, William/0000-0001-6161-3570; Pina, Joao /0000-0001-8959-5044; Vanyashin, Aleksandr/0000-0002-0367-5666; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Conde Muino, Patricia/0000-0002-9187-7478; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Kuzhir, Polina/0000-0003-3689-0837; Delmastro, Marco/0000-0003-2992-3805; Veneziano, Stefano/0000-0002-2598-2659; spagnolo, stefania/0000-0001-7482-6348; Della Pietra, Massimo/0000-0003-4446-3368; Andreazza, Attilio/0000-0001-5161-5759; Cascella, Michele/0000-0003-2091-2501; Smirnov, Sergei/0000-0002-6778-073X; Gladilin, Leonid/0000-0001-9422-8636; Barreiro, Fernando/0000-0002-3021-0258; Moorhead, Gareth/0000-0002-9299-9549; Petrucci, Fabrizio/0000-0002-5278-2206; Wemans, Andre/0000-0002-9669-9500; Fabbri, Laura/0000-0002-4002-8353; FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq, Brazil; FAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; DNSRC, Denmark; Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, Germany; DFG, Germany; HGF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT, Greece; ISF, Israel; MINERVA, Israel; GIF, Israel; DIP, Israel; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES, Portugal; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS, Slovenia; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SER, Switzerland; SNSF, Switzerland; Canton of Bern, Switzerland; Canton of Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; the Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN-CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 42 TC 22 Z9 22 U1 4 U2 50 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6044 EI 1434-6052 J9 EUR PHYS J C JI Eur. Phys. J. C PD NOV PY 2011 VL 71 IS 11 AR 1763 DI 10.1140/epjc/s10052-011-1763-6 PG 27 WC Physics, Particles & Fields SC Physics GA 857GT UT WOS:000297706700002 ER PT J AU Dubey, M Jablin, MS Wang, P Mocko, M Majewski, J AF Dubey, M. Jablin, M. S. Wang, P. Mocko, M. Majewski, J. TI SPEAR - ToF neutron reflectometer at the Los Alamos Neutron Science Center SO EUROPEAN PHYSICAL JOURNAL PLUS LA English DT Article ID MEMBRANES; FILMS AB This article discusses the Surface ProfilE Analysis Reflectometer (SPEAR), a vertical scattering geometry time-of-flight reflectometer, at the Los Alamos National Laboratory Lujan Neutron Scattering Center. SPEAR occupies flight path 9 and receives spallation neutrons from a polychromatic, pulsed (20 Hz) source that pass through a liquid-hydrogen moderator at 20 K coupled with a Be filter to shift their energy spectrum. The spallation neutrons are generated by bombarding a tungsten target with 800 MeV protons obtained from an accelerator. The process produces an integrated neutron flux of similar to 3.4 x 10(6) cm(-2) s(-1) at a proton current of 100 mu A. SPEAR employs choppers and frame overlap mirrors to obtain a neutron wavelength range of 4.5-16 angstrom. SPEAR uses a single 200 mm long (3)He linear position-sensitive detector with similar to 2 mm FWHM resolution for simultaneous studies of both specular and off-specular scattering. SPEAR's moderated neutrons are collimated into a beam which impinges from above upon a level sample with an average angle of 0.9 degrees to the horizontal, to facilitate air-liquid interface studies. In the vertical direction, the beam converges at the sample position. The neutrons can be further collimated to the desired divergence by finely slitting the beam using a set of two (10)B(4)C slit packages. The instrument is ideally suited to study organic and inorganic thin films with total thicknesses between 5 and 3000 angstrom in a variety of environments. Specifically designed sample chambers available at the instrument provide the opportunity to study biological systems at the solid-liquid interface. SPEAR's unique experimental capabilities are demonstrated by specific examples in this article. Finally, an outlook for SPEAR and perspectives on future instrumentation are discussed. C1 [Dubey, M.; Jablin, M. S.; Wang, P.; Mocko, M.; Majewski, J.] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. RP Dubey, M (reprint author), Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, POB 1663, Los Alamos, NM 87545 USA. EM jarek@lanl.gov RI Wang, Peng/E-4633-2011; Lujan Center, LANL/G-4896-2012; OI Mocko, Michael/0000-0003-0447-4687 FU DOE Office of Basic Energy Sciences; Los Alamos National Laboratory under DOE [DE-AC52-06NA25396] FX This work benefited from the use of the Lujan Neutron Scattering Center at Los Alamos Neutron Science Center funded by the DOE Office of Basic Energy Sciences and Los Alamos National Laboratory under DOE Contract DE-AC52-06NA25396. NR 11 TC 13 Z9 13 U1 2 U2 21 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 2190-5444 J9 EUR PHYS J PLUS JI Eur. Phys. J. Plus PD NOV PY 2011 VL 126 IS 11 AR 110 DI 10.1140/epjp/i2011-11110-1 PG 11 WC Physics, Multidisciplinary SC Physics GA 863UU UT WOS:000298194600008 ER PT J AU Jin, CG Yu, T Zhao, Y Bo, Y Ye, C Hu, JS Zhuge, LJ Ge, SB Wu, XM Ji, HT Li, JG AF Jin, C. G. Yu, T. Zhao, Y. Bo, Y. Ye, C. Hu, J. S. Zhuge, L. J. Ge, S. B. Wu, X. M. Ji, H. T. Li, J. G. TI Helicon Plasma Discharge in a Toroidal Magnetic Field of the Tokamak SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Experimental advanced superconducting tokamak (EAST); helicon; strong magnetic field ID TORE-SUPRA; REACTORS; FUSION; BEAMS; LENS AB A helicon wave plasma (HWP) discharge in an experimental advanced superconducting tokamak device with a toroidal magnetic field of 2 T is investigated. The HWP with an electron density of 10(12) cm(-3) was produced with two 4-turn flat spiral antennas in series that are perpendicular to the toroidal magnetic field and driven by a 13.56-MHz radio-frequency (RF) source at a power of 1500 W, a toroidal magnetic field of 2 T, and a pressure (helium) of 1 Pa. The increase of the toroidal magnetic field from 0.5 to 2 T, the increase of the RF power from 500 to 1500 W, and the decrease of the pressure (helium) from 1 to 0.01 Pa were found to improve the plasma uniformity from the CCD images. C1 [Jin, C. G.; Yu, T.; Zhao, Y.; Bo, Y.; Ye, C.; Ge, S. B.; Wu, X. M.] Soochow Univ, Dept Phys, Suzhou 215006, Peoples R China. [Jin, C. G.; Yu, T.; Zhao, Y.; Bo, Y.; Ye, C.; Zhuge, L. J.; Ge, S. B.; Wu, X. M.] Soochow Univ, Key Lab Thin Films Jiangsu, Suzhou 215006, Peoples R China. [Hu, J. S.; Li, J. G.] Chinese Acad Sci ASIPP, Inst Plasma Phys, Hefei 230031, Peoples R China. [Zhuge, L. J.] Soochow Univ, Anal & Testing Ctr, Suzhou 215006, Peoples R China. [Ji, H. T.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Jin, CG (reprint author), Soochow Univ, Dept Phys, Suzhou 215006, Peoples R China. EM nestajcg@126.com; cye@suda.edu.cn; hujs@ipp.ac.cn; ljzhuge@suda.edu.cn; sbge@suda.edu.cn; xmwu@suda.edu.cn; hji@pppl.gov FU National Magnetic Confinement Fusion Science Program [2010GB106000, 2010GB106009]; National Natural Science Foundation of China [10975106, 10975105, 11075114]; Qing Lan Project; Priority Academic Program Development of Jiangsu Higher Education Institutions FX Manuscript received January 29, 2011; revised May 12, 2011; accepted June 22, 2011. Date of publication August 15, 2011; date of current version November 9, 2011. This work was supported in part by the National Magnetic Confinement Fusion Science Program under Grants 2010GB106000 and 2010GB106009, by the National Natural Science Foundation of China under Grants 10975106, 10975105, and 11075114, by the Qing Lan Project, and by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. NR 25 TC 2 Z9 2 U1 2 U2 11 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD NOV PY 2011 VL 39 IS 11 SI SI BP 3103 EP 3107 DI 10.1109/TPS.2011.2161344 PN 2 PG 5 WC Physics, Fluids & Plasmas SC Physics GA 862GT UT WOS:000298078500013 ER PT J AU Elizondo-Decanini, JM Dudley, E AF Elizondo-Decanini, Juan M. Dudley, Evan TI Pulsed High-Voltage Breakdown of Thin-Film Parylene C SO IEEE TRANSACTIONS ON PLASMA SCIENCE LA English DT Article DE Breakdown; electric field; high voltage; thin film; pulsed ID CONDUCTION AB Measurements of polymer dielectric high-voltage (HV) strength at thicknesses in the 1- to 10-mu m range have always been difficult to validate and repeat. We report results of experiments done using parylene-C films of 2-, 4-, and 6-mu m thicknesses in a series of configurations intended to determine the HV breakdown of the material itself with a minimum of externally undefined parameters. The experiments used an alumina substrate coated with a conductive gold film with a parylene-C film deposited on top of the lower gold film. One edge of the lower gold film was exposed to provide electrical connection, and a triangular or circular gold electrode was deposited on the surface of parylene C. The intent was to test the dielectric breakdown strength of bare parylene C, as well as to evaluate the effects of field enhancements produced by the two electrode shapes. Initial data analysis shows the presence of at least two regimens of electron transport at breakdown: 1) ohmic or "trap dominated" and 2) space charge or "trap free." C1 [Elizondo-Decanini, Juan M.; Dudley, Evan] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Elizondo-Decanini, JM (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU Department of Defense/Department of Energy FX Manuscript received March 17, 2011; revised May 9, 2011; accepted June 15, 2011. Date of publication September 29, 2011; date of current version November 9, 2011. This work was supported in part by the Department of Defense/Department of Energy Joint Munitions Technology Development Program under Contract DOD_DOEMOU. NR 7 TC 1 Z9 2 U1 2 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-3813 J9 IEEE T PLASMA SCI JI IEEE Trans. Plasma Sci. PD NOV PY 2011 VL 39 IS 11 BP 3162 EP 3167 DI 10.1109/TPS.2011.2165565 PN 3 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 862HA UT WOS:000298079400001 ER PT J AU Yabusaki, SB Fang, YL Williams, KH Murray, CJ Ward, AL Dayvault, RD Waichler, SR Newcomer, DR Spane, FA Long, PE AF Yabusaki, Steven B. Fang, Yilin Williams, Kenneth H. Murray, Christopher J. Ward, Andy L. Dayvault, Richard D. Waichler, Scott R. Newcomer, Darrell R. Spane, Frank A. Long, Philip E. TI Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE Uranium; Bioremediation; Reactive transport modeling ID HIGHLY CONTAMINATED AQUIFER; MICROBIAL REDUCTION; GROUNDWATER; SORPTION; CALCIUM; U(VI); HETEROGENEITY; BIOREDUCTION; REOXIDATION; CARBONATE AB Three-dimensional, coupled variably saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport and biogeochemical reactions controlling uranium behavior under pulsed acetate amendment, seasonal water table variation, spatially variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. While the simulation of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado was generally consistent with behaviors identified in previous field experiments at the Rifle IFRC site, the additional process and property detail provided several new insights. A principal conclusion from this work is that uranium bioreduction is most effective when acetate, in excess of the sulfate-reducing bacteria demand, is available to the metal-reducing bacteria. The inclusion of an initially small population of slow growing sulfate-reducing bacteria identified in proteomic analyses led to an additional source of Fe(II) from the dissolution of Fe(III) minerals promoted by biogenic sulfide. The falling water table during the experiment significantly reduced the saturated thickness of the aquifer and resulted in reactants and products, as well as unmitigated uranium, in the newly unsaturated vadose zone. High permeability sandy gravel structures resulted in locally high flow rates in the vicinity of injection wells that increased acetate dilution. In downgradient locations, these structures created preferential flow paths for acetate delivery that enhanced local zones of TEAP reactivity and subsidiary reactions. Conversely, smaller transport rates associated with the lower permeability lithofacies (e.g., fine) and vadose zone were shown to limit acetate access and reaction. Once accessed by acetate, however, these same zones limited subsequent acetate dilution and provided longer residence times that resulted in higher concentrations of TEAP reaction products when terminal electron donors and acceptors were not limiting. Finally, facies-based porosity and reactive surface area variations were shown to affect aqueous uranium concentration distributions with localized effects of the fine lithofacies having the largest impact on U(VI) surface complexation. The ability to model the comprehensive biogeochemical reaction network, and spatially and temporally variable processes, properties, and conditions controlling uranium behavior during engineered bioremediation in the naturally complex Rifle IFRC subsurface system required a subsurface simulator that could use the large memory and computational performance of a massively parallel computer. In this case, the eSTOMP simulator, operating on 128 processor cores for 12 h, was used to simulate the 110-day field experiment and 50 days of post-biostimulation behavior. (C) 2011 Elsevier B.V. All rights reserved. C1 [Yabusaki, Steven B.; Fang, Yilin; Murray, Christopher J.; Ward, Andy L.; Waichler, Scott R.; Newcomer, Darrell R.; Spane, Frank A.; Long, Philip E.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Williams, Kenneth H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dayvault, Richard D.] SM Stoller Corp, Grand Junction, CO USA. RP Yabusaki, SB (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM yabusaki@pnl.gov RI Long, Philip/F-5728-2013; Williams, Kenneth/O-5181-2014; Fang, Yilin/J-5137-2015 OI Long, Philip/0000-0003-4152-5682; Williams, Kenneth/0000-0002-3568-1155; FU Climate and Environmental Sciences Division of the Office of Biological and Environmental Research at the U.S. Department of Energy Office of Science; Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory; Pacific Northwest National Laboratory [DE-AC06-76RL01830] FX The modeling presented builds on the accomplishments of a large interdisciplinary team of researchers working together in the laboratory and the field. In addition to the efforts of that large group of researchers, we would like to recognize the contributions of Mike Wilkins for his guidance on this manuscript, Kate Draper for performing most of the sediment measurements, and Yi-Ju Bott for assisting with the geostatistical analysis and generation of the lithofacies realizations and the facies-based realizations of hydraulic conductivity, porosity, and surface area. The work conducted at the Rifle Integrated Field Research Challenge (IFRC) site in Rifle, Colorado is supported by the Subsurface Biogeochemical Research Program in the Climate and Environmental Sciences Division of the Office of Biological and Environmental Research at the U.S. Department of Energy Office of Science. Access to the site is in accordance with the City of Rifle and is managed under the DOE's Long-Term Surveillance and Monitoring Program. The large scale computer simulations were performed on the 18,480 processor-core Chinook supercomputer in the Molecular Sciences Computing Facility in the Environmental Molecular Sciences Laboratory, a national scientific user faciliry sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the United States Department of Energy under Contract DE-AC06-76RL01830. NR 53 TC 46 Z9 46 U1 2 U2 54 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD NOV 1 PY 2011 VL 126 IS 3-4 BP 271 EP 290 DI 10.1016/j.jconhyd.2011.09.002 PG 20 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 867OG UT WOS:000298463100014 PM 22115092 ER PT J AU Abreu, P Aglietta, M Ahn, EJ Albuquerque, LFM Allard, D Allekotte, I Allen, J Allison, P Castio, JA Alvarez-Muniz, J Ambrosio, M Amianei, A Anchordoqui, L Andringa, S Anticic, T Anzalone, A Aramo, C Arganda, E Arqueros, F Asorey, H Assis, P Aublin, J Ave, M Avenier, M Avila, G Backer, T Balzer, M Barber, KB Barbosa, AF Bardenet, R Barroso, SLC Baughman, B Bauml, J Beatty, JJ Becker, BR Becker, KH Belletoile, A Bellido, JA BenZvi, S Berat, C Bertou, X Biermann, PL Billoir, P Blanco, F Blanco, M Bleve, C Blumer, H Bohacova, M Boncioli, D Bonifazi, C Bonino, R Borodai, N Brack, J Brogueira, P Brown, WC Bruijn, R Buchholz, P Bueno, A Burton, RE Caballero-Mora, KS Caramete, L Caruso, R Castellina, A Catalano, O Cataldi, G Cazon, L Cester, R Chauvin, J Cheng, SH Chiavassa, A Chinellato, JA Chou, A Chudoba, J Clay, RW Coluccia, MR Conceicao, R Contreras, F Cook, H Cooper, MJ Coppens, J Cordier, A Coutu, S Covault, CE Creusot, A Criss, A Cronin, J Curutiu, A Dagoret-Campagne, S Dallier, R Dasso, S Daumiller, K Dawson, BR de Almeida, RM De Domenico, N De Donato, C de Jong, SJ De La Vega, G de Mello, WJM Neto, JRTD De Mitri, I de Souza, V de Vries, KD Decerprit, G del Peral, L del Rio, M Deligny, O Dembinski, H Dhital, N Di Giulio, C Diaz, JC Castro, MLD Diep, PN Dobrigkeit, C Docters, W D'Olivo, JC Dong, PN Dorofeev, A dos Anjos, JC Dova, MT D'Urso, D Dutan, I Ebr, J Engel, R Erdmann, M Escobar, CO Espadanal, J Etchegoyen, A Luis, PFS Tapia, IF Falcke, H Farrar, G Fauth, AC Fazzini, N Ferguson, AP Ferrero, A Fick, B Filevich, A Filipcic, A Fliescher, S Fracchiolla, CE Fraenkel, ED Frohlich, U Fuchs, B Gaior, R Gamarra, RF Gambetta, S Garcia, B Gamez, DG Garcia-Pinto, D Gascon, A Gemmeke, H Gesterling, K Ghia, PL Giaccari, U Giller, M Glass, H Gold, MS Golup, G Albarracin, FG Berisso, MG Goncalves, P Gonzalez, D Gonzalez, JG Gookin, B Gora, D Gorgi, A Gouffon, P Gozzini, SR Grashorn, E Grebe, S Griffith, N Grigat, M Grillo, AF Guardincerri, Y Guarino, F Guedes, GP Guzman, A Hague, JD Hansen, P Harari, D Harmsma, S Harrison, TA Harton, JL Haungs, A Hebbeker, T Heck, D Herve, AE Hojvat, C Hollon, N Holmes, VC Homola, P Horandel, JR Horneffer, A Horvath, P Hrabovsky, M Huege, T Insolia, A Ionita, F Italiano, A Jarne, C Jiraskova, S Josebachuili, M Kadija, K Kampert, KH Karhan, P Kasper, P Kegl, B Keilhauer, B Keivani, A Kelley, JL Kemp, F Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Knapp, J Koang, DH Kotera, K Krohm, N Kromer, O Kruppke-Hansen, D Kuehn, F Kuempel, D Kulbartz, JK Kunka, N La Rosa, G Lachaud, C Lautridou, P Leao, MSAB Lebrun, D Lebrun, P de Oliveira, MAL Lemiere, A Letessier-Selvon, A Lhenry-Yvon, I Link, K Lopez, R Aguera, AL Louedec, K Bahilo, JL Lu, L Lucero, A Ludwig, M Lyberis, H Maccarone, MC Macolino, C Maldera, S Mandat, D Mantsch, P Mariazzi, AG Marin, J Marin, V Maris, IC Falcon, HRM Marsella, G Martello, D Martin, L Martinez, H Bravo, OM Mathes, HJ Matthews, J Matthews, JAJ Matthiae, G Maurizio, D Mazur, PO Medina-Tanco, G Melissas, M Melo, D Menichetti, E Menshikov, A Mertsch, P Meurer, C Micanovic, S Micheletti, MI Miller, W Miramonti, L Molina-Bueno, L Mollerach, S Monasor, M Ragaigne, DM Montanet, F Morales, B Morello, C Moreno, E Moreno, JC Morris, C Mostafa, M Moura, CA Mueller, S Muller, MA Muller, G Munchmeyer, M Mussa, R Navarra, G Navarro, JL Navas, S Necesal, P Nellen, L Nelles, A Neuser, J Nhung, PT Niemietz, L Nierstenhoefer, N Nitz, D Nosek, D Nozka, L Nyklicek, M Oehlschlager, J Olinto, A Oliva, P Olmos-Gilbaja, VM Ortiz, M Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Palmieri, N Parente, G Parizot, E Parra, A Parsons, RD Pastor, S Paul, T Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Pesce, R Petermann, E Petrera, S Petrinca, P Petrolini, A Petrov, Y Petrovic, J Pfendner, C Phan, N Piegaia, R Pierog, T Pieroni, P Pimenta, M Pirronello, V Platino, M Ponce, VH Pontz, M Privitera, P Prouza, M Quel, EJ Querchfeld, S Rautenberg, J Ravel, O Ravignani, D Revenu, B Ridky, J Riggi, S Risse, M Ristori, R Rivera, H Rizi, V Roberts, J Robledo, C de Carvalho, WR Rodriguez, G Martino, J Rojo, J Rodriguez-Cabo, I Rodriguez-Frias, MD Ros, G Rosado, J Rossler, T Roth, M Rouille-d'Orfeuil, B Roulet, E Rovero, AC Ruhle, C Salamida, F Salazar, H Greus, FS Salina, G Sanchez, F Santo, CE Santos, E Santos, EM Sarazin, F Sarkar, B Sarkar, S Sato, R Scharf, N Scherini, V Schieler, H Schiffer, P Schmidt, A Schmidt, F Scholten, O Schoorlemmer, H Schovancova, J Schovanek, P Schroder, F Schulte, S Schuster, D Sciutto, SJ Scuderi, M Segreto, A Settimo, M Shadkam, A Shellard, RC Sidelnik, I Sigl, G Lopez, HH Smialkowski, A Smida, R Snow, GR Sommers, P Sorokin, J Spinka, H Squartini, R Stanic, S Stapleton, J Stasielak, J Stephan, M Strazzeri, E Stutz, A Suarez, F Suomijarvi, T Supanitsky, AD Susa, T Sutherland, MS Swain, J Szadkowski, Z Szuba, M Tamashiro, A Tapia, A Tartare, M Tascau, O Ruiz, CGT Teaciuc, R Tegolo, D Thao, NT Thomas, D Tiffenberg, J Timmermans, C Tiwari, DK Tkaczyk, W Peixoto, CJ Tome, B Tonachini, A Travnicek, P Tridapalli, DB Tristram, G Trovato, E Tueros, M Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van den Berg, AM Varela, E Cardenas, BV Vazquez, IR Vazquez, RA Veberic, D Verzi, V Vicha, J Videla, M Villasenor, L Wahlberg, H Wahrlich, P Wainberg, O Walz, D Warner, D Waton, AA Weber, M Weidenhaupt, K Weindl, A Westerhoff, S Whelan, BJ Wieczorek, G Wieneke, L Wilczynska, B Wilczynski, H Will, M Williams, C Winchen, T Winnick, MG Wommer, M Wundheiler, B Yamamoto, T Yapici, T Younk, P Yuan, G Yushkov, A Zamorano, B Zas, E Zavrtanik, D Zavrtanik, M Zaw, I Zepeda, A Silva, NZ Ziolkowski, N AF Abreu, P. Aglietta, M. Ahn, E. J. Albuquerque, L. F. M. Allard, D. Allekotte, I. Allen, J. Allison, P. Alvarez Castio, J. Alvarez-Muniz, J. Ambrosio, M. Amianei, A. Anchordoqui, L. Andringa, S. Anticic, T. Anzalone, A. Aramo, C. Arganda, E. Arqueros, F. Asorey, H. Assis, P. Aublin, J. Ave, M. Avenier, M. Avila, G. Baecker, T. Balzer, M. Barber, K. B. Barbosa, A. F. Bardenet, R. Barroso, S. L. C. Baughman, B. Baeuml, J. Beatty, J. J. Becker, B. R. Becker, K. H. Belletoile, A. Bellido, J. A. BenZvi, S. Berat, C. Bertou, X. Biermann, P. L. Billoir, P. Blanco, F. Blanco, M. Bleve, C. Bluemer, H. Bohacova, M. Boncioli, D. Bonifazi, C. Bonino, R. Borodai, N. Brack, J. Brogueira, P. Brown, W. C. Bruijn, R. Buchholz, P. Bueno, A. Burton, R. E. Caballero-Mora, K. S. Caramete, L. Caruso, R. Castellina, A. Catalano, O. Cataldi, G. Cazon, L. Cester, R. Chauvin, J. Cheng, S. H. Chiavassa, A. Chinellato, J. A. Chou, A. Chudoba, J. Clay, R. W. Coluccia, M. R. Conceicao, R. Contreras, F. Cook, H. Cooper, M. J. Coppens, J. Cordier, A. Coutu, S. Covault, C. E. Creusot, A. Criss, A. Cronin, J. Curutiu, A. Dagoret-Campagne, S. Dallier, R. Dasso, S. Daumiller, K. Dawson, B. R. de Almeida, R. M. De Domenico, Ni. De Donato, C. de Jong, S. J. De La Vega, G. de Mello Junior, W. J. M. de Mello Neto, J. R. T. De Mitri, I. de Souza, V. de Vries, K. D. Decerprit, G. del Peral, L. del Rio, M. Deligny, O. Dembinski, H. Dhital, N. Di Giulio, C. Diaz, J. C. Diaz Castro, M. L. Diep, P. N. Dobrigkeit, C. Docters, W. D'Olivo, J. C. Dong, P. N. Dorofeev, A. dos Anjos, J. C. Dova, M. T. D'Urso, D. Dutan, I. Ebr, J. Engel, R. Erdmann, M. Escobar, C. O. Espadanal, J. Etchegoyen, A. Luis, P. Facal San Tapia, I. Fajardo Falcke, H. Farrar, G. Fauth, A. C. Fazzini, N. Ferguson, A. P. Ferrero, A. Fick, B. Filevich, A. Filipcic, A. Fliescher, S. Fracchiolla, C. E. Fraenkel, E. D. Froehlich, U. Fuchs, B. Gaior, R. Gamarra, R. F. Gambetta, S. Garcia, B. Garcia Gamez, D. Garcia-Pinto, D. Gascon, A. Gemmeke, H. Gesterling, K. Ghia, P. L. Giaccari, U. Giller, M. Glass, H. Gold, M. S. Golup, G. Gomez Albarracin, F. Gomez Berisso, M. Goncalves, P. Gonzalez, D. Gonzalez, J. G. Gookin, B. Gora, D. Gorgi, A. Gouffon, P. Gozzini, S. R. Grashorn, E. Grebe, S. Griffith, N. Grigat, M. Grillo, A. F. Guardincerri, Y. Guarino, F. Guedes, G. P. Guzman, A. Hague, J. D. Hansen, P. Harari, D. Harmsma, S. Harrison, T. A. Harton, J. L. Haungs, A. Hebbeker, T. Heck, D. Herve, A. E. Hojvat, C. Hollon, N. Holmes, V. C. Homola, P. Hoerandel, J. R. Horneffer, A. Horvath, P. Hrabovsky, M. Huege, T. Insolia, A. Ionita, F. Italiano, A. Jarne, C. Jiraskova, S. Josebachuili, M. Kadija, K. Kampert, K. H. Karhan, P. Kasper, P. Kegl, B. Keilhauer, B. Keivani, A. Kelley, J. L. Kemp, F. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Knapp, J. Koang, D-H Kotera, K. Krohm, N. Kroemer, O. Kruppke-Hansen, D. Kuehn, F. Kuempel, D. Kulbartz, J. K. Kunka, N. La Rosa, G. Lachaud, C. Lautridou, P. Leao, M. S. A. B. Lebrun, D. Lebrun, P. Leigui de Oliveira, M. A. Lemiere, A. Letessier-Selvon, A. Lhenry-Yvon, I. Link, K. Lopez, R. Lopez Agueera, A. Louedec, K. Lozano Bahilo, J. Lu, L. Lucero, A. Ludwig, M. Lyberis, H. Maccarone, M. C. Macolino, C. Maldera, S. Mandat, D. Mantsch, P. Mariazzi, A. G. Marin, J. Marin, V. Maris, I. C. Marquez Falcon, H. R. Marsella, G. Martello, D. Martin, L. Martinez, H. Martinez Bravo, O. Mathes, H. J. Matthews, J. Matthews, J. A. J. Matthiae, G. Maurizio, D. Mazur, P. O. Medina-Tanco, G. Melissas, M. Melo, D. Menichetti, E. Menshikov, A. Mertsch, P. Meurer, C. Micanovic, S. Micheletti, M. I. Miller, W. Miramonti, L. Molina-Bueno, L. Mollerach, S. Monasor, M. Ragaigne, D. Monnier Montanet, F. Morales, B. Morello, C. Moreno, E. Moreno, J. C. Morris, C. Mostafa, M. Moura, C. A. Mueller, S. Muller, M. A. Mueller, G. Muenchmeyer, M. Mussa, R. Navarra, G. Navarro, J. L. Navas, S. Necesal, P. Nellen, L. Nelles, A. Neuser, J. Nhung, P. T. Niemietz, L. Nierstenhoefer, N. Nitz, D. Nosek, D. Nozka, L. Nyklicek, M. Oehlschlaeger, J. Olinto, A. Oliva, P. Olmos-Gilbaja, V. M. Ortiz, M. Pacheco, N. Selmi-Dei, D. Pakk Palatka, M. Pallotta, J. Palmieri, N. Parente, G. Parizot, E. Parra, A. Parsons, R. D. Pastor, S. Paul, T. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Pesce, R. Petermann, E. Petrera, S. Petrinca, P. Petrolini, A. Petrov, Y. Petrovic, J. Pfendner, C. Phan, N. Piegaia, R. Pierog, T. Pieroni, P. Pimenta, M. Pirronello, V. Platino, M. Ponce, V. H. Pontz, M. Privitera, P. Prouza, M. Quel, E. J. Querchfeld, S. Rautenberg, J. Ravel, O. Ravignani, D. Revenu, B. Ridky, J. Riggi, S. Risse, M. Ristori, R. Rivera, H. Rizi, V. Roberts, J. Robledo, C. Rodrigues de Carvalho, W. Rodriguez, G. Rodriguez Martino, J. Rodriguez Rojo, J. Rodriguez-Cabo, I. Rodriguez-Frias, M. D. Ros, G. Rosado, J. Rossler, T. Roth, M. Rouille-d'Orfeuil, B. Roulet, E. Rovero, A. C. Ruehle, C. Salamida, F. Salazar, H. Salesa Greus, F. Salina, G. Sanchez, F. Santo, C. E. Santos, E. Santos, E. M. Sarazin, F. Sarkar, B. Sarkar, S. Sato, R. Scharf, N. Scherini, V. Schieler, H. Schiffer, P. Schmidt, A. Schmidt, F. Scholten, O. Schoorlemmer, H. Schovancova, J. Schovanek, P. Schroeder, F. Schulte, S. Schuster, D. Sciutto, S. J. Scuderi, M. Segreto, A. Settimo, M. Shadkam, A. Shellard, R. C. Sidelnik, I. Sigl, G. Silva Lopez, H. H. Smialkowski, A. Smida, R. Snow, G. R. Sommers, P. Sorokin, J. Spinka, H. Squartini, R. Stanic, S. Stapleton, J. Stasielak, J. Stephan, M. Strazzeri, E. Stutz, A. Suarez, F. Suomijaervi, T. Supanitsky, A. D. Susa, T. Sutherland, M. S. Swain, J. Szadkowski, Z. Szuba, M. Tamashiro, A. Tapia, A. Tartare, M. Tascau, O. Tavera Ruiz, C. G. Teaciuc, R. Tegolo, D. Thao, N. T. Thomas, D. Tiffenberg, J. Timmermans, C. Tiwari, D. K. Tkaczyk, W. Todero Peixoto, C. J. Tome, B. Tonachini, A. Travnicek, P. Tridapalli, D. B. Tristram, G. Trovato, E. Tueros, M. Ulrich, R. Unger, M. Urban, M. Valdes Galicia, J. F. Valino, I. Valore, L. van den Berg, A. M. Varela, E. Vargas Cardenas, B. Vazquez, I. R. Vazquez, R. A. Veberic, D. Verzi, V. Vicha, J. Videla, M. Villasenor, L. Wahlberg, H. Wahrlich, P. Wainberg, O. Walz, D. Warner, D. Waton, A. A. Weber, M. Weidenhaupt, K. Weindl, A. Westerhoff, S. Whelan, B. J. Wieczorek, G. Wieneke, L. Wilczynska, B. Wilczynski, H. Will, M. Williams, C. Winchen, T. Winnick, M. G. Wommer, M. Wundheiler, B. Yamamoto, T. Yapici, T. Younk, P. Yuan, G. Yushkov, A. Zamorano, B. Zas, E. Zavrtanik, D. Zavrtanik, M. Zaw, I. Zepeda, A. Zimbres Silva, N. Ziolkowski, N. CA Pierre Auger Collaboration TI The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE ultra high energy cosmic rays; cosmic ray experiments; cosmic rays detectors ID EXTENSIVE AIR-SHOWERS; ARRAY; MODEL AB We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than 60 degrees, detected at the Pierre Auger Observatory. the geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the similar to 2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution that needs to be accounted for. C1 [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Espadanal, J.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] Univ Lodz, PL-90131 Lodz, Poland. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.] CNEA UNCuyo CONICET, Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.] CNEA UNCuyo CONICET, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina. [Etchegoyen, A.; Ferrero, A.; Filevich, A.; Gamarra, R. F.; Josebachuili, M.; Lucero, A.; Melo, D.; Platino, M.; Ravignani, D.; Sanchez, F.; Sidelnik, I.; Suarez, F.; Tapia, A.; Wainberg, O.; Wundheiler, B.] Comis Nacl Energia Atom CONICET UTN FRBA, Ctr Atom Constituyentes, Buenos Aires, DF, Argentina. [Dasso, S.; Guardincerri, Y.; Pallotta, J.; Piegaia, R.; Pieroni, P.; Quel, E. J.; Ristori, R.; Tiffenberg, J.; Tueros, M.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Dasso, S.; Guardincerri, Y.; Piegaia, R.; Pieroni, P.; Tiffenberg, J.; Tueros, M.] Univ Buenos Aires, FCEyN, Dept Fis, RA-1053 Buenos Aires, DF, Argentina. [Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Jarne, C.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Jarne, C.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Wahlberg, H.] Univ Nacl La Plata, IFLP, La Plata, Buenos Aires, Argentina. [Dasso, S.; Rovero, A. C.; Supanitsky, A. D.; Tamashiro, A.] CONICET UBA, Inst Astron & Fis Espacio, Buenos Aires, DF, Argentina. [Micheletti, M. I.] CONICET UNR, Inst Fis Rosario IFIR, Rosario, Santa Fe, Argentina. [Micheletti, M. I.] Fac Ciencias Bioquim & Farmaceut UNR, Rosario, Santa Fe, Argentina. [De La Vega, G.; Garcia, B.; Videla, M.] Natl Technol Univ, Fac Mendoza, CONICET CNEA, Mendoza, Argentina. [Contreras, F.; del Rio, M.; Marin, J.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Sato, R.; Squartini, R.] Observ Pierre Auger, Malargue, Argentina. [Avila, G.] Observ Pierre Auger & Comis Nacl Energia Atom, Malargue, Argentina. [Barber, K. B.; Bellido, J. A.; Clay, R. W.; Cooper, M. J.; Dawson, B. R.; Harrison, T. A.; Herve, A. E.; Holmes, V. C.; Sorokin, J.; Wahrlich, P.; Whelan, B. J.; Winnick, M. G.] Univ Adelaide, Adelaide, SA, Australia. [Barbosa, A. F.; dos Anjos, J. C.; Fuchs, B.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Diaz Castro, M. L.; Shellard, R. C.] Pontificia Univ Catolica Rio de Janeiro, Rio De Janeiro, Brazil. [de Souza, V.; Todero Peixoto, C. J.] Univ Sao Paulo, Inst Fis, Sao Carlos, SP, Brazil. [Albuquerque, L. F. M.; Gouffon, P.; Rodrigues de Carvalho, W.; Tridapalli, D. B.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Chinellato, J. A.; de Mello Junior, W. J. M.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, F.; Muller, M. A.; Selmi-Dei, D. Pakk; Zimbres Silva, N.] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Barroso, S. L. C.] Univ Estadual Sudoeste Bahia, Vitoria Da Conquista, BA, Brazil. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Leao, M. S. A. B.; Leigui de Oliveira, M. A.; Moura, C. A.; Todero Peixoto, C. J.] Univ Fed ABC, Santo Andre, SP, Brazil. [Bonifazi, C.; de Mello Neto, J. R. T.; Santos, E. M.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, Brazil. [de Almeida, R. M.] Univ Fed Fluminense, EEIMVR, Volta Redonda, RJ, Brazil. [Anticic, T.; Kadija, K.; Micanovic, S.; Susa, T.] Rudjer Boskovic Inst, Zagreb 10000, Croatia. [Karhan, P.; Nosek, D.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, Prague, Czech Republic. [Bohacova, M.; Chudoba, J.; Ebr, J.; Hrabovsky, M.; Mandat, D.; Necesal, P.; Nozka, L.; Nyklicek, M.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovancova, J.; Schovanek, P.; Smida, R.; Travnicek, P.; Vicha, J.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Horvath, P.; Hrabovsky, M.; Rossler, T.] Palacky Univ, RCATM, CR-77147 Olomouc, Czech Republic. [Deligny, O.; Dong, P. N.; Lemiere, A.; Lhenry-Yvon, I.; Lyberis, H.; Suomijaervi, T.] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France. [Allard, D.; Creusot, A.; Decerprit, G.; Lachaud, C.; Parizot, E.; Tristram, G.] Univ Paris 07, CNRS, IN2P3, Lab AstroParticule & Cosmol APC, Paris, France. [Bardenet, R.; Cordier, A.; Dagoret-Campagne, S.; Garcia Gamez, D.; Kegl, B.; Louedec, K.; Ragaigne, D. Monnier; Urban, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Aublin, J.; Billoir, P.; Bonifazi, C.; Gaior, R.; Ghia, P. L.; Letessier-Selvon, A.; Macolino, C.; Maris, I. C.; Muenchmeyer, M.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Aublin, J.; Billoir, P.; Bonifazi, C.; Gaior, R.; Ghia, P. L.; Letessier-Selvon, A.; Macolino, C.; Maris, I. C.; Muenchmeyer, M.] Univ Paris 07, CNRS, IN2P3, LPNHE, Paris, France. [Avenier, M.; Berat, C.; Chauvin, J.; Koang, D-H; Lebrun, D.; Montanet, F.; Stutz, A.; Tartare, M.] Univ Grenoble 1, CNRS, IN2P3, LPSC,INPG, Grenoble, France. [Belletoile, A.; Dallier, R.; Lautridou, P.; Marin, V.; Martin, L.; Ravel, O.; Revenu, B.] Univ Nantes, CNRS, IN2P3, Ecole Mines Nantes,SUBATECH, Nantes, France. [Becker, K. H.; Bleve, C.; Kampert, K. H.; Krohm, N.; Kruppke-Hansen, D.; Kuempel, D.; Neuser, J.; Niemietz, L.; Nierstenhoefer, N.; Oliva, P.; Querchfeld, S.; Rautenberg, J.; Sarkar, B.; Tascau, O.; Zimbres Silva, N.] Berg Univ Wuppertal, Wuppertal, Germany. [Baeuml, J.; Bluemer, H.; Daumiller, K.; Engel, R.; Haungs, A.; Heck, D.; Huege, T.; Keilhauer, B.; Klages, H. O.; Kleinfeller, J.; Mathes, H. J.; Mueller, S.; Oehlschlaeger, J.; Pierog, T.; Roth, M.; Salamida, F.; Schieler, H.; Schroeder, F.; Smida, R.; Szuba, M.; Ulrich, R.; Unger, M.; Valino, I.; Weindl, A.; Will, M.; Wommer, M.] Karlsruhe Inst Technol, Inst Kernphys, Karlsruhe, Germany. [Balzer, M.; Gemmeke, H.; Kleifges, M.; Kroemer, O.; Kunka, N.; Menshikov, A.; Ruehle, C.; Schmidt, A.; Weber, M.] Karlsruhe Inst Technol, Inst Prozessdatenverarbeitung & Elekt, Karlsruhe, Germany. [Ave, M.; Bluemer, H.; Dembinski, H.; Gonzalez, D.; Gonzalez, J. G.; Gora, D.; Link, K.; Ludwig, M.; Melissas, M.; Palmieri, N.] Karlsruhe Inst Technol, Inst Expt Kernphys IEKP, Karlsruhe, Germany. [Biermann, P. L.; Caramete, L.; Curutiu, A.; Dutan, I.] Max Planck Inst Radioastron, Bonn, Germany. [Erdmann, M.; Fliescher, S.; Grigat, M.; Hebbeker, T.; Meurer, C.; Mueller, G.; Scharf, N.; Schiffer, P.; Schulte, S.; Stephan, M.; Walz, D.; Weidenhaupt, K.; Winchen, T.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Kulbartz, J. K.; Sigl, G.] Univ Hamburg, Hamburg, Germany. [Baecker, T.; Buchholz, P.; Froehlich, U.; Pontz, M.; Risse, M.; Settimo, M.; Teaciuc, R.; Younk, P.; Ziolkowski, N.] Univ Siegen, Siegen, Germany. [Gambetta, S.; Pesce, R.; Petrolini, A.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Gambetta, S.; Pesce, R.; Petrolini, A.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Di Giulio, C.; Petrera, S.; Rizi, V.; Salamida, F.] Univ Aquila, I-67100 Laquila, Italy. [Di Giulio, C.; Petrera, S.; Rizi, V.; Salamida, F.] Ist Nazl Fis Nucl, Laquila, Italy. [De Donato, C.; Miramonti, L.; Rivera, H.; Scherini, V.] Univ Milan, Milan, Italy. [De Donato, C.; Miramonti, L.; Rivera, H.; Scherini, V.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [Cataldi, G.; Coluccia, M. R.; De Mitri, I.; Giaccari, U.; Martello, D.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Cataldi, G.; Coluccia, M. R.; De Mitri, I.; Giaccari, U.; Marsella, G.; Martello, D.; Perrone, L.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [Ambrosio, M.; Aramo, C.; D'Urso, D.; Guarino, F.; Moura, C. A.; Valore, L.; Yushkov, A.] Univ Naples Federico II, Naples, Italy. [Ambrosio, M.; Aramo, C.; D'Urso, D.; Guarino, F.; Moura, C. A.; Valore, L.; Yushkov, A.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Boncioli, D.; del Rio, M.; Di Giulio, C.; Matthiae, G.; Petrinca, P.; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy. [Boncioli, D.; del Rio, M.; Di Giulio, C.; Matthiae, G.; Petrinca, P.; Salina, G.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Caruso, R.; De Domenico, Ni.; Insolia, A.; Italiano, A.; Pirronello, V.; Riggi, S.; Scuderi, M.; Tegolo, D.; Trovato, E.] Univ Catania, Catania, Italy. [Caruso, R.; De Domenico, Ni.; Insolia, A.; Italiano, A.; Pirronello, V.; Riggi, S.; Scuderi, M.; Tegolo, D.; Trovato, E.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Cester, R.; Maurizio, D.; Melo, D.; Menichetti, E.; Mussa, R.; Tonachini, A.] Univ Turin, Turin, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Cester, R.; Chiavassa, A.; Ghia, P. L.; Gorgi, A.; Lucero, A.; Maldera, S.; Marin, J.; Maurizio, D.; Melo, D.; Menichetti, E.; Morello, C.; Mussa, R.; Navarra, G.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Marsella, G.; Perrone, L.] Univ Salento, Dipartimento Ingn Innovaz, Lecce, Italy. [Anzalone, A.; Catalano, O.; La Rosa, G.; Maccarone, M. C.; Segreto, A.; Strazzeri, E.] Ist Astrofis Spaziale & Fis Cosm Palermo INAF, Palermo, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Ghia, P. L.; Gorgi, A.; Lucero, A.; Maldera, S.; Marin, J.; Morello, C.; Navarra, G.] Univ Turin, Inst Fis Spazio Interplanetario INAF, Turin, Italy. [Grillo, A. F.] INFN, Lab Nazl Gran Sasso, Laquila, Italy. [Tegolo, D.] Univ Palermo, Catania, Italy. [Lopez, R.; Martinez Bravo, O.; Moreno, E.; Robledo, C.; Salazar, H.; Varela, E.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Martinez, H.; Zepeda, A.] Ctr Invest & Estudios Avanzados IPN CINVESTAV, Mexico City, DF, Mexico. [Marquez Falcon, H. R.; Tiwari, D. K.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Alvarez Castio, J.; De Donato, C.; D'Olivo, J. C.; Tapia, I. Fajardo; Guzman, A.; Medina-Tanco, G.; Morales, B.; Nellen, L.; Silva Lopez, H. H.; Supanitsky, A. D.; Tavera Ruiz, C. G.; Valdes Galicia, J. F.; Vargas Cardenas, B.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Amianei, A.; Coppens, J.; de Jong, S. J.; Falcke, H.; Grebe, S.; Hoerandel, J. R.; Horneffer, A.; Jiraskova, S.; Kelley, J. L.; Nelles, A.; Schoorlemmer, H.; Timmermans, C.] Radboud Univ Nijmegen, IMAPP, NL-6525 ED Nijmegen, Netherlands. [de Vries, K. D.; Docters, W.; Fraenkel, E. D.; Harmsma, S.; Scholten, O.; van den Berg, A. M.] Univ Groningen, Kernfysisch Versneller Inst, Groningen, Netherlands. [Coppens, J.; de Jong, S. J.; Grebe, S.; Harmsma, S.; Nelles, A.; Petrovic, J.; Schoorlemmer, H.; Timmermans, C.] Nikhef, Amsterdam, Netherlands. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Borodai, N.; Gora, D.; Homola, P.; Pekala, J.; Stasielak, J.; Wilczynska, B.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Espadanal, J.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] Univ Tecn Lisboa, LIP, P-1100 Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Espadanal, J.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] Univ Tecn Lisboa, Inst Super Tecn, P-1100 Lisbon, Portugal. [Filipcic, A.; Veberic, D.; Zavrtanik, D.; Zavrtanik, M.] Jozef Stefan Inst, Ljubljana, Slovenia. [Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. [Arganda, E.; Arqueros, F.; Blanco, F.; Garcia-Pinto, D.; Ortiz, M.; Rosado, J.; Vazquez, I. R.] Univ Complutense Madrid, Madrid, Spain. [Blanco, M.; del Peral, L.; Pacheco, N.; Rodriguez-Frias, M. D.; Ros, G.] Univ Alcala de Henares, Alcala De Henares, Madrid, Spain. [Bueno, A.; Garcia Gamez, D.; Gascon, A.; Lozano Bahilo, J.; Molina-Bueno, L.; Navarro, J. L.; Navas, S.; Zamorano, B.] Univ Granada, Granada, Spain. [Bueno, A.; Garcia Gamez, D.; Gascon, A.; Lozano Bahilo, J.; Molina-Bueno, L.; Navarro, J. L.; Navas, S.; Zamorano, B.] CAFPE, Granada, Spain. [Alvarez-Muniz, J.; Lopez Agueera, A.; Olmos-Gilbaja, V. M.; Parente, G.; Parra, A.; Pelayo, R.; Riggi, S.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez-Cabo, I.; Tueros, M.; Valino, I.; Vazquez, R. A.; Yushkov, A.; Zas, E.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Mertsch, P.; Sarkar, S.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford, England. [Bruijn, R.; Cook, H.; Gozzini, S. R.; Knapp, J.; Lu, L.; Parsons, R. D.; Waton, A. A.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Spinka, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Burton, R. E.; Covault, C. E.; Ferguson, A. P.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Sarazin, F.; Schuster, D.; Wieneke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Brack, J.; Dorofeev, A.; Fracchiolla, C. E.; Gookin, B.; Harton, J. L.; Mostafa, M.; Petrov, Y.; Salesa Greus, F.; Thomas, D.; Warner, D.] Colorado State Univ, Ft Collins, CO 80523 USA. [Brown, W. C.] Colorado State Univ, Pueblo, CO USA. [Ahn, E. J.; Chou, A.; Fazzini, N.; Glass, H.; Hojvat, C.; Kasper, P.; Kuehn, F.; Lebrun, P.; Mantsch, P.; Mazur, P. O.; Spinka, H.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Keivani, A.; Matthews, J.; Shadkam, A.; Sutherland, M. S.; Yuan, G.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Dhital, N.; Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.; Yapici, T.] Michigan Technol Univ, Houghton, MI 49931 USA. [Allen, J.; Farrar, G.; Roberts, J.; Zaw, I.] NYU, New York, NY USA. [Paul, T.; Swain, J.] Northeastern Univ, Boston, MA 02115 USA. [Allison, P.; Baughman, B.; Beatty, J. J.; Grashorn, E.; Griffith, N.; Morris, C.; Stapleton, J.; Sutherland, M. S.] Ohio State Univ, Columbus, OH 43210 USA. [Caballero-Mora, K. S.; Cheng, S. H.; Coutu, S.; Criss, A.; Sommers, P.; Ulrich, R.] Penn State Univ, University Pk, PA 16802 USA. [Matthews, J.] So Univ, Baton Rouge, LA USA. [Cronin, J.; Luis, P. Facal San; Hollon, N.; Ionita, F.; Kotera, K.; Monasor, M.; Olinto, A.; Privitera, P.; Rouille-d'Orfeuil, B.; Schmidt, F.; Williams, C.; Yamamoto, T.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Becker, B. R.; Gesterling, K.; Gold, M. S.; Hague, J. D.; Matthews, J. A. J.; Miller, W.; Phan, N.] Univ New Mexico, Albuquerque, NM 87131 USA. [BenZvi, S.; Pfendner, C.; Westerhoff, S.] Univ Wisconsin, Madison, WI USA. [Anchordoqui, L.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Diep, P. N.; Dong, P. N.; Nhung, P. T.; Thao, N. T.] Inst Nucl Sci & Technol, Hanoi, Vietnam. RP Abreu, P (reprint author), Univ Lodz, PL-90131 Lodz, Poland. RI Rodriguez Frias, Maria /A-7608-2015; Oliva, Pietro/K-5915-2015; Inst. of Physics, Gleb Wataghin/A-9780-2017; De Mitri, Ivan/C-1728-2017; Rodriguez Fernandez, Gonzalo/C-1432-2014; Nosek, Dalibor/F-1129-2017; Gouffon, Philippe/I-4549-2012; de Almeida, Rogerio/L-4584-2016; De Domenico, Manlio/B-5826-2014; Abreu, Pedro/L-2220-2014; Navas, Sergio/N-4649-2014; Assis, Pedro/D-9062-2013; Arqueros, Fernando/K-9460-2014; Conceicao, Ruben/L-2971-2014; Beatty, James/D-9310-2011; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Guarino, Fausto/I-3166-2012; Bonino, Raffaella/S-2367-2016; Carvalho Jr., Washington/H-9855-2015; Espadanal, Joao/I-6618-2015; De Donato, Cinzia/J-9132-2015; Vazquez, Jose Ramon/K-2272-2015; Martello, Daniele/J-3131-2012; Insolia, Antonio/M-3447-2015; de Mello Neto, Joao/C-5822-2013; Lozano-Bahilo, Julio/F-4881-2016; scuderi, mario/O-7019-2014; zas, enrique/I-5556-2015; Sarkar, Subir/G-5978-2011; Moura Santos, Edivaldo/K-5313-2016; Tome, Bernardo/J-4410-2013; Espirito Santo, Maria Catarina/L-2341-2014; Pimenta, Mario/M-1741-2013; Ros, German/L-4764-2014; Di Giulio, Claudio/B-3319-2015; Bueno, Antonio/F-3875-2015; Parente, Gonzalo/G-8264-2015; dos Santos, Eva/N-6351-2013; Alvarez-Muniz, Jaime/H-1857-2015; Rosado, Jaime/K-9109-2014; Valino, Ines/J-8324-2012; Schovanek, Petr/G-7117-2014; Vicha, Jakub/G-8440-2014; Travnicek, Petr/G-8814-2014; Smida, Radomir/G-6314-2014; Ridky, Jan/H-6184-2014; Chudoba, Jiri/G-7737-2014; Horvath, Pavel/G-6334-2014; Pech, Miroslav/G-5760-2014; Todero Peixoto, Carlos Jose/G-3873-2012; Garcia Pinto, Diego/J-6724-2014; Pastor, Sergio/J-6902-2014; Chiavassa, Andrea/A-7597-2012; Verzi, Valerio/B-1149-2012; Chinellato, Carola Dobrigkeit /F-2540-2011; Fauth, Anderson/F-9570-2012; de souza, Vitor/D-1381-2012; Shellard, Ronald/G-4825-2012; Pesce, Roberto/G-5791-2011; Caramete, Laurentiu/C-2328-2011; Petrolini, Alessandro/H-3782-2011; Muller, Marcio Aparecido/H-9112-2012; D'Urso, Domenico/I-5325-2012; Bleve, Carla/J-2521-2012; Brogueira, Pedro/K-3868-2012; Chinellato, Jose Augusto/I-7972-2012; Yushkov, Alexey/A-6958-2013; Falcke, Heino/H-5262-2012; Ebr, Jan/H-8319-2012; Anjos, Joao/C-8335-2013; Nierstenhofer, Nils/H-3699-2013; Goncalves, Patricia /D-8229-2013; Prouza, Michael/F-8514-2014; Mandat, Dusan/G-5580-2014; Bohacova, Martina/G-5898-2014; Cazon, Lorenzo/G-6921-2014 OI Garcia, Beatriz/0000-0003-0919-2734; Dembinski, Hans/0000-0003-3337-3850; Del Peral, Luis/0000-0003-2580-5668; Coutu, Stephane/0000-0003-2923-2246; Bonino, Raffaella/0000-0002-4264-1215; Rizi, Vincenzo/0000-0002-5277-6527; Mussa, Roberto/0000-0002-0294-9071; Ulrich, Ralf/0000-0002-2535-402X; Knapp, Johannes/0000-0003-1519-1383; Tiwari, Dhirendra Kumar/0000-0002-6754-3398; Mertsch, Philipp/0000-0002-2197-3421; Zamorano, Bruno/0000-0002-4286-2835; Petrera, Sergio/0000-0002-6029-1255; Mantsch, Paul/0000-0002-8382-7745; Aramo, Carla/0000-0002-8412-3846; Anzalone, Anna/0000-0003-1849-198X; de Jong, Sijbrand/0000-0002-3120-3367; Marsella, Giovanni/0000-0002-3152-8874; La Rosa, Giovanni/0000-0002-3931-2269; Asorey, Hernan/0000-0002-4559-8785; Andringa, Sofia/0000-0002-6397-9207; Cataldi, Gabriella/0000-0001-8066-7718; Aglietta, Marco/0000-0001-8354-5388; Maccarone, Maria Concetta/0000-0001-8722-0361; Kothandan, Divay/0000-0001-9048-7518; Castellina, Antonella/0000-0002-0045-2467; maldera, simone/0000-0002-0698-4421; Matthews, James/0000-0002-1832-4420; Yuan, Guofeng/0000-0002-1907-8815; Gomez Berisso, Mariano/0000-0001-5530-0180; Salamida, Francesco/0000-0002-9306-8447; Catalano, Osvaldo/0000-0002-9554-4128; Ravignani, Diego/0000-0001-7410-8522; Segreto, Alberto/0000-0001-7341-6603; Navarro Quirante, Jose Luis/0000-0002-9915-1735; Rodriguez Frias, Maria /0000-0002-2550-4462; Oliva, Pietro/0000-0002-3572-3255; De Mitri, Ivan/0000-0002-8665-1730; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X; Nosek, Dalibor/0000-0001-6219-200X; Sigl, Guenter/0000-0002-4396-645X; Gouffon, Philippe/0000-0001-7511-4115; de Almeida, Rogerio/0000-0003-3104-2724; De Domenico, Manlio/0000-0001-5158-8594; Abreu, Pedro/0000-0002-9973-7314; Navas, Sergio/0000-0003-1688-5758; Assis, Pedro/0000-0001-7765-3606; Arqueros, Fernando/0000-0002-4930-9282; Conceicao, Ruben/0000-0003-4945-5340; Beatty, James/0000-0003-0481-4952; Guarino, Fausto/0000-0003-1427-9885; Carvalho Jr., Washington/0000-0002-2328-7628; Espadanal, Joao/0000-0002-1301-8061; De Donato, Cinzia/0000-0002-9725-1281; Vazquez, Jose Ramon/0000-0001-9217-5219; Martello, Daniele/0000-0003-2046-3910; Insolia, Antonio/0000-0002-9040-1566; de Mello Neto, Joao/0000-0002-3234-6634; Lozano-Bahilo, Julio/0000-0003-0613-140X; scuderi, mario/0000-0001-9026-5317; zas, enrique/0000-0002-4430-8117; Sarkar, Subir/0000-0002-3542-858X; Moura Santos, Edivaldo/0000-0002-2818-8813; Tome, Bernardo/0000-0002-7564-8392; Espirito Santo, Maria Catarina/0000-0003-1286-7288; Pimenta, Mario/0000-0002-2590-0908; Ros, German/0000-0001-6623-1483; Di Giulio, Claudio/0000-0002-0597-4547; Bueno, Antonio/0000-0002-7439-4247; Parente, Gonzalo/0000-0003-2847-0461; dos Santos, Eva/0000-0002-0474-8863; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Rosado, Jaime/0000-0001-8208-9480; Valino, Ines/0000-0001-7823-0154; Ridky, Jan/0000-0001-6697-1393; Horvath, Pavel/0000-0002-6710-5339; Todero Peixoto, Carlos Jose/0000-0003-3669-8212; Garcia Pinto, Diego/0000-0003-1348-6735; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Fauth, Anderson/0000-0001-7239-0288; Shellard, Ronald/0000-0002-2983-1815; Petrolini, Alessandro/0000-0003-0222-7594; D'Urso, Domenico/0000-0002-8215-4542; Brogueira, Pedro/0000-0001-6069-4073; Chinellato, Jose Augusto/0000-0002-3240-6270; Falcke, Heino/0000-0002-2526-6724; Ebr, Jan/0000-0001-8807-6162; Goncalves, Patricia /0000-0003-2042-3759; Prouza, Michael/0000-0002-3238-9597; Cazon, Lorenzo/0000-0001-6748-8395 FU Comision Nacional de Energia Atomica; Fundacion Antorchas; Gobierno De La Provincia de Mendoza; Municipalidad de Malargue; NDM Holdings; Valle Las Lenas; Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Financiadora de Estudos e Projetos (FINEP); Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Ministerio de Ciencia e Tecnologia (MCT), Brazil; AVCR [AV0Z10.100502, AV0Z10100522, GAAV KJB100100904, MSMT-CR LA08016, LC527, 1M06002, MSN10021620859]; Czech Republic; Centre de Calcul [IN2P3/CNRS]; Centre National de la Recherche; Scientifique (CNRS); Conseil Regional Ile-de-France; Departement Physique Nucleaire et Corpusculaire [PNC-IN2P3/CNRS]; Departement Sciences de l'Univers (SDU-INSU/CNR.S), France; Bundesministerium far Bildung mid Forschung (BMBF); Deutsche Forschungsgenteinschaft (DFG); Finanzministerium Baden-Wurttemberg; Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF); Ministerium fur Wissenschaft und Forschung; Nordrhein-Westfalen; Forschung und Kunst, Liaden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleate Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor \\Tetenschappelijk Onderzoek (NNVO), Stichting voor Rindamenteel Onderzoelc der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Poland [N N202 200239, N N202 207238]; Fundacao para a Ciencia e a 'Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Consejerfa de Educacion de la Comunidad de Castilla La Mancha; FEDER; Ministerio de Ciencia e Innovacion; CPAN; Xunta de Galicia, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy [DE-AC02-07CH11359, DE-FR02-04ER41300]; National Science Foundation [0450696]; Grainger Foundation USA; ALFA-EC / HELEN; European Union [MEIF-CT-2005-025057, PIEF-GA-2008-220240]; UNESCO FX We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (MCT), Brazil; AVCR AV0Z10.100502 and AV0Z10100522, GAAV KJB100100904, MSMT-CR LA08016, LC527, 1M06002, and MSN10021620859, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche,. Scientifique (CNRS). Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNR.S), France; Bundesministerium far Bildung mid Forschung (BMBF), Deutsche Forschungsgenteinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Liaden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleate Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor \\Tetenschappelijk Onderzoek (NNVO), Stichting voor Rindamenteel Onderzoelc der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. IN N202 200239 and N N202 207238, Poland; Fundacao para a Ciencia e a 'Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Consejerfa de Educacion de la Comunidad de Castilla La Mancha, FEDER funds, Ministerio de Ciencia e Innovacion and Consolider-Ingenio 2010 (CPAN), Xunta de Galicia, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract Nos. DE-AC02-07CH11359, DE-FR02-04ER41300, National Science Foundation, Grant No. 0450696, The Grainger Foundation USA; ALFA-EC / HELEN, European Union 6th Framework Program, Grant No. MEIF-CT-2005-025057, European Union 7th Framework Program, Grant No. PIEF-GA-2008-220240 and UNESCO. NR 22 TC 6 Z9 6 U1 0 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD NOV PY 2011 IS 11 AR 022 DI 10.1088/1475-7516/2011/11/022 PG 22 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 863CV UT WOS:000298141300022 ER PT J AU Farina, M Pappadopulo, D Strumia, A Volansky, T AF Farina, Marco Pappadopulo, Duccio Strumia, Alessandro Volansky, Tomer TI Can CoGeNT and DAMA modulations be due to Dark Matter? SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter theory; dark matter experiments ID NAI(TL) AB We explore the dark matter interpretation of the anomalies claimed by the DAMA and COGENT experiments, in conjunction with the various null direct-detection experiments. An independent analysis of the COGENT data is employed and several experimental and astrophysical uncertainties are considered. Various phenomenological models are studied, including isospin violating interactions, momentum-dependent form factors, velocity-dependent form factors, inelastic scatterings (endothermic and exothermic) and channeling. We find that the severe tension between the anomalies and the null results can be ameliorated but not eliminated, unless extreme assumptions are made. C1 [Farina, Marco] Scuola Normale Super Pisa, I-56126 Pisa, Italy. [Farina, Marco; Strumia, Alessandro] Ist Nazl Fis Nucl, I-56126 Pisa, Italy. [Pappadopulo, Duccio] Ecole Polytech Fed Lausanne, Inst Theorie Phenomenes Phys, CH-1015 Lausanne, Switzerland. [Strumia, Alessandro] Univ Pisa, Dipartimento Fis, Pisa, Italy. [Strumia, Alessandro] NICPB, Tallinn, Estonia. [Volansky, Tomer] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Volansky, Tomer] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. RP Farina, M (reprint author), Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy. EM marco.farina@sns.it; duccio.pappadopulo@epfl.ch; astrumia@df.unipi.it; tomerv@post.tau.ac.il FU EU ITN Unification in the LHC Era [PITN-GA-2009-237920 (UNILHC)]; ESF [MTT8, SF0690030s09]; Swiss National Science Foundation [200021-116372]; Office of Science, Office of High Energy and Nuclear Physics, of the US Department of Energy [DE-AC02- 05CH11231] FX We thank Juan Collar, Mariangela Lisanti, Jeremy Mardon and Tracy Slatyer for useful discussions. We wish to thank the authors of [64] for pointing out an error in section 3.2 in an earlier version of the paper. This work was supported by the EU ITN Unification in the LHC Era, contract PITN-GA-2009-237920 (UNILHC). The work of AS was supported by the ESF grant MTT8 and by SF0690030s09 project. The work of DP was supported by the Swiss National Science Foundation under contract No. 200021-116372. The work of TV was supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, of the US Department of Energy under Contract DE-AC02- 05CH11231. AS thanks the invitation from the Berkeley physics department, where this work was initiated. NR 73 TC 32 Z9 32 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD NOV PY 2011 IS 11 AR 010 DI 10.1088/1475-7516/2011/11/010 PG 29 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 863CV UT WOS:000298141300010 ER PT J AU Gubitosi, G Migliaccio, M Pagano, L Amelino-Camelia, G Melchiorri, A Natoli, P Polenta, G AF Gubitosi, Giulia Migliaccio, Marina Pagano, Luca Amelino-Camelia, Giovanni Melchiorri, Alessandro Natoli, Paolo Polenta, Gianluca TI Using CMB data to constrain non-isotropic Planck-scale modifications to Electrodynamics SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE CMBR polarisation; cosmological parameters from CMBR; quantum gravity phenomenology; CMBR theory ID PROBE WMAP OBSERVATIONS; QUANTUM-GRAVITY; VIOLATION; LIMITS AB We develop a method to constrain non-isotropic features of Cosmic Microwave Background (CMB) polarization, of a type expected to arise in some models describing quantum gravity effects on light propagation. We describe the expected signatures of this kind of anmalous light propagation on CMB photons, showing that it will produce a non-isotropic birefringence effect, i.e. a rotation of the CMB polarization direction whose observed amount depends in a peculiar way on the observation direction. We also show that the sensitivity levels expected for CMB polarization studies by the Planck satellite are sufficient for testing these effects if, as assumed in the quantum-gravity literature, their magnitude is set by the minute Planck length. C1 [Gubitosi, Giulia] Berkeley Lab, Berkeley, CA 94720 USA. [Gubitosi, Giulia] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Migliaccio, Marina] Univ Roma Tor Vergata, Rome, Italy. [Pagano, Luca] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Amelino-Camelia, Giovanni; Melchiorri, Alessandro] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Natoli, Paolo] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. INAF IASF Bologna, Bologna, Italy. [Natoli, Paolo; Polenta, Gianluca] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Polenta, Gianluca] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Italy. RP Gubitosi, G (reprint author), Berkeley Lab, Berkeley, CA 94720 USA. EM giulia.gubitosi@berkeley.edu; Marina.Migliaccio@roma2.infn.it; luca.pagano@jpl.nasa.gov; giovanni.amelino-camelia@roma1.infn.it; alessandro.melchiorri@roma1.infn.it; paolo.natoli@roma2.infn.it; gianluca.polenta@asdc.asi.it RI Gubitosi, Giulia/J-3142-2012; OI Polenta, Gianluca/0000-0003-4067-9196; Melchiorri, Alessandro/0000-0001-5326-6003; Gubitosi, Giulia/0000-0001-6107-639X FU National Aeronautics and Space Administration; PRIN-INAF; Italian Space Agency through the ASI [Euclid-IC (I/031/10/0)]; DOE [DE-AC03-76SF00098]; CASPER (Rome, Italy); ASI FX Part of the research of was carried out at the Jet Propulsion Laboratory. California Institute of Technology, under a contract with the National Aeronautics and Space Administration.; This work is supported by PRIN-INAF, "Astronomy probes fundamental physics". Support was given by the Italian Space Agency through the ASI contracts Euclid-IC (I/031/10/0).; This research used resources at NERSC, supported by the DOE under Contract No. DE-AC03-76SF00098, and at CASPER (Rome, Italy: special thanks are due to NI. Botti and F. Massaioli).; We also acknowledge support from ASI Contract Planck LFI activity of Phase E2. NR 32 TC 4 Z9 4 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD NOV PY 2011 IS 11 AR 003 DI 10.1088/1475-7516/2011/11/003 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 863CV UT WOS:000298141300003 ER PT J AU Seljak, U McDonald, P AF Seljak, Uros McDonald, Patrick TI Distribution function approach to redshift space distortions SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE power spectrum; redshift surveys ID POWER SPECTRUM; GALAXIES AB We develop a phase space distribution function approach to redshift space distortions (RSD), in which the redshift space density can be written as a sum over velocity moments of the distribution function. These moments are density weighted and have well defined physical interpretation: their lowest orders are density, momentum density, and stress energy density. The series expansion is convergent if k mu u/aH < 1, where k is the wavevector, H the Hubble parameter, u the typical gravitational velocity and mu - cos theta, with theta being the angle between the Fourier mode and the line of sight. We perform an expansion of these velocity moments into helicity modes, which are eigenmodes under rotation around the axis of Fourier mode direction, generalizing the scalar, vector, tensor decomposition of perturbations to an arbitrary order. We show that only equal helicity moments correlate and derive the angular dependence of the individual contribution's to the redshift space power spectrum. We show that the dominant term of mu(2) dependence on large scales is the cross-correlation between the density and scalar part of momentum density, which can be related to the time derivative of the matter power spectrum. Additional terms contributing to 2 and dominating on small scales are the vector part of momentum density-momentum density correlations, the energy density-density correlations, and the scalar part of anisotropic stress density-density correlations. The second term is what is usually associated with the small scale Fingers-of-God damping and always suppresses power, but the first term conies with the opposite sign and always adds power. Similarly, we identify 7 terms contributing to mu(4) dependence. Some of the advantages of the distribution function approach are that the series expansion converges on large scales and remains valid in no situations. We finish with a brief discussion of implications for RSD in galaxies relative to dark matter, highlighting the issue of scale dependent bias of velocity moments correlators. C1 [Seljak, Uros] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. [Seljak, Uros; McDonald, Patrick] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Seljak, Uros] Univ Calif Berkeley, Dept Phys, Dept Astron, Berkeley, CA 94720 USA. [Seljak, Uros] Ewha Womans Univ, Inst Early Universe, Seoul 120750, South Korea. [McDonald, Patrick] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Seljak, U (reprint author), Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland. EM useljak@berkeley.edu; pvmcdonald@lbl.gov OI McDonald, Patrick/0000-0001-8346-8394 FU DOE; Swiss National Foundation [200021-116696/1]; WCU [R32-10130] FX We thank Teppei Okumura and Zvonimir Vlah for helpful discussions. This work is supported by the DOE, the Swiss National Foundation under contract 200021-116696/1 and WCU grant R32-10130. NR 21 TC 42 Z9 42 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD NOV PY 2011 IS 11 AR 039 DI 10.1088/1475-7516/2011/11/039 PG 17 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 863CV UT WOS:000298141300039 ER PT J AU Zhang, QF Karney, B Pejovic, S AF Zhang, Qinfen (Katherine) Karney, Bryan Pejovic, Stanislav TI Nonreflective Boundary Design via Remote Sensing and Proportional-Integral-Derivative Control Valve SO JOURNAL OF HYDRAULIC ENGINEERING-ASCE LA English DT Article DE Design; Energy dissipation; Hydraulic transients; Mathematical models; Pipe flow; Unsteady flow; Water hammer; Water pipelines; Wave propagation; Wave reflection; Resonance ID PIPE FRICTION; TRANSIENT; TURBULENT; FLOW AB This paper develops the concept of a nonreflective (or semireflective) boundary condition using the combination of a remote sensor and a control system to modulate a relief valve. The essential idea is to sense the pressure change at a remote location and then to use the measured data to adjust the opening of an active control valve at the end of the line to eliminate or attenuate the wave reflections at the valve, thus controlling system transient pressures. This novel idea is shown here through numerical simulation to have considerable potential for transient protection. Using this model, wave reflections and resonance can be effectively eliminated for frictionless pipelines or initial no-flow conditions and can be better controlled in more realistic pipelines for a range of transient disturbances. In addition, the features of even-order harmonics and nonreflective boundary conditions during steady oscillation, obtained through time domain transient analysis, are verified by hydraulic impedance analysis in the frequency domain.DOI:10.1061/(ASCE)HY.1943-7900.0000403. (C) 2011 American Society of Civil Engineers. C1 [Zhang, Qinfen (Katherine)] Oak Ridge Natl Lab UT Battelle LLC, Oak Ridge, TN 37831 USA. [Karney, Bryan] Univ Toronto, Dept Civil Engn, Toronto, ON M5S 1A4, Canada. RP Zhang, QF (reprint author), Oak Ridge Natl Lab UT Battelle LLC, 1 Bethel Valley Rd,POB 2008, Oak Ridge, TN 37831 USA. EM Zhangq1@ornl.gov; karney@ecf.utoronto.ca; pejovics@asme.org RI Zhang, Qin Fen/C-9648-2013 NR 22 TC 1 Z9 1 U1 0 U2 3 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9429 J9 J HYDRAUL ENG-ASCE JI J. Hydraul. Eng.-ASCE PD NOV PY 2011 VL 137 IS 11 BP 1477 EP 1489 DI 10.1061/(ASCE)HY.1943-7900.0000403 PG 13 WC Engineering, Civil; Engineering, Mechanical; Water Resources SC Engineering; Water Resources GA 864MS UT WOS:000298244900017 ER PT J AU Zhang, QF Karney, B Suo, LS Colombo, AF AF Zhang, Qinfen (Katherine) Karney, Bryan Suo, Lisheng Colombo, Andrew F. TI Stochastic Analysis of Water Hammer and Applications in Reliability-Based Structural Design for Hydro Turbine Penstocks SO JOURNAL OF HYDRAULIC ENGINEERING-ASCE LA English DT Article DE Hydropower plant; Transient event; Water hammer; Load rejection; Random factors; Stochastic analysis model; Monte Carlo simulation; Random variable loads; Reliability-based structural design; Normative load; Partial load factor; Safety factor ID DISTRIBUTION-SYSTEM DESIGN; OPEN-CHANNEL FLOW; RISK-BASED DESIGN; DISTRIBUTION NETWORKS; NUMERICAL-SIMULATION; HYDRAULIC STRUCTURES; OPTIMIZATION MODEL; FLUVIAL HYDRAULICS; PIPE NETWORKS; SEWER SYSTEMS AB The randomness of transient events, and the variability of its associated dependencies, ensures that water hammer and surges in a pressurized pipe system are inherently stochastic. To improve reliability-based structural design, a stochastic transient model is developed for water conveyance systems in hydropower plants. The statistical characteristics of key factors in boundary conditions, initial states, and hydraulic system parameters are analyzed on the basis of a large record of observed data from hydro plants in China; the probability distributions of annual maximum water hammer pressures are then simulated by using a Monte Carlo method and verified with an analytical probabilistic model for a simplified pipe system. The key loading characteristics (annual occurrence, sustaining period, and probability distribution) are introduced and discussed. By using an example of penstock structural design, it is shown that the total water hammer pressure should be split into two individual random variable loads-the steady/static pressure and the water hammer pressure rise during transients-and that different partial load factors should be applied to individual loads to reflect specific physical and stochastic features. Particularly, the normative load (usually the unfavorable value at a 95-percentage level) for steady/static hydraulic pressure should be taken from the probability distribution of its maximum values over a pipe's design life, whereas for the water hammer pressure rise, as the second variable load, the probability distribution of its annual maximum values determines its normative load. DOI: 10.1061/(ASCE)HY.1943-7900.0000414. (C) 2011 American Society of Civil Engineers. C1 [Zhang, Qinfen (Katherine)] Oak Ridge Natl Lab UT Battle LLC, Oak Ridge, TN 37831 USA. [Zhang, Qinfen (Katherine)] Riverbank Power Inc, Toronto, ON, Canada. [Karney, Bryan] Univ Toronto, Dept Civil Engn, Toronto, ON M5S 1A4, Canada. [Suo, Lisheng] Hohai Univ, Nanjing, Peoples R China. [Colombo, Andrew F.] Univ Toronto, Dept Civil Engn, Toronto, ON M5S 1A4, Canada. RP Zhang, QF (reprint author), Oak Ridge Natl Lab UT Battle LLC, 1 Bethel Valley Rd,POB 2008, Oak Ridge, TN 37831 USA. EM Zhangq1@ornl.gov; karney@ecf.utoronto.ca; lssuo@mwr.gov.cn; andrew.colombo@utoronto.ca RI Zhang, Qin Fen/C-9648-2013 NR 85 TC 10 Z9 10 U1 0 U2 18 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9429 J9 J HYDRAUL ENG-ASCE JI J. Hydraul. Eng.-ASCE PD NOV PY 2011 VL 137 IS 11 BP 1509 EP 1521 DI 10.1061/(ASCE)HY.1943-7900.0000414 PG 13 WC Engineering, Civil; Engineering, Mechanical; Water Resources SC Engineering; Water Resources GA 864MS UT WOS:000298244900020 ER PT J AU Annala, G Banerjee, B Barker, B Boes, T Bowden, M Briegel, C Cancelo, G Duerling, G Forster, B Foulkes, S Haynes, B Hendricks, B Kasza, T Kutschke, R Mahlum, R Martens, M Olson, M Pavlicek, V Piccoli, L Prieto, P Steimel, J Treptow, K Votava, M Voy, D Wendt, M Wolbers, S Zhang, D AF Annala, G. Banerjee, B. Barker, B. Boes, T. Bowden, M. Briegel, C. Cancelo, G. Duerling, G. Forster, B. Foulkes, S. Haynes, B. Hendricks, B. Kasza, T. Kutschke, R. Mahlum, R. Martens, M. Olson, M. Pavlicek, V. Piccoli, L. Prieto, P. Steimel, J. Treptow, K. Votava, M. Voy, D. Wendt, M. Wolbers, S. Zhang, D. TI Tevatron beam position monitor upgrade SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Accelerator Applications; Beam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors) AB This paper describes the development of a digital-based Beam Position System which was designed, developed, and adapted for the Tevatron during Collider Run II. C1 [Annala, G.; Banerjee, B.; Barker, B.; Boes, T.; Bowden, M.; Briegel, C.; Cancelo, G.; Duerling, G.; Forster, B.; Foulkes, S.; Haynes, B.; Hendricks, B.; Kasza, T.; Kutschke, R.; Mahlum, R.; Martens, M.; Olson, M.; Pavlicek, V.; Piccoli, L.; Prieto, P.; Steimel, J.; Treptow, K.; Votava, M.; Voy, D.; Wendt, M.; Wolbers, S.; Zhang, D.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Prieto, P (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM Prieto@FNAL.gov OI Kutschke, Robert/0000-0001-9315-2879 FU Fermi Research Alliance, LLC [De-AC02-07CH11359]; United States Department of Energy [De-AC02-07CH11359] FX Work supported by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. NR 6 TC 3 Z9 3 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD NOV PY 2011 VL 6 AR T11005 DI 10.1088/1748-0221/6/11/T11005 PG 21 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 865OO UT WOS:000298320400049 ER PT J AU Baumbaugh, A Briegel, C Brown, BC Capista, D Drennan, C Fellenz, B Knickerbocker, K Lewis, JD Marchionni, A Needles, C Olson, M Pordes, S Shi, Z Still, D Thurman-Keup, R Utes, M Wu, J AF Baumbaugh, A. Briegel, C. Brown, B. C. Capista, D. Drennan, C. Fellenz, B. Knickerbocker, K. Lewis, J. D. Marchionni, A. Needles, C. Olson, M. Pordes, S. Shi, Z. Still, D. Thurman-Keup, R. Utes, M. Wu, J. TI The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Instrumentation for particle accelerators and storage rings - high energy (linear accelerators, synchrotrons); Beam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors) AB A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron. C1 [Baumbaugh, A.; Briegel, C.; Brown, B. C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J. D.; Marchionni, A.; Needles, C.; Olson, M.; Pordes, S.; Shi, Z.; Still, D.; Thurman-Keup, R.; Utes, M.; Wu, J.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Olson, M (reprint author), Fermilab Natl Accelerator Lab, Box 500, Batavia, IL 60510 USA. EM molson@fnal.gov OI Marchionni, Alberto/0000-0003-3039-9537; Drennan, Craig/0000-0003-3302-3789 FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; United States Department of Energy [DE-AC02-07CH11359] FX Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 19 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD NOV PY 2011 VL 6 AR T11006 DI 10.1088/1748-0221/6/11/T11006 PG 24 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 865OO UT WOS:000298320400050 ER PT J AU Crisp, J Fellenz, B AF Crisp, J. Fellenz, B. TI Tevatron Resistive Wall Current Monitor SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Instrumentation for particle accelerators and storage rings - high energy (linear accelerators, synchrotrons); Beam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors) AB Resistive Wall Current Monitors (RWCM) were designed and built for the Fermilab Tevatron (Tev) project. These devices measure longitudinal beam current from 3 KHz to 6 GHz with 1.34 ohm gap impedance. There are two RWCM's installed a few feet apart in the Tevatron, upstream RWCM is used for general purpose use, downstream RWCMis dedicated for longitudinal parameters of coalesced beam bunches and bunch intensities. The design provides a calibration or test port for injecting test signals. Microwave absorber material is used to reduce interference from spurious electromagnetic waves traveling inside the beam pipe. This paper will do an overview how the RWCM was designed and its test results. C1 [Fellenz, B.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Crisp, J.] Michigan State Univ, Facil Rare Isotope Beams, E Lansing, MI 48824 USA. RP Fellenz, B (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM fellenz@fnal.gov FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; United States Department of Energy [DE-AC02-07CH11359] FX Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 10 TC 3 Z9 3 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD NOV PY 2011 VL 6 AR T11001 DI 10.1088/1748-0221/6/11/T11001 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 865OO UT WOS:000298320400045 ER PT J AU Meyer, T Slimmer, D Voy, D AF Meyer, T. Slimmer, D. Voy, D. TI Instrument front-ends at Fermilab during Run II SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Instrumentation for particle accelerators and storage rings - high energy (linear accelerators, synchrotrons); Beam-line instrumentation (beam position and profile monitors; beam-intensity monitors; bunch length monitors) AB The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor. C1 [Meyer, T.; Slimmer, D.; Voy, D.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Meyer, T (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM tsmeyer@fnal.gov FU Fermi Research Alliance, LLC [DE-AC02-07CH11359]; United States Department of Energy [DE-AC02-07CH11359] FX Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. NR 6 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD NOV PY 2011 VL 6 AR T11004 DI 10.1088/1748-0221/6/11/T11004 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 865OO UT WOS:000298320400048 ER PT J AU Mondal, J Ciovati, G Kneisel, P Mittal, KC Myneni, GR AF Mondal, J. Ciovati, G. Kneisel, P. Mittal, K. C. Myneni, G. R. TI Design, fabrication, RF test at 2K of 1050 MHz, beta=0.49 single cell large and fine grain niobium cavity SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Acceleration cavities and magnets superconducting (high-temperature superconductor; radiation hardened magnets; normal-conducting; permanent magnet devices; wigglers and undulators); Accelerator modelling and simulations (multi-particle dynamics; single-particle dynamics); Accelerator Subsystems and Technologies AB BARC is developing a technology for the accelerator driven subcritical system (ADSS) that will be mainly utilized for the transmutation of nuclear waste and enrichment of U233. Design and prototyping of a superconducting medium velocity cavity has been taken up as a part of the ADSS project. The cavity design for beta = 0.49, f = 1050 MHz has been optimized to minimize the peak electric and magnetic fields, with a goal of 5 MV/m of accelerating gradient at a Q > 5 x 10(9) at 2 K. After the design optimization, two single cell cavities were fabricated from polycrystalline (RRR > 200) and large grain (RRR > 96) Niobium material. The cavities have been tested at 2K in a vertical cryostat at Jefferson Lab and both achieved the performance specifications. C1 [Mondal, J.; Mittal, K. C.] Bhabha Atom Res Ctr, Accelerator & Pulse Power Div, Bombay 400085, Maharashtra, India. [Ciovati, G.; Kneisel, P.; Myneni, G. R.] Jefferson Lab, Newport News, VA 23606 USA. RP Mondal, J (reprint author), Bhabha Atom Res Ctr, Accelerator & Pulse Power Div, Bombay 400085, Maharashtra, India. EM jmondal@barc.gov.in FU US DOE [DE-AC05-84ER40150]; Reference Metals Company Inc. [CRADA 2004-S002-Mod 2] FX This work was supported by US DOE contract DE-AC05-84ER40150 and Reference Metals Company Inc. CRADA 2004-S002-Mod 2. The author J. Mondal would like to thank Director BTDG, Dr. L. M. Gantayet and Head APPD, D. P. Chakravarthy for their keen interest in this program. NR 14 TC 1 Z9 1 U1 2 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD NOV PY 2011 VL 6 AR T11003 DI 10.1088/1748-0221/6/11/T11003 PG 13 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 865OO UT WOS:000298320400047 ER PT J AU Pfeffer, H Saewert, G AF Pfeffer, H. Saewert, G. TI A 6 kV arbitrary waveform generator for the Tevatron Electron Lens SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Instrumentation for particle accelerators and storage rings - low energy (linear accelerators, cyclotrons, electrostatic accelerators); Instrumentation for particle accelerators and storage rings - high energy (linear accelerators, synchrotrons); Accelerator Subsystems and Technologies AB This paper reports on a 6 kV modulator built and installed at Fermilab to drive the electron gun anode for the Tevatron Electron Lens (TEL). The TEL was built with the intention of shifting the individual (anti) proton bunch tunes to even out the tune spread among all 36 bunches with the desire of improving Tevatron integrated luminosity. This modulator is essentially a 6 kV arbitrary waveform generator that enables the TEL to define the electron beam intensity on a bunch-by-bunch basis. A voltage waveform is constructed having a 7 mu s duration that corresponds to the tune shift requirements of a 12-bunch (anti) proton beam pulse train. This waveform is played out for any one or all three bunch trains in the Tevatron. The programmed waveform voltages transition to different levels at time intervals corresponding to the 395 ns bunch spacing. Thus, complex voltage waveforms can be played out at a sustained rate of 143 kHz over the full 6 kV output range. This paper describes the novel design of the inductive adder topology employing five transformers. It describes the design aspects that minimize switching losses for this multi-kilovolt, high repetition rate and high duty factor application. C1 [Pfeffer, H.; Saewert, G.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Saewert, G (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM saewert@fnal.gov FU Fermi Research Alliance, LLC; US Department of Energy [DE-AC02-07CH11359] FX Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the US Department of Energy. NR 5 TC 4 Z9 4 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD NOV PY 2011 VL 6 AR P11003 DI 10.1088/1748-0221/6/11/P11003 PG 10 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 865OO UT WOS:000298320400038 ER PT J AU Ogden, MD Hoch, CL Sinkov, SI Meier, GP Lumetta, GJ Nash, KL AF Ogden, Mark D. Hoch, Cortney L. Sinkov, Serguei I. Meier, G. Patrick Lumetta, Gregg J. Nash, Kenneth L. TI Complexation Studies of Bidentate Heterocyclic N-Donor Ligands with Nd(III) and Am(III) SO JOURNAL OF SOLUTION CHEMISTRY LA English DT Article DE Complexation; Am(III); Nd(III); Bidentate heterocyclic N-donor ligands; Anhydrous methanol media; Spectrophotometry ID LANTHANIDE(III) COMPLEXES; TRIVALENT ACTINIDES; SOLUTION CHEMISTRY; NITROGEN LIGANDS; SEPARATION; EXTRACTION; LANTHANIDES(III); AMERICIUM(III); TPEN AB A new bidentate nitrogen donor complexing agent that combines pyridine and triazole functional groups, 2-((4-phenyl-1H-1,2,3-triazol-1-yl) methyl) pyridine (PTMP), has been synthesized. The strength of its complexes with trivalent americium (Am(3+)) and neodymium (Nd(3+)) in anhydrous methanol has been evaluated using spectrophotometric techniques. The purpose of this investigation is to assess this ligand (as representative of a class of similarly structured species) as a possible model compound for the challenging separation of trivalent actinides from lanthanides. This separation, important in the development of advanced nuclear fuel cycles, is best achieved through the agency of multidentate chelating agents containing some number of nitrogen or sulfur donor groups. To evaluate the relative strength of the bidentate complexes, the derived constants are compared to those of the same metal ions with 2,2'-bipyridyl (bipy), 1,10-phenanthroline (phen), and 2-pyridin-2-yl-1H-benzimidazole (PBIm). At issue is the relative affinity of the triazole moiety for trivalent f element ions. For all ligands, the derived stability constants are higher for Am(3+) than Nd(3+). In the case of Am(3+) complexes with phen and PBIm, the presence of 1:2 (AmL(2)) species is indicated. Possible separations are suggested based on the relative stability and stoichiometry of the Am(3+) and Nd(3+) complexes. It can be noted that the 1,2,3-triazolyl group imparts a potentially useful selectivity for trivalent actinides (An(III)) over trivalent lanthanides (Ln(III)), though the attainment of higher complex stoichiometries in actinide compared with lanthanide complexes may be an important driver for developing successful separations. C1 [Ogden, Mark D.; Hoch, Cortney L.; Meier, G. Patrick; Nash, Kenneth L.] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Sinkov, Serguei I.; Lumetta, Gregg J.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Ogden, MD (reprint author), ANSTO Minerals, Kirrawee, Dc Nsw 2232, Australia. EM mark.ogden@ansto.gov.au FU U.S. Department of Energy, Division of Nuclear Energy Science and Technology, Nuclear Energy Research Initiative Consortium (NERI-C) [DE-FG07-07ID14896] FX This research was conducted at WSU and PNNL with funding provided by the U.S. Department of Energy, Division of Nuclear Energy Science and Technology, Nuclear Energy Research Initiative Consortium (NERI-C) program under project number DE-FG07-07ID14896. NR 27 TC 4 Z9 4 U1 3 U2 28 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-9782 J9 J SOLUTION CHEM JI J. Solut. Chem. PD NOV PY 2011 VL 40 IS 11 BP 1874 EP 1888 DI 10.1007/s10953-011-9762-7 PG 15 WC Chemistry, Physical SC Chemistry GA 865SN UT WOS:000298330700005 ER PT J AU Ben-Naim, E Krapivsky, PL AF Ben-Naim, E. Krapivsky, P. L. TI Dynamics of random graphs with bounded degrees SO JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT LA English DT Article DE irreversible aggregation phenomena (theory); percolation problems (theory); random graphs; networks ID MOLECULAR-SIZE DISTRIBUTION; SOCIAL NETWORKS; REGULAR GRAPHS; AGGREGATION; GELATION; KINETICS; PERCOLATION; POLYMERS; SYSTEMS; MODELS AB We investigate the dynamic formation of regular random graphs. In our model, we pick a pair of nodes at random and connect them with a link if both of their degrees are smaller than d. Starting with a set of isolated nodes, we repeat this linking step until a regular random graph, where all nodes have degree d, forms. We view this process as a multivariate aggregation process, and formally solve the evolution equations using the Hamilton-Jacobi formalism. We calculate the nontrivial percolation thresholds for the emergence of the giant component when d >= 3. Also, we estimate the number of steps that have occurred before the giant component spans the entire system and the total number of steps that have occurred before the regular random graph forms. These quantities are non-self-averaging, namely, they fluctuate from realization to realization even in the thermodynamic limit. C1 [Ben-Naim, E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Ben-Naim, E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Krapivsky, P. L.] Boston Univ, Dept Phys, Boston, MA 02215 USA. RP Ben-Naim, E (reprint author), Los Alamos Natl Lab, Div Theoret, POB 1663, Los Alamos, NM 87545 USA. EM ebn@lanl.gov; paulk@bu.edu RI Ben-Naim, Eli/C-7542-2009; Krapivsky, Pavel/A-4612-2014 OI Ben-Naim, Eli/0000-0002-2444-7304; FU DOE [AC52-06NA25396]; NSF [CCF-0829541] FX We thank Wolfgang Losert for useful discussions. This research was supported by DOE grant DE-AC52-06NA25396 and NSF grant CCF-0829541. NR 54 TC 5 Z9 5 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1742-5468 J9 J STAT MECH-THEORY E JI J. Stat. Mech.-Theory Exp. PD NOV PY 2011 AR P11008 DI 10.1088/1742-5468/2011/11/P11008 PG 20 WC Mechanics; Physics, Mathematical SC Mechanics; Physics GA 863EX UT WOS:000298146700009 ER PT J AU Holesinger, TG Feldmann, MD Maiorov, B Civale, L Kennison, JA Coulter, YJ Dowden, PD Baca, JF Tobash, PH Bauer, ED Marken, KR AF Holesinger, Terry G. Feldmann, Matthew D. Maiorov, Boris Civale, Leonardo Kennison, John A. Coulter, Yates J. Dowden, Paul D. Baca, Javier F. Tobash, Paul H. Bauer, Eric D. Marken, Kenneth R. TI Nanorod Self-Assembly in High J(c) YBa2Cu3O7-x Films with Ru-Based Double Perovskites SO MATERIALS LA English DT Article DE superconductivity; film; pulsed laser deposition; self-assembly; TEM; STEM ID CRITICAL-CURRENT DENSITY; COATED CONDUCTORS; THIN-FILMS; SUPERCONDUCTING MATERIALS; COLUMNAR DEFECTS; YBCO FILMS; DEPOSITION AB Many second phase additions to YBa2Cu3O7-x (YBCO) films, in particular those that self-assemble into aligned nanorod and nanoparticle structures, enhance performance in self and applied fields. Of particular interest for additions are Ba-containing perovskites that are compatible with YBCO. In this report, we discuss the addition of Ba2YRuO6 to bulk and thick-film YBCO. Sub-micron, randomly oriented particles of this phase were found to form around grain boundaries and within YBCO grains in bulk sintered pellets. Within the limits of EDS, no Ru substitution into the YBCO was observed. Thick YBCO films were grown by pulsed laser deposition from a target consisting of YBa2Cu3Oy with 5 and 2.5 mole percent additions of Ba2YRuO6 and Y2O3, respectively. Films with enhanced in-field performance contained aligned, self-assembled Ba2YRuO6 nanorods and strained Y2O3 nanoparticle layers. A 0.9 mu m thick film was found to have a self-field critical current density (J(c)) of 5.1 MA/cm(2) with minimum J(c)(Theta, H=1T) of 0.75 MA/cm(2). Conversely, J(c) characteristics were similar to YBCO films without additions when these secondary phases formed as large, disordered phases within the film. A 2.3 mu m thick film C1 [Holesinger, Terry G.; Feldmann, Matthew D.; Maiorov, Boris; Civale, Leonardo; Kennison, John A.; Coulter, Yates J.; Dowden, Paul D.; Baca, Javier F.; Marken, Kenneth R.] Superconduct Technol Ctr, Los Alamos, NM 87545 USA. [Tobash, Paul H.; Bauer, Eric D.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Holesinger, TG (reprint author), Superconduct Technol Ctr, 30 Bikini Atoll Rd, Los Alamos, NM 87545 USA. EM holesinger@lanl.gov; dmfeldmann@gmail.com; maiorov@lanl.gov; lcivale@lanl.gov; jkennison@lanl.gov; jycoulter@lanl.gov; pdowden@lanl.gov; f.javier.baca@gmail.com; ptobash@lanl.gov; edbauer@lanl.gov; kmarken@lanl.gov OI Maiorov, Boris/0000-0003-1885-0436; Civale, Leonardo/0000-0003-0806-3113; Bauer, Eric/0000-0003-0017-1937 FU DOE by Los Alamos National Security, LLC [W-7405-ENG-36] FX The authors would like to acknowledge our discussions of the double-perovskite structure with Kurt Sickafus of LANL. This work was supported by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability, as part of a DOE program to develop high temperature superconductors for electric power technologies. Los Alamos National Laboratory is operated for the DOE by Los Alamos National Security, LLC, under contract W-7405-ENG-36. NR 43 TC 2 Z9 2 U1 2 U2 22 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1944 J9 MATERIALS JI Materials PD NOV PY 2011 VL 4 IS 11 BP 2042 EP 2056 DI 10.3390/ma4112042 PG 15 WC Materials Science, Multidisciplinary SC Materials Science GA 864NN UT WOS:000298247000009 ER PT J AU Deng, J Rokkam, S AF Deng, Jie Rokkam, Srujan TI A Phase Field Model of Surface-Energy-Driven Abnormal Grain Growth in Thin Films SO MATERIALS TRANSACTIONS LA English DT Article DE abnormal grain growth; phase field model; thin film ID COMPUTER-SIMULATION; BOUNDARY ENERGIES; COPPER; SECONDARY; SILICON; KINETICS; CU; ANISOTROPY AB A phase field model is established to investigate the surface-energy-driven abnormal grain growth in thin films. It is consistent with sharp interface model and its parameters are connected to material properties. Numerical simulations show that surface energy anisotropy and drag effect are required to motivate the abnormal grain growth. The size of a single abnormal grain increases linearly as a function of time, and it exhibits power-law scaling with film thickness and Arrhenius relationship with temperature. For multiple abnormal grains, their area fraction can be characterized by the Avrami equation with exponent around 2 at large times. These features agree well with the theoretical and experimental results. [doi:10.2320/matertrans.M2011227] C1 [Deng, Jie; Rokkam, Srujan] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32310 USA. RP Deng, J (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM jd04e@my.fsu.edu RI Rokkam, Srujan/E-7061-2010 FU Florida Center for Advanced Aero-Propulsion (FCCAP) FX Authors thank the support from the Florida Center for Advanced Aero-Propulsion (FCCAP). NR 36 TC 4 Z9 4 U1 0 U2 12 PU JAPAN INST METALS PI SENDAI PA 1-14-32, ICHIBANCHO, AOBA-KU, SENDAI, 980-8544, JAPAN SN 1345-9678 EI 1347-5320 J9 MATER TRANS JI Mater. Trans. PD NOV PY 2011 VL 52 IS 11 BP 2126 EP 2130 DI 10.2320/matertrans.M2011227 PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 873GD UT WOS:000298868200019 ER PT J AU Elam, JW Dasgupta, NP Prinz, FB AF Elam, Jeffrey W. Dasgupta, Neil P. Prinz, Fritz B. TI ALD for clean energy conversion, utilization, and storage SO MRS BULLETIN LA English DT Article ID ATOMIC LAYER DEPOSITION; OXIDE FUEL-CELLS; SENSITIZED SOLAR-CELLS; YTTRIA-STABILIZED ZIRCONIA; DOPED CERIA INTERLAYERS; SULFIDE THIN-FILMS; SEMICONDUCTOR NANOCRYSTALS; EPITAXY; GROWTH; ZNO AB Atomic layer deposition (ALD) uses self-limiting chemical reactions between gaseous precursors and a solid surface to deposit materials in a layer-by-layer fashion. This process results in a unique combination of attributes, including sub-nm precision, the capability to engineer surfaces and interfaces, and unparalleled conformality over high-aspect ratio and nanoporous structures. Given these capabilities, ALD could play a central role in achieving the technological advances necessary to redirect our economy from fossil-based energy to clean, renewable energy. This article will survey some of the recent work applying ALD to clean energy conversion, utilization, and storage, including research in solid oxide fuel cells, thin-film photovoltaics, lithium-ion batteries, and heterogenous catalysts. Throughout the manuscript, we will emphasize how the unique qualities of ALD can enhance device performance and enable radical new designs. C1 [Elam, Jeffrey W.] Argonne Natl Lab, Argonne, IL 60439 USA. [Dasgupta, Neil P.; Prinz, Fritz B.] Stanford Univ, Stanford, CA 94305 USA. RP Elam, JW (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jelam@anl.gov; dasgupta@stanford.edu; fbp@cdr.stanford.edu RI Dasgupta, Neil/A-5309-2013 FU Center on Nanostructuring for Efficient Energy Conversion (CNEEC) at Stanford University, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001060, DE-SC0001059]; catalysis section; center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center; ANSER Center, an Energy Frontier Research Center FX F.B.P. and N.P.D. acknowledge support from the Center on Nanostructuring for Efficient Energy Conversion (CNEEC) at Stanford University, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001060. J.W.E. acknowledges that the catalysis section of this work was supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences; the battery section was supported as part of the center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences; and the photovoltaics section was supported as part of the ANSER Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001059. NR 60 TC 62 Z9 63 U1 10 U2 112 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0883-7694 J9 MRS BULL JI MRS Bull. PD NOV PY 2011 VL 36 IS 11 BP 899 EP 906 DI 10.1557/mrs.2011.265 PG 8 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 878CO UT WOS:000299230300018 ER PT J AU Erlandson, AC Aceves, SM Bayramian, AJ Bullington, AL Beach, RJ Boley, CD Caird, JA Deri, RJ Dunne, AM Flowers, DL Henesian, MA Manes, KR Moses, EI Rana, SI Schaffers, KI Spaeth, ML Stolz, CJ Telford, SJ AF Erlandson, A. C. Aceves, S. M. Bayramian, A. J. Bullington, A. L. Beach, R. J. Boley, C. D. Caird, J. A. Deri, R. J. Dunne, A. M. Flowers, D. L. Henesian, M. A. Manes, K. R. Moses, E. I. Rana, S. I. Schaffers, K. I. Spaeth, M. L. Stolz, C. J. Telford, S. J. TI Comparison of Nd:phosphate glass, Yb:YAG and Yb:S-FAP laser beamlines for laser inertial fusion energy (LIFE) [Invited] SO OPTICAL MATERIALS EXPRESS LA English DT Article ID SOLID-STATE LASERS; EMISSION CROSS-SECTION; POWER CONVERSION; GAIN SATURATION; PEAK POWER; ND-YAG; TEMPERATURE; PERFORMANCE; AMPLIFIER; CRYSTALS AB We present the results of performance modeling of diode-pumped solid state laser beamlines designed for use in Laser Inertial Fusion Energy (LIFE) power plants. Our modeling quantifies the efficiency increases that can be obtained by increasing peak diode power and reducing pump-pulse duration, to reduce decay losses. At the same efficiency, beamlines that use laser slabs of Yb:YAG or Yb:S-FAP require lower diode power than beamlines that use laser slabs of Nd:phosphate glass, since Yb:YAG and Yb:S-FAP have longer storage lifetimes. Beamlines using Yb:YAG attain their highest efficiency at a temperature of about 200K. Beamlines using Nd:phosphate glass or Yb:S-FAP attain high efficiency at or near room temperature. (C) 2011 Optical Society of America C1 [Erlandson, A. C.; Aceves, S. M.; Bayramian, A. J.; Bullington, A. L.; Beach, R. J.; Boley, C. D.; Caird, J. A.; Deri, R. J.; Dunne, A. M.; Flowers, D. L.; Henesian, M. A.; Manes, K. R.; Moses, E. I.; Rana, S. I.; Schaffers, K. I.; Spaeth, M. L.; Stolz, C. J.; Telford, S. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Erlandson, AC (reprint author), Lawrence Livermore Natl Lab, POB 808, Livermore, CA 94551 USA. EM erlandson1@llnl.gov RI Dunne, Mike/B-4318-2014 OI Dunne, Mike/0000-0001-8740-3870 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 48 TC 28 Z9 29 U1 3 U2 25 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 2159-3930 J9 OPT MATER EXPRESS JI Opt. Mater. Express PD NOV 1 PY 2011 VL 1 IS 7 BP 1341 EP 1352 PG 12 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA 875QP UT WOS:000299049200022 ER PT J AU Gille, S de Souza, A Xiong, GY Benz, M Cheng, K Schultink, A Reca, IB Pauly, M AF Gille, Sascha de Souza, Amancio Xiong, Guangyan Benz, Monique Cheng, Kun Schultink, Alex Reca, Ida-Barbara Pauly, Markus TI O-Acetylation of Arabidopsis Hemicellulose Xyloglucan Requires AXY4 or AXY4L, Proteins with a TBL and DUF231 Domain SO PLANT CELL LA English DT Article ID CELL-WALL ACETYLATION; DE-ORTHO-ACETYLATION; SIALIC ACIDS; THALIANA; GENES; IDENTIFICATION; BIOFUELS; MUTANTS; PLANTS; BIOSYNTHESIS AB In an Arabidopsis thaliana forward genetic screen aimed at identifying mutants with altered structures of their hemicellulose xyloglucan (axy mutants) using oligosaccharide mass profiling, two nonallelic mutants (axy4-1 and axy4-2) that have a 20 to 35% reduction in xyloglucan O-acetylation were identified. Mapping of the mutation in axy4-1 identified AXY4, a type II transmembrane protein with a Trichome Birefringence-Like domain and a domain of unknown function (DUF231). Loss of AXY4 transcript results in a complete lack of O-acetyl substituents on xyloglucan in several tissues, except seeds. Seed xyloglucan is instead O-acetylated by the paralog AXY4like, as demonstrated by the analysis of the corresponding T-DNA insertional lines. Wall fractionation analysis of axy4 knockout mutants indicated that only a fraction containing xyloglucan is non-O-acetylated. Hence, AXY4/AXY4L is required for the O-acetylation of xyloglucan, and we propose that these proteins represent xyloglucan-specific O-acetyltransferases, although their donor and acceptor substrates have yet to be identified. An Arabidopsis ecotype, Ty-0, has reduced xyloglucan O-acetylation due to mutations in AXY4, demonstrating that O-acetylation of xyloglucan does not impact the plant's fitness in its natural environment. The relationship of AXY4 with another previously identified group of Arabidopsis proteins involved in general wall O-acetylation, reduced wall acetylation, is discussed. C1 [Gille, Sascha; de Souza, Amancio; Xiong, Guangyan; Benz, Monique; Cheng, Kun; Schultink, Alex; Pauly, Markus] Univ Calif Berkeley, Energy Biosci Inst, Berkeley, CA 94720 USA. [de Souza, Amancio; Pauly, Markus] Univ Calif Berkeley, Plant & Microbial Biol Dept, Berkeley, CA 94720 USA. [Reca, Ida-Barbara] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. RP Pauly, M (reprint author), Univ Calif Berkeley, Energy Biosci Inst, Berkeley, CA 94720 USA. EM mpauly69@berkeley.edu RI Pauly, Markus/B-5895-2008; de Souza, Amancio Jose/D-5298-2017 OI Pauly, Markus/0000-0002-3116-2198; de Souza, Amancio Jose/0000-0001-6447-3905 FU Energy Biosciences Institute [OO0G01]; Fred Dickinson Chair of Wood Science and Technology Endowment; Department of Energy Great Lakes Bioenergy Center (DOE BER Office of Science) [DE-FC02-07ER64494] FX We thank Kirk Schnorr (Novozymes, Bagsvaerd, Denmark) for the generous gift of the xyloglucanase and the pectin methylesterase and Bjoern Usadel (Technical University Aachen, Germany) for seeds of some of the Arabidopsis ecotypes. We also thank Eddie Lam, Michell Huynh, and Miranda Lyons-Cohen (all of the University of California, Berkeley, CA) for excellent technical support. This work was supported by Award OO0G01 from the Energy Biosciences Institute, the Fred Dickinson Chair of Wood Science and Technology Endowment to M. P., and the Department of Energy Great Lakes Bioenergy Center (DOE BER Office of Science DE-FC02-07ER64494) to I-B.R. NR 65 TC 62 Z9 70 U1 4 U2 31 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 J9 PLANT CELL JI Plant Cell PD NOV PY 2011 VL 23 IS 11 BP 4041 EP 4053 DI 10.1105/tpc.111.091728 PG 13 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA 870MT UT WOS:000298674200016 PM 22086088 ER PT J AU Sharma, R Tan, F Jung, KH Sharma, MK Peng, ZH Ronald, PC AF Sharma, Rita Tan, Feng Jung, Ki-Hong Sharma, Manoj K. Peng, Zhaohua Ronald, Pamela C. TI Transcriptional dynamics during cell wall removal and regeneration reveals key genes involved in cell wall development in rice SO PLANT MOLECULAR BIOLOGY LA English DT Article DE Cell wall; Defense response; Expression; Microarray; Protoplast; Stress ID SUPPRESSION SUBTRACTIVE HYBRIDIZATION; SUSPENSION-CULTURED CELLS; RECEPTOR-LIKE KINASES; ARABIDOPSIS-THALIANA; CELLULOSE SYNTHESIS; MICROARRAY DATA; PROTEIN-KINASE; SALINE STRESS; BIOSYNTHESIS; EXPRESSION AB Efficient and cost-effective conversion of plant biomass to usable forms of energy requires a thorough understanding of cell wall biosynthesis, modification and degradation. To elucidate these processes, we assessed the expression dynamics during enzymatic removal and regeneration of rice cell walls in suspension cells over time. In total, 928 genes exhibited significant up-regulation during cell wall removal, whereas, 79 genes were up-regulated during cell wall regeneration. Both gene sets are enriched for kinases, transcription factors and genes predicted to be involved in cell wall-related functions. Integration of the gene expression datasets with a catalog of known and/or predicted biochemical pathways from rice, revealed metabolic and hormonal pathways involved in cell wall degradation and regeneration. Rice lines carrying Tos17 mutations in genes up-regulated during cell wall removal exhibit dwarf phenotypes. Many of the genes up-regulated during cell wall development are also up-regulated in response to infection and environmental perturbations indicating a coordinated response to diverse types of stress. C1 [Sharma, Rita; Jung, Ki-Hong; Sharma, Manoj K.; Ronald, Pamela C.] Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA. [Sharma, Rita; Sharma, Manoj K.; Ronald, Pamela C.] Joint Bioenergy Inst, Emeryville, CA 94710 USA. [Tan, Feng; Peng, Zhaohua] Mississippi State Univ, Dept Biochem & Mol Biol, Starkville, MS 39762 USA. [Jung, Ki-Hong; Ronald, Pamela C.] Kyung Hee Univ, Dept Plant Mol Syst Biotechnol, Yongin 446701, South Korea. [Jung, Ki-Hong; Ronald, Pamela C.] Kyung Hee Univ, Crop Biotech Inst, Yongin 446701, South Korea. RP Ronald, PC (reprint author), Univ Calif Davis, Dept Plant Pathol, Davis, CA 95616 USA. EM pcronald@ucdavis.edu FU US Department of Energy [DEFG0207ER6445907110980]; USDA [200735504 1824007110980]; Office of Science, Office of Biological and Environmental Research of the US DOE [DE-AC02-05CH11231]; Rural Development Administration, Republic of Korea [SSAC2011] FX This work was supported by a US Department of Energy (DEFG0207ER6445907110980) and USDA (200735504 1824007110980) grant to PCR and ZP; an Office of Science, Office of Biological and Environmental Research of the US DOE contract no. DE-AC02-05CH11231 to the Joint BioEnergy Institute and a grant from the Next-Generation BioGreen 21 Program (No. SSAC2011), Rural Development Administration, Republic of Korea to KHJ. We thank Dr. Peijian Cao for helping with data normalization. NR 91 TC 8 Z9 9 U1 1 U2 19 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0167-4412 J9 PLANT MOL BIOL JI Plant Mol.Biol. PD NOV PY 2011 VL 77 IS 4-5 BP 391 EP 406 DI 10.1007/s11103-011-9819-4 PG 16 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 875RE UT WOS:000299051200006 PM 21887580 ER PT J AU Maxwell, CA Benitez, J Gomez-Baldo, L Osorio, A Bonifaci, N Fernandez-Ramires, R Costes, SV Guino, E Chen, H Evans, GJR Mohan, P Catala, I Petit, A Aguilar, H Villanueva, A Aytes, A Serra-Musach, J Rennert, G Lejbkowicz, F Peterlongo, P Manoukian, S Peissel, B Ripamonti, CB Bonanni, B Viel, A Allavena, A Bernard, L Radice, P Friedman, E Kaufman, B Laitman, Y Dubrovsky, M Milgrom, R Jakubowska, A Cybulski, C Gorski, B Jaworska, K Durda, K Sukiennicki, G Lubinski, J Shugart, YY Domchek, SM Letrero, R Weber, BL Hogervorst, FBL Rookus, MA Collee, JM Devilee, P Ligtenberg, MJ van der Luijt, RB Aalfs, CM Waisfisz, Q Wijnen, J van Roozendaal, CEP Easton, DF Peock, S Cook, M Oliver, C Frost, D Harrington, P Evans, DG Lalloo, F Eeles, R Izatt, L Chu, C Eccles, D Douglas, F Brewer, C Nevanlinna, H Heikkinen, T Couch, FJ Lindor, NM Wang, XS Godwin, AK Caligo, MA Lombardi, G Loman, N Karlsson, P Ehrencrona, H von Wachenfeldt, A Barkardottir, RB Hamann, U Rashid, MU Lasa, A Caldes, T Andres, R Schmitt, M Assmann, V Stevens, K Offit, K Curado, J Tilgner, H Guigo, R Aiza, G Brunet, J Castellsague, J Martrat, G Urruticoechea, A Blanco, I Tihomirova, L Goldgar, DE Buys, S John, EM Miron, A Southey, M Daly, MB Schmutzler, RK Wappenschmidt, B Meindl, A Arnold, N Deissler, H Varon-Mateeva, R Sutter, C Niederacher, D Imyamitov, E Sinilnikova, OM Stoppa-Lyonne, D Mazoyer, S Verny-Pierre, C Castera, L de Pauw, A Bignon, YJ Uhrhammer, N Peyrat, JP Vennin, P Ferrer, SF Collonge-Rame, MA Mortemousque, I Spurdle, AB Beesley, J Chen, XQ Healey, S Barcellos-Hoff, MH Vidal, M Gruber, SB Lazaro, C Capella, G McGuffog, L Nathanson, KL Antoniou, AC Chenevix-Trench, G Fleisch, MC Moreno, V Pujana, MA AF Maxwell, Christopher A. Benitez, Javier Gomez-Baldo, Laia Osorio, Ana Bonifaci, Nuria Fernandez-Ramires, Ricardo Costes, Sylvain V. Guino, Elisabet Chen, Helen Evans, Gareth J. R. Mohan, Pooja Catala, Isabel Petit, Anna Aguilar, Helena Villanueva, Alberto Aytes, Alvaro Serra-Musach, Jordi Rennert, Gad Lejbkowicz, Flavio Peterlongo, Paolo Manoukian, Siranoush Peissel, Bernard Ripamonti, Carla B. Bonanni, Bernardo Viel, Alessandra Allavena, Anna Bernard, Loris Radice, Paolo Friedman, Eitan Kaufman, Bella Laitman, Yael Dubrovsky, Maya Milgrom, Roni Jakubowska, Anna Cybulski, Cezary Gorski, Bohdan Jaworska, Katarzyna Durda, Katarzyna Sukiennicki, Grzegorz Lubinski, Jan Shugart, Yin Yao Domchek, Susan M. Letrero, Richard Weber, Barbara L. Hogervorst, Frans B. L. Rookus, Matti A. Collee, J. Margriet Devilee, Peter Ligtenberg, Marjolijn J. van der Luijt, Rob B. Aalfs, Cora M. Waisfisz, Quinten Wijnen, Juul van Roozendaal, Cornelis E. P. Easton, Douglas F. Peock, Susan Cook, Margaret Oliver, Clare Frost, Debra Harrington, Patricia Evans, D. Gareth Lalloo, Fiona Eeles, Rosalind Izatt, Louise Chu, Carol Eccles, Diana Douglas, Fiona Brewer, Carole Nevanlinna, Heli Heikkinen, Tuomas Couch, Fergus J. Lindor, Noralane M. Wang, Xianshu Godwin, Andrew K. Caligo, Maria A. Lombardi, Grazia Loman, Niklas Karlsson, Per Ehrencrona, Hans von Wachenfeldt, Anna Barkardottir, Rosa Bjork Hamann, Ute Rashid, Muhammad U. Lasa, Adriana Caldes, Trinidad Andres, Raquel Schmitt, Michael Assmann, Volker Stevens, Kristen Offit, Kenneth Curado, Joao Tilgner, Hagen Guigo, Roderic Aiza, Gemma Brunet, Joan Castellsague, Joan Martrat, Griselda Urruticoechea, Ander Blanco, Ignacio Tihomirova, Laima Goldgar, David E. Buys, Saundra John, Esther M. Miron, Alexander Southey, Melissa Daly, Mary B. Schmutzler, Rita K. Wappenschmidt, Barbara Meindl, Alfons Arnold, Norbert Deissler, Helmut Varon-Mateeva, Raymonda Sutter, Christian Niederacher, Dieter Imyamitov, Evgeny Sinilnikova, Olga M. Stoppa-Lyonne, Dominique Mazoyer, Sylvie Verny-Pierre, Carole Castera, Laurent de Pauw, Antoine Bignon, Yves-Jean Uhrhammer, Nancy Peyrat, Jean-Philippe Vennin, Philippe Ferrer, Sandra Fert Collonge-Rame, Marie-Agnes Mortemousque, Isabelle Spurdle, Amanda B. Beesley, Jonathan Chen, Xiaoqing Healey, Sue Barcellos-Hoff, Mary Helen Vidal, Marc Gruber, Stephen B. Lazaro, Conxi Capella, Gabriel McGuffog, Lesley Nathanson, Katherine L. Antoniou, Antonis C. Chenevix-Trench, Georgia Fleisch, Markus C. Moreno, Victor Angel Pujana, Miguel CA HEBON EMBRACE SWE-BRCA BCFR GEMO Study Collaborators kConFab TI Interplay between BRCA1 and RHAMM Regulates Epithelial Apicobasal Polarization and May Influence Risk of Breast Cancer SO PLOS BIOLOGY LA English DT Article ID CENTROSOMAL MICROTUBULE NUCLEATION; PROGENITOR-CELL FATE; MUTATION CARRIERS; MAMMARY-GLAND; MITOTIC SPINDLE; STEM-CELLS; MULTIPLE-MYELOMA; BRCA1-DEPENDENT UBIQUITINATION; ADHERENS JUNCTIONS; MISSENSE MUTATIONS AB Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM) that modifies breast cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio ((w)HR) = 1.09 (95% CI 1.02-1.16), p(trend) = 0.017; and n = 3,965, (w)HR = 1.04 (95% CI 0.94-1.16), p(trend) = 0.43; respectively. Subsequently, studies of MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of HMMR/RHAMM. C1 [Maxwell, Christopher A.; Gomez-Baldo, Laia; Bonifaci, Nuria; Aguilar, Helena; Villanueva, Alberto; Aytes, Alvaro; Serra-Musach, Jordi; Aiza, Gemma; Martrat, Griselda; Urruticoechea, Ander; Angel Pujana, Miguel] Bellvitge Biomed Res Inst IDIBELL, Catalan Inst Oncol, Translat Res Lab, Lhospitalet De Llobregat, Catalonia, Spain. [Benitez, Javier; Osorio, Ana; Fernandez-Ramires, Ricardo] Spanish Natl Canc Res Ctr, Human Canc Genet Programme, Madrid, Spain. [Bonifaci, Nuria; Guino, Elisabet; Serra-Musach, Jordi; Moreno, Victor; Angel Pujana, Miguel] IDIBELL, Catalan Inst Oncol, Biomarkers & Susceptibil Unit, Lhospitalet De Llobregat, Catalonia, Spain. [Costes, Sylvain V.; Barcellos-Hoff, Mary Helen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Catala, Isabel; Petit, Anna] Univ Hosp Bellvitge, IDIBELL, Dept Pathol, Lhospitalet De Llobregat, Catalonia, Spain. [Rennert, Gad; Lejbkowicz, Flavio] Technion Israel Inst Technol, Carmel Med Ctr, Dept Community Med & Epidemiol, CHS Natl Canc Control Ctr, Haifa, Israel. [Rennert, Gad; Lejbkowicz, Flavio] Technion Israel Inst Technol, B Rappaport Fac Med, Haifa, Israel. [Peterlongo, Paolo; Ripamonti, Carla B.; Radice, Paolo] Fdn IRCCS, Dept Prevent & Predict Med, Unit Mol Bases Genet Risk & Genet Testing, Ist Nazl Tumori, Milan, Italy. [Peterlongo, Paolo; Ripamonti, Carla B.; Radice, Paolo] IFOM Fdn, Ist FIRC Oncol Mol, Milan, Italy. [Manoukian, Siranoush; Peissel, Bernard; Ripamonti, Carla B.] Fdn IRCCS, Ist Nazl Tumori, Dept Prevent & Predict Med, Unit Med Genet, Milan, Italy. [Bonanni, Bernardo] Ist Europeo Oncol, Div Canc Prevent & Genet, Milan, Italy. [Viel, Alessandra] IRCCS, Ctr Riferimento Oncol, Div Expt Oncol 1, Aviano, Italy. [Allavena, Anna] Univ Turin, Dept Genet Biol & Biochem, Turin, Italy. [Bernard, Loris] Ist Europeo Oncol, Dept Expt Oncol, Milan, Italy. [Bernard, Loris] Consortium Genom Technol Cogentech, Milan, Italy. [Friedman, Eitan; Kaufman, Bella; Laitman, Yael; Dubrovsky, Maya; Milgrom, Roni] Chaim Sheba Med Ctr, Inst Human Genet, Susanne Levy Gertner Oncogenet Unit, Ramat Gan, Israel. [Friedman, Eitan] Tel Aviv Univ, Sackler Fac Med, Ramat Aviv, Israel. [Jakubowska, Anna; Cybulski, Cezary; Gorski, Bohdan; Jaworska, Katarzyna; Durda, Katarzyna; Sukiennicki, Grzegorz; Lubinski, Jan] Pomeranian Med Univ, Dept Genet & Pathol, Int Hereditary Canc Ctr, Szczecin, Poland. [Shugart, Yin Yao] NIMH, Unit Stat Genet, Div Intramural Res Program, NIH, Bethesda, MD 20892 USA. [Domchek, Susan M.; Letrero, Richard; Weber, Barbara L.; Nathanson, Katherine L.] Univ Penn, Sch Med, Abramson Canc Ctr, Philadelphia, PA 19104 USA. [Hogervorst, Frans B. L.] Netherlands Canc Inst, Dept Pathol, Family Canc Clin, NL-1066 CX Amsterdam, Netherlands. [Rookus, Matti A.] Netherlands Canc Inst, Dept Epidemiol, Amsterdam, Netherlands. [Collee, J. Margriet] Erasmus Univ, Dept Clin Genet, Med Ctr, Rotterdam Family Canc Clin, NL-3000 DR Rotterdam, Netherlands. [Devilee, Peter] Leiden Univ, Dept Genet Epidemiol, Med Ctr, Leiden, Netherlands. [Ligtenberg, Marjolijn J.] Radboud Univ Nijmegen, Dept Human Genet, Med Ctr, NL-6525 ED Nijmegen, Netherlands. [van der Luijt, Rob B.] Univ Utrecht, Med Ctr, Dept Clin Mol Genet, Utrecht, Netherlands. [Aalfs, Cora M.] Univ Amsterdam, Acad Med Ctr, Dept Clin Genet, NL-1105 AZ Amsterdam, Netherlands. [Waisfisz, Quinten] Vrije Univ Amsterdam, Med Ctr, Dept Clin Genet, Amsterdam, Netherlands. [Wijnen, Juul] Leiden Univ, Med Ctr, Ctr Human & Clin Genet, Leiden, Netherlands. [van Roozendaal, Cornelis E. P.] Univ Med Ctr, Dept Clin Genet, Maastricht, Netherlands. [Easton, Douglas F.; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; McGuffog, Lesley; Antoniou, Antonis C.; EMBRACE] Univ Cambridge, Dept Publ Hlth & Primary Care, Ctr Canc Genet Epidemiol, Cambridge, England. [Harrington, Patricia] Univ Cambridge, Dept Oncol, Cambridge, England. [Evans, D. Gareth; Lalloo, Fiona] Cent Manchester Univ Hosp NHS Fdn Trust, Manchester Acad Hlth Sci Ctr, Manchester, Lancs, England. [Eeles, Rosalind] Royal Marsden NHS Fdn Trust, Sutton, Surrey, England. [Izatt, Louise] Guys & St Thomas NHS Fdn Trust, London, England. [Chu, Carol] St James Hosp, Yorkshire Reg Genet Serv, Leeds, W Yorkshire, England. [Eccles, Diana] Princess Anne Hosp, Wessex Clin Genet Serv, Southampton, Hants, England. [Douglas, Fiona] Newcastle Upon Tyne Hosp NHS Trust, Ctr Life, Inst Human Genet, Newcastle Upon Tyne, Tyne & Wear, England. [Brewer, Carole] Royal Devon & Exeter Hosp, Dept Clin Genet, Exeter EX2 5DW, Devon, England. [Nevanlinna, Heli; Heikkinen, Tuomas] Univ Helsinki, Cent Hosp, Dept Obstet & Gynecol, FIN-00290 Helsinki, Finland. [Couch, Fergus J.; Wang, Xianshu] Mayo Clin, Dept Lab Med & Pathol, Rochester, MN USA. [Lindor, Noralane M.] Mayo Clin, Dept Med Genet, Rochester, MN USA. [Godwin, Andrew K.] Univ Kansas, Med Ctr, Dept Pathol & Lab Med, Kansas City, KS 66103 USA. [Caligo, Maria A.; Lombardi, Grazia] Univ Pisa, Sect Genet Oncol, Dept Oncol, Pisa, Italy. [Caligo, Maria A.; Lombardi, Grazia] Univ Hosp Pisa, Dept Lab Med, Pisa, Italy. [Loman, Niklas] Univ Lund Hosp, Dept Oncol, S-22185 Lund, Sweden. [Karlsson, Per] Sahlgrens Univ Hosp, Dept Oncol, Gothenburg, Sweden. [Ehrencrona, Hans] Uppsala Univ, Rudbeck Lab, Dept Genet & Pathol, Uppsala, Sweden. [von Wachenfeldt, Anna] Karolinska Univ Hosp, Dept Oncol, Stockholm, Sweden. [Barkardottir, Rosa Bjork] Landspitali Univ Hosp, Dept Pathol, Reykjavik, Iceland. [Hamann, Ute; Rashid, Muhammad U.] Deutsch Krebsforschungszentrum, D-6900 Heidelberg, Germany. [Rashid, Muhammad U.] Shaukat Khanum Mem Canc Hosp & Res Ctr, Dept Basic Sci, Lahore, Pakistan. [Lasa, Adriana] Hosp Santa Creu & Sant Pau, Genet Serv, Barcelona, Catalonia, Spain. [Caldes, Trinidad] Hosp Clin San Carlos, Mol Oncol Lab, Madrid, Spain. [Andres, Raquel] Hosp Clin Zaragoza, Div Med Oncol, Zaragoza, Spain. [Schmitt, Michael] Univ Rostock, Dept Internal Med 3, Rostock, Germany. [Assmann, Volker] Univ Hosp Hamburg Eppendorf, Inst Tumor Biol, Ctr Med Expt, Hamburg, Germany. [Stevens, Kristen] Univ Michigan, Dept Epidemiol, Ann Arbor, MI 48109 USA. [Offit, Kenneth] Mem Sloan Kettering Canc Ctr, Dept Med, Clin Genet Serv, New York, NY 10021 USA. [Curado, Joao; Tilgner, Hagen; Guigo, Roderic] Biomed Res Pk Barcelona PRBB, Ctr Genom Regulat CRG, Bioinformat & Genom Grp, Barcelona, Catalonia, Spain. [Brunet, Joan; Castellsague, Joan; Blanco, Ignacio; Lazaro, Conxi; Capella, Gabriel] Girona Biomed Res Inst IdIBGi, Catalonia, Spain. [Brunet, Joan; Castellsague, Joan; Blanco, Ignacio; Lazaro, Conxi; Capella, Gabriel] IDIBELL, Catalan Inst Oncol, Genet Counseling & Hereditary Canc Programme, Catalonia, Spain. [Tihomirova, Laima] Latvian Biomed Res & Study Ctr, Riga, Latvia. [Goldgar, David E.] Univ Utah, Sch Med, Dept Dermatol, Salt Lake City, UT USA. [Buys, Saundra] Huntsman Canc Inst, Dept Internal Med, Salt Lake City, UT USA. [John, Esther M.] Canc Prevent Inst Calif, Fremont, CA USA. [Miron, Alexander] Harvard Univ, Sch Med, Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02115 USA. [Miron, Alexander] Harvard Univ, Sch Med, Dept Surg, Boston, MA 02115 USA. [Southey, Melissa] Univ Melbourne, Melbourne Sch Populat Hlth, Ctr Mol Environm Genet & Analyt MEGA Epidemiol, Melbourne, Vic 3010, Australia. [Daly, Mary B.] Fox Chase Canc Ctr, Div Populat Sci, Philadelphia, PA 19111 USA. [Schmutzler, Rita K.; Wappenschmidt, Barbara] Univ Cologne, Ctr Familial Breast & Ovarian Canc, D-50931 Cologne, Germany. [Schmutzler, Rita K.; Wappenschmidt, Barbara] Univ Cologne, Ctr Integrated Oncol, D-50931 Cologne, Germany. [Meindl, Alfons] Tech Univ Munich, Klinikum Rechts Isar, Dept Obstet & Gynaecol, D-8000 Munich, Germany. [Arnold, Norbert] Univ Hosp Schleswig Holstein, Dept Obstet & Gynaecol, Div Oncol, Kiel, Germany. [Deissler, Helmut] Univ Ulm, Dept Obstet & Gynecol, Ulm, Germany. [Varon-Mateeva, Raymonda] Charite, Inst Humangenet, D-13353 Berlin, Germany. [Sutter, Christian] Univ Heidelberg, Inst Human Genet, Heidelberg, Germany. [Niederacher, Dieter] Univ Dusseldorf, Ctr Clin, Dept Obstet & Gynaecol, Div Mol Genet, D-40225 Dusseldorf, Germany. [Imyamitov, Evgeny] NN Petrov Inst Oncol, St Petersburg, Russia. [Sinilnikova, Olga M.] CHU Lyon, Ctr Leon Berard, Unite Mixte Genet Constitut Canc Frequents, Lyon, France. [Sinilnikova, Olga M.; Mazoyer, Sylvie; Verny-Pierre, Carole] Univ Lyon, Ctr Leon Berard, CNRS UMR5201, Equipe Labellisee LIGUE 2008, Lyon, France. [Stoppa-Lyonne, Dominique; Castera, Laurent; de Pauw, Antoine] Univ Paris 05, Serv Genet Oncol, INSERM, Inst Curie,U509, Paris, France. [Bignon, Yves-Jean; Uhrhammer, Nancy] Univ Clermont Ferrand, Ctr Jean Perrin, Dept Oncogenet, Clermont Ferrand, France. [Peyrat, Jean-Philippe] Ctr Oscar Lambret, Lab Oncol Mol Humaine, F-59020 Lille, France. [Ferrer, Sandra Fert] Hotel Dieu Ctr Hosp, Lab Genet Chromosom, Chambery, France. [Collonge-Rame, Marie-Agnes] CHU Besancon, Serv Genet Histol Biol Dev & Reprod, F-25030 Besancon, France. [Mortemousque, Isabelle] CHU Bretonneau, Serv Genet, F-37044 Tours, France. [Spurdle, Amanda B.; Beesley, Jonathan; Chen, Xiaoqing; Healey, Sue; Chenevix-Trench, Georgia] Queensland Inst Med Res, Brisbane, Qld 4006, Australia. Peter MacCallum Canc Inst, Kathleen Cuningham Fdn, Consortium Res Familial Breast Canc, Melbourne, Australia. [Vidal, Marc] Harvard Univ, Sch Med, Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02115 USA. [Vidal, Marc] Harvard Univ, Sch Med, Dept Genet, Boston, MA USA. [Vidal, Marc] Harvard Univ, Sch Med, Ctr Canc Syst Biol CCSB, Boston, MA USA. [Gruber, Stephen B.] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA. [Fleisch, Markus C.] Univ Dusseldorf, Dept Obstet & Gynaecol, D-40225 Dusseldorf, Germany. RP Maxwell, CA (reprint author), Child & Family Res Inst, Dept Pediat, Vancouver, BC, Canada. EM cmaxwell@cfri.ubc.ca; mapujana@ico.scs.es RI Spurdle, Amanda/A-4978-2011; Jakubowska, Anna/O-8050-2014; Guigo, Roderic/D-1303-2010; Ligtenberg, Marjolijn/N-9666-2013; Fernandez-Ramires, Ricardo/H-3707-2014; Ripamonti, Carla Barbara/D-2247-2017; manoukian, siranoush/E-7132-2017; Peissel, Bernard/E-8187-2017; Ehrencrona, Hans/M-5619-2014; pujana, Miguel Angel/N-3127-2014; Arnold, Norbert/E-3012-2010; Maxwell, Christopher/B-3044-2011; Costes, Sylvain/D-2522-2013; Radice, Paolo/O-3119-2013; Aytes, Alvaro/B-5803-2014; Blanco, Ignacio/D-2565-2013; Fleisch, Markus/E-4134-2014; Osorio, Ana/I-4324-2014; Bernard, Loris/K-5953-2014; Aytes, Alvaro/M-1360-2014 OI Evans, Gareth/0000-0002-8482-5784; Spurdle, Amanda/0000-0003-1337-7897; Brunet, Joan/0000-0003-1945-3512; Nevanlinna, Heli/0000-0002-0916-2976; Moreno, Victor/0000-0002-2818-5487; Guigo, Roderic/0000-0002-5738-4477; Ligtenberg, Marjolijn/0000-0003-1290-1474; Ripamonti, Carla Barbara/0000-0002-2892-8164; manoukian, siranoush/0000-0002-6034-7562; Peissel, Bernard/0000-0001-9233-3571; Eeles, Rosalind/0000-0002-3698-6241; Nathanson, Katherine/0000-0002-6740-0901; Ehrencrona, Hans/0000-0002-5589-3622; pujana, Miguel Angel/0000-0003-3222-4044; Arnold, Norbert/0000-0003-4523-8808; Maxwell, Christopher/0000-0002-0860-4031; Costes, Sylvain/0000-0002-8542-2389; Aytes, Alvaro/0000-0003-0725-5340; Blanco, Ignacio/0000-0002-7414-7481; Fleisch, Markus/0000-0002-8966-4721; Osorio, Ana/0000-0001-8124-3984; Aytes, Alvaro/0000-0003-0725-5340 FU Spanish Ministries of Health, and Science ane Innovation [CB07/02/2005]; FIS [08/1120, 08/1359, 08/1635, 09/02483]; RTICCC [RD06/0020/1060, RD06/0020/0028]; Transversal Action Against Cancer; Spanish Biomedical Research Centre Networks for Epidemiology and Public Health, and Rare Diseases; "Ramon y Cajal" Young Investigator Program; Spanish National Society of Medical Oncology; Spanish Association Against Cancer [AECC 2010]; AGAUR Catalan Government Agency [2009SGR1489, 2009SGR293]; Beatriu Pinos Postdoctoral Program; Ramon Areces Foundation; "Roses Contra el Cancer" Foundation; Michael Cuccione Foundation for Childhood Cancer Research, Cancer Research-UK [C490/A10119, C1287/A8874, C1287/A10118, C5047/A8385, C8197/A10123]; National Institute for Health Research (UK); Association for International Cancer Research [AICR-07-0454]; Ligue National Contre le Cancer (France); Association "Le cancer du sein, parlons-en!"; Dutch Cancer Society [NKI 1998-1854, 2004-3088, 2007-3756]; Fondazione Italiana per la Ricerca sul Cancro ("Hereditary Tumors"); Associazione Italiana per la Ricerca sul Cancro [4017]; Italian Ministero della Salute [RFPS-2006-3-340203]; Italian Ministero dell'Universita e Ricerca [RBLAO3-BETH]; Fondazione IRCCS Istituto Nazionale Tumori [INT "5x1000"]; Fondazione Cassa di Risparmio di Pisa (Istituto Toscano Tumori); National Breast Cancer Foundation (Australia); Australian National Health and Medical Research Council [145684, 288704, 454508]; Queensland Cancer Fund; Cancer Councils of New South Wales, Victoria, Tasmania, and South Australia; Cancer Foundation of Western Australia; German Cancer Aid [107054]; Center for Molecular Medicine Cologne [TV93]; National Cancer Institute (USA) [CA128978, CA122340]; National Institutes of Health [RFA-CA-06-503, BCFR U01 CA69398, CA69417, CA69446, CA69467, CA69631, CA69638]; Research Triangle Institute Informatics Support Center [RFP N02PC45022-46]; Specialized Program of Research Excellence (SPORE) [P50 CA83638, CA113916]; Department of Defense [05/0612]; Eileen Stein Jacoby Fund; Breast Cancer Research Foundation; Marianne and Robert MacDonald Foundation; Komen Foundation; Helsinki University Central Hospital; Academy of Finland [110663]; Finnish Cancer Society; Sigrid Juselius Foundation; EU [223175, HEALTH-F2-2009-223175] FX This work was funded by the Spanish Ministries of Health, and Science ane Innovation (CB07/02/2005; FIS 08/1120, 08/1359, 08/1635, and 09/02483; RTICCC RD06/0020/1060 and RD06/0020/0028; Transversal Action Against Cancer; the Spanish Biomedical Research Centre Networks for Epidemiology and Public Health, and Rare Diseases; and the "Ramon y Cajal" Young Investigator Program), the Spanish National Society of Medical Oncology (2010), the Spanish Association Against Cancer (AECC 2010), the AGAUR Catalan Government Agency (2009SGR1489 and 2009SGR293; and the Beatriu Pinos Postdoctoral Program), the Ramon Areces Foundation (XV), the "Roses Contra el Cancer" Foundation, the Michael Cuccione Foundation for Childhood Cancer Research, Cancer Research-UK (C490/A10119, C1287/A8874, C1287/A10118, C5047/A8385, and C8197/A10123), the National Institute for Health Research (UK), the Association for International Cancer Research (AICR-07-0454), the Ligue National Contre le Cancer (France), the Association "Le cancer du sein, parlons-en!", the Dutch Cancer Society (NKI 1998-1854, 2004-3088, and 2007-3756), the Fondazione Italiana per la Ricerca sul Cancro ("Hereditary Tumors"), the Associazione Italiana per la Ricerca sul Cancro (4017), the Italian Ministero della Salute (RFPS-2006-3-340203 and "Progetto Tumori Femminili"), the Italian Ministero dell'Universita e Ricerca (RBLAO3-BETH), the Fondazione IRCCS Istituto Nazionale Tumori (INT "5x1000"), the Fondazione Cassa di Risparmio di Pisa (Istituto Toscano Tumori), the National Breast Cancer Foundation (Australia), the Australian National Health and Medical Research Council (145684, 288704, and 454508), the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania, and South Australia, the Cancer Foundation of Western Australia, the German Cancer Aid (107054), the Center for Molecular Medicine Cologne (TV93), the National Cancer Institute (USA; CA128978 and CA122340), National Institutes of Health (RFA-CA-06-503, BCFR U01 CA69398, CA69417, CA69446, CA69467, CA69631, and CA69638), the Research Triangle Institute Informatics Support Center (RFP N02PC45022-46), the Specialized Program of Research Excellence (SPORE P50 CA83638 and CA113916), the Department of Defense Breast Cancer Research Program (05/0612), the Eileen Stein Jacoby Fund, the Breast Cancer Research Foundation, the Marianne and Robert MacDonald Foundation, the Komen Foundation, the Helsinki University Central Hospital Research Fund, the Academy of Finland (110663), the Finnish Cancer Society, the Sigrid Juselius Foundation, and the EU FP7 (223175, HEALTH-F2-2009-223175). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 68 TC 28 Z9 28 U1 1 U2 19 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1544-9173 J9 PLOS BIOL JI PLoS. Biol. PD NOV PY 2011 VL 9 IS 11 AR e1001199 DI 10.1371/journal.pbio.1001199 PG 18 WC Biochemistry & Molecular Biology; Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 863HE UT WOS:000298152600012 PM 22110403 ER PT J AU Ramanathan, A Agarwal, PK AF Ramanathan, Arvind Agarwal, Pratul K. TI Evolutionarily Conserved Linkage between Enzyme Fold, Flexibility, and Catalysis SO PLOS BIOLOGY LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; DIHYDROFOLATE-REDUCTASE CATALYSIS; CYCLOPHILIN-A INSIGHTS; PROTEIN DYNAMICS; HYDRIDE TRANSFER; SINGLE-MOLECULE; CONFORMATIONAL-CHANGES; ESCHERICHIA-COLI; ENERGY LANDSCAPE; DISTAL MUTATIONS AB Proteins are intrinsically flexible molecules. The role of internal motions in a protein's designated function is widely debated. The role of protein structure in enzyme catalysis is well established, and conservation of structural features provides vital clues to their role in function. Recently, it has been proposed that the protein function may involve multiple conformations: the observed deviations are not random thermodynamic fluctuations; rather, flexibility may be closely linked to protein function, including enzyme catalysis. We hypothesize that the argument of conservation of important structural features can also be extended to identification of protein flexibility in interconnection with enzyme function. Three classes of enzymes (prolyl-peptidyl isomerase, oxidoreductase, and nuclease) that catalyze diverse chemical reactions have been examined using detailed computational modeling. For each class, the identification and characterization of the internal protein motions coupled to the chemical step in enzyme mechanisms in multiple species show identical enzyme conformational fluctuations. In addition to the active-site residues, motions of protein surface loop regions (>10 angstrom away) are observed to be identical across species, and networks of conserved interactions/residues connect these highly flexible surface regions to the active-site residues that make direct contact with substrates. More interestingly, examination of reaction-coupled motions in non-homologous enzyme systems (with no structural or sequence similarity) that catalyze the same biochemical reaction shows motions that induce remarkably similar changes in the enzyme-substrate interactions during catalysis. The results indicate that the reaction-coupled flexibility is a conserved aspect of the enzyme molecular architecture. Protein motions in distal areas of homologous and non-homologous enzyme systems mediate similar changes in the active-site enzyme-substrate interactions, thereby impacting the mechanism of catalyzed chemistry. These results have implications for understanding the mechanism of allostery, and for protein engineering and drug design. C1 [Ramanathan, Arvind] Carnegie Mellon Univ, Joint CMU Pitt Program Computat Biol, Pittsburgh, PA 15213 USA. [Ramanathan, Arvind; Agarwal, Pratul K.] Oak Ridge Natl Lab, Computat Biol Inst, Oak Ridge, TN USA. [Ramanathan, Arvind; Agarwal, Pratul K.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA. RP Ramanathan, A (reprint author), Carnegie Mellon Univ, Joint CMU Pitt Program Computat Biol, Pittsburgh, PA 15213 USA. EM agarwalpk@ornl.gov FU ORNL's Laboratory Directed Research and Development (LDRD); National Center for Computational Sciences [BIP003, BIO022] FX PKA acknowledges the support provided by ORNL's Laboratory Directed Research and Development (LDRD) funds and the computing time allocation from the National Center for Computational Sciences (BIP003, BIO022). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 86 TC 35 Z9 35 U1 1 U2 29 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1544-9173 J9 PLOS BIOL JI PLoS. Biol. PD NOV PY 2011 VL 9 IS 11 AR e1001193 DI 10.1371/journal.pbio.1001193 PG 17 WC Biochemistry & Molecular Biology; Biology SC Biochemistry & Molecular Biology; Life Sciences & Biomedicine - Other Topics GA 863HE UT WOS:000298152600008 PM 22087074 ER PT J AU Mudryk, Y Pecharsky, VK Gschneidner, KA AF Mudryk, Yaroslav Pecharsky, Vitalij K. Gschneidner, Karl A., Jr. TI Extraordinary Responsive Intermetallic Compounds: the R5T4 Family (R = Rare Earth, T = Group 13-15 Element) SO ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE LA English DT Article DE Rare earths; Intermetallic phases; First-Order phase transitions; High pressure; Magnetic properties ID CRYSTAL-STRUCTURE; MAGNETOCALORIC MATERIALS; GIANT MAGNETORESISTANCE; PHASE-RELATIONSHIPS; NANOSCALE ZIPPERS; GD-5(SIXGE1-X)(4); GE; GD-5(SI2GE2); TRANSITION; ALLOYS AB The R5T4 intermetallic compounds of rare earth elements (R) with the group 14 elements(T) adopt a number of layered crystal structures that reversibly transform into each other. The transformations proceed through massive shear displacements of their main structural units, i.e. slabs, which are pseudo two dimensional blocks of atoms stacked along a certain crystallographic direction. These transformations can be triggered by change in chemical composition of the compounds( including partial substitutions of the group 14 elements by the group 13 or 15 elements), temperature, applied pressure, or applied magnetic field. The physical properties of these compounds are usually intimately related to their crystallography, and especially the concomitant magnetic and crystallographic transitions. As a result, strong magnetocaloric, magnetostrictive, magnetoresistance, and other effects are commonly observed. Consequently, a large change of the materials' properties can be achieved by a relatively weak change of external thermodynamic conditions. C1 [Mudryk, Yaroslav; Pecharsky, Vitalij K.; Gschneidner, Karl A., Jr.] Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. [Pecharsky, Vitalij K.; Gschneidner, Karl A., Jr.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Mudryk, Y (reprint author), Iowa State Univ, Ames Lab, US Dept Energy, Ames, IA 50011 USA. EM slavkomk@ameslab.gov FU U.S. Department of Energy [DE-AC02-07CH11358]; Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the Office of Science of U.S. Department of Energy FX The Ames Laboratory is operated by Iowa State University of Science and Technology for the U.S. Department of Energy under contract No. DE-AC02-07CH11358. Work at the Ames Laboratory is supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the Office of Science of U.S. Department of Energy. NR 111 TC 12 Z9 12 U1 2 U2 13 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0044-2313 EI 1521-3749 J9 Z ANORG ALLG CHEM JI Z. Anorg. Allg. Chem. PD NOV PY 2011 VL 637 IS 13 SI SI BP 1948 EP 1956 DI 10.1002/zaac.201100327 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 863NS UT WOS:000298171900003 ER PT J AU Thimmaiah, S Crumpton, NA Miller, GJ AF Thimmaiah, Srinivasa Crumpton, Nicholas A. Miller, Gordon J. TI Crystal Structures and Stabilities of gamma-and. gamma '-Brass Phases in Pd2-xAuxZn11 (x=0.2-0.8): Vacancies vs. Valence Electron Concentration SO ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE LA English DT Article DE Hume-Rothery compounds; Phase width; X-ray diffraction; Gamma brass ID HUME-ROTHERY PHASE; QUASI-CRYSTAL; X-RAY; ZN; APPROXIMANTS; PD; SYSTEM; ALLOY; ZINC; CD AB To probe the effect of valence electron concentration (vec or e(-)/atom) on gamma-Pd2+xZn11-x phases a series of compounds Pd2-xAuxZn11 (x = 0.3-0.8; e(-)/atom = 1.70-1.75) was synthesized and structurally characterized. The gold-substituted.-brass type phase was observed for x <= 0.3, having a refined composition of Pd1.93Au0.27(1) Zn-10.80(1) (space group I (4) over bar 3m; a = 9.0953 (2) angstrom). Further addition of gold (0.4 <= x <= 0.8) leads to a 2 x 2 x 2 superstructure of the.-brass type phase (denoted as the. gamma-phase), with noticeable phase width (F (4) over bar 3m; 18.1827(4)-18.1799(4) angstrom). The. gamma-phase consists of four independent 26-atoms clusters, which are arranged around four distinct high symmetry points. The structural stability and phase width of. gamma-phase are primarily controlled by two of these clusters, both of which show mixed occupancies and occurrence of non-stoichiometric vacancies. Amongst all the observed. gamma-phases in the Pd-Au-Zn system, the vacancy concentration increases with increasing values of gold substitution. The vec of all observed. gamma-phases fall between 1.636 and 1.654 e(-)/atom values, which are greatly influenced by the nonstoichiometric vacancies present in the structure. C1 [Thimmaiah, Srinivasa; Crumpton, Nicholas A.; Miller, Gordon J.] Iowa State Univ, Ames, IA 50011 USA. [Thimmaiah, Srinivasa; Crumpton, Nicholas A.; Miller, Gordon J.] Ames Lab, US Dept Energy, Ames, IA 50011 USA. RP Thimmaiah, S (reprint author), Iowa State Univ, Ames, IA 50011 USA. EM srini@iastate.edu RI Thimmaiah, Srinivasa/H-1049-2012 FU U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; Materials Sciences Division of the Office of Basic Energy Sciences of the U.S. Department of Energy FX This work was carried out at the Ames Laboratory, which is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work was supported by the Materials Sciences Division of the Office of Basic Energy Sciences of the U.S. Department of Energy. NR 42 TC 4 Z9 4 U1 1 U2 6 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0044-2313 J9 Z ANORG ALLG CHEM JI Z. Anorg. Allg. Chem. PD NOV PY 2011 VL 637 IS 13 SI SI BP 1992 EP 1999 DI 10.1002/zaac.201100357 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 863NS UT WOS:000298171900008 ER PT J AU Wilson, DK Saparov, B Bobev, S AF Wilson, Dereck K. Saparov, Bayrammurad Bobev, Svilen TI Synthesis, Crystal Structures and Properties of the Zintl Phases Sr2ZnP2, Sr2ZnAs2, A(2)ZnSb(2) and A(2)ZnBi(2) (A = Sr and Eu) SO ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE LA English DT Article DE Antimonides; Arsenides; Bismuthides; Solid-state structures; Zintl phases ID INTERMETALLIC COMPOUNDS; COLOSSAL MAGNETORESISTANCE; MAGNETIC-PROPERTIES; DENSITY; ANTIMONIDES; CHAINS; PN; SB; SI AB The new intermetallic compounds Sr2ZnP2, Sr2ZnAs2, A(2)ZnSb(2) and A(2)ZnBi(2) (A = Sr, Eu) have been synthesized from the corresponding elements through high-temperature reactions using the flux-growth method. Their structures have been established by single-crystal and powder X-ray diffraction. In all cases, the X-ray diffraction patterns can be successfully indexed based on hexagonal cells in the space group P6(3)/mmc (no. 194) with lattice parameters in the range a = 4.31-4.73 angstrom and c = 7.9-8.55 angstrom. The average structure can be described in the ZrBeSi type (Pearson symbol hP6; 3 unique positions) with defects on the zinc site - structure refinements indicate that every second zinc position is vacant, i.e., their formula unit is AZn(1-x)Pn with x = 0.5 (A = Sr, Eu; Pn = P, As, Sb, Bi). No stoichiometry breadth was observed, which could imply that a super-structure with a long-range order of the zinc vacancies is plausible and evidence for such was sought using electron diffraction. The results from these experiments, as well as magnetic susceptibility measurements and band structure calculations using the LMTO code are also discussed. C1 [Wilson, Dereck K.; Saparov, Bayrammurad; Bobev, Svilen] Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. [Saparov, Bayrammurad] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Bobev, S (reprint author), Univ Delaware, Dept Chem & Biochem, Newark, DE 19716 USA. EM bobev@udel.edu FU University of Delaware; Petroleum Research Fund (ACS-PRF); US Military Academy at West Point FX Svilen Bobev gratefully acknowledges funding from the University of Delaware and the Petroleum Research Fund (ACS-PRF). Cpt. Dereck Wilson thanks the US Military Academy at West Point for the graduate student fellowship (2008-2010). The authors are also indebted to Dr. Paul Tobash, Dr. Sheng-Qing Xia, and Mr. Nian-Tzu Suen for their help with the syntheses, the magnetic susceptibility measurements, and the electronic structure calculations. Prof. Susan M. Kauzlarich (UC Davis) is thanked for inspiring some of the work and for useful discussions. NR 56 TC 8 Z9 8 U1 2 U2 30 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0044-2313 EI 1521-3749 J9 Z ANORG ALLG CHEM JI Z. Anorg. Allg. Chem. PD NOV PY 2011 VL 637 IS 13 SI SI BP 2018 EP 2025 DI 10.1002/zaac.201100177 PG 8 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 863NS UT WOS:000298171900012 ER PT J AU Garten, CT AF Garten, Charles T., Jr. TI Comparison of forest soil carbon dynamics at five sites along a latitudinal gradient SO GEODERMA LA English DT Article DE Labile soil carbon; Particulate organic matter; Mineral-associated organic matter; Soil carbon turnover; Soil texture; Stable carbon isotopes ID ORGANIC-MATTER DECOMPOSITION; SOUTHERN APPALACHIAN MOUNTAINS; NET NITROGEN MINERALIZATION; TEMPERATURE SENSITIVITY; TURNOVER TIMES; LIGHT-FRACTION; STABILIZATION MECHANISMS; ISOTOPE FRACTIONATION; VERTICAL-DISTRIBUTION; ELEVATION GRADIENT AB The aim of this study was to compare the turnover time of labile soil carbon (C), in relation to temperature and soil texture, in several forest ecosystems that are representative of large areas of North America. Carbon and nitrogen (N) stocks, and C:N ratios, were measured in the forest floor, mineral soil, and two mineral soil fractions (particulate and mineral-associated organic matter, POM and MOM, respectively) at five AmeriFlux sites along a latitudinal gradient in the eastern United States. Sampling at four sites was replicated over two consecutive years. With one exception, forest floor and mineral soil C stocks increased from warm, southern sites (with fine-textured soils) to cool, northern sites (with more coarse-textured soils). The exception was a northern site, with less than 10% silt-clay content, that had a soil organic C stock similar to the southern sites. A two-compartment model was used to calculate the turnover time of labile soil organic C (MRT(U)) and the annual transfer of labile C to stable C (k(2)) at each site. Moving from south to north, MRT(U) increased from approximately 5 to 14 years. Carbon-13 enrichment factors (epsilon), that described the rate of change in delta(13)C through the soil profile, were associated with soil C turnover times. Consistent with its role in stabilization of soil organic C, silt-clay content was positively correlated (r=0.91; P <= 0.001) with parameter k(2). Latitudinal differences in the storage and turnover of soil C were related to mean annual temperature (MAT, degrees C), but soil texture superseded temperature when there was too little silt and clay to stabilize labile soil C and protect it from decomposition. Each site had a relatively high proportion of labile soil C (nearly 50% to a depth of 20 cm). Depending on unknown temperature sensitivities, large labile pools of forest soil C are at risk of decomposition in a warming climate, and losses could be disproportionately higher from coarse textured forest soils. (C) 2011 Elsevier B.V. All rights reserved. C1 Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Garten, CT (reprint author), Oak Ridge Natl Lab, Div Environm Sci, POB 2008,Mail Stop 6301, Oak Ridge, TN 37831 USA. EM gartenctjr@ornl.gov FU UT-Battelle, LLC [DE-AC05-00OR22725]; U.S. Department of Energy [DE-AC05-00OR22725]; U.S. Department of Energy, Office of Science, Biological and Environmental Research FX This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.; Research was sponsored by the U.S. Department of Energy, Office of Science, Biological and Environmental Research. Oak Ridge National Laboratory (ORNL) is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. I wish to thank AmeriFlux site operators David Hollinger (Bartlett Experimental Forest), J. William Munger (Harvard Forest), Stephen Pallardy (Missouri Ozark), Knute Nadelhoffer (University of Michigan Biological Station), and Tilden Meyers (Chestnut Ridge Oak Ridge) for their hospitality and access to the study sites; Kevin Hosman (Missouri Ozark), Jim Le Moine (University of Michigan Biological Station), Don Todd Jr. (ORNL), Paul Hanson (ORNL), and Deanne Brice (ORNL) for their assistance in the field or the laboratory. I also wish to thank Paul Hanson and Peter Thornton (ORNL) for their reviews of the draft manuscript. NR 66 TC 15 Z9 16 U1 3 U2 69 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0016-7061 J9 GEODERMA JI Geoderma PD NOV PY 2011 VL 167-68 BP 30 EP 40 DI 10.1016/j.geoderma.2011.08.007 PG 11 WC Soil Science SC Agriculture GA 861OL UT WOS:000298029000005 ER PT J AU Shamoto, S Wakimoto, S Kodama, K Ishikado, M Christianson, AD Lumsden, MD Kajimoto, R Nakamura, M Inamura, Y Arai, M Kakurai, K Esaka, F Iyo, A Kito, H Eisaki, H AF Shamoto, S. Wakimoto, S. Kodama, K. Ishikado, M. Christianson, A. D. Lumsden, M. D. Kajimoto, R. Nakamura, M. Inamura, Y. Arai, M. Kakurai, K. Esaka, F. Iyo, A. Kito, H. Eisaki, H. TI Neutron scattering of iron-based superconductors SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article; Proceedings Paper CT 23rd International Symposium on Superconductivity (ISS) CY NOV 01-03, 2010 CL Tsukuba, JAPAN SP Int Superconduct Technol Ctr (ISTEC) DE Inelastic neutron scattering; Low energy spin excitation; Iron-based superconductor ID LAYERED SUPERCONDUCTOR; BA0.6K0.4FE2AS2 AB Low-energy spin excitations have been studied on polycrystalline LaFeAsO1-xFx samples by inelastic neutron scattering. The Q-integrated dynamical spin susceptibility chi ''(omega) of the superconducting samples is found to be comparable to that of the magnetically ordered parent sample. On the other hand, chi ''(omega) almost vanishes at x = 0.158, where the superconducting transition temperature T-c is suppressed to 7 K. In addition, chi ''(omega) in optimally doped LaFeAsO0.918F0.082 with T-c = 29 K exhibits a spin resonance mode. The peak energy, E-res, when scaled by k(B)T(c) is similar to the value of about 4.7 reported in other high-T-c iron-based superconductors. This result suggests that there is intimate relationship between the dynamical spin susceptibility and high-T-c superconductivity in iron-based superconductors, and is consistent with a nesting condition between Fermi surfaces at the Gamma and M points. (C) 2011 Elsevier B.V. All rights reserved. C1 [Shamoto, S.; Wakimoto, S.; Kodama, K.; Ishikado, M.; Kakurai, K.] Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tokai, Ibaraki 3191195, Japan. [Shamoto, S.; Wakimoto, S.; Kodama, K.; Ishikado, M.; Kajimoto, R.; Nakamura, M.; Inamura, Y.; Arai, M.; Kakurai, K.; Iyo, A.; Kito, H.; Eisaki, H.] JST TRIP, Tokyo 1020075, Japan. [Christianson, A. D.; Lumsden, M. D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kajimoto, R.; Nakamura, M.; Inamura, Y.; Arai, M.] Japan Atom Energy Agcy, J PARC Ctr, Tokai, Ibaraki 3191195, Japan. [Esaka, F.] Japan Atom Energy Agcy, Nucl Sci & Engn Direcrorate, Tokai, Ibaraki 3191195, Japan. [Iyo, A.; Kito, H.; Eisaki, H.] Natl Inst Adv Ind Sci & Technol, Nanoelect Res Inst, Tsukuba, Ibaraki 3058562, Japan. RP Shamoto, S (reprint author), Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Tokai, Ibaraki 3191195, Japan. EM shamoto.shinichi@jaea.go.jp RI christianson, andrew/A-3277-2016; Lumsden, Mark/F-5366-2012 OI christianson, andrew/0000-0003-3369-5884; Lumsden, Mark/0000-0002-5472-9660 NR 25 TC 0 Z9 0 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD NOV PY 2011 VL 471 IS 21-22 BP 639 EP 642 DI 10.1016/j.physc.2011.05.015 PG 4 WC Physics, Applied SC Physics GA 853NQ UT WOS:000297433400014 ER PT J AU Choi, H Hong, S No, K AF Choi, Hyunwoo Hong, Seungbum No, Kwangsoo TI Quantitative measurement of in-plane cantilever torsion for calibrating lateral piezoresponse force microscopy SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID FERROELECTRIC THIN-FILMS; RECONSTRUCTION; POLARIZATION AB A simple quantitative measurement procedure of in-plane cantilever torsion for calibrating lateral piezoresponse force microscopy is presented. This technique enables one to determine the corresponding lateral inverse optical lever sensitivity (LIOLS) of the cantilever on the given sample. Piezoelectric coefficient, d(31) of BaTiO(3) single crystal (-81.62 +/- 40.22 pm/V) which was calculated using the estimated LIOLS was in good agreement with the reported value in literature. c 2011 American Institute of Physics. [doi: 10.1063/1.3660806] C1 [Choi, Hyunwoo; Hong, Seungbum] Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. [Choi, Hyunwoo; No, Kwangsoo] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea. RP Hong, S (reprint author), Argonne Natl Lab, Div Mat Sci, Lemont, IL 60439 USA. EM hong@anl.gov; ksno@kaist.ac.kr RI No, Kwangsoo/C-1983-2011; Choi, Hyunwoo/B-8669-2011; Hong, Seungbum/B-7708-2009 OI Hong, Seungbum/0000-0002-2667-1983 FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; Nano RD program [2010-0019123]; National Research Foundation of Korea [2010-0015063]; Ministry of Education, Science and Technology, and Science and Technology; New & Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP); Ministry of Knowledge Economy, Republic of Korea [20103020060010] FX The submitted manuscript has been created by the UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, an U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. K.N. gratefully acknowledges the financial support by Nano R&D program (2010-0019123) and the Mid-career Researcher Program (2010-0015063) through the National Research Foundation of Korea funded by Ministry of Education, Science and Technology, and Science and Technology and New & Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Knowledge Economy, Republic of Korea (Grant No. 20103020060010). NR 18 TC 6 Z9 6 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2011 VL 82 IS 11 AR 113706 DI 10.1063/1.3660806 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 860ID UT WOS:000297941100026 PM 22128983 ER PT J AU Cobble, JA Flippo, KA Offermann, DT Lopez, FE Oertel, JA Mastrosimone, D Letzring, SA Sinenian, N AF Cobble, J. A. Flippo, K. A. Offermann, D. T. Lopez, F. E. Oertel, J. A. Mastrosimone, D. Letzring, S. A. Sinenian, N. TI High-resolution Thomson parabola for ion analysis SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ACCELERATION; TARGETS; BEAMS AB A new, versatile Thomson parabola ion energy (TPIE) analyzer has been designed, constructed, and used at the OMEGA-EP facility. Laser-accelerated multi-MeV ions from hemispherical C targets are transmitted through a W pinhole into a multi-kG magnetic field and subsequently through a parallel electric field of up to 25 kV/cm. The ion drift region has a user-selected length of 10, 50, or 80 cm. With the highest fields, 400-MeV C(6+) and C(5+) may be resolved. TPIE is ten-inch manipulator (TIM)-mounted at OMEGA-EP and can be used opposite either of the EP ps beams. The instrument runs on pressure-interlocked 15-Vdc power available in EP TIM carts. Flux control derives from the insertion depth into the target chamber and the user-selected pinhole dimensions. The detector consists of CR39 backed by an image plate. A fully relativistic simulation code for calculating ion trajectories was employed for design optimization. Excellent agreement of code predictions with the actual ion positions on the detectors is observed. Through pit counting of carbon-ion tracks in CR39, it is shown that conversion efficiency of laser light to energetic carbon ions exceeds similar to 5% for these targets. (C) 2011 American Institute of Physics. [doi:10.1063/1.3658048] C1 [Cobble, J. A.; Flippo, K. A.; Offermann, D. T.; Lopez, F. E.; Oertel, J. A.; Letzring, S. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Mastrosimone, D.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Sinenian, N.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP Cobble, JA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI Flippo, Kirk/C-6872-2009; OI Flippo, Kirk/0000-0002-4752-5141; Offermann, Dustin/0000-0002-6033-4905 FU United States Department of Energy (DOE) [DE-AC52-06NA 25396] FX The authors express appreciation to Tom Archuleta, George Sandoval, Robert Aragonez, and Tom Gravlin for exceptional contributions to the design, construction, and fielding of TPIE for this new capability. This work has been performed under the auspices of the United States Department of Energy (DOE) (Contract No. DE-AC52-06NA 25396). NR 26 TC 13 Z9 13 U1 0 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2011 VL 82 IS 11 AR 113504 DI 10.1063/1.3658048 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 860ID UT WOS:000297941100015 PM 22128973 ER PT J AU Gao, X Burns, C Casa, D Upton, M Gog, T Kim, J Li, CY AF Gao, Xuan Burns, Clement Casa, Diego Upton, Mary Gog, Thomas Kim, Jungho Li, Chengyang TI Development of a graphite polarization analyzer for resonant inelastic x-ray scattering SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID SPECTROSCOPY; EXCITATIONS; DEPENDENCE; DETECTORS; CRYSTALS AB Resonant inelastic x-ray scattering (RIXS) is a powerful technique for studying electronic excitations in correlated electron systems. Current RIXS spectrometers measure the changes in energy and momentum of the photons scattered by the sample. A powerful extension of the RIXS technique is the measurement of the polarization state of the scattered photons which contains information about the symmetry of the excitations. This long-desired addition has been elusive because of significant technical challenges. This paper reports the development of a new diffraction-based polarization analyzer which discriminates between linear polarization components of the scattered photons. The double concave surface of the polarization analyzer was designed as a good compromise between energy resolution and throughput. Such a device was fabricated using highly oriented pyrolytic graphite for measurements at the Cu K-edge incident energy. Preliminary measurements on a CuGeO(3) sample are presented. (C) 2011 American Institute of Physics. [doi:10.1063/1.3662472] C1 [Gao, Xuan; Burns, Clement; Li, Chengyang] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Casa, Diego; Upton, Mary; Gog, Thomas; Kim, Jungho] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Gao, X (reprint author), Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. RI gao, xuan/E-1526-2014; Casa, Diego/F-9060-2016 OI gao, xuan/0000-0002-7689-7999; FU DOE [DE-FG02-99ER45772]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This project was supported by DOE Grant No. DE-FG02-99ER45772. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 23 TC 5 Z9 5 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2011 VL 82 IS 11 AR 113108 DI 10.1063/1.3662472 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 860ID UT WOS:000297941100009 PM 22128967 ER PT J AU Ghannadzadeh, S Coak, M Franke, I Goddard, PA Singleton, J Manson, JL AF Ghannadzadeh, S. Coak, M. Franke, I. Goddard, P. A. Singleton, J. Manson, J. L. TI Measurement of magnetic susceptibility in pulsed magnetic fields using a proximity detector oscillator SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID TUNNEL-DIODE OSCILLATOR; QUANTUM OSCILLATIONS; ORGANIC CONDUCTORS; INSULATOR; SUPERCONDUCTIVITY; TEMPERATURE AB We present a novel susceptometer with a particularly small spatial footprint and no moving parts. The susceptometer is suitable for use in systems with limited space where magnetic measurements may not have been previously possible, such as in pressure cells and rotators, as well as in extremely high pulsed fields. The susceptometer is based on the proximity detector oscillator, which has a broad dynamic resonant frequency range and has so far been used predominantly for transport measurements. We show that for insulating samples, the resonance frequency behavior as a function of field consists of a magnetoresistive and an inductive component, originating, respectively, from the sensor coil and the sample. The response of the coil is modeled, and upon subtraction of the magnetoresistive component the dynamic magnetic susceptibility and magnetization can be extracted. We successfully measure the magnetization of the organic molecular magnets Cu(H2O)(5)(VOF4)(H2O) and [Cu(HF2)(pyz)(2)]BF4 in pulsed magnetic fields and by comparing the results to that from a traditional extraction susceptometer confirm that the new system can be used to measure and observe magnetic susceptibilities and phase transitions. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3653395] C1 [Ghannadzadeh, S.; Coak, M.; Franke, I.; Goddard, P. A.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Singleton, J.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Manson, J. L.] Eastern Washington Univ, Dept Chem & Biochem, Cheney, WA 99004 USA. RP Ghannadzadeh, S (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM s.ghannadzadeh1@physics.ox.ac.uk RI Ghannadzadeh, Saman/A-4080-2012; Goddard, Paul/A-8638-2015 OI Ghannadzadeh, Saman/0000-0001-6488-9433; Goddard, Paul/0000-0002-0666-5236 FU EPSRC (UK) FX The authors would like to thank M. M. Altarawneh and C. H. Mielke for helpful discussions. This work is supported by the EPSRC (UK). NR 54 TC 10 Z9 10 U1 2 U2 31 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2011 VL 82 IS 11 AR 113902 DI 10.1063/1.3653395 PG 8 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 860ID UT WOS:000297941100034 PM 22128991 ER PT J AU Hollmann, EM Chousal, L Fisher, RK Hernandez, R Jackson, GL Lanctot, MJ Pidcoe, SV Shankara, J Taussig, DA AF Hollmann, E. M. Chousal, L. Fisher, R. K. Hernandez, R. Jackson, G. L. Lanctot, M. J. Pidcoe, S. V. Shankara, J. Taussig, D. A. TI Soft x-ray array system with variable filters for the DIII-D tokamak SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article AB Recent upgrades to the soft x-ray (SXR) array system on the DIII-D tokamak are described. The system consists of two 32-channel arrays at one toroidal location and three toroidally distributed 12-channel arrays. The 32-channel arrays have been completely rebuilt to allow the switching of SXR filters without breaking vacuum. The 12-channel arrays have had upgrades performed to detectors, view slits, and data acquisition. Absolute extreme ultraviolet (AXUV) photodiodes are used as detectors in all arrays, allowing detection of photons ranging in energy from 2 eV to 10 keV. In the fixed-filter arrays, 127 mu m Be filters are used. In the variable-filter arrays, filter wheels are used to switch between five different possible pinhole/filter combinations. (C) 2011 American Institute of Physics. [doi:10.1063/1.3660816] C1 [Hollmann, E. M.; Chousal, L.; Hernandez, R.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Fisher, R. K.; Jackson, G. L.; Pidcoe, S. V.; Taussig, D. A.] Gen Atom Co, San Diego, CA 92186 USA. [Lanctot, M. J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Shankara, J.] Inst Plasma Res, Bhat, Gandhinagar, India. RP Hollmann, EM (reprint author), Univ Calif San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA. RI Lanctot, Matthew J/O-4979-2016 OI Lanctot, Matthew J/0000-0002-7396-3372 FU (U.S.) Department of Energy (DOE) [DE FG02 07ER54917, DE-FC02-04ER54698, DE-AC52-07NA27344] FX This work was supported in part by the (U.S.) Department of Energy (DOE) under DE FG02 07ER54917, DE-FC02-04ER54698, and DE-AC52-07NA27344. The technical support of D. Ayala, W. Carrig, J. Kulchar, K. LaPinska, D. Piglowski, D. Sundstrom, and B. Williams is gratefully acknowledged. NR 9 TC 3 Z9 3 U1 1 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2011 VL 82 IS 11 AR 113507 DI 10.1063/1.3660816 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 860ID UT WOS:000297941100018 PM 22128975 ER PT J AU Waldmann, O Ludewigt, B AF Waldmann, Ole Ludewigt, Bernhard TI Measurements of beam current density and proton fraction of a permanent-magnet microwave ion source SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID ND-FE-B; NEUTRON GENERATOR; PERFORMANCE; PLASMA AB A permanent-magnet microwave ion source has been built for use in a high-yield, compact neutron generator. The source has been designed to produce up to 100 mA of deuterium and tritium ions. The electron-cyclotron resonance condition is met at a microwave frequency of 2.45 GHz and a magnetic field strength of 87.5 mT. The source operates at a low hydrogen gas pressure of about 0.15 Pa. Hydrogen beams with a current density of 40 mA/cm(2) have been extracted at a microwave power of 450 W. The dependence of the extracted proton beam fraction on wall materials and operating parameters was measured and found to vary from 45% for steel to 95% for boron nitride as a wall liner material. (C) 2011 American Institute of Physics. [doi:10.1063/1.3660282] C1 [Waldmann, Ole; Ludewigt, Bernhard] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Waldmann, O (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM Waldmann@Physik.HU-Berlin.de FU Office of Proliferation Detection of the U.S. Department of Energy at the Lawrence Berkeley National Laboratory [NA-22, DE-AC02-05CHI1231] FX This work was supported by the Office of Proliferation Detection (NA-22) of the U.S. Department of Energy at the Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CHI1231. NR 18 TC 6 Z9 6 U1 1 U2 3 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2011 VL 82 IS 11 AR 113505 DI 10.1063/1.3660282 PG 4 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 860ID UT WOS:000297941100016 PM 22128974 ER PT J AU Yoo, CS Wei, HY Chen, JY Shen, GY Chow, P Xiao, YM AF Yoo, Choong-Shik Wei, Haoyan Chen, Jing-Yin Shen, Guoyin Chow, Paul Xiao, Yuming TI Time- and angle-resolved x-ray diffraction to probe structural and chemical evolution during Al-Ni intermetallic reactions SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID DETECTOR AB We present novel time-and angle-resolved x-ray diffraction (TARXD) capable of probing structural and chemical evolutions during rapidly propagating exothermic intermetallic reactions between Ni-Al multilayers. The system utilizes monochromatic synchrotron x-rays and a two-dimensional (2D) pixel array x-ray detector in combination of a fast-rotating diffraction beam chopper, providing a time (in azimuth) and angle (in distance) resolved x-ray diffraction image continuously recorded at a time resolution of similar to 30 mu s over a time period of 3 ms. Multiple frames of the TARXD images can also be obtained with time resolutions between 30 and 300 mu s over three to several hundreds of milliseconds. The present method is coupled with a high-speed camera and a six-channel optical pyrometer to determine the reaction characteristics including the propagation speed of 7.6 m/s, adiabatic heating rate of 4.0 x 10(6) K/s, and conductive cooling rate of 4.5 x 10(4) K/s. These time-dependent structural and temperature data provide evidences for the rapid formation of intermetallic NiAl alloy within 45 mu s, thermal expansion coefficient of 1.1 x 10(-6) K for NiAl, and crystallization of V and Ag(3)In in later time. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3658817] C1 [Yoo, Choong-Shik; Wei, Haoyan; Chen, Jing-Yin] Washington State Univ, Dept Chem, Inst Shock Phys, Pullman, WA 99164 USA. [Shen, Guoyin; Chow, Paul; Xiao, Yuming] Carnegie Inst Washington, Geophys Lab, Adv Photon Source, HPCAT, Argonne, IL 60439 USA. RP Yoo, CS (reprint author), Washington State Univ, Dept Chem, Inst Shock Phys, Pullman, WA 99164 USA. EM csyoo@wsu.edu FU U.S. DHS [2008-ST-061-ED0001]; NSF-DMR [0854618] FX The x-ray work was done using the HPCAT beamline (16IDD station) of the APS. The present study has been supported by the U.S. DHS under Award No. 2008-ST-061-ED0001 and NSF-DMR (Grant No. 0854618). The views and conclusions contained in this paper are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. NR 22 TC 7 Z9 7 U1 2 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0034-6748 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD NOV PY 2011 VL 82 IS 11 AR 113901 DI 10.1063/1.3658817 PG 6 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 860ID UT WOS:000297941100033 PM 22128990 ER PT J AU Buchheit, TE Battaile, CC Weinberger, CR Holm, EA AF Buchheit, Thomas E. Battaile, Corbett C. Weinberger, Christopher R. Holm, Elizabeth A. TI Multi-scale Modeling of Low-temperature Deformation in b.c.c. Metals SO JOM LA English DT Article ID PLASTIC-DEFORMATION; SCREW DISLOCATIONS; MOLYBDENUM; POLYCRYSTAL; EVOLUTION; GLIDE AB The deformation of body-centered cubic (b.c.c.) metals such as W, Ta, and Mo is complicated both by complex deformation mechanisms at the atomic scale and by microstructural variations at the microscale. In this paper, we develop a multiscale model for low-temperature deformation in b.c.c. metals. This model integrates atomic-scale observations into a single crystal constitutive relationship that is implemented in a polycrystal plasticity grain-scale simulation. We determine that the details of deformation at the microscale differ substantially between b.c.c. and f.c.c. metals. C1 [Buchheit, Thomas E.; Battaile, Corbett C.; Weinberger, Christopher R.; Holm, Elizabeth A.] Sandia Natl Labs, Computat Mat Sci & Engn Dept, Albuquerque, NM 87185 USA. RP Buchheit, TE (reprint author), Sandia Natl Labs, Computat Mat Sci & Engn Dept, POB 5800, Albuquerque, NM 87185 USA. EM eaholm@sandia.gov RI Weinberger, Christopher/E-2602-2011; Holm, Elizabeth/S-2612-2016 OI Weinberger, Christopher/0000-0001-9550-6992; Holm, Elizabeth/0000-0003-3064-5769 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 17 TC 9 Z9 9 U1 2 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD NOV PY 2011 VL 63 IS 11 BP 33 EP 36 PG 4 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 859IM UT WOS:000297870100004 ER PT J AU Gong, KP Vukmirovic, MB Ma, C Zhu, YM Adzic, RR AF Gong, Kuanping Vukmirovic, Miomir B. Ma, Chao Zhu, Yimei Adzic, Radoslav R. TI Synthesis and catalytic activity of Pt monolayer on Pd tetrahedral nanocrystals with CO-adsorption-induced removal of surfactants SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY LA English DT Article DE Electrocatalyst; Carbon monoxide; Platinum monolayer; Oxygen reduction; Tetrahedral nanocrystals ID OXYGEN-REDUCTION; ELECTROCATALYSTS; NANOPARTICLES; ELECTRODES; NANOWIRES; STABILITY; SHELL; SHAPE; SIZE; 3D AB We synthesized the Pt monolayer shell-Pd tetrahedral core electrocatalysts that are notable for their high activity and stable performance. A small number of low-coordination sites and defects, and high content of the (1 1 1)-oriented facets on Pd tetrahedron makes them a suitable support for a Pt monolayer to obtain an active O-2 reduction reaction (ORR) electrocatalyst. The surfactants, used to control size and shape of Pd tetrahedral nanoparticles, are difficult to remove and cause adverse effects on the ORR. We describe a simple and noninvasive method to synthesize high-purity tetrahedral Pd nanocrystals (TH Pd) by combining a hydrothermal route and CO adsorption-induced removal of surfactants. Poly(vinylpyrrolidone) (PVP), used as a protecting and reducing agent in hydrothermal reactions, is strongly bonded to the surface of the resulting nanocrystals. We demonstrate that PVP was displaced efficiently by adsorbed CO. A clean surface was achieved upon CO stripping at a high potential (1.0 V vs RHE). It played a decisive role in improving the activity of the Pt monolayer/TH Pd electrocatalyst for the ORR. Furthermore, the results demonstrate a versatile method for removal of surfactants from various nanoparticles that severely limited their applications. (C) 2011 Elsevier B.V. All rights reserved, C1 [Gong, Kuanping; Vukmirovic, Miomir B.; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Ma, Chao; Zhu, Yimei] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Adzic, RR (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM Adzic@bnl.gov RI Ma, Chao/J-4569-2015 FU US Department of Energy, Basic Energy Sciences, Divisions of Chemical and Material Sciences and Material Sciences and Engineering Division [DE-AC02-98CH10886]; Center for Functional Nanomaterials, BNL under DOE [DE-AC02-98CH10886] FX This work is supported by US Department of Energy, Basic Energy Sciences, Divisions of Chemical and Material Sciences and Material Sciences and Engineering Division, under the Contract No. DE-AC02-98CH10886. Work done in part at the Center for Functional Nanomaterials, BNL under DOE Contract No. DE-AC02-98CH10886. NR 27 TC 16 Z9 16 U1 6 U2 58 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1572-6657 J9 J ELECTROANAL CHEM JI J. Electroanal. Chem. PD NOV 1 PY 2011 VL 662 IS 1 SI SI BP 213 EP 218 DI 10.1016/j.jelechem.2011.07.008 PG 6 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA 859PL UT WOS:000297888200028 ER PT J AU Johnston, CM Cao, DX Choi, JH Babu, PK Garzon, F Zelenay, P AF Johnston, Christina M. Cao, Dianxue Choi, Jong-Ho Babu, Panakkattu K. Garzon, Fernando Zelenay, Piotr TI Se-modified Ru nanoparticles as ORR catalysts - Part 1: Synthesis and analysis by RRDE and in PEFCs SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY LA English DT Article DE Se/Ru; Oxygen reduction; Methanol tolerance; Direct methanol fuel cell ID OXYGEN REDUCTION REACTION; METHANOL FUEL-CELLS; IN-SITU EXAFS; RING-DISK ELECTRODE; SUPPORTED PT-NI; SURFACE-AREA; CONTAINING ELECTROCATALYSTS; TEMPERATURE-DEPENDENCE; MIXED-REACTANT; ALLOY ELECTROCATALYSTS AB We report a new method of preparation of a methanol-tolerant Se/Ru cathode catalyst for the direct methanol fuel cell (DMFC) [1,2], whereby selenium is deposited on ruthenium nanoparticles by H(2)-reduction of SeO(2) in aqueous solution at room temperature. The obtained Se/Ru(aq) was studied by electrochemical measurements and tested as a cathode catalyst in H(2)-air and direct methanol fuel cells. The new catalyst formulation (Se/Ru(aq)) is shown to be superior to Se/Ru synthesized from xylenes solvent [3] and to Ru black by RRDE measurements, in terms of both activity and selectivity for complete oxygen reduction to water. Although Ru black is less active, the Tafel slopes and activation energies of Se/Ru catalysts and reduced-Ru black are similar, implying similar ORR mechanisms. In H(2)-air fuel cell tests, Se/Ru(aq) was more active than Se/Ru(xyl) at all voltages. Compared to Ru black, Se/Ru(aq) was superior at low current densities, but Ru black slightly exceeded the performance of Se/Ru at high current densities. To explain the RRDE and fuel cell observations, the two roles of Se as an inhibitor of Ru oxidation and as a site-blocker are discussed. (C) 2011 Elsevier B.V. All rights reserved. C1 [Johnston, Christina M.; Choi, Jong-Ho; Garzon, Fernando; Zelenay, Piotr] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Cao, Dianxue; Babu, Panakkattu K.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. RP Johnston, CM (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM cjohnston@lanl.gov; zelenay@lanl.gov RI Johnston, Christina/A-7344-2011 FU Department of Energy (DOE): Office of Hydrogen, Fuel Cells & Infrastructure Technologies; US Army Research Office; Los Alamos National Laboratory FX We would like to thank Rangachary Mukundan for the characterization of some of the catalysts by XRD. We would also like to acknowledge Professor Nicolas Alonso-Vante of the University of Poitiers, France, for collaborative discussions. Gratefully acknowledged is financial support for this work received from the Department of Energy (DOE): Office of Hydrogen, Fuel Cells & Infrastructure Technologies, the US Army Research Office, and Los Alamos National Laboratory. Christina M. Johnston is grateful for a postdoctoral fellowship from Los Alamos National Laboratory. NR 73 TC 8 Z9 8 U1 7 U2 43 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1572-6657 J9 J ELECTROANAL CHEM JI J. Electroanal. Chem. PD NOV 1 PY 2011 VL 662 IS 1 SI SI BP 257 EP 266 DI 10.1016/j.jelechem.2011.07.015 PG 10 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA 859PL UT WOS:000297888200033 ER PT J AU Choi, JH Johnston, CM Cao, DX Babu, PK Zelenay, P AF Choi, Jong-Ho Johnston, Christina M. Cao, Dianxue Babu, Panakkattu K. Zelenay, Piotr TI Se-modified Ru nanoparticles as ORR catalysts SO JOURNAL OF ELECTROANALYTICAL CHEMISTRY LA English DT Article DE Se/Ru; Oxygen reduction; Methanol tolerance; Direct methanol fuel cell ID OXYGEN REDUCTION REACTION; METHANOL FUEL-CELLS; CONTAINING ELECTROCATALYSTS; MIXED-REACTANT; RUTHENIUM; PERFORMANCE; KINETICS; SURFACE; ELECTROOXIDATION; ELECTROLYTE AB The synthesis, electrochemical analysis, and hydrogen-air fuel cell testing results for a new type of Se/Ru catalyst called Se/Ru(aq) were described in Part 1. In this second report, we present methanol tolerance studies and direct methanol fuel cell testing for the same catalyst. A "methanol-tolerant" catalyst does not oxidize methanol, nor becomes depolarized by its presence, which is a desirable property for DMFC cathodes used with methanol-permeable membranes or in mixed-reactant designs. In perchloric acid electrolyte, the Se/Ru(aq) catalyst was found to be highly tolerant to 1.0 M methanol. More importantly, in fuel-cell testing as a DMFC cathode, Se/Ru(aq) was shown to be highly tolerant to methanol crossing through the membrane (from the anode side) up to a feed concentration of 17 M. The results were compared to those obtained using unmodified Ru black and Pt black at the DMFC cathode, in order to gain insight into the catalyst function and to compare the performance to relevant benchmarks. Compared to Pt cathodes, the performance of Se/Ru(aq) is significantly better at high methanol concentrations (e.g., 17 M), suggesting their use either in DMFCs with high methanol feed concentrations or in mixed-reactant fuel cells. (C) 2011 Elsevier B.V. All rights reserved. C1 [Choi, Jong-Ho; Johnston, Christina M.; Zelenay, Piotr] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Cao, Dianxue; Babu, Panakkattu K.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. RP Johnston, CM (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, POB 1663, Los Alamos, NM 87545 USA. EM cjohnston@lanl.gov; zelenay@lanl.gov RI Johnston, Christina/A-7344-2011 FU Department of Energy (DOE): Office of Hydrogen, Fuel Cells & Infrastructure Technologies; US Army Research Office; Los Alamos National Laboratory FX We would like to thank Fernando Garzon and Rangachary Mukundan for the characterization of the catalysts by XRD and XRF. We would also like to acknowledge Professor Nicolas Alonso-Vante of the University of Poitiers, France, for collaborative discussions. Gratefully acknowledged is financial support for this work received from the Department of Energy (DOE): Office of Hydrogen, Fuel Cells & Infrastructure Technologies, the US Army Research Office, and Los Alamos National Laboratory. Christina M. Johnston is grateful for support from a postdoctoral fellowship from Los Alamos National Laboratory. NR 30 TC 5 Z9 5 U1 8 U2 27 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 1572-6657 J9 J ELECTROANAL CHEM JI J. Electroanal. Chem. PD NOV 1 PY 2011 VL 662 IS 1 SI SI BP 267 EP 273 DI 10.1016/j.jelechem.2011.07.029 PG 7 WC Chemistry, Analytical; Electrochemistry SC Chemistry; Electrochemistry GA 859PL UT WOS:000297888200034 ER PT J AU Aarts, G Allton, C Kim, S Lombardo, MP Oktay, MB Ryan, SM Sinclair, DK Skullerud, JI AF Aarts, G. Allton, C. Kim, S. Lombardo, M. P. Oktay, M. B. Ryan, S. M. Sinclair, D. K. Skullerud, J. -I. TI What happens to the gamma and eta(b) in the quark-gluon plasma? Bottomonium spectral functions from lattice QCD SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Lattice QCD; Thermal Field Theory ID FINITE-TEMPERATURE; HEAVY QUARKONIUM; FIELD-THEORIES; CHARMONIUM; SPECTROSCOPY AB We study bottomonium spectral functions in the quark-gluon plasma in the gamma and eta(b) channels, using lattice QCD simulations with two flavours of light quark on highly anisotropic lattices. The bottom quark is treated with nonrelativistic QCD (NRQCD). In the temperature range we consider, 0.42 <= T/T-c <= 2.09, we find that the ground states survive, whereas the excited states are suppressed as the temperature is increased. The position and width of the ground states are compared to analytical effective field theory (EFT) predictions. Systematic uncertainties of the maximum entropy method (MEM), used to construct the spectral functions, are discussed in some detail. C1 [Aarts, G.; Allton, C.; Kim, S.] Swansea Univ, Dept Phys, Swansea, W Glam, Wales. [Kim, S.] Sejong Univ, Dept Phys, Seoul 143747, South Korea. [Lombardo, M. P.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, RM, Italy. [Lombardo, M. P.] Univ Berlin, D-12489 Berlin, Germany. [Oktay, M. B.] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA. [Ryan, S. M.] Trinity Coll Dublin, Sch Math, Dublin 2, Ireland. [Sinclair, D. K.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Skullerud, J. -I.] Natl Univ Ireland Maynooth, Dept Math Phys, Maynooth, Kildare, Ireland. RP Aarts, G (reprint author), Swansea Univ, Dept Phys, Singleton Pk, Swansea, W Glam, Wales. EM g.aarts@swan.ac.uk; c.allton@swansea.ac.uk; skim@sejong.ac.kr; Mariapaola.Lombardo@lnf.infn.it; oktay@physics.utah.edu; ryan@maths.tcd.ie; dks@hep.anl.gov; jonivar@thphys.nuim.ie OI Aarts, Gert/0000-0002-6038-3782 FU HEA; European Union; Irish Government; STFC; BIS; Swansea University; National Research Foundation of Korea; Korea government (MEST) [2011-0026688]; Research Executive Agency (REA) of the European Union [PITN-GA-2009-238353]; Science Foundation Ireland [11/RFP.1/PHY/3201, 08-RFP-PHY1462]; US Department of Energy [DE-AC02-06CH11357] FX We thank Mikko Laine for discussion and clarification. CA, GA and MPL thank Trinity College Dublin and the National University of Ireland Maynooth for hospitality. We acknowledge the support and infrastructure provided by the Trinity Centre for High Performance Computing and the IITAC project funded by the HEA under the Program for Research in Third Level Institutes (PRTLI) co-funded by the Irish Government and the European Union. The work of CA and GA is carried as part of the UKQCD collaboration and the DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS and Swansea University. GA and CA are supported by STFC. SK is grateful to STFC for a Visiting Researcher Grant and supported by the National Research Foundation of Korea grant funded by the Korea government (MEST) No. 2011-0026688. SR is supported by the Research Executive Agency (REA) of the European Union under Grant Agreement number PITN-GA-2009-238353 (ITN STRONGnet) and the Science Foundation Ireland, grant no. 11/RFP.1/PHY/3201. DKS is supported in part by US Department of Energy contract DE-AC02-06CH11357. JIS is supported by Science Foundation Ireland grant 08-RFP-PHY1462. NR 65 TC 32 Z9 32 U1 1 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV PY 2011 IS 11 AR 103 DI 10.1007/JHEP11(2011)103 PG 25 WC Physics, Particles & Fields SC Physics GA 855NX UT WOS:000297572500051 ER PT J AU Saremi, O Sohrabi, KA AF Saremi, Omid Sohrabi, Kiyoumars A. TI Causal three-point functions and nonlinear second-order hydrodynamic coefficients in AdS/CFT SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE AdS-CFT Correspondence; Holography and quark-gluon plasmas ID HIGHER-DERIVATIVE CORRECTIONS; THERMODYNAMICS; TIME AB In the context of N = 4 SYM, we compute the finite 't Hooft coupling lambda correction to the non-linear second-order hydrodynamic coefficient lambda(3) from a Kubo formula based on fully retarded three-point functions using AdS/CFT. Although lambda(3) is known to vanish in the infinite 't Hooft coupling limit, we find that the finite lambda correction is non-zero. We also present a set of Kubo formulae for the non-linear coefficients lambda(1,2,3,) which is more convenient than the one that has appeared recently elsewhere. C1 [Saremi, Omid] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. [Saremi, Omid] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Saremi, Omid] Univ Calif Berkeley, Lawrence Berkeley Lab, Theoret Phys Grp, Berkeley, CA 94720 USA. [Sohrabi, Kiyoumars A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. RP Saremi, O (reprint author), Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. EM omid.saremi@berkeley.edu; kiyoumars@physics.mcgill.ca FU Berkeley Center for Theoretical Physics, department of physics at UC Berkeley; DOE [DE-AC02-05CH11231]; Natural Sciences and Engineering Research Council of Canada FX After completing our work, we became aware of related work by Peter Arnold, Diana Vaman, Chaolun Wu and Wei Xiao. We would like to thank Guy D. Moore for valuable discussions. O.S. is grateful to Kevin Schaeffer, Kostas Skenderis and Balt Van Rees. O.S. is supported by the Berkeley Center for Theoretical Physics, department of physics at UC Berkeley and in part by DOE, under contract DE-AC02-05CH11231. K. S. work is supported in part by the Natural Sciences and Engineering Research Council of Canada. NR 19 TC 8 Z9 9 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV PY 2011 IS 11 AR 147 DI 10.1007/JHEP11(2011)147 PG 14 WC Physics, Particles & Fields SC Physics GA 855NX UT WOS:000297572500008 ER PT J AU Vecchi, L AF Vecchi, Luca TI A natural hierarchy and a low new physics scale from a bulk Higgs SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; AdS-CFT Correspondence; Technicolor and Composite Models ID MODEL AB We show that a bulk Higgs with a mass saturating the Breitenlohner-Freedman bound can naturally generate and stabilize an exponential hierarchy on an asymptotically AdS background provided appropriate UV boundary conditions are chosen. Such a framework is dual to a strongly coupled, large N CFT deformed by a marginally relevant Higgs mass operator. On the gravity side, the marginally relevant nature of the Higgs mass operator implies that the Higgs VEV is maximally spread in the bulk. This feature significantly decreases the lower bound on the new physics scale in models that address the SM flavor problem. In this framework the radion has a mass strictly lighter than the Kaluza-Klein scale, and the collider phenomenology resembles that of composite Higgs models. C1 Los Alamos Natl Lab, Theoret Div 2, Los Alamos, NM 87545 USA. RP Vecchi, L (reprint author), Los Alamos Natl Lab, Theoret Div 2, Los Alamos, NM 87545 USA. EM vecchi@lanl.gov OI VECCHI, Luca/0000-0001-5254-8826 FU U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX We thank Kaustubh Agashe for comments on the manuscript and Ian Shoemaker for discussions. This work has been supported by the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 31 TC 3 Z9 3 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD NOV PY 2011 IS 11 AR 102 DI 10.1007/JHEP11(2011)102 PG 23 WC Physics, Particles & Fields SC Physics GA 855NX UT WOS:000297572500052 ER PT J AU Yin, L Verhertbruggen, Y Oikawa, A Manisseri, C Knierim, B Prak, L Jensen, JK Knox, JP Auer, M Willats, WGT Scheller, HV AF Yin, Lan Verhertbruggen, Yves Oikawa, Ai Manisseri, Chithra Knierim, Bernhard Prak, Lina Jensen, Jacob Kruger Knox, J. Paul Auer, Manfred Willats, William G. T. Scheller, Henrik Vibe TI The Cooperative Activities of CSLD2, CSLD3, and CSLD5 Are Required for Normal Arabidopsis Development SO MOLECULAR PLANT LA English DT Article DE Cellulose synthase like; hemicelluloses; mannan; glycosyltransferases; polysaccharide; plant development ID CELLULOSE-SYNTHASE-LIKE; PLANT-CELL WALLS; FAMILY-MEMBERS; GENE FAMILY; BIOSYNTHESIS; SUPERFAMILY; PECTIN; POLYSACCHARIDES; MORPHOGENESIS; EXPRESSION AB Glycosyltransferases of the Cellulose Synthase Like D (CSLD) subfamily have been reported to be involved in tip growth and stem development in Arabidopsis. The csld2 and csld3 mutants are root hair defective and the csld5 mutant has reduced stem growth. In this study, we produced double and triple knockout mutants of CSLD2, CSLD3, and CSLD5. Unlike the single mutants and the csld2/csld3 double mutant, the csld2/csld5, csld3/csld5, and csld2/ csld3/csld5 mutants were dwarfed and showed severely reduced viability. This demonstrates that the cooperative activities of CSLD2, CSLD3, and CSLD5 are required for normal Arabidopsis development, and that they are involved in important processes besides the specialized role in tip growth. The mutant phenotypes indicate that CSLD2 and CSLD3 have overlapping functions with CSLD5 in early plant development, whereas the CSLD2 and CSLD3 proteins are non-redundant. To determine the biochemical function of CSLD proteins, we used transient expression in tobacco leaves. Microsomes containing heterologously expressed CSLD5 transferred mannose from GDP-mannose onto endogenous acceptors. The same activity was detected when CSLD2 and CSLD3 were co-expressed but not when they were expressed separately. With monosaccharides as exogenous acceptors, microsomal preparations from CSLD5-expressing plants mediated the transfer of mannose from GDP-mannose onto mannose. These results were supported by immunodetection studies that showed reduced levels of a mannan epitope in the cell walls of stem interfascicular fibers and xylem vessels of the csld2/csld3/csld5 mutant. C1 [Yin, Lan; Verhertbruggen, Yves; Oikawa, Ai; Manisseri, Chithra; Scheller, Henrik Vibe] Joint BioEnergy Inst, Feedstocks Div, Emeryville, CA 94608 USA. [Yin, Lan; Jensen, Jacob Kruger; Willats, William G. T.] Univ Copenhagen, Fac Life Sci, Dept Plant Biol & Biotechnol, DK-1871 Frederiksberg C, Denmark. [Verhertbruggen, Yves; Oikawa, Ai; Manisseri, Chithra; Scheller, Henrik Vibe] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Knierim, Bernhard; Prak, Lina; Auer, Manfred] Joint BioEnergy Inst, Div Technol, Emeryville, CA 94608 USA. [Knierim, Bernhard; Prak, Lina; Auer, Manfred] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Knox, J. Paul] Univ Leeds, Ctr Plant Sci, Fac Biol Sci, Leeds LS2 9JT, W Yorkshire, England. [Scheller, Henrik Vibe] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Scheller, HV (reprint author), Joint BioEnergy Inst, Feedstocks Div, 5885 Hollis St, Emeryville, CA 94608 USA. EM hscheller@lbl.gov RI Knox, Paul/H-4577-2012; Scheller, Henrik/A-8106-2008; OI Knox, Paul/0000-0002-9231-6891; Scheller, Henrik/0000-0002-6702-3560; Verhertbruggen, Yves/0000-0003-4114-5428; Willats, William/0000-0003-2064-4025 FU Office of Science, Office of Biological and Environmental Research, of the US Department of Energy [DE-AC02-05CH11231]; Danish Natural Science Research Council [272-06-0403]; Danish Food Industry Agency [3304-FVFP-060697-03] FX This work conducted at the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy (Contract No. DE-AC02-05CH11231) and was further supported by the Danish Natural Science Research Council (grant number 272-06-0403) and by the Danish Food Industry Agency (grant number 3304-FVFP-060697-03). NR 44 TC 36 Z9 36 U1 0 U2 15 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1674-2052 J9 MOL PLANT JI Mol. Plant. PD NOV PY 2011 VL 4 IS 6 BP 1024 EP 1037 DI 10.1093/mp/ssr026 PG 14 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 852SF UT WOS:000297377100008 PM 21471331 ER PT J AU Olson, BJ Larsson, J Lele, SK Cook, AW AF Olson, Britton J. Larsson, Johan Lele, Sanjiva K. Cook, Andrew W. TI Nonlinear effects in the combined Rayleigh-Taylor/Kelvin-Helmholtz instability SO PHYSICS OF FLUIDS LA English DT Article ID TAYLOR INSTABILITY; SHEAR; FLUID AB The combined Rayleigh-Taylor/Kelvin-Helmholtz (RT/KH) instability is studied in the early nonlinear regime. Specifically, the effect of adding shear to a gravitationally unstable configuration is investigated. While linear stability theory predicts that any amount of shear would increase the growth rate beyond the Rayleigh-Taylor value, numerical (large eddy) simulations show a more complex and non-monotonic behavior where small amounts of shear in fact decrease the growth rate. A velocity scale for the combined instability is proposed from linear stability arguments and is shown to effectively collapse the growth rates for different configurations. The specific amount of shear that minimizes the peak growth rate is identified and the physical origins of this non-monotonic behavior are investigated. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3660723] C1 [Olson, Britton J.; Lele, Sanjiva K.] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. [Larsson, Johan] Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA. [Cook, Andrew W.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Olson, BJ (reprint author), Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. EM bolson@stanford.edu RI Larsson, Johan/B-9543-2017 OI Larsson, Johan/0000-0001-8387-1933 FU DOE Scientific Discovery; DOE Computational Science Graduate Fellowship (CSGF); LLNL HPC Center; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work has been supported by the DOE Scientific Discovery through Advanced Computing (SciDAC) program and the DOE Computational Science Graduate Fellowship (CSGF) with computational support from the DOE NERSC and ALCF facilities (through the ERCAP and INCITE programs, respectively) and through the LLNL HPC Center. We are grateful to Dr. Bill Cabot for his help in writing the Miranda code. This work was also performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 13 TC 4 Z9 4 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD NOV PY 2011 VL 23 IS 11 AR 114107 DI 10.1063/1.3660723 PG 10 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 860HK UT WOS:000297939200026 ER PT J AU Voropayev, SI Sanchez, X Nath, C Webb, S Fernando, HJS AF Voropayev, S. I. Sanchez, X. Nath, C. Webb, S. Fernando, H. J. S. TI Evolution of a confined turbulent jet in a long cylindrical cavity: Homogeneous fluids SO PHYSICS OF FLUIDS LA English DT Article ID RECTANGULAR CAVITY; LIQUID; CONDENSATION; OSCILLATIONS; VAPOR; FLOW AB The flow induced in a long cylinder by an axially discharging round turbulent jet was investigated experimentally with applications to crude oil storage in the U. S. strategic petroleum reserves (SPR). It was found that the flow does not reach a true steady state, but vacillates periodically. Digital video recordings and particle image velocimetry were used to map the flow structures and velocity/vorticity fields, from which the frequency of jet switching, jet stopping distance, mean flow, turbulence characteristics, and the influence of end-wall boundary conditions were inferred. The results were parameterized using the characteristic length D and velocity J(1/2)/D scales based on the jet kinematic momentum flux J and cylinder width D. The scaling laws so developed could be used to extrapolate laboratory observations to SPR flows. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3662442] C1 [Voropayev, S. I.; Sanchez, X.; Nath, C.; Fernando, H. J. S.] Univ Notre Dame, Dept Civil Engn & Geol Sci, Environm Fluid Dynam Labs, Notre Dame, IN 46556 USA. [Voropayev, S. I.] Russian Acad Sci, PP Shirshov Oceanol Inst, Moscow 117851, Russia. [Sanchez, X.] Univ Girona, Dept Phys, Girona 17071, Catalonia, Spain. [Webb, S.] Sandia Natl Labs, Geotechnol & Engn Dept, Albuquerque, NM 87185 USA. [Fernando, H. J. S.] Univ Notre Dame, Dept Aerosp & Mech Engn, Notre Dame, IN 46556 USA. RP Voropayev, SI (reprint author), Univ Notre Dame, Dept Civil Engn & Geol Sci, Environm Fluid Dynam Labs, Notre Dame, IN 46556 USA. EM s.voropayev@nd.edu RI Sanchez , Xavier/B-6968-2009 OI Sanchez , Xavier/0000-0002-3069-4942 FU Sandia National Laboratories [DE-AC04-94AL85000] FX This work was supported by the Sandia National Laboratories, which is operated by Lockheed Martin Corporation for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 20 TC 8 Z9 10 U1 0 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD NOV PY 2011 VL 23 IS 11 AR 115106 DI 10.1063/1.3662442 PG 11 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 860HK UT WOS:000297939200033 ER PT J AU Liska, R Shashkov, M Wendroff, B AF Liska, Richard Shashkov, Mikhail Wendroff, Burton TI THE EARLY INFLUENCE OF PETER LAX ON COMPUTATIONAL HYDRODYNAMICS AND AN APPLICATION OF LAX-FRIEDRICHS AND LAX-WENDROFF ON TRIANGULAR GRIDS IN LAGRANGIAN COORDINATES SO ACTA MATHEMATICA SCIENTIA LA English DT Article DE Lax-Friedrichs; Lax-Wendroff; conservation laws; Lagrangian coordinates; triangular grid ID CONSERVATION-LAWS; SCHEMES AB We give a brief discussion of some of the contributions of Peter Lax to Computational Fluid Dynamics. These include the Lax-Friedrichs and Lax-Wendroff numerical schemes. We also mention his collaboration in the 1983 HLL Riemann solver. We develop two-dimensional Lax-Friedrichs and Lax-Wendroff schemes for the Lagrangian form of the Euler equations on triangular grids. We apply a composite scheme that uses a Lax-Friedrichs time step as a dissipative filter after several Lax-Wendroff time steps. Numerical results for Noh's infinite strength shock problem, the Sedov blast wave problem, and the Saltzman piston problem are presented. C1 [Liska, Richard] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Prague 11519 1, Czech Republic. [Shashkov, Mikhail] Los Alamos Natl Lab, Grp XCP 4, Los Alamos, NM 87545 USA. [Wendroff, Burton] Los Alamos Natl Lab, Grp T5, Los Alamos, NM 87545 USA. RP Liska, R (reprint author), Czech Tech Univ, Fac Nucl Sci & Phys Engn, Brehova 7, Prague 11519 1, Czech Republic. EM liska@siduri.fifi.cvut.cz; shashkov@lanl.gov; bbw@lanl.gov RI Liska, Richard/C-3142-2009 OI Liska, Richard/0000-0002-6149-0440 FU National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; Czech Science Foundation [P205/10/0814]; Czech Ministry of Education [MSM 6840770022, LC528]; US Department of Energy Office of Science Advanced Scientific Computing Research (ASCR); US Department of Energy National Nuclear Security Administration FX This work was performed under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. The first author has been supported in part by the Czech Science Foundation Grant P205/10/0814 and by the Czech Ministry of Education grants MSM 6840770022 and LC528.; The authors gratefully acknowledge the partial support of the US Department of Energy Office of Science Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics Research and the partial support of the US Department of Energy National Nuclear Security Administration Advanced Simulation and Computing (ASC) Program. NR 17 TC 1 Z9 1 U1 0 U2 2 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0252-9602 J9 ACTA MATH SCI JI Acta Math. Sci. PD NOV PY 2011 VL 31 IS 6 SI SI BP 2195 EP 2202 PG 8 WC Mathematics SC Mathematics GA 856BH UT WOS:000297610800009 ER PT J AU Liang, C Cheng, G Wixon, DL Balser, TC AF Liang, Chao Cheng, Guang Wixon, Devin L. Balser, Teri C. TI An Absorbing Markov Chain approach to understanding the microbial role in soil carbon stabilization SO BIOGEOCHEMISTRY LA English DT Article DE Markov Chain; Microbial biomass; Microbial necromass; Carbon stabilization ID ORGANIC-MATTER; BACTERIAL BIOMASS; DECOMPOSITION; FATE; MINERALIZATION; MECHANISMS; FOREST; ACIDS AB The number of studies focused on the transformation and sequestration of soil organic carbon (C) has dramatically increased in recent years due to growing interest in understanding the global C cycle. While it is readily accepted that terrestrial C dynamics are heavily influenced by the catabolic and anabolic activities of microorganisms, the incorporation of microbial biomass components into stable soil C pools (via microbial living cells and necromass) has received less attention. Nevertheless, microbial-derived C inputs to soils are now increasingly recognized as playing a far greater role in stabilization of soil organic matter than previously believed. Our understanding, however, is limited by the difficulties associated with studying microbial turnover in soils. Here, we describe the use of an Absorbing Markov Chain (AMC) to model the dynamics of soil C transformations among three microbial states: living microbial biomass, microbial necromass, and C removed from living and dead microbial sources. We find that AMC provides a powerful quantitative approach that allows prediction of how C will be distributed among these three states, and how long it will take for the entire amount of initial C to pass through the biomass and necromass pools and be moved into atmosphere. Further, assuming constant C inputs to the model, we can predict how C is eventually distributed, along with how much C sequestrated in soil is microbial-derived. Our work represents a first step in attempting to quantify the flow of C through microbial pathways, and has the potential to increase our understanding of the microbial role in soil C dynamics. C1 [Liang, Chao] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Liang, Chao; Balser, Teri C.] Univ Wisconsin, Dept Soil Sci, Madison, WI 53706 USA. [Cheng, Guang] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA. [Wixon, Devin L.] Univ Wisconsin, Dept Bot, Madison, WI 53706 USA. RP Liang, C (reprint author), Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. EM chaoliang@wisc.edu RI Liang, Chao/A-5929-2009 FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; USDA-CSREES; NSF-DMS [0906497] FX This work was financially supported by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494), USDA-CSREES and NSF-DMS 0906497. We would like to thank Dr. R. Jackson for his help with the proposed idea, Drs. C. Xu and J. Zhu for the discussions on the earlier stage of this study. We would also like to thank the editor and two anonymous reviewers. The manuscript is much improved because of their inputs. NR 25 TC 52 Z9 55 U1 7 U2 69 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0168-2563 J9 BIOGEOCHEMISTRY JI Biogeochemistry PD NOV PY 2011 VL 106 IS 3 BP 303 EP 309 DI 10.1007/s10533-010-9525-3 PG 7 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 852LU UT WOS:000297360300001 ER PT J AU Liao, HH Zhang, XZ Rollin, JA Zhang, YHP AF Liao, Hehuan Zhang, Xiao-Zhou Rollin, Joseph A. Zhang, Y. -H. Percival TI A minimal set of bacterial cellulases for consolidated bioprocessing of lignocellulose SO BIOTECHNOLOGY JOURNAL LA English DT Article DE Biofuels; Biomass; Cellulase engineering; Cellulose hydrolysis; Consolidated bioprocessing ID ENZYMATIC-HYDROLYSIS; CLOSTRIDIUM-THERMOCELLUM; SUPRAMOLECULAR STRUCTURE; HETEROLOGOUS EXPRESSION; CELLULOSE ACCESSIBILITY; BACILLUS-SUBTILIS; BIOMASS; ACID; FRACTIONATION; BIOFUELS AB Cost-effective release of fermentable sugars from non-food biomass through biomass pretreatment/enzymatic hydrolysis is still the largest obstacle to second-generation biorefineries. Therefore, the hydrolysis performance of 21 bacterial cellulase mixtures containing the glycoside hydrolase family 5 Bacillus subtilis endoglucanase (BsCel5), family 9 Clostridium phytofermentans processive endoglucanase (CpCel9), and family 48 C. phytofermentans cellobiohydrolase (CpCel48) was studied on partially ordered low-accessibility microcrystalline cellulose (Avicel) and disordered high-accessibility regenerated amorphous cellulose (RAC). Faster hydrolysis rates and higher digestibilities were obtained on RAC than on Avicel. The optimal ratios for maximum cellulose digestibility were dynamic for Avicel but nearly fixed for RAC. Processive endoglucanase CpCel9 was the most important for high cellulose digestibility regardless of substrate type. This study provides important information for the construction of a minimal set of bacterial cellulases for the consolidated bioprocessing bacteria, such as Bacillus subtilis, for converting lignocellulose to bio-commodities in a single step. C1 [Liao, Hehuan; Zhang, Xiao-Zhou; Rollin, Joseph A.; Zhang, Y. -H. Percival] Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] Virginia Tech, Inst Crit Technol & Appl Sci ICTAS, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] DOE BioEnergy Sci Ctr BESC, Oak Ridge, TN USA. RP Zhang, YHP (reprint author), Virginia Tech, Dept Biol Syst Engn, 210-A Seitz Hall, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu FU DOE BioEnergy Science Center (BESC); Office of Biological and Environmental Research in the DOE Office of Science; College of Agriculture and Life Sciences Biodesign and Bioprocessing Research Center at Virginia Tech FX This work was supported mainly by the DOE BioEnergy Science Center (BESC). BESC is a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. This work was also partially supported by the College of Agriculture and Life Sciences Biodesign and Bioprocessing Research Center at Virginia Tech. H. L. was partially supported by the Chinese Scholarship Council. We were deeply indebted to Dr. Mikhail Rabinovich for his invaluable suggestions and inputs. NR 48 TC 17 Z9 17 U1 1 U2 21 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1860-6768 J9 BIOTECHNOL J JI Biotechnol. J. PD NOV PY 2011 VL 6 IS 11 SI SI BP 1409 EP 1418 DI 10.1002/biot.201100157 PG 10 WC Biochemical Research Methods; Biotechnology & Applied Microbiology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology GA 855JH UT WOS:000297559600013 PM 21751395 ER PT J AU Congdon, JD Kinney, OM Nagle, RD AF Congdon, J. D. Kinney, O. M. Nagle, R. D. TI Spatial ecology and core-area protection of Blanding's Turtle (Emydoidea blandingii) SO CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE LA English DT Article ID FRESH-WATER TURTLE; TERRESTRIAL BUFFER ZONES; DYNAMIC WETLAND SYSTEM; AQUATIC TURTLES; CHRYSEMYS-PICTA; HABITAT USE; CHELYDRA-SERPENTINA; TRACHEMYS-SCRIPTA; CENTRAL WISCONSIN; NESTING ECOLOGY AB We documented sizes of terrestrial protection zones around wetlands that are necessary to protect all of the core area of Blanding's Turtles (Emydoidea blandingii (Holbrook, 1838)) on the Edwin S. George Reserve (ESGR) in southeastern Michigan. Data collected over three decades indicated that 39% of the 83 females and 50% of the 60 males maintained the same residence wetland for more than 20 years, and 33% of the 182 nonresident females used nesting areas on the ESGR for more than 20 years. Approximately 20% of resident males and females were captured in 21 temporary wetlands on the ESGR. Nesting areas were located from 100 to 2000 m from residence wetlands, and some of 45 females (18%) used up to six different nesting areas, some separated by >1000 m. Terrestrial protection zones 300 and 450 m around all wetlands (residence and temporary) protect 90% and 100% of nests, respectively. Terrestrial protection zones of 300, 1000, and 2000 m around residence wetlands only are required to protect 14%, 87%, and 100% of adults, respectively. A protection zone that encompasses the activities of most or all Blanding's Turtles has a high probability of including the core areas of most other semiaquatic organisms. C1 [Congdon, J. D.; Kinney, O. M.; Nagle, R. D.] Savannah River Ecol Lab, Aiken, SC 29802 USA. [Congdon, J. D.] Bar Boot Ranch, Douglas, AZ 85608 USA. [Kinney, O. M.] Darlington Sch, Rome, GA 30161 USA. [Nagle, R. D.] Juniata Coll, Huntingdon, PA 16652 USA. RP Congdon, JD (reprint author), Savannah River Ecol Lab, Aiken, SC 29802 USA. EM congdon@vtc.net FU National Science Foundation (NSF) [DEB-74-070631, DEB-79-06301, BSR-84-00861, BSR-90-19771]; J. Congdon and N. Dickson; Office of Biological and Environmental Research, US Department of Energy [DE-FC09-96SR18546]; Savannah River Ecology Laboratory FX We appreciate the support of the University of Michigan Museum of Zoology and Ecology and Evolutionary Biology Department for administering and maintaining the ESGR as a world-class research area. M. Burkman and R. Estes spent many hours entering and editing the data files. The following people made notable contributions to the study: H. and S. Avery, S. Connelly, R. Fama, R. Fischer, J. Hanes, M. Hinz, M. Hutcheson, T. Novak, P. Orleans, T. Quinter, N. Rachuck, W. Roosenburg, T. Sajwaj, B. Wiltse, J. Wiltse, D. Wiltse, and R. van Loben Sels. Animals were collected under a scientific permit issued by the Michigan Department of Natural Resources and cared for in accordance with guidelines of the University of Michigan Animal Care and Use Committee. Research funding was provided over the first half of the study by National Science Foundation (NSF) Grants DEB-74-070631, DEB-79-06301, BSR-84-00861, and BSR-90-19771, and the last 19 years were funded by J. Congdon and N. Dickson. Research and manuscript preparation were aided by the Office of Biological and Environmental Research, US Department of Energy through Financial Assistant Award No. DE-FC09-96SR18546 to the University of Georgia Research Foundation, and the Savannah River Ecology Laboratory. Helpful comments on earlier drafts of the paper were provided by B. Brecke, J. Ennen, N. Dickson, J. Lovich, J. McGuire, R. Semlitsch, and L. Vitt. NR 65 TC 11 Z9 11 U1 3 U2 195 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA SN 0008-4301 J9 CAN J ZOOL JI Can. J. Zool.-Rev. Can. Zool. PD NOV PY 2011 VL 89 IS 11 BP 1098 EP 1106 DI 10.1139/Z11-091 PG 9 WC Zoology SC Zoology GA 855XK UT WOS:000297599400011 ER PT J AU McGuire, JM Congdon, JD Scribner, KT Capps, JD AF McGuire, J. M. Congdon, J. D. Scribner, K. T. Capps, J. D. TI Variation in female reproductive quality and reproductive success of male Midland Painted Turtles (Chrysemys picta marginata) SO CANADIAN JOURNAL OF ZOOLOGY-REVUE CANADIENNE DE ZOOLOGIE LA English DT Article ID RIDLEY SEA-TURTLE; SPERM STORAGE; MULTIPLE PATERNITY; SEXUAL SELECTION; HATCHING SUCCESS; CHELONIA-MYDAS; EMYDOIDEA-BLANDINGII; RESOURCE-ALLOCATION; MICROSATELLITE LOCI; MOTTLED SCULPIN AB Although mate number is perceived to be the primary factor affecting male reproductive success in polygynous systems, differences in female reproductive qualities may also influence variation in male reproductive success. We combined 32 years of data on variation in reproductive qualities (clutch size and clutch frequency) of female Midland Painted Turtles (Chrysemys picta marginata Agassiz, 1857) with genetic data on patterns of repeated paternity (i.e., stored sperm use) and multiple paternity to examine the potential influence on male reproductive success. Over 24 years (1983-2006), the number of reproductive females each year averaged 84 (minimum-maximum = 62-106) and, on average, 23% (minimum-maximum = 6%-40%) produced two clutches (intraseasonally). Among females with reproductive histories spanning 5-24 years (N = 167), 26% of individuals produced only one clutch annually, whereas 74% produced two clutches within a season. Among just intraseasonally iteroparous females, second-clutch production varied from 7% to 50%. Repeated paternity was observed in 97.5% of 40 paired clutches and 44% of 9 among-year comparisons of clutches from consecutive years. The frequent use of stored sperm to fertilize sequential clutches within and potentially among years can substantially increase a male's reproductive success, particularly if males can base mating decisions on phenotypic characteristics correlated with female quality. C1 [McGuire, J. M.; Scribner, K. T.] Michigan State Univ, Dept Zool, E Lansing, MI 48824 USA. [Congdon, J. D.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Congdon, J. D.] Bar Boot Ranch, Douglas, AZ 85608 USA. [Scribner, K. T.] Michigan State Univ, Dept Fisheries & Wildlife, E Lansing, MI 48824 USA. [Capps, J. D.] Allterra Environm Inc, Santa Cruz, CA 95060 USA. RP McGuire, JM (reprint author), Michigan State Univ, Dept Zool, 203 Nat Sci Bldg, E Lansing, MI 48824 USA. EM mcguir35@msu.edu OI McGuire, Jeanette/0000-0002-4706-447X FU National Science Foundation (NSF) [DEB-74-070631, DEB-79-06301, BSR-90-19771]; N. Dickson, J. Congdon; Fabbro family; Office of Biological and Environmental Research, US Department of Energy [DE-FC09-96SR18546]; Savannah River Ecology Laboratory; University of Michigan Museum of Zoology and Ecology and Evolutionary Biology Department, Michigan State University Department of Fisheries and Wildlife; Michigan Agricultural Experimental Station FX We acknowledge the Museum of Zoology and Ecology and Evolutionary Biology Department at the University of Michigan for administering and maintaining the Edwin S. George Reserve as a world-class research area. We thank all long-term field crews (R. Nagle, O. Kinney, R. van Loben Sels, T. Quinter, and H. Avery) for improvements to all aspects of the study. Special thanks go to C. Fabbro for her company, conversations, and extensive emergency help processing hatchlings. Life-history research was partially funded by National Science Foundation (NSF) grants DEB-74-070631, DEB-79-06301, and BSR-90-19771, additional support was provided by N. Dickson, J. Congdon, the Fabbro family, and M. Tinkle. Members of the Scribner laboratory, especially S. Libants and K. Bennett assisted in the laboratory portion of the study. Research and manuscript preparation were aided by the Office of Biological and Environmental Research, US Department of Energy, through Financial Assistant Award No. DE-FC09-96SR18546 to the University of Georgia Research Foundation, the Savannah River Ecology Laboratory, the University of Michigan Museum of Zoology and Ecology and Evolutionary Biology Department, Michigan State University Department of Fisheries and Wildlife, and the Michigan Agricultural Experimental Station. Improvements of earlier drafts of the manuscript are the results of comments from N. Dickson, K. Holekamp, R. van Loben Sels, D. Schemske, A. McAdam, members of the Scribner laboratory, and from reviews and comments from F. Janzen and anonymous reviewers. NR 75 TC 8 Z9 8 U1 1 U2 16 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA SN 0008-4301 J9 CAN J ZOOL JI Can. J. Zool.-Rev. Can. Zool. PD NOV PY 2011 VL 89 IS 11 BP 1136 EP 1145 DI 10.1139/Z11-089 PG 10 WC Zoology SC Zoology GA 855XK UT WOS:000297599400015 ER PT J AU Leoni, L Dhyani, A La Riviere, P Vogt, S Lai, B Roman, BB AF Leoni, Lara Dhyani, Anita La Riviere, Patrick Vogt, Stefan Lai, Barry Roman, B. B. TI ss-Cell subcellular localization of glucose-stimulated Mn uptake by X-ray fluorescence microscopy: implications for pancreatic MRI SO CONTRAST MEDIA & MOLECULAR IMAGING LA English DT Article DE manganese; subcellular localization; pancreatic ss-cells function; X-ray fluorescence microscopy; MRI ID RESONANCE-IMAGING MEMRI; MANGANESE-ENHANCED MRI; T-1 RELAXATION-TIMES; BETA-CELLS; IN-VIVO; PLASMA-MEMBRANE; CONTRAST AGENTS; BRAIN; MODEL; ACTIVATION AB Manganese (Mn) is a calcium (Ca) analog that has long been used as a magnetic resonance imaging (MRI) contrast agent for investigating cardiac tissue functionality, for brain mapping and for neuronal tract tracing studies. Recently, we have extended its use to investigate pancreatic beta-cells and showed that, in the presence of MnCl2, glucose-activated pancreatic islets yield significant signal enhancement in T1-weigheted MR images. In this study, we exploited for the first time the unique capabilities of X-ray fluorescence microscopy (XFM) to both visualize and quantify the metal in pancreatic beta-cells at cellular and subcellular levels. MIN-6 insulinoma cells grown in standard tissue culture conditions had only a trace amount of Mn, 1.14 +/- 0.03 x 10-11 mu g/mu m2, homogenously distributed across the cell. Exposure to 2?m m glucose and 50 mu m MnCl2 for 20min resulted in nonglucose-dependent Mn uptake and the overall cell concentration increased to 8.99 +/- 2.69 x 10-11 mu g/mu m2. When cells were activated by incubation in 16m m glucose in the presence of 50 mu m MnCl2, a significant increase in cytoplasmic Mn was measured, reaching 2.57 +/- 1.34 x 10-10 mu g/mu m2. A further rise in intracellular concentration was measured following KCl-induced depolarization, with concentrations totaling 1.25 +/- 0.33 x 10-9 and 4.02 +/- 0.71 x 10-10 mu g/mu m2 in the cytoplasm and nuclei, respectively. In both activated conditions Mn was prevalent in the cytoplasm and localized primarily in a perinuclear region, possibly corresponding to the Golgi apparatus and involving the secretory pathway. These data are consistent with our previous MRI findings, confirming that Mn can be used as a functional imaging reporter of pancreatic beta-cell activation and also provide a basis for understanding how subcellular localization of Mn will impact MRI contrast. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Leoni, Lara; Dhyani, Anita; La Riviere, Patrick; Roman, B. B.] Univ Chicago, Dept Radiol, Comm Med Phys, Chicago, IL 60637 USA. [Vogt, Stefan; Lai, Barry] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Roman, B. B.] Univ Chicago, Comm Metab & Nutr, Chicago, IL 60637 USA. RP Roman, BB (reprint author), MC2026 Univ Chicago, Dept Radiol, 5841 S Maryland Ave, Chicago, IL 60637 USA. EM broman@uchicago.edu RI Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013 OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513 FU National Institute of Health [R01EB001828]; NIH Beta Cell Biology Consortium [U01 DK072473]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX National Institute of Health grant R01EB001828 and NIH Beta Cell Biology Consortium U01 DK072473 to B. B. R. supported this work. Use of the APS was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. We would like to thank Dr Lydia Finney at the Advance Photon Source, Argonne National Laboratory, for technical assistance with sample preparation and imaging. NR 53 TC 8 Z9 8 U1 1 U2 8 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1555-4309 J9 CONTRAST MEDIA MOL I JI Contrast Media Mol. Imaging PD NOV-DEC PY 2011 VL 6 IS 6 BP 474 EP 481 DI 10.1002/cmmi.447 PG 8 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 857CR UT WOS:000297692700007 PM 22144025 ER PT J AU Boyd, S Carr, R AF Boyd, Sylvia Carr, Robert TI Finding low cost TSP and 2-matching solutions using certain half-integer subtour vertices SO DISCRETE OPTIMIZATION LA English DT Article DE Traveling salesman problem; 2-matching; Approximation algorithm ID TRAVELING SALESMAN PROBLEMS; RELAXATION; RATIO AB Consider the traveling salesman problem (TSP) defined on the complete graph, where the edge costs satisfy the triangle inequality. Let TOUR denote the optimal solution value for the TSP. Two well-known relaxations of the TSP are the subtour elimination problem and the 2-matching problem. If we let SUBT and 2M represent the optimal solution values for these two relaxations, then it has been conjectured that TOUR/SUBT <= 4/3, and that 2M/SUBT <= 10/9. In this paper, we exploit the structure of certain 1/2-integer solutions for the subtour elimination problem in order to obtain low cost TSP and 2-matching solutions. In particular, we show that for cost functions for which the optimal subtour elimination solution found falls into our classes, the above two conjectures are true. Our proofs are constructive and could be implemented in polynomial time, and thus, for such cost functions, provide a 4/3 (or better) approximation algorithm for the TSP. (C) 2011 Elsevier B.V. All rights reserved. C1 [Boyd, Sylvia] Univ Ottawa, SITE, Ottawa, ON K1N 6N5, Canada. [Carr, Robert] Sandia Labs, Albuquerque, NM 87185 USA. RP Boyd, S (reprint author), Univ Ottawa, SITE, Ottawa, ON K1N 6N5, Canada. EM sylvia@site.uottawa.ca; rdcarr@sandia.gov FU Natural Sciences and Engineering Research Council of Canada; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This research was partially supported by grants from the Natural Sciences and Engineering Research Council of Canada.; Sandia is a multiprogram laboratory operated by Sandia Corporation. a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 21 TC 4 Z9 4 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1572-5286 J9 DISCRETE OPTIM JI Discret. Optim. PD NOV PY 2011 VL 8 IS 4 BP 525 EP 539 DI 10.1016/j.disopt.2011.05.002 PG 15 WC Operations Research & Management Science; Mathematics, Applied SC Operations Research & Management Science; Mathematics GA 856CE UT WOS:000297613500002 ER PT J AU Palmer, J Rice, M AF Palmer, Joseph Rice, Michael TI Low-Complexity Frequency Estimation Using Multiple Disjoint Pilot Blocks in Burst-Mode Communications SO IEEE TRANSACTIONS ON COMMUNICATIONS LA English DT Article DE Estimation theory; frequency estimation; synchronization ID SINGLE-FREQUENCY; DICHOTOMOUS SEARCH; FADING CHANNELS; CARRIER-PHASE; TRANSMISSIONS; SYNCHRONIZATION; ALGORITHMS; SYMBOLS; BOUNDS AB Two low-complexity data-aided frequency estimators, suitable for use in burst-mode communications, are described and analyzed. The estimators are based on pilot symbols organized into disjoint blocks embedded in the burst. The first estimator is a generalization of the phase increment frequency estimation technique and the second estimator is a generalization of the autocorrelation frequency estimation technique. The generalizations are needed to account for the spacings between the pilot blocks. It is shown that the frequency estimators exhibit good accuracy while maintaining useful operating ranges. C1 [Palmer, Joseph; Rice, Michael] Brigham Young Univ, Dept Elect & Comp Engn, Provo, UT 84602 USA. RP Palmer, J (reprint author), Los Alamos Natl Labs, POB 1663, Los Alamos, NM 87545 USA. EM joseph.m.palmer@gmail.com; mdr@byu.edu NR 27 TC 4 Z9 7 U1 1 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0090-6778 J9 IEEE T COMMUN JI IEEE Trans. Commun. PD NOV PY 2011 VL 59 IS 11 BP 3135 EP 3145 DI 10.1109/TCOMM.2011.091411.080123 PG 11 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 855TX UT WOS:000297589000025 ER PT J AU Perkins, MP Ong, MM Speer, RD Brown, CG AF Perkins, Michael P. Ong, Mike M. Speer, Ron D. Brown, Charles G., Jr. TI Analysis of a Small Loop Antenna With Inductive Coupling to Nearby Loops SO IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY LA English DT Article DE Antenna array mutual coupling; antenna measurements; electroexplosive devices; lightning; modeling ID COMPUTATIONAL ELECTROMAGNETICS CEM; SELECTIVE VALIDATION FSV; FIELD; CALIBRATION; GENERATION; VOLTAGES; STRIKES; DESIGN; CELLS AB This paper analyzes the inductive coupling that occurs when a loop antenna is near other conductive objects that form complete loops and are excited by incident low-frequency magnetic fields. The currents developed on the closed loops from the time changing magnetic fields generate their own magnetic fields that alter the voltage received by nearby open loop antennas. We will demonstrate how inductance theory can be used to model the system of loops. Using this theory, time domain circuit models are developed to find the open circuit voltage of a loop near one closed loop and for the open circuit voltage of one loop near two closed loops. We will show that the model is in good agreement with measurements that have been made in a TEM cell. One important application of this work is for electroexplosive device safety. It is necessary to ensure that if lightning strikes a facility that the electromagnetic fields generated inside do not have strong enough coupling to a detonator cable to cause initiation of explosives. We will show how the model can be used to analyze magnetic field coupling into a detonator cable attached to explosives in one typical type of work stand. C1 [Perkins, Michael P.; Ong, Mike M.; Speer, Ron D.; Brown, Charles G., Jr.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Perkins, MP (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM perkins22@llnl.gov; ong1@llnl.gov; speer3@llnl.gov; brown207@llnl.gov FU U. S. Department of Energy [DE-AC52-07NA27344] FX Manuscript received October 5, 2010; revised February 27, 2011; accepted March 29, 2011. Date of publication May 19, 2011; date of current version November 18, 2011. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 25 TC 1 Z9 1 U1 2 U2 4 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9375 J9 IEEE T ELECTROMAGN C JI IEEE Trans. Electromagn. Compat. PD NOV PY 2011 VL 53 IS 4 BP 900 EP 908 DI 10.1109/TEMC.2011.2143718 PG 9 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 852GB UT WOS:000297342900006 ER PT J AU VanEvery, K Krane, MJM Trice, RW Porter, W Wang, H Besser, M Sordelet, D Ilavsky, J Almer, J AF VanEvery, Kent Krane, Matthew John M. Trice, Rodney W. Porter, Wallace Wang, Hsin Besser, Matthew Sordelet, Dan Ilavsky, Jan Almer, Jonathan TI In-Flight Alloying of Nanocrystalline Yttria-Stabilized Zirconia Using Suspension Spray to Produce Ultra-Low Thermal Conductivity Thermal Barriers SO INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY LA English DT Article ID EB-PVD TBCS; DOPED ZIRCONIA; COATINGS; PHASE; EVOLUTION; POROSITY; DEPOSITS; YSZ AB Previous researchers have shown that it is possible to combine rare-earth oxides with the standard thermal barrier coating material (4.5 mol% Y(2)O(3)ZrO(2) or YSZ) to form ultra-low thermal conductivity coatings using a standard powder manufacturing route. A similar approach to making low thermal conductivity coatings by adding rare-earth oxides is discussed presently, but a different manufacturing route was used. This route involved dissolving hydrated ytterbium and neodymium nitrates into a suspension of 80 nm diameter 4.5 mol% YSZ powder and ethanol. Suspension plasma spray was then used to create coatings in which the YSZ powders were alloyed with rare-earth elements while the plasma transported the melted powders to the substrate. Mass spectrometry measurements showed a YSZ coating composition, in mol%, of ZrO(2)-4.4 Y(2)O(3)-1.4 Nd(2)O(3)-1.3 Yb(2)O(3). The amount of Yb(3+) and Nd(3+) ions in the final coating was similar to 50% of that added to the starting suspension. Wide-angle X-ray diffraction revealed a cubic ZrO2 phase, consistent with the incorporation of more stabilizer into the zirconia crystal structure. The total porosity in the coatings was similar to 3536%, with a bulk density of 3.94 g/cm(3). Small-angle X-ray scattering measured an apparent void specific surface area of similar to 2.68 m(2)/cm(3) for the alloyed coating and similar to 3.19 m(2)/cm(3) for the baseline coating. Thermal conductivity (kth) of the alloyed coating was similar to 0.8 W/m/K at 800 degrees C, as compared with similar to 1.5 W/m/K at 800 degrees C for the YSZ-only baseline coating. After 50 h at 1200 degrees C, kth increased to similar to 1.1 W/m/K at 800 degrees C for the alloyed samples, with an associated decrease in the apparent void specific surface area to similar to 1.55 m2/cm3. C1 [VanEvery, Kent; Krane, Matthew John M.; Trice, Rodney W.] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA. [Porter, Wallace; Wang, Hsin] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Besser, Matthew; Sordelet, Dan] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Ilavsky, Jan; Almer, Jonathan] Argonne Natl Lab, Argonne, IL 60439 USA. RP VanEvery, K (reprint author), Progress Surface, 4695 Danvers Dr SE, Grand Rapids, MI 49512 USA. EM rtrice@purdue.edu RI Ilavsky, Jan/D-4521-2013; Wang, Hsin/A-1942-2013 OI Ilavsky, Jan/0000-0003-1982-8900; Wang, Hsin/0000-0003-2426-9867 FU National Science Foundation [CMMI-0456534]; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Office of FreedomCAR and Vehicle Technologies; Oak Ridge National Laboratory; U.S. Department of Energy [DE-AC05-00OR22725] FX Major portions of this research were funded by the National Science Foundation via grant CMMI-0456534. This support is gratefully acknowledged. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This project involved research sponsored by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of FreedomCAR and Vehicle Technologies, as part of the High Temperature Materials Laboratory User Program, Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract number DE-AC05-00OR22725. NR 33 TC 4 Z9 5 U1 2 U2 18 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1546-542X J9 INT J APPL CERAM TEC JI Int. J. Appl. Ceram. Technol. PD NOV-DEC PY 2011 VL 8 IS 6 BP 1382 EP 1392 DI 10.1111/j.1744-7402.2010.02593.x PG 11 WC Materials Science, Ceramics SC Materials Science GA 851DT UT WOS:000297249300014 ER PT J AU Pavan, B Abhinav, V AF Pavan, Balaji Abhinav, Vishnu TI Special Issue on Programming Models, Software and Tools for High-End Computing SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Editorial Material C1 [Pavan, Balaji] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Abhinav, Vishnu] Pacific NW Natl Lab, Div Math & Comp Sci, Richland, WA 99352 USA. RP Pavan, B (reprint author), Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. EM balaji@mcs.anl.gov; abhinav.vishnu@pnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD NOV PY 2011 VL 25 IS 4 BP 353 EP 354 DI 10.1177/1094342011414549 PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 856OL UT WOS:000297652200001 ER PT J AU Chen, Y Zhu, HY Roth, PC Jin, H Sun, XH AF Chen, Yong Zhu, Huaiyu Roth, Philip C. Jin, Hui Sun, Xian-He TI Global-aware and multi-order context-based prefetching for high-performance processors SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE prefetching; context-based prefetching; prefetching accuracy; prefetching coverage; processor architectures; memory hierarchy; data access delay; prefetch degree; prefetch priority; cache pollution; bandwidth contention; SPEC-CPU2006; CMP$im simulator; PIN; high-end computing; data intensive computing AB Data prefetching is widely used in high-end computing systems to accelerate data accesses and to bridge the increasing performance gap between processor and memory. Context-based prefetching has become a primary focus of study in recent years due to its general applicability. However, current context-based prefetchers only adopt the context analysis of a single order, which suffers from low prefetching coverage and thus limits the overall prefetching effectiveness. Also, existing approaches usually consider the context of the address stream from a single instruction but not the context of the address stream from all instructions, which further limits the context-based prefetching effectiveness. In this study, we propose a new context-based prefetcher called the Global-aware and Multi-order Context-based (GMC) prefetcher. The GMC prefetcher uses multi-order, local and global context analysis to increase prefetching coverage while maintaining prefetching accuracy. In extensive simulation testing of the SPEC-CPU2006 benchmarks with an enhanced CMP$im simulator, the proposed GMC prefetcher was shown to outperform existing prefetchers and to reduce the data-access latency effectively. The average Instructions Per Cycle (IPC) improvement of SPEC CINT2006 and CFP2006 benchmarks with GMC prefetching was over 55% and 44% respectively. C1 [Chen, Yong] Texas Tech Univ, Dept Comp Sci, Lubbock, TX 79409 USA. [Zhu, Huaiyu] Univ Illinois, Dept Comp Sci, Urbana, IL USA. [Zhu, Huaiyu] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL USA. [Roth, Philip C.] Oak Ridge Natl Lab, Comp Sci & Math Div, Future Technol Grp, Oak Ridge, TN USA. [Jin, Hui; Sun, Xian-He] IIT, Dept Comp Sci, Chicago, IL 60616 USA. [Sun, Xian-He] IIT, Scalable Comp Software Lab, Chicago, IL 60616 USA. RP Chen, Y (reprint author), Texas Tech Univ, Dept Comp Sci, Box 43104, Lubbock, TX 79409 USA. EM yong.chen@ttu.edu RI Jin, Hui/H-2398-2012 FU Office of Advanced Scientific Computing Research, U.S. Department of Energy; National Science Foundation [CCF-0621435, CCF-0937877]; De-AC05-00OR22725 FX This research is sponsored in part by the Office of Advanced Scientific Computing Research, U.S. Department of Energy. This research is also sponsored in part by the National Science Foundation (grant numbers CCF-0621435 and CCF-0937877).; The work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under Contract No. De-AC05-00OR22725. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 42 TC 1 Z9 1 U1 0 U2 2 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 EI 1741-2846 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD NOV PY 2011 VL 25 IS 4 BP 355 EP 370 DI 10.1177/1094342010394386 PG 16 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 856OL UT WOS:000297652200002 ER PT J AU Smith, B Zhang, H AF Smith, Barry Zhang, Hong TI Sparse triangular solves for ILU revisited: data layout crucial to better performance SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE sparse triangular solve; ILU factorization; matrix-vector product; data access pattern; data layout ID PARALLEL IMPLICIT CFD AB A key to good processor utilization for sparse matrix computations is storing the data in the format that is most conducive to fast access by the memory system. In particular, for sparse matrix triangular solves the traditional compressed sparse matrix format is poor, and minor adjustments to the data structure can increase the processor utilization dramatically. Such adjustments involve storing the L and U factors separately and storing the U rows 'backwards' so that they are accessed in a simple streaming fashion during the triangular solves. Changes to the PETSc libraries to use this modified storage format resulted in over twice the floating-point rate for some matrices. This improvement can be accounted for by a decrease in the cache misses and TLB (transaction lookaside buffer) misses in the modified code. C1 [Zhang, Hong] IIT, Dept Comp Sci, Chicago, IL 60616 USA. [Smith, Barry] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Zhang, H (reprint author), IIT, Dept Comp Sci, 10 W 31st St, Chicago, IL 60616 USA. EM hzhang@mcs.anl.gov FU Office of Advanced Scientific Computing Research, Office of Science, US Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Office of Advanced Scientific Computing Research, Office of Science, US Department of Energy, under contract DE-AC02-06CH11357. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ('Argonne'). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 19 TC 4 Z9 4 U1 0 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD NOV PY 2011 VL 25 IS 4 BP 386 EP 391 DI 10.1177/1094342010389857 PG 6 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 856OL UT WOS:000297652200004 ER PT J AU Buluc, A Gilbert, JR AF Buluc, Aydin Gilbert, John R. TI The Combinatorial BLAS: design, implementation, and applications SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE Betweenness centrality; combinatorial BLAS; combinatorial scientific computing; graph analysis; Markov clustering; mathematical software; parallel graph library; software framework; sparse matrices ID BETWEENNESS CENTRALITY; PERFORMANCE; ALGORITHMS; MAPREDUCE; WORLD AB This paper presents a scalable high-performance software library to be used for graph analysis and data mining. Large combinatorial graphs appear in many applications of high-performance computing, including computational biology, informatics, analytics, web search, dynamical systems, and sparse matrix methods. Graph computations are difficult to parallelize using traditional approaches due to their irregular nature and low operational intensity. Many graph computations, however, contain sufficient coarse-grained parallelism for thousands of processors, which can be uncovered by using the right primitives. We describe the parallel Combinatorial BLAS, which consists of a small but powerful set of linear algebra primitives specifically targeting graph and data mining applications. We provide an extensible library interface and some guiding principles for future development. The library is evaluated using two important graph algorithms, in terms of both performance and ease-of-use. The scalability and raw performance of the example applications, using the Combinatorial BLAS, are unprecedented on distributed memory clusters. C1 [Buluc, Aydin] Univ Calif Berkeley, Lawrence Berkeley Lab, High Performance Comp Res, Berkeley, CA 94720 USA. RP Buluc, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, High Performance Comp Res, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM abuluc@1bl.gov OI Buluc, Aydin/0000-0001-7253-9038 FU National Science Foundation [CRI-IAD0709385]; TACC [TG-CCR090036] FX This work was supported in part by the National Science Foundation (grant number CRI-IAD0709385) and through TeraGrid resources provided by TACC (grant number TG-CCR090036). NR 57 TC 41 Z9 41 U1 1 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 EI 1741-2846 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD NOV PY 2011 VL 25 IS 4 BP 496 EP 509 DI 10.1177/1094342011403516 PG 14 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 856OL UT WOS:000297652200012 ER PT J AU Paster, MD Ahluwalia, RK Berry, G Elgowainy, A Lasher, S McKenney, K Gardiner, M AF Paster, M. D. Ahluwalia, R. K. Berry, G. Elgowainy, A. Lasher, S. McKenney, K. Gardiner, M. TI Hydrogen storage technology options for fuel cell vehicles: Well-to-wheel costs, energy efficiencies, and greenhouse gas emissions SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Hydrogen on-board storage; Hydrogen fuel efficiency; Hydrogen delivery infrastructure; Hydrogen greenhouse gas emissions AB Five different hydrogen vehicle storage technologies are examined on a Well-to-Wheel basis by evaluating cost, energy efficiency, greenhouse gas (GHG) emissions, and performance. The storage systems are gaseous 350 bar hydrogen, gaseous 700 bar hydrogen, Cold Gas at 500 bar and 200 K, Cryo-Compressed Liquid Hydrogen (CcH2) at 275 bar and 30 K, and an experimental adsorbent material (MOF 177) -based storage system at 250 bar and 100 K. Each storage technology is examined with several hydrogen production options and a variety of possible hydrogen delivery methods. Other variables, including hydrogen vehicle market penetration, are also examined. The 350 bar approach is relatively cost-effective and energy-efficient, but its volumetric efficiency is too low for it to be a practical vehicle storage system for the long term. The MOF 177 system requires liquid hydrogen refueling, which adds considerable cost, energy use, and GHG emissions while having lower volumetric efficiency than the CcH2 system. The other three storage technologies represent a set of trade-offs relative to their attractiveness. Only the CcH2 system meets the critical Department of Energy (DOE) 2015 volumetric efficiency target, and none meet the DOE's ultimate volumetric efficiency target. For these three systems to achieve a 480-km (300-mi) range, they would require a volume of at least 105-175 L in a mid-size FCV. (C) Copyright 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Ahluwalia, R. K.; Elgowainy, A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Berry, G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Lasher, S.; McKenney, K.] TIAX LLC, Cambridge, MA 02140 USA. [Gardiner, M.] US DOE, Washington, DC 20585 USA. RP Paster, MD (reprint author), 10113 Farrcroft Dr, Fairfax, VA 22030 USA. EM mrkpstr0@gmail.com FU U.S. Department of Energy FX This work was funded by the U.S. Department of Energy's Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program. NR 16 TC 36 Z9 37 U1 3 U2 42 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV PY 2011 VL 36 IS 22 BP 14534 EP 14551 DI 10.1016/j.ijhydene.2011.07.056 PG 18 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 852XN UT WOS:000297390900026 ER PT J AU Borole, AP Mielenz, JR AF Borole, Abhijeet P. Mielenz, Jonathan R. TI Estimating hydrogen production potential in biorefineries using microbial electrolysis cell technology SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Biofuel cell; Lignocellulosic; Fermentation inhibitors; Water treatment; Recycle; Value added products ID FUEL-CELLS; ELECTRICITY-GENERATION; FERMENTATION INHIBITORS; ETHANOL-PRODUCTION; WHEAT-STRAW; CELLULOSE; BIOMASS; DEGRADATION; ENERGY; ELECTROHYDROGENESIS AB Future biofuel and bioproducts industries are expected to generate significant volumes of waste streams containing easily degradable organic matter. The emerging MEC technology has potential to derive added-value from these waste streams via production of hydrogen. A methodology to determine hydrogen production potential from wastewaters is reported. Biorefinery process streams, particularly the stillage or distillation bottoms contain underutilized sugars as well as fermentation and pretreatment byproducts, in the case of lignocellulosic biorefineries. Estimates of hydrogen production from existing starch-based biorefineries indicate potential to generate 750-8900 m(3)/hr of hydrogen. In a lignocellulosic biorefinery designed to produce 265,000 m(3) of ethanol per year, it is estimated that 1260-7200 m(3)/hr of hydrogen can be generated. Removal of fermentation and pretreatment byproducts from stillage streams has the added potential to enable water recycle. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Borole, Abhijeet P.; Mielenz, Jonathan R.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Borole, AP (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. EM borolea@ornl.gov OI Borole, Abhijeet/0000-0001-8423-811X FU U.S. Department of Energy's Office of the Biomass Program; National Renewable Energy Laboratory; Oak Ridge National Laboratory (ORNL); U. S. Department of Energy [DE AC05-00OR22725] FX Funding for this work was provided by the U.S. Department of Energy's Office of the Biomass Program through an agreement with the National Renewable Energy Laboratory and by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC, for the U. S. Department of Energy under Contract No. DE AC05-00OR22725. NR 53 TC 13 Z9 13 U1 2 U2 31 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV PY 2011 VL 36 IS 22 BP 14787 EP 14795 DI 10.1016/j.ijhydene.2011.03.152 PG 9 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 852XN UT WOS:000297390900050 ER PT J AU Bartholomew, MJ Reynolds, RM Vogelmann, AM Min, Q Edwards, R Smith, S AF Bartholomew, M. J. Reynolds, R. M. Vogelmann, A. M. Min, Q. Edwards, R. Smith, S. TI Design of a Shadowband Spectral Radiometer for the Retrieval of Thin Cloud Optical Depth, Liquid Water Path, and the Effective Radius SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID MICROWAVE RADIOMETERS; RADIATION; THICKNESS; AUREOLE; SUN; INSTRUMENT; SCATTERING; ACCURACY; MODELS; VAPOR AB The design and operation of a Thin-Cloud Rotating Shadowband Radiometer (TCRSR) described here was used to measure the radiative intensity of the solar aureole and enable the simultaneous retrieval of cloud optical depth, drop effective radius, and liquid water path. The instrument consists of photodiode sensors positioned beneath two narrow metal bands that occult the sun by moving alternately from horizon to horizon. Measurements from the narrowband 415-nm channel were used to demonstrate a retrieval of the cloud properties of interest. With the proven operation of the relatively inexpensive TCRSR instrument, its usefulness for retrieving aerosol properties under cloud-free skies and for ship-based observations is discussed. C1 [Bartholomew, M. J.; Vogelmann, A. M.; Edwards, R.; Smith, S.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Reynolds, R. M.] Remote Measurements & Res Co, Seattle, WA USA. [Min, Q.] SUNY Albany, Albany, NY 12222 USA. RP Bartholomew, MJ (reprint author), Brookhaven Natl Lab, Bldg 490D, Upton, NY 11973 USA. EM bartholomew@bnl.gov RI Vogelmann, Andrew/M-8779-2014 OI Vogelmann, Andrew/0000-0003-1918-5423 FU U.S. Department of Energy/ARM [DE-FG02-03ER63531]; U.S. Department of Energy [DE-AC02-98CH10886] FX We acknowledge the excellent and professional help provided by ARM's Site Operations Staff at the Southern Great Plains Site, particularly that provided by Dan Nelson, Craig Webb, and Rod Soper. Support for one of the authors, Q. Min, came from U.S. Department of Energy/ARM Program Grant DE-FG02-03ER63531. The other authors were supported, in part, by the Atmospheric Science Research program of the U.S. Department of Energy, under Contract DE-AC02-98CH10886. NR 20 TC 1 Z9 1 U1 0 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD NOV PY 2011 VL 28 IS 11 BP 1458 EP 1465 DI 10.1175/JTECH-D-11-00039.1 PG 8 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 854HD UT WOS:000297484700008 ER PT J AU Lebel, EA Rusek, A Sivertz, MB Yip, K Thompson, KH Tafrov, ST AF Lebel, Emily A. Rusek, Adam Sivertz, Michael B. Yip, Kin Thompson, Keith H. Tafrov, Stefan T. TI Analyses of the Secondary Particle Radiation and the DNA Damage It Causes to Human Keratinocytes SO JOURNAL OF RADIATION RESEARCH LA English DT Article DE HZE; Secondary particles; 53BP1 foci; Keratinocytes ID GALACTIC COSMIC-RAYS; SPACE RADIATION; STEM-CELLS; HUMAN PHANTOM; HEAVY-IONS; IRON IONS; EXPLORATION; EXPOSURE; ASTRONAUTS; DEPENDENCE AB High-energy protons, and high mass and energy ions, along with the secondary particles they produce, are the main contributors to the radiation hazard during space explorations. Skin, particularly the epidermis, consisting mainly of keratinocytes with potential for proliferation and malignant transformation, absorbs the majority of the radiation dose. Therefore, we used normal human keratinocytes to investigate and quantify the DNA damage caused by secondary radiation. Its manifestation depends on the presence of retinol in the serum-free media, and is regulated by phosphatidylinositol 3-kinases. We simulated the generation of secondary radiation after the impact of protons and iron ions on an aluminum shield. We also measured the intensity and the type of the resulting secondary particles at two sample locations; our findings agreed well with our predictions. We showed that secondary particles inflict DNA damage to different extents, depending on the type of primary radiation. Low-energy protons produce fewer secondary particles and cause less DNA damage than do high-energy protons. However, both generate fewer secondary particles and inflict less DNA damage than do high mass and energy ions. The majority of cells repaired the initial damage, as denoted by the presence of 53BP1 foci, within the first 24 hours after exposure, but some cells maintained the 53BP1 foci longer. C1 [Lebel, Emily A.; Thompson, Keith H.; Tafrov, Stefan T.] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Rusek, Adam; Sivertz, Michael B.; Yip, Kin] Brookhaven Natl Lab, Collider Accelerator Dept, Upton, NY 11973 USA. RP Tafrov, ST (reprint author), Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. EM tafrov@bnl.gov RI Yip, Kin/D-6860-2013 OI Yip, Kin/0000-0002-8576-4311 FU National Aeronautics and Space Administration Department of Energy with the Brookhaven National Laboratory [NNJ08HB63I, DE-AC02-98CH10886] FX We would like to thank Dr. Peter Guida and the entire BNL Medical Department support staff for the invaluable help with these experiments; Dr. Avril Woodhead for her critical help with the manuscript preparation; and Dr. Betsy Sutherland for her support of the entire project. This work was supported by a grant from the National Aeronautics and Space Administration NNJ08HB63I under Department of Energy Prime Contract DE-AC02-98CH10886 with the Brookhaven National Laboratory (to STT). NR 35 TC 5 Z9 5 U1 0 U2 1 PU JAPAN RADIATION RESEARCH SOC PI CHIBA PA C/O NAT INST RADIOLOGICAL SCI 9-1 ANAGAWA-4-CHOME INAGE-KU, CHIBA, 263, JAPAN SN 0449-3060 J9 J RADIAT RES JI J. Radiat. Res. PD NOV PY 2011 VL 52 IS 6 BP 685 EP 693 DI 10.1269/jrr.11015 PG 9 WC Biology; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Radiology, Nuclear Medicine & Medical Imaging GA 855LL UT WOS:000297565800001 PM 22104266 ER PT J AU Bhandari, D Wells, SM Polemi, A Kravchenko, II Shuford, KL Sepaniak, MJ AF Bhandari, Deepak Wells, Sabrina M. Polemi, Alessia Kravchenko, Ivan I. Shuford, Kevin L. Sepaniak, Michael J. TI Stamping plasmonic nanoarrays on SERS-supporting platforms SO JOURNAL OF RAMAN SPECTROSCOPY LA English DT Article DE nanotransfer printing; surface-enhanced Raman scattering; nanofabrication; SERS substrate; Maxwell's equation ID ENHANCED RAMAN-SCATTERING; SILVER NANOPARTICLES; OPTICAL-PROPERTIES; POLYMER NANOCOMPOSITES; SOFT LITHOGRAPHY; REFRACTIVE-INDEX; WAVE-GUIDE; HOT-SPOTS; SPECTROSCOPY; METAL AB The dielectric property of a nanoparticle-supporting film has recently garnered attention in the fabrication of plasmonic surfaces. A few studies have shown that the localized surface plasmon resonance (LSPR), and hence surface-enhanced Raman scattering (SERS), strongly depends on the substrate refractive index. In order to create higher efficiency SERS-active surfaces, it is therefore necessary to consider the substrate property along with nanoparticle morphology. However, due to certain limitations of conventional lithography, it is often not feasible to create well-defined plasmonic nanoarrays on a substrate of interest. Here, an additive nanofabrication technique, i.e., nanotransfer printing (nTP), is implemented to integrate electron beam lithography (EBL) defined high-aspect-ratio nanofeatures on a variety of SERS-supporting surfaces. With the aid of suitable surface chemistries, a wide range of plasmonic particles were successfully integrated on surfaces of three physically and chemically distinct dielectric materials, namely, polydimethyl siloxane (PDMS), SU-8 photoresist, and glass surfaces, using silicon-based relief pillars. These nTP-created metal nanoparticles strongly amplify the Raman signal and complement the selection of suitable substrates for better SERS enhancement. Our experimental observations are also supported by theoretical calculations. The implementation of nTP to stamp out metal nanoparticles on a multitude conventional/unconventional substrates has novel applications in designing in-built plasmonic microanalytical devices for SERS sensing and other related photonic studies. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Bhandari, Deepak; Wells, Sabrina M.; Sepaniak, Michael J.] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. [Polemi, Alessia; Shuford, Kevin L.] Drexel Univ, Dept Chem, Philadelphia, PA 19104 USA. [Kravchenko, Ivan I.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Sepaniak, MJ (reprint author), Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. EM msepaniak@utk.edu RI Shuford, Kevin/L-2435-2014; Kravchenko, Ivan/K-3022-2015; OI Kravchenko, Ivan/0000-0003-4999-5822; POLEMI, Alessia/0000-0002-3620-6073 FU U.S. Environmental Protection Agency [EPA-83274001]; University of Tennessee; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Drexel University FX This research was supported by the U.S. Environmental Protection Agency STAR program under Grant EPA-83274001 with the University of Tennessee. The nanofabricated substrates were created at Oak Ridge National Laboratory's Center for Nanophase Material Sciences (CNMS), sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. KLS thanks Drexel University for start-up funding. We are thankful to Dr Jon P. Camden and Christopher Bennett of UTK for helpful discussions and Dr John Dunlap of UTK for assistance with AFM. NR 47 TC 9 Z9 9 U1 3 U2 61 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0377-0486 EI 1097-4555 J9 J RAMAN SPECTROSC JI J. Raman Spectrosc. PD NOV PY 2011 VL 42 IS 11 BP 1916 EP 1924 DI 10.1002/jrs.2940 PG 9 WC Spectroscopy SC Spectroscopy GA 854QR UT WOS:000297509800002 ER PT J AU Sadouki, M Fellah, M Fellah, ZEA Ogam, E Sebaa, N Mitri, FG Depollier, C AF Sadouki, M. Fellah, M. Fellah, Z. E. A. Ogam, E. Sebaa, N. Mitri, F. G. Depollier, C. TI Measuring static thermal permeability and inertial factor of rigid porous materials SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID MEDIA; WAVES; PROPAGATION; FREQUENCIES; TORTUOSITY; RANGE AB An acoustic method based on sound transmission is proposed for deducing the static thermal permeability and the inertial factor of porous materials having a rigid frame at low frequencies. The static thermal permeability of porous material is a geometrical parameter equal to the inverse trapping constant of the solid frame [Lafarge et al., J. Acoust. Soc. Am. 102, 1995 (1997)] and is an important characteristic of the porous material. The inertial factor [Norris., J. Wave Mat. Interact. 1, 365 (1986)] describes the fluid structure interactions in the low frequency range (1-3 kHz). The proposed method is based on a temporal model of the direct and inverse scattering problems for the propagation of transient audible frequency waves in a homogeneous isotropic slab of porous material having a rigid frame. The static thermal permeability and the inertial factor are determined from the solution of the inverse problem. The minimization between experiment and theory is made in the time domain. Tests are performed using industrial plastic foams. Experimental and theoretical data are in good agreement. Furthermore, the prospects are discussed. This method has the advantage of being simple, rapid, and efficient. (C) 2011 Acoustical Society of America. [DOI: 10.1121/1.3641402] C1 [Fellah, Z. E. A.; Ogam, E.] CNRS UPR 7051, Lab Mecan & Acoust, F-13402 Marseille, France. [Sadouki, M.; Fellah, M.] USTHB, Fac Phys, Phys Theor Lab, Bab Ezzouar 16111, Algeria. [Sebaa, N.] Ecole Preparatoire Sci & Tech, Emir Abed El Kader, Bab El Oued, Algeria. [Mitri, F. G.] Los Alamos Natl Lab, Technol Team, Los Alamos, NM 87545 USA. [Depollier, C.] Univ Maine, Acoust Lab, UMR CNRS 6613, F-72085 Le Mans 09, France. RP Fellah, ZEA (reprint author), CNRS UPR 7051, Lab Mecan & Acoust, 31 Chemin Joseph Aiguier, F-13402 Marseille, France. EM Fellah@lma.cnrs-mrs.fr OI Sadouki, Mustapha/0000-0003-0772-6237 FU Los Alamos National Laboratory [LDRD- X9N9] FX The authors are indebted to the referees for the careful reading of the manuscript and for the many suggestions on improving its presentation. F.G.M. acknowledges the financial support provided through a Director's fellowship (LDRD- X9N9) from the Los Alamos National Laboratory. Disclosure: this unclassified publication, with the following Reference No. LA-UR 11-11235, has been approved for unlimited public release under DUSA ENSCI. NR 19 TC 7 Z9 7 U1 0 U2 5 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD NOV PY 2011 VL 130 IS 5 BP 2627 EP 2630 DI 10.1121/1.3641402 PN 1 PG 4 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 854HV UT WOS:000297486500017 PM 22087887 ER PT J AU Haupert, S Renaud, G Riviere, J Talmant, M Johnson, PA Laugier, P AF Haupert, Sylvain Renaud, Guillaume Riviere, Jacques Talmant, Maryline Johnson, Paul A. Laugier, Pascal TI High-accuracy acoustic detection of nonclassical component of material nonlinearity SO JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA LA English DT Article ID DEPENDENT INTERNAL-FRICTION; ELASTIC-WAVE SPECTROSCOPY; RESONANT ULTRASOUND SPECTROSCOPY; DISCERN MATERIAL DAMAGE; CRACK DETECTION; MODULATION SPECTROSCOPY; CROSS-MODULATION; SINGLE-CRYSTALS; NEWS TECHNIQUES; FATIGUE DAMAGE AB The aim is to assess the nonclassical component of material nonlinearity in several classes of materials with weak, intermediate, and high nonlinear properties. In this contribution, an optimized nonlinear resonant ultrasound spectroscopy (NRUS) measuring and data processing protocol applied to small samples is described. The protocol is used to overcome the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic nonlinearity. External temperature fluctuation is identified as a primary source of measurement contamination. For instance, a variation of 0.1 degrees C produced a frequency variation of 0.01%, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to overcome environmental effects, the reference frequency measurements are repeated before each excitation level and then used to compute nonlinear parameters. Using this approach, relative resonant frequency shifts of 10(-5) can be measured, which is below the limit of 10(-4) often considered as the limit of NRUS sensitivity under common experimental conditions. Due to enhanced sensitivity resulting from the correction procedure applied in this work, nonclassical nonlinearity in materials that before have been assumed to only be classically nonlinear in past work (steel, brass, and aluminum) is reported. (C) 2011 Acoustical Society of America. [DOI: 10.1121/1.3641405] C1 [Haupert, Sylvain; Renaud, Guillaume; Riviere, Jacques; Talmant, Maryline; Laugier, Pascal] Univ Paris 06, CNRS, Lab Imagerie Parametr, UMR 7623, Paris, France. [Johnson, Paul A.] Los Alamos Natl Lab, Geophys Grp, Los Alamos, NM 87545 USA. RP Haupert, S (reprint author), Univ Paris 06, CNRS, Lab Imagerie Parametr, UMR 7623, Paris, France. EM sylvain.haupert@upmc.fr OI haupert, sylvain/0000-0003-4705-4527; Johnson, Paul/0000-0002-0927-4003 FU Agence Nationale pour la Recherche (ANR), France [BONUS_07BLAN0197]; Office of Basic Energy Science of the US Department of Energy FX The authors want to acknowledge the reviewers for their helpful and constructive comments. This research was supported by the Agence Nationale pour la Recherche (ANR), France (Grant No. BONUS_07BLAN0197). P.A.J. was supported in part by Institutional Support at Los Alamos National Laboratory and by the Office of Basic Energy Science of the US Department of Energy. NR 62 TC 18 Z9 19 U1 0 U2 14 PU ACOUSTICAL SOC AMER AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0001-4966 J9 J ACOUST SOC AM JI J. Acoust. Soc. Am. PD NOV PY 2011 VL 130 IS 5 BP 2654 EP 2661 DI 10.1121/1.3641405 PN 1 PG 8 WC Acoustics; Audiology & Speech-Language Pathology SC Acoustics; Audiology & Speech-Language Pathology GA 854HV UT WOS:000297486500022 PM 22087892 ER PT J AU Ko, KT Jung, MH He, Q Lee, JH Woo, CS Chu, K Seidel, J Jeon, BG Oh, YS Kim, KH Liang, WI Chen, HJ Chu, YH Jeong, YH Ramesh, R Park, JH Yang, CH AF Ko, Kyung-Tae Jung, Min Hwa He, Qing Lee, Jin Hong Woo, Chang Su Chu, Kanghyun Seidel, Jan Jeon, Byung-Gu Oh, Yoon Seok Kim, Kee Hoon Liang, Wen-I Chen, Hsiang-Jung Chu, Ying-Hao Jeong, Yoon Hee Ramesh, Ramamoorthy Park, Jae-Hoon Yang, Chan-Ho TI Concurrent transition of ferroelectric and magnetic ordering near room temperature SO NATURE COMMUNICATIONS LA English DT Article ID BIFEO3 THIN-FILMS; MULTIFERROICS; STRAIN AB Strong spin-lattice coupling in condensed matter gives rise to intriguing physical phenomena such as colossal magnetoresistance and giant magnetoelectric effects. The phenomenological hallmark of such a strong spin-lattice coupling is the manifestation of a large anomaly in the crystal structure at the magnetic transition temperature. Here we report that the magnetic Neel temperature of the multiferroic compound BiFeO3 is suppressed to around room temperature by heteroepitaxial misfit strain. Remarkably, the ferroelectric state undergoes a first-order transition to another ferroelectric state simultaneously with the magnetic transition temperature. Our findings provide a unique example of a concurrent magnetic and ferroelectric transition at the same temperature among proper ferroelectrics, taking a step toward room temperature magnetoelectric applications. C1 [Ko, Kyung-Tae; Jung, Min Hwa; Jeong, Yoon Hee; Park, Jae-Hoon] POSTECH, Dept Phys, Pohang 790784, South Korea. [He, Qing; Seidel, Jan; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Lee, Jin Hong; Woo, Chang Su; Chu, Kanghyun; Yang, Chan-Ho] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea. [Seidel, Jan; Ramesh, Ramamoorthy] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Jeon, Byung-Gu; Oh, Yoon Seok; Kim, Kee Hoon] Seoul Natl Univ, Dept Phys & Astron, CeNSCMR, Seoul 151747, South Korea. [Liang, Wen-I; Chen, Hsiang-Jung; Chu, Ying-Hao] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Park, Jae-Hoon] POSTECH, Div Adv Mat Sci, Pohang 790784, South Korea. [Yang, Chan-Ho] KAIST Inst NanoCentury, Taejon 305701, South Korea. RP Park, JH (reprint author), POSTECH, Dept Phys, Pohang 790784, South Korea. EM jhp@postech.ac.kr; chyang@kaist.ac.kr RI YANG, CHAN-HO/C-2079-2011; Ying-Hao, Chu/A-4204-2008; Oh, Yoon Seok/A-1071-2011; He, Qing/E-3202-2010; OI Ying-Hao, Chu/0000-0002-3435-9084; Oh, Yoon Seok/0000-0001-8233-1898; Ko, Kyung-Tae/0000-0003-3649-4594 FU National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology [2010-0013528, 2011-0016133, 2010-0014523]; National Creative Initiative [2009-0081576, 2010-0018300]; WCU [R31-2008-000-10059-0]; Leading Foreign Research Institute through NRF [2010 00471]; MEST; Alexander von Humboldt Foundation; POSTECH; Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231]; NSF MRSEC through Penn State University; National Science Council [NSC-99-2811-M-009-003]; MOKE FX C.-H.Y. and Y.H.J. acknowledge the support by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (contract nos. 2010-0013528, 2011-0016133 and 2010-0014523). K.-T.K. and J.-H.P. are supported by the National Creative Initiative (2009-0081576), WCU (R31-2008-000-10059-0), and Leading Foreign Research Institute Recruitment (2010 00471) programs through NRF funded by MEST. J. S. acknowledges support from the Alexander von Humboldt Foundation. PLS is supported by POSTECH and MEST. The X-ray absorption studies work at Berkeley is supported by the Director, Office of Basic Energy Sciences of the US Department of Energy under contract no. DE-AC02-05CH11231. Q.H. is supported by a NSF MRSEC through Penn State University. The work in National Chiao Tung University is supported by the National Science Council under contract No. NSC-99-2811-M-009-003. Work at SNU was supported by National Creative Research Initiative (2010-0018300) by MEST and the Fundamental R&D Program for Core Technology of Materials by MOKE. NR 41 TC 58 Z9 59 U1 4 U2 83 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2011 VL 2 AR 567 DI 10.1038/ncomms1576 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 857AQ UT WOS:000297686500054 PM 22127063 ER PT J AU Shambat, G Ellis, B Majumdar, A Petykiewicz, J Mayer, MA Sarmiento, T Harris, J Haller, EE Vuckovic, J AF Shambat, Gary Ellis, Bryan Majumdar, Arka Petykiewicz, Jan Mayer, Marie A. Sarmiento, Tomas Harris, James Haller, Eugene E. Vuckovic, Jelena TI Ultrafast direct modulation of a single-mode photonic crystal nanocavity light-emitting diode SO NATURE COMMUNICATIONS LA English DT Article ID ELECTROOPTIC MODULATOR; OPTICAL INTERCONNECTS; QUANTUM DOTS; COMPACT; POWER; PHOTODETECTOR; LASER AB Low-power and electrically controlled optical sources are vital for next generation optical interconnect systems to meet strict energy demands. Current optical transmitters consisting of high-threshold lasers plus external modulators consume far too much power to be competitive with future electrical interconnects. Here we demonstrate a directly modulated photonic crystal nanocavity light-emitting diode (LED) with 10 GHz modulation speed and less than 1 fJ per bit energy of operation, which is orders of magnitude lower than previous solutions. The device is electrically controlled and operates at room temperature, while the high modulation speed results from the fast relaxation of the quantum dots used as the active material. By virtue of possessing a small mode volume, our LED is intrinsically single mode and, therefore, useful for communicating information over a single narrowband channel. The demonstrated device is a major step forward in providing practical low-power and integrable sources for on-chip photonics. C1 [Shambat, Gary; Ellis, Bryan; Majumdar, Arka; Petykiewicz, Jan; Sarmiento, Tomas; Harris, James; Vuckovic, Jelena] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Mayer, Marie A.; Haller, Eugene E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Vuckovic, J (reprint author), Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. EM jela@stanford.edu OI Sarmiento, Tomas/0000-0002-9176-4094 FU Stanford Graduate Fellowship; NSF GRFP; Interconnect Focus Center; Focus Center Research Program, a Semiconductor Research Corporation program; AFOSR MURI for Complex and Robust On-chip Nanophotonics [FA9550-09-1-0704]; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231]; National Science Foundation FX G. S. and B. E. were supported by the Stanford Graduate Fellowship. G. S. is also supported by the NSF GRFP. We acknowledge the financial support of the Interconnect Focus Center, one of the six research centres funded under the Focus Center Research Program, a Semiconductor Research Corporation program. We also acknowledge the AFOSR MURI for Complex and Robust On-chip Nanophotonics (Dr Gernot Pomrenke), grant number FA9550-09-1-0704, and the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231. Work was performed in part at the Stanford Nanofabrication Facility of NNIN supported by the National Science Foundation. We also acknowledge Kelley Rivoire for assisting in SEM image acquisition. NR 25 TC 53 Z9 54 U1 2 U2 36 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2011 VL 2 AR 539 DI 10.1038/ncomms1543 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 857AQ UT WOS:000297686500026 PM 22086339 ER PT J AU Wall, ME Raghavan, S Cohn, JD Dunbar, J AF Wall, Michael E. Raghavan, Sindhu Cohn, Judith D. Dunbar, John TI Genome Majority Vote Improves Gene Predictions SO PLOS COMPUTATIONAL BIOLOGY LA English DT Article ID ESCHERICHIA-COLI K-12; PROKARYOTIC GENOMES; ANNOTATION; ALIGNMENT; MOUSE; IDENTIFICATION; VERIFICATION; LIKELIHOOD; ACCURACY AB Recent studies have noted extensive inconsistencies in gene start sites among orthologous genes in related microbial genomes. Here we provide the first documented evidence that imposing gene start consistency improves the accuracy of gene start-site prediction. We applied an algorithm using a genome majority vote (GMV) scheme to increase the consistency of gene starts among orthologs. We used a set of validated Escherichia coli genes as a standard to quantify accuracy. Results showed that the GMV algorithm can correct hundreds of gene prediction errors in sets of five or ten genomes while introducing few errors. Using a conservative calculation, we project that GMV would resolve many inconsistencies and errors in publicly available microbial gene maps. Our simple and logical solution provides a notable advance toward accurate gene maps. C1 [Wall, Michael E.; Raghavan, Sindhu; Cohn, Judith D.] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM USA. [Wall, Michael E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Wall, Michael E.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Raghavan, Sindhu] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA. [Dunbar, John] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. RP Wall, ME (reprint author), Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM USA. EM mewall@lanl.gov OI Cohn, Judith/0000-0002-1333-3395; Alexandrov, Ludmil/0000-0003-3596-4515 FU Los Alamos National Laboratory [20080138DR]; NIH/National Library of Medicine [R01LM010120]; LDRD [20110435DR] FX This work was primarily funded by Los Alamos National Laboratory Directed Research and Development program (LDRD) grant 20080138DR. MEW and JDC received additional support from NIH/National Library of Medicine grant R01LM010120, and MEW received additional support from LDRD grant 20110435DR. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 28 TC 7 Z9 8 U1 0 U2 3 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 185 BERRY ST, STE 1300, SAN FRANCISCO, CA 94107 USA SN 1553-734X J9 PLOS COMPUT BIOL JI PLoS Comput. Biol. PD NOV PY 2011 VL 7 IS 11 AR e1002284 DI 10.1371/journal.pcbi.1002284 PG 11 WC Biochemical Research Methods; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Mathematical & Computational Biology GA 851JG UT WOS:000297263700029 PM 22131910 ER PT J AU Mann, AW Gaidos, E Aldering, G AF Mann, Andrew W. Gaidos, Eric Aldering, Greg TI Ground-Based Submillimagnitude CCD Photometry of Bright Stars Using Snapshot Observations SO PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC LA English DT Article ID LOW-MASS STARS; HIGH-PRECISION PHOTOMETRY; LIGHT-CURVE PROJECT; SUN-LIKE STAR; MAUNA-KEA; SUPER-EARTH; M-DWARFS; PLANETARY OCCULTATIONS; EXTRASOLAR PLANETS; VARIABLE-STARS AB We demonstrate ground-based submillimagnitude (< 10(-3)) photometry of widely separated bright stars using snapshot CCD imaging. We routinely achieved this photometric precision by (1) choosing nearby comparison stars of a similar magnitude and spectral type, (2) defocusing the telescope to allow high signal (> 10(7) e(-)) to be acquired in a single integration, (3) pointing the telescope so that all stellar images fall on the same detector pixels, and (4) using a region of the CCD detector that is free of nonlinear or aberrant pixels. We describe semiautomated observations with the Supernova Integrated Field Spectrograph (SNIFS) on the University of Hawaii 2.2 m telescope on Mauna Kea, with which we achieved photometric precision as good as 5.2 x 10(-4) (0.56 mmag) with a 5 minute cadence over a 2 hr interval. In one experiment, we monitored eight stars, each separated by several degrees, and achieved submillimagnitude precision with a cadence (per star) of similar to 17 minutes. Our snapshot technique is suitable for automated searches for planetary transits among multiple bright stars. C1 [Mann, Andrew W.] Univ Hawaii, Inst Astron, Honolulu, HI 96822 USA. [Gaidos, Eric] Univ Hawaii, Dept Geol & Geophys, Honolulu, HI 96822 USA. [Aldering, Greg] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Mann, AW (reprint author), Univ Hawaii, Inst Astron, 2680 Woodlawn Dr, Honolulu, HI 96822 USA. EM amann@ifa.hawaii.edu OI Mann, Andrew/0000-0003-3654-1602 FU NSF [AST-0908419]; NASA [NNX10AI90G]; US Department of Energy [DE-AC02-05CH11231] FX This work was supported by NSF grant AST-0908419 (to E. G.), NASA grant NNX10AI90G (to E. G.), and US Department of Energy contract DE-AC02-05CH11231 (to G. A.). We thank John Johnson for providing the specifications of the narrow z filter currently in use on the University of Hawaii 2.2 m Orthogonal Parallel Transfer Imaging Camera. We thank Jean-Charles Cuillandre and Herb Woodruff and the rest of the Canada-France-Hawaii Telescope (CFHT) personnel for providing the CFHT SkyProbe data. We thank George Ricker for his detailed comments on the manuscript. We also thank the anonymous reviewers for their helpful suggestions. NR 89 TC 17 Z9 17 U1 0 U2 1 PU UNIV CHICAGO PRESS PI CHICAGO PA 1427 E 60TH ST, CHICAGO, IL 60637-2954 USA SN 0004-6280 EI 1538-3873 J9 PUBL ASTRON SOC PAC JI Publ. Astron. Soc. Pac. PD NOV PY 2011 VL 123 IS 909 BP 1273 EP 1289 DI 10.1086/662640 PG 17 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 853ZF UT WOS:000297463500004 ER PT J AU Lu, L Anderson-Cook, CM Robinson, TJ AF Lu, Lu Anderson-Cook, Christine M. Robinson, Timothy J. TI Optimization of Designed Experiments Based on Multiple Criteria Utilizing a Pareto Frontier SO TECHNOMETRICS LA English DT Article DE Balancing competing objectives; Design optimality; Desirability function; Model misspecification; Robust parameter design ID MODEL; ALGORITHMS AB Balancing competing objectives to select an optimal design of experiments involves flexibly combining measures to select a winner. The Pareto front approach for simultaneously considering multiple responses is adapted to design of experiments. The Pareto approach identifies a suite of potential best designs based on different emphases of the objectives. We propose a new algorithm, the Pareto Aggregating Point Exchange (PAPE) algorithm, to more efficiently explore candidate designs by populating the Pareto frontier with all possible contending designs identified during the search. The connection between the Pareto and the Derringer-Suich (1980) desirability function approaches is established and graphical methods are given which enable the user to easily explore design robustness to different weightings of the competing objectives as well as trade-offs between criteria among competing designs. The method is illustrated with two examples: a screening design setting in which it is of interest to simultaneously consider D-efficiency and protect against model misspecification, and a robust parameter design example where simultaneous consideration of D-S-mean, D-S-variance, and design size is of interest. This article has supplementary material online. C1 [Lu, Lu; Anderson-Cook, Christine M.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. [Robinson, Timothy J.] Univ Wyoming, Dept Stat, Laramie, WY 82071 USA. RP Lu, L (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663, Los Alamos, NM 87545 USA. EM lulu@lanl.gov; c-and-cook@lanl.gov; tjrobin@uwyo.edu NR 39 TC 36 Z9 36 U1 2 U2 6 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 0040-1706 EI 1537-2723 J9 TECHNOMETRICS JI Technometrics PD NOV PY 2011 VL 53 IS 4 BP 353 EP 365 DI 10.1198/TECH.2011.10087 PG 13 WC Statistics & Probability SC Mathematics GA 859VT UT WOS:000297904600003 ER PT J AU de Mello, PE Lu, N Makarov, Y AF de Mello, Phillip E. Lu, Ning Makarov, Yuri TI An optimized autoregressive forecast error generator for wind and load uncertainty study SO WIND ENERGY LA English DT Article DE wind integration; wind forecast; load forecast; wind error; load error; power generation planning; stochastic simulation; wind statistics; load forecast statistics AB This paper presents a first-order autoregressive algorithm used to generate real-time (RT), hour-ahead (HA) and day-ahead (DA) wind and load forecast errors in time series. The modeled error time series preserve the characteristics of the historical forecast data sets. Four statistical characteristics are considered: the means, the standard deviations, the autocorrelations and the cross-correlations. A stochastic optimization routine was used to find an optimal set of parameters that minimize the differences of the four characteristics between the generated error series and the targeted ones. The obtained parameters were then in due order of succession used to produce the RT, HA and DA forecasts. This method, although implemented as a first-order regressive random forecast error generator, can be extended to higher orders. Simulation results have shown that the methodology produces random forecast error series that have statistics similar to those derived from real data sets. The wind and load forecast error generator can be used in wind integration studies to produce wind and load forecast in time series for stochastic planning processes. Our future studies will focus on reflecting the diurnal and seasonal differences of the wind and load statistics and on implementing them in the random forecast generator. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [de Mello, Phillip E.; Lu, Ning; Makarov, Yuri] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Lu, N (reprint author), Pacific NW Natl Lab, POB 999,MSIN K1-85, Richland, WA 99352 USA. EM ning.lu@pnl.gov FU CAISO under Battelle/CAISO [55456] FX This work was supported by CAISO under Battelle/CAISO Agreement 55456. NR 7 TC 6 Z9 6 U1 0 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1095-4244 J9 WIND ENERGY JI Wind Energy PD NOV PY 2011 VL 14 IS 8 BP 967 EP 976 DI 10.1002/we.460 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 854PJ UT WOS:000297506400003 ER PT J AU Oladosu, G Kline, K Uria-Martinez, R Eaton, L AF Oladosu, Gbadebo Kline, Keith Uria-Martinez, Rocio Eaton, Laurence TI Sources of corn for ethanol production in the United States: a decomposition analysis of the empirical data SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE biofuel; indirect land-use change; corn ethanol; index decomposition analysis ID LAND-USE; EMISSIONS AB The use of corn for ethanol production in the United States quintupled between 2001 and 2009, generating concerns that this could lead to the conversion of forests and grasslands around the globe, known as indirect land-use change (iLUC). Estimates of iLUC and related food versus fuel concerns rest on the assumption that the corn used for ethanol production in the United States would come primarily from displacing corn exports and land previously used for other crops. A number of modeling efforts based on these assumptions have projected significant iLUC from the increases in the use of corn for ethanol production. The current study tests the veracity of these assumptions through a systematic decomposition analysis of the empirical data from 2001 to 2009. The logarithmic mean divisia index decomposition method (Type I) was used to estimate contributions of different factors to meeting the corn demand for ethanol production. Results show that about 79% of the change in corn used for ethanol production can be attributed to changes in the distribution of domestic corn consumption among different uses. Increases in the domestic consumption share of corn supply contributed only about 5%. The remaining contributions were 19% from added corn production, and 2% from stock changes. Yield change accounted for about two-thirds of the contributions from production changes. Thus, the results of this study provide little support for large land-use changes or diversion of corn exports because of ethanol production in the United States during the past decade. (C) 2011 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Oladosu, Gbadebo; Kline, Keith; Uria-Martinez, Rocio; Eaton, Laurence] Oak Ridge Natl Lab, Renewable Energy Syst Grp, Energy Anal Team, Oak Ridge, TN 37831 USA. RP Oladosu, G (reprint author), Oak Ridge Natl Lab, Renewable Energy Syst Grp, Energy Anal Team, POB 2008,Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM oladosuga@ornl.gov RI Oladosu, Gbadebo/B-8970-2012; Eaton, Laurence/E-1471-2012; OI Eaton, Laurence/0000-0003-1270-9626; Kline, Keith/0000-0003-2294-1170; Oladosu, Gbadebo/0000-0003-4990-1996 FU US Department of Energy (DoE); US DoE [DE-AC05-00OR22725] FX This research was supported by the US Department of Energy (DoE) under the Office of the Biomass Program. We thank Yetta Jaeger of the Environmental Sciences Division at ORNL for her help in reviewing and providing comments on the initial version of this paper. We also appreciate the editorial help of Fred O'Hara. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US DoE. The publisher, by accepting the paper for publication, acknowledges that the US government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. The views in this paper are those of the authors, who are also responsible for any errors or omissions. NR 23 TC 17 Z9 17 U1 3 U2 18 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1932-104X J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD NOV-DEC PY 2011 VL 5 IS 6 BP 640 EP 653 DI 10.1002/bbb.305 PG 14 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 847YZ UT WOS:000297013500015 ER PT J AU Tumuluru, JS Wright, CT Hess, JR Kenney, KL AF Tumuluru, Jaya Shankar Wright, Christopher T. Hess, J. Richard Kenney, Kevin L. TI A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Review DE densification systems; biomass density; densification energy; biomass pre-treatment; biomass quality; solid fuel standards ID PELLETED ANIMAL FEED; CORN STOVER; ENZYMATIC-HYDROLYSIS; PHYSICAL QUALITY; STEAM EXPLOSION; WOOD RESIDUES; WHEAT-STRAW; HOT-WATER; PART I; PARAMETERS AB Developing uniformly formatted, densified feedstock from lignocellulosic biomass is of interest to achieve consistent physical properties such as size and shape, bulk and unit density, and durability, which significantly influence storage, transportation and handling characteristics, and, by extension, feedstock cost and quality. A variety of densification systems are considered for producing a uniform format feedstock commodity for bioenergy applications, including (i) pellet mill, (ii) cuber, (iii) screw extruder, (iv) briquette press, (v) roller press, (vi) tablet press, and (vii) agglomerator. Each of these systems has varying impacts on feedstock chemical and physical properties, and energy consumption. This review discusses the suitability of these densification systems for biomass feedstocks and the impact these systems have on specific energy consumption and end-product quality. For example, a briquette press is more flexible in terms of feedstock variables where higher moisture content and larger particles are acceptable for making good quality briquettes; or among different densification systems, a screw press consumes the most energy because it not only compresses but also shears and mixes the material. Pre-treatment options like pre-heating, grinding, steam explosion, torrefaction, and ammonia fiber explosion (AFEX) can also help to reduce specific energy consumption during densification and improve binding characteristics. Binding behavior can also be improved by adding natural binders, such as proteins, or commercial binders, such as lignosulfonates. The quality of the densified biomass for both domestic and international markets is evaluated using PFI (United States standard) or CEN (European standard). Published in 2011 by John Wiley & Sons, Ltd C1 [Tumuluru, Jaya Shankar; Wright, Christopher T.; Hess, J. Richard; Kenney, Kevin L.] Idaho Natl Lab, Energy Syst & Technol Div, Biofuels & Renewable Energy Technol Dept, Idaho Falls, ID 83415 USA. RP Tumuluru, JS (reprint author), Idaho Natl Lab, Energy Syst & Technol Div, Biofuels & Renewable Energy Technol Dept, 2525 N Fremont Ave, Idaho Falls, ID 83415 USA. EM JayaShankar.Tumuluru@inl.gov FU US Department of Energy, under DoE Idaho Operations Office [DE-AC070-5ID14517] FX This work is supported by the US Department of Energy, under DoE Idaho Operations Office Contract DE-AC070-5ID14517. Accordingly, the US government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. NR 149 TC 100 Z9 104 U1 10 U2 113 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD NOV-DEC PY 2011 VL 5 IS 6 BP 683 EP 707 DI 10.1002/bbb.324 PG 25 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 847YZ UT WOS:000297013500018 ER PT J AU Jin, S Wu, AT Lu, XY Rimmer, RA Lin, L Zhao, K AF Jin Song Wu, A. T. Lu Xiang-Yang Rimmer, R. A. Lin Lin Zhao Kui TI Development of Vertical Buffered Electropolishing for Its Post-Treatment Technology on 1.5 GHz Niobium SRF Cavities SO CHINESE PHYSICS LETTERS LA English DT Article AB We report the latest research development of vertical buffered electropolishing on its post-treatment procedure as well as the effects of several major post-treatment techniques for buffered electropolishing (BEP) processed 1.5 GHz niobium (Nb) superconducting radio frequency (SRF) cavities. With the established post-treatment procedure, an accelerating gradient of 28.4 MV/m is obtained on a single cell cavity of the cebaf shape. This is the best result in the history of BEP development. The cavity is limited by quench with a high quality factor over 1.2 x 10(10) at the quench point. Analyses from optical inspection and temperature-mapping show that the quench should be originated from the pits that were already present on the cavity before this BEP treatment. All of these factors indicate that this procedure will have a great potential to produce better results if cavities without intrinsic performance limiting imperfections are used. C1 [Jin Song; Wu, A. T.; Rimmer, R. A.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Jin Song; Lu Xiang-Yang; Lin Lin; Zhao Kui] Peking Univ, State Key Lab Nucl Phys & Technol, Inst Heavy Ion Phys, Sch Phys, Beijing 100871, Peoples R China. RP Wu, AT (reprint author), Thomas Jefferson Natl Accelerator Facil, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM andywu@jlab.org FU U.S. DOE [DE-AC05-06OR23177] FX We would like to acknowledge P. Kneisel at Jefferson Lab for the provision of the single cell cavities and useful discussions. This study is carried out under the collaboration memorandum between Peking University and Jefferson Lab on SRF R&D, authored by Jefferson Science Associates, LLC under U.S. DOE Contract No DE-AC05-06OR23177. NR 37 TC 0 Z9 0 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0256-307X J9 CHINESE PHYS LETT JI Chin. Phys. Lett. PD NOV PY 2011 VL 28 IS 11 AR 112901 DI 10.1088/0256-307X/28/11/112901 PG 4 WC Physics, Multidisciplinary SC Physics GA 851PZ UT WOS:000297284600025 ER PT J AU van Vuuren, DP Edmonds, JA Kainuma, M Riahi, K Weyant, J AF van Vuuren, Detlef P. Edmonds, James A. Kainuma, Mikiko Riahi, Keywan Weyant, John TI A special issue on the RCPs SO CLIMATIC CHANGE LA English DT Editorial Material C1 [van Vuuren, Detlef P.] PBL Netherlands Environm Assessment Agcy, Bilthoven, Netherlands. [van Vuuren, Detlef P.] Univ Utrecht, Utrecht, Netherlands. [Edmonds, James A.] Univ Maryland, College Pk, MD 20740 USA. [Edmonds, James A.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Kainuma, Mikiko] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. [Riahi, Keywan] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. [Weyant, John] Stanford Univ, Huang Engn Ctr 260, Stanford, CA 94305 USA. RP van Vuuren, DP (reprint author), PBL Netherlands Environm Assessment Agcy, POB 303, Bilthoven, Netherlands. EM Detlef.vanvuuren@pbl.nl RI van Vuuren, Detlef/A-4764-2009; Riahi, Keywan/B-6426-2011 OI van Vuuren, Detlef/0000-0003-0398-2831; Riahi, Keywan/0000-0001-7193-3498 NR 2 TC 52 Z9 54 U1 2 U2 23 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD NOV PY 2011 VL 109 IS 1-2 SI SI BP 1 EP 4 DI 10.1007/s10584-011-0157-y PG 4 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 852IE UT WOS:000297350200001 ER PT J AU van Vuuren, DP Edmonds, J Kainuma, M Riahi, K Thomson, A Hibbard, K Hurtt, GC Kram, T Krey, V Lamarque, JF Masui, T Meinshausen, M Nakicenovic, N Smith, SJ Rose, SK AF van Vuuren, Detlef P. Edmonds, Jae Kainuma, Mikiko Riahi, Keywan Thomson, Allison Hibbard, Kathy Hurtt, George C. Kram, Tom Krey, Volker Lamarque, Jean-Francois Masui, Toshihiko Meinshausen, Malte Nakicenovic, Nebojsa Smith, Steven J. Rose, Steven K. TI The representative concentration pathways: an overview SO CLIMATIC CHANGE LA English DT Article ID CARBON-CYCLE MODELS; ATMOSPHERE-OCEAN; SIMPLER MODEL; LAND-USE; SCENARIOS; STABILIZATION; STRATEGIES; EMISSIONS; ENERGY; COSTS AB This paper summarizes the development process and main characteristics of the Representative Concentration Pathways (RCPs), a set of four new pathways developed for the climate modeling community as a basis for long-term and near-term modeling experiments. The four RCPs together span the range of year 2100 radiative forcing values found in the open literature, i.e. from 2.6 to 8.5 W/m(2). The RCPs are the product of an innovative collaboration between integrated assessment modelers, climate modelers, terrestrial ecosystem modelers and emission inventory experts. The resulting product forms a comprehensive data set with high spatial and sectoral resolutions for the period extending to 2100. Land use and emissions of air pollutants and greenhouse gases are reported mostly at a 0.5x0.5 degree spatial resolution, with air pollutants also provided per sector (for well-mixed gases, a coarser resolution is used). The underlying integrated assessment model outputs for land use, atmospheric emissions and concentration data were harmonized across models and scenarios to ensure consistency with historical observations while preserving individual scenario trends. For most variables, the RCPs cover a wide range of the existing literature. The RCPs are supplemented with extensions (Extended Concentration Pathways, ECPs), which allow climate modeling experiments through the year 2300. The RCPs are an important development in climate research and provide a potential foundation for further research and assessment, including emissions mitigation and impact analysis. C1 [van Vuuren, Detlef P.; Kram, Tom] PBL Netherlands Environm Assessment Agcy, NL-3720 AH Bilthoven, Netherlands. [Edmonds, Jae; Thomson, Allison; Hurtt, George C.; Smith, Steven J.] Univ Maryland, College Pk, MD 20740 USA. [Edmonds, Jae; Thomson, Allison; Hurtt, George C.; Smith, Steven J.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Kainuma, Mikiko; Masui, Toshihiko] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. [Riahi, Keywan; Krey, Volker; Nakicenovic, Nebojsa] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. [Hibbard, Kathy] Univ Maryland, Richland, WA 99354 USA. [Hibbard, Kathy] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA. [Lamarque, Jean-Francois] Natl Ctr Atmospher Res, Div Atmospher Chem, Boulder, CO 80301 USA. [Meinshausen, Malte] Potsdam Inst Climate Impact Res PIK, D-14412 Potsdam, Germany. [Nakicenovic, Nebojsa] Vienna Univ Technol, A-1040 Vienna, Austria. [Rose, Steven K.] Elect Power Res Inst, Palo Alto, CA USA. [Hurtt, George C.] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [van Vuuren, Detlef P.] Univ Utrecht, Utrecht, Netherlands. RP van Vuuren, DP (reprint author), PBL Netherlands Environm Assessment Agcy, POB 303, NL-3720 AH Bilthoven, Netherlands. EM Detlef.vanvuuren@pbl.nl RI Thomson, Allison/B-1254-2010; Whetton, Penny/A-6885-2012; Hurtt, George/A-8450-2012; Meinshausen, Malte/A-7037-2011; Lamarque, Jean-Francois/L-2313-2014; van Vuuren, Detlef/A-4764-2009; Riahi, Keywan/B-6426-2011 OI Meinshausen, Malte/0000-0003-4048-3521; Lamarque, Jean-Francois/0000-0002-4225-5074; van Vuuren, Detlef/0000-0003-0398-2831; Riahi, Keywan/0000-0001-7193-3498 NR 56 TC 992 Z9 997 U1 45 U2 383 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD NOV PY 2011 VL 109 IS 1-2 SI SI BP 5 EP 31 DI 10.1007/s10584-011-0148-z PG 27 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 852IE UT WOS:000297350200002 ER PT J AU Thomson, AM Calvin, KV Smith, SJ Kyle, GP Volke, A Patel, P Delgado-Arias, S Bond-Lamberty, B Wise, MA Clarke, LE Edmonds, JA AF Thomson, Allison M. Calvin, Katherine V. Smith, Steven J. Kyle, G. Page Volke, April Patel, Pralit Delgado-Arias, Sabrina Bond-Lamberty, Ben Wise, Marshall A. Clarke, Leon E. Edmonds, James A. TI RCP4.5: a pathway for stabilization of radiative forcing by 2100 SO CLIMATIC CHANGE LA English DT Article ID CO2 CONCENTRATIONS; LAND-USE; SCENARIOS; EMISSIONS; BIOMASS; CLIMATE; FUTURE; ENERGY AB Representative Concentration Pathway (RCP) 4.5 is a scenario that stabilizes radiative forcing at 4.5 W m(-2) in the year 2100 without ever exceeding that value. Simulated with the Global Change Assessment Model (GCAM), RCP4.5 includes long-term, global emissions of greenhouse gases, short-lived species, and land-use-land-cover in a global economic framework. RCP4.5 was updated from earlier GCAM scenarios to incorporate historical emissions and land cover information common to the RCP process and follows a cost-minimizing pathway to reach the target radiative forcing. The imperative to limit emissions in order to reach this target drives changes in the energy system, including shifts to electricity, to lower emissions energy technologies and to the deployment of carbon capture and geologic storage technology. In addition, the RCP4.5 emissions price also applies to land use emissions; as a result, forest lands expand from their present day extent. The simulated future emissions and land use were downscaled from the regional simulation to a grid to facilitate transfer to climate models. While there are many alternative pathways to achieve a radiative forcing level of 4.5 W m(-2), the application of the RCP4.5 provides a common platform for climate models to explore the climate system response to stabilizing the anthropogenic components of radiative forcing. C1 [Thomson, Allison M.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. Univ Maryland, College Pk, MD 20740 USA. RP Thomson, AM (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. EM Allison.thomson@pnl.gov RI Thomson, Allison/B-1254-2010; Bond-Lamberty, Ben/C-6058-2008; OI Bond-Lamberty, Ben/0000-0001-9525-4633; Calvin, Katherine/0000-0003-2191-4189 FU US Department of Energy, Office of Science FX Funding was provided by the US Department of Energy, Office of Science through the Integrated Assessment Research Program. The authors wish to thank the many scientists and collaborators involved in the planning and development of the RCP process, and especially the AIM, MESSAGE and IMAGE modeling teams for time devoted to scenario review and coordination. We also thank Dr. Yuyu Zhou and three anonymous reviewers for helpful improvements to earlier versions of this paper. NR 33 TC 254 Z9 266 U1 7 U2 83 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD NOV PY 2011 VL 109 IS 1-2 SI SI BP 77 EP 94 DI 10.1007/s10584-011-0151-4 PG 18 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 852IE UT WOS:000297350200005 ER PT J AU Hurtt, GC Chini, LP Frolking, S Betts, RA Feddema, J Fischer, G Fisk, JP Hibbard, K Houghton, RA Janetos, A Jones, CD Kindermann, G Kinoshita, T Goldewijk, KK Riahi, K Shevliakova, E Smith, S Stehfest, E Thomson, A Thornton, P van Vuuren, DP Wang, YP AF Hurtt, G. C. Chini, L. P. Frolking, S. Betts, R. A. Feddema, J. Fischer, G. Fisk, J. P. Hibbard, K. Houghton, R. A. Janetos, A. Jones, C. D. Kindermann, G. Kinoshita, T. Goldewijk, Kees Klein Riahi, K. Shevliakova, E. Smith, S. Stehfest, E. Thomson, A. Thornton, P. van Vuuren, D. P. Wang, Y. P. TI Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands SO CLIMATIC CHANGE LA English DT Article ID CLIMATE-CHANGE; CARBON-CYCLE; SPATIALLY EXPLICIT; UNITED-STATES; COVER CHANGE; 3 CENTURIES; HYDE 3.1; MODEL; DEFORESTATION; ATMOSPHERE AB In preparation for the fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), the international community is developing new advanced Earth System Models (ESMs) to assess the combined effects of human activities (e. g. land use and fossil fuel emissions) on the carbon-climate system. In addition, four Representative Concentration Pathway (RCP) scenarios of the future (2005-2100) are being provided by four Integrated Assessment Model (IAM) teams to be used as input to the ESMs for future carbon-climate projections (Moss et al. 2010). The diversity of approaches and requirements among IAMs and ESMs for tracking land-use change, along with the dependence of model projections on land-use history, presents a challenge for effectively passing data between these communities and for smoothly transitioning from the historical estimates to future projections. Here, a harmonized set of land-use scenarios are presented that smoothly connects historical reconstructions of land use with future projections, in the format required by ESMs. The land-use harmonization strategy estimates fractional land-use patterns and underlying land-use transitions annually for the time period 1500-2100 at 0.5 degrees x 0.5 degrees resolution. Inputs include new gridded historical maps of crop and pasture data from HYDE 3.1 for 1500-2005, updated estimates of historical national wood harvest and of shifting cultivation, and future information on crop, pasture, and wood harvest from the IAM implementations of the RCPs for the period 2005-2100. The computational method integrates these multiple data sources, while minimizing differences at the transition between the historical reconstruction ending conditions and IAM initial conditions, and working to preserve the future changes depicted by the IAMs at the grid cell level. This study for the first time harmonizes land-use history data together with future scenario information from multiple IAMs into a single consistent, spatially gridded, set of land-use change scenarios for studies of human impacts on the past, present, and future Earth system. C1 [Hurtt, G. C.; Chini, L. P.; Fisk, J. P.] Univ Maryland, Dept Geog, College Pk, MD 20742 USA. [Hurtt, G. C.; Janetos, A.; Smith, S.; Thomson, A.] Univ Maryland, College Pk, MD 20740 USA. [Hurtt, G. C.; Janetos, A.; Smith, S.; Thomson, A.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Frolking, S.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Betts, R. A.; Jones, C. D.] Met Off Hadley Ctr, Exeter EX1 3PB, Devon, England. [Feddema, J.] Univ Kansas, Dept Geog, Lawrence, KS 66049 USA. [Fischer, G.; Kindermann, G.; Riahi, K.] Graz Univ Technol, Laxenburg, Austria. [Fischer, G.; Kindermann, G.; Riahi, K.] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. [Hibbard, K.] Pacific NW Natl Lab, Atmospher Sci & Global Change Div, Richland, WA 99354 USA. [Houghton, R. A.] Woods Hole Res Ctr, Falmouth, MA 02540 USA. [Kinoshita, T.] Ibaraki Univ, Coll Agr, Ami, Ibaraki 30003, Japan. [Goldewijk, Kees Klein; Stehfest, E.; van Vuuren, D. P.] Netherlands Environm Assessment Agcy, The Hague, Netherlands. [Shevliakova, E.] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08544 USA. [Thornton, P.] Oak Ridge Natl Lab, Climate & Ecosyst Proc Environm Sci Div, Oak Ridge, TN 37831 USA. [Wang, Y. P.] Ctr Australian Weather & Climate Res, Melbourne, Vic 3195, Australia. [Wang, Y. P.] CSIRO Marine & Atmospher Res, Melbourne, Vic 3195, Australia. [van Vuuren, D. P.] Univ Utrecht, Utrecht, Netherlands. RP Hurtt, GC (reprint author), Univ Maryland, Dept Geog, College Pk, MD 20742 USA. EM gchurtt@umd.edu RI Thomson, Allison/B-1254-2010; Hurtt, George/A-8450-2012; Thornton, Peter/B-9145-2012; wang, yp/A-9765-2011; Feddema, Johannes/J-4400-2012; Klein Goldewijk, Kees/L-5567-2013; Shevliakova, Elena/J-5770-2014; van Vuuren, Detlef/A-4764-2009; Betts, Richard/P-8976-2015; Riahi, Keywan/B-6426-2011; Jones, Chris/I-2983-2014 OI Thornton, Peter/0000-0002-4759-5158; Feddema, Johannes/0000-0002-0800-0908; van Vuuren, Detlef/0000-0003-0398-2831; Riahi, Keywan/0000-0001-7193-3498; FU National Aeronautics and Space Administration (NASA); DOE Office of Science; Joint DECC/Defra Met Office Hadley Centre [GA01101] FX This work was coordinated by a joint venture between the Analysis, Integration and Modelling of the Earth System (AIMES) core project of the International Geosphere-Biosphere Programme (IGBP) and the Integrated Assessment Modelling Consortium (IAMC) in preparation for IPCC-AR5. We gratefully acknowledge the support of the National Aeronautics and Space Administration (NASA) Interdisciplinary Science Program, and the DOE Office of Science Integrated Assessment Research Program. RAB and CDJ were supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). NR 81 TC 267 Z9 271 U1 13 U2 141 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD NOV PY 2011 VL 109 IS 1-2 SI SI BP 117 EP 161 DI 10.1007/s10584-011-0153-2 PG 45 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 852IE UT WOS:000297350200007 ER PT J AU Lamarque, JF Kyle, GP Meinshausen, M Riahi, K Smith, SJ van Vuuren, DP Conley, AJ Vitt, F AF Lamarque, Jean-Francois Kyle, G. Page Meinshausen, Malte Riahi, Keywan Smith, Steven J. van Vuuren, Detlef P. Conley, Andrew J. Vitt, Francis TI Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways SO CLIMATIC CHANGE LA English DT Article ID GENERAL-CIRCULATION MODEL; CARBON-DIOXIDE CLIMATES; NITROGEN DEPOSITION; TERRESTRIAL ECOSYSTEMS; MULTIMODEL ASSESSMENT; LOWER STRATOSPHERE; OZONE POLLUTION; UNITED-STATES; BLACK CARBON; SEA-SALT AB In this paper, we discuss the results of 2000-2100 simulations following the emissions associated with the Representative Concentration Pathways (RCPs) with a chemistry-climate model, focusing on the changes in 1) atmospheric composition (troposphere and stratosphere) and 2) associated environmental parameters (such as nitrogen deposition). In particular, we find that tropospheric ozone is projected to decrease (RCP2.6, RCP4.5 and RCP6) or increase (RCP8.5) between 2000 and 2100, with variations in methane a strong contributor to this spread. The associated tropospheric ozone global radiative forcing is shown to be in agreement with the estimate used in the RCPs, except for RCP8.5. Surface ozone in 2100 is projected to change little compared from its 2000 distribution, a much-reduced impact from previous projections based on the A2 high-emission scenario. In addition, globally-averaged stratospheric ozone is projected to recover at or beyond pre-1980 levels. Anthropogenic aerosols are projected to strongly decrease in the 21st century, a reflection of their projected decrease in emissions. Consequently, sulfate deposition is projected to strongly decrease. However, nitrogen deposition is projected to increase over certain regions because of the projected increase in NH3 emissions. C1 [Lamarque, Jean-Francois; Conley, Andrew J.; Vitt, Francis] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Kyle, G. Page; Smith, Steven J.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD USA. [Meinshausen, Malte] Potsdam Inst Climate Impact Res, Potsdam, Germany. [Riahi, Keywan] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. [van Vuuren, Detlef P.] Netherlands Environm Assessment Agcy, Utrecht, Netherlands. [van Vuuren, Detlef P.] Univ Utrecht, Utrecht, Netherlands. RP Lamarque, JF (reprint author), Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA. EM lamar@ucar.edu RI Meinshausen, Malte/A-7037-2011; Pfister, Gabriele/A-9349-2008; Lamarque, Jean-Francois/L-2313-2014; van Vuuren, Detlef/A-4764-2009; Riahi, Keywan/B-6426-2011 OI Meinshausen, Malte/0000-0003-4048-3521; Lamarque, Jean-Francois/0000-0002-4225-5074; van Vuuren, Detlef/0000-0003-0398-2831; Riahi, Keywan/0000-0001-7193-3498 FU Department of Energy; National Science Foundation; Office of Science (BER) of the U.S. Department of Energy FX The authors would like to thank the three anonymous reviewers, P. Hess and E. Holland for their constructive feedback on previous versions of this paper. A. J. C. and F. V. were funded by the Department of Energy under the SciDAC program. Computing resources were provided by the Climate Simulation Laboratory at NCAR's Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation and other agencies. This research was enabled by CISL compute and storage resources. Bluefire, a 4,064-processor IBM Power6 resource with a peak of 77 TeraFLOPS provided more than 7.5 million computing hours, the GLADE high-speed disk resources provided 0.4 PetaBytes of dedicated disk and CISL's 12-PB HPSS archive provided over 1 PetaByte of storage in support of this research project. The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. NR 75 TC 145 Z9 148 U1 2 U2 54 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD NOV PY 2011 VL 109 IS 1-2 SI SI BP 191 EP 212 DI 10.1007/s10584-011-0155-0 PG 22 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 852IE UT WOS:000297350200009 ER PT J AU Meinshausen, M Smith, SJ Calvin, K Daniel, JS Kainuma, MLT Lamarque, JF Matsumoto, K Montzka, SA Raper, SCB Riahi, K Thomson, A Velders, GJM van Vuuren, DPP AF Meinshausen, Malte Smith, S. J. Calvin, K. Daniel, J. S. Kainuma, M. L. T. Lamarque, J-F. Matsumoto, K. Montzka, S. A. Raper, S. C. B. Riahi, K. Thomson, A. Velders, G. J. M. van Vuuren, D. P. P. TI The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 SO CLIMATIC CHANGE LA English DT Article ID CUMULATIVE CARBON EMISSIONS; ATMOSPHERE-OCEAN; SIMPLER MODEL; CYCLE MODELS; CLIMATE; SCENARIOS; GROWTH; AIR; STABILIZATION; CO2 AB We present the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended Concentration Pathways (ECPs). These projections include all major anthropogenic greenhouse gases and are a result of a multi-year effort to produce new scenarios for climate change research. We combine a suite of atmospheric concentration observations and emissions estimates for greenhouse gases (GHGs) through the historical period (1750-2005) with harmonized emissions projected by four different Integrated Assessment Models for 2005-2100. As concentrations are somewhat dependent on the future climate itself (due to climate feedbacks in the carbon and other gas cycles), we emulate median response characteristics of models assessed in the IPCC Fourth Assessment Report using the reduced-complexity carbon cycle climate model MAGICC6. Projected 'best-estimate' global-mean surface temperature increases (using inter alia a climate sensitivity of 3 degrees C) range from 1.5 degrees C by 2100 for the lowest of the four RCPs, called both RCP3-PD and RCP2.6, to 4.5 degrees C for the highest one, RCP8.5, relative to pre-industrial levels. Beyond 2100, we present the ECPs that are simple extensions of the RCPs, based on the assumption of either smoothly stabilizing concentrations or constant emissions: For example, the lower RCP2.6 pathway represents a strong mitigation scenario and is extended by assuming constant emissions after 2100 (including net negative CO2 emissions), leading to CO2 concentrations returning to 360 ppm by 2300. We also present the GHG concentrations for one supplementary extension, which illustrates the stringent emissions implications of attempting to go back to ECP4.5 concentration levels by 2250 after emissions during the 21(st) century followed the higher RCP6 scenario. Corresponding radiative forcing values are presented for the RCP and ECPs. C1 [Meinshausen, Malte] Potsdam Inst Climate Impact Res PIK, Potsdam, Germany. [Smith, S. J.; Calvin, K.; Thomson, A.] Univ Maryland, College Pk, MD 20740 USA. [Smith, S. J.; Calvin, K.; Thomson, A.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Daniel, J. S.] NOAA, Earth Syst Res Lab, Div Chem Sci, Boulder, CO 80305 USA. [Kainuma, M. L. T.; Matsumoto, K.] Natl Inst Environm Studies, Ctr Global Environm Res, Tsukuba, Ibaraki, Japan. [Lamarque, J-F.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Raper, S. C. B.] Manchester Metropolitan Univ, CATE, Manchester M15 6BH, Lancs, England. [Riahi, K.] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. [Velders, G. J. M.] Natl Inst Publ Hlth & Environm RIVM, Bilthoven, Netherlands. [van Vuuren, D. P. P.] Netherlands Environm Assessment Agcy PBL, Bilthoven, Netherlands. [Meinshausen, Malte] Univ Melbourne, Sch Earth Sci, Melbourne, Vic 3010, Australia. [Matsumoto, K.] Univ Shiga Prefecture, Sch Environm Sci, Hikone, Japan. [Montzka, S. A.] NOAA, Earth Syst Res Lab, Global Monitoring Div, Boulder, CO 80305 USA. [van Vuuren, D. P. P.] Univ Utrecht, Utrecht, Netherlands. RP Meinshausen, M (reprint author), Potsdam Inst Climate Impact Res PIK, Potsdam, Germany. EM malte.meinshausen@pik-potsdam.de RI van Vuuren, Detlef/A-4764-2009; Thomson, Allison/B-1254-2010; Riahi, Keywan/B-6426-2011; Manager, CSD Publications/B-2789-2015; Meinshausen, Malte/A-7037-2011; Daniel, John/D-9324-2011; Lamarque, Jean-Francois/L-2313-2014; OI van Vuuren, Detlef/0000-0003-0398-2831; Riahi, Keywan/0000-0001-7193-3498; Montzka, Stephen/0000-0002-9396-0400; Meinshausen, Malte/0000-0003-4048-3521; Lamarque, Jean-Francois/0000-0002-4225-5074; Calvin, Katherine/0000-0003-2191-4189 NR 80 TC 775 Z9 794 U1 49 U2 275 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD NOV PY 2011 VL 109 IS 1-2 SI SI BP 213 EP 241 DI 10.1007/s10584-011-0156-z PG 29 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 852IE UT WOS:000297350200010 ER PT J AU Aluie, H Kurien, S AF Aluie, H. Kurien, S. TI Joint downscale fluxes of energy and potential enstrophy in rotating stratified Boussinesq flows SO EPL LA English DT Article ID 2-DIMENSIONAL TURBULENCE; SIMULATION; VORTICITY; CASCADES AB We employ a coarse-graining approach to analyze non-linear cascades in Boussinesq flows using high-resolution simulation data. We derive budgets which resolve the evolution of energy and potential enstrophy simultaneously in space and in scale. We then use numerical simulations of Boussinesq flows, with forcing in the large scales, and fixed rotation and stable stratification along the vertical axis, to study the inter-scale flux of energy and potential enstrophy in three different regimes of stratification and rotation: i) strong rotation and moderate stratification, ii) moderate rotation and strong stratification, and iii) equally strong stratification and rotation. In all three cases, we observe constant fluxes of both global invariants, the mean energy and mean potential enstrophy, from large to small scales. The existence of constant potential enstrophy flux ranges provides the first direct empirical evidence in support of the notion of a cascade of potential enstrophy. The persistent forward cascade of the two invariants reflects a marked departure of these flows from two-dimensional turbulence. Copyright (C) EPLA, 2011 C1 [Aluie, H.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Aluie, H.; Kurien, S.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Kurien, S.] New Mexico Consortium, Los Alamos, NM 87544 USA. RP Aluie, H (reprint author), Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. EM hussein@jhu.edu FU Office of Science of the US DOE [DE-AC02-06CH11357]; NSF [PHY-0903872, NSF CMG-1025188]; LANL/LDRD; DOE ASCR; US DOE at LANL [DE-AC52-06NA25396] FX We used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, supported by the Office of Science of the US DOE under Contract No. DE-AC02-06CH11357. HA acknowledges partial support from NSF grant PHY-0903872 during a visit to the Kavli Institute for Theoretical Physics. HA was supported by LANL/LDRD program and by DOE ASCR program in Applied Mathematical Sciences. SK received partial funding from NSF program Collaborations in the Mathematical Geosciences: NSF CMG-1025188. This research was performed under the auspices of the US DOE at LANL under Contract No. DE-AC52-06NA25396. NR 31 TC 17 Z9 17 U1 0 U2 5 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD NOV PY 2011 VL 96 IS 4 AR 44006 DI 10.1209/0295-5075/96/44006 PG 6 WC Physics, Multidisciplinary SC Physics GA 852CC UT WOS:000297322500026 ER PT J AU Arend, N Haussler, W AF Arend, N. Haeussler, W. TI A quantum-mechanical description of Rotating Field Spin Echo SO EPL LA English DT Article ID RESONANCE; SCATTERING; FLIPPERS AB Neutron Spin Echo (NSE) is a technique for quasi-elastic neutron scattering with very high energy resolution. The latter is achieved by comparing the Larmor precession angles of a polarized neutron beam in two well-known magnetic fields before and after scattering in a sample. This "spin encoding" or "Larmor labeling" can be implemented by different technical methods, the most established variants being conventional NSE and Neutron Resonance Spin Echo (NRSE). In this publication we discuss Rotating Field Spin Echo (RFSE), a technique for measurements in the low-resolution domain. The analogy to NRSE is demonstrated by deriving the working principle using the quantum-mechanical method of time-evolution operators, a technique that was developed for NRSE in previous publications. Furthermore, we give an estimation of the inherent upper frequency limit of RFSE based on our theory. Copyright (C) EPLA, 2011 C1 [Arend, N.] Forschungszentrum Julich, JCNS 1, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Haeussler, W.] Tech Univ Munich, Forsch Neutronenquelle Heinz Maier Leibnitz, D-85748 Garching, Germany. [Haeussler, W.] Tech Univ Munich, Phys Dept E21, D-85748 Garching, Germany. RP Arend, N (reprint author), Forschungszentrum Julich, JCNS 1, Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM n.arend@fz-juelich.de FU European Commission [RII3-CT-2003-505925] FX This research has been supported by the European Commission under the 6th Framework Programme through the Key Action: Strengthening the European Research Area, Research Infrastructures, Contract No: RII3-CT-2003-505925. NR 15 TC 1 Z9 1 U1 1 U2 7 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD NOV PY 2011 VL 96 IS 4 AR 42001 DI 10.1209/0295-5075/96/42001 PG 6 WC Physics, Multidisciplinary SC Physics GA 852CC UT WOS:000297322500018 ER PT J AU Ning, PQ Wang, F Ngo, KDT AF Ning, Puqi Wang, Fred Ngo, Khai D. T. TI High-Temperature SiC Power Module Electrical Evaluation Procedure SO IEEE TRANSACTIONS ON POWER ELECTRONICS LA English DT Article DE High-temperature techniques; packaging AB To take full advantage of silicon carbide semiconductor devices, high-temperature device packaging needs to be developed. This paper describes potential defects from design and fabrication procedures, and presents a systematic electrical evaluation process to detect such defects. This systematic testing procedure can rapidly detect many defects and reduce the risk in high-temperature packaging testing. A multichip module development procedure that uses this testing procedure is also presented and demonstrated with an example. C1 [Ning, Puqi] Oak Ridge Natl Lab, Natl Transportat Res Ctr, Knoxville, TN 37932 USA. [Wang, Fred] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Wang, Fred] Univ Tennessee, Natl Transportat Res Ctr, Oak Ridge Natl Lab, Knoxville, TN 37996 USA. [Ngo, Khai D. T.] Virginia Polytech Inst & State Univ, Ctr Power Elect Syst, Blacksburg, VA 24060 USA. RP Ning, PQ (reprint author), Oak Ridge Natl Lab, Natl Transportat Res Ctr, Knoxville, TN 37932 USA. EM ningp@ornl.gov; fred.wang@utk.edu; kdtn@vt.edu FU UT-Battelle, LLC [DE-AC05-00OR22725]; U.S. Department of Energy FX This paperwas supported by the UT-Battelle, LLC, under Contract DE-AC05-00OR22725 with the U.S. Department of Energy. This paper was originally presented at the International Microelectronics And Packaging Society High Temperature Electronics Conference and Exposition (HiTEC), Albuquerque, NM, May 2010, and has been revised and partially expanded for consideration for IEEE TRANSACTIONS ON POWER ELECTRONICS LETTERS. Recommended for publication by Associate Editor D. Maksimovic. NR 12 TC 18 Z9 19 U1 0 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8993 J9 IEEE T POWER ELECTR JI IEEE Trans. Power Electron. PD NOV PY 2011 VL 26 IS 11 BP 3079 EP 3083 DI 10.1109/TPEL.2011.2151879 PG 5 WC Engineering, Electrical & Electronic SC Engineering GA 852KE UT WOS:000297355900002 ER PT J AU Dong, D Thacker, T Burgos, R Wang, F Boroyevich, D AF Dong, Dong Thacker, Timothy Burgos, Rolando Wang, Fei Boroyevich, Dushan TI On Zero Steady-State Error Voltage Control of Single-Phase PWM Inverters With Different Load Types SO IEEE TRANSACTIONS ON POWER ELECTRONICS LA English DT Article DE PWM inverter; single phase; stationary frame; synchronous frame ID UNINTERRUPTIBLE POWER-SUPPLIES; COMPENSATE UNBALANCE; CONNECTED INVERTERS; HARMONIC DISTORTION; CURRENT REGULATORS; UPS INVERTERS; DESIGN; STRATEGIES; SCHEME AB This paper comprehensively investigates and compares different multiloop linear control schemes for single-phase pulsewidth modulation inverters, both in stationary and synchronous (d-q) frames, by focusing on their steady-state error under different loading conditions. Specifically, it is shown how proportional plus resonant (P + R) control and load current feedback (LCF) control can, respectively, improve the steady-state and transient performance of the inverter, leading to the proposal of a PID + R + LCF control scheme. Furthermore, the LCF control and capacitive current feedback control schemes are shown to be subject to stability issues under second and higher order filter loads. Additionally, the equivalence between the stationary frame and d-q frame controllers is discussed depending on the orthogonal term generation method, and a d-q frame voltage control strategy is proposed eliminating the need for the generation of this orthogonal component. This is achieved while retaining all the advantages of operating in the synchronous d-q frame, i.e., zero steady-state error and ease of implementation. All theoretical findings are validated experimentally using a 1.5 kW laboratory prototype. C1 [Dong, Dong; Boroyevich, Dushan] Virginia Tech, Ctr Power Elect Syst, Blacksburg, VA 24061 USA. [Thacker, Timothy] PowerHub Syst, Blacksburg, VA 24061 USA. [Burgos, Rolando] ABB US Corp Res Ctr, Raleigh, NC 27606 USA. [Wang, Fei] Univ Tennessee, Knoxville, TN 37996 USA. [Wang, Fei] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Dong, D (reprint author), Virginia Tech, Ctr Power Elect Syst, Blacksburg, VA 24061 USA. EM dongd@vt.edu; tthacker@pwrhub.com; rburgos@ieee.org; fred.wang@utk.edu; dusan@vt.edu NR 47 TC 48 Z9 55 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8993 EI 1941-0107 J9 IEEE T POWER ELECTR JI IEEE Trans. Power Electron. PD NOV PY 2011 VL 26 IS 11 BP 3285 EP 3297 DI 10.1109/TPEL.2011.2157361 PG 13 WC Engineering, Electrical & Electronic SC Engineering GA 852KE UT WOS:000297355900021 ER PT J AU Bayram, B Soykal, II von Deak, D Miller, JT Ozkan, US AF Bayram, Burcu Soykal, I. Ilgaz von Deak, Dieter Miller, Jeffrey T. Ozkan, Umit S. TI Ethanol steam reforming over Co-based catalysts: Investigation of cobalt coordination environment under reaction conditions SO JOURNAL OF CATALYSIS LA English DT Article DE X-ray absorption spectroscopy; XANES; EXAFS; In situ XRD; Ethanol steam reforming; Cobalt ID FUEL-CELL APPLICATIONS; NOBLE-METAL CATALYSTS; HYDROGEN-PRODUCTION; BIO-ETHANOL; PARTIAL OXIDATION; SUPPORTED CATALYSTS; OXIDE; PERFORMANCE; NANOPARTICLES; ACTIVATION AB The transformations and the state of cobalt species during steam reforming of ethanol over Co/CeO(2) were investigated using in situ X-ray diffraction, controlled-atmosphere X-ray absorption fine structure, and Xray photoelectron spectroscopy as well as steady state activity measurements. The catalyst was pre-treated under an oxidizing or reducing atmosphere prior to characterization and activity testing to yield a Co(3)O(4)-rich or a Co(0)-rich surface, respectively. While CO(3)O(4) was found to be inactive for ethanol steam reforming, gradual activation of the oxidation-pretreated catalyst with temperature through reduction in Co(3)O(4) took place under reaction conditions, and, over the activated catalyst, a mixture of both CoO and metallic Co were observed. Over the reduction-pretreated catalyst, metallic Co was partially oxidized to CoO during steam reforming of ethanol. The extent of cobalt reduction was observed to be independent of the initial state of the metal on the catalyst surface, and cobalt phase had the same composition under reaction above 450 degrees C. (C) 2011 Elsevier Inc. All rights reserved. C1 [Bayram, Burcu; Soykal, I. Ilgaz; von Deak, Dieter; Ozkan, Umit S.] Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43210 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Ozkan, US (reprint author), Ohio State Univ, Dept Chem & Biomol Engn, 140W 19th Ave, Columbus, OH 43210 USA. EM ozkan.1@osu.edu RI Ozkan, Umit/K-8483-2012; Bayram, Burcu/F-9279-2013 FU US Department of Energy [DE-FG36-05GO15033]; E.I. DuPont de Nemours Co.; The Dow Chemical Company; State of Illinois; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We gratefully acknowledge the funding from the US Department of Energy through the Grant DE-FG36-05GO15033. Portions of this work were performed at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the Advanced Photon Source (APS). DND-CAT is supported by E.I. DuPont de Nemours & Co., The Dow Chemical Company and the State of Illinois. Use of the APS was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 54 TC 64 Z9 64 U1 4 U2 50 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD NOV 1 PY 2011 VL 284 IS 1 BP 77 EP 89 DI 10.1016/j.jcat.2011.09.001 PG 13 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 853AW UT WOS:000297399600009 ER PT J AU Cockeram, BV Smith, RW Leonard, KJ Byun, TS Snead, LL AF Cockeram, B. V. Smith, R. W. Leonard, K. J. Byun, T. S. Snead, L. L. TI Development of microstructure and irradiation hardening of Zircaloy during low dose neutron irradiation at nominally 358 degrees C SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID FRACTURE-TOUGHNESS MEASUREMENT; ZIRCONIUM ALLOYS; PRECIPITATE STABILITY; ZR-ALLOYS; DEFORMATION; DAMAGE; GROWTH AB Wrought Zircaloy-2 and Zircaloy-4 were neutron irradiated at nominally 358 degrees C in the high flux isotope reactor (HFIR) at relatively low neutron fluences between 5.8 x 10(22) and 2.9 x 10(25) n/m(2) (E > 1 MeV). The irradiation hardening and change in microstructure were characterized following irradiation using tensile testing and examinations of microstructure using Analytical Electron Microscopy (AEM). Small increments of dose (0.0058, 0.11, 0.55, 1.08, and 2.93 x 10(25) n/m(2)) were used in the range where the saturation of irradiation hardening is typically observed so that the role of microstructure evolution and < a > loop formation on irradiation hardening could be correlated. An incubation dose between 5.8 x 10(23) and 1.1 x 10(24) n/m(2) was needed for loop nucleation to occur that resulted in irradiation hardening. Increases in yield strength were consistent with previous results in this temperature regime, and as expected less irradiation hardening and lower < a > loop number density values than those generally reported in literature for irradiations at 260-326 degrees C were observed. Unlike previous lower temperature data, there is evidence in this study that the irradiation hardening can decrease with dose over certain ranges of fluence. Irradiation induced voids were observed in very low numbers in the Zircaloy-2 materials at the highest fluence. (C) 2011 Elsevier B.V. All rights reserved. C1 [Cockeram, B. V.; Smith, R. W.] Bechtel Marine Prop Corp, Bettis Lab, W Mifflin, PA 15122 USA. [Leonard, K. J.; Byun, T. S.; Snead, L. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Cockeram, BV (reprint author), Bechtel Marine Prop Corp, Bettis Lab, W Mifflin, PA 15122 USA. EM bcockeram@verizon.net FU USDOE; Division of Materials Science and Engineering, DOE FX This work was supported by USDOE. The authors are grateful for the review and comments provided by J.E. Hack and B.F. Kammenzind. Thanks also to the following ORNL personnel for their contributions in completing irradiations and testing (A.W. Williams and T.S. Byun). Irradiations were carried out in the High Flux Isotope Reactor, a Department of Energy Office of Science User Facility. Thanks to L.T. Gibson and M.S. Meyers for their work on TEM sample preparation. TEM examination was performed at the ORNL User Center sponsored by the Division of Materials Science and Engineering, DOE. NR 44 TC 9 Z9 9 U1 4 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2011 VL 418 IS 1-3 BP 46 EP 61 DI 10.1016/j.jnucmat.2011.07.006 PG 16 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 850XS UT WOS:000297233500007 ER PT J AU Yun, D Oaks, AJ Chen, WY Kirk, MA Rest, J Insepov, ZZ Yacout, AM Stubbins, JF AF Yun, Di Oaks, Aaron J. Chen, Wei-ying Kirk, Marquis A. Rest, Jeffrey Insepov, Zinetula Z. Yacout, Abdellatif M. Stubbins, James F. TI Kr and Xe irradiations in lanthanum (La) doped ceria: Study at the high dose regime SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID BUBBLE FORMATION; HEAVY-ION; CEO2; UO2; TEM AB In order to understand cavity and bubble formation and growth in oxide nuclear fuel materials, ion beam irradiation experiments were conducted with two common fission gas species: Kr and Xe. Ceria (CeO2) was selected as a surrogate material for uranium dioxide (UO2) due to its many similar properties to UO2. Ion beam energies were chosen such that both cavities and gas bubbles structures were induced by ion irradiations. The ion irradiation experiments were carried out at 600 degrees C, at which temperature, cavity/gas bubble structures are believed to be immobile in this material. Lanthanum (La) was chosen as a dopant in CeO2 to investigate the effect of impurities. The presence of La in the CeO2 lattice also introduces a predictable initial concentration of oxygen vacancies, similar to the introduction of oxygen vacancies by the existence of Pu3+ in MOX fuel [1]. The influence of two La concentrations, 5% and 25%, were examined. The study focused on the high dose regime where cavity/gas bubble structures were clearly identifiable with their sizes and number densities readily measurable. Cavity/gas bubble coarsening by coalescence was identified with TEM (Transmission Electron Microscopy) characterizations of as-irradiated La doped CeO2 specimens. The results revealed that lanthanum trapping has significant influence on the cavity/bubble growth in the material lattice by comparing the cavity/gas bubble size distributions between 5% La doped ceria and 25% La doped ceria. Lattice and kinetic Monte Carlo calculations described in a previous work have provided insights to the interpretations of the experimental results [2]. Solid state Xe precipitates were observed in low energy Xe implantation in 5% La doped ceria to a very high fluence of 1 x 10(17) ions/cm(2) at 600 degrees C. The solid state Xe precipitate structures are represented by faceted morphology. Very similar observations of solid state/near solid state Xe bubbles were made by Nogita et al. in the outer region of UO2 pellet irradiated to a pellet average burnup of 49 GWd/t [3]. Published by Elsevier B.V. C1 [Yun, Di; Kirk, Marquis A.; Rest, Jeffrey; Insepov, Zinetula Z.; Yacout, Abdellatif M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Oaks, Aaron J.; Chen, Wei-ying; Stubbins, James F.] Univ Illinois, Urbana, IL USA. RP Yun, D (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM diyun@anl.gov RI Yun, Di/K-6441-2013; Insepov, Zinetula/L-2095-2013; OI Yun, Di/0000-0002-9767-3214; Insepov, Zinetula/0000-0002-8079-6293; Oaks, Aaron/0000-0001-8552-242X FU US Department of Energy [DE-FC07-07ID14838]; DOE [NERI-08-041] FX This work was supported by the US Department of Energy DE-FC07-07ID14838 and DOE NERI-08-041. The author would like to thank Douglas Jeffers for helping with the ion irradiation work and Dr. Jianguo Wen for helpful instructions on the TEM work. The author would also like to thank Dr. Robert C. Birtcher for meaningful discussions on cavity/gas bubble behaviors under the influence of ion beam irradiations. NR 22 TC 12 Z9 12 U1 2 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2011 VL 418 IS 1-3 BP 80 EP 86 DI 10.1016/j.jnucmat.2011.08.005 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 850XS UT WOS:000297233500010 ER PT J AU Parish, CM Edmondson, PD Zhang, Y Miller, MK AF Parish, C. M. Edmondson, P. D. Zhang, Y. Miller, M. K. TI Direct observation of ion-irradiation-induced chemical mixing SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID TRANSMISSION-ELECTRON-MICROSCOPY; SIMS SPECTRUM-IMAGES; DISPLACEMENT CASCADES; CU3AU AB Irradiation-induced dissolution of particles and mixing at heterogeneous interfaces in materials is of importance for ion beam processing and radiation materials sciences. Modeling has predicted dissolution of particles and homogenization at sharp chemical interfaces; imaging and depth profiling techniques have also been used to observe damage and mixing resulting from ion or neutron bombardment. Analytical scanning transmission electron microscopy has been used to directly observe the ion-irradiation induced elemental mixing and dissolution of similar to 25-50 nm titanium oxycarbonitrides in a nanostructured ferritic alloy irradiated at 173 K. The magnitude of the mixed zone is consistent with radiation damage theory. (C) 2011 Elsevier B.V. All rights reserved. C1 [Parish, C. M.; Edmondson, P. D.; Zhang, Y.; Miller, M. K.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Parish, CM (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM parishcm@ornl.gov RI Parish, Chad/J-8381-2013; Edmondson, Philip/O-7255-2014 OI Edmondson, Philip/0000-0001-8990-0870 FU US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; Shared Research Equipment (SHaRE) User Facility; Oak Ridge National Laboratory by the Office of Basic Energy Sciences, US Department of Energy; Pacific Northwest National Laboratory by the Office of Biological and Environmental Research, US Department of Energy; UT-Battelle, LLC, US Department of Energy [DE-AC05-00OR22725] FX Research supported by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. STEM and FIB supported by the Shared Research Equipment (SHaRE) User Facility, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, US Department of Energy. Ion irradiations performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility, which is sponsored at Pacific Northwest National Laboratory by the Office of Biological and Environmental Research, US Department of Energy. Thanks to Dr. D. Kumar and Dr. R. Unocic, ORNL, for critiquing the manuscript:; This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 26 TC 16 Z9 16 U1 1 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2011 VL 418 IS 1-3 BP 106 EP 109 DI 10.1016/j.jnucmat.2011.07.035 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 850XS UT WOS:000297233500014 ER PT J AU Gao, F Deng, HQ Heinisch, HL Kurtz, RJ AF Gao, F. Deng, Huiqiu Heinisch, H. L. Kurtz, R. J. TI A new Fe-He interatomic potential based on ab initio calculations in alpha-Fe SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; DEFECT PROPERTIES; HELIUM; IRON AB A new interatomic potential for Fe-He interactions has been developed by fitting to the results obtained from ab initio calculations. Based on the electronic hybridization between Fe d-electrons and He s-electrons, an s-band model, along with a repulsive pair potential, has been developed to describe the Fe-He interaction. The atomic configurations and formation energies of single He defects and small interstitial He clusters are utilized in the fitting process. The binding properties and relative stabilities of the He-vacancy and interstitial He clusters are studied. The present Fe-He potential is also applied to study the emission of self-interstitial atoms from small He clusters in alpha-Fe matrices. It is found that the di-He cluster dissociates when the temperature is higher than 400 K, but the larger He clusters can create an interstitial Fe atom. The temperature for kicking out an interstitial Fe atom is found to decrease with increasing size of the He clusters. (C) 2011 Elsevier B.V. All rights reserved. C1 [Gao, F.; Deng, Huiqiu; Heinisch, H. L.; Kurtz, R. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Deng, Huiqiu] Hunan Univ, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China. RP Gao, F (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM fei.gao@pnl.gov RI Gao, Fei/H-3045-2012; Deng, Huiqiu/A-9530-2009 OI Deng, Huiqiu/0000-0001-8986-104X FU US Department of Energy, Office of Fusion Energy Sciences [DE-AC06-76RLO 1830]; Fundamental Research Funds for the Central Universities, Hunan University FX This research was supported by the US Department of Energy, Office of Fusion Energy Sciences, under Contract DE-AC06-76RLO 1830. HQ also thanks for the financial support partly from the Fundamental Research Funds for the Central Universities, Hunan University. NR 34 TC 34 Z9 35 U1 2 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2011 VL 418 IS 1-3 BP 115 EP 120 DI 10.1016/j.jnucmat.2011.06.008 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 850XS UT WOS:000297233500016 ER PT J AU Cockeram, BV Smith, RW Hashimoto, N Snead, LL AF Cockeram, B. V. Smith, R. W. Hashimoto, N. Snead, L. L. TI The swelling, microstructure, and hardening of wrought LCAC, TZM, and ODS molybdenum following neutron irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID TITANIUM-0.1 PCT ZIRCONIUM; MO-5-PERCENT RE ALLOYS; CARBON ARC-CAST; 300 DEGREES-C; TENSILE PROPERTIES; NANOSTRUCTURED MATERIALS; MECHANICAL-PROPERTIES; ANNEALED CONDITIONS; FRACTURE-TOUGHNESS; REFRACTORY-METALS AB TEM examinations and swelling measurements were performed on commercially available wrought Low Carbon Arc Cast (LCAC), La-oxide Oxide Dispersion Strengthened (ODS), and TZM molybdenum alloys following irradiation in the High Flux Isotope Reactor (HEIR) at 300 degrees C, 600 degrees C, and 900 degrees C to neutron fluences between 1.05 and 24.7 x 10(25) n/m(2) (E > 0.1 MeV), or 0.6-13.1 dpa. The defect structure, hardening, and swelling were shown to be strongly dependent on irradiation temperature and starting microstructure. Irradiation at 300 degrees C results in the formation of a high number density of fine loops and voids (similar to 1 nm) that produce significant hardening and low swelling that is comparable for all alloys. Irradiation at 600 degrees C-784 degrees C produces a high number density of larger voids (5-6 nm) that results in significant hardening with the highest swelling. A low number density of the largest void sizes (8-30 nm) are formed for the 900 degrees C irradiation that result in low hardening and less swelling than observed for the 600 degrees C irradiation. The fine grain size of ODS Mo results in a higher concentration of denuded zones along grain boundaries and improved ductile-laminate toughening that results in improved resistance to irradiation embrittlement for the 600 degrees C irradiations. Irradiation-induced formation of precipitates rich in transmutation products is observed at the highest dose, and it is likely that these features exert an influence on subsequent void growth. (C) 2011 Elsevier B.V. All rights reserved. C1 [Cockeram, B. V.; Smith, R. W.] Bechtel Marine Prop Corp Inc, W Mifflin, PA 15122 USA. [Hashimoto, N.; Snead, L. L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Cockeram, BV (reprint author), Bechtel Marine Prop Corp Inc, POB 79, W Mifflin, PA 15122 USA. EM bcockeram@verizon.net RI HASHIMOTO, Naoyuki/D-6366-2012 FU USDOE [DE-AC-11-98PN38206] FX This work was supported under USDOE Contract No. DE-AC-11-98PN38206. The following ORNL personnel contributed to this work by completing the irradiations, specimen preparation, and testing (M. M. Lee, J.P. Strizak, T.S. Byun, A.L. Qualls, A.W. Williams, and J.L. Bailey). The authors acknowledge D. Ward at Bettis for void size/number analysis and J.E. Hack for numerous discussions on the results of this work. NR 71 TC 12 Z9 12 U1 2 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2011 VL 418 IS 1-3 BP 121 EP 136 DI 10.1016/j.jnucmat.2011.05.055 PG 16 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 850XS UT WOS:000297233500017 ER PT J AU Samolyuk, GD Golubov, SI Osetsky, YN Stoller, RE AF Samolyuk, G. D. Golubov, S. I. Osetsky, Y. N. Stoller, R. E. TI Molecular dynamics study of influence of vacancy types defects on thermal conductivity of beta-SiC SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID SILICON-CARBIDE; NEUTRON-IRRADIATION; POINT-DEFECTS; TEMPERATURES; SIMULATION; TRANSPORT AB A molecular dynamics technique has been used to study the impact of single vacancies and small vacancy clusters/microvoids on thermal conductivity of Si and beta-SiC. It is found that single vacancies reduce thermal conductivity more significantly than do microvoids with the same total number of vacancies in the crystal. The vacancy concentration dependence of the relative change of thermal resistivity of both Si and SiC changes from linear at low concentrations to square-root at higher values. In contrast, the dependence on the volume fraction of microvoids switches from square-root at small swelling values to nearly linear dependence at higher swelling. In the case of SiC the results obtained for vacancies and microvoids agree reasonably well with experimental values. The computational results are compared with the commonly used Debye-Callaway model. (C) 2011 Elsevier B.V. All rights reserved. C1 [Samolyuk, G. D.; Golubov, S. I.; Osetsky, Y. N.; Stoller, R. E.] ORNL, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Samolyuk, GD (reprint author), ORNL, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM samolyukgd@ornl.gov RI Stoller, Roger/H-4454-2011 FU U.S. Department of Energy FX We are grateful to Drs. S.R. Phillpot, D. Singh, J.R. Morris and S. Plimpton for useful discussion. This work was supported by the U.S. Department of Energy Deep Burn Program, a research element of the Advanced Fuel Effort of Fuels Cycles Research and Development. NR 31 TC 13 Z9 14 U1 3 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2011 VL 418 IS 1-3 BP 174 EP 181 DI 10.1016/j.jnucmat.2011.06.036 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 850XS UT WOS:000297233500023 ER PT J AU Caro, A Hetherly, J Stukowski, A Caro, M Martinez, E Srivilliputhur, S Zepeda-Ruiz, L Nastasi, M AF Caro, A. Hetherly, J. Stukowski, A. Caro, M. Martinez, E. Srivilliputhur, S. Zepeda-Ruiz, L. Nastasi, M. TI Properties of Helium bubbles in Fe and FeCr alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID EQUATION-OF-STATE; HIGH-PRESSURE PHASE; X-RAY-DIFFRACTION; CR ALLOYS; INTERATOMIC POTENTIALS; MOLECULAR-DYNAMICS; SOLID HE-4; ALPHA-IRON; AB-INITIO; BCC AB We investigate three aspects of He that are relevant for its behavior in FeCr alloys. (i) the EOS of pure He, as an auxiliary element to relate pressure and density inside a bubble; (ii) He bubbles in FeCr alloys, to explore the influence of Cr as solute and at alpha' precipitates on the He precipitation behavior; (iii) the growth mechanism of a He bubble in Fe and Fe 15 at% Cr under the particular conditions of a He-rich and vacancy poor environment. This last case represents an extreme situation that reveals the maximum pressures that can be achieved by a bubble before the matrix yields. We observe the emission of interstitial dislocation loops as the mechanisms by which the bubble creates room to host the He atoms. We use molecular dynamics and Monte Carlo computer simulations based on a new ternary FeCr-He empirical potential, which is an extension of our previous composition-dependent model for FeCr (A. Caro et al., Phys. Rev. Lett. 95 (2005) 075702). (c) 2011 Elsevier B.V. All rights reserved. C1 [Caro, A.; Hetherly, J.; Caro, M.; Martinez, E.; Nastasi, M.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Stukowski, A.; Zepeda-Ruiz, L.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Srivilliputhur, S.] Univ N Texas, Dept MS&E, Denton, TX 76203 USA. RP Caro, A (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM caro@lanl.gov RI Albe, Karsten/F-1139-2011; OI Stukowski, Alexander/0000-0001-6750-3401; Martinez Saez, Enrique/0000-0002-2690-2622 FU US Department of Energy at Los Alamos National Laboratory [2008LANL1026]; Laboratory Directed Research and Development Program; Center for Materials at Irradiation and Mechanical Extremes FX The work of FeCr was performed with support from the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the US Department of Energy (Award Number 2008LANL1026) at Los Alamos National Laboratory. The work on Fe was performed with support from the Laboratory Directed Research and Development Program. NR 45 TC 31 Z9 31 U1 3 U2 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2011 VL 418 IS 1-3 BP 261 EP 268 DI 10.1016/j.jnucmat.2011.07.010 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 850XS UT WOS:000297233500033 ER PT J AU Miller, MK Hoelzer, DT AF Miller, M. K. Hoelzer, D. T. TI Effect of neutron irradiation on nanoclusters in MA957 ferritic alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID STEELS; STABILITY AB The effects of neutron irradiation to a dose of 3 dpa at 600 degrees C and creep for 38,555 h at 800 degrees C on the microstructure of a commercial MA957 alloy were investigated by atom probe tomography. The size, number density and composition of the 2-nm-diameter Ti-, Y-, O-enriched nanoclusters were similar in the unirradiated, crept and neutron irradiated conditions indicating that the microstructure of this nanostructured ferritic alloy has remarkable tolerance to radiation damage. Published by Elsevier B.V. C1 [Miller, M. K.; Hoelzer, D. T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37871 USA. RP Miller, MK (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, POB 2008, Oak Ridge, TN 37871 USA. EM millermk@ornl.gov RI Hoelzer, David/L-1558-2016 FU Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy; ORNL's Shared Research Equipment (SHaRE) User Facility; Office of Basic Energy Sciences, US Department of Energy; United States Government [DE-ACO5-000R22725]; United States Department of Energy FX This research was sponsored by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy. Atom probe tomography (MKM) was supported by ORNL's Shared Research Equipment (SHaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, US Department of Energy.; This submission was sponsored by a contractor of the United States Government under Contract DE-ACO5-000R22725 with the United States Department of Energy. The United States Government retains, and the publisher, by accepting this submission for publication, acknowledges that the United States Government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this submission, or allow others to do so, for United States Government purposes. NR 25 TC 19 Z9 19 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2011 VL 418 IS 1-3 BP 307 EP 310 DI 10.1016/j.jnucmat.2011.07.031 PG 4 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 850XS UT WOS:000297233500038 ER PT J AU Muthiah, P Hoppe, SM Boyle, TJ Sigmund, W AF Muthiah, Palanikkumaran Hoppe, Sarah M. Boyle, Timothy J. Sigmund, Wolfgang TI Thermally Tunable Surface Wettability of Electrospun Fiber Mats: Polystyrene/Poly(N-isopropylacrylamide) Blended versus Crosslinked Poly[(N-isopropylacrylamide)-co-(methacrylic acid)] SO MACROMOLECULAR RAPID COMMUNICATIONS LA English DT Article DE electrospinning; fibers; responsive wettability; stimuli-sensitive polymers; surface chemistry ID (N-ISOPROPYLACRYLAMIDE)-CO-(METHACRYLIC ACID) HYDROGELS; SUPERHYDROPHOBIC SURFACES; RESPONSIVE POLYMERS; BEHAVIOR AB This work reports on thermally tunable surface wettability of electrospun fiber mats of: polystyrene (PS)/poly(N-isopropylacrylamide) (PNIPA) blended (bl-PS/PNIPA) and crosslinked poly[(N-isopropylacrylamide)-co-[methacrylic acid)] (PNIPAMAA) (xl-NIPAMAA). Both the bl-PS/PNIPA and xl-PNIPAMAA fiber mats demonstrate reversibly switchable surface wettability, with the bl-PS/PNIPA fiber mats approaching superhydrophobic >= 150 degrees and superhydrophilic contact angle (CA) values at extreme temperatures. Weight loss studies carried out at 10 degrees C indicate that the crosslinked PNIPAMAA fiber mats had better structural integrity than the bl-PS/PNIPA fiber mats. PNIPA surface chemistry and the Cassie-Baxter model were used to explain the mechanism behind the observed extreme wettability. C1 [Muthiah, Palanikkumaran; Sigmund, Wolfgang] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Hoppe, Sarah M.; Boyle, Timothy J.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. [Sigmund, Wolfgang] Hanyang Univ, WCU Dept Energy Engn, Seoul 133791, South Korea. RP Sigmund, W (reprint author), Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. EM wsigm@mse.ufl.edu FU Laboratory Directed Research and Development (LDRD); National Institute for Nano Engineering (NINE) at Sandia National Laboratories; Sandia Corporation, a Lockheed Martin Company [DE-AC04-94AL85000] FX This work was supported by the Laboratory Directed Research and Development (LDRD) and the National Institute for Nano Engineering (NINE) program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 37 TC 17 Z9 17 U1 7 U2 45 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1022-1336 J9 MACROMOL RAPID COMM JI Macromol. Rapid Commun. PD NOV 1 PY 2011 VL 32 IS 21 BP 1716 EP 1721 DI 10.1002/marc.201100373 PG 6 WC Polymer Science SC Polymer Science GA 851ZE UT WOS:000297310600005 PM 21994211 ER PT J AU Lloyd-Davies, EJ Romer, AK Mehrtens, N Hosmer, M Davidson, M Sabirli, K Mann, RG Hilton, M Liddle, AR Viana, PTP Campbell, HC Collins, CA Dubois, EN Freeman, P Harrison, CD Hoyle, B Kay, ST Kuwertz, E Miller, CJ Nichol, RC Sahlen, M Stanford, SA Stott, JP AF Lloyd-Davies, E. J. Romer, A. Kathy Mehrtens, Nicola Hosmer, Mark Davidson, Michael Sabirli, Kivanc Mann, Robert G. Hilton, Matt Liddle, Andrew R. Viana, Pedro T. P. Campbell, Heather C. Collins, Chris A. Dubois, E. Naomi Freeman, Peter Harrison, Craig D. Hoyle, Ben Kay, Scott T. Kuwertz, Emma Miller, Christopher J. Nichol, Robert C. Sahlen, Martin Stanford, S. A. Stott, John P. TI The XMM Cluster Survey: X-ray analysis methodology SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE surveys; galaxies: clusters: intracluster medium; cosmology: observations; X-rays: galaxies: clusters ID DIGITAL SKY SURVEY; MASSIVE GALAXY CLUSTERS; N-LOG-S; MEDIUM-SENSITIVITY SURVEY; ACTIVE GALACTIC NUCLEI; ECLIPTIC POLE SURVEY; BRIGHT SHARC SURVEY; COSMOLOGICAL PARAMETERS; OBSERVED GROWTH; HIGH-REDSHIFT AB The XMM Cluster Survey (XCS) is a serendipitous search for galaxy clusters using all publicly available data in the XMMNewton Science Archive. Its main aims are to measure cosmological parameters and trace the evolution of X-ray scaling relations. In this paper we describe the data processing methodology applied to the 5776 XMM observations used to construct the current XCS source catalogue. A total of 3675 > 4s cluster candidates with > 50 background-subtracted X-ray counts are extracted from a total non-overlapping area suitable for cluster searching of 410 deg2. Of these, 993 candidates are detected with > 300 background-subtracted X-ray photon counts, and we demonstrate that robust temperature measurements can be obtained down to this count limit. We describe in detail the automated pipelines used to perform the spectral and surface brightness fitting for these candidates, as well as to estimate redshifts from the X-ray data alone. A total of 587 (122) X-ray temperatures to a typical accuracy of < 40 (< 10) per cent have been measured to date. We also present the methodology adopted for determining the selection function of the survey, and show that the extended source detection algorithm is robust to a range of cluster morphologies by inserting mock clusters derived from hydrodynamical simulations into real XMMimages. These tests show that the simple isothermal beta-profiles is sufficient to capture the essential details of the cluster population detected in the archival XMM observations. The redshift follow-up of the XCS cluster sample is presented in a companion paper, together with a first data release of 503 optically confirmed clusters. C1 [Lloyd-Davies, E. J.; Romer, A. Kathy; Mehrtens, Nicola; Hosmer, Mark; Liddle, Andrew R.; Campbell, Heather C.; Dubois, E. Naomi; Kuwertz, Emma] Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Davidson, Michael; Mann, Robert G.] Univ Edinburgh, Royal Observ, Inst Astron, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Sabirli, Kivanc] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Hilton, Matt] Univ KwaZulu Natal, Sch Math Sci, ZA-4000 Durban, South Africa. [Hilton, Matt] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [Viana, Pedro T. P.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Viana, Pedro T. P.] Univ Porto, Fac Ciencias, Dept Fis & Astron, P-4169007 Oporto, Portugal. [Campbell, Heather C.; Hoyle, Ben; Nichol, Robert C.] Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Collins, Chris A.; Stott, John P.] Liverpool John Moores Univ, Astrophys Res Inst, Birkenhead CH41 1LD, Merseyside, England. [Freeman, Peter] Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA 15213 USA. [Harrison, Craig D.; Miller, Christopher J.] Univ Michigan, Dept Astron, Ann Arbor, MI 48109 USA. [Hoyle, Ben] Univ Barcelona, Dept Phys, Inst Sci Cosmos ICCUB IEEC, Barcelona 08024, Spain. [Hoyle, Ben] CSIC, E-28006 Madrid, Spain. [Hoyle, Ben] Univ Helsinki, Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Kay, Scott T.] Univ Manchester, Sch Phys & Astron, Jodrell Bank, Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Sahlen, Martin] Stockholm Univ, Dept Phys, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. RP Lloyd-Davies, EJ (reprint author), Univ Sussex, Ctr Astron, Brighton BN1 9QH, E Sussex, England. EM E.Lloyd-Davies@sussex.ac.uk RI Hilton, Matthew James/N-5860-2013; OI Viana, Pedro/0000-0003-1572-8531; hoyle, ben/0000-0002-2571-1357; Sahlen, Martin/0000-0003-0973-4804 FU National Aeronautics and Space Administration; Centre National d'Etudes Spatiales (CNES); Science and Technology Facilities Council (STFC) [ST/F002858/1, ST/I000976/1]; RAS Hosie Bequest; University of Edinburgh; Carnegie Mellon University; University of Sussex; University of KwaZulu-Natal; Leverhulme Trust; Fundacao para a Ciencia e a Tecnologia [PTDC/CTE-AST/64711/2006]; South East Physics Network [FP7-PEOPLE-2007-4D3-IRG n 20218]; Swedish Research Council (VR) through the Oskar Klein Centre for Cosmoparticle Physics; US Department of Energy, National Nuclear Security Administration by the University of California, Lawrence Livermore National Laboratory [W-7405-Eng-48]; [ST/H002391/1]; [PP/E001149/1]; [ST/G002592/1] FX This work was made possible by the ESA XMM-Newton mission, and we thank everyone who was involved in making that mission such a success. We also acknowledge the following public archives, surveys and analysis tools. The HEASOFT analysis packages provided by NASA's Goddard Space Flight Center. The NASA/IPAC Extragalactic Data base (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. The X-Ray Clusters Data base (BAX) which is operated by the Laboratoire d'Astrophysique de Tarbes-Toulouse (LATT), under contract with the Centre National d'Etudes Spatiales (CNES).; Financial support for this project includes the Science and Technology Facilities Council (STFC) through grants ST/F002858/1 and/or ST/I000976/1 (for EJL-D, AKR, NM, MHo, ARL and MS); ST/H002391/1 and PP/E001149/1 (for CAC and JPS); ST/G002592/1 (for STK) and through studentships (for NM, HCC); the RAS Hosie Bequest and the University of Edinburgh (for MD); Carnegie Mellon University (KS); the University of Sussex (MHo, EK, HCC), the University of KwaZulu-Natal (for MHi); The Leverhulme Trust (for MHi); Fundacao para a Ciencia e a Tecnologia through the project PTDC/CTE-AST/64711/2006 (for PTPV); The South East Physics Network (for END, RCN); FP7-PEOPLE-2007-4D3-IRG n 20218 (for BH); the Swedish Research Council (VR) through the Oskar Klein Centre for Cosmoparticle Physics (for MS); and the US Department of Energy, National Nuclear Security Administration by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48 (for SAS). NR 161 TC 37 Z9 37 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2011 VL 418 IS 1 BP 14 EP 53 DI 10.1111/j.1365-2966.2011.19117.x PG 40 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 848IR UT WOS:000297045700035 ER PT J AU Jajamovich, GH Wang, XD Arkin, AP Samoilov, MS AF Jajamovich, Guido H. Wang, Xiaodong Arkin, Adam P. Samoilov, Michael S. TI Bayesian multiple-instance motif discovery with BAMBI: inference of recombinase and transcription factor binding sites SO NUCLEIC ACIDS RESEARCH LA English DT Article ID REGULATORY ELEMENTS; SEQUENCE MOTIFS; DNA; PROTEIN; IDENTIFICATION; NETWORKS; GENES; TOOLS; MODEL; MEME AB Finding conserved motifs in genomic sequences represents one of essential bioinformatic problems. However, achieving high discovery performance without imposing substantial auxiliary constraints on possible motif features remains a key algorithmic challenge. This work describes BAMBI-a sequential Monte Carlo motif-identification algorithm, which is based on a position weight matrix model that does not require additional constraints and is able to estimate such motif properties as length, logo, number of instances and their locations solely on the basis of primary nucleotide sequence data. Furthermore, should biologically meaningful information about motif attributes be available, BAMBI takes advantage of this knowledge to further refine the discovery results. In practical applications, we show that the proposed approach can be used to find sites of such diverse DNA-binding molecules as the cAMP receptor protein (CRP) and Din-family site-specific serine recombinases. Results obtained by BAMBI in these and other settings demonstrate better statistical performance than any of the four widely-used profile-based motif discovery methods: MEME, BioProspector with BioOptimizer, SeSiMCMC and Motif Sampler as measured by the nucleotide-level correlation coefficient. Additionally, in the case of Din-family recombinase target site discovery, the BAMBI-inferred motif is found to be the only one functionally accurate from the underlying biochemical mechanism standpoint. C++ and Matlab code is available at http://www.ee.columbia.edu/guido/BAMBI or http://genomics.lbl.gov/BAMBI/. C1 [Jajamovich, Guido H.; Wang, Xiaodong] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA. [Arkin, Adam P.; Samoilov, Michael S.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Wang, XD (reprint author), Columbia Univ, Dept Elect Engn, New York, NY 10027 USA. EM xw2008@columbia.edu; mssamoilov@lbl.gov RI Arkin, Adam/A-6751-2008; OI Arkin, Adam/0000-0002-4999-2931; Samoilov, Michael/0000-0003-3559-5326 FU U S. National Science Foundation (NSF) [DBI-0850030, CMMI-1028112]; U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231]; Columbia Open-Access Publication (COAP) FX U S. National Science Foundation (NSF) (under grant DBI-0850030, in part); U.S. National Science Foundation (NSF) (under grant CMMI-1028112 to X. W.); and ENIGMA-Ecosystems and Networks Integrated with Genes and Molecular Assemblies supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research through contract No. DE-AC02-05CH11231. Funding for open access charge: The Columbia Open-Access Publication (COAP) Fund. NR 35 TC 4 Z9 4 U1 1 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD NOV PY 2011 VL 39 IS 21 AR e146 DI 10.1093/nar/gkr745 PG 11 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 852RR UT WOS:000297375700006 PM 21948794 ER PT J AU Aaltonen, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bauer, G Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Bentivegna, M Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Bland, KR Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brau, B Brigliadori, L Brisuda, A Bromberg, C Brucken, E Bucciantonio, M Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Canepa, A Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Dagenhart, D d'Ascenzo, N Datta, M de Barbaro, P De Cecco, S De Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Devoto, F d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, M Dorigo, T Ebina, K Elagin, A Eppig, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Funakoshi, Y Furic, I Gallinaro, M Galyardt, J Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Hamaguchi, A Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Hewamanage, S Hidas, D Hocker, A Hopkins, W Horn, D Hou, S Hughes, RE Hurwitz, M Husemann, U Hussain, N Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Karchin, PE Kato, Y Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirby, M Klimenko, S Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leo, S Leone, S Lewis, JD Limosani, A Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, Q Liu, T Lockwitz, S Lockyer, NS Loginov, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maeshima, K Makhoul, K Maksimovic, P Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Martinez, M Martinez-Ballarin, R Mastrandrea, P Mathis, M Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rahaman, A Ramakrishnan, V Ranjan, N Rao, K Redondo, I Renton, P Rescigno, M Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rubbo, F Ruffini, F Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Sakurai, Y Santi, L Sartori, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shreyber, I Simonenko, A Sinervo, P Sissakian, A Sliwa, K Smith, JR Snider, FD Soha, A Somalwar, S Sorin, V Squillacioti, P Stancari, M Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tu, Y Ukegawa, F Uozumi, S Varganov, A Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wagner, RL Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Wick, F Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamaoka, J Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zucchelli, S AF Aaltonen, T. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bauer, G. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Bentivegna, M. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brau, B. Brigliadori, L. Brisuda, A. Bromberg, C. Brucken, E. Bucciantonio, M. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Canepa, A. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Dagenhart, D. d'Ascenzo, N. Datta, M. de Barbaro, P. De Cecco, S. De Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Devoto, F. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, M. Dorigo, T. Ebina, K. Elagin, A. Eppig, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Funakoshi, Y. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Hamaguchi, A. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Hewamanage, S. Hidas, D. Hocker, A. Hopkins, W. Horn, D. Hou, S. Hughes, R. E. Hurwitz, M. Husemann, U. Hussain, N. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Karchin, P. E. Kato, Y. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirby, M. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leo, S. Leone, S. Lewis, J. D. Limosani, A. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, Q. Liu, T. Lockwitz, S. Lockyer, N. S. Loginov, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maeshima, K. Makhoul, K. Maksimovic, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mathis, M. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Rao, K. Redondo, I. Renton, P. Rescigno, M. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rubbo, F. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Sakurai, Y. Santi, L. Sartori, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shreyber, I. Simonenko, A. Sinervo, P. Sissakian, A. Sliwa, K. Smith, J. R. Snider, F. D. Soha, A. Somalwar, S. Sorin, V. Squillacioti, P. Stancari, M. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tu, Y. Ukegawa, F. Uozumi, S. Varganov, A. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wagner, R. L. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Wick, F. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamaoka, J. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zucchelli, S. CA CDF Collaboration TI Search for New T ' Particles in Final States with Large Jet Multiplicities and Missing Transverse Energy in p(p)over-bar Collisions at root s=1.96 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID PHYSICS AB We present a search for a new particle T' decaying to a top quark via T' --> t + X, where X goes undetected. We use a data sample corresponding to 5.7 fb(-1) of integrated luminosity of p (p) over bar collisions with root s = 1.96 TeV, collected at Fermilab Tevatron by the CDF II detector. Our search for pair production of T' is focused on the hadronic decay channel, p (p) over bar --> T'(T') over bar --> t (t) over bar + X (X) over bar --> bq (q) over bar (b) over bar q (q) over bar + X (X) over bar. We interpret our results in terms of a model where T' is an exotic fourth generation quark and X is a dark matter particle. The data are consistent with standard model expectations. We set a limit on the generic production of T'(T') over bar --> t (t) over bar + X (X) over bar, excluding the fourth generation exotic quarks T' at 95% confidence level up to m(T') = 400 GeV/c(2) for m(X) <= 70 GeV/c(2). C1 [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Carrillo, S.; Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Vazquez, F.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [LeCompte, T.; Nodulman, L.; Paramonov, A. A.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; De Lorenzo, G.; Deluca, C.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, ICREA, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Krumnack, N.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Rao, K.] Univ Calif Irvine, Irvine, CA 92697 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.; Vizan, J.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sissakian, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Brau, B.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Catastini, P.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Hahn, S. R.; Hocker, A.; Hopkins, W.; James, E.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Morello, M. J.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ristori, L.; Roser, R.; Rubbo, F.; Rusu, V.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Soha, A.; Squillacioti, P.; Stancari, M.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Klimenko, S.; Konigsberg, J.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Robson, A.; Denis, R. St.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Budd, S.; Carls, B.; Errede, D.; Errede, S.; Gerberich, H.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Thompson, G. A.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.; Maksimovic, P.; Mathis, M.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Horn, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Morlock, J.; Muller, Th.; Schmidt, A.; Wick, F.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Anastassov, A.; Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Fang, H. C.; Haber, C.; Lin, C. -J.; Lujan, P.; Lys, J.; Nielsen, J.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Cerrito, L.; Lancaster, M.; Nurse, E.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Eppig, A.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Campanelli, M.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] ITEP, Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Wilson, J. S.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Hamaguchi, A.; Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Bisello, D.; Busetto, G.; d'Errico, M.; Di Canto, A.; Dorigo, T.; Lucchesi, D.; Griso, S. Pagan; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova Trento, Padua, Italy. [Bauce, M.; Bisello, D.; Compostella, G.; d'Errico, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Ershaidat, N.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, LPNHE, CNRS, IN2P3,UMR7585, F-75252 Paris, France. [Canepa, A.; Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Lockyer, N. S.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bucciantonio, M.; Carosi, R.; Cavaliere, V.; Chiarelli, G.; Ciocci, M. A.; Compostella, G.; Crescioli, F.; Dell'Orso, M.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leo, S.; Leone, S.; Menzione, A.; Piacentino, G.; Punzi, G.; Ristori, L.; Ruffini, F.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Trovato, M.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bucciantonio, M.; Cavaliere, V.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Latino, G.; Leo, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Ciocci, M. A.; Garosi, P.; Ruffini, F.; Scribano, A.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [Bentivegna, M.; De Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Bentivegna, M.; Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Goldin, D.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Nett, J.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Dorigo, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Pauletta, G.; Santi, L.] Univ Trieste, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.; Whitehouse, B.] Tufts Univ, Medford, MA 02155 USA. [Group, R. C.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.] Univ Wisconsin, Madison, WI 53706 USA. [Auerbach, B.; Almenar, C. Cuenca; Husemann, U.; Lockwitz, S.; Loginov, A.; Schmidt, M. P.; Stanitzki, M.] Yale Univ, New Haven, CT 06520 USA. [Bedeschi, F.; Bellettini, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.] Univ Pisa, I-56127 Pisa, Italy. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Ruiz, Alberto/E-4473-2011; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Robson, Aidan/G-1087-2011; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; De Cecco, Sandro/B-1016-2012; Punzi, Giovanni/J-4947-2012; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; St.Denis, Richard/C-8997-2012; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Liu, Qiuguang/I-8258-2014 OI Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Ruiz, Alberto/0000-0002-3639-0368; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Punzi, Giovanni/0000-0002-8346-9052; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean World Class University, the National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, Spain; Slovak RD Agency; Academy of Finland; Australian Research Council (ARC) FX We thank Johan Alwall and Matteo Cacciari for useful discussions. We also thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC). NR 27 TC 16 Z9 16 U1 2 U2 18 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 1 PY 2011 VL 107 IS 19 AR 191803 DI 10.1103/PhysRevLett.107.191803 PG 7 WC Physics, Multidisciplinary SC Physics GA 847XC UT WOS:000297005600004 PM 22181598 ER PT J AU Aaltonen, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Apresyan, A Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bauer, G Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Bland, KR Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brigliadori, L Brisuda, A Bromberg, C Brucken, E Bucciantonio, M Budagov, J Budd, HS Budd, S Burkett, K Busetto, G Bussey, P Buzatu, A Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chou, JP Chung, WH Chung, YS Ciobanu, CI Ciocci, MA Clark, A Clarke, C Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Almenar, CC Cuevas, J Culbertson, R Dagenhart, D d'Ascenzo, N Datta, M de Barbaro, P de Cecco, S de Lorenzo, G Dell'Orso, M Deluca, C Demortier, L Deng, J Deninno, M Devoto, F d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, M Dorigo, T Ebina, K Elagin, A Eppig, A Erbacher, R Errede, D Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Feindt, M Fernandez, JP Ferrazza, C Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Funakoshi, Y Furic, I Gallinaro, M Galyardt, J Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giagu, S Giakoumopoulou, V Giannetti, P Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giunta, M Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Hamaguchi, A Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Hewamanage, S Hidas, D Hocker, A Hopkins, W Horn, D Hou, S Hughes, RE Hurwitz, M Husemann, U Hussain, N Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jayatilaka, B Jeon, EJ Jha, MK Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Karchin, PE Kasmi, A Kato, Y Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, HW Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kimura, N Kirby, M Klimenko, S Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Kroll, J Krop, D Krumnack, N Kruse, M Krutelyov, V Kuhr, T Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leo, S Leone, S Lewis, JD Limosani, A Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, Q Liu, T Lockwitz, S Loginov, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maeshima, K Makhoul, K Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Martinez, M Martinez-Ballarin, R Mastrandrea, P Mattson, ME Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Menzione, A Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Nielsen, J Nodulman, L Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Potamianos, K Poukhov, O Prokoshin, F Pronko, A Ptohos, F Pueschel, E Punzi, G Pursley, J Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Rescigno, M Riddick, T Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rossi, M Rubbo, F Ruffini, F Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Sakurai, Y Santi, L Sartori, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MP Schmitt, M Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sforza, F Sfyrla, A Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shiraishi, S Shochet, M Shreyber, I Simonenko, A Sinervo, P Sissakian, A Sliwa, K Smith, JR Snider, FD Soha, A Somalwar, S Sorin, V Sperka, D Squillacioti, P Stancari, M Stanitzki, M Denis, RS Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Ttito-Guzman, P Tkaczyk, S Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tu, Y Ukegawa, F Uozumi, S Varganov, A Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wagner, RL Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Weinberger, M Wester, WC Whitehouse, B Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Wick, F Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yamaoka, J Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zucchelli, S AF Aaltonen, T. Gonzalez, B. Alvarez Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Apresyan, A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bauer, G. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brigliadori, L. Brisuda, A. Bromberg, C. Brucken, E. Bucciantonio, M. Budagov, J. Budd, H. S. Budd, S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chou, J. P. Chung, W. H. Chung, Y. S. Ciobanu, C. I. Ciocci, M. A. Clark, A. Clarke, C. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Almenar, C. Cuenca Cuevas, J. Culbertson, R. Dagenhart, D. d'Ascenzo, N. Datta, M. de Barbaro, P. de Cecco, S. de Lorenzo, G. Dell'Orso, M. Deluca, C. Demortier, L. Deng, J. Deninno, M. Devoto, F. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, M. Dorigo, T. Ebina, K. Elagin, A. Eppig, A. Erbacher, R. Errede, D. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Feindt, M. Fernandez, J. P. Ferrazza, C. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Funakoshi, Y. Furic, I. Gallinaro, M. Galyardt, J. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giagu, S. Giakoumopoulou, V. Giannetti, P. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giunta, M. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Hamaguchi, A. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Hewamanage, S. Hidas, D. Hocker, A. Hopkins, W. Horn, D. Hou, S. Hughes, R. E. Hurwitz, M. Husemann, U. Hussain, N. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jayatilaka, B. Jeon, E. J. Jha, M. K. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Karchin, P. E. Kasmi, A. Kato, Y. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, H. W. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kimura, N. Kirby, M. Klimenko, S. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Krumnack, N. Kruse, M. Krutelyov, V. Kuhr, T. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leo, S. Leone, S. Lewis, J. D. Limosani, A. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, Q. Liu, T. Lockwitz, S. Loginov, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maeshima, K. Makhoul, K. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Martinez, M. Martinez-Ballarin, R. Mastrandrea, P. Mattson, M. E. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Menzione, A. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Mukherjee, A. Muller, Th. Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Potamianos, K. Poukhov, O. Prokoshin, F. Pronko, A. Ptohos, F. Pueschel, E. Punzi, G. Pursley, J. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Rescigno, M. Riddick, T. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rossi, M. Rubbo, F. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Sakurai, Y. Santi, L. Sartori, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. P. Schmitt, M. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Sfyrla, A. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shiraishi, S. Shochet, M. Shreyber, I. Simonenko, A. Sinervo, P. Sissakian, A. Sliwa, K. Smith, J. R. Snider, F. D. Soha, A. Somalwar, S. Sorin, V. Sperka, D. Squillacioti, P. Stancari, M. Stanitzki, M. Denis, R. St. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Ttito-Guzman, P. Tkaczyk, S. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tu, Y. Ukegawa, F. Uozumi, S. Varganov, A. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wagner, R. L. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Weinberger, M. Wester, W. C., III Whitehouse, B. Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Wick, F. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yamaoka, J. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zucchelli, S. TI Search for B-s(0) -> mu(+)mu(-) and B-0 -> mu(+)mu(-) Decays with CDF II SO PHYSICAL REVIEW LETTERS LA English DT Article AB A search has been performed for B-s(0) --> mu(+)mu(-) and B-0 --> mu(+)mu(-) decays using 7 fb(-1) of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. The observed number of B-0 candidates is consistent with background- only expectations and yields an upper limit on the branching fraction of B(B-0 --> mu(+)mu(-)) < 6.0 X 10(-9) at 95% confidence level. We observe an excess of B-s(0) candidates. The probability that the background processes alone could produce such an excess or larger is 0.27%. The probability that the combination of background and the expected standard model rate of B-s(0) --> mu(+)mu(-) could produce such an excess or larger is 1.9%. These data are used to determine B(B-s(0) --> mu(+)mu(-)) = (1.8(-0.9)(+1.1)) x 10(-8) and provide an upper limit of B(B-s(0) --> mu(+)mu(-)) < 4.0 x 10(-8) at 95% confidence level. C1 [Carrillo, S.; Chen, Y. C.; Hou, S.; Mitra, A.; Mondragon, M. N.; Teng, P. K.; Vazquez, F.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [LeCompte, T.; Nodulman, L.; Paramonov, A. A.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.; Vellidis, C.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; de Lorenzo, G.; Deluca, C.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, ICREA, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Kasmi, A.; Krumnack, N.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Jha, M. K.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Schwarz, T.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Gonzalez, B. Alvarez; Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.; Vizan, J.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Galyardt, J.; Jang, D.; Jun, S. Y.; Paulini, M.; Pueschel, E.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Shiraishi, S.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Slovak Acad Sci, Inst Expt Phys, Kosice 04001, Slovakia. [Antos, J.; Bartos, P.; Brisuda, A.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sissakian, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Deng, J.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Liu, T.; Oh, S. H.; Phillips, T. J.; Yamaoka, J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Carron, S.; Casarsa, M.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Culbertson, R.; Dagenhart, D.; Datta, M.; Dong, P.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; Hopkins, W.; James, E.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Lukens, P.; Madrak, R.; Maeshima, K.; Miao, T.; Mondragon, M. N.; Moore, R.; Morello, M. J.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Patrick, J.; Pronko, A.; Ristori, L.; Roser, R.; Rubbo, F.; Rusu, V.; Schlabach, P.; Schmidt, E. E.; Snider, F. D.; Soha, A.; Stancari, M.; Thom, J.; Tkaczyk, S.; Tonelli, D.; Torretta, D.; Velev, G.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Klimenko, S.; Konigsberg, J.; Sukhanov, A.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Robson, A.; Denis, R. St.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Catastini, P.; Chou, J. P.; Franklin, M.; da Costa, J. Guimaraes; Moed, S.] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Budd, S.; Carls, B.; Cavaliere, V.; Errede, D.; Errede, S.; Gerberich, H.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Sfyrla, A.; Thompson, G. A.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Horn, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Morlock, J.; Muller, Th.; Schmidt, A.; Wick, F.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.; Yu, S. S.] Seoul Natl Univ, Seoul 151742, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.; Yu, S. S.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.; Yu, S. S.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.; Yu, S. S.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.; Yu, S. S.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Cho, K.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, S. B.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.; Yu, S. S.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Fang, H. C.; Haber, C.; Lin, C. -J.; Lujan, P.; Lys, J.; Nielsen, J.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Nurse, E.; Riddick, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Martinez-Ballarin, R.; Redondo, I.; Ttito-Guzman, P.; Vidal, M.] Ctr Invest Energet Medioambient & Tecnol, E-28040 Madrid, Spain. [Bauer, G.; Gomez-Ceballos, G.; Goncharov, M.; Makhoul, K.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Amidei, D.; Campbell, M.; Eppig, A.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber, I.] Inst Theoret & Expt Phys, ITEP, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Anastassov, A.; Schmitt, M.; Stentz, D.] Northwestern Univ, Evanston, IL 60208 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Wilson, J. S.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Hamaguchi, A.; Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Lucchesi, D.; Griso, S. Pagan; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Ciobanu, C. I.; Corbo, M.; d'Ascenzo, N.; Ershaidat, N.; Saveliev, V.; Savoy-Navarro, A.] Univ Paris 06, LPNHE, IN2P3, CNRS,UMR7585, F-75252 Paris, France. [Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Bucciantonio, M.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Di Ruzza, B.; Donati, S.; Ferrazza, C.; Garosi, P.; Giannetti, P.; Giunta, M.; Introzzi, G.; Lami, S.; Latino, G.; Leo, S.; Leone, S.; Menzione, A.; Piacentino, G.; Punzi, G.; Ristori, L.; Ruffini, F.; Sartori, L.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.; Volpi, G.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Bucciantonio, M.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Latino, G.; Leo, S.; Punzi, G.; Sforza, F.; Volpi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Ciocci, M. A.; Garosi, P.; Ruffini, F.; Scribano, A.] Univ Siena, I-56127 Pisa, Italy. [Ferrazza, C.; Trovato, M.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Apresyan, A.; Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Margaroli, F.; Potamianos, K.; Ranjan, N.; Sedov, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [de Cecco, S.; Giagu, S.; Iori, M.; Mastrandrea, P.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Giagu, S.; Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Halkiadakis, E.; Hare, D.; Hidas, D.; Lath, A.; Somalwar, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Goldin, D.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Nett, J.; Safonov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Cauz, D.; Dorigo, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Rossi, M.; Santi, L.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Pauletta, G.; Santi, L.] Univ Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Group, R. C.; Neu, C.; Oksuzian, I.] Tufts Univ, Medford, MA 02155 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Clarke, C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Pondrom, L.; Pursley, J.; Ramakrishnan, V.; Sperka, D.] Univ Wisconsin, Madison, WI 53706 USA. [Auerbach, B.; Almenar, C. Cuenca; Husemann, U.; Lockwitz, S.; Loginov, A.; Schmidt, M. P.; Stanitzki, M.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. RI Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Paulini, Manfred/N-7794-2014; Scodellaro, Luca/K-9091-2014; Grinstein, Sebastian/N-3988-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Martinez Ballarin, Roberto/K-9209-2015; Gorelov, Igor/J-9010-2015; De Cecco, Sandro/B-1016-2012; Robson, Aidan/G-1087-2011; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Punzi, Giovanni/J-4947-2012; Ruiz, Alberto/E-4473-2011; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Moon, Chang-Seong/J-3619-2014 OI iori, maurizio/0000-0002-6349-0380; Volpi, Guido/0000-0003-1058-8883; Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Paulini, Manfred/0000-0002-6714-5787; Latino, Giuseppe/0000-0002-4098-3502; Casarsa, Massimo/0000-0002-1353-8964; Simonenko, Alexander/0000-0001-6580-3638; Lancaster, Mark/0000-0002-8872-7292; Scodellaro, Luca/0000-0002-4974-8330; Grinstein, Sebastian/0000-0002-6460-8694; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Martinez Ballarin, Roberto/0000-0003-0588-6720; Gorelov, Igor/0000-0001-5570-0133; Punzi, Giovanni/0000-0002-8346-9052; Ruiz, Alberto/0000-0002-3639-0368; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Moon, Chang-Seong/0000-0001-8229-7829 FU U.S. Department of Energy; National Science Foundation; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A.P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean World Class University, National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion, Spain; Slovak RD Agency; Academy of Finland; Australian Research Council (ARC) FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC). NR 24 TC 48 Z9 48 U1 2 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 1 PY 2011 VL 107 IS 19 AR 191801 DI 10.1103/PhysRevLett.107.191801 PG 7 WC Physics, Multidisciplinary SC Physics GA 847XC UT WOS:000297005600002 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hansel, S Hoch, M Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Krammer, M Liko, D Mikulec, I Pernicka, M Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Taurok, A Teischinger, F Trauner, C Wagner, P Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Bansal, S Benucci, L De Wolf, EA Janssen, X Luyckx, S Maes, T Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Blekman, F Blyweert, S D'Hondt, J Suarez, RG Kalogeropoulos, A Maes, M Olbrechts, A Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hammad, GH Hreus, T Marage, PE Raval, A Thomas, L Marcken, GV Velde, CV Vanlaer, P Adler, V Cimmino, A Costantini, S Grunewald, M Klein, B Lellouch, J Marinov, A Mccartin, J Ryckbosch, D Thyssen, F Tytgat, M Vanelderen, L Verwilligen, P Walsh, S Zaganidis, N Basegmez, S Bruno, G Caudron, J Ceard, L Gil, EC De Jeneret, JD Delaere, C Favart, D Giammanco, A Gregoire, G Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Ovyn, S Pagano, D Pin, A Piotrzkowski, K Schul, N Beliy, N Caebergs, T Daubie, E Alves, GA Brito, L Damiao, DD Pol, ME Souza, MHG Alda, WL Carvalho, W Da Costa, EM Martins, CD De Souza, S Figueiredo, DM Mundim, L Nogima, H Oguri, V Da Silva, WLP Santoro, A Do Amaral, SMS Sznajder, A Bernardes, CA Dias, FA Costa, TD Tomei, TRFP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Darmenov, N Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vutova, M Dimitrov, A Hadjiiska, R Karadzhinova, A Kozhuharov, V Litov, L Mateev, M Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Zang, J Zhang, Z Ban, Y Guo, S Guo, Y Li, W Mao, Y Qian, SJ Teng, H Zhu, B Zou, W Cabrera, A Moreno, BG Rios, AAO Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Lelas, K Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Kovac, M Brigljevic, V Duric, S Kadija, K Luetic, J Morovic, S Attikis, A Galanti, M Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Kamel, AE Khalil, S Mahmoud, MA Radi, A Hektor, A Kadastik, M Muntel, M Raidal, M Rebane, L Tiko, A Azzolini, V Eerola, P Fedi, G Voutilainen, M Czellar, S Harkonen, J Heikkinen, A Heikkinen, A Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Karjalainen, A Korpela, A Tuuva, T Sillou, D Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Gentit, FX Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Marionneau, M Millischer, L Rander, J Rosowsky, A Shreyber, I Titov, M Verrecchia, P Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Dahms, T Dobrzynski, L Elgammal, S de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Thiebaux, C Wyslouch, B Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Greder, S Juillot, P Karim, M Le Bihan, AC Mikami, Y Van Hove, P Fassi, F Mercier, D Baty, C Beauceron, S Beaupere, N Bedjidian, M Bondu, O Boudoul, G Boumediene, D Brun, H Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Ille, B Kurca, T Le Grand, T Lethuillier, M Mirabito, L Perries, S Sordini, V Tosi, S Tschudi, Y Verdier, P Viret, S Lomidze, D Anagnostou, G Beranek, S Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Mohr, N Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Weber, M Wittmer, B Ata, M Dietz-Laursonn, E Erdmann, M Hebbeker, T Heidemann, C Hinzmann, A Hoepfner, K Klimkovich, T Klingebiel, D Kreuzer, P Lanske, D Lingemann, J Magass, C Merschmeyer, M Meyer, A Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Bontenackels, M Cherepanov, V Davids, M Duda, M Flugge, G Geenen, H Giffels, M Ahmad, WH Heydhausen, D Hoehle, F Kargoll, B Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Rennefeld, J Sauerland, P Stahl, A Tornier, D Zoeller, MH Martin, MA Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Cakir, A Campbell, A Castro, E Dammann, D Eckerlin, G Eckstein, D Flossdorf, A Flucke, G Geiser, A Hauk, J Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Knutsson, A Kramer, M Krucker, D Kuznetsova, E Lange, W Lohmann, W Mankel, R Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Olzem, J Petrukhin, A Pitzl, D Raspereza, A Rosin, M Schmidt, R Schoerner-Sadenius, T Sen, N Spiridonov, A Stein, M Tomaszewska, J Walsh, R Wissing, C Autermann, C Blobel, V Bobrovskyi, S Draeger, J Enderle, H Gebbert, U Gorner, M Hermanns, T Kaschube, K Kaussen, G Kirschenmann, H Klanner, R Lange, J Mura, B Naumann-Emme, S Nowak, F Pietsch, N Sander, C Schettler, H Schleper, P Schlieckau, E Schroder, M Schum, T Stadie, H Steinbruck, G Thomsen, J Barth, C Bauer, J Berger, J Buege, V Chwalek, T De Boer, W Dierlamm, A Dirkes, G Feindt, M Gruschke, J Hackstein, C Hartmann, F Heinrich, M Held, H Hoffmann, KH Honc, S Katkov, I Komaragiri, JR Kuhr, T Martschei, D Mueller, S Muller, T Niegel, M Oberst, O Oehler, A Ott, J Peiffer, T Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Renz, M Saout, C Scheurer, A Schieferdecker, P Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Wagner-Kuhr, J Weiler, T Zeise, M Zhukov, V Ziebarth, EB Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Ntomari, E Petrakou, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Stiliaris, E Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Triantis, FA Aranyi, A Bencze, G Boldizsar, L Hajdu, C Hidas, P Horvath, D Kapusi, A Krajczar, K Sikler, F Veres, GI Vesztergombi, G Beni, N Molnar, J Palinkas, J Szillasi, Z Veszpremi, V Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, AP Singh, J Singh, SP Ahuja, S Choudhary, BC Gupta, P Kumar, A Kumar, A Malhotra, S Naimuddin, M Ranjan, K Shivpuri, RK Banerjee, S Bhattacharya, S Dutta, S Gomber, B Jain, S Jain, S Khurana, R Sarkar, S Choudhury, RK Dutta, D Kailas, S Kumar, V Mehta, P Mohanty, AK Pant, LM Shukla, P Aziz, T Guchait, M Gurtu, A Maity, M Majumder, D Majumder, G Mazumdar, K Mohanty, GB Saha, A Sudhakar, K Wickramage, N Banerjee, S Dugad, S Mondal, NK Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Hesari, H Jafari, A Khakzad, M Mohammadi, A Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Manna, N Marangelli, B My, S Nuzzo, S Pacifico, N Pierro, GA Pompili, A Pugliese, G Romano, F Roselli, G Selvaggi, G Silvestris, L Trentadue, R Tupputi, S Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Giunta, M Grandi, C Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, G Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A De Guio, F Di Matteo, L Gennai, S Ghezzi, A Malvezzi, S Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Buontempo, S Montoya, AC Cavallo, N De Cosa, A Fabozzi, F Iorio, AOM Lista, L Merola, M Paolucci, P Azzi, P Bacchetta, N Bellan, P Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Dosselli, U Fanzago, F Gasparini, F Gasparini, U Gozzelino, A Lacaprara, S Lazzizzera, I Margoni, M Mazzucato, M Meneguzzo, AT Nespolo, M Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Baesso, P Berzano, U Ratti, SP Riccardi, C Torre, P Vitulo, P Viviani, C Biasini, M Bilei, GM Caponeri, B Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Romeo, F Santocchia, A Taroni, S Valdata, M Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Palmonari, F Segneri, G Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Di Marco, E Diemoz, M Franci, D Grassi, M Longo, E Meridiani, P Nourbakhsh, S Organtini, G Pandolfi, F Paramatti, R Rahatlou, S Sigamani, M Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Botta, C Cartiglia, N Castello, R Costa, M Demaria, N Graziano, A Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Sola, V Solano, A Staiano, A Pereira, AV Belforte, S Cossutti, F Della Ricca, G Gobbo, B Marone, M Montanino, D Penzo, A Heo, SG Nam, SK Chang, S Chung, J Kim, DH Kim, GN Kim, JE Kong, DJ Park, H Ro, SR Son, DC Son, T Kim, JY Kim, ZJ Song, S Jo, HY Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, JH Kim, TJ Lee, KS Moon, DH Park, SK Seo, E Sim, KS Choi, M Kang, S Kim, H Park, C Park, IC Park, S Ryu, G Cho, Y Choi, Y Choi, YK Goh, J Kim, MS Lee, B Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Martisiute, D Petrov, P Polujanskas, M Sabonis, T Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Villalba, RM Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Tam, J Butler, PH Doesburg, R Silverwood, H Ahmad, M Ahmed, I Ansari, MH Asghar, MI Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Brona, G Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Almeida, N Bargassa, P David, A Faccioli, P Parracho, PGF Gallinaro, M Musella, P Nayak, A Pela, J Ribeiro, PQ Seixas, J Varela, J Afanasiev, S Belotelov, I Bunin, P Gavrilenko, M Golutvin, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Moisenz, P Palichik, V Perelygin, V Shmatov, S Smirnov, V Volodko, A Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Toropin, A Troitsky, S Epshteyn, V Erofeeva, M Gavrilov, V Kaftanov, V Kossov, M Krokhotin, A Lychkovskaya, N Popov, V Safronov, G Semenov, S Stolin, V Vlasov, E Zhokin, A Belyaev, A Boos, E Dubinin, M Dudko, L Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Markina, A Obraztsov, S Perfilov, M Petrushanko, S Sarycheva, L Savrin, V Snigirev, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Azhgirey, I Bayshev, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Korablev, A Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Pardos, CD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C Codispoti, G de Troconiz, JF Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Garcia, JMV Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Jorda, C Pardo, PL Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Baillon, P Ball, AH Barney, D Bell, AJ Benedetti, D Bernet, C Bialas, W Bloch, P Bocci, A Bolognesi, S Bona, M Breuker, H Bunkowski, K Camporesi, T Cerminara, G Christiansen, T Perez, JAC Cure, B D'Enterria, D De Roeck, A Di Guida, S Dupont-Sagorin, N Elliott-Peisert, A Frisch, B Funk, W Gaddi, A Georgiou, G Gerwig, H Gigi, D Gill, K Giordano, D Glege, F Garrido, RGR Gouzevitch, M Govoni, P Gowdy, S Guida, R Guiducci, L Hansen, M Hartl, C Harvey, J Hegeman, J Hegner, B Hoffmann, HF Innocente, V Janot, P Kaadze, K Karavakis, E Lecoq, P Lourenco, C Maki, T Malberti, M Malgeri, L Mannelli, M Masetti, L Maurisset, A Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Nesvold, E Nguyen, M Orimoto, T Orsini, L Cortezon, EP Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Polese, G Quertenmont, L Racz, A Reece, W Antunes, JR Rolandi, G Rommerskirchen, T Rovelli, C Rovere, M Sakulin, H Schafer, C Schwick, C Segoni, I Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Spiropulu, M Stoye, M Tsirou, A Vichoudis, P Wohri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Bani, L Bortignon, P Caminada, L Casal, B Chanon, N Chen, Z Cittolin, S Dissertori, G Dittmar, M Eugster, J Freudenreich, K Grab, C Hintz, W Lecomte, P Lustermann, W Marchica, C Del Arbol, PMR Milenovic, P Moortgat, F Nageli, C Nef, P Nef, P Nessi-Tedaldi, F Pape, L Pauss, F Punz, T Rizzi, A Ronga, FJ Rossini, M Sala, L Sanchez, AK Sawley, MC Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, M Wehrli, L Weng, J Aguilo, E Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Jaeger, A Mejias, BM Otiougova, P Robmann, P Schmidt, A Snoek, H Chang, YH Chen, KH Kuo, CM Li, SW Lin, W Liu, ZK Lu, YJ Mekterovic, D Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Shiu, JG Tzeng, YM Wan, X Wang, M Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Uzun, D Vergili, LN Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Yildirim, E Zeyrek, M Deliomeroglu, M Demir, D Gulmez, E Isildak, B Kaya, M Kaya, O Ozbek, M Ozkorucuklu, S Sonmez, N Levchuk, L Bostock, F Brooke, JJ Cheng, TL Clement, E Cussans, D Frazier, R Goldstein, J Grimes, M Hartley, D Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Camanzi, B Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Ball, G Ballin, J Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Lyons, L MacEvoy, BC Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rompotis, N Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Tapper, A Tourneur, S Acosta, MV Virdee, T Wakefield, S Wardle, N Wardrope, D Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Martin, W Reid, ID Teodorescu, L Hatakeyama, K Liu, H Henderson, C Bose, T Jarrin, EC Fantasia, C Heister, A John, JS Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Avetisyan, A Bhattacharya, S Chou, JP Cutts, D Ferapontov, A Heintz, U Jabeen, S Kukartsev, G Landsberg, G Luk, M Narain, M Nguyen, D Segala, M Sinthuprasith, T Speer, T Tsang, KV Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Dolen, J Erbacher, R Friis, E Ko, W Kopecky, A Lander, R Liu, H Maruyama, S Miceli, T Nikolic, M Pellett, D Robles, J Rutherford, B Salur, S Schwarz, T Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Veelken, C Andreev, V Arisaka, K Cline, D Cousins, R Deisher, A Duris, J Erhan, S Farrell, C Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Tucker, J Valuev, V Babb, J Chandra, A Clare, R Ellison, J Gary, JW Giordano, F Hanson, G Jeng, GY Kao, SC Liu, F Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Shen, BC Stringer, R Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Mangano, B Padhi, S Palmer, C Petrucciani, G Pi, H Pieri, M Ranieri, R Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lowette, S Mccoll, N Mullin, E Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W Vlimant, JR West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Gataullin, M Ma, Y Mott, A Newman, HB Rogan, C Shin, K Timciuc, V Traczyk, P Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Carroll, R Ferguson, T Iiyama, Y Jang, DW Jun, SY Liu, YF Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Dinardo, ME Drell, BR Edelmaier, CJ Ford, WT Gaz, A Heyburn, B Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Zang, SL Agostino, L Alexander, J Chatterjee, A Eggert, N Gibbons, LK Heltsley, B Henriksson, K Hopkins, W Khukhunaishvili, A Kreis, B Liu, Y Kaufman, GN Patterson, JR Puigh, D Ryd, A Saelim, M Salvati, E Shi, X Sun, W Teo, WD Thom, J Thompson, J Vaughan, J Weng, Y Winstrom, L Wittich, P Biselli, A Cirino, G Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Atac, M Bakken, JA Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Cooper, W Eartly, DP Elvira, VD Esen, S Fisk, I Freeman, J Gao, Y Gottschalk, E Green, D Gunthoti, K Gutsche, O Hanlon, J Harris, RM Hirschauer, J Hooberman, B Jensen, H Johnson, M Joshi, U Khatiwada, R Klima, B Kousouris, K Kunori, S Kwan, S Leonidopoulos, C Limon, P Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Mason, D McBride, P Miao, T Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Pivarski, J Pordes, R Prokofyev, O Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Goldberg, S Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Mitselmakher, G Muniz, L Myeonghun, P Prescott, C Remington, R Rinkevicius, A Schmitt, M Scurlock, B Sellers, P Skhirtladze, N Snowball, M Wang, D Yelton, J Zakaria, M Gaultney, V Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Sekmen, S Veeraraghavan, V Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kunde, GJ Lacroix, F Malek, M O'Brien, C Silkworth, C Silvestre, C Smoron, A Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Duru, F Lae, CK McCliment, E Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bonato, A Eskew, C Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Tran, NV Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Kenny, RP Murray, M Noonan, D Sanders, S Wood, JS Zhukova, V Barfuss, AF Bolton, T Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Wan, Z Gronberg, J Lange, D Wright, D Baden, A Boutemeur, M Eno, SC Ferencek, D Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Lu, Y Mignerey, AC Rossato, K Rumerio, P Santanastasio, F Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Alver, B Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Everaerts, P Ceballos, GG Goncharov, M Hahn, KA Harris, P Kim, Y Klute, M Lee, YJ Li, W Loizides, C Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Stockli, F Sumorok, K Sung, K Velicanu, D Wenger, EA Wolf, R Xie, S Yang, M Yilmaz, Y Yoon, AS Zanetti, M Cooper, SI Cushman, P Dahmes, B De Benedetti, A Franzoni, G Gude, A Haupt, J Klapoetke, K Kubota, Y Mans, J Pastika, N Rekovic, V Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Cremaldi, LM Godang, R Kroeger, R Perera, L Rahmat, R Sanders, DA Summers, D Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Jindal, P Keller, J Kelly, T Kravchenko, I Lazo-Flores, J Malbouisson, H Malik, S Snow, GR Baur, U Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Shipkowski, SP Smith, K Alverson, G Barberis, E Baumgartel, D Boeriu, O Chasco, M Reucroft, S Swain, J Trocino, D Wood, D Zhang, J Anastassov, A Kubik, A Mucia, N Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Brinkerhoff, A Hildreth, M Jessop, C Karmgard, DJ Kolb, J Kolberg, T Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Ruchti, R Slaunwhite, J Valls, N Wayne, M Ziegler, J Bylsma, B Durkin, LS Gu, J Hill, C Killewald, P Kotov, K Ling, TY Rodenburg, M Vuosalo, C Williams, G Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hebda, P Hunt, A Laird, E Pegna, DL Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Safdi, B Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatserklyaniy, A Alagoz, E Barnes, VE Bolla, G Borrello, L Bortoletto, D De Mattia, M Everett, A Garfinkel, AF Gutay, L Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Liu, C Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Yoo, HD Zablocki, J Zheng, Y Guragain, S Parashar, N Adair, A Boulahouache, C Ecklund, KM Geurts, FJM Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R de Barbaro, P Demina, R Eshaq, Y Flacher, H Garcia-Bellido, A Goldenzweig, P Gotra, Y Han, J Harel, A Miner, DC Orbaker, D Petrillo, G Sakumoto, W Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Atramentov, O Barker, A Contreras-Campana, C Contreras-Campana, E Duggan, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hits, D Lath, A Panwalkar, S Patel, R Richards, A Rose, K Schnetzer, S Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Gurrola, A Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Safonov, A Sengupta, S Suarez, I Tatarinov, A Toback, D Akchurin, N Bardak, C Damgov, J Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Mane, P Roh, Y Sill, A Volobouev, I Wigmans, R Yazgan, E Appelt, E Brownson, E Engh, D Florez, C Gabella, W Issah, M Johns, W Johnston, C Kurt, P Maguire, C Melo, A Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Cox, B Francis, B Goadhouse, S Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Yohay, R Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Mattson, M Milstene, C Sakharov, A Anderson, M Bachtis, M Belknap, D Bellinger, JN Carlsmith, D Cepeda, M Dasu, S Efron, J Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Loveless, R Mohapatra, A Ojalvo, I Parker, W Ross, I Savin, A Smith, WH Swanson, J Weinberg, M AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Haensel, S. Hoch, M. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rahbaran, B. Rohringer, H. Schofbeck, R. Strauss, J. Taurok, A. Teischinger, F. Trauner, C. Wagner, P. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Bansal, S. Benucci, L. De Wolf, E. A. Janssen, X. Luyckx, S. Maes, T. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Blekman, F. Blyweert, S. D'Hondt, J. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, M. Olbrechts, A. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hammad, G. H. Hreus, T. Marage, P. E. Raval, A. Thomas, L. Marcken, G. Vander Velde, C. Vander Vanlaer, P. Adler, V. Cimmino, A. Costantini, S. Grunewald, M. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Ryckbosch, D. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, P. Walsh, S. Zaganidis, N. Basegmez, S. Bruno, G. Caudron, J. Ceard, L. Gil, E. Cortina De Jeneret, J. De Favereau Delaere, C. Favart, D. Giammanco, A. Gregoire, G. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Ovyn, S. Pagano, D. Pin, A. Piotrzkowski, K. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Alves, G. A. Brito, L. De Jesus Damiao, D. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Da Costa, E. M. De Oliveira Martins, C. Fonseca De Souza, S. Matos Figueiredo, D. Mundim, L. Nogima, H. Oguri, V. Prado Da Silva, W. L. Santoro, A. Silva Do Amaral, S. M. Sznajder, A. Bernardes, C. A. Dias, F. A. Dos Anjos Costa, T. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Darmenov, N. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vutova, M. Dimitrov, A. Hadjiiska, R. Karadzhinova, A. Kozhuharov, V. Litov, L. Mateev, M. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Zang, J. Zhang, Z. Ban, Y. Guo, S. Guo, Y. Li, W. Mao, Y. Qian, S. J. Teng, H. Zhu, B. Zou, W. Cabrera, A. Moreno, B. Gomez Rios, A. A. Ocampo Oliveros, A. F. Osorio Sanabria, J. C. Godinovic, N. Lelas, D. Lelas, K. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Kovac, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Morovic, S. Attikis, A. Galanti, M. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Kamel, A. Ellithi Khalil, S. Mahmoud, M. A. Radi, A. Hektor, A. Kadastik, M. Muentel, M. Raidal, M. Rebane, L. Tiko, A. Azzolini, V. Eerola, P. Fedi, G. Voutilainen, M. Czellar, S. Harkonen, J. Heikkinen, A. Heikkinen, A. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Karjalainen, A. Korpela, A. Tuuva, T. Sillou, D. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Gentit, F. X. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Marionneau, M. Millischer, L. Rander, J. Rosowsky, A. Shreyber, I. Titov, M. Verrecchia, P. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Dahms, T. Dobrzynski, L. Elgammal, S. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Thiebaux, C. Wyslouch, B. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Greder, S. Juillot, P. Karim, M. Le Bihan, A. -C. Mikami, Y. Van Hove, P. Fassi, F. Mercier, D. Baty, C. Beauceron, S. Beaupere, N. Bedjidian, M. Bondu, O. Boudoul, G. Boumediene, D. Brun, H. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Ille, B. Kurca, T. Le Grand, T. Lethuillier, M. Mirabito, L. Perries, S. Sordini, V. Tosi, S. Tschudi, Y. Verdier, P. Viret, S. Lomidze, D. Anagnostou, G. Beranek, S. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Mohr, N. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Weber, M. Wittmer, B. Ata, M. Dietz-Laursonn, E. Erdmann, M. Hebbeker, T. Heidemann, C. Hinzmann, A. Hoepfner, K. Klimkovich, T. Klingebiel, D. Kreuzer, P. Lanske, D. Lingemann, J. Magass, C. Merschmeyer, M. Meyer, A. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Bontenackels, M. Cherepanov, V. Davids, M. Duda, M. Fluegge, G. Geenen, H. Giffels, M. Ahmad, W. Haj Heydhausen, D. Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Rennefeld, J. Sauerland, P. Stahl, A. Tornier, D. Zoeller, M. H. Martin, M. Aldaya Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Cakir, A. Campbell, A. Castro, E. Dammann, D. Eckerlin, G. Eckstein, D. Flossdorf, A. Flucke, G. Geiser, A. Hauk, J. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Lohmann, W. Mankel, R. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Olzem, J. Petrukhin, A. Pitzl, D. Raspereza, A. Rosin, M. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Spiridonov, A. Stein, M. Tomaszewska, J. Walsh, R. Wissing, C. Autermann, C. Blobel, V. Bobrovskyi, S. Draeger, J. Enderle, H. Gebbert, U. Goerner, M. Hermanns, T. Kaschube, K. Kaussen, G. Kirschenmann, H. Klanner, R. Lange, J. Mura, B. Naumann-Emme, S. Nowak, F. Pietsch, N. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schroeder, M. Schum, T. Stadie, H. Steinbrueck, G. Thomsen, J. Barth, C. Bauer, J. Berger, J. Buege, V. Chwalek, T. De Boer, W. Dierlamm, A. Dirkes, G. Feindt, M. Gruschke, J. Hackstein, C. Hartmann, F. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Katkov, I. Komaragiri, J. R. Kuhr, T. Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Renz, M. Saout, C. Scheurer, A. Schieferdecker, P. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Wagner-Kuhr, J. Weiler, T. Zeise, M. Zhukov, V. Ziebarth, E. B. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Ntomari, E. Petrakou, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Stiliaris, E. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Triantis, F. A. Aranyi, A. Bencze, G. Boldizsar, L. Hajdu, C. Hidas, P. Horvath, D. Kapusi, A. Krajczar, K. Sikler, F. Veres, G. I. Vesztergombi, G. Beni, N. Molnar, J. Palinkas, J. Szillasi, Z. Veszpremi, V. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, A. P. Singh, J. Singh, S. P. Ahuja, S. Choudhary, B. C. Gupta, P. Kumar, A. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Dutta, S. Gomber, B. Jain, S. Jain, S. Khurana, R. Sarkar, S. Choudhury, R. K. Dutta, D. Kailas, S. Kumar, V. Mehta, P. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Guchait, M. Gurtu, A. Maity, M. Majumder, D. Majumder, G. Mazumdar, K. Mohanty, G. B. Saha, A. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Mondal, N. K. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Hesari, H. Jafari, A. Khakzad, M. Mohammadi, A. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Manna, N. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pierro, G. A. Pompili, A. Pugliese, G. Romano, F. Roselli, G. Selvaggi, G. Silvestris, L. Trentadue, R. Tupputi, S. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Giunta, M. Grandi, C. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. De Guio, F. Di Matteo, L. Gennai, S. Ghezzi, A. Malvezzi, S. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Buontempo, S. Montoya, A. Carrillo Cavallo, N. De Cosa, A. Fabozzi, F. Iorio, A. O. M. Lista, L. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Dosselli, U. Fanzago, F. Gasparini, F. Gasparini, U. Gozzelino, A. Lacaprara, S. Lazzizzera, I. Margoni, M. Mazzucato, M. Meneguzzo, A. T. Nespolo, M. Perrozzi, L. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Baesso, P. Berzano, U. Ratti, S. P. Riccardi, C. Torre, P. Vitulo, P. Viviani, C. Biasini, M. Bilei, G. M. Caponeri, B. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Santocchia, A. Taroni, S. Valdata, M. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Palmonari, F. Segneri, G. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Di Marco, E. Diemoz, M. Franci, D. Grassi, M. Longo, E. Meridiani, P. Nourbakhsh, S. Organtini, G. Pandolfi, F. Paramatti, R. Rahatlou, S. Sigamani, M. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Botta, C. Cartiglia, N. Castello, R. Costa, M. Demaria, N. Graziano, A. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Sola, V. Solano, A. Staiano, A. Pereira, A. Vilela Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Marone, M. Montanino, D. Penzo, A. Heo, S. G. Nam, S. K. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Park, H. Ro, S. R. Son, D. C. Son, T. Kim, J. Y. Kim, Zero J. Song, S. Jo, H. Y. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, J. H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Seo, E. Sim, K. S. Choi, M. Kang, S. Kim, H. Park, C. Park, I. C. Park, S. Ryu, G. Cho, Y. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Martisiute, D. Petrov, P. Polujanskas, M. Sabonis, T. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de la Cruz, I. Lopez-Fernandez, R. Magana Villalba, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Tam, J. Butler, P. H. Doesburg, R. Silverwood, H. Ahmad, M. Ahmed, I. Ansari, M. H. Asghar, M. I. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Brona, G. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. Bargassa, P. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Musella, P. Nayak, A. Pela, J. Ribeiro, P. Q. Seixas, J. Varela, J. Afanasiev, S. Belotelov, I. Bunin, P. Gavrilenko, M. Golutvin, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Toropin, A. Troitsky, S. Epshteyn, V. Erofeeva, M. Gavrilov, V. Kaftanov, V. Kossov, M. Krokhotin, A. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Stolin, V. Vlasov, E. Zhokin, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Perfilov, M. Petrushanko, S. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Korablev, A. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Diez Pardos, C. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Vizan Garcia, J. M. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Jorda, C. Lobelle Pardo, P. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Piedra Gomez, J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Sobron Sanudo, M. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Baillon, P. Ball, A. H. Barney, D. Bell, A. J. Benedetti, D. Bernet, C. Bialas, W. Bloch, P. Bocci, A. Bolognesi, S. Bona, M. Breuker, H. Bunkowski, K. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Cure, B. D'Enterria, D. De Roeck, A. Di Guida, S. Dupont-Sagorin, N. Elliott-Peisert, A. Frisch, B. Funk, W. Gaddi, A. Georgiou, G. Gerwig, H. Gigi, D. Gill, K. Giordano, D. Glege, F. Garrido, R. Gomez-Reino Gouzevitch, M. Govoni, P. Gowdy, S. Guida, R. Guiducci, L. Hansen, M. Hartl, C. Harvey, J. Hegeman, J. Hegner, B. Hoffmann, H. F. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Lecoq, P. Lourenco, C. Maeki, T. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Maurisset, A. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Nesvold, E. Nguyen, M. Orimoto, T. Orsini, L. Cortezon, E. Palencia Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimia, M. Piparo, D. Polese, G. Quertenmont, L. Racz, A. Reece, W. Antunes, J. Rodrigues Rolandi, G. Rommerskirchen, T. Rovelli, C. Rovere, M. Sakulin, H. Schaefer, C. Schwick, C. Segoni, I. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Spiropulu, M. Stoye, M. Tsirou, A. Vichoudis, P. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Baeni, L. Bortignon, P. Caminada, L. Casal, B. Chanon, N. Chen, Z. Cittolin, S. Dissertori, G. Dittmar, M. Eugster, J. Freudenreich, K. Grab, C. Hintz, W. Lecomte, P. Lustermann, W. Marchica, C. Del Arbol, P. Martinez Ruiz Milenovic, P. Moortgat, F. Naegeli, C. Nef, P. Nef, P. Nessi-Tedaldi, F. Pape, L. Pauss, F. Punz, T. Rizzi, A. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Sawley, M. -C. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, M. Wehrli, L. Weng, J. Aguilo, E. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Jaeger, A. Mejias, B. Millan Otiougova, P. Robmann, P. Schmidt, A. Snoek, H. Chang, Y. H. Chen, K. H. Kuo, C. M. Li, S. W. Lin, W. Liu, Z. K. Lu, Y. J. Mekterovic, D. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Shiu, J. G. Tzeng, Y. M. Wan, X. Wang, M. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Uzun, D. Vergili, L. N. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Yildirim, E. Zeyrek, M. Deliomeroglu, M. Demir, D. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozbek, M. Ozkorucuklu, S. Sonmez, N. Levchuk, L. Bostock, F. Brooke, J. J. Cheng, T. L. Clement, E. Cussans, D. Frazier, R. Goldstein, J. Grimes, M. Hartley, D. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Camanzi, B. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Ball, G. Ballin, J. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Lyons, L. MacEvoy, B. C. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Tourneur, S. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Wardrope, D. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Martin, W. Reid, I. D. Teodorescu, L. Hatakeyama, K. Liu, H. Henderson, C. Bose, T. Jarrin, E. Carrera Fantasia, C. Heister, A. John, J. St. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Avetisyan, A. Bhattacharya, S. Chou, J. P. Cutts, D. Ferapontov, A. Heintz, U. Jabeen, S. Kukartsev, G. Landsberg, G. Luk, M. Narain, M. Nguyen, D. Segala, M. Sinthuprasith, T. Speer, T. Tsang, K. V. Breedon, R. Breto, G. Sanchez, M. Calderon De la Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Dolen, J. Erbacher, R. Friis, E. Ko, W. Kopecky, A. Lander, R. Liu, H. Maruyama, S. Miceli, T. Nikolic, M. Pellett, D. Robles, J. Rutherford, B. Salur, S. Schwarz, T. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Veelken, C. Andreev, V. Arisaka, K. Cline, D. Cousins, R. Deisher, A. Duris, J. Erhan, S. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Babb, J. Chandra, A. Clare, R. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Jeng, G. Y. Kao, S. C. Liu, F. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Shen, B. C. Stringer, R. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pi, H. Pieri, M. Ranieri, R. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lowette, S. Mccoll, N. Mullin, E. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. Vlimant, J. R. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Gataullin, M. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Shin, K. Timciuc, V. Traczyk, P. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Jun, S. Y. Liu, Y. F. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Dinardo, M. E. Drell, B. R. Edelmaier, C. J. Ford, W. T. Gaz, A. Heyburn, B. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Zang, S. L. Agostino, L. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Heltsley, B. Henriksson, K. Hopkins, W. Khukhunaishvili, A. Kreis, B. Liu, Y. Kaufman, G. Nicolas Patterson, J. R. Puigh, D. Ryd, A. Saelim, M. Salvati, E. Shi, X. Sun, W. Teo, W. D. Thom, J. Thompson, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Biselli, A. Cirino, G. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Atac, M. Bakken, J. A. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Cooper, W. Eartly, D. P. Elvira, V. D. Esen, S. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Green, D. Gunthoti, K. Gutsche, O. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. Jensen, H. Johnson, M. Joshi, U. Khatiwada, R. Klima, B. Kousouris, K. Kunori, S. Kwan, S. Leonidopoulos, C. Limon, P. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Mason, D. McBride, P. Miao, T. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Pivarski, J. Pordes, R. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Goldberg, S. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Mitselmakher, G. Muniz, L. Myeonghun, P. Prescott, C. Remington, R. Rinkevicius, A. Schmitt, M. Scurlock, B. Sellers, P. Skhirtladze, N. Snowball, M. Wang, D. Yelton, J. Zakaria, M. Gaultney, V. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Sekmen, S. Veeraraghavan, V. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kunde, G. J. Lacroix, F. Malek, M. O'Brien, C. Silkworth, C. Silvestre, C. Smoron, A. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Duru, F. Lae, C. K. McCliment, E. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bonato, A. Eskew, C. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Tran, N. V. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Wood, J. S. Zhukova, V. Barfuss, A. F. Bolton, T. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Wan, Z. Gronberg, J. Lange, D. Wright, D. Baden, A. Boutemeur, M. Eno, S. C. Ferencek, D. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Lu, Y. Mignerey, A. C. Rossato, K. Rumerio, P. Santanastasio, F. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Alver, B. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Everaerts, P. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Harris, P. Kim, Y. Klute, M. Lee, Y. -J. Li, W. Loizides, C. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Velicanu, D. Wenger, E. A. Wolf, R. Xie, S. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cooper, S. I. Cushman, P. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Haupt, J. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rekovic, V. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Cremaldi, L. M. Godang, R. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Jindal, P. Keller, J. Kelly, T. Kravchenko, I. Lazo-Flores, J. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Shipkowski, S. P. Smith, K. Alverson, G. Barberis, E. Baumgartel, D. Boeriu, O. Chasco, M. Reucroft, S. Swain, J. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Mucia, N. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Brinkerhoff, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Kolberg, T. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Ziegler, J. Bylsma, B. Durkin, L. S. Gu, J. Hill, C. Killewald, P. Kotov, K. Ling, T. Y. Rodenburg, M. Vuosalo, C. Williams, G. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hebda, P. Hunt, A. Laird, E. Pegna, D. Lopes Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Safdi, B. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatserklyaniy, A. Alagoz, E. Barnes, V. E. Bolla, G. Borrello, L. Bortoletto, D. De Mattia, M. Everett, A. Garfinkel, A. F. Gutay, L. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Liu, C. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Yoo, H. D. Zablocki, J. Zheng, Y. Guragain, S. Parashar, N. Adair, A. Boulahouache, C. Ecklund, K. M. Geurts, F. J. M. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Flacher, H. Garcia-Bellido, A. Goldenzweig, P. Gotra, Y. Han, J. Harel, A. Miner, D. C. Orbaker, D. Petrillo, G. Sakumoto, W. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Atramentov, O. Barker, A. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hits, D. Lath, A. Panwalkar, S. Patel, R. Richards, A. Rose, K. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Gurrola, A. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Safonov, A. Sengupta, S. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Bardak, C. Damgov, J. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Mane, P. Roh, Y. Sill, A. Volobouev, I. Wigmans, R. Yazgan, E. Appelt, E. Brownson, E. Engh, D. Florez, C. Gabella, W. Issah, M. Johns, W. Johnston, C. Kurt, P. Maguire, C. Melo, A. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Cox, B. Francis, B. Goadhouse, S. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Yohay, R. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Mattson, M. Milstene, C. Sakharov, A. Anderson, M. Bachtis, M. Belknap, D. Bellinger, J. N. Carlsmith, D. Cepeda, M. Dasu, S. Efron, J. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Loveless, R. Mohapatra, A. Ojalvo, I. Parker, W. Ross, I. Savin, A. Smith, W. H. Swanson, J. Weinberg, M. CA CMS Collaboration TI Search for B-s(0) -> mu(+)mu(-) and B-0 -> mu(+)mu(-) Decays in pp Collisions at root s=7 TeV SO PHYSICAL REVIEW LETTERS LA English DT Article ID SIMULATION AB A search for the rare decays B-s(0) --> mu(+)mu(-) and B-0 --> mu(+)mu(-) is performed in pp collisions at root s = 7 TeV, with a data sample corresponding to an integrated luminosity of 1.14 fb(-1), collected by the CMS experiment at the LHC. In both cases, the number of events observed after all selection requirements is consistent with expectations from background and standard-model signal predictions. The resulting upper limits on the branching fractions are B(B-s(0) --> mu(+)mu(-)) < 1.9 x 10(-8) and B(B-0 --> mu(+)mu(-)) < 4.6 x 10(-9), at 95% confidence level. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Haensel, S.; Hoch, M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, H.; Schofbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Trauner, C.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Bansal, S.; Benucci, L.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.] Univ Antwerp, Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Raval, A.; Thomas, L.; Marcken, G. Vander; Velde, C. Vander; Vanlaer, P.] Univ Libre Brussels, Brussels, Belgium. [Adler, V.; Cimmino, A.; Costantini, S.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Caudron, J.; Ceard, L.; Gil, E. Cortina; De Jeneret, J. De Favereau; Delaere, C.; Favart, D.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.] Catholic Univ Louvain, B-3000 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Brito, L.; De Jesus Damiao, D.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Silva Do Amaral, S. M.; Sznajder, A.; Cabrera, A.; Adair, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Bernardes, C. A.; Dias, F. A.; Dos Anjos Costa, T.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Inst Fis Teor, BR-01405 Sao Paulo, Brazil. [Darmenov, N.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Karadzhinova, A.; Kozhuharov, V.; Litov, L.; Mateev, M.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhu, B.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Cabrera, A.; Moreno, B. Gomez; Rios, A. A. Ocampo; Oliveros, A. F. Osorio; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.] Inst Rudjer Boskov, Zagreb, Croatia. [Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Kamel, A. Ellithi; Khalil, S.; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Hektor, A.; Kadastik, M.; Muentel, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Azzolini, V.; Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Czellar, S.; Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Sillou, D.] CNRS, IN2P3, Lab Annecy le Vieux Phys Particules, Annecy Le Vieux, France. [Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Verrecchia, P.] CEA Saclay, IRFU, DSM, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dahms, T.; Dobrzynski, L.; Elgammal, S.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Wyslouch, B.; Zabi, A.; Bernet, C.; Adiguzel, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A. -C.; Mikami, Y.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. [Fassi, F.; Mercier, D.] IN2P3, Ctr Calcul, Villeurbanne, France. [Baty, C.; Beauceron, S.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Viret, S.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Lomidze, D.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Dietz-Laursonn, E.; Erdmann, M.; Hebbeker, T.; Heidemann, C.; Hinzmann, A.; Hoepfner, K.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Lingemann, J.; Magass, C.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bontenackels, M.; Cherepanov, V.; Davids, M.; Duda, M.; Fluegge, G.; Geenen, H.; Giffels, M.; Ahmad, W. Haj; Heydhausen, D.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Tornier, D.; Zoeller, M. H.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Cakir, A.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Eckstein, D.; Flossdorf, A.; Flucke, G.; Geiser, A.; Hauk, J.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Rosin, M.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Tomaszewska, J.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Autermann, C.; Blobel, V.; Bobrovskyi, S.; Draeger, J.; Enderle, H.; Gebbert, U.; Goerner, M.; Hermanns, T.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schroeder, M.; Schum, T.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Anastassov, A.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Bauer, J.; Berger, J.; Buege, V.; Chwalek, T.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Katkov, I.; Komaragiri, J. R.; Kuhr, T.; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Renz, M.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Weiler, T.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.] Univ Karlsruhe, Inst Expt Kernphys, D-7500 Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Petrakou, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece. [Aranyi, A.; Bencze, G.; Boldizsar, L.; Hajdu, C.; Hidas, P.; Horvath, D.; Kapusi, A.; Krajczar, K.; Sikler, F.; Veres, G. I.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, A. P.; Singh, J.; Singh, S. P.] Panjab Univ, Chandigarh, India. [Ahuja, S.; Choudhary, B. C.; Gupta, P.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi, India. [Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, S.; Khurana, R.; Sarkar, S.] Saha Inst Nucl Phys, Kolkata, India. [Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Research EHEP, Mumbai, Maharashtra, India. [Guchait, M.; Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Res HECR, Mumbai, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi, A.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res & Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Trentadue, R.; Tupputi, S.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; De Palma, M.; Lusito, L.; Manna, N.; Marangelli, B.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Roselli, G.; Selvaggi, G.; Tupputi, S.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.; Romano, F.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Masetti, G.; Meneghelli, M.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Lenzi, P.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Benaglia, A.; Di Matteo, L.; Ghezzi, A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, A. Carrillo; Cavallo, N.; De Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [De Cosa, A.; Merola, M.] Univ Naples Federico II, Naples, Italy. [Lazzizzera, I.] Univ Trento, Padua, Italy. [Baesso, P.; Berzano, U.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.; Romeo, F.; Valdata, M.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Palmonari, F.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bernardini, J.; Fiori, F.; Messineo, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Meridiani, P.; Nourbakhsh, S.; Organtini, G.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.; Sigamani, M.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Di Marco, E.; Franci, D.; Longo, E.; Organtini, G.; Rahatlou, S.] Univ Roma La Sapienza, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N.; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Pereira, A. Vilela] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Migliore, E.; Monaco, V.; Pelliccioni, M.; Potenza, A.; Romero, A.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Della Ricca, G.; Marone, M.; Montanino, D.] Univ Trieste, Trieste, Italy. [Heo, S. G.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Jo, H. Y.] Konkuk Univ, Seoul, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Seo, E.; Sim, K. S.] Korea Univ, Seoul, South Korea. [Choi, M.; Kang, S.; Kim, H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Martisiute, D.; Petrov, P.; Polujanskas, M.; Sabonis, T.] Vilnius Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de la Cruz, I.; Lopez-Fernandez, R.; Magana Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.; Tam, J.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Doesburg, R.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ahmed, I.; Ansari, M. H.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Brona, G.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Bluj, M.; Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Topakli, H.] Soltan Inst Nucl Studies, PL-00681 Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Musella, P.; Nayak, A.; Pela, J.; Ribeiro, P. Q.; Seixas, J.; Varela, J.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Belotelov, I.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.] Russian Acad Sci, Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kaftanov, V.; Kossov, M.; Krokhotin, A.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Katkov, I.; Zhukov, V.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Demir, D.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Diez Pardos, C.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] CIEMAT, E-28040 Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Vizan Garcia, J. M.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Jorda, C.; Lobelle Pardo, P.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Darmenov, N.; Genchev, V.; Iaydjiev, P.; Jung, H.; Hajdu, C.; Mohanty, A. K.; De Filippis, N.; Chiorboli, M.; Tropiano, A.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Gennai, S.; Ghezzi, A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli; Montoya, A. Carrillo; Iorio, A. O. M.; Nespolo, M.; Perrozzi, L.; Lucaroni, A.; Taroni, S.; Tonelli, G.; Venturi, A.; Grassi, M.; Pandolfi, F.; Botta, C.; Graziano, A.; Gallinaro, M.; Pela, J.; Kossov, M.; Grishin, V.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bell, A. J.; Benedetti, D.; Bernet, C.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Bona, M.; Breuker, H.; Bunkowski, K.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Cure, B.; D'Enterria, D.; De Roeck, A.; Di Guida, S.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Gaddi, A.; Georgiou, G.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Garrido, R. Gomez-Reino; Gouzevitch, M.; Govoni, P.; Gowdy, S.; Guida, R.; Guiducci, L.; Hansen, M.; Hartl, C.; Harvey, J.; Hegeman, J.; Hegner, B.; Hoffmann, H. F.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Lecoq, P.; Lourenco, C.; Maeki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Maurisset, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Nguyen, M.; Orimoto, T.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimia, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rommerskirchen, T.; Rovelli, C.; Rovere, M.; Sakulin, H.; Schaefer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Spiropulu, M.; Stoye, M.; Tsirou, A.; Vichoudis, P.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.; Kovalskyi, D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Caminada, L.; Marchica, C.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Baeni, L.; Bortignon, P.; Caminada, L.; Casal, B.; Chanon, N.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hintz, W.; Lecomte, P.; Lustermann, W.; Marchica, C.; Del Arbol, P. Martinez Ruiz; Milenovic, P.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Sawley, M. -C.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, M.; Wehrli, L.; Weng, J.] ETH, Inst Particle Phys, Zurich, Switzerland. [Aguilo, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Jaeger, A.; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Schmidt, A.; Snoek, H.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Uzun, D.; Vergili, L. N.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Deliomeroglu, M.; Demir, D.; Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozbek, M.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Levchuk, L.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Bostock, F.; Brooke, J. J.; Cheng, T. L.; Clement, E.; Cussans, D.; Frazier, R.; Goldstein, J.; Grimes, M.; Hartley, D.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Newbold, D. M.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; MacEvoy, B. C.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Wardrope, D.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.; Liu, H.] Baylor Univ, Waco, TX 76798 USA. [Henderson, C.] Univ Alabama, Tuscaloosa, AL USA. [Bose, T.; Jarrin, E. Carrera; Fantasia, C.; Heister, A.; John, J. St.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Avetisyan, A.; Bhattacharya, S.; Chou, J. P.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Rutherford, B.; Salur, S.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Veelken, C.] Univ Calif Davis, Davis, CA 95616 USA. [Felcini, M.; Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Duris, J.; Erhan, S.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Chandra, A.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Mullin, E.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Dubinin, M.; Rovelli, C.; Spiropulu, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Shin, K.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Henriksson, K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Liu, Y.; Kaufman, G. Nicolas; Patterson, J. R.; Puigh, D.; Ryd, A.; Saelim, M.; Salvati, E.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Biselli, A.; Cirino, G.; Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cooper, W.; Eartly, D. P.; Elvira, V. D.; Esen, S.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gunthoti, K.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jensen, H.; Johnson, M.; Joshi, U.; Khatiwada, R.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Limon, P.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Pivarski, J.; Pordes, R.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Piedra Gomez, J.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Goldberg, S.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mitselmakher, G.; Muniz, L.; Myeonghun, P.; Prescott, C.; Remington, R.; Rinkevicius, A.; Schmitt, M.; Scurlock, B.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Sekmen, S.; Veeraraghavan, V.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kunde, G. J.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Silvestre, C.; Smoron, A.; Strom, D.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Lu, Y.; Mignerey, A. C.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Wyslouch, B.; Alver, B.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Everaerts, P.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y. -J.; Li, W.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.; Adair, A.] Univ Mississippi, University, MS 38677 USA. [Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Chasco, M.; Reucroft, S.; Swain, J.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.] Northeastern Univ, Boston, MA 02115 USA. [Kubik, A.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Gu, J.; Hill, C.; Killewald, P.; Kotov, K.; Ling, T. Y.; Rodenburg, M.; Vuosalo, C.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hunt, A.; Laird, E.; Pegna, D. Lopes; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; De Mattia, M.; Everett, A.; Garfinkel, A. F.; Gutay, L.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Guragain, S.; Parashar, N.] Purdue Univ Calumet, Hammond, IN USA. [Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Flacher, H.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Sakumoto, W.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Atramentov, O.; Barker, A.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Patel, R.; Richards, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Safonov, A.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Bardak, C.; Damgov, J.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Issah, M.; Johns, W.; Johnston, C.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goadhouse, S.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Yohay, R.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Mattson, M.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Bachtis, M.; Belknap, D.; Bellinger, J. N.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Efron, J.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Parker, W.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.] Univ Wisconsin, Madison, WI USA. [Bernardes, C. A.; Dos Anjos Costa, T.; Gregores, E. M.; Mercadante, P. G.; Rolandi, G.] Univ Fed ABC, Santo Andre, Brazil. [Khalil, S.; Caminada, L.; Marchica, C.; Naegeli, C.] British Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] Ain Shams Univ, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Karim, M.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lange, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Krajczar, K.; Sikler, F.; Veres, G. I.; Vesztergombi, G.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Bakhshiansohi, H.; Fahim, A.; Jafari, A.] Sharif Univ Technol, Tehran, Iran. [Etesami, S. M.; Zeinali, M.] Isfahan Univ Technol, Esfahan, Iran. [Mohammadi, A.] Shiraz Univ, Shiraz, Iran. [Bianco, S.] Univ Rome, Fac Ingn, Rome, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Martini, L.] Univ Siena, I-53100 Siena, Italy. [Bell, A. J.] Univ Geneva, Geneva, Switzerland. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Ozturk, S.] Univ Iowa, Iowa City, IA USA. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Demir, D.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Boos, Eduard/D-9748-2012; Snigirev, Alexander/D-8912-2012; Tomei, Thiago/E-7091-2012; Focardi, Ettore/E-7376-2012; Raidal, Martti/F-4436-2012; Novaes, Sergio/D-3532-2012; Padula, Sandra /G-3560-2012; Fruhwirth, Rudolf/H-2529-2012; Torassa, Ezio/I-1788-2012; Giacomelli, Paolo/B-8076-2009; Jeitler, Manfred/H-3106-2012; Venturi, Andrea/J-1877-2012; de Jesus Damiao, Dilson/G-6218-2012; Montanari, Alessandro/J-2420-2012; Amapane, Nicola/J-3683-2012; tosi, mia/J-5777-2012; Klyukhin, Vyacheslav/D-6850-2012; Petrushanko, Sergey/D-6880-2012; Stahl, Achim/E-8846-2011; Mercadante, Pedro/K-1918-2012; Della Ricca, Giuseppe/B-6826-2013; Kadastik, Mario/B-7559-2008; Mundim, Luiz/A-1291-2012; Santaolalla, Javier/C-3094-2013; Alves, Gilvan/C-4007-2013; Menasce, Dario Livio/A-2168-2016; Bargassa, Pedrame/O-2417-2016; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Gerbaudo, Davide/J-4536-2012; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Cakir, Altan/P-1024-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Ozdemir, Kadri/P-8058-2014; Azarkin, Maxim/N-2578-2015; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; Matorras, Francisco/I-4983-2015; My, Salvatore/I-5160-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Russ, James/P-3092-2014; Calderon, Alicia/K-3658-2014; Cerrada, Marcos/J-6934-2014; Calvo Alamillo, Enrique/L-1203-2014; Gribushin, Andrei/J-4225-2012; de la Cruz, Begona/K-7552-2014; Josa, Isabel/K-5184-2014; Dahms, Torsten/A-8453-2015; Grandi, Claudio/B-5654-2015; Leonidov, Andrey/P-3197-2014; Bernardes, Cesar Augusto/D-2408-2015; Ahmed, Ijaz/E-9144-2015; Azzi, Patrizia/H-5404-2012; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Marinho, Franciole/N-8101-2014; Ferguson, Thomas/O-3444-2014; Ragazzi, Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014; Wulz, Claudia-Elisabeth/H-5657-2011; Chen, Jie/H-6210-2011; Yang, Fan/B-2755-2012; buotempo, salvatore/B-5210-2012; Krammer, Manfred/A-6508-2010; Tinoco Mendes, Andre David/D-4314-2011; Savrin, Victor/D-6213-2012; Lokhtin, Igor/D-7004-2012; Kodolova, Olga/D-7158-2012; Dudko, Lev/D-7127-2012; Perfilov, Maxim/E-1064-2012; Belyaev, Andrey/E-1540-2012; Katkov, Igor/E-2627-2012; Rolandi, Luigi (Gigi)/E-8563-2013; Zalewski, Piotr/H-7335-2013; Ivanov, Andrew/A-7982-2013; Markina, Anastasia/E-3390-2012; Troitsky, Sergey/C-1377-2014; Marlow, Daniel/C-9132-2014; Oguri, Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Bartalini, Paolo/E-2512-2014; Codispoti, Giuseppe/F-6574-2014; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Fassi, Farida/F-3571-2016; Varela, Joao/K-4829-2016 OI Tomei, Thiago/0000-0002-1809-5226; Focardi, Ettore/0000-0002-3763-5267; Novaes, Sergio/0000-0003-0471-8549; de Jesus Damiao, Dilson/0000-0002-3769-1680; Montanari, Alessandro/0000-0003-2748-6373; Amapane, Nicola/0000-0001-9449-2509; Klyukhin, Vyacheslav/0000-0002-8577-6531; Stahl, Achim/0000-0002-8369-7506; Della Ricca, Giuseppe/0000-0003-2831-6982; Mundim, Luiz/0000-0001-9964-7805; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Bargassa, Pedrame/0000-0001-8612-3332; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Gerbaudo, Davide/0000-0002-4463-0878; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Ozdemir, Kadri/0000-0002-0103-1488; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; Matorras, Francisco/0000-0003-4295-5668; My, Salvatore/0000-0002-9938-2680; Russ, James/0000-0001-9856-9155; Cerrada, Marcos/0000-0003-0112-1691; Calvo Alamillo, Enrique/0000-0002-1100-2963; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Azzi, Patrizia/0000-0002-3129-828X; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Marinho, Franciole/0000-0002-7327-0349; Ferguson, Thomas/0000-0001-5822-3731; Ragazzi, Stefano/0000-0001-8219-2074; Benussi, Luigi/0000-0002-2363-8889; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Krammer, Manfred/0000-0003-2257-7751; Tinoco Mendes, Andre David/0000-0001-5854-7699; Dudko, Lev/0000-0002-4462-3192; Katkov, Igor/0000-0003-3064-0466; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Ivanov, Andrew/0000-0002-9270-5643; Troitsky, Sergey/0000-0001-6917-6600; Codispoti, Giuseppe/0000-0003-0217-7021; Safdi, Benjamin R./0000-0001-9531-1319; Lloret Iglesias, Lara/0000-0002-0157-4765; Carrera, Edgar/0000-0002-0857-8507; Sguazzoni, Giacomo/0000-0002-0791-3350; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Fassi, Farida/0000-0002-6423-7213; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Martelli, Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Varela, Joao/0000-0003-2613-3146 FU FMSR (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MES (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences (Estonia); NICPB (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NKTH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); WCU (Korea); LAS (Lithuania); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); MST (Russia); MAE (Russia); RFBR (Russia); MSTD (Serbia); MICINN (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK (Turkey); TAEK (Turkey); STFC (United Kingdom); DOE (U.S.); NSF (U.S.) FX We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA andCNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST, MAE and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (U.S.). NR 17 TC 48 Z9 48 U1 2 U2 57 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 EI 1079-7114 J9 PHYS REV LETT JI Phys. Rev. Lett. PD NOV 1 PY 2011 VL 107 IS 19 AR 191802 DI 10.1103/PhysRevLett.107.191802 PG 15 WC Physics, Multidisciplinary SC Physics GA 847XC UT WOS:000297005600003 PM 22181597 ER PT J AU Deutschbauer, A Price, MN Wetmore, KM Shao, WJ Baumohl, JK Xu, ZC Nguyen, M Tamse, R Davis, RW Arkin, AP AF Deutschbauer, Adam Price, Morgan N. Wetmore, Kelly M. Shao, Wenjun Baumohl, Jason K. Xu, Zhuchen Michelle Nguyen Tamse, Raquel Davis, Ronald W. Arkin, Adam P. TI Evidence-Based Annotation of Gene Function in Shewanella oneidensis MR-1 Using Genome-Wide Fitness Profiling across 121 Conditions SO PLOS GENETICS LA English DT Article ID TRANSPOSON MUTANT LIBRARY; ESCHERICHIA-COLI; HIGH-THROUGHPUT; SACCHAROMYCES-CEREVISIAE; ANTIBIOTIC-RESISTANCE; ANAEROBIC RESPIRATION; MANGANESE REDUCTION; INSERTION MUTANTS; DELETION MUTANTS; SYSTEMS BIOLOGY AB Most genes in bacteria are experimentally uncharacterized and cannot be annotated with a specific function. Given the great diversity of bacteria and the ease of genome sequencing, high-throughput approaches to identify gene function experimentally are needed. Here, we use pools of tagged transposon mutants in the metal-reducing bacterium Shewanella oneidensis MR-1 to probe the mutant fitness of 3,355 genes in 121 diverse conditions including different growth substrates, alternative electron acceptors, stresses, and motility. We find that 2,350 genes have a pattern of fitness that is significantly different from random and 1,230 of these genes (37% of our total assayed genes) have enough signal to show strong biological correlations. We find that genes in all functional categories have phenotypes, including hundreds of hypotheticals, and that potentially redundant genes (over 50% amino acid identity to another gene in the genome) are also likely to have distinct phenotypes. Using fitness patterns, we were able to propose specific molecular functions for 40 genes or operons that lacked specific annotations or had incomplete annotations. In one example, we demonstrate that the previously hypothetical gene SO_3749 encodes a functional acetylornithine deacetylase, thus filling a missing step in S. oneidensis metabolism. Additionally, we demonstrate that the orphan histidine kinase SO_2742 and orphan response regulator SO_2648 form a signal transduction pathway that activates expression of acetyl-CoA synthase and is required for S. oneidensis to grow on acetate as a carbon source. Lastly, we demonstrate that gene expression and mutant fitness are poorly correlated and that mutant fitness generates more confident predictions of gene function than does gene expression. The approach described here can be applied generally to create large-scale gene-phenotype maps for evidence-based annotation of gene function in prokaryotes. C1 [Deutschbauer, Adam; Price, Morgan N.; Shao, Wenjun; Baumohl, Jason K.; Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Wetmore, Kelly M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Xu, Zhuchen; Arkin, Adam P.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Michelle Nguyen; Tamse, Raquel; Davis, Ronald W.] Stanford Univ, Dept Biochem, Stanford Genome Technol Ctr, Stanford, CA 94305 USA. RP Deutschbauer, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM APArkin@lbl.gov RI Arkin, Adam/A-6751-2008 OI Arkin, Adam/0000-0002-4999-2931 FU Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work conducted by ENIGMA (Ecosystems and Networks Integrated with Genes and Molecular Assemblies) was supported by the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 80 TC 45 Z9 1550 U1 4 U2 53 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7404 J9 PLOS GENET JI PLoS Genet. PD NOV PY 2011 VL 7 IS 11 AR e1002385 DI 10.1371/journal.pgen.1002385 PG 17 WC Genetics & Heredity SC Genetics & Heredity GA 851JM UT WOS:000297264500035 PM 22125499 ER PT J AU Jansik, DP Wildenschild, D Rosenberg, ND AF Jansik, D. P. Wildenschild, D. Rosenberg, N. D. TI Flow Processes in the Dry Regime: The Effect on Capillary Barrier Performance SO VADOSE ZONE JOURNAL LA English DT Article ID WATER-VAPOR DIFFUSION; POROUS-MEDIA; HYDRAULIC CONDUCTIVITY; FRACTURE SURFACES; FILM FLOW; ADSORPTION; SOIL; CONDENSATION; ENHANCEMENT; POTENTIALS AB Engineered capillary barriers typically consist of two layers of granular materials designed so that the contrast in material hydraulic properties and sloping interface retain infiltrating water in the upper layer. We conducted two benchtop capillary barrier experiments, followed by interpretation and numerical modeling. The hydraulic parameters for two coarse materials were measured using standard methods, and we found that the materials had similar hydraulic properties despite being morphologically different (round vs. angular). The round sand provided a better functioning capillary barrier than the angular sand, but neither experiment could be characterized as a perfectly working capillary barrier. In both cases, >93% of the infiltrating water was successfully diverted from the lower layer; however, infiltration into the underlying layer was observed in both systems. Based on this work, we believe that noncontinuum processes such as vapor diffusion and film flow contribute to the observed phenomena and are important aspects to consider with respect to capillary barrier design as well as dry vadose zone processes in general. Using a theoretical film flow equation that incorporates the surface geometry of the porous material, we found that infiltration into the coarse underlying sand layer appeared to be dominated by water film flow. The NUFT (Nonisothermal Unsaturated-Saturated Flow and Transport) model was used for qualitative comparison simulations. We were able to reproduce the barrier breach observed in the experiments using targeted parameter adjustment, by which pseudo-film flow was successfully simulated. C1 [Jansik, D. P.; Wildenschild, D.] Oregon State Univ, Sch Chem Biol & Environm Engn, Corvallis, OR 97331 USA. [Rosenberg, N. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Jansik, D. P.] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Jansik, DP (reprint author), Oregon State Univ, Sch Chem Biol & Environm Engn, 102 Gleeson Hall, Corvallis, OR 97331 USA. EM danielle.jansik@pnnl.gov OI Wildenschild, Dorthe/0000-0002-6504-7817 FU U.S. Department of Energy (DOE) by the University of California, Lawrence Livermore National Laboratory [W-7405-Eng-48]; DOE; Oregon State University Subsurface Biosphere NSF IGERT; Oregon State University, Institute for Water and Watersheds FX This work was performed under the auspices of the U.S. Department of Energy (DOE) by the University of California, Lawrence Livermore National Laboratory, under Contract no. W-7405-Eng-48 and was funded by the DOE. Additional funding was provided by Oregon State University Subsurface Biosphere NSF IGERT program and Oregon State University, Institute for Water and Watersheds Graduate Student Research Grant. Special thanks to Gaurav Saini for his assistance with obtaining surface profiles of the sands, and to Ida L. Fabricius, Dep. of Environmental Engineering, Danish Technical University, for help with acquisition and interpretation of the BET data. NR 43 TC 1 Z9 1 U1 2 U2 17 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2011 VL 10 IS 4 BP 1173 EP 1184 DI 10.2136/vzj2010.0128 PG 12 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 852SE UT WOS:000297377000005 ER PT J AU Zhang, ZF AF Zhang, Z. Fred TI Soil Water Retention and Relative Permeability for Conditions from Oven-Dry to Full Saturation SO VADOSE ZONE JOURNAL LA English DT Article ID HYDRAULIC CONDUCTIVITY; UNSATURATED SOILS; POROUS-MEDIA; EQUATION; DRYNESS; FORCES; CURVES; MODEL AB Common conceptual models for unsaturated flow assume that the matric potential is attributed to the capillary force only. These models are successful at high and medium water contents but often give poor results at low water contents. The lower bound of existing water retention functions and conductivity models was extended from residual water content to the oven-dry condition (i.e., zero water content) by defining a state-dependent residual water content for a soil drier than a critical value. The advantages of the extended water retention functions include not refitting the retention parameters from the unextended model, its reduction to the unextended form when the soil is wetter than the critical value, and its compatibility with existing relative permeability models. In addition, a hydraulic conductivity model for film flow in a medium of smooth uniform spheres was modified by introducing a correction factor to describe the film flow-induced hydraulic conductivity for natural porous media. The total unsaturated hydraulic conductivity is the sum of those due to capillary and film flow; it smoothly transits between capillary-dominated flow and film-dominated flow over the full range of water content. The film flow is insignificant when the soil is wetter than the critical water content, and, vice versa, the capillary flow is insignificant when the soil is drier than the critical water content. The extended retention and conductivity models were tested with measurements. Results show that, when the soil is at high and intermediate water content, there is no difference between the unextended and the extended models as defined by the theory. When the soil is at low water content, the unextended models overestimate the water content but underestimate the conductivity. The extended models match the retention and conductivity measurements well. C1 Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. RP Zhang, ZF (reprint author), Pacific NW Natl Lab, Hydrol Grp, MSIN K9-33,POB 999,902 Battelle Blvd, Richland, WA 99352 USA. EM fred.zhang@pnl.gov OI Zhang, Fred/0000-0001-8676-6426 FU CH2M HILL Plateau Remediation Company; U.S. Department of Energy by Battelle [DE-AC05-76RL01830] FX Funding for this work was provided by the CH2M HILL Plateau Remediation Company's Remediation Decision Support project. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. NR 26 TC 15 Z9 15 U1 2 U2 21 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2011 VL 10 IS 4 BP 1299 EP 1308 DI 10.2136/vzj2011.0019 PG 10 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 852SE UT WOS:000297377000015 ER PT J AU Hains, AW Chen, HY Reilly, TH Gregg, BA AF Hains, Alexander W. Chen, Hsiang-Yu Reilly, Thomas H., III Gregg, Brian A. TI Cross-Linked Perylene Diimide-Based n-Type Interfacial Layer for Inverted Organic Photovoltaic Devices SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE organic photovoltaics; solar cells; organic electronics; interfacial layer; inverted architecture ID HETEROJUNCTION SOLAR-CELLS; LIGHT-EMITTING-DIODES; INDIUM-TIN-OXIDE; TRANSPORT LAYERS; THIN-FILMS; POLYMER; EFFICIENCY; PERFORMANCE; ELECTRONICS; MORPHOLOGY AB This contribution describes the synthesis and characterization of a perylene diimide (PDI)-based n-type semiconductor and its application to organic photovoltaic (OPV) devices having inverted architecture. Films of N,N'-bis(3-trimethoxysilylpropyl)-1,6,7,12-tetrachloroperylene-3,4,9,10-tetracarboxyldiimide (Cl(4)PSi(2)) and blends of this material with various polymers are solution-deposited on tin-doped indium oxide (ITO) substrates as interfacial layers (IFLs). The organic IFL described in this work is based on the air- and light-stable PDI core, annealed at low temperatures compatible with flexible substrates, and crosslinks in air for compatibility with device fabrication. Morphological, optical, and electrochemical analysis of these IFL films demonstrate predominantly smooth surfaces and HOMO and LUMO energies of similar to 4.5 and 7.0 eV, respectively, which are ideal for accepting electrons and blocking holes in inverted devices. A cationic silane species is added to the Cl(4)PSi(2) at an optimum similar to 2-5 wt% to reduce IFL series resistance and enhance device performance. Also, a short light soaking procedure is necessary for completed devices to achieve high fill factors in current density voltage analysis, a phenomenon previously only observed for inverted devices having an n-type inorganic IFL. C1 [Hains, Alexander W.; Chen, Hsiang-Yu; Reilly, Thomas H., III; Gregg, Brian A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Hains, AW (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM ahains@mldevices.com; brian.gregg@nrel.gov FU U. S. Department of Energy, Office of Science, Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC36-08GO28308] FX We thank Dr. B. To for assistance with AFM measurements and Dr. R. Cormier for helpful discussions. This work was funded by the U. S. Department of Energy, Office of Science, Basic Energy Science, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract DE-AC36-08GO28308 to NREL. NR 56 TC 21 Z9 21 U1 10 U2 70 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV PY 2011 VL 3 IS 11 BP 4381 EP 4387 DI 10.1021/am201027j PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 850LG UT WOS:000297195500032 PM 22059439 ER PT J AU Leblebici, SY Catane, L Barclay, DE Olson, T Chen, TL Ma, BW AF Leblebici, Sibel Y. Catane, Luis Barclay, David E. Olson, Tara Chen, Teresa L. Ma, Biwu TI Near-Infrared Azadipyrromethenes as Electron Donor for Efficient Planar Heterojunction Organic Solar Cells SO ACS APPLIED MATERIALS & INTERFACES LA English DT Article DE organic solar cells; near-infrared dyes; azadipyrromethenes; solution processable; planar heterojunction ID PHOTOVOLTAIC CELLS; FLUORESCENT; OLIGOTHIOPHENES; INTERFACE; PLATFORM; BODIPY; DYES AB We report the use of three solution processable azadipyrromethene (ADPM) based compounds, i.e., ADPM, BtF2-chelated ADPM (BF2-ADPM), and B,O-chelated ADPM (BO-ADPM), as electron donors in planar hetero-junction solar cells. These small molecules possess exceptional light harvesting capability with high extinction coefficients (similar to 1 x 10(5) M-1 cm(-1) in solutions) and broad absorption spectra up into the near-infrared region. Planar heterojunction organic solar cells, consisting of a solution processed electron donor layer and a vapor deposited C-60 acceptor layer, have been constructed to give power conversion efficiencies of 0.56, 0.69, and 2.63% for ADPM, BF2-ADPM, and BO-ADPM, respectively, under AM 1.5G simulated 1 sun solar illumination. A high open circuit voltage (V-oc) of similar to 0.8 V was achieved for the BO-ADPM/C-60 device, which is among the highest reported values for organic solar cells with photocurrent generation in the near-infrared region beyond 1.5 eV. C1 [Leblebici, Sibel Y.; Catane, Luis; Barclay, David E.; Olson, Tara; Chen, Teresa L.; Ma, Biwu] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Ma, BW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. EM BWMa@lbl.gov RI Ma, Biwu/B-6943-2012 FU Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, U.S. Department of Energy [DE-AC02-05CH11231]; University of California, Berkeley FX This work was performed at the Molecular Foundry, Lawrence Berkeley National Laboratory, and was supported by the Office of Science, Office of Basic Energy Sciences, Scientific User Facilities Division, U.S. Department of Energy, under Contract DE-AC02-05CH11231. S.L. thanks University of California, Berkeley, for the Chancellor's Fellowship. L.C. thanks Department of Energy for the Science Undergraduate Laboratory Internships (SULI) program. NR 34 TC 33 Z9 33 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1944-8244 J9 ACS APPL MATER INTER JI ACS Appl. Mater. Interfaces PD NOV PY 2011 VL 3 IS 11 BP 4469 EP 4474 DI 10.1021/am201157d PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 850LG UT WOS:000297195500043 PM 21999165 ER PT J AU Pint, CL Takei, K Kapadia, R Zheng, M Ford, AC Zhang, JJ Jamshidi, A Bardhan, R Urban, JJ Wu, M Ager, JW Oye, MM Javey, A AF Pint, Cary L. Takei, Kuniharu Kapadia, Rehan Zheng, Maxwell Ford, Alexandra C. Zhang, Junjun Jamshidi, Arash Bardhan, Rizia Urban, Jeffrey J. Wu, Ming Ager, Joel W. Oye, Michael M. Javey, Ali TI Rationally Designed, Three-Dimensional Carbon Nanotube Back-Contacts for Efficient Solar Devices SO ADVANCED ENERGY MATERIALS LA English DT Article DE carbon nanofibers; photoelectrochemistry; solar fuel; water splitting ID HETEROJUNCTION ARRAYS; OPTICAL-ABSORPTION; WATER-PHOTOLYSIS; HYBRID MATERIALS; TIO2; ENERGY; CELLS; PHOTOELECTROCHEMISTRY; PHOTOCATALYSIS; ELECTRODES C1 [Pint, Cary L.; Takei, Kuniharu; Kapadia, Rehan; Zheng, Maxwell; Ford, Alexandra C.; Zhang, Junjun; Jamshidi, Arash; Wu, Ming; Javey, Ali] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Bardhan, Rizia; Urban, Jeffrey J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. [Oye, Michael M.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM ajavey@berkeley.edu RI Javey, Ali/B-4818-2013; Pint, Cary/C-5053-2009; bardhan, rizia/A-9393-2010; Wu, Ming/J-9906-2012; Kapadia, Rehan/B-4100-2013; Pint, Cary/I-6785-2013; Bardhan, Rizia/B-4674-2014 OI Ager, Joel/0000-0001-9334-9751; Kapadia, Rehan/0000-0002-7611-0551; FU Berkeley Sensor and Actuator Center; Mohr Davidow Ventures; LDRD from Lawrence Berkeley National Laboratory (LBNL); Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy [DE-AC02-05CH11231]; Sloan Fellowship; World Class University, Sunchon National University FX This work was partially funded by Berkeley Sensor and Actuator Center, and Mohr Davidow Ventures. The synthesis part of this work was supported by a LDRD from Lawrence Berkeley National Laboratory (LBNL). Reflectance measurements were performed using facilities in the Electronic Materials Program, LBNL, which is supported by supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. A.J. acknowledges a Sloan Fellowship and support from the World Class University program at Sunchon National University. NR 34 TC 16 Z9 16 U1 1 U2 31 PU WILEY PERIODICALS, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN STREET, MALDEN, MA 02148-529 USA SN 1614-6832 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD NOV PY 2011 VL 1 IS 6 BP 1040 EP 1045 DI 10.1002/aenm.201100436 PG 6 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 848MU UT WOS:000297056500010 ER PT J AU Mao, SS AF Mao, Samuel S. TI High throughput combinatorial screening of semiconductor materials SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID RADIATION DETECTORS AB This article provides an overview of an advanced combinatorial material discovery platform developed recently for screening semiconductor materials with properties that may have applications ranging from radiation detectors to solar cells. Semiconductor thin-film libraries, each consisting of 256 materials of different composition arranged into a 16x16 matrix, were fabricated using laser-assisted evaporation process along with a combinatorial mechanism to achieve variations. The composition and microstructure of individual materials on each thin-film library were characterized with an integrated scanning micro-beam x-ray fluorescence and diffraction system, while the band gaps were determined by scanning optical reflection and transmission of the libraries. An ultrafast ultraviolet photon-induced charge probe was devised to measure the mobility and lifetime of individual thin-film materials on semiconductor libraries. Selected results on the discovery of semiconductors with desired band gaps and transport properties are illustrated. C1 [Mao, Samuel S.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Mao, Samuel S.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Mao, SS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mail Stop 70-108B, Berkeley, CA 94720 USA. EM ssmao@lbl.gov FU U.S. Department of Energy [NNSA/NA22] FX This research has been supported by the U.S. Department of Energy, NNSA/NA22. The author acknowledges Z.X. Ma, P. Xiao, H. Hao, D. Liu, X. Zhang, L. Oehlerking, D. Speaks, K.M. Yu, W. Walukiewicz, and P.Y. Yu, for their contribution in various stages of the research. NR 6 TC 9 Z9 9 U1 3 U2 20 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD NOV PY 2011 VL 105 IS 2 BP 283 EP 288 DI 10.1007/s00339-011-6614-7 PG 6 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 846DR UT WOS:000296877900003 ER PT J AU Hwang, DJ Xiang, B Ryu, SG Dubon, O Minor, AM Grigoropoulos, CP AF Hwang, David J. Xiang, Bin Ryu, Sang-Gil Dubon, Oscar Minor, Andrew M. Grigoropoulos, Costas P. TI In-situ monitoring of optical near-field material processing by electron microscopes SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID PULSED-LASER BEAM; NANOWIRES AB Lasers are efficient tools in a variety of micro/nanoscale material processing applications. Even though optical imaging techniques offer convenient in-situ monitoring, their spatial resolution is frequently not sufficient for inspecting the detailed phenomena occurring in micro/nano structures, hence requiring additional characterization tools. Besides the inconvenience, critical processing parameters cannot be readily determined ex situ. In this study, an example of an in-situ monitoring technique for micro/nanoscale laser processing is demonstrated by combining the optical near-field apparatus with a scanning electron microscopy (SEM). In-situ process monitoring under true optical near-field configuration is realized through orthogonal probe manipulation and combined probe-sample translation and tilting apparatus. Catalyst behavior under a chemical vapor deposition (CVD) gas environment coupled with near-field illumination is monitored in an environmental SEM. C1 [Hwang, David J.; Ryu, Sang-Gil; Grigoropoulos, Costas P.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Xiang, Bin; Dubon, Oscar; Minor, Andrew M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Xiang, Bin; Minor, Andrew M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Dubon, Oscar] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Grigoropoulos, Costas P.] Univ Calif Berkeley, Lawrence Berkeley Lab, EETD, Adv Energy Technol Dept, Berkeley, CA 94720 USA. RP Grigoropoulos, CP (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM cgrigoro@me.berkeley.edu RI Xiang, Bin/C-9192-2012; Ryu, Sang-gil/I-3968-2013 FU DARPA/MTO [N66001-08-1-2041]; DOE/STTR [95632B10-I]; Scientific User Facilities Division of the Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC02-05CH11231]; SINAM NSEC FX The authors gratefully acknowledge support by DARPA/MTO under grant N66001-08-1-2041, and DOE/STTR under grant 95632B10-I. Research performed at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, was supported by the Scientific User Facilities Division of the Office of Basic Energy Sciences, U.S. Department of Energy under Contract # DE-AC02-05CH11231. DJH and CPG acknowledge support by the SINAM NSEC. NR 6 TC 4 Z9 4 U1 2 U2 11 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD NOV PY 2011 VL 105 IS 2 BP 317 EP 321 DI 10.1007/s00339-011-6615-6 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 846DR UT WOS:000296877900007 ER PT J AU Oh, JE Clark, SM Monteiro, PJM AF Oh, Jae Eun Clark, Simon M. Monteiro, Paulo J. M. TI Determination of the bulk modulus of hydroxycancrinite, a possible zeolitic precursor in geopolymers, by high-pressure synchrotron X-ray diffraction SO CEMENT & CONCRETE COMPOSITES LA English DT Article DE Hydroxycancrinite; High pressure; Geopolymer; Zeolite; X-ray diffraction; Equation of state; Bulk modulus ID INDUCED STRUCTURAL EVOLUTION; F FLY-ASH; ELASTIC BEHAVIOR; ALKALINE ACTIVATION; MICROSTRUCTURE; TEMPERATURE; AMORPHIZATION; COMPRESSION; DURABILITY; MECHANISMS AB Crystalline zeolitic materials, such as hydroxycancrinite, hydroxysodalite, herschelite and nepheline, are often synthesized from geopolymerization using fly-ash and solutions of NaOH at high temperatures. Comprised mainly of 6-membered aluminosilicate rings that act as basic building units, their crystal structures may provide insight into the reaction products formed in NaOH-activated fly ash-based geopolymers. Recent research indicates that the hydroxycancrinite and hydroxysodalite may play an important role as possible analogues of zeolitic precursor in geopolymers. Herein is reported a high pressure synchrotron study of the behavior of hydroxycancrinite exposed to pressures up to 6.1 GPa in order to obtain its bulk modulus. A refined equation of state for hydroxycancrinite yielded a bulk modulus of K(o) = 46 +/- 5 GPa (assuming K'(o) = 4.0) for a broad range of applied pressure. When low pressure values are excluded from the fit and only the range of 2.5 and 6.1 GPa is considered, the bulk modulus of hydroxycancrinite was found to be K(o) = 46.9 +/- 0.9 GPa (K'(o) = 4.0 +/- 0.4, calculated). Comparison with the literature shows that all zeolitic materials possessing single 6-membered rings (i.e., hydroxycancrinite, sodalite and nepheline) have similar bulk moduli. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Oh, Jae Eun; Monteiro, Paulo J. M.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Oh, Jae Eun] Ulsan Natl Inst Sci & Technol, Sch Urban & Environm Engn, Ulsan Metropolitan City 689798, South Korea. [Clark, Simon M.] Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA USA. [Clark, Simon M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. RP Monteiro, PJM (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM monteiro@berkeley.edu RI Oh, Jae-Eun/F-8632-2011; Clark, Simon/B-2041-2013; OI Clark, Simon/0000-0002-7488-3438; Oh, Jae Eun/0000-0002-2318-3001 FU King Abdullah University of Science and Technology (KAUST) [KUS-I1-004021]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This publication was based on work supported in part by Award No. KUS-I1-004021, made by King Abdullah University of Science and Technology (KAUST). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 56 TC 10 Z9 10 U1 1 U2 9 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0958-9465 J9 CEMENT CONCRETE COMP JI Cem. Concr. Compos. PD NOV PY 2011 VL 33 IS 10 BP 1014 EP 1019 DI 10.1016/j.cemconcomp.2011.05.002 PG 6 WC Construction & Building Technology; Materials Science, Composites SC Construction & Building Technology; Materials Science GA 850IQ UT WOS:000297188700004 ER PT J AU Broisat, A Ruiz, M Goodman, NC Hanrahan, SM Reutter, BW Brennan, KM Janabi, M Schaefer, S Watson, DD Beller, GA VanBrocklin, HF Glover, DK AF Broisat, Alexis Ruiz, Mirta Goodman, Norman C. Hanrahan, Stephen M. Reutter, Bryan W. Brennan, Kathleen M. Janabi, Mustafa Schaefer, Saul Watson, Denny D. Beller, George A. VanBrocklin, Henry F. Glover, David K. TI Myocardial Uptake of 7 '-(Z)-[I-123]Iodorotenone During Vasodilator Stress in Dogs With Critical Coronary Stenoses SO CIRCULATION-CARDIOVASCULAR IMAGING LA English DT Article DE coronary artery disease; diagnosis; myocardial perfusion imaging; radioisotope ID POSITRON-EMISSION-TOMOGRAPHY; PERFUSION IMAGING AGENT; BLOOD-FLOW; HUMAN BIODISTRIBUTION; KINETIC-ANALYSIS; TRACER; TL-201; MITOCHONDRIAL; RAT; PET AB Background-There is a well-recognized need for a new generation of single photon emission computed tomography (SPECT) perfusion tracers with improved myocardial extraction over a wide flow range. Radiotracers that target complex I of the mitochondrial electron transport chain have been proposed as a new class of myocardial perfusion imaging agents. 7-(Z)-[I-125]iodorotenone (I-125-ZIROT) has demonstrated superior myocardial extraction and retention characteristics in rats and in isolated perfused rabbit hearts. We sought to fully characterize the biodistribution and myocardial extraction versus flow relationship of I-123-ZIROT in an intact large-animal model. Methods and Results-The I-123-ZIROT was administered during adenosine A(2A) agonist-induced hyperemia in 5 anesthetized dogs with critical left anterior descending (LAD) stenoses. When left circumflex (LCx) flow was maximal, I-123-ZIROT and microspheres were coinjected and the dogs were euthanized 5 minutes later. I-123-ZIROT biodistribution was evaluated in 2 additional dogs by in vivo planar imaging. At I-123-ZIROT injection, transmural LAD flow was unchanged from baseline (mean +/- SEM, 0.90 +/- 0.22 versus 0.87 +/- 0.11 mL/[min . g]; P=0.92), whereas LCx zone flow increased significantly (mean +/- SEM, 3.25 +/- 0.51 versus 1.00 +/- 0.17 mL/[min . g]; P<0.05). Myocardial I-123-ZIROT extraction tracked regional myocardial flow better than either thallium-201 or (99)mTc-sestamibi from previous studies using a similar model. Furthermore, the I-123-ZIROT LAD/LCx activity ratios by ex vivo imaging or well counting (mean +/- SEM, 0.42 +/- 0.08 and 0.45 +/- 0.1, respectively) only slightly underestimated the LAD/LCx microsphere flow ratio (0.32 +/- 0.09). Conclusions-The ability of I-123-ZIROT to more linearly track blood flow over a wide range makes it a promising new SPECT myocardial perfusion imaging agent with potential for improved coronary artery disease detection and better quantitative estimation of the severity of flow impairment. (Circ Cardiovasc Imaging. 2011;4:685-692.) C1 [Broisat, Alexis; Ruiz, Mirta; Goodman, Norman C.; Watson, Denny D.; Beller, George A.; Glover, David K.] Univ Virginia Hlth Syst, Expt Cardiol Lab, Div Cardiovasc, Dept Med, Charlottesville, VA 22908 USA. [Hanrahan, Stephen M.; Reutter, Bryan W.; Brennan, Kathleen M.; Janabi, Mustafa; VanBrocklin, Henry F.] Univ Calif Berkeley, Lawrence Berkeley Lab, Radiotracer Dev & Imaging Technol Dept, Berkeley, CA 94720 USA. [Schaefer, Saul] Univ Calif Davis, Sch Med, Div Cardiovasc Med, Dept Med, Sacramento, CA 95817 USA. [VanBrocklin, Henry F.] Univ Calif San Francisco, Ctr Mol & Funct Imaging, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA. RP Glover, DK (reprint author), Univ Virginia Hlth Syst, Expt Cardiol Lab, Div Cardiovasc, Dept Med, 409 Lane Rd,MR-4 Bldg,Room 1192,POB 801394, Charlottesville, VA 22908 USA. EM dglover@virginia.edu FU Office of Science, Office of Biological and Environmental Research, Biological Systems Science Division of the US Department of Energy [DE-AC02-05CH11231]; National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health [EB000482] FX This study was supported in part by contract DE-AC02-05CH11231 from the Director, Office of Science, Office of Biological and Environmental Research, Biological Systems Science Division of the US Department of Energy; and by grant EB000482 (HV) from the National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health. NR 41 TC 3 Z9 3 U1 0 U2 8 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1941-9651 J9 CIRC-CARDIOVASC IMAG JI Circ.-Cardiovasc. Imaging PD NOV PY 2011 VL 4 IS 6 BP 685 EP 692 DI 10.1161/CIRCIMAGING.110.961763 PG 8 WC Cardiac & Cardiovascular Systems; Radiology, Nuclear Medicine & Medical Imaging SC Cardiovascular System & Cardiology; Radiology, Nuclear Medicine & Medical Imaging GA 850AZ UT WOS:000297168100014 PM 21917783 ER PT J AU Comolli, LR Luef, B Chan, CS AF Comolli, Luis R. Luef, Birgit Chan, Clara S. TI High-resolution 2D and 3D cryo-TEM reveals structural adaptations of two stalk-forming bacteria to an Fe-oxidizing lifestyle SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID GALLIONELLA-FERRUGINEA; CRYOELECTRON TOMOGRAPHY; IRON; CAULOBACTER; PILI; ARCHITECTURE; ENRICHMENT; POLE AB Aerobic neutrophilic Fe-oxidizing bacteria (FeOB) thrive where oxic and iron-rich anoxic waters meet. Here, iron microbial mats are commonly developed by stalk-forming Fe-oxidizers adapted to these iron-rich gradient environments, somehow avoiding iron encrustation. Few details are known about FeOB physiology; thus, the bases of these adaptations, notably the mechanisms of interactions with iron, are poorly understood. We examined two stalked FeOB: the marine Zetaproteobacterium Mariprofundus ferrooxydans and a terrestrial Betaproteobacterium Gallionella-like organism. We used cryo-transmission electron microscopy and cryo-electron tomography to provide unprecedented ultrastructural data on intact cell-mineral systems. Both FeOB localize iron mineral formation at stalk extrusion sites, while avoiding surface and periplasmic mineralization. The M. ferrooxydans cell surface is densely covered in fibrils while the terrestrial FeOB surface is smooth, suggesting a difference in surface chemistry. Only the terrestrial FeOB exhibited a putative chemotaxis apparatus, which may be due to differences in chemotaxis mechanisms. Both FeOB have a single flagellum, which alone is insufficient to account for cell motion during iron oxidation, suggesting that stalk extrusion is a mechanism for motility. Our results delineate the physical framework of iron transformations and characterize possible structural adaptations to the iron-oxidizing lifestyle. This study shows ultrastructural similarities and differences between two distinct FeOB, setting the stage for further (e.g. genomic) comparisons that will help us understand functional differences and evolutionary history. C1 [Comolli, Luis R.; Luef, Birgit] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Luef, Birgit] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Chan, Clara S.] Univ Delaware, Dept Geol Sci, Coll Earth Ocean & Environm, Newark, DE 19716 USA. RP Comolli, LR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. EM lrcomolli@lbl.gov; cschan@udel.edu RI Chan, Clara/B-6420-2011 OI Chan, Clara/0000-0003-1810-4994 FU Office of Science of the U.S. Department of Energy; Office of Biological and Environmental Research of the U.S. Department of Energy [DEAC02-05CH11231, DEAC03-76SF00098]; University of Delaware; NSF FX This work was supported by the Director, Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contracts No. DEAC02-05CH11231 and DEAC03-76SF00098, the University of Delaware, and an NSF Ridge 2000 postdoctoral fellowship to CSC. We thank Cristina E. Siegerist for help with image display. NR 41 TC 16 Z9 16 U1 3 U2 41 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1462-2912 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD NOV PY 2011 VL 13 IS 11 BP 2915 EP 2929 DI 10.1111/j.1462-2920.2011.02567.x PG 15 WC Microbiology SC Microbiology GA 849TJ UT WOS:000297147800009 PM 21895918 ER PT J AU Mintz, JM Spencer, DK Holck, DM AF Mintz, J. M. Spencer, D. K. Holck, D. M. TI LARGE SCALE TRITIUM RECOVERY FROM OBSOLETE ILLUMINATION DEVICES AT LLNL SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 9th International Conference on Tritium Science and Technology CY OCT 24-29, 2010 CL Nara, JAPAN AB Since 2001, LLNL has supported a program to recover and recycle tritium from exit signs, telephone dials, gun sights and other military and commercial tritium-powered illumination devices. In addition to permitting tritium reuse, this effort also provides an environmentally safe disposal option. Recently, the startup of the Tritium Grinder System (TGS) in the LLNL Tritium Facility has added significantly to the program's capability and capacity. Actual results, including the collected gas chemical composition and unit processing rate are presented along with a summary of the design features, operating procedures and safety controls. C1 [Mintz, J. M.; Spencer, D. K.; Holck, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Mintz, JM (reprint author), Lawrence Livermore Natl Lab, Mail Stop L-358,7000 E Ave, Livermore, CA 94550 USA. NR 3 TC 0 Z9 0 U1 1 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2011 VL 60 IS 4 BP 1220 EP 1223 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 843LV UT WOS:000296674200005 ER PT J AU Heung, LK Sessions, HT Xiao, X AF Heung, L. K. Sessions, H. T. Xiao, X. TI TCAP HYDROGEN ISOTOPE SEPARATION USING PALLADIUM AND INVERSE COLUMNS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 9th International Conference on Tritium Science and Technology CY OCT 24-29, 2010 CL Nara, JAPAN AB The Thermal Cycling Absorption Process (TCAP) was further studied with a new configuration. Previous configuration used a palladium packed column and a plug flow reverser (PFR). This new configuration uses an inverse column to replace the PFR. The goal was to further improve performance. Both configurations were experimentally tested. The results showed that the new configuration increased the throughput by a factor of more than 2. C1 [Heung, L. K.; Sessions, H. T.; Xiao, X.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Heung, LK (reprint author), Savannah River Natl Lab, 999-2W,Savannah River Site, Aiken, SC 29808 USA. EM leung.heung@srnl.doe.gov NR 7 TC 3 Z9 3 U1 0 U2 7 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2011 VL 60 IS 4 BP 1331 EP 1334 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 843LV UT WOS:000296674200030 ER PT J AU Morgan, GA AF Morgan, Gregg A., Jr. TI EFFECT OF IMPURITIES ON THE PERFORMANCE OF A Pd-Ag DIFFUSER SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 9th International Conference on Tritium Science and Technology CY OCT 24-29, 2010 CL Nara, JAPAN ID HYDROGEN PERMEATION; THIN PD/AG; MEMBRANES AB A commercially fabricated diffuser purchased from Johnson-Matt hey, Inc. was evaluated for performance characterization testing at the Savannah River National Laboratory (SRNL). Different impurities are often present in the feed streams of the process diffusers, but the effect of these impurities on the diffuser performance is currently unknown. Various impurities were introduced into the feed stream of the diffuser at various levels ranging from 0.5% to 10% of the total flow in order to determine the effect that these impurities have on the permeation of hydrogen through the palladium-silver membrane. The introduction of various impurities into the feed stream of the diffuser had a minimal effect on the overall permeation of hydrogen through the Pd-Ag membrane. Of the four impurities introduced into the feed stream, carbon monoxide (CO) was the only impurity that showed any evidence of causing a reduction in the amount of hydrogen permeating through the Pd-Ag membrane. The hydrogen permeation returned to its baseline level after the CO was removed from the feed stream. There were no lasting effects of the CO exposure on the ability of the membrane to effectively separate hydrogen from the non-hydrogen species in the gas stream under the conditions tested. C1 Savannah River Natl Lab, Aiken, SC 29808 USA. RP Morgan, GA (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM gregg.morgan@srnl.doe.gov NR 7 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2011 VL 60 IS 4 BP 1367 EP 1370 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 843LV UT WOS:000296674200039 ER PT J AU Klein, JE AF Klein, J. E. TI EXPERIMENTAL RESULTS FOR THE ISOTOPIC EXCHANGE OF A 1600 LITER TITANIUM HYDRIDE STORAGE VESSEL SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 9th International Conference on Tritium Science and Technology CY OCT 24-29, 2010 CL Nara, JAPAN ID TRITIUM; HYDROGEN AB Titanium is used as a low pressure tritium storage material. The absorption/desorption rates and temperature rise during air passivation have been reported previously for a 4400 gram prototype titanium hydride storage vessel (HSV). A desorption limit of roughly 0.25 Q/M was obtained when heating to 700 degrees C which represents a significant residual tritium process vessel inventory. To prepare an HSV for disposal, batch-wise isotopic exchange has been proposed to reduce the tritium content to acceptable levels. A prototype HSV was loaded with deuterium and exchanged with protium to determine the effectiveness of a batch-wise isotopic exchange process. A total of seven exchange cycles were performed. Gas samples were taken nominally at the beginning, middle, and end of each desorption cycle. Sample analyses showed the isotopic exchange process does not follow the standard dilution model commonly reported. Samples taken at the start of the desorption process were lower in deuterium (the gas to be removed) than those taken later in the desorption cycle. The results are explained in terms of incomplete mixing of the exchange gas in the low pressure hydride. C1 Savannah River Natl Lab, Aiken, SC 29808 USA. RP Klein, JE (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM james.klein@srnl.doe.gov NR 10 TC 0 Z9 0 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2011 VL 60 IS 4 BP 1371 EP 1374 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 843LV UT WOS:000296674200040 ER PT J AU Xiao, X Heung, LK AF Xiao, X. Heung, L. K. TI CRYOGENIC ADSORPTION OF HYDROGEN ISOTOPES OVER NANO-STRUCTURED MATERIALS SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 9th International Conference on Tritium Science and Technology CY OCT 24-29, 2010 CL Nara, JAPAN ID TRITIUM; TEMPERATURE; ADSORBENTS AB Porous materials such as zeolites, activated carbon, silica gels, alumina and a number of industrial catalysts are compared and ranked for hydrogen and deuterium adsorption at liquid nitrogen temperature. All samples show higher D(2) adsorption than that of H(2), in which HY zeolite has the greatest isotopic effect while 13X zeolite has the highest hydrogen uptake capacity. Material's moisture content has significant impact to its hydrogen uptake. A material without adequate drying could result in complete loss of its adsorption capacity. Even though some materials present higher H(2) adsorption capacity at full pressure, their adsorption at low vapor pressure may not be as good as others. Adsorption capacity in a dynamic system is much less than in a static system, as expected. The same type of material from different vendors or lots may behave differently. C1 [Xiao, X.; Heung, L. K.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Xiao, X (reprint author), Savannah River Natl Lab, 999-2W,Savannah River Site, Aiken, SC 29808 USA. EM steve.xiao@srnl.doe.gov NR 9 TC 0 Z9 0 U1 0 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2011 VL 60 IS 4 BP 1415 EP 1418 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 843LV UT WOS:000296674200051 ER PT J AU Oda, T Shimada, M Zhang, K Calderoni, P Oya, Y Sokolov, M Kolasinski, R Sharpe, JP Hatano, Y AF Oda, T. Shimada, M. Zhang, K. Calderoni, P. Oya, Y. Sokolov, M. Kolasinski, R. Sharpe, J. P. Hatano, Y. TI DEVELOPMENT OF MONTE CARLO SIMULATION CODE TO MODEL BEHAVIOR OF HYDROGEN ISOTOPES LOADED INTO TUNGSTEN CONTAINING VACANCIES SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 9th International Conference on Tritium Science and Technology CY OCT 24-29, 2010 CL Nara, JAPAN ID DIFFUSION; ADSORPTION; SURFACE AB The behavior of hydrogen isotopes implanted into tungsten containing vacancies was simulated using a Monte Carlo technique. The correlations between the distribution of implanted deuterium and fluence, trap density and trap distribution were evaluated. Throughout the present study, qualitatively understandable results were obtained. In order to improve the precision of the model and obtain quantitatively reliable results, it is necessary to deal with the following subjects: (1) how to balance long-time irradiation processes with a rapid diffusion process, (2) how to prevent unrealistic accumulation of hydrogen, and (3) how to model the release of hydrogen forcibly loaded into a region where hydrogen densely exist already. C1 [Oda, T.] Univ Tokyo, Dept Nucl Engn & Management, Tokyo 1138656, Japan. [Shimada, M.; Calderoni, P.; Sharpe, J. P.] Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID 83415 USA. [Zhang, K.; Hatano, Y.] Toyama Univ, Hydrogen Isotope Res Ctr, Toyama 9308555, Japan. [Oya, Y.] Shizuoka Univ, Radiosci Res Lab, Fac Sci, Shizuoka 4228529, Japan. [Sokolov, M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kolasinski, R.] Sandia Natl Labs, Hydrogen & Met Sci Dept, Livermore, CA 94551 USA. RP Oda, T (reprint author), Univ Tokyo, Dept Nucl Engn & Management, Tokyo 1138656, Japan. EM oda@flanker.n.t.u-tokyo.ac.jp NR 8 TC 5 Z9 5 U1 0 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2011 VL 60 IS 4 BP 1455 EP 1458 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 843LV UT WOS:000296674200060 ER PT J AU Staack, GC Klein, JE AF Staack, G. C. Klein, J. E. TI THE EFFECT OF (HE)-H-3 ON LOW PRESSURE HYDRIDE ABSORPTION MEASUREMENTS WITH TRITIUM SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 9th International Conference on Tritium Science and Technology CY OCT 24-29, 2010 CL Nara, JAPAN AB Absorption isotherm data exists for a wide variety of hydrogen-metal systems. When working with high purity gases, appropriately sized equipment, and hydrides with equilibrium pressures above several hundred Pa, data collection is relatively straightforward. Special consideration must be given to experiments involving low equilibrium pressure hydrides, as even sub-ppm levels of gas impurities can generate partial pressures many times greater than the equilibrium pressures to be measured. Tritium absorption experiments are further complicated by the continuous generation of helium-3. The time required to transfer and absorb a known quantity of tritium onto a sample ultimately limits the minimum pressure range that can be studied using the standard technique. Equations are presented which show the pressure of helium-3 in a sample cell based on the amount of tritium to be absorbed, the sample cell volume and temperature, and the decay time of tritium. Sample calculations for zirconium show that at 300 degrees C, the estimated helium-3 pressure in the cell will be equal to the hydrogen absorption pressure after only milliseconds of tritium decay. An alternate method is presented that permits the collection of equilibrium data at pressures orders of magnitude lower than possible using a direct approach C1 [Staack, G. C.; Klein, J. E.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Staack, GC (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM Gregory.Staack@srnl.doe.gov NR 1 TC 2 Z9 2 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2011 VL 60 IS 4 BP 1479 EP 1482 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 843LV UT WOS:000296674200066 ER PT J AU Shimada, M Otsuka, T Pawelko, RJ Calderoni, P Sharpe, JP AF Shimada, Masashi Otsuka, T. Pawelko, R. J. Calderoni, P. Sharpe, J. P. TI OVERVIEW OF RECENT TRITIUM EXPERIMENTS IN TPE SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 9th International Conference on Tritium Science and Technology CY OCT 24-29, 2010 CL Nara, JAPAN AB Tritium retention in plasma-facing components influences the design, operation, and lifetime of fusion devices such as ITER. Most of the retention studies were carried out with the use of either hydrogen or deuterium. Tritium Plasma Experiment is a unique linear plasma device that can handle radioactive fusion fuel of tritium, toxic material of beryllium, and neutron-irradiated material. A tritium depth profiling method up to mm range was developed using a tritium imaging plate and a diamond wire saw. A series of tritium experiments (T-2/D-2 ratio: 0.2 and 0.5 %) was performed to investigate tritium depth profiling in bulk tungsten, and the results shows that tritium is migrated into bulk tungsten up to mm range. C1 [Shimada, Masashi; Pawelko, R. J.; Calderoni, P.; Sharpe, J. P.] Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID 83415 USA. [Otsuka, T.] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Higashi Ku, Fukuoka 8128581, Japan. RP Shimada, M (reprint author), Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID 83415 USA. EM Masashi.Shimada@inl.gov OI Shimada, Masashi/0000-0002-1592-843X; Calderoni, Pattrick/0000-0002-2316-6404 NR 4 TC 1 Z9 1 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2011 VL 60 IS 4 BP 1495 EP 1498 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 843LV UT WOS:000296674200070 ER PT J AU Otsuka, T Shimada, M Tanabe, T Sharpe, JP AF Otsuka, T. Shimada, M. Tanabe, T. Sharpe, J. P. TI BEHAVIOR OF TRITIUM NEAR SURFACE REGION OF METALS EXPOSED TO TRITIUM PLASMA SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 9th International Conference on Tritium Science and Technology CY OCT 24-29, 2010 CL Nara, JAPAN AB In order to understand behavior of tritium (T) on surface and in bulk of metals exposed to T plasma, both surface activities and depth profiles of T were periodically observed by a tritium imaging plate technique during storage in air at room temperature (RT) for over 1 year. In the T depth profiles, T localized within a depth of sub mm from the surface was clearly distinguished from T in the bulk. The former was attributed to strong trapping by some defects produced by the plasma exposure and remained quite longer during the storage, while the latter was released from the surfaces by diffusion. T surface activity measured on the plasma-exposed surface changed in a complicated way with time due to removal of T by isotopic replacement with H in ubiquitous H(2)O and T supply from the bulk in the course of the diffusional release. C1 [Otsuka, T.; Tanabe, T.] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Higashi Ku, Fukuoka 8128581, Japan. [Shimada, M.; Sharpe, J. P.] Idaho Natl Lab, Fus Safety Program, Idaho Falls, ID 83415 USA. RP Otsuka, T (reprint author), Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Higashi Ku, 6-10-1 Hakozaki, Fukuoka 8128581, Japan. EM t-otsuka@nucl.kyushu-u.ac.jp OI Shimada, Masashi/0000-0002-1592-843X NR 7 TC 1 Z9 1 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2011 VL 60 IS 4 BP 1539 EP 1542 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 843LV UT WOS:000296674200081 ER PT J AU Kompaniets, T Yukhimchuk, A Denisov, E Kanashenko, S Causey, R Glugla, M Grishechkin, S Hassanein, A Kurdyumov, A Malkov, I AF Kompaniets, T. Yukhimchuk, A. Denisov, E. Kanashenko, S. Causey, R. Glugla, M. Grishechkin, S. Hassanein, A. Kurdyumov, A. Malkov, I. TI HYDROGEN INTERACTION WITH NICKEL CONTAINING RADIOGENIC HELIUM SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 9th International Conference on Tritium Science and Technology CY OCT 24-29, 2010 CL Nara, JAPAN ID STAINLESS-STEEL; METALS AB Accumulation of (3)He can result in a change of hydrogen isotope interactions with metal due to appearance of additional structural defects. The work is devoted to comparative study of hydrogen interactions with pure Ni and Ni containing radiogenic helium. "Tritium trick" technique was used for a build-up of radiogenic helium inside Ni samples. C1 [Kompaniets, T.; Denisov, E.; Kurdyumov, A.] St Petersburg State Univ, Fac Phys, St Petersburg 198904, Russia. [Yukhimchuk, A.; Grishechkin, S.; Malkov, I.] All Russian Res Inst Expt Phys, Russian Fed Nucl Ctr, Sarov 607188, Nizhny Novgorod, Russia. [Kanashenko, S.] Russian Acad Sci, Inst Phys Chem, Moscow 119991, Russia. [Causey, R.] Sandia Natl Labs, Livermore, CA 94551 USA. [Glugla, M.] ITER Org, St Paul Les Durance, France. [Hassanein, A.] Purdue Univ, W Lafayette, IN 47907 USA. RP Kompaniets, T (reprint author), St Petersburg State Univ, Fac Phys, Ulyanovskaya St 1, St Petersburg 198904, Russia. EM kompaniets@pobox.spbu.ru RI Kompaniets, Tatiana/L-5129-2013; Denisov, Evgeny/M-6226-2013 OI Kompaniets, Tatiana/0000-0001-5623-8534; Denisov, Evgeny/0000-0003-0560-9168 NR 15 TC 2 Z9 2 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2011 VL 60 IS 4 BP 1552 EP 1555 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 843LV UT WOS:000296674200084 ER PT J AU Yukhimchuk, A Boitsov, I Grishechkin, S Denisov, E Causey, R Glugla, M Hassanein, A Kanashenko, S Kompaniets, T Malkov, I Shikin, I AF Yukhimchuk, A. Boitsov, I. Grishechkin, S. Denisov, E. Causey, R. Glugla, M. Hassanein, A. Kanashenko, S. Kompaniets, T. Malkov, I. Shikin, I. TI HYDROGEN INTERACTION WITH STAINLESS STEEL 12Cr18Ni10Ti CONTAINING RADIOGENIC He-3 SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 9th International Conference on Tritium Science and Technology CY OCT 24-29, 2010 CL Nara, JAPAN ID MECHANICAL-PROPERTIES; STRUCTURAL-MATERIALS; HELIUM AB Mechanical properties, structural changes and hydrogen interactions with stainless steel 12Cr18Ni10Ti subjected to accelerated radiogenic He-3 buildup by means of "tritium trick" technique were studied. After saturation with tritium up to equilibrium concentration at a pressure 50 MPa and T=773 K the samples were rapidly cooled to room temperature and aged at this temperature up to the buildup of a predetermined He-3 concentration. Kinetics of helium thermal release, hydrogen transport, trapping and accumulation in steel containing various concentration of He-3, synergistic influence of He-3 and hydrogen on mechanical properties of steel containing up to 500 appm He-3 and structural changes at various He-3 concentrations are discussed. C1 [Yukhimchuk, A.; Boitsov, I.; Grishechkin, S.; Malkov, I.] All Russian Res Inst Expt Phys, Russian Fed Nucl Ctr, Sarov 607188, Nizhny Novgorod, Russia. [Denisov, E.; Kompaniets, T.; Shikin, I.] St Petersburg State Univ, Fac Phys, St Petersburg 198904, Russia. [Causey, R.] Sandia Natl Labs, Livermore, CA 94551 USA. [Glugla, M.] ITER Org, St Paul Les Durance, France. [Hassanein, A.] Purdue Univ, W Lafayette, IN 47907 USA. [Kanashenko, S.] Russian Acad Sci, Inst Phys Chem, Moscow 119991, Russia. RP Yukhimchuk, A (reprint author), All Russian Res Inst Expt Phys, Russian Fed Nucl Ctr, Mira Av 37, Sarov 607188, Nizhny Novgorod, Russia. EM arkad@triton.vniief.ru RI Kompaniets, Tatiana/L-5129-2013; Denisov, Evgeny/M-6226-2013 OI Kompaniets, Tatiana/0000-0001-5623-8534; Denisov, Evgeny/0000-0003-0560-9168 NR 13 TC 2 Z9 2 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2011 VL 60 IS 4 BP 1556 EP 1559 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 843LV UT WOS:000296674200085 ER PT J AU Humrickhouse, PW Calderoni, P Merrill, BJ AF Humrickhouse, P. W. Calderoni, P. Merrill, B. J. TI IMPLEMENTATION OF TRITIUM PERMEATION MODELS IN THE CFD CODE FLUENT SO FUSION SCIENCE AND TECHNOLOGY LA English DT Article; Proceedings Paper CT 9th International Conference on Tritium Science and Technology CY OCT 24-29, 2010 CL Nara, JAPAN AB A number of additions have been made to the computational fluid dynamics (CFD) code Fluent in order to model hydrogen permeation. In addition to fluid dynamics, Fluent solves for heat transfer in coupled solid and fluid regions, and solves advection-diffusion equations for scalar quantities such as hydrogen concentration. The latter have been modified with additional code to satisfy Sievert's Law at solid-fluid interfaces and allow for temperature dependent diffusivity and permeability. The method has been employed to model the Tritium Heat Exchanger (THX) experiment at INL, which investigates hydrogen permeation in helium and candidate structural materials for high temperature gas reactor heat exchangers. The Arrhenius law parameters used in Fluent for Inconel 617 are initially determined via a simplified analytical method, and the resulting model predictions compare favorably with experiment data. C1 [Humrickhouse, P. W.; Calderoni, P.; Merrill, B. J.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Humrickhouse, PW (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM paul.humrickhouse@inl.gov OI Calderoni, Pattrick/0000-0002-2316-6404 NR 5 TC 0 Z9 0 U1 0 U2 6 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 1536-1055 J9 FUSION SCI TECHNOL JI Fusion Sci. Technol. PD NOV PY 2011 VL 60 IS 4 BP 1564 EP 1567 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 843LV UT WOS:000296674200087 ER PT J AU Bracht, H Radek, M Kube, R Knebel, S Posselt, M Schmidt, B Haller, EE Bougeard, D AF Bracht, H. Radek, M. Kube, R. Knebel, S. Posselt, M. Schmidt, B. Haller, E. E. Bougeard, D. TI Ion-beam mixing in crystalline and amorphous germanium isotope multilayers SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SEMICONDUCTORS; MECHANISMS; METALS AB Gallium (Ga) implantation induced self-atom mixing in crystalline and amorphous germanium (Ge) is investigated utilizing isotopically controlled Ge multilayer structures grown by molecular beam epitaxy. The distribution of the Ga ions and the ion-beam induced depth-dependent mixing of the isotope structure was determined by means of secondary ion mass spectrometry. Whereas the distribution of Ga in the crystalline and amorphous Ge is very similar and accurately reproduced by computer simulations based on binary collision approximation (BCA), the ion-beam induced self-atom mixing is found to depend strongly on the state of the Ge structure. The experiments reveal stronger self-atom mixing in crystalline than in amorphous Ge. Atomistic simulations based on BCA reproduce the experimental results only when unphysically low Ge displacement energies are assumed. Analysis of the self-atom mixing induced by silicon implantation confirms the low displacement energy deduced within the BCA approach. This demonstrates that thermal spike mixing contributes significantly to the overall mixing of the Ge isotope structures. The disparity observed in the ion-beam mixing efficiency of crystalline and amorphous Ge indicates different dominant mixing mechanisms. We propose that self-atom mixing in crystalline Ge is mainly controlled by radiation enhanced diffusion during the early stage of mixing before the crystalline structure turns amorphous, whereas in an already amorphous state self-atom mixing is mediated by cooperative diffusion events. (C) 2011 American Institute of Physics. [doi:10.1063/1.3658259] C1 [Bracht, H.; Radek, M.; Kube, R.; Knebel, S.] Univ Munster, Inst Mat Phys, D-48149 Munster, Germany. [Posselt, M.; Schmidt, B.] Helmholtz Zentrum Dresden Rossendorf, D-01314 Dresden, Germany. [Haller, E. E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Bougeard, D.] Inst Expt & Angew Phys, D-93040 Regensburg, Germany. RP Bracht, H (reprint author), Univ Munster, Inst Mat Phys, D-48149 Munster, Germany. EM bracht@uni-muenster.de NR 19 TC 3 Z9 3 U1 0 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2011 VL 110 IS 9 AR 093502 DI 10.1063/1.3658259 PG 7 WC Physics, Applied SC Physics GA 848OY UT WOS:000297062100018 ER PT J AU Clay, WA Sasagawa, T Iwasa, A Liu, Z Dahl, JE Carlson, RMK Kelly, M Melosh, N Shen, ZX AF Clay, William A. Sasagawa, Takao Iwasa, Akio Liu, Zhi Dahl, Jeremy E. Carlson, Robert M. K. Kelly, Michael Melosh, Nicholas Shen, Zhi-Xun TI Photoluminescence of diamondoid crystals SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID SATURATED-HYDROCARBONS; FUNCTIONALIZED NANODIAMONDS; FLUORESCENCE; PHOTOEMISSION; ADAMANTANE; MONOLAYERS; MOLECULES; ENERGIES; ORIGIN AB The photoluminescence of diamondoids in the solid state is examined. All of the diamondoids are found to photoluminesce readily, with initial excitation wavelengths ranging from 233 nm to 240 nm (5.3 eV). These excitation energies are more than 1 eV lower than any previously studied saturated hydrocarbon material. The emission is found to be heavily shifted from the absorption, with emission wavelengths of roughly 295 nm (4.2 eV) in all cases. In the dissolved state, however, no fluorescence is observed for excitation wavelengths as short as 200 nm. We also discuss predictions and measurements of the quantum yield. Our predictions indicate that the maximum yield may be as high as 25%. Our measurement of one species, diamantane, gives a yield of 11%, the highest ever reported for a saturated hydrocarbon, even though it was likely not at the optimal excitation wavelength. (C) 2011 American Institute of Physics. [doi:10.1063/1.3657522] C1 [Clay, William A.; Dahl, Jeremy E.; Kelly, Michael; Melosh, Nicholas; Shen, Zhi-Xun] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Clay, William A.; Dahl, Jeremy E.; Kelly, Michael; Melosh, Nicholas; Shen, Zhi-Xun] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Sasagawa, Takao; Iwasa, Akio] Tokyo Inst Technol, Mat & Struct Lab, Midori Ku, Yokohama, Kanagawa 2268503, Japan. [Liu, Zhi] Lawrence Berkeley Lab, Adv Light Source, Livermore, CA 94550 USA. [Carlson, Robert M. K.] Chevron Technol Ventures, MolecularDiamond Technol, Richmond, CA 94802 USA. [Shen, Zhi-Xun] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Clay, WA (reprint author), Stanford Univ, Dept Phys, Stanford, CA 94305 USA. EM wclay@stanford.edu RI Sasagawa, Takao/E-6666-2014; Liu, Zhi/B-3642-2009 OI Sasagawa, Takao/0000-0003-0149-6696; Liu, Zhi/0000-0002-8973-6561 FU Department of Energy office of Basic Sciences, Division of Materials Science [DE-AC02-76SF00515]; Chevron through the Stanford-Chevron Diamondoid program; DOE Office of Basic Energy Science, Division of Material Science and Engineering [DE-AC02-76SF00515]; Iketani Science and Technology Foundation; MEXT, Japan FX This work was supported, in part, by the Department of Energy office of Basic Sciences, Division of Materials Science under contract No. DE-AC02-76SF00515 and by a grant from Chevron through the Stanford-Chevron Diamondoid program, as well as by the DOE Office of Basic Energy Science, Division of Material Science and Engineering under Contract No. DE-AC02-76SF00515. Work performed at the Tokyo Institute of Technology was supported by a research grant from Iketani Science and Technology Foundation and a Grant-in-Aid for Scientific Research from MEXT, Japan. NR 32 TC 5 Z9 5 U1 0 U2 29 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2011 VL 110 IS 9 AR 093512 DI 10.1063/1.3657522 PG 6 WC Physics, Applied SC Physics GA 848OY UT WOS:000297062100028 ER PT J AU Levander, AX Novikov, SV Liliental-Weber, Z dos Reis, R Dubon, OD Wu, J Foxon, CT Yu, KM Walukiewicz, W AF Levander, A. X. Novikov, S. V. Liliental-Weber, Z. dos Reis, R. Dubon, O. D. Wu, J. Foxon, C. T. Yu, K. M. Walukiewicz, W. TI Doping of GaN1-xAsx with high As content SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HYDROGENATED AMORPHOUS-SILICON; SOLAR-CELL; SI-H; BAND; GAN; JUNCTION; ALLOYS; GAAS AB Recent work has shown that GaN1-xAsx can be grown across the entire composition range by low temperature molecular beam epitaxy with intermediate compositions being amorphous, but control of the electrical properties through doping is critical for functionalizing this material. Here we report the bipolar doping of GaN1-xAsx with high As content to conductivities above 4 S/cm at room temperature using Mg or Te. The carrier type was confirmed by thermopower measurements. Doping requires an increase in Ga flux during growth resulting in a mixed phase material of polycrystalline GaAs:N embedded in amorphous GaN1-xAsx. VC 2011 American Institute of Physics. [doi: 10.1063/1.3657779] C1 [Levander, A. X.; Liliental-Weber, Z.; dos Reis, R.; Dubon, O. D.; Wu, J.; Yu, K. M.; Walukiewicz, W.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Levander, A. X.; Dubon, O. D.; Wu, J.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Novikov, S. V.; Foxon, C. T.] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England. [dos Reis, R.] Univ Fed Rio Grande do Sul, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil. RP Levander, AX (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM kmyu@lbl.gov RI Wu, Junqiao/G-7840-2011; dos Reis, Roberto/E-9486-2012; Liliental-Weber, Zuzanna/H-8006-2012; Yu, Kin Man/J-1399-2012 OI Wu, Junqiao/0000-0002-1498-0148; dos Reis, Roberto/0000-0002-6011-6078; Yu, Kin Man/0000-0003-1350-9642 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. DOE [DE-AC02-05CH11231]; National Science Foundation [DMR-0349257]; EPSRC [EP/I004203/1, EP/G046867/1, EP/G030634/1] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. DOE under Contract No. DE-AC02-05CH11231. O.D.D. acknowledges support from National Science Foundation Contract No. DMR-0349257. The use of the National Center for Electron Microscopy at Lawrence Berkeley Laboratory is appreciated. The growth work at the University of Nottingham was supported by the EPSRC (Grant Nos. EP/I004203/1, EP/G046867/1, and EP/G030634/1). A. X. L. acknowledges the National Science Foundation for financial support. NR 24 TC 4 Z9 4 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2011 VL 110 IS 9 AR 093702 DI 10.1063/1.3657779 PG 4 WC Physics, Applied SC Physics GA 848OY UT WOS:000297062100042 ER PT J AU Prochazka, J Hlidek, P Franc, J Grill, R Belas, E Bugar, M Babentsov, V James, RB AF Prochazka, J. Hlidek, P. Franc, J. Grill, R. Belas, E. Bugar, M. Babentsov, V. James, R. B. TI Selective pair luminescence in the 1.4-eV band of CdTe:In SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID OPTICAL-PROPERTIES; BULK CDTE; CADMIUM TELLURIDE; ACCEPTOR STATES; EXCITED-STATES; DEFECTS; PHOTOLUMINESCENCE; SPECTROSCOPY; CRYSTALS; ZNSE AB We investigated the photoluminescence (PL) of CdTe doped with indium using above- and below-bandgap excitation at temperatures of 4.5-20 K. We recorded and measured the selectively excited PL arising from the recombination of donor-acceptor (D-A) pairs with the A-center acceptor in the spectral region of the 1.4-eV PL band for different excitation photon energies, h omega(EXC). Sharp, strong PL lines that shifted with h omega(EXC) over the total contour of the D-A pair band represented the selective pair luminescence (SPL). The energy difference of similar to 125 meV between the excited-and ground-state of the charged D-A pair is very close to the 6-longitudinal-optical phonon energy in CdTe. This multiplicity favors the relaxation of an excited hole to the ground state of an acceptor, and increases the probability of recombination in the D-A pair. The SPL line quenches with temperature, characteristically with energy of 6-14 meV for D-A pairs with different D-A distances. The temperature shift of the 1.4-eV band supposedly is caused by the redistribution of occupied-and empty-shallow donors neighboring the A-center. (C) 2011 American Institute of Physics. [doi:10.1063/1.3658248] C1 [Prochazka, J.; Hlidek, P.; Franc, J.; Grill, R.; Belas, E.; Bugar, M.] Charles Univ Prague, Inst Phys, Prague 12116 2, Czech Republic. [Babentsov, V.] Natl Acad Sci, Inst Semicond Phys, UA-03028 Kiev, Ukraine. [James, R. B.] Brookhaven Natl Lab, Nonproliferat & Natl Secur Dept, Upton, NY 11973 USA. RP Prochazka, J (reprint author), Charles Univ Prague, Inst Phys, Ke Karlovu 5, Prague 12116 2, Czech Republic. EM hlidek@karlov.mff.cuni.cz RI Grill, Roman/A-2109-2008; Franc, Jan/C-3802-2017 OI Grill, Roman/0000-0002-4615-8909; Franc, Jan/0000-0002-9493-3973 FU Ministry of Education of the Czech Republic; Grant Agency of the Czech Republic [102/09/H074]; U.S. Department of Energy, Office of Nonproliferation Research and Engineering [NA-22]; [SVV-2010-261306] FX This work was a part of the research plan MSM 0021620834 that was financed by the Ministry of Education of the Czech Republic and was partly supported by the Grant Agency of the Czech Republic under Contract No. 102/09/H074. J. P. would like to thank the student Grant No. SVV-2010-261306. One author (R. B. J.) gratefully acknowledges support from the U. S. Department of Energy, Office of Nonproliferation Research and Engineering, NA-22. NR 26 TC 5 Z9 5 U1 3 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2011 VL 110 IS 9 AR 093103 DI 10.1063/1.3658248 PG 8 WC Physics, Applied SC Physics GA 848OY UT WOS:000297062100003 ER PT J AU Sawyer, CA Guzman, J Boswell-Koller, CN Sherburne, MP Mastandrea, JP Bustillo, KC Ager, JW Haller, EE Chrzan, DC AF Sawyer, C. A. Guzman, J. Boswell-Koller, C. N. Sherburne, M. P. Mastandrea, J. P. Bustillo, K. C. Ager, J. W., III Haller, E. E. Chrzan, D. C. TI Modeling pulsed-laser melting of embedded semiconductor nanoparticles SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID GERMANIUM; SILICON; TIME AB Pulsed-laser melting (PLM) is commonly used to achieve a fast quench rate in both thin films and nanoparticles. A model for the size evolution during PLM of nanoparticles confined in a transparent matrix, such as those created by ion-beam synthesis, is presented. A self-consistent mean-field rate equations approach that has been used successfully to model ion beam synthesis of germanium nanoparticles in silica is extended to include the PLM process. The PLM model includes classical optical absorption, multiscale heat transport by both analytical and finite difference methods, and melting kinetics for confined nanoparticles. The treatment of nucleation and coarsening behavior developed for the ion beam synthesis model is modified to allow for a nonuniform temperature gradient and for interacting liquid and solid particles with different properties. The model allows prediction of the particle size distribution after PLM under various laser fluences, starting from any particle size distribution including as-implanted or annealed simulated samples. A route for narrowing the size distribution of embedded nanoparticles is suggested, with simulated distribution widths as low as 15% of the average size. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3658265] C1 [Sawyer, C. A.; Guzman, J.; Boswell-Koller, C. N.; Sherburne, M. P.; Mastandrea, J. P.; Bustillo, K. C.; Haller, E. E.; Chrzan, D. C.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Sawyer, C. A.; Guzman, J.; Boswell-Koller, C. N.; Sherburne, M. P.; Mastandrea, J. P.; Bustillo, K. C.; Ager, J. W., III; Haller, E. E.; Chrzan, D. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Sawyer, CA (reprint author), Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. EM dcchrzan@berkeley.edu OI Ager, Joel/0000-0001-9334-9751 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 20 TC 2 Z9 2 U1 1 U2 16 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2011 VL 110 IS 9 AR 094307 DI 10.1063/1.3658265 PG 10 WC Physics, Applied SC Physics GA 848OY UT WOS:000297062100099 ER PT J AU Seifter, A Grover, M Holtkamp, DB Iverson, AJ Stevens, GD Turley, WD Veeser, LR Wilke, MD Young, JA AF Seifter, A. Grover, M. Holtkamp, D. B. Iverson, A. J. Stevens, G. D. Turley, W. D. Veeser, L. R. Wilke, M. D. Young, J. A. TI Emissivity measurements of shocked tin using a multi-wavelength integrating sphere SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID HIGH-SPEED; TEMPERATURE; PYROMETER AB Pyrometric measurements of radiance to determine temperature have been performed on shock physics experiments for decades. However, multi-wavelength pyrometry schemes sometimes fail to provide credible temperatures in experiments, which incur unknown changes in sample emissivity, because an emissivity change also affects the spectral radiance. Hence, for shock physics experiments using pyrometry to measure temperatures, it is essential to determine the dynamic sample emissivity. The most robust way to determine the normal spectral emissivity is to measure the spectral normal-hemispherical reflectance using an integrating sphere. In this paper, we describe a multi-wavelength (1.6-5.0 mu m) integrating sphere system that utilizes a "reversed" scheme, which we use for shock physics experiments. The sample to be shocked is illuminated uniformly by scattering broadband light from inside a sphere onto the sample. A portion of the light reflected from the sample is detected at a point 12 deg from normal to the sample surface. For this experiment, we used the system to measure emissivity of shocked tin at four wavelengths for shock-stress values between 17 and 33GPa. The results indicate a large increase in effective emissivity upon shock release from tin when the shock is above 24-25GPa, a shock stress for which the sample is partially melted when the shock releases. We also recorded an IR image of one of the shocked samples through the integrating sphere, and the emissivity inferred from the image agreed well with the integrating-sphere, pyrometer-detector data. Here, we discuss experimental data, uncertainties, and a data analysis process. We also describe unique emissivity-measurement problems arising from shock experiments and methods to overcome such problems. (C) 2011 American Institute of Physics. [doi:10.1063/1.3656429] C1 [Seifter, A.] European Patent Off, The Hague, Netherlands. [Seifter, A.; Holtkamp, D. B.; Veeser, L. R.; Wilke, M. D.] Los Alamos Natl Lab, Grp P 23, Los Alamos, NM 87545 USA. [Grover, M.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.] Natl Secur Technol LLC, Special Technol Lab, Santa Barbara, CA 93111 USA. [Iverson, A. J.; Young, J. A.] Natl Secur Technol LLC, Los Alamos Operat, Los Alamos, NM 87544 USA. RP Seifter, A (reprint author), European Patent Off, The Hague, Netherlands. EM a.seifter@gmx.net FU National Security Technologies, LLC [DE-AC52-06NA25946]; U.S. Department of Energy FX We are very appreciative of the help from Boris Wilthan, who performed the reference experiments and gave us extensive guidance on how to build and use the ISR, and the support and advice of Russell Olson. We thank Dennis Hayes, who provided us with his EOS calculations of the partially melted tin temperatures. This manuscript has been authored by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U. S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 29 TC 4 Z9 4 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2011 VL 110 IS 9 AR 093508 DI 10.1063/1.3656429 PG 10 WC Physics, Applied SC Physics GA 848OY UT WOS:000297062100024 ER PT J AU Swaminathan, S Sun, Y Pianetta, P McIntyre, PC AF Swaminathan, Shankar Sun, Yun Pianetta, Piero McIntyre, Paul C. TI Ultrathin ALD-Al2O3 layers for Ge(001) gate stacks: Local composition evolution and dielectric properties SO JOURNAL OF APPLIED PHYSICS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; OXIDE THIN-FILMS; DEVICE APPLICATIONS; STATE DENSITY; AL2O3; INTERFACE; GE; GE(100); GERMANIUM; OXIDATION AB Correlations among physical and electrical properties of atomic layer deposited (ALD)-Al2O3 on H2O-prepulsed Ge(100) have been investigated to evaluate Al2O3 as an ultrathin interface passivation layer for higher-k/Al2O3/Ge gate stacks. In situ XPS in the ALD environment provides insights into the local composition evolution during the initial stages of ALD, evidencing (a) an incubation regime that may limit the minimum achievable capacitance equivalent thickness (CET) of these gate stacks, and (b) residual hydroxyl incorporation in the film consistent with the observed dielectric constant similar to 7.2. Thickness scaling of the CET is consistent with a nearly abrupt interface as measured by synchrotron radiation photoemission spectroscopy (SRPES). SRPES studies also reveal that forming gas anneal provides passivation through monolayer-level formation of stoichiometric GeO2, suggesting a complex chemical interaction involving residual -OH groups in the as-grown ALD-Al2O3. Valence and conduction band offsets of prepulsed ALD-Al2O3 with respect to Ge are calculated to be 3.3 +/- 0.1 and 2.6 +/- 0.3 eV, indicating that these layers offer an effective barrier to hole and electron injection. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3647761] C1 [Swaminathan, Shankar; McIntyre, Paul C.] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Sun, Yun; Pianetta, Piero] SSRL, Menlo Pk, CA 94025 USA. RP Swaminathan, S (reprint author), Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. NR 46 TC 29 Z9 30 U1 3 U2 64 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-8979 J9 J APPL PHYS JI J. Appl. Phys. PD NOV 1 PY 2011 VL 110 IS 9 AR 094105 DI 10.1063/1.3647761 PG 6 WC Physics, Applied SC Physics GA 848OY UT WOS:000297062100087 ER PT J AU Hagos, S Leung, LR AF Hagos, Samson Leung, L. Ruby TI Moist Thermodynamics of the Madden-Julian Oscillation in a Cloud-Resolving Simulation SO JOURNAL OF CLIMATE LA English DT Article ID TROPICAL INTRASEASONAL OSCILLATION; GLOBAL PRECIPITATION; CONVECTION; PARAMETERIZATION; MONSOON; MODEL; PACIFIC; VARIABILITY; CYCLONES; DATASET AB The moist thermodynamic processes that determine the time scale and energy of the Madden-Julian oscillation (MJO) are investigated using moisture and eddy available potential energy budget analyses on a cloud-resolving simulation. Two MJO episodes observed during the winter of 2007/08 are realistically simulated. During the inactive phase, moisture supplied by meridional moisture convergence and boundary layer diffusion generates shallow and congestus clouds that moisten the lower troposphere while horizontal mixing tends to dry it. As the lower troposphere is moistened, it becomes a source of moisture for the subsequent deep convection during the MJO active phase. As the active phase ends, the lower troposphere dries out primarily by condensation and horizontal divergence that dominates over the moisture supply by vertical transport. In the simulation, the characteristic time scales of convective vertical transport, mixing, and condensation of moisture in the midtroposphere are estimated to be about 2 days, 4 days, and 20 h respectively. The small differences among these time scales result in an effective time scale of MJO moistening of about 25 days, half the period of the simulated MJO. Furthermore, various cloud types have a destabilizing or damping effect on the amplitude of MJO temperature signals, depending on their characteristic latent heating profile and its temporal covariance with the temperature. The results are used to identify possible sources of the difficulties in simulating MJO in low-resolution models that rely on cumulus parameterizations. C1 [Hagos, Samson; Leung, L. Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hagos, S (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM samson.hagos@pnl.gov RI hagos, samson /K-5556-2012 FU U.S. Department of Energy [DE-AC06-76RLO1830] FX The authors thank Dr. William Gustafson for his comments and suggestions. This work is supported by the U.S. Department of Energy under the Atmospheric Systems Research Program. Computing resources for the simulations are provided by the National Center for Computational Sciences (NCCS) through the INCITE Climate End Station Project. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under Contract DE-AC06-76RLO1830. NR 40 TC 12 Z9 12 U1 0 U2 6 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD NOV 1 PY 2011 VL 24 IS 21 BP 5571 EP 5583 DI 10.1175/2011JCLI4212.1 PG 13 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 841TE UT WOS:000296535300007 ER PT J AU Chen, CF Reagor, DW Russell, SJ Marksteiner, QR Earley, LM Dalmas, DA Volz, HM Guidry, DR Papin, PA Yang, P AF Chen, Ching-Fong Reagor, David W. Russell, Steven J. Marksteiner, Quinn R. Earley, Lawrence M. Dalmas, Dale A. Volz, Heather M. Guidry, Dennis R. Papin, Pallas A. Yang, Pin TI Sol-Gel Processing and Characterizations of a Ba0.75Sr0.25Ti 0.95Zr0.05O3 Ceramic SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID THIN-FILMS; NANOCRYSTALLINE MATERIALS; GENERATION AB A Ba0.75Sr0.25Ti0.95Zr0.05O3 ceramic was developed for use in nonlinear transmission line (NLTL) applications. The sol-gel process was used to synthesize Ba0.75Sr0.25Ti0.95Zr0.05O3 nanoparticles to achieve a uniform composition and a high surface area. Simultaneous thermal gravimetric analysis and differential thermal analysis (TGA/DTA) was used to identify the decomposition sequence as a function of temperature for the as-synthesized powders. The phase transformation was confirmed by X-ray diffraction (XRD). The calcined nanoparticles were hot-pressed at 1300 degrees C to achieve a high density. Microstructures were characterized using scanning electron microscopy (SEM). Several dielectric properties were measured and are reported. C1 [Chen, Ching-Fong; Volz, Heather M.; Guidry, Dennis R.; Papin, Pallas A.] Los Alamos Natl Lab, Mat Sci Technol Div, Los Alamos, NM 87545 USA. [Reagor, David W.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Russell, Steven J.; Marksteiner, Quinn R.; Earley, Lawrence M.; Dalmas, Dale A.] Los Alamos Natl Lab, Int Space & Response Div, Los Alamos, NM 87545 USA. [Yang, Pin] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Chen, CF (reprint author), Los Alamos Natl Lab, Mat Sci Technol Div, POB 1663, Los Alamos, NM 87545 USA. EM cchen@lanl.gov FU Joint Non-Lethal Weapons Directorate (JNLWD) through the Office of Naval Research [N0001409IP20094]; Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This program was financially supported by the Joint Non-Lethal Weapons Directorate (JNLWD) through the Office of Naval Research, contract #N0001409IP20094 to Los Alamos National Laboratory. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under the contract DE-AC04-94AL85000. NR 24 TC 8 Z9 8 U1 0 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD NOV PY 2011 VL 94 IS 11 BP 3727 EP 3732 DI 10.1111/j.1551-2916.2011.04646.x PG 6 WC Materials Science, Ceramics SC Materials Science GA 848CQ UT WOS:000297026700025 ER PT J AU Dillon, SJ Helmick, L Miller, HM Wilson, L Gemman, R Petrova, RV Barmak, K Rohrer, GS Salvador, PA AF Dillon, Shen J. Helmick, Lam Miller, Herbert M. Wilson, Lane Gemman, Randall Petrova, Rumyana V. Barmak, Katayun Rohrer, Gregory S. Salvador, Paul A. TI The Orientation Distributions of Lines, Surfaces, and Interfaces around Three-Phase Boundaries in Solid Oxide Fuel Cell Cathodes SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID WC-CO COMPOSITES; SOFC CATHODES; 3-DIMENSIONAL RECONSTRUCTION; GRAIN-BOUNDARIES; (LA,SR)MNO3 ELECTRODES; MICROSTRUCTURE; POLARIZATION; PERFORMANCE; ANODE; EBSD AB Three-dimensional electron backscatter diffraction was used to measure the crystallographic distribution of the electrochemically relevant triple phase boundary lines and surfaces near them in SOFC cathodes made up of a porous mixture of yttria-stabilized zirconia and lanthanum strontium manganese oxide, both before and after mild electrochemical loading. All distributions were observed to be nearly isotropic, but nonrandom textures above the detection threshold were observed. The distributions differ between the two cells, as do the phase fractions and the electrochemical history. The different distributions are interpreted as evidence that steady-state distributions vary locally with phase fractions or that they evolve during the initial operation of the fuel cell. The rates at which triple lines, pore surfaces, and interface boundaries in the porous mixture approach a steady-state value appear to decrease with the average amount of mass transport required to reorient that specific feature. This work provides initial insights into the crystallography of interfaces in a multiphase ceramic material. C1 [Helmick, Lam; Miller, Herbert M.; Petrova, Rumyana V.; Barmak, Katayun; Rohrer, Gregory S.; Salvador, Paul A.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Dillon, Shen J.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Helmick, Lam; Wilson, Lane; Gemman, Randall; Salvador, Paul A.] NETL, Morgantown, WV 26507 USA. RP Salvador, PA (reprint author), Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. EM paulsalvador@cmu.edu RI Barmak, Katayun/A-9804-2008; Salvador, Paul/A-9435-2011; dillon, shen/N-1850-2013; INL, Citations/K-3436-2015; Rohrer, Gregory/A-9420-2008 OI Barmak, Katayun/0000-0003-0070-158X; Salvador, Paul/0000-0001-7106-0017; dillon, shen/0000-0002-6192-4026; INL, Citations/0000-0002-3745-5100; Rohrer, Gregory/0000-0002-9671-3034 FU National Energy Technology Laboratory's on-going research in Materials Science & Engineering: SOFC under the RDS [DE-AC26-04NT41817]; MRSEC of the National Science Foundation [DMR-0520425]; Pennsylvania DCED FX This work was supported by the National Energy Technology Laboratory's on-going research in Materials Science & Engineering: SOFC under the RDS contract DE-AC26-04NT41817. This work was partially supported by the MRSEC program of the National Science Foundation under Award Number DMR-0520425 and by the Pennsylvania DCED. NR 58 TC 13 Z9 13 U1 1 U2 47 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0002-7820 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD NOV PY 2011 VL 94 IS 11 BP 4045 EP 4051 DI 10.1111/j.1551-2916.2011.04673.x PG 7 WC Materials Science, Ceramics SC Materials Science GA 848CQ UT WOS:000297026700073 ER PT J AU Chang, EKM Lin, WY AF Chang, Edmund K. M. Lin, Wuyin TI Comments on "The Role of the Central Asian Mountains on the Midwinter Suppression of North Pacific Storminess" SO JOURNAL OF THE ATMOSPHERIC SCIENCES LA English DT Editorial Material ID WINTER STATIONARY WAVES; MODEL; TRACKS C1 [Chang, Edmund K. M.] SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. [Lin, Wuyin] Brookhaven Natl Lab, Div Atmospher Sci, Upton, NY 11973 USA. RP Chang, EKM (reprint author), SUNY Stony Brook, Sch Marine & Atmospher Sci, Stony Brook, NY 11794 USA. EM kmchang@notes.cc.sunysb.edu NR 7 TC 1 Z9 1 U1 1 U2 3 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0022-4928 J9 J ATMOS SCI JI J. Atmos. Sci. PD NOV PY 2011 VL 68 IS 11 BP 2800 EP 2803 DI 10.1175/JAS-D-11-021.1 PG 4 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 849PY UT WOS:000297138800020 ER PT J AU Kalinin, S Balke, N Jesse, S Tselev, A Kumar, A Arruda, TM Guo, SL Proksch, R AF Kalinin, Sergei Balke, Nina Jesse, Stephen Tselev, Alexander Kumar, Amit Arruda, Thomas M. Guo, Senli Proksch, Roger TI Li-ion dynamics and reactivity on the nanoscale SO MATERIALS TODAY LA English DT Review ID ATOMIC-FORCE MICROSCOPY; ELEVATED-TEMPERATURES; NANOMETER RESOLUTION; CHEMICAL EXPANSION; BATTERY CATHODE; THIN-FILMS; LITHIUM; TRANSPORT; ELECTRODE; STRESS AB Progress in the development and optimization of energy storage and conversion materials necessitates understanding their ionic and electrochemical functionality on the nanometer scale of single grain clusters, grains, or extended defects. Classical electrochemical strategies based on Faradaic current detection are fundamentally limited on the nanoscale. Here, we review principles and recent applications of electrochemical strain microscopy (ESM), a scanning probe microscopy (SPM) technique utilizing intrinsic coupling between ionic phenomena and molar volumes. ESM imaging, as well as time and voltage spectroscopies, are illustrated for several Li-ion cathode and anode materials. Finally, perspectives for future ESM developments and applications to other ionic systems are discussed. C1 [Kalinin, Sergei; Balke, Nina; Jesse, Stephen; Tselev, Alexander; Kumar, Amit; Arruda, Thomas M.; Guo, Senli] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Proksch, Roger] Asylum Res Corp, Santa Barbara, CA USA. RP Kalinin, S (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM sergei2@ornl.gov RI Kumar, Amit/C-9662-2012; Tselev, Alexander/L-8579-2015; Balke, Nina/Q-2505-2015; Jesse, Stephen/D-3975-2016; Arruda, Thomas/C-6134-2012 OI Kumar, Amit/0000-0002-1194-5531; Tselev, Alexander/0000-0002-0098-6696; Balke, Nina/0000-0001-5865-5892; Jesse, Stephen/0000-0002-1168-8483; Arruda, Thomas/0000-0002-6165-2024 FU Fluid Interface Reactions, Structures and Transport (FIRST) Center at Oak Ridge National Laboratory, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [ERKCC61]; Office of Science, Basic Energy Sciences, Division of User Facilities; DOE SISGR FX The effort by SVK and NB was supported as a part of the Fluid Interface Reactions, Structures and Transport (FIRST) Center at Oak Ridge National Laboratory, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number ERKCC61. Parts of this research (SJ, TMA, AK, AT) were performed at the Center for Nanophase Materials Science sponsored by the Office of Science, Basic Energy Sciences Program, Division of User Facilities. TMA was supported in part by DOE SISGR program. The authors are deeply grateful to J. Budai for valuable advice regarding x-ray microprobe, and A. Borisevich and R. Unocic for multiple discussion of STEM-SPM combinations. NR 103 TC 26 Z9 26 U1 5 U2 118 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1369-7021 EI 1873-4103 J9 MATER TODAY JI Mater. Today PD NOV PY 2011 VL 14 IS 11 BP 548 EP 558 PG 11 WC Materials Science, Multidisciplinary SC Materials Science GA 851GK UT WOS:000297256200018 ER PT J AU Varbanova, M Porter, K Lu, FC Ralph, J Hammerschmidt, R Jones, AD Day, B AF Varbanova, Marina Porter, Katie Lu, Fachuang Ralph, John Hammerschmidt, Ray Jones, A. Daniel Day, Brad TI Molecular and Biochemical Basis for Stress-Induced Accumulation of Free and Bound p-Coumaraldehyde in Cucumber SO PLANT PHYSIOLOGY LA English DT Article ID CINNAMYL-ALCOHOL-DEHYDROGENASE; LIGNIN BIOSYNTHESIS; CLADOSPORIUM-CUCUMERINUM; SECONDARY METABOLISM; PHENOLIC-COMPOUNDS; COUMARYL ALDEHYDE; DOWN-REGULATION; SQUASH FRUIT; ARABIDOPSIS; RESISTANCE AB To elucidate the genetic and biochemical regulation of elicitor-induced p-coumaraldehyde accumulation in plants, we undertook a multifaceted approach to characterize the metabolic flux through the phenylpropanoid pathway via the characterization and chemical analysis of the metabolites in the p-coumaryl, coniferyl, and sinapyl alcohol branches of this pathway. Here, we report the identification and characterization of four cinnamyl alcohol dehydrogenases (CADs) from cucumber (Cucumis sativus) with low activity toward p-coumaraldehyde yet exhibiting significant activity toward other phenylpropanoid hydroxycinnamaldehydes. As part of this analysis, we identified and characterized the activity of a hydroxycinnamoyl-coenzyme A: shikimate hydroxycinnamoyl transferase (HCT) capable of utilizing shikimate and p-coumaroyl-coenzyme A to generate p-coumaroyl shikimate. Following pectinase treatment of cucumber, we observed the rapid accumulation of p-coumaraldehyde, likely the result of low aldehyde reductase activity (i.e. alcohol dehydrogenase in the reverse reaction) of CsCAD enzymes on p-coumaraldehyde. In parallel, we noted a concomitant reduction in the activity of CsHCT. Taken together, our findings support the hypothesis that the up-regulation of the phenylpropanoid pathway upon abiotic stress greatly enhances the overall p-coumaryl alcohol branch of the pathway. The data presented here point to a role for CsHCT (as well as, presumably, p-coumarate 3-hydroxylase) as a control point in the regulation of the coniferyl and sinapyl alcohol branches of this pathway. This mechanism represents a potentially evolutionarily conserved process to efficiently and quickly respond to biotic and abiotic stresses in cucurbit plants, resulting in the rapid lignification of affected tissues. C1 [Varbanova, Marina; Hammerschmidt, Ray; Day, Brad] Michigan State Univ, Dept Plant Pathol, E Lansing, MI 48824 USA. [Porter, Katie; Hammerschmidt, Ray; Day, Brad] Michigan State Univ, Grad Program Cell & Mol Biol, E Lansing, MI 48824 USA. [Jones, A. Daniel] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Jones, A. Daniel] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Lu, Fachuang; Ralph, John] Univ Wisconsin, Dept Biochem, Wisconsin Bioenergy Inst, Madison, WI 53726 USA. [Lu, Fachuang; Ralph, John] Univ Wisconsin, Dept Energy, Great Lakes Bioenergy Res Ctr, Madison, WI 53726 USA. RP Day, B (reprint author), Michigan State Univ, Dept Plant Pathol, E Lansing, MI 48824 USA. EM bday@msu.edu RI Jones, Arthur/C-2670-2013; OI Jones, Arthur/0000-0002-7408-6690; Day, Brad/0000-0002-9880-4319 FU National Science Foundation [IOS-0641319, DBI-0619489]; Michigan State University [GR09-092]; Department of Energy Great Lakes Bioenergy Research Center (Department of Energy Office of Science) [BER DE-FC02-07ER64494] FX This work was supported by the National Science Foundation (CAREER award no. IOS-0641319 to B. D. and Major Research Instrument grant no. DBI-0619489 to A.D.J.), by Michigan State University (GREEEN award no. GR09-092 to B. D. and AgBioResearch award to R. H. and B. D.), and by the Department of Energy Great Lakes Bioenergy Research Center (Department of Energy Office of Science award no. BER DE-FC02-07ER64494 to J.R.). NR 45 TC 3 Z9 6 U1 2 U2 21 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD NOV PY 2011 VL 157 IS 3 BP 1056 EP 1066 DI 10.1104/pp.111.184358 PG 11 WC Plant Sciences SC Plant Sciences GA 844BL UT WOS:000296722300008 PM 21940999 ER PT J AU Lu, SY Zhao, HY Parsons, EP Xu, CC Kosma, DK Xu, XJ Chao, D Lohrey, G Bangarusamy, DK Wang, G Bressan, RA Jenks, MA AF Lu, Shiyou Zhao, Huayan Parsons, Eugene P. Xu, Changcheng Kosma, Dylan K. Xu, Xiaojing Chao, Daiyin Lohrey, Gregory Bangarusamy, Dhinoth K. Wang, Guangchao Bressan, Ray A. Jenks, Matthew A. TI The glossyhead1 Allele of ACC1 Reveals a Principal Role for Multidomain Acetyl-Coenzyme A Carboxylase in the Biosynthesis of Cuticular Waxes by Arabidopsis SO PLANT PHYSIOLOGY LA English DT Article ID FATTY-ACID ELONGATION; ATP-CITRATE LYASE; EMBRYO DEVELOPMENT; COA CARBOXYLASE; A CARBOXYLASE; GENE-EXPRESSION; GURKE GENE; THALIANA; METABOLISM; EPIDERMIS AB A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyhead1 (gsd1). The gsd1 locus was mapped to chromosome 1, and the causal gene was identified as a new allele of Acetyl-Coenzyme A Carboxylase1 (ACC1), a gene encoding the main enzyme in cytosolic malonyl-coenzyme A synthesis. This, to our knowledge, is the first mutant allele of ACC1 that does not cause lethality at the seed or early germination stage, allowing for the first time a detailed analysis of ACC1 function in mature tissues. Broad lipid profiling of mature gsd1 organs revealed a primary role for ACC1 in the biosynthesis of the very-long-chain fatty acids (C-20:0 or longer) associated with cuticular waxes and triacylglycerols. Unexpectedly, transcriptome analysis revealed that gsd1 has limited impact on any lipid metabolic networks but instead has a large effect on environmental stress-responsive pathways, especially senescence and ethylene synthesis determinants, indicating a possible role for the cytosolic malonyl-coenzyme A-derived lipids in stress response signaling. C1 [Jenks, Matthew A.] Agr Res Serv, US Arid Land Agr Res Ctr, USDA, Maricopa, AZ 85138 USA. [Lu, Shiyou; Zhao, Huayan; Bangarusamy, Dhinoth K.; Wang, Guangchao; Bressan, Ray A.] King Abdullah Univ Sci & Technol, Ctr Plant Stress Genom & Technol, Thuwal 239556900, Saudi Arabia. [Parsons, Eugene P.; Xu, Xiaojing; Chao, Daiyin; Lohrey, Gregory; Bressan, Ray A.] Purdue Univ, Dept Hort & Landscape Architecture, W Lafayette, IN 47907 USA. [Xu, Changcheng] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. [Kosma, Dylan K.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. RP Jenks, MA (reprint author), Agr Res Serv, US Arid Land Agr Res Ctr, USDA, Maricopa, AZ 85138 USA. EM matt.jenks@ars.usda.gov RI Chao, Daiyin/A-5213-2013 FU Purdue University Electron Microscopy Center FX We are grateful to Dr. Masao Tasaka (Nara Institute of Science and Technology) for providing emb22 and acc1-3 seeds. We also thank Debra Sherman and Chia-Ping Huang of the Purdue University Electron Microscopy Center for support. NR 45 TC 22 Z9 23 U1 1 U2 26 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD NOV PY 2011 VL 157 IS 3 BP 1079 EP 1092 DI 10.1104/pp.111.185132 PG 14 WC Plant Sciences SC Plant Sciences GA 844BL UT WOS:000296722300010 PM 21949210 ER PT J AU Zhang, YHP AF Zhang, Y. -H. Percival TI What is vital (and not vital) to advance economically-competitive biofuels production SO PROCESS BIOCHEMISTRY LA English DT Review DE Biofuels; Biomass conversion; Cellulase engineering; Energy density; Energy efficiency analysis; Non-point energy source; Prime mover; Synthetic biology ID DIETARY MANNAN-OLIGOSACCHARIDES; RECHARGEABLE LITHIUM BATTERIES; CAPACITY CELLULOSIC ADSORBENT; SYNTHETIC ENZYMATIC PATHWAY; GLYCOSIDE HYDROLASE FAMILY; PENTOSE-PHOSPHATE PATHWAY; LIGNOCELLULOSE FRACTIONATION; FUEL ETHANOL; CLOSTRIDIUM-THERMOCELLUM; INDUSTRIAL APPLICATIONS AB Since biofuels is a hot topic, many researchers new to this field are eager to propose different solutions while they often seem not to have full understanding of the current status of technologies and numerous (hidden) constraints. As a result, the general public, policymakers, academic researchers, and industrial developers have been assaulted by a wave of biased, misinterpreted, or outright false information. In reality, only a small fraction of exploding biofuels R&D teams are addressing vital rather than trivial challenges associated with economically production of advanced biofuels. Biofuels R&D is not a completely basic science project; instead, it is a typical goal-oriented (engineering) project because so many constraints prevent economically competitive production of most advanced biofuels and are expected to do so in the future. In this opinion paper, I present some basic rules and facts in thermodynamics, physical chemistry, and special constraints in the transport sector, sort through and challenge some claimed breakthroughs or new directions, and identify vital topics to advance biofuels in the short and long terms. Simply speaking, energy efficiency is the most important long-term criterion whereas cost is the most important short-term criterion; eventually thermodynamics determines economics. For light-duty passenger vehicles, which consume similar to 60% transportation fuels, cellulosic ethanol and butanol are the best short- and middle-term biofuels, whereas sugary hydrogen would be the ultimate biofuel in the long term. The top three priorities of biofuels R&D are (i) cost-effective release of sugars from lignocellulose, (ii) co-utilization of lignocellulose components for the production of value-added compounds that subsidize whole biorefineries, and (iii) enhancing the biomass-to-kinetic energy efficiency from conversions to prime movers through a potential evolutionary scenario from ethanol or butanol/internal combustion engines (ICE) to ethanol/hybrid diesel-like ICE to sugar hydrogen fuel cell vehicles. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Zhang, Y. -H. Percival] Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] Virginia Tech, ICTAS, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] DOE BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA. [Zhang, Y. -H. Percival] Gate Fuels Inc, Blacksburg, VA 24060 USA. RP Zhang, YHP (reprint author), Virginia Tech, Dept Biol Syst Engn, 210-A Seitz Hall, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu FU Air Force Office of Scientific Research; DOE Bioenergy Science Center (BESC); VT USDA Biodesign and Bioprocess Center; China National Special Fund for Key Laboratories [2060204]; Office of Biological and Environmental Research in the DOE Office of Science FX This work was supported by the Air Force Office of Scientific Research, DOE Bioenergy Science Center (BESC), VT USDA Biodesign and Bioprocess Center, and China National Special Fund for Key Laboratories (No. 2060204). The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. The materials expressed in this article represent the author's personal opinion and not those of the AFOSR, DOE, or USDA. NR 203 TC 55 Z9 55 U1 1 U2 80 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-5113 J9 PROCESS BIOCHEM JI Process Biochem. PD NOV PY 2011 VL 46 IS 11 BP 2091 EP 2110 DI 10.1016/j.procbio.2011.08.005 PG 20 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Engineering, Chemical SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Engineering GA 850ZF UT WOS:000297237400002 ER PT J AU Gang, O Zhang, YG AF Gang, Oleg Zhang, Yugang TI Shaping Phases by Phasing Shapes SO ACS NANO LA English DT Editorial Material ID NANOPARTICLE SUPERLATTICES; EMERGING APPLICATIONS; BUILDING-BLOCKS; DNA; PARTICLES; STIMULUS AB Incorporation of shape-shifting building blocks Into self-assembled systems has emerged as a promising concept for dynamic structural control. The computational work by Nguyen et al. reported in this issue of ACS Nano examines the phase reconfigurations and kinetic pathways for systems built from shape-shifting building blocks. The studies illustrate several unique properties of such systems, including more efficient packings, novel structures that are distinctive from those obtained through conventional self-assembly, and reversible multistep shape-shifting pathways. The proposed assembly strategy is potentially applicable to a diverse range of systems because it relies on a change of geometrical constraints, which are common across all length scales. Recent developments in the areas of responsive materials and self-assembly methods provide feasible platforms for experimental realizations of shape-shifting reconfigurations; such systems might enable the next generation of dynamically switchable materials and reconfigurable devices. C1 [Gang, Oleg; Zhang, Yugang] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Gang, O (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM ogang@bnl.gov NR 36 TC 21 Z9 21 U1 2 U2 46 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD NOV PY 2011 VL 5 IS 11 BP 8459 EP 8465 DI 10.1021/nn2041363 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 849RR UT WOS:000297143300003 PM 22103256 ER PT J AU Park, SM Liang, XG Harteneck, BD Pick, TE Hiroshiba, N Wu, Y Helms, BA Olynick, DL AF Park, Sang-Min Liang, Xiaogan Harteneck, Bruce D. Pick, Teresa E. Hiroshiba, Nobuya Wu, Ying Helms, Brett A. Olynick, Deirdre L. TI Sub-10 nm Nanofabrication via Nanoimprint Directed Self-Assembly of Block Copolymers SO ACS NANO LA English DT Article DE block copolymer self-assembly; directed self-assembly; nanoimprint lithography; nanolithography; nanofabrication ID DIBLOCK COPOLYMERS; THIN-FILMS; LITHOGRAPHY; PHOTORESIST; PATTERNS; SURFACE; ARRAYS; GRAPHOEPITAXY; CONFINEMENT; FABRICATION AB Directed self-assembly (DSA) of block copolymers (BCPs), either by selective wetting of surface chemical prepatterns or by graphoepitaxial alignment with surface topography, has ushered in a new era for high-resolution nanopatterning. These pioneering approaches, while effective, require expensive and time-consuming lithographic patterning of each substrate to direct the assembly. To overcome this shortcoming, nanoimprint molds-attainable via low-cost optical lithography-were Investigated for their potential to be reusable and efficiently template the assembly of block copolymers (BCPs) while under complete confinement. Nanoimprint directed self-assembly conveniently avoids repetitive and expensive chemical or topographical prepatterning of substrates. To demonstrate this technique for high-resolution nanofabrication, we aligned sub-10 nm resolution nanopatterns using a cylinder-forming, organic-inorganic hybrid block copolymer, polystyrene-block-polydimethylsiloxane (PS-b-PDMS). Nanopatterns derived from oxidized PDMS microdomains were successfully transferred Into the underlying substrate using plasma etching. In the development phase of this procedure, we investigated the role of mold treatments and pattern geometries as DSA of BCPs are driven by interfacial chemistry and physics. In the optimized route, silicon molds treated with PDMS surface brushes promoted rapid BCP alignment and reliable mold release while appropriate mold geometries provided a single layer of cylinders and negligible residual layers as required for pattern transfer. Molds thus produced were reusable to the same efficacy between nanoimprints. We also demonstrated that shear flow during the nanoimprint process enhanced the alignment of the BCP near open edges, which may be engineered in future schemes to control the BCP microdomain alignment kinetics during DSA. C1 [Park, Sang-Min; Liang, Xiaogan; Harteneck, Bruce D.; Pick, Teresa E.; Hiroshiba, Nobuya; Wu, Ying; Helms, Brett A.; Olynick, Deirdre L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Wu, Ying] Oxford Instruments Amer Inc, Concord, MA 01742 USA. RP Olynick, DL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM bahelms@lbl.gov; dlolynick@lbl.gov RI Hiroshiba, Nobuya/E-8128-2010; OI Hiroshiba, Nobuya/0000-0003-3459-150X; Helms, Brett/0000-0003-3925-4174 FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Japan Society for the Promotion of Science (JSPS); [22-1624] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. N.H. was supported by the Japan Society for the Promotion of Science (JSPS) Research Fellowships for Young Scientists and the Grant-in-Aid for JSPS Fellows (No. 22-1624). NR 46 TC 77 Z9 77 U1 13 U2 137 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD NOV PY 2011 VL 5 IS 11 BP 8523 EP 8531 DI 10.1021/nn201391d PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 849RR UT WOS:000297143300009 PM 21995511 ER PT J AU Luo, JY Jang, HD Sun, T Xiao, L He, Z Katsoulidis, AP Kanatzidis, MG Gibson, JM Huang, JX AF Luo, Jiayan Jang, Hee Dong Sun, Tao Xiao, Li He, Zhen Katsoulidis, Alexandros P. Kanatzidis, Mercouri G. Gibson, J. Murray Huang, Jiaxing TI Compression and Aggregation-Resistant Particles of Crumpled Soft Sheets SO ACS NANO LA English DT Article DE graphene; graphene oxide; aerosol; capillary compression; crumpling; strain hardening; aggregation-resistant particles ID GRAPHENE-BASED SHEETS; GRAPHITE OXIDE; ULTRACAPACITORS; CONFORMATIONS; REDUCTION AB Unlike flat sheets, crumpled paper balls have both high free volume and high compressive strength, and can tightly pack without significantly reducing the area of accessible surface. Such properties would be highly desirable for sheet-like materials such as graphene, since they tend to aggregate in solution and restack in the solid state, making their properties highly dependent on the material processing history. Here we report the synthesis of crumpled graphene balls by capillary compression in rapidly evaporating aerosol droplets. The crumpled particles are stabilized by locally folded, pi-pi stacked ridges as a result of plastic deformation, and do not unfold or collapse during common processing steps. In addition, they are remarkably aggregation-resistant in either solution or solid state, and remain largely intact and redispersible after chemical treatments, wet processing, annealing, and even pelletizing at high pressure. For example, upon compression at 55 MPa, the regular flat graphene sheets turn into nondispersible chunks with drastically reduced surface area by 84%, while the crumpled graphene particles can still maintain 45% of their original surface area and remain readily dispersible in common solvents. Therefore, crumpled particles could help to standardize graphene-based materials by delivering more stable properties such as high surface area and solution processability regardless of material processing history. This should greatly benefit applications using bulk quantities of graphene, such as in energy storage or conversion devices. As a proof of concept, we demonstrate that microbial fuel electrodes modified by the crumpled particles indeed outperform those modified with their flat counterparts. C1 [Luo, Jiayan; Jang, Hee Dong; Huang, Jiaxing] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Sun, Tao; Gibson, J. Murray] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Xiao, Li; He, Zhen] Univ Wisconsin, Dept Civil Engn & Mech, Milwaukee, WI 53211 USA. [Katsoulidis, Alexandros P.; Kanatzidis, Mercouri G.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Jang, Hee Dong] Korea Inst Geosci & Mineral Resources, Dept Ind Mat Res, Taejon 305350, South Korea. [Gibson, J. Murray] Northeastern Univ, Coll Sci, Boston, MA 02115 USA. RP Huang, JX (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM Jiaxing-huang@northwestern.edu RI Wei, Zhanhua/D-7544-2013; He, Zhen/D-1275-2009; Huang, Jiaxing/A-9417-2012; Huang, Jiaxing/B-7521-2009; Gibson, Murray/E-5855-2013; Luo, Jiayan/A-9927-2011 OI Wei, Zhanhua/0000-0003-2687-0293; He, Zhen/0000-0001-6302-6556; Gibson, Murray/0000-0002-0807-6224; FU Robert R. McCormick School of Engineering and Applied Science at Northwestern University; Korea Institute of Geoscience and Mineral Resources (KIGAM); Ministry of Knowledge Economy of Korea; Alfred P. Sloan Foundation; NSF [0955612]; Sony Corporation; 3M; University of Wisconsin-Milwaukee; DOE-EERE [DE-FG36-08GO18137/A001]; U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357]; UChicago Argonne, LLC; NSF-NSEC; NSF-MRSEC; Keck Foundation; State of Illinois; Northwestern University FX This work was mainly supported by the new faculty startup fund (J.H.) from the Robert R. McCormick School of Engineering and Applied Science at Northwestern University and the General Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) (H.D.J.) funded by the Ministry of Knowledge Economy of Korea. Additional supports are provided from The Alfred P. Sloan Foundation, NSF (DMR CAREER 0955612) and The Sony Corporation (J.H.). J.L. thanks 3M for a graduate fellowship. Z.H. thanks the faculty start fund at the University of Wisconsin-Milwaukee. M.G.K. thanks DOE-EERE (Grant No. DE-FG36-08GO18137/A001) for support. The STEM study was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC. We thank the NUANCE Center, which is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University for use of their microscopy and materials analysis facilities. NR 32 TC 212 Z9 215 U1 29 U2 234 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD NOV PY 2011 VL 5 IS 11 BP 8943 EP 8949 DI 10.1021/nn203115u PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 849RR UT WOS:000297143300055 PM 21995602 ER PT J AU Wu, P Huang, JS Meunier, V Sumpter, BG Qiao, R AF Wu, Peng Huang, Jingsong Meunier, Vincent Sumpter, Bobby G. Qiao, Rui TI Complex Capacitance Scaling in Ionic Liquids-Filled Nanopores SO ACS NANO LA English DT Article DE supercapacitor; electrical double layer; room-temperature ionic liquids; anomalous enhancement; nanopores; transmission line model ID DOUBLE-LAYER CAPACITOR; CARBON SUPERCAPACITORS; MOLECULAR SIMULATION; ELECTROLYTES; GRAPHENE; SURFACE AB Recent experiments have shown that the capacitance of subnanometer pores increases anomalously as the pore width decreases, thereby opening a new avenue for developing supercapacitors with enhanced energy density. However, this behavior is still subject to some controversy since its physical origins are not well understood. Using atomistic simulations, we show that the capacitance of slit-shaped nanopores in contact with room-temperature ionic liquids exhibits a U-shaped scaling behavior In pores with widths from 0.75 to 1.26 nm. The left branch of the capacitance scaling curve directly corresponds to the anomalous capacitance Increase and thus reproduces the experimental observations. The right branch of the curve Indirectly agrees with experimental findings that so far have received little attention. The overall U-shaped scaling behavior provides insights on the origins of the difficulty in experimentally observing the pore-width-dependent capacitance. We establish a theoretical framework for understanding the capacitance of electrical double layers in nanopores and provide mechanistic details into the origins of the observed scaling behavior. The framework highlights the critical role of "ion solvation" in controlling pore capacitance and the importance of choosing anion/cation couples carefully for optimal energy storage in a given pore system. C1 [Wu, Peng; Qiao, Rui] Clemson Univ, Dept Mech Engn, Clemson, SC 29634 USA. [Huang, Jingsong; Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Huang, Jingsong; Sumpter, Bobby G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Meunier, Vincent] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. RP Qiao, R (reprint author), Clemson Univ, Dept Mech Engn, Clemson, SC 29634 USA. EM rqiao@clemson.edu RI Qiao, Rui/B-2350-2009; Sumpter, Bobby/C-9459-2013; Huang, Jingsong/A-2789-2008; wu, peng/P-7688-2014; OI Qiao, Rui/0000-0001-5219-5530; Sumpter, Bobby/0000-0001-6341-0355; Huang, Jingsong/0000-0001-8993-2506; wu, peng/0000-0002-2360-6414; Meunier, Vincent/0000-0002-7013-179X FU NSF [CBET-0756496]; Oak Ridge National Laboratory (ORNL); Center for Nanophase Materials Sciences; ORNL by the Office of Basic Energy Sciences, U.S. Department of Energy FX The authors thank the Clemson-CCIT office for providing computer time. The Clemson authors acknowledge support from NSF under Grant No. CBET-0756496. R.Q. and V.M. were partially supported by an appointment to the HERE program for faculty at the Oak Ridge National Laboratory (ORNL) administered by ORISE. The authors at ORNL acknowledge the support from the Center for Nanophase Materials Sciences, which is sponsored at ORNL by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 26 TC 90 Z9 90 U1 9 U2 111 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD NOV PY 2011 VL 5 IS 11 BP 9044 EP 9051 DI 10.1021/nn203260w PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 849RR UT WOS:000297143300066 PM 22017626 ER PT J AU Kim, Y Kumar, A Tselev, A Kravchenko, II Han, H Vrejoiu, I Lee, W Hesse, D Alexe, M Kalinin, SV Jesset, S AF Kim, Yunseok Kumar, Amit Tselev, Alexander Kravchenko, Ivan I. Han, Hee Vrejoiu, Ionela Lee, Woo Hesse, Dietrich Alexe, Marin Kalinin, Sergei V. Jesset, Stephen TI Nonlinear Phenomena in Multiferroic Nanocapacitors: Joule Heating and Electromechanical Effects SO ACS NANO LA English DT Article DE multiferroic nanocapacitor; conduction; nonlinear response; Joule heating; PFM ID THIN-FILM CAPACITORS; FERROELECTRIC CAPACITORS; FATIGUE BEHAVIOR; LEAKAGE CURRENT; DOMAIN-WALLS; TEMPERATURE; MICROSCOPY; CONDUCTION; POLARIZATION; ELECTRODES AB We demonstrate an approach for probing nonlinear electromechanical responses in BiFeO3 thin film nanocapacitors using half-harmonic band excitation piezoresponse force microscopy (PFM). Nonlinear PFM Images of nanocapacitor arrays show clearly visible clusters of capacitors associated with variations of local leakage current through the BiFeO3 film. Strain spectroscopy measurements and finite element modeling point to significance of the Joule heating and show that the thermal effects caused by the Joule heating can provide nontrivial contributions to the nonlinear electromechanical responses in ferroic nanostructures. This approach can be further extended to unambiguous mapping of electrostatic signal contributions to PFM and related techniques. C1 [Kim, Yunseok; Kumar, Amit; Tselev, Alexander; Kravchenko, Ivan I.; Kalinin, Sergei V.; Jesset, Stephen] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Han, Hee; Lee, Woo] Korea Res Inst Stand & Sci, Taejon 305340, South Korea. [Vrejoiu, Ionela; Hesse, Dietrich; Alexe, Marin] Max Planck Inst Microstruct Phys, D-06120 Halle, Saale, Germany. RP Kim, Y (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM kimy4@ornl.gov; sergei2@ornl.gov RI Lee, Woo/B-5268-2008; Kumar, Amit/C-9662-2012; Kalinin, Sergei/I-9096-2012; Kravchenko, Ivan/K-3022-2015; Tselev, Alexander/L-8579-2015; Jesse, Stephen/D-3975-2016; Alexe, Marin/K-3882-2016 OI Lee, Woo/0000-0003-4560-8901; Kumar, Amit/0000-0002-1194-5531; Kalinin, Sergei/0000-0001-5354-6152; Kravchenko, Ivan/0000-0003-4999-5822; Tselev, Alexander/0000-0002-0098-6696; Jesse, Stephen/0000-0002-1168-8483; Alexe, Marin/0000-0002-0386-3026 FU Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy FX This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 46 TC 28 Z9 28 U1 4 U2 65 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD NOV PY 2011 VL 5 IS 11 BP 9104 EP 9112 DI 10.1021/nn203342v PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 849RR UT WOS:000297143300072 PM 21955139 ER PT J AU Yee, SK Sun, JB Darancet, P Tilley, TD Majumdar, A Neaton, JB Segalman, RA AF Yee, Shannon K. Sun, Jibin Darancet, Pierre Tilley, T. Don Majumdar, Arun Neaton, Jeffrey B. Segalman, Rachel A. TI Inverse Rectification in Donor-Acceptor Molecular Heterojunctions SO ACS NANO LA English DT Article DE molecular diode; inverse rectification; donor-acceptor molecule; single-molecule conductance ID SELF-ASSEMBLED MONOLAYERS; ATOMIC-FORCE MICROSCOPY; ELECTRICAL RECTIFICATION; GOLD ELECTRODES; JUNCTIONS; SURFACES; CONDUCTANCE; RECTIFIERS; CIRCUITS AB The transport properties of a junction consisting of small donor-acceptor molecules bound to Au electrodes are studied and understood in terms of its hybrid donor-acceptor-electrode interfaces. A newly synthesized donor-acceptor molecule consisting of a bithiophene donor and a naphthalenediimide acceptor separated by a conjugated phenylacetylene bridge and a nonconjugated end group shows rectification in the reverse polarization, behavior opposite to that observed in mesoscopic p-n junctions. Solution-based spectroscopic measurements demonstrate that the molecule retains many of its original constituent properties, suggesting a weak hybridization between the wave functions of the donor and acceptor moieties, even in the presence of a conjugated bridge. Differential conductance measurements for biases as high as 1.5 V are reported and indicate a large asymmetry in the orbital contributions to transport arising from disproportionate electronic coupling at anode-donor and acceptor-cathode interfaces. A semi-empirical single Lorentzian coherent transport model, developed from experimental data and density functional theory based calculations, is found to explain the inverse rectification. C1 [Darancet, Pierre; Neaton, Jeffrey B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Yee, Shannon K.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Sun, Jibin; Segalman, Rachel A.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Sun, Jibin; Tilley, T. Don] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Majumdar, Arun] US DOE, ARPA E, Washington, DC 20585 USA. RP Neaton, JB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. EM jbneaton@lbl.gov; segalman@berkeley.edu RI Neaton, Jeffrey/F-8578-2015; OI Neaton, Jeffrey/0000-0001-7585-6135; Segalman, Rachel/0000-0002-4292-5103 FU Helios Solar Energy Research Center; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Fannie and John Hertz Foundation FX This work was funded by the Helios Solar Energy Research Center, which is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We would also like to thank the Fannie and John Hertz Foundation for their fellowship support for S.Y. We are also extremely grateful for conversations with Peter Doak (LBNL), Jon Malen (CMU), and Pramod Reddy and his students Aaron Tan, Woochul Lee, Seid Sadat, and Won Ho Jeong (U. Mich). NR 28 TC 45 Z9 45 U1 5 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD NOV PY 2011 VL 5 IS 11 BP 9256 EP 9263 DI 10.1021/nn203520v PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 849RR UT WOS:000297143300090 PM 22010940 ER PT J AU Cresti, A Lopez-Bezanilla, A Ordejon, P Roche, S AF Cresti, Alessandro Lopez-Bezanilla, Alejandro Ordejon, Pablo Roche, Stephan TI Oxygen Surface Functionalization of Graphene Nanoribbons for Transport Gap Engineering SO ACS NANO LA English DT Article DE graphene nanoribbons; functionalization; quantum transport; mobility gap; numerical simulation ID CARBON NANOTUBES; TRANSISTORS AB We numerically investigate the impact of epoxide adsorbates on the transport properties of graphene nanoribbons with width varying from a few nanometers to 15 nm. For the wider ribbons, a scaling analysis of conductance properties Is performed for adsorbate density ranging from 0.1% to 0.5%. Oxygen atoms Introduce a large electron-hole transport asymmetry' with mean free paths changing by up to 1 order of magnitude, depending on the hole or electron nature of charge carriers. The opening of a transport gap on the electron side for GNRs as wide as 15 nm could be further exploited to control current flow and achieve larger ON/OFF ratios, despite the initially small intrinsic energy gap. The effect of the adsorbates in narrow ribbons is also Investigated by full ab initio calculations to explore the limit of ultimate downsized systems. In this case, the inhomogeneous distribution of adsorbates and their interplay with the ribbon edge are found to play an Important role. C1 [Cresti, Alessandro] IMEP LAHC UMR CNRS INPG UJF 5130, Grenoble INP Minatec, F-38016 Grenoble, France. [Lopez-Bezanilla, Alejandro] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Ordejon, Pablo] CIN2 CSIC ICN Barcelona, E-08193 Barcelona, Spain. [Roche, Stephan] CIN2 ICN CSIC, Bellaterra 08193, Barcelona, Spain. [Roche, Stephan] Univ Autonoma Barcelona, Catalan Inst Nanotechnol, Bellaterra 08193, Barcelona, Spain. [Roche, Stephan] Inst Catalana Recerca & Estudis Avancats, ICREA, Barcelona 08010, Spain. RP Cresti, A (reprint author), IMEP LAHC UMR CNRS INPG UJF 5130, Grenoble INP Minatec, 3 Parvis Louis Neel,BP 257, F-38016 Grenoble, France. EM crestial@minatec.inpg.fr RI Roche, Stephan/B-1116-2012; Cresti, Alessandro/C-8795-2012; Ordejon, Pablo/D-3091-2014; Lopez-Bezanilla, Alejandro/B-9125-2015 OI Roche, Stephan/0000-0003-0323-4665; Cresti, Alessandro/0000-0002-1326-2515; Ordejon, Pablo/0000-0002-2353-2793; Lopez-Bezanilla, Alejandro/0000-0002-4142-2360 FU European Commission [228398]; Office of Science of the U.S. Department of Energy [DE-AC0500OR22750]; Center for Nanophase Materials Sciences (CNMS); Oak Ridge National Laboratory, Division of Scientific User Facilities, U.S; Fondation Nanosciences; Spanish MICINN [FIS2009-12721-C04-01]; [ANR-09-NANO-016-01] FX The work has been performed under the HPC-EUROPA2 project (project no. 228398) with the support of the European Commission-Capacities Area-Research Infrastructures. This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC0500OR22750. We are also grateful for the support from the Center for Nanophase Materials Sciences (CNMS), sponsored at Oak Ridge National Laboratory by the Division of Scientific User Facilities, U.S. S.R. acknowledges the NANOSIM-GRAPHENE Project No. ANR-09-NANO-016-01. A.C. acknowledges the support of Fondation Nanosciences via the RTRA Dispograph project. P.O. acknowledges support from Spanish MICINN Grant No. FIS2009-12721-C04-01. NR 33 TC 16 Z9 16 U1 0 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD NOV PY 2011 VL 5 IS 11 BP 9271 EP 9277 DI 10.1021/nn203573y PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 849RR UT WOS:000297143300092 PM 21985521 ER PT J AU Jedrzejczak, R Wang, JW Dauter, M Szczesny, RJ Stepien, PP Dauter, Z AF Jedrzejczak, Robert Wang, Jiawei Dauter, Miroslawa Szczesny, Roman J. Stepien, Piotr P. Dauter, Zbigniew TI Human Suv3 protein reveals unique features among SF2 helicases SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID YEAST MITOCHONDRIAL DEGRADOSOME; RNA HELICASE; RNA/DNA HELICASE; MODEL; SURVEILLANCE; HYDROLYSIS; REFINEMENT; METABOLISM; MECHANISM; PATHWAY AB Suv3 is a helicase that is involved in efficient turnover and surveillance of RNA in eukaryotes. In vitro studies show that human Suv3 (hSuv3) in complex with human polynucleotide phosphorylase has RNA degradosome activity. The enzyme is mainly localized in mitochondria, but small fractions are found in cell nuclei. Here, two X-ray crystallographic structures of human Suv3 in complex with AMPPNP, a nonhydrolysable analog of ATP, and with a short five-nucleotide strand of RNA are presented at resolutions of 2.08 and 2.9 angstrom, respectively. The structure of the enzyme is very similar in the two complexes and consists of four domains. Two RecA-like domains form the tandem typical of all helicases from the SF2 superfamily which together with the C-terminal all-helical domain makes a ring structure through which the nucleotide strand threads. The mostly helical N-terminal domain is positioned externally with respect to the core of the enzyme. Most of the typical helicase motifs are present in hSuv3, but the protein shows certain unique characteristics, suggesting that Suv3 enzymes may constitute a separate subfamily of helicases. C1 [Szczesny, Roman J.; Stepien, Piotr P.] Warsaw Univ, Dept Genet & Biotechnol, PL-02106 Warsaw, Poland. [Jedrzejczak, Robert; Dauter, Zbigniew] NCI, Synchrotron Radiat Res Sect, Argonne Natl Lab, Argonne, IL 60439 USA. [Jedrzejczak, Robert] Argonne Natl Lab, Midw Ctr Struct Genom, Biosci Div, Argonne, IL 60439 USA. [Wang, Jiawei; Dauter, Miroslawa] SAIC Frederick Inc, Basic Res Program, Argonne Natl Lab, Argonne, IL 60439 USA. [Wang, Jiawei] Tsinghua Univ, Struct Biol Ctr, Sch Life Sci, Beijing 100084, Peoples R China. [Wang, Jiawei] Tsinghua Univ, Sch Med, Beijing 100084, Peoples R China. [Szczesny, Roman J.; Stepien, Piotr P.] Polish Acad Sci, Inst Biochem & Biophys, PL-02106 Warsaw, Poland. RP Stepien, PP (reprint author), Warsaw Univ, Dept Genet & Biotechnol, Pawinskiego 5A, PL-02106 Warsaw, Poland. EM stepien@ibb.waw.pl; dauter@anl.gov FU Polish National Centre for Research and Development [NR 13004704]; NIH, National Cancer Institute, Center for Cancer Research; National Cancer Institute, National Institutes of Health [HHSN261200800001]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38] FX This work was supported in part by the Polish National Centre for Research and Development (NR 13004704) and the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research and with Federal funds from the National Cancer Institute, National Institutes of Health (Contract No. HHSN261200800001). The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does the mention of trade names, commercial products or organizations imply endorsement by the US Government. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. W-31-109-Eng-38. NR 38 TC 7 Z9 7 U1 0 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD NOV PY 2011 VL 67 BP 988 EP 996 DI 10.1107/S0907444911040248 PN 11 PG 9 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 844XW UT WOS:000296787400011 PM 22101826 ER PT J AU Johnson, GE Wang, C Priest, T Laskin, J AF Johnson, Grant E. Wang, Chongmin Priest, Thomas Laskin, Julia TI Monodisperse Au-11 Clusters Prepared by Soft Landing of Mass Selected Ions SO ANALYTICAL CHEMISTRY LA English DT Article ID TRANSMISSION ELECTRON-MICROSCOPY; MONOLAYER-PROTECTED CLUSTERS; SIMPLE METAL-CLUSTERS; GOLD NANOPARTICLES; CO OXIDATION; THIN-FILMS; KDA GOLD; SIZE; SURFACES; SHAPE AB Preparation of clean monodisperse samples of clusters and nanoparticles for characterization using cutting-edge analytical techniques is essential to understanding their size-dependent properties. Herein, we report a general method for the preparation of high surface coverage samples of monodisperse clusters containing an exact number of atoms. Polydisperse solutions of diphosphine-capped gold clusters were produced by reduction synthesis. Electrospray ionization was used to introduce the clusters into the gas phase where they were filtered by mass-to-charge ratio allowing clusters of a selected size to be deposited onto carbon coated copper grids at well controlled kinetic energies. Scanning transmission electron microscopy (STEM) analysis of the soft landed clusters confirms their monodispersity and high coverage on the substrate. The soft landing approach may be extended to other materials compatible with an array of available ionization techniques and, therefore, has widespread utility as a means for controlled preparation of monodisperse samples of nanoparticles and clusters for analysis by transmission electron microscopy (TEM). C1 [Johnson, Grant E.; Priest, Thomas; Laskin, Julia] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Wang, Chongmin] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Johnson, GE (reprint author), Pacific NW Natl Lab, Div Chem & Mat Sci, POB 999,MSIN K8-88, Richland, WA 99352 USA. EM Grant.Johnson@pnnl.gov; Julia.Laskin@pnnl.gov RI Laskin, Julia/H-9974-2012; OI Laskin, Julia/0000-0002-4533-9644; Johnson, Grant/0000-0003-3352-4444 FU Chemical Sciences Division, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE); Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory (PNNL); U.S. DOE of Biological and Environmental Research and located at PNNL; DOE Science Undergraduate Laboratory Internship (SULI) at Pacific Northwest National Laboratory (PNNL) FX The authors acknowledge support for this research by a grant from the Chemical Sciences Division, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE), and the Laboratory Directed Research and Development Program at the Pacific Northwest National Laboratory (PNNL). This work was performed at the W. R Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U.S. DOE of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the U.S. DOE. T.P. acknowledges support from the DOE Science Undergraduate Laboratory Internship (SULI) program at Pacific Northwest National Laboratory (PNNL). NR 58 TC 31 Z9 31 U1 4 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD NOV 1 PY 2011 VL 83 IS 21 BP 8069 EP 8072 DI 10.1021/ac202520p PG 4 WC Chemistry, Analytical SC Chemistry GA 837TE UT WOS:000296225300006 PM 21970542 ER PT J AU Kreutz, JE Munson, T Huynh, T Shen, F Du, WB Ismagilov, RF AF Kreutz, Jason E. Munson, Todd Huynh, Toan Shen, Feng Du, Wenbin Ismagilov, Rustem F. TI Theoretical Design and Analysis of Multivolume Digital Assays with Wide Dynamic Range Validated Experimentally with Microfluidic Digital PCR SO ANALYTICAL CHEMISTRY LA English DT Article ID POLYMERASE-CHAIN-REACTION; PROBABLE-NUMBER-PCR; TIME RT-PCR; VIRAL LOAD; DETECTION LIMITS; AMPLIFICATION; QUANTIFICATION; SAMPLES; DROPLETS; BACTERIA AB This paper presents a protocol using theoretical methods and free software to design and analyze multivolume digital PCR (MV digital PCR) devices; the theory and software are also applicable to design and analysis of dilution series in digital PCR MV digital PCR minimizes the total number of wells required for "digital" (single (single molecule) measurements while maintaining high dynamic range and high resolution. In some examples, multivolume designs with fewer than 200 total wells are predicted to provide dynamic range with 5-fold resolution similar to that of single-volume designs requiring 12 000 wells. Mathematical techniques were utilized and expanded to maximize the information obtained from each experiment and to quantify performance of devices and were experimentally validated using the SlipChip platform. MV digital PCR was demonstrated to perform reliably, and results from wells of different volumes agreed with one another. No artifacts due to different surface-to-volume ratios were observed, and single molecule amplification in volumes ranging from 1 to 125 nL was self-consistent. The device presented here was designed to meet the testing requirements for measuring clinically relevant levels of HIV viral load at the point-of-care (in plasma, <500 molecules/mL to >1000 000 molecules/mL), and the predicted resolution and dynamic range was experimentally validated using a control sequence of DNA. This approach simplifies digital PCR experiments, saves space, and thus enables multiplexing using separate areas for each sample on one chip, and facilitates the development of new high-performance diagnostic tools for resource-limited applications. The theory and software presented here are general and are applicable to designing and analyzing other digital analytical platforms including digital immunoassays and digital bacterial analysis. It is not limited to SlipChip and could also be useful for the design of systems on platforms including valve-based and droplet-based platforms. In a separate publication by Shen et al. (J. Am. Chem. Soc., 2011, DOI: 10.1021/ja2060116), this approach is used to design and test digital RT-PCR devices for quantifying RNA. C1 [Kreutz, Jason E.; Huynh, Toan; Shen, Feng; Du, Wenbin; Ismagilov, Rustem F.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Kreutz, Jason E.; Huynh, Toan; Shen, Feng; Du, Wenbin; Ismagilov, Rustem F.] Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA. [Munson, Todd] Argonne Natl Lab, Argonne, IL 60439 USA. [Munson, Todd] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. RP Ismagilov, RF (reprint author), CALTECH, Div Chem & Chem Engn, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM rustem.admin@caltech.edu RI Du, Wenbin/E-7276-2010 OI Du, Wenbin/0000-0002-7401-1410 FU NIH [1 DP1 OD003584, 1R01 EB012946]; Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the NIH Director's Pioneer Award program, part of the NIH Roadmap for Medical Research (1 DP1 OD003584) and NIH Grant No. 1R01 EB012946 administered by the National Institute of Biomedical Imaging and Bioengineering and the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. We thank Mary-Sara McPeek, Margaret Loudermilk, and Ian Foster for helpful discussion of the statistical analysis. Disclosure: F.S. and R.F.I. have a financial interest in SlipChip LLC. NR 70 TC 44 Z9 45 U1 5 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD NOV 1 PY 2011 VL 83 IS 21 BP 8158 EP 8168 DI 10.1021/ac201658s PG 11 WC Chemistry, Analytical SC Chemistry GA 837TE UT WOS:000296225300019 PM 21981344 ER PT J AU Liu, C Luo, Y Maxwell, EJ Fang, N Chen, DDY AF Liu, Chang Luo, Yong Maxwell, E. Jane Fang, Ning Chen, David D. Y. TI Potential of Two-Dimensional Electro-Fluid-Dynamic Devices for Continuous Purification of Multiple Components from Complex Samples SO ANALYTICAL CHEMISTRY LA English DT Article ID COUNTERBALANCED CAPILLARY-ELECTROPHORESIS; ZONE-ELECTROPHORESIS; SEPARATIONS AB Two-dimensional electro-fluid-dynamic (EFD) devices,. in which both electric field and hydrodynamic pressure are used to drive the analyte and fluid migration, enable two-dimensional channel networks to be used for chemical separation instead of one-dimensional column separation systems. Investigation of the theory of mass transfer in symmetrical Y-shaped EFD devices shows that the magnitude of pressure-induced velocity in lateral channels at critical boundary conditions between different steady state migration paths is independent of the channel cross-sectional area ratio. Therefore, the analyte has four possible mass transfer pathways according to the electric held and pressure setup in all symmetrical Y-shaped 2-D EFD devices, and such devices with any cross-sectional area ratio have the capacity to continuously purify two analytes from a mixture simultaneously. In addition, a new format of multiple-branched 2-D EFD devices is introduced to process multiple analytes. A "proof-reading" mechanism based on the infinite resolution conditions ensures the purity of the components collected. The separation processes are simulated by COMSOL Multiphysics, and the migration behavior of the analytes was monitored using fluorescent dyes to verify the flow behavior of different analytes in individual channels. These 2-D EFD devices offer the potential of continuous fractionation and purification of analytes from complex sample mixtures. C1 [Liu, Chang; Maxwell, E. Jane; Chen, David D. Y.] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada. [Luo, Yong] Dalian Univ Technol, Sch Pharmaceut Sci & Technol, Dalian 116023, Liaoning, Peoples R China. [Fang, Ning] Iowa State Univ, Ames Lab, US DOE, Dept Chem, Ames, IA 50011 USA. RP Chen, DDY (reprint author), Univ British Columbia, Dept Chem, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada. EM chen@chem.ubc.ca RI Liu, Chang/F-5472-2011; Chen, David/B-4849-2012; Fang, Ning/A-8456-2011; OI Chen, David/0000-0002-3669-6041; Liu, Chang/0000-0003-0508-4357 FU Natural Sciences and Engineering Research Council (NSERC) of Canada; Office of Basic Energy Sciences, Division of Chemical Sciences, U.S. Department of Energy (DOE); Iowa State University [EF-AC02-07CH11358]; Chemistry, UBC FX D.D.Y.C. was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada, and N.F. was supported by the Director of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, U.S. Department of Energy (DOE). The Ames Laboratory is operated for DOE by Iowa State University under Contract No. EF-AC02-07CH11358. C.L. thanks the support from the Agnes and Gilbert Hooley Scholarship in Chemistry, UBC. NR 18 TC 2 Z9 2 U1 4 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0003-2700 J9 ANAL CHEM JI Anal. Chem. PD NOV 1 PY 2011 VL 83 IS 21 BP 8208 EP 8214 DI 10.1021/ac201859f PG 7 WC Chemistry, Analytical SC Chemistry GA 837TE UT WOS:000296225300025 PM 21923103 ER PT J AU Mills, E AF Mills, Evan TI Commissioning High-Tech Facilities SO ASHRAE JOURNAL LA English DT Article C1 Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Mills, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. FU California Energy Commission through the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was sponsored by the California Energy Commission, Public Interest Energy Research Program, through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Steve Greenberg and Geoffrey Bell collected data for the ALS and Molecular Foundry case studies. Three anonymous reviewers provided useful comments. NR 13 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD NOV PY 2011 VL 53 IS 11 BP 18 EP + PG 6 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 848EX UT WOS:000297034400011 ER PT J AU Cooperman, A Dieckmann, J Brodrick, J AF Cooperman, Alissa Dieckmann, John Brodrick, James TI Drain Water Heat Recovery SO ASHRAE JOURNAL LA English DT Editorial Material C1 [Cooperman, Alissa; Dieckmann, John] TIAX LLC, Mech Syst Grp, Lexington, MA 02421 USA. [Brodrick, James] US DOE, Bldg Technol Program, Washington, DC USA. RP Cooperman, A (reprint author), TIAX LLC, Mech Syst Grp, Lexington, MA 02421 USA. NR 6 TC 1 Z9 1 U1 2 U2 6 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD NOV PY 2011 VL 53 IS 11 BP 58 EP + PG 3 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 848EX UT WOS:000297034400015 ER PT J AU Koch, E Kolasa, R AF Koch, Ed Kolasa, Roy TI Getting Smart On the Electrical Grid SO ASHRAE JOURNAL LA English DT Article C1 [Koch, Ed] Lawrence Berkeley Natl Lab LBNL, OpenADR Stand Working Grp, Berkeley, CA USA. NR 2 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD NOV PY 2011 VL 53 IS 11 BP B29 EP + PG 5 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 848EX UT WOS:000297034400021 ER PT J AU Abazajian, KN Calabrese, E Cooray, A De Bernardis, F Dodelson, S Friedland, A Fuller, GM Hannestad, S Keating, BG Linder, EV Lunardini, C Melchiorri, A Miquel, R Pierpaoli, E Pritchard, J Serra, P Takada, M Wong, YYY AF Abazajian, K. N. Calabrese, E. Cooray, A. De Bernardis, F. Dodelson, S. Friedland, A. Fuller, G. M. Hannestad, S. Keating, B. G. Linder, E. V. Lunardini, C. Melchiorri, A. Miquel, R. Pierpaoli, E. Pritchard, J. Serra, P. Takada, M. Wong, Y. Y. Y. TI Cosmological and astrophysical neutrino mass measurements SO ASTROPARTICLE PHYSICS LA English DT Review DE Neutrinos; Cosmology ID LYMAN-ALPHA FOREST; DIGITAL SKY SURVEY; EQUATION-OF-STATE; POWER SPECTRUM; CONCORDANCE MODEL; PRESSURE SUPPORT; DARK-MATTER; PARAMETERS; REIONIZATION; SIMULATIONS AB Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach. (C) 2011 Elsevier B.V. All rights reserved. C1 [Dodelson, S.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Abazajian, K. N.] Univ Maryland, Dept Phys, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA. [Calabrese, E.; Melchiorri, A.] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy. [Calabrese, E.; Melchiorri, A.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Cooray, A.; De Bernardis, F.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Dodelson, S.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Dodelson, S.] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Friedland, A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Fuller, G. M.; Keating, B. G.] Univ Calif San Diego, Dept Phys, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA. [Hannestad, S.] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Linder, E. V.] Berkeley Lab, Berkeley, CA 94720 USA. [Linder, E. V.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Linder, E. V.] Ewha Womans Univ, Inst Early Universe WCU, Seoul, South Korea. [Lunardini, C.] Arizona State Univ, Tempe, AZ 85287 USA. [Miquel, R.] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Miquel, R.] Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Pritchard, J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Serra, P.] NASA, Astrophys Branch, Ames Res Ctr, Moffett Field, CA 94035 USA. [Takada, M.] Univ Tokyo, IPMU, Chiba 2778582, Japan. [Wong, Y. Y. Y.] Rhein Westfal TH Aachen, Inst Theoret Teilchenphys & Kosmol, D-52056 Aachen, Germany. RP Dodelson, S (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM Dodelson@fnal.gov RI Takada, Masahiro/A-4364-2011; Serra, Paolo/G-9678-2014; OI Serra, Paolo/0000-0002-7609-3931; Melchiorri, Alessandro/0000-0001-5326-6003; Pritchard, Jonathan/0000-0003-4127-5353; Miquel, Ramon/0000-0002-6610-4836; Pierpaoli, Elena/0000-0002-7957-8993 NR 81 TC 85 Z9 85 U1 0 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD NOV PY 2011 VL 35 IS 4 BP 177 EP 184 DI 10.1016/j.astropartphys.2011.07.002 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 846XU UT WOS:000296937300003 ER PT J AU Welsh, WF Orosz, JA Aerts, C Brown, TM Brugamyer, E Cochran, WD Gilliland, RL Guzik, JA Kurtz, DW Latham, DW Marcy, GW Quinn, SN Zima, W Allen, C Batalha, NM Bryson, S Buchhave, LA Caldwell, DA Gautier, TN Howell, SB Kinemuchi, K Ibrahim, KA Isaacson, H Jenkins, JM Prsa, A Still, M Street, R Wohler, B Koch, DG Borucki, WJ AF Welsh, William F. Orosz, Jerome A. Aerts, Conny Brown, Timothy M. Brugamyer, Erik Cochran, William D. Gilliland, Ronald L. Guzik, Joyce Ann Kurtz, D. W. Latham, David W. Marcy, Geoffrey W. Quinn, Samuel N. Zima, Wolfgang Allen, Christopher Batalha, Natalie M. Bryson, Steve Buchhave, Lars A. Caldwell, Douglas A. Gautier, Thomas N., III Howell, Steve B. Kinemuchi, K. Ibrahim, Khadeejah A. Isaacson, Howard Jenkins, Jon M. Prsa, Andrej Still, Martin Street, Rachel Wohler, Bill Koch, David G. Borucki, William J. TI KOI-54: THE KEPLER DISCOVERY OF TIDALLY EXCITED PULSATIONS AND BRIGHTENINGS IN A HIGHLY ECCENTRIC BINARY SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE binaries: close; binaries: spectroscopic; stars: individual (KID 8112039, HD 187091, 2MASS J19461553+4356513); stars: oscillations; stars: variables: general ID CLOSE BINARIES; INITIAL CHARACTERISTICS; SPECTROSCOPIC BINARIES; ORBITAL PARAMETERS; CADENCE DATA; STELLAR; SYSTEMS; EVOLUTION; OPACITIES; SCIENCE AB Kepler observations of the star HD 187091 (KIC 8112039, hereafter KOI-54) revealed a remarkable light curve exhibiting sharp periodic brightening events every 41.8 days with a superimposed set of oscillations forming a beating pattern in phase with the brightenings. Spectroscopic observations revealed that this is a binary star with a highly eccentric orbit, e = 0.83. We are able to match the Kepler light curve and radial velocities with a nearly face-on (i = 5 degrees.5) binary star model in which the brightening events are caused by tidal distortion and irradiation of nearly identical A stars during their close periastron passage. The two dominant oscillations in the light curve, responsible for the beating pattern, have frequencies that are the 91st and 90th harmonic of the orbital frequency. The power spectrum of the light curve, after removing the binary star brightening component, reveals a large number of pulsations, 30 of which have a signal-to-noise ratio greater than or similar to 7. Nearly all of these pulsations have frequencies that are either integer multiples of the orbital frequency or are tidally split multiples of the orbital frequency. This pattern of frequencies unambiguously establishes the pulsations as resonances between the dynamic tides at periastron and the free oscillation modes of one or both of the stars. KOI-54 is only the fourth star to show such a phenomenon and is by far the richest in terms of excited modes. C1 [Welsh, William F.; Orosz, Jerome A.] San Diego State Univ, Dept Astron, San Diego, CA 92182 USA. [Aerts, Conny; Zima, Wolfgang] Katholieke Univ Leuven, Inst Sterrenkunde, B-3001 Louvain, Belgium. [Aerts, Conny; Zima, Wolfgang] Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Brown, Timothy M.; Street, Rachel] Las Cumbres Observ Global Telescope, Goleta, CA 93117 USA. [Brown, Timothy M.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Brugamyer, Erik; Cochran, William D.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Brugamyer, Erik; Cochran, William D.] Univ Texas Austin, Dept Astron, Austin, TX 78712 USA. [Gilliland, Ronald L.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Guzik, Joyce Ann] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kurtz, D. W.] Univ Cent Lancashire, Jeremiah Horrocks Inst Astrophys, Preston PR1 2HE, Lancs, England. [Latham, David W.; Quinn, Samuel N.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Marcy, Geoffrey W.; Isaacson, Howard] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Allen, Christopher; Ibrahim, Khadeejah A.; Wohler, Bill] NASA, Orbital Sci Corp, Ames Res Ctr, Moffett Field, CA 94035 USA. [Batalha, Natalie M.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Buchhave, Lars A.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Buchhave, Lars A.] Univ Copenhagen, Ctr Star & Planet Format, Nat Hist Museum Denmark, DK-1350 Copenhagen, Denmark. [Caldwell, Douglas A.; Jenkins, Jon M.] SETI Inst, Mountain View, CA 94043 USA. [Gautier, Thomas N., III] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Kinemuchi, K.; Still, Martin] Bay Area Environm Res Inst Inc, Sonoma, CA 95476 USA. [Prsa, Andrej] Villanova Univ, Dept Astron & Astrophys, Villanova, PA 19085 USA. RP Welsh, WF (reprint author), San Diego State Univ, Dept Astron, San Diego, CA 92182 USA. EM wfw@sciences.sdsu.edu RI Caldwell, Douglas/L-7911-2014; OI Caldwell, Douglas/0000-0003-1963-9616; Buchhave, Lars A./0000-0003-1605-5666 FU NASA, Science Mission Directorate; NASA [NNX08AR14G]; European Research Council under the European Community [227224]; W.M. Keck Foundation FX Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate. The authors acknowledge support from the Kepler Participating Scientists Program via NASA grant NNX08AR14G. C.A. and W.Z. received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement No. 227224 (PROSPERITY). Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. We thank Gur Windmiller for general assistance and for a careful reading of this manuscript. We especially thank the many members of the Kepler team whose hard work made these observation possible. Finally, we thank the anonymous referee for a thorough review of this paper. NR 38 TC 69 Z9 69 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2011 VL 197 IS 1 AR 4 DI 10.1088/0067-0049/197/1/4 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 846BO UT WOS:000296872400004 ER PT J AU Pai, SS Hammouda, B Hong, KL Pozzo, DC Przybycien, TM Tilton, RD AF Pai, Sheetal S. Hammouda, Boualem Hong, Kunlun Pozzo, Danilo C. Przybycien, Todd M. Tilton, Robert D. TI The Conformation of the Poly(ethylene glycol) Chain in Mono-PEGylated Lysozyme and Mono-PEGylated Human Growth Hormone SO BIOCONJUGATE CHEMISTRY LA English DT Article ID SMALL-ANGLE SCATTERING; POLYETHYLENE-GLYCOL; PROTEIN PEGYLATION; PLGA MICROSPHERES; X-RAY; HEMOGLOBIN; ADSORPTION; ENCAPSULATION; RIBONUCLEASE; MOLECULES AB Covalent conjugation of poly(ethylene glycol) or "PEGylation" has proven an effective strategy to improve pharmaceutical protein efficacy by hindering recognition by proteases, inhibitors, and antibodies and by retarding renal clearance. Because it determines the strength and range of intermolecular steric forces and the hydrodynamic properties of the conjugates, the configuration of protein-conjugated PEG chains is the key factor determining how PEGylation alters protein in vivo circulation time. Mono-PEGylated proteins are typically described as having a protective PEG shroud wrapped around the protein, but recent dynamic light scattering studies suggested that conjugates adopt a dumbbell configuration, with a relatively unperturbed PEG random coil adjacent to the globular protein. We used small-angle neutron scattering (SANS) to distinguish between the dumbbell model and the shroud model for chicken-egg lysozyme and human growth hormone covalently conjugated to a single 20 kDa PEG chain. The SANS contrast variation technique was used to isolate the PEG portion of the conjugate. Scattering intensity profiles were well described by the dumbbell model and inconsistent with the shroud model. C1 [Pai, Sheetal S.; Przybycien, Todd M.; Tilton, Robert D.] Carnegie Mellon Univ, Ctr Complex Fluids Engn, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Przybycien, Todd M.; Tilton, Robert D.] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA. [Hammouda, Boualem] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Hong, Kunlun] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Pozzo, Danilo C.] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA. RP Przybycien, TM (reprint author), Carnegie Mellon Univ, Ctr Complex Fluids Engn, Dept Chem Engn, Pittsburgh, PA 15213 USA. EM todd@andrew.cmu.edu; tilton@andrew.cmu.edu RI Tilton, Robert/A-8267-2009; Hong, Kunlun/E-9787-2015; OI Hong, Kunlun/0000-0002-2852-5111; Tilton, Robert/0000-0002-6535-9415 FU National Science Foundation (NSF) [CBET 0755284, DMR-0454672, DMR-0520547]; Oak Ridge National Laboratory (ORNL) by the Office of Basic Energy Sciences, U.S. Department of Energy [CNMS2009-212]; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The identification of commercial products does not imply endorsement by the National Institute of Standards and Technology nor does it imply that these are the best for the purpose. This material is based on work supported by the National Science Foundation under Grant CBET 0755284 and utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0454672. We thank Dr. Reddy's Laboratories, LLC, and Genentech, Inc., for their generous donation of mPEG-propionaldehyde and HGH, respectively. A portion of this research was conducted at the Center for Nanophase Materials Sciences (CNMS), which is sponsored at Oak Ridge National Laboratory (ORNL) by the Office of Basic Energy Sciences, U.S. Department of Energy, through the CNMS user program (user proposal number: CNMS2009-212). A portion of this research at ORNL's High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This work benefited from DANSE software developed under NSF award DMR-0520547. NR 34 TC 39 Z9 39 U1 7 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1043-1802 J9 BIOCONJUGATE CHEM JI Bioconjugate Chem. PD NOV PY 2011 VL 22 IS 11 BP 2317 EP 2323 DI 10.1021/bc2003583 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Multidisciplinary; Chemistry, Organic SC Biochemistry & Molecular Biology; Chemistry GA 847VY UT WOS:000297001800014 PM 21950579 ER PT J AU Ebadian, M Sowlati, T Sokhansanj, S Stumborg, M Townley-Smith, L AF Ebadian, Mahmood Sowlati, Taraneh Sokhansanj, Shahab Stumborg, Mark Townley-Smith, Lawrence TI A new simulation model for multi-agricultural biomass logistics system in bioenergy production SO BIOSYSTEMS ENGINEERING LA English DT Article ID FUEL DELIVERY-SYSTEMS; OPTIMIZATION MODEL; SUPPLY ANALYSIS; STRAW; CHAIN; COSTS; IBSAL; SHAM; L. AB This paper presents the development of a new logistics model and its application to supply a mixture of agricultural feedstocks to a proposed cellulosic ethanol plant. The new model, IBSAL-MC (Integrated Biomass Supply Analysis &Logistics- Multi Crop), is developed based on the framework of IBSAL. IBSAL-MC is a hybrid push-pull logistics model which pushes the field operations to harvest and collect as much biomass as possible within the harvest season while pulling downstream operations to meet the daily demand of the ethanol plant. The proposed ethanol plant would be located near Prince Albert, Saskatchewan, Canada. Despite the abundance of wheat straw in the region (more than five times the annual demand), the daily demand of the ethanol plant would be fully met for only 104 days. In terms of the total annual demand, only 92% of it would be met. The logistics cost varies between $62.06 and $63.46t(-1) with 90% confidence level. The capacity of the required on-farm storage and at-plant storage are estimated at 400 t and 3500 t of biomass, respectively. Several managerial insights were also given to improve the biomass logistics system in terms of demand fulfilment, logistics costs and resource utilisation. (C) 2011 IAgrE. Published by Elsevier Ltd. All rights reserved. C1 [Ebadian, Mahmood; Sowlati, Taraneh] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada. [Sokhansanj, Shahab] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Stumborg, Mark] Agr & Agri Food Canada, Semiarid Prairie Agr Res Ctr, Swift Current, SK S9H 3X2, Canada. [Townley-Smith, Lawrence] Agr & Agri Food Canada, Agr Environm Serv, Regina, SK S4P 4L2, Canada. RP Sowlati, T (reprint author), Univ British Columbia, Dept Wood Sci, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. EM taraneh.sowlati@ubc.ca FU Agriculture and Agri-Food Canada; Agricultural Biorefinery Innovation Network (ABIN); Natural Sciences and Engineering Research Council of Canada; FPInnovations; Office of Biomass Program of the U.S., Department of Energy; Oak Ridge National Laboratory, Oak Ridge, TN FX The following organisations have provided support and funding for this project: Agriculture and Agri-Food Canada in support of the BIMAT-IBSAL Integration, Agricultural Biorefinery Innovation Network (ABIN), Natural Sciences and Engineering Research Council of Canada, FPInnovations, the Office of Biomass Program of the U.S., Department of Energy and Oak Ridge National Laboratory, Oak Ridge, TN. We acknowledge the assistance of Ms. Rounce of the AAFC for providing crop data. NR 36 TC 19 Z9 20 U1 7 U2 40 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1537-5110 J9 BIOSYST ENG JI Biosyst. Eng. PD NOV PY 2011 VL 110 IS 3 BP 280 EP 290 DI 10.1016/j.biosystemseng.2011.08.008 PG 11 WC Agricultural Engineering; Agriculture, Multidisciplinary SC Agriculture GA 843PU UT WOS:000296685300006 ER PT J AU Zhang, YHP AF Zhang, Y. -H. Percival TI Substrate channeling and enzyme complexes for biotechnological applications SO BIOTECHNOLOGY ADVANCES LA English DT Review DE Cell-free synthetic pathway biotransformation; Coimmobilization; Enzyme complex; Metabolic engineering; Metabolite channeling; Multi-enzyme one pot; Substrate channeling; Synthetic biology ID CLOSTRIDIUM-ACETOBUTYLICUM ATCC-824; BIFUNCTIONAL THYMIDYLATE SYNTHASE; MICROBIAL CELLULOSE UTILIZATION; ESCHERICHIA-COLI; DIHYDROFOLATE-REDUCTASE; LACTATE-DEHYDROGENASE; MULTIENZYME COMPLEX; TRYPTOPHAN SYNTHASE; HYDROGEN-PRODUCTION; IN-VITRO AB Substrate channeling is a process of transferring the product of one enzyme to an adjacent cascade enzyme or cell without complete mixing with the bulk phase. Such phenomena can occur in vivo, in vitro, or ex vivo. Enzyme-enzyme or enzyme-cell complexes may be static or transient. In addition to enhanced reaction rates through substrate channeling in complexes, numerous potential benefits of such complexes are protection of unstable substrates, circumvention of unfavorable equilibrium and kinetics imposed, forestallment of substrate competition among different pathways, regulation of metabolic fluxes, mitigation of toxic metabolite inhibition, and so on. Here we review numerous examples of natural and synthetic complexes featuring substrate channeling. Constructing synthetic in vivo, in vitro or ex vivo complexes for substrate channeling would have great biotechnological potentials in metabolic engineering, multi-enzyme-mediated biocatalysis, and cell-free synthetic pathway biotransformation (SyPaB). (C) 2011 Elsevier Inc. All rights reserved. C1 [Zhang, Y. -H. Percival] Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] Virginia Tech, Inst Crit Technol & Appl Sci, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] DOE Bioenergy Sci Ctr, Oak Ridge, TN 37831 USA. [Zhang, Y. -H. Percival] Gate Fuels Inc, Blacksburg, VA 24060 USA. RP Zhang, YHP (reprint author), Virginia Tech, Dept Biol Syst Engn, 210-A Seitz Hall, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu FU Air Force Office of Scientific Research YIA and MURI; DOE Bioenergy Science Center (BESC); USDA Biodesign and Bioprocessing Center; China National Special Fund for Key Laboratories [2060204] FX This work was supported by the Air Force Office of Scientific Research YIA and MURI, DOE Bioenergy Science Center (BESC), USDA Biodesign and Bioprocessing Center, and China National Special Fund for Key Laboratories (No. 2060204). NR 163 TC 97 Z9 100 U1 6 U2 104 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0734-9750 EI 1873-1899 J9 BIOTECHNOL ADV JI Biotechnol. Adv. PD NOV-DEC PY 2011 VL 29 IS 6 BP 715 EP 725 DI 10.1016/j.biotechadv.2011.05.020 PG 11 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 845KP UT WOS:000296821900015 PM 21672618 ER PT J AU Turteltaub, KW Davis, MA Burns-Naas, LA Lawton, MP Clark, AM Reynolds, JA AF Turteltaub, Kenneth W. Davis, Myrtle A. Burns-Naas, Leigh Ann Lawton, Michael P. Clark, Adam M. Reynolds, Jack A. TI Identification and Elucidation of the Biology of Adverse Events: The Challenges of Safety Assessment and Translational Medicine SO CLINICAL CANCER RESEARCH LA English DT Article ID INDUCED VASCULAR INJURY; SYSTEMS BIOLOGY; CARDIOTOXICITY; INHIBITOR; BIOMARKERS AB There has been an explosion of technology-enabled scientific insight into the basic biology of the causes of adverse events. This has been driven, in part, by the development of the various "omics" tools (e. g., genomics, proteomics, and metabolomics) and associated bioinformatics platforms. Meanwhile, for decades, changes in preclinical testing protocols and guidelines have been limited. Preclinical safety testing currently relies heavily on the use of outdated animal models. Application of systems biology methods to evaluation of toxicities in oncology treatments can accelerate the introduction of safe, effective drugs. Systems biology adds insights regarding the causes and mechanisms of adverse effects, provides important and actionable information to help understand the risks and benefits to humans, focuses testing on methods that add value to the safety testing process, and leads to modifications of chemical entities to reduce liabilities during development. Leveraging emerging technologies, such as genomics and proteomics, may make preclinical safety testing more efficient and accurate and lead to better safety decisions. The development of a U. S. Food and Drug Administration guidance document on the use of systems biology in clinical testing would greatly benefit the development of drugs for oncology by communicating the potential application of specific methodologies, providing a framework for qualification and application of systems biology outcomes, and providing insight into the challenges and limitations of systems biology in the regulatory decision-making process. Clin Cancer Res; 17(21); 6641-5. (C)2011 AACR. C1 [Turteltaub, Kenneth W.] Battelle Mem Inst, Livermore, CA 94550 USA. [Turteltaub, Kenneth W.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Ctr Accelerator, Livermore, CA 94550 USA. [Burns-Naas, Leigh Ann; Lawton, Michael P.] Pfizer Inc, Drug Safety Res & Dev, San Diego, CA USA. [Davis, Myrtle A.] NCI, Pharmacol Branch, Bethesda, MD 20892 USA. [Clark, Adam M.] FasterCures, Sci & Fed Affairs, Washington, DC USA. [Reynolds, Jack A.] AnaBios Corp, San Diego, CA USA. RP Turteltaub, KW (reprint author), Battelle Mem Inst, 7000 East Ave,L-452, Livermore, CA 94550 USA. EM turteltaub2@llnl.gov NR 27 TC 10 Z9 10 U1 0 U2 6 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 1078-0432 J9 CLIN CANCER RES JI Clin. Cancer Res. PD NOV 1 PY 2011 VL 17 IS 21 BP 6641 EP 6645 DI 10.1158/1078-0432.CCR-11-1106 PG 5 WC Oncology SC Oncology GA 842TS UT WOS:000296624000007 PM 22046025 ER PT J AU Szybist, JP Youngquist, AD Barone, TL Storey, JM Moore, WR Foster, M Confer, K AF Szybist, James P. Youngquist, Adam D. Barone, Teresa L. Storey, John M. Moore, Wayne R. Foster, Matthew Confer, Keith TI Ethanol Blends and Engine Operating Strategy Effects on Light-Duty Spark-Ignition Engine Particle Emissions SO ENERGY & FUELS LA English DT Article AB Spark-ignition (SI) engines with direct-injection (DI) fueling can improve fuel economy and vehicle power beyond that of port fuel injection (PFI). Despite this distinct advantage, DI fueling often increases particle number emissions, such that SI exhaust may be subject to future particle emissions regulations. In this study, ethanol blends and engine operating strategy are evaluated for their effectiveness in reducing particle emissions in DI engines. The investigated fuels include a baseline emissions certification gasoline, a blend of 20 vol % ethanol with gasoline (E20), and a blend of 85 vol % ethanol with gasoline (E85). The operating strategies investigated reflect the versatility of emerging cam-based variable valve actuation technology capable of unthrottled operation with either early or late intake valve closing (EIVC or LIVC). Particle emissions are characterized in this study by the particle number size distribution as measured with a scanning mobility particle sizer (SMPS) and by the filter smoke number (FSN). Particle emissions for PFI fueling are very low and comparable for all fuels and breathing conditions. When DI fueling is used for gasoline and E20, the particle number emissions are increased by 1-2 orders of magnitude compared to PFI fueling, depending upon the fuel injection timing. In contrast, when DI fueling is used with E85, the particle number emissions remain low and comparable to PFI fueling. Thus, by using E85, the efficiency and power advantages of DI fueling can be gained without generating the increase in particle emissions observed with gasoline and E20. C1 [Szybist, James P.; Youngquist, Adam D.; Barone, Teresa L.; Storey, John M.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. [Moore, Wayne R.; Foster, Matthew; Confer, Keith] Delphi Automot Syst, Adv Powertrain, Auburn Hills, MI 48326 USA. RP Szybist, JP (reprint author), Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, NTRC Bldg,2360 Cherahala Blvd, Knoxville, TN 37932 USA. EM szybistjp@ornl.gov FU Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC FX The research is sponsored by the Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy, under contract DE-AC05-00OR22725, with UT-Battelle, LLC. It is also performed under Cooperative Research and Development Agreement (CRADA) NFE-07-00722 between UT-Battelle, LLC and Delphi Automotive Systems, LLC. NR 34 TC 18 Z9 18 U1 1 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2011 VL 25 IS 11 BP 4977 EP 4985 DI 10.1021/ef201127y PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 847VU UT WOS:000297001400012 ER PT J AU Mehl, M Chen, JY Pitz, WJ Sarathy, SM Westbrook, CK AF Mehl, M. Chen, J. Y. Pitz, W. J. Sarathy, S. M. Westbrook, C. K. TI An Approach for Formulating Surrogates for Gasoline with Application toward a Reduced Surrogate Mechanism for CFD Engine Modeling SO ENERGY & FUELS LA English DT Article ID DIRECTED RELATION GRAPH; SOOTING TENDENCY; SHOCK-TUBE; REDUCTION; MIXTURES; FUELS; ISOOCTANE; OXIDATION; KINETICS AB The numerical study of engine combustion requires the coupling of advanced computational fluid dynamics and accurate chemical kinetic models. This task becomes extremely challenging for real fuels. Gasoline is a mixture of hundreds of different hydrocarbons. Detailed modeling of its chemistry requires huge numbers of species and reactions and exceeds present numerical capabilities. Consequently, simpler surrogate mixtures are adopted to approximate the behavior of the real fuels. Large kinetic models for surrogates are developed to characterize their chemistry, but these models still contain thousands of species and reactions and can usually only be used for simulating simple homogeneous systems. For multidimensional engine applications, they must be reduced. In this work, we propose a methodology for the formulation of a gasoline surrogates based on the intrinsic qualities of the fuel chemical behavior. Using the proposed procedure, a candidate surrogate containing four components has been identified to match a real nonoxygenated gasoline. Starting from this formulation, the LLNL (Lawrence Livermore National Laboratory) detailed kinetic mechanism has been reduced while maintaining its ability to reproduce targets of ignition delay times and flame speeds over a wide range of operating conditions. The reduction was carried by the construction of a preliminary version of a skeletal mechanism using the Computer Assisted Reduction Mechanism (CARM) code under a set of targeted conditions. Further reduction is made with a search algorithm that sequentially tests the importance of each species, leading to a much smaller mechanism. Finally, the resulting reduced mechanism has been validated against the detailed mechanism and available experimental data. C1 [Mehl, M.; Pitz, W. J.; Sarathy, S. M.; Westbrook, C. K.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Chen, J. Y.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Mehl, M (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM mehl6@llnl.gov RI Sarathy, S. Mani/M-5639-2015; Mehl, Marco/A-8506-2009 OI Sarathy, S. Mani/0000-0002-3975-6206; Mehl, Marco/0000-0002-2227-5035 FU U.S. Department of Energy, Office of Vehicle Technologies; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was supported by U.S. Department of Energy, Office of Vehicle Technologies, and performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. The authors thank program managers Kevin Stork and Gurpreet Singh for their support. The authors also would like to thank Dr. John Dec for sharing the HCCI engine data. NR 39 TC 69 Z9 71 U1 9 U2 51 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2011 VL 25 IS 11 BP 5215 EP 5223 DI 10.1021/ef201099y PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 847VU UT WOS:000297001400037 ER PT J AU McAlpin, CR Voorhees, KJ Alleman, TL McCormick, RL AF McAlpin, Casey R. Voorhees, Kent J. Alleman, Teresa L. McCormick, Robert L. TI Ternary Matrix for the Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) Analysis of Non-fuel Lipid Components in Biodiesel SO ENERGY & FUELS LA English DT Article ID STERYL GLUCOSIDES; QUANTIFICATION; IDENTIFICATION AB Trace components present in biodiesel have been shown to contribute to the precipitation of solids at temperatures above the cloud point. These precipitates represent an operability problem for use of biodiesel in cold climates. Separation methods for analysis of trace lipid impurities, such as gas and liquid chromatography, have been problematic, and chromatographic signals for these compounds are often eclipsed by the signals for the fatty acid methyl esters (FAMEs), the major components of biodiesel. The method described herein has been developed as a rapid procedure for analyzing non-FAME lipid biodiesel components, which have been postulated to contribute to cold-weather operability problems. Representative standards of the non-FAME lipids present in biodiesel were analyzed with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) using pure and mixed matrix systems. An optimized ternary matrix system consisting of dithranol, 2,5-dihydroxybenzoic acid, and alpha-cyano-4-hydroxycinnamic acid doped with sodium iodide was developed for analysis of the widest range of trace components possible by capitalizing on the positives of each matrix in ionizing compounds with differing functional groups. Mixtures of matrix compounds produced smaller, more homogeneous crystals, which resulted in increased reproducibility and sensitivity. This increase in reproducibility allowed quantitative relationships to be established with standards and between fuel samples. Spectral peak identification was based on molecular weight and tandem mass spectrometry collision-induced dissociation. Two palm oil-derived biodiesels, one of which was distilled, were analyzed to determine their non-FAME components and to quantitatively compare the number and relative concentration of trace species detected. Trace lipid species in precipitates from canola-oil-derived biodiesel were also isolated via refrigerated centrifugation, followed by analysis with the ternary matrix. C1 [McAlpin, Casey R.; Voorhees, Kent J.] Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA. [Alleman, Teresa L.; McCormick, Robert L.] Natl Renewable Energy Lab, Ctr Transportat Technol & Syst, Golden, CO 80401 USA. RP Voorhees, KJ (reprint author), Colorado Sch Mines, Dept Chem, Golden, CO 80401 USA. EM kvoorhee@mines.edu RI McCormick, Robert/B-7928-2011 FU National Renewable Energy Laboratory (NREL) [KXEA-3-33607-40]; United States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, Fuel Technologies FX Work at the Colorado School of Mines was sponsored by the National Renewable Energy Laboratory (NREL) under subcontract KXEA-3-33607-40. Researchers at NREL thank the United States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, Fuel Technologies, for their financial support. NR 25 TC 3 Z9 3 U1 0 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2011 VL 25 IS 11 BP 5407 EP 5415 DI 10.1021/ef201257g PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 847VU UT WOS:000297001400053 ER PT J AU Christensen, E Williams, A Paul, S Burton, S McCormick, RL AF Christensen, Earl Williams, Aaron Paul, Stephen Burton, Steve McCormick, Robert L. TI Properties and Performance of Levulinate Esters as Diesel Blend Components SO ENERGY & FUELS LA English DT Article ID BIODIESEL BLENDS; EMISSIONS; ENGINE; ACID AB The properties of ethyl (EL) and n-butyl levulinate (BL), two potential cellulose-derived diesel blend components, were assessed as both neat oxygenates and blends with diesel fuel. The samples tested were produced commercially from cellulose and alcohols but were not reagent-grade samples. They were relatively free of impurities, although EL contained some acidic compounds and both contained parts-per-million levels of calcium. Both esters exhibited a very low cetane number. The melting points of both esters were less than -60 degrees C. The water solubility of EL was 15.2 wt %, while that of BL was only 1.3 wt %. Blends of diesel fuel with EL were found to have an elevated cloud point, despite the extremely low melting point of this compound, because EL separates from diesel fuel as a separate liquid phase at low temperatures. This can be mitigated to some extent by including biodiesel in the blend. BL remained in solution and raised the diesel cloud point only when blended into -45 degrees C cloud point/15% aromatic no. 1 diesel fuel. Both esters were found to significantly increase diesel lubricity and conductivity. The esters were treated with the cetane-enhancing compound 2-ethyl hexyl nitrate and were tested as blends with diesel fuel in a 2008 model year Cummins ISB engine with the measurement of regulated pollutant emissions over the federal heavy duty diesel transient cycle. Fuel chemistry had no effect on tailpipe total hydrocarbons, carbon monoxide, or particulate matter for this diesel oxidation catalyst and particle filter equipped engine. The engine-out smoke number was reduced by 41.3% with a 10% blend of EL (EL10) and reduced by 55% with a blend of 20% BL (BL20). EL10 had no effect on emissions of nitrogen oxides (NOx), while BL20 increased NOx by 4.6%. Because of the poor solubility of EL in diesel fuel at low temperatures, its use as a diesel blend component will be technically challenging. The low cetane number of both esters can be addressed with cetane improver additives. C1 [Christensen, Earl; Williams, Aaron; McCormick, Robert L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Paul, Stephen] Trenton Fuel Works LLC, Princeton, NJ 08543 USA. [Burton, Steve] MeadWestvaco Corp, Raleigh, NC 27606 USA. RP McCormick, RL (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM robert.mccormick@nrel.gov RI McCormick, Robert/B-7928-2011 FU Office of Vehicle Technologies, U.S. Department of Energy [DEAC36-99GO10337]; National Renewable Energy Laboratory FX This work was supported by the Fuels and Lubricants Technologies Program, Office of Vehicle Technologies, U.S. Department of Energy, under Contract DEAC36-99GO10337 with the National Renewable Energy Laboratory. NR 28 TC 49 Z9 49 U1 3 U2 33 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2011 VL 25 IS 11 BP 5422 EP 5428 DI 10.1021/ef201229j PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 847VU UT WOS:000297001400055 ER PT J AU Christensen, ED Chupka, GM Luecke, J Smurthwaite, T Alleman, TL Iisa, K Franz, JA Elliott, DC McCormick, RL AF Christensen, Earl D. Chupka, Gina M. Luecke, Jon Smurthwaite, Tricia Alleman, Teresa L. Iisa, Kristiina Franz, James A. Elliott, Douglas C. McCormick, Robert L. TI Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions SO ENERGY & FUELS LA English DT Article ID BIO-OILS; PART 1; STABILITY; CORROSION; STABILIZATION; MECHANISMS; PHENOLS; PRODUCE; FUEL AB Three hydrotreated bio-oils with different oxygen contents (8.2, 4.9, and 0.4 w/w) were distilled to produce light, naphtha, jet, diesel, and gas oil boiling range fractions that were characterized for oxygen-containing species by a variety of analytical methods. The bio-oils were originally generated from lignocellulosic biomass in an entrained-flow fast pyrolysis reactor. Analyses included elemental composition, carbon type distribution by (13)C nuclear magnetic resonance, acid number, gas chromatography/mass spectroscopy, volatile organic acids by liquid chromatography, and carbonyl compounds by 2,4-dinitrophenylhydrazine derivatization and liquid chromatography. Acid number titrations employed an improved titrant electrode combination with faster response that allowed the detection of multiple end points in many samples and allowed for acid values attributable to carboxylic acids and to phenols to be distinguished. The results of these analyses showed that the highest oxygen content bio-oil fractions contained oxygen as carboxylic acids, carbonyls, aryl ethers, phenols, and alcohols. Carboxylic acids and carbonyl compounds detected in this sample were concentrated in the light, naphtha, and jet fractions (<260 degrees C boiling point). The carboxylic acid content of all of the high oxygen content fractions was likely too high for these materials to be considered as fuel blendstocks, although the potential for blending with crude oil or refinery intermediate streams may exist for the diesel and gas oil fractions. The 4.9% oxygen sample contained, almost exclusively, phenolic compounds found to be present throughout the boiling range fractions, which imparted measurable acidity primarily in the light, naphtha, and jet fractions. Additional study is required to understand what levels of the weakly acidic phenols could be tolerated in a refinery feedstock. The diesel and gas oil fractions from this upgraded oil had low acidity but still contained 3-4 wt % oxygen present as phenols that could not be specifically identified. These materials appear to have excellent potential as refinery feedstocks and some potential for blending into finished fuels. Fractions from the lowest oxygen-content oil exhibited some phenolic acidity but generally contained very low levels of oxygen functional groups. These materials would likely be suitable as refinery feedstocks and potentially as fuel blend components. Paraffins, isoparaffins, olefins, naphthenes, and aromatics (PIONA) analysis of the light and naphtha fractions showed benzene contents of 0.5 and 0.4 vol % and predicted (research octane number (RON) + motor octane number (MON))/2 of 63 and 70, respectively. C1 [Christensen, Earl D.; Chupka, Gina M.; Luecke, Jon; Alleman, Teresa L.; Iisa, Kristiina; McCormick, Robert L.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Smurthwaite, Tricia; Franz, James A.; Elliott, Douglas C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP McCormick, RL (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM robert.mccormick@nrel.gov RI McCormick, Robert/B-7928-2011 FU U.S. Department of Energy, Office of the Biomass Program with National Renewable Energy Laboratory [DEAC36-99GO10337]; U.S. Department of Energy, Office of the Biomass Program with Pacific Northwest National Laboratory [DE-C05-76RL01830] FX This work was performed with funding from the Thermochemical Conversion platform managed by Paul Grabowski within the U.S. Department of Energy, Office of the Biomass Program under Contract No. DEAC36-99GO10337 with the National Renewable Energy Laboratory and Contract No. DE-C05-76RL01830 with Pacific Northwest National Laboratory. The authors thank Valero Energy Corporation for providing the distilled fractions, the simulated distillation results, and the PIONA analysis of the upgraded bio-oils. NR 30 TC 42 Z9 42 U1 4 U2 76 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2011 VL 25 IS 11 BP 5462 EP 5471 DI 10.1021/ef201357h PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 847VU UT WOS:000297001400060 ER PT J AU Bandi, MM Tallinen, T Mahadevan, L AF Bandi, M. M. Tallinen, T. Mahadevan, L. TI Shock-driven jamming and periodic fracture of particulate rafts SO EPL LA English DT Article ID DEEP FLUID LAYER; PARTICLES; DYNAMICS; SURFACE; WATER; OIL AB A tenuous monolayer of hydrophobic particles at the air-water interface often forms a scum or raft. When such a monolayer is disturbed by the localized introduction of a surfactant droplet, a radially divergent surfactant shock front emanates from the surfactant origin and packs the particles into a jammed, compact, annular band with a packing fraction that saturates at a peak packing fraction phi*. As the resulting two-dimensional, disordered elastic band grows with time and is driven radially outwards by the surfactant, it fractures to form periodic triangular cracks with robust geometrical features. We find that the number of cracks N and the compaction band radius R* at fracture onset vary monotonically with the initial packing fraction (phi(init)). However, the compaction band's width W* is constant for all phi(init). A simple geometric theory that treats the compaction band as an elastic annulus, and accounts for mass conservation allows us to deduce that N similar or equal to 2 pi R*/W* similar or equal to 4 pi phi(RCP)/phi(init), a result we verify both experimentally and numerically. We show that the essential ingredients for this phenomenon are an initially low enough particulate packing fraction that allows surfactant-driven advection to cause passive jamming and eventual fracture of the hydrophobic particulate interface. Copyright (C) EPLA, 2011 C1 [Bandi, M. M.] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. [Bandi, M. M.] Los Alamos Natl Lab, MPA 10, Los Alamos, NM 87545 USA. [Bandi, M. M.; Tallinen, T.; Mahadevan, L.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02135 USA. [Mahadevan, L.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. RP Bandi, MM (reprint author), Los Alamos Natl Lab, CNLS, POB 1663, Los Alamos, NM 87545 USA. EM lm@seas.harvard.edu RI Tallinen, Tuomas/J-7065-2013 FU U. S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; Harvard NSF-MRSEC; MacArthur Foundation FX This work was supported by the U. S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 (MMB), the Harvard NSF-MRSEC and the MacArthur Foundation (LM). The authors acknowledge W. I. GOLDBURG, M. K. RIVERA, and R. E. ECKE for equipment support during preliminary investigations, and D. VELLA and A. SHREVE for discussions. NR 25 TC 9 Z9 9 U1 1 U2 13 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD NOV PY 2011 VL 96 IS 3 AR 36008 DI 10.1209/0295-5075/96/36008 PG 6 WC Physics, Multidisciplinary SC Physics GA 841UB UT WOS:000296538200023 ER PT J AU Hiraoka, N Suzuki, M Tsuei, KD Ishii, H Cai, YQ Haverkort, MW Lee, CC Ku, W AF Hiraoka, N. Suzuki, M. Tsuei, K. D. Ishii, H. Cai, Y. Q. Haverkort, M. W. Lee, C. C. Ku, W. TI dd excitations in three-dimensional q-space: A nonresonant inelastic X-ray scattering study on NiO SO EPL LA English DT Article ID NIO(100) AB We have studied the dd excitations in NiO over three-dimensional momentum (q) space using nonresonant inelastic X-ray scattering. In addition to the previously reported peaks at 1.7 and 3.0 eV, another peak is found at 1.0 eV, with a dramatically different intensity distribution in momentum space. Contrary to the other two peaks that form oval structures maximizing at [111] directions, the 1.0 eV peak displays appreciable intensity along low-symmetry axes near [311] and [210], but vanishes in the three principal axes [100], [110], and [111], indicating a significant difference in the exciton wave function. We find good agreement between the experimental data and two state-of-the-art theories, advocating investigating other strongly correlated materials with similar experimental/theoretical approaches. Copyright (C) EPLA, 2011 C1 [Hiraoka, N.; Tsuei, K. D.; Ishii, H.] NSRRC, Hsinchu 30076, Taiwan. [Suzuki, M.] Japan Synchrotron Radiat Res Inst JASRI, Sayo, Hyogo 6795198, Japan. [Cai, Y. Q.] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. Max Planck Inst Stuttgart, D-70569 Stuttgart, Germany. [Lee, C. C.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Ku, W.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Hiraoka, N (reprint author), NSRRC, Hsinchu 30076, Taiwan. EM hiraoka@spring8.or.jp RI Haverkort, Maurits W./D-2319-2009; Cai, Yong/C-5036-2008 OI Haverkort, Maurits W./0000-0002-7216-3146; Cai, Yong/0000-0002-9957-6426 FU U.S. Department of Energy, Office of Basic Energy Science [DE-AC02-98CH10886] FX The experiments were carried out in beamtimes approved by JASRI/SPring-8 (2009B4260) and NSRRC, Taiwan (2008-3-029-5). We thank S. GOTO (JASRI/SPring-8), M. TAKATA, and T. ISHIKAWA (RIKEN, JASRI/SPring-8) for their input regarding the diamond phase retarder. WK, CCL, and YQC acknowledge support from the U.S. Department of Energy, Office of Basic Energy Science, under Contract No. DE-AC02-98CH10886. NR 28 TC 11 Z9 11 U1 2 U2 6 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD NOV PY 2011 VL 96 IS 3 AR 37007 DI 10.1209/0295-5075/96/37007 PG 5 WC Physics, Multidisciplinary SC Physics GA 841UB UT WOS:000296538200032 ER PT J AU Ramos, AY Souza-Neto, NM Tolentino, HCN Bunau, O Joly, Y Grenier, S Itie, JP Flank, AM Lagarde, P Caneiro, A AF Ramos, A. Y. Souza-Neto, N. M. Tolentino, H. C. N. Bunau, O. Joly, Y. Grenier, S. Itie, J. -P. Flank, A. -M. Lagarde, P. Caneiro, A. TI Bandwidth-driven nature of the pressure-induced metal state of LaMnO3 SO EPL LA English DT Article ID JAHN-TELLER TRANSITION; LA1-XCAXMNO3; TEMPERATURE; DISTORTIONS; CHARGE AB Using X-ray absorption spectroscopy (XAS), we studied the local structure in LaMnO3 under applied pressure across and well above the insulator-to-metal (IM) transition. A hysteretic behavior points to the coexistence of two phases within a large pressure range (7 to 25 GPa). The ambient phase with highly Jahn-Teller (JT) distorted MnO6 octahedra is progressively substituted by a new phase with less-distorted JT MnO6 units. The electronic delocalization leading to the IM transition is finger-printed from the pre-edge XAS structure around 30 GPa. We observed that the phase transition takes place without any significant reduction of the JT distortion. This entails band overlap as the driving mechanism of the IM transition. Copyright (C) EPLA, 2011 C1 [Ramos, A. Y.; Tolentino, H. C. N.; Bunau, O.; Joly, Y.; Grenier, S.] CNRS, Inst Neel, F-38042 Grenoble 9, France. [Ramos, A. Y.; Tolentino, H. C. N.; Bunau, O.; Joly, Y.; Grenier, S.] Univ Grenoble 1, F-38042 Grenoble 9, France. [Souza-Neto, N. M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Souza-Neto, N. M.] Lab Nacl Luz Sincrotron, BR-13084971 Campinas, SP, Brazil. [Itie, J. -P.; Flank, A. -M.; Lagarde, P.] Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France. [Caneiro, A.] CNEA, Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Argentina. [Caneiro, A.] Univ Nacl Cuyo, RA-8400 San Carlos De Bariloche, Argentina. RP Ramos, AY (reprint author), CNRS, Inst Neel, BP 166, F-38042 Grenoble 9, France. EM aline.ramos@grenoble.cnrs.fr RI Ramos, Aline /H-6132-2011; Souza-Neto, Narcizo/G-1303-2010; TOLENTINO, HELIO/J-1894-2014; Grenier, Stephane/N-1986-2014 OI Souza-Neto, Narcizo/0000-0002-7474-8017; TOLENTINO, HELIO/0000-0003-4032-5988; Grenier, Stephane/0000-0001-8370-7375 FU European Community FX We acknowledge financial support by the European Community for the experiments at SLS (Swiss Ligth Source). NR 41 TC 14 Z9 14 U1 0 U2 13 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD NOV PY 2011 VL 96 IS 3 AR 36002 DI 10.1209/0295-5075/96/36002 PG 6 WC Physics, Multidisciplinary SC Physics GA 841UB UT WOS:000296538200017 ER PT J AU Schmiedeberg, M Haxton, TK Nagel, SR Liu, AJ AF Schmiedeberg, M. Haxton, T. K. Nagel, S. R. Liu, A. J. TI Mapping the glassy dynamics of soft spheres onto hard-sphere behavior SO EPL LA English DT Article ID EQUATION-OF-STATE; FREE-VOLUME; SYSTEMS; FLUIDS; DIFFUSION; LIQUIDS; ENTROPY AB We show that the dynamics of soft-sphere systems with purely repulsive interactions can be described by introducing an effective hard-sphere diameter determined using the Andersen-Weeks-Chandler approximation. We find that this approximation, known to describe static properties of liquids, also gives a good description of a dynamical quantity, the relaxation time, even in the vicinity of the glass transition. Copyright (C) EPLA, 2011 C1 [Schmiedeberg, M.] Univ Dusseldorf, Inst Theoret Phys Weiche Mat 2, D-40225 Dusseldorf, Germany. [Schmiedeberg, M.; Haxton, T. K.; Liu, A. J.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Haxton, T. K.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. [Nagel, S. R.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. RP Schmiedeberg, M (reprint author), Univ Dusseldorf, Inst Theoret Phys Weiche Mat 2, D-40225 Dusseldorf, Germany. EM schmiedeberg@thphy.uni-duesseldorf.de RI Schmiedeberg, Michael/B-5256-2016 OI Schmiedeberg, Michael/0000-0001-7833-4906 FU German Academic Exchange Service (DAAD) [DE-FG02-05ER46199, DE-FG02-03ER46088]; NSF [MRSEC DMR-0820054, MRSEC DMR-0520020] FX We thank L. BERTHIER, O. KOGAN, T. SCHRODER, T. WITTEN, N. XU, and F. ZAMPONI for helpful discussions. This work was supported by the German Academic Exchange Service (DAAD) within the postdoc program (MS), DE-FG02-05ER46199 (AJL and TKH), DE-FG02-03ER46088 (SRN), NSF-MRSEC DMR-0820054 (SRN) and MRSEC DMR-0520020 (TKH). NR 32 TC 26 Z9 26 U1 0 U2 19 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD NOV PY 2011 VL 96 IS 3 AR 36010 DI 10.1209/0295-5075/96/36010 PG 5 WC Physics, Multidisciplinary SC Physics GA 841UB UT WOS:000296538200025 ER PT J AU Keith, JM Meyerstein, D Hall, MB AF Keith, Jason M. Meyerstein, Dan Hall, Michael B. TI Computational Investigations into Hydrogen-Atom Abstraction from Rhodium Hydride Complexes by Methyl Radicals in Aqueous Solution SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Kinetics; Rhodium; Radical reactions; Density functional calculations ID TRANSITION-METAL-COMPLEXES; MOLECULAR-ORBITAL METHODS; PULSE-RADIOLYSIS; BASIS-SET; DENSITY; POTENTIALS; KINETICS; EXCHANGE; BONDS AB The controversy in the reported kinetics for the hydrogenatom abstraction reaction by methyl radicals for cis- and trans-[(Cyclam)Rh(III)HCl](+) and trans-[(Cyclam)(H(2)O)Rh(III)H](2+) has been resolved by studying several feasible mechanistic pathways with density functional theory. The only low-energy reaction mechanism predicted by these calculations involves a single-step radical-propagation mechanism in which the methyl radical simply abstracts the Rh bound H atom from the complex to form methane and the reduced Rh product. Previous experimental work on the chloride and aquo complexes suggested contradictory kinetic isotope effect (KIE) values of 0.66 +/- 0.30 and 1.42 +/- 0.07 as well as rate constants for the reaction differing by four orders of magnitude. The calculated mechanism predicts a KIE value of 1.08 and a high reaction rate. The alternative mechanisms are described briefly. C1 [Keith, Jason M.; Hall, Michael B.] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. [Keith, Jason M.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Meyerstein, Dan] Ariel Univ Ctr Samaria, Dept Biol Chem, Ariel, Israel. [Meyerstein, Dan] Ben Gurion Univ Negev, Dept Chem, Beer Sheva, Israel. RP Keith, JM (reprint author), Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA. EM jkeith@lanl.gov; hall@science.tamu.edu FU Welch Foundation [A-0648]; Los Alamos National Laboratory; National Nuclear Security Administration of the U. S. Department of Energy [DE-AC5206NA25396] FX Two of the authors (J. M. K. and M. B. H.) acknowledge the support of The Welch Foundation (grant number A-0648). J. M. K. acknowledges a Los Alamos National Laboratory Director's Postdoctoral Fellowship. The Los Alamos National Laboratory is operated by Los Alamos National Security, L. L. C. for the National Nuclear Security Administration of the U. S. Department of Energy under Contract No. DE-AC5206NA25396. The authors thank Andreja Bakac for helpful discussions. NR 28 TC 1 Z9 1 U1 2 U2 5 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1434-1948 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD NOV PY 2011 IS 31 BP 4901 EP 4905 DI 10.1002/ejic.201100825 PG 5 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 847ZR UT WOS:000297016100014 ER PT J AU Fritz, BG Mackley, RD AF Fritz, B. G. Mackley, R. D. TI "A Wet/Wet Differential Pressure Sensor for Measuring Vertical Hydraulic Gradient," by Fritz and Mackley, January-February 2010, v. 48, no. 1:117-121 REPLY SO GROUND WATER LA English DT Editorial Material C1 [Fritz, B. G.; Mackley, R. D.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Fritz, BG (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM Bradley.Fritz@pnl.gov NR 1 TC 0 Z9 0 U1 1 U2 9 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0017-467X J9 GROUND WATER JI Ground Water PD NOV-DEC PY 2011 VL 49 IS 6 BP 782 EP 782 DI 10.1111/j.1745-6584.2011.00801.x PG 1 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 848RE UT WOS:000297070200005 ER PT J AU Spane, FA Mackley, RD AF Spane, Frank A. Mackley, Rob D. TI Removal of River-Stage Fluctuations from Well Response Using Multiple Regression SO GROUND WATER LA English DT Article ID AQUIFER RESPONSE; STREAM-STAGE; UNCONFINED AQUIFERS; RECHARGE VARIATIONS; EARTH TIDES; WATER-LEVEL; FLOW; PENETRATION; STORAGE AB Many contaminated unconfined aquifers are located in proximity to river systems. In groundwater studies, the physical presence of a river is commonly represented as a transient-head boundary that imposes hydrologic responses within the intersected unconfined aquifer. The periodic fluctuation of river-stage height at the boundary produces associated responses within the adjacent aquifer system, the magnitude of which is a function of the existing well, aquifer, boundary conditions, and characteristics of river-stage fluctuations. The presence of well responses induced by the river stage can significantly limit characterization and monitoring of remedial activities within the stress-impacted area. This article demonstrates the use of a time-domain, multiple-regression, convolution (superposition) method to develop well/aquifer river response function (RRF) relationships. Following RRF development, a multiple-regression deconvolution correction approach can be applied to remove river-stage effects from well water-level responses. Corrected well responses can then be analyzed to improve local aquifer characterization activities in support of optimizing remedial actions, assessing the area-of-influence of remediation activities, and determining mean groundwater flow and contaminant flux to the river system. C1 [Spane, Frank A.; Mackley, Rob D.] Pacific NW Natl Lab, Environm Syst Grp, Richland, WA 99352 USA. RP Spane, FA (reprint author), Pacific NW Natl Lab, Environm Syst Grp, POB 999, Richland, WA 99352 USA. EM frank.spane@pnl.gov FU U.S. Department of Energy, Office of Science, Climate and Environmental Sciences Division; U.S. Department of Energy by Battelle [DE-AC05-76RL01830] FX A number of Pacific Northwest National Laboratory staff contributed significantly to the paper preparation. Technical peer review and editorial comments were provided by Vince Vermeul and Wayne Cosby, respectively. Discussions with Chris Murray pertaining to statistical method applications were particularly helpful. Field data were collected by Kyle Parker, Darrell Newcomer, and Ray Clayton. The authors are indebted to the Ground Water Editor (Mary Anderson) and three journal reviewers (Jerry Fairley and two anonymous reviewers) for their many useful comments. The authors would also like to acknowledge the financial support provided by the U.S. Department of Energy, Office of Science, Climate and Environmental Sciences Division for the paper presentation. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. NR 45 TC 5 Z9 5 U1 0 U2 9 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0017-467X J9 GROUND WATER JI Ground Water PD NOV-DEC PY 2011 VL 49 IS 6 BP 794 EP 807 DI 10.1111/j.1745-6584.2010.00780.x PG 14 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 848RE UT WOS:000297070200007 PM 21133900 ER PT J AU Newell, CJ Farhat, SK Adamson, DT Looney, BB AF Newell, Charles J. Farhat, Shahla K. Adamson, David T. Looney, Brian B. TI Contaminant Plume Classification System Based on Mass Discharge SO GROUND WATER LA English DT Article ID QUANTIFICATION; ATTENUATION; FLUXES; WATER AB Estimation of mass discharge has become an increasingly valuable analysis technique at sites with contaminated groundwater plumes. We propose a simple plume magnitude classification system based on mass discharge comprised of 10 separate magnitude categories, such as a "Mag 7 plume." This system can be a useful tool for scientists, engineers, regulators, and stakeholders to better communicate site conceptual models, prioritize sites, evaluate plumes both spatially and temporally, and determine potential impacts. C1 [Newell, Charles J.; Farhat, Shahla K.; Adamson, David T.] GSI Environm Inc, Houston, TX 77098 USA. [Looney, Brian B.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Newell, CJ (reprint author), GSI Environm Inc, 2211 Norfolk,Ste 1000, Houston, TX 77098 USA. EM cjnewell@gsi-net.com FU GSI Environmental Inc. FX We thank GSI Environmental Inc. for funding this work. We also recognize the contributions of the Department of Defense (Strategic Environmental Research and Development Program [SERDP] and the Environmental Security Technology Certification Program [ESTCP]) and of the Department of Energy Environmental Management Office of Groundwater and Soil Technology (EM-32) toward the development of the concepts presented. We appreciate the suggestions and insightful comments of the three anonymous peer reviewers; these generated changes that significantly improved the article. The authors would also like to acknowledge Naji Akladiss, Hans Stroo, and the ITRC Integrated DNAPL Site Strategy Team for their interest and encouragement in this topic. NR 45 TC 11 Z9 11 U1 4 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0017-467X J9 GROUND WATER JI Ground Water PD NOV-DEC PY 2011 VL 49 IS 6 BP 914 EP 919 DI 10.1111/j.1745-6584.2010.00793.x PG 6 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 848RE UT WOS:000297070200017 PM 21306359 ER PT J AU Ottavi, M Pontarelli, S DeBenedictis, EP Salsano, A Frost-Murphy, S Kogge, PM Lombardi, F AF Ottavi, Marco Pontarelli, Salvatore DeBenedictis, Erik P. Salsano, Adelio Frost-Murphy, Sarah Kogge, Peter M. Lombardi, Fabrizio TI Partially Reversible Pipelined QCA Circuits: Combining Low Power With High Throughput SO IEEE TRANSACTIONS ON NANOTECHNOLOGY LA English DT Article DE Low power; nanotechnology; quantum cellular automata; reversible computing ID DOT CELLULAR-AUTOMATA; COMPUTATION; CLOCKING; LIMITS AB This paper introduces an architecture for quantum-dot cellular automata circuits with the potential for high throughput and low power dissipation. The combination of regions with Bennett clocking and memory storage combines the low power advantage of reversible computing with the high throughput advantage of pipelining. Two case studies are initially presented to evaluate the proposed pipelined architecture in terms of throughput and power consumption due to information dissipation. A general model for assessing power consumption is also proposed. This paper shows that the advantages possible by using a Bennett clocking scheme also depend on circuit topology, thus also confirming the validity of the proposed analysis and model. C1 [Ottavi, Marco; Pontarelli, Salvatore; Salsano, Adelio] Univ Roma Tor Vergata, I-00133 Rome, Italy. [DeBenedictis, Erik P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Frost-Murphy, Sarah] Murphy Comp Res, Edgewood, NM 87015 USA. [Kogge, Peter M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Lombardi, Fabrizio] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA USA. RP Ottavi, M (reprint author), Univ Roma Tor Vergata, I-00133 Rome, Italy. EM ottavi@ing.uniroma2.it; pontarelli@ing.uniroma2.it; epdeben@sandia.gov; salsano@ing.uniroma2.it; sarah@kinementium.com; kogge@cse.nd.edu; lombardi@ece.neu.edu RI Ottavi, Marco/H-4192-2011; Pontarelli, Salvatore/K-2651-2012 OI Ottavi, Marco/0000-0002-5064-7342; Pontarelli, Salvatore/0000-0002-3626-6404 FU Italian Ministry for University and Research [96]; Sandia Corporation [DE-AC04-94AL85000] FX This work was supported in part by the Italian Ministry for University and Research under Program "Incentivazione alla mobilita di studiosi stranieri e italiani residenti all'estero," D. M. n.96, 23.04.2001 and in part by the Sandia Corporation under Contract DE-AC04-94AL85000. A preliminary version of this paper was presented in the Proceedings of the ACM Symposium on Nano Architectures, Anaheim, CA, June 2010. The review of this paper was arranged by Associate Editor D. Hammerstrom. NR 20 TC 11 Z9 11 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1536-125X J9 IEEE T NANOTECHNOL JI IEEE Trans. Nanotechnol. PD NOV PY 2011 VL 10 IS 6 BP 1383 EP 1393 DI 10.1109/TNANO.2011.2147796 PG 11 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Science & Technology - Other Topics; Materials Science; Physics GA 844JA UT WOS:000296742300027 ER PT J AU Carlton, DB Lambson, B Scholl, A Young, AT Dhuey, SD Ashby, PD Tuchfeld, E Bokor, J AF Carlton, David B. Lambson, Brian Scholl, Andreas Young, Antony T. Dhuey, Scott D. Ashby, Paul D. Tuchfeld, Eduard Bokor, Jeffrey TI Computing in Thermal Equilibrium With Dipole-Coupled Nanomagnets SO IEEE TRANSACTIONS ON NANOTECHNOLOGY LA English DT Article DE Digital logic; nanomagnetism; post CMOS; spintronics ID COMPUTATION AB In the 1970s, work at IBM by Charles Bennett suggested the possibility of a computer operating near thermal equilibrium and dissipating energy near the thermodynamic limits. Here, we demonstrate experimentally that a computing architecture based on dipole-coupled nanomagnets can operate near thermal equilibrium without the assistance of externally applied magnetic fields. The dynamics of digital signal propagation is demonstrated with micromagnetic simulation and then verified experimentally using time-lapse photoemission electron microscopy. A logic gate that computes using energy from the thermal bath without external fields is also demonstrated. Nanomagnetic logic circuits operating under these conditions are expected to dissipate energy near the fundamental thermodynamic limits of computation. C1 [Carlton, David B.; Lambson, Brian; Tuchfeld, Eduard; Bokor, Jeffrey] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [Scholl, Andreas; Young, Antony T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Dhuey, Scott D.; Ashby, Paul D.; Bokor, Jeffrey] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Carlton, DB (reprint author), Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. EM dcarlton@berkeley.edu; lambson@eecs.berkeley.edu; eduard@berkeley.edu; jbokor@eecs.berkeley.edu RI Scholl, Andreas/K-4876-2012; Bokor, Jeffrey/A-2683-2011 FU Western Institute of Nanolectronics; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported in part by the Western Institute of Nanolectronics and in part by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. D. B. Carlton and B. Lambson contributed equally to this work. The review of this paper was arranged by Associate Editor E. Towe. NR 21 TC 6 Z9 6 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1536-125X J9 IEEE T NANOTECHNOL JI IEEE Trans. Nanotechnol. PD NOV PY 2011 VL 10 IS 6 BP 1401 EP 1404 DI 10.1109/TNANO.2011.2152851 PG 4 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Science & Technology - Other Topics; Materials Science; Physics GA 844JA UT WOS:000296742300029 ER PT J AU Thomson, RK Graves, CR Scott, BL Kiplinger, JL AF Thomson, Robert K. Graves, Christopher R. Scott, Brian L. Kiplinger, Jaqueline L. TI Straightforward and efficient oxidation of tris(aryloxide) and tris(amide) uranium(III) complexes using copper(I) halide reagents SO INORGANIC CHEMISTRY COMMUNICATIONS LA English DT Article DE Uranium; Aryloxide; Amide; Copper halide; Oxidative functionalization; X-ray crystallography ID CRYSTAL-STRUCTURES; CHEMISTRY; PENTAVALENT; ARYLOXIDE; TETRAVALENT; LIGANDS AB Reaction of the trivalent uranium complex U(O-2,6-(Bu2C6H3)-Bu-t)(3)(THF) (4) with copper(I) iodide affords the corresponding uranium(IV) mixed iodide-aryloxide complex (I)U(O-2,6-(Bu2C6H3)-Bu-t)(3)(THF) (5). The oxidative functionalization protocol can also be extended to the synthesis of (Cl)U[N(SiMe3)(2)](3) (7) from the reaction of the tris(amide) uranium(III) complex U[N(SiMe3)(2)](3) (6) with copper(I) chloride. These represent the first examples of Cu-based oxidative functionalization of simple trivalent uranium coordination complexes supported by non-metallocene ligand frameworks. With several advantages over existing oxidation methods for uranium tris(aryloxide) and tris(amide) complexes, this Cu-based procedure promises to be a useful and versatile synthetic protocol for uranium chemistry. The X-ray crystal structure of (I)U(O-2,6-(Bu2C6H3)-Bu-t)(3)(THF) (5) is also reported and represents a rare example of a structurally characterized 5-coordinate uranium aryloxide complex. In the solid-state, complex 5 adopts a distorted square pyramidal geometry about the uranium atom, with the iodide ligand occupying the axial position and the THF and three 2,6-di-tert-butylphenoxide ligands occupying the sites of the square pyramid base. (C) 2011 Elsevier B.V. All rights reserved. C1 [Thomson, Robert K.; Graves, Christopher R.; Scott, Brian L.; Kiplinger, Jaqueline L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kiplinger, JL (reprint author), Los Alamos Natl Lab, Mail Stop J514, Los Alamos, NM 87545 USA. EM kiplinger@lanl.gov RI Kiplinger, Jaqueline/B-9158-2011; Scott, Brian/D-8995-2017 OI Kiplinger, Jaqueline/0000-0003-0512-7062; Scott, Brian/0000-0003-0468-5396 FU Division of Chemical Sciences; Office of Basic Energy Science; Heavy Element Chemistry program; LANL G.T. Seaborg Institute for Transactinium Science; Los Alamos National Laboratory FX For financial support of this work, we acknowledge the Division of Chemical Sciences, Office of Basic Energy Science, Heavy Element Chemistry program, the LANL G.T. Seaborg Institute for Transactinium Science (postdoctoral fellowships to R.K.T. and C.R.G.) and the Los Alamos National Laboratory LDRD program. NR 31 TC 10 Z9 10 U1 3 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-7003 J9 INORG CHEM COMMUN JI Inorg. Chem. Commun. PD NOV PY 2011 VL 14 IS 11 BP 1742 EP 1744 DI 10.1016/j.inoche.2011.07.019 PG 3 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 848EV UT WOS:000297034100012 ER PT J AU Hua, TQ Ahluwalia, RK AF Hua, Thanh Q. Ahluwalia, Rajesh K. TI Alane hydrogen storage for automotive fuel cells - Off-board regeneration processes and efficiencies SO INTERNATIONAL JOURNAL OF HYDROGEN ENERGY LA English DT Article DE Alane off-board regeneration; Trimethylamine; Dimethylethylarnine; Transamination; WTT efficiency; GHG AB Alane is considered an attractive carrier of hydrogen for on-board light-duty vehicle hydrogen storage systems because of its high intrinsic capacity (10.1 wt% H(2)), small heat of formation (similar to 7 kJ/mol H(2)), and fast apparent decomposition kinetics. Regeneration of spent Al by direct hydrogenation is impractical due to the extremely high hydrogen equilibrium pressure required (similar to 7000 bar). This paper examines the off-board regeneration of alane using a three-step organometallic process. In the first step, a relatively stable adduct of a tertiary amine and alane is formed from elemental aluminum and hydrogen gas under moderate conditions of temperature and pressure. The second step involves transamination of the adduct by a second tertiary amine to form a secondary tertiary amine-alane adduct that is less stable than the first adduct. This secondary amine alane adduct is thermally decomposed in the final step to yield alane and the secondary amine for reuse in the process. All reagents, except aluminum and hydrogen, are recovered and recycled. Two process flowsheets have been constructed, and energy consumption in each step of the regeneration process has been calculated. Additionally, total energy requirements across the entire chain of production, delivery, storage, recovery, and regeneration has been evaluated to determine the overall well-to-tank efficiency and greenhouse gas emissions. In one flowsheet, the well-to-tank efficiency is similar to 24.2% which improves to similar to 42.1% if waste heat is freely available from industrial sources. The estimated greenhouse gas emissions are 31.6 kg CO(2) (eq) per kg H(2) delivered to the vehicle and reduce to 20.6 kg/ kg-H(2) if free waste heat is readily available. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved. C1 [Hua, Thanh Q.; Ahluwalia, Rajesh K.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Hua, TQ (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM hua@anl.gov FU U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy; U.S. Department of Energy Office of Science laborator [DE-ACO2-06CH11357] FX This work was supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program. The authors thank Drs. Jason Gratez and Jim Wegrzyn of Brookhaven National Laboratory for many useful discussions. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-ACO2-06CH11357.The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 13 TC 5 Z9 5 U1 2 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-3199 J9 INT J HYDROGEN ENERG JI Int. J. Hydrog. Energy PD NOV PY 2011 VL 36 IS 23 BP 15259 EP 15265 DI 10.1016/j.ijhydene.2011.08.081 PG 7 WC Chemistry, Physical; Electrochemistry; Energy & Fuels SC Chemistry; Electrochemistry; Energy & Fuels GA 847SC UT WOS:000296991800026 ER PT J AU Wu, HL Kumar, A Miao, HY Holden-Wiltse, J Mosmann, TR Livingstone, AM Belz, GT Perelson, AS Zand, MS Topham, DJ AF Wu, Hulin Kumar, Arun Miao, Hongyu Holden-Wiltse, Jeanne Mosmann, Timothy R. Livingstone, Alexandra M. Belz, Gabrielle T. Perelson, Alan S. Zand, Martin S. Topham, David J. TI Modeling of Influenza-Specific CD8(+) T Cells during the Primary Response Indicates that the Spleen Is a Major Source of Effectors SO JOURNAL OF IMMUNOLOGY LA English DT Article ID A VIRUS-INFECTION; DIFFERENTIAL-EQUATION MODELS; ADAPTIVE IMMUNE-RESPONSE; ANTIGEN PRESENTATION; MATHEMATICAL-MODEL; DENDRITIC CELLS; BONE-MARROW; IN-VIVO; MULTIMODEL INFERENCE; MEASUREMENT ERROR AB The biological parameters that determine the distribution of virus-specific CD8(+) T cells during influenza infection are not all directly measurable by experimental techniques but can be inferred through mathematical modeling. Mechanistic and semi-mechanistic ordinary differential equations were developed to describe the expansion, trafficking, and disappearance of activated virus-specific CD8(+!) T cells in lymph nodes, spleens, and lungs of mice during primary influenza A infection. An intensive sampling of virus-specific CD8(+) T cells from these three compartments was used to inform the models. Rigorous statistical fitting of the models to the experimental data allowed estimation of important biological parameters. Although the draining lymph node is the first tissue in which Ag-specific CD8(+) T cells are detected, it was found that the spleen contributes the greatest number of effector CD8(+) T cells to the lung, with rates of expansion and migration that exceeded those of the draining lymph node. In addition, models that were based on the number and kinetics of professional APCs fit the data better than those based on viral load, suggesting that the immune response is limited by Ag presentation rather than the amount of virus. Modeling also suggests that loss of effector T cells from the lung is significant and time dependent, increasing toward the end of the acute response. Together, these efforts provide a better understanding of the primary CD8(+) T cell response to influenza infection, changing the view that the spleen plays a minor role in the primary immune response. The Journal of Immunology, 2011, 187: 4474-4482. C1 [Wu, Hulin; Kumar, Arun; Miao, Hongyu; Holden-Wiltse, Jeanne; Zand, Martin S.] Univ Rochester, Med Ctr, Dept Biostat & Computat Biol, Rochester, NY 14642 USA. [Mosmann, Timothy R.; Livingstone, Alexandra M.; Topham, David J.] Univ Rochester, Med Ctr, David H Smith Ctr Vaccine Biol & Immunol, Rochester, NY 14642 USA. [Mosmann, Timothy R.; Livingstone, Alexandra M.; Topham, David J.] Univ Rochester, Med Ctr, Dept Microbiol & Immunol, Rochester, NY 14642 USA. [Belz, Gabrielle T.] Walter & Eliza Hall Inst Med Res, Div Mol Immunol, Melbourne, Vic 3052, Australia. [Perelson, Alan S.; Zand, Martin S.] Los Alamos Natl Lab, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. Univ Rochester, Med Ctr, Div Nephrol, Dept Med, Rochester, NY 14642 USA. RP Zand, MS (reprint author), Univ Rochester, Med Ctr, Dept Biostat & Computat Biol, 601 Elmwood Ave,Box 675, Rochester, NY 14642 USA. EM martin_zand@urmc.rochester.edu; david_topham@urmc.rochester.edu RI Belz, Gabrielle/C-9350-2013; Zand, Martin/A-8612-2015 OI Belz, Gabrielle/0000-0002-9660-9587; FU National Institute of Allergy and Infectious Diseases [HHSN272201000055C, R01 AI069351]; U.S. Department of Energy [DE-AC52-679 06NA25396] FX This work was supported by National Institute of Allergy and Infectious Diseases Contract HHSN272201000055C and Grant R01 AI069351 (to M.S.Z.). Portions of this work were performed under the auspices of the U.S. Department of Energy under Contract DE-AC52-679 06NA25396 (to A.S.P.). NR 63 TC 18 Z9 18 U1 1 U2 6 PU AMER ASSOC IMMUNOLOGISTS PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0022-1767 J9 J IMMUNOL JI J. Immunol. PD NOV 1 PY 2011 VL 187 IS 9 BP 4474 EP 4482 DI 10.4049/jimmunol.1101443 PG 9 WC Immunology SC Immunology GA 841ET UT WOS:000296496000013 PM 21948988 ER PT J AU Reid, BA White, M AF Reid, Beth A. White, Martin TI Towards an accurate model of the redshift-space clustering of haloes in the quasi-linear regime SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE gravitation; galaxies: haloes; galaxies: statistics; cosmological parameters; large-scale structure of Universe ID LARGE-SCALE STRUCTURE; PERTURBATION-THEORY; OCCUPATION DISTRIBUTION; POWER SPECTRUM; DISTORTIONS; UNIVERSE; SIMULATIONS; VELOCITIES; EVOLUTION; GALAXIES AB Observations of redshift-space distortions in spectroscopic galaxy surveys offer an attractive method for measuring the build-up of cosmological structure, which depends both on the expansion rate of the Universe and on our theory of gravity. The statistical precision with which redshift-space distortions can now be measured demands better control of our theoretical systematic errors. While many recent studies focus on understanding dark matter clustering in redshift space, galaxies occupy special places in the universe: dark matter haloes. In our detailed study of halo clustering and velocity statistics in 67.5 h(-3) Gpc(3) of N-body simulations, we uncover a complex dependence of redshift-space clustering on halo bias. We identify two distinct corrections which affect the halo redshift-space correlation function on quasi-linear scales (similar to 30-80 h(-1) Mpc): the non-linear mapping between real-space and redshift-space positions, and the non-linear suppression of power in the velocity divergence field. We model the first non-perturbatively using the scale-dependent Gaussian streaming model, which we show is accurate at the <0.5 (2) per cent level in transforming real-space clustering and velocity statistics into redshift space on scales s > 10 (s > 25) h(-1) Mpc for the monopole (quadrupole) halo correlation functions. The dominant correction to the Kaiser limit in this model scales like b(3). We use standard perturbation theory to predict the real-space pairwise halo velocity statistics. Our fully analytic model is accurate at the 2 per cent level only on scales s > 40 h (1) Mpc for the range of halo masses we studied (with b = 1.4-2.8). We find that recent models of halo redshift-space clustering that neglect the corrections from the bispectrum and higher order terms from the non-linear real-space to redshift-space mapping will not have the accuracy required for current and future observational analyses. Finally, we note that our simulation results confirm the essential but non-trivial assumption that on large scales, the bias inferred from the real-space clustering of haloes is the same as the one that determines their pairwise infall velocity amplitude at the per cent level. C1 [Reid, Beth A.; White, Martin] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [White, Martin] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. RP Reid, BA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM beth.ann.reid@gmail.com RI White, Martin/I-3880-2015 OI White, Martin/0000-0001-9912-5070 FU NASA [51280, NAS 5-26555]; Space Telescope Science Institute; NSF FX BAR thanks Jeremy Tinker and Ravi Sheth for insightful discussions. Support for this work was provided by NASA through Hubble Fellowship grant 51280 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555. MW is supported by the NSF and NASA. The simulations used in this paper were analysed at the National Energy Research Scientific Computing Center, the Shared Research Computing Services Pilot of the University of California and the Laboratory Research Computing project at the Lawrence Berkeley National Laboratory. NR 63 TC 104 Z9 105 U1 0 U2 0 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2011 VL 417 IS 3 BP 1913 EP 1927 DI 10.1111/j.1365-2966.2011.19379.x PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 848HX UT WOS:000297043600021 ER PT J AU West, TO AF West, Tristram O. TI MITIGATION Monitoring informs management SO NATURE CLIMATE CHANGE LA English DT Editorial Material ID UNITED-STATES; CARBON; RESOLUTION; FLUX C1 5825 Univ Res Court, Joint Global Change Res Inst, Pacific NW Natl Lab, College Pk, MD 20740 USA. RP West, TO (reprint author), 5825 Univ Res Court, Joint Global Change Res Inst, Pacific NW Natl Lab, College Pk, MD 20740 USA. EM tristram.west@pnnl.gov RI West, Tristram/C-5699-2013 OI West, Tristram/0000-0001-7859-0125 NR 8 TC 1 Z9 1 U1 0 U2 5 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1758-678X J9 NAT CLIM CHANGE JI Nat. Clim. Chang. PD NOV PY 2011 VL 1 IS 8 BP 399 EP 400 PG 3 WC Environmental Sciences; Environmental Studies; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 849FQ UT WOS:000297111400017 ER PT J AU Thompson, JD AF Thompson, J. D. TI SUPERCONDUCTORS Heavy electron seeks same SO NATURE PHYSICS LA English DT News Item C1 Los Alamos Natl Lab, Condensed Matter & Magnet Sci Grp, Los Alamos, NM 87545 USA. RP Thompson, JD (reprint author), Los Alamos Natl Lab, Condensed Matter & Magnet Sci Grp, POB 1663, Los Alamos, NM 87545 USA. EM jdt@lanl.gov NR 10 TC 0 Z9 0 U1 0 U2 5 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD NOV PY 2011 VL 7 IS 11 BP 838 EP 839 DI 10.1038/nphys2129 PG 2 WC Physics, Multidisciplinary SC Physics GA 844ID UT WOS:000296740000008 ER PT J AU Gonsalves, AJ Nakamura, K Lin, C Panasenko, D Shiraishi, S Sokollik, T Benedetti, C Schroeder, CB Geddes, CGR van Tilborg, J Osterhoff, J Esarey, E Toth, C Leemans, WP AF Gonsalves, A. J. Nakamura, K. Lin, C. Panasenko, D. Shiraishi, S. Sokollik, T. Benedetti, C. Schroeder, C. B. Geddes, C. G. R. van Tilborg, J. Osterhoff, J. Esarey, E. Toth, C. Leemans, W. P. TI Tunable laser plasma accelerator based on longitudinal density tailoring SO NATURE PHYSICS LA English DT Article ID ELECTRON-BEAMS; INJECTION; PULSES AB Laser plasma accelerators(1) have produced high-quality electron beams with GeV energies from cm-scale devices(2) and are being investigated as hyperspectral fs light sources producing THz to gamma-ray radiation(3-5), and as drivers for future high-energy colliders(6,7). These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with per-cent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator. C1 [Gonsalves, A. J.; Nakamura, K.; Lin, C.; Panasenko, D.; Shiraishi, S.; Sokollik, T.; Benedetti, C.; Schroeder, C. B.; Geddes, C. G. R.; van Tilborg, J.; Osterhoff, J.; Esarey, E.; Toth, C.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Lin, C.] Peking Univ, Beijing 100871, Peoples R China. [Shiraishi, S.] Univ Chicago, Chicago, IL 60637 USA. RP Leemans, WP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. EM WPLeemans@lbl.gov RI Sokollik, Thomas/P-2584-2015; OI Schroeder, Carl/0000-0002-9610-0166 FU Office of Science, Office of High Energy Physics, US Department of Energy [DE-AC02-05CH11231]; National Science Foundation [PHY-0935197, PHY-0917687]; Defense Advanced Research Projects Agency (DARPA) FX The authors would like to thank E. Cormier-Michel, M. Chen, J. Mefford, N. Matlis and G. Plateau for discussions. We appreciate contributions from D. Syversrud, Z. Eisentraut, K. Sihler and N. Ybarrolaza. This work was supported by the Director, Office of Science, Office of High Energy Physics, US Department of Energy, under contract No DE-AC02-05CH11231, by the National Science Foundation under grants PHY-0935197 and PHY-0917687 and by the Defense Advanced Research Projects Agency (DARPA) NR 29 TC 138 Z9 141 U1 7 U2 64 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD NOV PY 2011 VL 7 IS 11 BP 862 EP 866 DI 10.1038/NPHYS2071 PG 5 WC Physics, Multidisciplinary SC Physics GA 844ID UT WOS:000296740000014 ER PT J AU Singh, S Jain, AK Tuli, JK AF Singh, Sukhjeet Jain, A. K. Tuli, Jagdish K. TI Nuclear Data Sheets for A=222 SO NUCLEAR DATA SHEETS LA English DT Article ID STABLE OCTUPOLE DEFORMATION; INTERACTING-BOSON MODEL; GAMMA-RAY SPECTRA; EVEN-EVEN NUCLEI; CONVERSION ELECTRON-SPECTROSCOPY; ATOMIC MASS EVALUATION; HEAVY-ION REACTIONS; U-230 DECAY SERIES; HIGH-SPIN STATES; OR-EQUAL-TO AB The ENSDF evaluation for A=222 mass chain (1996E101) has been updated on the basis of the experimental results, since September 1995 (literature cutoff date in 1996E101), from various reaction and decay studies for all nuclides in A=222 mass chain (Z=84 to 92). A new nuclide (Po-222) has since been observed. In addition, new measurements have been reported in Rn, Th and Ra nuclides. The results obtained from various theoretical studies are given as comments. The updated level and decay schemes, and experimental decay and reaction data on which they are based, are summarized and presented for all the nuclides with mass number A=222. The adopted values of level energies, level spins and parities are given, and gamma-ray energies, intensities, as well as other nuclear properties are presented. The references, J pi arguments, and necessary comments are given in the text. All Q values have been adopted from 2011AuZZ. Theoretical work of 2009Mo27 was consulted. C1 [Singh, Sukhjeet] Maharishi Markandeshwar Univ, Dept Phys, Mullana 133207, Haryana, India. [Jain, A. K.] Indian Inst Technol, Dept Phys, Roorkee 247667, Uttarakhand, India. [Tuli, Jagdish K.] Brookhaven Natl Lab, Natl Nucl Data Ctr, Upton, NY 11973 USA. RP Singh, S (reprint author), Maharishi Markandeshwar Univ, Dept Phys, Mullana 133207, Haryana, India. FU Department of Science and Technology, India; University, Mullana, India; BirBikram Singh (Institute of Physics,Bhubaneswar, India) FX The work at M.M. University, Mullana, India and at ITT Roorkee, Roorkee, India was supported by the Department of Science and Technology, India.; Support from J.K. Sharma (M.M. University, Mullana, India) and BirBikram Singh (Institute of Physics,Bhubaneswar, India) is gratefully acknowledged. NR 279 TC 12 Z9 12 U1 0 U2 2 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD NOV PY 2011 VL 112 IS 11 BP 2851 EP 2886 DI 10.1016/j.nds.2011.10.002 PG 36 WC Physics, Nuclear SC Physics GA 848WK UT WOS:000297085600002 ER PT J AU Ferron, JR Holcomb, CT Luce, TC Politzer, PA Turco, F DeBoo, JC Doyle, EJ In, Y La Haye, RJ Murakami, M Okabayashi, M Park, JM Petrie, TW Petty, CC Reimerdes, H AF Ferron, J. R. Holcomb, C. T. Luce, T. C. Politzer, P. A. Turco, F. DeBoo, J. C. Doyle, E. J. In, Y. La Haye, R. J. Murakami, M. Okabayashi, M. Park, J. M. Petrie, T. W. Petty, C. C. Reimerdes, H. TI Balancing current drive and heating in DIII-D high noninductive current fraction discharges through choice of the toroidal field SO NUCLEAR FUSION LA English DT Article ID CYCLOTRON CURRENT DRIVE; CURRENT PROFILE; STEADY-STATE; TOKAMAK; OPTIMIZATION; PLASMAS; OPERATION; TRANSPORT; EVOLUTION AB In order to maintain stationary values of the stored energy and the plasma current in a tokamak discharge with all of the current driven noninductively, the sum of the alpha-heating power and the power required to provide externally driven current must be equal to the power required to maintain the pressure against transport losses. In a study of high noninductive current fraction discharges in the DIII-D tokamak, it is shown that in the case of present-day tokamaks with no alpha-heating, adjustment of the toroidal field strength (B(T)) is a tool to obtain this balance between the required current drive and heating powers with other easily modifiable discharge parameters (beta(N), q(95), discharge shape, n(e)) fixed at values chosen to satisfy specific constraints. With all of the external power sources providing both heating and current drive, and beta(N) and q(95) fixed, the fraction of externally driven current scales with B(T) with little change in the bootstrap current fraction, thus allowing the noninductive current fraction to be adjusted. C1 [Ferron, J. R.; Luce, T. C.; Politzer, P. A.; DeBoo, J. C.; La Haye, R. J.; Petrie, T. W.; Petty, C. C.] Gen Atom Co, San Diego, CA 92186 USA. [Holcomb, C. T.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Turco, F.] Oak Ridge Associated Univ, Oak Ridge, TN 37831 USA. [Doyle, E. J.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [In, Y.] FAR TECH Inc, San Diego, CA 92121 USA. [Murakami, M.; Park, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Okabayashi, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Reimerdes, H.] Columbia Univ, New York, NY 10027 USA. RP Ferron, JR (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. FU US Department of Energy [DE-FC02-04ER54698, DE-AC52-07NA27344, DE-FG02-06ER84442, DE-AC05-00OR22725, DE-AC02-09CH11466, DE-FG02-04ER54761] FX This work was supported in part by the US Department of Energy under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-FG02-06ER84442, DE-AC05-00OR22725, DE-AC02-09CH11466, and DE-FG02-04ER54761. NR 34 TC 2 Z9 2 U1 0 U2 2 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2011 VL 51 IS 11 AR 113007 DI 10.1088/0029-5515/51/11/113007 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 846LT UT WOS:000296904000010 ER PT J AU He, HD Dong, JQ Fu, GY He, ZX Jiang, HB Wang, ZT Zheng, GY Liu, F Long, YX Shen, Y Wang, LF AF He, H. D. Dong, J. Q. Fu, G. Y. He, Z. X. Jiang, H. B. Wang, Z. T. Zheng, G. Y. Liu, F. Long, Y. X. Shen, Y. Wang, L. F. TI Study of fishbone instabilities induced by energetic particles in tokamak plasmas SO NUCLEAR FUSION LA English DT Article ID INTERNAL KINK INSTABILITY; MAGNETOHYDRODYNAMIC MODES; TRAPPED-PARTICLES; HIGH-BETA; STABILIZATION; ELECTRONS; DRIVEN; JET AB Fishbone instabilities, driven by trapped and barely passing energetic particles (EPs), including electrons and ions (EEs or EIs), are numerically studied with the spatial distribution of EPs taken into account. The dispersion relations of the modes are derived for slowing-down and Maxwellian models of EP energy distribution. It is found that the modes with frequency comparable to the toroidal precession frequency omega(d) of EPs are resonantly excited. Electron and ion fishbone modes share the same growth rates and real frequencies but rotate in opposite directions. The frequency of the modes is found to be higher in the case of near-axis heating than that of off-axis heating. The fishbone instabilities can only be excited by barely trapped or barely passing and deeply trapped particles in positive and negative spatial density gradient regions, respectively. In addition, the most interesting feature of the fishbone modes induced by barely passing particles is that there exists a second stable regime in the higher beta(h) (pressure of EPs/toroidal magnetic pressure) region, and the modes exist in the range of beta(th1) < beta(h) < beta(th2) (beta(th) is threshold or critical beta of EPs) only. The results are well confirmed with Nyquist technology. The possible physical mechanism for the existence of the second stable regime is discussed. C1 [He, H. D.; Dong, J. Q.; He, Z. X.; Jiang, H. B.; Wang, Z. T.; Zheng, G. Y.; Liu, F.; Long, Y. X.; Shen, Y.; Wang, L. F.] SW Inst Phys, Chengdu, Peoples R China. [Dong, J. Q.] Zhejiang Univ, Inst Fus Theory & Simulat, Hangzhou 310003, Zhejiang, Peoples R China. [Fu, G. Y.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP He, HD (reprint author), SW Inst Phys, Chengdu, Peoples R China. FU National Natural Science Foundation of China [11175058]; National Basic Research Program of China [2008CB717806]; ITER Project in China [2009GB105005]; National Magnetic Confinement Fusion Science Program [2009GB101002] FX The discussions with R. White and L. Chen are gratefully acknowledged. This work is supported by the National Natural Science Foundation of China grant no 11175058, the National Basic Research Program of China under grant no 2008CB717806, the ITER Project in China under grant no 2009GB105005 and the National Magnetic Confinement Fusion Science Program under grant no 2009GB101002. NR 24 TC 10 Z9 12 U1 1 U2 6 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2011 VL 51 IS 11 AR 113012 DI 10.1088/0029-5515/51/11/113012 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 846LT UT WOS:000296904000015 ER PT J AU Hong, BG Hwang, YS Kang, JS Lee, DW Joo, HG Ono, M AF Hong, B. G. Hwang, Y. S. Kang, J. S. Lee, D. W. Joo, H. G. Ono, M. TI Conceptual design study of a superconducting spherical tokamak reactor with a self-consistent system analysis code SO NUCLEAR FUSION LA English DT Article ID ASPECT-RATIO AB In a spherical tokamak (ST) reactor, the radial build of toroidal field coil and the shield play a key role in determining the size of the reactor. For self-consistent determination of the reactor components and physics parameters, a system analysis code is coupled with a one-dimensional radiation transport code. A conceptual design study of a compact superconducting ST reactor with an aspect ratio of up to 2.0 is conducted and the optimum radial build is identified. It is shown that the use of an improved shielding material and high-temperature superconducting magnets with high critical current density opens up the possibility of a fusion power plant with compact size and small re-circulating power simultaneously at a low aspect ratio, and that by using an inboard neutron reflector instead of a breeding blanket, tritium self-sufficiency is possible with an outboard blanket only and thus a compact-sized all superconducting coil ST reactor is viable. C1 [Hwang, Y. S.; Kang, J. S.; Lee, D. W.; Joo, H. G.] Seoul Natl Univ, Seoul 151744, South Korea. [Hong, B. G.] Chonbuk Natl Univ, Jeonju Si 561756, South Korea. [Ono, M.] PPPL, Princeton, NJ 08543 USA. RP Hwang, YS (reprint author), Seoul Natl Univ, 599 Gwanak Ro, Seoul 151744, South Korea. EM yhwang@snu.ac.kr RI Hwang, Yong-Seok/D-8347-2012 FU Korea Science and Engineering Foundation (KOSEF); Korea government (MEST) [2010-0001839] FX This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) under the contract no. 2010-0001839. NR 16 TC 14 Z9 14 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2011 VL 51 IS 11 AR 113013 DI 10.1088/0029-5515/51/11/113013 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 846LT UT WOS:000296904000016 ER PT J AU Kaye, SM Maingi, R Battaglia, D Bell, RE Chang, CS Hosea, J Kugel, H LeBlanc, BP Meyer, H Park, GY Wilson, JR AF Kaye, S. M. Maingi, R. Battaglia, D. Bell, R. E. Chang, C. S. Hosea, J. Kugel, H. LeBlanc, B. P. Meyer, H. Park, G. Y. Wilson, J. R. TI L-H threshold studies in NSTX SO NUCLEAR FUSION LA English DT Article ID SPHERICAL TORUS EXPERIMENT; HEATED DIVERTOR DISCHARGES; RADIAL ELECTRIC-FIELD; HIGH-CONFINEMENT; MODE TRANSITION; ASPECT-RATIO; HIGH-BETA; TOKAMAK; PLASMA; DENSITY AB Recent experiments in the low aspect ratio National Spherical Torus Experiment (NSTX) have been run in support of the high priority ITER and ITPA issue of access to the H-mode. Specifically, a series of experiments showed reduced power threshold values for deuterium versus helium plasmas, and for plasmas with lower current, lower triangularity and with lithium conditioning. Application of n = 3 fields at the plasma edge resulted in higher power thresholds. To within the constraints of temporal and spatial resolutions, no systematic difference in T-e, n(e), p(e), T-i, v or their derivatives was found in discharges that transitioned into the H-mode versus those at slightly lower power that did not. Finally, H-98y,H-2 similar to 1 confinement quality could be achieved for powers just above the threshold power in ELM-free conditions. C1 [Kaye, S. M.; Bell, R. E.; Chang, C. S.; Wilson, J. R.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Maingi, R.; Battaglia, D.; Hosea, J.; Kugel, H.; LeBlanc, B. P.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Chang, C. S.; Park, G. Y.] NYU, Courant Inst Math Sci, New York, NY USA. [Meyer, H.] Culham Lab, CCFE, Abingdon OX14 3DB, Oxon, England. [Park, G. Y.] Natl Fus Res Inst, Taejon, South Korea. RP Kaye, SM (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM skaye@pppl.gov FU US Department of Energy [DE-AC02-09CH11466, DE-AC05-00OR22725] FX This work has been supported by US Department of Energy Contract Numbers DE-AC02-09CH11466 and DE-AC05-00OR22725. NR 35 TC 14 Z9 14 U1 2 U2 19 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2011 VL 51 IS 11 AR 113019 DI 10.1088/0029-5515/51/11/113019 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 846LT UT WOS:000296904000022 ER PT J AU Kolemen, E Gates, DA Gerhardt, S Kaita, R Kugel, H Mueller, D Rowley, C Soukhanovskii, V AF Kolemen, E. Gates, D. A. Gerhardt, S. Kaita, R. Kugel, H. Mueller, D. Rowley, C. Soukhanovskii, V. TI Plasma modelling results and shape control improvements for NSTX SO NUCLEAR FUSION LA English DT Article AB New shape control implementations and dynamics studies on the National Spherical Torus eXperiment (NSTX) (Ono et al 2000 Nucl. Fusion 40 557-61) are summarized. In particular, strike point position, X-point height and squareness control, and two new system-identification methods/control-tuning algorithms were put into operation. The PID controller for the strike point was tuned by analysing the step response of the strike point position to the poloidal coil currents, employing the Ziegler-Nichols method. An offline system identification of the plasma response to the control inputs based on ARMAX (Ljung 1999 System Identification: Theory for the User (Englewood Cliffs, NJ: Prentice-Hall)) input-output models was implemented. With this tool, rough estimates of the improvements were realized and several control improvements were identified. An online automatic relay-feedback PID tuning algorithm, which has the advantage of tuning the controller in one shot, was implemented, thus optimizing the use of experimental time. Using these new capabilities, all four upper/lower/inner/outer strike points were simultaneous controlled and a combined X-point height, strike point radius control was implemented. The new and improved control with better accuracy and robustness enabled successful plasma operations with the liquid lithium divertor. Additionally this year, the first independent squareness control was developed. This will enable better optimization of the NSTX shape for stability and high performance in the future. C1 [Kolemen, E.; Gates, D. A.; Gerhardt, S.; Kaita, R.; Kugel, H.; Mueller, D.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Rowley, C.] Princeton Univ, Mech & Aerosp Dept, Princeton, NJ 08544 USA. [Soukhanovskii, V.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Kolemen, E (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM ekolemen@pppl.gov RI Rowley, Clarence/F-9068-2013 FU US DOE [DE-AC02-09CH11466] FX This work was supported by US DOE Contract DE-AC02-09CH11466. NR 17 TC 9 Z9 9 U1 0 U2 11 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2011 VL 51 IS 11 AR 113024 DI 10.1088/0029-5515/51/11/113024 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 846LT UT WOS:000296904000027 ER PT J AU Raman, R Jardin, SC Menard, J Jarboe, TR Bell, M Mueller, D Nelson, BA Ono, M AF Raman, R. Jardin, S. C. Menard, J. Jarboe, T. R. Bell, M. Mueller, D. Nelson, B. A. Ono, M. TI Transient CHI start-up simulations with the TSC SO NUCLEAR FUSION LA English DT Article ID COAXIAL HELICITY INJECTION; SUSTAINMENT; TOKAMAK; PLASMA AB Transient coaxial helicity injection (CHI) has been successfully used in the helicity injected torus-II and the National Spherical Torus Experiment (NSTX) for a demonstration of closed-flux current generation without the use of the central solenoid. The Tokamak Simulation Code (TSC) has now been used to understand the scaling of CHI generated toroidal current with variations in the external toroidal field and injector flux. These simulations show favourable scaling of the CHI start-up process with increasing machine size. Closed flux in TSC is achieved as a result of the decaying CHI discharge that induces a positive loop voltage generating the initial closed-flux current. C1 [Raman, R.; Jarboe, T. R.; Nelson, B. A.] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA. [Jardin, S. C.; Menard, J.; Bell, M.; Mueller, D.; Ono, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Raman, R (reprint author), Univ Washington, Dept Aeronaut & Astronaut, AERB 352250, Seattle, WA 98195 USA. OI Menard, Jonathan/0000-0003-1292-3286 FU US Department of Energy [DE-AC02-09CH11466, DE-FG02-99ER54519 AM08] FX This manuscript has been authored by Princeton University and collaborators under contract numbers DE-AC02-09CH11466 and DE-FG02-99ER54519 AM08 with the US Department of Energy. NR 19 TC 8 Z9 8 U1 1 U2 5 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2011 VL 51 IS 11 AR 113018 DI 10.1088/0029-5515/51/11/113018 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 846LT UT WOS:000296904000021 ER PT J AU Ryter, F Angioni, C Giroud, C Peeters, AG Biewer, T Bilato, R Joffrin, E Johnson, T Leggate, H Lerche, E Madison, G Mantica, P Van Eester, D Voitsekhovitch, I AF Ryter, F. Angioni, C. Giroud, C. Peeters, A. G. Biewer, T. Bilato, R. Joffrin, E. Johnson, T. Leggate, H. Lerche, E. Madison, G. Mantica, P. Van Eester, D. Voitsekhovitch, I. CA JET Contributors TI Simultaneous analysis of ion and electron heat transport by power modulation in JET SO NUCLEAR FUSION LA English DT Article ID ASDEX UPGRADE; TEMPERATURE GRADIENT; ECH MODULATION; FUSION PLASMAS; MODE PLASMAS; CONFINEMENT; TOKAMAK; SIMULATIONS; BOUNDARIES; PROFILE AB Heating power modulation experiments using ion cyclotron resonance heating (ICRH) in the (3)He minority scheme have been performed in the JET tokamak to investigate heat transport properties. This RF scheme provides a dominant localized ion heating, but also some electron heating, and therefore both ion and electron heat channels were modulated. This allows us to carry out a simultaneous transport analysis of ion and electron heat transport channels, including transient transport phenomena. This also provides an experimental assessment of the ICRH heat sources of the (3)He scheme. The modulation approach, so far widely used for electron transport studies, has been validated for ion heat transport in these experiments and yields results on stiffness and threshold of the ion temperature gradient (ITG)-driven ion heat transport. The results for the electron channel demonstrate the importance of the ITG-driven, off-diagonal, contribution to electron heat transport in plasmas with significant ion heating. C1 [Ryter, F.; Angioni, C.; Bilato, R.] Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany. [Giroud, C.; Leggate, H.; Madison, G.; Voitsekhovitch, I.] EURATOM UKAEA Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Peeters, A. G.] Univ Warwick, Ctr Fus Space & Astrophys, Coventry 7AL, W Midlands, England. [Biewer, T.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. [Joffrin, E.] JET EFDA CSU, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Johnson, T.] EURATOM VR Assoc, EES, KTH, S-10044 Stockholm, Sweden. [Lerche, E.; Van Eester, D.] Assoc Euratom Belgian State, LPP ERM KMS, TEC, B-1000 Brussels, Belgium. [Mantica, P.] EURATOM ENEA CNR Assoc, Ist Fis Plasma, I-20125 Milan, Italy. JET EFDA, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. RP Ryter, F (reprint author), Max Planck Inst Plasma Phys, EURATOM Assoc, D-85748 Garching, Germany. EM ryter@ipp.mpg.de RI Peeters, Arthur/A-1281-2009; Mantica, Paola/K-3033-2012; OI Biewer, Theodore/0000-0001-7456-3509 FU European Communities; EFDA FX The authors are very grateful to J. Candy and R.E. Waltz for providing the gyro-kinetic code GYRO. Simulations were performed at the parallel server Power-6 (Vip) of the IPP-MPG Rechenzentrum in Garching bei Munchen, Germany. This work, supported by the European Communities under the contract of Association EURATOM-IPP, was carried out within the framework of the EFDA. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 42 TC 12 Z9 12 U1 0 U2 12 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2011 VL 51 IS 11 AR 113016 DI 10.1088/0029-5515/51/11/113016 PG 34 WC Physics, Fluids & Plasmas SC Physics GA 846LT UT WOS:000296904000019 ER PT J AU Yoon, SW Ahn, JW Jeon, YM Suzuki, T Hahn, SH Ko, WH Lee, KD Chung, JI Nam, YU Kim, J Hong, SH Kim, HS Kim, WC Oh, YK Kwak, JG Park, YS Sabbagh, SA Humpreys, D Na, YS Kim, KM Yun, GS Hyatt, A Gohil, P Bae, YS Yang, HL Park, HK Kwon, M Lee, GS AF Yoon, S. W. Ahn, J. -W. Jeon, Y. M. Suzuki, T. Hahn, S. H. Ko, W. H. Lee, K. D. Chung, J. I. Nam, Y. U. Kim, J. Hong, S. H. Kim, H. -S. Kim, W. C. Oh, Y. K. Kwak, J. G. Park, Y. S. Sabbagh, S. A. Humpreys, D. Na, Y. -S. Kim, K. M. Yun, G. S. Hyatt, A. Gohil, P. Bae, Y. S. Yang, H. L. Park, H. K. Kwon, M. Lee, G. S. CA KSTAR Team TI Characteristics of the first H-mode discharges in KSTAR SO NUCLEAR FUSION LA English DT Article ID HEATED DIVERTOR DISCHARGES; DIII-D TOKAMAK; IMPROVED CONFINEMENT; PLASMA-CONFINEMENT; TCV; REGIME; ENERGY AB Typical ELMy H-mode discharges have been obtained in the KSTAR tokamak with the combined auxiliary heating of neutral beam injection (NBI) and electron cyclotron resonant heating (ECRH). The minimum external heating power required for the L-H transition is about 0.9MW for a line-averaged density of similar to 2.0 x 10(19) m(-3). There is a clear indication of the increase in the L-H threshold power with decreasing density for densities lower than similar to 2 x 10(19) m(-3). The L-H transitions typically occurred shortly after the beginning of plasma current flattop (I-p = 0.6 MA) period and after the fast shaping to a highly elongated double-null divertor configuration. The maximum heating power available was marginal for the L-H transition, which is also implied by the relatively slow transition time (>10 ms) and the synchronization of the transition with large sawtooth crashes. The initial analysis of thermal energy confinement time (tau(E)) indicates that tau(E) is higher than the prediction of multi-machine scaling laws by 10-20%. A clear increase in electron and ion temperature in the pedestal is observed in the H-mode phase but the core temperature does not change significantly. On the other hand, the toroidal rotation velocity increased over the whole radial range in the H-mode phase. The measured ELM frequency was around 10-30 Hz for the large ELM bursts and 50-100 Hz for the smaller ones. In addition, very small and high frequency (200-300 Hz) ELMs appeared between large ELM spikes when the ECRH is added to the NBI-heated H-mode plasmas. The drop of total stored energy during a large ELM is up to 5% in most cases. C1 [Yoon, S. W.; Jeon, Y. M.; Hahn, S. H.; Ko, W. H.; Lee, K. D.; Chung, J. I.; Nam, Y. U.; Kim, J.; Hong, S. H.; Kim, W. C.; Oh, Y. K.; Kwak, J. G.; Bae, Y. S.; Yang, H. L.; Kwon, M.; Lee, G. S.; KSTAR Team] Natl Fus Res Inst, Taejon, South Korea. [Ahn, J. -W.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Suzuki, T.] Japan Atom Energy Agcy, Naka, Ibaraki, Japan. [Kim, H. -S.] Seoul Natl Univ, Seoul, South Korea. [Park, Y. S.; Sabbagh, S. A.] Columbia Univ, New York, NY USA. [Humpreys, D.; Hyatt, A.; Gohil, P.] Gen Atom Co, San Diego, CA USA. [Kim, K. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Yun, G. S.; Park, H. K.] Postech, Pohang, South Korea. RP Yoon, SW (reprint author), Natl Fus Res Inst, Taejon, South Korea. FU Korea Ministry of Education, Science, and Technology; US Department of Energy; Japanese Ministry of Education, Culture, Sports, Science and Technology FX This work was supported by the Korea Ministry of Education, Science, and Technology. The authors are also grateful to the US Department of Energy and the Japanese Ministry of Education, Culture, Sports, Science and Technology for supporting the international collaboration. NR 25 TC 16 Z9 16 U1 0 U2 8 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2011 VL 51 IS 11 AR 113009 DI 10.1088/0029-5515/51/11/113009 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 846LT UT WOS:000296904000012 ER PT J AU Crease, RP AF Crease, Robert P. TI Critical Point Mikhail who? SO PHYSICS WORLD LA English DT Editorial Material C1 [Crease, Robert P.] SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. [Crease, Robert P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Crease, RP (reprint author), SUNY Stony Brook, Dept Philosophy, Stony Brook, NY 11790 USA. EM rcrease@notes.cc.sunysb.edu NR 1 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-8585 J9 PHYS WORLD JI Phys. World PD NOV PY 2011 VL 24 IS 11 BP 21 EP 21 PG 1 WC Physics, Multidisciplinary SC Physics GA 848TZ UT WOS:000297079300015 ER PT J AU Jagust, WJ Mormino, EC AF Jagust, William J. Mormino, Elizabeth C. TI Lifespan brain activity, beta-amyloid, and Alzheimer's disease SO TRENDS IN COGNITIVE SCIENCES LA English DT Review ID NORMAL OLDER-ADULTS; APOLIPOPROTEIN-E; FUNCTIONAL CONNECTIVITY; AEROBIC GLYCOLYSIS; EPSILON-4 ALLELE; TRANSGENIC MICE; LOBE FUNCTION; GENETIC RISK; DEFAULT-MODE; IN-VIVO AB Alzheimer's disease (AD) is the most common cause of progressive cognitive decline and dementia in adults. While the amyloid cascade hypothesis of AD posits an initiating role for the beta-amyloid (A beta) protein, there is limited understanding of why A beta is deposited. A growing body of evidence based on in vitro, animal studies and human imaging work suggests that synaptic activity increases A beta, which is deposited preferentially in multi-modal brain regions that show continuous levels of heightened activation and plasticity across the lifespan. Imaging studies of people with genetic predispositions to AD are consistent with these findings, suggesting a mechanism whereby neural efficiency or cognitive reserve may diminish A beta deposition. The aggregated findings unify observations from cellular and molecular studies with human cognitive neuroscience to reveal potential mechanisms of AD development. C1 [Jagust, William J.; Mormino, Elizabeth C.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Jagust, William J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Jagust, WJ (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. EM jagust@berkeley.edu FU NIH [AG034570, AG032814]; Alzheimer's Association [ZEN-08-87090] FX The authors would like to thank Michael Greicius, Susan Landau and Gil Rabinovici for helpful discussion and feedback during the drafting of this opinion. This work was supported by NIH grants AG034570 and AG032814 and the Alzheimer's Association ZEN-08-87090. NR 73 TC 80 Z9 81 U1 5 U2 33 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 1364-6613 J9 TRENDS COGN SCI JI TRENDS COGN. SCI. PD NOV PY 2011 VL 15 IS 11 BP 520 EP 526 DI 10.1016/j.tics.2011.09.004 PG 7 WC Behavioral Sciences; Neurosciences; Psychology, Experimental SC Behavioral Sciences; Neurosciences & Neurology; Psychology GA 848XJ UT WOS:000297088100006 PM 21983147 ER PT J AU Ufuktepe, Y Akgul, G Aksoy, F Nordlund, D AF Ufuktepe, Y. Akgul, G. Aksoy, F. Nordlund, D. TI Thickness and angular dependence of the L-edge X-ray absorption of nickel thin films SO X-RAY SPECTROMETRY LA English DT Article DE NEXAFS; nickel; transmission yield; 3d transition metals; electron escape depth ID MAGNETIC-CIRCULAR-DICHROISM; 3D TRANSITION-METALS; ELECTRON-SPECTROSCOPY; FERROMAGNETIC NICKEL; SPIN-POLARIZATION; 2P ABSORPTION; NI; SPECTRA; FE; PHOTOABSORPTION AB We report on the near-edge X-ray absorption fine structure spectroscopy of the L(3) (2p(3/2)) and L(2) (2p(1/2)) edges for ferromagnetic pure nickel transition metal and show that the L(2,3) edge peak intensity and satellite feature at similar to 6 eV above the L(3) edge in nickel increase with increasing nickel film thickness both in the total electron yield and transmission modes. The absorption spectra of nickel metal, however, exhibit strong angular-dependent effects when measured in total electron yield mode. In addition, we calculated the mean electron escape depth of the emitted electrons (lambda(e)), which was found for pure nickel metal to be lambda(e) = 25 +/- 2 angstrom. We point out the advantages of the total electron yield technique for the study of the L-edge of 3d transition metals. Copyright (C) 2011 John Wiley & Sons, Ltd. C1 [Ufuktepe, Y.] Cukurova Univ, Dept Phys, TR-01330 Adana, Turkey. [Akgul, G.] Nigde Univ, Bor Vocat Sch, TR-51240 Nigde, Turkey. [Aksoy, F.] Nigde Univ, Dept Phys, TR-51100 Nigde, Turkey. [Nordlund, D.] Stanford Synchrotron Radiat Lab, Menlo Pk, CA 94025 USA. RP Ufuktepe, Y (reprint author), Cukurova Univ, Dept Phys, TR-01330 Adana, Turkey. EM ufuk@cu.edu.tr RI Nordlund, Dennis/A-8902-2008 OI Nordlund, Dennis/0000-0001-9524-6908 FU Stanford Synchrotron Radiation Lightsource (SSRL); Department of Energy (DOE), Office of Basic Energy Science; University of Cukurova; DOE FX The authors express their thanks to Prof. Piero Pianetta, Prof. Herman Winick, and the staff at the Stanford Synchrotron Radiation Lightsource (SSRL) for their excellent support, where the NEXAFS experiments have been carried out. SSRL is supported by the Department of Energy (DOE), Office of Basic Energy Science. Y.U. acknowledges financial support from the University of Cukurova and the DOE Cooperative Research Program for the Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME). NR 28 TC 2 Z9 2 U1 2 U2 22 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0049-8246 J9 X-RAY SPECTROM JI X-Ray Spectrom. PD NOV-DEC PY 2011 VL 40 IS 6 BP 427 EP 431 DI 10.1002/xrs.1362 PG 5 WC Spectroscopy SC Spectroscopy GA 848LP UT WOS:000297053400006 ER PT J AU Tooley, JE Khangulov, V Lees, JPB Schlessman, JL Bewley, MC Heroux, A Bosch, J Hill, RB AF Tooley, James E. Khangulov, Victor Lees, Jonathan P. B. Schlessman, Jamie L. Bewley, Maria C. Heroux, Annie Bosch, Juergen Hill, R. Blake TI The 1.75 angstrom resolution structure of fission protein Fis1 from Saccharomyces cerevisiae reveals elusive interactions of the autoinhibitory domain SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID WD REPEAT PROTEIN; MITOCHONDRIAL FISSION; MAMMALIAN-CELLS; DNM1P; DIVISION; GTPASE; MDV1P; CRYSTALLOGRAPHY; REFINEMENT; COMPLEXES AB Fis1 mediates mitochondrial and peroxisomal fission. It is tail-anchored to these organelles by a transmembrane domain, exposing a soluble cytoplasmic domain. Previous studies suggested that Fis1 is autoinhibited by its N-terminal region. Here, a 1.75 angstrom resolution crystal structure of the Fis1 cytoplasmic domain from Saccharomyces cerevisiae is reported which adopts a tetratricopeptide-repeat fold. It is observed that this fold creates a concave surface important for fission, but is sterically occluded by its N-terminal region. Thus, this structure provides a physical basis for autoinhibition and allows a detailed examination of the interactions that stabilize the inhibited state of this molecule. C1 [Bosch, Juergen] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biochem & Mol Biol, Baltimore, MD 21205 USA. [Tooley, James E.; Lees, Jonathan P. B.; Hill, R. Blake] Johns Hopkins Univ, Dept Biol, Baltimore, MD 21218 USA. [Khangulov, Victor] Johns Hopkins Univ, Dept Biophys, Baltimore, MD 21218 USA. [Schlessman, Jamie L.] USN Acad, Dept Chem, Annapolis, MD 21402 USA. [Bewley, Maria C.] Penn State Univ, Coll Med, Dept Biochem & Mol Biol, Hershey, PA 17033 USA. [Heroux, Annie] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Hill, R. Blake] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA. RP Bosch, J (reprint author), Johns Hopkins Bloomberg Sch Publ Hlth, Dept Biochem & Mol Biol, Baltimore, MD 21205 USA. EM jubosch@jhsph.edu; hill@jhu.edu RI Bosch, Jurgen/E-9370-2011 OI Bosch, Jurgen/0000-0002-2624-4105 FU Offices of Biological and Environmental Research; Basic Energy Sciences of the US Department of Energy; National Center for Research Resources of the National Institutes of Health [P41RR012408]; NIH [R01GM067180] FX We gratefully acknowledge Drs Emily Coonrod and Janet M. Shaw for providing Fis1 plasmids for this study. Crystallographic data were obtained on beamline X25 of the Brookhaven National Synchrotron Light Source. Financial support comes principally from the Offices of Biological and Environmental Research and of Basic Energy Sciences of the US Department of Energy and from the National Center for Research Resources of the National Institutes of Health, grant No. P41RR012408. This work was supported by NIH grant R01GM067180 (to RBH). NR 36 TC 3 Z9 3 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD NOV PY 2011 VL 67 BP 1310 EP 1315 DI 10.1107/S1744309111029368 PN 11 PG 6 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 844ZT UT WOS:000296793300001 PM 22102223 ER PT J AU Bianchetti, CM Elsen, NL Fox, BG Phillips, GN AF Bianchetti, Christopher M. Elsen, Nathaniel L. Fox, Brian G. Phillips, George N., Jr. TI Structure of cellobiose phosphorylase from Clostridium thermocellum in complex with phosphate SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Article ID CRYSTAL-STRUCTURE; CELLULASE; CLASSIFICATION; CARBOHYDRATE; GLUCOAMYLASE; EVOLUTIONARY; SYSTEM AB Clostridium thermocellum is a cellulosome-producing bacterium that is able to efficiently degrade and utilize cellulose as a sole carbon source. Cellobiose phosphorylase (CBP) plays a critical role in cellulose degradation by catalyzing the reversible phosphate-dependent hydrolysis of cellobiose, the major product of cellulose degradation, into alpha-D-glucose 1-phosphate and D-glucose. CBP from C. thermocellum is a modular enzyme composed of four domains [N-terminal domain, helical linker, (alpha/alpha)(6)-barrel domain and C-terminal domain] and is a member of glycoside hydrolase family 94. The 2.4 angstrom resolution X-ray crystal structure of C. thermocellum CBP reveals the residues involved in coordinating the catalytic phosphate as well as the residues that are likely to be involved in substrate binding and discrimination. C1 [Bianchetti, Christopher M.; Elsen, Nathaniel L.; Fox, Brian G.; Phillips, George N., Jr.] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. [Bianchetti, Christopher M.; Elsen, Nathaniel L.; Fox, Brian G.; Phillips, George N., Jr.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP Phillips, GN (reprint author), Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. EM phillips@biochem.wisc.edu FU DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER) [DE-FC02-07ER64494]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Michigan Economic Development Corporation; Michigan Technology Tri-Corridor [085P1000817] FX This work was funded in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357. Use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor for the support of this research program (Grant 085P1000817). The authors would like to thank the Center for Eukaryotic Structural Genomics for the use of various equipment and reagents. NR 26 TC 9 Z9 9 U1 1 U2 15 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD NOV PY 2011 VL 67 BP 1345 EP 1349 DI 10.1107/S1744309111032660 PN 11 PG 5 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 844ZT UT WOS:000296793300007 PM 22102229 ER PT J AU Chhabra, SR Butland, G Elias, DA Chandonia, JM Fok, OY Juba, TR Gorur, A Allen, S Leung, CM Keller, KL Reveco, S Zane, GM Semkiw, E Prathapam, R Gold, B Singer, M Ouellet, M Szakal, ED Jorgens, D Price, MN Witkowska, HE Beller, HR Arkin, AP Hazen, TC Biggin, MD Auer, M Wall, JD Keasling, JD AF Chhabra, S. R. Butland, G. Elias, D. A. Chandonia, J. -M. Fok, O. -Y. Juba, T. R. Gorur, A. Allen, S. Leung, C. M. Keller, K. L. Reveco, S. Zane, G. M. Semkiw, E. Prathapam, R. Gold, B. Singer, M. Ouellet, M. Szakal, E. D. Jorgens, D. Price, M. N. Witkowska, H. E. Beller, H. R. Arkin, A. P. Hazen, T. C. Biggin, M. D. Auer, M. Wall, J. D. Keasling, J. D. TI Generalized Schemes for High-Throughput Manipulation of the Desulfovibrio vulgaris Genome SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID TRANSPOSON MUTANT LIBRARY; ESCHERICHIA-COLI K-12; SUBCELLULAR-LOCALIZATION; PSEUDOMONAS-AERUGINOSA; BACILLUS-SUBTILIS; PROTEIN COMPLEXES; STRANDED-DNA; E. COLI; HILDENBOROUGH; SYSTEM AB The ability to conduct advanced functional genomic studies of the thousands of sequenced bacteria has been hampered by the lack of available tools for making high-throughput chromosomal manipulations in a systematic manner that can be applied across diverse species. In this work, we highlight the use of synthetic biological tools to assemble custom suicide vectors with reusable and interchangeable DNA "parts" to facilitate chromosomal modification at designated loci. These constructs enable an array of downstream applications, including gene replacement and the creation of gene fusions with affinity purification or localization tags. We employed this approach to engineer chromosomal modifications in a bacterium that has previously proven difficult to manipulate genetically, Desulfovibrio vulgaris Hildenborough, to generate a library of over 700 strains. Furthermore, we demonstrate how these modifications can be used for examining metabolic pathways, protein-protein interactions, and protein localization. The ubiquity of suicide constructs in gene replacement throughout biology suggests that this approach can be applied to engineer a broad range of species for a diverse array of systems biological applications and is amenable to high-throughput implementation. C1 [Chhabra, S. R.; Chandonia, J. -M.; Fok, O. -Y.; Reveco, S.; Ouellet, M.; Price, M. N.; Arkin, A. P.; Keasling, J. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Butland, G.; Gorur, A.; Leung, C. M.; Prathapam, R.; Gold, B.; Singer, M.; Jorgens, D.; Auer, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Elias, D. A.; Juba, T. R.; Keller, K. L.; Zane, G. M.; Semkiw, E.; Wall, J. D.] Univ Missouri, Dept Biochem, Columbia, MO USA. [Elias, D. A.; Juba, T. R.; Keller, K. L.; Zane, G. M.; Semkiw, E.; Wall, J. D.] Univ Missouri, Dept Mol Microbiol & Immunol, Columbia, MO USA. [Beller, H. R.; Hazen, T. C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Allen, S.; Szakal, E. D.; Witkowska, H. E.] Univ Calif San Francisco, Dept Cell Biol, San Francisco, CA 94143 USA. [Allen, S.; Szakal, E. D.; Witkowska, H. E.] Univ Calif San Francisco, Dept Tissue Biol, San Francisco, CA 94143 USA. [Arkin, A. P.; Keasling, J. D.] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA. [Arkin, A. P.; Keasling, J. D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Chhabra, S. R.; Fok, O. -Y.; Reveco, S.; Ouellet, M.; Beller, H. R.; Arkin, A. P.; Hazen, T. C.; Keasling, J. D.] Joint BioEnergy Inst, Emeryville, CA USA. [Biggin, M. D.] Univ Calif Berkeley, Lawrence Berkeley Lab, Genom Div, Berkeley, CA 94720 USA. RP Chhabra, SR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, 1 Cyclotron Rd,Mail Stop 978R412, Berkeley, CA 94720 USA. EM srchhabra@lbl.gov; gpbutland@lbl.gov RI Elias, Dwayne/B-5190-2011; Keasling, Jay/J-9162-2012; Beller, Harry/H-6973-2014; Arkin, Adam/A-6751-2008; Hazen, Terry/C-1076-2012; OI Elias, Dwayne/0000-0002-4469-6391; Keasling, Jay/0000-0003-4170-6088; Arkin, Adam/0000-0002-4999-2931; Hazen, Terry/0000-0002-2536-9993; Price, Morgan/0000-0002-4251-0362 FU ENIGMA [DE-AC02-05CH11231]; Office of Science, Office of Biological and Environmental Research, U.S. Department of Energy [DE-AC02-05CH11231] FX This work received support from ENIGMA under contract no. DE-AC02-05CH11231. This work conducted at the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, U.S. Department of Energy, under contract no. DE-AC02-05CH11231. NR 51 TC 8 Z9 8 U1 1 U2 14 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD NOV PY 2011 VL 77 IS 21 BP 7595 EP 7604 DI 10.1128/AEM.05495-11 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 842DD UT WOS:000296568200019 PM 21908633 ER PT J AU Wrighton, KC Thrash, JC Melnyk, RA Bigi, JP Byrne-Bailey, KG Remis, JP Schichnes, D Auer, M Chang, CJ Coates, JD AF Wrighton, K. C. Thrash, J. C. Melnyk, R. A. Bigi, J. P. Byrne-Bailey, K. G. Remis, J. P. Schichnes, D. Auer, M. Chang, C. J. Coates, J. D. TI Evidence for Direct Electron Transfer by a Gram-Positive Bacterium Isolated from a Microbial Fuel Cell SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID DISSIMILATORY FE(III) REDUCTION; C-TYPE CYTOCHROMES; GEOBACTER-SULFURREDUCENS; ELECTRICITY-GENERATION; SP-NOV.; HYPERTHERMOPHILIC ARCHAEON; GEOTHRIX-FERMENTANS; OXIDE REDUCTION; IRON; MICROORGANISMS AB Despite their importance in iron redox cycles and bioenergy production, the underlying physiological, genetic, and biochemical mechanisms of extracellular electron transfer by Gram-positive bacteria remain insufficiently understood. In this work, we investigated respiration by Thermincola potens strain JR, a Gram-positive isolate obtained from the anode surface of a microbial fuel cell, using insoluble electron acceptors. We found no evidence that soluble redox-active components were secreted into the surrounding medium on the basis of physiological experiments and cyclic voltammetry measurements. Confocal microscopy revealed highly stratified biofilms in which cells contacting the electrode surface were disproportionately viable relative to the rest of the biofilm. Furthermore, there was no correlation between biofilm thickness and power production, suggesting that cells in contact with the electrode were primarily responsible for current generation. These data, along with cryo-electron microscopy experiments, support contact-dependent electron transfer by T. potens strain JR from the cell membrane across the 37-nm cell envelope to the cell surface. Furthermore, we present physiological and genomic evidence that c-type cytochromes play a role in charge transfer across the Gram-positive bacterial cell envelope during metal reduction. C1 [Wrighton, K. C.; Thrash, J. C.; Melnyk, R. A.; Byrne-Bailey, K. G.; Coates, J. D.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Wrighton, K. C.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Thrash, J. C.] Oregon State Univ, Dept Microbiol, Corvallis, OR 97331 USA. [Bigi, J. P.; Chang, C. J.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Bigi, J. P.; Chang, C. J.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Remis, J. P.; Auer, M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [Schichnes, D.] Univ Calif Berkeley, Coll Nat Resources Biol Imaging Facil, Berkeley, CA 94720 USA. RP Coates, JD (reprint author), Univ Calif Berkeley, Dept Plant & Microbial Biol, 271 Koshland Hall, Berkeley, CA 94720 USA. EM jdcoates@berkeley.edu OI Thrash, Cameron/0000-0003-0896-9986 FU DOE LDRD; UCB SPS; Tien Scholars Biodiversity Graduate Fellowship; NSF FX Funding for this work was provided to J.D.C. through the DOE LDRD and the UCB SPS programs. K. C. W. was supported by a Tien Scholars Biodiversity Graduate Fellowship, and J.P.B. was supported by an NSF Graduate Fellowship. C.J.C. is a Howard Hughes Medical Institute investigator. NR 62 TC 53 Z9 55 U1 8 U2 69 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD NOV PY 2011 VL 77 IS 21 BP 7633 EP 7639 DI 10.1128/AEM.05365-11 PG 7 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 842DD UT WOS:000296568200023 PM 21908627 ER PT J AU Zhuang, WQ Yi, S Feng, XY Zinder, SH Tang, YJJ Alvarez-Cohen, L AF Zhuang, Wei-Qin Yi, Shan Feng, Xueyang Zinder, Stephen H. Tang, Yinjie J. Alvarez-Cohen, Lisa TI Selective Utilization of Exogenous Amino Acids by Dehalococcoides ethenogenes Strain 195 and Its Effects on Growth and Dechlorination Activity SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID TRANSCRIPTOMIC MICROARRAY ANALYSIS; ESCHERICHIA-COLI K-12; GENOME SEQUENCE; ANAEROBIC BACTERIUM; VINYL-CHLORIDE; FLUX ANALYSIS; TRICHLOROETHENE; TRANSPORTER; STOICHIOMETRY; GROUNDWATER AB Bacteria of the genus Dehalococcoides are important members of bioremediation communities because of their ability to detoxify chloroethenes to the benign end product ethene. Genome-enabled studies conducted with Dehalococcoides ethenogenes 195 have revealed that two ATP-binding cassette (ABC)-type amino acid transporters are expressed during its exponential growth stages. In light of previous findings that Casamino Acids enhanced its dechlorination activity, we hypothesized that strain 195 is capable of importing amino acids from its environment to facilitate dechlorination and growth. To test this hypothesis, we applied isotopomer-based dilution analysis with (13)C-labeled acetate to differentiate the amino acids that were taken up by strain 195 from those synthesized de novo and to determine the physiological changes caused by the significantly incorporated amino acids. Our results showed that glutamate/glutamine and aspartate/asparagine were almost exclusively synthesized by strain 195, even when provided in excess in the medium. In contrast, phenylalanine, isoleucine, leucine, and methionine were identified as the four most highly incorporated amino acids, at levels > 30% of respective proteinogenic amino acids. When either phenylalanine or all four highly incorporated amino acids were added to the defined mineral medium, the growth rates, dechlorination activities, and yields of strain 195 were enhanced to levels similar to those observed with supplementation with 20 amino acids. However, genes for the putative ABC-type amino acids transporters and phenylalanine biosynthesis exhibited insignificant regulation in response to the imported amino acids. This study also demonstrates that using isotopomer-based metabolite analysis can be an efficient strategy for optimizing nutritional conditions for slow-growing microorganisms. C1 [Zhuang, Wei-Qin; Yi, Shan; Alvarez-Cohen, Lisa] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Feng, Xueyang; Tang, Yinjie J.] Washington Univ, St Louis, MO 63130 USA. [Zinder, Stephen H.] Cornell Univ, Microbiol Sect, Ithaca, NY 14853 USA. [Alvarez-Cohen, Lisa] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Alvarez-Cohen, L (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, 760 Davis Hall, Berkeley, CA 94720 USA. EM alvarez@ce.berkeley.edu RI Yi, Shan/I-4589-2012; ZHUANG, WEI-QIN/A-5235-2014; Feng, Xueyang/G-1295-2015; OI Yi, Shan/0000-0003-1371-0418; ZHUANG, WEI-QIN/0000-0001-9600-5225; Feng, Xueyang/0000-0003-4426-5732 FU Superfund Basic Research Program [NIEHS ES04705]; U.S. Department of Energy [ER-1587]; NSF [MCB0954016] FX This research was funded by the Superfund Basic Research Program under grant NIEHS ES04705, the Strategic Environmental Research and Development Program at U.S. Department of Energy (project ER-1587). This study was also partially supported by an NSF Career Grant (MCB0954016). NR 43 TC 14 Z9 14 U1 0 U2 20 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD NOV PY 2011 VL 77 IS 21 BP 7797 EP 7803 DI 10.1128/AEM.05676-11 PG 7 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 842DD UT WOS:000296568200042 PM 21890673 ER PT J AU Ryu, JS Shary, S Houtman, CJ Panisko, EA Korripally, P John, FJS Crooks, C Siika-aho, M Magnuson, JK Hammel, KE AF Ryu, Jae San Shary, Semarjit Houtman, Carl J. Panisko, Ellen A. Korripally, Premsagar John, Franz J. St Crooks, Casey Siika-aho, Matti Magnuson, Jon K. Hammel, Kenneth E. TI Proteomic and Functional Analysis of the Cellulase System Expressed by Postia placenta during Brown Rot of Solid Wood SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID BASIDIOMYCETE GLOEOPHYLLUM-TRABEUM; TRICHODERMA-REESEI CELLULASES; ENZYMATIC-HYDROLYSIS; MICROCRYSTALLINE CELLULOSE; FOMITOPSIS-PALUSTRIS; CHEMICAL-COMPOSITION; PHOSPHORIC-ACID; PORIA-PLACENTA; DECAY; FUNGUS AB Brown rot basidiomycetes have an important ecological role in lignocellulose recycling and are notable for their rapid degradation of wood polymers via oxidative and hydrolytic mechanisms. However, most of these fungi apparently lack processive (exo-acting) cellulases, such as cellobiohydrolases, which are generally required for efficient cellulolysis. The recent sequencing of the Postia placenta genome now permits a proteomic approach to this longstanding conundrum. We grew P. placenta on solid aspen wood, extracted proteins from the biodegrading substrate, and analyzed tryptic digests by shotgun liquid chromatography-tandem mass spectrometry. Comparison of the data with the predicted P. placenta proteome revealed the presence of 34 likely glycoside hydrolases, but only four of these-two in glycoside hydrolase family 5, one in family 10, and one in family 12-have sequences that suggested possible activity on cellulose. We expressed these enzymes heterologously and determined that they all exhibited endoglucanase activity on phosphoric acid-swollen cellulose. They also slowly hydrolyzed filter paper, a more crystalline substrate, but the soluble/insoluble reducing sugar ratios they produced classify them as nonprocessive. Computer simulations indicated that these enzymes produced soluble/insoluble ratios on reduced phosphoric acid-swollen cellulose that were higher than expected for random hydrolysis, which suggests that they could possess limited exo activity, but they are at best 10-fold less processive than cellobiohydrolases. It appears likely that P. placenta employs a combination of oxidative mechanisms and endo-acting cellulases to degrade cellulose efficiently in the absence of a significant processive component. C1 [Ryu, Jae San; Shary, Semarjit; Houtman, Carl J.; Korripally, Premsagar; John, Franz J. St; Crooks, Casey; Hammel, Kenneth E.] US Forest Serv, Inst Microbial & Biochem Technol, Madison, WI 53726 USA. [Ryu, Jae San] Gyeongsangnam Do Agr Res & Extens Serv, Ecofriendliness Res Dept, Jinju 660360, South Korea. [Ryu, Jae San; Shary, Semarjit; Korripally, Premsagar; Hammel, Kenneth E.] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Panisko, Ellen A.; Magnuson, Jon K.] Pacific NW Natl Lab, Chem & Biol Proc Dev Grp, Richland, WA 99352 USA. [Siika-aho, Matti] VTT Tech Res Ctr, FI-02044 Espoo, Finland. RP Hammel, KE (reprint author), US Forest Serv, Inst Microbial & Biochem Technol, 1 Gifford Pinchot Dr, Madison, WI 53726 USA. EM kehammel@wisc.edu RI Hammel, Kenneth/G-1890-2011; Houtman, Carl/I-4469-2012; St John, Franz/J-8970-2016 OI Hammel, Kenneth/0000-0002-2935-5847; St John, Franz/0000-0003-3458-5628 FU Geongsangnam-do Province, Republic of Korea; U.S. Department of Energy, Los Alamos National Laboratory [DE-AI32-08NA28543]; U.S. Department of Energy Office of Science, Biological and Environmental Research [BER-DE-AI02-07ER64480]; U.S. Department of Energy's Office of Biological and Environmental Research FX This work was supported by a research fellowship from Geongsangnam-do Province, Republic of Korea (J.S.R.), by the U.S. Department of Energy, Los Alamos National Laboratory (grant no. DE-AI32-08NA28543) (K. E. H.), and by the U.S. Department of Energy Office of Science, Biological and Environmental Research (grant no. BER-DE-AI02-07ER64480) (K. E. H).; The proteomic data were processed and archived by the Instrument Development Laboratory at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research. NR 60 TC 13 Z9 13 U1 1 U2 29 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD NOV PY 2011 VL 77 IS 22 BP 7933 EP 7941 DI 10.1128/AEM.05496-11 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 844PS UT WOS:000296760200007 PM 21948841 ER PT J AU Van Cuyk, S Deshpande, A Hollander, A Duval, N Ticknor, L Layshock, J Gallegos-Graves, L Omberg, KM AF Van Cuyk, Sheila Deshpande, Alina Hollander, Attelia Duval, Nathan Ticknor, Lawrence Layshock, Julie Gallegos-Graves, LaVerne Omberg, Kristin M. TI Persistence of Bacillus thuringiensis subsp kurstaki in Urban Environments following Spraying SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID POLYMERASE-CHAIN-REACTION; FIELD PERSISTENCE; AERIAL APPLICATION; ANTHRAX SPORES; VAR. KURSTAKI; SYSTEM; IDENTIFICATION; INSECTICIDES; DISPERSAL; SURVIVAL AB Bacillus thuringiensis subsp. kurstaki is applied extensively in North America to control the gypsy moth, Lymantria dispar. Since B. thuringiensis subsp. kurstaki shares many physical and biological properties with Bacillus anthracis, it is a reasonable surrogate for biodefense studies. A key question in biodefense is how long a biothreat agent will persist in the environment. There is some information in the literature on the persistence of Bacillus anthracis in laboratories and historical testing areas and for Bacillus thuringiensis in agricultural settings, but there is no information on the persistence of Bacillus spp. in the type of environment that would be encountered in a city or on a military installation. Since it is not feasible to release B. anthracis in a developed area, the controlled release of B. thuringiensis subsp. kurstaki for pest control was used to gain insight into the potential persistence of Bacillus spp. in outdoor urban environments. Persistence was evaluated in two locations: Fairfax County, VA, and Seattle, WA. Environmental samples were collected from multiple matrices and evaluated for the presence of viable B. thuringiensis subsp. kurstaki at times ranging from less than 1 day to 4 years after spraying. Real-time PCR and culture were used for analysis. B. thuringiensis subsp. kurstaki was found to persist in urban environments for at least 4 years. It was most frequently detected in soils and less frequently detected in wipes, grass, foliage, and water. The collective results indicate that certain species of Bacillus may persist for years following their dispersal in urban environments. C1 [Van Cuyk, Sheila; Deshpande, Alina; Hollander, Attelia; Duval, Nathan; Ticknor, Lawrence; Layshock, Julie; Gallegos-Graves, LaVerne; Omberg, Kristin M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Van Cuyk, S (reprint author), Los Alamos Natl Lab, MS F606,POB 1663, Los Alamos, NM 87545 USA. EM svancuyk@lanl.gov RI Omberg, Kristin/I-5972-2013; OI Ticknor, Lawrence/0000-0002-7967-7908 FU Interagency Biological Restoration Demonstration (IBRD); IBRD team; Los Alamos National Laboratory [DE-AC52-06NA25396] FX Los Alamos National Laboratory (LANL) acknowledges the Defense Threat Reduction Agency's Chemical and Biological Defense Applied Technologies Division, which supported this study under the Interagency Biological Restoration Demonstration (IBRD). LANL is grateful for the support and peer review provided by members of the IBRD team. Lisa Hendricks and Laura Castro (LANL) assisted in environmental sample analysis, and Scott White (LANL) provided additional support. Jason Gans (LANL) designed the B. thuringiensis subsp. kurstaki assays. The Washington State and Virginia Departments of Agriculture and the Fairfax County Department of Public Works and Environmental Services were essential to the success of this study. Brad White of the Washington State Department of Agriculture and his staff were essential to understanding B. thuringiensis subsp. kurstaki application in the Seattle area. Troy Shaw and Frank Finch in Fairfax County and Larry Nichols at the State of Virginia Department of Agriculture and Consumer Services provided critical information and coordination on spraying in Fairfax County.; This document has been authored by employees of the Los Alamos National Security, LLC (LANS), operator of the Los Alamos National Laboratory under contract DE-AC52-06NA25396 to the U. S. Department of Energy. Neither the U.S. Government nor LANS makes any warranty, express or implied, or assumes any liability or responsibility for the use of this information. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Los Alamos National Security, LLC, the U.S. Government, or any agency thereof. NR 33 TC 17 Z9 17 U1 2 U2 27 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD NOV PY 2011 VL 77 IS 22 BP 7954 EP 7961 DI 10.1128/AEM.05207-11 PG 8 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 844PS UT WOS:000296760200009 PM 21926205 ER PT J AU Kostka, JE Prakash, O Overholt, WA Green, SJ Freyer, G Canion, A Delgardio, J Norton, N Hazen, TC Huettel, M AF Kostka, Joel E. Prakash, Om Overholt, Will A. Green, Stefan J. Freyer, Gina Canion, Andy Delgardio, Jonathan Norton, Nikita Hazen, Terry C. Huettel, Markus TI Hydrocarbon-Degrading Bacteria and the Bacterial Community Response in Gulf of Mexico Beach Sands Impacted by the Deepwater Horizon Oil Spill SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID MARINE HARBOR SEDIMENTS; SP-NOV.; MICROBIAL-POPULATIONS; PERMEABLE SEDIMENTS; SEA; DEGRADATION; BIOREMEDIATION; ENVIRONMENT; DIVERSITY; DYNAMICS AB A significant portion of oil from the recent Deepwater Horizon (DH) oil spill in the Gulf of Mexico was transported to the shoreline, where it may have severe ecological and economic consequences. The objectives of this study were (i) to identify and characterize predominant oil-degrading taxa that may be used as model hydrocarbon degraders or as microbial indicators of contamination and (ii) to characterize the in situ response of indigenous bacterial communities to oil contamination in beach ecosystems. This study was conducted at municipal Pensacola Beach, FL, where chemical analysis revealed weathered oil petroleum hydrocarbon (C(8) to C(40)) concentrations ranging from 3.1 to 4,500 mg kg(-1) in beach sands. A total of 24 bacterial strains from 14 genera were isolated from oiled beach sands and confirmed as oil-degrading microorganisms. Isolated bacterial strains were primarily Gammaproteobacteria, including representatives of genera with known oil degraders (Alcanivorax, Marinobacter, Pseudomonas, and Acinetobacter). Sequence libraries generated from oiled sands revealed phylotypes that showed high sequence identity (up to 99%) to rRNA gene sequences from the oil-degrading bacterial isolates. The abundance of bacterial SSU rRNA gene sequences was similar to 10-fold higher in oiled (0.44 x 10(7) to 10.2 x 10(7) copies g(-1)) versus clean (0.024 x 10(7) to 1.4 x 10(7) copies g(-1)) sand. Community analysis revealed a distinct response to oil contamination, and SSU rRNA gene abundance derived from the genus Alcanivorax showed the largest increase in relative abundance in contaminated samples. We conclude that oil contamination from the DH spill had a profound impact on the abundance and community composition of indigenous bacteria in Gulf beach sands, and our evidence points to members of the Gammaproteobacteria (Alcanivorax, Marinobacter) and Alphaproteobacteria (Rhodobacteraceae) as key players in oil degradation there. C1 [Kostka, Joel E.; Prakash, Om; Overholt, Will A.; Green, Stefan J.; Freyer, Gina; Canion, Andy; Delgardio, Jonathan; Norton, Nikita; Huettel, Markus] Florida State Univ, Earth Ocean & Atmospher Sci Dept, Tallahassee, FL 32306 USA. [Freyer, Gina] Univ Jena, Inst Ecol, Jena, Germany. [Green, Stefan J.] Univ Illinois, DNA Serv Facil, Chicago, IL USA. [Hazen, Terry C.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Kostka, JE (reprint author), Georgia Inst Technol, Sch Biol, Room 225,Cherry Emerson Bldg,310 Ferst Dr, Atlanta, GA 30332 USA. EM joel.kostka@biology.gatech.edu RI Canion, Andy/Q-2397-2015; Hazen, Terry/C-1076-2012; OI Canion, Andy/0000-0003-1604-7631; Hazen, Terry/0000-0002-2536-9993; Green, Stefan/0000-0003-2781-359X FU National Science Foundation [OCE-1044939, OCE-1057417]; Florida Institute of Oceanography [FIO 4710-1101-00-1]; Northern Gulf Institute [NG1 191001-306811-03] FX This research was supported by the National Science Foundation (OCE-1044939 and OCE-1057417), the Florida Institute of Oceanography (FIO 4710-1101-00-1), and the Northern Gulf Institute (NG1 191001-306811-03). Quantitative PCR analyses were performed by Cecelia S. Chau, an employee of the DNA services laboratory. NR 76 TC 205 Z9 222 U1 55 U2 393 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD NOV PY 2011 VL 77 IS 22 BP 7962 EP 7974 DI 10.1128/AEM.05402-11 PG 13 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 844PS UT WOS:000296760200010 PM 21948834 ER PT J AU Hemme, CL Fields, MW He, Q Deng, Y Lin, L Tu, QC Mouttaki, H Zhou, AF Feng, XY Zuo, Z Ramsay, BD He, ZL Wu, L Van Nostrand, J Xu, J Tang, YJ Wiegel, J Phelps, TJ Zhou, J AF Hemme, Christopher L. Fields, Matthew W. He, Qiang Deng, Ye Lin, Lu Tu, Qichao Mouttaki, Housna Zhou, Aifen Feng, Xueyang Zuo, Zheng Ramsay, Bradley D. He, Zhili Wu, Liyou Van Nostrand, Joy Xu, Jian Tang, Yinjie J. Wiegel, Juergen Phelps, Tommy J. Zhou, Jizhong TI Correlation of Genomic and Physiological Traits of Thermoanaerobacter Species with Biofuel Yields SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SECONDARY-ALCOHOL DEHYDROGENASE; ETHANOL-PRODUCTION; CLOSTRIDIUM-THERMOCELLUM; THERMOPHILIC BACTERIUM; SHEWANELLA-ONEIDENSIS; METABOLIC PATHWAYS; FERMENTATION; CELLULOSE; BIOMASS; STRAIN AB Thermophilic anaerobic noncellulolytic Thermoanaerobacter species are of great biotechnological importance in cellulosic ethanol production due to their ability to produce high ethanol yields by simultaneous fermentation of hexose and pentose. Understanding the genome structure of these species is critical to improving and implementing these bacteria for possible biotechnological use in consolidated bioprocessing schemes (CBP) for cellulosic ethanol production. Here we describe a comparative genome analysis of two ethanologenic bacteria, Thermoanaerobacter sp. X514 and Thermoanaerobacter pseudethanolicus 39E. Compared to 39E, X514 has several unique key characteristics important to cellulosic biotechnology, including additional alcohol dehydrogenases and xylose transporters, modifications to pentose metabolism, and a complete vitamin B(12) biosynthesis pathway. Experimental results from growth, metabolic flux, and microarray gene expression analyses support genome sequencing-based predictions which help to explain the distinct differences in ethanol production between these strains. The availability of whole-genome sequence and comparative genomic analyses will aid in engineering and optimizing Thermoanaerobacter strains for viable CBP strategies. C1 [Zhou, Jizhong] Univ Oklahoma, Dept Bot & Microbiol, Inst Environm Genom, Norman, OK 73019 USA. [Fields, Matthew W.; Ramsay, Bradley D.] Montana State Univ, Dept Microbiol, Bozeman, MT 59717 USA. [He, Qiang] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA. [He, Qiang] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37932 USA. [Lin, Lu; Xu, Jian] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao, Peoples R China. [Mouttaki, Housna; Tang, Yinjie J.] German Res Ctr Environm & Hlth, Inst Groundwater Ecol, Helmholtz Zentrum Munchen, Munich, Germany. [Feng, Xueyang; Zuo, Zheng] Washington Univ, Dept Energy Environm & Chem Engn, St Louis, MO USA. [Wiegel, Juergen] Univ Georgia, Dept Microbiol, Athens, GA 30602 USA. [Phelps, Tommy J.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhou, J (reprint author), Univ Oklahoma, Dept Bot & Microbiol, Inst Environm Genom, Norman, OK 73019 USA. EM jzhou@ou.edu RI He, Qiang/G-9061-2011; He, Zhili/C-2879-2012; Xu, Jian/G-8430-2012; Deng, Ye/A-2571-2013; Feng, Xueyang/G-1295-2015; Van Nostrand, Joy/F-1740-2016; OI He, Qiang/0000-0002-7155-6474; Xu, Jian/0000-0002-0548-8477; Van Nostrand, Joy/0000-0001-9548-6450; Wiegel, Juergen/0000-0002-6343-6464; ?, ?/0000-0002-7584-0632; Feng, Xueyang/0000-0003-4426-5732 FU Oklahoma Bioenergy Center; U.S. Department of Energy Joint BioEnergy Institute (JBEI); Chinese Academy of Sciences; National Science Foundation [EPS-0814361]; U.S. Department of Energy's Office of Science, Biological and Environmental Research; University of California, Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Los Alamos National Laboratory [DE-AC02-06NA25396] FX This material is based on work supported by the Oklahoma Bioenergy Center (J.Z.), the U.S. Department of Energy Joint BioEnergy Institute (JBEI) (J.Z.), the Chinese Academy of Sciences (J.X.), and the National Science Foundation EPSCoR program under grant EPS-0814361 (J.Z.). The genome sequencing work was performed under the auspices of the U.S. Department of Energy's Office of Science, Biological and Environmental Research Program and by the University of California, Lawrence Berkeley National Laboratory, under contract DE-AC02-05CH11231, the Lawrence Livermore National Laboratory, under contract DE-AC52-07NA27344, and the Los Alamos National Laboratory, under contract DE-AC02-06NA25396, as previously described (15). NR 53 TC 19 Z9 20 U1 2 U2 17 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD NOV PY 2011 VL 77 IS 22 BP 7998 EP 8008 DI 10.1128/AEM.05677-11 PG 11 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 844PS UT WOS:000296760200013 PM 21948836 ER PT J AU Nawabi, P Bauer, S Kyrpides, N Lykidis, A AF Nawabi, Parwez Bauer, Stefan Kyrpides, Nikos Lykidis, Athanasios TI Engineering Escherichia coli for Biodiesel Production Utilizing a Bacterial Fatty Acid Methyltransferase SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID S-ADENOSYLMETHIONINE SYNTHETASE; CARRIER PROTEIN THIOESTERASE; ENZYME-CATALYZED REACTIONS; TO-HEAD HYDROCARBON; 3-HYDROXYDECANOIC ACID; SUBSTRATE-SPECIFICITY; METHIONINE SYNTHESIS; PHAG GENE; BIOSYNTHESIS; EXPRESSION AB The production of low-cost biofuels in engineered microorganisms is of great interest due to the continual increase in the world's energy demands. Biodiesel is a renewable fuel that can potentially be produced in microbes cost-effectively. Fatty acid methyl esters (FAMEs) are a common component of biodiesel and can be synthesized from either triacylglycerol or free fatty acids (FFAs). Here we report the identification of a novel bacterial fatty acid methyltransferase (FAMT) that catalyzes the formation of FAMEs and 3-hydroxyl fatty acid methyl esters (3-OH-FAMEs) from the respective free acids and S-adenosylmethionine (AdoMet). FAMT exhibits a higher specificity toward 3-hydroxy free fatty acids (3-OH-FFAs) than FFAs, synthesizing 3-hydroxy fatty acid methyl esters (3-OH-FAMEs) in vivo. We have also identified bacterial members of the fatty acyl-acyl carrier protein (ACP) thioesterase (FAT) enzyme family with distinct acyl chain specificities. These bacterial FATs exhibit increased specificity toward 3-hydroxyacyl-ACP, generating 3-OH-FFAs, which can subsequently be utilized by FAMTs to produce 3-OH-FAMEs. PhaG (3-hydroxyacyl ACP: coenzyme A [CoA] transacylase) constitutes an alternative route to 3-OH-FFA synthesis; the coexpression of PhaG with FAMT led to the highest level of accumulation of 3-OH-FAMEs and FAMEs. The availability of AdoMet, the second substrate for FAMT, is an important factor regulating the amount of methyl esters produced by bacterial cells. Our results indicate that the deletion of the global methionine regulator metJ and the overexpression of methionine adenosyltransferase result in increased methyl ester synthesis. C1 [Nawabi, Parwez; Kyrpides, Nikos; Lykidis, Athanasios] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Nawabi, Parwez; Bauer, Stefan; Kyrpides, Nikos; Lykidis, Athanasios] Univ Calif Berkeley, Energy Biosci Inst, Berkeley, CA 94720 USA. RP Nawabi, P (reprint author), DOE Joint Genome Inst, 2800 Mitchell Dr, Walnut Creek, CA 94598 USA. EM pnawabi@lbl.gov; lykidis71@yahoo.com RI Kyrpides, Nikos/A-6305-2014 OI Kyrpides, Nikos/0000-0002-6131-0462 FU Energy Bioscience Institute; Office of Science of the U.S. Department of Energy [DE-AC02-05CH112] FX This work was funded by a grant from the Energy Bioscience Institute to A. L. and by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH112. NR 40 TC 41 Z9 43 U1 3 U2 35 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD NOV PY 2011 VL 77 IS 22 BP 8052 EP 8061 DI 10.1128/AEM.05046-11 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 844PS UT WOS:000296760200019 PM 21926202 ER PT J AU Lennen, RM Kruziki, MA Kumar, K Zinkel, RA Burnum, KE Lipton, MS Hoover, SW Ranatunga, DR Wittkopp, TM Marner, WD Pfleger, BF AF Lennen, Rebecca M. Kruziki, Max A. Kumar, Kritika Zinkel, Robert A. Burnum, Kristin E. Lipton, Mary S. Hoover, Spencer W. Ranatunga, Don R. Wittkopp, Tyler M. Marner, Wesley D., II Pfleger, Brian F. TI Membrane Stresses Induced by Overproduction of Free Fatty Acids in Escherichia coli SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID PHAGE-SHOCK-PROTEIN; ORGANIC-SOLVENT TOLERANCE; ACYL CARRIER PROTEIN; TRANSCRIPTIONAL REGULATION; INHIBITORY-ACTION; EFFLUX PUMP; EXPRESSION; BIOSYNTHESIS; GENES; MARA AB Microbially produced fatty acids are potential precursors to high-energy-density biofuels, including alkanes and alkyl ethyl esters, by either catalytic conversion of free fatty acids (FFAs) or enzymatic conversion of acyl-acyl carrier protein or acyl-coenzyme A intermediates. Metabolic engineering efforts aimed at overproducing FFAs in Escherichia coli have achieved less than 30% of the maximum theoretical yield on the supplied carbon source. In this work, the viability, morphology, transcript levels, and protein levels of a strain of E. coli that overproduces medium-chain-length FFAs was compared to an engineered control strain. By early stationary phase, an 85% reduction in viable cell counts and exacerbated loss of inner membrane integrity were observed in the FFA-overproducing strain. These effects were enhanced in strains endogenously producing FFAs compared to strains exposed to exogenously fed FFAs. Under two sets of cultivation conditions, long-chain unsaturated fatty acid content greatly increased, and the expression of genes and proteins required for unsaturated fatty acid biosynthesis were significantly decreased. Membrane stresses were further implicated by increased expression of genes and proteins of the phage shock response, the MarA/Rob/SoxS regulon, and the nuo and cyo operons of aerobic respiration. Gene deletion studies confirmed the importance of the phage shock proteins and Rob for maintaining cell viability; however, little to no change in FFA titer was observed after 24 h of cultivation. The results of this study serve as a baseline for future targeted attempts to improve FFA yields and titers in E. coli. C1 [Lennen, Rebecca M.; Kruziki, Max A.; Kumar, Kritika; Pfleger, Brian F.] Univ Wisconsin Madison, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Lennen, Rebecca M.; Zinkel, Robert A.; Burnum, Kristin E.; Lipton, Mary S.; Hoover, Spencer W.; Ranatunga, Don R.; Wittkopp, Tyler M.; Marner, Wesley D., II; Pfleger, Brian F.] Univ Wisconsin Madison, US Dept Energy, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Zinkel, Robert A.] Univ Wisconsin, Ctr Biotechnol, Madison, WI 53706 USA. [Burnum, Kristin E.; Lipton, Mary S.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99353 USA. RP Pfleger, BF (reprint author), Univ Wisconsin Madison, Dept Chem & Biol Engn, 3629 Engn Hall,1415 Engn Dr, Madison, WI 53706 USA. EM pfleger@engr.wisc.edu RI Burnum, Kristin/B-1308-2011 OI Burnum, Kristin/0000-0002-2722-4149 FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Sciences) [DE-FC02-07ER64494]; University of Wisconsin-Madison Graduate School; NIH; Department of Chemical and Biological Engineering; Khorana Program for Scholars FX This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Sciences DE-FC02-07ER64494) and startup funds from the University of Wisconsin-Madison Graduate School. R.M.L. was supported as a trainee in the Chemistry-Biology Interface Training Program (NIH) and by the Department of Chemical and Biological Engineering Dahlke-Hougen Fellowship. K.K. was supported by the Khorana Program for Scholars. NR 89 TC 53 Z9 53 U1 1 U2 57 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD NOV PY 2011 VL 77 IS 22 BP 8114 EP 8128 DI 10.1128/AEM.05421-11 PG 15 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 844PS UT WOS:000296760200026 PM 21948837 ER PT J AU Akob, DM Kerkhof, L Kusel, K Watson, DB Palumbo, AV Kostka, JE AF Akob, Denise M. Kerkhof, Lee Kuesel, Kirsten Watson, David B. Palumbo, Anthony V. Kostka, Joel E. TI Linking Specific Heterotrophic Bacterial Populations to Bioreduction of Uranium and Nitrate in Contaminated Subsurface Sediments by Using Stable Isotope Probing SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID SCALE PHYSICAL MODELS; MICROBIAL COMMUNITIES; U(VI) REDUCTION; DENITRIFYING BACTERIA; REDUCING CONDITIONS; U(IV) OXIDATION; AQUIFER; BIOREMEDIATION; BIOSTIMULATION; DIVERSITY AB Shifts in terminal electron-accepting processes during biostimulation of uranium-contaminated sediments were linked to the composition of stimulated microbial populations using DNA-based stable isotope probing. Nitrate reduction preceded U(VI) and Fe(III) reduction in [(13)C]ethanol-amended microcosms. The predominant, active denitrifying microbial groups were identified as members of the Betaproteobacteria, whereas Actinobacteria dominated under metal-reducing conditions. C1 [Akob, Denise M.; Kostka, Joel E.] Florida State Univ, Tallahassee, FL 32306 USA. [Kerkhof, Lee] Rutgers State Univ, Inst Marine & Coastal Sci, New Brunswick, NJ 08901 USA. [Kuesel, Kirsten] Univ Jena, Inst Ecol, D-07743 Jena, Germany. [Watson, David B.; Palumbo, Anthony V.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kostka, JE (reprint author), Georgia Inst Technol, Sch Biol, 310 Ferst Dr, Atlanta, GA 30332 USA. EM joel.kostka@biology.gatech.edu RI Palumbo, Anthony/A-4764-2011; Akob, Denise/D-9478-2013; Watson, David/C-3256-2016; OI Palumbo, Anthony/0000-0002-1102-3975; Watson, David/0000-0002-4972-4136; Akob, Denise/0000-0003-1534-3025 FU Office of Science (BER), DOE [DE-FG02-07ER64373]; Integrated Field Research Challenge at Oak Ridge; Environmental Sciences Division, ORNL, under DOE [DE-AC05-00OR22725]; Marie-Curie Postdoctoral Research Fellowship FX This research was supported by the Office of Science (BER), DOE grant no. DE-FG02-07ER64373, and by the Integrated Field Research Challenge at Oak Ridge, operated by the Environmental Sciences Division, ORNL, under DOE contract no. DE-AC05-00OR22725. D.M.A. was supported by a Marie-Curie Postdoctoral Research Fellowship during preparation of the manuscript. NR 47 TC 7 Z9 7 U1 4 U2 21 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD NOV PY 2011 VL 77 IS 22 BP 8197 EP 8200 DI 10.1128/AEM.05247-11 PG 4 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 844PS UT WOS:000296760200038 PM 21948831 ER PT J AU Belkov, SA Kochemasov, GG Lyubynskaya, TE Maslov, NV Nuzhny, AS Da Silva, LB Rubenchik, A AF Belkov, S. A. Kochemasov, G. G. Lyubynskaya, T. E. Maslov, N. V. Nuzhny, A. S. Da Silva, L. B. Rubenchik, A. TI Optical spectra analysis for breast cancer diagnostics SO APPLIED PHYSICS B-LASERS AND OPTICS LA English DT Article; Proceedings Paper CT International Conference on Advanced Laser Technologies (ALT10) CY SEP 11-16, 2010 CL Egmond aan Zee, NETHERLANDS ID IN-VIVO; SPECTROSCOPY; SCATTERING; REFLECTANCE AB Minimally invasive probe and optical biopsy system based on optical spectra recording and analysis seem to be a promising tool for early diagnostics of breast cancer. Light scattering and absorption spectra are generated continuously as far as the needle-like probe with one emitting and several collecting optical fibers penetrates through the tissues toward to the suspicious area. That allows analyzing not only the state of local site, but also the structure of tissues along the needle trace. The suggested method has the advantages of automated on-line diagnosing and minimal tissue destruction and in parallel with the conventional diagnostic procedures provides the ground for decision-making. 165 medical trials were completed in Nizhny Novgorod Regional Oncology Centre, Russia. Independent diagnoses were the results of fine biopsy and histology. Application of wavelet expansion and clasterization techniques for spectra analysis revealed several main spectral types for malignant and benign tumors. Automatic classification algorithm demonstrated specificity similar to 90% and sensitivity similar to 91%. Large amount of information, fuzziness in criteria and data noisiness make neural networks to be an attractive analytic tool. The model based on three-layer perceptron was tested over the sample of 29 'cancer' and 29 'non-cancer' cases and demonstrated total separation. C1 [Belkov, S. A.; Kochemasov, G. G.; Lyubynskaya, T. E.; Maslov, N. V.] Russian Fed Nucl Ctr VNIIEF, Sarov 607200, Nizhny Novgorod, Russia. [Nuzhny, A. S.] Russian Acad Sci, Nucl Safety Inst, Moscow 115191, Russia. [Da Silva, L. B.] BioTelligent Inc, Livermore, CA 94551 USA. [Rubenchik, A.] LLNL, Livermore, CA 94551 USA. RP Lyubynskaya, TE (reprint author), Russian Fed Nucl Ctr VNIIEF, 37 Prospekt Mira, Sarov 607200, Nizhny Novgorod, Russia. EM tlyubyn@gmail.com FU US Department of Energy [LLNL-T2-0242-RU]; International Science and Technology Center [3075p] FX This work was supported by funding from GIPP (Global Initiatives for Proliferation Prevention) Program of US Department of Energy under the contract LLNL-T2-0242-RU and the Project #3075p of International Science and Technology Center. NR 13 TC 0 Z9 0 U1 0 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-2171 EI 1432-0649 J9 APPL PHYS B-LASERS O JI Appl. Phys. B-Lasers Opt. PD NOV PY 2011 VL 105 IS 3 BP 641 EP 648 DI 10.1007/s00340-011-4637-6 PG 8 WC Optics; Physics, Applied SC Optics; Physics GA 844WC UT WOS:000296780300023 ER PT J AU Wright, AM Beres, SB Consamus, EN Long, SW Flores, AR Barrios, R Richter, GS Oh, SY Garufi, G Maier, H Drews, AL Stockbauer, KE Cernoch, P Schneewind, O Olsen, RJ Musser, JM AF Wright, Angela M. Beres, Stephen B. Consamus, Erin N. Long, S. Wesley Flores, Anthony R. Barrios, Roberto Richter, G. Stefan Oh, So-Young Garufi, Gabriella Maier, Hannah Drews, Ashley L. Stockbauer, Kathryn E. Cernoch, Patricia Schneewind, Olaf Olsen, Randall J. Musser, James M. TI Rapidly Progressive, Fatal, Inhalation Anthrax-like Infection in a Human Case Report, Pathogen Genome Sequencing, Pathology, and Coordinated Response SO ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE LA English DT Article ID BACILLUS-CEREUS G9241; UNITED-STATES; TOXIN GENES; PNEUMONIA; THURINGIENSIS; STRAINS; POLYSACCHARIDES; IDENTIFICATION; DIVERSITY; OUTBREAK AB Context.-Ten years ago a bioterrorism event involving Bacillus anthracis spores captured the nation's interest, stimulated extensive new research on this pathogen, and heightened concern about illegitimate release of infectious agents. Sporadic reports have described rare, fulminant, and sometimes fatal cases of pneumonia in humans and nonhuman primates caused by strains of Bacillus cereus, a species closely related to Bacillus anthracis. Objectives.-To describe and investigate a case of rapidly progressive, fatal, anthrax-like pneumonia and the overwhelming infection caused by a Bacillus species of uncertain provenance in a patient residing in rural Texas. Design.-We characterized the genome of the causative strain within days of its recovery from antemortem cultures using next-generation sequencing and performed immunohistochemistry on tissues obtained at autopsy with antibodies directed against virulence proteins of B anthracis and B cereus. Results.-We discovered that the infection was caused by a previously unknown strain of B cereus that was closely related to, but genetically distinct from, B anthracis. The strain contains a plasmid similar to pXO1, a genetic element encoding anthrax toxin and other known virulence factors. Immunohistochemistry demonstrated that several homologs of B anthracis virulence proteins were made in infected tissues, likely contributing to the patient's death. Conclusions.-Rapid genome sequence analysis permitted us to genetically define this strain, rule out the likelihood of bioterrorism, and contribute effectively to the institutional response to this event. Our experience strongly reinforced the critical value of deploying a well-integrated, anatomic, clinical, and genomic strategy to respond rapidly to a potential emerging, infectious threat to public health. (Arch Pathol Lab Med. 2011;135:1447-1459; doi:10.5858/arpa.2011-0362-SA) C1 [Wright, Angela M.; Beres, Stephen B.; Consamus, Erin N.; Long, S. Wesley; Flores, Anthony R.; Barrios, Roberto; Stockbauer, Kathryn E.; Cernoch, Patricia; Olsen, Randall J.; Musser, James M.] Methodist Hosp Syst, Dept Pathol & Lab Med, Houston, TX 77030 USA. [Wright, Angela M.; Beres, Stephen B.; Consamus, Erin N.; Long, S. Wesley; Flores, Anthony R.; Barrios, Roberto; Stockbauer, Kathryn E.; Cernoch, Patricia; Olsen, Randall J.; Musser, James M.] Methodist Hosp, Res Inst, Ctr Mol & Translat Human Infect Dis Res, Houston, TX 77030 USA. [Flores, Anthony R.] Texas Childrens Hosp, Dept Pediat, Infect Dis Sect, Houston, TX 77030 USA. [Richter, G. Stefan; Oh, So-Young; Garufi, Gabriella; Maier, Hannah; Schneewind, Olaf] Univ Chicago, Dept Microbiol, Chicago, IL 60637 USA. [Richter, G. Stefan; Oh, So-Young; Garufi, Gabriella; Maier, Hannah; Schneewind, Olaf] Argonne Natl Lab, Howard Taylor Ricketts Lab, Argonne, IL 60439 USA. [Drews, Ashley L.] Methodist Hosp, Dept Med, Infect Dis Sect, Houston, TX 77030 USA. RP Musser, JM (reprint author), Methodist Hosp Syst, Dept Pathol & Lab Med, 6565 Fannin St, Houston, TX 77030 USA. EM JMMusser@tmhs.org RI Long, S. Wesley/A-9651-2008 OI Long, S. Wesley/0000-0003-3043-5307 FU NIAID NIH HHS [R01 AI069227] NR 45 TC 23 Z9 23 U1 1 U2 5 PU COLLEGE AMER PATHOLOGISTS PI NORTHFIELD PA C/O KIMBERLY GACKI, 325 WAUKEGAN RD, NORTHFIELD, IL 60093-2750 USA SN 0003-9985 J9 ARCH PATHOL LAB MED JI Arch. Pathol. Lab. Med. PD NOV PY 2011 VL 135 IS 11 BP 1447 EP 1459 DI 10.5858/arpa.2011-0362-SA PG 13 WC Medical Laboratory Technology; Medicine, Research & Experimental; Pathology SC Medical Laboratory Technology; Research & Experimental Medicine; Pathology GA 847KT UT WOS:000296972500015 PM 21882964 ER PT J AU Wang, LZ Macri, LM Krisciunas, K Wang, LF Ashley, MCB Cui, XQ Feng, LL Gong, XF Lawrence, JS Liu, Q Luong-Van, D Pennypacker, CR Shang, ZH Storey, JWV Yang, HG Yang, J Yuan, XY York, DG Zhou, X Zhu, ZX Zhu, ZH AF Wang, Lingzhi Macri, Lucas M. Krisciunas, Kevin Wang, Lifan Ashley, Michael C. B. Cui, Xiangqun Feng, Long-Long Gong, Xuefei Lawrence, Jon S. Liu, Qiang Luong-Van, Daniel Pennypacker, Carl R. Shang, Zhaohui Storey, John W. V. Yang, Huigen Yang, Ji Yuan, Xiangyan York, Donald G. Zhou, Xu Zhu, Zhenxi Zhu, Zonghong TI PHOTOMETRY OF VARIABLE STARS FROM DOME A, ANTARCTICA SO ASTRONOMICAL JOURNAL LA English DT Article DE site testing; stars: variables: general ID RR-LYRAE STARS; SKY AUTOMATED SURVEY; GAMMA DORADUS STARS; ECLIPSING BINARIES; FREQUENCY-ANALYSIS; BOUNDARY-LAYER; SPACED DATA; SOUTH-POLE; CATALOG; BRIGHTNESS AB Dome A on the Antarctic plateau is likely one of the best observing sites on Earth thanks to the excellent atmospheric conditions present at the site during the long polar winter night. We present high-cadence time-series aperture photometry of 10,000 stars with i < 14.5 mag located in a 23 deg(2) region centered on the south celestial pole. The photometry was obtained with one of the CSTAR telescopes during 128 days of the 2008 Antarctic winter. We used this photometric data set to derive site statistics for Dome A and to search for variable stars. Thanks to the nearly uninterrupted synoptic coverage, we found six times as many variables as previous surveys with similar magnitude limits. We detected 157 variable stars, of which 55% were unclassified, 27% were likely binaries, and 17% were likely pulsating stars. The latter category includes delta Scuti, gamma Doradus, and RR Lyrae variables. One variable may be a transiting exoplanet. C1 [Wang, Lingzhi; Zhu, Zonghong] Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China. [Wang, Lingzhi; Macri, Lucas M.; Krisciunas, Kevin; Wang, Lifan] Texas A&M Univ, Mitchell Inst Fundamental Phys & Astron, Dept Phys & Astron, College Stn, TX 77843 USA. [Wang, Lifan; Feng, Long-Long; Zhu, Zhenxi] Chinese Acad Sci, Purple Mt Observ, Nanjing 210008, Peoples R China. [Ashley, Michael C. B.; Lawrence, Jon S.; Luong-Van, Daniel; Storey, John W. V.] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia. [Cui, Xiangqun; Gong, Xuefei; Yuan, Xiangyan] Nanjing Inst Astron Opt & Technol, Nanjing 210042, Peoples R China. [Lawrence, Jon S.] Australian Astron Observ, Coonabarabran, NSW 1710, Australia. [Liu, Qiang; Zhou, Xu] Chinese Acad Sci, Natl Astron Observ China, Beijing 100012, Peoples R China. [Pennypacker, Carl R.] Univ Calif Berkeley, Lawrence Berkeley Lab, Ctr Astrophys, Berkeley, CA 94720 USA. [Shang, Zhaohui] Tianjin Normal Univ, Dept Phys, Tianjin 300074, Peoples R China. [Yang, Huigen] Polar Res Inst China, Shanghai 200136, Peoples R China. [Yuan, Xiangyan; Zhou, Xu] Chinese Ctr Antarctic Astron, Nanjing 210008, Peoples R China. [York, Donald G.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [York, Donald G.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Wang, LZ (reprint author), Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China. OI Macri, Lucas/0000-0002-1775-4859 FU China Scholarship Council; National Natural Science Foundation of China [10825313, 11073005]; Ministry of Science and Technology [2007CB815401]; Excellent Doctoral Dissertation of Beijing Normal University; Department of Physics & Astronomy at Texas AM University; Mitchell-Munnerlyn-Heep Chair for tenure-track faculty; NSFC-CAS [10778706]; CAS [KJCX2-YW-T08]; Australian Research Council; Australian Antarctic Division FX Lingzhi Wang acknowledges financial support by the China Scholarship Council and the National Natural Science Foundation of China under the Distinguished Young Scholar Grant 10825313 and Grant 11073005, by the Ministry of Science and Technology National Basic Science Program (Project 973) under grant number 2007CB815401, and by the Excellent Doctoral Dissertation of Beijing Normal University Engagement Fund.; Lucas Macri and Lifan Wang acknowledge support by the Department of Physics & Astronomy at Texas A&M University through faculty startup funds and the Mitchell-Munnerlyn-Heep Chair for tenure-track faculty.; This work was supported by the Chinese PANDA International Polar Year project, NSFC-CAS joint key program through grant number 10778706, CAS main direction program through grant number KJCX2-YW-T08. The authors deeply appreciate the great efforts made by the 24-27th Dome A expedition teams who provided invaluable assistance to the astronomers that set up and maintained the CSTAR telescope and the PLATO system. PLATO was supported by the Australian Research Council and the Australian Antarctic Division. Iridium communications were provided by the US National Science Foundation and the US Antarctic Program. NR 54 TC 21 Z9 22 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 J9 ASTRON J JI Astron. J. PD NOV PY 2011 VL 142 IS 5 AR 155 DI 10.1088/0004-6256/142/5/155 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 844VH UT WOS:000296777000012 ER PT J AU Arnett, WD Meakin, C AF Arnett, W. David Meakin, Casey TI TURBULENT CELLS IN STARS: FLUCTUATIONS IN KINETIC ENERGY AND LUMINOSITY SO ASTROPHYSICAL JOURNAL LA English DT Article DE stars: individual (Betelgeuse); stars: oscillations ID LONG SECONDARY PERIODS; RENORMALIZATION-GROUP ANALYSIS; COMPRESSIBLE TURBULENCE; STELLAR CONVECTION; MODEL; SUPERGIANTS; SIMULATIONS; VARIABILITY AB Three-dimensional (3D) hydrodynamic simulations of shell oxygen burning exhibit bursty, recurrent fluctuations in turbulent kinetic energy. These are shown to be due to a general instability of the convective cell, requiring only a localized source of heating or cooling. Such fluctuations are shown to be suppressed in simulations of stellar evolution which use the mixing-length theory. Quantitatively similar behavior occurs in the model of a convective roll (cell) of Lorenz, which is known to have a strange attractor that gives rise to chaotic fluctuations in time of velocity and, as we show, luminosity. Study of simulations suggests that the behavior of a Lorenz convective roll may resemble that of a cell in convective flow. We examine some implications of this simplest approximation and suggest paths for improvement. Using the Lorenz model as representative of a convective cell, a multiple-cell model of a convective layer gives total luminosity fluctuations which are suggestive of irregular variables (red giants and supergiants), and of the long secondary period feature in semiregular asymptotic giant branch variables. This "tau-mechanism" is a new source for stellar variability, which is inherently nonlinear (unseen in linear stability analysis), and one closely related to intermittency in turbulence. It was already implicit in the 3D global simulations of Woodward et al. This fluctuating behavior is seen in extended two-dimensional simulations of CNeOSi burning shells, and may cause instability which leads to eruptions in progenitors of core-collapse supernovae prior to collapse. C1 [Arnett, W. David; Meakin, Casey] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Arnett, W. David] ICRAnet, Nice, Italy. [Meakin, Casey] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. RP Arnett, WD (reprint author), Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. EM wdarnett@gmail.com; casey.meakin@gmail.com FU NSF [0708871]; NASA [NNX08AH19G]; University of Michigan FX This work was supported in part by NSF grant 0708871 and NASA grant NNX08AH19G at the University of Arizona, and by the CLEAR sub-contract from the University of Michigan. We wish to thank Fr. J. Funes (Specalo Vaticano), Prof. R. Ruffini (ICRAnet), and Prof. J. Lattanzio (Monash), P. Wood (Australian National University), and the Aspen Center for Physics for their hospitality, Prof F. Timmes and S. Starrfield for discussions, R. Stothers for helpful email, and the second anonymous referee for constructive comments. NR 59 TC 23 Z9 24 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2011 VL 741 IS 1 AR 33 DI 10.1088/0004-637X/741/1/33 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 844TA UT WOS:000296769000033 ER PT J AU Bianco, FB Howell, DA Sullivan, M Conley, A Kasen, D Gonzalez-Gaitan, S Guy, J Astier, P Balland, C Carlberg, RG Fouchez, D Fourmanoit, N Hardin, D Hook, I Lidman, C Pain, R Palanque-Delabrouille, N Perlmutter, S Perrett, KM Pritchet, CJ Regnault, N Rich, J Ruhlmann-Kleider, V AF Bianco, F. B. Howell, D. A. Sullivan, M. Conley, A. Kasen, D. Gonzalez-Gaitan, S. Guy, J. Astier, P. Balland, C. Carlberg, R. G. Fouchez, D. Fourmanoit, N. Hardin, D. Hook, I. Lidman, C. Pain, R. Palanque-Delabrouille, N. Perlmutter, S. Perrett, K. M. Pritchet, C. J. Regnault, N. Rich, J. Ruhlmann-Kleider, V. TI CONSTRAINING TYPE Ia SUPERNOVAE PROGENITORS FROM THREE YEARS OF SUPERNOVA LEGACY SURVEY DATA SO ASTROPHYSICAL JOURNAL LA English DT Article DE methods: data analysis; supernovae: general; white dwarfs ID DIGITAL SKY SURVEY; LIGHT CURVES; COSMOLOGICAL PARAMETERS; K-CORRECTIONS; DARK ENERGY; RISE-TIME; DISPERSION; BINARIES; SPECTRA; SINGLE AB While it is generally accepted that Type Ia supernovae are the result of the explosion of a carbon-oxygen white dwarf accreting mass in a binary system, the details of their genesis still elude us, and the nature of the binary companion is uncertain. Kasen points out that the presence of a non-degenerate companion in the progenitor system could leave an observable trace: a flux excess in the early rise portion of the light curve caused by the ejecta impact with the companion itself. This excess would be observable only under favorable viewing angles, and its intensity depends on the nature of the companion. We searched for the signature of a non-degenerate companion in three years of Supernova Legacy Survey data by generating synthetic light curves accounting for the effects of shocking and comparing true and synthetic time series with Kolmogorov-Smirnov tests. Our most constraining result comes from noting that the shocking effect is more prominent in the rest-frame B than V band: we rule out a contribution from white dwarf-red giant binary systems to Type Ia supernova explosions greater than 10% at the 2 sigma, and greater than 20% at the 3 sigma level. C1 [Bianco, F. B.; Howell, D. A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Bianco, F. B.; Howell, D. A.] Las Cumbres Observ Global Telescope Network Inc, Santa Barbara, CA 93117 USA. [Sullivan, M.; Hook, I.] Univ Oxford, Dept Phys Astrophys, Oxford OX1 3RH, England. [Conley, A.] Univ Colorado, Ctr Astrophys & Space Astron, Boulder, CO 80309 USA. [Kasen, D.; Perlmutter, S.] Univ Calif Los Angeles, Dept Phys, Los Angeles, CA 90095 USA. [Kasen, D.; Perlmutter, S.] Univ Calif Los Angeles, Dept Astron, Los Angeles, CA 90095 USA. [Gonzalez-Gaitan, S.; Carlberg, R. G.; Perrett, K. M.] Univ Toronto, Dept Astron & Astrophys, Toronto, ON M5S 3H4, Canada. [Guy, J.; Astier, P.; Balland, C.; Fourmanoit, N.; Hardin, D.; Pain, R.; Regnault, N.] Univ Paris 07, CNRS, LPNHE, Univ Paris 06,CNRS IN2P3, F-75252 Paris 05, France. [Fouchez, D.] CNRS IN2P3, CPPM, F-13298 Marseille 9, France. [Fouchez, D.] Univ Aix Marseille 1, F-13298 Marseille 9, France. [Hook, I.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, RM, Italy. [Lidman, C.] Australian Astron Observ, Epping, NSW 1710, Australia. [Palanque-Delabrouille, N.; Rich, J.; Ruhlmann-Kleider, V.] CEA, Ctr Saclay, Irfu SPP, F-91191 Gif Sur Yvette, France. [Perlmutter, S.] LBNL, Berkeley, CA 94720 USA. [Perrett, K. M.] DRDC Ottawa, Ottawa, ON K1A 0Z4, Canada. [Pritchet, C. J.] Univ Victoria, Dept Phys & Astron, Victoria, BC V8T 1M8, Canada. RP Bianco, FB (reprint author), Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. EM fbianco@lcogt.net RI Carlberg, Raymond/I-6947-2012; Perlmutter, Saul/I-3505-2015; OI Carlberg, Raymond/0000-0002-7667-0081; Perlmutter, Saul/0000-0002-4436-4661; Sullivan, Mark/0000-0001-9053-4820 FU Royal Society; NSERC; CIAR; W. M. Keck Foundation FX The authors wish to thank Lars Bilstein (KITP) and Rayan Foley (CfA) for stimulating discussions and insightful comments. The SNLS collaboration gratefully acknowledges the assistance of Pierre Martin and the CFHT Queued Service Observations team. Jean-Charles Cuillandre and Kanoa Withington were also indispensable in making possible real-time data reduction at CFHT. This paper is based in part on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the CFHT Legacy Survey, a collaborative project of NRC and CNRS. M. S. acknowledges support from the Royal Society. Canadian collaboration members acknowledge support from NSERC and CIAR; French collaboration members from CNRS/IN2P3, CNRS/INSU, and CEA. Based in part on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina). Based on data from Gemini program IDs GS-2003B-Q-8, GN-2003B-Q-9, GS-2004A-Q-11, GN-2004A-Q-19, GS-2004B- Q-31, GN-2004B-Q-16, GS-2005A-Q-11, GN-2005A-Q- 11, GS-2005B-Q-6, GN-2005B-Q-7, GN-2006A-Q-7, and GN-2006B-Q-10. Based in part on observations made with ESO Telescopes at the Paranal Observatory under program IDs 171.A-0486 and 176.A-0589. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. NR 45 TC 35 Z9 35 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2011 VL 741 IS 1 AR 20 DI 10.1088/0004-637X/741/1/20 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 844TA UT WOS:000296769000020 ER PT J AU Burgess, JM Preece, RD Baring, MG Briggs, MS Connaughton, V Guiriec, S Paciesas, WS Meegan, CA Bhat, PN Bissaldi, E Chaplin, V Diehl, R Fishman, GJ Fitzpatrick, G Foley, S Gibby, M Giles, M Goldstein, A Greiner, J Gruber, D van der Horst, AJ von Kienlin, A Kippen, M Kouveliotou, C McBreen, S Rau, A Tierney, D Wilson-Hodge, C AF Burgess, J. Michael Preece, Robert D. Baring, Matthew G. Briggs, Michael S. Connaughton, Valerie Guiriec, Sylvain Paciesas, William S. Meegan, Charles A. Bhat, P. N. Bissaldi, Elisabetta Chaplin, Vandiver Diehl, Roland Fishman, Gerald J. Fitzpatrick, Gerard Foley, Suzanne Gibby, Melissa Giles, Misty Goldstein, Adam Greiner, Jochen Gruber, David van der Horst, Alexander J. von Kienlin, Andreas Kippen, Marc Kouveliotou, Chryssa McBreen, Sheila Rau, Arne Tierney, Dave Wilson-Hodge, Colleen TI CONSTRAINTS ON THE SYNCHROTRON SHOCK MODEL FOR THE FERMI GRB 090820A OBSERVED BY GAMMA-RAY BURST MONITOR SO ASTROPHYSICAL JOURNAL LA English DT Article DE acceleration of particles; gamma-ray burst: individual (GRB 090820A); gamma rays: stars; methods: data analysis; radiation mechanisms: non-thermal; radiation mechanisms: thermal ID PROMPT EMISSION; SPECTRA; ACCELERATION AB Discerning the radiative dissipation mechanism for prompt emission in gamma-ray bursts (GRBs) requires detailed spectroscopic modeling that straddles the vF(v) peak in the 100 keV-1 MeV range. Historically, empirical fits such as the popular Band function have been employed with considerable success in interpreting the observations. While extrapolations of the Band parameters can provide some physical insight into the emission mechanisms responsible for GRBs, these inferences do not provide a unique way of discerning between models. By fitting physical models directly, this degeneracy can be broken, eliminating the need for empirical functions; our analysis here offers a first step in this direction. One of the oldest, and leading, theoretical ideas for the production of the prompt signal is the synchrotron shock model. Here we explore the applicability of this model to a bright Fermi gamma-ray burst monitor (GBM) burst with a simple temporal structure, GRB 090820A. Our investigation implements, for the first time, thermal and non-thermal synchrotron emissivities in the RMFIT forward-folding spectral analysis software often used in GBM burst studies. We find that these synchrotron emissivities, together with a blackbody shape, provide at least as good a match to the data as the Band GRB spectral fitting function. This success is achieved in both time-integrated and time-resolved spectral fits. C1 [Burgess, J. Michael; Preece, Robert D.; Briggs, Michael S.; Connaughton, Valerie; Guiriec, Sylvain; Paciesas, William S.; Bhat, P. N.; Chaplin, Vandiver; Goldstein, Adam] Univ Alabama, Dept Phys, Huntsville, AL 35899 USA. [Baring, Matthew G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Meegan, Charles A.; van der Horst, Alexander J.] Univ Space Res Assoc, Dept Phys, Huntsville, AL 35899 USA. [Bissaldi, Elisabetta; Chaplin, Vandiver; Diehl, Roland; Greiner, Jochen; Gruber, David; von Kienlin, Andreas; Rau, Arne] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Fishman, Gerald J.; Kouveliotou, Chryssa; Wilson-Hodge, Colleen] NASA, Marshall Space Flight Ctr, Space Sci Off, Huntsville, AL 35812 USA. [Fitzpatrick, Gerard; Foley, Suzanne; McBreen, Sheila; Tierney, Dave] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Gibby, Melissa; Giles, Misty] Jacobs Technol Inc, Huntsville, AL USA. [Kippen, Marc] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Burgess, JM (reprint author), Univ Alabama, Dept Phys, 320 Sparkman Dr, Huntsville, AL 35899 USA. EM james.m.burgess@nasa.gov; baring@rice.edu RI Bissaldi, Elisabetta/K-7911-2016; OI Burgess, James/0000-0003-3345-9515; McBreen, Sheila/0000-0002-1477-618X; Bissaldi, Elisabetta/0000-0001-9935-8106; Preece, Robert/0000-0003-1626-7335 FU Alabama Space Grant Consortium through NASA [NNX10AJ80H]; NASA [NNX09AT80G, NNH07ZDA001-GLAST] FX We thank the referee for many useful comments that helped clarify the presentation. J.M.B. thankfully acknowledges the support of the Alabama Space Grant Consortium through NASA Training Grant NNX10AJ80H. M.G.B. is grateful for support under NASA's Fermi Guest Investigator program, Cycle 2, through grant NNX09AT80G. A.J.v.d.H. was supported by NASA grant NNH07ZDA001-GLAST. NR 22 TC 24 Z9 24 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2011 VL 741 IS 1 AR 24 DI 10.1088/0004-637X/741/1/24 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 844TA UT WOS:000296769000024 ER PT J AU Davis, TM Hui, L Frieman, JA Haugbolle, T Kessler, R Sinclair, B Sollerman, J Bassett, B Marriner, J Mortsell, E Nichol, RC Richmond, MW Sako, M Schneider, DP Smith, M AF Davis, Tamara M. Hui, Lam Frieman, Joshua A. Haugbolle, Troels Kessler, Richard Sinclair, Benjamin Sollerman, Jesper Bassett, Bruce Marriner, John Mortsell, Edvard Nichol, Robert C. Richmond, Michael W. Sako, Masao Schneider, Donald P. Smith, Mathew TI THE EFFECT OF PECULIAR VELOCITIES ON SUPERNOVA COSMOLOGY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; supernovae: general ID DIGITAL SKY SURVEY; PROBE WMAP OBSERVATIONS; BARYON ACOUSTIC-OSCILLATIONS; HUBBLE-SPACE-TELESCOPE; DARK ENERGY SURVEY; BVRI LIGHT CURVES; IA SUPERNOVAE; REDSHIFT SURVEY; DATA SETS; DIPOLE ANISOTROPY AB We analyze the effect that peculiar velocities have on the cosmological inferences we make using luminosity distance indicators, such as Type Ia supernovae. In particular we study the corrections required to account for (1) our own motion, (2) correlations in galaxy motions, and (3) a possible local under-or overdensity. For all of these effects we present a case study showing the impact on the cosmology derived by the Sloan Digital Sky Survey-II Supernova Survey (SDSS-II SN Survey). Correcting supernova (SN) redshifts for the cosmic microwave background (CMB) dipole slightly overcorrects nearby SNe that share some of our local motion. We show that while neglecting the CMB dipole would cause a shift in the derived equation of state of Delta w similar to 0.04 (at fixed Omega(m)), the additional local-motion correction is currently negligible (Delta w less than or similar to 0.01). We then demonstrate a covariance-matrix approach to statistically account for correlated peculiar velocities. This down-weights nearby SNe and effectively acts as a graduated version of the usual sharp low-redshift cut. Neglecting coherent velocities in the current sample causes a systematic shift of Delta w similar to 0.02. This will therefore have to be considered carefully when future surveys aim for percent-level accuracy and we recommend our statistical approach to down-weighting peculiar velocities as a more robust option than a sharp low-redshift cut. C1 [Davis, Tamara M.; Sinclair, Benjamin] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. [Davis, Tamara M.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen O, Denmark. [Hui, Lam] Columbia Univ, Dept Phys, ISCAP, New York, NY 10027 USA. [Frieman, Joshua A.; Kessler, Richard] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Frieman, Joshua A.; Kessler, Richard] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Frieman, Joshua A.; Marriner, John] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Sollerman, Jesper] Stockholm Univ, Dept Astron, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bassett, Bruce] S African Astron Observ, ZA-7935 Observatory, South Africa. [Bassett, Bruce] African Inst Math Sci, Cape Town, South Africa. [Mortsell, Edvard] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Nichol, Robert C.] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Richmond, Michael W.] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA. [Sako, Masao] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Smith, Mathew] Univ Cape Town, Astrophys Cosmol & Grav Ctr, Dept Math & Appl Math, ZA-7701 Rondebosch, South Africa. RP Davis, TM (reprint author), Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia. EM tamarad@physics.uq.edu.au RI Haugbolle, Troels/L-7984-2014; Davis, Tamara/A-4280-2008; OI Haugbolle, Troels/0000-0002-9422-8684; Sollerman, Jesper/0000-0003-1546-6615; Davis, Tamara/0000-0002-4213-8783; Bassett, Bruce/0000-0001-7700-1069 FU Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; W. M. Keck Foundation FX Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/.; The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.; This work is based in part on observations made at the following telescopes. The Hobby-Eberly Telescope (HET) is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximillians-Universitat Munchen, and Georg-August-Universitat Gottingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly. The Marcario Low-Resolution Spectrograph is named for Mike Marcario of High Lonesome Optics, who fabricated several optical elements for the instrument but died before its completion; it is a joint project of the Hobby-Eberly Telescope partnership and the Instituto de Astronomia de la Universidad Nacional Autonoma de Mexico. The Apache Point Observatory 3.5 m telescope is owned and operated by the Astrophysical Research Consortium. We thank the observatory director, Suzanne Hawley, and site manager, Bruce Gillespie, for their support of this project. The Subaru Telescope is operated by the National Astronomical Observatory of Japan. The William Herschel Telescope is operated by the Isaac Newton Group on the island of La Palma in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. NR 82 TC 29 Z9 29 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD NOV 1 PY 2011 VL 741 IS 1 AR 67 DI 10.1088/0004-637X/741/1/67 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 844TA UT WOS:000296769000067 ER PT J AU Boldyrev, S Perez, JC Borovsky, JE Podesta, JJ AF Boldyrev, Stanislav Perez, Jean Carlos Borovsky, Joseph E. Podesta, John J. TI SPECTRAL SCALING LAWS IN MAGNETOHYDRODYNAMIC TURBULENCE SIMULATIONS AND IN THE SOLAR WIND SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE magnetic fields; magnetohydrodynamics (MHD); methods: statistical; plasmas; turbulence ID NUMERICAL SIMULATIONS; WAVES AB The question is addressed as to what extent incompressible magnetohydrodynamics can describe random magnetic and velocity fluctuations measured in the solar wind. It is demonstrated that distributions of spectral indices for the velocity, magnetic field, and total energy obtained from high-resolution numerical simulations of magnetohydrodynamic turbulence are qualitatively and quantitatively similar to solar wind observations at 1 AU. Both simulations and observations show that in the inertial range the magnetic field spectrum E-b is steeper than the velocity spectrum E-v with E-b greater than or similar to E-v and that the magnitude of the residual energy E-R = E-v - E-b decreases nearly following a k(perpendicular to)(-2) scaling. C1 [Boldyrev, Stanislav; Perez, Jean Carlos] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Perez, Jean Carlos] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Perez, Jean Carlos] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Borovsky, Joseph E.; Podesta, John J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Borovsky, Joseph E.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Boldyrev, S (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. FU US DoE [DE-FG02-07ER54932, DE-SC0003888, DE-SC0001794]; NSF [PHY-0903872]; NSF Center for magnetic Self-organization in Laboratory and Astrophysical Plasmas at University of Wisconsin-Madison; Texas Advanced Computing Center (TACC) at the University of Texas at Austin under the NSF [TG-PHY080013N]; NASA FX This work was supported by the US DoE awards DE-FG02-07ER54932, DE-SC0003888, DE-SC0001794, the NSF grant PHY-0903872, and the NSF Center for magnetic Self-organization in Laboratory and Astrophysical Plasmas at University of Wisconsin-Madison. High Performance Computing resources were provided by the Texas Advanced Computing Center (TACC) at the University of Texas at Austin under the NSF-Teragrid Project TG-PHY080013N. Work at Los Alamos was supported by the NASA Solar and Heliospheric Physics Program and the NSF SHINE Program. NR 30 TC 49 Z9 49 U1 0 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2011 VL 741 IS 1 AR L19 DI 10.1088/2041-8205/741/1/L19 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 844NC UT WOS:000296753000019 ER PT J AU Kronberg, PP Lovelace, RVE Lapenta, G Colgate, SA AF Kronberg, P. P. Lovelace, R. V. E. Lapenta, G. Colgate, S. A. TI MEASUREMENT OF THE ELECTRIC CURRENT IN A kpc-SCALE JET SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE galaxies: jets; galaxies: magnetic fields; plasmas ID DOUBLE RADIO-SOURCES; HELICAL MAGNETIC-FIELD; ACCRETION DISKS; POYNTING JETS; ROTATION; 3C-303; MODEL; COLLIMATION; EXPANSION; 3C-273 AB We present radio emission, polarization, and Faraday rotation maps of the radio jet of the galaxy 3C303. From these data we derive the magnetoplasma and electrodynamic parameters of this 50 kpc long jet. For one component of this jet we obtain for the first time a direct determination of a galactic-scale electric current (similar to 3 x 10(18) A), and its direction-positive away from the active galactic nucleus. Our analysis strongly supports a model where the jet energy flow is mainly electromagnetic. C1 [Kronberg, P. P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Kronberg, P. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. [Lovelace, R. V. E.] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA. [Lapenta, G.] Katholieke Univ Leuven, Ctr Plasma Astrophys, Dept Wiskunde, Louvain, Belgium. RP Kronberg, PP (reprint author), Los Alamos Natl Lab, Div Theoret, T-2,MS B283, Los Alamos, NM 87545 USA. EM kronberg@lanl.gov; lovelace@astro.cornell.edu; giovanni.lapenta@kuleuven.be; colgate@lanl.gov OI Lapenta, Giovanni/0000-0002-3123-4024 FU Natural Sciences and Engineering Research of Canada; NSF; NASA FX We thank Rick Perley, Robert Reid, Justin Linford, and Greg Taylor for help and advice with the re-calibrated images, Hui Li for discussion of current flow in jets, and an anonymous referee for a valuable correction to our estimate of the jet current. Support is acknowledged from a Natural Sciences and Engineering Research of Canada Discovery Grant (P.P.K.) and from NSF and NASA (R.V.E.L.). NR 22 TC 13 Z9 13 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2011 VL 741 IS 1 AR L15 DI 10.1088/2041-8205/741/1/L15 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 844NC UT WOS:000296753000015 ER PT J AU Moses, E AF Moses, Edward TI The National Ignition Facility: an experimental platform for studying behavior of matter under extreme conditions SO ASTROPHYSICS AND SPACE SCIENCE LA English DT Article DE National Ignition Facility; National Ignition Campaign; Inertial fusion energy; Inertial confinement fusion; High energy density science; Laser inertial fusion energy ID ENERGY AB The National Ignition Facility (NIF), a 192-beam Nd-glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light, is now operational at Lawrence Livermore National Laboratory (LLNL). As the world's largest and most energetic laser system, NIF serves as the national center for the U.S. Department of Energy (DOE) and National Nuclear Security Administration to achieve thermonuclear burn in the laboratory and to explore the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from all of its 192 extremely energetic laser beams into a mm(3)-sized target, NIF can reach the conditions required to initiate fusion reactions. NIF can also provide access to extreme scientific environments: temperatures about 100 million K, densities of 1,000 g/cm(3), and pressures 100 billion times atmospheric pressure. These conditions have never been created before in a laboratory and exist naturally only in interiors of the planetary and stellar environments as well as in nuclear weapons. Since August 2009, the NIF team has been conducting experiments in support of the National Ignition Campaign (NIC)-a partnership among LLNL, Los Alamos National Laboratory, General Atomics, the University of Rochester, Sandia National Laboratories, as well as a number of universities and international collaborators. The results from these initial experiments show promise for the relatively near-term achievement of ignition. Capsule implosion experiments at energies up to 1.2 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 10%. Cryogenic target capability and additional diagnostics are being installed in preparation for layered target deuterium-tritium implosions to be conducted later in 2010. Important national security and basic science experiments have also been conducted on NIF. This paper describes the unprecedented experimental capabilities of NIF and the results achieved so far on the path toward ignition, for stockpile stewardship, and the beginning of frontier science experiments. The paper will also address our plans to transition NIF to a national user facility, providing access to NIF for researchers from the DOE laboratories, as well as the national and international academic and fusion energy communities. C1 Lawrence Livermore Natl Lab, Natl Ignit Facil, Livermore, CA 94551 USA. RP Moses, E (reprint author), Lawrence Livermore Natl Lab, Natl Ignit Facil, 7000 E Ave, Livermore, CA 94551 USA. EM moses1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-432971] FX This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-432971. NR 11 TC 3 Z9 3 U1 0 U2 15 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0004-640X J9 ASTROPHYS SPACE SCI JI Astrophys. Space Sci. PD NOV PY 2011 VL 336 IS 1 BP 3 EP 7 DI 10.1007/s10509-010-0536-2 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 844EZ UT WOS:000296731800002 ER PT J AU Ryutov, DD AF Ryutov, D. D. TI Using intense lasers to simulate aspects of accretion discs and outflows in astrophysics SO ASTROPHYSICS AND SPACE SCIENCE LA English DT Article DE Accretion discs; Laboratory astrophysics; Turbulence ID TRANSPORT; PLASMAS; JETS AB It is shown that some aspects of the accretion disc physics can be experimentally simulated with the use of an array of properly directed plasma jets created by intense laser beams. For the laser energy of 1 to 3 kJ, one can create a quasi-planar disc with the Reynolds number exceeding 10(4) and magnetic Reynolds number in the range of 10-100. The way of seeding the disc with the magnetic field by using a cusp magnetic configuration is described. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Ryutov, DD (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM ryutov1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 21 TC 11 Z9 11 U1 0 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0004-640X J9 ASTROPHYS SPACE SCI JI Astrophys. Space Sci. PD NOV PY 2011 VL 336 IS 1 BP 21 EP 26 DI 10.1007/s10509-010-0558-9 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 844EZ UT WOS:000296731800005 ER PT J AU Haas, DM Bott, SC Kim, J Mariscal, DA Madden, RE Eshaq, Y Ueda, U Collins, G Gunasekera, K Beg, FN Chittenden, JP Niasse, N Jennings, CA AF Haas, D. M. Bott, S. C. Kim, J. Mariscal, D. A. Madden, R. E. Eshaq, Y. Ueda, U. Collins, G. Gunasekera, K. Beg, F. N. Chittenden, J. P. Niasse, N. Jennings, C. A. TI Supersonic jet formation and propagation in x-pinches SO ASTROPHYSICS AND SPACE SCIENCE LA English DT Article DE X-pinch; Jets; Supersonic outflows ID PLASMA; SIMULATIONS; DEFLECTION; DYNAMICS; CRITERIA; OUTFLOWS; DENSE AB Observations of supersonic jet propagation in low-current x-pinches are reported. X-pinches comprising of four 7.5 mu m diameter tungsten wires were driven by an 80 kA, 50 ns current pulse from a compact pulser. Coronal plasma surrounding the wire cores was accelerated perpendicular to their surface due to the global JxB force, and traveled toward the axis of the x-pinch to form an axially propagating jet. These jets moved towards the electrodes and, late in time (similar to 150 ns), were observed to propagate well above the anode with a velocity of 3.3 +/- 0.6x10(4) m/s. Tungsten jets remained collimated at distances of up to 16 mm from the cross point, and an estimate of the local sound speed gives a Mach number of similar to 6. This is the first demonstration that supersonic plasma jets can be produced using x-pinches with such a small, low current pulser. Experimental data compares well to three-dimensional simulations using the GORGON resistive MHD code, and possible scaling to astrophysical jets is discussed. C1 [Haas, D. M.; Bott, S. C.; Kim, J.; Mariscal, D. A.; Madden, R. E.; Eshaq, Y.; Ueda, U.; Collins, G.; Gunasekera, K.; Beg, F. N.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Chittenden, J. P.; Niasse, N.] Univ London Imperial Coll Sci Technol & Med, London, England. [Jennings, C. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bott, SC (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. EM sbott@ucsd.edu FU DoE [DE-FE02-05ER54842]; DoE/NNSA HEDLP [DE-SC-0001063] FX The authors would like to thank Dr. David Ampleford (Sandia National Laboratory) and Dr. Simon Bland (Imperial College) for useful discussions. Work is supported by the DoE Junior Faculty Grant DE-FE02-05ER54842 and the joint DoE/NNSA HEDLP Program Grant DE-SC-0001063. NR 24 TC 11 Z9 11 U1 1 U2 13 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0004-640X J9 ASTROPHYS SPACE SCI JI Astrophys. Space Sci. PD NOV PY 2011 VL 336 IS 1 BP 33 EP 40 DI 10.1007/s10509-011-0599-8 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 844EZ UT WOS:000296731800007 ER PT J AU Guzik, JA AF Guzik, Joyce Ann TI Recent advances in modeling stellar interiors SO ASTROPHYSICS AND SPACE SCIENCE LA English DT Article DE Stars: evolution; Stars: pulsation; Opacities; Equation of state ID CORE HELIUM FLASH; CRYSTALLINE LATTICE PHASE; 3-DIMENSIONAL NUMERICAL SIMULATIONS; THERMONUCLEAR REACTION-RATES; ARBITRARY ROTATION LAWS; EQUATION-OF-STATE; MASS RED GIANTS; TURBULENT CONVECTION; SOLAR MODELS; THERMAL-CONDUCTIVITIES AB Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: (1) updates to input physics of stellar models; (2) progress in two and three-dimensional evolution and hydrodynamic models; (3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid gamma Dor/delta Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as eta Car and P Cyg, and the solar abundance problem. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Guzik, JA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM joy@lanl.gov NR 96 TC 3 Z9 3 U1 0 U2 4 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0004-640X EI 1572-946X J9 ASTROPHYS SPACE SCI JI Astrophys. Space Sci. PD NOV PY 2011 VL 336 IS 1 BP 95 EP 101 DI 10.1007/s10509-010-0552-2 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 844EZ UT WOS:000296731800016 ER PT J AU Turck-Chieze, S Loisel, G Gilles, D Piau, L Blancard, C Blenski, T Busquet, M Caillaud, T Cosse, P Delahaye, F Faussurier, G Fariaut, J Gilleron, F Guzik, JA Harris, J Kilcrease, DP Magee, NH Pain, JC Porcherot, Q Poirier, M Soullier, G Zeippen, CJ Bastiani-Ceccotti, S Reverdin, C Silvert, V Thais, F Villette, B AF Turck-Chieze, S. Loisel, G. Gilles, D. Piau, L. Blancard, C. Blenski, T. Busquet, M. Caillaud, T. Cosse, P. Delahaye, F. Faussurier, G. Fariaut, J. Gilleron, F. Guzik, J. A. Harris, J. Kilcrease, D. P. Magee, N. H. Pain, J. C. Porcherot, Q. Poirier, M. Soullier, G. Zeippen, C. J. Bastiani-Ceccotti, S. Reverdin, C. Silvert, V. Thais, F. Villette, B. TI Radiative properties of stellar plasmas and open challenges SO ASTROPHYSICS AND SPACE SCIENCE LA English DT Article DE Atomic processes; Sun: helioseismology; Stars: interiors; Stars: asteroseismology; Cepheids stars: variables ID LOCAL-DENSITY APPROXIMATION; ABSORPTION-MEASUREMENTS; OPACITY PROJECT; ATOMIC DATA; SOLAR; ACCELERATIONS; ABUNDANCES; HELIOSEISMOLOGY; CONSTRAINTS; CODE AB The lifetime of solar-like stars, the envelope structure of more massive stars, and stellar acoustic frequencies largely depend on the radiative properties of the stellar plasma. Up to now, these complex quantities have been estimated only theoretically. The development of the powerful tools of helio- and astero- seismology has made it possible to gain insights on the interiors of stars. Consequently, increased emphasis is now placed on knowledge of the monochromatic opacity coefficients. Here we review how these radiative properties play a role, and where they are most important. We then concentrate specifically on the envelopes of beta Cephei variable stars. We discuss the dispersion of eight different theoretical estimates of the monochromatic opacity spectrum and the challenges we need to face to check these calculations experimentally. C1 [Turck-Chieze, S.; Loisel, G.; Gilles, D.; Piau, L.] CE Saclay, CEA DSM IRFU SAp, F-91190 Gif Sur Yvette, France. [Loisel, G.; Blenski, T.; Poirier, M.; Thais, F.] CE Saclay, CEA DSM IRAMIS SPAM, F-91190 Gif Sur Yvette, France. [Blancard, C.; Caillaud, T.; Cosse, P.; Faussurier, G.; Fariaut, J.; Gilleron, F.; Pain, J. C.; Porcherot, Q.; Soullier, G.; Reverdin, C.; Silvert, V.; Villette, B.] CEA DAM DIF, F-91297 Arpajon, France. [Busquet, M.] Univ Paris 11, LPGP, F-91405 Orsay, France. [Delahaye, F.; Zeippen, C. J.] UPMC, Observ Paris, CNRS, LERMA,ENS,UCP, F-92195 Meudon, France. [Guzik, J. A.; Kilcrease, D. P.; Magee, N. H.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Harris, J.] AWE, Reading RG7 4PR, Berks, England. [Bastiani-Ceccotti, S.] UPMC, CNRS, Ecole Polytech, LULI,CEA, F-91128 Palaiseau, France. RP Turck-Chieze, S (reprint author), CE Saclay, CEA DSM IRFU SAp, F-91190 Gif Sur Yvette, France. EM sylvaine.turck-chieze@cea.fr OI Pain, Jean-Christophe/0000-0002-7825-1315; Kilcrease, David/0000-0002-2319-5934 NR 41 TC 12 Z9 12 U1 0 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0004-640X J9 ASTROPHYS SPACE SCI JI Astrophys. Space Sci. PD NOV PY 2011 VL 336 IS 1 BP 103 EP 109 DI 10.1007/s10509-010-0583-8 PG 7 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 844EZ UT WOS:000296731800017 ER PT J AU Mussack, K AF Mussack, Katie TI Dynamic screening in solar p-p reactions: is the mean-field approach applicable in solar plasma? SO ASTROPHYSICS AND SPACE SCIENCE LA English DT Article DE Equation of state; Nuclear reactions; Nucleosynthesis; Abundances; Plasmas; Sun; General ID THERMONUCLEAR REACTIONS; ASTROPHYSICAL PLASMAS; CHEMICAL-COMPOSITION; NUCLEAR-REACTIONS; HELIOSEISMOLOGY; ABUNDANCES; MODELS; SUN AB Although the Salpeter approximation for static screening is widely accepted and used in stellar modeling, the question of dynamic screening has been revisited. Here we reproduce Shaviv and Shaviv's numerical analysis of the screening energy for p-p reactions in the solar core using the techniques of molecular dynamics to directly calculate the motion of ions and electrons due to Coulomb interactions without the mean-field assumption that is inherent in the Salpeter approximation. We conclude that the effects of dynamic screening are relevant and should be included in the treatment of the plasma, especially in the computation of nuclear reaction rates. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Mussack, K (reprint author), Los Alamos Natl Lab, XTD 2,Mail Stop T-086, Los Alamos, NM 87545 USA. EM mussack@lanl.gov NR 30 TC 0 Z9 0 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0004-640X J9 ASTROPHYS SPACE SCI JI Astrophys. Space Sci. PD NOV PY 2011 VL 336 IS 1 BP 111 EP 115 DI 10.1007/s10509-010-0576-7 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 844EZ UT WOS:000296731800018 ER PT J AU Hurricane, OA Hansen, JF Harding, EC Smalyuk, VA Remington, BA Langstaff, G Park, HS Robey, HF Kuranz, CC Grosskopf, MJ Gillespie, RS AF Hurricane, O. A. Hansen, J. F. Harding, E. C. Smalyuk, V. A. Remington, B. A. Langstaff, G. Park, H. -S. Robey, H. F. Kuranz, C. C. Grosskopf, M. J. Gillespie, R. S. TI Blast-wave driven Kelvin-Helmholtz shear layers in a laser driven high-energy-density plasma SO ASTROPHYSICS AND SPACE SCIENCE LA English DT Article DE Kelvin-Helmholtz instability; Shear layer; Vortex ID VISCOSITY AB The first successful high energy density Kelvin-Helmholtz (KH) shear layer experiments (O.A. Hurricane et al. in Phys. Plasmas, 16:056305, 2009; E.C. Harding et al. in Phys. Rev. Lett., 103:045005, 2009) demonstrated the ability to design and field a target that produces, in a controlled fashion, an array of large diagnosable KH vortices. Data from these experiments vividly showed the complete evolution of large (similar to 400 mu m) distinct eddies, from formation to apparent turbulent break-up in the span of about 75 ns. A second set of experiments, in which the density of a key carbon-foam material was varied, was recently performed. The new series showed a great deal of fine-structure that was not as apparent as in the original experiments. In this paper, the results of both experiments will be discussed along with supporting theory and simulation. An attempt is made to connect these observations with some turbulent scale-lengths. Finally, we speculate about the possible connection of these experiments to astrophysical contexts. C1 [Hurricane, O. A.; Hansen, J. F.; Smalyuk, V. A.; Remington, B. A.; Langstaff, G.; Park, H. -S.; Robey, H. F.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Hansen, J. F.] Gen Atom, San Diego, CA 92121 USA. [Harding, E. C.; Kuranz, C. C.; Grosskopf, M. J.; Gillespie, R. S.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. RP Hurricane, OA (reprint author), Lawrence Livermore Natl Lab, 7000 E Ave, Livermore, CA 94550 USA. EM hurricane1@llnl.gov FU U.S. Department of Energy Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Laser User Facilities Grant FX This work has benefitted from the support of Dr. Alan Wan and Dr. Charlie Verdon. Thanks to Prof. R. Paul Drake for technical comments and discussion of this work. This work was performed under the auspices of the U.S. Department of Energy Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344 and support by a National Laser User Facilities Grant. NR 8 TC 10 Z9 10 U1 1 U2 9 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0004-640X J9 ASTROPHYS SPACE SCI JI Astrophys. Space Sci. PD NOV PY 2011 VL 336 IS 1 BP 139 EP 143 DI 10.1007/s10509-010-0571-z PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 844EZ UT WOS:000296731800022 ER PT J AU Hilburn, G Liang, ES Liu, SM Li, H AF Hilburn, Guy Liang, Edison Liu, Siming Li, Hui TI General relativistic magnetohydrodynamic and Monte Carlo Modeling of sagittarius A* SO ASTROPHYSICS AND SPACE SCIENCE LA English DT Article DE Accretion disc; Black hole; Galactic Center; Magnetohydrodynamics AB We present results of models of the physical space and parameters of the accretion disk of Sagittarius A*, as well as simulations of its emergent spectrum. This begins with HARM, a 2D general relativistic magneto-hydrodynamic (GRMHD) model, specifically set up to evolve the space around a black hole. Data from HARM are then fed into a 2D Monte-Carlo (MC) code which generates and tracks emitted photons, allowing for absorption and scattering before they escape the volume. C1 [Hilburn, Guy; Liang, Edison] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Hilburn, Guy; Li, Hui] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Liu, Siming] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland. RP Hilburn, G (reprint author), Rice Univ, Dept Phys & Astron, 6100 Main, Houston, TX 77005 USA. EM guy.l.hilburn@rice.edu FU LANL IGPP; NSF [AST-0406882, AST-0909167, DOE- SC-0001481] FX G.H. was supported by a LANL IGPP research grant and NSF AST-0406882. EL was partially supported by NSF AST-0909167 and DOE- SC-0001481. NR 5 TC 0 Z9 0 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0004-640X J9 ASTROPHYS SPACE SCI JI Astrophys. Space Sci. PD NOV PY 2011 VL 336 IS 1 BP 145 EP 149 DI 10.1007/s10509-010-0534-4 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 844EZ UT WOS:000296731800023 ER PT J AU Hall, IM Durmaz, T Mancini, RC Bailey, JE Rochau, GA AF Hall, I. M. Durmaz, T. Mancini, R. C. Bailey, J. E. Rochau, G. A. TI Radiation hydrodynamic simulation of a photoionised plasma experiment at the Z facility SO ASTROPHYSICS AND SPACE SCIENCE LA English DT Article DE Photoionised plasma; Modelling; Simulation; Hydrodynamics; Atomic-kinetics ID DESIGN; CODE AB New, high spectral resolution X-ray observations from astrophysical photoionised plasmas have been recorded in recent years by the Chandra and XMM-Newton orbiting telescopes. These observations provide a wealth of detailed information and have motivated new efforts at developing a detailed understanding of the atomic kinetics and radiation physics of photoionised plasmas. The Z facility at Sandia National Laboratories is a powerful source of X-rays that enables us to produce and study photoionised plasmas in the laboratory under well characterised conditions. We discuss a series of radiation-hydrodynamic simulations to help understand the X-ray environment, plasma hydrodynamics and atomic kinetics in experiments where a collapsing wire array at Z is used as an ionising source of radiation to create a photoionised plasma. The numerical simulations are used to investigate the role that the key experimental parameters have on the photoionised plasma characteristics. C1 [Hall, I. M.; Durmaz, T.; Mancini, R. C.] Univ Nevada, Reno, NV 89557 USA. [Bailey, J. E.; Rochau, G. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hall, IM (reprint author), Univ Nevada, Reno, NV 89557 USA. EM ihall@unr.edu FU National Nuclear Security Administration under the High Energy Density Laboratory through DOE [DE-FG52-09NA29551]; SNL FX This research was sponsored in part by the National Nuclear Security Administration under the High Energy Density Laboratory Plasmas grant program through DOE Grant DE-FG52-09NA29551 and SNL. NR 9 TC 3 Z9 3 U1 0 U2 6 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0004-640X J9 ASTROPHYS SPACE SCI JI Astrophys. Space Sci. PD NOV PY 2011 VL 336 IS 1 BP 189 EP 194 DI 10.1007/s10509-010-0522-8 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 844EZ UT WOS:000296731800030 ER PT J AU Kuranz, CC Park, HS Remington, BA Drake, RP Miles, AR Robey, HF Kilkenny, JD Keane, CJ Kalantar, DH Huntington, CM Krauland, CM Harding, EC Grosskopf, MJ Marion, DC Doss, FW Myra, E Maddox, B Young, B Kline, JL Kyrala, G Plewa, T Wheeler, JC Arnett, WD Wallace, RJ Giraldez, E Nikroo, A AF Kuranz, C. C. Park, H. -S. Remington, B. A. Drake, R. P. Miles, A. R. Robey, H. F. Kilkenny, J. D. Keane, C. J. Kalantar, D. H. Huntington, C. M. Krauland, C. M. Harding, E. C. Grosskopf, M. J. Marion, D. C. Doss, F. W. Myra, E. Maddox, B. Young, B. Kline, J. L. Kyrala, G. Plewa, T. Wheeler, J. C. Arnett, W. D. Wallace, R. J. Giraldez, E. Nikroo, A. TI Astrophysically relevant radiation hydrodynamics experiment at the National Ignition Facility SO ASTROPHYSICS AND SPACE SCIENCE LA English DT Article DE Laboratory astrophysics; National Ignition Facility; Radiation hydrodynamics; Hydrodynamic instability; Radiative shocks ID RAYLEIGH-TAYLOR INSTABILITY; II SUPERNOVAE; EVOLUTION; EMISSION; SN-1987A AB The National Ignition Facility (NIF) is capable of creating new and novel high-energy-density (HED) systems relevant to astrophysics. Specifically, a system could be created that studies the effects of a radiative shock on a hydrodynamically unstable interface. These dynamics would be relevant to the early evolution after a core-collapse supernova of a red supergiant star. Prior to NIF, no HED facility had enough energy to perform this kind of experiment. The experimental target will include a 340 mu m predominantly plastic ablator followed by a low-density SiO(2) foam. The interface will have a specific, machined pattern that will seed hydrodynamic instabilities. The growth of the instabilities in a radiation-dominated environment will be observed. This experiment requires a a parts per thousand yen300 eV hohlraum drive and will be diagnosed using point projection pinhole radiography, which have both been recently demonstrated on NIF. C1 [Kuranz, C. C.; Drake, R. P.; Huntington, C. M.; Krauland, C. M.; Harding, E. C.; Grosskopf, M. J.; Marion, D. C.; Doss, F. W.; Myra, E.] Univ Michigan, Ann Arbor, MI 48109 USA. [Park, H. -S.; Remington, B. A.; Miles, A. R.; Robey, H. F.; Keane, C. J.; Kalantar, D. H.; Maddox, B.; Young, B.; Wallace, R. J.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Kilkenny, J. D.; Giraldez, E.; Nikroo, A.] Gen Atom, San Diego, CA USA. [Kline, J. L.; Kyrala, G.] Los Alamos Natl Lab, Los Alamos, NM USA. [Plewa, T.] Florida State Univ, Tallahassee, FL 32306 USA. [Wheeler, J. C.] Univ Texas Austin, Austin, TX 78712 USA. [Arnett, W. D.] Univ Arizona, Tucson, AZ USA. RP Kuranz, CC (reprint author), Univ Michigan, Ann Arbor, MI 48109 USA. EM ckuranz@umich.edu RI Drake, R Paul/I-9218-2012; OI Drake, R Paul/0000-0002-5450-9844; Kline, John/0000-0002-2271-9919 FU NNSA-DS; SC-OFES [DE-FG52-09NA29548]; NNSA-ASC [DEFC52- 08NA28616]; Lawrence Livermore National Security, LLC [DE-AC52-07NA27344] FX The authors would like to thank to the NIF operations team and target fabrication teams at Lawrence Livermore National Laboratory, General Atomics and University of Michigan. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616 and the Lawrence Livermore National Security, LLC, under Contract No. DE-AC52-07NA27344. NR 24 TC 6 Z9 7 U1 1 U2 15 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0004-640X J9 ASTROPHYS SPACE SCI JI Astrophys. Space Sci. PD NOV PY 2011 VL 336 IS 1 BP 207 EP 211 DI 10.1007/s10509-011-0679-9 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 844EZ UT WOS:000296731800033 ER PT J AU Liedahl, DA AF Liedahl, Duane A. TI X-ray photoionized plasmas in space and in the laboratory SO ASTROPHYSICS AND SPACE SCIENCE LA English DT Article DE Accretion disks; X-rays; Laboratory astrophysics ID BLACK-HOLES; DRIVEN; MODELS; DIAGNOSTICS; RADIATION; EMISSION; DISKS; X-1 AB As a primer for experimentalists interested in the topic, I provide a brief introduction to X-ray photoionized plasmas, with primary emphasis on the astrophysical concepts, including general descriptions of the relevant object classes, a discussion of the X-ray nebular concept, and, in some detail, the ionization parameter. C1 Lawrence Livermore Natl Lab, Dept Phys & Life Sci, Div Phys, Livermore, CA 94550 USA. RP Liedahl, DA (reprint author), Lawrence Livermore Natl Lab, Dept Phys & Life Sci, Div Phys, Livermore, CA 94550 USA. EM liedahl1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The author thanks Jim Bailey, Paul Drake, Mark Foord, Stephanie Hansen, Roberto Mancini, and Scott Wilks for useful discussions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 33 TC 2 Z9 2 U1 1 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0004-640X J9 ASTROPHYS SPACE SCI JI Astrophys. Space Sci. PD NOV PY 2011 VL 336 IS 1 BP 251 EP 256 DI 10.1007/s10509-011-0750-6 PG 6 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 844EZ UT WOS:000296731800041 ER PT J AU Henderson, A Liang, E Yepes, P Chen, H Wilks, S AF Henderson, Alexander Liang, Edison Yepes, Pablo Chen, Hui Wilks, Scott TI Monte Carlo simulation of pair creation using petawatt lasers SO ASTROPHYSICS AND SPACE SCIENCE LA English DT Article DE Pair plasma AB Irradiating high-Z targets such as gold with ultra-intense lasers creates electron-positron pairs. In particular, the positron density in the plasma created by this procedure is higher than that obtained via other laboratory-based methods, with theoretical maximum densities exceeding 10(18) cm(-3). All of the significantly contributing processes are well-known and hence we can study this phenomenon using Monte Carlo simulation. We focus on the latter part of this procedure, the passage of high-energy electrons through the target creating pairs. In particular, we discuss the usefulness of CERN's GEANT4 Monte Carlo code in simulating this process. Once this code is successfully calibrated, we will use it to perform parameter studies, and design future targets to optimize the positron yield. C1 [Henderson, Alexander; Liang, Edison; Yepes, Pablo] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Chen, Hui; Wilks, Scott] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Henderson, A (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. EM alexander.henderson@rice.edu FU NSF [AST-0909167]; DOE [DE-SC-000-1481] FX This work was partially supported by NSF AST-0909167 and DOE DE-SC-000-1481. NR 7 TC 3 Z9 4 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0004-640X J9 ASTROPHYS SPACE SCI JI Astrophys. Space Sci. PD NOV PY 2011 VL 336 IS 1 BP 273 EP 277 DI 10.1007/s10509-011-0678-x PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 844EZ UT WOS:000296731800045 ER PT J AU Werling, BP Meehan, TD Gratton, C Landis, DA AF Werling, Ben P. Meehan, Timothy D. Gratton, Claudio Landis, Douglas A. TI Influence of habitat and landscape perenniality on insect natural enemies in three candidate biofuel crops SO BIOLOGICAL CONTROL LA English DT Article DE Biofuels; Biodiversity; Biological control; Land use change ID COLEOPTERA-COCCINELLIDAE; AGRICULTURAL LANDSCAPES; BIOLOGICAL-CONTROL; VEGETATIONAL DIVERSITY; COLEOMEGILLA-MACULATA; POPULATION RESPONSES; BEETLE DIVERSITY; ORIUS-INSIDIOSUS; BIODIVERSITY; MANAGEMENT AB Cultivation of biofuel crops could change agricultural landscapes, affecting natural enemies at multiple scales. We sampled five natural enemy families with sticky cards in three model biofuel habitats (corn, switchgrass and prairie; n = 60) across southern Michigan and Wisconsin, comparing captures between habitats and relating them to the area of forest, annual crop and herbaceous perennial habitat in the landscape within 2 km of sites. In a first analysis, we compared Coccinellidae assemblages between habitats and examined the impact of habitat type and landscape composition on species richness and abundance. Results showed that, at the habitat scale, perennial grasslands supported a greater abundance of uncommon, native coccinellids and hosted distinct species assemblages compared to corn. At a broader scale, abundances of exotic and uncommon native ladybeetles responded differently to landscape composition, decreasing with the area of herbaceous perennials and annual crops, respectively. In a second analysis, we related family-level abundances of Anthocoridae, Syrphidae, Dolichopodidae and Chrysopidae to habitat type and landscape composition. Dolichopodids were more abundant in grasslands, while anthocorid and syrphid abundance increased over fivefold with the area of herbaceous, perennial habitat in the landscape surrounding corn, but not grassland, sites. These findings suggest that perennial grasslands used for bioenergy production could conserve natural enemies which are less abundant in corn, the dominant biofuel in existing landscapes. Moreover, cultivating annual cropland with herbaceous, perennial habitats could affect the abundance of natural enemies in existing crops and alter the suitability of entire landscapes for these beneficial taxa. (C) 2011 Elsevier Inc. All rights reserved. C1 [Werling, Ben P.; Landis, Douglas A.] Michigan State Univ, Dept Entomol, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Meehan, Timothy D.; Gratton, Claudio] Univ Wisconsin, Dept Entomol, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP Werling, BP (reprint author), Michigan State Univ, Dept Entomol, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. EM werlingb@msu.edu FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science [DE-FC02-07ER64494]; DOE Great Lakes Bioenergy Research Center (DOE. OBP Office of Energy Efficiency and Renewable Energy) [DE-AC05-76RL01830]; US National Science Foundation; DOE Energy Efficiency and Renewable Energy; Michigan Agricultural Experiment Station FX Thanks to two anonymous reviewers who provided valuable comments. Mary Gardiner, Lauren Bailey, and Hannah Gaines established the GLBRC Extensive site network and initial sampling protocols. Carol Baker and Pam Mosley collected plant biomass in Michigan. Special thanks to participating landowners as well as Ermyas Birru, Michael Burdick, Amanda Falk, Emily Fricke, Adam Higgins, Steve Hong, Andy Jakubowski, Craig Maier, Rachel Mallinger, Jessica Miesel, Emily Mueller, Collin Schwantes, Cari Sebright, Ruth Smith and Laura Smith for invaluable field assistance. This work was funded by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494 and DOE. OBP Office of Energy Efficiency and Renewable Energy DE-AC05-76RL01830), with additional support from the US National Science Foundation LTER Program, DOE Energy Efficiency and Renewable Energy, and the Michigan Agricultural Experiment Station. NR 61 TC 28 Z9 29 U1 1 U2 66 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1049-9644 J9 BIOL CONTROL JI Biol. Control PD NOV PY 2011 VL 59 IS 2 BP 304 EP 312 DI 10.1016/j.biocontrol.2011.06.014 PG 9 WC Biotechnology & Applied Microbiology; Entomology SC Biotechnology & Applied Microbiology; Entomology GA 845YQ UT WOS:000296864600030 ER PT J AU Getov, V Hoisie, A Wasserman, HJ AF Getov, Vladimir Hoisie, Adolfy Wasserman, Harvey J. TI Codesign for Systems and Applications: Charting the Path to Exascale Computing INTRODUCTION SO COMPUTER LA English DT Editorial Material AB The clock speed benefits of Moore's law have ended, and researchers must codesign future exascale HPC systems and applications concurrently in an integrated manner to achieve higher performance under stringent power and reliability constraints. C1 [Getov, Vladimir] Univ Westminster, London W1R 8AL, England. [Hoisie, Adolfy] Pacific NW Natl Lab, Ctr Adv Architectures, Richland, WA 99352 USA. [Wasserman, Harvey J.] Lawrence Berkeley Natl Lab, Natl Energy Res Sci Comp Ctr, User Serv Grp, Berkeley, CA USA. RP Getov, V (reprint author), Univ Westminster, London W1R 8AL, England. EM v.s.getov@westminster.ac.uk; adolfy.hoisie@pnnl.gov; hjwasserman@lbl.gov NR 11 TC 2 Z9 2 U1 0 U2 3 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 J9 COMPUTER JI Computer PD NOV PY 2011 VL 44 IS 11 BP 19 EP 21 PG 3 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA 846GA UT WOS:000296884000004 ER PT J AU Shalf, J Quinlan, D Janssen, C AF Shalf, John Quinlan, Dan Janssen, Curtis TI Rethinking Hardware-Software Codesign for Exascale Systems SO COMPUTER LA English DT Article AB The US Department of Energy's exascale computing initiative has identified hardware-software codesign as a central strategy in achieving more agile hardware development. Hardware simulation and code analysis tools that facilitate deeper collaboration between hardware architects and application teams will be an essential component of the codesign process. C1 [Shalf, John] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Quinlan, Dan] Lawrence Livermore Natl Lab, Livermore, CA USA. [Janssen, Curtis] Sandia Natl Labs, Livermore, CA 94550 USA. RP Shalf, J (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA. EM jshalf@lbl.gov; dquinlan@llnl.gov; cljanss@sandia.gov FU US Department of Energy's Office of Advanced Scientific Computing Research; DoE Office of Advanced Scientific Computing Research [DE-AC02-05CH11231, DE-AC52-07NA27344]; DoE's National Nuclear Security Administration [DE-AC04-94AL85000] FX The work described in this article was supported by the US Department of Energy's Office of Advanced Scientific Computing Research. Lawrence Berkeley National Laboratory is supported by the DoE Office of Advanced Scientific Computing Research under contract DE-AC02-05CH11231. Lawrence Livermore National Laboratory is supported by the DoE Office of Advanced Scientific Computing Research under contract DE-AC52-07NA27344. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the DoE's National Nuclear Security Administration under contract DE-AC04-94AL85000. We also acknowledge Chris Rowen of Tensilica and Martin Deneroff for insightful guidance and support. NR 10 TC 14 Z9 15 U1 0 U2 9 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 J9 COMPUTER JI Computer PD NOV PY 2011 VL 44 IS 11 BP 22 EP 30 PG 9 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA 846GA UT WOS:000296884000005 ER PT J AU Kerbyson, DJ Vishnu, A Barker, KJ Hoisie, A AF Kerbyson, Darren J. Vishnu, Abhinav Barker, Kevin J. Hoisie, Adolfy TI Codesign Challenges for Exascale Systems: Performance, Power, and Reliability SO COMPUTER LA English DT Article ID GLOBAL ARRAYS AB The complexity of large-scale parallel systems necessitates the simultaneous optimization of multiple hardware and software components to meet performance, efficiency, and fault-tolerance goals. A codesign methodology using modeling can benefit systems on the path to exascale computing. C1 [Kerbyson, Darren J.; Hoisie, Adolfy] Pacific NW Natl Lab, Ctr Adv Architectures, Richland, WA 99352 USA. RP Kerbyson, DJ (reprint author), Pacific NW Natl Lab, Ctr Adv Architectures, Richland, WA 99352 USA. EM darren.kerbyson@pnnl.gov; abhinav.vishnu@pnnl.gov; kevin.barker@pnnl.gov; adolfy.hoisie@pnnl.gov FU US Department of Energy's Office of Advanced Scientific Computing Research [59493, 59542]; US Department of Energy [DE-AC05-76RL01830] FX This research is supported by the US Department of Energy's Office of Advanced Scientific Computing Research, grants #59493 and #59542. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830. NR 13 TC 3 Z9 3 U1 0 U2 6 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0018-9162 EI 1558-0814 J9 COMPUTER JI Computer PD NOV PY 2011 VL 44 IS 11 BP 37 EP 43 PG 7 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA 846GA UT WOS:000296884000007 ER PT J AU Alexander, FJ Hoisie, A Szalay, A AF Alexander, Francis J. Hoisie, Adolfy Szalay, Alexander TI Big Data GUEST EDITORS' INTRODUCTION SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Editorial Material C1 [Alexander, Francis J.] Los Alamos Natl Lab, Informat Sci & Technol Ctr, Los Alamos, NM 87545 USA. [Hoisie, Adolfy] Pacific NW Natl Lab, Ctr Adv Architectures, Richland, WA 99352 USA. [Szalay, Alexander] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA. RP Alexander, FJ (reprint author), Los Alamos Natl Lab, Informat Sci & Technol Ctr, Los Alamos, NM 87545 USA. EM fja@lanl.gov; adolfy.hoisie@pnnl.gov; szalay@jhu.edu NR 2 TC 5 Z9 5 U1 0 U2 26 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD NOV-DEC PY 2011 VL 13 IS 6 BP 10 EP 12 PG 3 WC Computer Science, Interdisciplinary Applications SC Computer Science GA 846QR UT WOS:000296918800002 ER PT J AU Ahrens, JP Hendrickson, B Long, G Miller, S Ross, R Williams, D AF Ahrens, James P. Hendrickson, Bruce Long, Gabrielle Miller, Steve Ross, Robert Williams, Dean TI Data-Intensive Science in the US DOE: Case Studies and Future Challenges SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article AB Given its leading role in high-performance computing for modeling and simulation and its many experimental facilities, the US Department of Energy has a tremendous need for data-intensive science. Locating the challenges and commonalities among three case studies illuminates, in detail, the technical challenges involved in realizing data-intensive science. C1 [Ahrens, James P.] Los Alamos Natl Lab, Appl Comp Sci Grp, Data Sci Scale Team, Los Alamos, NM 87545 USA. [Hendrickson, Bruce] Sandia Natl Labs, Livermore, CA 94550 USA. [Long, Gabrielle] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Miller, Steve] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Data Syst Sect, Oak Ridge, TN USA. [Williams, Dean] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA USA. RP Ahrens, JP (reprint author), Los Alamos Natl Lab, Appl Comp Sci Grp, Data Sci Scale Team, Los Alamos, NM 87545 USA. EM ahrens@lanl.gov; bah@sandia.gov; gglong@aps.anl.gov; millersd@ornl.gov; rross@mcs.anl.gov; williams13@llnl.gov FU Los Alamos National Security for the National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396]; DOE's National Nuclear Security Administration [DE-AC04-94AL85000]; DOE Office of Science [DE-AC02-06CH11357]; UT-Battelle for the DOE [DE-AC05-00OR22724]; DOE by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Los Alamos National Laboratory is operated by the Los Alamos National Security for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000. Work by Gabrielle Long and Robert Ross were supported by the DOE Office of Science under contract DE-AC02-06CH11357. Oak Ridge National Laboratory is managed by UT-Battelle for the DOE under contract DE-AC05-00OR22724. This work was performed under the auspices of the DOE by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 4 TC 8 Z9 8 U1 0 U2 4 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD NOV-DEC PY 2011 VL 13 IS 6 BP 14 EP 23 PG 10 WC Computer Science, Interdisciplinary Applications SC Computer Science GA 846QR UT WOS:000296918800003 ER PT J AU Rajasingham, A Bowen, A O'Reilly, C Sholtes, K Schilling, K Hough, C Brunkard, J Domercant, JW Lerebours, G Cadet, J Quick, R Person, B AF Rajasingham, Anu Bowen, Anna O'Reilly, Ciara Sholtes, Kari Schilling, Katie Hough, Catherine Brunkard, Joan Domercant, Jean Wysler Lerebours, Gerald Cadet, Jean Quick, Robert Person, Bobbie TI Cholera Prevention Training Materials for Community Health Workers, Haiti, 2010-2011 SO EMERGING INFECTIOUS DISEASES LA English DT Article ID EPIDEMIC CHOLERA AB Stopping the spread of the cholera epidemic in Haiti required engaging community health workers (CHWs) in prevention and treatment activities. The Centers for Disease Control and Prevention collaborated with the Haitian Ministry of Public Health and Population to develop CHW educational materials, train >1,100 CHWs, and evaluate training efforts. C1 [Rajasingham, Anu; Bowen, Anna; O'Reilly, Ciara; Sholtes, Kari; Schilling, Katie; Hough, Catherine; Brunkard, Joan; Cadet, Jean; Quick, Robert; Person, Bobbie] Ctr Dis Control & Prevent, Atlanta, GA 30333 USA. [Rajasingham, Anu; Sholtes, Kari] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. [Domercant, Jean Wysler] Ctr Dis Control & Prevent, Port Au Prince, Haiti. [Lerebours, Gerald] Minist Publ Hlth & Populat, Port Au Prince, Haiti. RP Rajasingham, A (reprint author), Ctr Dis Control & Prevent, 1600 Clifton Rd NE,Mailstop C09, Atlanta, GA 30333 USA. EM idb4@cdc.gov OI Brunkard, Joan/0000-0001-5270-2627 NR 9 TC 5 Z9 5 U1 0 U2 8 PU CENTERS DISEASE CONTROL PI ATLANTA PA 1600 CLIFTON RD, ATLANTA, GA 30333 USA SN 1080-6040 J9 EMERG INFECT DIS JI Emerg. Infect. Dis PD NOV PY 2011 VL 17 IS 11 BP 2162 EP 2165 DI 10.3201/eid1711.110806 PG 4 WC Immunology; Infectious Diseases SC Immunology; Infectious Diseases GA 843KI UT WOS:000296670300041 PM 22204034 ER PT J AU Yoon, SH Reiss, DJ Bare, JC Tenenbaum, D Pan, M Slagel, J Moritz, RL Lim, S Hackett, M Menon, AL Adams, MWW Barnebey, A Yannone, SM Leigh, JA Baliga, NS AF Yoon, Sung Ho Reiss, David J. Bare, J. Christopher Tenenbaum, Dan Pan, Min Slagel, Joseph Moritz, Robert L. Lim, Sujung Hackett, Murray Menon, Angeli Lal Adams, Michael W. W. Barnebey, Adam Yannone, Steven M. Leigh, John A. Baliga, Nitin S. TI Parallel evolution of transcriptome architecture during genome reorganization SO GENOME RESEARCH LA English DT Article ID ARCHAEON PYROCOCCUS-FURIOSUS; HORIZONTAL GENE-TRANSFER; HYPERTHERMOPHILIC ARCHAEON; METHANOCOCCUS-MARIPALUDIS; ESCHERICHIA-COLI; SULFOLOBUS-SOLFATARICUS; HALOBACTERIUM-SALINARUM; MICROARRAY ANALYSIS; MICROBIAL GENOMES; ELEMENTAL SULFUR AB Assembly of genes into operons is generally viewed as an important process during the continual adaptation of microbes to changing environmental challenges. However, the genome reorganization events that drive this process are also the roots of instability for existing operons. We have determined that there exists a statistically significant trend that correlates the proportion of genes encoded in operons in archaea to their phylogenetic lineage. We have further characterized how microbes deal with operon instability by mapping and comparing transcriptome architectures of four phylogenetically diverse extremophiles that span the range of operon stabilities observed across archaeal lineages: a photoheterotrophic halophile (Halobacterium salinarum NRC-1), a hydrogenotrophic methanogen (Methanococcus maripaludis S2), an acidophilic and aerobic thermophile (Sulfolobus solfataricus P2), and an anaerobic hyperthermophile (Pyrococcus furiosus DSM 3638). We demonstrate how the evolution of transcriptional elements (promoters and terminators) generates new operons, restores the coordinated regulation of translocated, inverted, and newly acquired genes, and introduces completely novel regulation for even some of the most conserved operonic genes such as those encoding subunits of the ribosome. The inverse correlation (r = -0.92) between the proportion of operons with such internally located transcriptional elements and the fraction of conserved operons in each of the four archaea reveals an unprecedented view into varying stages of operon evolution. Importantly, our integrated analysis has revealed that organisms adapted to higher growth temperatures have lower tolerance for genome reorganization events that disrupt operon structures. C1 [Yoon, Sung Ho; Reiss, David J.; Bare, J. Christopher; Tenenbaum, Dan; Pan, Min; Slagel, Joseph; Moritz, Robert L.] Inst Syst Biol, Seattle, WA 98109 USA. [Lim, Sujung; Leigh, John A.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Hackett, Murray] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA. [Menon, Angeli Lal; Adams, Michael W. W.] Univ Georgia, Dept Biochem, Athens, GA 30602 USA. [Menon, Angeli Lal; Adams, Michael W. W.] Univ Georgia, Dept Mol Biol, Athens, GA 30602 USA. [Barnebey, Adam; Yannone, Steven M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Baliga, NS (reprint author), Inst Syst Biol, Seattle, WA 98109 USA. EM nbaliga@systemsbiology.org OI Bare, J. Christopher/0000-0003-1006-1491 FU U.S. Department of Energy [DE-FG02-07ER64327, DG-FG02-08ER64685]; Office of Science (BER), U.S. Department of Energy [DE-FG02-08ER64685]; Office of Science (BES), U.S. Department of Energy [DE-FG05-95ER20175]; National Science Foundation MRI [0923536]; Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy, Award Nos. DE-FG02-07ER64327 and DG-FG02-08ER64685 (N.S.B.); the Office of Science (BER), U.S. Department of Energy, Award No. DE-FG02-08ER64685 (J.A.L.); the Office of Science (BES), U.S. Department of Energy, Award No. DE-FG05-95ER20175 (M. W. W. A.); and the National Science Foundation MRI, Grant No. 0923536 (R. L. M.). The work conducted by ENIGMA was supported by the Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 92 TC 29 Z9 29 U1 4 U2 17 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1088-9051 J9 GENOME RES JI Genome Res. PD NOV PY 2011 VL 21 IS 11 BP 1892 EP 1904 DI 10.1101/gr.122218.111 PG 13 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Genetics & Heredity GA 843TW UT WOS:000296696600013 PM 21750103 ER PT J AU Mitri, FG AF Mitri, Farid G. TI Electromagnetic Wave Scattering of a High-Order Bessel Vortex Beam by a Dielectric Sphere SO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION LA English DT Article DE Dielectric sphere; electromagnetic scattering; high-order Bessel vortex beam ID FOCUSED LASER-BEAM; GAUSSIAN-BEAM; LIGHT-SCATTERING; DIFFRACTION; GENERATION; RADIATION; CELLS; AXIS AB This study investigates the arbitrary scattering of an unpolarized electromagnetic (EM) high-order Bessel vortex (helicoidal) beam (HOBVB) by a homogeneous water sphere in air. The radial components of the electric and magnetic scattering fields are expressed using partial wave series involving the beam-shape coefficients and the scattering coefficients of the sphere. The magnitude of the 3D electric and magnetic scattering directivity plots in the far-field region are evaluated using a numerical integration procedure for cases where the sphere is centered on the beam's axis and shifted off-axially with particular emphasis on the half-conical angle of the wave number components and the order (or helicity) of the beam. Some properties of the EM scattering of an HOBVB by the water sphere are discussed. The results are of some the scattering of importance in applications involving EM HOBVBs by a spherical object. C1 Los Alamos Natl Lab, Sensors & Electrochem Devices Acoust & Sensors Te, Los Alamos, NM 87545 USA. RP Mitri, FG (reprint author), Los Alamos Natl Lab, Sensors & Electrochem Devices Acoust & Sensors Te, MPA-11,MS D429, Los Alamos, NM 87545 USA. EM mitri@lanl.gov FU Los Alamos National Laboratory [LDRD-X9N9, 20100595PRD1] FX This work was supported in part by a Director's fellowship (LDRD-X9N9, Project # 20100595PRD1) from Los Alamos National Laboratory. Disclosure: this unclassified publication, with the following reference no. LA-UR11-10347, has been approved for unlimited public release under DUSA ENSCI. NR 35 TC 29 Z9 30 U1 1 U2 18 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-926X J9 IEEE T ANTENN PROPAG JI IEEE Trans. Antennas Propag. PD NOV PY 2011 VL 59 IS 11 BP 4375 EP 4379 DI 10.1109/TAP.2011.2164228 PG 5 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 840XA UT WOS:000296474200054 ER PT J AU Lopata, K Reslan, R Kowaska, M Neuhauser, D Govind, N Kowalski, K AF Lopata, K. Reslan, R. Kowaska, M. Neuhauser, D. Govind, N. Kowalski, K. TI Excited-State Studies of Polyacenes: A Comparative Picture Using EOMCCSD, CR-EOMCCSD(T), Range-Separated (LR/RT)-TDDFT, TD-PM3, and TD-ZINDO SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID DENSITY-FUNCTIONAL THEORY; COUPLED-CLUSTER METHODS; THIN-FILM TRANSISTORS; LIGHT-EMITTING-DIODES; OPEN-SHELL SYSTEMS; ELECTRONIC STATES; ORGANIC SEMICONDUCTORS; EXCITATION-ENERGIES; ANTHRACENE; MOLECULES AB The low-lying excited states (L(a) and L(b)) of polyacenes from naphthalene to heptacene (N = 2-7) are studied using various time-dependent computational approaches. We perform high-level excited-state calculations using equation of motion coupled cluster with singles and doubles (EOMCCSD) and completely renormalized equation of motion coupled cluster with singles, doubles, and perturbative triples (CR-EOMCCSD(T)) and use these results to evaluate the performance of various range-separated exchange-correlation functionals within linear-response (LR) and real-time (RT) time-dependent density functional theories (TDDFT). As has been reported recently, we find that the range-separated family of functionals addresses the well-documented TDDFT failures in describing these low-lying singlet excited states to a large extent and are as about as accurate as results from EOMCCSD on average. Real-time TDDFT visualization shows that the excited state charged densities are consistent with the predictions of the perimeter free electron orbital (PFEO) model. This corresponds to particle-on-a-ring confinement, which leads to the well-known red-shift of the excitations with acene length. We also use time-dependent semiempirical methods like TD-PM3 and TD-ZINDO, which are capable of handling very large systems. Once reparametrized to match the CR-EOMCCSD(T) results, TD-ZINDO becomes roughly as accurate as range-separated TDDFT, which opens the door to modeling systems such as large molecular assemblies. C1 [Lopata, K.; Govind, N.; Kowalski, K.] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. [Reslan, R.; Neuhauser, D.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Kowaska, M.] Washington State Univ Tri Cities, Dept Chem, Richland, WA 99354 USA. RP Lopata, K (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. EM kenneth.lopata@pnnl.gov; dxn@chem.ucla.edu; niri.govind@pnnl.gov; karol.kowalski@pnnl.gov FU U.S. Department of Energy's Office of Biological and Environmental Research; Battelle Memorial Institute [DE-AC06-76RLO-1830]; EMSL; Extreme Scale Computing Initiative; DOE-EFRC FX A portion of the research was performed using EMSL, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the Department of Energy by the Battelle Memorial Institute under Contract DE-AC06-76RLO-1830. K.L. acknowledges the William Wiley Postdoctoral Fellowship from EMSL. K.K. and N.G. acknowledge support from the Extreme Scale Computing Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory. D.N. and R.R. gratefully acknowledge support by DOE-EFRC. NR 58 TC 46 Z9 46 U1 2 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD NOV PY 2011 VL 7 IS 11 BP 3686 EP 3693 DI 10.1021/ct2005165 PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 842KD UT WOS:000296597300024 PM 26598263 ER PT J AU Biersack, HJ Palmedo, H Andris, A Rogenhofer, S Knapp, FF Guhlke, S Ezziddin, S Bucerius, J von Mallek, D AF Biersack, Hans-Juergen Palmedo, Holger Andris, Andrej Rogenhofer, Stefan Knapp, Furn F. Guhlke, Stefan Ezziddin, Samer Bucerius, Jan von Mallek, Dirk TI Palliation and Survival After Repeated Re-188-HEDP Therapy of Hormone-Refractory Bone Metastases of Prostate Cancer: A Retrospective Analysis SO JOURNAL OF NUCLEAR MEDICINE LA English DT Article DE Re-188-HEDP; bone metastases; palliation; prostate cancer; survival ID STRONTIUM PLASMA-CLEARANCE; SR-89 RADIONUCLIDE THERAPY; OSSEOUS METASTASES; PAIN PALLIATION; SM-153 EDTMP; DOUBLE-BLIND; CARCINOMA; TOXICITY; PHARMACOKINETICS; DIPHOSPHONATE AB This retrospective study compared the effects of single and multiple administrations of Re-186-hydroxyethylidenediphosphonate (Re-186-HEDP) on palliation and survival of prostate cancer patients presenting with more than 5 skeletal metastases. Methods: A total of 60 patients were divided into 3 groups. Group A (n = 19) consisted of patients who had received a single injection; group B (n = 19), patients who had 2 injections; and group C (n = 22), patients who had 3 or more successive injections. The Re-188-HEDP was prepared using non-carrier-added Re-188 obtained from an in-house W-188/Re-188 generator after dilution with carrier perrhenate. Patients' data available from the referring physicians-including prostate-specific antigen levels-were entered into a Windows-based matrix and analyzed using a statistical program. The Gleason scores were similar for all 3 groups. Results: Mean survival from the start of treatment was 4.50 +/- 0.81 mo (95% confidence interval [CI], 2.92-6.08) for group A, 9.98 +/- 2.21 mo (95% CI, 5.65-14.31) for group B, and 15.66 +/- 3.23 (95% CI, 9.33-22.0) for group C. Although the 3 groups did not differ in Gleason score, the number of lost life-years was significantly lower in group C than in groups A and B. Pain palliation was achieved in 89.5% of group A, 94.7% of group B, and 90.9% of group C. Conclusion: Post-treatment overall survival could be improved from 4.50 to 15.66 mo by multiple-injection bone-targeted therapy with Re-188-HEDP, when compared with a single injection. Significant pain palliation was common and independent of administration frequency. C1 [Biersack, Hans-Juergen; Palmedo, Holger; Andris, Andrej; Guhlke, Stefan; Ezziddin, Samer; Bucerius, Jan; von Mallek, Dirk] Univ Hosp Bonn, Dept Nucl Med, Bonn, Germany. [Rogenhofer, Stefan] Univ Hosp Bonn, Dept Urol, Bonn, Germany. [Knapp, Furn F.] Oak Ridge Natl Lab, Nucl Med Program, Oak Ridge, TN USA. RP Biersack, HJ (reprint author), Univ Bonn, Dept Nucl Med, Sigmund Freud Str 25, D-53127 Bonn, Germany. EM hans-juergen.biersack@ukb.uni-bonn.de FU Alexander von Humboldt Foundation; U.S. Department of Energy (DOE) [DE-AC05-00OR22725]; UT-Battelle, LLC FX This study was in part supported by the Alexander von Humboldt Foundation, and one of the authors is a former von Humboldt fellow. Research at the Oak Ridge National Laboratory (ORNL) is supported by the U.S. Department of Energy (DOE) under contract DE-AC05-00OR22725 with UT-Battelle, LLC. No other potential conflict of interest relevant to this article was reported. NR 32 TC 25 Z9 28 U1 0 U2 5 PU SOC NUCLEAR MEDICINE INC PI RESTON PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA SN 0161-5505 J9 J NUCL MED JI J. Nucl. Med. PD NOV 1 PY 2011 VL 52 IS 11 BP 1721 EP 1726 DI 10.2967/jnumed.111.093674 PG 6 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 844BJ UT WOS:000296722000016 PM 21976530 ER PT J AU Collino, RR Wood, AW Estrada, NM Dick, BB Ro, HW Soles, CL Wang, YQ Thouless, MD Goldman, RS AF Collino, R. R. Wood, A. W. Estrada, N. M. Dick, B. B. Ro, H. W. Soles, C. L. Wang, Y. Q. Thouless, M. D. Goldman, R. S. TI Formation and transfer of GaAsN nanostructure layers SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article DE bubbles; cracks; gallium arsenide; III-V semiconductors; ion implantation; nanofabrication; nanostructured materials; rapid thermal annealing; semiconductor doping; semiconductor growth; wafer bonding ID INSULATOR MATERIAL TECHNOLOGY; HYDROGEN IMPLANTATION; SMART-CUT(R) PROCESS; THIN-FILM; SUBSTRATE; SI; SEPARATION; GASB AB The authors report the simultaneous formation and transfer of GaAsN nanostructure layers to alternative substrates, a process termed "ion-cut synthesis." Ion-cut synthesis is induced by nitrogen ion implantation into GaAs (GaAs:N), followed by spin-on-glass (SOG) mediated wafer bonding and high temperature rapid thermal annealing (RTA). Due to the low ion-matrix diffusivity of GaAs:N, RTA induces the formation of both nanostructures and gas bubbles. The gas bubble pressure induces the formation and propagation of cracks, resulting in transfer of the nanostructured layer. The authors discuss the critical role of the physical properties and the thicknesses of the substrates and the SOG layer to the achievement of ion-cut synthesis. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3630120] C1 [Collino, R. R.; Thouless, M. D.] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA. [Collino, R. R.; Wood, A. W.; Estrada, N. M.; Dick, B. B.; Thouless, M. D.; Goldman, R. S.] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA. [Wood, A. W.; Goldman, R. S.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Ro, H. W.; Soles, C. L.] Natl Inst Stand & Technol, Div Polymers, Gaithersburg, MD 20899 USA. [Wang, Y. Q.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Collino, RR (reprint author), Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA. EM thouless@umich.edu; rsgold@umich.edu RI Goldman, Rachel/J-9091-2012; Collino, Rachel/B-5513-2014 OI Collino, Rachel/0000-0002-7958-4859 FU Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0000957]; NSF [CMMI-0700301, DMR-0520701]; Michigan Memorial Phoenix Institute; AFOSR [FA9950-08-1-0340]; U.S. DoD under IC [HM1582-05-1-2027]; U.S. DoD under CIA [2007-0919714-00]; Center for Integrated Nanotechnologies at Los Alamos National Laboratory FX RRC and RSG were supported by the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0000957. RRC was also supported in part by graduate research fellowships from the NSF and the Michigan Memorial Phoenix Institute. AWW was supported in part by the AFOSR through the MURI program under Grant No. FA9950-08-1-0340, the U.S. DoD under IC Grant No. HM1582-05-1-2027, and CIA Contract No. 2007-0919714-00. NME and BBD were supported by NSF under Grant No. CMMI-0700301. We gratefully acknowledge the support of the Center for Integrated Nanotechnologies at Los Alamos National Laboratory, as well as the assistance of the staff at the Electron Microscopy and Microanalysis Laboratory, the Lurie Nanofabrication Facility, and the Michigan Ion Beam Laboratory at UM. The ion implanter at MIBL is funded by NSF Grant No. DMR-0520701. NR 32 TC 0 Z9 0 U1 2 U2 16 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD NOV PY 2011 VL 29 IS 6 AR 060601 DI 10.1116/1.3630120 PG 6 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 843HQ UT WOS:000296663300005 ER PT J AU Yang, L Yu, XY Zhu, ZH Thevuthasan, T Cowin, JP AF Yang, Li Yu, Xiao-Ying Zhu, Zihua Thevuthasan, Theva Cowin, James P. TI Making a hybrid microfluidic platform compatible for in situ imaging by vacuum-based techniques SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article DE microfabrication; microfluidics; polymer blends; secondary ion mass spectra; time of flight mass spectra; vacuum techniques; vaporisation ID SCANNING-ELECTRON-MICROSCOPY; LIQUID; SURFACES; WATER; ACCOMMODATION; INTERFACES; HISTORY; TISSUES; SYSTEM; CELLS AB A self-contained microfluidic-based device was designed and fabricated for in situ imaging of aqueous surfaces using vacuum techniques. The device is a hybrid between a microfluidic poly(dimethyl siloxane) block and external accessories, all portable on a small platform (10 x 8 cm(2)). The key feature is that a small aperture with a diameter of 2-3 mu m is opened to the vacuum, which serves as a detection window for in situ imaging of aqueous surfaces. Vacuum compatibility and temperature drop due to water vaporization are the two most important challenges in this invention. Theoretical calculations and fabrication strategies are presented from multiple design aspects. In addition, results from the time-of-flight secondary ion mass spectrometry and scanning electron microscopy of aqueous surfaces are presented. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3654147] C1 [Yang, Li; Cowin, James P.] Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99354 USA. [Yu, Xiao-Ying] Pacific NW Natl Lab, Atmospher Sci & Global Climate Change Div, Richland, WA 99354 USA. [Zhu, Zihua; Thevuthasan, Theva] Pacific NW Natl Lab, WR Wiley Environm Mol Sci Lab, Sci Resources Div, Richland, WA 99354 USA. RP Yang, L (reprint author), Pacific NW Natl Lab, Chem & Mat Sci Div, Richland, WA 99354 USA. EM xiaoying.yu@pnnl.gov; zihua.zhu@pnnl.gov; jpcowin@charter.net RI Zhu, Zihua/K-7652-2012; Yu, Xiao-Ying/L-9385-2013 OI Yu, Xiao-Ying/0000-0002-9861-3109 FU Department of Energy (DOE) Division of Chemical Sciences, Geosciences, and Biosciences (BES Chemical Sciences) [KC-0301020-16248]; Office of Biological and Environmental Research (OBER); OBER at the Pacific Northwest National Laboratory (PNNL) FX We are grateful for the support from the Department of Energy (DOE) Division of Chemical Sciences, Geosciences, and Biosciences (BES Chemical Sciences Grant No. KC-0301020-16248) and the Office of Biological and Environmental Research (OBER). The research was performed in the W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by OBER and located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the DOE by Battelle. NR 34 TC 16 Z9 16 U1 2 U2 27 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD NOV PY 2011 VL 29 IS 6 AR 061101 DI 10.1116/1.3654147 PG 10 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 843HQ UT WOS:000296663300006 ER PT J AU Elder, JB Vande Kamp, RW AF Elder, James B. Vande Kamp, Rodney W. TI Benefits of the Multiple-echo Contact Technique for Ultrasonic Thickness Testing SO MATERIALS EVALUATION LA English DT Article C1 [Elder, James B.; Vande Kamp, Rodney W.] Savannah River Nucl Solut, Savannah River Natl Lab, Mat Sci & Technol, Aiken, SC 29808 USA. RP Elder, JB (reprint author), Savannah River Nucl Solut, Savannah River Natl Lab, Mat Sci & Technol, Savannah River Site,Bldg 730-A, Aiken, SC 29808 USA. EM james.elder@srnl.doe.gov; rodney.vandekamp@srnl.doe.gov NR 3 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC NONDESTRUCTIVE TEST PI COLUMBUS PA 1711 ARLINGATE LANE PO BOX 28518, COLUMBUS, OH 43228-0518 USA SN 0025-5327 J9 MATER EVAL JI Mater. Eval. PD NOV PY 2011 VL 69 IS 11 BP 1269 EP 1276 PG 8 WC Materials Science, Characterization & Testing SC Materials Science GA 847FB UT WOS:000296956200001 ER PT J AU Kushima, A Liu, XH Zhu, G Wang, ZL Huang, JY Li, J AF Kushima, Akihiro Liu, Xiao Hua Zhu, Guang Wang, Zhong Lin Huang, Jian Yu Li, Ju TI Leapfrog Cracking and Nanoamorphization of ZnO Nanowires during In Situ Electrochemical Lithiation SO NANO LETTERS LA English DT Article DE Nanoglass and nanoamorphization; crack; lithium embrittlement; in situ TEM; lithium ion battery (LIB) decrepitation; glass-glass interface (GGI) memory effect ID LITHIUM-ION BATTERIES; LIQUID-METAL EMBRITTLEMENT; NEGATIVE ELECTRODES; ANODES; SILICON; STORAGE; ALLOYS AB The lithiation reaction of single ZnO nanowire (NW) electrode in a Li-ion nanobattery configuration was observed by in situ transmission electron microscopy. Upon first charge, the single-crystalline NW was transformed into a nanoglass with multiple glassy nanodomains (Gleiter, H. MRS Bulletin 2009, 34, 456) by an intriguing reaction mechanism. First, partial lithiation of crystalline NW induced multiple nanocracks similar to 70 nm ahead of the main lithiation front, which traversed the NW cross-section and divided the NW into multiple segments. This was followed by rapid surface diffusion of Li+ and solid-state amorphization along the open crack surfaces. Finally the crack surfaces merged, leaving behind a glass-glass interface (GGI). Such reaction front instabilt:y also repeated in the interior of each divided segment, further subdividing the NW into different nanoglass domains (nanoamorphization). Instead of the profuse dislocation plasticity seen in SnO2 NWs (Science 2010, 330, 1515), no dislocation was seen and the aforementioned nanocracking was the main precursor to the electrochemically driven solid-state amorphization in ZnO. Ab initio tensile decohesion calculations verified dramatic lithium embrittlement effect in ZnO, but not in SnO2. This is attributed to the aliovalency of Sn cation (Sn(IV), Sn(II)) in contrast to the electronically more rigid Zn(II) cation. C1 [Liu, Xiao Hua; Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Kushima, Akihiro; Li, Ju] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Zhu, Guang; Wang, Zhong Lin] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Li, Ju] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China. [Li, Ju] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Xian 710049, Peoples R China. RP Huang, JY (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM jhuang@sandia.gov; liju@seas.upenn.edu RI Albe, Karsten/F-1139-2011; Kushima, Akihiro/H-2347-2011; Liu, Xiaohua/A-8752-2011; Wang, Zhong Lin/E-2176-2011; Huang, Jianyu/C-5183-2008; Li, Ju/A-2993-2008; Zhu, Guang/F-2407-2013 OI Liu, Xiaohua/0000-0002-7300-7145; Wang, Zhong Lin/0000-0002-5530-0380; Li, Ju/0000-0002-7841-8058; FU NSF [DMR-1008104, DMR-0520020]; Air Force Office of Scientific Research [FA9550-08-1-0325]; Sandia National Laboratories (SNL); Science of Precision Multifunctional Nanostructures for Electrical Energy Storage (NEES); Energy Frontier Research Canter (EFRC); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160]; LDRD; NEES center; CENT; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX A.K. and J.L. acknowledge support by NSF Grants DMR-1008104 and DMR-0520020, and Air Force Office of Scientific Research Grant FA9550-08-1-0325. Portions of this work were supported by a Laboratory Directed Research and Development (LDRD) project at Sandia National Laboratories (SNL) and partly by the Science of Precision Multifunctional Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Canter (EFRC) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. The LDRD supported the development and Fabrication of platforms. The NEES center supported the development of TEM techniques, and some of the additional platform development, and fabrication and materials characterization. CENT supported the TEM capability and the fabrication capabilities that were used for the TEM characterization, and this work represents the efforts of several CINT users, primarily those with affiliation external to SNL. In addition, this work was performed, in part, at the Sandia-Los Alamos Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Helpful comment by Professor Andrew M. Rappe regarding the aliovalency of Sn is gratefully acknowledged. NR 34 TC 88 Z9 89 U1 15 U2 169 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2011 VL 11 IS 11 BP 4535 EP 4541 DI 10.1021/nl201376j PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 843MA UT WOS:000296674700006 PM 21942500 ER PT J AU Peng, XH Misewich, JA Wong, SS Sfeir, MY AF Peng, Xiaohui Misewich, James A. Wong, Stanislaus S. Sfeir, Matthew Y. TI Efficient Charge Separation in Multidimensional Nanohybrids SO NANO LETTERS LA English DT Article DE DWNTs; CdSe nanocrystals; charged quantum dots; trion; charge transfer; resonance energy transfer ID QUANTUM-DOT SOLIDS; CDSE QUANTUM; SOLAR-CELLS; ELECTRON-TRANSFER; CARBON NANOTUBE; NANOCRYSTAL SOLIDS; ENERGY-TRANSFER; PHOTOLUMINESCENCE; KINETICS; FILMS AB We report unidirectional charge transfer in multidimensional nanohybrids, consisting of a quantum dot, an electronically active molecular linker, and a carbon nanotube. After covalent attachment to the nanotube, only emission consistent with the negatively charged quantum dot exciton ion rather than the neutral exciton is observed, showing nearly monoexponential recombination kinetics and an average lifetime of 3.5 ns. Using kinetic models, we explain how charge transfer is biased at the expense of other decay pathways. C1 [Sfeir, Matthew Y.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Peng, Xiaohui; Wong, Stanislaus S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Misewich, James A.; Wong, Stanislaus S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Sfeir, MY (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM msfeir@bnl.gov OI Sfeir, Matthew/0000-0001-5619-5722 FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; U.S. Department of Energy Office of Basic Energy Sciences, Division of Materials Sciences and Engineering FX Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. SSW specifically acknowledges the U.S. Department of Energy Office of Basic Energy Sciences, Division of Materials Sciences and Engineering for support of additional spectroscopy work and for personnel support (XP and SSW) as well. We thank C. T. Black for useful discussions and feedback on the manuscript. NR 43 TC 15 Z9 15 U1 0 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2011 VL 11 IS 11 BP 4562 EP 4568 DI 10.1021/nl2016625 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 843MA UT WOS:000296674700010 PM 21981279 ER PT J AU Subramania, G Li, QM Lee, YJ Figiel, JJ Wang, GT Fischer, AJ AF Subramania, Ganapathi Li, Qiming Lee, Yun-Ju Figiel, Jeffrey J. Wang, George T. Fischer, Arthur J. TI Gallium Nitride Based Logpile Photonic Crystals SO NANO LETTERS LA English DT Article DE Three-dimensional photonic crystal; nanophotonics; gallium nitride; logpile; Electron Beam Lithography ID SPONTANEOUS EMISSION AB We demonstrate a nine-layer logpile three-dimensional photonic crystal (3DPC) composed of single crystalline gallium nitride (GaN) nanorods, similar to 100 nm in size with lattize constants of 260, 280, and 300 nm with photonic band gap in the visible region. This unique GaN structure is created through a combined approach of a layer-by-layer template fabrication technique and selective metal organic chemical vapor deposition (MOCVD). These GaN 3DPC exhibit a stacking direction band gap characterized by strong optical reflectance between 380 and 500 nm. By introducing a "line-defect" cavity in the fifth (middle) layer of the 3DPC, a localized transmission mode with a quality factor of 25-30 is also observed within the photonic band gap. The realization of a group III nitride 3DPC with uniform features and a band gap at wavelengths in the visible region is an important step toward realizing complete control of the electromagnetic environment for group III nitride based optoelectronic devices. C1 [Subramania, Ganapathi; Li, Qiming; Figiel, Jeffrey J.; Wang, George T.; Fischer, Arthur J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Subramania, Ganapathi] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA. [Lee, Yun-Ju] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA. RP Subramania, G (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM gssubra@sandia.gov FU Sandia's Solid-State-Lighting Science Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank Carlos Sanchez for assisting with nanofabrication. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Fabrication of the PC and a portion of structural and optical characterization was performed under Sandia's Laboratory Directed Research and Development (LDRD) and a portion of structural and optical characterization and data analysis was supported by Sandia's Solid-State-Lighting Science Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 26 TC 20 Z9 20 U1 1 U2 17 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2011 VL 11 IS 11 BP 4591 EP 4596 DI 10.1021/nl201867v PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 843MA UT WOS:000296674700015 PM 21970551 ER PT J AU Reuter, MG Seideman, T Ratner, MA AF Reuter, Matthew G. Seideman, Tamar Ratner, Mark A. TI Molecular Conduction through Adlayers: Cooperative Effects Can Help or Hamper Electron Transport SO NANO LETTERS LA English DT Article DE Electron transport; cooperative effects; adlayers; tight-binding models ID SELF-ASSEMBLED MONOLAYERS; PARALLEL ATOMIC WIRES; ORGANIC-MOLECULES; JUNCTIONS; TRANSMISSION AB We use a one-electron, tight-binding model of a molecular adlayer sandwiched between two metal electrodes to explore how cooperative effects between molecular wires influence electron transport through the adlayer. When compared to an isolated molecular wire, an adlayer exhibits cooperative effects that generally enhance conduction away from an isolated wire's resonance and diminish conductance near such a resonance. We also find that the interwire distance (related to the adlayer density) is a key quantity. Substrate-mediated coupling induces most of the cooperative effects in dense adlayers, whereas direct, interwire coupling (if present) dominates in sparser adlayers. In this manner, cooperative effects through dense adlayers cannot be removed, suggesting an optimal adlayer density for maximizing conduction. C1 [Reuter, Matthew G.; Seideman, Tamar; Ratner, Mark A.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Reuter, MG (reprint author), Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. EM mgreuter@u.northwestern.edu FU DoE CSGF [DE-FG02-97ER25308]; NSF [CHE-1012207, DMR-0520513] FX We are grateful to Abraham Nitzan, Gemma C. Solomon, Thorsten Hansen, and Lisa A. Fredin for helpful conversations. M.G.R. thanks the DoE CSGF (Grant DE-FG02-97ER25308) for a fellowship. We thank the NSF (Grant CHE-1012207) and the MRSEC program of the NSF (DMR-0520513) for support. NR 32 TC 23 Z9 23 U1 1 U2 12 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2011 VL 11 IS 11 BP 4693 EP 4696 DI 10.1021/nl202342a PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 843MA UT WOS:000296674700034 PM 22008014 ER PT J AU Buonsanti, R Llordes, A Aloni, S Helms, BA Milliron, DJ AF Buonsanti, Raffaella Llordes, Anna Aloni, Shaul Helms, Brett A. Milliron, Delia J. TI Tunable Infrared Absorption and Visible Transparency of Colloidal Aluminum-Doped Zinc Oxide Nanocrystals SO NANO LETTERS LA English DT Article DE Nanocrystals; metal oxide; doping; synthesis design; plasmon absorption ID QUANTUM DOTS; PHYSICAL-PROPERTIES; ZNO FILMS; SEMICONDUCTOR; NANOPARTICLES; ELECTRODES; SIZE AB Plasmonic nano crystals have been attracting a lot of attention both for fundamental studies and different applications, from sensing to imaging and optoelectronic devices. Transparent conductive oxides represent an interesting class of plasmonic materials in addition to metals and vacancy-doped semiconductor quantum dots. Herein, we report a rational synthetic strategy of high-quality colloidal aluminum-doped zinc oxide nanocrystals. The presence of substitutional aluminum in the zinc oxide lattice accompanied by the generation of free electrons is proved for the first time by tunable surface plasmon absorption in the infrared region both in solution and in thin films. C1 [Buonsanti, Raffaella; Llordes, Anna; Aloni, Shaul; Helms, Brett A.; Milliron, Delia J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Milliron, DJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, 1 Cyclotron Rd,MS 67R4110, Berkeley, CA 94720 USA. EM dmilliron@lbl.gov RI Llordes, Anna/H-2370-2015; Milliron, Delia/D-6002-2012 OI Llordes, Anna/0000-0003-4169-9156; Helms, Brett/0000-0003-3925-4174; FU U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; Laboratory Directed Research and Development Program; DOE FX We thank Teresa Pick and Joern Larsen for their assistance with NMR and ICP-OES measuraments, respectively, and Jeffrey Neaton for helpful discussions. Research was supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231, including work performed at the Molecular Foundry as a user project, support from the Laboratory Directed Research and Development Program (Dr. Llordes), and a DOE Early Career Research Program grant (Dr. Milliron). NR 40 TC 186 Z9 186 U1 27 U2 242 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2011 VL 11 IS 11 BP 4706 EP 4710 DI 10.1021/nl203030f PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 843MA UT WOS:000296674700037 PM 21970407 ER PT J AU Conley, H Lavrik, NV Prasai, D Bolotin, KI AF Conley, Hiram Lavrik, Nickolay V. Prasai, Dhiraj Bolotin, Kirill I. TI Graphene Bimetallic-like Cantilevers: Probing Graphene/Substrate Interactions SO NANO LETTERS LA English DT Article DE Graphene; bimetallic; cantilevers; strain; thermal expansion; interfacial shear strength ID MONOLAYER NANOCOMPOSITE; SUSPENDED GRAPHENE; RESONATORS; MEMBRANES; PLATFORM; COPPER; FILMS AB The remarkable mechanical properties of graphene, the thinnest, lightest, and strongest material in existence, are desirable in applications ranging from composite materials to sensors and actuators. Here, we demonstrate that these mechanical properties are strongly affected by the interaction with the substrate onto which graphene is deposited. By measuring the temperature-dependent deflection of graphene/substrate "bimetallic" cantilevers we determine strain, thermal expansion coefficient, and the adhesion force acting on graphene films attached to a substrate. Graphene deposited on silicon nitride (SiNx) is under much larger strain, epsilon(g) similar to 1.5 x 10(-2), compared to graphene on gold (Au), epsilon(g) < 10(-3). The thermal expansion coefficient alpha(g) of graphene attached to SiNx is found to be negative, in the range from (- 5... - 1) x 10(-6)K(-1) and smaller in magnitude than alpha(g) of suspended graphene. We also estimate the interfacial shear strength of the graphene/SiNx interface to be similar to 1 GPa at room temperature. C1 [Conley, Hiram; Prasai, Dhiraj; Bolotin, Kirill I.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Lavrik, Nickolay V.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37830 USA. RP Bolotin, KI (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM kirill.bolotin@vanderbilt.edu RI Lavrik, Nickolay/B-5268-2011; Bolotin, Kirill/O-5101-2016 OI Lavrik, Nickolay/0000-0002-9543-5634; FU Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy; NSF [DMR-1056859, EPS-1004083] FX We thank Bin Wang, A.K.M. Newaz, and L.C. Feldman for enlightening discussions and Vanderbilt Institute of Nanoscale Science and Engineering for allowing use of their facilities. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. This research is supported in part by NSF DMR-1056859 and NSF EPS-1004083. NR 26 TC 27 Z9 27 U1 9 U2 78 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2011 VL 11 IS 11 BP 4748 EP 4752 DI 10.1021/nl202562u PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 843MA UT WOS:000296674700044 PM 21970515 ER PT J AU Viswanatha, R Brovelli, S Pandey, A Crooker, SA Klimov, VI AF Viswanatha, Ranjani Brovelli, Sergio Pandey, Anshu Crooker, Scott A. Klimov, Victor I. TI Copper-Doped Inverted Core/Shell Nanocrystals with "Permanent" Optically Active Holes SO NANO LETTERS LA English DT Article DE Nanocrystal quantum dot; copper doped nanocrystal; ZnSe/CdSe core/shell; p-type; copper oxidation state ID DOPING SEMICONDUCTOR NANOCRYSTALS; CDSE QUANTUM DOTS; ZNSE NANOCRYSTALS; CU; LUMINESCENCE; ELECTRON; AMPLIFICATION; PATHWAYS; EMISSION; CRYSTALS AB We have developed a new class of colloidal nanocrystals composed of Cu-doped ZnSe cores overcoated with CdSe shells. Via spectroscopic and magneto-optical studies, we conclusively demonstrate that Cu impurities represent paramagnetic +2 species and serve as a source of permanent optically active holes. This implies that the Fermi level is located below the Cu(2+)/Cu(1+) state, that is, in the lower half of the forbidden gap, which is a signature of a p-doped material. It further suggests that the activation of optical emission due to the Cu level requires injection of only an electron without a need for a valence-band hole. This peculiar electron-only emission mechanism is confirmed by experiments in which the titration of the nanocrystals with hole-withdrawing molecules leads to enhancement of Cu-related photoluminescence while simultaneously suppressing the intrinsic, band-edge exciton emission. In addition to containing permanent optically active holes, these newly developed materials show unprecedented emission tunability from near-infrared (1.2 eV) to the blue (3.1 eV) and reduced losses from reabsorption due to a large Stokes shift (up to 0.7 eV). These properties make them very attractive for applications in light-emission and lasing technologies and especially for the realization of novel device concepts such as "zero-threshold" optical gain. C1 [Viswanatha, Ranjani; Brovelli, Sergio; Pandey, Anshu; Klimov, Victor I.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. [Crooker, Scott A.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Pandey, Anshu; Klimov, Victor I.] Los Alamos Natl Lab, Ctr Adv Solar Photophys, Los Alamos, NM 87545 USA. RP Klimov, VI (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM klimov@lanl.gov OI Brovelli, Sergio/0000-0002-5993-855X; Klimov, Victor/0000-0003-1158-3179 FU Chemical Sciences, Biosciences, and Geosciences Division of the Office of Basic Energy Sciences (BES), Office of Science, U.S. Department of Energy (DOE); Center for Advanced Solar Photophysics, an Energy Frontier Research Center; Office of BES, Office of Science, U.S. DOE FX R.V. and SAC. acknowledge support by the Chemical Sciences, Biosciences, and Geosciences Division of the Office of Basic Energy Sciences (BES), Office of Science, U.S. Department of Energy (DOE). V.I.K is supported by the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the Office of BES, Office of Science, U.S. DOE. S.B. and A.P. are supported by the Los Alamos National Laboratory Directed Research and Development Program. NR 36 TC 73 Z9 73 U1 3 U2 99 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2011 VL 11 IS 11 BP 4753 EP 4758 DI 10.1021/nl202572c PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 843MA UT WOS:000296674700045 PM 21942276 ER PT J AU Sorger, VJ Pholchai, N Cubukcu, E Oulton, RF Kolchin, P Borschel, C Gnauck, M Ronning, C Zhang, X AF Sorger, Volker J. Pholchai, Nitipat Cubukcu, Ertugrul Oulton, Rupert F. Kolchin, Pavel Borschel, Christian Gnauck, Martin Ronning, Carsten Zhang, Xiang TI Strongly Enhanced Molecular Fluorescence inside a Nanoscale Waveguide Gap SO NANO LETTERS LA English DT Article DE Plasmonic; waveguide; nanophotonics; molecular; fluorescence; Purcell ID SURFACE-PLASMONS; EMISSION AB We experimentally demonstrate dramatically enhanced light-matter interaction for molecules placed inside the nanometer scale gap of a plasmonic waveguide. We observe spontaneous emission rate enhancements of up to about 60 times due to strong optical localization in two dimensions. This rate enhancement is a nonresonant nature of the plasmonic waveguide under study overcoming the fundamental bandwidth limitation of conventional devices. Moreover, we show that about 85% of molecular emission couples into the waveguide highlighting the dominance of the nanoscale optical mode in competing with quenching processes. Such optics at molecular length scales paves the way toward integrated on-chip photon source, rapid transfer of quantum information, and efficient light extraction for solid-state-lighting devices. C1 [Sorger, Volker J.; Pholchai, Nitipat; Cubukcu, Ertugrul; Oulton, Rupert F.; Kolchin, Pavel; Zhang, Xiang] Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, Berkeley, CA 94720 USA. [Zhang, Xiang] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Borschel, Christian; Gnauck, Martin; Ronning, Carsten] Univ Jena, Inst Solid State Phys, D-07743 Jena, Germany. RP Zhang, X (reprint author), Univ Calif Berkeley, NSF Nanoscale Sci & Engn Ctr, 3112 Etcheverry Hall, Berkeley, CA 94720 USA. EM xiang@berkeley.edu RI Cubukcu, Ertugrul/D-5007-2012; Zhang, Xiang/F-6905-2011; Ronning, Carsten/I-9133-2016 OI Ronning, Carsten/0000-0003-2667-0611 FU National Science Foundation (NSF) Nanoscale Science and Engineering Center (SINAM) [CMMI-0751621] FX We acknowledge support from the National Science Foundation (NSF) Nanoscale Science and Engineering Center (SINAM, CMMI-0751621). NR 24 TC 53 Z9 53 U1 5 U2 45 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2011 VL 11 IS 11 BP 4907 EP 4911 DI 10.1021/nl202825s PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 843MA UT WOS:000296674700071 PM 21978206 ER PT J AU Lohmuller, T Triffo, S O'Donoghue, GP Xu, Q Coyle, MP Groves, JT AF Lohmueller, Theobald Triffo, Sara O'Donoghue, Geoff P. Xu, Qian Coyle, Michael P. Groves, Jay T. TI Supported Membranes Embedded with Fixed Arrays of Gold Nanoparticles SO NANO LETTERS LA English DT Article DE Nanoparticles; supported lipid bilayers; nanoparticle labeling; FCS; PALM ID PHOTOACTIVATION LOCALIZATION MICROSCOPY; FLUORESCENCE CORRELATION SPECTROSCOPY; IMMUNOLOGICAL SYNAPSE; LIPID-BILAYERS; SIGNAL-TRANSDUCTION; CELL-ADHESION; T-CELLS; SURFACES; PROTEIN; DYNAMICS AB We present a supported membrane platform consisting of a fluid lipid bilayer membrane embedded with a fixed array of gold nanoparticles. The system is realized by preforming a hexagonal array of gold nanoparticles (similar to 5-7 nm) with controlled spacing (similar to 50-150 nm) fixed to a silica or glass substrate by block copolymer lithography. Subsequently, a supported membrane is assembled over the intervening bare substrate. Proteins or other ligands can be associated with the fluid lipid component, the fixed nanoparticle component, or both, providing a hybrid interface consisting of mobile and immobile components with controlled geometry. We test different biochemical coupling strategies to bind individual proteins to the particles surrounded by a fluid lipid membrane. The coupling efficiency to nanoparticles and the influence of nanoparticle arrays on the surrounding membrane integrity are characterized by fluorescence imaging, correlation spectroscopy, and super-resolution fluorescence microscopy. Finally, the functionality of this system for live cell experiments is tested using the ephrin-A1-EphA2 juxtacrine signaling interaction in human breast epithelial cells. C1 [Lohmueller, Theobald; Triffo, Sara; O'Donoghue, Geoff P.; Coyle, Michael P.; Groves, Jay T.] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Lohmueller, Theobald; Triffo, Sara; O'Donoghue, Geoff P.; Coyle, Michael P.; Groves, Jay T.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Xu, Qian; Groves, Jay T.] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Lohmueller, Theobald; Coyle, Michael P.; Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Lohmueller, Theobald; Coyle, Michael P.; Groves, Jay T.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Groves, Jay T.] Natl Univ Singapore, Mechanobiol Inst, Singapore 117548, Singapore. RP Groves, JT (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. EM jtgroves@lbl.gov RI Coyle, Michael/G-2880-2013; Lohmueller, Theobald/J-2754-2014 OI Lohmueller, Theobald/0000-0003-2699-7067 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; Molecular Foundry, Lawrence Berkeley National Laboratory; Deutsche Forschungsgemeinschaft (DFG) FX Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering and the Molecular Foundry, Lawrence Berkeley National Laboratory. The authors acknowledge Adam W. Smith, Hector Huang, Nina Hartman, Boryana Manz, and Pradeep Nair for fruitful discussions and experimental reagents. The authors would like to thank Sam Hess for providing his PALM analysis code. Theobald Lohmuller was supported by a postdoc fellowship from the Deutsche Forschungsgemeinschaft (DFG). NR 54 TC 32 Z9 32 U1 3 U2 69 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2011 VL 11 IS 11 BP 4912 EP 4918 DI 10.1021/nl202847t PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 843MA UT WOS:000296674700072 PM 21967595 ER PT J AU Ricco, M Pontiroli, D Mazzani, M Choucair, M Stride, JA Yazyev, OV AF Ricco, Mauro Pontiroli, Daniele Mazzani, Marcello Choucair, Mohammad Stride, John A. Yazyev, Oleg V. TI Muons Probe Strong Hydrogen Interactions with Defective Graphene SO NANO LETTERS LA English DT Article DE Graphene; muon spectroscopy; defects in graphene; carbon magnetism; hydrogen storage ID ROOM-TEMPERATURE FERROMAGNETISM; GRAPHITE; OXIDE; STORAGE AB Here, we present the first muon spectroscopy investigation of graphene, focused on chemically produced, gram-scale samples, appropriate to the large muon penetration depth. We have observed an evident muon spin precession, usually the fingerprint of magnetic order, but here demonstrated to originate from muon-hydrogen nuclear dipolar interactions. This is attributed to the formation of CHMu (analogous to CH2) groups, stable up to 1250 K where the signal still persists. The relatively large signal amplitude demonstrates an extraordinary hydrogen capture cross section of CH units. These results also rule out the formation of ferromagnetic or antiferromagnetic order in chemically synthesized graphene samples. C1 [Ricco, Mauro; Pontiroli, Daniele; Mazzani, Marcello] Univ Parma, Dipartimento Fis, I-43100 Parma, Italy. [Choucair, Mohammad; Stride, John A.] Univ New S Wales, Sch Chem, Sydney, NSW 2052, Australia. [Stride, John A.] Australian Nucl Sci & Technol Org, Bragg Inst, Menai, NSW 2234, Australia. [Yazyev, Oleg V.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Yazyev, Oleg V.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Yazyev, Oleg V.] Ecole Polytech Fed Lausanne, Inst Theoret Phys, CH-1015 Lausanne, Switzerland. RP Ricco, M (reprint author), Univ Parma, Dipartimento Fis, Via G Usberti 7-A, I-43100 Parma, Italy. EM Mauro.Ricco@fis.unipr.it RI Yazyev, Oleg/A-4073-2008; Choucair, Mohammad/I-8196-2012; Mazzani, Marcello/A-8192-2013; Pontiroli, Daniele/A-4543-2017; Ricco, Mauro/D-9376-2017 OI Yazyev, Oleg/0000-0001-7281-3199; Mazzani, Marcello/0000-0002-5133-4479; Pontiroli, Daniele/0000-0002-9990-539X; Ricco, Mauro/0000-0002-6879-2687 FU EC; Swiss National Science Foundation [CRSII2-130509, PBELP2-123086, PP002-133552] FX We thank the ISIS Laboratory for provision of beam time and S. Giblin and I. McKenzie for support during the mu SR experiments. M.R., D.P., and M.M. acknowledge financial support from the EC FP6-NEST Ferrocarbon project and from the Swiss National Science Foundation HyCarBo project (Grant No. CRSII2-130509). O.V.Y. acknowledges financial support of the Swiss National Science Foundation (Grants PBELP2-123086 and PP002-133552). NR 25 TC 27 Z9 27 U1 1 U2 34 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2011 VL 11 IS 11 BP 4919 EP 4922 DI 10.1021/nl202866q PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 843MA UT WOS:000296674700073 PM 21988328 ER PT J AU Smith, ER Luther, JM Johnson, JC AF Smith, E. Ryan Luther, Joseph M. Johnson, Justin C. TI Ultrafast Electronic Delocalization in CdSe/CdS Quantum Rod Heterostructures SO NANO LETTERS LA English DT Article DE Nanorods; heterostructures; exciton wave function; polarized transient grating ID EXCITON FINE-STRUCTURE; SEMICONDUCTOR NANOCRYSTALS; NANOROD HETEROSTRUCTURES; RELAXATION DYNAMICS; SPIN RELAXATION; ENERGY-TRANSFER; DOTS; PHOTOLUMINESCENCE; SPECTROSCOPY; TRANSITIONS AB Femtosecond cross-polarized transient grating (CPTG) and polarization anisotropy were used to probe the extent of electronic delocalization in CdSe/CdS quantum rod heterostructures (QRH) with a "dot-in-rod" geometry. The alignment of the bulk valence and conduction band edges of CdSe and CdS suggest a "type I" band configuration, leading to localization of both the electron and hole on the CdSe seed, but size quantization effects make the distinction less clear. Photoexcited electrons in 2.1 and 2.9 nm diameter structures have considerable excess kinetic energy above the CdS conduction band and show clear evidence of electron delocalization into the surrounding shell. However, the dependence of the CPTG decay rate on aspect ratio for 2.9 nm seeded QRHs is minimal, suggesting that the delocalization is mostly isotropic (i.e., not preferentially along the rod length). The rates for the 2.1 and 2.9 nm QRHs fall in line with expected trends based on effective exciton size. The 4.2 nm diameter structures also lack any rod length dependence of the CPTG decay and instead exhibit a biexponential decay that is indicative of coupled pathways for fine structure relaxation, likely due to anisotropic interfacial strain. CPTG is found to serve as a unique tool for determining charge transfer and delocalization in nanoheterostructures, which can rarely be predicted accurately from examination of bulk band offsets. C1 [Smith, E. Ryan; Luther, Joseph M.; Johnson, Justin C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Johnson, JC (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences [DE-AC36-08GO28308]; National Renewable Energy Laboratory FX We thank Andrew Norman for high-resolution TEM images of our samples. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences under the contract no. DE-AC36-08GO28308 with the National Renewable Energy Laboratory. NR 36 TC 26 Z9 26 U1 3 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2011 VL 11 IS 11 BP 4923 EP 4931 DI 10.1021/nl202869z PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 843MA UT WOS:000296674700074 PM 22011256 ER PT J AU Dai, X Dayeh, SA Veeramuthu, V Larrue, A Wang, J Su, HB Soci, C AF Dai, Xing Dayeh, Shadi A. Veeramuthu, Vaithianathan Larrue, Alexandre Wang, Jian Su, Haibin Soci, Cesare TI Tailoring the Vapor-Liquid-Solid Growth toward the Self-Assembly of GaAs Nanowire Junctions SO NANO LETTERS LA English DT Article DE Vapor-liquid-solid growth mechanism; monolithic nanowire junctions; transmission electron microscopy; polar interactions; electrostatic-mechanical modeling; nanowire arrays ID SCANNING-TUNNELING-MICROSCOPY; FIELD-EFFECT TRANSISTORS; FUNCTIONAL NANOSYSTEMS; ARRAYS; DEPOSITION; LITHOGRAPHY AB New insights into understanding and controlling the intriguing phenomena of spontaneous merging (kissing) and the self-assembly of monolithic Y- and T-junctions is demonstrated in the metal-organic chemical vapor deposition growth of GaAs nanowires. High-resolution transmission electron microscopy for determining polar facets was coupled to electrostatic-mechanical modeling and position-controlled synthesis to identify nanowire diameter, length, and pitch, leading to junction formation. When nanowire patterns are designed so that the electrostatic energy resulting from the interaction of polar surfaces exceeds the mechanical energy required to bend the nanowires to the point of contact, their fusion can lead to the self-assembly of monolithic junctions. Understanding and controlling this phenomenon is a great asset for the realization of dense arrays of vertical nanowire devices and opens up new ways toward the large scale integration of nanowire quantum junctions or nanowire intracellular probes. C1 [Dai, Xing; Veeramuthu, Vaithianathan; Soci, Cesare] Nanyang Technol Univ, Div Phys & Appl Phys, Singapore 637371, Singapore. [Dayeh, Shadi A.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Larrue, Alexandre; Su, Haibin; Soci, Cesare] CINTRA CNRS NTU THALES, UMI 3288, Singapore 637553, Singapore. [Su, Haibin] Nanyang Technol Univ, Div Mat Sci, Singapore 639798, Singapore. [Soci, Cesare] Nanyang Technol Univ, Div Microelect, Singapore 639798, Singapore. RP Soci, C (reprint author), Nanyang Technol Univ, Div Phys & Appl Phys, 21 Nanyang Link, Singapore 637371, Singapore. EM csoci@ntu.edu.sg RI Soci, Cesare/A-8355-2008; Dayeh, Shadi/H-5621-2012; CINTRA, UMI3288/J-9652-2012; Wang, Jian/F-2669-2012; OI Soci, Cesare/0000-0002-0149-9128; CINTRA, UMI3288/0000-0003-3579-6558; Wang, Jian/0000-0001-5130-300X; Su, Haibin/0000-0001-9760-6567 FU NTU [M58110065, M58110092]; French Embassy in Singapore [2.04.10]; U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory [DE-AC52-06NA25396] FX The authors are grateful to Prof. Tang Xiaohong, Dr. Liu Hongbo, and Dr. Haryono Hartono for their assistance with MOCVD operation and for the useful discussions, Prof. Chen Hongyu for the preliminary discussions regarding this work, and Ms. Gwenaelle Vest for assistance with data analysis. Research was supported by the NTU NAP startup grant M58110065, the Funding of Initiatives in Support of NTU 2015 (M58110092), and the MERLION Programme 2010 of the French Embassy in Singapore (dossier no. 2.04.10). Part of this research was conducted at the Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (contract DE-AC52-06NA25396). NR 44 TC 15 Z9 16 U1 2 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2011 VL 11 IS 11 BP 4947 EP 4952 DI 10.1021/nl202888e PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 843MA UT WOS:000296674700077 PM 21967168 ER PT J AU Takei, K Fang, H Kumar, SB Kapadia, R Gao, Q Madsen, M Kim, HS Liu, CH Chueh, YL Plis, E Krishna, S Bechtel, HA Guo, J Javey, A AF Takei, Kuniharu Fang, Hui Kumar, S. Bala Kapadia, Rehan Gao, Qun Madsen, Morten Kim, Ha Sul Liu, Chin-Hung Chueh, Yu-Lun Plis, Elena Krishna, Sanjay Bechtel, Hans A. Guo, Jing Javey, Ali TI Quantum Confinement Effects in Nanoscale-Thickness InAs Membranes SO NANO LETTERS LA English DT Article DE InAs-on-insulator; III-V transistors; quantum membranes; two-dimensional ID SEMICONDUCTOR; TRANSISTORS; RESISTANCE; SURFACES; GRAPHENE; ALLOYS AB Nanoscale size effects drastically alter the fundamental properties of semiconductors. Here, we investigate the dominant role of quantum confinement in the field-effect device properties of free-standing InAs nanomembranes with varied thicknesses of 5-50 nm, First, optical absorption studies are performed by transferring InAs "quantum membranes" (QMs) onto transparent substrates; from which the quantized sub-bands are directly visualized. These sub-bands determine the contact resistance of the system with the experimental values consistent with the expected number of quantum transport modes available for a given thickness. Finally, the effective electron mobility of InAs QMs is shown to exhibit anomalous field and thickness dependences that are in distinct contrast to the conventional MOSFET models, arising from the strong quantum confinement of carriers. The results provide an important advance toward establishing the fundamental device physics of two-dimensional semiconductors. C1 [Takei, Kuniharu; Fang, Hui; Kapadia, Rehan; Madsen, Morten; Kim, Ha Sul; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. [Takei, Kuniharu; Fang, Hui; Kapadia, Rehan; Madsen, Morten; Kim, Ha Sul; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kumar, S. Bala; Gao, Qun; Guo, Jing] Univ Florida, Gainesville, FL 32611 USA. [Liu, Chin-Hung; Chueh, Yu-Lun] Natl Tsing Hua Univ, Hsinchu 30013, Taiwan. [Plis, Elena; Krishna, Sanjay] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA. [Bechtel, Hans A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Liu, Chin-Hung/M-1882-2013; Fang, Hui/I-8973-2014; kumar, s. bala/E-4615-2011; Madsen, Morten/K-8597-2012; Gao, Qun/C-6960-2014; Javey, Ali/B-4818-2013; Kapadia, Rehan/B-4100-2013; Chueh, Yu-Lun/E-2053-2013; OI Fang, Hui/0000-0002-4651-9786; Kapadia, Rehan/0000-0002-7611-0551; Chueh, Yu-Lun/0000-0002-0155-9987; Madsen, Morten/0000-0001-6503-0479 FU FCRP/MSD Focus Center; NSF E3S Center; NSF COINS; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Sloan Research Fellowship; NSF; World Class University; National Science Council, Taiwan [NSC 98-2112-M-007-025-MY3]; Danish Research Council for Technology and Production Sciences; SRC FX The device characterization part of this work was funded by FCRP/MSD Focus Center, NSF E3S Center, and NSF COINS. The materials characterization was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A.J. acknowledges a Sloan Research Fellowship, NSF CAREER Award, and support from the World Class University program at Sunchon National University. Y.-L.C. acknowledges support from the National Science Council, Taiwan, through Grant No. NSC 98-2112-M-007-025-MY3. R.K. and M.M. acknowledge an NSF Graduate Fellowship and a postdoctoral fellowship from the Danish Research Council for Technology and Production Sciences, respectively. J.G. acknowledges support form NSF and SRC. NR 29 TC 47 Z9 47 U1 6 U2 38 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD NOV PY 2011 VL 11 IS 11 BP 5008 EP 5012 DI 10.1021/nl2030322 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 843MA UT WOS:000296674700087 PM 22007924 ER PT J AU Xiao, J Mei, DH Li, XL Xu, W Wang, DY Graff, GL Bennett, WD Nie, ZM Saraf, LV Aksay, IA Liu, J Zhang, JG AF Xiao, Jie Mei, Donghai Li, Xiaolin Xu, Wu Wang, Deyu Graff, Gordon L. Bennett, Wendy D. Nie, Zimin Saraf, Laxmikant V. Aksay, Ilhan A. Liu, Jun Zhang, Ji-Guang TI Hierarchically Porous Graphene as a Lithium-Air Battery Electrode SO NANO LETTERS LA English DT Article DE Li-air battery; graphene; specific energy; Li2O2; O-2 reduction ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; LI/AIR BATTERIES; FUNCTIONALIZED GRAPHENE; CATHODE MATERIALS; GRAPHITE OXIDE; BASIS-SET; OPTIMIZATION; PERFORMANCE; ADSORPTION AB The lithium-ir battery is one of the most promising technologies among various electrochemical energy storage systems. We demonstrate that a novel air electrode consisting of an unusual hierarchical arrangement of functionalized graphene sheets (with no catalyst) delivers an exceptionally high capacity of 15000 mAh/g in lithium-O-2 batteries which is the highest value ever reported in this field. This excellent performance is attributed to the unique bimodal porous structure of the electrode which consists of microporous channels facilitating rapid O-2 diffusion while the highly connected nanoscale pores provide a high density of reactive sites for Li-O-2 reactions. Further, we show that the defects and functional groups on graphene favor the formation of isolated nanosized Li2O2 particles and help prevent air blocking in the air electrode. The hierarchically ordered porous structure in bulk graphene enables its practical applications by promoting accessibility to most graphene sheets in this structure. C1 [Xiao, Jie; Mei, Donghai; Li, Xiaolin; Xu, Wu; Wang, Deyu; Graff, Gordon L.; Bennett, Wendy D.; Nie, Zimin; Saraf, Laxmikant V.; Liu, Jun; Zhang, Ji-Guang] Pacific NW Natl Lab, Richland, WA 99352 USA. [Aksay, Ilhan A.] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA. RP Xiao, J (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM jiguang.zhang@pnnl.gov; jun.liu@pnnl.gov; jie.xiao@pnnl.gov RI Mei, Donghai/D-3251-2011; Aksay, Ilhan/B-9281-2008; Mei, Donghai/A-2115-2012; Deyu, Wang/J-9496-2014; OI Mei, Donghai/0000-0002-0286-4182; Xu, Wu/0000-0002-2685-8684 FU PNNL; Department of Energy (DOE) Office of Biological and Environmental Research; DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152]; ARO/MURI [W911NF-09-1-0476] FX The authors thank L. Kovarik and C. M. Wang of Pacific Northwest National Laboratory (PNNL) for the TEM characterization. Funding from the Laboratory Directed Research and Development Program at PNNL is also greatly appreciated by the authors. The TEM work was performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy (DOE) Office of Biological and Environmental Research and located at PNNL. The DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, also provided support under Award KC020105-FWP12152 for the modeling and understanding of the structure of the materials. The computing time was made available through a Computational Catalysis Grand Challenge project (gc34000) and the National Energy Research Scientific Computing Center (NERSC). I.A.A. also acknowledges support from ARO/MURI Grant No. W911NF-09-1-0476. NR 43 TC 476 Z9 488 U1 78 U2 756 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2011 VL 11 IS 11 BP 5071 EP 5078 DI 10.1021/nl203332e PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 843MA UT WOS:000296674700097 PM 21985448 ER PT J AU Ritchie, RO AF Ritchie, Robert O. TI The conflicts between strength and toughness SO NATURE MATERIALS LA English DT Article ID HUMAN CORTICAL BONE; DEFORMATION MECHANISMS; FRACTURE; NACRE; COMPOSITES; CERAMICS; BEHAVIOR; CRACKS; GLASS AB The attainment of both strength and toughness is a vital requirement for most structural materials; unfortunately these properties are generally mutually exclusive. Although the quest continues for stronger and harder materials, these have little to no use as bulk structural materials without appropriate fracture resistance. It is the lower-strength, and hence higher-toughness, materials that find use for most safety-critical applications where premature or, worse still, catastrophic fracture is unacceptable. For these reasons, the development of strong and tough (damage-tolerant) materials has traditionally been an exercise in compromise between hardness versus ductility. Drawing examples from metallic glasses, natural and biological materials, and structural and biomimetic ceramics, we examine some of the newer strategies in dealing with this conflict. Specifically, we focus on the interplay between the mechanisms that individually contribute to strength and toughness, noting that these phenomena can originate from very different lengthscales in a material's structural architecture. We show how these new and natural materials can defeat the conflict of strength versus toughness and achieve unprecedented levels of damage tolerance within their respective material classes. C1 [Ritchie, Robert O.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ritchie, Robert O.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Ritchie, RO (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM RORitchie@lbl.gov RI Ritchie, Robert/A-8066-2008 OI Ritchie, Robert/0000-0002-0501-6998 FU Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Particular thanks to A. P. Tomsia and E. Launey for their help with this paper. NR 26 TC 388 Z9 394 U1 59 U2 457 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD NOV PY 2011 VL 10 IS 11 BP 817 EP 822 DI 10.1038/NMAT3115 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 841UR UT WOS:000296540900008 PM 22020005 ER PT J AU Watari, M McKendry, RA Vogtli, M Aeppli, G Soh, YA Shi, XW Xiong, G Huang, XJ Harder, R Robinson, IK AF Watari, Moyu McKendry, Rachel A. Voegtli, Manuel Aeppli, Gabriel Soh, Yeong-Ah Shi, Xiaowen Xiong, Gang Huang, Xiaojing Harder, Ross Robinson, Ian K. TI Differential stress induced by thiol adsorption on facetted nanocrystals SO NATURE MATERIALS LA English DT Article ID SELF-ASSEMBLED MONOLAYERS; SURFACE STRESS; CANTILEVER ARRAYS; PHASE RETRIEVAL; GOLD; BINDING; STRAIN AB Polycrystalline gold films coated with thiol-based self-assembled monolayers (SAM) form the basis of a wide range of nanomechanical sensor platforms(1). The detection of adsorbates with such devices relies on the transmission of mechanical forces, which is mediated by chemically derived stress at the organic-inorganic interface. Here, we show that the structure of a single 300-nm-diameter facetted gold nanocrystal, measured with coherent X-ray diffraction, changes profoundly after the adsorption of one of the simplest SAM-forming organic molecules. On self-assembly of propane thiol, the crystal's flat facets contract radially inwards relative to its spherical regions. Finite-element modelling indicates that this geometry change requires large stresses that are comparable to those observed in cantilever measurements. The large magnitude and slow kinetics of the contraction can be explained by an intermixed gold-sulphur layer that has recently been identified crystallographically(2). Our results illustrate the importance of crystal edges and grain boundaries in interface chemistry and have broad implications for the application of thiol-based SAMs, ranging from nanomechanical sensors to coating technologies. C1 [Watari, Moyu; McKendry, Rachel A.; Voegtli, Manuel; Aeppli, Gabriel; Shi, Xiaowen; Xiong, Gang; Huang, Xiaojing; Robinson, Ian K.] UCL, London Ctr Nanotechnol, London WC1E 6BT, England. [Soh, Yeong-Ah] Univ London Imperial Coll Sci Technol & Med, London Ctr Nanotechnol, London SW7 2AZ, England. [Harder, Ross] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Watari, M (reprint author), UCL, London Ctr Nanotechnol, Mortimer St, London WC1E 6BT, England. EM i.robinson@ucl.ac.uk RI Huang, Xiaojing/K-3075-2012 OI Huang, Xiaojing/0000-0001-6034-5893 FU European Research Council; UK Engineering and Physical Sciences Research Council FX Work supported by the 'nanosculpture' Advanced Grant from the European Research Council, a Science and Innovation Award for Nanometrology and a Nanotechnology 'Grand Challenge in Healthcare' award from the UK Engineering and Physical Sciences Research Council. Measurements were carried out at APS, which is operated by the US Department of Energy. NR 30 TC 34 Z9 34 U1 4 U2 56 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD NOV PY 2011 VL 10 IS 11 BP 862 EP 866 DI 10.1038/NMAT3124 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 841UR UT WOS:000296540900016 PM 21946612 ER PT J AU Long, BW van Kolck, U AF Long, Bingwei van Kolck, U. TI The role of the Roper in chiral perturbation theory SO NUCLEAR PHYSICS A LA English DT Article DE Chiral perturbation theory; Effective field theory; The Roper resonance ID PION-NUCLEON SCATTERING; FIELD-THEORY; LAGRANGIANS; FORCES; MASS; DELTA(1232)-RESONANCE; RESONANCES; DYNAMICS; SYMMETRY AB We include the Roper excitation of the nucleon in a version of heavy-baryon chiral perturbation theory recently developed for energies around the delta resonance. We find significant improvement in the P(11) channel. (C) 2011 Elsevier B.V. All rights reserved. C1 [Long, Bingwei] EBAC, Jefferson Lab, Newport News, VA 23606 USA. [Long, Bingwei] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, TN, Italy. [van Kolck, U.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [van Kolck, U.] Univ Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, Brazil. RP Long, BW (reprint author), EBAC, Jefferson Lab, 12000 Jefferson Ave,Suite 1, Newport News, VA 23606 USA. EM bingwei@jlab.org FU US DOE [DE-AC05-06OR23177, DE-FG02-04ER41338] FX We thank Silas Beane for useful comments. We are grateful to the following institutions for hospitality while this work was being carried out: the Kernfysisch Versneller Instituut at Rijk-suniversiteit Groningen (UvK), the National Institute for Nuclear Theory at the University of Washington (BwL, UvK), and the University of Arizona (BwL). This work was supported by the US DOE under contracts DE-AC05-06OR23177 (BwL) and DE-FG02-04ER41338 (UvK). This work is coauthored by Jefferson Science Associates, LLC under US DOE Contract No. DE-AC05-06OR23177 NR 57 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 J9 NUCL PHYS A JI Nucl. Phys. A PD NOV PY 2011 VL 870-71 BP 72 EP 82 DI 10.1016/j.nuclphysa.2011.09.002 PG 11 WC Physics, Nuclear SC Physics GA 847DA UT WOS:000296950900005 ER PT J AU Ponsoda, JJMI Ye, CG Koplow, JP Soderlund, MJ Koponen, JJ Honkanen, S AF Montiel i Ponsoda, Joan J. Ye, Changgeng Koplow, Jeffrey P. Soderlund, Mikko J. Koponen, Joona J. Honkanen, Seppo TI Analysis of temperature dependence of photodarkening in ytterbium-doped fibers SO OPTICAL ENGINEERING LA English DT Article DE fiber lasers; rare-earth-doped materials; ytterbium; photodarkening; thermal effects ID SILICA FIBERS; POWER; LASERS AB We examine the temperature dependence of photodarkening in ytterbium-doped silica fibers. A sequence of consecutive photodarkening experiments are performed over the same fiber sample, which shows good repeatability with no apparent changes in the glass structure. We find that during infrared irradiation, the level of saturation of the losses can be determined by the fiber core temperature, independent of the previous state of photodarkening losses and fiber temperature, and also at low temperatures where the thermal bleaching is not activated. We observe that variations in the fiber core temperature, induced by pump absorption due to photodarkening, affect the inversion level and photodarkening processes. These effects in turn cause a discrepancy in determining the ion dependence. We highlight the importance of performing the experiments under isothermal conditions and we propose a new approach to control the fiber temperature at room temperature and at elevated temperatures. The approach is based on an isothermal Galinstan bath. The appropriateness of this method is shown by comparing it to different cooling methods, and the results are supported by simulations. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3640856] C1 [Montiel i Ponsoda, Joan J.; Ye, Changgeng; Honkanen, Seppo] Aalto Univ, Dept Micro & Nanosci, FIN-02150 Espoo, Finland. [Koplow, Jeffrey P.] Sandia Natl Labs, Livermore, CA 94551 USA. [Soderlund, Mikko J.] Beneq Oy, FIN-01510 Vantaa, Finland. [Koponen, Joona J.] NLIGHT Corp, FIN-08500 Lohja, Finland. [Honkanen, Seppo] Univ Eastern Finland, Dept Math & Phys, FIN-80101 Joensuu, Finland. RP Ponsoda, JJMI (reprint author), Aalto Univ, Dept Micro & Nanosci, Tietotie 3, FIN-02150 Espoo, Finland. EM joan.montiel@aalto.fi FU Finnish Funding Agency for Technology and Innovation (TEKES); nLIGHT; Beneq FX Finnish Funding Agency for Technology and Innovation (TEKES), nLIGHT, and Beneq are gratefully acknowledged for their financial support. We also thank Ari Tervonen for helpful discussions. NR 19 TC 4 Z9 4 U1 1 U2 9 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD NOV PY 2011 VL 50 IS 11 AR 111610 DI 10.1117/1.3640856 PG 9 WC Optics SC Optics GA 847KK UT WOS:000296971600014 ER PT J AU Soh, DBS Koplow, JP AF Soh, Daniel B. S. Koplow, Jeffrey P. TI Analysis of spectral broadening of incoherent light in optical fibers with nonzero dispersion SO OPTICAL ENGINEERING LA English DT Article DE nonlinear optics; wave mixing ID MULTIPLE 4-WAVE-MIXING PROCESSES; SINGLE-MODE FIBER; LASERS; TURBULENCE AB Fiber dispersion plays a significant role in spectral broadening of incoherent continuous-wave light. We develop a self-consistent stochastic model for spectral broadening of incoherent continuous-wave light through nonlinear wave mixing and apply this model to numerical simulations of spectral broadening in a continuous-wave fiber Raman laser. The results of these numerical simulations agree very well with carefully conducted laboratory measurements. Under a wide range of operating conditions, these numerical simulations also exhibit striking features, such as damped oscillatory spectral broadening (during the initial stages of propagation) and eventual convergence to a stationary, steady-state spectral distribution at sufficiently long propagation distances. We analyze the important role of fiber dispersion in such phenomena. We also derive an analytical rate equation expression for spectral broadening, whose numerical evaluation is far less computationally intensive than the fully stochastic simulation, and a mathematical criterion for the applicability of this analytical expression. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3609811] C1 [Soh, Daniel B. S.; Koplow, Jeffrey P.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Soh, DBS (reprint author), Sandia Natl Labs, 7011 East Ave, Livermore, CA 94550 USA. EM dbsoh@sandia.gov FU Laboratory Directed Research and Development, Sandia National Laboratories, U.S. Department of Energy [DE-AC04-94AL85000] FX The authors thank Roger L. Farrow for valuable discussions. We also thank Sean W. Moore and Kevin L. Schroder for their various support. This research was supported by Laboratory Directed Research and Development, Sandia National Laboratories, U.S. Department of Energy, under Contract No. DE-AC04-94AL85000. NR 21 TC 2 Z9 3 U1 0 U2 5 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 J9 OPT ENG JI Opt. Eng. PD NOV PY 2011 VL 50 IS 11 AR 111602 DI 10.1117/1.3609811 PG 16 WC Optics SC Optics GA 847KK UT WOS:000296971600006 ER PT J AU Armstead, WM Ganguly, K Riley, J Kiessling, JW Cines, DB Higazi, AAR Zaitsev, S Muzykantov, VR AF Armstead, William M. Ganguly, Kumkum Riley, John Kiessling, J. Willis Cines, Douglas B. Higazi, Abd A. R. Zaitsev, Sergei Muzykantov, Vladimir R. TI Red blood cell-coupled tissue plasminogen activator prevents impairment of cerebral vasodilatory responses through inhibition of c-Jun-N-terminal kinase and potentiation of p38 mitogen-activated protein kinase after cerebral photothrombosis in the newborn pig SO PEDIATRIC CRITICAL CARE MEDICINE LA English DT Article DE cerebral hemodynamics; pediatric; plasminogen activators; signal transduction; stroke ID PROPHYLACTIC FIBRINOLYSIS; ISCHEMIC-STROKE; INFANT PIGLETS; ERK MAPK; HYPOXIA/ISCHEMIA; INJURY; BRAIN; CEREBROVASODILATION; THROMBOPROPHYLAXIS; THROMBOLYSIS AB Objective: Pediatric ischemic stroke is a poorly understood, yet clinically important, problem. The sole approved treatment for acute stroke is tissue-type plasminogen activator. However, tissue plasminogen activator vasoactivity aggravates hypoxia/ischemia-induced impairment of cerebrovasodilation in response to hypercapnia and hypotension in newborn pigs. Mitogen-activated protein kinase (a family of 3 kinases, extracellular signal-related kinase, p38, and c-Jun-N-terminal kinase) is upregulated after hypoxia/ischemia. Coupling of tissue plasminogen activator to red blood cells prevented hypoxia/ischemia-induced impairment of dilation and suppressed extracellular signal-related kinase mitogen-activated protein kinase activation. This study investigated the differential roles of mitogen-activated protein kinase isoforms in the effects of red blood cells-tissue plasminogen activator on cerebrovasodilation in a translationally relevant injury model, photothrombosis. Design: Prospective, randomized animal study. Setting: University laboratory. Subjects: Newborn (1- to 5-day-old) pigs. Interventions: Cerebral blood flow and pial artery diameter were determined before and after photothrombotic injury (laser 532 nm and erythrosine B) was produced in piglets equipped with a closed cranial window. Cerebral blood flow extracellular signal-related kinase, p38, and c-Jun-N-terminal kinase mitogen-activated protein kinase were determined by enzyme-linked immunosorbent assay. Measurements and Main Results: Tissue plasminogen activator and red blood cells-tissue plasminogen activator alleviated reduction of cerebral blood flow after photothrombotic injury. Cerebrovasodilation was blunted by photothrombotic injury, reversed to vasoconstriction by tissue plasminogen activator, but dilation was maintained by red blood cells-tissue plasminogen activator. Cerebral blood flow c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase but not extracellular signal-related kinase mitogen-activated protein kinase was elevated by photothrombotic injury, an effect potentiated by tissue plasminogen activator. Red blood cells-tissue plasminogen activator blocked c-Jun-N-terminal kinase but potentiated p38 mitogen-activated protein kinase upregulation after photothrombotic injury. A c-Jun-N-terminal kinase mitogen-activated protein kinase antagonist prevented, a p38 mitogen-activated protein kinase antagonist potentiated, whereas an extracellular signal-related kinase mitogen-activated protein kinase antagonist had no effect on dilator impairment after photothrombotic injury. Conclusions: These data indicate that in addition to restoring perfusion, red blood cells-tissue plasminogen activator prevents impairment of cerebrovasodilation after photothrombotic injury through blockade of c-Jun-N-terminal kinase and potentiation of p38 mitogen-activated protein kinase. These data suggest tissue plasminogen activator coupling to red blood cells offers a novel approach to increase the benefit/risk ratio of thrombolytic therapy to treat central nervous system ischemic disorders. (Pediatr Crit Care Med 2011; 12:e369-e375) C1 [Armstead, William M.; Riley, John; Kiessling, J. Willis] Univ Penn, Dept Anesthesiol & Crit Care, Philadelphia, PA 19104 USA. [Armstead, William M.; Zaitsev, Sergei; Muzykantov, Vladimir R.] Univ Penn, Dept Pharmacol, Philadelphia, PA 19104 USA. [Cines, Douglas B.; Higazi, Abd A. R.] Univ Penn, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA. [Zaitsev, Sergei; Muzykantov, Vladimir R.] Univ Penn, Inst Environm Med, Philadelphia, PA 19104 USA. [Muzykantov, Vladimir R.] Univ Penn, Inst Translat Med & Therapeut, Philadelphia, PA 19104 USA. [Ganguly, Kumkum] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Higazi, Abd A. R.] Hadassah Univ Hosp, Dept Clin Biochem, IL-91120 Jerusalem, Israel. Hebrew Univ Hadassah Med Sch, Jerusalem, Israel. RP Armstead, WM (reprint author), Univ Penn, Dept Anesthesiol & Crit Care, Philadelphia, PA 19104 USA. EM armsteaw@uphs.upenn.edu FU National Institutes of Health [NS53410, HD57355, HL76406, CA83121, HL76206, HL07971, HL81864, HL77760, HL82545, HL66442, HL090697]; University of Pennsylvania Research Foundation; University of Pennsylvania Institute for Translational Medicine and Therapeutics; Israeli Science Foundation FX This research was supported by grants from the National Institutes of Health, NS53410 and HD57355 (W.M.A.); HL76406, CA83121, HL76206, HL07971, and HL81864 (D.B.C.); HL77760 and HL82545 (A.A.R.H.); HL66442 and HL090697 (V.R.M.); the University of Pennsylvania Research Foundation (W.M.A.); the University of Pennsylvania Institute for Translational Medicine and Therapeutics (D.B.C.); and the Israeli Science Foundation (A.A.R.H.). NR 24 TC 6 Z9 6 U1 0 U2 3 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1529-7535 J9 PEDIATR CRIT CARE ME JI Pediatr. Crit. Care Med. PD NOV PY 2011 VL 12 IS 6 BP E369 EP E375 DI 10.1097/PCC.0b013e3181fe40a7 PG 7 WC Critical Care Medicine; Pediatrics SC General & Internal Medicine; Pediatrics GA 844SP UT WOS:000296767900026 PM 21037505 ER PT J AU Glatz, A Roberts, HLL Aranson, IS Levin, K AF Glatz, A. Roberts, H. L. L. Aranson, I. S. Levin, K. TI Nucleation of spontaneous vortices in trapped Fermi gases undergoing a BCS-BEC crossover SO PHYSICAL REVIEW B LA English DT Article ID QUANTIZED VORTICES; STRING FORMATION; SUPERFLUID HE-3; TEMPERATURE; TRANSITION; QUENCH AB We study the spontaneous formation of vortices during the superfluid condensation in a trapped fermionic gas subjected to a rapid thermal quench via evaporative cooling. Our work is based on the numerical solution of the time-dependent crossover Ginzburg-Landau equation coupled to the heat diffusion equation. We quantify the evolution of condensate density and vortex length as a function of a crossover phase parameter from BCS to BEC. The more interesting phenomena occur somewhat nearer to the BEC regime and should be experimentally observable; during the propagation of the cold front, the increase in condensate density leads to the formation of supercurrents toward the center of the condensate as well as possible condensate volume oscillations. C1 [Glatz, A.; Aranson, I. S.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Roberts, H. L. L.; Levin, K.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Roberts, H. L. L.; Levin, K.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Roberts, H. L. L.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Glatz, A (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. RI Aranson, Igor/I-4060-2013 FU US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DEAC02-06CH11357]; NSF-MRSEC [0820054] FX We thank Kara Lamb, Matt Davis, Chih-Chun Chien, and Nate Gemelke for useful discussions. This work was supported by the by the US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Contract No. DEAC02-06CH11357, and by NSF-MRSEC Grant No. 0820054 (K.L.). NR 20 TC 6 Z9 6 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9950 EI 2469-9969 J9 PHYS REV B JI Phys. Rev. B PD NOV 1 PY 2011 VL 84 IS 18 AR 180501 DI 10.1103/PhysRevB.84.180501 PG 4 WC Physics, Condensed Matter SC Physics GA 845XT UT WOS:000296861400001 ER PT J AU Ran, Y Hosur, P Vishwanath, A AF Ran, Ying Hosur, Pavan Vishwanath, Ashvin TI Fermionic Hopf solitons and Berry phase in topological surface superconductors SO PHYSICAL REVIEW B LA English DT Article ID INSULATORS; SPIN; SKYRMIONS; DIMENSIONS; INTEGER; LIMIT AB An interesting phenomenon in many-body physics is that quantum statistics may be an emergent property. This was first noted in the Skyrme model of nuclear matter, where a theory of a bosonic order parameter field contains fermionic excitations. These excitations are smooth field textures and are believed to describe neutrons and protons. We argue that a similar phenomenon occurs in topological insulators when superconductivity gaps out their surface states. Here, a smooth texture is naturally described by a three-component vector. Two components describe superconductivity, while the third captures the band topology. Such a vector field can assume a "knotted" configuration in three-dimensional space-the Hopf texture-that cannot smoothly be unwound. Here we show that the Hopf texture is a fermion. To describe the resulting state, the regular Landau-Ginzburg theory of superconductivity must be augmented by a topological Berry phase term. When the Hopf texture is the cheapest fermionic excitation, unusual consequences for tunneling experiments on mesoscopic samples are predicted. This framework directly generalizes the phenomenon of period doubling of Josephson effect to three-dimensional topological insulators with surface superconductivity. C1 [Ran, Ying; Hosur, Pavan; Vishwanath, Ashvin] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ran, Ying; Vishwanath, Ashvin] LBNL Berkeley, Div Mat Sci, Berkeley, CA 94720 USA. RP Ran, Y (reprint author), Boston Coll, Dept Phys, Chestnut Hill, MA 02467 USA. FU NSF [DMR-0645691] FX We acknowledge helpful discussions with C. Kane, A. Turner, and S. Ryu. A.V. and P.H. were supported by NSF DMR-0645691. NR 26 TC 10 Z9 10 U1 0 U2 4 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 1 PY 2011 VL 84 IS 18 AR 184501 DI 10.1103/PhysRevB.84.184501 PG 9 WC Physics, Condensed Matter SC Physics GA 845XT UT WOS:000296861400003 ER PT J AU Soeder, DJ AF Soeder, Daniel J. TI Environmental impacts of shale-gas production SO PHYSICS TODAY LA English DT Letter C1 US DOE, Morgantown, WV 26507 USA. RP Soeder, DJ (reprint author), US DOE, Morgantown, WV 26507 USA. EM daniel.soeder@netl.doe.gov NR 3 TC 1 Z9 1 U1 2 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0031-9228 J9 PHYS TODAY JI Phys. Today PD NOV PY 2011 VL 64 IS 11 BP 8 EP 8 PG 1 WC Physics, Multidisciplinary SC Physics GA 847EI UT WOS:000296954300001 ER PT J AU White, AE Howard, NT Mikkelsen, DR Greenwald, M Candy, J Waltz, RE AF White, A. E. Howard, N. T. Mikkelsen, D. R. Greenwald, M. Candy, J. Waltz, R. E. TI Feasibility study for a correlation electron cyclotron emission turbulence diagnostic based on nonlinear gyrokinetic simulations SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID ALCATOR C-MOD; EXPERIMENTAL TOKAMAK-UPGRADE; TEMPERATURE-FLUCTUATIONS; CORRELATION RADIOMETRY; HEAT-TRANSPORT; CORE; PLASMA; RESOLUTION; PROFILE; ECE AB This paper describes the use of nonlinear gyrokinetic simulations to assess the feasibility of a new correlation electron cyclotron emission (CECE) diagnostic that has been proposed for the Alcator C-Mod tokamak (Marmar et al 2009 Nucl. Fusion 49 104014). This work is based on a series of simulations performed with the GYRO code (Candy andWaltz 2003 J. Comput. Phys. 186 545). The simulations are used to predict ranges of fluctuation level, peak poloidal wavenumber and radial correlation length of electron temperature fluctuations in the core of the plasma. The impact of antenna pattern and poloidal viewing location on measurable turbulence characteristics is addressed using synthetic diagnostics. An upper limit on the CECE sample volume size is determined. The modeling results show that a CECE diagnostic capable of measuring transport-relevant, long-wavelength (k(theta)rho(s) < 0.5) electron temperature fluctuations is feasible at Alcator C-Mod. C1 [White, A. E.; Howard, N. T.; Greenwald, M.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Mikkelsen, D. R.] Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Candy, J.; Waltz, R. E.] Gen Atom Co, San Diego, CA 92186 USA. RP White, AE (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM whitea@mit.edu RI White, Anne/B-8990-2011; OI Greenwald, Martin/0000-0002-4438-729X FU US Department of Energy [DE-FC02-99ER54512-CMOD] FX AEW gratefully acknowledges insightful discussions with D Ernst and C Holland about turbulence as observed in nonlinear gyrokinetic simulations of Alcator C-Mod plasmas, as well as helpful comments and suggestions from A Hubbard, I H Hutchinson and P Phillips on the topic of ECE measurement interpretation. This work is supported by the US Department of Energy under DE-FC02-99ER54512-CMOD. Computer simulations using GYRO were carried out on the MIT PSFC parallel AMD Opteron/Infiniband cluster Loki. NR 44 TC 4 Z9 4 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD NOV PY 2011 VL 53 IS 11 AR 115003 DI 10.1088/0741-3335/53/11/115003 PG 24 WC Physics, Fluids & Plasmas SC Physics GA 842MI UT WOS:000296603200004 ER PT J AU Tapily, K Gu, D Baumgart, H Namkoong, G Stegall, D Elmustafa, AA AF Tapily, K. Gu, D. Baumgart, H. Namkoong, G. Stegall, D. Elmustafa, A. A. TI Mechanical and structural characterization of atomic layer deposition-based ZnO films SO SEMICONDUCTOR SCIENCE AND TECHNOLOGY LA English DT Article ID THIN-FILMS; NANOINDENTATION; SILICON AB Zinc oxide thin films were deposited by atomic layer deposition (ALD). The structural and mechanical properties of the thin films were investigated by x-ray diffraction, transmission electron microscopy, atomic force microscopy, and nanoindentation. Diethyl zinc was used as the chemical precursor for zinc and water vapor was used as the oxidation agent. The samples were deposited at 150 degrees C and at a pressure of 2.1 x 10(-1) Torr in the ALD reactor. A growth rate of 2 angstrom per cycle was calculated in the ALD process window. The Nano Indenter XP was used in conjunction with the continuous stiffness method in depth control mode in order to measure and to analyze the mechanical properties of hardness and modulus of ALD ZnO thin film samples. For comparison, we benchmarked the mechanical properties of single crystal bulk ZnO samples against those of our ALD ZnO thin films. C1 [Tapily, K.; Gu, D.; Baumgart, H.; Namkoong, G.] Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA 23529 USA. [Tapily, K.; Gu, D.; Baumgart, H.; Namkoong, G.; Stegall, D.; Elmustafa, A. A.] Jefferson Natl Accelerator Facil, Appl Res Ctr, Newport News, VA 23606 USA. [Stegall, D.; Elmustafa, A. A.] Old Dominion Univ, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA. RP Tapily, K (reprint author), Old Dominion Univ, Dept Elect & Comp Engn, Norfolk, VA 23529 USA. EM ktapi001@odu.edu NR 23 TC 8 Z9 8 U1 3 U2 22 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0268-1242 J9 SEMICOND SCI TECH JI Semicond. Sci. Technol. PD NOV PY 2011 VL 26 IS 11 AR 115005 DI 10.1088/0268-1242/26/11/115005 PG 7 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Condensed Matter SC Engineering; Materials Science; Physics GA 844SU UT WOS:000296768400005 ER PT J AU Beechem, TE Serrano, JR AF Beechem, Thomas E. Serrano, Justin R. TI Raman Thermometry of Microdevices: Choosing a Method to Minimize Error SO SPECTROSCOPY LA English DT Article ID FIELD-EFFECT TRANSISTORS; TEMPERATURE-DEPENDENCE; SPECTROSCOPY; SCATTERING; SILICON; DEGRADATION; GRAPHENE; SPECTRA; DEVICES AB Operating temperatures are known to directly affect the performance and reliability of a range of modern microdevices, including light-emitting diodes (LEDs), microelectromechanical systems (MEMS), and high-power electronics. As a consequence, accurate temperature measurements have become imperative in the development of these technologies. Such measurements are complicated, however, by the complex multimaterial stacks typically used and by the fact that traditional probes (thermocouples) have a size and thermal mass on the order of the device being interrogated. In response to these difficulties, Raman thermometry is frequently implemented, because it is a non-contact, material-specific measurement largely benign to device operation that is capable of comparatively small spatial (similar to 500 nm) and thermal (similar to 1 degrees C) resolutions. Practically, these measurements can be made using a variety of spectral features including the position, linewidth, and intensity of the Raman signal associated with specific optical phonon modes. Each of these spectral characteristics offers particular advantages, depending on the type of device and its operational conditions. Here, the practical implementation of Raman thermometry using each of these spectral characteristics is reviewed to highlight the assumptions implicit with their use and to compare their effectiveness in measuring temperature. C1 [Beechem, Thomas E.; Serrano, Justin R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Beechem, TE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM tebeech@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; LDRD at Sandia National Laboratories FX This work was funded by the LDRD program office at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Special thanks to Professor Samuel Graham at the Georgia Institute of Technology for his insight and discussions into these phenomena. NR 35 TC 13 Z9 13 U1 1 U2 15 PU ADVANSTAR COMMUNICATIONS INC PI DULUTH PA 131 W 1ST STREET, DULUTH, MN 55802 USA SN 0887-6703 J9 SPECTROSCOPY-US JI Spectroscopy PD NOV PY 2011 VL 26 IS 11 BP 36 EP 44 PG 9 WC Spectroscopy SC Spectroscopy GA 847UZ UT WOS:000296999300004 ER PT J AU Mohandas, JC Gnanamani, MK Jacobs, G Ma, WP Ji, YY Khalid, S Davis, BH AF Mohandas, Janet Chakkamadathil Gnanamani, Muthu Kumaran Jacobs, Gary Ma, Wenping Ji, Yaying Khalid, Syed Davis, Burtron H. TI Fischer-Tropsch Synthesis: Characterization and Reaction Testing of Cobalt Carbide SO ACS CATALYSIS LA English DT Article DE carburization; cobalt carbide; cobalt; Fischer-Tropsch synthesis; XANES; EXAFS ID CATALYSTS; DEACTIVATION; OXIDATION; DESIGN; WATER; XAFS AB Hydrogenation of carbon monoxide was investigated for cobalt carbide synthesized from Co(3)O(4) by CO carburization in a fixed-bed reactor. The cobalt carbide synthesized was characterized by BET surface area, X-ray diffraction, scanning electron microscopy, X-ray absorption near edge spectroscopy, and extended X-ray absorption fine structure spectroscopy. The catalysts were tested in the slurry phase using a continuously stirred tank reactor at P = 2.0 MPa, H(2)/CO = 2:1 in the temperature range of 493-523 K, and with space velocities varying from 1 to 3 Nl h(-1) g(cat)(-1). The results strongly suggest that a fraction of cobalt converts to a form with greater metallic character under the conditions employed. This was more pronounced on a Fischer-Tropsch synthesis run conducted at a higher temperature (523 versus 493 K). C1 [Mohandas, Janet Chakkamadathil; Gnanamani, Muthu Kumaran; Jacobs, Gary; Ma, Wenping; Ji, Yaying; Davis, Burtron H.] Univ Kentucky, Ctr Appl Energy Res, Lexington, KY 40511 USA. [Khalid, Syed] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Davis, BH (reprint author), Univ Kentucky, Ctr Appl Energy Res, 2540 Res Pk Dr, Lexington, KY 40511 USA. EM burtron.davis@uky.edu RI C. Mohandas, Janet/D-4625-2015; Gnanamani, Muthu Kumaran/M-7736-2015; Jacobs, Gary/M-5349-2015 OI C. Mohandas, Janet/0000-0001-9088-4142; Gnanamani, Muthu Kumaran/0000-0003-1274-2645; Jacobs, Gary/0000-0003-0691-6717 FU Commonwealth of Kentucky; U.S. DOE, Divisions of Materials Science and Chemical Sciences FX This work was supported by the Commonwealth of Kentucky. A part of the research was carried out at the National Synchrotron Light Source, Brookhaven National Laboratory, which is supported by the U.S. DOE, Divisions of Materials Science and Chemical Sciences. NR 26 TC 27 Z9 27 U1 16 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2011 VL 1 IS 11 BP 1581 EP 1588 DI 10.1021/cs200236q PG 8 WC Chemistry, Physical SC Chemistry GA 842KJ UT WOS:000296598000015 ER PT J AU Aydin, C Lu, J Shirai, M Browning, ND Gates, BC AF Aydin, Ceren Lu, Jing Shirai, Masayuki Browning, Nigel D. Gates, Bruce C. TI Ir-6 Clusters Compartmentalized in the Supercages of Zeolite NaY: Direct Imaging of a Catalyst with Aberration-Corrected Scanning Transmission Electron Microscopy SO ACS CATALYSIS LA English DT Article DE hexairidium clusters; zeolite NaY; aberration-corrected scanning transmission electron microscopy; zeolite-encaged nanoclusters ID RAY-ABSORPTION SPECTROSCOPY; SUPPORTED METAL-CLUSTERS; IRIDIUM CLUSTERS; STRUCTURAL-CHARACTERIZATION; ETHENE HYDROGENATION; SIZE; COMPLEXES; NANOPARTICLES; MESOPORES AB By use of the precursor Ir(CO)(2)(acac) (acac is acetylacetonate), a ship-in-a-bottle synthesis was used to prepare Ir-6(CO)(16) and, by decarbonylation, clusters well approximated as Ir-6 in the supercages of zeolite NaY. The samples were characterized by infrared and extended X-ray absorption fine structure (EXAFS) spectroscopies and imaged by aberration-corrected scanning transmission electron microscopy with a high-dose electron beam (similar to 10(8) e(-)/angstrom(2), 200 kV), and the catalyst performance was characterized by turnover frequencies for ethene hydrogenation at 298 K and atmospheric pressure. The images characterizing a sample with about 17% of the supercages occupied by decarbonylated nanoclusters indicated clusters well approximated as Ir-6, with diameters consistent with such clusters, and some of the images show the clusters with atomic resolution and indicating each of the 6 Ir atoms. The cluster size was confirmed by EXAFS spectra. Two bonding positions of the Ir6 clusters in the supercages were distinguished; 25% of the clusters were present at T5 sites and 75% at T6 sites. The results represent the first example of the application of high-dose electron beam conditions to image metal nanoclusters in a nanoporous material; the data are characterized by a high signal-to-noise ratio, and their interpretation does not require any image processing or simulations. These statements are based on images determined in the first 5 s of exposure of the catalyst to the electron beam; thereafter, the electron beam caused measurable deterioration of the zeolite framework and thereupon aggregation of the iridium clusters. C1 [Aydin, Ceren; Lu, Jing; Browning, Nigel D.; Gates, Bruce C.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [Shirai, Masayuki] Natl Inst Adv Ind Sci & Technol, Res Ctr Compact Chem Syst, Sendai, Miyagi 9838551, Japan. [Browning, Nigel D.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Gates, BC (reprint author), Univ Calif Davis, Dept Chem Engn & Mat Sci, 1 Shields Ave, Davis, CA 95616 USA. EM bcgates@ucdavis.edu OI Browning, Nigel/0000-0003-0491-251X FU Department of Energy (DOE) [DE-SC0005822, DE-FG02-03ER46057]; University of California; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; DOE Office of Science, Materials Sciences FX This work was supported by the Department of Energy (DOE), Grant No. DE-SC0005822 (J.L.) and Grant No. DE-FG02-03ER46057 (C.A.), and the University of California Lab Fee Program. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.; We thank C.-Y. Chen of Chevron for helpful comments. We acknowledge beam time and support of the DOE Office of Science, Materials Sciences, for its role in the operation and development of beam line X-18B at the National Synchrotron Light Source. NR 36 TC 14 Z9 14 U1 1 U2 49 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2011 VL 1 IS 11 BP 1613 EP 1620 DI 10.1021/cs2004104 PG 8 WC Chemistry, Physical SC Chemistry GA 842KJ UT WOS:000296598000019 ER PT J AU Manna, K Kruse, ML Sadow, AD AF Manna, Kuntal Kruse, Marissa L. Sadow, Aaron D. TI Concerted C-N/C-H Bond Formation in Highly Enantioselective Yttrium(III)-Catalyzed Hydroamination SO ACS CATALYSIS LA English DT Article DE hydroamination; enantioselectivity; pyrrolidine; rare-earth; organometallics; mechanism ID ORGANOLANTHANIDE-CATALYZED HYDROAMINATION; COMPREHENSIVE COMPUTATIONAL ASSESSMENT; UNPROTECTED AMINO OLEFINS; AMINOALKENE HYDROAMINATION/CYCLIZATION; INTRAMOLECULAR AMINOALKENE; MEDIATED HYDROAMINATION; COMPLEXES; MECHANISM; POLYMERIZATION; HYDROGENATION AB A highly active oxazolinylborato yttrium hydroamination catalyst provides 2-methyl-pyrrolidines with excellent optical purities. The proposed mechanism, in which a yttrium(amidoalkene)amine complex reacts by concerted C-N and C-H bond formation, is supported by the rate law for conversion, substrate saturation under initial rates conditions, kinetic isotope effects, and isotopic perturbation of enantioselectivity. These features are conserved between oxazolinylborato Mg-, Y-, and Zr-mediated aminoalkene cyclizations, suggesting related transition states for all three systems. However, inversion of the products' absolute configuration between yttrium and zirconium catalysts coordinated by the same 4S-oxazolinylborate ligands highlight dissimilar mechanisms of stereoinduction. C1 [Sadow, Aaron D.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RP Sadow, AD (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM sadow@iastate.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory [DE-AC02-07CH11358]; U.S. DOE Office of Science through the Science Undergraduate Laboratory FX This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory (Contract No. DE-AC02-07CH11358). Marissa Kruse was supported by the U.S. DOE Office of Science through the Science Undergraduate Laboratory Internship Program. Aaron D. Sadow is an Alfred P. Sloan Fellow. NR 33 TC 39 Z9 39 U1 1 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2011 VL 1 IS 11 BP 1637 EP 1642 DI 10.1021/cs200511z PG 6 WC Chemistry, Physical SC Chemistry GA 842KJ UT WOS:000296598000022 ER PT J AU Zheng, YZ Ellern, A Kogerler, P AF Zheng, Yanzhen Ellern, Arkady Koegerler, Paul TI A spin-frustrated cobalt(II) carbonate pyrochlore network SO ACTA CRYSTALLOGRAPHICA SECTION C-CRYSTAL STRUCTURE COMMUNICATIONS LA English DT Article AB The crystal structure of the cobalt(II) carbonate-based compound cobalt(II) dicarbonate trisodium chloride, Co(CO3)(2)Na3Cl, grown from a water-ethanol mixture, exhibits a three-dimensional network of corner-sharing {Co-4(mu(3)-CO3)(4)} tetrahedral building blocks, in which the Co-II centres define a pyrochlore lattice and reside in a slightly distorted octahedral Co(O-CO2)(6) environment. The space outside the hexagonal framework defined by these interlinked groups is occupied by Na+ and Cl- ions. Antiferromagnetic coupling between adjacent Co II centres, mediated by carbonate bridges, results in geometric spin frustration which is typical for pyrochlore networks. The Co and Cl atoms reside on the special position (3) over bar, one Na atom on position 2 and a carbonate C atom on position 3. C1 [Zheng, Yanzhen; Koegerler, Paul] Rhein Westfal TH Aachen, Inst Inorgan Chem, D-52074 Aachen, Germany. [Ellern, Arkady] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Kogerler, P (reprint author), Rhein Westfal TH Aachen, Inst Inorgan Chem, Landoltweg 1, D-52074 Aachen, Germany. EM paul.koegerler@ac.rwth-aachen.de RI Zheng, Yan-Zhen/A-1917-2011; Kogerler, Paul/H-5866-2013 OI Zheng, Yan-Zhen/0000-0003-4056-097X; Kogerler, Paul/0000-0001-7831-3953 FU US Department of Energy by Iowa State University [DE-AC02-07CH11358] FX Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract 40 No. DE-AC02-07CH11358. NR 10 TC 6 Z9 6 U1 1 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0108-2701 J9 ACTA CRYSTALLOGR C JI Acta Crystallogr. Sect. C-Cryst. Struct. Commun. PD NOV PY 2011 VL 67 BP I56 EP I58 DI 10.1107/S0108270111043605 PN 11 PG 3 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 844HO UT WOS:000296738500002 PM 22051946 ER PT J AU Liu, B Raabe, D Eisenlohr, P Roters, F Arsenlis, A Hommes, G AF Liu, B. Raabe, D. Eisenlohr, P. Roters, F. Arsenlis, A. Hommes, G. TI Dislocation interactions and low-angle grain boundary strengthening SO ACTA MATERIALIA LA English DT Article DE Dislocation dynamics; Strength; Dislocation reactions; Dislocation interactions; Low-angle grain boundary ID CRYSTAL PLASTICITY; FCC METALS; SIMULATIONS; DYNAMICS; JUNCTIONS; DEFORMATION; SCALE; IRON; FLOW AB The transmission of an incoming dislocation through a symmetrical low-angle tilt grain boundary (GB) is studied for {110} < 111 > slip systems in body-centered cubic metals using discrete dislocation dynamics (DD) simulations. The transmission resistance is quantified in terms of the different types of interactions between the incoming and GB dislocations. Five different dislocation interaction types are considered: collinear, mixed-symmetrical junction, mixed-asymmetrical junction, edge junction, and coplanar. Mixed-symmetrical junction formation events are found not only to cause a strong resistance against the incident dislocation penetration, but also to transform the symmetrical low-angle tilt GB into a hexagonal network (a general low-angle GB). The interactions between the incident dislocation and the GB dislocations can form an array of < 100 > dislocations (binary junctions) in non-coplanar interactions, or a single < 100 > dislocation in coplanar interaction. We study how the transmission resistance depends on the mobility of < 100 > dislocations. < 100 > dislocations have usually been treated as immobile in DD simulations. In this work, we discuss and implement the mobility law for < 100 > dislocations. As an example, we report how the mobility of < 100 > dislocations affects the equilibrium configuration of a ternary dislocation interaction. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Liu, B.; Raabe, D.; Eisenlohr, P.; Roters, F.] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany. [Arsenlis, A.; Hommes, G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Liu, B (reprint author), Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany. EM b.liu@mpie.de; d.raabe@mpie.de RI Liu, Bing/F-8467-2011; Eisenlohr, Philip/E-6866-2010; Raabe, Dierk/A-6470-2009 OI Liu, Bing/0000-0002-2508-7013; Eisenlohr, Philip/0000-0002-8220-5995; Raabe, Dierk/0000-0003-0194-6124 FU Julich Supercomputing Centre [PRA025] FX Some results addressed in this paper have been achieved using the PRACE Research Infrastructure Blue Gene/P located in Germany at the Julich Supercomputing Centre through the grant (PRA025) 'A dislocation dynamics study of dislocation cell formation and interaction between a low angle grain boundary and an incoming dislocation'. NR 30 TC 29 Z9 30 U1 7 U2 67 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD NOV PY 2011 VL 59 IS 19 BP 7125 EP 7134 DI 10.1016/j.actamat.2011.07.067 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 839YK UT WOS:000296405200001 ER PT J AU Unocic, RR Zhou, N Kovarik, L Shen, C Wang, Y Mills, MJ AF Unocic, R. R. Zhou, N. Kovarik, L. Shen, C. Wang, Y. Mills, M. J. TI Dislocation decorrelation and relationship to deformation microtwins during creep of a gamma ' precipitate strengthened Ni-based superalloy SO ACTA MATERIALIA LA English DT Article DE Creep; Microtwinning; Shockley partial dislocations; Diffusion; Atomic ordering ID SINGLE-CRYSTAL SUPERALLOYS; NICKEL-BASED SUPERALLOYS; PHASE FIELD MODEL; STACKING-FAULTS; INTERMEDIATE TEMPERATURE; FCC CRYSTALS; MECHANISMS; SHEAR; CMSX-4; SLIP AB The evolution of microtwins during high temperature creep deformation in a gamma' strengthened Ni-based superalloy has been investigated through a combination of creep testing, transmission electron microscopy (TEM), theoretical modeling, and computer simulation. Experimentally, microtwin nucleation sources were identified and their evolution was tracked by characterizing the deformation substructure at different stages of creep deformation. Deformation is highly localized around stress concentrators such as carbides, borides and serrated grain boundaries, which act as sources of a/2 < 1 1 0 > matrix-type dislocations. Due to fine channels between the gamma' particles, coupled with a low gamma matrix stacking fault energy, the a/2 < 1 1 0 > matrix dislocations dissociate into a/6 < 1 1 2 > Shockley partials, which were commonly observed to be decorrelated from one another, creating extended intrinsic stacking faults in the gamma matrix. Microtwins are common and form via Shockley partial dislocations, cooperatively shearing both the gamma and gamma' phases on adjacent {1 1 1} glide planes. The TEM observations lead directly to an analysis of dislocation-precipitate interactions. The important processes of dislocation dissociation and decorrelation were modeled in detail through phase field simulations and theoretical analyses based on Orowan looping, providing a comprehensive insight into the microstructural features and applied stress conditions that favor the microtwinning deformation mode in gamma' strengthened Ni-based superalloys. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Unocic, R. R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Unocic, R. R.; Zhou, N.; Kovarik, L.; Wang, Y.; Mills, M. J.] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA. [Kovarik, L.] Pacific NW Natl Lab, EMSL, Richland, WA 99352 USA. [Shen, C.] GE Global Res, Niskayuna, NY 12309 USA. RP Unocic, RR (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM unocicrr@ornl.gov RI Zhou, Ning/B-2624-2010; Mills, Michael/I-6413-2013; Wang, Yunzhi/B-2557-2010; Kovarik, Libor/L-7139-2016; OI Unocic, Raymond/0000-0002-1777-8228 FU US Air ForceAir Force Office of Scientific Research; Oak Ridge National Laboratory FX Acknowledgement is given to support from the US Air Force sponsored Metals Affordability Initiative (MAI) project entitled "Durable high temperature disk material". Team members include Pratt & Whitney, GE Aviation, Georgia Institute of Technology, The Ohio State University, and the University of Rhode Island. The authors would like to thank the Air Force Office of Scientific Research for their support under the AFOSR MEANS II program. R.R.U. would like to acknowledge support from the Alvin M. Weinberg Fellowship of Oak Ridge National Laboratory, managed by UT-Battelle for the US Department of Energy. NR 45 TC 35 Z9 36 U1 9 U2 82 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD NOV PY 2011 VL 59 IS 19 BP 7325 EP 7339 DI 10.1016/j.actamat.2011.07.069 PG 15 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 839YK UT WOS:000296405200019 ER PT J AU Marina, OC Sanders, CK Kaduchak, G Goddard, GR Graves, SW AF Marina, Oana C. Sanders, Claire K. Kaduchak, Gregory Goddard, Gregory R. Graves, Steven W. TI Acoustic lysis of vegetative bacterial cells: Method and device development SO ANALYTICAL METHODS LA English DT Article ID TOTAL ANALYSIS SYSTEMS; DISRUPTION; ULTRASOUND; DNA; MICROORGANISMS; CAVITATION; PRESSURE; PROTEIN AB A critical problem of many pathogen detection assays is the availability of intracellular protein and deoxyribonucleic acid (DNA). Acoustic lysis of suspended vegetative bacterial cells in a microfluidic system offers several advantages over conventional lysis techniques. The intracellular proteins and DNA are released and available for detection. A novel acoustic lysing alternative technique to the existing lysing methods for sample preparation and lysis step is proposed. We report here an efficient lysis device that uses acoustic excitation for performing lysis of Gram-positive and Gram-negative vegetative cells and has a high yield in a short amount of time. We also verified the condition of released protein since one of the major uses of vegetative cells lysis is for protein expression studies. Fluorimetry and flow cytometry were used to assess the degree of damage induced on the cells by the actual lysis method. The acoustic device allows the delivery of proteins in a non-denatured form, without adding chemicals, particles or other substances (e.g. enzymes) that could complicate the process or the detection procedure. The lysis device operates at low power (50-400 mW) and short time (3 min) and has high efficiency in comparison to current lysis standards (>85% vs. 12-50%). C1 [Marina, Oana C.; Sanders, Claire K.] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Kaduchak, Gregory; Goddard, Gregory R.] Life Technol, Eugene, OR 97405 USA. [Graves, Steven W.] Univ New Mexico, Ctr Biomed Engn, Albuquerque, NM 87131 USA. RP Marina, OC (reprint author), Los Alamos Natl Lab, Biosci Div, Mail Stop M888,POB 1663, Los Alamos, NM 87545 USA. EM oanam@lanl.gov FU LANL; NIH-NCRR [P41 RR-01315] FX The authors would like to express their appreciation to Dr Michael D. Ward and Travis Woods for invaluable technical discussions and technical assistance. The authors would like also to thank to Dr Csaba Kiss for providing E. coli expressing GFP samples. The authors would also like to thank Dr Babetta Marrone and Dr Judith Mourant for help revising this manuscript. This research was supported by LANL Laboratory Directed Research and Development funds and the NIH-NCRR National Flow Cytometry Resource, Grant # P41 RR-01315. NR 24 TC 3 Z9 3 U1 2 U2 15 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1759-9660 J9 ANAL METHODS-UK JI Anal. Methods PD NOV PY 2011 VL 3 IS 11 BP 2573 EP 2578 DI 10.1039/c1ay05326d PG 6 WC Chemistry, Analytical; Food Science & Technology; Spectroscopy SC Chemistry; Food Science & Technology; Spectroscopy GA 842QP UT WOS:000296614600021 ER PT J AU Guo, Y Wang, Z Qu, ZH Braiman, Y AF Guo, Yi Wang, Zheng Qu, Zhihua Braiman, Yehuda TI Atomic-scale friction control by vibration using friction force microscope SO CONTROL ENGINEERING PRACTICE LA English DT Article DE Nonlinear control; Friction; Vibration; Nano-scale systems; Friction force microscope ID NONLINEAR-SYSTEMS; DRY FRICTION; SLIDING FRICTION; DYNAMICS; NANOTRIBOLOGY; MONOLAYERS; DITHER; MOTION; MODEL AB Manipulation of friction at the nanoscale has been traditionally approached by chemical means (lubrication). Recent friction force microscopy (FFM) experiments demonstrated that it can be done mechanically by applying vibration to accessible elements of the system. This paper provides analytic understanding on why vibration can reduce friction based on a 1D model imitating the FFM tip moving on a substrate. Open-loop stability is first studied, and a feedback vibration control is then designed using the accessible variable. Comparing to the open-loop system, friction force is significantly reduced in the closed-loop system. Numerical simulations show satisfactory performances. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Guo, Yi; Wang, Zheng] Stevens Inst Technol, Dept Elect & Comp Engn, Hoboken, NJ 07030 USA. [Qu, Zhihua] Univ Cent Florida, Sch Elect Engn & Comp Sci, Orlando, FL 32816 USA. [Braiman, Yehuda] Oak Ridge Natl Lab, Ctr Engn Sci Adv Res, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Braiman, Yehuda] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. RP Guo, Y (reprint author), Stevens Inst Technol, Dept Elect & Comp Engn, Hoboken, NJ 07030 USA. EM yi.guo@stevens.edu; zheng.wang@stevens.edu; qu@mail.ucf.edu; braimany@ornl.gov FU National Science Foundation [0825613, 1024660]; U.S. Department of Energy [DE-AC05-00OR22725] FX The work was partially supported by the National Science Foundation under Grants CMMI#0825613 and EFRI#1024660. Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Department of Energy under Contract DE-AC05-00OR22725. NR 48 TC 0 Z9 0 U1 2 U2 10 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0967-0661 EI 1873-6939 J9 CONTROL ENG PRACT JI Control Eng. Practice PD NOV PY 2011 VL 19 IS 11 BP 1387 EP 1397 DI 10.1016/j.conengprac.2011.07.014 PG 11 WC Automation & Control Systems; Engineering, Electrical & Electronic SC Automation & Control Systems; Engineering GA 843OB UT WOS:000296680400012 ER PT J AU Elkins, LJ Sims, KWW Prytulak, J Elliott, T Mattielli, N Blichert-Toft, J Blusztajn, J Dunbar, N Devey, C Mertz, DF Schilling, JG Murrell, M AF Elkins, L. J. Sims, K. W. W. Prytulak, J. Elliott, T. Mattielli, N. Blichert-Toft, J. Blusztajn, J. Dunbar, N. Devey, C. Mertz, D. F. Schilling, J. -G. Murrell, M. TI Understanding melt generation beneath the slow-spreading Kolbeinsey Ridge using U-238, Th-230, and Pa-231 excesses SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID EAST PACIFIC RISE; U-SERIES DISEQUILIBRIA; MID-ATLANTIC RIDGE; NORWEGIAN-GREENLAND SEA; ND-PB ISOTOPE; TH-PA-RA; HETEROGENEOUS ICELAND PLUME; UPWELLING RATES BENEATH; TRACE-ELEMENT EVIDENCE; JUAN-DE-FUCA AB To examine the petrogenesis and sources of basalts from the Kolbeinsey Ridge, one of the shallowest locations along the global ridge system, we present new measurements of Nd, Sr, Hf, and Pb isotopes and U-series disequilibria on 32 axial basalts. Young Kolbeinsey basalts (full-spreading rate = 1.8 cm/yr; 67 degrees 05'-70 degrees 26'N) display (Th-230/U-238) < 1 and (Th-230/U-238) > 1 with (Th-230/U-238) from 0.95 to 1.30 and have low U (11.3-65.6 ppb) and Th (33.0 ppb-2.40 ppm) concentrations. Except for characteristic isotopic enrichment near the Jan Mayen region, the otherwise depleted Kolbeinsey basalts (e. g. Sr-87/Sr-86 = 0.70272-0.70301, epsilon(Nd) = 8.4-10.5, epsilon(Hf) = 15.4-19.6 (La/Yb)(N) = 0.28-0.84) encompass a narrow range of (Th-230/Th-232) (1.20-1.32) over a large range in (U-238/Th-232) (0.94-1.32), producing a horizontal array on a (Th-230/Th-232) vs. (U-238/Th-232) diagram and a large variation in (Th-230/U-238). However, the (Th-230/U-238) of the Kolbeinsey Ridge basalts (0.96-1.30) are inversely correlated with (U-234/U-238) (1.001-1.031). Samples with low (Th-230/U-238) and elevated (U-234/U-238) reflect alteration by seawater or seawater-derived materials. The unaltered Kolbeinsey lavas with equilibrium U-234/U-238 have high (Th-230/U-238) values (>= 1.2), which are consistent with melting in the presence of garnet. This is in keeping with the thick crust and anomalously shallow axial depth for the Kolbeinsey Ridge, which is thought to be the product of large degrees of melting in a long melt column. A time-dependent, dynamic melting scenario involving a long, slowly upwelling melting column that initiates well within the garnet peridotite stability zone can, in general, reproduce the (Th-230/U-238) and (Pa-231/U-235) ratios in uncontaminated Kolbeinsey lavas, but low (Pa-231/U-235) ratios in Eggvin Bank samples suggest eclogite involvement in the source for that ridge segment. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Elkins, L. J.; Sims, K. W. W.; Blusztajn, J.] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Elkins, L. J.] Bryn Mawr Coll, Dept Geol, Bryn Mawr, PA 19010 USA. [Sims, K. W. W.] Univ Wyoming, Dept Geol & Geophys, Laramie, WY 82071 USA. [Prytulak, J.] Univ Oxford, Oxford, England. [Prytulak, J.; Elliott, T.] Univ Bristol, Sch Earth Sci, Bristol Isotope Grp, Bristol, Avon, England. [Mattielli, N.] Univ Bruxelles, Brussels, Belgium. [Elliott, T.; Mattielli, N.] Fac Aardwetenschappen, NL-1081 HV Amsterdam, Netherlands. [Blichert-Toft, J.] Ecole Normale Super Lyon, Lab Geol Lyon, F-69007 Lyon, France. [Blichert-Toft, J.] Univ Lyon 1, CNRS UMR 5276, F-69007 Lyon, France. [Dunbar, N.] New Mexico Inst Min & Technol, Socorro, NM 87801 USA. [Devey, C.] IFM GEOMAR, D-24148 Kiel, Germany. [Mertz, D. F.] Johannes Gutenberg Univ Mainz, Inst Geosci, D-55099 Mainz, Germany. [Schilling, J. -G.] Univ Rhode Isl, Narragansett, RI USA. [Murrell, M.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Elkins, LJ (reprint author), Bryn Mawr Coll, Dept Geol, Bryn Mawr, PA 19010 USA. EM lelkins@brynmawr.edu RI Blichert-Toft, Janne/C-8280-2012; Devey, Colin/I-3898-2016 OI Blichert-Toft, Janne/0000-0002-4932-4079; Devey, Colin/0000-0002-0930-7274 FU NSF [OCE-0422278, OCE-1061037/1060434]; French Institut National des Sciences de l'Univers FX This work has benefited from thoughtful and insightful reviews by V. Salters, A. Pietruszka, and an anonymous reviewer, and from valuable conversations and interactions with a number of colleagues: Rob Sohn, Stan Hart, Peter Kelemen, Fred Frey, Glenn Gaetani, Marc Speigelman, Susan Humphris, and Chris Waters. This research was funded by NSF OCE-0422278 to K. W. W. S. and NSF OCE-1061037/1060434 to L.J.E. and K. W. W. S. J.B.T. acknowledges financial support from the French Institut National des Sciences de l'Univers. NR 188 TC 19 Z9 19 U1 0 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD NOV 1 PY 2011 VL 75 IS 21 BP 6300 EP 6329 DI 10.1016/j.gca.2011.08.020 PG 30 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 842CT UT WOS:000296566600003 ER PT J AU Zachara, JM Kukkadapu, RK Peretyazhko, T Bowden, M Wang, CM Kennedy, DW Moore, D Arey, B AF Zachara, John M. Kukkadapu, Ravi K. Peretyazhko, Tanya Bowden, Mark Wang, Chongmin Kennedy, Dave W. Moore, Dean Arey, Bruce TI The mineralogic transformation of ferrihydrite induced by heterogeneous reaction with bioreduced anthraquinone disulfonate (AQDS) and the role of phosphate SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID DISSIMILATORY IRON REDUCTION; ELECTRON-SHUTTLING COMPOUNDS; NATURAL ORGANIC-MATTER; C-TYPE CYTOCHROMES; LEPIDOCROCITE GAMMA-FEOOH; GREEN RUST FORMATION; GEOBACTER-SULFURREDUCENS; MICROBIAL REDUCTION; FE(III) OXIDES; FE(III)-REDUCING BACTERIUM AB Bioreduced anthraquinone-2,6-disulfonate (AH(2)DS; dihydro-anthraquinone) was reacted with a 2-line, Si-substituted ferrihydrite under anoxic conditions at neutral pH in PIPES buffer. Phosphate (P) and bicarbonate (C); common adsorptive oxyanions and media/buffer components known to effect ferrihydrite mineralization; and Fe(II)(aq) (as a catalytic mineralization agent) were used in comparative experiments. Heterogeneous AH(2)DS oxidation coupled with Fe(III) reduction occurred within 0.13-1 day, with mineralogic transformation occurring thereafter. The product suite included lepidocrocite, goethite, and/or magnetite, with proportions varing with reductant: oxidant ratio (r:o) and the presence of P or C. Lepidocrocite was the primary product at low r:o in the absence of P or C, with evidence for multiple formation pathways. Phosphate inhibited reductive recrystallization, while C promoted goethite formation. Stoichiometric magnetite was the sole product at higher r: o in the absence and presence of P. Lepidocrocite was the primary mineralization product in the Fe(II)(aq) system, with magnetite observed at near equal amounts when Fe(II) was high [Fe(II)/Fe(III)] = 0.5 and P was absent. P had a greater effect on reductive mineralization in the Fe(II)(aq) system, while AQDS was more effective than Fe(II)(aq) in promoting magnetite formation. The mineral products of the direct AH(2)DS-driven reductive reaction are different from those observed in AH(2)DS-ferrihydite systems with metal reducing bacteria, particularly in presence of P. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Zachara, John M.; Kukkadapu, Ravi K.; Peretyazhko, Tanya; Bowden, Mark; Wang, Chongmin; Kennedy, Dave W.; Moore, Dean; Arey, Bruce] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Zachara, JM (reprint author), Pacific NW Natl Lab, POB 999,MSIN K8-96, Richland, WA 99354 USA. EM john.zachara@pnl.gov OI Kennedy, David/0000-0003-0763-501X FU Office of Basic Energy Science (BES), US Department of Energy (DOE); Department of Energy's Office of Biological and Environmental Research FX This research was supported by the Geosciences Research Program of the Office of Basic Energy Science (BES), US Department of Energy (DOE). X-ray diffraction (XRD), electron microscopy, and Mossbauer measurements were performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. PNNL is operated for the Department of Energy by Battelle. We acknowledge the assistance of Janae Strickland, Colleen Russell, and Odeta Qafoku with experimentation, XRD, and Mossbauer measurements. Appreciated comments and recommendations were provided by three anonymous reviewers that improved the manuscript. NR 106 TC 15 Z9 16 U1 4 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD NOV 1 PY 2011 VL 75 IS 21 BP 6330 EP 6349 DI 10.1016/j.gca.2011.06.030 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 842CT UT WOS:000296566600004 ER PT J AU Tinnacher, RM Zavarin, M Powell, BA Kersting, AB AF Tinnacher, Ruth M. Zavarin, Mavrik Powell, Brian A. Kersting, Annie B. TI Kinetics of neptunium(V) sorption and desorption on goethite: An experimental and modeling study SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID ADSORPTION-DESORPTION; ATRAZINE SORPTION; AQUATIC SYSTEMS; ION-EXCHANGE; HEAVY-METALS; HYSTERESIS; SOIL; MIGRATION; DISSOLUTION; TRANSPORT AB Various sorption phenomena, such as aging, hysteresis and irreversible sorption, can cause differences between contaminant (ad) sorption and desorption behavior and lead to apparent sorption 'asymmetry'. We evaluate the relevance of these characteristics for neptunium(V) (Np(V)) sorption/desorption on goethite using a 34-day flow-cell experiment and kinetic modeling. Based on experimental results, the Np(V) desorption rate is much slower than the (ad) sorption rate, and appears to decrease over the course of the experiment. The best model fit with a minimum number of fitting parameters was achieved with a multi-reaction model including (1) an equilibrium Freundlich site (site 1), (2) a kinetically-controlled, consecutive, first-order site (site 2), and (3) a parameter psi(2,de), which characterizes the desorption rate on site 2 based on a concept related to transition state theory (TST). This approach allows us to link differences in adsorption and desorption kinetics to changes in overall reaction pathways, without assuming different adsorption and desorption affinities (hysteresis) or irreversible sorption behavior a priori. Using modeling as a heuristic tool, we determined that aging processes are relevant. However, hysteresis and irreversible sorption behavior can be neglected within the time-frame (desorption over 32 days) and chemical solution conditions evaluated in the flow-cell experiment. In this system, desorption reactions are very slow, but they are not irreversible. Hence, our data do not justify an assumption of irreversible Np(V) sorption to goethite in transport models, which effectively limits the relevance of colloid-facilitated Np(V) transport to near-field environments. However, slow Np(V) desorption behavior may also lead to a continuous contaminant source term when metals are sorbed to bulk mineral phases. Additional long-term experiments are recommended to definitely rule out irreversible Np(V) sorption behavior at very low surface loadings and environmentally-relevant time-scales. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Tinnacher, Ruth M.; Zavarin, Mavrik; Kersting, Annie B.] Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Powell, Brian A.] Clemson Univ, Dept Environ Eng & Earth Sci, Clemson, SC 29625 USA. RP Tinnacher, RM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, 1 Cyclotron Rd,MS 90-1116, Berkeley, CA 94720 USA. EM RMTinnacher@lbl.gov RI Powell, Brian /C-7640-2011; Tinnacher, Ruth/I-4845-2015 OI Powell, Brian /0000-0003-0423-0180; FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors thank S. Carroll and A. F. B. Tompson (Lawrence Livermore National Laboratory, USA) as well as M. Geier (Sandia National Laboratory, USA) for many helpful discussions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 74 TC 19 Z9 21 U1 13 U2 59 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 EI 1872-9533 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD NOV 1 PY 2011 VL 75 IS 21 BP 6584 EP 6599 DI 10.1016/j.gca.2011.08.014 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 842CT UT WOS:000296566600020 ER PT J AU Svenning, MM Hestnes, AG Wartiainen, I Stein, LY Klotz, MG Kalyuzhnaya, MG Spang, A Bringel, F Vuilleumier, S Lajus, A Medigue, C Bruce, DC Cheng, JF Goodwin, L Ivanova, N Han, J Han, CS Hauser, L Held, B Land, ML Lapidus, A Lucas, S Nolan, M Pitluck, S Woyke, T AF Svenning, Mette M. Hestnes, Anne Grethe Wartiainen, Ingvild Stein, Lisa Y. Klotz, Martin G. Kalyuzhnaya, Marina G. Spang, Anja Bringel, Francoise Vuilleumier, Stephane Lajus, Aurelie Medigue, Claudine Bruce, David C. Cheng, Jan-Fang Goodwin, Lynne Ivanova, Natalia Han, James Han, Cliff S. Hauser, Loren Held, Brittany Land, Miriam L. Lapidus, Alla Lucas, Susan Nolan, Matt Pitluck, Sam Woyke, Tanja TI Genome Sequence of the Arctic Methanotroph Methylobacter tundripaludum SV96 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID DIVERSITY; SOIL; BACTERIA; PROTEINS; ISLANDS; NORWAY AB Methylobacter tundripaludum SV96(T) (ATCC BAA-1195) is a psychrotolerant aerobic methane-oxidizing gammaproteobacterium (Methylococcales, Methylococcaceae) living in High Arctic wetland soil. The strain was isolated from soil harvested in July 1996 close to the settlement Ny-Alesund, Svalbard, Norway (78 degrees 56'N, 11 degrees 53'E), and described as a novel species in 2006. The genome includes pmo and pxm operons encoding copper membrane monooxygenases (Cu-MMOs), genes required for nitrogen fixation, and the nirS gene implicated in dissimilatory nitrite reduction to NO but no identifiable inventory for further processing of nitrogen oxides. These genome data provide the basis to investigate M. tundripaludum SV96, identified as a major player in the biogeochemistry of Arctic environments. C1 [Svenning, Mette M.] Univ Tromsoe, Dept Arctic & Marine Biol, Fac Biosci Fisheries & Econ, N-9037 Tromso, Norway. [Stein, Lisa Y.] Univ Alberta, Dept Biol Sci, Edmonton, AB T6G 2E9, Canada. [Klotz, Martin G.] Univ Louisville, Dept Biol, Louisville, KY 40292 USA. [Klotz, Martin G.] Univ Louisville, Dept Microbiol & Immunol, Louisville, KY 40292 USA. [Kalyuzhnaya, Marina G.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Spang, Anja] Univ Vienna, Dept Genet Ecol, Vienna, Austria. [Bringel, Francoise; Vuilleumier, Stephane] Univ Strasbourg, Equipe Adaptat & Interact Microbiennes Environm, CNRS, UMR 7156, F-67000 Strasbourg, France. [Lajus, Aurelie; Medigue, Claudine] Genoscope IG CEA, CEA DSV IG Genoscope, F-91057 Evry, France. [Lajus, Aurelie; Medigue, Claudine] Genoscope IG CEA, LABGeM, CNRS, UMR8030, F-91057 Evry, France. [Bruce, David C.; Goodwin, Lynne; Han, Cliff S.; Held, Brittany] Los Alamos Natl Lab, Joint Genome Inst, Biosci Div, Los Alamos, NM 87545 USA. [Cheng, Jan-Fang; Ivanova, Natalia; Han, James; Lapidus, Alla; Lucas, Susan; Nolan, Matt; Pitluck, Sam; Woyke, Tanja] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Hauser, Loren; Land, Miriam L.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Svenning, MM (reprint author), Univ Tromsoe, Dept Arctic & Marine Biol, Fac Biosci Fisheries & Econ, N-9037 Tromso, Norway. EM mette.svenning@uit.no RI Vuilleumier, Stephane/D-2647-2012; Hauser, Loren/H-3881-2012; Lapidus, Alla/I-4348-2013; Land, Miriam/A-6200-2011; Svenning, Mette/L-6795-2015; Klotz, Martin/D-2091-2009; Stein, Lisa/E-6374-2016; OI Vuilleumier, Stephane/0000-0003-2232-7023; Lapidus, Alla/0000-0003-0427-8731; Land, Miriam/0000-0001-7102-0031; Klotz, Martin/0000-0002-1783-375X; Stein, Lisa/0000-0001-5095-5022; Kalyuzhnaya, Marina/0000-0002-9058-7794 FU Office of Science of the DOE [DE-AC02-05CH11231]; NSERC; University of Louisville; DOE [DE-SC0005154]; GIS-IbiSA grant FX The work conducted by the U.S. Department of Energy Joint Genome Institute was supported by the Office of Science of the DOE under contract no. DE-AC02-05CH11231. Lisa Y. Stein was supported by a grant from NSERC. Martin G. Klotz was supported by incentive funds by the University of Louisville. Marina G. Kalyuzhnaya was supported by the DOE (DE-SC0005154). Stephane Vuilleumier was supported by a GIS-IbiSA grant. NR 16 TC 23 Z9 23 U1 2 U2 39 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD NOV PY 2011 VL 193 IS 22 BP 6418 EP 6419 DI 10.1128/JB.05380-11 PG 2 WC Microbiology SC Microbiology GA 843XF UT WOS:000296709600048 PM 21725021 ER PT J AU Alexander, MH Hall, GE Dagdigian, PJ AF Alexander, Millard H. Hall, Gregory E. Dagdigian, Paul J. TI The Approach to Equilibrium: Detailed Balance and the Master Equation SO JOURNAL OF CHEMICAL EDUCATION LA English DT Article DE Upper-Division Undergraduate; Physical Chemistry; Calculator-Based Learning; Kinetic-Molecular Theory; Kinetics; Rate Law; Statistical Mechanics ID ROTATIONAL ENERGY-TRANSFER; FITTING LAWS; RELAXATION; SYSTEMS AB The approach to the equilibrium (Boltzmann) distribution of populations of internal states of a molecule is governed by inelastic collisions in the gas phase and with surfaces. The set of differential equations governing the time evolution of the internal state populations is commonly called the master equation. An analytic solution to the master equation is presented and shows that the equilibrium distribution is the Boltzmann distribution. This solution is applied to the master equation involving collisions of rotational states of a diatomic molecule with a monatomic bath gas. C1 [Dagdigian, Paul J.] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA. [Alexander, Millard H.] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA. [Alexander, Millard H.] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA. [Hall, Gregory E.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Dagdigian, PJ (reprint author), Johns Hopkins Univ, Dept Chem, Charles & 34Th St, Baltimore, MD 21218 USA. EM pjdagdigian@jhu.edu RI Hall, Gregory/D-4883-2013 OI Hall, Gregory/0000-0002-8534-9783 FU U.S. National Science Foundation [CHE-0848110]; U.S. Department of Energy [DESC0002323]; U.S. Department of Energy, Office of Science [DE-AC02-98CH10886]; Division of Chemical Sciences FX The authors gratefully acknowledge helpful comments and suggestions from Christopher Jarzynski, Surinarayanan Vaikuntanathan, Harris Silverstone, Dianne O'Leary, and Edward Scheinerman. Partial support for this work was provided by the U.S. National Science Foundation under Grant No. CHE-0848110 and by the U.S. Department of Energy, under Grant No. DESC0002323. Contributions by GEH were carried out under contract no. DE-AC02-98CH10886 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences. NR 17 TC 3 Z9 3 U1 0 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-9584 J9 J CHEM EDUC JI J. Chem. Educ. PD NOV PY 2011 VL 88 IS 11 BP 1538 EP 1543 DI 10.1021/ed2001329 PG 6 WC Chemistry, Multidisciplinary; Education, Scientific Disciplines SC Chemistry; Education & Educational Research GA 838SN UT WOS:000296312600018 ER PT J AU McCloy, JS Crum, JV Sundaram, SK Slaugh, R Woskov, PP AF McCloy, John S. Crum, Jarrod V. Sundaram, S. K. Slaugh, Ryan Woskov, Paul P. TI High Temperature Millimeter Wave Radiometric and Interferometric Measurements of Slag-Refractory Interaction for Application to Coal Gasifiers SO JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES LA English DT Article DE Emissivity; Coal gasification; Viscosity; Millimeter-wave; Radiometry; High temperature ID EMISSIVITY; FOAM AB Millimeter wave (MMW) radiometry can be used for simultaneous measurement of emissivity and temperature of materials under extreme environments such as in slagging coal gasifiers, where sensors have been identified as a key enabling technology need for process optimization. We present a dual-channel MMW heterodyne radiometer with active interferometric capability that allows simultaneous measurements of sample temperature, emissivity, and flow dynamics. Interferometric capability at 137 GHz is supplied via a probe signal originating from a local oscillator allowing monitoring of sample dynamics such as volume expansion and thickness change. This capability has been used to monitor characteristic behavior between refractories and slag such as slag infiltration, slag melting, viscous flow, foaming, and crucible corrosion by the molten slag. These results show the promise of the MMW system for extracting process parameters from operating slagging coal gasifiers, providing valuable information for process efficiency, control, and increased productivity. C1 [McCloy, John S.; Crum, Jarrod V.; Slaugh, Ryan] Pacific NW Natl Lab, Richland, WA 99352 USA. [Sundaram, S. K.] Alfred Univ, Kazuo Inamori Sch Engn, Alfred, NY 14802 USA. [Woskov, Paul P.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. RP McCloy, JS (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,MSIN K6-24,POB 999, Richland, WA 99352 USA. EM john.mccloy@pnl.gov RI McCloy, John/D-3630-2013 OI McCloy, John/0000-0001-7476-7771 FU Energy Conversion Initiative (ECI) at Pacific Northwest National Laboratory (PNNL) FX The authors acknowledge partial support from Energy Conversion Initiative (ECI) at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated by Battelle Memorial Institute for the United States Department of Energy under DE-AC06-76RLO 1830. The authors thank Maura Zimmerschied and Josef Matyas for reviews of the preliminary manuscript. NR 15 TC 0 Z9 0 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1866-6892 EI 1866-6906 J9 J INFRARED MILLIM TE JI J. Infrared Millim. Terahertz Waves PD NOV PY 2011 VL 32 IS 11 BP 1337 EP 1349 DI 10.1007/s10762-011-9823-4 PG 13 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 843AJ UT WOS:000296643900009 ER PT J AU Adak, S Daemen, LL Hartl, M Williams, D Summerhill, J Nakotte, H AF Adak, Sourav Daemen, Luke L. Hartl, Monika Williams, Darrick Summerhill, Jennifer Nakotte, Heinz TI Thermal expansion in 3d-metal Prussian Blue Analogs-A survey study SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Prussian Blue Analogs; Negative thermal expansion; Crystal structures ID CRYSTAL-STRUCTURE; PHASE-TRANSITIONS; CO; QUARTZ; ZRW2O8; ZN; CD; FE; NI; CU AB We present a comprehensive study of the structural properties and the thermal expansion behavior of 17 different Prussian Blue Analogs (PBAs) with compositions M(3)(II)[(M')(III)(CN)(6)](2) center dot nH(2)O and M(2)(II)[Fe(II)(CN)(6)] center dot nH(2)O, where M(II) = Mn, Fe, Co, Ni, Cu and Zn, (M')(III) = Co, Fe and n is the number of water molecules, which range from 5 to 18 for these compounds. The PBAs were synthesized via standard chemical precipitation methods, and temperature-dependent X-ray diffraction studies were performed in the temperature range between -150 degrees C (123 K) and room-temperature. The vast majority of the studied PBAs were found to crystallize in cubic structures of space groups Fm (3) over barm, F (4) over bar 3m and Pm (3) over barm. The temperature dependence of the lattice parameters was taken to compute an average coefficient of linear thermal expansion in the studied temperature range. Of the 17 compounds, 9 display negative values for the average coefficient of linear thermal expansion, which can be as large as 39.7 x (1)0(-6) K(-1) for Co(3)[Co(CN)(6)](2)center dot 12H(2)O. All of the M(3)(II)[Co(III)(CN)(6)](2)center dot nH(2)O compounds show negative thermal expansion behavior, which correlates with the Irving-Williams series for metal complex stability. The thermal expansion behavior for the PBAs of the M(3)(II)[Fe(III)(CN)(6)](2) center dot nH(2)O family are found to switch between positive (for M = Mn, Co, Ni) and negative (M = Cu, Zn) behavior, depending on the choice of the metal cation (M). On the other hand, all of the M(2)(II)[Fe(II)(CN)(6)] center dot nH(2)O compounds show positive thermal expansion behavior. (C) 2011 Elsevier Inc. All rights reserved. C1 [Adak, Sourav; Nakotte, Heinz] New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. [Adak, Sourav; Daemen, Luke L.; Hartl, Monika] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Williams, Darrick] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Summerhill, Jennifer] New Mexico State Univ, Dept Chem & Biochem, Las Cruces, NM 88003 USA. RP Nakotte, H (reprint author), New Mexico State Univ, Dept Phys, Las Cruces, NM 88003 USA. EM hnakotte@nmsu.edu RI Lujan Center, LANL/G-4896-2012; Hartl, Monika/F-3094-2014; Hartl, Monika/N-4586-2016 OI Hartl, Monika/0000-0002-6601-7273; Hartl, Monika/0000-0002-6601-7273 FU Department of Energy's (DOE) Office of Basic Energy Sciences; DOE Office of Basic Energy Sciences. Los Alamos National Laboratory [DE-AC52-06NA25396]; LANL (DOE) [20110585ER] FX This research work has been supported by Department of Energy's (DOE) Office of Basic Energy Sciences and has made use of Manuel Lujan, Jr. Neutron Scattering Center at Los Alamos National Laboratory which is funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, under DOE Contract DE-AC52-06NA25396. JS acknowledges partial support provided by Shengnian Luo at LANL (DOE grant number: 20110585ER). NR 35 TC 18 Z9 18 U1 5 U2 42 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD NOV PY 2011 VL 184 IS 11 BP 2854 EP 2861 DI 10.1016/j.jssc.2011.08.030 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 839YA UT WOS:000296404200005 ER PT J AU Dera, P Lavina, B Meng, Y Prakapenka, VB AF Dera, Przemyslaw Lavina, Barbara Meng, Yue Prakapenka, Vitali B. TI Structural and electronic evolution of Cr2O3 on compression to 55 GPa SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE High pressure; Phase transitions; Optical absorption; Corundum; Ruby; Eskolaite ID X-RAY-DIFFRACTION; CRYSTAL-STRUCTURE; HIGH-PRESSURE; RUBY; V2O3; TEMPERATURE; DEPENDENCE; PHASE; TRANSITION; SPECTRA AB Synchrotron single-crystal x-ray diffraction experiments have been performed on corundum-type Cr2O3 up to a pressure of 55 GPa in Ne and He pressure transmitting media. Diffraction experiments were complemented by measurements of optical absorption spectra with single crystal samples up to 60 GPa. Results of the diffraction data analysis rule out the earlier reported monoclinic distortion at 15-30 GPa, but indicate evidence of two discontinuous transitions of electronic or magnetic nature, most likely associated with a change in magnetic ordering and charge transfer. The compression mechanism established from single crystal refinements indicates much smaller distortion of the Cr3+ coordination environment than was previously assumed. (C) 2011 Elsevier Inc. All rights reserved. C1 [Dera, Przemyslaw; Prakapenka, Vitali B.] Univ Chicago, Ctr Adv Radiat Sources, Argonne Natl Lab, Argonne, IL 60439 USA. [Lavina, Barbara] Univ Nevada, High Pressure Sci & Engn Ctr, Las Vegas, NV 89154 USA. [Lavina, Barbara] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA. [Meng, Yue] Carnegie Inst Washington, HPCAT, Geophys Lab, Argonne, IL 60439 USA. RP Dera, P (reprint author), Univ Chicago, Ctr Adv Radiat Sources, Argonne Natl Lab, Bldg 434A,9700 S Cass Ave, Argonne, IL 60439 USA. EM dera@cars.uchicago.edu RI Dera, Przemyslaw/F-6483-2013; Lavina, Barbara/A-1015-2010 OI Lavina, Barbara/0000-0002-8556-7916 FU Division of Materials Research, National Science Foundation [NSF-DMR-0521179]; National Science Foundation; U.S. Department of Energy; W.M Keck Foundation; U.S. Department of Agriculture; State of Illinois; CIW; CDAC; UNLV; LLNL through DOE-NNSA, DOE-BES; DOE-BES [DE-AC02-06CH11357] FX The authors would like to thank J. Stubbs (Univ. of Chicago) and Y. Feng (ANL) for critical reading of the manuscript and useful suggestions. We are also grateful to Prof. R.T. Downs and another anonymous reviewer for valuable comments and suggestions. This project was supported by a grant from the MRI Program, Division of Materials Research, National Science Foundation (NSF-DMR-0521179). Part of this work was performed at GSECARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GSECARS is supported by the National Science Foundation, the U.S. Department of Energy, the W.M Keck Foundation, the U.S. Department of Agriculture and the State of Illinois. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by CIW, CDAC, UNLV and LLNL through funding from DOE-NNSA, DOE-BES and NSF. APS is supported by DOE-BES, under Contract no. DE-AC02-06CH11357. NR 34 TC 17 Z9 17 U1 1 U2 26 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD NOV PY 2011 VL 184 IS 11 BP 3040 EP 3049 DI 10.1016/j.jssc.2011.09.021 PG 10 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 839YA UT WOS:000296404200030 ER PT J AU Verdal, N Wu, H Udovic, TJ Stavila, V Zhou, W Rush, JJ AF Verdal, Nina Wu, Hui Udovic, Terrence J. Stavila, Vitalie Zhou, Wei Rush, John J. TI Evidence of a transition to reorientational disorder in the cubic alkali-metal dodecahydro-closo-dodecaborates SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE B12F122-; Dodecahydro-closo-dodecaborate; Neutron powder diffraction; Phase transition; Reorientational disorder ID NEUTRON-SCATTERING; CRYSTAL-STRUCTURE; KBH4; NMR; BOROHYDRIDES; DYNAMICS; NABH4; CS AB A neutron powder diffraction and differential scanning calorimetry (DSC) study indicates that Cs2B12H12 undergoes a second-order phase transition near 529 K that can be described as a reorientational disordering of the B12H122- icosahedral anions between two lowest-energy configurations within the cubic structure. Such a disordering requires the addition of another mirror plane to the low-temperature Fm (3) over bar structural symmetry to become Fm (3) over barm. Differential scanning calorimetry measurements suggest the possible persistence of some short-range anion order at and above the transition. Additional DSC measurements of the lighter alkali-metal cubic isomorphs, Rb2B12H12 and K2B12H12, also indicate second-order transitions for these compounds near 742 K and 811 K, respectively. These results are suggestive of similar order-disorder phase changes as for Cs2B12H12, although confirmation of their existence requires analogous diffraction measurements. Published by Elsevier Inc. C1 [Verdal, Nina; Wu, Hui; Udovic, Terrence J.; Zhou, Wei; Rush, John J.] NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Wu, Hui; Zhou, Wei; Rush, John J.] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA. [Stavila, Vitalie] Sandia Natl Labs, Livermore, CA 94551 USA. RP Verdal, N (reprint author), NIST, NIST Ctr Neutron Res, Gaithersburg, MD 20899 USA. EM nina.verdal@nist.gov RI Wu, Hui/C-6505-2008; Zhou, Wei/C-6504-2008; Stavila, Vitalie/B-6464-2008 OI Wu, Hui/0000-0003-0296-5204; Zhou, Wei/0000-0002-5461-3617; Stavila, Vitalie/0000-0003-0981-0432 FU DOE, EERE [DE-AI-01-05EE11104, DE-AC04-94AL85000] FX This work was partially supported by the DOE through Award nos. DE-AI-01-05EE11104 and DE-AC04-94AL85000 within the EERE-supported Metal Hydride Center of Excellence. NR 28 TC 11 Z9 11 U1 1 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD NOV PY 2011 VL 184 IS 11 BP 3110 EP 3116 DI 10.1016/j.jssc.2011.09.010 PG 7 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 839YA UT WOS:000296404200040 ER PT J AU Lu, XH Mochrie, SGJ Narayanan, S Sandy, AR Sprung, M AF Lu, Xinhui Mochrie, S. G. J. Narayanan, S. Sandy, A. R. Sprung, M. TI X-ray near-field speckle: implementation and critical analysis SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray; near field; speckle; spectroscopy; scattering ID PHOTON-CORRELATION SPECTROSCOPY; HIGH BRILLIANCE BEAMLINE; SCATTERING APPARATUS; RESOLUTION; PARTICLES; CAMERA; ESRF AB The newly introduced coherence-based technique of X-ray near-field speckle (XNFS) has been implemented at 8-ID-I at the Advanced Photon Source. In the near-field regime of high-brilliance synchrotron X-rays scattered from a sample of interest, it turns out that, when the scattered radiation and the main beam both impinge upon an X-ray area detector, the measured intensity shows low-contrast speckles, resulting from interference between the incident and scattered beams. A micrometer-resolution XNFS detector with a high numerical aperture microscope objective has been built and its capability for studying static structures and dynamics at longer length scales than traditional far-field X-ray scattering techniques is demonstrated. Specifically, the dynamics of dilute silica and polystyrene colloidal samples are characterized. This study reveals certain limitations of the XNFS technique, especially in the characterization of static structures, which is discussed. C1 [Lu, Xinhui; Mochrie, S. G. J.] Yale Univ, Dept Phys, New Haven, CT 06511 USA. [Mochrie, S. G. J.] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA. [Narayanan, S.; Sandy, A. R.; Sprung, M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Lu, XH (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM xlu@bnl.gov FU NSF [DMR 0906697]; DOE FX We thank T. Chiba, A. Mack, E. R. Dufresne, R. L. Leheny, C. O'Hern, S. Sanis, M. Spannuth and J. Wettlaufer for discussions, and the NSF for support via DMR 0906697. The APS is supported by the DOE. NR 24 TC 4 Z9 4 U1 1 U2 7 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD NOV PY 2011 VL 18 BP 823 EP 834 DI 10.1107/S0909049511037149 PN 6 PG 12 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 844GT UT WOS:000296736400001 PM 21997906 ER PT J AU Honnicke, MG Keister, JW Conley, R Kaznatcheev, K Takacs, PZ Coburn, DS Reffi, L Cai, YQ AF Honnicke, Marcelo G. Keister, Jeffrey W. Conley, Raymond Kaznatcheev, Konstantine Takacs, Peter Z. Coburn, David Scott Reffi, Leo Cai, Yong Q. TI Synchrotron X-ray tests of an L-shaped laterally graded multilayer mirror for the analyzer system of the ultra-high-resolution IXS spectrometer at NSLS-II SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray optics; X-ray mirrors; L-shaped mirror; nested mirror; Montel optics; Kirkpatrick-Baez geometry ID DIFFRACTION; OPTICS AB Characterization and testing of an L-shaped laterally graded multilayer mirror are presented. This mirror is designed as a two-dimensional collimating optics for the analyzer system of the ultra-high-resolution inelastic X-ray scattering (IXS) spectrometer at National Synchrotron Light Source II (NSLS-II). The characterization includes point-to-point reflectivity measurements, lattice parameter determination and mirror metrology (figure, slope error and roughness). The synchrotron X-ray test of the mirror was carried out reversely as a focusing device. The results show that the L-shaped laterally graded multilayer mirror is suitable to be used, with high efficiency, for the analyzer system of the IXS spectrometer at NSLS-II. C1 [Honnicke, Marcelo G.; Keister, Jeffrey W.; Conley, Raymond; Kaznatcheev, Konstantine; Coburn, David Scott; Reffi, Leo; Cai, Yong Q.] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. [Takacs, Peter Z.] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. RP Cai, YQ (reprint author), Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA. EM cai@bnl.gov RI Conley, Ray/C-2622-2013; Cai, Yong/C-5036-2008; Honnicke, Marcelo/I-8624-2012 OI Cai, Yong/0000-0002-9957-6426; FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC-02-98CH10886] FX This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC-02-98CH10886. NR 17 TC 10 Z9 10 U1 1 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD NOV PY 2011 VL 18 BP 862 EP 870 DI 10.1107/S0909049511031098 PN 6 PG 9 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 844GT UT WOS:000296736400005 PM 21997910 ER PT J AU Huang, XR AF Huang, Xian-Rong TI An alternative scheme of angular-dispersion analyzers for high-resolution medium-energy inelastic X-ray scattering SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE X-ray optics; inelastic X-ray scattering; monochromator; analyzer ID DIFFRACTION; SPECTROSCOPY AB The development of medium-energy inelastic X-ray scattering optics with meV and sub-meV resolution has attracted considerable efforts in recent years. Meanwhile, there are also concerns or debates about the fundamental and feasibility of the involved schemes. Here the central optical component, the back-reflection angular-dispersion monochromator or analyzer, is analyzed. The results show that the multiple-beam diffraction effect together with transmission-induced absorption can noticeably reduce the diffraction efficiency, although it may not be a fatal threat. In order to improve the efficiency, a simple four-bounce analyzer is proposed that completely avoids these two adverse effects. The new scheme is illustrated to be a feasible alternative approach for developing meV-to sub-meV-resolution inelastic X-ray scattering spectroscopy. C1 Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Huang, XR (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Argonne, IL 60439 USA. EM xiahuang@aps.anl.gov FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The author is grateful to L. Young and M. Beno for encouragement and support. Thanks are also due to Y. Q. Cai, D. P. Siddons, M. G. Honnicke and L. Assoufid for helpful discussions. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 18 TC 9 Z9 9 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD NOV PY 2011 VL 18 BP 899 EP 906 DI 10.1107/S0909049511036703 PN 6 PG 8 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 844GT UT WOS:000296736400010 PM 21997915 ER PT J AU Bilderback, DH Mills, DM AF Bilderback, Donald H. Mills, Dennis M. TI Boris W. Batterman (1930-2010) obituary SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Biographical-Item C1 [Bilderback, Donald H.] Cornell Univ, Ithaca, NY 14853 USA. [Mills, Dennis M.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Bilderback, DH (reprint author), Cornell Univ, Ithaca, NY 14853 USA. EM dhb2@cornell.edu; dmm@aps.anl.gov NR 1 TC 0 Z9 0 U1 2 U2 3 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0909-0495 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD NOV PY 2011 VL 18 BP 942 EP 943 DI 10.1107/S0909049511040258 PN 6 PG 2 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 844GT UT WOS:000296736400017 ER PT J AU Cerjan, A Cerjan, C AF Cerjan, Alexander Cerjan, Charles TI Orbital angular momentum of Laguerre-Gaussian beams beyond the paraxial approximation SO JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION LA English DT Article ID FIELD COMPONENTS; LIGHT; PROPAGATION; VACUUM; VECTOR AB We derive a full field solution for Laguerre-Gaussian beams consistent with the Helmholtz equation using the angular spectrum method. Field components are presented as an order expansion in the ratio of the wavelength to the beam waist, f = lambda/(2 pi omega(0)), which is typically small. The result is then generalized to a beam of arbitrary polarization. This result is then used to reproduce the signature angular momentum properties of Laguerre-Gaussian beams in the paraxial limit. The subsequent higher-order term is similarly obtained, which does not display a clear separation of orbital and spin angular momentum components. c 2011 Optical Society of America C1 [Cerjan, Alexander] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Cerjan, Charles] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Cerjan, A (reprint author), Yale Univ, Dept Phys, New Haven, CT 06520 USA. EM alexander.cerjan@yale.edu FU U.S. Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. The authors would like to thank the referees whose helpful comments and suggested references greatly improved this work. NR 24 TC 8 Z9 11 U1 1 U2 7 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 1084-7529 J9 J OPT SOC AM A JI J. Opt. Soc. Am. A-Opt. Image Sci. Vis. PD NOV PY 2011 VL 28 IS 11 BP 2253 EP 2260 PG 8 WC Optics SC Optics GA 842IV UT WOS:000296592600007 PM 22048292 ER PT J AU Ringler, TD Jacobsen, D Gunzburger, M Ju, LL Duda, M Skamarock, W AF Ringler, Todd D. Jacobsen, Doug Gunzburger, Max Ju, Lili Duda, Michael Skamarock, William TI Exploring a Multiresolution Modeling Approach within the Shallow-Water Equations SO MONTHLY WEATHER REVIEW LA English DT Article ID SPHERICAL GEODESIC GRIDS; CENTROIDAL VORONOI TESSELLATIONS; CONSERVATIVE TRANSPORT SCHEMES; BAROTROPIC VORTICITY EQUATION; CLIMATE-CHANGE; CLOUD PARAMETERIZATION; DYNAMICAL CORES; CIRCULATION; INTEGRATION; SIMULATION AB The ability to solve the global shallow-water equations with a conforming, variable-resolution mesh is evaluated using standard shallow-water test cases. While the long-term motivation for this study is the creation of a global climate modeling framework capable of resolving different spatial and temporal scales in different regions, the process begins with an analysis of the shallow-water system in order to better understand the strengths and weaknesses of the approach developed herein. The multiresolution meshes are spherical centroidal Voronoi tessellations where a single, user-supplied density function determines the region(s) of fine- and coarse-mesh resolution. The shallow-water system is explored with a suite of meshes ranging from quasi-uniform resolution meshes, where the grid spacing is globally uniform, to highly variable resolution meshes, where the grid spacing varies by a factor of 16 between the fine and coarse regions. The potential vorticity is found to be conserved to within machine precision and the total available energy is conserved to within a time-truncation error. This result holds for the full suite of meshes, ranging from quasi-uniform resolution and highly variable resolution meshes. Based on shallow-water test cases 2 and 5, the primary conclusion of this study is that solution error is controlled primarily by the grid resolution in the coarsest part of the model domain. This conclusion is consistent with results obtained by others. When these variable-resolution meshes are used for the simulation of an unstable zonal jet, the core features of the growing instability are found to be largely unchanged as the variation in the mesh resolution increases. The main differences between the simulations occur outside the region of mesh refinement and these differences are attributed to the additional truncation error that accompanies increases in grid spacing. Overall, the results demonstrate support for this approach as a path toward multiresolution climate system modeling. C1 [Ringler, Todd D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Jacobsen, Doug; Gunzburger, Max] Florida State Univ, Tallahassee, FL 32306 USA. [Ju, Lili] Univ S Carolina, Columbia, SC 29208 USA. [Duda, Michael; Skamarock, William] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. RP Ringler, TD (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM ringler@lanl.gov FU Biological and Environmental Research Division of the U.S. Department of Energy's Office of Science [DE-FG02-07ER64431, DE-FG02-07ER64432, DOE 07SCPF152]; National Science Foundation FX This work was supported by the Biological and Environmental Research Division of the U.S. Department of Energy's Office of Science through DE-FG02-07ER64431, DE-FG02-07ER64432, and DOE 07SCPF152. The National Center for Atmospheric Research is sponsored by the National Science Foundation. NR 66 TC 43 Z9 43 U1 0 U2 7 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD NOV PY 2011 VL 139 IS 11 BP 3348 EP 3368 DI 10.1175/MWR-D-10-05049.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 840XP UT WOS:000296475700002 ER PT J AU Kong, DS Chen, YL Cha, JJ Zhang, QF Analytis, JG Lai, KJ Liu, ZK Hong, SS Koski, KJ Mo, SK Hussain, Z Fisher, IR Shen, ZX Cui, Y AF Kong, Desheng Chen, Yulin Cha, Judy J. Zhang, Qianfan Analytis, James G. Lai, Keji Liu, Zhongkai Hong, Seung Sae Koski, Kristie J. Mo, Sung-Kwan Hussain, Zahid Fisher, Ian R. Shen, Zhi-Xun Cui, Yi TI Ambipolar field effect in the ternary topological insulator (BixSb1-x)(2)Te-3 by composition tuning SO NATURE NANOTECHNOLOGY LA English DT Article ID HGTE QUANTUM-WELLS; SINGLE DIRAC CONE; PHASE-TRANSITION; SURFACE-STATES; BI2SE3; BI2TE3; LIMIT; NANORIBBONS; TRANSPORT; FILMS AB Topological insulators exhibit a bulk energy gap and spin-polarized surface states that lead to unique electronic properties(1-9), with potential applications in spintronics and quantum information processing. However, transport measurements have typically been dominated by residual bulk charge carriers originating from crystal defects or environmental doping(10-12), and these mask the contribution of surface carriers to charge transport in these materials. Controlling bulk carriers in current topological insulator materials, such as the binary sesquichalcogenides Bi2Te3, Sb2Te3 and Bi2Se3, has been explored extensively by means of material doping(8,9,11) and electrical gating(13-16), but limited progress has been made to achieve nanostructures with low bulk conductivity for electronic device applications. Here we demonstrate that the ternary sesquichalcogenide (BixSb1-x)(2)Te-3 is a tunable topological insulator system. By tuning the ratio of bismuth to antimony, we are able to reduce the bulk carrier density by over two orders of magnitude, while maintaining the topological insulator properties. As a result, we observe a clear ambipolar gating effect in (BixSb1-x)(2)Te-3 nanoplate field-effect transistor devices, similar to that observed in graphene field-effect transistor devices(17). The manipulation of carrier type and density in topological insulator nanostructures demonstrated here paves the way for the implementation of topological insulators in nanoelectronics and spintronics. C1 [Kong, Desheng; Cha, Judy J.; Zhang, Qianfan; Koski, Kristie J.; Cui, Yi] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Chen, Yulin; Analytis, James G.; Lai, Keji; Liu, Zhongkai; Hong, Seung Sae; Fisher, Ian R.; Shen, Zhi-Xun] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA. [Chen, Yulin; Lai, Keji; Liu, Zhongkai; Shen, Zhi-Xun] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Chen, Yulin; Analytis, James G.; Liu, Zhongkai; Fisher, Ian R.; Shen, Zhi-Xun; Cui, Yi] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Mo, Sung-Kwan; Hussain, Zahid] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Kong, DS (reprint author), Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. EM yicui@stanford.edu RI Cha, Judy /H-5483-2011; Chen, Yulin/C-1918-2012; Mo, Sung-Kwan/F-3489-2013; Cui, Yi/L-5804-2013; Kong, Desheng/G-2641-2015 OI Mo, Sung-Kwan/0000-0003-0711-8514; Cui, Yi/0000-0002-6103-6352; Kong, Desheng/0000-0002-7339-7593 FU Keck Foundation; DARPA [N66001-11-1-4105]; King Abdullah University of Science and Technology (KAUST) [KUS-l1-001-12, KUS-F1-033-02]; Department of Energy, Office of Basic Energy Science [DE-AC02-76SF00515] FX Y.C. acknowledges support from the Keck Foundation, a DARPA MESO project (no. N66001-11-1-4105) and a King Abdullah University of Science and Technology (KAUST) Investigator Award (no. KUS-l1-001-12). Y.L.C. acknowledges support from a DARPA MESO project (no. N66001-11-1-4105). Z.K.L., Z.X.S., Y.L.C., J.G.A. and I. R. F. acknowledge support from Department of Energy, Office of Basic Energy Science (contract DE-AC02-76SF00515). K. L. acknowledges support from the KAUST Postdoctoral Fellowship (no. KUS-F1-033-02). NR 31 TC 174 Z9 176 U1 11 U2 151 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD NOV PY 2011 VL 6 IS 11 BP 705 EP 709 DI 10.1038/NNANO.2011.172 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 844HC UT WOS:000296737300007 PM 21963714 ER PT J AU Giebink, NC Wiederrecht, GP Wasielewski, MR AF Giebink, Noel C. Wiederrecht, Gary P. Wasielewski, Michael R. TI Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators SO NATURE PHOTONICS LA English DT Article ID EFFICIENCY; COLLECTOR; EMISSION; SYSTEMS AB Luminescent solar concentrators (LSCs) provide a simple means to concentrate sunlight without tracking the Sun. These devices absorb and then re-emit light at a lower frequency into the confined modes of a transparent slab, where it is guided towards photovoltaic cells attached to the slab edges. In the thermodynamic limit, a concentration ratio exceeding the equivalent of 100 suns is possible, but, in actual LSCs, optical propagation loss (due mostly to reabsorption) limits the concentration ratio to similar to 10. Here, we introduce a general, all-optical means to overcome this problem by 'resonance-shifting', in which sharply directed emission from a bilayer cavity into the glass substrate returns to interact with the cavity off-resonance at each subsequent bounce, significantly reducing reabsorption loss en route to the edges. Using this strategy, we demonstrate near-lossless propagation for several different chromophores, which ultimately enables a more than twofold increase in concentration ratio over that of the corresponding conventional LSC. C1 [Giebink, Noel C.; Wiederrecht, Gary P.; Wasielewski, Michael R.] Northwestern Univ, Argonne NW Solar Energy Res Ctr ANSER, Evanston, IL 60208 USA. [Wasielewski, Michael R.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Giebink, Noel C.; Wiederrecht, Gary P.; Wasielewski, Michael R.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Giebink, NC (reprint author), Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA. EM ncg2@psu.edu FU Center for Nanoscale Materials; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001059] FX N.C.G. and G. P. W. acknowledge support from the Center for Nanoscale Materials for the experimental portion of this work, which was supported by the US Department of Energy, Office of Basic Energy Sciences (contract no. DE-AC02-06CH11357). N.C.G., G. P. W. and M. R. W. acknowledge support for data analysis and manuscript preparation as part of the ANSER Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (award no. DE-SC0001059). NR 38 TC 55 Z9 55 U1 5 U2 44 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 J9 NAT PHOTONICS JI Nat. Photonics PD NOV PY 2011 VL 5 IS 11 BP 695 EP 702 DI 10.1038/NPHOTON.2011.236 PG 8 WC Optics; Physics, Applied SC Optics; Physics GA 843WF UT WOS:000296706100015 ER PT J AU Goldstein, RZ Volkow, ND AF Goldstein, Rita Z. Volkow, Nora D. TI Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications SO NATURE REVIEWS NEUROSCIENCE LA English DT Review ID ANTERIOR CINGULATE CORTEX; POSITRON-EMISSION-TOMOGRAPHY; MEDIAL ORBITOFRONTAL CORTEX; COCAINE-DEPENDENT PATIENTS; SELF-MEDICATION HYPOTHESIS; ADOLESCENT MARIJUANA USERS; OPPONENT-PROCESS THEORY; SALIENT COGNITIVE TASK; CEREBRAL-BLOOD-FLOW; GRAY-MATTER AB The loss of control over drug intake that occurs in addiction was initially believed to result from disruption of subcortical reward circuits. However, imaging studies in addictive behaviours have identified a key involvement of the prefrontal cortex (PFC) both through its regulation of limbic reward regions and its involvement in higher-order executive function (for example, self-control, salience attribution and awareness). This Review focuses on functional neuroimaging studies conducted in the past decade that have expanded our understanding of the involvement of the PFC in drug addiction. Disruption of the PFC in addiction underlies not only compulsive drug taking but also accounts for the disadvantageous behaviours that are associated with addiction and the erosion of free will. C1 [Goldstein, Rita Z.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Volkow, Nora D.] NIAAA, Bethesda, MD 20892 USA. [Volkow, Nora D.] Natl Inst Drug Abuse, Bethesda, MD 20892 USA. RP Goldstein, RZ (reprint author), Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. EM rgoldstein@bnl.gov FU US National Institute on Drug Abuse [R01DA023579]; NIAAA; Department of Energy, Office of Biological and Environmental Research FX This study was supported by grants from the US National Institute on Drug Abuse (R01DA023579 to R. Z. G.), the Intramural NIAAA program and the Department of Energy, Office of Biological and Environmental Research (for infrastructure support). We are grateful for A. B. Konova's contribution to the design of figure 2. We are indebted to our reviewers whose comments were greatly appreciated and guided our revision of the original manuscript. NR 222 TC 488 Z9 499 U1 26 U2 167 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1471-003X J9 NAT REV NEUROSCI JI Nat. Rev. Neurosci. PD NOV PY 2011 VL 12 IS 11 BP 652 EP 669 DI 10.1038/nrn3119 PG 18 WC Neurosciences SC Neurosciences & Neurology GA 842GU UT WOS:000296584400011 PM 22011681 ER PT J AU Kim, BG Rempe, JL Villard, JF Solstad, S AF Kim, Bong Goo Rempe, Joy L. Villard, Jean-Francois Solstad, Steinar TI REVIEW OF INSTRUMENTATION FOR IRRADIATION TESTING OF NUCLEAR FUELS AND MATERIALS SO NUCLEAR TECHNOLOGY LA English DT Review DE instrumentation; irradiation testing; material test reactors ID HALDEN REACTOR PROJECT; HOT-WIRE METHOD; THERMAL-CONDUCTIVITY; HIGH-TEMPERATURE; NEUTRON-IRRADIATION; FISSION REACTOR; SILICON-CARBIDE; OPTICAL-FIBERS; ANNEALING BEHAVIOR; RADIATION AB Over 50 years of nuclear fuels and materials irradiation testing has led to many countries developing significant improvements in instrumentation to monitor physical parameters and to control the test conditions in material test reactors (MTRs). Recently, there is increased interest to irradiate new materials and reactor fuels for advanced pressurized water reactors and Gen-IV reactor systems, such as sodium-cooled fast reactors, very high temperature reactors, supercritical water cooled reactors, and gas-cooled fast reactors. This review paper documents the current state of instrumentation technologies in MTRs in the world and summarizes ongoing research efforts to deploy new sensors. As described in this paper, a wide range of sensors is available to measure key parameters of interest during fuels and materials irradiations in MTRs. Ongoing development efforts focus on providing MTR users a wider range of parameter measurements with smaller, higher accuracy sensors. C1 [Kim, Bong Goo] Korea Adv Energy Res Inst, Taejon 305353, South Korea. [Rempe, Joy L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Villard, Jean-Francois] CEA Cadarache, F-13108 St Paul Les Durance, France. [Solstad, Steinar] Inst Energy Technol, N-1751 Halden, Norway. RP Kim, BG (reprint author), Korea Adv Energy Res Inst, 989-111 Daedeok Daero, Taejon 305353, South Korea. EM bgkim1@kaeri.re.kr OI Rempe, Joy/0000-0001-5527-3549 FU Ministry of Education, Science and Technology (MEST) of the Republic of Korea; National Nuclear Research and Development Program; U.S. Department of Energy's Office of Nuclear Energy, Science, and Technology under DOE-NE Idaho Operations Office [DE AC07 05ID14517]; French Commissariat a l'Energie Atomique et aux Energies Alternatives, Nuclear Energy Division; CEA; Belgian Research Centre for Nuclear Energy (SCK.CEN) FX The authors would like to acknowledge the National Research Foundation for the award of a grant funded by the Ministry of Education, Science and Technology (MEST) of the Republic of Korea, in support of this work through the National Nuclear Research and Development Program. This work was also supported by the U.S. Department of Energy's Office of Nuclear Energy, Science, and Technology under DOE-NE Idaho Operations Office contract DE AC07 05ID14517. This work has also benefited from CEA's INSNU Project supported by the French Commissariat a l'Energie Atomique et aux Energies Alternatives, Nuclear Energy Division. The work described in this paper as a part of the Joint Instrumentation Laboratory activity is supported with balanced funding by the CEA and the Belgian Research Centre for Nuclear Energy (SCK.CEN). Work to complete this paper has also been performed within the scope of the Halden Reactor Project and Institute for Energy Technology. NR 104 TC 9 Z9 9 U1 2 U2 15 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2011 VL 176 IS 2 BP 155 EP 187 PG 33 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 841BT UT WOS:000296488000001 ER PT J AU Yesilyurt, G Clarno, KT Evans, TM Davidson, GG Fox, PB AF Yesilyurt, G. Clarno, K. T. Evans, T. M. Davidson, G. G. Fox, P. B. TI A C5 BENCHMARK PROBLEM WITH THE DISCRETE ORDINATES RADIATION TRANSPORT CODE DENOVO SO NUCLEAR TECHNOLOGY LA English DT Article DE Denovo; C5 benchmark problem; radiation transport AB The C5 benchmark problem proposed by the Organisation for Economic Co-operation and Development/Nuclear Energy Agency was modeled to examine the capabilities of Denovo, a three-dimensional (3-D) parallel discrete ordinates (S(N)) radiation transport code, for problems with no spatial homogenization. Denovo uses state-of-the-art numerical methods to obtain accurate solutions to the Boltzmann transport equation. Problems were run in parallel on Jaguar, a high-performance supercomputer located at Oak Ridge National Laboratory. Both the two-dimensional (2-D) and 3-D configurations were analyzed, and the results were compared with the reference MCNP Monte Carlo calculations. For an additional comparison, SCALE/KENO-V.a Monte Carlo solutions were also included. In addition, a sensitivity analysis was performed for the optimal angular quadrature and mesh resolution for both the 2-D and 3-D infinite lattices of UO(2) fuel pin cells. Denovo was verified with the C5 problem. The effective multiplication factors, pin powers, and assembly powers were found to be in good agreement with the reference MCNP and SCALE/KENO-V.a Monte Carlo calculations. C1 [Yesilyurt, G.; Clarno, K. T.; Evans, T. M.; Davidson, G. G.; Fox, P. B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Yesilyurt, G (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. OI Clarno, Kevin/0000-0002-5999-2978 NR 10 TC 1 Z9 1 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2011 VL 176 IS 2 BP 274 EP 283 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 841BT UT WOS:000296488000008 ER PT J AU Tranter, TJ Tillotson, RD Mann, NR Longhurst, GR AF Tranter, Troy J. Tillotson, Richard D. Mann, Nick R. Longhurst, Glen R. TI SEPARATION OF TRANSMUTATION- AND FISSION-PRODUCED RADIOISOTOPES FROM IRRADIATED BERYLLIUM SO NUCLEAR TECHNOLOGY LA English DT Article DE beryllium; solvent extraction; decontamination ID ACIDIC TANK WASTE; IONSIV(TM) IE-911; AMP-PAN; CESIUM; REMOVAL; STRONTIUM AB The primary objective of this study was to test the effectiveness of a two-step solvent extraction-precipitation process for separating transmutation and fission products from irradiated beryllium. Beryllium metal was dissolved in nitric and fluoroboric acids. Isotopes of (241)Am, (239)pu, 85 sr, (60)Co, and (137)Cs were then added to make a surrogate beryllium waste solution. A series of batch contacts was performed with the spiked simulant using chlorinated cobalt dicarbollide and polyethylene glycol diluted with sulfone to extract the isotopes of Cs and Sr. Another series of batch contacts was performed using a combination of octyl (phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide in tributyl phosphate diluted with dodecane for extracting the isotopes of Pu and Am. The (60)Co was separated by first forming a cobalt complex and then selectively precipitating the beryllium as a hydroxide. The results indicate that >99.9% removal can be achieved for each radionuclide. Transuranic isotope contamination levels are reduced to <100 nCi/g, and sources of high beta-gamma radiation ((60)co, (137)Cs, and (90)Sr) are reduced to levels that will allow the beryllium to be contact handled. The separation process may be applicable to a recycle or waste disposition scenario. C1 [Tranter, Troy J.; Tillotson, Richard D.; Mann, Nick R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Longhurst, Glen R.] So Utah Univ, Cedar City, UT 84720 USA. RP Tranter, TJ (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Nick.Mann@inl.gov NR 10 TC 2 Z9 2 U1 2 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2011 VL 176 IS 2 BP 290 EP 295 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 841BT UT WOS:000296488000010 ER PT J AU Skinner, K Housley, G Shelton-Davis, C AF Skinner, Kevin Housley, Greg Shelton-Davis, Colleen TI A FRUIT OF YUCCA MOUNTAIN: THE REMOTE WASTE PACKAGE CLOSURE SYSTEM SO NUCLEAR TECHNOLOGY LA English DT Article DE robotics; remote operation; welding AB Was the death of the Yucca Mountain repository the fate of a technical lemon or a political lemon? We must be careful not to let this debate lure us away from capitalizing on the fruits of the project. One such fruit is a system for safely sealing packages containing radioactive nuclear waste. In March 2009, Idaho National Laboratory (INL) successfully demonstrated the Waste Package Closure System (WPCS), a full-scale prototype system for closing waste packages (WPs) that were to be entombed in the now-abandoned Yucca Mountain repository. This paper describes the system and components, which INL designed and built, to weld the closure lids on the WPs, nondestructively examine the welds using four different techniques, repair the welds if necessary, mitigate crack-initiating stresses in the surfaces of the welds, evacuate and backfill the WPs with an inert gas, and perform all of these tasks remotely. As a nation, we now have a proven method for securely sealing nuclear WPs for long-term storage-regardless of whether the future destination for these WPs will be an underground repository. Additionally, many of the WPCS's features and concepts may benefit other remote nuclear applications. C1 [Skinner, Kevin; Housley, Greg; Shelton-Davis, Colleen] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Skinner, K (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM colleen.shelton-davis@inl.gov FU DOE [DE-AC07-05ID14517] FX The WPCS was designed by INL under the direction of Bechtel SAIC Company, LLC, the DOE's prime contractor for the Yucca Mountain project. INL was selected for this work based upon prior experience designing and closing SNF canisters for the DOE, as well as for extensive research and development in welding, inspection, control, and robotics. A large, dedicated team of experts in these fields and other disciplines is credited for the successful design, fabrication, and testing of the WPCS. INL performed the work under DOE contract DE-AC07-05ID14517. NR 5 TC 1 Z9 1 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2011 VL 176 IS 2 BP 296 EP 308 PG 13 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 841BT UT WOS:000296488000011 ER PT J AU Crowder, ML Laurinat, JE Stillman, JA AF Crowder, Mark L. Laurinat, James E. Stillman, John A. TI MEASUREMENT OF TRITIUM DURING VOLOXIDATION OF ZIRCALOY-2 CLADDING SO NUCLEAR TECHNOLOGY LA English DT Article DE tritium voloxidation; Zircaloy oxidation; fuel cladding hull ID FUEL; OXIDATION; DIFFUSION; ZIRCONIUM; RELEASE; ALLOYS; AIR AB A straightforward method to determine the tritium content of Zircaloy-2 cladding hulls via oxidation of the hulls and capture of the volatilized tritium in liquids has been demonstrated. Hull samples were heated in air inside a thermogravimetric analyzer (TGA). The TGA was rapidly heated to 1000 degrees C to oxidize the hulls and to release absorbed tritium. To capture tritium, the TGA off-gas was bubbled through a series of liquid traps. The concentrations of tritium in bubbler solutions indicated that nearly all of the tritiated water vapor was captured. The average tritium content measured in the hulls was 19% of the amount of tritium produced by the fuel, according to ORIGEN2 isotope generation and depletion calculations. Published experimental data show that there is an initial, nonlinear oxidation rate for Zircaloy-2 followed by a faster, linear rate after "breakaway" of the oxide film and that the linear rate follows an Arrhenius model. This study demonstrates that the linear oxidation rate of Zircaloy samples at 974 degrees C is faster than predicted by the extrapolation of data from lower temperatures. C1 [Crowder, Mark L.; Laurinat, James E.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Stillman, John A.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Crowder, ML (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM mark.crowder@srnl.doe.gov FU U.S. Department of Energy via the SRNL Laboratory FX The first two authors gratefully acknowledge the help of the actinide research team at the SRNL and funding from the U.S. Department of Energy via the SRNL Laboratory Directed Research and Development program. NR 17 TC 0 Z9 0 U1 0 U2 4 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2011 VL 176 IS 2 BP 309 EP 313 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 841BT UT WOS:000296488000012 ER PT J AU Hughes, AM Pozzi, ECC Heber, EM Thorp, S Miller, M Itoiz, ME Aromando, RF Molinari, AJ Garabalino, MA Nigg, DW Trivillin, VA Schwint, AE AF Monti Hughes, Andrea Pozzi, Emiliano C. C. Heber, Elisa M. Thorp, Silvia Miller, Marcelo Itoiz, Maria E. Aromando, Romina F. Molinari, Ana J. Garabalino, Marcela A. Nigg, David W. Trivillin, Veronica A. Schwint, Amanda E. TI Boron Neutron Capture Therapy (BNCT) in an oral precancer model: Therapeutic benefits and potential toxicity of a double application of BNCT with a six-week interval SO ORAL ONCOLOGY LA English DT Article DE Boron Neutron Capture Therapy (BNCT); Oral cancer; Hamster cheek pouch; Premalignant tissue; Second primary tumors; Mucositis; Boronophenylalanine (BPA); GB-10 ID HAMSTER-CHEEK POUCH; SQUAMOUS-CELL CARCINOMA; CANCER MODEL; CARCINOGENESIS; RADIOBIOLOGY; HEAD; MECHANISMS; TISSUE; TUMORS; GB-10 AB Given the clinical relevance of locoregional recurrences in head and neck cancer, we developed a novel experimental model of premalignant tissue in the hamster cheek pouch for long-term studies and demonstrated the partial inhibitory effect of a single application of Boron Neutron Capture Therapy (BNCT) on tumor development from premalignant tissue. The aim of the present study was to evaluate the effect of a double application of BNCT with a 6 week interval in terms of inhibitory effect on tumor development, toxicity and DNA synthesis. We performed a double application, 6 weeks apart, of (1) BNCT mediated by boronophenylalanine (BPA-BNCT); (2) BNCT mediated by the combined application of decahydrode-caborate (GB-10) and BPA [(GB-10 + BPA)-BNCT] or (3) beam-only, at RA-3 nuclear reactor and followed the animals for 8 months. The control group was cancerized and sham-irradiated. BPA-BNCT, (GB-10 + BPA)-BNCT and beam-only induced a reduction in tumor development from premalignant tissue that persisted until 8, 3, and 2 months respectively. An early maximum inhibition of 100% was observed for all 3 protocols. No normal tissue radiotoxicity was detected. Reversible mucositis was observed in premalignant tissue, peaking at 1 week and resolving by the third week after each irradiation. Mucositis after the second application was not exacerbated by the first application. DNA synthesis was significantly reduced in premalignant tissue 8 months post-BNCT. A double application of BPA-BNCT and (GB-10 + BPA)-BNCT, 6 weeks apart, could be used therapeutically at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Monti Hughes, Andrea; Pozzi, Emiliano C. C.; Heber, Elisa M.; Itoiz, Maria E.; Aromando, Romina F.; Molinari, Ana J.; Garabalino, Marcela A.; Trivillin, Veronica A.; Schwint, Amanda E.] Natl Atom Energy Commiss CNEA, Dept Radiobiol, Buenos Aires, DF, Argentina. [Pozzi, Emiliano C. C.] CNEA, Dept Res & Prod Reactors, Ezeiza Atom Ctr, Buenos Aires, DF, Argentina. [Thorp, Silvia; Miller, Marcelo] CNEA, Instrumentat & Control Dept, Ezeiza Atom Ctr, Buenos Aires, DF, Argentina. [Itoiz, Maria E.; Aromando, Romina F.] Univ Buenos Aires, Dept Oral Pathol, Fac Dent, RA-1053 Buenos Aires, DF, Argentina. [Nigg, David W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Trivillin, Veronica A.; Schwint, Amanda E.] Consejo Nacl Invest Cient & Tecn, Natl Res Council, RA-1033 Buenos Aires, DF, Argentina. RP Schwint, AE (reprint author), Natl Atom Energy Commiss, Dept Radiobiol, Ave Gen Paz 1499,B1650KNA San Martin, Buenos Aires, DF, Argentina. EM schwint@cnea.gov.ar FU Agencia Nacional de Promocion Cientifica y Tecnologica, Argentina [PICT2006-00700]; Department of Energy through Idaho National Laboratory (US) FX Partially funded by Grant of Agencia Nacional de Promocion Cientifica y Tecnologica, Argentina (Principal Investigator A. E. Schwint, PICT2006-00700). Partially supported by the Department of Energy through Idaho National Laboratory (US). NR 37 TC 8 Z9 9 U1 1 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1368-8375 J9 ORAL ONCOL JI Oral Oncol. PD NOV PY 2011 VL 47 IS 11 BP 1017 EP 1022 DI 10.1016/j.oraloncology.2011.07.014 PG 6 WC Oncology; Dentistry, Oral Surgery & Medicine SC Oncology; Dentistry, Oral Surgery & Medicine GA 842FF UT WOS:000296577500003 PM 21840244 ER PT J AU Vogt, K Sukhostavets, O Schultheiss, H Obry, B Pirro, P Serga, AA Sebastian, T Gonzalez, J Guslienko, KY Hillebrands, B AF Vogt, K. Sukhostavets, O. Schultheiss, H. Obry, B. Pirro, P. Serga, A. A. Sebastian, T. Gonzalez, J. Guslienko, K. Y. Hillebrands, B. TI Optical detection of vortex spin-wave eigenmodes in microstructured ferromagnetic disks SO PHYSICAL REVIEW B LA English DT Article ID STATE STABILITY; CORE REVERSAL; EXCITATION AB We examine the excitation of spin-wave eigenmodes in the vortex state of microsized ferromagnetic circular dots made of Permalloy (Ni81Fe19) both theoretically and experimentally using Brillouin light scattering microscopy. We report on the detection of the radial spin-wave eigenmodes of single elements with high mode number (up to n = 13 for the largest disk radius 2.5 mu m). Theoretically we obtain an equation for the eigenfrequencies valid for arbitrary dot aspect ratios (thickness/radius) within the magnetostatic approximation. We demonstrate the influence of the disk radius on the spatial mode profiles, in particular, changes in the pinning of the dynamical magnetization at the edges and in the center of the disks. The measured spin-wave eigenfrequencies are in good agreement with our calculations for the disks with different radii. C1 [Vogt, K.; Schultheiss, H.; Obry, B.; Pirro, P.; Serga, A. A.; Sebastian, T.; Hillebrands, B.] Tech Univ Kaiserslautern, Fachbereich Phys, D-67663 Kaiserslautern, Germany. [Vogt, K.; Schultheiss, H.; Obry, B.; Pirro, P.; Serga, A. A.; Sebastian, T.; Hillebrands, B.] Tech Univ Kaiserslautern, Forschungszentrum OPTIMAS, D-67663 Kaiserslautern, Germany. [Vogt, K.; Sebastian, T.] Grad Sch Mat Sci Mainz, D-55128 Mainz, Germany. [Sukhostavets, O.; Gonzalez, J.; Guslienko, K. Y.] Univ Basque Country, Dept Fis Mat, E-20018 San Sebastian, Spain. [Schultheiss, H.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Guslienko, K. Y.] Basque Fdn Sci, IKERBASQUE, E-48011 Bilbao, Spain. RP Vogt, K (reprint author), Tech Univ Kaiserslautern, Fachbereich Phys, D-67663 Kaiserslautern, Germany. RI Schultheiss, Helmut/I-2221-2013; Pirro, Philipp/A-3549-2016; Hillebrands, Burkard/C-6242-2008; OI Schultheiss, Helmut/0000-0002-6727-5098; Pirro, Philipp/0000-0002-0163-8634; Hillebrands, Burkard/0000-0001-8910-0355; Sebastian, Thomas/0000-0002-3384-7393 FU Carl-Zeiss-Stiftung; Graduiertenkolleg [792]; Basque Foundation for Science; SAIOTEK [S-PC09UN03]; MICINN [PIB2010US-00153, FIS2010-20979-C02-01] FX The authors would like to thank A. Beck and the Nano + Bio Center of the Technische Universitat Kaiserslautern for their assistance in sample preparation. K.V. gratefully acknowledges financial support by the Carl-Zeiss-Stiftung. B.O. would like to thank the Graduiertenkolleg 792 for financial support. K.Y.G. acknowledges support by IKERBASQUE (the Basque Foundation for Science). The Spanish team work was partially supported by SAIOTEK Grant No. S-PC09UN03 and MICINN Grants No. PIB2010US-00153 and No. FIS2010-20979-C02-01. NR 25 TC 16 Z9 17 U1 0 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD NOV 1 PY 2011 VL 84 IS 17 AR 174401 DI 10.1103/PhysRevB.84.174401 PG 6 WC Physics, Condensed Matter SC Physics GA 845WT UT WOS:000296858300001 ER PT J AU Gray, SB Classen, AT Kardol, P Yermakov, Z Miller, RM AF Gray, Sharon B. Classen, Aimee T. Kardol, Paul Yermakov, Zhanna Miller, R. Michael TI Multiple Climate Change Factors Interact to Alter Soil Microbial Community Structure in an Old-Field Ecosystem SO SOIL SCIENCE SOCIETY OF AMERICA JOURNAL LA English DT Article ID ARBUSCULAR MYCORRHIZAL FUNGI; ATMOSPHERIC CO2 ENRICHMENT; PLANT-SPECIES RICHNESS; METHYL-ESTER PROFILES; FATTY-ACID PROFILES; ELEVATED CO2; CARBON-DIOXIDE; WATER AVAILABILITY; GLOBAL CHANGE; TEMPERATURE AB Climate change has the potential to alter both the composition and function of a soil's microbial community, and interactions among climate change factors may alter soil communities in ways that are not possible to predict from experiments based on a single factor. This study evaluated the direct and interactive effects of three climate change factors-elevated CO2, altered amounts of precipitation, and elevated air temperature-on soil microbial communities from an old-field climate change experiment being conducted at Oak Ridge, TN. Soil microbial community composition and biomass were determined by phospholipid fatty acid (PLFA) and neutral lipid fatty acid composition. We found that the interactive effects of precipitation and temperature treatments, as well as the interactive effects of precipitation and CO2 treatments, had significant impacts on microbial community composition. We found that total soil PLFA concentration, a measure of microbial biomass, was greater in the low-precipitation treatments, especially when low precipitation was combined with ambient CO2 concentrations or ambient temperature. Ordination analysis indicated that temperature was the most significant predictor of shifts in the soil microbial community composition, explaining approximately 12% of the variance in relative abundance of PLFA biomarkers. The elevated-temperature treatment increased the abundance of Firmicutes (low-guanine-cytosine Gram positive) and decreased the abundance of Gram-negative bacteria. Elevated temperature also reduced the abundance of the arbuscular mycorrhizal fungi PLFA biomarker 16:1 omega 5c and saprophytic fungal PLFA biomarker 18: 2 omega 6,9. Overall, our data indicate that the interactions among climate change factors alter the composition of soil microbial communities in old-field ecosystems, suggesting potential for changes in microbial community function under predicted future climate conditions. C1 [Gray, Sharon B.; Yermakov, Zhanna; Miller, R. Michael] Argonne Natl Lab, Biosci Div E 161, Argonne, IL 60439 USA. [Gray, Sharon B.] Univ Illinois, Inst Genom Biol, Urbana, IL 61801 USA. [Classen, Aimee T.] Univ Tennessee, Dep Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. [Kardol, Paul] Swedish Univ Agr Sci, Dep Forest Ecol & Management, S-90183 Umea, Sweden. RP Gray, SB (reprint author), Argonne Natl Lab, Biosci Div E 161, Bldg 203,9700 S Cass Ave, Argonne, IL 60439 USA. EM sbgray@illinois.edu RI Classen, Aimee/C-4035-2008; Kardol, Paul/A-2600-2010; Gray, Sharon/C-5774-2012; Kardol, Paul/N-8383-2015 OI Classen, Aimee/0000-0002-6741-3470; Kardol, Paul/0000-0001-7065-3435 FU U.S. Dep. of Energy, Office of Science, Biological and Environmental Research [DE-AC02-06CH11357, DE-FG02-02ER63366]; U.S. Dep. of Energy [DE-AC05-00OR22725] FX We thank S. Wan and P. Allan for field assistance; R.J. Norby and J.A. Weltzin were integral in establishing the OCCAM experiment. Research was sponsored by the U.S. Dep. of Energy, Office of Science, Biological and Environmental Research Program under Contract no. DE-AC02-06CH11357 to Argonne National Laboratory and Grant no. DE-FG02-02ER63366 to the University of Tennessee; S. B. Gray was supported by the U.S. Dep. of Energy's Global Change Education Program. Work was conducted in collaboration with Oak Ridge National Laboratory, which is managed by UT Battelle, LLC, for the U.S. Dep. of Energy under Contract DE-AC05-00OR22725. NR 68 TC 28 Z9 30 U1 5 U2 79 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 0361-5995 J9 SOIL SCI SOC AM J JI Soil Sci. Soc. Am. J. PD NOV PY 2011 VL 75 IS 6 BP 2217 EP 2226 DI 10.2136/sssaj2011.0135 PG 10 WC Soil Science SC Agriculture GA 841ZK UT WOS:000296553600020 ER PT J AU Figueiredo, E Park, G Farrar, CR Worden, K Figueiras, J AF Figueiredo, Eloi Park, Gyuhae Farrar, Charles R. Worden, Keith Figueiras, Joaquim TI Machine learning algorithms for damage detection under operational and environmental variability SO STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL LA English DT Article DE SHM; damage detection; operational and environmental variations; ROC curves ID PRINCIPAL COMPONENT ANALYSIS; IDENTIFICATION; DIAGNOSIS AB The goal of this article is to detect structural damage in the presence of operational and environmental variations using vibration-based damage identification procedures. For this purpose, four machine learning algorithms are applied based on the auto-associative neural network, factor analysis, Mahalanobis distance, and singular value decomposition. A base-excited three-story frame structure was tested in laboratory environment to obtain time-series data from an array of accelerometers under several structural state conditions. Tests were performed with varying stiffness and mass conditions with the assumption that these sources of variability are representative of changing operational and environmental conditions. Damage is simulated through nonlinear effects introduced by a bumper mechanism that induces a repetitive, impact-type nonlinearity. This mechanism intends to simulate the cracks that open and close under dynamic loads or loose connections that rattle. The unique contribution of this study is a direct comparison of the four proposed machine learning algorithms that have been reported as reliable approaches to separate structural conditions with changes resulting from damage from changes caused by operational and environmental variations. C1 [Park, Gyuhae; Farrar, Charles R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. [Figueiredo, Eloi; Figueiras, Joaquim] Univ Porto, Dept Civil Engn, P-4200465 Oporto, Portugal. [Worden, Keith] Univ Sheffield, Dept Mech Engn, Sheffield S1 3JD, S Yorkshire, England. RP Park, G (reprint author), Los Alamos Natl Lab, Engn Inst, POB 1663, Los Alamos, NM 87545 USA. EM gpark@lanl.gov OI Figueiras, Joaquim/0000-0002-3009-6803; Figueiredo, Eloi/0000-0002-9168-6903; Farrar, Charles/0000-0001-6533-6996 NR 31 TC 41 Z9 42 U1 2 U2 21 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1475-9217 J9 STRUCT HEALTH MONIT JI Struct. Health Monit. PD NOV PY 2011 VL 10 IS 6 BP 559 EP 572 DI 10.1177/1475921710388971 PG 14 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 843JI UT WOS:000296667700001 ER PT J AU Chen, CL Dong, CL Asokan, K Chen, JL Liu, YS Guo, JH Yang, WL Chen, YY Hsu, FC Chang, CL Wu, MK AF Chen, C. L. Dong, C. L. Asokan, K. Chen, J. L. Liu, Y. S. Guo, J-H Yang, W. L. Chen, Y. Y. Hsu, F. C. Chang, C. L. Wu, M. K. TI Role of 3d electrons in the rapid suppression of superconductivity in the dilute V doped spinel superconductor LiTi2O4 SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID X-RAY-ABSORPTION; TRANSITION-METAL COMPOUNDS; POLARIZATION DEPENDENCE; TITANIUM-OXIDES; K-EDGE; SPECTRA; TIO2; SPECTROSCOPY; ANATASE; SCATTERING AB The microscopic effects of V doping in LiTi2O4 have been poorly understood. The present study employs x-ray absorption near-edge structure (XANES) and resonant inelastic soft-x-ray scattering (RIXS) spectroscopy to understand the change in the electronic structure due to dilute V doping in spinel LiTi2O4 and the possible origin for the rapid suppression of superconductivity in these compounds. Results from the XANES spectra at Ti L and K edges and Ti L-RIXS show that Ti exists in a mixed-valence state and, with V doping, the unoccupied states of Ti in the t(2g) band increase. The rapid suppression of superconductivity is associated with the change in Ti 3d electrons and Ti-O hybridization. C1 [Chen, C. L.; Chen, Y. Y.; Hsu, F. C.; Wu, M. K.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [Dong, C. L.] Natl Synchrotron Radiat Res Ctr, Hsinchu 30076, Taiwan. [Asokan, K.] Interuniv Accelerator Ctr, New Delhi 110067, India. [Chen, J. L.; Liu, Y. S.; Chang, C. L.] Tamkang Univ, Dept Phys, Tamsui, Taipei County, Taiwan. [Guo, J-H; Yang, W. L.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Chen, CL (reprint author), Acad Sinica, Inst Phys, Taipei 11529, Taiwan. EM clchen@phys.sinica.edu.tw; dong.cl@nsrrc.org.tw RI Chen, Chi Liang/F-4649-2012; Yang, Wanli/D-7183-2011; Kandasami, Asokan/A-6035-2009; OI Kandasami, Asokan/0000-0002-1602-765X; Yang, Wanli/0000-0003-0666-8063; Kandasami, Asokan/0000-0002-0613-219X; Chang, Ching-Lin/0000-0001-8547-371X FU National Science Council of Taiwan [C-98-2112-M-213-006-MY3, NSC-099-2112-M-001-036-MY3] FX The National Science Council of Taiwan (contracts NSC-98-2112-M-213-006-MY3 and NSC-099-2112-M-001-036-MY3) supported this work. We thank Dr J M Chen for beamline support and Dr J F Lee for useful discussions. NR 40 TC 3 Z9 3 U1 1 U2 59 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD NOV PY 2011 VL 24 IS 11 AR 115007 DI 10.1088/0953-2048/24/11/115007 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 844TD UT WOS:000296769300007 ER PT J AU Krishnan, M Valderrama, E Bures, B Wilson-Elliott, K Zhao, X Phillips, L Valente-Feliciano, AM Spradlin, J Reece, C Seo, K AF Krishnan, M. Valderrama, E. Bures, B. Wilson-Elliott, K. Zhao, X. Phillips, L. Valente-Feliciano, A-M Spradlin, J. Reece, C. Seo, K. TI Very high residual resistivity ratios of heteroepitaxial superconducting niobium films on MgO substrates SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID VACUUM CATHODIC ARC; EPITAXIAL-GROWTH; THIN-FILMS; NB; EVAPORATION AB We report residual resistivity ratio (RRR) values (up to RRR-541) measured in thin film Nb grown on MgO crystal substrates, using a vacuum arc discharge, whose 60-160 eV Nb ions drive heteroepitaxial crystal growth. The RRR depends strongly upon substrate annealing and deposition temperatures. X-ray diffraction spectra and pole figures reveal that, as the crystal structure of the Nb film becomes more ordered, RRR increases, consistent with fewer defects or impurities in the lattice and hence longer electron mean free path. A transition from Nb(110) to purely Nb(100) crystal orientation on the MgO(100) lattice occurs at higher temperature. C1 [Krishnan, M.; Valderrama, E.; Bures, B.; Wilson-Elliott, K.] Alameda Appl Sci Corp, San Leandro, CA 94577 USA. [Zhao, X.; Phillips, L.; Valente-Feliciano, A-M; Spradlin, J.; Reece, C.] Thomas Jefferson Natl Accelerator Facil, Jefferson Lab, Newport News, VA 23606 USA. [Seo, K.] Norfolk State Univ, Norfolk, VA 23504 USA. RP Krishnan, M (reprint author), Alameda Appl Sci Corp, San Leandro, CA 94577 USA. EM krishnan@aasc.net FU US DOE via SBIR; US DOE [DE-AC05-06OR23177]; American Recovery and Reinvestment Act FX This research was supported by the US DOE via SBIR grants to AASC. The JLab effort was provided by Jefferson Science Associates, LLC under US DOE contract no. DE-AC05-06OR23177, including supplemental funding provided by the American Recovery and Reinvestment Act. NR 26 TC 12 Z9 12 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD NOV PY 2011 VL 24 IS 11 AR 115002 DI 10.1088/0953-2048/24/11/115002 PG 6 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 844TD UT WOS:000296769300002 ER PT J AU Shen, TM Jiang, JY Kametani, F Trociewitz, UP Larbalestier, DC Hellstrom, EE AF Shen, Tengming Jiang, Jianyi Kametani, Fumitake Trociewitz, Ulf P. Larbalestier, David C. Hellstrom, Eric E. TI Heat treatment control of Ag-Bi2Sr2CaCu2Ox multifilamentary round wire: investigation of time in the melt SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article ID CRITICAL-CURRENT DENSITIES; BI-2212/AG WIRES; CONDUCTORS; TAPES; IMPROVEMENT; AG; MICROSTRUCTURE; TEMPERATURE; DIFFUSION; BEHAVIOR AB It is well known that the critical current density J(c) of Ag-sheathed Bi2Sr2CaCu2Ox (2212) varies strongly with heat treatment details, particularly the maximum processing temperature T-max, but the mechanism for such J(c) variations and how the processing window can be widened remain unknown. We systematically measured the J(c) and electromagnetic properties of a powder-in-tube Ag-sheathed multifilamentary Bi2Sr2CaCu2Ox (2212) round wire processed with the maximum processing temperature T-max ranging from 887 to 900 degrees C and the time at the maximum temperature t(max) from 0 to 3 h using three representative heat treatment schedules. We found that J(c) correlates weakly to T-max, but it correlates strongly to the time in the melt t(melt), a processing parameter that has not been explicitly considered before. J(c) is rather insensitive to T-max in the temperature range 887-900 degrees C and the true cause of J(c) declining with high T-max appears to be the long t(melt) that leads to collapse of filament structure. By tuning t(melt) we were able to widen the T-max window to 10 degrees C. The J(c)-t(melt) correlation, as well as quench studies, indicate that J(c) is controlled by complex diffusion processes occurring in the melt (filament bonding, bubble agglomeration, and perhaps Cu loss). Our findings highlight t(melt) as an important processing parameter for optimizing J(c) and may serve as a general guide for heat treating 2212 coils. C1 [Shen, Tengming; Jiang, Jianyi; Kametani, Fumitake; Trociewitz, Ulf P.; Larbalestier, David C.; Hellstrom, Eric E.] Florida State Univ, Ctr Appl Superconduct, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Shen, Tengming] Florida State Univ, Dept Elect & Comp Engn, FAMU FSU Coll Engn, Tallahassee, FL 32310 USA. [Larbalestier, David C.; Hellstrom, Eric E.] Florida State Univ, Dept Mech Engn, FAMU FSU Coll Engn, Tallahassee, FL 32310 USA. RP Shen, TM (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Shen, Tengming/G-7320-2012; Larbalestier, David/B-2277-2008; Jiang, Jianyi/F-2549-2017 OI Larbalestier, David/0000-0001-7098-7208; Jiang, Jianyi/0000-0002-1094-2013 FU NSF [DMR-0084173]; State of Florida; ARRA through the US Department of Energy FX Work at the NHMFL is supported by the NSF Cooperative Agreement DMR-0084173, by the State of Florida, and by an ARRA grant through the US Department of Energy. We would like to thank David Myers, Bill Starch, Van Griffin, and Natanette Craig for technical assistance with electromagnetic properties measurements and metallographic polishing and imaging. We thank the members of the Very High Field Superconducting Magnet Collaboration for helpful discussions. NR 35 TC 11 Z9 11 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD NOV PY 2011 VL 24 IS 11 AR 115009 DI 10.1088/0953-2048/24/11/115009 PG 8 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 844TD UT WOS:000296769300009 ER PT J AU Dugger, MT AF Dugger, Michael T. TI Bringing professionals together SO TRIBOLOGY & LUBRICATION TECHNOLOGY LA English DT Editorial Material C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Dugger, MT (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mtdugge@sandia.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU SOC TRIBOLOGISTS & LUBRICATION ENGINEERS PI PARK RIDGE PA 840 BUSSE HIGHWAY, PARK RIDGE, IL 60068 USA SN 1545-858X J9 TRIBOL LUBR TECHNOL JI Tribol. Lubr. Technol. PD NOV PY 2011 VL 67 IS 11 BP 29 EP 29 PG 1 WC Engineering, Mechanical SC Engineering GA 843KT UT WOS:000296671400009 ER PT J AU Goel, A Rajagopal, RR Ferreira, JMF AF Goel, Ashutosh Rajagopal, Raghu Raman Ferreira, Jose M. F. TI Influence of strontium on structure, sintering and biodegradation behaviour of CaO-MgO-SrO-SiO2-P2O5-CaF2 glasses SO ACTA BIOMATERIALIA LA English DT Article DE Strontium; Bioactive glass; Surface reactivity; Structure; XRD ID MOLECULAR-DYNAMICS SIMULATIONS; BIOACTIVE GLASSES; CHEMICAL DURABILITY; GENE-EXPRESSION; DIOPSIDE; SPECTRA; CALCIUM; CELLS; BONE; DIFFERENTIATION AB The present study investigates the influence of SrO on structure, apatite-forming ability, physico-chemical degradation and sintering behaviour of melt-quenched bioactive glasses with the composition (mol.%): (36.07-x) CaO-xSrO-19.24MgO-5.61P(2)O(5)-38.49SiO(2)-0.59CaF(2), where x varies between 0 and 10. The detailed structural analysis of the glasses is made by infrared spectroscopy and magic angle spinning-nuclear magnetic resonance spectroscopy. Silicon is predominantly present as Q(2) (Si) species, while phosphorus is found as orthophosphate in all the investigated glasses. The apatite-forming ability of glasses is investigated by immersion of glass powders in simulated body fluid for time durations varying between 1 h and 7 days. While increasing the Sr2+/Ca2+ ratio in the glasses does not affect their structure significantly, their apatite-forming ability is decreased considerably. Further, physico-chemical degradation of glasses is studied in accordance with ISO 10993-14 "Biological evaluation of medical devices - Part 14: Identification and quantification of degradation products from ceramics" in Tris-HCl and citric acid buffer, and the possible implications of the ion release profiles from the glasses in different solutions are discussed. The addition of strontium to the glasses leads to a sevenfold decrease in chemical degradation of glasses in Tris-HCl. The sintering of glass powders renders glass ceramics (GCs) with varying degrees of crystallinity and good flexural strength (98-131 MPa), where the mechanical properties depend on the nature and amount of crystalline phases present in the GCs. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Goel, Ashutosh] Pacific NW Natl Lab, Richland, WA 99354 USA. [Rajagopal, Raghu Raman; Ferreira, Jose M. F.] Univ Aveiro, Dept Ceram & Glass Engn, CICECO, P-3810193 Aveiro, Portugal. RP Goel, A (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM ashutosh.goel@pnnl.gov RI Goel, Ashutosh/J-9972-2012 FU FCT-Portugal; CICECO FX The support of FCT-Portugal and CICECO is greatly acknowledged. NR 50 TC 37 Z9 37 U1 3 U2 28 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 J9 ACTA BIOMATER JI Acta Biomater. PD NOV PY 2011 VL 7 IS 11 BP 4071 EP 4080 DI 10.1016/Lactbio.2011.06.047 PG 10 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 837NK UT WOS:000296210300028 PM 21763793 ER PT J AU Norris, AL Serpersu, EH AF Norris, Adrianne L. Serpersu, Engin H. TI Antibiotic Selection by the Promiscuous Aminoglycoside Acetyltransferase-(3)-IIIb Is Thermodynamically Achieved through the Control of Solvent Rearrangement SO BIOCHEMISTRY LA English DT Article ID HEAT-CAPACITY CHANGES; PROTEIN-FOLDING THERMODYNAMICS; AMINO-ACID-RESIDUES; LIGAND-BINDING; WATER; HYDRATION; ENTHALPY; SOLVATION; MODEL; NMR AB The results presented here show the first known observation of opposite signs of change in heat capacity (Delta C(p)) of two structurally similar ligands binding to the same protein site. Neomycin and paromomycin are aminoglycoside antibiotics that are substrates for the resistance-conferring enzyme, the aminoglycoside acetyltransferase-(3)-IIIb (AAC). These antibiotics are identical to one another except at the 6' position where neomycin has an amine and paromomycin has a hydroxyl. The opposite trends in Delta C(p) of binding of these two drugs to AAC suggest a differential exposure of nonpolar amino acid side chains. Nuclear magnetic resonance experiments further demonstrate significantly different changes in AAC upon interaction with neomycin and paromomycin. Experiments in H(2)O and D(2)O reveal the first observed temperature dependence of solvent and vibrational contributions to Delta C(p). Coenzyme A significantly influences these effects. Together, the data suggest that AAC exploits solvent properties to facilitate favorable thermodynamic selection of antibiotics. C1 [Norris, Adrianne L.; Serpersu, Engin H.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37996 USA. [Serpersu, Engin H.] Univ Tennessee, Grad Sch Genome Sci & Technol, Knoxville, TN 37996 USA. [Serpersu, Engin H.] Oak Ridge Natl Lab, Knoxville, TN 37996 USA. [Serpersu, Engin H.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Serpersu, EH (reprint author), Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Walters Life Sci Bldg M407, Knoxville, TN 37996 USA. EM serpersu@utk.edu FU National Science Foundation [MCB-0842743] FX This work is supported by a grant from the National Science Foundation (MCB-0842743 to E.H.S.). NR 38 TC 5 Z9 6 U1 3 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0006-2960 J9 BIOCHEMISTRY-US JI Biochemistry PD NOV 1 PY 2011 VL 50 IS 43 BP 9309 EP 9317 DI 10.1021/bi2011916 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 837PZ UT WOS:000296217000014 PM 21958034 ER PT J AU Allix, M Chambrier, MH Veron, E Porcher, F Suchomel, M Goutenoire, F AF Allix, Mathieu Chambrier, Marie-Helene Veron, Emmanuel Porcher, Florence Suchomel, Matthew Goutenoire, Francois TI Synthesis and Structure Determination of the High Temperature Form of La2WO6 SO CRYSTAL GROWTH & DESIGN LA English DT Article ID POWDER DIFFRACTION PATTERNS; CRYSTAL-STRUCTURE; PHASE-EQUILIBRIA; POLYMORPHISM; PARAMETERS; LA2O3-WO3; LA; DY AB This article presents the synthesis, structure determination, and structure analysis of alpha-La2WO6. This high temperature polyrnorph Was directly observed using laboratory in situ high-temperature X-ray powder. diffraction and isolated at room temperature by rapid quenching from 1600 degrees C. Ab initio structure determination has been performed at room temperature by combining electron diffraction results with an analysis of synchrotron and neutron powder diffraction data by charge-flipping algorithm methods. The alpha-La2WO6 phase is found to crystallize in the Pm2(1)n(No. 31) orthorhombic space group (Z = 6) with cell parameters: a = 16.5513(1) angstrom, b = 5.52003(3) A, c = 8.88326(3) angstrom and a measured density of 6.82(1) g.cm(-3) at room temperature. This previously uncharacterized high temperature alpha-La2WO6 form (>1450 degrees C) may be described as a regular paving between six [WO6] octahedra alternating with 12 isolated lanthanum atoms. The conductivity properties have been measured and compared to the low temperature (beta) polymorph. C1 [Allix, Mathieu; Veron, Emmanuel] CNRS, CEMHTI, UPR3079, F-45071 Orleans 2, France. [Allix, Mathieu; Veron, Emmanuel] Univ Orleans, F-45067 Orleans 2, France. [Chambrier, Marie-Helene; Goutenoire, Francois] Univ Maine, CNRS, Lab Oxydes & Fluorures, UMR 6010, F-72085 Le Mans 9, France. [Porcher, Florence] CEA Saclay, Lab Leon Brillouin, F-91191 Gif Sur Yvette, France. [Suchomel, Matthew] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Allix, M (reprint author), CNRS, CEMHTI, UPR3079, 1D Ave Rech Sci, F-45071 Orleans 2, France. EM mathieu.allix@cnrs.orleans.fr RI VERON, Emmanuel/C-1825-2008; Suchomel, Matthew/C-5491-2015; Allix, Mathieu/C-1679-2008; OI Allix, Mathieu/0000-0001-9317-1316; SUCHOMEL, Matthew/0000-0002-9500-5079 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; [9719] FX The use of the Advanced Photon Source at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357.; The neutron experiments realized at the Laboratoire Leon Brillouin in Saclay have been supported by Project No. 9719. NR 32 TC 7 Z9 7 U1 5 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD NOV PY 2011 VL 11 IS 11 BP 5105 EP 5112 DI 10.1021/cg201010y PG 8 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 838TE UT WOS:000296314300050 ER PT J AU Wang, SA Diwu, J Simonetti, A Booth, CH Albrecht-Schmitt, TE AF Wang, Shuao Diwu, Juan Simonetti, Antonio Booth, Corwin H. Albrecht-Schmitt, Thomas E. TI Interstitial Incorporation of Plutonium into a Low-Dimensional Potassium Borate SO ENVIRONMENTAL SCIENCE & TECHNOLOGY LA English DT Article ID ABSORPTION FINE-STRUCTURE; SPENT NUCLEAR-FUEL; CRYSTAL-STRUCTURE; CATIONIC FRAMEWORK; RADIATION-DAMAGE; WASTE FORMS; CALCITE; URANIUM; SITE; NEPTUNIUM AB The molten boric acid flux reaction of PuBr3 with KBO2 at 200 degrees C results in the formation of large light-yellow crystals of K[B5O7(OH)(2)]center dot H2O:Pu4+. Single-crystal X-ray diffraction experiments on the Pu-doped K[B5O7(OH)(2)]center dot H2O demonstrate two features: (1) K[B5O7(OH)(2)]center dot H2O:Pu4+ adopts a one-dimensional borate chain structure with void spaces between the chains. (2) The doping plutonium atoms do not reside on the potassium sites. The latter are not fully occupied. Both laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and energy-dispersive spectrometry analyses indicate that plutonium atoms are uniformly distributed in crystals of K[B5O7(OH)(2)]center dot H2O with an atomic K:Pu ratio of approximately 65:1 measured by LA-ICP-MS. UV-vis-NIR spectra taken from both freshly made and one day old crystals show that the plutonium present within the crystals is predominantly characterized by Pu(IV). A small amount of Pu(III) is also present initially, but slowly oxidized to Pu(IV) via interaction with oxygen in the air. X-ray absorption near-edge structure and extended X-ray absorption fine structure spectroscopic measurements confirm that plutonium is mainly present as a form similar to that of a PuO2 cluster. The combined results suggest that the clusters containing Pu(IV) ions are uniformly distributed in the void spaces between the borate chains. C1 [Wang, Shuao; Diwu, Juan; Simonetti, Antonio; Albrecht-Schmitt, Thomas E.] Univ Notre Dame, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA. [Wang, Shuao; Diwu, Juan; Simonetti, Antonio; Albrecht-Schmitt, Thomas E.] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA. [Booth, Corwin H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Albrecht-Schmitt, TE (reprint author), Univ Notre Dame, Dept Civil Engn & Geol Sci, Notre Dame, IN 46556 USA. EM talbrec1@nd.edu RI Wang, Shuao/H-7373-2012; Booth, Corwin/A-7877-2008; Simonetti, Antonio/E-4187-2016 OI Simonetti, Antonio/0000-0002-4025-2283 FU U.S. Department of Energy (DOE) [ER64804]; Office of Science, Office of Basic Energy Sciences, of the U.S. DOE [DE-AC02-05CH11231] FX We are grateful for support provided by the U.S. Department of Energy (DOE), Subsurface Biogeochemical Research Program, under Grant ER64804. Work at Lawrence Berkeley National Laboratory was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. DOE under Contract DE-AC02-05CH11231. NR 71 TC 5 Z9 5 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0013-936X EI 1520-5851 J9 ENVIRON SCI TECHNOL JI Environ. Sci. Technol. PD NOV 1 PY 2011 VL 45 IS 21 BP 9457 EP 9463 DI 10.1021/es2028247 PG 7 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 837OI UT WOS:000296212700048 PM 21932804 ER PT J AU Phillips, CL Gregg, JW Wilson, JK AF Phillips, Claire L. Gregg, Jillian W. Wilson, John K. TI Reduced diurnal temperature range does not change warming impacts on ecosystem carbon balance of Mediterranean grassland mesocosms SO GLOBAL CHANGE BIOLOGY LA English DT Article DE asymmetric warming; carbon; diurnal temperature range; grassland; respiration ID CLIMATE-CHANGE; TERRESTRIAL ECOSYSTEMS; NIGHT TEMPERATURE; CO2 FLUXES; RESPIRATION; GROWTH; RESPONSES; PHOTOSYNTHESIS; PRACTICALITY; VARIABILITY AB Daily minimum temperature (T-min) has increased faster than daily maximum temperature (T-max) in many parts of the world, leading to decreases in diurnal temperature range (DTR). Projections suggest that these trends are likely to continue in many regions, particularly in northern latitudes and in arid regions. Despite wide speculation that asymmetric warming has different impacts on plant and ecosystem production than equal-night-and-day warming, there has been little direct comparison of these scenarios. Reduced DTR has also been widely misinterpreted as a result of night-only warming, when in fact T-min occurs near dawn, indicating higher morning as well as night temperatures. We report on the first experiment to examine ecosystem-scale impacts of faster increases in T-min than in T-max, using precise temperature controls to create realistic diurnal temperature profiles with gradual day-night temperature transitions and elevated early morning as well as night temperatures. Studying a constructed grassland ecosystem containing species native to Oregon, USA, we found that the ecosystem lost more carbon at elevated than ambient temperatures, but remained unaffected by the 3 degrees C difference in DTR between symmetric warming (constantly ambient + 3.5 degrees C) and asymmetric warming (dawn T-min = ambient + 5 degrees C, afternoon T-max = ambient + 2 degrees C). Reducing DTR had no apparent effect on photosynthesis, probably because temperatures were most different in the morning and late afternoon when light was low. Respiration was also similar in both warming treatments, because respiration temperature sensitivity was not sufficient to respond to the limited temperature differences between asymmetric and symmetric warming. We concluded that changes in daily mean temperatures, rather than changes in T-min/T-max, were sufficient for predicting ecosystem carbon fluxes in this reconstructed Mediterranean grassland system. C1 [Phillips, Claire L.] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94551 USA. [Phillips, Claire L.; Gregg, Jillian W.; Wilson, John K.] Terr Ecosyst Res Associates, Corvallis, OR 97333 USA. RP Phillips, CL (reprint author), Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, POB 808,L-397, Livermore, CA 94551 USA. EM claire.phillips@llnl.gov FU US Department of Energy [DE-FG02-05ER64048]; US Department of Energy, Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Funding was provided to Terrestrial Ecosystem Research Associates (TERA) by the US Department of Energy under contract DE-FG02-05ER64048. Assistance was provided by several TERA employees including Jared Hall, Daniel Theophanes, Thomas Hendrickson, Luke Pangle, Daniel Bailey, and Casey Ward and by Bill Rugh of US EPA. A portion of this manuscript was prepared under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 48 TC 8 Z9 8 U1 3 U2 39 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 EI 1365-2486 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD NOV PY 2011 VL 17 IS 11 BP 3263 EP 3273 DI 10.1111/j.1365-2486.2011.02483.x PG 11 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 836UA UT WOS:000296137000001 ER PT J AU Gillespie, JJ Wattam, AR Cammer, SA Gabbard, JL Shukla, MP Dalay, O Driscoll, T Hix, D Mane, SP Mao, CH Nordberg, EK Scott, M Schulman, JR Snyder, EE Sullivan, DE Wang, CX Warren, A Williams, KP Xue, T Yoo, HS Zhang, CD Zhang, Y Will, R Kenyon, RW Sobral, BW AF Gillespie, Joseph J. Wattam, Alice R. Cammer, Stephen A. Gabbard, Joseph L. Shukla, Maulik P. Dalay, Oral Driscoll, Timothy Hix, Deborah Mane, Shrinivasrao P. Mao, Chunhong Nordberg, Eric K. Scott, Mark Schulman, Julie R. Snyder, Eric E. Sullivan, Daniel E. Wang, Chunxia Warren, Andrew Williams, Kelly P. Xue, Tian Yoo, Hyun Seung Zhang, Chengdong Zhang, Yan Will, Rebecca Kenyon, Ronald W. Sobral, Bruno W. TI PATRIC: the Comprehensive Bacterial Bioinformatics Resource with a Focus on Human Pathogenic Species SO INFECTION AND IMMUNITY LA English DT Review ID IV SECRETION SYSTEM; MULTIPLE SEQUENCE ALIGNMENT; BRUCELLA-ABORTUS; ERYTHRITOL CATABOLISM; INTRACELLULAR LIFE; HIGH-THROUGHPUT; DATABASE; GENOME; GENES; INTEGRATION AB Funded by the National Institute of Allergy and Infectious Diseases, the Pathosystems Resource Integration Center (PATRIC) is a genomics-centric relational database and bioinformatics resource designed to assist scientists in infectious-disease research. Specifically, PATRIC provides scientists with (i) a comprehensive bacterial genomics database, (ii) a plethora of associated data relevant to genomic analysis, and (iii) an extensive suite of computational tools and platforms for bioinformatics analysis. While the primary aim of PATRIC is to advance the knowledge underlying the biology of human pathogens, all publicly available genome-scale data for bacteria are compiled and continually updated, thereby enabling comparative analyses to reveal the basis for differences between infectious free-living and commensal species. Herein we summarize the major features available at PATRIC, dividing the resources into two major categories: (i) organisms, genomes, and comparative genomics and (ii) recurrent integration of community-derived associated data. Additionally, we present two experimental designs typical of bacterial genomics research and report on the execution of both projects using only PATRIC data and tools. These applications encompass a broad range of the data and analysis tools available, illustrating practical uses of PATRIC for the biologist. Finally, a summary of PATRIC's outreach activities, collaborative endeavors, and future research directions is provided. C1 [Sobral, Bruno W.] Virginia Tech, Cyberinfrastruct Div, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA. [Gillespie, Joseph J.] Univ Maryland, Dept Microbiol & Immunol, Baltimore, MD 21201 USA. [Nordberg, Eric K.] HHS NIH NCI SRA Int Inc, Rockville, MD 20852 USA. [Wang, Chunxia] Novozymes Biol Inc, Salem, VA 24153 USA. [Williams, Kelly P.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Sobral, BW (reprint author), Virginia Tech, Cyberinfrastruct Div, Virginia Bioinformat Inst, Washington St,MC 0477, Blacksburg, VA 24061 USA. EM sobral@vbi.vt.edu OI Driscoll, Timothy/0000-0002-5119-0372; Gillespie, Joseph/0000-0002-5447-7264 FU National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272200900040C] FX This project has been funded in whole or in part with federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under contract no. HHSN272200900040C awarded to B. W. S. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIAID or the National Institutes of Health. NR 57 TC 127 Z9 127 U1 2 U2 32 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0019-9567 J9 INFECT IMMUN JI Infect. Immun. PD NOV PY 2011 VL 79 IS 11 BP 4286 EP 4298 DI 10.1128/IAI.00207-11 PG 13 WC Immunology; Infectious Diseases SC Immunology; Infectious Diseases GA 839GB UT WOS:000296352400001 PM 21896772 ER PT J AU Ravindran, PP Heroux, A Ye, JD AF Ravindran, Priyadarshini P. Heroux, Annie Ye, Jing-Dong TI Improvement of the crystallizability and expression of an RNA crystallization chaperone SO JOURNAL OF BIOCHEMISTRY LA English DT Article DE chaperone assisted RNA crystallography; Fab; protein engineering; shake flask expression; surface entropy reduction ID RATIONAL PROTEIN CRYSTALLIZATION; X-RAY STRUCTURES; CRYSTAL-STRUCTURE; ANGSTROM RESOLUTION; ESCHERICHIA-COLI; SYNTHETIC ANTIBODIES; CATALYTIC DOMAIN; SECRETION SYSTEM; STRUCTURAL BASIS; RIBOZYME DOMAIN AB Crystallizing RNA has been an imperative and challenging task in the world of RNA research. Assistive methods such as chaperone-assisted RNA crystallography (CARC), employing monoclonal antibody fragments (Fabs) as crystallization chaperones have enabled us to obtain RNA crystal structures by forming crystal contacts and providing initial phasing information. Despite the early successes, the crystallization of large RNA-Fab complex remains a challenge in practice. The possible reason for this difficulty is that the Fab scaffold has not been optimized for crystallization in complex with RNA. Here, we have used the surface entropy reduction (SER) technique for the optimization of delta C209 P4-P6/Fab2 model system. Protruding lysine and glutamate residues were mutated to a set of alanines or serines to construct Fab2SMA or Fab2SMS. Expression with the shake flask approach was optimized to allow large scale production for crystallization. Crystal screening shows that significantly higher crystal-forming ratio was observed for the mutant complexes. As the chosen SER residues are far away from the CDR regions of the Fab, the same set of mutations can now be directly applied to other Fabs binding to a variety of ribozymes and riboswitches to improve the crystallizability of Fab-RNA complex. C1 [Ravindran, Priyadarshini P.; Ye, Jing-Dong] Univ Cent Florida, Dept Chem, Orlando, FL 32816 USA. [Heroux, Annie] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. RP Ye, JD (reprint author), Univ Cent Florida, Dept Chem, 4000 Cent Florida Blvd, Orlando, FL 32816 USA. EM yejingdong@gmail.com FU University of Central Florida FX The University of Central Florida (to J.D.Y.). NR 44 TC 7 Z9 7 U1 0 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0021-924X J9 J BIOCHEM JI J. Biochem. PD NOV PY 2011 VL 150 IS 5 BP 535 EP 543 DI 10.1093/jb/mvr093 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 838MN UT WOS:000296296500008 PM 21785128 ER PT J AU Chen, LZ Pan, X Xiong, FB Li, L Li, N Li, ZM Wang, G Wu, YF AF Chen, Lizhu Pan, Xue Xiong, Fengbo Li, Lin Li, Na Li, Zhiming Wang, Gang Wu, Yuanfang TI Statistical and dynamical fluctuations in the ratios of higher net-proton cumulants in relativistic heavy-ion collisions SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID MULTIPARTICLE PRODUCTION; HIGH-ENERGY; FREEZE-OUT; RANGE AB With the help of transport and statistical models, we find that the ratios of higher net-proton cumulants measured at RHIC are dominated by Poisson-like statistical fluctuations. A way to eliminate this statistical fluctuation is suggested. The obtained dynamical ratios of higher net-proton cumulants are demonstrated to be more relevant to the underlying physics, i.e. the correlations between proton and antiproton, or the critical fluctuations. C1 [Chen, Lizhu; Pan, Xue; Xiong, Fengbo; Li, Lin; Li, Zhiming; Wu, Yuanfang] Hua Zhong Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. [Chen, Lizhu; Wu, Yuanfang] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Li, Na] Hua Zhong Univ Sci & Technol, Dept Phys, Wuhan 430074, Peoples R China. [Wang, Gang] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Wu, Yuanfang] Huazhong Normal Univ, Minist Educ, Key Lab Quark & Lepton Phys, Wuhan, Peoples R China. RP Chen, LZ (reprint author), Hua Zhong Normal Univ, Inst Particle Phys, Wuhan 430079, Peoples R China. EM wuyf@phy.ccnu.edu.cn FU NSFC of China [10835005, 11005046]; MOE of China [IRT0624, B08033]; US Department of Energy, Office of Nuclear Physics FX We are grateful for stimulating discussions with Dr Nu Xu, Xiaofeng Luo, Dr Fuqiang Wang and Dr Zhangbu Xu. The first and last authors are grateful for the hospitality of the BNL STAR group. This work is supported in part by the NSFC of China under project no 10835005, 11005046, MOE of China under project nos IRT0624 and B08033 and a grant from US Department of Energy, Office of Nuclear Physics. NR 35 TC 5 Z9 5 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD NOV PY 2011 VL 38 IS 11 AR 115004 DI 10.1088/0954-3899/38/11/115004 PG 7 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 839NS UT WOS:000296375000005 ER PT J AU Moretto, LG Elliott, JB Phair, L Lake, PT AF Moretto, L. G. Elliott, J. B. Phair, L. Lake, P. T. TI The experimental liquid-vapor phase diagram of bulk nuclear matter SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Review ID FINITE-SIZE BEHAVIOR; CRITICAL-POINT; DROPLET MODEL; MONTE-CARLO; ISING-MODEL; HOT NUCLEI; MULTIFRAGMENTATION; TRANSITION; STATE; BARRIERS AB The modern investigation of clusters, for which 1 << N << infinity, requires a generalization of the thermodynamics developed for infinite systems. For instance, in finite systems, phase transitions and phase coexistence become ill-defined with ambiguous signals. The existence of phase transitions in nuclear systems, in particular of the liquid-vapor kind, has been widely discussed and even experimentally claimed. A consistent and unambiguous approach to this problem requires a connection between finite systems and the corresponding infinite systems. Historically, this has been achieved at temperature T = 0 by the introduction of the liquid drop model and the extraction of the volume term, which is a fundamental quantity of nuclear matter. This work extends this approach to T > 0, by determining the liquid-vapor coexistence line and its termination at the critical point. Since there is no known experimental situation where a nuclear liquid and vapor are in coexistence, we establish a relationship between evaporation rates and saturated vapor concentration and characterize the saturated vapor with Fisher's droplet model. We validate this approach by analyzing cluster concentrations in the Ising and Lennard-Jones models and extracting the corresponding first-order coexistence line and critical temperature. Since the vapor of clusters coexists with a finite liquid drop, we devise a finite size correction leading to a modified Fisher equation. The application of the above techniques to nuclear systems requires dealing also with the Coulomb force. Nuclear cluster evaporation rates can be corrected for Coulomb effects and can be used to evaluate the cluster concentrations in the 'virtual' equilibrium vapor. These cluster concentrations, determined over a wide temperature range, can be analyzed by means of a modified Fisher formula. This leads to the extraction of the entire liquid-vapor coexistence line terminating at the critical point. A large body of experimental data has been analyzed in this manner and the liquid-vapor phase diagram of nuclear matter has been extracted. C1 [Moretto, L. G.; Phair, L.; Lake, P. T.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Elliott, J. B.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Moretto, LG (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM elliott38@llnl.gov FU Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the US Department of Energy [DE-AC02-05CH11231]; US Department of Energy, Lawrence Livermore National Laboratory [E-AC52-07NA27344] FX This work was performed by Lawrence Berkeley National Laboratory and was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of Nuclear Physics, of the US Department of Energy under contract no DE-AC02-05CH11231. This work also performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 86 TC 13 Z9 13 U1 0 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD NOV PY 2011 VL 38 IS 11 AR 113101 DI 10.1088/0954-3899/38/11/113101 PG 31 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 839NS UT WOS:000296375000001 ER PT J AU Rasmussen, AL Diamond, DL McDermott, JE Gao, XL Metz, TO Matzke, MM Carter, VS Belisle, SE Korth, MJ Waters, KM Smith, RD Katze, MG AF Rasmussen, Angela L. Diamond, Deborah L. McDermott, Jason E. Gao, Xiaoli Metz, Thomas O. Matzke, Melissa M. Carter, Victoria S. Belisle, Sarah E. Korth, Marcus J. Waters, Katrina M. Smith, Richard D. Katze, Michael G. TI Systems Virology Identifies a Mitochondrial Fatty Acid Oxidation Enzyme, Dodecenoyl Coenzyme A Delta Isomerase, Required for Hepatitis C Virus Replication and Likely Pathogenesis SO JOURNAL OF VIROLOGY LA English DT Article ID NONSTRUCTURAL PROTEIN 5A; RNA REPLICATION; MASS-SPECTROMETRY; LIPID-METABOLISM; APOLIPOPROTEIN-E; CELLULAR COFACTORS; SOFTWARE PACKAGE; BETA-OXIDATION; ACCURATE MASS; CELLS AB We previously employed systems biology approaches to identify the mitochondrial fatty acid oxidation enzyme dodecenoyl coenzyme A delta isomerase (DCI) as a bottleneck protein controlling host metabolic reprogramming during hepatitis C virus (HCV) infection. Here we present the results of studies confirming the importance of DCI to HCV pathogenesis. Computational models incorporating proteomic data from HCV patient liver biopsy specimens recapitulated our original predictions regarding DCI and link HCV-associated alterations in cellular metabolism and liver disease progression. HCV growth and RNA replication in hepatoma cell lines stably expressing DCI-targeting short hairpin RNA (shRNA) were abrogated, indicating that DCI is required for productive infection. Pharmacologic inhibition of fatty acid oxidation also blocked HCV replication. Production of infectious HCV was restored by overexpression of an shRNA-resistant DCI allele. These findings demonstrate the utility of systems biology approaches to gain novel insight into the biology of HCV infection and identify novel, translationally relevant therapeutic targets. C1 [Rasmussen, Angela L.; Diamond, Deborah L.; Carter, Victoria S.; Belisle, Sarah E.; Korth, Marcus J.; Katze, Michael G.] Univ Washington, Sch Med, Dept Microbiol, Seattle, WA 98195 USA. [Gao, Xiaoli; Metz, Thomas O.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Katze, MG (reprint author), Univ Washington, Sch Med, Dept Microbiol, Box 358070, Seattle, WA 98195 USA. EM honey@u.washington.edu RI Zhang, Yanfeng /G-8359-2011; Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; McDermott, Jason/0000-0003-2961-2572; Rasmussen, Angela/0000-0001-9462-3169; Metz, Tom/0000-0001-6049-3968 FU National Institute on Drug Abuse [1P30DA01562501]; U.S. Department of Energy (DOE) Office of Biological and Environmental Research.; DOE [DE-AC06-76RLO-1830] FX This study was supported by National Institute on Drug Abuse grant 1P30DA01562501 to M.G.K. Portions of this work were performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility located at the Pacific Northwest National Laboratory (PNNL) and sponsored by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research. PNNL is operated by Battelle for the DOE under contract DE-AC06-76RLO-1830. NR 54 TC 24 Z9 24 U1 0 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD NOV PY 2011 VL 85 IS 22 BP 11646 EP 11654 DI 10.1128/JVI.05605-11 PG 9 WC Virology SC Virology GA 840FB UT WOS:000296422700010 PM 21917952 ER PT J AU Wu, Y Fowlkes, JD Roberts, NA Diez, JA Kondic, L Gonzalez, AG Rack, PD AF Wu, Y. Fowlkes, J. D. Roberts, N. A. Diez, J. A. Kondic, L. Gonzalez, A. G. Rack, P. D. TI Competing Liquid Phase Instabilities during Pulsed Laser Induced Self-Assembly of Copper Rings into Ordered Nanoparticle Arrays on SiO2 SO LANGMUIR LA English DT Article ID RAYLEIGH INSTABILITY; METAL-FILMS; MICROFLUIDICS; STABILITY; FLOWS AB Nanoscale copper rings of different radii, thicknesses, and widths were synthesized on silicon dioxide thin films and were subsequently liquefied via a nanosecond pulse laser treatment. During the nanoscale liquid lifetimes, the rings experience competing retraction dynamics and thin film and/or Rayleigh Plateau types of instabilities, which lead to arrays of ordered nanodroplets. Surprisingly, the results are significantly different from those of similar experiments carried out on a Si surface.(1) We use hydrodynamic simulations to elucidate how the different liquid/solid interactions control the different instability mechanisms in the present problem. C1 [Wu, Y.; Rack, P. D.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Fowlkes, J. D.; Roberts, N. A.; Rack, P. D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Nanofabricat Res Lab, Oak Ridge, TN 37831 USA. [Diez, J. A.; Gonzalez, A. G.] Univ Nacl Ctr Prov Buenos Aires, Inst Fis Arroyo Seco, RA-7000 Tandil, Argentina. [Kondic, L.] New Jersey Inst Technol, Dept Math Sci, Ctr Appl Math & Stat, Newark, NJ 07102 USA. RP Rack, PD (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RI Roberts, Nicholas/B-3154-2009; Roberts, Nicholas/H-3275-2014; OI Roberts, Nicholas/0000-0002-6490-9454; Rack, Philip/0000-0002-9964-3254; Gonzalez, Alejandro G./0000-0002-4710-6414 FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division; Office of Basic Energy Sciences, U.S. Department of Energy; NSF [DMS-0908158]; ANPCyT-Argentina [PICT 2493/06] FX P.D.R, J.D.F., and Y.W. acknowledge support from the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division for sponsoring the aspects of this work related to understanding the fundamental mechanisms operative during liquid phase, thin film dewetting. L.K., P.D.R, and J.D.F. also acknowledge that the lithography and electron imaging results reported in this Article were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, U.S. Department of Energy. L.K. acknowledges support by the NSF Grant No. DMS-0908158. J.A.D. and A.G.G. acknowledge CONICET-Argentina for travel support within the International Cooperation Program, and ANPCyT-Argentina for support within the project PICT 2493/06. NR 41 TC 27 Z9 27 U1 1 U2 20 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0743-7463 J9 LANGMUIR JI Langmuir PD NOV 1 PY 2011 VL 27 IS 21 BP 13314 EP 13323 DI 10.1021/la203165v PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 837NZ UT WOS:000296211800070 PM 21916507 ER PT J AU Williams, PT AF Williams, Paul T. TI Exercise Attenuates the Association of Body Weight with Diet in 106,737 Runners SO MEDICINE AND SCIENCE IN SPORTS AND EXERCISE LA English DT Article DE PREVENTION; OBESITY; VIGOROUS PHYSICAL ACTIVITY; DIET-EXERCISE INTERACTIONS ID LIPOPROTEIN-LIPASE ACTIVITY; CORONARY-HEART-DISEASE; SKELETAL-MUSCLE; APPETITE CONTROL; PHYSICAL-ACTIVITY; NONOBESE WOMEN; ADIPOSE-TISSUE; RISK-FACTORS; FOOD-INTAKE; MASS INDEX AB WILLIAMS, P. T. Exercise Attenuates the Association of Body Weight with Diet in 106,737 Runners. Med. Sci. Sports Exerc., Vol. 43, No. 11, pp. 2120-2126, 2011. Purpose: The high prevalence of obesity in Western societies has been attributed in part to high-fat low-CHO food consumption. However, people have also become less active, and inactivity may have increased the risk for weight gain from poor dietary choices. Analyses were performed to test whether diet-weight relationships were attenuated by vigorous exercise. Methods: Age-and education-adjusted cross-sectional regression analyses of 62,042 men and 44,695 women recruited for the National Runners' Health Study were conducted. Reported meat and fruit intakes were analyzed separately and as indicators of high-risk diets. Results: The runners were generally lean (mean +/- SD: males = 24.15 +/- 2.81 kg.m(-2), females = 21.63 +/- 2.70 kg.m(-2)) as measured by body mass index (BMI), educated (males = 16.42 +/- 2.47 yr, females = 16.04 +/- 2.32 yr), and middle-aged (males = 44.40 +/- 10.83 yr, females = 38.21 +/- 10.08 yr), who ran 5.30 +/- 3.23 km.d(-1) if male and 4.79 +/- 3.00 km.d(-1) if female. Running significantly attenuated BMI's relationship to reported meat and fruit intakes in men (P < 10(-8) and P < 10(-12), respectively) and women (P < 10(-15) and P < 10(-6), respectively). Specifically, compared with running <2 km.d(-1), running >8 km.d(-1) reduced the apparent BMI increase per serving of meat by 43% in men (slope +/- SE = from 0.74 +/- 0.10 to 0.42 +/- 0.06) and 55% in women (from 1.26 +/- 0.13 to 0.57 +/- 0.09) and reduced the apparent BMI reduction per serving of fruit by 75% in men (from -0.28 +/- 0.04 to -0.07 +/- 0.02) and 94% in women (from -0.16 +/- 0.05 to -0.01 +/- 0.02). Running also significantly attenuated the concordant relationship between reported meat intake and waist and chest circumferences in men (P < 10(-9) and P = 0.0002, respectively) and women (P = 0.0004 and P < 10(-5), respectively) and the concordant relationship between meat intake and hip circumference in women (P < 10(-6)). Conclusions: Vigorous exercise may mitigate diet-induced weight gain, albeit not guaranteeing protection from poor dietary choices. C1 Lawrence Berkeley Natl Lab, Berkeley, CA 94556 USA. RP Williams, PT (reprint author), Lawrence Berkeley Natl Lab, Donner 464,1 Cyclotron Rd, Berkeley, CA 94556 USA. EM ptwilliams@lbl.gov FU National Heart, Lung, and Blood Institute [HL094717]; Institute of Aging [AG032004]; Department of Energy [DE-AC03-76SF00098] FX This research was supported by grant HL094717 from the National Heart, Lung, and Blood Institute and grant AG032004 from the Institute of Aging and was conducted at the Ernest Orlando Lawrence Berkeley National Laboratory (Department of Energy DE-AC03-76SF00098 to the University of California). NR 40 TC 4 Z9 4 U1 0 U2 5 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0195-9131 J9 MED SCI SPORT EXER JI Med. Sci. Sports Exerc. PD NOV PY 2011 VL 43 IS 11 BP 2120 EP 2126 DI 10.1249/MSS.0b013e31821cd128 PG 7 WC Sport Sciences SC Sport Sciences GA 839MW UT WOS:000296372100013 PM 21502899 ER PT J AU Volkow, ND Wang, GJ Newcorn, JH Kollins, SH Wigal, TL Telang, F Fowler, JS Goldstein, RZ Klein, N Logan, J Wong, C Swanson, JM AF Volkow, N. D. Wang, G-J Newcorn, J. H. Kollins, S. H. Wigal, T. L. Telang, F. Fowler, J. S. Goldstein, R. Z. Klein, N. Logan, J. Wong, C. Swanson, J. M. TI Motivation deficit in ADHD is associated with dysfunction of the dopamine reward pathway SO MOLECULAR PSYCHIATRY LA English DT Article DE attention; brain imaging; catecholamines; personality; psychiatric disorder; PET ID ATTENTION-DEFICIT/HYPERACTIVITY DISORDER; HYPERACTIVITY DISORDER; INCENTIVE MOTIVATION; HUMAN BRAIN; ADULT ADHD; PERSONALITY; BINDING; PSYCHOPATHOLOGY; LEADERSHIP; BEHAVIOR AB Attention-deficit hyperactivity disorder (ADHD) is typically characterized as a disorder of inattention and hyperactivity/impulsivity but there is increasing evidence of deficits in motivation. Using positron emission tomography (PET), we showed decreased function in the brain dopamine reward pathway in adults with ADHD, which, we hypothesized, could underlie the motivation deficits in this disorder. To evaluate this hypothesis, we performed secondary analyses to assess the correlation between the PET measures of dopamine D2/D3 receptor and dopamine transporter availability (obtained with [(11)C]raclopride and [(11)C]cocaine, respectively) in the dopamine reward pathway (midbrain and nucleus accumbens) and a surrogate measure of trait motivation (assessed using the Achievement scale on the Multidimensional Personality Questionnaire or MPQ) in 45 ADHD participants and 41 controls. The Achievement scale was lower in ADHD participants than in controls (11 +/- 5 vs 14 +/- 3, P < 0.001) and was significantly correlated with D2/D3 receptors (accumbens: r = 0.39, P < 0.008; midbrain: r = 0.41, P < 0.005) and transporters (accumbens: r = 0.35, P < 0.02) in ADHD participants, but not in controls. ADHD participants also had lower values in the Constraint factor and higher values in the Negative Emotionality factor of the MPQ but did not differ in the Positive Emotionality factor-and none of these were correlated with the dopamine measures. In ADHD participants, scores in the Achievement scale were also negatively correlated with symptoms of inattention (CAARS A, E and SWAN I). These findings provide evidence that disruption of the dopamine reward pathway is associated with motivation deficits in ADHD adults, which may contribute to attention deficits and supports the use of therapeutic interventions to enhance motivation in ADHD. Molecular Psychiatry (2011) 16, 1147-1154; doi:10.1038/mp.2010.97; published online 21 September 2010 C1 [Volkow, N. D.] Natl Inst Drug Abuse, Bethesda, MD 20892 USA. [Volkow, N. D.; Telang, F.] NIAAA, Lab Neuroimaging, Bethesda, MD 90034 USA. [Wang, G-J; Fowler, J. S.; Goldstein, R. Z.; Klein, N.; Logan, J.; Wong, C.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Wang, G-J; Fowler, J. S.; Goldstein, R. Z.; Klein, N.; Logan, J.; Wong, C.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Wang, G-J; Newcorn, J. H.; Fowler, J. S.] Mt Sinai Med Ctr, Dept Psychiat, New York, NY 10029 USA. [Kollins, S. H.] Duke Univ, Med Ctr, Dept Psychiat, Durham, NC 27710 USA. [Wigal, T. L.; Swanson, J. M.] Univ Calif Irvine, Child Dev Ctr, Irvine, CA USA. RP Volkow, ND (reprint author), Natl Inst Drug Abuse, 6001 Executive Blvd,Room 5274,MSC 9581, Bethesda, MD 20892 USA. EM nvolkow@nida.nih.gov RI Kollins, Scott/G-2965-2012; OI Newcorn, Jeffrey /0000-0001-8993-9337 FU Eli Lilly; Ortho-McNeil Janssen; Addrenex Pharmaceuticals; Otsuka Pharmaceuticals; Shire Pharmaceuticals; McNeil; Novartis; Shire; Alza; Richwood; Celgene; Celltech; Gliatech; Cephalon; Watson; CIBA; Janssen; National Institutes of Health (NIH); National Institute of Mental Health [MH66961-02] FX Dr Newcorn reported being a recipient of research support from Eli Lilly and Ortho-McNeil Janssen, and serves as a consultant, advisor or both for Astra Zeneca, BioBehavioral Diagnostics, Eli Lilly, Novartis, Ortho-McNeil Janssen and Shire, and as a speaker for Ortho-McNeil Janssen. Dr Kollins reported receiving research support, consulting fees or both from Addrenex Pharmaceuticals, Otsuka Pharmaceuticals and Shire Pharmaceuticals. Dr Wigal reported receiving support from Eli Lilly, McNeil, Novartis and Shire. Dr Swanson reported receiving support from Alza, Richwood, Shire, Celgene, Novartis, Celltech, Gliatech, Cephalon, Watson, CIBA, Janssen and McNeil; has been on the advisory boards of Alza, Richwood, Shire, Celgene, Novartis, Celltech, UCB, Gliatech, Cephalon, McNeil and Eli Lilly; has been on the speaker's bureaus of Alza, Shire, Novartis, Cellthech, UCB, Cephalon, CIBA, Janssen and McNeil; and has consulted to Alza, Richwood, Shire, Clegene, Novarits, Celltech, UCB, Gliatech, Cephalon, Watson, CIBA, Jansen, McNeil and Eli Lilly. The other authors declare no conflict of interest.; This research was carried out at Brookhaven National Laboratory (BNL) and was supported in part by the Intramural Research Program of the National Institutes of Health (NIH), the National Institute of Mental Health (MH66961-02) and infrastructure support from the Department of Energy. We thank the following BNL employees: Donald Warner for PET operations; David Schlyer and Michael Schueller for cyclotron operations; Pauline Carter, Millard Jayne and Barbara Hubbard for nursing care; Payton King for plasma analysis and Lisa Muench, Youwen Xu and Colleen Shea for radiotracer preparation; Karen Appelskog for protocol coordination; to the following Duke employees: Joseph English and Allan Chrisman, for subject recruitment and evaluation; to the following NIH employee: Linda Thomas for editorial assistance. We also thank the individuals who volunteered for these studies. NR 35 TC 90 Z9 91 U1 6 U2 57 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1359-4184 J9 MOL PSYCHIATR JI Mol. Psychiatr. PD NOV PY 2011 VL 16 IS 11 BP 1147 EP 1154 DI 10.1038/mp.2010.97 PG 8 WC Biochemistry & Molecular Biology; Neurosciences; Psychiatry SC Biochemistry & Molecular Biology; Neurosciences & Neurology; Psychiatry GA 840HD UT WOS:000296429100014 PM 20856250 ER PT J AU Duggan, KC Hermanson, DJ Musee, J Prusakiewicz, JJ Scheib, JL Carter, BD Banerjee, S Oates, JA Marnett, LJ AF Duggan, Kelsey C. Hermanson, Daniel J. Musee, Joel Prusakiewicz, Jeffery J. Scheib, Jami L. Carter, Bruce D. Banerjee, Surajit Oates, J. A. Marnett, Lawrence J. TI (R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2 SO NATURE CHEMICAL BIOLOGY LA English DT Article ID CYCLOOXYGENASE ACTIVE-SITE; ANTIINFLAMMATORY AGENTS; SYNAPTIC-TRANSMISSION; OXIDATIVE METABOLITE; ARACHIDONIC-ACID; GLYCEROL ESTER; 2-ARACHIDONOYLGLYCEROL; BINDING; RECEPTOR; SYSTEM AB Cyclooxygenase-2 (COX-2) catalyzes the oxygenation of arachidonic acid and the endocannabinoids 2-arachidonoylglycerol and arachidonoylethanolamide. Evaluation of a series of COX-2 inhibitors revealed that many weak competitive inhibitors of arachidonic acid oxygenation are potent inhibitors of endocannabinoid oxygenation. (R) enantiomers of ibuprofen, naproxen and flurbiprofen, which are considered to be inactive as COX-2 inhibitors, are potent 'substrate-selective inhibitors' of endocannabinoid oxygenation. Crystal structures of the COX-2-(R)-naproxen and COX-2-(R)-flurbiprofen complexes verified this unexpected binding and defined the orientation of the (R) enantiomers relative to (S) enantiomers. (R)-Profens selectively inhibited endocannabinoid oxygenation by lipopolysaccharide-stimulated dorsal root ganglion (DRG) cells. Substrate-selective inhibition provides new tools for investigating the role of COX-2 in endocannabinoid oxygenation and a possible explanation for the ability of (R)-profens to maintain endocannabinoid tone in models of neuropathic pain. C1 [Duggan, Kelsey C.; Musee, Joel; Prusakiewicz, Jeffery J.; Scheib, Jami L.; Carter, Bruce D.; Marnett, Lawrence J.] Vanderbilt Univ, Sch Med, Dept Biochem, Nashville, TN 37212 USA. [Hermanson, Daniel J.; Marnett, Lawrence J.] Vanderbilt Univ, Dept Chem, Nashville, TN USA. [Banerjee, Surajit] Cornell Univ, NE Collaborat Access Team, Ithaca, NY USA. [Banerjee, Surajit] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY USA. [Banerjee, Surajit] Argonne Natl Lab, Argonne, IL 60439 USA. [Oates, J. A.] Vanderbilt Univ, Sch Med, Dept Med, Div Clin Pharmacol, Nashville, TN 37212 USA. [Marnett, Lawrence J.] Vanderbilt Univ, Sch Med, Ctr Mol Toxicol, Nashville, TN 37212 USA. [Marnett, Lawrence J.] Vanderbilt Univ, Sch Med, Vanderbilt Ingram Canc Ctr, Nashville, TN 37212 USA. [Marnett, Lawrence J.] Vanderbilt Univ, Sch Med, Vanderbilt Inst Chem Biol, Nashville, TN 37212 USA. [Oates, J. A.; Marnett, Lawrence J.] Vanderbilt Univ, Sch Med, Dept Pharmacol, Nashville, TN 37212 USA. RP Marnett, LJ (reprint author), Vanderbilt Univ, Sch Med, Dept Biochem, Nashville, TN 37212 USA. EM larry.marnett@vanderbilt.edu OI Banerjee, Surajit/0000-0002-9414-7163 FU A.B. Hancock Jr. Memorial Laboratory for Cancer Research and by research [CA89450, GM15431, NS064278]; US National Institutes of Health [DA022873, DA031572]; National Center for Research Resources at the US National Institutes of Health [RR-15301]; US Department of Energy, Office of Basic Energy Sciences [AC02-06CH11357] FX This work was supported by the A.B. Hancock Jr. Memorial Laboratory for Cancer Research and by research (CA89450, GM15431, NS064278) and training grants (DA022873, DA031572) from the US National Institutes of Health. It is based upon research conducted at the Advanced Photon Source on the Northeastern Collaborative Access Team beamlines, which are supported by award RR-15301 from the National Center for Research Resources at the US National Institutes of Health. Use of the Advanced Photon Source is supported by the US Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. We are grateful to J. Harp for assistance with crystallography; K. Masuda, M. Brown, R. Stevens and B. Cravatt for a sample of FAAH; A. Brash for a sample of 15-lipoxygenase and J. Uddin for a sample of fluorocoxib A. NR 48 TC 70 Z9 70 U1 0 U2 16 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1552-4450 J9 NAT CHEM BIOL JI Nat. Chem. Biol. PD NOV PY 2011 VL 7 IS 11 BP 803 EP 809 DI 10.1038/nchembio.663 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 839PX UT WOS:000296381600010 PM 22053353 ER PT J AU Pautz, SD Pandya, TM Adams, ML AF Pautz, Shawn D. Pandya, Tara M. Adams, Marvin L. TI Scalable Parallel Prefix Solvers for Discrete Ordinates Transport in Multidimensions SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID ALGORITHM AB The well-known "sweep" algorithm for inverting the streaming-plus-collision term in first-order deterministic radiation transport calculations suffers from parallel scaling issues caused by a lack of concurrency in the spatial dimension along the direction of particle travel. We investigate a new class of parallel algorithms that involves recasting the streaming-plus-collision problem in prefix form and solving via cyclic reduction. This method, although computationally more expensive at low levels of parallelism than the sweep algorithm, offers better theoretical scalability properties. Previous work has demonstrated this approach for one-dimensional calculations; we show how to extend it to multidimensional calculations. Notably, for multiple dimensions it appears that this approach is limited to long-characteristics discretizations; other discretizations cannot be cast in practical prefix,form. Computational results on two different massively parallel computer systems demonstrate that both our "forward" and "symmetric" algorithms behave similarly scaling well to larger degrees of parallelism than sweep-based solvers. We do observe some issues at the highest levels of parallelism (relative to the computer system size) and discuss possible causes. We conclude that this approach shows good potential for future parallel systems but that parallel scalability will depend on the architecture of the communication networks of these systems. C1 [Pautz, Shawn D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Pandya, Tara M.; Adams, Marvin L.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. RP Pautz, SD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sdpautz@sandia.gov FU SNL; Lockheed Martin company; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Lawrence Livermore National Laboratory; King Abdullah University of Science and Technology [KUS-C1-016-04] FX Work by the first author (S.D.P.) was supported by the Laboratory Directed Research and Development program at SNL, which is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Work by the second and third authors has been supported by Lawrence Livermore National Laboratory. Work by the third author has also been supported by award KUS-C1-016-04, made by King Abdullah University of Science and Technology. NR 19 TC 1 Z9 1 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD NOV PY 2011 VL 169 IS 3 BP 245 EP 261 PG 17 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 840CG UT WOS:000296415300002 ER PT J AU Conlin, JL Tobin, SJ LaFleur, AM Hu, JW Lee, T Sandoval, NP Schear, MA AF Conlin, Jeremy Lloyd Tobin, Stephen J. LaFleur, Adrienne M. Hu, Jianwei Lee, TaeHoon Sandoval, Nathan P. Schear, Melissa A. TI On Using Code Emulators and Monte Carlo Estimation to Predict Assembly Attributes of Spent Fuel Assemblies for Safeguards Applications SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article AB The quantification of the plutonium mass in spent nuclear fuel assemblies is an important measurement for nuclear safeguards practitioners. A program is well underway to develop nondestructive assay instruments that, when combined, will be able to quantify the plutonium content of a spent nuclear fuel assembly. Each instrument will quantify a specific attribute of the spent fuel assembly, e.g., the fissile content. In this paper, we present a Monte Carlo based method of estimating the mean and distribution of some assembly attributes. An MCNPX model of each instrument has been created, and the response of the instrument was simulated for a range of spent fuel assemblies with discrete parameters (e.g., burnup, initial enrichment, and cooling time). The Monte Carlo based method interpolates between the modeled results for an instrument to emulate a response for parameters not explicitly modeled. We demonstrate the usefulness of this technique in applying the technique to six different instruments under investigation. The results show that this Monte Carlo based method can be used to estimate the assembly attributes of a spent fuel assembly based upon the measured response from the instrument. C1 [Conlin, Jeremy Lloyd; Tobin, Stephen J.; LaFleur, Adrienne M.; Hu, Jianwei; Lee, TaeHoon; Sandoval, Nathan P.; Schear, Melissa A.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Conlin, JL (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM jlconlin@lanl.gov FU NGSI FX This work was performed under the sponsorship of the NGSI. The authors would like to thank the following individuals (in no particular order): J. Lestone, Los Alamos National Laboratory (LANL), for his idea of using Monte Carlo techniques for this type of analysis; T. Burr, LANL, for his statistical help; J. Cheatham, Oak Ridge National Laboratory, for his initial investigation into this domain; and J. Hendricks, for his comments and suggestions on the Monte Carlo process. NR 16 TC 1 Z9 1 U1 0 U2 1 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD NOV PY 2011 VL 169 IS 3 BP 314 EP 328 PG 15 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 840CG UT WOS:000296415300007 ER PT J AU Snyder, PW Mecinovic, J Moustakas, DT Thomas, SW Harder, M Mack, ET Lockett, MR Heroux, A Sherman, W Whitesides, GM AF Snyder, Phillip W. Mecinovic, Jasmin Moustakas, Demetri T. Thomas, Samuel W., III Harder, Michael Mack, Eric T. Lockett, Matthew R. Heroux, Annie Sherman, Woody Whitesides, George M. TI Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase SO PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA LA English DT Article DE physical-organic; entropy; surface water; benzo-extension; hydration ID INHOMOGENEOUS FLUID APPROACH; PROTEIN-LIGAND BINDING; SCALED-PARTICLE THEORY; SOLVATION THERMODYNAMICS; BIOLOGICAL RECOGNITION; MOLECULAR RECOGNITION; NONPOLAR SOLUTES; AQUEOUS-SOLUTION; WATER-STRUCTURE; AROMATIC RINGS AB The hydrophobic effect-a rationalization of the insolubility of nonpolar molecules in water-is centrally important to biomolecular recognition. Despite extensive research devoted to the hydrophobic effect, its molecular mechanisms remain controversial, and there are still no reliably predictive models for its role in protein-ligand binding. Here we describe a particularly well-defined system of protein and ligands-carbonic anhydrase and a series of structurally homologous heterocyclic aromatic sulfonamides-that we use to characterize hydrophobic interactions thermodynamically and structurally. In binding to this structurally rigid protein, a set of ligands (also defined to be structurally rigid) shows the expected gain in binding free energy as hydrophobic surface area is added. Isothermal titration calorimetry demonstrates that enthalpy determines these increases in binding affinity, and that changes in the heat capacity of binding are negative. X-ray crystallography and molecular dynamics simulations are compatible with the proposal that the differences in binding between the homologous ligands stem from changes in the number and organization of water molecules localized in the active site in the bound complexes, rather than (or perhaps in addition to) release of structured water from the apposed hydrophobic surfaces. These results support the hypothesis that structured water molecules-including both the molecules of water displaced by the ligands and those reorganized upon ligand binding-determine the thermodynamics of binding of these ligands at the active site of the protein. Hydrophobic effects in various contexts have different structural and thermodynamic origins, although all may be manifestations of the differences in characteristics of bulk water and water close to hydrophobic surfaces. C1 [Snyder, Phillip W.; Mecinovic, Jasmin; Moustakas, Demetri T.; Thomas, Samuel W., III; Harder, Michael; Mack, Eric T.; Lockett, Matthew R.; Whitesides, George M.] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA. [Heroux, Annie] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Sherman, Woody] Schrodinger Inc, New York, NY 10036 USA. [Whitesides, George M.] Harvard Univ, Wyss Inst Biol Inspired Engn, Cambridge, MA 02138 USA. RP Whitesides, GM (reprint author), Harvard Univ, Dept Chem & Chem Biol, 12 Oxford St, Cambridge, MA 02138 USA. EM gwhitesides@gmwgroup.harvard.edu RI Mack, Eric/F-6363-2010; Lockett, Matthew/I-2874-2012; Thomas, Samuel/B-3257-2008; Mecinovic, Jasmin/F-9694-2015; Lockett, Matthew/A-6020-2015 OI Thomas, Samuel/0000-0002-0811-9781; Mecinovic, Jasmin/0000-0002-5559-3822; Lockett, Matthew/0000-0003-4851-7757 FU National Institutes of Health (NIH) [GM051559, GM030367, P41RR012408]; US Department of Energy FX We thank Pat Connelly and Professor Eugene Shakhnovich for helpful discussions. This work was supported by the National Institutes of Health (NIH) (GM051559 and GM030367). Support for the National Synchrotron Light is provided by the US Department of Energy, and the NIH (P41RR012408). NR 53 TC 132 Z9 132 U1 2 U2 79 PU NATL ACAD SCIENCES PI WASHINGTON PA 2101 CONSTITUTION AVE NW, WASHINGTON, DC 20418 USA SN 0027-8424 J9 P NATL ACAD SCI USA JI Proc. Natl. Acad. Sci. U. S. A. PD NOV 1 PY 2011 VL 108 IS 44 BP 17889 EP 17894 DI 10.1073/pnas.1114107108 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 839NH UT WOS:000296373400012 PM 22011572 ER PT J AU Bateman, A Agrawal, S Birney, E Bruford, EA Bujnicki, JM Cochrane, G Cole, JR Dinger, ME Enright, AJ Gardner, PP Gautheret, D Griffiths-Jones, S Harrow, J Herrero, J Holmes, IH Huang, HD Kelly, KA Kersey, P Kozomara, A Lowe, TM Marz, M Moxon, S Pruitt, KD Samuelsson, T Stadler, PF Vilella, AJ Vogel, JH Williams, KP Wright, MW Zwieb, C AF Bateman, Alex Agrawal, Shipra Birney, Ewan Bruford, Elspeth A. Bujnicki, Janusz M. Cochrane, Guy Cole, James R. Dinger, Marcel E. Enright, Anton J. Gardner, Paul P. Gautheret, Daniel Griffiths-Jones, Sam Harrow, Jen Herrero, Javier Holmes, Ian H. Huang, Hsien-Da Kelly, Krystyna A. Kersey, Paul Kozomara, Ana Lowe, Todd M. Marz, Manja Moxon, Simon Pruitt, Kim D. Samuelsson, Tore Stadler, Peter F. Vilella, Albert J. Vogel, Jan-Hinnerk Williams, Kelly P. Wright, Mathew W. Zwieb, Christian TI RNAcentral: A vision for an international database of RNA sequences SO RNA-A PUBLICATION OF THE RNA SOCIETY LA English DT Article DE sequence database; federation; noncoding RNA ID TRANS-ACTING SIRNAS; NONCODING RNAS; CAENORHABDITIS-ELEGANS; MICRORNA; GENES; ARABIDOPSIS; EXPRESSION; COMPLEX; ANNOTATION; RESOURCES AB During the last decade there has been a great increase in the number of noncoding RNA genes identified, including new classes such as microRNAs and piRNAs. There is also a large growth in the amount of experimental characterization of these RNA components. Despite this growth in information, it is still difficult for researchers to access RNA data, because key data resources for noncoding RNAs have not yet been created. The most pressing omission is the lack of a comprehensive RNA sequence database, much like UniProt, which provides a comprehensive set of protein knowledge. In this article we propose the creation of a new open public resource that we term RNAcentral, which will contain a comprehensive collection of RNA sequences and fill an important gap in the provision of biomedical databases. We envision RNA researchers from all over the world joining a federated RNAcentral network, contributing specialized knowledge and databases. RNAcentral would centralize key data that are currently held across a variety of databases, allowing researchers instant access to a single, unified resource. This resource would facilitate the next generation of RNA research and help drive further discoveries, including those that improve food production and human and animal health. We encourage additional RNA database resources and research groups to join this effort. We aim to obtain international network funding to further this endeavor. C1 [Bateman, Alex; Gardner, Paul P.; Harrow, Jen; Vogel, Jan-Hinnerk] Wellcome Trust Sanger Inst, Hinxton CB10 1SA, England. [Agrawal, Shipra] IBAB, Bangalore 560100, Karnataka, India. [Agrawal, Shipra] BioCOS Life Sci Private Ltd, Bangalore 560100, Karnataka, India. [Birney, Ewan; Bruford, Elspeth A.; Cochrane, Guy; Enright, Anton J.; Herrero, Javier; Kersey, Paul; Vilella, Albert J.; Wright, Mathew W.] European Bioinformat Inst, Hinxton CB10 1SD, England. [Bujnicki, Janusz M.] Int Inst Mol & Cell Biol Warsaw, Lab Bioinformat & Prot Engn, PL-02109 Warsaw, Poland. [Bujnicki, Janusz M.] Fac Biol, Inst Mol Biol & Biotechnol, Lab Bioinformat, PL-61614 Poznan, Poland. [Cole, James R.] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. [Dinger, Marcel E.] Univ Queensland, Inst Mol Biosci, St Lucia, Qld 4072, Australia. [Gautheret, Daniel] Univ Paris 11, UMR CNRS 8621, Inst Genet & Microbiol, F-91405 Orsay, France. [Griffiths-Jones, Sam; Kozomara, Ana] Univ Manchester, Fac Life Sci, Manchester M13 9PT, Lancs, England. [Holmes, Ian H.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Huang, Hsien-Da] Natl Chiao Tung Univ, Inst Bioinformat & Syst Biol, Hsinchu 30050, Taiwan. [Kelly, Krystyna A.] Univ Cambridge, Dept Plant Sci, Cambridge CB2 3EA, England. [Lowe, Todd M.] Univ Calif Santa Cruz, Dept Biomol Engn, Santa Cruz, CA 95064 USA. [Marz, Manja] Inst Pharmaceut Chem, RNA Bioinformat Grp, D-35037 Marburg, Germany. [Moxon, Simon] Univ E Anglia, Norwich NR4 7TJ, Norfolk, England. [Pruitt, Kim D.] Natl Lib Med, Natl Ctr Biotechnol Informat, Bethesda, MD 20894 USA. [Samuelsson, Tore] Univ Goteborg, Dept Med Biochem, S-40530 Gothenburg, Sweden. [Stadler, Peter F.] Univ Leipzig, Bioinformat Grp, Dept Comp Sci, D-04009 Leipzig, Germany. [Williams, Kelly P.] Sandia Natl Labs, Livermore, CA 94551 USA. [Zwieb, Christian] Univ Texas Hlth Sci Ctr San Antonio, Dept Biochem, San Antonio, TX 78229 USA. RP Bateman, A (reprint author), Wellcome Trust Sanger Inst, Wellcome Trust Genome Campus, Hinxton CB10 1SA, England. EM agb@sanger.ac.uk RI Dinger, Marcel/D-4209-2009; Moxon, Simon/A-5385-2010; Wright, Mathew/H-5394-2012; Enright, Anton/F-3094-2011; Vogel, Jan-Hinnerk/C-4582-2013; Griffiths-Jones, Sam/H-2998-2014; Stadler, Peter F./L-7857-2015; OI Herrero, Javier/0000-0001-7313-717X; Bruford, Elspeth/0000-0002-8380-5247; Enright, Anton/0000-0002-6090-3100; Kersey, Paul/0000-0002-7054-800X; Birney, Ewan/0000-0001-8314-8497; Holmes, Ian/0000-0001-7639-5369; Dinger, Marcel/0000-0003-4423-934X; Vilella, Albert/0000-0002-2005-2516; Bateman, Alex/0000-0002-6982-4660; Wright, Mathew/0000-0002-2650-2426; Griffiths-Jones, Sam/0000-0001-6043-807X; Stadler, Peter F./0000-0002-5016-5191; Gardner, Paul/0000-0002-7808-1213; Cochrane, Guy/0000-0001-7954-7057 FU NHGRI NIH HHS [P41 HG003345] NR 50 TC 35 Z9 35 U1 1 U2 7 PU COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT PI COLD SPRING HARBOR PA 1 BUNGTOWN RD, COLD SPRING HARBOR, NY 11724 USA SN 1355-8382 J9 RNA JI RNA-Publ. RNA Soc. PD NOV PY 2011 VL 17 IS 11 BP 1941 EP 1946 DI 10.1261/rna.2750811 PG 6 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 841DJ UT WOS:000296492400001 PM 21940779 ER PT J AU Grosbois, C Courtin-Nomade, A Robin, E Bril, H Tamura, N Schafer, J Blanc, G AF Grosbois, C. Courtin-Nomade, A. Robin, E. Bril, H. Tamura, N. Schaefer, J. Blanc, G. TI Fate of arsenic-bearing phases during the suspended transport in a gold mining district (Isle river Basin, France) SO SCIENCE OF THE TOTAL ENVIRONMENT LA English DT Article DE Isle River; Suspended material; Arsenic; Bearing-phases; Clay minerals; Oxyhydroxides ID TRACE-ELEMENTS; EXTRACTION PROCEDURES; LE-BOURNEIX; SEDIMENTS; SPECIATION; METALS; ADSORPTION; IRON; TRANSFORMATION; GANOPHYLLITE AB Arsenic-rich (similar to 140-1520 mg.kg(-1)) suspended particulate matter (SPM) was collected daily with an automatic sampler in the Upper Isle River (France) draining a former gold mining district in order to better understand the fate of arsenic during the suspended transport (particles smaller than 50 pm). Various techniques at a micrometric scale (EPMA, quantitative SEM-EDS with an automated particle counting including classification system and mu XRD) were used to directly characterize As-bearing phases. The most frequent ones were aggregates of fine clay particles. Their mineralogy varied with particle sources involved. These aggregates were formed by chlorite-phlogopite-kaolinite assemblages during the high flow and chlorite-illite-montmorillonite during the low flow. Among all the observed As-carriers in SPM, these clay assemblages were the least As-rich (0.10 up to 1.58 wt.% As) and their median As concentrations suggested that they were less concentrated during the high flow than during the low flow. Iron oxyhydroxides were evidenced by mu XRD in these clay aggregates, either as micro- to nano-sized particles and/or as coating. (Mn, Fe)oxyhydroxides were also present as discrete particles. Manganese oxides (0.14-1.26 wt.% As) transport significantly more arsenic during the low flow than during the high flow (0.16-0.79 wt.% As). The occurrence of Fe oxyhydroxide particles appeared more complex. During the low flow, observations on banks and in wetlands of freshly precipitated Fe hydroxides (ferrihydrite-type) presented the highest As concentrations (up to 6.5 wt.% As) but they were barely detected in SPM at a microscale. During the high flow, As-rich Fe-oxyhydroxides (0.10-2.80 wt.% As) were more frequent, reflecting mechanical erosion and transport when the surface water level increased. Arsenic transfers from SPM to corresponding aqueous fraction mostly depend on As-carrier stability. This study shows the temporal occurrence of each type of As-bearing phases in SPM, their As concentrations at a particle scale and abundance according to hydrological periods. (C) 2011 Elsevier B.V. All rights reserved. C1 [Grosbois, C.] Univ Orleans, Univ Tours, UMR CNRS ISTO 6113, F-37200 Tours, France. [Courtin-Nomade, A.; Bril, H.] Univ Limoges, GRESE, EA 4330, F-87000 Limoges, France. [Robin, E.] Univ Orsay, LSCE, UMR CEA CNRS 1572, F-91198 Gif Sur Yvette, France. [Tamura, N.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. [Schaefer, J.; Blanc, G.] Univ Bordeaux, UMR CNRS EPOC 5805, F-33405 Talence, France. RP Grosbois, C (reprint author), Univ Orleans, Univ Tours, UMR CNRS ISTO 6113, Parc Grandmont, F-37200 Tours, France. EM cecile.grosbois@univ-tours.fr RI robin, eric/H-8125-2014 OI robin, eric/0000-0002-5596-2640 FU INSU/CNRS; Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the US Department of Energy at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX The financial support of this project was provided by the "Conseil Regional du Limousin". The authors would like to thank M. Peymirat (Univ. Limoges) for thin section preparations from Teflon filters and F. Moatar (Univ. Tours) and EC2C0 program (INSU/CNRS, VARIFLUX project) for funding travels to Berkeley (Ca, USA). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. The micro-diffraction program at the ALS on beamline 12.3.2 was made possible by NSF grant # 0416243. The authors really appreciate all the detailed review of Pr Drahota and an anomynous reviewer for improving the manuscript. NR 63 TC 8 Z9 8 U1 0 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0048-9697 J9 SCI TOTAL ENVIRON JI Sci. Total Environ. PD NOV 1 PY 2011 VL 409 IS 23 BP 4986 EP 4999 DI 10.1016/j.scitotenv.2011.07.045 PG 14 WC Environmental Sciences SC Environmental Sciences & Ecology GA 836RL UT WOS:000296128700013 PM 21925708 ER PT J AU Monazam, ER Shadle, LJ Siriwardane, R AF Monazam, Esmail R. Shadle, Lawrence J. Siriwardane, Ranjani TI Equilibrium and Absorption Kinetics of Carbon Dioxide by Solid Supported Amine Sorbent SO AICHE JOURNAL LA English DT Article DE adsorption gas; diffusion; gas purification; reaction kinetics; design ID CAPTURE; CO2 AB The equilibrium and conversion-time data on the absorption of carbon dioxide (CO(2)) with amine-based solid sorbent were analyzed over the range of 303-373 K. Data on CO(2) loading on amine based solid sorbent at these temperatures and CO(2) partial pressure between 10 and 760 mm Hg obtained from volumetric adsorption apparatus were fitted to a simple equilibrium model to generate the different parameters (including equilibrium constant) in the model. Using these constants, a correlation was obtained to define equilibrium constant and maximum CO(2) loading as a function of temperature. In this study, a shrinking core model (SCM) was applied to elucidate the relative importance of pore diffusion and surface chemical reaction in controlling the rate of reaction. Application of SCM to the data suggested a surface reaction-controlled mechanism for the temperature of up to 40 degrees C and pore-diffusion mechanism at higher temperature. Published 2011 American Institute of Chemical Engineers AIChE J, 57: 3153-3159, 2011 C1 [Shadle, Lawrence J.; Siriwardane, Ranjani] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. [Monazam, Esmail R.] PLLC, REM Engn Serv, Morgantown, WV 26505 USA. RP Shadle, LJ (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM lshadl@netl.doe.gov OI Shadle, Lawrence/0000-0002-6283-3628 FU Department of Energy FX The authors thank the Department of Energy for funding the research through the Fossil Energy's Carbon Sequestration/CO2 Capture Research program. NR 11 TC 12 Z9 12 U1 0 U2 30 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0001-1541 J9 AICHE J JI AICHE J. PD NOV PY 2011 VL 57 IS 11 BP 3153 EP 3159 DI 10.1002/aic.12516 PG 7 WC Engineering, Chemical SC Engineering GA 835VE UT WOS:000296063500020 ER PT J AU Pienkos, PT Laurens, L Aden, A AF Pienkos, Philip T. Laurens, Lieve Aden, Andy TI Making Biofuel from Microalgae SO AMERICAN SCIENTIST LA English DT Article ID ALGAE C1 [Pienkos, Philip T.; Laurens, Lieve; Aden, Andy] NREL, Natl Bioenergy Ctr, Golden, CO 80401 USA. RP Pienkos, PT (reprint author), NREL, Natl Bioenergy Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM philip.pienkos@nrel.gov RI Laurens, Lieve/B-3545-2013 NR 7 TC 7 Z9 7 U1 3 U2 34 PU SIGMA XI-SCI RES SOC PI RES TRIANGLE PK PA PO BOX 13975, RES TRIANGLE PK, NC 27709 USA SN 0003-0996 J9 AM SCI JI Am. Scientist PD NOV-DEC PY 2011 VL 99 IS 6 BP 474 EP 481 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 834WB UT WOS:000295994100021 ER PT J AU Han, X Zhang, MG Han, ZW Xin, JY Liu, XH AF Han, Xiao Zhang, Meigen Han, Zhiwei Xin, Jinyuan Liu, Xiaohong TI Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE CMAQ; Aerosols; Optical properties; Radiative forcing ID CLIMATE-CHEMISTRY/AEROSOL MODEL; ANTHROPOGENIC SULFATE AEROSOL; REGIONAL CLIMATE; ACE-ASIA; SEASONAL-VARIATIONS; NITRATE AEROSOL; TRACE-P; SYSTEM; CHINA; TRENDS AB The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W m(-2) was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W m(-2) could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan (C) 2011 Elsevier Ltd. All rights reserved. C1 [Han, Xiao; Zhang, Meigen; Xin, Jinyuan] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & Atm, Beijing 100029, Peoples R China. [Han, Zhiwei] Chinese Acad Sci, Inst Atmospher Phys, Key Lab Reg Climate Environm Res Temperate E Asia, Beijing 100029, Peoples R China. [Liu, Xiaohong] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhang, MG (reprint author), Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & Atm, HuaYan BeiLi 40, Beijing 100029, Peoples R China. EM mgzhang@mail.iap.ac.cn RI 辛, 金元/F-7310-2012; Wang, ZF/D-7202-2012; Liu, Xiaohong/E-9304-2011 OI 辛, 金元/0000-0003-4243-5072; Wang, ZF/0000-0002-7062-6012; Liu, Xiaohong/0000-0002-3994-5955 FU Chinese Academy of Sciences [KZCX2-YW-Q11-04]; National Natural Science Foundation of China [41005064] FX This study was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-Q11-04) and the National Natural Science Foundation of China (Grant No. 41005064). EANET (the Acid Deposition Monitoring Network), AERONET (the Aerosol Robotic Network), and CSHNET (the Chinese Sun Hazemeter Network) are acknowledged for providing observational data sets used in this study. NR 59 TC 17 Z9 20 U1 3 U2 45 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD NOV PY 2011 VL 45 IS 36 BP 6576 EP 6592 DI 10.1016/j.atmosenv.2011.08.006 PG 17 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 837RF UT WOS:000296220200010 ER PT J AU Paszczynski, AJ Paidisetti, R Johnson, AK Crawford, RL Colwell, FS Green, T Delwiche, M Lee, H Newby, D Brodie, EL Conrad, M AF Paszczynski, Andrzej J. Paidisetti, Ravindra Johnson, Andrew K. Crawford, Ronald L. Colwell, Frederick S. Green, Tonia Delwiche, Mark Lee, Hope Newby, Deborah Brodie, Eoin L. Conrad, Mark TI Proteomic and targeted qPCR analyses of subsurface microbial communities for presence of methane monooxygenase SO BIODEGRADATION LA English DT Article DE Proteomics; Methanotrophs; Co-metabolism; Methane monooxygenase; Trichloroethylene ID METHYLOSINUS-TRICHOSPORIUM OB3B; TRICHLOROETHYLENE DEGRADATION; METHANOTROPHIC BACTERIA; ENVIRONMENTAL-SAMPLES; AMMONIA MONOOXYGENASE; OXIDIZING BACTERIA; FIELD EVIDENCE; RIBOSOMAL-RNA; GENES; BIODEGRADATION AB The Test Area North (TAN) site at the Idaho National Laboratory near Idaho Falls, ID, USA, sits over a trichloroethylene (TCE) contaminant plume in the Snake River Plain fractured basalt aquifer. Past observations have provided evidence that TCE at TAN is being transformed by biological natural attenuation that may be primarily due to co-metabolism in aerobic portions of the plume by methanotrophs. TCE co-metabolism by methanotrophs is the result of the broad substrate specificity of microbial methane monooxygenase which permits non-specific oxidation of TCE in addition to the primary substrate, methane. Arrays of experimental approaches have been utilized to understand the biogeochemical processes driving intrinsic TCE co-metabolism at TAN. In this study, aerobic methanotrophs were enumerated by qPCR using primers targeting conserved regions of the genes pmoA and mmoX encoding subunits of the particulate MMO (pMMO) and soluble MMO (sMMO) enzymes, respectively, as well as the gene mxa encoding the downstream enzyme methanol dehydrogenase. Identification of proteins in planktonic and biofilm samples from TAN was determined using reverse phase ultra-performance liquid chromatography (UPLC) coupled with a quadrupole-time-of-flight (QToF) mass spectrometer to separate and sequence peptides from trypsin digests of the protein extracts. Detection of MMO in unenriched water samples from TAN provides direct evidence of intrinsic methane oxidation and TCE co-metabolic potential of the indigenous microbial population. Mass spectrometry is also well suited for distinguishing which form of MMO is expressed in situ either soluble or particulate. Using this method, pMMO proteins were found to be abundant in samples collected from wells within and adjacent to the TCE plume at TAN. C1 [Paszczynski, Andrzej J.; Paidisetti, Ravindra; Johnson, Andrew K.; Crawford, Ronald L.; Green, Tonia] Univ Idaho, Environm Biotechnol Inst, Moscow, ID 83844 USA. [Colwell, Frederick S.] Oregon State Univ, Coll Ocean & Atmospher Sci, Corvallis, OR 97331 USA. [Delwiche, Mark; Lee, Hope; Newby, Deborah] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Brodie, Eoin L.; Conrad, Mark] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Paszczynski, AJ (reprint author), Univ Idaho, Environm Biotechnol Inst, POB 441052, Moscow, ID 83844 USA. EM andrzej@uidaho.edu RI Conrad, Mark/G-2767-2010; Brodie, Eoin/A-7853-2008 OI Brodie, Eoin/0000-0002-8453-8435 FU Office of Science, Office of Biological and Environmental Research, Environmental Remediation Sciences Division, of the U.S. Department of Energy [DE-FG02-06ER64198, DE-AC02-05CH11231, DEAC07-05ID14517] FX This research was funded by the Office of Science, Office of Biological and Environmental Research, Environmental Remediation Sciences Division, of the U.S. Department of Energy under Contract Numbers DE-FG02-06ER64198 (to the University of Idaho), DE-AC02-05CH11231 (to Lawrence Berkeley National Laboratory), and DEAC07-05ID14517 (to the Idaho National Laboratory). NR 49 TC 13 Z9 15 U1 1 U2 45 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0923-9820 J9 BIODEGRADATION JI Biodegradation PD NOV PY 2011 VL 22 IS 6 BP 1045 EP 1059 DI 10.1007/s10532-011-9462-4 PG 15 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 834DJ UT WOS:000295939300001 PM 21360114 ER PT J AU Kalyanaraman, A Cannon, WR Latt, B Baxter, DJ AF Kalyanaraman, Ananth Cannon, William R. Latt, Benjamin Baxter, Douglas J. TI MapReduce implementation of a hybrid spectral library-database search method for large-scale peptide identification SO BIOINFORMATICS LA English DT Article AB A MapReduce-based implementation called MRMSPolygraph for parallelizing peptide identification from mass spectrometry data is presented. The underlying serial method, MSPolygraph, uses a novel hybrid approach to match an experimental spectrum against a combination of a protein sequence database and a spectral library. Our MapReduce implementation can run on any Hadoop cluster environment. Experimental results demonstrate that, relative to the serial version, MR-MSPolygraph reduces the time to solution from weeks to hours, for processing tens of thousands of experimental spectra. Speedup and other related performance studies are also reported on a 400-core Hadoop cluster using spectral datasets from environmental microbial communities as inputs. C1 [Kalyanaraman, Ananth; Latt, Benjamin] Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99164 USA. [Cannon, William R.] Pacific NW Natl Lab, Computat Biol & Bioinformat Grp, Richland, WA 99352 USA. [Baxter, Douglas J.] Pacific NW Natl Lab, Mol Sci Comp Facil, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Kalyanaraman, A (reprint author), Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99164 USA. EM ananth@eecs.wsu.edu; william.cannon@pnnl.gov RI Cannon, William/K-8411-2014 OI Cannon, William/0000-0003-3789-7889 FU National Science Foundation [IIS 0916463]; Department of Energy's Office of Biological and Environmental Research and Office of Advanced Scientific Computing Research [57271, 54976] FX This work was supported by the National Science Foundation (IIS 0916463 to A. K. and W. R. C.) and Department of Energy's Office of Biological and Environmental Research and Office of Advanced Scientific Computing Research under contracts (57271 and 54976 to W.R.C.). NR 3 TC 10 Z9 10 U1 0 U2 14 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD NOV 1 PY 2011 VL 27 IS 21 BP 3072 EP 3073 DI 10.1093/bioinformatics/btr523 PG 2 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 836GQ UT WOS:000296099300023 PM 21926122 ER PT J AU Nishiguchi, GA Atallah, G Bellamacina, C Burger, MT Ding, Y Feucht, PH Garcia, PD Han, W Klivansky, L Lindvall, M AF Nishiguchi, Gisele A. Atallah, Gordana Bellamacina, Cornelia Burger, Matthew T. Ding, Yu Feucht, Paul H. Garcia, Pablo D. Han, Wooseok Klivansky, Liana Lindvall, Mika TI Discovery of novel 3,5-disubstituted indole derivatives as potent inhibitors of Pim-1, Pim-2, and Pim-3 protein kinases SO BIOORGANIC & MEDICINAL CHEMISTRY LETTERS LA English DT Article DE Pim-kinase inhibitors; Indole; Kinase selectivity; Oncology ID PROTOONCOGENE PIM-1; BINDING MODE; CELL; CANCER; PROGRESSION; TUMORIGENESIS; EXPRESSION; APOPTOSIS; LYMPHOMA; SURVIVAL AB A series of novel 3,5-disubstituted indole derivatives as potent and selective inhibitors of all three members of the Pim kinase family is described. High throughput screen identified a pan-Pim kinase inhibitor with a promiscuous scaffold. Guided by structure-based drug design, SAR of the series afforded a highly selective indole chemotype that was further developed into a potent set of compounds against Pim-1, 2, and 3 (Pim-1 and Pim-3: IC(50) <= 2 nM and Pim-2: IC(50) <= 100 nM). (C) 2011 Elsevier Ltd. All rights reserved. C1 [Nishiguchi, Gisele A.; Atallah, Gordana; Bellamacina, Cornelia; Burger, Matthew T.; Ding, Yu; Han, Wooseok; Klivansky, Liana; Lindvall, Mika] Novartis Inst BioMed Res, Global Discovery Chem Oncol & Exploratory Chem, Emeryville, CA 94608 USA. [Feucht, Paul H.; Garcia, Pablo D.; Klivansky, Liana] Novartis Inst BioMed Res, Oncol Res, Emeryville, CA 94608 USA. [Klivansky, Liana] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Nishiguchi, GA (reprint author), Novartis Inst BioMed Res, Global Discovery Chem Oncol & Exploratory Chem, Emeryville, CA 94608 USA. EM gisele.nishiguchi@novartis.com NR 24 TC 26 Z9 26 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-894X J9 BIOORG MED CHEM LETT JI Bioorg. Med. Chem. Lett. PD NOV 1 PY 2011 VL 21 IS 21 BP 6366 EP 6369 DI 10.1016/j.bmcl.2011.08.105 PG 4 WC Chemistry, Medicinal; Chemistry, Organic SC Pharmacology & Pharmacy; Chemistry GA 835HA UT WOS:000296025900031 PM 21945284 ER PT J AU Ge, YX Fu, CX Bhandari, H Bouton, J Brummer, EC Wang, ZY AF Ge, Yaxin Fu, Chunxiang Bhandari, Hem Bouton, Joseph Brummer, E. Charles Wang, Zeng-Yu TI Pollen Viability and Longevity of Switchgrass (Panicum virgatum L.) SO CROP SCIENCE LA English DT Article ID GENETIC-MODIFICATION; PLANT-REGENERATION; BIOFUEL CROPS; ETHANOL; ENERGY AB Pollen is essential for seed production and serves as the primary means of gene flow in outcrossing species like switchgrass (Panicum virgatum L.). There is a lack of information on basic pollen biology in switchgrass. This study investigated pollen viability, pollen longevity, and pollen size using different materials, including the tetraploid cultivar Alamo, the octoploid cultivar Cave-in-Rock, and transgenic Alamo plants. Pollen grains were collected from field-grown Alamo and Cave-in-Rock plants, and greenhouse-grown transgenics. Pollen size was in the range of 42.5 to 54.0 mu m; no significant difference was observed in average pollen size between transgenic and control plants. Increasing temperature and ultraviolet-B irradiation negatively affected pollen viability and longevity, while relative humidity had only limited impact. Weather conditions had a large impact on pollen longevity. Under sunny atmospheric conditions, pollen longevity of both cultivars decreased rapidly, with a half-life of <4.9 min and a complete loss of viability in 20 min. Under cloudy atmospheric conditions, the half-life of pollen was more than fivefold longer than under sunny conditions, and it took approximately 150 min to lose viability completely. No difference in pollen viability and longevity was found between transgenic and nontransgenic control plants. C1 [Ge, Yaxin; Fu, Chunxiang; Bhandari, Hem; Bouton, Joseph; Brummer, E. Charles; Wang, Zeng-Yu] Samuel Roberts Noble Fdn Inc, Forage Improvement Div, Ardmore, OK 73401 USA. [Brummer, E. Charles; Wang, Zeng-Yu] BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Wang, ZY (reprint author), Samuel Roberts Noble Fdn Inc, Forage Improvement Div, 2510 Sam Noble Pkwy, Ardmore, OK 73401 USA. EM zywang@noble.org FU National Science Foundation [EPS-0814361]; BioEnergy Science Center; Samuel Roberts Noble Foundation; Office of Biological and Environmental Research in the DOE Office of Science FX This work was supported by the National Science Foundation (Grant EPS-0814361), the BioEnergy Science Center, and The Samuel Roberts Noble Foundation. The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 26 TC 17 Z9 17 U1 1 U2 17 PU CROP SCIENCE SOC AMER PI MADISON PA 677 S SEGOE ROAD, MADISON, WI 53711 USA SN 0011-183X J9 CROP SCI JI Crop Sci. PD NOV PY 2011 VL 51 IS 6 BP 2698 EP 2705 DI 10.2135/cropsci2011.01.0057 PG 8 WC Agronomy SC Agriculture GA 832WB UT WOS:000295839200040 ER PT J AU Choi, D Xiao, J Choi, YJ Hardy, JS Vijayakumar, M Bhuvaneswari, MS Liu, J Xu, W Wang, W Yang, ZG Graff, GL Zhang, JG AF Choi, Daiwon Xiao, Jie Choi, Young Joon Hardy, John S. Vijayakumar, M. Bhuvaneswari, M. S. Liu, Jun Xu, Wu Wang, Wei Yang, Zhenguo Graff, Gordon L. Zhang, Ji-Guang TI Thermal stability and phase transformation of electrochemically charged/discharged LiMnPO4 cathode for Li-ion batteries SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID RECHARGEABLE LITHIUM BATTERIES; 1ST PRINCIPLES CALCULATIONS; STATIONARY ENERGY-STORAGE; TG-MS ANALYSIS; ELECTRODE MATERIALS; HIGH-PERFORMANCE; NANOCOMPOSITE CATHODE; POWER CAPABILITY; LOW-TEMPERATURE; LIXMPO4 M AB Electrochemically active LiMnPO4 nanoplates at lithiated/delithiated state were subjected to thermal stability and phase transformation evaluations for safety as a cathode material for Li-ion batteries. The phase transformation and oxygen evolution temperature of delithiated MnPO4 were characterized using in situ hot-stage X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric-differential scanning calorimetry-mass spectroscopy (TGA-DSC-MS), transmission electron microscopy and scanning electron microscopy (SEM)-energy dispersive X-ray analysis (EDAX). C1 [Choi, Daiwon; Xiao, Jie; Choi, Young Joon; Hardy, John S.; Vijayakumar, M.; Bhuvaneswari, M. S.; Liu, Jun; Xu, Wu; Wang, Wei; Yang, Zhenguo; Graff, Gordon L.; Zhang, Ji-Guang] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Choi, D (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM daiwon.choi@pnl.gov; jiguang.zhang@pnl.gov RI Choi, Daiwon/B-6593-2008; Murugesan, Vijayakumar/C-6643-2011; Wang, Wei/F-4196-2010; Hardy, John/E-1938-2016 OI Murugesan, Vijayakumar/0000-0001-6149-1702; Wang, Wei/0000-0002-5453-4695; Hardy, John/0000-0002-1699-3196 FU U.S. Department of Energy (DOE); Office of Vehicle Technologies (through the Batteries for Advanced Transportation Technologies program at Lawrence Berkeley National Laboratory); Office of Electricity Delivery and Energy Reliability (OE); DOE's Office of Biological and Environmental Research; Battelle Memorial Institute for DOE [DE-AC05-76RL01830] FX The work is supported by the U.S. Department of Energy (DOE), Office of Vehicle Technologies (through the Batteries for Advanced Transportation Technologies program at Lawrence Berkeley National Laboratory) and Office of Electricity Delivery and Energy Reliability (OE). HRTEM and XPS investigations were performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL is a multi-program laboratory operated by Battelle Memorial Institute for DOE under Contract DE-AC05-76RL01830. NR 69 TC 59 Z9 59 U1 11 U2 111 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD NOV PY 2011 VL 4 IS 11 BP 4560 EP 4566 DI 10.1039/c1ee01501j PG 7 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 837YE UT WOS:000296248100019 ER PT J AU Chen, ZH Jansen, AN Amine, K AF Chen, Zonghai Jansen, Andrew N. Amine, Khalil TI Novel functionalized electrolyte for MCMB/Li1.156Mn1.844O4 lithium-ion cells SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID HIGH-POWER APPLICATIONS; GRAPHITE-ELECTRODES; BATTERIES; REDUCTION; CARBONATE; MECHANISM; ETHYLENE; CATHODE AB A novel functionalized electrolyte based on Li2B12F9H3 was investigated to improve the electrochemical and safety performance of lithium-ion cells using a lithium manganese oxide spinel positive electrode and a mesocarbon microbeads (MCMB) negative electrode. The test results showed that Li2B12F9H3 can act both as the lithium salt, like the conventional LiPF6, and as the redox shuttle for overcharge protection of lithium-ion cells. In addition, the performance of the lithium-ion cells was dramatically improved by the addition of lithium bis(oxalato) borate and tris(pentafluorophenyl) borane as electrolyte additives. With the help of the proposed additives, MCMB/Li1.156Mn1.844O4 lithium ion cells maintained more than 85% capacity after 1200 cycles. C1 [Chen, Zonghai; Jansen, Andrew N.; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Chen, ZH (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM Zonghai.chen@anl.gov; amine@anl.gov RI Chen, Zonghai/K-8745-2013; Amine, Khalil/K-9344-2013; Jansen, Andrew/Q-5912-2016 OI Jansen, Andrew/0000-0003-3244-7790 FU Air Products and Chemicals Incorporation; U.S. Department of Energy by UChicago Argonne, LLC [DE-AC02-06CH11357] FX Research funded by Air Products and Chemicals Incorporation. Argonne National Laboratory is operated for the U.S. Department of Energy by UChicago Argonne, LLC, under contract DE-AC02-06CH11357. The authors thank Dr Bill Casteel for his valuable technical discussion. NR 17 TC 7 Z9 7 U1 1 U2 41 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD NOV PY 2011 VL 4 IS 11 BP 4567 EP 4571 DI 10.1039/c1ee01255j PG 5 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 837YE UT WOS:000296248100020 ER PT J AU Schuman, B Fisher, S Borisova, S Coates, L Langan, P Evans, S AF Schuman, Brock Fisher, Suzanne Borisova, Svetlana Coates, Leighton Langan, Paul Evans, Stephen TI Neutron Structure of Retaining Glycosyltransferase GTA SO GLYCOBIOLOGY LA English DT Meeting Abstract CT Annual Conference of the Society-for-Glycobiology CY NOV 09-12, 2011 CL Seattle, WA SP Soc Glycobiol C1 [Schuman, Brock; Borisova, Svetlana; Evans, Stephen] Univ Victoria, Victoria, BC, Canada. [Fisher, Suzanne; Langan, Paul] Los Alamos Natl Lab, Los Alamos, NM USA. [Coates, Leighton; Langan, Paul] Oak Ridge Natl Lab, Oak Ridge, TN USA. RI Langan, Paul/N-5237-2015 OI Langan, Paul/0000-0002-0247-3122 NR 0 TC 0 Z9 0 U1 0 U2 4 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0959-6658 J9 GLYCOBIOLOGY JI Glycobiology PD NOV PY 2011 VL 21 IS 11 MA 56 BP 1469 EP 1469 PG 1 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 835OI UT WOS:000296045300055 ER PT J AU Chandrasekaran, A Bharadwaj, R Deng, K Adams, P Singh, A AF Chandrasekaran, Aarthi Bharadwaj, Rajiv Deng, Kai Adams, Paul Singh, Anup TI Microscale Analytical Platforms for Screening Carbohydrate-Active Enzymes SO GLYCOBIOLOGY LA English DT Meeting Abstract CT Annual Conference of the Society-for-Glycobiology CY NOV 09-12, 2011 CL Seattle, WA SP Soc Glycobiol C1 [Chandrasekaran, Aarthi; Bharadwaj, Rajiv; Deng, Kai; Adams, Paul; Singh, Anup] Joint BioEnergy Inst, Emeryville, CA USA. [Chandrasekaran, Aarthi; Bharadwaj, Rajiv; Deng, Kai; Singh, Anup] Sandia Natl Labs, Livermore, CA USA. [Adams, Paul] Lawrence Berkeley Natl Labs, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0959-6658 J9 GLYCOBIOLOGY JI Glycobiology PD NOV PY 2011 VL 21 IS 11 MA 71 BP 1474 EP 1474 PG 1 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 835OI UT WOS:000296045300070 ER PT J AU Hansen, SF McAndrew, R DeGiovanni, A McInerney, P Pereira, JH Hadi, M Adams, P Scheller, HV AF Hansen, Sara Fasmer McAndrew, Ryan DeGiovanni, Andy McInerney, Peter Pereira, Jose Henrique Hadi, Masood Adams, Paul Scheller, Henrik Vibe TI Structural Comparison of Plant Glycosyltransferases SO GLYCOBIOLOGY LA English DT Meeting Abstract CT Annual Conference of the Society-for-Glycobiology CY NOV 09-12, 2011 CL Seattle, WA SP Soc Glycobiol C1 [Hansen, Sara Fasmer; McAndrew, Ryan; DeGiovanni, Andy; McInerney, Peter; Pereira, Jose Henrique; Hadi, Masood; Adams, Paul; Scheller, Henrik Vibe] LBNL, Joint BioEnergy Inst, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0959-6658 J9 GLYCOBIOLOGY JI Glycobiology PD NOV PY 2011 VL 21 IS 11 MA 186 BP 1511 EP 1512 PG 2 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 835OI UT WOS:000296045300185 ER PT J AU Kendall, W Huang, J Peterka, T Latham, R Ross, R AF Kendall, Wesley Huang, Jian Peterka, Tom Latham, Robert Ross, Robert TI Toward a General I/O Layer for Parallel-Visualization Applications SO IEEE COMPUTER GRAPHICS AND APPLICATIONS LA English DT Editorial Material C1 [Kendall, Wesley] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Huang, Jian] Univ Tennessee, Seelab, Knoxville, TN USA. [Peterka, Tom; Latham, Robert; Ross, Robert] Argonne Natl Lab, Argonne, IL 60439 USA. RP Kendall, W (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. EM kendall@eecs.utk.edu; huangj@eecs.utk.edu; tpeterka@mcs.anl.gov; robl@mcs.anl.gov; rross@mcs.anl.gov OI Latham, Rob/0000-0002-5285-6375 NR 6 TC 7 Z9 8 U1 0 U2 0 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 0272-1716 J9 IEEE COMPUT GRAPH JI IEEE Comput. Graph. Appl. PD NOV-DEC PY 2011 VL 31 IS 6 BP 6 EP 10 PG 5 WC Computer Science, Software Engineering SC Computer Science GA 835TZ UT WOS:000296060200003 PM 24808253 ER PT J AU Piwko, R Bradt, M Camm, E Ellis, A Walling, R O'Malley, M AF Piwko, Richard Bradt, Mitch Camm, Ernst Ellis, Abraham Walling, Reigh O'Malley, Mark TI A Blast of Activity SO IEEE POWER & ENERGY MAGAZINE LA English DT Article AB THE GROWTH OF WIND POWER ACTIVITIES WITHIN THE IEEE POWER & ENERGY Society (PES) has been nothing short of phenomenal. Those who thought electric power was a mature industry have learned that it is far from that. Wind power has changed the face of the industry and has instigated fundamental changes in the ways power systems are designed and operated. Wind power blurs the traditional distinction between generating resources, which produce power according to dispatch commands from operators, and system load, which is variable and uncertain but predictable by means of forecasts. A lot has been learned, but as wind power penetration continues to increase, the challenges do too. PES has responded with a greatly increased level of wind-related activities. C1 [Piwko, Richard; Walling, Reigh] GE Energy Consulting, Schenectady, NY USA. [Bradt, Mitch] Univ Wisconsin Madison, Madison, WI USA. [Camm, Ernst] S& C Elect Co, Chicago, IL USA. [Ellis, Abraham] Sandia Natl Labs, Albuquerque, NM 87185 USA. [O'Malley, Mark] Univ Coll Dublin, Dublin, Ireland. RP Piwko, R (reprint author), GE Energy Consulting, Schenectady, NY USA. NR 4 TC 2 Z9 2 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1540-7977 J9 IEEE POWER ENERGY M JI IEEE Power Energy Mag. PD NOV-DEC PY 2011 VL 9 IS 6 BP 26 EP 35 DI 10.1109/MPE.2011.942349 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA 836SO UT WOS:000296131600002 ER PT J AU Zavadil, R Miller, N Ellis, A Muljadi, E Pourbeik, P Saylors, S Nelson, R Irwin, G Sahni, MS Muthumuni, D AF Zavadil, Robert Miller, Nicholas Ellis, Abraham Muljadi, Eduard Pourbeik, Pouyen Saylors, Steve Nelson, Robert Irwin, Garth Sahni, Mandhir S. Muthumuni, Dharshana TI Models for Change SO IEEE POWER & ENERGY MAGAZINE LA English DT Article C1 [Zavadil, Robert] EnerNex, Knoxville, TN USA. [Miller, Nicholas] GE Energy Consulting, Schenectady, NY USA. [Ellis, Abraham] Sandia Natl Labs, Albuquerque, NM USA. [Muljadi, Eduard] NREL, Golden, CO USA. [Pourbeik, Pouyen] Elect Power Res Inst, Charlotte, NC USA. [Saylors, Steve] Vestas Amer, Portland, OR USA. [Irwin, Garth] Elect Corp, Winnipeg, MB, Canada. [Sahni, Mandhir S.] PwrSolutions Inc, Dallas, TX USA. [Muthumuni, Dharshana] Manitoba HVDC Res Ctr, Winnipeg, MB, Canada. [Nelson, Robert] Siemens Wind Turbines Amer, Orlando, FL USA. RP Zavadil, R (reprint author), EnerNex, Knoxville, TN USA. NR 7 TC 4 Z9 4 U1 0 U2 1 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1540-7977 J9 IEEE POWER ENERGY M JI IEEE Power Energy Mag. PD NOV-DEC PY 2011 VL 9 IS 6 BP 86 EP 96 DI 10.1109/MPE.2011.942388 PG 11 WC Engineering, Electrical & Electronic SC Engineering GA 836SO UT WOS:000296131600007 ER PT J AU Morishetti, KK Russell, SC Zhao, XN Robinson, DB Ren, JH AF Morishetti, Kiran K. Russell, Scott C. Zhao, Xiaoning Robinson, David B. Ren, Jianhua TI Tandem mass spectrometry studies of protonated and alkali metalated peptoids: Enhanced sequence coverage by metal cation addition SO INTERNATIONAL JOURNAL OF MASS SPECTROMETRY LA English DT Article DE Peptoid; Peptide mimics; Alkali metal adducts; Lithium cation; Fragmentation; Collision induced dissociation ID RELATIVE CELL-PERMEABILITY; AROMATIC SIDE-CHAINS; GAS-PHASE COMPLEXES; SECONDARY STRUCTURE; PEPTIDE HYBRIDS; AMINO-ACID; NONBIOLOGICAL POLYMER; TRYPTIC PEPTIDES; NEUTRAL PEPTIDES; ION ADDUCTS AB The fragmentation characteristics of five oligo-peptoids were studied under tandem mass spectrometry conditions. The charged peptoids were produced by protonation and alkali metal cation (Li(+), Na(+), K(+), Rb(+), and Cs(+)) addition. The peptoids were ionized by the MALDI process and the resulting ions were fragmented via collision-induced dissociation (CID) experiments. All charged peptoids fragmented predominantly at the amide bonds. Highly abundant and sequence-dependent fragment ions were observed. The fragmentation patterns for the protonated peptoids and the metal cation adducts were strikingly different. All protonated peptoids fragmented by producing predominantly Y-type ions. The bias towards Y-ions was largely due to the greater proton affinity of the secondary amine at the terminal side of the Y-ions. All alkali metalated peptoids fragmented by producing both Y'- and B'-type ions, suggesting a "mobile metal cation" mechanism. For the peptoids with basic side chains, formation of the most abundant ions corresponded to the cleavage of the amide bonds at or near the basic residue. These results suggest that the metal cations are largely coordinated to the side chain of the basic residue. Chelation between the metal cation and the amino groups of the peptoids is an important factor to stabilize the fragment ions. For the peptoid without a basic side chain, the ion intensity was evenly distributed among all medium sized fragment ions. Fragmentations of protonated and alkali metalated peptoids yielded complementary sequential information, which demonstrated the practical utility of using mass spectrometry methods for de novo sequencing of peptoid libraries generated by combinatorial chemistry. (C) 2011 Elsevier B.V. All rights reserved. C1 [Morishetti, Kiran K.; Zhao, Xiaoning; Ren, Jianhua] Univ Pacific, Dept Chem, Stockton, CA 95211 USA. [Russell, Scott C.] Calif State Univ Stanislaus, Dept Chem, Turlock, CA 95382 USA. [Robinson, David B.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Ren, JH (reprint author), Univ Pacific, Dept Chem, 3601 Pacific Ave, Stockton, CA 95211 USA. EM jren@pacific.edu FU National Science Foundation [CHE-0749737]; American Chemical Society; Sandia National Laboratories [DE-AC04-94AL85000] FX The authors would like to thank Dr. Bogdan Bogdanov (University of Louisville, currently at the University of the Pacific) for assisting in the LTQ-FTICR experiments and Dr. Ronald Zuckermann (The Molecular Foundry, Lawrence Berkeley National Laboratory) for providing peptoid-E. J. Ren acknowledges the supports from the National Science Foundation (CHE-0749737) and the American Chemical Society Peptroleum Research Fund (Type-G). D. Robinson acknowledges the support from the Laboratory-Directed Research and Development program at Sandia National Laboratories (DE-AC04-94AL85000). Peptoid synthesis at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, US Department of Energy (DE-AC02-05CH11231). NR 67 TC 11 Z9 12 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1387-3806 J9 INT J MASS SPECTROM JI Int. J. Mass Spectrom. PD NOV 1 PY 2011 VL 308 IS 1 BP 98 EP 108 DI 10.1016/j.ijms.2011.08.003 PG 11 WC Physics, Atomic, Molecular & Chemical; Spectroscopy SC Physics; Spectroscopy GA 834YD UT WOS:000295999500013 ER PT J AU Starr, MJ Segalman, DJ AF Starr, Michael J. Segalman, Daniel J. TI An Empirical Relationship for Extrapolating Sparse Experimental Lap Joint Data SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME LA English DT Article AB Correctly incorporating the influence of mechanical joints in built-up mechanical systems is a critical element for model development for structural dynamics predictions. Quality experimental data are often difficult to obtain and is rarely sufficient to determine fully parameters for relevant mathematical models. On the other hand, fine-mesh finite element (FMFE) modeling facilitates innumerable numerical experiments at modest cost. Detailed FMFE analysis of built-up structures with frictional interfaces reproduces trends among problem parameters found experimentally, but there are qualitative differences. Those differences are currently ascribed to the very approximate nature of the friction model available in most finite element codes. Though numerical simulations are insufficient to produce qualitatively correct behavior of joints, some relations, developed here through observations of a multitude of numerical experiments, suggest interesting relationships among joint properties measured under different loading conditions. These relationships can be generalized into forms consistent with data from physical experiments. One such relationship, developed here, expresses the rate of energy dissipation per cycle within the joint under various combinations of extensional and clamping load in terms of dissipation under other load conditions. The use of this relationship-though not exact-is demonstrated for the purpose of extrapolating a representative set of experimental data to span the range of variability observed from real data. C1 [Starr, Michael J.; Segalman, Daniel J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Starr, MJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mjstarr@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors gratefully thank Brian Resor and Danny Gregory for sharing their extensive library of experimental results and carefully refined experimental techniques. The authors recognize Sarah Leming for leading the recent experimental effort and partnering in the measurement of additional data sets. The authors also thank our colleagues, Clark Dohrmann and Bruce Kistler, for providing helpful comments and suggestions. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 16 TC 0 Z9 0 U1 0 U2 0 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0021-8936 J9 J APPL MECH-T ASME JI J. Appl. Mech.-Trans. ASME PD NOV PY 2011 VL 78 IS 6 AR 061002 DI 10.1115/1.4003769 PG 8 WC Mechanics SC Mechanics GA 829WH UT WOS:000295615500002 ER PT J AU Liu, JJ Wolk, CP AF Liu, Jinjie Wolk, C. Peter TI Mutations in Genes patA and patL of Anabaena sp Strain PCC 7120 Result in Similar Phenotypes, and the Proteins Encoded by Those Genes May Interact SO JOURNAL OF BACTERIOLOGY LA English DT Article ID HETEROCYST PATTERN-FORMATION; INTACT YEAST-CELLS; HIGH-EFFICIENCY TRANSFORMATION; BLUE-GREEN-ALGA; ESCHERICHIA-COLI; SP PCC-7120; FILAMENTOUS CYANOBACTERIA; CELLULAR-DIFFERENTIATION; NITROGEN-FIXATION; HETR AB PatA resembles a response regulator protein with a defective DNA-binding domain, and PatL (All3305) is a pentapeptide repeat protein. A yeast two-hybrid library identified PatL as a protein with which PatA may interact. Heterocysts of patA and patL Anabaena sp. form nearly exclusively terminally in long filaments, further linking the genes. C1 [Liu, Jinjie; Wolk, C. Peter] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. [Wolk, C. Peter] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. RP Wolk, CP (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. EM wolk@msu.edu FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-FG02-91ER20021]; Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494] FX This work was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under grant DE-FG02-91ER20021 and by the Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). NR 53 TC 6 Z9 6 U1 4 U2 5 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD NOV PY 2011 VL 193 IS 21 BP 6070 EP 6074 DI 10.1128/JB.05523-11 PG 5 WC Microbiology SC Microbiology GA 836XW UT WOS:000296153400018 PM 21890704 ER PT J AU Suwa, Y Norton, JM Bollmann, A Klotz, MG Stein, LY Laanbroek, HJ Arp, DJ Goodwin, LA Chertkov, O Held, B Bruce, D Detter, JC Detter, JC Tapia, R Han, CS AF Suwa, Yuichi Norton, Jeanette M. Bollmann, Annette Klotz, Martin G. Stein, Lisa Y. Laanbroek, Hendrikus J. Arp, Daniel J. Goodwin, Lynne A. Chertkov, Olga Held, Brittany Bruce, David Detter, J. Chris Detter, Janine C. Tapia, Roxanne Han, Cliff S. TI Genome Sequence of Nitrosomonas sp. Strain AL212, an Ammonia-Oxidizing Bacterium Sensitive to High Levels of Ammonia (vol 193, pg 5047, 2011) SO JOURNAL OF BACTERIOLOGY LA English DT Correction C1 [Suwa, Yuichi] Chuo Univ, Tokyo 112, Japan. [Norton, Jeanette M.] Utah State Univ, Logan, UT 84322 USA. [Bollmann, Annette] Miami Univ, Oxford, OH 45056 USA. [Klotz, Martin G.] Univ Louisville, Louisville, KY 40292 USA. [Stein, Lisa Y.] Univ Alberta, Edmonton, AB, Canada. [Laanbroek, Hendrikus J.] Netherlands Inst Ecol, Wageningen, Netherlands. [Arp, Daniel J.] Oregon State Univ, Corvallis, OR 97331 USA. [Goodwin, Lynne A.; Chertkov, Olga; Held, Brittany; Bruce, David; Detter, J. Chris; Detter, Janine C.; Tapia, Roxanne; Han, Cliff S.] Los Alamos Natl Lab, DOE Joint Genome Inst, Los Alamos, NM USA. RP Suwa, Y (reprint author), Chuo Univ, Tokyo 112, Japan. RI Laanbroek, Hendrikus J./C-3830-2008; Norton, Jeanette/G-2633-2011; Klotz, Martin/D-2091-2009; Stein, Lisa/E-6374-2016 OI Laanbroek, Hendrikus J./0000-0003-2400-3399; Norton, Jeanette/0000-0002-6596-8691; Klotz, Martin/0000-0002-1783-375X; Stein, Lisa/0000-0001-5095-5022 NR 1 TC 1 Z9 1 U1 0 U2 12 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 J9 J BACTERIOL JI J. Bacteriol. PD NOV PY 2011 VL 193 IS 21 BP 6112 EP 6112 DI 10.1128/JB.06107-11 PG 1 WC Microbiology SC Microbiology GA 836XW UT WOS:000296153400037 ER PT J AU Zheng, LL Gao, YF Lee, SY Barabash, RI Lee, JH Liaw, PK AF Zheng, L. L. Gao, Y. F. Lee, S. Y. Barabash, R. I. Lee, J. H. Liaw, P. K. TI Intergranular strain evolution near fatigue crack tips in polycrystalline metals SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Lattice and intergranular strains; Fatigue crack; Irreversible hysteretic cohesive interface model; Neutron diffraction; Intergranular damage ID COHESIVE ZONE MODEL; PLASTIC-DEFORMATION; GROWTH; DIFFRACTION; SIMULATIONS; NUCLEATION; FRACTURE; NEUTRON; REFINEMENT; BEHAVIOR AB The deformation field near a steady fatigue crack includes a plastic zone in front of the crack tip and a plastic wake behind it, and the magnitude, distribution, and history of the residual strain along the crack path depend on the stress multiaxiality, material properties, and history of stress intensity factor and crack growth rate. An in situ, full-field, non-destructive measurement of lattice strain (which relies on the intergranular interactions of the inhomogeneous deformation fields in neighboring grains) by neutron diffraction techniques has been performed for the fatigue test of a Ni-based superalloy compact tension specimen. These microscopic grain level measurements provided unprecedented information on the fatigue growth mechanisms. A two-scale model is developed to predict the lattice strain evolution near fatigue crack tips in polycrystalline materials. An irreversible, hysteretic cohesive interface model is adopted to simulate a steady fatigue crack, which allows us to generate the stress/strain distribution and history near the fatigue crack tip. The continuum deformation history is used as inputs for the micromechanical analysis of lattice strain evolution using the slip-based crystal plasticity model, thus making a mechanistic connection between macro- and micro-strains. Predictions from perfect grain-boundary simulations exhibit the same lattice strain distributions as in neutron diffraction measurements, except for discrepancies near the crack tip within about one-tenth of the plastic zone size. By considering the intergranular damage, which leads to vanishing intergranular strains as damage proceeds, we find a significantly improved agreement between predicted and measured lattice strains inside the fatigue process zone. Consequently, the intergranular damage near fatigue crack tip is concluded to be responsible for fatigue crack growth. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Gao, Y. F.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Zheng, L. L.; Gao, Y. F.; Lee, S. Y.; Barabash, R. I.; Lee, J. H.; Liaw, P. K.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Barabash, R. I.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Gao, YF (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM ygao7@utk.edu RI Gao, Yanfei/F-9034-2010 OI Gao, Yanfei/0000-0003-2082-857X FU NSF [CMMI 0800168]; DMR [0232320]; Joint Institute for Neutron Sciences at the University of Tennessee; Materials Sciences and Engineering Division, Office of Basic Sciences, U.S. Department of Energy FX This work was supported by NSF CMMI 0800168 (LLZ and YFG), DMR 0232320 (SYL and PKL), the Joint Institute for Neutron Sciences at the University of Tennessee (LLZ and YFG), and Materials Sciences and Engineering Division, Office of Basic Sciences, U.S. Department of Energy (YFG and RIB). The authors also acknowledge Dr. E.W. Huang's help on neutron diffraction measurements. NR 42 TC 20 Z9 20 U1 3 U2 32 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 EI 1873-4782 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD NOV PY 2011 VL 59 IS 11 BP 2307 EP 2322 DI 10.1016/j.jmps.2011.08.001 PG 16 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 837DH UT WOS:000296170800004 ER PT J AU Li, CJ Bankhead, A Eisfeld, AJ Hatta, Y Jeng, S Chang, JH Aicher, LD Proll, S Ellis, AL Law, GL Waters, KM Neumann, G Katze, MG McWeeney, S Kawaoka, Y AF Li, Chengjun Bankhead, Armand, III Eisfeld, Amie J. Hatta, Yasuko Jeng, Sophia Chang, Jean H. Aicher, Lauri D. Proll, Sean Ellis, Amy L. Law, G. Lynn Waters, Katrina M. Neumann, Gabriele Katze, Michael G. McWeeney, Shannon Kawaoka, Yoshihiro TI Host Regulatory Network Response to Infection with Highly Pathogenic H5N1 Avian Influenza Virus SO JOURNAL OF VIROLOGY LA English DT Article ID BRONCHIAL EPITHELIAL-CELLS; INNATE IMMUNE-RESPONSES; PRIMARY HUMAN ALVEOLAR; GENE-EXPRESSION; ANTIVIRAL CYTOKINES; H1N1 VIRUS; BIOLOGY; BIOCONDUCTOR; INFLAMMATION; REPLICATION AB During the last decade, more than half of humans infected with highly pathogenic avian influenza (HPAI) H5N1 viruses have died, yet virus-induced host signaling has yet to be clearly elucidated. Airway epithelia are known to produce inflammatory mediators that contribute to HPAI H5N1-mediated pathogenicity, but a comprehensive analysis of the host response in this cell type is lacking. Here, we leveraged a system approach to identify and statistically validate signaling subnetworks that define the dynamic transcriptional response of human bronchial epithelial cells after infection with influenza A/Vietnam/1203/2004 (H5N1, VN1203). Importantly, we validated a subset of transcripts from one subnetwork in both Calu-3 cells and mice. A more detailed examination of two subnetworks involved in the immune response and keratinization processes revealed potential novel mediators of HPAI H5N1 pathogenesis and host response signaling. Finally, we show how these results compare to those for a less virulent strain of influenza virus. Using emergent network properties, we provide fresh insight into the host response to HPAI H5N1 virus infection and identify novel avenues for perturbation studies and potential therapeutic interventions for fatal HPAI H5N1 disease. C1 [Li, Chengjun; Eisfeld, Amie J.; Hatta, Yasuko; Ellis, Amy L.; Neumann, Gabriele; Kawaoka, Yoshihiro] Univ Wisconsin, Dept Pathobiol Sci, Influenza Res Inst, Sch Vet Med, Madison, WI 53711 USA. [Bankhead, Armand, III; McWeeney, Shannon] Oregon Hlth & Sci Univ, Div Bioinformat & Computat Biol, Dept Med Informat & Clin Epidemiol, Portland, OR 97201 USA. [Chang, Jean H.; Aicher, Lauri D.; Proll, Sean; Law, G. Lynn; Katze, Michael G.] Univ Washington, Sch Med, Dept Microbiol, Seattle, WA 98195 USA. [Jeng, Sophia] Oregon Hlth & Sci Univ, Oregon Clin & Translat Res Inst, Portland, OR 97201 USA. [Waters, Katrina M.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Katze, Michael G.] Univ Washington, Washington Natl Primate Res Ctr, Seattle, WA 98195 USA. [McWeeney, Shannon] Oregon Hlth & Sci Univ, Div Biostat, Dept Publ Hlth & Prevent Med, Portland, OR 97201 USA. [McWeeney, Shannon] Oregon Hlth & Sci Univ, Knight Canc Inst, Portland, OR 97201 USA. [Kawaoka, Yoshihiro] Univ Tokyo, Inst Med Sci, Div Virol, Dept Microbiol & Immunol, Tokyo 1088639, Japan. [Kawaoka, Yoshihiro] Univ Tokyo, Inst Med Sci, Dept Special Pathogens, Int Res Ctr Infect Dis, Tokyo 1088639, Japan. [Kawaoka, Yoshihiro] ERATO Infect Induced Host Responses Project, Kawaguchi, Saitama 3320012, Japan. RP Kawaoka, Y (reprint author), Univ Wisconsin, Dept Pathobiol Sci, Influenza Res Inst, Sch Vet Med, 575 Sci Dr, Madison, WI 53711 USA. EM mcweeney@ohsu.edu; kawaokay@vetmed.wisc.edu FU National Institute of Allergy and Infectious Diseases, NIH, Department of Health and Human Services [HHSN272200800060C]; National Institute of Allergy and Infectious Diseases Public Health Service FX This work was made possible by funding from the National Institute of Allergy and Infectious Diseases, NIH, Department of Health and Human Services contract HHSN272200800060C, and by National Institute of Allergy and Infectious Diseases Public Health Service research grants. NR 56 TC 21 Z9 21 U1 1 U2 4 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD NOV PY 2011 VL 85 IS 21 BP 10955 EP 10967 DI 10.1128/JVI.05792-11 PG 13 WC Virology SC Virology GA 837ZL UT WOS:000296254400003 PM 21865398 ER PT J AU Liu, PH Overman, RG Yates, NL Alam, SM Vandergrift, N Chen, Y Graw, F Freel, SA Kappes, JC Ochsenbauer, C Montefiori, DC Gao, F Perelson, AS Cohen, MS Haynes, BF Tomaras, GD AF Liu, Pinghuang Overman, R. Glenn Yates, Nicole L. Alam, S. Munir Vandergrift, Nathan Chen, Yue Graw, Frederik Freel, Stephanie A. Kappes, John C. Ochsenbauer, Christina Montefiori, David C. Gao, Feng Perelson, Alan S. Cohen, Myron S. Haynes, Barton F. Tomaras, Georgia D. TI Dynamic Antibody Specificities and Virion Concentrations in Circulating Immune Complexes in Acute to Chronic HIV-1 Infection SO JOURNAL OF VIROLOGY LA English DT Article ID IMMUNODEFICIENCY-VIRUS TYPE-1; MEMBRANE PROXIMAL REGION; VACCINE DESIGN; T-CELLS; INDUCTION; ENVELOPE; BINDING; REPLICATION; RESPONSES; EPITOPES AB Understanding the interactions between human immunodeficiency virus type 1 (HIV-1) virions and antibodies (Ab) produced during acute HIV-1 infection (AHI) is critical for defining antibody antiviral capabilities. Antibodies that bind virions may prevent transmission by neutralization of virus or mechanically prevent HIV-1 migration through mucosal layers. In this study, we quantified circulating HIV-1 virion-immune complexes (ICs), present in approximately 90% of AHI subjects, and compared the levels and antibody specificity to those in chronic infection. Circulating HIV-1 virions coated with IgG (immune complexes) were in significantly lower levels relative to the viral load in acute infection than in chronic HIV-1 infection. The specificities of the antibodies in the immune complexes differed between acute and chronic infection (anti-gp41 Ab in acute infection and anti-gp120 in chronic infection), potentially suggesting different roles in immunopathogenesis for complexes arising at different stages of infection. We also determined the ability of circulating IgG from AHI to bind infectious versus noninfectious virions. Similar to a nonneutralizing anti-gp41 monoclonal antibody (MAb), purified plasma IgG from acute HIV-1 subjects bound both infectious and noninfectious virions. This was in contrast to the neutralizing antibody 2G12 MAb that bound predominantly infectious virions. Moreover, the initial antibody response captured acute HIV-1 virions without selection for different HIV-1 envelope sequences. In total, this study demonstrates that the composition of immune complexes are dynamic over the course of HIV-1 infection and are comprised initially of antibodies that nonselectively opsonize both infectious and noninfectious virions, likely contributing to the lack of efficacy of the antibody response during acute infection. C1 [Tomaras, Georgia D.] Duke Univ, Med Ctr, Duke Human Vaccine Inst, Durham, NC 27710 USA. [Liu, Pinghuang; Overman, R. Glenn; Freel, Stephanie A.; Montefiori, David C.; Tomaras, Georgia D.] Duke Univ, Dept Surg, Durham, NC 27710 USA. [Yates, Nicole L.; Alam, S. Munir; Vandergrift, Nathan; Chen, Yue; Gao, Feng; Haynes, Barton F.] Duke Univ, Dept Med, Durham, NC 27710 USA. [Haynes, Barton F.; Tomaras, Georgia D.] Duke Univ, Dept Immunol, Durham, NC 27710 USA. [Tomaras, Georgia D.] Duke Univ, Dept Mol Genet & Microbiol, Durham, NC 27710 USA. [Kappes, John C.; Ochsenbauer, Christina] Univ Alabama, Dept Med, Birmingham, AL 35294 USA. [Graw, Frederik; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM USA. [Cohen, Myron S.] Univ N Carolina, Sch Med, Chapel Hill, NC USA. RP Tomaras, GD (reprint author), Duke Univ, Med Ctr, Duke Human Vaccine Inst, Rm 4079 MSRBII,2 Genome Court, Durham, NC 27710 USA. EM gdt@duke.edu RI Chen, Yue/A-1866-2012; Tomaras, Georgia/J-5041-2016 FU National Institutes of Health Center [U01 AI067854]; Kelly Soderberg FX This work was supported by the National Institutes of Health (NIH/NIAID/DAIDS) Center for HIV/AIDS Vaccine Immunology Grant (U01 AI067854). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 47 TC 29 Z9 30 U1 0 U2 0 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD NOV PY 2011 VL 85 IS 21 BP 11196 EP 11207 DI 10.1128/JVI.05601-11 PG 12 WC Virology SC Virology GA 837ZL UT WOS:000296254400026 PM 21865397 ER PT J AU Gan, YX Zeng, XW Su, LS Yang, L Gan, BJ Zhang, LH AF Gan, Yong X. Zeng, Xianwu Su, Lusheng Yang, Lu Gan, Bo J. Zhang, Lihua TI Synthesis and enhanced light absorption of alumina matrix nanocomposites containing multilayer oxide nanorods and silver nanoparticles SO MATERIALS RESEARCH BULLETIN LA English DT Article DE Oxides; Metals; Chemical synthesis; Electron microscopy; Optical properties ID NANOTUBE ARRAYS; LIQUID-PHASE; NANOWIRES; FILMS; GOLD; PLASMONICS AB In this paper, multilayer oxide nanorods were deposited in the nanopores of anodic aluminum oxide (AAO) via solution infiltration followed by heat treatment. The nanorods have a core-shell structure. First, the shell (nanotube) with the thickness of about 40 nm was made of TiO(2) through the hydrolysis of (NH(4))(2)TiF(6). Second, silver nanoparticles with the diameter of about 3 nm were added into the TiO(2) layer through thermal decomposition of AgNO(3) at elevated temperatures. Then, cylindrical cores (nanorods) of CoO and ZnO with 200 nm diameter were prepared, respectively. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the structure and composition of the nanorods. UV-vis light absorption measurements in the wavelength range from 350 to 1000 nm were performed to study the effect of nanorod and nanoparticle addition on the light absorption property of the alumina nanocomposites. It is found that CoO nanorods increase the light absorption of the alumina matrix composite in the wavelength range from 500 nm to 800 nm, but the TiO(2) shell does not increase the light absorption much. The ZnO nanorods do not change the light absorption either. However, the addition of silver nanoparticles significantly enhances light absorption of both AAO/TiO(2)/Ag/CoO and AAO/TiO(2)/Ag/ZnO nanocomposites. This increase in the visible light absorption reveals that there exists surface plasmon around the fine silver nanoparticles in the nanorods. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Gan, Yong X.; Zeng, Xianwu; Su, Lusheng; Yang, Lu] Univ Toledo, Coll Engn, Dept Mech Ind & Mfg Engn, Toledo, OH 43606 USA. [Gan, Bo J.] Ottawa Hills High Sch, Toledo, OH 43606 USA. [Zhang, Lihua] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Gan, YX (reprint author), Univ Toledo, Coll Engn, Dept Mech Ind & Mfg Engn, Toledo, OH 43606 USA. EM yong.gan@utoledo.edu RI Zhang, Lihua/F-4502-2014 FU University of Toledo; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work is supported by the research start-up fund, the Faculty Summer Research Fellowship and the Doctoral Instrumentation Graduate Fellowship from The University of Toledo. The transmission electron microscopic (TEM) research carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 35 TC 6 Z9 6 U1 2 U2 35 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0025-5408 J9 MATER RES BULL JI Mater. Res. Bull. PD NOV PY 2011 VL 46 IS 11 BP 1828 EP 1836 DI 10.1016/j.materresbull.2011.07.050 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA 835LU UT WOS:000296038700014 ER PT J AU Hada, M Huff, JL Patel, ZS Kawata, T Pluth, JM George, KA Cucinotta, FA AF Hada, Megumi Huff, Janice L. Patel, Zarana S. Kawata, Tetsuya Pluth, Janice M. George, Kerry A. Cucinotta, Francis A. TI AT cells are not radiosensitive for simple chromosomal exchanges at low dose SO MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS LA English DT Article DE AT; NBS; Chromosomal aberrations; Radiation sensitivity; DSB repair ID DOUBLE-STRAND BREAKS; IN-SITU HYBRIDIZATION; ATAXIA-TELANGIECTASIA FIBROBLASTS; POTENTIALLY LETHAL DAMAGE; DNA-DAMAGE; RATE IRRADIATION; GAMMA-H2AX FOCI; ATM ACTIVATION; REPAIR; ABERRATIONS AB Cells deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome) show increased yields of both simple and complex chromosomal aberrations after high doses (>0.5 Gy) of ionizing radiation (X-rays or gamma-rays), however less is known on how these cells respond at low dose. Previously we had shown that the increased chromosome aberrations in ATM and NBS defective lines was due to a significantly larger quadratic dose-response term compared to normal fibroblasts for both simple and complex exchanges. The linear dose-response term for simple exchanges was significantly higher in NBS cells compared to wild type cells, but not for AT cells. However, AT cells have a high background level of exchanges compared to wild type or NBS cells that confounds the understanding of low dose responses. To understand the sensitivity differences for high to low doses, chromosomal aberration analysis was first performed at low dose-rates (0.5 Gy/d), and results provided further evidence for the lack of sensitivity for exchanges in AT cells below doses of 1 Gy. Normal lung fibroblast cells treated with KU-55933, a specific ATM kinase inhibitor, showed increased numbers of exchanges at a dose of 1 Gy and higher, but were similar to wild type cells at 0.5 Gy or below. These results were confirmed using siRNA knockdown of ATM. The present study provides evidence that the increased radiation sensitivity of AT cells for chromosomal exchanges found at high dose does not occur at low dose. Published by Elsevier B.V. C1 [Cucinotta, Francis A.] NASA, Lyndon B Johnson Space Ctr, Houston, TX 77058 USA. [Hada, Megumi; Huff, Janice L.; Patel, Zarana S.] USRA Div Life Sci, Houston, TX 77058 USA. [Kawata, Tetsuya] Keio Univ, Sch Med, Dept Radiol, Tokyo, Japan. [Pluth, Janice M.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. [George, Kerry A.] Wyle, Houston, TX 77058 USA. RP Cucinotta, FA (reprint author), NASA, Lyndon B Johnson Space Ctr, 2101 NASA Pkwy, Houston, TX 77058 USA. EM Francis.A.Cucinotta@nasa.gov FU US DOE [DE-A103-05ER64088]; NASA FX We gratefully acknowledge partial financial support provided by the US DOE (DE-A103-05ER64088), and the NASA Space Radiation Program. NR 37 TC 6 Z9 6 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0027-5107 J9 MUTAT RES-FUND MOL M JI Mutat. Res.-Fundam. Mol. Mech. Mutagen. PD NOV 1 PY 2011 VL 716 IS 1-2 BP 76 EP 83 DI 10.1016/j.mrfmmm.2011.08.006 PG 8 WC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology SC Biotechnology & Applied Microbiology; Genetics & Heredity; Toxicology GA 837FW UT WOS:000296177500010 PM 21889946 ER PT J AU Pellemoine, F Mittig, W Avilov, M Ippel, D Lenz, J Oliva, J Silverman, I Youchison, D Xu, T AF Pellemoine, F. Mittig, W. Avilov, M. Ippel, D. Lenz, J. Oliva, J. Silverman, I. Youchison, D. Xu, T. TI Thermo-mechanical behaviour of a single slice test device for the FRIB high power target SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 25th World Conference of the International-Nuclear-Target-Development-Society (INTDS) CY SEP 12-17, 2010 CL TRIUMF, Vancouver, CANADA SP Int Nucl Target Dev Soc (INTDS), Adv Appl Phys Solut (AAPS), Beamtech Optron Co, D-Pace Inc, MDS Nordion Inc, UHV Technol Inc HO TRIUMF DE Electron beam heating; Graphite; High intensity beam; Thermal behaviour; High power target AB One of the major challenges of the FRIB project (Facility for Rare Isotope Beams) at Michigan State University is the design and integration of the production target to produce rare isotope beams via fragmentation reaction. In the most extreme case, a 400 kW uranium beam of 200 MeV/u will be focused in a 1 mm diameter spot, leading to a power density of 60 MW/cm(3) for a C target. Up to 200 kW may be dissipated in the target. A rotating solid carbon disk concept has been selected as the target design approach for all primary beams up to uranium to provide high-power operation. A high rotational speed is necessary to compensate for the high power density. A multi-slice approach allows the evacuation of the large amount of heat deposited by the increase of the radiating area. In the present design study, the multislice target device has a diameter of about 30 cm and rotates at about 5000 RPM (revolutions per minute). The first step of the R&D strategy consists in the development and test of a 20 kW single-slice target prototype. This single disk device is designed to accept the same fraction of power as each disk of the final multi-slice target. Critical information on thermal-mechanical properties can be obtained thus at a lower power level than the one of the full device. Different carbon materials were tested. An electron beam of similar to 20 key was used for the thermal tests. Simulations were performed using the ANSYS code for the thermo-mechanical behaviour of the target, the resulting deformation and the stress profiles of heated graphite disks. Results of the simulations were compared with experimental data. (C) 2011 Elsevier B.V. All rights reserved. C1 [Pellemoine, F.; Mittig, W.; Avilov, M.; Ippel, D.; Lenz, J.; Oliva, J.; Xu, T.] Michigan State Univ, NSCL Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA. [Pellemoine, F.] GANIL Grand Accelerateur Natl Ions Lourds, Caen, France. [Silverman, I.] SOREQ Nucl Res Ctr, Yavne, Israel. [Youchison, D.] Sandia Natl Labs, Fus Technol Dept, Albuquerque, NM 87185 USA. RP Pellemoine, F (reprint author), Michigan State Univ, NSCL Natl Superconducting Cyclotron Lab, MSU NSCL 1, E Lansing, MI 48824 USA. EM pellemoi@frib.msu.edu OI Youchison, Dennis/0000-0002-7366-1710 NR 11 TC 11 Z9 11 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 1 PY 2011 VL 655 IS 1 BP 3 EP 9 DI 10.1016/j.nima.2011.06.010 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 834JW UT WOS:000295956600002 ER PT J AU Steski, D Stolarz, A Zeisler, S AF Steski, Dannie Stolarz, Anna Zeisler, Stefan TI RECENT DEVELOPMENTS IN NUCLEAR TARGET PREPARATION AND STRIPPER FOIL TECHNOLOGY Proceedings of the 25th World Conference of the International Nuclear Target Development Society, TRIUMF, Vancouver, Canada, 12-17 September 2010 Preface SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Editorial Material C1 [Steski, Dannie] Brookhaven Natl Lab, Upton, NY 11973 USA. [Stolarz, Anna] Warsaw Univ, HIL, Warsaw, Poland. [Zeisler, Stefan] TRIUMF, Vancouver, BC, Canada. RP Steski, D (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM steski@bnl.gov; anna@slcj.uw.edu.pl; zeisler@triumf.ca NR 0 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 1 PY 2011 VL 655 IS 1 BP V EP V DI 10.1016/j.nima.2011.08.023 PG 1 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 834JW UT WOS:000295956600001 ER PT J AU Greene, JP Savard, G Pardo, RC Baker, SI Levand, AF Zabransky, BJ AF Greene, John P. Savard, Guy Pardo, Richard C. Baker, Samuel I. Levand, Anthony F., Jr. Zabransky, Bruce J. TI Degrader foils for the CARIBU project SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 25th World Conference of the International-Nuclear-Target-Development-Society (INTDS) CY SEP 12-17, 2010 CL TRIUMF, Vancouver, CANADA SP Int Nucl Target Dev Soc (INTDS), Adv Appl Phys Solut (AAPS), Beamtech Optron Co, D-Pace Inc, MDS Nordion Inc, UHV Technol Inc HO TRIUMF DE Aluminum; Californium; Radioactive source; Rolling ID GAS CATCHERS AB The Californium Rare Ion Breeder Upgrade (CARIBU) project was conceived to provide neutron rich beams originating from the 3% fission decay branch of a (252)Cf source to be accelerated by the Argonne Tandem Linear Accelerator System (ATLAS). This 1Ci (252)Cf source will be housed in a movable shielded cask, from which it can be directly transferred into a large helium gas stopper cell. Within the gas stopper. the CARIBU (252)Cf source is positioned behind an aluminum degrader foil where the radioactive recoils of interest lose most of their energy before being stopped in the helium gas. To stop recoils over the full fission mass range effectively, three degraders of increasing thickness are required, one to cover the light fission peak and two for the isotopes in the heavy fission peak. The geometry of the source within the gas cell would ideally require a hemispherically shaped degrader foil for uniform energy loss of the fission products. The fabrication of a thin foil of such a shape proved to be exceedingly difficult and, therefore, a compromise "top hat" arrangement was designed. In addition, the ultra-high vacuum (UHV) environment necessary for the gas cell to function properly prevented the use of any epoxy due to vacuum outgassing. Handling, assembling of the foils and mounting must be done under clean room conditions. Details of early attempts at producing these foils as well as handling and mounting will be discussed. Published by Elsevier B.V. C1 [Greene, John P.; Savard, Guy; Pardo, Richard C.; Baker, Samuel I.; Levand, Anthony F., Jr.; Zabransky, Bruce J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Greene, JP (reprint author), Argonne Natl Lab, Div Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. EM greene@anl.gov NR 8 TC 0 Z9 0 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 1 PY 2011 VL 655 IS 1 BP 21 EP 23 DI 10.1016/j.nima.2011.06.013 PG 3 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 834JW UT WOS:000295956600005 ER PT J AU Ma, WJ Liechtenstein, VK Szerypo, J Jung, D Hilz, P Hegelich, BM Maier, HJ Schreiber, J Habs, D AF Ma, Wenjun Liechtenstein, V. Kh Szerypo, J. Jung, D. Hilz, P. Hegelich, B. M. Maier, H. J. Schreiber, J. Habs, D. TI Preparation of self-supporting diamond-like carbon nanofoils with thickness less than 5 nm for laser-driven ion acceleration SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 25th World Conference of the International-Nuclear-Target-Development-Society (INTDS) CY SEP 12-17, 2010 CL TRIUMF, Vancouver, CANADA SP Int Nucl Target Dev Soc (INTDS), Adv Appl Phys Solut (AAPS), Beamtech Optron Co, D-Pace Inc, MDS Nordion Inc, UHV Technol Inc HO TRIUMF DE Diamond-like carbon foils; Self-supporting foils; Laser acceleration ID OF-FLIGHT SPECTROMETERS; AMORPHOUS-CARBON; TANDEM ACCELERATORS; ELECTRON-BEAMS; FOILS; TARGETS; FILMS; PULSES AB Ultrathin (<5 nm) self-supporting diamond-like carbon (DLC) foils are prepared by filtered cathodic vacuum arc (FCVA) deposition method as targets for laser-driven ion acceleration. The thickness and the morphology of these foils are characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). (C) 2011 Elsevier B.V. All rights reserved. C1 [Ma, Wenjun; Szerypo, J.; Jung, D.; Hilz, P.; Maier, H. J.; Habs, D.] Ludwig Maximilians Univ Munchen, Fac Phys, D-85748 Garching, Germany. [Ma, Wenjun; Schreiber, J.; Habs, D.] Max Planck Inst Quantumopt, D-85748 Garching, Germany. [Liechtenstein, V. Kh] RRC Kurchatov Inst, Moscow 123182, Russia. [Szerypo, J.; Maier, H. J.] MLL, D-85748 Garching, Germany. [Jung, D.; Hegelich, B. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Habs, D (reprint author), Ludwig Maximilians Univ Munchen, Fac Phys, Coulombwall 1, D-85748 Garching, Germany. EM Dietrich.Habs@Physik.Uni-Muenchen.de RI Hegelich, Bjorn/J-2689-2013; Ma, Wenjun/D-9176-2012 OI Ma, Wenjun/0000-0001-8217-8301 NR 34 TC 14 Z9 15 U1 2 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 1 PY 2011 VL 655 IS 1 BP 53 EP 56 DI 10.1016/j.nima.2011.06.019 PG 4 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 834JW UT WOS:000295956600011 ER PT J AU Henderson, RA Gostic, JM Burke, JT Fisher, SE Wu, CY AF Henderson, R. A. Gostic, J. M. Burke, J. T. Fisher, S. E. Wu, C. Y. TI Electrodeposition of U and Pu on thin C and Ti substrates SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article; Proceedings Paper CT 25th World Conference of the International-Nuclear-Target-Development-Society (INTDS) CY SEP 12-17, 2010 CL TRIUMF, Vancouver, CANADA SP Int Nucl Target Dev Soc (INTDS), Adv Appl Phys Solut (AAPS), Beamtech Optron Co, D-Pace Inc, MDS Nordion Inc, UHV Technol Inc HO TRIUMF DE Uranium; Plutonium; Carbon; Titanium; Target; Electrodeposition ID ACTINIDE TARGETS AB Preparation of Pu and U targets on thin natural C (100 mu g/cm(2)) and Ti (2 and 3 mu m) substrates is described. The actinide material of interest was first purified using ion exchange chromatography to remove any matrix contaminants or decay products present in the parent stock solution. The actinide solution was prepared in 0.05 M HNO(3) with a final aliquot volume not exceeding 100 mu L for the deposition procedure. The electroplating cells were developed in-house and were primarily made of Teflon. The source material deposited ranged from 125 to 400 mu g/cm(2). It was determined that multiple layers of U and Pu were required to produce thicker targets on Ti. Plating efficiency was greatly affected by the cell volume, solution aliquot size, pre-treatment of the foils, solution mixing during plating, and the fit of the electrode contact with the target substrate. The final procedure used for deposition is described in detail. (C) 2011 Elsevier B.V. All rights reserved. C1 [Henderson, R. A.; Gostic, J. M.; Burke, J. T.; Fisher, S. E.; Wu, C. Y.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Henderson, RA (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-236, Livermore, CA 94550 USA. EM henderson55@llnl.gov RI Burke, Jason/I-4580-2012 NR 5 TC 13 Z9 13 U1 2 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD NOV 1 PY 2011 VL 655 IS 1 BP 66 EP 71 DI 10.1016/j.nima.2011.06.023 PG 6 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 834JW UT WOS:000295956600015 ER PT J AU Van Dyke, MV Martyny, JW Mroz, MM Silveira, LJ Strand, M Cragle, DL Tankersley, WG Wells, SM Newman, LS Maier, LA AF Van Dyke, Michael V. Martyny, John W. Mroz, Margaret M. Silveira, Lori J. Strand, Matt Cragle, Donna L. Tankersley, William G. Wells, Susan M. Newman, Lee S. Maier, Lisa A. TI Exposure and genetics increase risk of beryllium sensitisation and chronic beryllium disease in the nuclear weapons industry SO OCCUPATIONAL AND ENVIRONMENTAL MEDICINE LA English DT Article ID HUMAN-LEUKOCYTE ANTIGEN; MHC-CLASS-II; ROCKY FLATS; SUSCEPTIBILITY; FACILITY; WORKERS; PLANT; PREVALENCE; ALLELES; MARKERS AB Objectives Beryllium sensitisation (BeS) and chronic beryllium disease (CBD) are caused by exposure to beryllium with susceptibility affected by at least one well-studied genetic host factor, a glutamic acid residue at position 69 (E69) of the HLA-DP beta chain (DP beta E69). However, the nature of the relationship between exposure and carriage of the DP beta E69 genotype has not been well studied. The goal of this study was to determine the relationship between DP beta E69 and exposure in BeS and CBD. Methods Current and former workers (n=181) from a US nuclear weapons production facility, the Y-12 National Security Complex (Oak Ridge, Tennessee, USA), were enrolled in a case-control study including 35 individuals with BeS and 19 with CBD. HLA-DPB1 genotypes were determined by PCR-SSP. Beryllium exposures were assessed through worker interviews and industrial hygiene assessment of work tasks. Results After removing the confounding effect of potential beryllium exposure at another facility, multivariate models showed a sixfold (OR 6.06, 95% CI 1.96 to 18.7) increased odds for BeS and CBD combined among DP beta E69 carriers and a fourfold (OR 3.98, 95% CI 1.43 to 11.0) increased odds for those exposed over an assigned lifetime-weighted average exposure of 0.1 mu g/m(3). Those with both risk factors had higher increased odds (OR 24.1, 95% CI 4.77 to 122). Conclusion DP beta E69 carriage and high exposure to beryllium appear to contribute individually to the development of BeS and CBD. Among workers at a beryllium-using facility, the magnitude of risk associated with either elevated beryllium exposure or carriage of DP beta E69 alone appears to be similar. C1 [Van Dyke, Michael V.; Martyny, John W.; Mroz, Margaret M.; Silveira, Lori J.; Strand, Matt; Maier, Lisa A.] Natl Jewish Hlth, Div Environm & Occupat Hlth Sci, Hollis Lab, Denver, CO 80206 USA. [Van Dyke, Michael V.; Martyny, John W.] Colorado State Univ, Dept Environm & Radiol Hlth Sci, Ft Collins, CO 80523 USA. [Martyny, John W.; Newman, Lee S.; Maier, Lisa A.] Univ Colorado, Denver Sch Med, Denver, CO 80202 USA. [Martyny, John W.; Newman, Lee S.; Maier, Lisa A.] Colorado Sch Publ Hlth, Denver, CO USA. [Cragle, Donna L.; Tankersley, William G.; Wells, Susan M.] Oak Ridge Associated Univ, Oak Ridge, TN USA. RP Van Dyke, MV (reprint author), Natl Jewish Hlth, Div Environm & Occupat Hlth Sci, Hollis Lab, 1400 Jackson St, Denver, CO 80206 USA. EM vandykem@njhealth.org FU NIEHS/NIH [P01 ES011810]; NCRR/NIH [1 UL1 RR025780] FX This study was supported by grant P01 ES011810 from NIEHS/NIH and 1 UL1 RR025780 from NCRR/NIH. NR 39 TC 13 Z9 13 U1 0 U2 5 PU B M J PUBLISHING GROUP PI LONDON PA BRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H 9JR, ENGLAND SN 1351-0711 J9 OCCUP ENVIRON MED JI Occup. Environ. Med. PD NOV PY 2011 VL 68 IS 11 BP 842 EP 848 DI 10.1136/oem.2010.064220 PG 7 WC Public, Environmental & Occupational Health SC Public, Environmental & Occupational Health GA 834AM UT WOS:000295929100011 PM 21460389 ER PT J AU Bronson, DR English, NB Dettman, DL Williams, DG AF Bronson, Dustin R. English, Nathan B. Dettman, David L. Williams, David G. TI Seasonal photosynthetic gas exchange and water-use efficiency in a constitutive CAM plant, the giant saguaro cactus (Carnegiea gigantea) SO OECOLOGIA LA English DT Article DE Crassulacean acid metabolism; CAM; Columnar cactus; Sonoran desert; Transpiration; Stomatal conductance; Humidity ID NET CO2 UPTAKE; FEROCACTUS-ACANTHODES; HEMIEPIPHYTIC CACTUS; NATIONAL-MONUMENT; ISOTOPE RATIOS; CLIMATE-CHANGE; DESERT; HUMIDITY; CARBON; ECOPHYSIOLOGY AB Crassulacean acid metabolism (CAM) and the capacity to store large quantities of water are thought to confer high water use efficiency (WUE) and survival of succulent plants in warm desert environments. Yet the highly variable precipitation, temperature and humidity conditions in these environments likely have unique impacts on underlying processes regulating photosynthetic gas exchange and WUE, limiting our ability to predict growth and survival responses of desert CAM plants to climate change. We monitored net CO(2) assimilation (A (net)), stomatal conductance (g (s)), and transpiration (E) rates periodically over 2 years in a natural population of the giant columnar cactus Carnegiea gigantea (saguaro) near Tucson, Arizona USA to investigate environmental and physiological controls over carbon gain and water loss in this ecologically important plant. We hypothesized that seasonal changes in daily integrated water use efficiency (WUE(day)) in this constitutive CAM species would be driven largely by stomatal regulation of nighttime transpiration and CO(2) uptake responding to shifts in nighttime air temperature and humidity. The lowest WUE(day) occurred during time periods with extreme high and low air vapor pressure deficit (D (a)). The diurnal with the highest D (a) had low WUE(day) due to minimal net carbon gain across the 24 h period. Low WUE(day) was also observed under conditions of low D (a); however, it was due to significant transpiration losses. Gas exchange measurements on potted saguaro plants exposed to experimental changes in D (a) confirmed the relationship between D (a) and g (s). Our results suggest that climatic changes involving shifts in air temperature and humidity will have large impacts on the water and carbon economy of the giant saguaro and potentially other succulent CAM plants of warm desert environments. C1 [Bronson, Dustin R.; Williams, David G.] Univ Wyoming, Dept Renewable Resources, Laramie, WY 82071 USA. [Bronson, Dustin R.; Williams, David G.] Univ Wyoming, Dept Bot, Laramie, WY 82071 USA. [English, Nathan B.] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Dettman, David L.] Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA. RP Bronson, DR (reprint author), Univ Wyoming, Dept Renewable Resources, 1000 E Univ Dr, Laramie, WY 82071 USA. EM dbronson@upenn.edu RI English, Nathan/B-4615-2008; James Cook University, TESS/B-8171-2012; Williams, David/A-6407-2014 OI English, Nathan/0000-0002-6936-8079; Williams, David/0000-0003-3627-5260 FU National Science Foundation [NSF IOS-0717403]; Los Alamos National Laboratory FX This research was supported by the National Science Foundation (NSF IOS-0717403). Nathan English was supported by the Los Alamos National Laboratory LDRD Director's Fellowship. Also, we thank Samantha Stutz and Mark Trees for their invaluable contributions. Finally, thank you to the USDA-ARS Crops Research Laboratory in Fort Collins, CO. NR 31 TC 5 Z9 6 U1 14 U2 84 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0029-8549 J9 OECOLOGIA JI Oecologia PD NOV PY 2011 VL 167 IS 3 BP 861 EP 871 DI 10.1007/s00442-011-2021-1 PG 11 WC Ecology SC Environmental Sciences & Ecology GA 834SQ UT WOS:000295984800024 PM 21822726 ER PT J AU Letant, SE Plant, DF Wilson, TS Alviso, CT Read, MSD Maxwell, RS AF Letant, Sonia E. Plant, David F. Wilson, Thomas S. Alviso, Cynthia T. Read, Mark S. D. Maxwell, Robert S. TI Application of density functional theory to the investigation of polymer degradation: Example of cross-linked ethylene-vinyl acetate-vinyl alcohol (EVA-OH) terpolymer de-acetylation SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE Ethylene-vinyl acetate-vinyl alcohol; Degradation; Acetic acid evolution; Density functional theory ID THERMAL-DEGRADATION; POLY(VINYL ACETATE); POLY(ETHYLENE-CO-VINYL ACETATE); MECHANISM; COPOLYMER AB We report on the application of Density Functional Theory (DFT) methodologies to investigate the degradation of polymer materials and provide new insights into the effects of degradation on molecular geometry. The temperature- and radiation-assisted degradation of a cross-linked ethylene vinyl acetate vinyl alcohol (EVA-OH) elastomer was studied both experimentally and theoretically, in order to correlate observable parameters with theoretically calculated electronic properties. Experiments showed 'yellowing' of the material, outgassing of acetic acid, and attenuated IR deformation modes upon exposure to increased levels of gamma radiation or increased temperatures, consistent with the de-acetylation model in which acetic acid is abstracted from the vinyl acetate group via a molecular rearrangement involving the displacement of a hydrogen atom from the ethylene backbone toward the acetyl group, and the propagation of the mechanism to adjacent vinyl acetate groups, forming polyenes in the polymer backbone. DFT modeling predicted the molecular structures of the cross-linked EVA-OH polymer for various degrees of de-acetylation, with corresponding IR and UV-visible absorption spectra. Theoretical attenuated IR deformation modes matched experimental observations, and the theoretical absorption spectrum of polyenes with 5 double bonds matched the optical absorption data, shedding light onto the final chemical structure of the polymer fragment. In addition, DFT unveiled precise and local effects of de-acetylation on the geometry of both the remaining polymer chain and cross-linker, which could only be detected as methylene deformation mode reflectance changes by IR spectroscopy. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Letant, Sonia E.; Wilson, Thomas S.; Alviso, Cynthia T.; Maxwell, Robert S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Plant, David F.; Read, Mark S. D.] Atom Weapon Estab, Reading RG7 4PR, Berks, England. RP Letant, SE (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM letant1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We thank Dr. E. A. Eastwood, from Honeywell Federal Manufacturing & Technologies, Kansas City, MO for the synthesis of the EVA-OH material used in this study and Dr. M. Pearson, from Lawrence Livermore National Laboratory, for performing the TGA experiment. NR 19 TC 0 Z9 0 U1 3 U2 26 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD NOV PY 2011 VL 96 IS 11 BP 2019 EP 2028 DI 10.1016/j.polymdegradstab.2011.08.017 PG 10 WC Polymer Science SC Polymer Science GA 836QI UT WOS:000296125800010 ER PT J AU Laganowsky, A Zhao, ML Soriaga, AB Sawaya, MR Cascio, D Yeates, TO AF Laganowsky, Arthur Zhao, Minglei Soriaga, Angela B. Sawaya, Michael R. Cascio, Duilio Yeates, Todd O. TI An approach to crystallizing proteins by metal-mediated synthetic symmetrization SO PROTEIN SCIENCE LA English DT Article DE protein crystallization; protein design; metal binding; symmetry ID X-RAY-DIFFRACTION; MACROMOLECULAR STRUCTURES; ANOMALOUS DIFFRACTION; MAXIMUM-LIKELIHOOD; ESCHERICHIA-COLI; FUSION PROTEINS; BINDING SITES; RESOLUTION; CRYSTALLOGRAPHY; COORDINATION AB Combining the concepts of synthetic symmetrization with the approach of engineering metal-binding sites, we have developed a new crystallization methodology termed metal-mediated synthetic symmetrization. In this method, pairs of histidine or cysteine mutations are introduced on the surface of target proteins, generating crystal lattice contacts or oligomeric assemblies upon coordination with metal. Metal-mediated synthetic symmetrization greatly expands the packing and oligomeric assembly possibilities of target proteins, thereby increasing the chances of growing diffraction-quality crystals. To demonstrate this method, we designed various T4 lysozyme (T4L) and maltose-binding protein (MBP) mutants and cocrystallized them with one of three metal ions: copper (Cu2+), nickel (Ni2+), or zinc (Zn2+). The approach resulted in 16 new crystal structures-eight for T4L and eight for MBP-displaying a variety of oligomeric assemblies and packing modes, representing in total 13 new and distinct crystal forms for these proteins. We discuss the potential utility of the method for crystallizing target proteins of unknown structure by engineering in pairs of histidine or cysteine residues. As an alternate strategy, we propose that the varied crystallization-prone forms of T4L or MBP engineered in this work could be used as crystallization chaperones, by fusing them genetically to target proteins of interest. C1 [Laganowsky, Arthur; Soriaga, Angela B.; Yeates, Todd O.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Laganowsky, Arthur; Zhao, Minglei; Soriaga, Angela B.; Sawaya, Michael R.; Cascio, Duilio; Yeates, Todd O.] Inst Genom & Prote, UCLA DOE, Los Angeles, CA 90095 USA. [Sawaya, Michael R.] Inst Genom & Prote, Howard Hughes Med Inst UCLA DOE, Los Angeles, CA 90095 USA. RP Yeates, TO (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. EM yeates@mbi.ucla.edu RI Zhao, Minglei/J-4446-2015; OI Zhao, Minglei/0000-0001-5832-6060; Yeates, Todd/0000-0001-5709-9839; Sawaya, Michael/0000-0003-0874-9043 FU Department of Energy Office of Science [DE-FC03-02ER63421]; NIH [5T32GM008496, GM067555] FX Grant sponsor: Department of Energy Office of Science (BER program); Grant number: DE-FC03-02ER63421; Grant sponsor: NIH; Grant number: 5T32GM008496, GM067555 NR 68 TC 29 Z9 29 U1 2 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD NOV PY 2011 VL 20 IS 11 BP 1876 EP 1890 DI 10.1002/pro.727 PG 15 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 838FW UT WOS:000296273700014 PM 21898649 ER PT J AU Wang, MY Williams, JJ Jiang, L De Carlo, F Jing, T Chawla, N AF Wang, M. Y. Williams, J. J. Jiang, L. De Carlo, F. Jing, T. Chawla, N. TI Dendritic morphology of alpha-Mg during the solidification of Mg-based alloys: 3D experimental characterization by X-ray synchrotron tomography and phase-field simulations SO SCRIPTA MATERIALIA LA English DT Article DE Magnesium dendrite; 3D microstructural characterization; Phase-field simulations; Hexagonal close-packed (hcp); X-ray tomography ID PATTERN-FORMATION; EVOLUTION; GROWTH AB The microstructural features of many engineering materials are characterized by three-dimensional (3D) dendritic patterns. Here, we have used a combination of computer simulations by phase field method and 3D experimental characterization by X-ray synchrotron tomography to demonstrate that the morphologies of hexagonal close-packed alpha-Mg dendritic structures during solidification which exhibit quasi-perfect sixfold symmetry are different from previously thought. These results have important implications for predicting the microstructural features of cast alloys that exhibit dendritic solidification processes. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Wang, M. Y.; Williams, J. J.; Jiang, L.; Chawla, N.] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. [Wang, M. Y.; Jing, T.] Tsinghua Univ, Key Lab Adv Mat Proc Technol, Dept Mech Engn, Beijing 100084, Peoples R China. [De Carlo, F.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Chawla, N (reprint author), Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. EM nchawla@asu.edu RI Chawla, Nikhilesh/A-3433-2008 OI Chawla, Nikhilesh/0000-0002-4478-8552 FU National Basic Research Program of China [2006CB605208]; National Science and Technology Major Project of China [2011ZX04014-052]; Ministry of Education of China [20090002110031]; Chinese Scholarship Council; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX M.Y.W. and T.J. acknowledge financial support from the National Basic Research Program of China, under Grant No. 2006CB605208; the National Science and Technology Major Project of China, under Grant No. 2011ZX04014-052; and Doctoral Fund of Ministry of Education of China, under Grant No. 20090002110031. M.Y.W. acknowledges the Chinese Scholarship Council for financial support during his stay at ASU. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 23 TC 22 Z9 24 U1 1 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2011 VL 65 IS 10 BP 855 EP 858 DI 10.1016/j.scriptamat.2011.07.040 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 834ZL UT WOS:000296002900002 ER PT J AU Aidhy, DS Wolf, D El-Azab, A AF Aidhy, Dilpuneet S. Wolf, Dieter El-Azab, Anter TI Comparison of point-defect clustering in irradiated CeO2 and UO2: A unified view from molecular dynamics simulations and experiments SO SCRIPTA MATERIALIA LA English DT Article DE Point defects; Bulk diffusion; Binary oxides; Radiation damage ID DIOXIDE; DAMAGE AB The degree to which ceria can be considered as a surrogate for urania is elucidated by molecular dynamics simulations that compare the types of defect clusters formed under irradiation. The simulations and their comparison with experiments suggest that the defect-clustering processes in the two materials are very similar. In particular, both materials form < 1 1 1 > Schottky defects and two types of interstitial clusters that, depending on the diffusion conditions, are either charge-neutral dislocation loops or charged cuboctahedral clusters. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Aidhy, Dilpuneet S.; Wolf, Dieter] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [El-Azab, Anter] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA. RP Wolf, D (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dilaidhy@in.ibm.com; dwolf@anl.gov FU UChicago Argonne, LLC; US Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; Energy Frontier Research Center on Materials Science of Nuclear Fuel; US Department of Energy, Office of Basic Energy Sciences FX This work was supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory, a US Department of Energy Office of Science laboratory operated under Contract No. DE-AC02-06CH11357. D.A. and D.W. thank B. Ye and J. Stubbins for making available a preprint of their experimental work. D.A. also thanks D Yun for helpful discussions on dislocation loops in CeO2. A.E. and D.A. were partially supported by the Energy Frontier Research Center on Materials Science of Nuclear Fuel funded by the US Department of Energy, Office of Basic Energy Sciences. We gratefully acknowledge use of the Fusion cluster in the Laboratory Computing Resource Center at Argonne National Laboratory. NR 20 TC 21 Z9 21 U1 7 U2 45 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2011 VL 65 IS 10 BP 867 EP 870 DI 10.1016/j.scriptamat.2011.07.051 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 834ZL UT WOS:000296002900005 ER PT J AU Shute, CJ Myers, BD Liao, Y Li, SY Hodge, AM Barbee, TW Zhu, YT Weertman, JR AF Shute, C. J. Myers, B. D. Liao, Y. Li, S. -Y. Hodge, A. M. Barbee, T. W., Jr. Zhu, Y. T. Weertman, J. R. TI High-pressure torsion of copper samples containing columns of highly aligned nanotwins SO SCRIPTA MATERIALIA LA English DT Article DE Nanotwins; Deformation structures; Copper; High-pressure torsion ID DYNAMIC PLASTIC-DEFORMATION; NANO-TWINNED COPPER; SCALE TWINS; EVOLUTION AB Copper disks containing columns of aligned nanotwins were subjected to high-pressure torsion (HPT) involving a half turn under a 3 GPa compressive stress. The overall shear strain of 21 at 1 mm from the center of rotation is concentrated at the surfaces, where the columns of twins have been transformed into a 3-D grain structure to a depth of about 5 mu m. The remaining columns of twins were sheared in the direction of the shear stress with little rotation of the twin boundaries. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Shute, C. J.; Myers, B. D.; Liao, Y.; Li, S. -Y.; Weertman, J. R.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Hodge, A. M.] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA. [Barbee, T. W., Jr.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Zhu, Y. T.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. RP Weertman, JR (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM jrweertman@northwestern.edu RI Zhu, Yuntian/B-3021-2008; Weertman, Julia/B-7540-2009; Weertman, Johannes/B-7539-2009 OI Zhu, Yuntian/0000-0002-5961-7422; FU National Science Foundation at the Materials Research Center of Northwestern University [DMR-020513] FX The authors thank W.W. Jian for carrying out the HPT deformation. This work made use of shared facilities supported by the MRSEC Program of the National Science Foundation (DMR-020513) at the Materials Research Center of Northwestern University. NR 15 TC 8 Z9 8 U1 2 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2011 VL 65 IS 10 BP 899 EP 902 DI 10.1016/j.scriptamat.2011.08.004 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 834ZL UT WOS:000296002900013 ER PT J AU Edelstein, A Fink, D Musch, M Valuckaite, V Zaborina, O Grubjesic, S Firestone, MA Matthews, JB Alverdy, JC AF Edelstein, Adam Fink, David Musch, Mark Valuckaite, Vesta Zaborina, Olga Grubjesic, Simonida Firestone, Millicent A. Matthews, Jeffrey B. Alverdy, John C. TI PROTECTIVE EFFECTS OF NONIONIC TRIBLOCK COPOLYMERS ON BILE ACID-MEDIATED EPITHELIAL BARRIER DISRUPTION SO SHOCK LA English DT Article DE Enterocyte; sodium deoxycholate; polyethylene glycol block copolymers; PEG 15-20; gut-derived sepsis ID INDUCED GASTROINTESTINAL INJURY; GASTRIC-MUCOSAL BARRIER; SALT TOXICITY; CELL-LINE; IN-VITRO; MEMBRANES; CACO-2; RATS; PERMEABILITY; DAMAGE AB Translocation of bacteria and other luminal factors from the intestine following surgical injury can be a major driver of critical illness. Bile acids have been shown to play a key role in the loss of intestinal epithelial barrier function during states of host stress. Experiments to study the ability of nonionic block copolymers to abrogate barrier failure in response to bile acid exposure are described. In vitro experiments were performed with the bile salt sodium deoxycholate on Caco-2 enterocyte monolayers using transepithelial electrical resistance to assay barrier function. A bisphenol A coupled triblock polyethylene glycol (PEG), PEG 15-20, was shown to prevent sodium deoxycholate-induced barrier failure. Enzyme-linked immunosorbent assay, lactate dehydrogenase, and caspase 3-based cell death detection assays demonstrated that bile acid-induced apoptosis and necrosis were prevented with PEG 15-20. Immunofluorescence microscopic visualization of the tight junctional protein zonula occludens 1 (ZO-1) demonstrated that PEG 15-20 prevented significant changes in tight junction organization induced by bile acid exposure. Preliminary transepithelial electrical resistance-based studies examining structure-function correlates of polymer protection against bile acid damage were performed with a small library of PEG-based copolymers. Polymer properties associated with optimal protection against bile acid-induced barrier disruption were PEG-based compounds with a molecular weight greater than 10 kd and amphiphilicity. The data demonstrate that PEG-based copolymer architecture is an important determinant that confers protection against bile acid injury of intestinal epithelia. C1 [Fink, David; Valuckaite, Vesta; Zaborina, Olga; Matthews, Jeffrey B.; Alverdy, John C.] Univ Chicago, Dept Surg, Chicago, IL 60637 USA. [Edelstein, Adam; Musch, Mark] Univ Chicago, Pritzker Sch Med, Chicago, IL 60637 USA. [Valuckaite, Vesta; Zaborina, Olga; Grubjesic, Simonida; Firestone, Millicent A.; Matthews, Jeffrey B.; Alverdy, John C.] Univ Chicago, Bioengn Inst Adv Surg & Endoscopy, Chicago, IL 60637 USA. [Grubjesic, Simonida; Firestone, Millicent A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Alverdy, JC (reprint author), Univ Chicago, Dept Surg, 5841 S Maryland Ave,MC 5029, Chicago, IL 60637 USA. EM jalverdy@surgery.bsd.uchicago.edu FU University of Chicago Pritzker School of Medicine via NIDDK [DK062719-22]; University of Chicago Pritzker School of Medicine via NIH [5R01GM062344-11] FX This work was supported by the University of Chicago Pritzker School of Medicine's Summer Research Program via NIDDK grant DK062719-22 and NIH grant 5R01GM062344-11 (to J.C.A.). NR 32 TC 5 Z9 5 U1 0 U2 2 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 1073-2322 J9 SHOCK JI Shock PD NOV PY 2011 VL 36 IS 5 BP 451 EP 457 DI 10.1097/SHK.0b013e31822d8de1 PG 7 WC Critical Care Medicine; Hematology; Surgery; Peripheral Vascular Disease SC General & Internal Medicine; Hematology; Surgery; Cardiovascular System & Cardiology GA 837TX UT WOS:000296227600005 PM 21937955 ER PT J AU Baer, DR AF Baer, D. R. TI Summary of ISO/TC 201 Standard: ISO 29081: 2010, surface chemical analysis - Auger electron spectroscopy - reporting of methods used for charge control and charge correction SO SURFACE AND INTERFACE ANALYSIS LA English DT Article DE AES; surface charging; charge correction; charge control ID ENERGY SCALES; SPECTROMETERS; CALIBRATION AB This international standard specifies the minimum amount of information required for describing the methods of charge control and charge correction in measurements of Auger electron transitions from insulating specimens by electron-stimulated AES to be reported with the analytical results. Information is provided in an Annex on methods that have been found useful for charge control prior to or during AES analysis. The Annex also includes a summary table of methods or approaches, ordered by simplicity of approach. A similar international standard has been published for XPS (ISO 19318: 2003(E), Surface chemical analysis - XPS - reporting of methods used for charge control and charge correction. Copyright (C) 2010 John Wiley & Sons, Ltd. C1 Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Baer, DR (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. EM don.baer@pnl.gov RI Baer, Donald/J-6191-2013 OI Baer, Donald/0000-0003-0875-5961 FU US Department of Energy (DOE), Office of Science through the Offices of Basic Energy Science and Biological and Environmental Research FX Because ISO is an international volunteer consensus standards organization, all ISO TC 201 standards involve a significant amount of volunteer effort from topical experts and the direct or indirect support of the companies, governments and granting agencies that employ or support the participants in TC 201. The authors of Reference[8] made significant contributions to the development of the standard and related method summary. The contributions from the current author (DRB) relate directly to work supported by the US Department of Energy (DOE), Office of Science through the Offices of Basic Energy Science and Biological and Environmental Research. Some of the elements of the standard were developed or verified in the Environmental Molecular Sciences Laboratory (EMSL), a DOE user facility operated by Battelle for the DOE Office of Biological and Environmental Research. NR 8 TC 1 Z9 1 U1 0 U2 2 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0142-2421 J9 SURF INTERFACE ANAL JI Surf. Interface Anal. PD NOV PY 2011 VL 43 IS 11 BP 1444 EP 1447 DI 10.1002/sia.3724 PG 4 WC Chemistry, Physical SC Chemistry GA 837VZ UT WOS:000296237200013 ER PT J AU van Dam, HJJ de Jong, WA Bylaska, E Govind, N Kowalski, K Straatsma, TP Valiev, M AF van Dam, H. J. J. de Jong, W. A. Bylaska, E. Govind, N. Kowalski, K. Straatsma, T. P. Valiev, M. TI NWChem: scalable parallel computational chemistry SO WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE LA English DT Article ID DENSITY-FUNCTIONAL THEORY; MOLECULAR SIMULATIONS; IMPLEMENTATION; DYNAMICS AB NWChem is a general-purpose computational chemistry code specifically designed to run on distributed memory parallel computers. The core functionality of the code focuses on molecular dynamics, Hartree-Fock theory, and density functional theory methods for both plane-wave basis sets as well as Gaussian basis sets, tensor contraction engine-based coupled cluster capabilities, and combined quantum mechanics/molecular mechanics descriptions. It was realized from the beginning that scalable implementations of these methods required a programming paradigm inherently different from what message-passing approaches could offer. In response, a global address space library, the Global Array toolkit, was developed. The programming model it offers is based on using predominantly one-sided communication. This model underpins most of the functionality in NWChem, and the power of it is exemplified by the fact that the code scales to tens of thousands of processors. In this paper, the core capabilities of NWChem are described as well as their implementation to achieve an efficient computational chemistry code with high parallel scalability. (C) 2011 John Wiley & Sons, Ltd. WIREs Comput Mol Sci 2011 1 888-894 DOI: 10.1002/wcms.62 C1 [van Dam, H. J. J.; de Jong, W. A.; Bylaska, E.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Valiev, M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP van Dam, HJJ (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Hubertus.vanDam@pnl.gov RI DE JONG, WIBE/A-5443-2008; OI DE JONG, WIBE/0000-0002-7114-8315; van Dam, Hubertus Johannes Jacobus/0000-0002-0876-3294 FU Department of Energy's Office of Biological and Environmental Research; US Department of Energy [DE-AC05-76RL01830] FX This work was done in part using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, operated for the US Department of Energy by Battelle under contract DE-AC05-76RL01830. NR 16 TC 13 Z9 13 U1 3 U2 20 PU WILEY PERIODICALS, INC PI MALDEN PA COMMERCE PLACE, 350 MAIN STREET, MALDEN, MA 02148-529 USA SN 1759-0876 J9 WIRES COMPUT MOL SCI JI Wiley Interdiscip. Rev.-Comput. Mol. Sci. PD NOV-DEC PY 2011 VL 1 IS 6 BP 888 EP 894 DI 10.1002/wcms.62 PG 7 WC Chemistry, Multidisciplinary; Mathematical & Computational Biology SC Chemistry; Mathematical & Computational Biology GA 835AI UT WOS:000296005200003 ER PT J AU Holliday, K Smith, N Hartmann, T Cerefice, G Czerwinski, K AF Holliday, Kiel Smith, Nicholas Hartmann, Thomas Cerefice, Gary Czerwinski, Ken TI Acidic dissolution behavior of U containing ZrO2-MgO ceramics SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Inert matrix; Fuel; Dissolution; Zirconia; Uranium ID INERT MATRIX FUEL; PRESSURIZED-WATER REACTORS; PLUTONIUM DISPOSITION; MGO-ZRO2 CERAMICS; THORIA FUELS; FABRICATION AB This study explores the possibility of dissolving zirconia-magnesia inert matrix fuel containing uranium oxide as a fissile material and plutonium homolog and erbium oxide as a burnable poison with nitric and sulfuric acid as a potential first step in a reprocessing scheme. The progress of the dissolution is followed by monitoring the amount of material in solution by inductively coupled plasma-atomic emission spectroscopy, assessing the speciation of the material by time resolved laser fluorescence spectroscopy, and determining and quantifying the crystalline phases present in the remaining residue by X-ray diffraction. This study has shown a linear incongruent dissolution of the cubic zirconia phase in concentrated nitric acid under certain chemical compositions, while the magnesium oxide phase is completely soluble. In sulfuric acid uranium, erbium, and magnesium are soluble to different extents while zirconium forms a colloidal suspension that conglomerates and settles out of solution. The feasibility of the dissolution of zirconia-magnesia inert matrix fuel with nitric and sulfuric acid for reprocessing is discussed. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Holliday, Kiel; Smith, Nicholas; Hartmann, Thomas; Czerwinski, Ken] Univ Nevada, Radiochem Grp, Las Vegas, NV 89154 USA. [Hartmann, Thomas] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Cerefice, Gary] Univ Nevada, Dept Hlth Phys, Las Vegas, NV 89154 USA. RP Holliday, K (reprint author), Univ Nevada, Radiochem Grp, Las Vegas, NV 89154 USA. EM holliday.kiel@gmail.com FU US Department of Energy Office of Nuclear Energy [DE-FG07-01AL67358] FX This project was funded under the UNLV Transmutation Research Program administered by the Harry Reid Center for Environmental Studies under the auspices of the US Department of Energy Office of Nuclear Energy (Cooperative Agreement No. DE-FG07-01AL67358). NR 21 TC 2 Z9 2 U1 1 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD NOV PY 2011 VL 38 IS 11 BP 2404 EP 2409 DI 10.1016/j.anucene.2011.07.034 PG 6 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 831VN UT WOS:000295759300012 ER PT J AU Chandler, D Maldonado, GI Primm, RT Freels, JD AF Chandler, David Maldonado, G. Ivan Primm, R. T., III Freels, J. D. TI Neutronics modeling of the High Flux Isotope Reactor using COMSOL SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE HFIR; COMSOL Multiphysics; Diffusion theory; Neutronics; SCALE; NEWT AB The High Flux Isotope Reactor located at the Oak Ridge National Laboratory is a versatile 85 MWth research reactor with cold and thermal neutron scattering, materials irradiation, isotope production, and neutron activation analysis capabilities. HFIR staff members are currently in the process of updating the thermal hydraulic and reactor transient modeling methodologies. COMSOL Multiphysics has been adopted for the thermal hydraulic analyses and has proven to be a powerful finite-element-based simulation tool for solving multiple physics-based systems of partial and ordinary differential equations. Modeling reactor transients is a challenging task because of the coupling of neutronics, heat transfer, and hydrodynamics. This paper presents a preliminary COMSOL-based neutronics study performed by creating a two-dimensional, two-group, diffusion neutronics model of HFIR to study the spatially-dependent, beginning-of-cycle fast and thermal neutron fluxes. The 238-group ENDF/B-VII neutron cross section library and NEWT, a two-dimensional, discrete-ordinates neutron transport code within the SCALE 6 code package, were used to calculate the two-group neutron cross sections required to solve the diffusion equations. The two-group diffusion equations were implemented in the COMSOL coefficient form PDE application mode and were solved via eigenvalue analysis using a direct (PARDISO) linear system solver. A COMSOL-provided adaptive mesh refinement algorithm was used to increase the number of elements in areas of largest numerical error to increase the accuracy of the solution. The flux distributions calculated by means of COMSOL/SCALE compare well with those calculated with benchmarked three-dimensional MCNP and KENO models, a necessary first step along the path to implementing two- and three-dimensional models of HFIR in COMSOL for the purpose of studying the spatial dependence of transient-induced behavior in the reactor core. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Chandler, David; Maldonado, G. Ivan] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Primm, R. T., III; Freels, J. D.] Oak Ridge Natl Lab, Res Reactors Div, Oak Ridge, TN 37831 USA. RP Chandler, D (reprint author), Univ Tennessee, Dept Nucl Engn, 311 Pasqua Engn, Knoxville, TN 37996 USA. EM dchandl6@utk.edu; Ivan.Mal-donado@utk.edu; trentprimm@primmconsultingllc.com; freelsjd@ornl.gov OI Maldonado, Guillermo/0000-0001-7377-4494 FU US Department of Energy [DE-AC05-000R22725] FX This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-000R22725 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 12 TC 1 Z9 1 U1 2 U2 24 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD NOV PY 2011 VL 38 IS 11 BP 2594 EP 2605 DI 10.1016/j.anucene.2011.06.002 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 831VN UT WOS:000295759300034 ER PT J AU Park, S Reitz, RD Kim, J AF Park, Sungwook Reitz, Rolf D. Kim, Junghwan TI Combustion and emission characteristics of converging group-hole nozzle under lean engine operating conditions SO FUEL LA English DT Article DE Converging group-hole nozzle; Gasjet superposition model; Combustion and emissions ID MULTIPLE INJECTION STRATEGIES; BINARY DROPLET COLLISIONS; DIESEL COMBUSTION; MODEL; SPRAYS; SIMULATIONS; ATOMIZATION; PRESSURE AB This paper describes the combustion and emission characteristics of converging group-hole nozzles and compares the results to those of a single hole nozzle with the same overall nozzle exit hole area. Engine experiments were performed using a single-cylinder diesel engine operating under overall lean conditions (i.e., equivalence ratio 0.45). The considered nozzle configurations in the experiments included a converging group-hole nozzle (cGHN) with 3 degrees converging angle, 0.090 mm hole diameter, and a single hole nozzle (SHN) of 0.128 mm hole diameter. The CFD calculations used the KIVA engine simulation code integrated with a Gasjet superposition model. Using the validated calculation models, the test conditions were also expanded to consider wider converging angle cGHNs (up to 12 degrees). The results show that the evaporation of sprays from the cGHN-3 degrees nozzle is more delayed than that of the SHN case and the cGHNs entrain more ambient gas due to smaller droplet sizes in the outer spray periphery. In addition, an increase in the converging angle of the cGHNs promotes fuel evaporation and produces a more homogeneous fuel-air mixture. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Kim, Junghwan] Oak Ridge Natl Lab, Fuel Engines & Emiss Res Ctr, Oak Ridge, TN 37831 USA. [Park, Sungwook] Hanyang Univ, Dept Mech Engn, Seoul 133791, South Korea. [Reitz, Rolf D.] Univ Wisconsin, Engine Res Ctr, Madison, WI 53706 USA. RP Kim, J (reprint author), Oak Ridge Natl Lab, Fuel Engines & Emiss Res Ctr, POB 2008, Oak Ridge, TN 37831 USA. EM kimj@ornl.gov NR 31 TC 1 Z9 1 U1 0 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 J9 FUEL JI Fuel PD NOV PY 2011 VL 90 IS 11 BP 3259 EP 3267 DI 10.1016/j.fuel.2011.06.021 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 831MD UT WOS:000295734200015 ER PT J AU Chung, KY Yoon, WS Kim, KB Cho, BW Yang, XQ AF Chung, Kyung Yoon Yoon, Won-Sub Kim, Kwang-Bum Cho, Byung-Won Yang, Xiao-Qing TI Formation of an SEI on a LiMn2O4 cathode during room temperature charge-discharge cycling studied by soft X-ray absorption spectroscopy at the Fluorine K-edge SO JOURNAL OF APPLIED ELECTROCHEMISTRY LA English DT Article DE LiMn2O4; SEI; LiF; Soft X-ray absorption spectroscopy; Lithium secondary batteries ID THIN-FILM ELECTRODES; STRUCTURAL FATIGUE; SPINEL ELECTRODES; CAPACITY LOSSES; BATTERIES; PERFORMANCE; OXIDES AB The solid electrolyte interface (SEI) formation on the surface of LiMn2O4 electrodes during room temperature charge-discharge cycling was studied using soft X-ray absorption spectroscopy at the Fluorine (F) K-edge. LiMn2O4 electrodes without any binder were prepared by electrostatic spray deposition to eliminate the signal originating from the PVDF binder in the F K-edge X-ray absorption spectra. The F K-edge absorption spectra show that the SEI layer forms at a very early stage of cycling. SEI growth takes place during discharge. In addition, LiF formation is accelerated if the discharge step follows a charge step. The F K-edge absorption spectra suggest that the major component of the SEI is LiF. C1 [Chung, Kyung Yoon; Cho, Byung-Won] Korea Inst Sci & Technol, Energy Storage Res Ctr, Seoul 136791, South Korea. [Yoon, Won-Sub] Sungkyunkwan Univ, Dept Energy Sci, Suwon 440746, South Korea. [Kim, Kwang-Bum] Yonsei Univ, Div Mat Sci & Engn, Seoul 120749, South Korea. [Yang, Xiao-Qing] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Chung, KY (reprint author), Korea Inst Sci & Technol, Energy Storage Res Ctr, Seoul 136791, South Korea. EM kychung@kist.re.kr RI Yoon, Won-Sub/H-2343-2011; Chung, Kyung Yoon/E-4646-2011 OI Chung, Kyung Yoon/0000-0002-1273-746X FU National Research Foundation of Korea (NRF); Ministry of Education, Science, and Technology (MEST) [2010-00351]; Office of Vehicle Technologies of the US Department of Energy [DE-AC02-98CH10886]; National Research Laboratory through the National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology (MEST) [2007-0055835]; Korean Government (MKE) FX The study done at KIST was supported by the Global Research Laboratory Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education, Science, and Technology (MEST) (Grant No: 2010-00351). The study done at BNL was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US Department of Energy under Contract No. DE-AC02-98CH10886. The study done at Yonsei University was supported by the National Research Laboratory Program through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (MEST) (Grant No: 2007-0055835). The study done at SKKU was supported by a grant from the fundamental R&D program for Technology of World Premier Materials and the Fundamental Materials & Components technology developing program by the Korean Government (MKE). Some supporting study was done at beamlines 7B1 (XAS KIST) and 10B (KIST-PAL) at Pohang Accelerator Laboratory (PAL) in Korea. NR 18 TC 6 Z9 6 U1 3 U2 55 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0021-891X J9 J APPL ELECTROCHEM JI J. Appl. Electrochem. PD NOV PY 2011 VL 41 IS 11 BP 1295 EP 1299 DI 10.1007/s10800-011-0344-6 PG 5 WC Electrochemistry SC Electrochemistry GA 834UD UT WOS:000295988700006 ER PT J AU Han, JB Carey, JW AF Han, Jiabin Carey, J. William TI Localized CO2 corrosion propagation at moderate FeCO3 supersaturation initiated by mechanical removal of corrosion scale SO JOURNAL OF APPLIED ELECTROCHEMISTRY LA English DT Article DE Localized corrosion; Carbon dioxide; Electrochemistry; Scale ID MILD-STEEL; CARBON-STEEL AB The propagation of localized CO2 corrosion was investigated at moderate iron carbonate supersaturation using an artificial defect method with re-formed corrosion scale. A mechanical tool was developed which locally removed pre-formed iron carbonate scale and initiated localized corrosion at a FeCO3 supersaturation of 3-10. The localized corrosion rate was calculated based on electrochemical measurement using a simplified algorithm and was also measured at the deepest part of the defect using scanning electron microscopy. Localized corrosion was driven by a galvanic cell established between the two surfaces exposed in the artificial defect where an open circuit potential difference was maintained. C1 [Han, Jiabin; Carey, J. William] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. RP Han, JB (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. EM jhan@lanl.gov FU DOE [FE-10-001-FY11]; Institute for Corrosion and Multiphase Technology of Ohio University FX The authors thank the Fossil Energy program of DOE for grant FE-10-001-FY11. The author, Jiabin Han, would like to acknowledge the financial support to allow the experimental work from the Joint Industry Project advisory board members of Institute for Corrosion and Multiphase Technology of Ohio University: Baker Hughes, BG Group, BP, Champion, Chevron, Clariant, Conoco Phillips, Encana, Eni, ExxonMobil, INPEX, IONIK, MI-Swaco, Nalco, Occidental Oil, Petronas, Petrobras, PTTEP, Saudi Aramco, Shell, Tenaris and Total. NR 17 TC 2 Z9 2 U1 0 U2 7 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0021-891X J9 J APPL ELECTROCHEM JI J. Appl. Electrochem. PD NOV PY 2011 VL 41 IS 11 BP 1367 EP 1371 DI 10.1007/s10800-011-0337-5 PG 5 WC Electrochemistry SC Electrochemistry GA 834UD UT WOS:000295988700014 ER PT J AU Fedorchuk, AO Gorgut, GP Parasyuk, OV Lakshminarayana, G Kityk, IV Piasecki, M AF Fedorchuk, A. O. Gorgut, G. P. Parasyuk, O. V. Lakshminarayana, G. Kityk, I. V. Piasecki, M. TI IR operated novel Ag0.98Cu0.02GaGe3Se8 single crystals SO JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS LA English DT Article DE Optical materials; Chalcogenides; Crystal growth; X-ray diffraction; Phonons ID NONLINEAR CRYSTALS; SOLID-SOLUTIONS; AGXGAXGE1-XSE2; AGGAGE5SE12 AB In this work, we report on the structural and optical properties of novel Ag0.98Cu0.02GaGe3Se8 single crystals that were synthesized by the Bridgman-Stockbarger technique. We have performed illumination by 10.6 mu m CO2 pulsed laser working in the microsecond time duration regime. Such illumination allows causing substantial changes for both pure electronic nonlinear optical effects like optical second harmonic generation as well as piezooptical effects described by the fourth rank tensors. The measurements of the piezo-optical effects were carried out at different temperatures. The effects are observed only during the IR CO2 laser illumination and are disappeared after switching off the illumination. Simultaneously the IR induced optical second harmonic generation at Er:glass laser fundamental wavelength 1540 nm was performed during illumination by nanosecond Nd:YAG and Er3+:glass laser. The observed effects allow to use the studied materials as promising for IR-optoelectronic devices. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Lakshminarayana, G.] Los Alamos Natl Lab, Mat Sci & Technol Div MST 7, Los Alamos, NM 87545 USA. [Fedorchuk, A. O.] Lviv Natl Univ Vet Med & Biotechnol, Dept Inorgan & Organ Chem, UA-79010 Lvov, Ukraine. [Gorgut, G. P.; Parasyuk, O. V.] Volyn Natl Univ, Dept Inorgan & Phys Chem, UA-43025 Lutsk, Ukraine. [Kityk, I. V.] Czestohcowa Univ Technol, Dept Elect Engn, Czestohcowa, Poland. [Piasecki, M.] J Dlugosz Univ Czestochowa, Inst Phys, Czestohcowa, Poland. RP Lakshminarayana, G (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div MST 7, POB 1663, Los Alamos, NM 87545 USA. EM glnphysics@rediffmail.com RI Kityk, Iwan/M-4032-2015; OI Gandham, Lakshminarayana/0000-0002-1458-9368 NR 15 TC 27 Z9 27 U1 1 U2 5 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-3697 J9 J PHYS CHEM SOLIDS JI J. Phys. Chem. Solids PD NOV PY 2011 VL 72 IS 11 BP 1354 EP 1357 DI 10.1016/j.jpcs.2011.08.008 PG 4 WC Chemistry, Multidisciplinary; Physics, Condensed Matter SC Chemistry; Physics GA 831UG UT WOS:000295756000027 ER PT J AU Li, JV Nardes, AM Liang, ZQ Shaheen, SE Gregg, BA Levi, DH AF Li, Jian V. Nardes, Alexandre M. Liang, Ziqi Shaheen, Sean E. Gregg, Brian A. Levi, Dean H. TI Simultaneous measurement of carrier density and mobility of organic semiconductors using capacitance techniques SO ORGANIC ELECTRONICS LA English DT Article DE Organic solar cell; Carrier density; Carrier mobility; Capacitance technique ID CHARGE-TRANSPORT; ADMITTANCE SPECTROSCOPY; SCHOTTKY BARRIERS; SOLAR-CELLS; RECOMBINATION; DISTRIBUTIONS; TRAPS AB We present a method to measure both the majority carrier density and mobility in organic semiconductors from the voltage and frequency dependence of capacitance (C-V-f). Poly(3-hexylthiophene) (P3HT) is used as the prototypical material. The carrier density, and its spatial distribution in a planar device structure, is obtained from a subset of the C-V-f data by conventional capacitance-voltage analysis. We show that the validity of the carrier density extraction depends critically on the measurement frequency. Namely, one should make sure that the measurement frequency is lower than the modified dielectric relaxation frequency, which is characteristically low in organic semiconductors due to their low carrier mobility. Our method further exploits the voltage dependence of the modified dielectric relaxation frequency to measure the conductivity and carrier mobility. This mobility extraction method requires no complex fitting or simulation. Nor does it assume any particular dispersive model of mobility a priori. The carrier density, mobility, and conductivity of P3HT all increase with temperature from 250 to 300 K. The activation energies of mobility and conductivity are 0.15 +/- 0.01 and 0.24 +/- 0.03 eV, respectively. (C) 2011 Elsevier B.V. All rights reserved. C1 [Li, Jian V.; Nardes, Alexandre M.; Liang, Ziqi; Shaheen, Sean E.; Gregg, Brian A.; Levi, Dean H.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Li, JV (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM jian.li@nrel.gov RI Liang, Ziqi/G-9312-2011; Nardes, Alexandre/C-8556-2012; Shaheen, Sean/M-7893-2013; Li, Jian/B-1627-2016 FU US Department of Energy, Office of Science, Basic Energy Science, Division of Chemical Sciences, Geosciences and Biosciences [DE-AC36-08GO28308] FX This work was funded by the US Department of Energy, Office of Science, Basic Energy Science, Division of Chemical Sciences, Geosciences and Biosciences, under Contract No. DE-AC36-08GO28308 to NREL. NR 36 TC 28 Z9 28 U1 3 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1566-1199 EI 1878-5530 J9 ORG ELECTRON JI Org. Electron. PD NOV PY 2011 VL 12 IS 11 BP 1879 EP 1885 DI 10.1016/j.orgel.2011.08.002 PG 7 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 832TL UT WOS:000295830700020 ER PT J AU Brauer, B Kukreja, R Virkar, A Akkerman, HB Fognini, A Tyliszczak, T Bao, ZN AF Braeuer, Bjoern Kukreja, Roopali Virkar, Ajay Akkerman, Hylke B. Fognini, Andreas Tyliszczak, Tolek Bao, Zhenan TI Carrier mobility in pentacene as a function of grain size and orientation derived from scanning transmission X-ray microscopy SO ORGANIC ELECTRONICS LA English DT Article DE X-ray microscopy; Pentacene; STXM; Grain ID FIELD-EFFECT TRANSISTORS; THIN-FILMS; MAGNETIC-PROPERTIES; TRANSPORT; BOUNDARY; SPECTROMICROSCOPY; PERFORMANCE; DENSITY AB Pentacene field-effect transistors were prepared on silicon nitride membranes for scanning transmission X-ray microscopy (STXM) investigations. The membranes were modified by different self-assembled monolayers (SAMs). Pentacene was deposited atop the SAM-treated membrane and the in-plane orientation of the grains were subsequently investigated by polarization dependent STXM measurements. The grain sizes were determined and compared to those obtained from atomic force microscopy (AFM) measurements. Statistical analysis of the grain orientation was correlated with the charge carrier mobility of the films, in which we observed an increase in the mobility with increasing grain size and decreasing surface roughness of the SAM. Published by Elsevier B.V. C1 [Braeuer, Bjoern; Kukreja, Roopali] Stanford Univ, Stanford Inst Mat & Energy Sci, Stanford, CA 94305 USA. [Virkar, Ajay; Akkerman, Hylke B.; Bao, Zhenan] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA. [Tyliszczak, Tolek] Adv Light Source, Berkeley, CA 94720 USA. [Fognini, Andreas] Swiss Fed Inst Technol, Solid State Phys Lab, CH-8093 Zurich, Switzerland. RP Brauer, B (reprint author), Stanford Univ, Stanford Inst Mat & Energy Sci, Stanford, CA 94305 USA. EM bjorn.brauer@gmail.com; zbao@stanford.edu FU German Research Foundation (DFG); Funds of Chemical Industry for a Liebig; Netherlands Organisation for Scientific Research (NWO); MRSEC [DMR 0213618]; NSF Solid State Chemistry [DMR 0705687]; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231] FX B.B. would like to thank the German Research Foundation (DFG) for a postdoctoral- and the Funds of Chemical Industry for a Liebig-scholarship. H.B.A. acknowledges the Netherlands Organisation for Scientific Research (NWO) for support. A.V. and Z.B. thank the financial support from the NSF sponsored MRSEC (DMR 0213618) and NSF Solid State Chemistry (DMR 0705687). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 35 TC 14 Z9 14 U1 2 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1566-1199 J9 ORG ELECTRON JI Org. Electron. PD NOV PY 2011 VL 12 IS 11 BP 1936 EP 1942 DI 10.1016/j.orgel.2011.08.007 PG 7 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 832TL UT WOS:000295830700029 ER PT J AU Abedrabbo, S Lahlouh, B Shet, S Fiory, AT AF Abedrabbo, S. Lahlouh, B. Shet, S. Fiory, A. T. TI Room-temperature silicon band-edge photoluminescence enhanced by spin-coated sol-gel films SO SCRIPTA MATERIALIA LA English DT Article DE Photoluminescence; Thin films; Semiconductor silicon; Sol-gel materials ID LIGHT-EMISSION; HEAT-TREATMENT; LUMINESCENCE; DEPOSITION; DIODE; LEDS AB Photoluminescence is observed at room temperature from phonon-assisted band-to-band emission in Si (1.067 eV peak) using unpatterned bulk p-type silicon wafer samples that were spin-coated with Er-doped (6 at.%) silica-gel films (0.13 mu m) and vacuum annealed; the strongest emission was obtained at similar to 700 degrees C. Comparative study of annealing behavior indicates an efficiency enhancement of two orders of magnitude. Emission from Er3+ ions in the silica film is used to gauge relative emission strengths. Mechanisms for inducing emission from silicon utilizing stresses in sol-gel films are discussed. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Abedrabbo, S.; Fiory, A. T.] New Jersey Inst Technol, Dept Phys, Newark, NJ 07901 USA. [Abedrabbo, S.; Lahlouh, B.] Univ Jordan, Dept Phys, Amman 11942, Jordan. [Shet, S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Abedrabbo, S (reprint author), New Jersey Inst Technol, Dept Phys, Newark, NJ 07901 USA. EM sxa0215@yahoo.com FU Deanship of Academic Research at the University of Jordan [1030]; Hamdi Mango Center for Scientific Research (HMCSR); New Jersey Institute of Technology; US National Renewable Energy Laboratory FX Partial support by Deanship of Academic Research at the University of Jordan, Project contract no. 1030 and Hamdi Mango Center for Scientific Research (HMCSR), the New Jersey Institute of Technology, and the US National Renewable Energy Laboratory, and encouragement and support of N.M. Ravindra is gratefully acknowledged. NR 26 TC 5 Z9 5 U1 3 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2011 VL 65 IS 9 BP 767 EP 770 DI 10.1016/j.scriptamat.2011.07.025 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 831XV UT WOS:000295765300006 ER PT J AU Zhuo, MJ Fu, EG Yan, L Wang, YQ Zhang, YY Dickerson, RM Uberuaga, BP Misra, A Nastasi, M Jia, QX AF Zhuo, M. J. Fu, E. G. Yan, L. Wang, Y. Q. Zhang, Y. Y. Dickerson, R. M. Uberuaga, B. P. Misra, A. Nastasi, M. Jia, Q. X. TI Interface-enhanced defect absorption between epitaxial anatase TiO2 film and single crystal SrTiO3 SO SCRIPTA MATERIALIA LA English DT Article DE Transmission electron microscopy (TEM); Interface structure; Ion-beam processing; Irradiation effect; Anatase TiO2 film ID ION IRRADIATION; THIN-FILMS; OPTICAL-PROPERTIES; RADIATION-DAMAGE; RUTILE; MICROSTRUCTURE; RECOVERY AB The microstructural evolution of Ne-ion-irradiated anatase TiO2/SrTiO3 films was investigated. A defect denuded layer formed in the TiO2 film near the TiO2/SrTiO3 interface after irradiation. The accumulation of defects at the TiO2/SrTiO3 interface led to the formation of a continuous interfacial amorphous layer on SrTiO3. Both observations are attributed to the interaction of defects with the interface. Present results reveal that a hetero-epitaxial interface between two different oxides can act as an effective sink to absorb irradiation-induced defects. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Zhuo, M. J.; Fu, E. G.; Yan, L.; Zhang, Y. Y.; Misra, A.; Nastasi, M.; Jia, Q. X.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Wang, Y. Q.; Dickerson, R. M.; Uberuaga, B. P.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. RP Zhuo, MJ (reprint author), Los Alamos Natl Lab, Mat Phys & Applicat Div, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM mjzhuo@lanl.gov; blas@lanl.gov; qxjia@lanl.gov RI Yan, Li/E-9152-2010; Misra, Amit/H-1087-2012; Dickerson, Robert/C-9237-2013; Jia, Q. X./C-5194-2008 FU Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [2008LANL1026]; Center for Integrated Nanotechnologies, a US DOE, Office of Basic Energy Sciences; US DOE [DE-AC52-06NA25396] FX The authors wish to acknowledge K.E. Sickafus and T.E. Mitchell for helpful discussions and thank K.E. Sickafus and J.A. Valdez for the help with preparing the TEM foils. This work was supported as part of the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under Award Number 2008LANL1026. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US DOE, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US DOE under contract DE-AC52-06NA25396. NR 25 TC 14 Z9 14 U1 0 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2011 VL 65 IS 9 BP 807 EP 810 DI 10.1016/j.scriptamat.2011.07.037 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 831XV UT WOS:000295765300016 ER PT J AU de Graaff, MA Schadt, CW Rula, K Six, J Schweitzer, JA Classen, AT AF de Graaff, Marie-Anne Schadt, Christopher W. Rula, Kelly Six, Johan Schweitzer, Jennifer A. Classen, Aimee T. TI Elevated CO2 and plant species diversity interact to slow root decomposition SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Roots; Elevated CO2; Species diversity; Litter quality; Decomposition; Carbon-13; Nitrogen mineralization ID ATMOSPHERIC CARBON-DIOXIDE; OLD-FIELD ECOSYSTEM; LITTER DECOMPOSITION; SOIL-MOISTURE; NITROGEN AVAILABILITY; WATER AVAILABILITY; GRASS-ROOTS; LEAF-LITTER; COMMUNITY; QUALITY AB Changes in plant species diversity can result in synergistic increases in decomposition rates, while elevated atmospheric CO2 can slow the decomposition rates; yet it remains unclear how diversity and changes in atmospheric CO2 may interact to alter root decomposition. To investigate how elevated CO2 interacts with changes in root-litter diversity to alter decomposition rates, we conducted a 120-day laboratory incubation. Roots from three species (Trifolium repens, Lespedeza cuneata, and Festuca pratense) grown under ambient or elevated CO2 were incubated individually or in combination in soils that were exposed to ambient or elevated CO2 for five years. Our experiment resulted in two main findings: (1) Roots from T. repens and L cuneata, both nitrogen (N) fixers, grown under elevated CO2 treatments had significantly slower decomposition rates than similar roots grown under ambient CO2 treatments; but the decomposition rate of F pratense roots (a non-N-fixing species) was similar regardless of CO2 treatment. (2) Roots of the three species grown under ambient CO2 and decomposed in combination with each other had faster decomposition rates than when they were decomposed as single species. However, roots of the three species grown under elevated CO2 had similar decomposition rates when they were incubated alone or in combination with other species. These data suggest that if elevated CO2 reduces the root decomposition rate of even a few species in the community, it may slow root decomposition of the entire plant community. (C) 2011 Elsevier Ltd. All rights reserved. C1 [de Graaff, Marie-Anne] Boise State Univ, Dept Biol Sci, Boise, ID 83725 USA. [Schadt, Christopher W.; Rula, Kelly] Oak Ridge Natl Lab, Biosci Div, Mol Microbial Ecol Grp, Oak Ridge, TN 37831 USA. [Six, Johan] Univ Calif Davis, Dept Plant Sci, Davis, CA 95616 USA. [Schweitzer, Jennifer A.; Classen, Aimee T.] Univ Tennessee Knoxville, Dept Ecol & Evolutionary Biol, Knoxville, TN USA. RP de Graaff, MA (reprint author), Boise State Univ, Dept Biol Sci, 1910 Univ Dr, Boise, ID 83725 USA. EM marie-annedegraaff@boisestate.edu RI Classen, Aimee/C-4035-2008; Schadt, Christopher/B-7143-2008 OI Classen, Aimee/0000-0002-6741-3470; Schadt, Christopher/0000-0001-8759-2448 FU U.S. Department of Energy, Office of Science, Biological and Environmental Research FX We thank David Harris, Charles Garten Jr., and Joanne Childs for assisting with chemical analyses. Thanks to Paul Kardol for assisting with root harvesting. Richard Norby and Jake Weltzin were integral in establishing the OCCAM experiment and provided logistical support. Research was sponsored by the U.S. Department of Energy, Office of Science, Biological and Environmental Research Program, and work was conducted in collaboration with Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC, for the U.S. Department of Energy. NR 56 TC 11 Z9 11 U1 2 U2 53 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD NOV PY 2011 VL 43 IS 11 BP 2347 EP 2354 DI 10.1016/j.soilbio.2011.07.006 PG 8 WC Soil Science SC Agriculture GA 831QH UT WOS:000295745700018 ER PT J AU Granier, C Bessagnet, B Bond, T D'Angiola, A van der Gon, HD Frost, GJ Heil, A Kaiser, JW Kinne, S Klimont, Z Kloster, S Lamarque, JF Liousse, C Masui, T Meleux, F Mieville, A Ohara, T Raut, JC Riahi, K Schultz, MG Smith, SJ Thompson, A van Aardenne, J van der Werf, GR van Vuuren, DP AF Granier, Claire Bessagnet, Bertrand Bond, Tami D'Angiola, Ariela van der Gon, Hugo Denier Frost, Gregory J. Heil, Angelika Kaiser, Johannes W. Kinne, Stefan Klimont, Zbigniew Kloster, Silvia Lamarque, Jean-Francois Liousse, Catherine Masui, Toshihiko Meleux, Frederik Mieville, Aude Ohara, Toshimasa Raut, Jean-Christophe Riahi, Keywan Schultz, Martin G. Smith, Steven J. Thompson, Allison van Aardenne, John van der Werf, Guido R. van Vuuren, Detlef P. TI Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period SO CLIMATIC CHANGE LA English DT Article ID SATELLITE DATA; NOX EMISSIONS; CO EMISSIONS; FOSSIL-FUEL; INVENTORY; TRENDS; AEROSOLS; MODEL; 20TH-CENTURY; ADJOINT AB Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980-2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NOx and SO2 show the best agreement for most years, although agreement does not necessarily mean that uncertainty is low. The agreement is low for BC emissions, particularly in the period prior to 2000. The best consensus is for NOx emissions for all periods and all regions, except for China, where emissions in 1980 and 1990 need to be better defined. Emissions of CO need better quantification in the USA and India for all periods; in Central Europe, the evolution of emissions during the past two decades needs to be better determined. The agreement between the different SO2 emissions datasets is rather good for the USA, but better quantification is needed elsewhere, particularly for Central Europe, India and China. The comparisons performed in this study show that the use of RCP8.5 for the extension of the ACCMIP inventory beyond 2000 is reasonable, until more global or regional estimates become available. Concerning biomass burning emissions, most inventories agree within 50-80%, depending on the year and season. The large differences between biomass burning inventories are due to differences in the estimates of burned areas from the different available products, as well as in the amount of biomass burned. C1 [Granier, Claire; D'Angiola, Ariela; Raut, Jean-Christophe] UPMC Univ Paris 06, UMR8190, CNRS INSU, LATMOS IPSL, Paris, France. [Granier, Claire; Frost, Gregory J.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Granier, Claire; Frost, Gregory J.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Granier, Claire; Kinne, Stefan; Kloster, Silvia] Max Planck Inst Meteorol, Hamburg, Germany. [Bessagnet, Bertrand; Meleux, Frederik] INERIS, Verneuil En Halatte, France. [Bond, Tami] Univ Illinois, Urbana, IL USA. [van der Gon, Hugo Denier] TNO Built Environm & Geosci, Utrecht, Netherlands. [Heil, Angelika; Schultz, Martin G.] Forschungszentrum Juelich, Julich, Germany. [Kaiser, Johannes W.] European Ctr Medium Range Weather Forecasts, Reading RG2 9AX, Berks, England. [Klimont, Zbigniew; Riahi, Keywan] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria. [Lamarque, Jean-Francois] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Liousse, Catherine; Mieville, Aude] Lab Aerologie, Toulouse, France. [Masui, Toshihiko; Ohara, Toshimasa] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan. [Smith, Steven J.; Thompson, Allison] Pacific NW Natl Lab, College Pk, MD USA. [van Aardenne, John] European Environm Agcy, Copenhagen, Denmark. [van der Werf, Guido R.] Vrije Univ Amsterdam, Amsterdam, Netherlands. [van Vuuren, Detlef P.] Netherlands Environm Assessment Agcy, Bilthoven, Netherlands. [van Vuuren, Detlef P.] Univ Utrecht, Utrecht, Netherlands. RP Granier, C (reprint author), UPMC Univ Paris 06, UMR8190, CNRS INSU, LATMOS IPSL, Paris, France. EM claire.granier@latmos.ipsl.fr RI van Vuuren, Detlef/A-4764-2009; Heil, Angelika/J-7182-2012; Klimont, Zbigniew/P-7641-2015; Raut, Jean-Christophe/G-3946-2016; van der Werf, Guido/M-8260-2016; Bessagnet, Bertrand/O-2969-2016; Riahi, Keywan/B-6426-2011; Schultz, Martin/I-9512-2012; Kaiser, Johannes/A-7057-2012; Frost, Gregory/I-1958-2013; Bond, Tami/A-1317-2013; Granier, Claire/D-5360-2013; Lamarque, Jean-Francois/L-2313-2014; Manager, CSD Publications/B-2789-2015; OI van Vuuren, Detlef/0000-0003-0398-2831; Heil, Angelika/0000-0002-8768-5027; Klimont, Zbigniew/0000-0003-2630-198X; van der Werf, Guido/0000-0001-9042-8630; Bessagnet, Bertrand/0000-0003-2062-4681; Riahi, Keywan/0000-0001-7193-3498; Schultz, Martin/0000-0003-3455-774X; Kaiser, Johannes/0000-0003-3696-9123; Bond, Tami/0000-0001-5968-8928; Granier, Claire/0000-0001-7344-7995; Lamarque, Jean-Francois/0000-0002-4225-5074; Raut, Jean-Christophe/0000-0002-3552-2437 FU MACC European Union [218793, 212095, 265148]; FP7 ACCENT European Network; National Science Foundation FX The authors greatly acknowledge the support of the MACC European Union's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no. 218793, as well as the support of the FP7 CityZen project, under Grant Agreement no. 212095 and the FP7 PEGASOS project, under Grant Agreement 265148. We also thank the FP7 ACCENT European Network, which provided funding for meetings to develop the ACCMIP emissions dataset. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in the publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. The authors would like to thank Josh Drukenbrod from the US EPA for providing the most recent details on US emissions. NR 65 TC 230 Z9 232 U1 16 U2 122 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD NOV PY 2011 VL 109 IS 1-2 SI SI BP 163 EP 190 DI 10.1007/s10584-011-0154-1 PG 28 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 852IE UT WOS:000297350200008 ER PT J AU Moniz, E AF Moniz, Ernest TI Why We Still Need Nuclear Power Making Clean Energy Safe and Affordable SO FOREIGN AFFAIRS LA English DT Article AB The world cannot let the March disaster at Japan's Fukushima power plant scare it into forgoing the benefits of nuclear energy-a cheap, reliable, and safe source of electricity. Still, writes a former U.S. undersecretary of energy, the United States does need to update its safety standards and reform its handling of nuclear waste. C1 MIT, Energy Initiat, Cambridge, MA 02139 USA. [Moniz, Ernest] US DOE, Washington, DC 20585 USA. RP Moniz, E (reprint author), MIT, Energy Initiat, Cambridge, MA 02139 USA. NR 0 TC 0 Z9 0 U1 2 U2 24 PU COUNCIL FOREIGN RELAT IONS INC PI NEW YORK PA HAROLD PRATT HOUSE, 58 E 68TH ST, NEW YORK, NY 10065 USA SN 0015-7120 J9 FOREIGN AFF JI Foreign Aff. PD NOV-DEC PY 2011 VL 90 IS 6 BP 83 EP + PG 15 WC International Relations SC International Relations GA V28WU UT WOS:000208711700008 ER PT J AU Kohl, M AF Kohl, Michael TI Elastic form factor experiments: a serial story SO HYPERFINE INTERACTIONS LA English DT Proceedings Paper CT 4th International Workshop on From Parity Violation to Hadronic Structure and More (PAVI) CY JUN 22-26, 2009 CL Bar Harbor, ME DE Nucleon; Proton; Neutron; Form factor; Elastic ID ELECTRON-PROTON SCATTERING; SQUARED 4-MOMENTUM TRANSFERS; POLARIZATION TRANSFER; MOMENTUM-TRANSFER; DEUTERON SCATTERING; CROSS-SECTIONS; NEUTRON; (GEV/C)(2); RATIO; FM-2 AB This paper provides an experimental overview of elastic nucleon form factors with a summary of current and future efforts. C1 [Kohl, Michael] Hampton Univ, Hampton, VA 23668 USA. [Kohl, Michael] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Kohl, M (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM kohlm@jlab.org NR 98 TC 1 Z9 1 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0304-3843 J9 HYPERFINE INTERACT JI Hyperfine Interact. PD NOV PY 2011 VL 201 IS 1-3 BP 1 EP 6 DI 10.1007/s10751-011-0283-y PG 6 WC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Physics, Nuclear SC Physics GA 070BG UT WOS:000313480200001 ER PT J AU Mammei, J AF Mammei, Juliette CA G0 Collaboration TI Transverse asymmetries at backward angles in G0 Preliminary results for the proton and neutron SO HYPERFINE INTERACTIONS LA English DT Proceedings Paper CT 4th International Workshop on From Parity Violation to Hadronic Structure and More (PAVI) CY JUN 22-26, 2009 CL Bar Harbor, ME DE Transverse; Single-spin asymmetry; G0; Backward angle; 2 photon exchange AB The backward angle phase of the G0 experiment has measured the beam-normal single-spin asymmetries in elastic scattering of transversely polarized electrons from the proton and made the first measurement in quasi-elastic scattering in deuterium at backward angles for Q(2) = 0.22 GeV2/c(2) and 0.63 GeV2/c(2). The measurements were made at a lab scattering angle of 108 degrees at beam energies of 362 MeV and 687 MeV respectively. Preliminary results for the proton are consistent with including pi N states in the calculation of the asymmetry in the resonance region. A preliminary estimate of the beam-normal single-spin asymmetry for the scattering from the neutron is made using a quasi-static deuterium model. C1 [Mammei, Juliette] Jefferson Lab, Newport News, VA 23606 USA. RP Mammei, J (reprint author), Jefferson Lab, Newport News, VA 23606 USA. EM crowder@jlab.org NR 6 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0304-3843 J9 HYPERFINE INTERACT JI Hyperfine Interact. PD NOV PY 2011 VL 201 IS 1-3 BP 19 EP 23 DI 10.1007/s10751-011-0286-8 PG 5 WC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Physics, Nuclear SC Physics GA 070BG UT WOS:000313480200004 ER PT J AU Michaels, R AF Michaels, R. TI The Lead Radius Experiment PREX SO HYPERFINE INTERACTIONS LA English DT Proceedings Paper CT 4th International Workshop on From Parity Violation to Hadronic Structure and More (PAVI) CY JUN 22-26, 2009 CL Bar Harbor, ME DE Mass and neutron distributions; Elastic electron scattering; Parity Violation ID ELASTIC ELECTRON-SCATTERING; EQUATION-OF-STATE; NEUTRON-STARS; PARAMETERS AB The Lead Radius Experiment PREX will run in Spring of 2010. The experiment measures the parity-violating asymmetry in the elastic scattering of polarized electrons from a lead nucleus at an energy of 1.05 GeV and a scattering angle of 5 degrees. The Z(0) boson couples mainly to neutrons, and provides a clean measurement of R-n with a projected experimental precision of +/- 1%. The measurement is a fundamental test of nuclear theory and pins down the density-dependence of the symmetry energy of neutron rich nuclear matter which has impacts on neutron star structure, heavy ion collisions, and atomic parity violation experiments. Recent developments in the experiment are described. C1 Jefferson Lab, Newport News, VA USA. RP Michaels, R (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA USA. EM rom@jlab.org NR 26 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0304-3843 J9 HYPERFINE INTERACT JI Hyperfine Interact. PD NOV PY 2011 VL 201 IS 1-3 BP 25 EP 29 DI 10.1007/s10751-011-0287-7 PG 5 WC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Physics, Nuclear SC Physics GA 070BG UT WOS:000313480200005 ER PT J AU Smith, GR AF Smith, Gregory R. TI High power cryogenic targets SO HYPERFINE INTERACTIONS LA English DT Proceedings Paper CT 4th International Workshop on From Parity Violation to Hadronic Structure and More (PAVI) CY JUN 22-26, 2009 CL Bar Harbor, ME DE Cryogenic LH2 target AB The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets. C1 Jefferson Lab, Newport News, VA 23606 USA. RP Smith, GR (reprint author), Jefferson Lab, Suite 6,12000 Jefferson Ave, Newport News, VA 23606 USA. EM smithg@jlab.org NR 2 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0304-3843 J9 HYPERFINE INTERACT JI Hyperfine Interact. PD NOV PY 2011 VL 201 IS 1-3 BP 57 EP 62 DI 10.1007/s10751-011-0292-x PG 6 WC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Physics, Nuclear SC Physics GA 070BG UT WOS:000313480200010 ER PT J AU Grames, J Hansknect, J Poelker, M Suleiman, R AF Grames, J. Hansknect, J. Poelker, M. Suleiman, R. TI Jefferson Lab injector development for next generation parity violation experiments SO HYPERFINE INTERACTIONS LA English DT Proceedings Paper CT 4th International Workshop on From Parity Violation to Hadronic Structure and More (PAVI) CY JUN 22-26, 2009 CL Bar Harbor, ME DE Parity violation; Inverted Photogun; Wien filter; Helicity reversal; Position feedback; Pockels cell AB To meet the challenging requirements of next generation parity violation experiments at Jefferson Lab, the Center for Injectors and Sources is working on improving the parity-quality of the electron beam. These improvements include new electron photogun design and fast helicity reversal of the Pockels Cell. We proposed and designed a new scheme for slow helicity reversal using a Wien Filter and two Solenoids. This slow reversal complements the insertable half-wave plate reversal of the laser-light polarization by reversing the electron beam polarization at the injector while maintaining a constant accelerator configuration. For position feedback, fast air-core magnets located in the injector were commissioned and a new scheme for charge feedback is planned. C1 [Grames, J.; Hansknect, J.; Poelker, M.; Suleiman, R.] Jefferson Lab, 12050 Jefferson Ave,Suite 500, Newport News, VA 23606 USA. RP Suleiman, R (reprint author), Jefferson Lab, 12050 Jefferson Ave,Suite 500, Newport News, VA 23606 USA. EM suleiman@jlab.org FU U. S. DOE [DEAC05- 84ER40150] FX Authored by Jefferson Science Associates under U. S. DOE Contract No. DEAC05- 84ER40150. NR 4 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0304-3843 J9 HYPERFINE INTERACT JI Hyperfine Interact. PD NOV PY 2011 VL 201 IS 1-3 BP 69 EP 71 DI 10.1007/s10751-011-0294-8 PG 3 WC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Physics, Nuclear SC Physics GA 070BG UT WOS:000313480200012 ER PT J AU Dunford, RW Holt, RJ AF Dunford, R. W. Holt, R. J. TI Parity nonconservation in hydrogen SO HYPERFINE INTERACTIONS LA English DT Proceedings Paper CT 4th International Workshop on From Parity Violation to Hadronic Structure and More (PAVI) CY JUN 22-26, 2009 CL Bar Harbor, ME DE Atomic parity violation; Weak neutral currents; Metastable hydrogen ID ATOMIC THALLIUM; SCATTERING; VIOLATION; PHYSICS AB We discuss the prospects for parity violation experiments in atomic hydrogen and deuterium to contribute to testing the Standard Model (SM). We find that, if parity experiments in hydrogen can be done, they remain highly desirable because there is negligible atomic-physics uncertainty and low energy tests of weak neutral current interactions are needed to probe for new physics beyond the SM. Analysis of a generic APV experiment in deuterium indicates that a 0.3% measurement of C-1D requires development of a slow (77K) metastable beam of approximate to 5 x 10(14)D(2S)s(-1) per hyperfine component. The advent of UV radiation from free electron laser (FEL) technology could allow production of such a beam. C1 [Dunford, R. W.; Holt, R. J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Dunford, RW (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dunford@anl.gov RI Holt, Roy/E-5803-2011 NR 20 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0304-3843 J9 HYPERFINE INTERACT JI Hyperfine Interact. PD NOV PY 2011 VL 200 IS 1-3 BP 45 EP 49 DI 10.1007/s10751-011-0278-8 PG 5 WC Physics, Atomic, Molecular & Chemical; Physics, Condensed Matter; Physics, Nuclear SC Physics GA 069FT UT WOS:000313421400011 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hansel, S Hoch, M Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Krammer, M Liko, D Mikulec, I Pernicka, M Rahbaran, B Rohringer, H Schofbeck, R Strauss, J Taurok, A Teischinger, F Wagner, P Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Suarez Gonzalez, J Bansal, S Benucci, L De Wolf, EA Janssen, X Maes, T Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Blekman, F Blyweert, S D'Hondt, J Devroede, O Gonzalez Suarez, R Kalogeropoulos, A Maes, M Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Charaf, O Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hammad, GH Hreus, T Marage, PE Raval, A Thomas, L Vander Velde, C Vanlaer, P Adler, V Cimmino, A Costantini, S Grunewald, M Klein, B Lellouch, J Marinov, A Mccartin, J Ryckbosch, D Thyssen, F Tytgat, M Vanelderen, L Verwilligen, P Walsh, S Zaganidis, N Basegmez, S Bruno, G Caudron, J Ceard, L Gil, EC De Jeneret, JD Delaere, C Favart, D Giammanco, A Gregoire, G Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Ovyn, S Pagano, D Pin, A Piotrzkowski, K Schul, N Beliy, N Caebergs, T Daubie, E Alves, GA Brito, L Damiao, DD Pol, ME Souza, MHG Alda, WL Carvalho, W Da Costa, EM Martins, CD De Souza, SF Mundim, L Nogima, H Oguri, V Da Silva, WLP Santoro, A Do Amaral, SMS Sznajder, A Bernardes, CA Dias, FA Costa, TD Tomei, TRFP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Darmenov, N Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Dimitrov, A Hadjiiska, R Karadzhinova, A Kozhuharov, V Litov, L Mateev, M Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Zang, J Zhang, Z Ban, Y Guo, S Guo, Y Li, W Mao, Y Qian, SJ Teng, H Zhu, B Zou, W Cabrera, A Moreno, B Rios, AAO Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Lelas, K Plestina, R Polic, D Puljak, I Antunovic, Z Dzelalija, M Brigljevic, V Duric, S Kadija, K Luetic, J Morovic, S Attikis, A Galanti, M Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Kamel, AE Khalil, S Mahmoud, MA Radi, A Hektor, A Kadastik, M Muntel, M Raidal, M Rebane, L Tiko, A Azzolini, V Eerola, P Fedi, G Czellar, S Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Karjalainen, A Korpela, A Tuuva, T Sillou, D Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Gentit, FX Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Marionneau, M Millischer, L Rander, J Rosowsky, A Shreyber, I Titov, M Verrecchia, P Baffioni, S Beaudette, F Beaudette, L Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Dahms, T Dobrzynski, L Elgammal, S de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Thiebaux, C Wyslouch, B Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Greder, S Juillot, P Karim, M Le Bihan, AC Mikami, Y Van Hove, P Fassi, F Mercier, D Baty, C Beauceron, S Beaupere, N Bedjidian, M Bondu, O Boudoul, G Boumediene, D Brun, H Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Ille, B Kurca, T Le Grand, T Lethuillier, M Mirabito, L Perries, S Sordini, V Tosi, S Tschudi, Y Verdier, P Lomidze, D Anagnostou, G Beranek, S Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Mohr, N Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Weber, M Wittmer, B Ata, M Dietz-Laursonn, E Erdmann, M Hebbeker, T Heidemann, C Hinzmann, A Hoepfner, K Klimkovich, T Klingebiel, D Kreuzer, P Lanske, D Lingemann, J Magass, C Merschmeyer, M Meyer, A Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Bontenackels, M Davids, M Duda, M Flugge, G Geenen, H Giffels, M Ahmad, WA Heydhausen, D Hoehle, F Kargoll, B Kress, T Kuessel, Y Linn, A Nowack, A Perchalla, L Pooth, O Rennefeld, J Sauerland, P Stahl, A Tornier, D Zoeller, MH Martin, MA Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Cakir, A Campbell, A Castro, E Dammann, D Eckerlin, G Eckstein, D Flossdorf, A Flucke, G Geiser, A Hauk, J Jung, H Kasemann, M Katkov, I Katsas, P Kleinwort, C Kluge, H Knutsson, A Kramer, M Krucker, D Kuznetsova, E Lange, W Lohmann, W Mankel, R Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Olzem, J Petrukhin, A Pitzl, D Raspereza, A Rosin, M Schmidt, R Schoerner-Sadenius, T Sen, N Spiridonov, A Stein, M Tomaszewska, J Walsh, R Wissing, C Autermann, C Blobel, V Bobrovskyi, S Draeger, J Enderle, H Gebbert, U Gorner, M Hermanns, T Kaschube, K Kaussen, G Kirschenmann, H Klanner, R Lange, J Mura, B Naumann-Emme, S Nowak, F Pietsch, N Sander, C Schettler, H Schleper, P Schlieckau, E Schroder, M Schum, T Stadie, H Steinbruck, G Thomsen, J Barth, C Bauer, J Berger, J Buege, V Chwalek, T De Boer, W Dierlamm, A Dirkes, G Feindt, M Gruschke, J Hackstein, C Hartmann, F Heinrich, M Held, H Hoffmann, KH Honc, S Komaragiri, JR Kuhr, T Martschei, D Mueller, S Muller, T Niegel, M Oberst, O Oehler, A Ott, J Peiffer, T Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Renz, M Saout, C Scheurer, A Schieferdecker, P Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Wagner-Kuhr, J Weiler, T Zeise, M Zhukov, V Ziebarth, EB Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Ntomari, E Petrakou, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Stiliaris, E Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Triantis, FA Aranyi, A Bencze, G Boldizsar, L Hajdu, C Hidas, P Horvath, D Kapusi, A Krajczar, K Sikler, F Veres, GI Vesztergombi, G Beni, N Molnar, J Palinkas, J Szillasi, Z Veszpremi, V Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Jindal, M Kaur, M Kohli, JM Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, AP Singh, J Singh, SP Ahuja, S Choudhary, BC Gupta, P Kumar, A Kumar, A Naimuddin, M Ranjan, K Shivpuri, RK Banerjee, S Bhattacharya, S Dutta, S Gomber, B Jain, S Jain, S Khurana, R Sarkar, S Choudhury, RK Dutta, D Kailas, S Kumar, V Mehta, P Mohanty, AK Pant, LM Shukla, P Aziz, T Guchait, M Gurtu, A Maity, M Majumder, D Majumder, G Mazumdar, K Mohanty, GB Saha, A Sudhakar, K Wickramage, N Banerjee, S Dugad, S Mondal, NK Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Hesari, H Jafari, A Khakzad, M Mohammadi, A Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Manna, N Marangelli, B My, S Nuzzo, S Pacifico, N Pierro, GA Pompili, A Pugliese, G Romano, F Roselli, G Selvaggi, G Silvestris, L Trentadue, R Tupputia, S Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Giunta, M Grandi, C Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, G Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Benaglia, A De Guio, F Di Matteo, L Gennai, S Ghezzi, A Malvezzi, S Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Buontempo, S Montoya, CAC Cavallo, N De Cosa, A Fabozzi, F Iorio, AOM Lista, L Merola, M Paolucci, P Azzi, P Bacchetta, N Bellan, P Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Dosselli, U Fanzago, F Gasparini, F Gasparini, U Gozzelino, A Lacaprara, S Lazzizzera, I Margoni, N Mazzucato, M Meneguzzo, AT Nespolo, M Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Baesso, P Berzano, U Ratti, SP Riccardi, C Torre, P Vitulo, P Viviani, C Biasini, M Bilei, GM Caponeri, B Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Romeo, F Santocchia, A Taroni, S Valdata, M Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Palmonari, F Segneri, G Serban, AT Spagnolo, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Di Marco, E Diemoz, M Franci, D Grassi, M Longo, E Meridiani, P Nourbakhsh, S Organtini, G Pandolfi, F Paramatti, R Rahatlou, S Rovelli, C Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Botta, C Cartiglia, N Castello, R Costa, M Demaria, N Graziano, A Mariotti, C Marone, M Maselli, S Migliore, E Mila, G Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Sola, V Solano, A Staiano, A Pereira, AV Belforte, S Cossutti, F Della Ricca, G Gobbo, B Montanino, D Penzo, A Heo, SG Nam, SK Chang, S Chung, J Kim, DH Kim, GN Kim, JE Kong, DJ Park, H Ro, SR Son, DC Son, T Kim, Z Kim, JY Song, S Choi, S Hong, B Jo, M Kim, H Kim, JH Kim, TJ Lee, KS Moon, DH Park, SK Sim, KS Choi, M Kang, S Kim, H Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kim, MS Lee, B Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Martisiute, D Petrov, P Polujanskas, M Sabonis, T Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Villalba, RM Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Tam, J Butler, PH Doesburg, R Silverwood, H Ahmad, M Ahmed, I Asghar, MI Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Brona, G Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Almeida, N Bargassa, P David, A Faccioli, P Parracho, PGF Gallinaro, M Musella, P Nayak, A Pela, J Ribeiro, PQ Seixas, J Varela, J Afanasiev, S Bunin, P Golutvin, I Kamenev, A Karjavin, V Konoplyanikov, V Kozlov, G Lanev, A Moisenz, P Palichik, V Perelygin, V Shmatov, S Smirnov, V Volodko, A Zarubin, A Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Toropin, A Troitsky, S Epshteyn, V Gavrilov, V Kaftanov, V Kossov, M Krokhotin, A Lychkovskaya, N Popov, V Safronov, G Semenov, S Stolin, V Vlasov, E Zhokin, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Kodolova, O Lokhtin, I Markina, A Obraztsov, S Perfilov, M Petrushanko, S Sarycheva, L Savrin, V Snigirev, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Rusakov, SV Vinogradov, A Azhgirey, I Bayshev, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Korablev, A Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Krpic, D Milosevic, J Aguilar-Benitez, M Alcaraz Maestre, J Arce, P Battilana, C Calvo, E Cepeda, M Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Pardos, CD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C Codispoti, G de Troconiz, JF Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Garcia, JMV Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Jorda, C Pardo, PL Virto, AL Marco, J Marco, R Rivero, MC Matorras, F Sanchez, FJM Gomez, JP Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Baillon, P Ball, AH Barney, D Bell, AJ Benedetti, D Bernet, C Bialas, W Bloch, P Bocci, A Bolognesi, S Bona, M Breuker, H Breuker, K Camporesi, T Cerminara, G Christiansen, T Perez, JAC Cure, B D'Enterria, D De Roeck, A Di Guida, S Dupont-Sagorin, N Elliott-Peisert, A Frisch, B Funk, W Gaddi, A Georgiou, G Gerwig, H Gigi, D Gill, K Giordano, D Glege, F Garrido, RGR Gouzevitch, M Govoni, P Gowdy, S Guiducci, L Hansen, M Hartl, C Harvey, J Hegeman, J Hegner, B Hoffmann, HF Honma, A Innocente, V Janot, P Kaadze, K Karavakis, E Lecoq, P Lourenco, C Maki, T Malberti, M Malgeri, L Mannelli, M Masetti, L Maurisset, A Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Nesvold, E Nguyen, M Orimoto, T Orsini, L Cortezon, EP Perez, E Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Polese, G Racz, A Reece, W Antunes, JR Rolandi, G Rommerskirchen, T Rovere, M Sakulin, H Schafer, C Schwick, C Segoni, I Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiropulu, M Stoye, M Tropea, P Tsirou, A Vichoudis, P Voutilainen, M Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Starodumov, A Bani, L Bortignon, P Caminada, L Casal, B Chanon, N Chen, Z Cittolin, S Dissertori, G Dittmar, M Eugster, J Freudenreich, K Grab, C Hintz, W Lecomte, P Lustermann, W Marchica, C del Arbol, PMR Milenovic, P Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pape, L Pauss, F Punz, T Rizzi, A Ronga, FJ Rossini, M Sala, L Sanchez, AK Sawley, MC Stieger, B Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, M Wehrli, L Weng, J Aguilo, E Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Mejias, BM Otiougova, P Robmann, P Schmidt, A Snoek, H Chang, YH Chen, KH Kuo, CM Li, SW Lin, W Liu, ZK Lu, YJ Mekterovic, D Volpe, R Wu, JH Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Shiu, JG Tzeng, YM Wan, X Wang, M Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Uzun, D Vergili, LN Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Yildirim, E Zeyrek, M Deliomeroglu, M Demir, D Gulmez, E Isildak, B Kaya, M Kaya, O Ozbek, M Ozkorucuklu, S Sonmez, N Levchuk, L Bostock, F Brooke, JJ Cheng, TL Clement, E Cussans, D Frazier, R Goldstein, J Grimes, M Hartley, D Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Camanzi, B Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Worm, SD Bainbridge, R Ball, G Ballin, J Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Lyons, L MacEvoy, BC Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rompotis, N Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Tapper, A Tourneur, S Acosta, MV Virdee, T Wakefield, S Wardle, N Wardrope, D Whyntie, T Barrett, M Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leslie, D Martin, W Reid, ID Teodorescu, L Hatakeyama, K Liu, H Henderson, C Bose, T Jarrin, EC Fantasia, C Heister, A St John, J Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Avetisyan, A Bhattacharya, S Chou, JP Cutts, D Ferapontov, A Heintz, U Jabeen, S Kukartsev, G Landsberg, G Luk, M Narain, M Nguyen, D Segala, M Sinthuprasith, T Speer, T Tsang, KV Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Cox, PT Dolen, J Erbacher, R Friis, E Ko, W Kopecky, A Lander, R Liu, H Maruyama, S Miceli, T Nikolic, M Pellett, D Robles, J Rutherford, B Salur, S Schwarz, T Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Veelken, C Andreev, V Arisaka, K Cline, D Cousins, R Deisher, A Duris, J Erhan, S Farrell, C Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Tucker, J Valuev, V Babb, J Chandra, A Clare, R Ellison, J Gary, JW Giordano, F Hanson, G Jeng, GY Kao, SC Liu, F Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Shen, BC Stringer, R Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Mangano, B Padhi, S Palmer, C Petrucciani, G Pi, H Pieri, M Ranieri, R Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lowette, S Mccoll, N Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W Vlimant, JR Apresyan, A Bornheim, A Bunn, J Chen, Y Gataullin, M Ma, Y Mott, A Newman, HB Rogan, C Shin, K Timciuc, V Traczyk, P Veverka, J Wilkinson, R Yang, Y Zhu, RY Akgun, B Carroll, R Ferguson, T Iiyama, Y Jang, DW Jun, SY Liu, YF Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Dinardo, ME Drell, BR Edelmaier, CJ Ford, WT Gaz, A Heyburn, B Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Zang, SL Agostino, L Alexander, J Chatterjee, A Eggert, N Gibbons, LK Heltsley, B Henriksson, K Hopkins, W Khukhunaishvili, A Kreis, B Liu, Y Kaufman, GN Patterson, JR Puigh, D Ryd, A Saelim, M Salvati, E Shi, X Sun, W Teo, WD Thom, J Thompson, J Vaughan, J Weng, Y Winstrom, L Wittich, P Biselli, A Cirino, G Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Atac, M Bakken, JA Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Borcherding, F Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Cooper, W Eartly, DP Elvira, VD Esen, S Fisk, I Freeman, J Gao, Y Gottschalk, E Green, D Gunthoti, K Gutsche, O Hanlon, J Harris, RM Hirschauer, J Hooberman, B Jensen, H Johnson, M Joshi, U Khatiwada, R Klima, B Kousouris, K Kunori, S Kwan, S Leonidopoulos, C Limon, P Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Mason, D McBride, P Miao, T Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Pivarski, J Pordes, R Prokofyev, O Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Mitselmakher, G Muniz, L Prescott, C Remington, R Rinkevicius, A Schmitt, M Scurlock, B Sellers, P Skhirtladze, N Snowball, M Wang, D Yelton, J Zakaria, M Gaultney, V Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Quertenmont, L Sekmen, S Veeraraghavan, V Baarmand, MM Dorney, B Guragain, S Hohlmann, M Kalakhety, H Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Callner, J Cavanaugh, R Dragoiu, C Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kunde, GJ Lacroix, F Malek, M O'Brien, C Silkworth, C Silvestre, C Smoron, A Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Duru, F Lae, CK McCliment, E Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Olson, J Onel, Y Ozok, F Sen, S Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bonato, A Eskew, C Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Tran, NV Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Iii, RPK Murray, M Noonan, D Sanders, S Wood, JS Zhukova, V Barfuss, AF Bolton, T Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Wan, Z Gronberg, J Lange, D Wright, D Baden, A Boutemeur, M Eno, SC Ferencek, D Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Lu, Y Mignerey, AC Rossato, K Rumerio, P Santanastasio, F Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Alver, B Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Everaerts, P Ceballos, GG Goncharov, M Hahn, KA Harris, P Kim, Y Klute, M Lee, YJ Li, W Loizides, C Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Stockli, F Sumorok, K Sung, K Velicanu, D Wenger, EA Wolf, R Xie, S Yang, M Yilmaz, Y Yoon, AS Zanetti, M Cooper, SI Cushman, P Dahmes, B De Benedetti, A Franzoni, G Gude, A Haupt, J Klapoetke, K Kubota, Y Mans, J Pastika, N Rekovic, V Rusack, R Sasseville, M Singovsky, A Tambe, N Cremaldi, LM Godang, R Kroeger, R Perera, L Rahmat, R Sanders, DA Summers, D Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Jindal, P Keller, J Kelly, T Kravchenko, I Lazo-Flores, J Malbouisson, H Malik, S Snow, GR Baur, U Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Shipkowski, SP Smith, K Alverson, G Barberis, E Baumgartel, D Boeriu, O Chasco, M Reucroft, S Swain, J Trocino, D Wood, D Zhang, J Anastassov, A Kubik, A Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Brinkerhoff, A Hildreth, M Jessop, C Karmgard, DJ Kolb, J Kolberg, T Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Ruchti, R Slaunwhite, J Valls, N Wayne, M Ziegler, J Bylsma, B Durkin, LS Gu, J Hill, C Killewald, P Kotov, K Ling, TY Rodenburg, M Vuosalo, C Williams, G Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hebda, P Hunt, A Laird, E Pegna, DL Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Safdi, B Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatserklyaniy, A Alagoz, E Barnes, VE Bolla, G Borrello, L Bortoletto, D De Mattia, M Everett, A Garfinkel, AF Gutay, L Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Liu, C Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Yoo, HD Zablocki, J Zheng, Y Parashar, N Adair, A Boulahouache, C Ecklund, KM Geurts, FJM Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R de Barbaro, P Demina, R Eshaq, Y Flacher, H Garcia-Bellido, A Goldenzweig, P Gotra, Y Han, J Harel, A Miner, DC Orbaker, D Petrillo, G Sakumoto, W Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Atramentov, O Barker, A Duggan, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Hits, D Lath, A Panwalkar, S Patel, R Richards, A Rose, K Schnetzer, S Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Gurrola, A Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Safonov, A Sengupta, S Suarez, I Tatarinov, A Toback, D Weinberger, M Akchurin, N Bardak, C Damgov, J Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Mane, P Roh, Y Sill, A Volobouev, I Wigmans, R Yazgan, E Appelt, E Brownson, E Engh, D Florez, C Gabella, W Issah, M Johns, W Kurt, P Maguire, C Melo, A Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Yohay, R Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Mattson, M Milstene, C Sakharov, A Anderson, M Bachtis, M Belknap, D Bellinger, JN Carlsmith, D Dasu, S Efron, J Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Loveless, R Mohapatra, A Ojalvo, I Reeder, D Ross, I Savin, A Smith, WH Swanson, J Weinberg, M AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Ero, J. Fabjan, C. Friedl, M. Fruhwirth, R. Ghete, V. M. Hammer, J. Hansel, S. Hoch, M. Hormann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Krammer, M. Liko, D. Mikulec, I. Pernicka, M. Rahbaran, B. Rohringer, H. Schofbeck, R. Strauss, J. Taurok, A. Teischinger, F. Wagner, P. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. E. Mossolov, V. Shumeiko, N. Suarez Gonzalez, J. Bansal, S. Benucci, L. De Wolf, E. A. Janssen, X. Maes, T. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Blekman, F. Blyweert, S. D'Hondt, J. Devroede, O. Gonzalez Suarez, R. Kalogeropoulos, A. Maes, M. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Charaf, O. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hammad, G. H. Hreus, T. Marage, P. E. Raval, A. Thomas, L. Vander Velde, C. Vanlaer, P. Adler, V. Cimmino, A. Costantini, S. Grunewald, M. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Ryckbosch, D. Thyssen, F. Tytgat, M. Vanelderen, L. Verwilligen, P. Walsh, S. Zaganidis, N. Basegmez, S. Bruno, G. Caudron, J. Ceard, L. Cortina Gil, E. De Jeneret, J. D. Delaere, C. Favart, D. Giammanco, A. Gregoire, G. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Ovyn, S. Pagano, D. Pin, A. Piotrzkowski, K. Schul, N. Beliy, N. Caebergs, T. Daubie, E. Alves, G. A. Brito, L. Damiao, D. De Jesus Pol, M. E. Souza, M. H. G. Alda, W. L. Carvalho, W. Da Costa, E. M. De Oliveira Martins, C. Fonseca De Souza, S. Mundim, L. Nogima, H. Oguri, V. Da Silva, W. L. Prado Santoro, A. Do Amaral, S. M. S. Sznajder, A. Bernardes, C. A. Dias, F. A. Costa, T. Dos Anjos Tomei, T. R. Fernandez Perez Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Darmenov, N. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Dimitrov, A. Hadjiiska, R. Karadzhinova, A. Kozhuharov, V. Litov, L. Mateev, M. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Zang, J. Zhang, Z. Ban, Y. Guo, S. Guo, Y. Li, W. Mao, Y. Qian, S. J. Teng, H. Zhu, B. Zou, W. Cabrera, A. Moreno, B. Gomez Rios, A. A. Ocampo Oliveros, A. F. Osorio Sanabria, J. C. Godinovic, N. Lelas, D. Lelas, K. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Dzelalija, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Morovic, S. Attikis, A. Galanti, M. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M. Assran, Y. Kamel, A. Ellithi Khalil, S. Mahmoud, M. A. Radi, A. Hektor, A. Kadastik, M. Muntel, M. Raidal, M. Rebane, L. Tiko, A. Azzolini, V. Eerola, P. Fedi, G. Czellar, S. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Karjalainen, A. Korpela, A. Tuuva, T. Sillou, D. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Gentit, F. X. Givernaud, A. Gras, P. de Monchenault, G. H. Jarry, P. Locci, E. Malcles, J. Marionneau, M. Millischer, L. Rander, J. Rosowsky, A. Shreyber, I. Titov, M. Verrecchia, P. Baffioni, S. Beaudette, F. Beaudette, L. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Dahms, T. Dobrzynski, L. Elgammal, S. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Thiebaux, C. Wyslouch, B. Zabi, A. Agram, J. L. Andrea, J. Bloch, D. Bodin, D. Brom, J. M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. C. Gele, D. Goerlach, U. Greder, S. Juillot, P. Karim, M. Le Bihan, A. C. Mikami, Y. Van Hove, P. Fassi, F. Mercier, D. Baty, C. Beauceron, S. Beaupere, N. Bedjidian, M. Bondu, O. Boudoul, G. Boumediene, D. Brun, H. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Ille, B. Kurca, T. Le Grand, T. Lethuillier, M. Mirabito, L. Perries, S. Sordini, V. Tosi, S. Tschudi, Y. Verdier, P. Lomidze, D. Anagnostou, G. Beranek, S. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Mohr, N. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Weber, M. Wittmer, B. Ata, M. Dietz-Laursonn, E. Erdmann, M. Hebbeker, T. Heidemann, C. Hinzmann, A. Hoepfner, K. Klimkovich, T. Klingebiel, D. Kreuzer, P. Lanske, D. Lingemann, J. Magass, C. Merschmeyer, M. Meyer, A. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Bontenackels, M. Davids, M. Duda, M. Flugge, G. Geenen, H. Giffels, M. Ahmad, W. Haj Heydhausen, D. Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Linn, A. Nowack, A. Perchalla, L. Pooth, O. Rennefeld, J. Sauerland, P. Stahl, A. Tornier, D. Zoeller, M. H. Martin, M. Aldaya Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Cakir, A. Campbell, A. Castro, E. Dammann, D. Eckerlin, G. Eckstein, D. Flossdorf, A. Flucke, G. Geiser, A. Hauk, J. Jung, H. Kasemann, M. Katkov, I. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kramer, M. Krucker, D. Kuznetsova, E. Lange, W. Lohmann, W. Mankel, R. Marienfeld, M. Melzer-Pellmann, I. A. Meyer, A. B. Mnich, J. Mussgiller, A. Olzem, J. Petrukhin, A. Pitzl, D. Raspereza, A. Rosin, M. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Spiridonov, A. Stein, M. Tomaszewska, J. Walsh, R. Wissing, C. Autermann, C. Blobel, V. Bobrovskyi, S. Draeger, J. Enderle, H. Gebbert, U. Gorner, M. Hermanns, T. Kaschube, K. Kaussen, G. Kirschenmann, H. Klanner, R. Lange, J. Mura, B. Naumann-Emme, S. Nowak, F. Pietsch, N. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schroder, M. Schum, T. Stadie, H. Steinbruck, G. Thomsen, J. Barth, C. Bauer, J. Berger, J. Buege, V. Chwalek, T. De Boer, W. Dierlamm, A. Dirkes, G. Feindt, M. Gruschke, J. Hackstein, C. Hartmann, F. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Komaragiri, J. R. Kuhr, T. Martschei, D. Mueller, S. Muller, T. Niegel, M. Oberst, O. Oehler, A. Ott, J. Peiffer, T. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Renz, M. Saout, C. Scheurer, A. Schieferdecker, P. Schilling, F. P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Wagner-Kuhr, J. Weiler, T. Zeise, M. Zhukov, V. Ziebarth, E. B. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Ntomari, E. Petrakou, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Stiliaris, E. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Triantis, F. A. Aranyi, A. Bencze, G. Boldizsar, L. Hajdu, C. Hidas, P. Horvath, D. Kapusi, A. Krajczar, K. Sikler, F. Veres, G. I. Vesztergombi, G. Beni, N. Molnar, J. Palinkas, J. Szillasi, Z. Veszpremi, V. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Jindal, M. Kaur, M. Kohli, J. M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, A. P. Singh, J. Singh, S. P. Ahuja, S. Choudhary, B. C. Gupta, P. Kumar, A. Kumar, A. Naimuddin, M. Ranjan, K. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Dutta, S. Gomber, B. Jain, S. Jain, S. Khurana, R. Sarkar, S. Choudhury, R. K. Dutta, D. Kailas, S. Kumar, V. Mehta, P. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Guchait, M. Gurtu, A. Maity, M. Majumder, D. Majumder, G. Mazumdar, K. Mohanty, G. B. Saha, A. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Mondal, N. K. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Hesari, H. Jafari, A. Khakzad, M. Mohammadi, A. Najafabadi, M. Mohammadi S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Colaleo, A. Creanza, D. De Filippisa, N. De Palma, M. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Manna, N. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pierro, G. A. Pompili, A. Pugliese, G. Romano, F. Roselli, G. Selvaggi, G. Silvestris, L. Trentadue, R. Tupputia, S. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Giunta, M. Grandi, C. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Benaglia, A. De Guio, F. Di Matteo, L. Gennai, S. Ghezzi, A. Malvezzi, S. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Buontempo, S. Montoya, C. A. Carrillo Cavallo, N. De Cosa, A. Fabozzi, F. Iorio, A. O. M. Lista, L. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Dosselli, U. Fanzago, F. Gasparini, F. Gasparini, U. Gozzelino, A. Lacaprara, S. Lazzizzera, I. Margoni, M. Mazzucato, M. Meneguzzo, A. T. Nespolo, M Perrozzi, L Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Baesso, P. Berzano, U. Ratti, S. P. Riccardi, C. Torre, P. Vitulo, P. Viviani, C. Biasini, M. Bilei, G. M. Caponeri, B. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Santocchia, A. Taroni, S. Valdata, M. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Palmonari, F. Segneri, G. Serban, A. T. Spagnolo, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Di Marco, E. Diemoz, M. Franci, D. Grassi, M. Longo, E. Meridiani, P. Nourbakhsh, S. Organtini, G. Pandolfi, F. Paramatti, R. Rahatlou, S. Rovelli, C. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Botta, C. Cartiglia, N Castello, R. Costa, M. Demaria, N. Graziano, A. Mariotti, C. Marone, M. Maselli, S. Migliore, E. Mila, G. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Sola, V. Solano, A. Staiano, A. Pereira, A. Vilela Belforte, S. Cossutti, F. Della Ricca, G. Gobbo, B. Montanino, D. Penzo, A. Heo, S. G. Nam, S. K. Chang, S. Chung, J. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Park, H. Ro, S. R. Son, D. C. Son, T. Kim, Zero Kim, J. Y. Song, S. Choi, S. Hong, B. Jo, M. Kim, H. Kim, J. H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Sim, K. S. Choi, M. Kang, S. Kim, H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Martisiute, D. Petrov, P. Polujanskas, M. Sabonis, T. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Villalba, R. Magana Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Moreno, S. C. Valencia, F. V. Ibarguen, H. A. Salazar Linares, E. Casimiro Pineda, A. M. Reyes-Santos, M. A. Krofcheck, D. Tam, J. Butler, P. H. Doesburg, R. Silverwood, H. Ahmad, M. Ahmed, I. Asghar, M. I. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Brona, G. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Almeida, N. Bargassa, P. David, A. Faccioli, P. Parracho, P. G. Ferreira Gallinaro, M. Musella, P. Nayak, A. Pela, J. Ribeiro, P. Q. Seixas, J. Varela, J. Afanasiev, S. Bunin, P. Golutvin, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Kozlov, G. Lanev, A. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Toropin, A. Troitsky, S. Epshteyn, V. Gavrilov, V. Kaftanov, V. Kossov, M. Krokhotin, A. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Stolin, V. Vlasov, E. Zhokin, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Perfilov, M. Petrushanko, S. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Korablev, A. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cepeda, M. Cerrada, M. Llatas, M. Chamizo Colino, N. De La Cruz, B. Peris, A. Delgado Pardos, C. Diez Vazquez, D. Dominguez Bedoya, C. Fernandez Ramos, J. P. Fernandez Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Lopez, O. Gonzalez Lopez, S. Goy Hernandez, J. M. Josa, M. I. Merino, G. Pelayo, J. Puerta Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Cuevas, J. Menendez, J. Fernandez Folgueras, S. Caballero, I. Gonzalez Iglesias, L. Lloret J. M. Vizan Cifuentes, J. A. Brochero Cabrillo, I. J. Calderon, A. Chuang, S. H. Campderros, J. Duarte Felcini, M. Fernandez, M. Gomez, G. Sanchez, J. Gonzalez Jorda, C. Pardo, P. Lobelle Virto, A. Lopez Marco, J. Marco, R. Rivero, C. Martinez Matorras, F. Sanchez, F. J. Munoz Gomez, J. Piedra Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Sanudo, M. Sobron Vila, I. Cortabitarte, R. Vilar Abbaneo, D. Auffray, E. Auzinger, G. Baillon, P. Ball, A. H. Barney, D. Bell, A. J. Benedetti, D. Bernet, C. Bialas, W. Bloch, P. Bocci, A. Bolognesi, S. Bona, M. Breuker, H. Breuker, K. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Cure, B. D'Enterria, D. De Roeck, A. Di Guida, S. Dupont-Sagorin, N. Elliott-Peisert, A. Frisch, B. Funk, W. Gaddi, A. Georgiou, G. Gerwig, H. Gigi, D. Gill, K. Giordano, D. Glege, F. Garrido, R. Gomez-Reino Gouzevitch, M. Govoni, P. Gowdy, S. Guiducci, L. Hansen, M. Hartl, C. Harvey, J. Hegeman, J. Hegner, B. Hoffmann, H. F. Honma, A. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Lecoq, P. Lourenco, C. Maki, T. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Maurisset, A. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Nesvold, E. Nguyen, M. Orimoto, T. Orsini, L. Cortezon, E. Palencia Perez, E. Petrilli, A. Pfeiffer, A. Pierini, M. Pimia, M. Piparo, D. Polese, G. Racz, A. Reece, W. Antunes, J. Rodrigues Rolandi, G. Rommerskirchen, T. Rovere, M. Sakulin, H. Schafer, C. Schwick, C. Segoni, I. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiropulu, M. Stoye, M. Tropea, P. Tsirou, A. Vichoudis, P. Voutilainen, M. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Konig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Starodumov, A. Bani, L. Bortignon, P. Caminada, L. Casal, B. Chanon, N. Chen, Z. Cittolin, S. Dissertori, G. Dittmar, M. Eugster, J. Freudenreich, K. Grab, C. Hintz, W. Lecomte, P. Lustermann, W. Marchica, C. del Arbol, P. Martinez Ruiz Milenovic, P. Moortgat, F. Nageli, C. Nef, P. Nessi-Tedaldi, F. Pape, L. Pauss, F. Punz, T. Rizzi, A. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Sawley, M. C. Stieger, B. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, M. Wehrli, L. Weng, J. Aguilo, E. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Mejias, B. Millan Otiougova, P. Robmann, P. Schmidt, A. Snoek, H. Chang, Y. H. Chen, K. H. Kuo, C. M. Li, S. W. Lin, W. Liu, Z. K. Lu, Y. J. Mekterovic, D. Volpe, R. Wu, J. H. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Hou, W.-S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R.-S. Shiu, J. G. Tzeng, Y. M. Wan, X. Wang, M. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Uzun, D. Vergili, L. N. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Yildirim, E. Zeyrek, M. Deliomeroglu, M. Demir, D. Guelmez, E. Isildak, B. Kaya, M. Kaya, O. Oezbek, M. Ozkorucuklu, S. Sonmez, N. Levchuk, L. Bostock, F. Brooke, J. J. Cheng, T. L. Clement, E. Cussans, D. Frazier, R. Goldstein, J. Grimes, M. Hartley, D. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Camanzi, B. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Worm, S. D. Bainbridge, R. Ball, G. Ballin, J. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Lyons, L. MacEvoy, B. C. Magnan, A.-M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rompotis, N. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Tourneur, S. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Wardrope, D. Whyntie, T. Barrett, M. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leslie, D. Martin, W. Reid, I. D. Teodorescu, L. Hatakeyama, K. Liu, H. Henderson, C. Bose, T. Jarrin, E. Carrera Fantasia, C. Heister, A. St. John, J. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Avetisyan, A. Bhattacharya, S. Chou, J. P. Cutts, D. Ferapontov, A. Heintz, U. Jabeen, S. Kukartsev, G. Landsberg, G. Luk, M. Narain, M. Nguyen, D. Segala, M. Sinthuprasith, T. Speer, T. Tsang, K. V. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Cox, P. T. Dolen, J. Erbacher, R. Friis, E. Ko, W. Kopecky, A. Lander, R. Liu, H. Maruyama, S. Miceli, T. Nikolic, M. Pellett, D. Robles, J. Rutherford, B. Salur, S. Schwarz, T. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Veelken, C. Andreev, V. Arisaka, K. Cline, D. Cousins, R. Deisher, A. Duris, J. Erhan, S. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Tucker, J. Valuev, V. Babb, J. Chandra, A. Clare, R. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Jeng, G. Y. Kao, S. C. Liu, F. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Shen, B. C. Stringer, R. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pi, H. Pieri, M. Ranieri, R. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lowette, S. Mccoll, N. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. Vlimant, J. R. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Gataullin, M. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Shin, K. Timciuc, V. Traczyk, P. Veverka, J. Wilkinson, R. Yang, Y. Zhu, R. Y. Akgun, B. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Jun, S. Y. Liu, Y. F. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Dinardo, M. E. Drell, B. R. Edelmaier, C. J. Ford, W. T. Gaz, A. Heyburn, B. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Zang, S. L. Agostino, L. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Heltsley, B. Henriksson, K. Hopkins, W. Khukhunaishvili, A. Kreis, B. Liu, Y. Kaufman, G. Nicolas Patterson, J. R. Puigh, D. Ryd, A. Saelim, M. Salvati, E. Shi, X. Sun, W. Teo, W. D. Thom, J. Thompson, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Biselli, A. Cirino, G. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Atac, M. Bakken, J. A. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Borcherding, F. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Cooper, W. Eartly, D. P. Elvira, V. D. Esen, S. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Green, D. Gunthoti, K. Gutsche, O. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. Jensen, H. Johnson, M. Joshi, U. Khatiwada, R. Klima, B. Kousouris, K. Kunori, S. Kwan, S. Leonidopoulos, C. Limon, P. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Mason, D. McBride, P. Miao, T. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Pivarski, J. Pordes, R. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Mitselmakher, G. Muniz, L. Prescott, C. Remington, R. Rinkevicius, A. Schmitt, M. Scurlock, B. Sellers, P. Skhirtladze, N. Snowball, M. Wang, D. Yelton, J. Zakaria, M. Gaultney, V. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Quertenmont, L. Sekmen, S. Veeraraghavan, V. Baarmand, M. M. Dorney, B. Guragain, S. Hohlmann, M. Kalakhety, H. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Callner, J. Cavanaugh, R. Dragoiu, C. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kunde, G. J. Lacroix, F. Malek, M. O'Brien, C. Silkworth, C. Silvestre, C. Smoron, A. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Duru, F. Lae, C. K. McCliment, E. Merlo, J.-P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Olson, J. Onel, Y. Ozok, F. Sen, S. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bonato, A. Eskew, C. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Tran, N. V. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Iii, R. P. Kenny Murray, M. Noonan, D. Sanders, S. Wood, J. S. Zhukova, V. Barfuss, A. F. Bolton, T. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Wan, Z. Gronberg, J. Lange, D. Wright, D. Baden, A. Boutemeur, M. Eno, S. C. Ferencek, D. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Lu, Y. Mignerey, A. C. Rossato, K. Rumerio, P. Santanastasio, F. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Alver, B. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Everaerts, P. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Harris, P. Kim, Y. Klute, M. Lee, Y.-J. Li, W. Loizides, C. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Velicanu, D. Wenger, E. A. Wolf, R. Xie, S. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cooper, S. I. Cushman, P. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Haupt, J. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rekovic, V. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Cremaldi, L. M. Godang, R. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Jindal, P. Keller, J. Kelly, T. Kravchenko, I. Lazo-Flores, J. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Shipkowski, S. P. Smith, K. Alverson, G. Barberis, E. Baumgartel, D. Boeriu, O. Chasco, M. Reucroft, S. Swain, J. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Brinkerhoff, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Kolberg, T. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Ziegler, J. Bylsma, B. Durkin, L. S. Gu, J. Hill, C. Killewald, P. Kotov, K. Ling, T. Y. Rodenburg, M. Vuosalo, C. Williams, G. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hebda, P. Hunt, A. Laird, E. Pegna, D. Lopes Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Safdi, B. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatserklyaniy, A. Alagoz, E. Barnes, V. E. Bolla, G. Borrello, L. Bortoletto, D. De Mattia, M. Everett, A. Garfinkel, A. F. Gutay, L. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Liu, C. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Adair, A. Boulahouache, C. Ecklund, K. M. Geurts, F. J. M. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Flacher, H. Garcia-Bellido, A. Goldenzweig, P. Gotra, Y. Han, J. Harel, A. Miner, D. C. Orbaker, D. Petrillo, G. Sakumoto, W. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Atramentov, O. Barker, A. Duggan, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Hits, D. Lath, A. Panwalkar, S. Patel, R. Richards, A. Rose, K. Schnetzer, S. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Gurrola, A. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Safonov, A. Sengupta, S. Suarez, I. Tatarinov, A. Toback, D. Weinberger, M. Akchurin, N. Bardak, C. Damgov, J. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Mane, P. Roh, Y. Sill, A. Volobouev, I. Wigmans, R. Yazgan, E. Appelt, E. Brownson, E. Engh, D. Florez, C. Gabella, W. Issah, M. Johns, W. Kurt, P. Maguire, C. Melo, A. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Yohay, R. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Mattson, M. Milstene, C. Sakharov, A. Anderson, M. Bachtis, M. Belknap, D. Bellinger, J. N. Carlsmith, D. Dasu, S. Efron, J. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Loveless, R. Mohapatra, A. Ojalvo, I. Reeder, D. Ross, I. Savin, A. Smith, W. H. Swanson, J. Weinberg, M. CA CMS Collaboration TI Determination of jet energy calibration and transverse momentum resolution in CMS SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Si microstrip and pad detectors; Calorimeter methods; Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc) ID HADRON-COLLISIONS; ALGORITHM AB Measurements of the jet energy calibration and transverse momentum resolution in CMS are presented, performed with a data sample collected in proton-proton collisions at a centre-of-mass energy of 7TeV, corresponding to an integrated luminosity of 36p(-1). The transverse momentum balance in dijet and gamma/Z+jets events is used to measure the jet energy response in the CMS detector, as well as the transverse momentum resolution. The results are presented for three different methods to reconstruct jets: a calorimeter-based approach, the "Jet-Plus-Track" approach, which improves the measurement of calorimeter jets by exploiting the associated tracks, and the "Particle Flow" approach, which attempts to reconstruct individually each particle in the event, prior to the jet clustering, based on information from all relevant subdetectors. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Ero, J.; Fabjan, C.; Friedl, M.; Fruhwirth, R.; Ghete, V. M.; Hammer, J.; Hansel, S.; Hoch, M.; Hormann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, H.; Schofbeck, R.; Strauss, J.; Taurok, A.; Teischinger, F.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Bansal, S.; Benucci, L.; De Wolf, E. A.; Janssen, X.; Maes, T.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.] Univ Antwerp, Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Devroede, O.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Universiteit Brussel, Brussels, Belgium. [Charaf, O.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hammad, G. H.; Hreus, T.; Marage, P. E.; Raval, A.; Thomas, L.; Vander Velde, C.; Vanlaer, P.] Univ Libre Brussels, Brussels, Belgium. [Adler, V.; Cimmino, A.; Costantini, S.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ryckbosch, D.; Thyssen, F.; Tytgat, M.; Vanelderen, L.; Verwilligen, P.; Walsh, S.; Zaganidis, N.] Univ Ghent, Ghent, Belgium. [Basegmez, S.; Bruno, G.; Caudron, J.; Ceard, L.; Cortina Gil, E.; De Jeneret, J. D.; Delaere, C.; Favart, D.; Giammanco, A.; Gregoire, G.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Ovyn, S.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.] Catholic Univ Louvain, B-3000 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Brito, L.; Damiao, D. De Jesus; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda, W. L.; Carvalho, W.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Mundim, L.; Nogima, H.; Oguri, V.; Da Silva, W. L. Prado; Santoro, A.; Do Amaral, S. M. S.; Sznajder, A.] Univ Estado Rio de Janeiro, Rio De Janeiro, Brazil. [Bernardes, C. A.; Dias, F. A.; Costa, T. Dos Anjos; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Inst Fis Teor, Sao Paulo, Brazil. [Darmenov, N.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Karadzhinova, A.; Kozhuharov, V.; Litov, L.; Mateev, M.; Pavlov, B.; Petkov, P.] Univ Sofia, Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing, Peoples R China. [Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Mao, Y.; Qian, S. J.; Teng, H.; Zhu, B.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Tech, Beijing, Peoples R China. [Cabrera, A.; Moreno, B. Gomez; Rios, A. A. Ocampo; Oliveros, A. F. Osorio; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Lelas, K.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Dzelalija, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.] Inst Rudjer Boskovic, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M.] Charles Univ Prague, CR-11636 Prague, Czech Republic. [Assran, Y.; Kamel, A. Ellithi; Khalil, S.; Mahmoud, M. A.; Radi, A.] Arab Republ Egypt, Egyptian Network High Energy Phys, Acad Sci Res & Technol, Cairo, Egypt. [Hektor, A.; Kadastik, M.; Muntel, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Azzolini, V.; Eerola, P.; Fedi, G.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Czellar, S.; Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Sillou, D.] IN2P3 CNRS, Lab Annecy Le Vieux Phys Particules, Annecy Le Vieux, France. [Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Gentit, F. X.; Givernaud, A.; Gras, P.; de Monchenault, G. H.; Jarry, P.; Locci, E.; Malcles, J.; Marionneau, M.; Millischer, L.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Verrecchia, P.] CEA Saclay, DSM IRFU, Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Beaudette, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Dahms, T.; Dobrzynski, L.; Elgammal, S.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Thiebaux, C.; Wyslouch, B.; Zabi, A.; Bernet, C.] IN2P3 CNRS, Ecole Polytech, Lab Leprince Ringuet, Palaiseau, France. [Agram, J. L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. C.; Gele, D.; Goerlach, U.; Greder, S.; Juillot, P.; Karim, M.; Le Bihan, A. C.; Mikami, Y.; Van Hove, P.] Univ Haute Alsace Mulhouse, CNRS IN2P3, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Fassi, F.; Mercier, D.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. [Baty, C.; Beauceron, S.; Beaupere, N.; Bedjidian, M.; Bondu, O.; Boudoul, G.; Boumediene, D.; Brun, H.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Ille, B.; Kurca, T.; Le Grand, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.] Univ Lyon 1, CNRS IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Lomidze, D.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, Tbilisi, Rep of Georgia. [Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Mohr, N.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Weber, M.; Wittmer, B.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Dietz-Laursonn, E.; Erdmann, M.; Hebbeker, T.; Heidemann, C.; Hinzmann, A.; Hoepfner, K.; Klimkovich, T.; Klingebiel, D.; Kreuzer, P.; Lanske, D.; Lingemann, J.; Magass, C.; Merschmeyer, M.; Meyer, A.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.] Rhein Westfal TH Aachen, Inst Phys A 3, Aachen, Germany. [Bontenackels, M.; Davids, M.; Duda, M.; Flugge, G.; Geenen, H.; Giffels, M.; Ahmad, W. Haj; Heydhausen, D.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Linn, A.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Tornier, D.; Zoeller, M. H.] Rhein Westfal TH Aachen, Inst Phys B 3, Aachen, Germany. [Martin, M. Aldaya; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Cakir, A.; Campbell, A.; Castro, E.; Dammann, D.; Eckerlin, G.; Eckstein, D.; Flossdorf, A.; Flucke, G.; Geiser, A.; Hauk, J.; Jung, H.; Kasemann, M.; Katkov, I.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kramer, M.; Krucker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Mankel, R.; Marienfeld, M.; Melzer-Pellmann, I. A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Olzem, J.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Rosin, M.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Tomaszewska, J.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Autermann, C.; Blobel, V.; Bobrovskyi, S.; Draeger, J.; Enderle, H.; Gebbert, U.; Gorner, M.; Hermanns, T.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Naumann-Emme, S.; Nowak, F.; Pietsch, N.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schroder, M.; Schum, T.; Stadie, H.; Steinbruck, G.; Thomsen, J.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Bauer, J.; Berger, J.; Buege, V.; Chwalek, T.; De Boer, W.; Dierlamm, A.; Dirkes, G.; Feindt, M.; Gruschke, J.; Hackstein, C.; Hartmann, F.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Komaragiri, J. R.; Kuhr, T.; Martschei, D.; Mueller, S.; Muller, T.; Niegel, M.; Oberst, O.; Oehler, A.; Ott, J.; Peiffer, T.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Renz, M.; Saout, C.; Scheurer, A.; Schieferdecker, P.; Schilling, F. P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Wagner-Kuhr, J.; Weiler, T.; Zeise, M.; Zhukov, V.; Ziebarth, E. B.] Inst Expt Kernphys, Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Petrakou, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Sphicas, P.] Univ Athens, GR-10679 Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Triantis, F. A.] Univ Ioannina, GR-45110 Ioannina, Greece. [Aranyi, A.; Bencze, G.; Boldizsar, L.; Hajdu, C.; Hidas, P.; Horvath, D.; Kapusi, A.; Krajczar, K.; Sikler, F.; Veres, G. I.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Beni, N.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Veszpremi, V.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Jindal, M.; Kaur, M.; Kohli, J. M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, A. P.; Singh, J.; Singh, S. P.] Panjab Univ, Chandigarh 160014, India. [Ahuja, S.; Choudhary, B. C.; Gupta, P.; Kumar, A.; Kumar, A.; Naimuddin, M.; Ranjan, K.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, S.; Jain, S.; Khurana, R.; Sarkar, S.] Saha Inst Nucl Phys, Kolkata, W Bengal, India. [Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, D.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Saha, A.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India. [Banerjee, S.; Dugad, S.; Mondal, N. K.] Tata Inst Fundamental Res HECR, Bombay, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi, A.; Najafabadi, M. Mohammadi; S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Colaleo, A.; Creanza, D.; De Filippisa, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Manna, N.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pierro, G. A.; Pompili, A.; Pugliese, G.; Romano, F.; Roselli, G.; Selvaggi, G.; Silvestris, L.; Trentadue, R.; Tupputia, S.; Zito, G.] INFN Sez Bari, Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; De Palma, M.; Lusito, L.; Manna, N.; Marangelli, B.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Roselli, G.; Selvaggi, G.; Tupputia, S.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippisa, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.; Romano, F.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Giunta, M.; Grandi, C.; Marcellini, S.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] INFN Sez Bologna, Bologna, Italy. [Braibant-Giacomelli, S.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Masetti, G.; Meneghelli, M.; Navarria, F. L.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] INFN Sez Catania, Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] INFN Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Lenzi, P.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.] INFN Lab Nazl Frascati, Frascati, Italy. [Fabbricatore, P.; Musenich, R.] INFN Sez Genova, Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli] INFN Sez Milano Bicocca, Milan, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Gennai, S.; Ghezzi, A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Merola, M.; Paolucci, P.] INFN Sez Napoli, Naples, Italy. [De Cosa, A.; Merola, M.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Mazzucato, M.; Meneguzzo, A. T.; Nespolo, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] INFN Sez Padova, Padua, Italy. [Bellan, P.; Bisello, D.; Carlin, R.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N; Ronchese, P; Simonetto, F; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Lazzizzera, I.] Univ Trent, Padua, Italy. [Baesso, P.; Berzano, U.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] INFN Sez Pavia, Pavia, Italy. [Baesso, P.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Viviani, C.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.; Pioppi, M.] INFN Sez Perugia, Perugia, Italy. [Biasini, M.; Caponeri, B.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Taroni, S.; Valdata, M.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Segneri, G.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] INFN Sez Pisa, Pisa, Italy. [Bernardini, J.; Fiori, F.; Messineo, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Di Marco, E.; Diemoz, M.; Franci, D.; Grassi, M.; Longo, E.; Nourbakhsh, S.; Organtini, G.; Pandolfi, F.; Paramatti, R.; Rahatlou, S.] INFN Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Di Marco, E.; Franci, D.; Longo, E.; Organtini, G.; Pandolfi, F.; Rahatlou, S.] Univ Roma La Sapienza, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Botta, C.; Cartiglia, N; Castello, R.; Costa, M.; Demaria, N.; Graziano, A.; Mariotti, C.; Marone, M.; Maselli, S.; Migliore, E.; Mila, G.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Pereira, A. Vilela] INFN Sezione Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Botta, C.; Castello, R.; Costa, M.; Graziano, A.; Marone, M.; Migliore, E.; Mila, G.; Monaco, V.; Pelliccioni, M.; Potenza, A.; Romero, A.; Sacchi, R.; Sola, V.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Montanino, D.; Penzo, A.] INFN Sez Trieste, Trieste, Italy. [Della Ricca, G.; Montanino, D.] Univ Trieste, Trieste, Italy. [Heo, S. G.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Chung, J.; Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, Zero; Kim, J. Y.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Hong, B.; Jo, M.; Kim, H.; Kim, J. H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Sim, K. S.] Korea Univ, Seoul, South Korea. [Choi, M.; Kang, S.; Kim, H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Martisiute, D.; Petrov, P.; Polujanskas, M.; Sabonis, T.] Vilnius Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Villalba, R. Magana; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City, DF, Mexico. [Moreno, S. C.; Valencia, F. V.] Univ Iberoamer, Mexico City, DF, Mexico. [Ibarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Linares, E. Casimiro; Pineda, A. M.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.; Tam, J.] Univ Auckland, Auckland, New Zealand. [Butler, P. H.; Doesburg, R.; Silverwood, H.] Univ Canterbury, Christchurch, New Zealand. [Ahmad, M.; Ahmed, I.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Brona, G.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Soltan Inst Nucl Studies, Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Parracho, P. G. Ferreira; Musella, P.; Nayak, A.; Ribeiro, P. Q.; Seixas, J.; Varela, J.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Afanasiev, S.; Bunin, P.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Toropin, A.; Troitsky, S.] Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Gavrilov, V.; Kaftanov, V.; Krokhotin, A.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow, Russia. [Belyaev, A.; Boos, E.; Dudko, L.; Ershov, A.; Gribushin, A.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Djordjevic, M.; Milosevic, J.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cepeda, M.; Cerrada, M.; Llatas, M. Chamizo; Colino, N.; De La Cruz, B.; Peris, A. Delgado; Pardos, C. Diez; Vazquez, D. Dominguez; Bedoya, C. Fernandez; Ramos, J. P. Fernandez; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Merino, G.; Pelayo, J. Puerta; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] CIEMAT, Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Cuevas, J.; Menendez, J. Fernandez; Folgueras, S.; Caballero, I. Gonzalez; Iglesias, L. Lloret; J. M. Vizan] Univ Oviedo, Oviedo, Spain. [Cifuentes, J. A. Brochero; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Campderros, J. Duarte; Fernandez, M.; Gomez, G.; Sanchez, J. Gonzalez; Jorda, C.; Pardo, P. Lobelle; Virto, A. Lopez; Marco, J.; Marco, R.; Rivero, C. Martinez; Matorras, F.; Sanchez, F. J. Munoz; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sanudo, M. Sobron; Vila, I.; Cortabitarte, R. Vilar] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, Santander, Spain. [Jung, H.; Chiorboli, M.; Tropiano, A.; De Guio, F.; Gennai, S.; Montoya, C. A. Carrillo; Iorio, A. O. M.; Nespolo, M; Perrozzi, L; Lucaroni, A.; Taroni, S.; Boccali, T.; Tonelli, G.; Venturi, A.; Grassi, M.; Pandolfi, F.; Rovelli, C.; Botta, C.; Graziano, A.; Gallinaro, M.; Pela, J.; Kossov, M.; Grishin, V.] CERN, European Org Nucl Res, Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Konig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Caminada, L.; Marchica, C.; Nageli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Bani, L.; Bortignon, P.; Casal, B.; Chanon, N.; Chen, Z.; Cittolin, S.; Dissertori, G.; Dittmar, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hintz, W.; Lecomte, P.; Lustermann, W.; del Arbol, P. Martinez Ruiz; Moortgat, F.; Nef, P.; Nessi-Tedaldi, F.; Pape, L.; Pauss, F.; Punz, T.; Rizzi, A.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Sawley, M. C.; Stieger, B.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, M.; Wehrli, L.; Weng, J.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Aguilo, E.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Schmidt, A.; Snoek, H.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Volpe, R.; Wu, J. H.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.] Natl Taiwan Univ NTU, Taipei, Taiwan. [Adiguzel, A.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Polatoz, A.; Uzun, D.; Vergili, L. N.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, Ankara, Turkey. [Deliomeroglu, M.; Guelmez, E.; Isildak, B.; Oezbek, M.] Bogazici Univ, Istanbul, Turkey. [Levchuk, L.] Kharkov Inst & Phys Technol, Natl Sci Ctr, Kharkov, Ukraine. [Bostock, F.; Brooke, J. J.; Cheng, T. L.; Clement, E.; Cussans, D.; Frazier, R.; Goldstein, J.; Grimes, M.; Hartley, D.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.] Univ Bristol, Bristol, Avon, England. [Newbold, D. M.; Bell, K. W.; Brew, C.; Brown, R. M.; Camanzi, B.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.] Rutherford Appleton Lab, Didcot, Oxon, England. [Bainbridge, R.; Ball, G.; Ballin, J.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; MacEvoy, B. C.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Papageorgiou, A.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rompotis, N.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Tourneur, S.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Wardrope, D.; Whyntie, T.] Imperial Coll, London, England. [Barrett, M.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Martin, W.; Reid, I. D.; Teodorescu, L.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.; Liu, H.] Baylor Univ, Waco, TX 76798 USA. [Henderson, C.] Univ Alabama, Tuscaloosa, AL 35487 USA. [Bose, T.; Jarrin, E. Carrera; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Avetisyan, A.; Bhattacharya, S.; Chou, J. P.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Cox, P. T.; Dolen, J.; Erbacher, R.; Friis, E.; Ko, W.; Kopecky, A.; Lander, R.; Liu, H.; Maruyama, S.; Miceli, T.; Nikolic, M.; Pellett, D.; Robles, J.; Rutherford, B.; Salur, S.; Schwarz, T.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Veelken, C.] Univ Calif, Davis, CA USA. Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Babb, J.; Chandra, A.; Clare, R.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Kao, S. C.; Liu, F.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Shen, B. C.; Stringer, R.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif, Riverside, CA USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pi, H.; Pieri, M.; Ranieri, R.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; Vlimant, J. R.] Univ Calif Santa Barbara, Santa Barbara, CA USA. [Dubinin, M.; Spiropulu, M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Shin, K.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA USA. [Akgun, B.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Jun, S. Y.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Dinardo, M. E.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Zang, S. L.] Univ Colorado Boulder, Boulder, CO 80309 USA. [Agostino, L.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Henriksson, K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Liu, Y.; Kaufman, G. Nicolas; Patterson, J. R.; Puigh, D.; Ryd, A.; Saelim, M.; Salvati, E.; Shi, X.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY 14853 USA. [Biselli, A.; Cirino, G.; Winn, D.] Fairfield Univ, Fairfield, CT USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Atac, M.; Bakken, J. A.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Borcherding, F.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cooper, W.; Eartly, D. P.; Elvira, V. D.; Esen, S.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Green, D.; Gunthoti, K.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jensen, H.; Johnson, M.; Joshi, U.; Khatiwada, R.; Klima, B.; Kousouris, K.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Limon, P.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Mason, D.; McBride, P.; Miao, T.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Pivarski, J.; Pordes, R.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Gomez, J. Piedra; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mitselmakher, G.; Muniz, L.; Prescott, C.; Remington, R.; Rinkevicius, A.; Schmitt, M.; Scurlock, B.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Wang, D.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL 32611 USA. [Gaultney, V.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Quertenmont, L.; Sekmen, S.; Veeraraghavan, V.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Guragain, S.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kunde, G. J.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Silvestre, C.; Smoron, A.; Strom, D.; Varelas, N.] UIC, Chicago, IL USA. [Ozturk, S.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Lae, C. K.; McCliment, E.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Sen, S.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA 52242 USA. [Barnett, B. A.; Blumenfeld, B.; Bonato, A.; Eskew, C.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Tran, N. V.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Iii, R. P. Kenny; Murray, M.; Noonan, D.; Sanders, S.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Wan, Z.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Boutemeur, M.; Eno, S. C.; Ferencek, D.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Lu, Y.; Mignerey, A. C.; Rossato, K.; Rumerio, P.; Santanastasio, F.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Alver, B.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Everaerts, P.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Harris, P.; Kim, Y.; Klute, M.; Lee, Y.-J.; Li, W.; Loizides, C.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cooper, S. I.; Cushman, P.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rekovic, V.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.] Univ Minnesota, Minneapolis, MN 55455 USA. [Cremaldi, L. M.; Godang, R.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Jindal, P.; Keller, J.; Kelly, T.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE 68583 USA. [Baur, U.; Godshalk, A.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Boeriu, O.; Chasco, M.; Reucroft, S.; Swain, J.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA USA. [Anastassov, A.; Kubik, A.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL 60208 USA. [Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Kolberg, T.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Ziegler, J.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Gu, J.; Hill, C.; Killewald, P.; Kotov, K.; Ling, T. Y.; Rodenburg, M.; Vuosalo, C.; Williams, G.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hunt, A.; Laird, E.; Pegna, D. Lopes; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR 00936 USA. [Alagoz, E.; Barnes, V. E.; Bolla, G.; Borrello, L.; Bortoletto, D.; De Mattia, M.; Everett, A.; Garfinkel, A. F.; Gutay, L.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Liu, C.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Flacher, H.; Garcia-Bellido, A.; Goldenzweig, P.; Gotra, Y.; Han, J.; Harel, A.; Miner, D. C.; Orbaker, D.; Petrillo, G.; Sakumoto, W.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY USA. [Arora, S.; Atramentov, O.; Barker, A.; Duggan, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hits, D.; Lath, A.; Panwalkar, S.; Patel, R.; Richards, A.; Rose, K.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN 37996 USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Gurrola, A.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Safonov, A.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Weinberger, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Akchurin, N.; Bardak, C.; Damgov, J.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Mane, P.; Roh, Y.; Sill, A.; Volobouev, I.; Wigmans, R.; Yazgan, E.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Brownson, E.; Engh, D.; Florez, C.; Gabella, W.; Issah, M.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Yohay, R.] Univ Virginia, Charlottesville, VA 22903 USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Mattson, M.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI 48202 USA. [Anderson, M.; Bachtis, M.; Belknap, D.; Bellinger, J. N.; Carlsmith, D.; Dasu, S.; Efron, J.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Reeder, D.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.; Weinberg, M.] Univ Wisconsin, Madison, WI 53706 USA. [Hajdu, C.; Sikler, F.; Mohanty, A. K.; De Filippisa, N.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Benedetti, D.; Bialas, W.; Bloch, P.; Bocci, A.; Bolognesi, S.; Bona, M.; Breuker, H.; Breuker, K.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Cure, B.; D'Enterria, D.; De Roeck, A.; Di Guida, S.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Gaddi, A.; Georgiou, G.; Gerwig, H.; Gigi, D.; Gill, K.; Giordano, D.; Glege, F.; Garrido, R. Gomez-Reino; Gouzevitch, M.; Govoni, P.; Gowdy, S.; Guiducci, L.; Hansen, M.; Hartl, C.; Harvey, J.; Hegeman, J.; Hegner, B.; Hoffmann, H. F.; Honma, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Lecoq, P.; Lourenco, C.; Maki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Maurisset, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Nesvold, E.; Nguyen, M.; Orimoto, T.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimia, M.; Piparo, D.; Polese, G.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rommerskirchen, T.; Rovere, M.; Sakulin, H.; Schafer, C.; Schwick, C.; Segoni, I.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Stoye, M.; Tropea, P.; Tsirou, A.; Vichoudis, P.; Voutilainen, M.; Zeuner, W. D.] CERN, European Org Nucl Res, Geneva, Switzerland. Univ Fed ABC, Santo Andre, Brazil. Ecole Polytech, Lab Leprince Ringuet, IN2P3 CNRS, Palaiseau, France. Suez Canal Univ, Suez, Egypt. British Univ, Cairo, Egypt. Fayoum Univ, Al Fayyum, Egypt. Ain Shams Univ, Cairo, Egypt. [Bluj, M.] Soltan Inst Nucl Studies, Warsaw, Poland. [Wyslouch, B.] MIT, Cambridge, MA 02139 USA. [Agram, J. L.; Conte, E.; Drouhin, F.; Fontaine, J. C.; Karim, M.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Katkov, I.; Zhukov, V.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Horvath, D.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Krajczar, K.; Veres, G. I.; Vesztergombi, G.] Eotvos Lorand Univ, H-1364 Budapest, Hungary. [Guchait, M.] Tata Inst Fundamental Res HECR, Bombay, Maharashtra, India. [Maity, M.] Univ Visva Bharati, Santini Ketan, W Bengal, India. [Bakhshiansohi, H.; Fahim, A.; Jafari, A.] Sharif Univ Technol, Tehran, Iran. [Mohammadi, A.] Shiraz Univ, Shiraz, Iran. [Zeinali, M.] Isfahan Univ Technol, Esfahan, Iran. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, Potenza, Italy. [Lacaprara, S.] Lab Nazl Legnaro INFN, Legnaro, Italy. [Martini, L.] Univ Siena, I-53100 Siena, Italy. CALTECH, Pasadena, CA USA. Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Felcini, M.; Andreev, V.; Arisaka, K.; Cline, D.; Cousins, R.; Deisher, A.; Duris, J.; Erhan, S.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. Univ Florida, Gainesville, FL 32611 USA. [Bell, A. J.] Univ Geneva, CH-1211 Geneva, Switzerland. [Rolandi, G.] Scuola Normale Sez INFN, Pisa, Italy. Univ Athens, GR-10679 Athens, Greece. Univ Kansas, Lawrence, KS 66045 USA. Inst Theoret & Expt Phys, Moscow, Russia. Paul Scherrer Inst, Villigen, Switzerland. Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. Vinca Inst Nucl Sci, Belgrade, Serbia. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. Univ Iowa, Iowa City, IA 52242 USA. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Demir, D.] Izmir Inst Technol, Izmir, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. Rutherford Appleton Lab, Didcot, Oxon, England. [Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. INFN Sez Perugia, Perugia, Italy. [Pioppi, M.] Univ Perugia, Perugia, Italy. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Musienko, Y.] Inst Nucl Res, Moscow, Russia. [Kunde, G. J.] Los Alamos Natl Lab, Los Alamos, NM USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan, Armenia. RI Menasce, Dario Livio/A-2168-2016; Fassi, Farida/F-3571-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Gerbaudo, Davide/J-4536-2012; Stahl, Achim/E-8846-2011; Varela, Joao/K-4829-2016; Ozdemir, Kadri/P-8058-2014; Azarkin, Maxim/N-2578-2015; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Seixas, Joao/F-5441-2013; Sznajder, Andre/L-1621-2016; Vilela Pereira, Antonio/L-4142-2016; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Govoni, Pietro/K-9619-2016; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; Matorras, Francisco/I-4983-2015; My, Salvatore/I-5160-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Ragazzi, Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Dahms, Torsten/A-8453-2015; Grandi, Claudio/B-5654-2015; Leonidov, Andrey/P-3197-2014; Bernardes, Cesar Augusto/D-2408-2015; Ahmed, Ijaz/E-9144-2015; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Montanari, Alessandro/J-2420-2012; Cerrada, Marcos/J-6934-2014; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Gonzalez Suarez, Rebeca/L-6128-2014; Calvo Alamillo, Enrique/L-1203-2014; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Marinho, Franciole/N-8101-2014; Ferguson, Thomas/O-3444-2014; Rolandi, Luigi (Gigi)/E-8563-2013; Zalewski, Piotr/H-7335-2013; Ivanov, Andrew/A-7982-2013; Hill, Christopher/B-5371-2012; Markina, Anastasia/E-3390-2012; Troitsky, Sergey/C-1377-2014; Marlow, Daniel/C-9132-2014; Oguri, Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Bartalini, Paolo/E-2512-2014; Codispoti, Giuseppe/F-6574-2014; Gribushin, Andrei/J-4225-2012; Raidal, Martti/F-4436-2012; Venturi, Andrea/J-1877-2012; Lokhtin, Igor/D-7004-2012; Snigirev, Alexander/D-8912-2012; Mercadante, Pedro/K-1918-2012; Della Ricca, Giuseppe/B-6826-2013; Kadastik, Mario/B-7559-2008; Mundim, Luiz/A-1291-2012; Petrushanko, Sergey/D-6880-2012; Santaolalla, Javier/C-3094-2013; Alves, Gilvan/C-4007-2013; Tinoco Mendes, Andre David/D-4314-2011; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; OI Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Mrenna, Stephen/0000-0001-8731-160X; Bilki, Burak/0000-0001-9515-3306; Rizzi, Andrea/0000-0002-4543-2718; Gershtein, Yuri/0000-0002-4871-5449; Tricomi, Alessia Rita/0000-0002-5071-5501; Malik, Sudhir/0000-0002-6356-2655; Giacomelli, Paolo/0000-0002-6368-7220; Fassi, Farida/0000-0002-6423-7213; Leonidopoulos, Christos/0000-0002-7241-2114; Blekman, Freya/0000-0002-7366-7098; Martinez Ruiz del Arbol, Pablo/0000-0002-7737-5121; Arneodo, Michele/0000-0002-7790-7132; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Gerbaudo, Davide/0000-0002-4463-0878; Stahl, Achim/0000-0002-8369-7506; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; HSIUNG, YEE/0000-0003-4801-1238; Bean, Alice/0000-0001-5967-8674; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Varela, Joao/0000-0003-2613-3146; Faccioli, Pietro/0000-0003-1849-6692; Hektor, Andi/0000-0001-7873-8118; Ozdemir, Kadri/0000-0002-0103-1488; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Seixas, Joao/0000-0002-7531-0842; Sznajder, Andre/0000-0001-6998-1108; Vilela Pereira, Antonio/0000-0003-3177-4626; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Govoni, Pietro/0000-0002-0227-1301; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; Matorras, Francisco/0000-0003-4295-5668; My, Salvatore/0000-0002-9938-2680; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Ragazzi, Stefano/0000-0001-8219-2074; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Montanari, Alessandro/0000-0003-2748-6373; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Gonzalez Suarez, Rebeca/0000-0002-6126-7230; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Marinho, Franciole/0000-0002-7327-0349; Ferguson, Thomas/0000-0001-5822-3731; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Ivanov, Andrew/0000-0002-9270-5643; Hill, Christopher/0000-0003-0059-0779; Troitsky, Sergey/0000-0001-6917-6600; Codispoti, Giuseppe/0000-0003-0217-7021; Della Ricca, Giuseppe/0000-0003-2831-6982; Mundim, Luiz/0000-0001-9964-7805; Tinoco Mendes, Andre David/0000-0001-5854-7699; Torassa, Ezio/0000-0003-2321-0599; CHANG, PAO-TI/0000-0003-4064-388X; Luukka, Panja/0000-0003-2340-4641; Sogut, Kenan/0000-0002-9682-2855; Goldstein, Joel/0000-0003-1591-6014; Heath, Helen/0000-0001-6576-9740; Grassi, Marco/0000-0003-2422-6736; Gallinaro, Michele/0000-0003-1261-2277; Lenzi, Piergiulio/0000-0002-6927-8807; Gutsche, Oliver/0000-0002-8015-9622; Raval, Amita/0000-0003-0164-4337; Novaes, Sergio/0000-0003-0471-8549; Safdi, Benjamin R./0000-0001-9531-1319; Costa, Salvatore/0000-0001-9919-0569; Kasemann, Matthias/0000-0002-0429-2448; Carrera, Edgar/0000-0002-0857-8507; Sguazzoni, Giacomo/0000-0002-0791-3350; WANG, MIN-ZU/0000-0002-0979-8341; Ligabue, Franco/0000-0002-1549-7107; Diemoz, Marcella/0000-0002-3810-8530; Hamel de Monchenault, Gautier/0000-0002-3872-3592; Landsberg, Greg/0000-0002-4184-9380; Covarelli, Roberto/0000-0003-1216-5235; Staiano, Amedeo/0000-0003-1803-624X; Ciulli, Vitaliano/0000-0003-1947-3396; Tonelli, Guido Emilio/0000-0003-2606-9156; Beuselinck, Raymond/0000-0003-2613-7446; Stober, Fred/0000-0003-2620-3159; Jun, Soon Yung/0000-0003-3370-6109; Toback, David/0000-0003-3457-4144; Martelli, Arabella/0000-0003-3530-2255; Abbiendi, Giovanni/0000-0003-4499-7562 FU Austrian Federal Ministry of Science and Research; Belgium Fonds de la Recherche Scientifique; Fonds voor Wetenschappelijk Onderzoek; CNPq; CAPES; FAPERJ; FAPESP; Bulgarian Ministry of Education and Science; CERN; Chinese Academy of Sciences; Ministry of Science and Technology; National Natural Science Foundation of China; Colombian Funding Agency (COLCIENCIAS); Croatian Ministry of Science, Education and Sport; Research Promotion Foundation, Cyprus; Estonian Academy of Sciences; NICPB; Academy of Finland; Finnish Ministry of Education and Culture; Helsinki Institute of Physics; Institut National de Physique Nucleaire et de Physique des Particules / CNRS; Commissariat a l'Energie Atomique et aux Energies Alternatives / CEA, France; Bundesministerium fur Bildung und Forschung; Deutsche Forschungsgemeinschaft; Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; General Secretariat for Research and Technology, Greece; National Scientific Research Foundation; National Office for Research and Technology, Hungary; Department of Atomic Energy; Department of Science and Technology, India; Institute for Studies in Theoretical Physics and Mathematics, Iran; Science Foundation, Ireland; Istituto Nazionale di Fisica Nucleare, Italy; Korean Ministry of Education, Science and Technology; World Class University of NRF, Korea; Lithuanian Academy of Sciences; CINVESTAV; CONACYT; SEP; UASLP-FAI; Ministry of Science and Innovation, New Zealand; Pakistan Atomic Energy Commission; State Commission for Scientific Research, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); Ministry of Science and Technologies of the Russian Federation; Russian Ministry of Atomic Energy; Russian Foundation for Basic Research; Ministry of Science and Technological Development of Serbia; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio 2010, Spain; ETH Board; ETH Zurich; PSI; SNF; UniZH; Canton Zurich; SER; National Science Council, Taipei; Scientific and Technical Research Council of Turkey; Turkish Atomic Energy Authority; Science and Technology Facilities Council, UK; US Department of Energy; US National Science Foundation; Marie-Curie programme; European Research Council (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy); Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Council of Science and Industrial Research, India FX We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes. This work was supported by the Austrian Federal Ministry of Science and Research; the Belgium Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ, and FAPESP); the Bulgarian Ministry of Education and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Estonian Academy of Sciences and NICPB; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucleaire et de Physique des Particules / CNRS, and Commissariat a l'Energie Atomique et aux Energies Alternatives / CEA, France; the Bundesministerium fur Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistan Atomic Energy Commission; the State Commission for Scientific Research, Poland; the Fundacao para a Ciencia e a Tecnologia, Portugal; JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Science and Technologies of the Russian Federation, the Russian Ministry of Atomic Energy and the Russian Foundation for Basic Research; the Ministry of Science and Technological Development of Serbia; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation. Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Associazione per lo Sviluppo Scientifico e Tecnologico del Piemonte (Italy); the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); and the Council of Science and Industrial Research, India. NR 29 TC 61 Z9 61 U1 0 U2 66 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD NOV PY 2011 VL 6 AR P11002 DI 10.1088/1748-0221/6/11/P11002 PG 50 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 865OO UT WOS:000298320400037 ER PT J AU Tran, H Gael, SL Connolly, MD Zuckermann, RN AF Tran, Helen Gael, Sarah L. Connolly, Michael D. Zuckermann, Ronald N. TI Solid-phase Submonomer Synthesis of Peptoid Polymers and their Self-Assembly into Highly-Ordered Nanosheets SO JOVE-JOURNAL OF VISUALIZED EXPERIMENTS LA English DT Article DE Bioengineering; Issue 57; Biomimetic polymer; peptoid; nanosheet; solid-phase synthesis; self-assembly; bilayer AB Peptoids are a novel class of biomimetic, non-natural, sequence-specific heteropolymers that resist proteolysis, exhibit potent biological activity, and fold into higher order nanostructures. Structurally similar to peptides, peptoids are poly N-substituted glycines, where the side chains are attached to the nitrogen rather than the alpha-carbon. Their ease of synthesis and structural diversity allows testing of basic design principles to drive de novo design and engineering of new biologically-active and nanostructured materials. Here, a simple manual peptoid synthesis protocol is presented that allows the synthesis of long chain polypeptoids (up to 50mers) in excellent yields. Only basic equipment, simple techniques (e.g. liquid transfer, filtration), and commercially available reagents are required, making peptoids an accessible addition to many researchers' toolkits. The peptoid backbone is grown one monomer at a time via the submonomer method which consists of a two-step monomer addition cycle: acylation and displacement. First, bromoacetic acid activated in situ with N, N'-diisopropylcarbodiimide acylates a resin-bound secondary amine. Second, nucleophilic displacement of the bromide by a primary amine follows to introduce the side chain. The two-step cycle is iterated until the desired chain length is reached. The coupling efficiency of this two-step cycle routinely exceeds 98% and enables the synthesis of peptoids as long as 50 residues. Highly tunable, precise and chemically diverse sequences are achievable with the submonomer method as hundreds of readily available primary amines can be directly incorporated. Peptoids are emerging as a versatile biomimetic material for nanobioscience research because of their synthetic flexibility, robustness, and ordering at the atomic level. The folding of a single-chain, amphiphilic, information-rich polypeptoid into a highly-ordered nanosheet was recently demonstrated. This peptoid is a 36-mer that consists of only three different commercially available monomers: hydrophobic, cationic and anionic. The hydrophobic phenylethyl side chains are buried in the nanosheet core whereas the ionic amine and carboxyl side chains align on the hydrophilic faces. The peptoid nanosheets serve as a potential platform for membrane mimetics, protein mimetics, device fabrication, and sensors. Methods for peptoid synthesis, sheet formation, and microscopy imaging are described and provide a simple method to enable future peptoid nanosheet designs. C1 [Tran, Helen; Gael, Sarah L.; Connolly, Michael D.; Zuckermann, Ronald N.] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Zuckermann, RN (reprint author), Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM rnzuckermann@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the US Department of Energy [DE-AC02-05CH11231]; Defense Threat Reduction Agency [IACRO-B0845281] FX The authors would like to thank Byoung-Chul Lee, Philip Choi and Samuel Ho for valuable assistance. This work was carried out at the Molecular Foundry at Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231 and the Defense Threat Reduction Agency under Contract No: IACRO-B0845281. NR 21 TC 3 Z9 3 U1 6 U2 22 PU JOURNAL OF VISUALIZED EXPERIMENTS PI CAMBRIDGE PA 1 ALEWIFE CENTER, STE 200, CAMBRIDGE, MA 02140 USA SN 1940-087X J9 JOVE-J VIS EXP JI J. Vis. Exp. PD NOV PY 2011 IS 57 AR UNSP e3373 DI 10.3791/3373 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA V36OZ UT WOS:000209222200031 PM 22083233 ER PT J AU Zakutayev, A Perkins, JD Widjonarko, NE Sigdel, AK Berry, JJ Ginley, DS AF Zakutayev, A. Perkins, J. D. Widjonarko, N. E. Sigdel, A. K. Berry, J. J. Ginley, D. S. TI Zn-Ni-Co-O wide-band-gap p-type conductive oxides with high work functions SO MRS COMMUNICATIONS LA English DT Article AB Co3O4-based spinels are a new class of wide-band-gap p-type conductive oxides with high work functions. We examined the structures, conductivities, work functions, and optical spectra of quaternary Zn-Ni-Co-O thin films across the entire spinel region of the ZnO-NiO-Co3O4 diagram using a high-throughput combinatorial approach. We found that the conductivity of as-deposited films is maximized (100 S/cm) and optical absorption (at 1.8 eV) is minimized in different regions of the diagram, while the work function of annealed films is high and relatively constant (5.8 +/- 0.1 eV). These properties made Zn-Ni-Co-O thin films applicable as p-type interlayers in solar cells. As an example, amorphous Zn-Co-O hole transport layers had good performance in bulk heterojunction organic photovoltaic devices. C1 [Zakutayev, A.; Perkins, J. D.; Widjonarko, N. E.; Sigdel, A. K.; Berry, J. J.; Ginley, D. S.] Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. [Widjonarko, N. E.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Sigdel, A. K.] Univ Denver, Dept Phys & Astron, Denver, CO 80208 USA. RP Zakutayev, A (reprint author), Natl Renewable Energy Lab, Natl Ctr Photovolta, Golden, CO 80401 USA. EM andriy.zakutayev@nrel.gov FU US Department of Energy (DOE); Office of Science, Office of Basic Energy Sciences: Center for Inverse Design (CID) [DE-AC36-08GO28308]; Center for Interface Science: Solar-Electric Materials (CIS: SEM) [DE-SC0001084]; US DOE Office of Energy Efficiency and Renewable Energy FX This research was supported as part of two Energy Frontier Research Centers funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences: Center for Inverse Design (CID) under Contract No. DE-AC36-08GO28308 to NREL (A.Z., J.D.P., D.S.G.) and Center for Interface Science: Solar-Electric Materials (CIS: SEM) under Award No. DE-SC0001084 (A.K.S., N.E.W., J.J.B.). P.A.P. received support from the US DOE Office of Energy Efficiency and Renewable Energy, Solar Energy Technology Program. A.Z., J.D.P., and D.S.G. would like to thank Tula Paudel, Stephan Lany, and Alex Zunger at NREL for numerous fruitful discussions. A.K.S., N.E.W., and J.J.B. thank Jennifer Leisch for initial work on amorphous ZnCoO. A.Z. grew and characterized polycrystalline Zn-Ni-Co-O samples and wrote the paper with contributions, suggestions, and comments from J.D.P., P.A.P., N.E.W., A.K.S., J.J.B., and D.S.G. N.E.W., A.K.S., and J.J.B. were responsible for amorphous ZnCoO hole transport layer deposition, characterization, and OPV device fabrication/analysis. J.D.P. and P.A.P. assisted with automation of combinatorial data collection and automation of the analysis. NR 18 TC 30 Z9 30 U1 3 U2 42 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 2159-6859 J9 MRS COMMUN JI MRS Commun. PD NOV PY 2011 VL 1 IS 1 BP 23 EP 26 DI 10.1557/mrc.2011.9 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA V27RW UT WOS:000208631300006 ER PT J AU Casler, MD Tobias, CM Kaeppler, SM Buell, CR Wang, ZY Cao, PJ Schmutz, J Ronald, P AF Casler, Michael D. Tobias, Christian M. Kaeppler, Shawn M. Buell, C. Robin Wang, Zeng-Yu Cao, Peijian Schmutz, Jeremy Ronald, Pamela TI The Switchgrass Genome: Tools and Strategies SO PLANT GENOME LA English DT Article ID PANICUM-VIRGATUM L.; GENETIC-TRANSFORMATION; MARKERS; POPULATIONS; DIVERSITY; SELECTION; BIOMASS; FAMILY; FORAGE; CROPS AB Switchgrass (Panicum virgatum L.) is a perennial grass species receiving significant focus as a potential bioenergy crop. In the last 5 yr the switchgrass research community has produced a genetic linkage map, an expressed sequence tag (EST) database, a set of single nucleotide polymorphism (SNP) markers that are distributed across the 18 linkage groups, 4x sampling of the P. virgatum AP13 genome in 400-bp reads, and bacterial artificial chromosome (BAC) libraries containing over 200,000 clones. These studies have revealed close collinearity of the switchgrass genome with those of sorghum [Sorghum bicolor (L.) Moench], rice (Oryza sativa L.), and Brachypodium distachyon (L.) P. Beauv. Switchgrass researchers have also developed several microarray technologies for gene expression studies. Switchgrass genomic resources will accelerate the ability of plant breeders to enhance productivity, pest resistance, and nutritional quality. Because switchgrass is a relative newcomer to the genomics world, many secrets of the switchgrass genome have yet to be revealed. To continue to efficiently explore basic and applied topics in switchgrass, it will be critical to capture and exploit the knowledge of plant geneticists and breeders on the next logical steps in the development and utilization of genomic resources for this species. To this end, the community has established a switchgrass genomics executive committee and work group (http://switchgrassgenomics.org/[verified 28 Oct. 2011]). C1 [Ronald, Pamela] Univ Calif Davis, Joint Bioenergy Inst, Dep Plant Pathol, Davis, CA 95616 USA. [Cao, Peijian; Ronald, Pamela] UC Davis Genome Ctr, Davis, CA 95616 USA. [Casler, Michael D.] USDA ARS, US Dairy Forage Res Ctr, Madison, WI 53706 USA. [Tobias, Christian M.] USDA ARS, Western Reg Res Ctr, Albany, CA 94710 USA. [Kaeppler, Shawn M.] Univ Wisconsin, Dep Agron, Madison, WI 53706 USA. [Buell, C. Robin] Michigan State Univ, Dep Plant Biol, E Lansing, MI 48824 USA. [Wang, Zeng-Yu] Samuel Roberts Noble Fdn Inc, Ardmore, OK 73401 USA. [Cao, Peijian] Zhengzhou Tobacco Res Inst, China Tobacco Gene Res Ctr, Zhengzhou 450001, Peoples R China. [Schmutz, Jeremy] Dep Energy Joint Genome Inst, Walnut Creek, CA USA. [Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Huntsville, AL USA. RP Ronald, P (reprint author), Univ Calif Davis, Joint Bioenergy Inst, Dep Plant Pathol, Davis, CA 95616 USA. EM pcronald@ucdavis.edu RI Schmutz, Jeremy/N-3173-2013 OI Schmutz, Jeremy/0000-0001-8062-9172 FU Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231, DE-AC05-00OR22725]; NIFA Plant Feedstock Genomics for Bioenergy Program [2010-04195] FX The studies conducted by the U.S. Department of Energy Joint Genome Institute, the BioEnergy Science Center, and the Joint Bioenergy Institute are supported by the Office of Science of the U.S. Department of Energy under Contract Numbers DE-AC02-05CH11231, DE-AC05-00OR22725, and DE-AC02-05CH11231, respectively. This research was also supported by a grant from the NIFA Plant Feedstock Genomics for Bioenergy Program (#2010-04195) to P.C.R. We thank D. Rokhsar, L. Bartley, R. Sharma, and M. Sharma for helpful discussions. NR 40 TC 42 Z9 42 U1 3 U2 38 PU CROP SCIENCE SOC AMER PI MADISON PA 677 S SEGOE ROAD, MADISON, WI 53711 USA SN 1940-3372 J9 PLANT GENOME-US JI Plant Genome PD NOV PY 2011 VL 4 IS 3 BP 273 EP 282 DI 10.3835/plantgenome2011.10.0026 PG 10 WC Plant Sciences; Genetics & Heredity SC Plant Sciences; Genetics & Heredity GA 058VA UT WOS:000312661700011 ER PT J AU Ye, XH Zhu, ZG Zhang, CM Zhang, YHP AF Ye, Xinhao Zhu, Zhiguang Zhang, Chenming Zhang, Y. -H. Percival TI Fusion of a family 9 cellulose-binding module improves catalytic potential of Clostridium thermocellum cellodextrin phosphorylase on insoluble cellulose SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Article DE Cellodextrin phosphorylase; Carbohydrate-binding module (CBM); Cellulose; Protein engineering ID RHODOTHERMUS-MARINUS XYLANASE; ENZYMATIC-HYDROLYSIS; THERMOTOGA-MARITIMA; CRYSTALLINE CELLULOSE; PREVOTELLA-RUMINICOLA; CELLOBIOSE; ENDOGLUCANASE; PURIFICATION; EXPRESSION; DOMAINS AB Clostridium thermocellum cellodextrin phosphorylase (CtCDP), a single-module protein without an apparent carbohydrate-binding module, has reported activities on soluble cellodextrin with a degree of polymerization (DP) from two to five. In this study, CtCDP was first discovered to have weak activities on weakly water-soluble celloheptaose and insoluble regenerated amorphous cellulose (RAC). To enhance its activity on solid cellulosic materials, four cellulose binding modules, e.g., CBM3 (type A) from C. thermocellum CbhA, CBM4-2 (type B) from Rhodothermus marinus Xyn10A, CBM6 (type B) from Cellvibrio mixtus Cel5B, and CBM9-2 (type C) from Thermotoga maritima Xyn10A, were fused to the C terminus of CtCDP. Fusion of any selected CBM with CtCDP did not influence its kinetic parameters on cellobiose but affected the binding and catalytic properties on celloheptaose and RAC differently. Among them, addition of CBM9 to CtCDP resulted in a 2.7-fold increase of catalytic efficiency for degrading celloheptaose. CtCDP-CBM9 exhibited enhanced specific activities over 20% on the short-chain RAC (DP = 14) and more than 50% on the long-chain RAC (DP = 164). The chimeric protein CtCDP-CBM9 would be the first step to construct a cellulose phosphorylase for in vitro hydrogen production from cellulose by synthetic pathway biotransformation (SyPaB). C1 [Ye, Xinhao; Zhu, Zhiguang; Zhang, Chenming; Zhang, Y. -H. Percival] Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] Virginia Tech, ICTAS, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] DOE Bioenergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Zhang, YHP (reprint author), Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu RI Zhu, Zhiguang/I-3936-2016 FU Biological Systems Engineering Department of Virginia Tech; Air Force Office of Scientific Research [FA9550-08-1-0145]; USDA Biodesign and Bioprocess Center; DOE BESC FX This work was not possible without support from the Biological Systems Engineering Department of Virginia Tech, the Air Force Office of Scientific Research (FA9550-08-1-0145), the USDA Biodesign and Bioprocess Center, and DOE BESC to YPZ. NR 52 TC 16 Z9 16 U1 1 U2 29 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7598 J9 APPL MICROBIOL BIOT JI Appl. Microbiol. Biotechnol. PD NOV PY 2011 VL 92 IS 3 BP 551 EP 560 DI 10.1007/s00253-011-3346-8 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 830RI UT WOS:000295673800012 PM 21630044 ER PT J AU Shao, XJ Raman, B Zhu, MJ Mielenz, JR Brown, SD Guss, AM Lynd, LR AF Shao, Xiongjun Raman, Babu Zhu, Mingjun Mielenz, Jonathan R. Brown, Steven D. Guss, Adam M. Lynd, Lee R. TI Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum SO APPLIED MICROBIOLOGY AND BIOTECHNOLOGY LA English DT Article DE Clostridium thermocellum; Ethanol tolerance; Genome sequencing; Strain adaptation; Mutations ID THERMOPHILIC BACTERIA; SIGMA FACTORS; GROWTH; FERMENTATION; MEMBRANES; PROFILE; XYLOSE AB Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1-2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed. C1 [Shao, Xiongjun; Lynd, Lee R.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Raman, Babu; Mielenz, Jonathan R.; Brown, Steven D.; Guss, Adam M.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Shao, Xiongjun; Raman, Babu; Mielenz, Jonathan R.; Brown, Steven D.; Guss, Adam M.; Lynd, Lee R.] Oak Ridge Natl Lab, BESC, Oak Ridge, TN 37831 USA. [Zhu, Mingjun] S China Univ Technol, Sch Biosci & Bioengn, Guangzhou 510006, Guangdong, Peoples R China. [Lynd, Lee R.] Mascoma Corp, Lebanon, NH 03766 USA. RP Lynd, LR (reprint author), Dartmouth Coll, Thayer Sch Engn, 8000 Cummings Hall, Hanover, NH 03755 USA. EM lee.lynd@dartmouth.edu RI Lynd, Lee/N-1260-2013; Guss, Adam/A-6204-2011; Brown, Steven/A-6792-2011 OI Lynd, Lee/0000-0002-5642-668X; Guss, Adam/0000-0001-5823-5329; Brown, Steven/0000-0002-9281-3898 FU BioEnergy Science Center (BESC), a US Department of Energy (DOE) Research Center; Office of Biological and Environmental Research in the DOE Office of Science; Department of Energy [DE-AC05-00OR22725]; Mascoma Corporation FX The authors are grateful for the support provided by funding grants from the BioEnergy Science Center (BESC), a US Department of Energy (DOE) Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science and Mascoma Corporation. The authors are also grateful for the genome sequencing support provided by the DOE Joint Genome Institute (JGI). Oak Ridge National Laboratory is managed by University of Tennessee UT-Battelle LLC for the Department of Energy under contract no. DE-AC05-00OR22725. NR 31 TC 32 Z9 34 U1 0 U2 24 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0175-7598 J9 APPL MICROBIOL BIOT JI Appl. Microbiol. Biotechnol. PD NOV PY 2011 VL 92 IS 3 BP 641 EP 652 DI 10.1007/s00253-011-3492-z PG 12 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 830RI UT WOS:000295673800020 PM 21874277 ER PT J AU Liu, JJ Zheng, YF Li, ZQ Flynn, C Welton, EJ Cribb, M AF Liu, Jianjun Zheng, Youfei Li, Zhanqing Flynn, Connor Welton, E. J. Cribb, Mareen TI Transport, vertical structure and radiative properties of dust events in southeast China determined from ground and space sensors SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Dust; Transport; Vertical structure; Radiative properties; Southeast China ID TO-BACKSCATTER RATIO; KEY AEROSOL TYPES; ASIAN DUST; LIDAR MEASUREMENTS; OPTICAL-PROPERTIES; RAMAN LIDAR; ACE-ASIA; WORLDWIDE LOCATIONS; INDIAN-OCEAN; SURFACE AB Two dust events were detected over the Yangtze Delta region of China during March 14-17 and April 25-26 in 2009 where such dust events are uncommon. The transport behavior, spatio-temporal evolution, vertical structure, direct radiative effects, as well as induced heating rates, are investigated using a combination of ground-based and satellite-based measurements, a back-trajectory analysis, an aerosol model and a radiative transfer model. Back-trajectories, wind fields and aerosol model analyses show that the first dust originated in northern/northwestern China and the second generated in the Taklimakan desert in northwest China, and traveled across the Hexi corridor and Loess Plateau to the Yangtze Delta region (the so-called "dust corridor"). The mean lidar extinction-to-backscatter ratio (LR) during the two dust events was 38.7 +/- 10.4 sr and 42.7 +/- 15.2 sr, respectively. The mean aerosol depolarization ratio (delta(a)) for the first dust event was 0.16 +/- 0.07, with a maximum value of 0.32. For the second, the mean delta(a) was around 0.19 +/- 0.06, with a maximum value of 0.29. Aerosol extinction coefficient and da profiles for the two events were similar: two aerosol layers consisting of dust aerosols and a mixture of dust and anthropogenic pollution aerosols. The topmost aerosol layer is above 3.5 km. The maximum mean aerosol extinction coefficients were 0.5 km(-1) and 0.54 km(-1) at about 0.7 km and 1.1 km, respectively. Significant effects of cooling at the surface and heating in the atmosphere were found during these dust events. Diurnal mean shortwave radiative forcings (efficiencies) at the surface, the top-of-the-atmosphere and within the atmosphere were -36.8 (-80.0), -13.6 (-29.6) and 23.2 (50.4) W m(-2), respectively, during the first dust event, and -48.2 (-70.9), -21.4 (-31.5) and 26.8 (39.4) W m(-2), respectively, during the second dust event. Maximum heating rates occurred at 0.7 km during the first dust event and at 1.1 km during the second dust event, with a maximum value of 2.74 K day(-1) for each case. This significant atmospheric heating induced by elevated dust aerosol layers can affect convection and stability in the lower troposphere. Published by Elsevier Ltd. C1 [Liu, Jianjun; Zheng, Youfei; Li, Zhanqing] Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Atmospher Environm Monitoring & P, Nanjing, Peoples R China. [Liu, Jianjun; Li, Zhanqing; Cribb, Mareen] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA. [Liu, Jianjun; Li, Zhanqing; Cribb, Mareen] Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA. [Flynn, Connor] Pacific NW Natl Lab, Richland, WA 99352 USA. [Welton, E. J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Li, ZQ (reprint author), Beijing Normal Univ, Lab Earth Surface Proc & Resource Ecol, Coll Global Change & Earth Syst Sci, Beijing 100875, Peoples R China. EM zli@atmos.umd.edu RI Welton, Ellsworth/A-8362-2012; Liu, Jianjun/F-4673-2014; Li, Zhanqing/F-4424-2010; Cribb, Maureen/K-1341-2013 OI Li, Zhanqing/0000-0001-6737-382X; Cribb, Maureen/0000-0002-9745-3676 FU National Basic Research Program of China [2006CB403705, 2011CB403405]; DOE [DEFG0208ER64571]; NASA [NNX08AH71G] FX This study was supported by the National Basic Research Program of China (2006CB403705 and 2011CB403405), DOE (DEFG0208ER64571), and NASA (NNX08AH71G). NR 57 TC 18 Z9 20 U1 1 U2 23 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD NOV PY 2011 VL 45 IS 35 BP 6469 EP 6480 DI 10.1016/j.atmosenv.2011.04.031 PG 12 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 830JR UT WOS:000295653800022 ER PT J AU Phan, AV Guduru, V Salvadori, A Gray, LJ AF Phan, A. -V. Guduru, V. Salvadori, A. Gray, L. J. TI Frequency domain analysis by the exponential window method and SGBEM for elastodynamics SO COMPUTATIONAL MECHANICS LA English DT Article DE Frequency domain analysis; Exponential window method; Symmetric-Galerkin boundary element method; Elastodynamics ID BOUNDARY-ELEMENT METHOD; INTENSITY FACTOR COMPUTATIONS; DYNAMIC FRACTURE-ANALYSIS; CRACK PROBLEMS; INTEGRALS AB Dynamic analysis of a system can be carried out either in the time or frequency domain. Time responses/ histories of this system may be directly obtained using time-domain analysis. In case of frequency domain analysis in the Fourier space, the inverse fast Fourier transform (inverse FFT) would naturally be an appropriate choice for converting frequency solutions to the desired time responses. However, the standard FFT can not be applied to undamped systems as the free-vibration terms of these systems never decay which violates the periodic nature of the standard FFT algorithm. In addition, the FFT may be computationally expensive for lightly damped systems. An alternative to overcome the above limitations is the so-called exponential window method (EWM) commonly used in digital signal processing. This paper presents a combination of the EWM and the symmetric-Galerkin boundary element method for 2-D elastodynamic analysis in the frequency domain of undamped and lightly damped systems. Several numerical examples, including fracture problems, are given to illustrate the efficiency and accuracy of the proposed frequency domain analysis. C1 [Phan, A. -V.; Guduru, V.] Univ S Alabama, Dept Mech Engn, Mobile, AL 36688 USA. [Salvadori, A.] Univ Brescia, DICATA, I-25123 Brescia, Italy. [Gray, L. J.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Phan, AV (reprint author), Univ S Alabama, Dept Mech Engn, Mobile, AL 36688 USA. EM vphan@jaguar1.usouthal.edu RI Salvadori, Alberto/C-7225-2008 OI Salvadori, Alberto/0000-0002-4875-7059 FU NSF [CMMI-0653796]; NASA [NNM07AA09A-03]; Office of Advanced Scientific Computing Research, U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC FX This research was supported in part by the NSF Grant CMMI-0653796 and NASA Grant NNM07AA09A-03 to the first named author, and by the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC, to the fourth named author. NR 41 TC 6 Z9 6 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0178-7675 J9 COMPUT MECH JI Comput. Mech. PD NOV PY 2011 VL 48 IS 5 BP 615 EP 630 DI 10.1007/s00466-011-0610-9 PG 16 WC Mathematics, Interdisciplinary Applications; Mechanics SC Mathematics; Mechanics GA 832ZN UT WOS:000295850300008 ER PT J AU Zimmerman, SRH Hemming, SR Hemming, NG Tomascak, PB Pearl, C AF Zimmerman, Susan R. H. Hemming, Sidney R. Hemming, N. Gary Tomascak, Paul B. Pearl, Crystal TI High-resolution chemostratigraphic record of late Pleistocene lake-level variability, Mono Lake, California SO GEOLOGICAL SOCIETY OF AMERICA BULLETIN LA English DT Article ID PAST 250,000 YEARS; GREAT-BASIN; GEOMAGNETIC EXCURSIONS; RADIOCARBON CHRONOLOGY; PALEOCLIMATE RECORD; LASCHAMP EXCURSION; SIERRA-NEVADA; SUMMER LAKE; CORE OL-92; OWENS LAKE AB The study of abrupt changes in global climate requires high-resolution records for which the connection to the climate system is well understood. Because lake systems are by their nature unique, ground truthing of geochemical measurements against directly observable physical evidence is required. The Mono Lake basin exposes multiple outcrops of lake sediments deposited during the last glacial period, providing the opportunity to reconstruct lake-level changes through stratigraphy-based interpretation of high-resolution records. Here we present a record of bulk-sediment carbonate derived from overlapping sections in three outcrops around the Mono Lake basin. We interpret this record as a reflection of lake-level variation, based on well-exposed stratigraphy and sedimentary facies changes. The co-variation of lake level with Sr isotopes measured in ostracodes is interpreted to reflect increased proportion of water supplied from the eastern basin during wet times. This high carbonate-high lake-level relationship is the opposite of the high carbonate-low lake-level relationship inferred in nearby Owens Lake, a difference attributable to extreme differences in basin geometry affecting the frequency of spilling conditions and resultant lake chemistry. C1 [Zimmerman, Susan R. H.; Hemming, Sidney R.] Columbia Univ, Dept Earth & Environm Sci, Palisades, NY 10964 USA. [Zimmerman, Susan R. H.; Hemming, Sidney R.] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA. [Hemming, N. Gary; Pearl, Crystal] CUNY Queens Coll, Sch Earth & Environm Sci, Flushing, NY 11367 USA. [Tomascak, Paul B.] SUNY Coll Oswego, Dept Earth Sci, Oswego, NY 13126 USA. RP Zimmerman, SRH (reprint author), Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. EM zimmerman17@llnl.gov RI Zimmerman, Susan/A-3351-2013 FU National Science Foundation (NSF) [OCE99-07290]; Lamont-Doherty Earth Observatory (LDEO) Climate Center Committee; Geological Society of America; American Chemical Society; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work would not have been possible without the comprehensive, detailed study of the Mono Lake basin presented in the dissertation of Kenneth R. Lajoie. In addition, extensive comments and figures provided by him greatly improved this manuscript; his contributions are gratefully acknowledged. We thank S. Stine, S. Searle, and K. Tamulonis for fieldwork and discussions, J. Bischoff for his advice and guidance, W. Cassata for providing his RPI correlations, G. Bench for his unflagging support, and A. Cohen, J. Oviatt, and B. Singer (Associate Editor) for encouraging reviews. SRHZ was supported by a National Science Foundation (NSF) Graduate Research Fellowship and NSF grant OCE99-07290; fieldwork was funded by the Lamont-Doherty Earth Observatory (LDEO) Climate Center Committee and the Geological Society of America; additional funding was provided by the American Chemical Society. This work performed partly under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This is LDEO contribution #7420. NR 66 TC 14 Z9 14 U1 0 U2 13 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0016-7606 J9 GEOL SOC AM BULL JI Geol. Soc. Am. Bull. PD NOV-DEC PY 2011 VL 123 IS 11-12 BP 2320 EP 2334 DI 10.1130/B30377.1 PG 15 WC Geosciences, Multidisciplinary SC Geology GA 827CC UT WOS:000295402600013 ER PT J AU Lee, MW Park, JJ Kim, DY Yoon, SS Kim, HY Kim, DH James, SC Chandra, S Coyle, T Ryu, JH Yoon, WH Park, DS AF Lee, M. W. Park, J. J. Kim, D. Y. Yoon, S. S. Kim, H. Y. Kim, D. H. James, S. C. Chandra, S. Coyle, Thomas Ryu, J. H. Yoon, W. H. Park, D. S. TI Optimization of supersonic nozzle flow for titanium dioxide thin-film coating by aerosol deposition SO JOURNAL OF AEROSOL SCIENCE LA English DT Article DE Aerosol deposition; Supersonic nozzle flow; Shockwave; Nozzle optimization; Computational fluid dynamics ID DYNAMIC SPRAY PROCESS; COLD SPRAY; PARTICLE-VELOCITY; ROOM-TEMPERATURE; NUMERICAL-SIMULATION; OPTIMAL-DESIGN; MECHANISM; POWDER; JET AB Aerosol deposition (AD) is an efficient technique for customized coating of various substrates. The small particles of AD yield a dense coating layer with small voids. AD is amenable to rapid coating (mass production), thus, it is economically attractive. Low-temperature AD coating is desirable because it minimizes the thermal degradation of the substrate. An optimized low-cost AD coating technique is of significant interest to solar-cell engineers seeking to reduce manufacturing costs. While most previous studies ignore the importance of nozzle geometry on coating performance, this paper examines non-optimized nozzles and commensurate shockwaves using computational fluid dynamics (CFD). The optimized nozzle geometry obtained from CFD can rapidly prototype nozzles. The CFD-designed nozzles with optimized geometry yielded significantly improved coating quality over non-optimized nozzles. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Lee, M. W.; Park, J. J.; Kim, D. Y.; Yoon, S. S.; Kim, H. Y.] Korea Univ, Dept Mech Engn, Seoul 136713, South Korea. [Kim, D. H.] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea. [James, S. C.] Sandia Natl Labs, Livermore, CA USA. [Chandra, S.; Coyle, Thomas] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON, Canada. [Ryu, J. H.; Yoon, W. H.; Park, D. S.] Korea Inst Mat Sci, Funct Ceram Res Grp, Chang Won 641831, Kyungnam, South Korea. RP Yoon, SS (reprint author), Korea Univ, Dept Mech Engn, Seoul 136713, South Korea. EM skyoon@korea.ac.kr RI Lee, MW/F-2120-2013; OI James, Scott/0000-0001-7955-0491 FU Korea Institute of Energy Technology Evaluation and Planning (KETEP) [2010-3010010011]; Ministry of Knowledge Economy of Korea; Center for Inorganic Photovoltaic Materials [NRF-2011-0007182, NRF-2010-D00013]; Ministry of Education, Science and Technology [2010K000969] FX This work was supported by the New & Renewable Energy Program through a grant by the Korea Institute of Energy Technology Evaluation and Planning (KETEP, 2010-3010010011) and the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy of Korea. This work was also supported by the Center for Inorganic Photovoltaic Materials (NRF-2011-0007182), (NRF-2010-D00013), and the Converging Research Center Program through the Ministry of Education, Science and Technology (2010K000969). NR 31 TC 21 Z9 21 U1 1 U2 25 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0021-8502 J9 J AEROSOL SCI JI J. Aerosol. Sci. PD NOV PY 2011 VL 42 IS 11 BP 771 EP 780 DI 10.1016/j.jaerosci.2011.07.006 PG 10 WC Engineering, Chemical; Engineering, Mechanical; Environmental Sciences; Meteorology & Atmospheric Sciences SC Engineering; Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 829FW UT WOS:000295565000003 ER PT J AU Krejci, MR Wasserman, B Finney, L McNulty, I Legnini, D Vogt, S Joester, D AF Krejci, Minna R. Wasserman, Brian Finney, Lydia McNulty, Ian Legnini, Daniel Vogt, Stefan Joester, Derk TI Selectivity in biomineralization of barium and strontium SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE Biomineralization; Plant physiology; Ion selectivity; Desmid green algae; X-ray fluorescence microscopy ID X-RAY-FLUORESCENCE; SACCHAROMYCES-CEREVISIAE; SULFATE TRANSPORTERS; CLOSTERIUM-ACEROSUM; CALCIUM-TRANSPORT; DESMID CLOSTERIUM; AQUEOUS-SOLUTIONS; WETLAND BIOFILMS; SOLID-SOLUTIONS; TRACE-ELEMENTS AB The desmid green alga Closterium moniliferum belongs to a small number of organisms that form barite (BaSO(4)) or celestite (SrSO(4)) biominerals. The ability to sequester Sr in the presence of an excess of Ca is of considerable interest for the remediation of (90)Sr from the environment and nuclear waste. While most cells dynamically regulate the concentration of the second messenger Ca(2+) in the cytosol and various organelles, transport proteins rarely discriminate strongly between Ca, Sr, and Ba. Herein, we investigate how these ions are trafficked in C. moniliferum and how precipitation of (Ba,Sr)SO(4) crystals occurs in the terminal vacuoles. Towards this goal, we simultaneously visualize intracellular dynamics of multiple elements using X-ray fluorescence microscopy (XFM) of cryo-fixed/freeze-dried samples. We correlate the resulting elemental maps with ultrastructural information gleaned from freeze-fracture cryo-SEM of frozen-hydrated cells and use micro X-ray absorption near edge structure (micro-XANES) to determine sulfur speciation. We find that the kinetics of Sr uptake and efflux depend on external Ca concentrations, and Sr, Ba, and Ca show similar intracellular localization. A highly ion-selective cross-membrane transport step is not evident. Based on elevated levels of sulfate detected in the terminal vacuoles, we propose a "sulfate trap" model, where the presence of dissolved barium leads to preferential precipitation of (Ba,Sr)SO(4) due to its low solubility relative to SrSO(4) and CaSO(4). Engineering the sulfate concentration in the vacuole may thus be the most direct way to increase the Sr sequestered per cell, an important consideration in using desmids for phytoremediation of (90)Sr. (C) 2011 Elsevier Inc. All rights reserved. C1 [Krejci, Minna R.; Wasserman, Brian; Joester, Derk] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Finney, Lydia] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Krejci, Minna R.; Finney, Lydia; McNulty, Ian; Legnini, Daniel; Vogt, Stefan] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Joester, D (reprint author), Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA. EM d-joester@northwestern.edu RI Joester, Derk/B-7525-2009; Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013 OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513 FU Initiative for Sustainability and Energy at NU (ISEN); NU Undergraduate Research Grant; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was in part supported by a booster award from the Initiative for Sustainability and Energy at NU (ISEN). B.W. was supported in part by an NU Undergraduate Research Grant. Confocal microscopy and cryofixation was performed at the NU Biological Imaging Facility. SEM was performed in the EPIC facility of NUANCE Center at NU. NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State. of Illinois, and NU. Cryo-SEM was performed with the generous assistance of Roger Wepf and Falk Lucas at the Electron Microscopy Center of ETH Zurich (EMEZ). Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. We thank Dr. Barry Lai for help with XFM imaging. M.R.K. holds a Laboratory-Graduate Research Appointment at Argonne National Laboratory. NR 64 TC 17 Z9 17 U1 3 U2 43 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 J9 J STRUCT BIOL JI J. Struct. Biol. PD NOV PY 2011 VL 176 IS 2 BP 192 EP 202 DI 10.1016/j.jsb.2011.08.006 PG 11 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 833SC UT WOS:000295904200007 PM 21871966 ER PT J AU Stock, SR Veis, A Telser, A Cai, Z AF Stock, S. R. Veis, A. Telser, A. Cai, Z. TI Near tubule and intertubular bovine dentin mapped at the 250 nm level SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE Dentin; Bovine; Peritubular dentin; Intertubular dentin; Synchrotron; X-ray diffraction; X-ray fluorescence, Zinc; Calcium; Carbonated apatite; Crystallographic texture ID X-RAY-DIFFRACTION; HUMAN TEETH; PERITUBULAR DENTIN; BONE; MATRIX; MICROSCOPY; MICROPROBE; COLLAGEN; ENAMEL AB In this study, simultaneous diffraction and fluorescence mapping with a (250 nm)(2), 10.1 key synchrotron X-ray beam investigated the spatial distribution of carbonated apatite (cAp) mineral and elemental Ca (and other cations including Zn) around dentin tubules. In 1 pm thick sections of near-pulp root dentin, where peritubular dentin (PTD) is newly forming, high concentrations of Zn, relative to those in intertubular dentin (ITD), were observed adjacent to and surrounding the tubule lumens. Some but not all tubules exhibited hypercalcified collars (high Ca signal relative to the surrounding ITD), and, when present, the zone of high Ca did not extend around the tubule. Diffraction rings from cAp 00.2 and 11.2 + 21.1 + 30.0 reflections were observed, and cAp was the only crystal phase detected. Profiles of Ca, Zn and cAp diffracted intensities showed the same transitions from solid to tubule lumen, indicating the same cAp content and organization in ITD far from the tubules and adjacent to them. Further, the matching Ca and diffraction profiles demonstrated that all of the Ca is in cAp or that any noncrystalline Ca was uniformly distributed throughout the dentin. Variation of 00.2 and 11.2 + 21.1 + 30.0 diffracted intensity was consistent with the expected biaxial crystallographic texture. Extension of X-ray mapping from near 1 pm resolution to the 250 nm level, performed here for dentin and its tubules, will provide new understanding of other mineralized tissues. (C) 2011 Elsevier Inc. All rights reserved. C1 [Stock, S. R.] Northwestern Univ, Dept Mol Pharmacol & Biol Chem, Feinberg Sch Med, Chicago, IL 60611 USA. [Veis, A.; Telser, A.] Northwestern Univ, Dept Cell & Mol Biol, Feinberg Sch Med, Chicago, IL 60611 USA. [Cai, Z.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Stock, SR (reprint author), Northwestern Univ, Dept Mol Pharmacol & Biol Chem, Feinberg Sch Med, Mail Code S215,303 E Chicago Ave, Chicago, IL 60611 USA. EM s-stock@northwestern.edu FU NICDR [DE001374]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors thank Mr. Lennell Reynolds for preparing the dentin sections and Dr. M.L. Cannon for bringing MMPs role in bond weakening to our attention. The research was supported by NICDR grant DE001374 (to AV). Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 36 TC 13 Z9 13 U1 1 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 EI 1095-8657 J9 J STRUCT BIOL JI J. Struct. Biol. PD NOV PY 2011 VL 176 IS 2 BP 203 EP 211 DI 10.1016/j.jsb.2011.07.014 PG 9 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 833SC UT WOS:000295904200008 PM 21821132 ER PT J AU Berman, GP Chumak, AA Kamenev, DI Kinion, D Tsifrinovich, VI AF Berman, G. P. Chumak, A. A. Kamenev, D. I. Kinion, D. Tsifrinovich, V. I. TI NON-DEMOLITION ADIABATIC MEASUREMENT OF THE PHASE QUBIT STATE SO QUANTUM INFORMATION & COMPUTATION LA English DT Article DE phase qubit; adiabatic measurement; resonator AB An adiabatic method for a single-shot non-demolition measurement of the phase qubit is suggested. The qubit is inductively coupled to a low-frequency resonator, which in turn is connected with a classical measurement device (phase meter). The resonator drives adiabatic oscillations of the supercurrent in the qubit loop. The back reaction of the qubit loop on the resonator depends on the qubit state. Measuring the phase shift of the resonator's oscillations one can determine the state of the qubit. Numerical computations with available experimental parameters show that the phase difference between the two qubit states increases at a rate of 0.0044 rad/ns with the fidelity of about 0.9989 and the measurement time of about 100 ns. The fidelity of the measurement is estimated taking into consideration possible quantum transitions inside and outside the qubit manifold. An increase of the phase difference is possible but it is linked to a reduction of the fidelity. The requirements for the reproducibility of the qubit and resonator parameters are formulated. C1 [Berman, G. P.; Chumak, A. A.; Kamenev, D. I.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Chumak, A. A.] Natl Acad Sci, Inst Phys, UA-28 Kiev, Ukraine. [Kamenev, D. I.] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. [Kinion, D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Tsifrinovich, V. I.] NYU, Polytech Inst, Dept Appl Phys, MetroTech Ctr 6, Brooklyn, NY 11201 USA. RP Berman, GP (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. FU U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; Lawrence Livermore National Laboratory [DE-AC52- 07NA27344]; Office of the Director of National Intelligence (ODNI); Intelligence Advanced Research Projects Activity (IARPA) FX This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 and by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344, and was funded by the Office of the Director of National Intelligence (ODNI), and Intelligence Advanced Research Projects Activity (IARPA). All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of IARPA, the ODNI, or the U.S. Government. NR 20 TC 1 Z9 1 U1 2 U2 3 PU RINTON PRESS, INC PI PARAMUS PA 565 EDMUND TERRACE, PARAMUS, NJ 07652 USA SN 1533-7146 J9 QUANTUM INF COMPUT JI Quantum Inform. Comput. PD NOV PY 2011 VL 11 IS 11-12 BP 1045 EP 1065 PG 21 WC Computer Science, Theory & Methods; Physics, Particles & Fields; Physics, Mathematical SC Computer Science; Physics GA 830JC UT WOS:000295652300012 ER PT J AU Kucerka, N Nieh, MP Katsaras, J AF Kucerka, Norbert Nieh, Mu-Ping Katsaras, John TI Fluid phase lipid areas and bilayer thicknesses of commonly used phosphatidylcholines as a function of temperature SO BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES LA English DT Article DE Area per lipid; Bilayer structure; Fluid phase; Neutron scattering; X-ray scattering; Phosphatidylcholine ID MOLECULAR-DYNAMICS SIMULATIONS; X-RAY-SCATTERING; ANGLE NEUTRON-SCATTERING; UNSATURATED PHOSPHATIDYLCHOLINES; UNILAMELLAR VESICLES; MEMBRANE; CHOLESTEROL; DIFFRACTION; CHAIN; WATER AB The structural parameters of fluid phase bilayers composed of phosphatidylcholines with fully saturated, mixed, and branched fatty acid chains, at several temperatures, have been determined by simultaneously analyzing small-angle neutron and X-ray scattering data. Bilayer parameters, such as area per lipid and overall bilayer thickness have been obtained in conjunction with intrabilayer structural parameters (e.g. hydrocarbon region thickness). The results have allowed us to assess the effect of temperature and hydrocarbon chain composition on bilayer structure. For example, we found that for all lipids there is, not surprisingly, an increase in fatty acid chain trans-gauche isomerization with increasing temperature. Moreover, this increase in trans-gauche isomerization scales with fatty acid chain length in mixed chain lipids. However, in the case of lipids with saturated fatty acid chains, trans-gauche isomerization is increasingly tempered by attractive chain-chain van der Waals interactions with increasing chain length. Finally, our results confirm a strong dependence of lipid chain dynamics as a function of double bond position along fatty acid chains. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved. C1 [Kucerka, Norbert; Katsaras, John] CNR, Canadian Neutron Beam Ctr, Chalk River, ON K0J 1J0, Canada. [Kucerka, Norbert] Comenius Univ, Fac Pharm, Dept Phys Chem Drugs, Bratislava 83232, Slovakia. [Nieh, Mu-Ping] Univ Connecticut, Inst Mat Sci, Dept Chem Mat & Biomol Engn, Storrs, CT 06269 USA. [Katsaras, John] Oak Ridge Natl Lab, Neutron Scattering Sci Div, Oak Ridge, TN 37831 USA. RP Kucerka, N (reprint author), CNR, Canadian Neutron Beam Ctr, Chalk River, ON K0J 1J0, Canada. EM Norbert.Kucerka@nrc.gc.ca OI Nieh, Mu-Ping/0000-0003-4462-8716; Katsaras, John/0000-0002-8937-4177 FU Office of Biological and Environmental Research at Oak Ridge National Laboratory's (ORNL) Center for Structural Molecular Biology (CSMB); UT-Battelle, LLC [DE-AC05-000R2275]; National Science Foundation [DMR-0944772]; Cornell High Energy Synchrotron Source (CHESS); National Institutes of Health/National Institute of General Medical Sciences under National Science Foundation [DMR-0225180]; ORNL's Laboratory Directed Research and Development (LORD); Development (LORD) program FX This work acknowledges the support of the Office of Biological and Environmental Research at Oak Ridge National Laboratory's (ORNL) Center for Structural Molecular Biology (CSMB) through the utilization of facilities supported by the U.S. Department of Energy, managed by UT-Battelle, LLC under contract no. DE-AC05-000R2275, facilities of the National Institute of Standards and Technology (NIST) supported in part by the National Science Foundation under agreement no. DMR-0944772, and the Cornell High Energy Synchrotron Source (CHESS), which is supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under National Science Foundation award DMR-0225180. JK is partially supported by ORNL's Laboratory Directed Research and Development (LORD) program. NR 58 TC 207 Z9 207 U1 9 U2 93 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0005-2736 J9 BBA-BIOMEMBRANES JI Biochim. Biophys. Acta-Biomembr. PD NOV PY 2011 VL 1808 IS 11 BP 2761 EP 2771 DI 10.1016/j.bbamem.2011.07.022 PG 11 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 825AD UT WOS:000295242400015 PM 21819968 ER PT J AU Ba, XL Hadjiargyrou, M DiMasi, E Meng, YZ Simon, M Tan, ZK Rafailovich, MH AF Ba, Xiaolan Hadjiargyrou, Michael DiMasi, Elaine Meng, Yizhi Simon, Marcia Tan, Zhongkui Rafailovich, Miriam H. TI The role of moderate static magnetic fields on biomineralization of osteoblasts on sulfonated polystyrene films SO BIOMATERIALS LA English DT Article DE Static magnetic fields; Sulfonated polystyrene copolymer; Osteoblast; Alkaline phosphate; Osteocalcin; Hydroxyapatite ID BONE-FORMATION; IN-VITRO; PROLIFERATION; ORIENTATION; SURFACE; SIZE AB We have investigated the effects of moderate static magnetic fields (SMFs) on murine MC3T3-E1 osteoblasts, and found that they enhance proliferations and promote differentiation. The increase in proliferation rates in response to SMFs was greater in cultures grown on partially sulfonated polytstyrene (SPS, degree of sulfonation: 33%) than in cultures grown on tissue culture plastic. We have previously shown that when the degree of sulfonation exceeded a critical value (12%) [1], spontaneous fibrillogenesis occured which allowed for direct observation of the ECM fibrillar organization under the influence of external fields. We found that the ECM produced in cultures grown on the SPS in the presence of the SMFs assembled into a lattice with larger dimensions than the ECM of the cultures grown in the absence of SMFs. During the early stages of the biomineralization process (day 7), the SMF exposed cultures also templated mineral deposition more rapidly than the control cultures. The rapid response is attributed to orientation of diamagnetic ECM proteins already present in the serum, which could then initiate further cellular signaling. SMFs also influenced late stage osteoblast differentiation as measured by the increased rate of osteocalcin secretion and gene expression beginning 15 days after SFM exposure. This correlated with a large increase in mineral deposition, and in cell modulus. GIXD and EDXS analysis confirmed early deposition of crystalline hydroxyapatite. Previous studies on the effects of moderate SMF had focused on cellular gene and protein expression, but did not consider the organization of the ECM fibers. Our ability to form these fibers has allowed us explore this additional effect and highlight its significance in the initiation of the biomineralization process. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Ba, Xiaolan; Meng, Yizhi; Rafailovich, Miriam H.] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. [Hadjiargyrou, Michael] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. [DiMasi, Elaine] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Simon, Marcia] SUNY Stony Brook, Sch Dent Med, Dept Oral Biol & Pathol, Stony Brook, NY 11794 USA. [Tan, Zhongkui] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. RP Ba, XL (reprint author), SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY 11794 USA. EM xba@ic.sunysb.edu; mrafailovich@notes.cc.sunysb.edu RI Meng, Yizhi/B-1233-2008 FU NSF-MRSEC [DMR0606387]; Brookhaven National Laboratory-Stony Brook University; USDOE [DE-AC02-98CH10886] FX This work is supported by NSF-MRSEC Program (DMR0606387), Brookhaven National Laboratory-Stony Brook University Seed Grand Program. Research carried out in part at the Center for Functional Nanomaterials and National Synchrotron Light Source, Brookhaven National Laboratory, which is supported under USDOE Contract DE-AC02-98CH10886. NR 27 TC 9 Z9 9 U1 0 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-9612 J9 BIOMATERIALS JI Biomaterials PD NOV PY 2011 VL 32 IS 31 BP 7831 EP 7838 DI 10.1016/j.biomaterials.2011.06.053 PG 8 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 822TN UT WOS:000295072600009 PM 21820169 ER PT J AU Liu, W Zhang, XH Xu, G Bradford, PD Wang, X Zhao, HB Zhang, YY Jia, QX Yuan, FG Li, QW Qiu, YP Zhu, YT AF Liu, Wei Zhang, Xiaohua Xu, Geng Bradford, Philip D. Wang, Xin Zhao, Haibo Zhang, Yingying Jia, Quanxi Yuan, Fuh-Gwo Li, Qingwen Qiu, Yiping Zhu, Yuntian TI Producing superior composites by winding carbon nanotubes onto a mandrel under a poly(vinyl alcohol) spray SO CARBON LA English DT Article ID SHEET/BISMALEIMIDE NANOCOMPOSITES; MECHANICAL-PROPERTIES; MACROSCOPIC FIBERS; POLYMER COMPOSITES; HIGH-STRENGTH; PERFORMANCE; LOAD AB A simple method for processing high-performance carbon nanotube (CNT)/poly(vinyl alcohol) (PVA) composites by coupling the spraying of a PVA solution with the continuous winding of CNT sheets from an array onto a rotating mandrel is reported. This method allows the CNT composites to have a high CNT volume fraction, while having a high degree of alignment, long CNTs, and good integration with the matrix, which are extremely difficult to realize simultaneously by other processes. As a result, the composites have a toughness, strength and electrical conductivity up to 100 J/g, 1.8 GPa and 780 S/cm, respectively. Such a one-step synthesis process is promising for industrial productions and also works for different types of polymers. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Zhang, Xiaohua; Xu, Geng; Li, Qingwen] Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Peoples R China. [Liu, Wei; Qiu, Yiping] Donghua Univ, Coll Text, Shanghai 201620, Peoples R China. [Liu, Wei; Bradford, Philip D.; Wang, Xin; Zhao, Haibo; Yuan, Fuh-Gwo; Zhu, Yuntian] N Carolina State Univ, Raleigh, NC 27695 USA. [Zhang, Yingying; Jia, Quanxi] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Li, QW (reprint author), Suzhou Inst Nanotech & Nanobion, Suzhou 215123, Peoples R China. EM qwli2007@sinano.ac.cn; ytzhu@ncsu.edu RI Zhu, Yuntian/B-3021-2008; Wang, Xin/F-3130-2011; Zhang, Yingying/A-7260-2009; Zhang, Xiaohua/C-9093-2011; OI Zhu, Yuntian/0000-0002-5961-7422; Zhang, Yingying/0000-0002-8448-3059; Zhang, Xiaohua/0000-0001-9008-791X; Bradford, Philip/0000-0002-4448-5033 FU Laboratory Directed Research and Development (LDRD); Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory; Chinese Ministry of Science and Technology [2009DFB50150] FX One author (W.L.) is grateful to Chinese Scholarship Council for encouragement. This study was also supported by the Laboratory Directed Research and Development (LDRD) Program and the Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory, North Carolina Space Grant, and International Collaboration Project (2009DFB50150) by Chinese Ministry of Science and Technology. NR 30 TC 50 Z9 52 U1 10 U2 66 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD NOV PY 2011 VL 49 IS 14 BP 4786 EP 4791 DI 10.1016/j.carbon.2011.06.089 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 825UT UT WOS:000295308300021 ER PT J AU Hemrick, JG Lara-Curzio, E Loveland, ER Sharp, KW Schartow, R AF Hemrick, James G. Lara-Curzio, Edgar Loveland, Erick R. Sharp, Keith W. Schartow, Robert TI Woven graphite fiber structures for use in ultra-light weight heat exchangers SO CARBON LA English DT Article AB Lightweight, robust woven graphite-fiber structures were developed for heat exchangers which provide high conductivity paths along the direction of the graphite fibers. These structures were produced and characterized for air permeability/pressure drop and thermal (heat transfer) performance. Results indicate that the materials are suitable for use in ultra-light weight heat exchanger applications such as vehicle radiators or other areas where light weight, compact, conformable heat transfer devices are needed. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Hemrick, James G.; Lara-Curzio, Edgar] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Sharp, Keith W.] 3TEX Inc, Cary, NC 27511 USA. [Schartow, Robert] Avl Technol, Asheville, NC 28801 USA. [Loveland, Erick R.] Y 12 Natl Secur Complex, Oak Ridge, TN 37831 USA. RP Hemrick, JG (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM hemrickjg@ornl.gov FU Department of Energy Office of Energy Efficiency and Renewable Energy FX This work was supported by the Department of Energy Office of Energy Efficiency and Renewable Energy. NR 15 TC 5 Z9 6 U1 3 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD NOV PY 2011 VL 49 IS 14 BP 4820 EP 4829 DI 10.1016/j.carbon.2011.06.094 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 825UT UT WOS:000295308300025 ER PT J AU Li, WJ Law, ME Westmoreland, PR Kasper, T Hansen, N Kohse-Hoinghaus, K AF Li, Wenjun Law, Matthew E. Westmoreland, Phillip R. Kasper, Tina Hansen, Nils Kohse-Hoeinghaus, Katharina TI Multiple benzene-formation paths in a fuel-rich cyclohexane flame SO COMBUSTION AND FLAME LA English DT Article DE Cyclohexane; Benzene; Mechanism; Oxidation; MBMS; Aromatics ID PHOTOIONIZATION CROSS-SECTIONS; HYDROCARBON GROWTH-PROCESSES; LOW-TEMPERATURE OXIDATION; BEAM MASS-SPECTROMETRY; GAS-PHASE OXIDATION; LOW-PRESSURE FLAMES; SHOCK-TUBE; COMBUSTION CHEMISTRY; PROPARGYL RADICALS; NONPREMIXED FLAMES AB Detailed data and modeling of cyclohexane flames establish that a mixture of pathways contributes to benzene formation and that this mixture changes with stoichiometry. Mole-fraction profiles are mapped for more than 40 species in a fuel-rich, premixed flat flame (phi = 2.0, cyclohexane/O(2)/30% Ar, 30 Torr, 50.0 cm/s) using molecular-beam mass spectrometry with VUV-photoionization at the Advanced Light Source of the Lawrence Berkeley National Laboratory. The use of a newly constructed set of reactions leads to an excellent simulation of this flame and an earlier stoichiometric flame (M.E. Law et al., Proc. Combust. Inst. 31 (2007) 565-573), permitting analysis of the contributing mechanistic pathways. Under stoichiometric conditions, benzene formation is found to be dominated by stepwise dehydrogenation of the six-membered ring with cyclohexadienyl reversible arrow benzene + H being the final step. This finding is in accordance with recent literature. Dehydrogenation of the six-membered ring is also found to be a dominant benzene-formation route under fuel-rich conditions, at which H(2) elimination from 1,3-cyclohexadiene contributes even more than cyclohexadienyl decomposition. Furthermore, at the fuel-rich condition, additional reactions make contributions, including the direct route via 2C(3)H(3) reversible arrow benzene and more importantly the H-assisted isomerization of fulvene formed from i-/n-C(4)H(5) + C(2)H(2), C(3)H(3) + allyl, and C(3)H(3) + C(3)H(3). Smaller contributions towards benzene formation arise from C(4)H(3) + C(2)H(3), 1,3-C(4)H(6) + C(2)H(3), and potentially via n-C(4)H(5) + C(2)H(2). This diversity of pathways is shown to result nominally from the temperature and the concentrations of benzene precursors present in the benzene-formation zone, which are ultimately due to the feed stoichiometry. (C) 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Li, Wenjun; Westmoreland, Phillip R.] N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. [Law, Matthew E.; Westmoreland, Phillip R.] Univ Massachusetts, Dept Chem Engn, Amherst, MA 01003 USA. [Law, Matthew E.; Kasper, Tina; Hansen, Nils] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Kohse-Hoeinghaus, Katharina] Univ Bielefeld, Dept Chem, D-33615 Bielefeld, Germany. RP Westmoreland, PR (reprint author), N Carolina State Univ, Dept Chem & Biomol Engn, Raleigh, NC 27695 USA. EM phil.westmoreland@ncsu.edu; nhansen@sandia.gov RI Kohse-Hoinghaus, Katharina/A-3867-2012; Hansen, Nils/G-3572-2012; Kasper, Tina/A-2975-2017 OI Kasper, Tina/0000-0003-3993-5316 FU Office of Basic Energy Sciences (BES), U.S. Department of Energy (USDOE) [DE-FG02-91ER14192]; DFG [KO 1363/18-3]; NNSA [DE-AC04-94-AL85000]; USDOE/BES [DE-AC02-05CH11231]; National Center for Supercomputing Applications [TG-CTS090056] FX We thank Paul Fugazzi and Sarah Ferrell for technical assistance and Juan Wang and Terrill A. Cool for their contributions in collecting the flame and cross-section data. We are also grateful to James A. Miller for sharing his reaction set, which we used to test our results. This work was supported by the Office of Basic Energy Sciences (BES), U.S. Department of Energy (USDOE), under DE-FG02-91ER14192 (PRW) and by the DFG under KO 1363/18-3 (KKH). Sandia is a multi-program laboratory operated by Sandia Corporation for NNSA under contract DE-AC04-94-AL85000. The Advanced Light Source is supported by USDOE/BES under DE-AC02-05CH11231. This work was partially supported by the National Center for Supercomputing Applications under grant number TG-CTS090056 and used the Cobalt supercomputer. NR 76 TC 23 Z9 25 U1 5 U2 46 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD NOV PY 2011 VL 158 IS 11 BP 2077 EP 2089 DI 10.1016/j.combustflame.2011.03.014 PG 13 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 827JK UT WOS:000295424600001 ER PT J AU Prager, J Najm, HN Valorani, M Goussis, DA AF Prager, J. Najm, H. N. Valorani, M. Goussis, D. A. TI Structure of n-heptane/air triple flames in partially-premixed mixing layers SO COMBUSTION AND FLAME LA English DT Article DE Edge flames; Triple flames; n-heptane ID SKELETAL MECHANISM GENERATION; SEMIIMPLICIT NUMERICAL SCHEME; AIR EDGE FLAME; DIFFUSION FLAMES; REACTING FLOW; CSP METHOD; AXISYMMETRICAL JET; METHANE; PROPAGATION; OXIDATION AB Results of a detailed numerical analysis of an n-heptane/air edge flame are presented. The equations of a low-Mach number reacting flow are solved in a two-dimensional domain using detailed models for species transport and chemical reactions. The reaction mechanism involves 560 species and 2538 reversible reactions. We consider an edge flame that is established in a mixing layer with a uniform velocity field. The mixing layer spans the equivalence ratios between pure air and 3.5. The detailed model enables us to analyze the chemical structure of the n-heptane edge flame. We identify major species profiles, discuss reactions causing the heat-release, and exploit Computational Singular Perturbation (CSP) to discuss the main fuel-consumption pathways and the structure of explosive modes in the edge flame. This analysis is performed for several regions in the edge flame to discuss the different processes at work in the premixed branches and the trailing diffusion flame. We compare different cuts through the 2D edge flame to canonical 1D premixed and diffusion flames. We also analyze the accuracy of a skeletal mechanism which was previously developed using CSP from homogeneous ignition calculations of n-heptane and show that a significant reduction in size of the mechanism can be achieved without a significant decrease in accuracy of the edge flame computation. This skeletal mechanism is then used to study the effects of increasing the equivalence ratio in the partially-premixed fuel stream. (C) 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Prager, J.; Najm, H. N.] Sandia Natl Labs, Livermore, CA 94551 USA. [Valorani, M.] Univ Roma La Sapienza, Rome, Italy. [Goussis, D. A.] Natl Tech Univ Athens, Athens, Greece. RP Prager, J (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM jprager@sandia.gov OI VALORANI, Mauro/0000-0002-8260-6297 FU US Department of Energy (DOE), Office of Basic Energy Sciences (BES) Division of Chemical Sciences, Geosciences, and Biosciences; United States Department of Energy [DE-AC04-94-AL85000]; Italian Ministry of University and Research (MIUR); Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences (BES) Division of Chemical Sciences, Geosciences, and Biosciences. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract No. DE-AC04-94-AL85000. MV acknowledges the support of the Italian Ministry of University and Research (MIUR). This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 58 TC 16 Z9 16 U1 1 U2 10 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD NOV PY 2011 VL 158 IS 11 BP 2128 EP 2144 DI 10.1016/j.combustflame.2011.03.017 PG 17 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 827JK UT WOS:000295424600005 ER PT J AU Dahms, RN Drake, MC Fansler, TD Kuo, TW Peters, N AF Dahms, Rainer N. Drake, Michael C. Fansler, Todd D. Kuo, T. -W. Peters, N. TI Understanding ignition processes in spray-guided gasoline engines using high-speed imaging and the extended spark-ignition model SparkCIMM. Part A: Spark channel processes and the turbulent flame front propagation SO COMBUSTION AND FLAME LA English DT Article DE Engine; Direct-injection; Imaging; Ignition; Stratified ID LARGE-EDDY SIMULATION; BURNING VELOCITIES; COMBUSTION AB Recent high-speed imaging of ignition processes in spray-guided gasoline engines has motivated the development of the physically-based spark channel ignition monitoring model SparkCIMM, which bridges the gap between a detailed spray/vaporization model and a model for fully developed turbulent flame front propagation. Previously, both SparkCIMM and high-speed optical imaging data have shown that, in spray-guided engines, the spark plasma channel is stretched and wrinkled by the local turbulence, excessive stretching results in spark re-strikes, large variations occur in turbulence intensity and local equivalence ratio along the spark channel, and ignition occurs in localized regions along the spark channel (based upon a Karlovitz-number criteria). In this paper, SparkCIMM is enhanced by: (1) an extended flamelet model to predict localized ignition spots along the spark plasma channel, (2) a detailed chemical mechanism for gasoline surrogate oxidation, and (3) a formulation of early flame kernel propagation based on the G-equation theory that includes detailed chemistry and a local enthalpy flamelet model to consider turbulent enthalpy fluctuations. In agreement with new experimental data from broadband spark and hot soot luminosity imaging, the model establishes that ignition prefers to occur in fuel-rich regions along the spark channel. In this highly-turbulent highly-stratified environment, these ignition spots burn as quasi-laminar flame kernels. In this paper, the laminar burning velocities and flame thicknesses of these kernels are calculated along the mean turbulent flame front, using tabulated detailed chemistry flamelets over a wide range of stoichiometry and exhaust gas dilution. The criteria for flame propagation include chemical (cross-over temperature based) and turbulence (Karlovitz-number based) effects. Numerical simulations using ignition models of different physical complexity demonstrate the significance of turbulent mixture fraction and enthalpy fluctuations in the prediction of early flame front propagation. A third paper on SparkCIMM (companion paper to this one) focuses on the importance of molecular fuel properties and flame curvature on early flame propagation and compares computed flame propagation with high speed combustion imaging and computed heat release rates with cylinder pressure analysis. The goals of SparkCIMM development are to (a) enhance our fundamental understanding of ignition and combustion processes in highly-turbulent highly-stratified engine conditions, (b) incorporate that understanding into a physically-based submodel for RANS engine calculations that can be reliably used without modification for a wide range of conditions (i.e., homogeneous or stratified, low or high turbulence, low or high dilution), and (c) provide a submodel that can be incorporated into a future LES model for physically-based modeling of cycle-to-cycle variability in engines. Published by Elsevier Inc. on behalf of The Combustion Institute. C1 [Dahms, Rainer N.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Drake, Michael C.; Fansler, Todd D.; Kuo, T. -W.] Gen Motors Global Res & Dev, Prop Syst Res Lab, Warren, MI USA. [Peters, N.] Rhein Westfal TH Aachen, Inst Combust Technol, Aachen, Germany. RP Dahms, RN (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM Rndahms@sandia.gov FU General Motors Company FX The authors are grateful for numerous helpful discussions with Ronald R. Grover and Mark S. Huebler from the General Motors Company and with Gunter Paczko from the Institute for Combustion Technology from RWTH Aachen University. Mark S. Huebler from the General Motors Company has generated the computational meshes for the simulations. This work was funded by the General Motors Company. Fansler and Drake acknowledge the outstanding GM summer interns Isabell Duwel, Frank Zimmermann, Stephen Busch, Benjamin Bohm and Kevin Peterson and technicians Jason Ratkowski and Jerry Silvas who have contributed greatly to the experimental aspects of this paper. NR 54 TC 28 Z9 28 U1 4 U2 32 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD NOV PY 2011 VL 158 IS 11 BP 2229 EP 2244 DI 10.1016/j.combustflame.2011.03.012 PG 16 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 827JK UT WOS:000295424600014 ER PT J AU Dahms, RN Drake, MC Fansler, TD Kuo, TW Peters, N AF Dahms, Rainer N. Drake, Michael C. Fansler, Todd D. Kuo, T. -W. Peters, N. TI Understanding ignition processes in spray-guided gasoline engines using high-speed imaging and the extended spark-ignition model SparkCIMM Part B: Importance of molecular fuel properties in early flame front propagation SO COMBUSTION AND FLAME LA English DT Article DE Engine; Direct-injection; Imaging; Ignition; Stratified ID LARGE-EDDY SIMULATION; PREMIXED TURBULENT COMBUSTION; LAMINAR BURNING VELOCITIES; MARKSTEIN NUMBERS; HYDROGEN/AIR FLAMES; STRETCH; CURVATURE; TRANSPORT; PRESSURE AB Recent high-speed imaging of ignition processes in spray-guided gasoline engines has motivated the development of the physically-based spark channel ignition monitoring model SparkCIMM, which bridges the gap between a detailed spray and vaporization model and a model for fully developed turbulent combustion. Previously, both SparkCIMM and high-speed optical imaging data have shown that, in spray-guided engines, large variations in turbulence intensity, equivalence ratio, and enthalpy along the stretched and wrinkled spark plasma channel favor localized ignition spot formations in rich-mixture regions. In combination with strong local flow velocity, multiple successful ignition events along the re-striking spark lead to early non-spherical turbulent flame fronts. In this paper, SparkCIMM is enhanced by: (1) criteria to capture localized flame extinction phenomena, (2) a formulation of early flame kernel propagation based on the G-equation theory that includes effects of non-unity Lewis numbers, and (3) an extended equation to compute turbulent burning velocities of stretched flames in stratified mixtures. Localized rich ignition along the spark leads to early flames, whose propagation is, due to initially small turbulent Damkohler numbers, significantly influenced by molecular fuel properties. The analysis reveals that non-unity Lewis number curvature effects, intensified by heavy dilution by exhaust gas recirculation, strongly affect the early flame-kernel development in spray-guided gasoline engines. In particular, these effects significantly bias the flammability limit of flame kernels towards rich-mixtures while inhibiting their propagation in lean regions. Favorable initial conditions for combustion are found in rich-mixture regions, albeit in the presence of substantial equivalence ratio fluctuations and scalar dissipation rates. This paper demonstrates that the full complexity of the model equations developed here is required to reproduce the characteristic experimental features (spark channel stretching, multiple re-strikes, localized flame kernel formation, and early turbulent flame front corrugation) of spray-guided ignition phenomena. Published by Elsevier Inc. on behalf of The Combustion Institute. C1 [Dahms, Rainer N.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. [Drake, Michael C.; Fansler, Todd D.; Kuo, T. -W.] Gen Motors Global Res & Dev, Prop Syst Res Lab, Warren, MI USA. [Peters, N.] Rhein Westfal TH Aachen, Inst Combust Technol, Aachen, Germany. RP Dahms, RN (reprint author), Sandia Natl Labs, Combust Res Facil, Livermore, CA 94551 USA. EM Rndahms@sandia.gov FU General Motors Company FX The authors are grateful for numerous helpful discussions with Ronald R. Grover and Mark S. Huebler from the General Motors Company and with Gunter Paczko from the Institute for Combustion Technology from RWTH-Aachen University. Mark S. Huebler from the General Motors Company has generated the computational meshes for the simulations. This work was funded by the General Motors Company. Fansler and Drake acknowledge the outstanding GM summer interns Isabell Duwel, Frank Zimmermann, Stephen Busch, Benjamin Bohm, and Kevin Peterson and technicians Jason Ratkowski and Jerry Silvas who have contributed greatly to the experimental aspects of this paper. NR 53 TC 15 Z9 15 U1 1 U2 25 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD NOV PY 2011 VL 158 IS 11 BP 2245 EP 2260 DI 10.1016/j.combustflame.2011.04.003 PG 16 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 827JK UT WOS:000295424600015 ER PT J AU Not, T Ziberna, F Vatta, S Quaglia, S Martelossi, S Villanacci, V Marzari, R Florian, F Vecchiet, M Sulic, AM Ferrara, F Bradbury, A Sblattero, D Ventura, A AF Not, Tarcisio Ziberna, Fabiana Vatta, Serena Quaglia, Sara Martelossi, Stefano Villanacci, Vincenzo Marzari, Roberto Florian, Fiorella Vecchiet, Monica Sulic, Ana-Marija Ferrara, Fortunato Bradbury, Andrew Sblattero, Daniele Ventura, Alessandro TI Cryptic genetic gluten intolerance revealed by intestinal antitransglutaminase antibodies and response to gluten-free diet SO GUT LA English DT Article ID TERM-FOLLOW-UP; CELIAC-DISEASE; TISSUE TRANSGLUTAMINASE; AUTOIMMUNE DISORDERS; INCREASING PREVALENCE; VILLOUS ATROPHY; AUTOANTIBODIES; RELATIVES; CHILDREN; CRITERIA AB Background and objective Antitransglutaminase (anti-TG2) antibodies are synthesised in the intestine and their presence seems predictive of future coeliac disease (CD). This study investigates whether mucosal antibodies represent an early stage of gluten intolerance even in the absence of intestinal damage and serum anti-TG2 antibodies. Methods This study investigated 22 relatives of patients with CD genetically predisposed to gluten intolerance but negative for both serum anti-TG2 antibodies and intestinal abnormalities. Fifteen subjects were symptomatic and seven were asymptomatic. The presence of immunoglobulin A anti-TG2 antibodies in the intestine was studied by creating phage-antibody libraries against TG-2. The presence of intestinal anti-TG2 antibodies was compared with the serum concentration of the intestinal fatty acid-binding protein (I-FABP), a marker for early intestinal mucosal damage. The effects of a 12-month gluten-free diet on anti-TG2 antibody production and the subjects' clinical condition was monitored. Twelve subjects entered the study as controls. Results The intestinal mucosa appeared normal in 18/22; 4 had a slight increase in intraepithelial lymphocytes. Mucosal anti-TG2 antibodies were isolated in 15/22 subjects (68%); in particular symptomatic subjects were positive in 13/15 cases and asymptomatic subjects in 2/7 cases (p=0.01). No mucosal antibodies were selected from the controls' biopsies. There was significant correlation between the presence of intestinal anti-TG2 antibodies and positive concentrations of I-FABP (p=0.0008). After a gluten-free diet, 19/22 subjects underwent a second intestinal biopsy, which showed that anti-TG2 antibodies had disappeared in 12/15 (p=0.002), while I-FABP decreased significantly (p<0.0001). The diet resolved both extraintestinal and intestinal symptoms. Conclusions A new form of genetic-dependent gluten intolerance has been described in which none of the usual diagnostic markers is present. Symptoms and intestinal anti-TG2 antibodies respond to a gluten free-diet. The detection of intestinal anti-TG2 antibodies by the phage-antibody libraries has an important diagnostic and therapeutic impact for the subjects with gluten-dependent intestinal or extraintestinal symptoms. C1 [Not, Tarcisio; Ziberna, Fabiana; Vatta, Serena; Quaglia, Sara; Martelossi, Stefano; Ferrara, Fortunato; Ventura, Alessandro] Ist Infanzia Burlo Garofolo, I-34100 Trieste, Italy. [Not, Tarcisio; Ziberna, Fabiana; Vatta, Serena; Quaglia, Sara; Martelossi, Stefano; Ferrara, Fortunato; Ventura, Alessandro] Univ Trieste, Dept Reprod Dev & Publ Hlth Sci, Trieste, Italy. [Villanacci, Vincenzo] Univ Brescia, Dept Pathol pedali Civili, Brescia, Italy. [Marzari, Roberto; Florian, Fiorella; Vecchiet, Monica; Sulic, Ana-Marija] Univ Trieste, Dept Life Sci, Trieste, Italy. [Bradbury, Andrew] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM USA. [Sblattero, Daniele] Univ Piemonte Orientale, IRCAD, Novara, Italy. [Sblattero, Daniele] Univ Piemonte Orientale, Dept Med Sci, Novara, Italy. RP Not, T (reprint author), Ist Infanzia Burlo Garofolo, Via Istria 65-1, I-34100 Trieste, Italy. EM not@burlo.trieste.it OI Not, Tarcisio/0000-0003-1059-3009; Bradbury, Andrew/0000-0002-5567-8172; Ventura, Alessandro/0000-0002-4657-1760 FU Institute of Child Health IRCCS 'Burlo Garofolo' [35/07RF]; EC Marie Curie Research Training Network [MRTN-CT-2006-036032]; Compagnia SanPaolo FX This study was supported by the following grants: grant 35/07RF from the Institute of Child Health IRCCS 'Burlo Garofolo' to TN, Compagnia SanPaolo to DS and EC Marie Curie Research Training Network (MRTN-CT-2006-036032) to RM. NR 36 TC 23 Z9 24 U1 0 U2 6 PU B M J PUBLISHING GROUP PI LONDON PA BRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H 9JR, ENGLAND SN 0017-5749 J9 GUT JI Gut PD NOV PY 2011 VL 60 IS 11 BP 1487 EP 1493 DI 10.1136/gut.2010.232900 PG 7 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 827BF UT WOS:000295399600007 PM 21471568 ER PT J AU Khanafer, K Aithal, SM AF Khanafer, K. Aithal, S. M. TI Fluid-dynamic and NOx computation in swirl burners SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Numerical; Equilibrium; Swirl burners; NOx; Emissions; Newton-Raphson ID COMBUSTION; MODELS; FLOWS; FILTRATION AB Computational fluid dynamics simulations in a swirl combustor were coupled with chemical equilibrium calculations to evaluate the effects of swirl velocity and burner wall temperature on NOx formation. The fluid-dynamic variables such as velocity, temperature, pressure and species concentrations were obtained by using the finite-element commercial software FIDAP. The chemical equilibrium system under consideration comprised 16 reactions and 20 species. The reaction set included reactions responsible for formation of NOx and reactions believed to be responsible for soot formation in rich fuel-air mixtures. The Newton-Raphson method was used to solve the nonlinear system of equations describing the formation of equilibrium products in fuel-air mixtures. The main goal of this work was to develop a fast and robust computational approach to understand the impact of various design parameters on NOx formation in gas-fired swirl burners. The results showed that increasing swirl monotonically reduced CO and unburned hydrocarbons. The reduction was as high as 5 orders of magnitude. The exit plane NOx did not monotonically decrease with increasing swirl. NOx values initially increased with increasing swirl and then decreased. The procedure outlined in this paper has potential for evaluating new burner designs and operating conditions quickly and robustly. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Khanafer, K.] Univ Michigan, Dept Biomed Engn, Vasc Mech Lab, Ann Arbor, MI 48109 USA. [Khanafer, K.] Univ Michigan, Vasc Surg Sect, Ann Arbor, MI 48109 USA. [Aithal, S. M.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Khanafer, K (reprint author), Univ Michigan, Dept Biomed Engn, Vasc Mech Lab, Ann Arbor, MI 48109 USA. EM khanafer@umich.edu; aithal@mcs.anl.gov FU Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357] FX One of the authors (S.M. Aithal) acknowledges part of the work was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. NR 32 TC 13 Z9 15 U1 2 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD NOV PY 2011 VL 54 IS 23-24 BP 5030 EP 5038 DI 10.1016/j.ijheatmasstransfer.2011.07.017 PG 9 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA 823IO UT WOS:000295115900027 ER PT J AU Delmore, JE Snyder, DC Tranter, T Mann, NR AF Delmore, James E. Snyder, Darin C. Tranter, Troy Mann, Nick R. TI Cesium isotope ratios as indicators of nuclear power plant operations SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article DE Radioactive cesium; Reactor operations; Sample AB There are multiple paths by which radioactive cesium can reach the effluent from reactor operations. The radioactive (135)Cs/(137)Cs ratios are controlled by these paths. In an effort to better understand the origin of this radiation, these (135)Cs/(137)Cs ratios in effluents from three power reactor sites have been measured in offsite samples. These ratios are different from global fallout by up to six fold and as such cannot have a significant component from this source. A cesium ratio for a sample collected outside of the plant boundary provides integration over the operating life of the reactor. A sample collected inside the plant at any given time can be much different from this lifetime ratio. The measured cesium ratios vary significantly for the three reactors and indicate that the multiple paths have widely varying levels of contributions. There are too many ways these isotopes can fractionate to be useful for quantitative evaluations of operating parameters in an offsite sample, although it may be possible to obtain limited qualitative information for an onsite sample. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Delmore, James E.; Snyder, Darin C.; Tranter, Troy; Mann, Nick R.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Delmore, JE (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM James.Delmore@inl.gov RI Snyder, Darin/B-6863-2017 OI Snyder, Darin/0000-0001-8104-4248 FU U.S. Government under U.S. Department of Energy Idaho Operations Office [DE-AC07-05ID14517] FX This manuscript has been authored by a contractor of the U.S. Government under U.S. Department of Energy Idaho Operations Office Contract No. DE-AC07-05ID14517. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. Government purposes. NR 6 TC 20 Z9 21 U1 1 U2 12 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD NOV PY 2011 VL 102 IS 11 BP 1008 EP 1011 DI 10.1016/j.jenvrad.2011.06.013 PG 4 WC Environmental Sciences SC Environmental Sciences & Ecology GA 823EF UT WOS:000295104600004 PM 21816522 ER PT J AU Ravindra, NM Michael, N Narayan, R Kim, CU Krumdick, G AF Ravindra (Ravi), Nuggehalli M. Michael, Nancy Narayan, Roger Kim, Choong-Un Krumdick, Gregory TI Foreword SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Editorial Material C1 [Ravindra (Ravi), Nuggehalli M.] NJIT, Newark, NJ 07102 USA. [Michael, Nancy; Kim, Choong-Un] UTexas Arlington, Arlington, TX USA. [Narayan, Roger] Univ N Carolina, Raleigh, NC USA. [Narayan, Roger] NCSU, Raleigh, NC USA. [Krumdick, Gregory] ANL, Lemont, IL USA. RP Ravindra, NM (reprint author), NJIT, Newark, NJ 07102 USA. EM nmravindra@gmail.com NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD NOV PY 2011 VL 42A IS 11 BP 3249 EP 3249 DI 10.1007/s11661-010-0582-y PG 1 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 822IV UT WOS:000295038900003 ER PT J AU Schneider, J Dong, L Howe, JY Meyer, HM AF Schneider, Judy Dong, Lei Howe, Jane Y. Meyer, Harry M., III TI Microstructural Characterization of Ti-6Al-4V Metal Chips by Focused Ion Beam and Transmission Electron Microscopy SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID ADIABATIC SHEAR LOCALIZATION; MECHANICAL-PROPERTIES; TITANIUM; ALLOY; DEFORMATION; DEPENDENCE; EVOLUTION; STRAIN; HEAT AB During machining, the cutting surface of a metal is subjected to high strain rates and temperatures. Due to the small mass of the formed chip, the metal is rapidly quenched, preserving the as-machined microstructure. These extreme conditions are reported to be favorable to form nanograin or ultrafine-grain microstructures. However, detailed investigation of this region is problematic due to the size of the chips and the difficulty in preserving the cutting surface microstructure during traditional transmission electron microscopy (TEM) preparation. This study investigates the use of focused ion beam (FIB) specimen preparation to preserve and TEM to image the microstructure of the secondary deformation zone (SDZ) at the cutting surface in chips of Ti-6Al-4V formed during machining. Use of the FIB allowed precise extraction of a side or transverse view specimen, which preserved the cutting surface to reveal an inhomogeneous microstructure resulting from the nonuniform distribution of strain, strain rate, and temperature. Initial imaging of a conventional TEM foil prepared from the plan view of the cutting surface revealed microstructures ranging from heavily textured to regions of fine grains. Using FIB preparation of a transverse foil, a layered microstructure was observed revealing a variation of fine grains near the cutting surface, which transitioned to coarse grains toward the free surface. At the cutting surface, a 10-nm-thick recrystallized layer was observed capping a 20-nm-thick amorphous layer. C1 [Schneider, Judy; Dong, Lei] Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA. [Howe, Jane Y.; Meyer, Harry M., III] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Schneider, J (reprint author), Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA. EM schneider@me.msstate.edu RI Howe, Jane/G-2890-2011 FU AFOSR [FA9550-07-1-0282]; Lockheed Martin/MAF; Division of Scientific User Facilities, Office of Basic Energy Sciences, United States Department of Energy; NSF-IMR [DMR.0216703, 02070615] FX The authors acknowledge the financial support provided, in part, by AFOSR Grant No. FA9550-07-1-0282, under the direction of Dr. Joan Fuller, and the Lockheed Martin/MAF, under the direction of Messrs. Randy Brown and Zhixian (Tim) Li. A portion of this research was conducted at the SHaRE User Facility, which is sponsored by the Division of Scientific User Facilities, Office of Basic Energy Sciences, United States Department of Energy. The FE-SEM at MSU was purchased under NSF-IMR Grant Nos. DMR.0216703 and 02070615. NR 21 TC 3 Z9 3 U1 2 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD NOV PY 2011 VL 42A IS 11 BP 3527 EP 3533 DI 10.1007/s11661-011-0765-1 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 822IV UT WOS:000295038900033 ER PT J AU Mills, E Jacobson, A AF Mills, Evan Jacobson, Arne TI From carbon to light: a new framework for estimating greenhouse gas emissions reductions from replacing fuel-based lighting with LED systems SO ENERGY EFFICIENCY LA English DT Article DE Clean development mechanism; Energy efficiency; LED lighting; Carbon emissions; Developing countries AB There is considerable well-intended, yet wishful anticipation about reducing greenhouse gas emissions by replacing fuel-based lighting in the developing world with grid-independent light-emitting diode (LED) lighting systems. Most estimates gloss over important practical realities that stand to erode a genuinely significant potential. The Clean Development Mechanism (CDM) is the leading system for quantifying the benefits of such projects in developing countries and embodying them in a market-based platform for trading carbon credits. However, compliance with methodologies for highly decentralized, small-scale energy saving projects currently employed in the CDM is viewed by developers of as onerous, time-consuming, and costly. In recognition of the problem, the CDM has recently placed priority on improved methodologies for estimating carbon dioxide reductions from displacement of fuel-based lighting with energy-efficient alternatives. The over-arching aim is to maintain environmental integrity without stifling sustainable emission-reduction projects and programs in the field. This article informs this process by laying out a new framework that shifts the analytical focus from highly costly yet narrow and uncertain baseline estimations to simplified methods based primarily on deemed values that focus on replacement lighting system quality and performance characteristics. The result-many elements of which have been adopted in a new methodology approved by the CDM-is more structured and rigorous than methodologies used for LED projects in the past and yet simpler to implement, i.e., entailing fewer transaction costs. Applying this new framework, we find that some off-grid lighting technologies can be expected to yield little or no emissions reductions, while well-designed ones, using products independently certified to have high quality and durability, can generate significant reductions. Enfolding quality assurance within the proposed framework will help stem "market spoiling" currently underway in the developing world-caused by the introduction of substandard off-grid lighting products-thereby ensuring carbon reduction additionality (emissions reductions that would have not occurred in the absence of the CDM program). C1 [Mills, Evan] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Jacobson, Arne] US DOE, Off Policy & Int Affairs, Washington, DC 20585 USA. [Jacobson, Arne] Humboldt State Univ, Schatz Energy Res Ctr, Arcata, CA 95521 USA. RP Mills, E (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM emills@lbl.gov FU Blum Center for Developing Economies at UC Berkeley, through the US Department of Energy [DE-AC02-05CH11231] FX A longer version of this report was prepared at the request of The United Nations Framework Convention on Climate Change (UNFCCC), Small Scale Working Group of the Clean Development Mechanism (CDM) Executive Board. This work was also supported by The Rosenfeld Fund of the Blum Center for Developing Economies at UC Berkeley, through the US Department of Energy under Contract No. DE-AC02-05CH11231. Art Rosenfeld has been a key supporter of this work. This project benefitted from valuable collaborations with Gaj Hegde of the UNFCCC Secretariat; Peter Alstone, Kristen Radecsky, Jennifer Tracy, and Dustin Poppendieck at Humboldt State University; Jessica Granderson, Jim Galvin, and Francis Rubinstein at Lawrence Berkeley National Laboratory; and Maina Mumbi and Francis Ngugi in Kenya. Steven Schiller of the CDM Small Scale Working Group provided constructive review comments and consultation. NR 44 TC 11 Z9 11 U1 1 U2 15 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X J9 ENERG EFFIC JI Energy Effic. PD NOV PY 2011 VL 4 IS 4 BP 523 EP 546 DI 10.1007/s12053-011-9121-y PG 24 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA 819IZ UT WOS:000294819900005 ER PT J AU Brownlee, C Pegoraro, V Shankar, S McCormick, PS Hansen, CD AF Brownlee, Carson Pegoraro, Vincent Shankar, Siddharth McCormick, Patrick S. Hansen, Charles D. TI Physically-Based Interactive Flow Visualization Based on Schlieren and Interferometry Experimental Techniques SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article DE Scalar field data; GPUs and multicore architectures; flow visualization AB Understanding fluid flow is a difficult problem and of increasing importance as computational fluid dynamics (CFD) produces an abundance of simulation data. Experimental flow analysis has employed techniques such as shadowgraph, interferometry, and schlieren imaging for centuries, which allow empirical observation of inhomogeneous flows. Shadowgraphs provide an intuitive way of looking at small changes in flow dynamics through caustic effects while schlieren cutoffs introduce an intensity gradation for observing large scale directional changes in the flow. Interferometry tracks changes in phase-shift resulting in bands appearing. The combination of these shading effects provides an informative global analysis of overall fluid flow. Computational solutions for these methods have proven too complex until recently due to the fundamental physical interaction of light refracting through the flow field. In this paper, we introduce a novel method to simulate the refraction of light to generate synthetic shadowgraph, schlieren and interferometry images of time-varying scalar fields derived from computational fluid dynamics data. Our method computes physically accurate schlieren and shadowgraph images at interactive rates by utilizing a combination of GPGPU programming, acceleration methods, and data-dependent probabilistic schlieren cutoffs. Applications of our method to multifield data and custom application-dependent color filter creation are explored. Results comparing this method to previous schlieren approximations are finally presented. C1 [Brownlee, Carson; Hansen, Charles D.] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA. [Pegoraro, Vincent] Univ Saarland, Fachbereich Informat 6 2, D-66123 Saarbrucken, Germany. [Shankar, Siddharth] TerraSim Inc, Gateway Ctr 1, Pittsburgh, PA 15222 USA. [McCormick, Patrick S.] Los Alamos Natl Labs, Los Alamos, NM 87545 USA. RP Brownlee, C (reprint author), Univ Utah, Sci Comp & Imaging Inst, 72 S Cent Campus Dr,Room 3750, Salt Lake City, UT 84112 USA. EM brownlee@cs.utah.edu; pegoraro@cs.uni-saarland.de; funkysidd@gmail.com; pat@lanl.gov; hansen@cs.utah.edu FU DOE: VACET, C-SAFE Alliance Center; King Abdullah University of Science and Technology (KAUST) [KUS-C1-016-04]; US National Science Foundation (NSF) [CNS-0615194, CNS-0551724, CCF-0541113, IIS-0513212]; US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research [DE-AC52-06NA25396] FX The authors would like to thank Kelly Gaither for providing the x38 data and David Ebert for allowing them to reuse images from [25]. The authors would like to thank Gary Settles for images of shadowgraph and schlieren photographs. The authors would also like to thank Jeremy Thornock and Diem Nguyen from the Center for the Simulation of Accidental Fires and Explosions (C-SAFE) for providing the helium data. The authors would also like to thank Jamal Mohd-Yusof for his help and ideas for their paper. Additional thanks go to Tim McIntyre for the use of his interferometry example image and Mathias Schott for his assistance generating a volume rendering of the helium data set. This publication is based on work supported by: DOE: VACET, C-SAFE Alliance Center; KUS-C1-016-04 awarded by King Abdullah University of Science and Technology (KAUST); the US National Science Foundation (NSF): CNS-0615194, CNS-0551724, CCF-0541113, IIS-0513212; and the US Department of Energy, Office of Science, Office of Advanced Scientific Computing Research under contract DE-AC52-06NA25396. NR 28 TC 4 Z9 5 U1 0 U2 6 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD NOV PY 2011 VL 17 IS 11 BP 1574 EP 1586 DI 10.1109/TVCG.2010.255 PG 13 WC Computer Science, Software Engineering SC Computer Science GA 815US UT WOS:000294556000004 PM 21149891 ER PT J AU Camp, D Garth, C Childs, H Pugmire, D Joy, KI AF Camp, David Garth, Christoph Childs, Hank Pugmire, Dave Joy, Kenneth I. TI Streamline Integration Using MPI-Hybrid Parallelism on a Large Multicore Architecture SO IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS LA English DT Article DE Concurrent programming; parallel programming; modes of computation; parallelism and concurrency; picture/image generation; display algorithms ID FLOW VISUALIZATION AB Streamline computation in a very large vector field data set represents a significant challenge due to the nonlocal and data-dependent nature of streamline integration. In this paper, we conduct a study of the performance characteristics of hybrid parallel programming and execution as applied to streamline integration on a large, multicore platform. With multicore processors now prevalent in clusters and supercomputers, there is a need to understand the impact of these hybrid systems in order to make the best implementation choice. We use two MPI-based distribution approaches based on established parallelization paradigms, parallelize over seeds and parallelize over blocks, and present a novel MPI-hybrid algorithm for each approach to compute streamlines. Our findings indicate that the work sharing between cores in the proposed MPI-hybrid parallel implementation results in much improved performance and consumes less communication and I/O bandwidth than a traditional, nonhybrid distributed implementation. C1 [Camp, David; Childs, Hank] Univ Calif Davis, Lawrence Berkeley Natl Lab, Davis, CA 95616 USA. [Camp, David; Garth, Christoph; Childs, Hank; Joy, Kenneth I.] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA. [Pugmire, Dave] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Camp, D (reprint author), Univ Calif Davis, Lawrence Berkeley Natl Lab, 1 Shields Ave, Davis, CA 95616 USA. EM dcamp@lbl.gov; cgarth@ucdavis.edu; hchilds@lbl.gov; pugmire@ornl.gov; kijoy@ucdavis.edu OI Garth, Christoph/0000-0003-1669-8549 FU Office of Advanced Scientific Computing Research, Office of Science, of the US Department of Energy [DE-AC02-05CH11231]; US National Science Foundation (NSF) [IIS-0916289]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Advanced Scientific Computing Research, Office of Science, of the US Department of Energy under Contract No. DE-AC02-05CH11231 through the Scientific Discovery through Advanced Computing (SciDAC) program's Visualization and Analytics Center for Enabling Technologies (VACET). This work was supported in part by the US National Science Foundation (NSF) under contract IIS-0916289. This research used resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 26 TC 18 Z9 20 U1 0 U2 3 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1077-2626 EI 1941-0506 J9 IEEE T VIS COMPUT GR JI IEEE Trans. Vis. Comput. Graph. PD NOV PY 2011 VL 17 IS 11 BP 1702 EP 1713 DI 10.1109/TVCG.2010.259 PG 12 WC Computer Science, Software Engineering SC Computer Science GA 815US UT WOS:000294556000014 PM 21885895 ER PT J AU Mays, DC Cannon, OT Kanold, AW Harris, KJ Lei, TC Gilbert, B AF Mays, David C. Cannon, Orion T. Kanold, Adam W. Harris, Kevin J. Lei, Tim C. Gilbert, Benjamin TI Static light scattering resolves colloid structure in index-matched porous media SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE Aggregate; Deposit; Morphology; Fractal; Nafion; SLS ID TRANSPORT; PERMEABILITY; MONTMORILLONITE; GROUNDWATER; FILTRATION; MORPHOLOGY; MODELS; SOILS AB Colloidal phenomena play an important role in natural porous media, where they influence soil structuring, contaminant migration, filtration, and clogging. Several methods are available to measure pore space geometry within porous media, but these methods have limited applicability when the relevant physical, chemical, or biological processes are dominated by dynamic colloidal phenomena. Here we report a new technique to quantify colloid aggregate structure as a fractal dimension using static light scattering within index-matched porous media (granular Nafion). We validate the method by obtaining consistent results for scattering in suspensions and in porous media, and verify that multiple scattering at environmentally relevant colloid concentrations does not affect the determination of fractal dimension. We also observe restructuring of aggregates during homogenization in the porous media, indicated by an apparent increase in fractal dimension, which can be explained by an analysis of the fluid shear stress caused by repeated inversions of test tubes either containing or not containing granular media. This technique will permit progress in obtaining fundamental descriptions of colloidal phenomena in porous media. (C) 2011 Elsevier Inc. All rights reserved. C1 [Mays, David C.; Cannon, Orion T.; Kanold, Adam W.] Univ Colorado, Dept Civil Engn, Denver, CO 80217 USA. [Harris, Kevin J.; Lei, Tim C.] Univ Colorado, Dept Elect Engn, Denver, CO 80217 USA. [Gilbert, Benjamin] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Mays, DC (reprint author), Univ Colorado, Dept Civil Engn, Campus Box 113,POB 173364, Denver, CO 80217 USA. EM david.mays@ucdenver.edu RI Gilbert, Benjamin/E-3182-2010; Mays, David/D-9366-2016 OI Mays, David/0000-0002-5218-1670 FU Earth Sciences Division at Lawrence Berkeley National Laboratory; US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-05CH11231] FX This work was performed in the Colorado Advanced Photonics Technology laboratory at the University of Colorado Denver. The authors would like to thank Asnoldo Benitez, Kevin Kennedy, Randy Ray, Larry Scherrer, Randy Tagg (at the University of Colorado Denver), Theodore Randolph and Branden Salinas (at the University of Colorado at Boulder), Christopher Sorensen (at Kansas State University) and Walther Grot (at C.G. Processing) for their technical and collegial support, and the anonymous reviewers for their constructive feedback. An internal Program Development Grant in the Earth Sciences Division at Lawrence Berkeley National Laboratory provided the seed financial support to initiate this project, and additional support for BG was provided by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through Contract DE-AC02-05CH11231. NR 58 TC 4 Z9 4 U1 2 U2 23 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD NOV 1 PY 2011 VL 363 IS 1 BP 418 EP 424 DI 10.1016/j.jcis.2011.06.046 PG 7 WC Chemistry, Physical SC Chemistry GA 818GS UT WOS:000294740400051 PM 21839461 ER PT J AU Gavin, R Li, Y Petriello, F Quackenbush, S AF Gavin, Ryan Li, Ye Petriello, Frank Quackenbush, Seth TI FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Z; Drell-Yan; NNLO ID PARTON DISTRIBUTIONS; LHC; COLLISIONS AB We introduce an improved version of the simulation code FEWZ (Fully Exclusive W and Z Production) for hadron collider production of lepton pairs through the Drell-Yan process at next-to-next-to-leading order (NNLO) in the strong coupling constant. The program is fully differential in the phase space of leptons and additional hadronic radiation. The new version offers users significantly more options for customization. FEWZ now bins multiple, user-selectable histograms during a single run, and produces parton distribution function (PDF) errors automatically. It also features a significantly improved integration routine, and can take advantage of multiple processor cores locally or on the Condor distributed computing system. We illustrate the new features of FEWZ by presenting numerous phenomenological results for LHC physics. We compare NNLO QCD with initial ATLAS and CMS results, and discuss in detail the effects of detector acceptance on the measurement of angular quantities associated with Z-boson production. We address the issue of technical precision in the presence of severe phase-space cuts. Program summary Program title: FEWZ Catalogue identifier: AEJP_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEJP_v1_0.html Program obtainable from: CPC Program Library. Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 6 280 771 No. of bytes in distributed program, including test data, etc.: 1 73 027 645 Distribution format: tar.gz Programming language: Fortran 77, C++, Python Computer: Mac, PC Operating system: Mac OSX. Unix/Linux Has the code been vectorized or parallelized?: Yes. User-selectable. 1 to 219 RAM: 200 Mbytes for common parton distribution functions Classification: 11.1 External routines: CUBA numerical integration library, numerous parton distribution sets (see text): these are provided with the code. Nature of problem: Determination of the Drell-Yan Z/photon production cross section and decay into leptons, with kinematic distributions of leptons and jets including full spin correlations, at next-to-next-to-leading order in the strong coupling constant. Solution method: Virtual loop integrals are decomposed into master integrals using automated techniques. Singularities are extracted from real radiation terms via sector decomposition, which separates singularities and maps onto suitable phase space variables. Result is convoluted with parton distribution functions. Each piece is numerically integrated over phase space, which allows arbitrary cuts on the observed particles. Each sample point may be binned during numerical integration, providing histograms, and reweighted by parton distribution function error eigenvectors, which provides PDF errors. Restrictions: Output does not correspond to unweighted events, and cannot be interfaced with a shower Monte Carlo. Additional comments: !!!!! The distribution file for this program is over 170 Mbytes and therefore is not delivered directly when download or E-mail is requested. Instead a html file giving details of how the program can be obtained is sent. Running time: One day for total cross sections with 0.1% integration errors assuming typical cuts. up to 1 week for smooth kinematic distributions with sub-percent integration errors for each bin. (C) 2011 Elsevier B.V. All rights reserved. C1 [Petriello, Frank; Quackenbush, Seth] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Gavin, Ryan; Li, Ye] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Petriello, Frank] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. RP Quackenbush, S (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. EM squackenbush@hep.anl.gov FU US Department of Energy, Division of High Energy Physics [DE-AC02-06CH11357] FX We are grateful to F. Stoeckli for inspiring and advising us on the inclusion of the histogramming feature in FEWZ, and on the restructuring of the numerical integration. We thank S. Yost and J. Qian for valuable feedback on the original version of FEWZ, and M. Schmitt for useful discussions on experimental capabilities and desires. We also thank W. Sakumoto for alerting us to parity-violating moments for inclusion in our code, T. Hahn for feedback regarding CUBA, K. Melnikov for helpful comments, and N. Chiapolini for script suggestions. This work was supported in part by the US Department of Energy, Division of High Energy Physics, under Contract DE-AC02-06CH11357. NR 43 TC 219 Z9 219 U1 1 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD NOV PY 2011 VL 182 IS 11 BP 2388 EP 2403 DI 10.1016/j.cpc.2011.06.008 PG 16 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 815KZ UT WOS:000294525800008 ER PT J AU Rohatgi, A Stephens, EV Soulami, A Davies, RW Smith, MT AF Rohatgi, Aashish Stephens, Elizabeth V. Soulami, Ayoub Davies, Richard W. Smith, Mark T. TI Experimental characterization of sheet metal deformation during electro-hydraulic forming SO JOURNAL OF MATERIALS PROCESSING TECHNOLOGY LA English DT Article DE Electro-hydraulic forming; High strain-rate; Formability; Digital image correlation; Light-weight; Automotive ID ALUMINUM-ALLOY SHEET; ENHANCED FORMABILITY; HYPERPLASTICITY; VELOCITY; RATES AB A novel experimental technique, that combines high-speed imaging and digital image correlation techniques, has been developed and applied to investigate the high-rate deformation behavior of aluminum sheet during electro-hydraulic forming (EHF). Aluminum alloy AA5182-O sheets (1 mm thick and similar to 152 mm diameter) were EHF deformed by high-energy (up to similar to 21 kJ) pressure-pulse and the time-evolution of sheet-displacement, velocity, strain and strain-rate quantified. The data shows that different locations on the sheet undergo unique deformation history that is not apparent from the conventional post-mortem strain measurement (using etched circle/grid pattern) approach. Under the experimental conditions used in this work, the sheets were formed into domes and the maximum strain-rate observed was similar to 664/s. Further, this maximum strain-rate was observed at an off-apex location and was similar to 2.5 times greater than the maximum strain-rate at the dome apex. The maximum velocity observed was similar to 100 m/s and the velocity-time data showed evidence of pressure-wave reverberations during the forming process. We believe that knowledge of such time-evolution of sheet deformation is necessary for a better understanding and accurate modeling of sheet formability that has often been reported to exceed quasi-static forming limits under high-rate forming conditions. (C) 2011 Elsevier B.V. All rights reserved. C1 [Rohatgi, Aashish; Stephens, Elizabeth V.; Soulami, Ayoub; Davies, Richard W.; Smith, Mark T.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Rohatgi, A (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999, Richland, WA 99352 USA. EM aashish.rohatgi@pnnl.gov; elizabeth.stephens@pnnl.gov; ayoub.soulami@pnnl.gov; rich.davies@pnnl.gov; mark.smith@pnnl.gov FU U.S. Department of Energy [DE-AC05-76RL01830]; U.S. Department of Energy, Office of Vehicle Technologies FX The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RL01830. This work was sponsored by Drs. Joseph Carpenter and Carol Schutte in association with the U.S. Department of Energy, Office of Vehicle Technologies, as part of the Lightweight Materials program. The authors are thankful to S.F. Golovashchenko (Ford), J.F. Quinn and J.R. Bradley (General Motors), and A. Desai and D.J. Zhou (Chrysler) for their suggestions. Capacitor banks' operational guidance provided by J. Johnson (Bonneville Power Administration), and technical support provided by G.L. Vanarsdale (Science Applications International Corporation) and PNNL staff (M.E. Dahl, K.F. Mattlin, P.A. Boyd and C.A. Bonebrake) is gratefully acknowledged. Technical support, to operate the cameras and image analysis using DIC software, provided by Alistair Tofts and Hubert Schreier at Correlated Solutions is also acknowledged. NR 20 TC 12 Z9 15 U1 0 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0924-0136 J9 J MATER PROCESS TECH JI J. Mater. Process. Technol. PD NOV PY 2011 VL 211 IS 11 BP 1824 EP 1833 DI 10.1016/j.jmatprotec.2011.06.005 PG 10 WC Engineering, Industrial; Engineering, Manufacturing; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 815FO UT WOS:000294511700022 ER PT J AU Sutter, EA Sutter, PW AF Sutter, Eli A. Sutter, Peter W. TI Giant carbon solubility in Au nanoparticles SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID LIQUID-SOLID GROWTH; SEMICONDUCTOR NANOCRYSTALS; MAGNETIC NANOPARTICLES; EPITAXIAL GRAPHENE; METHANOL OXIDATION; PHASE-DIAGRAM; ALLOY DROPS; SIZE; PARTICLES; GOLD AB Variable temperature transmission electron microscopy of individual 5 nm Au nanoparticles shows a striking increase in the particle size on raising the temperature from room temperature to 500 A degrees C in the presence of carbon from amorphous carbon support. Using the assembly of ordered graphene shells on the surface of individual nanoparticles at elevated temperatures-and the high pressures induced by such shells-as an experimental tool to study the origins of this swelling, we find that the volume increase is associated with the uptake of carbon to concentrations exceeding the bulk solubility by more than four orders of magnitude. The formation of stable metal-carbon nanostructures that have no bulk equivalent may have important implications on the functional properties of metal nanoparticles. C1 [Sutter, Eli A.; Sutter, Peter W.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Sutter, EA (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM esutter@bnl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The authors would like to thank Dr. J. Ciston for help with acquiring the STEM tilt series. This work was performed at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 58 TC 19 Z9 19 U1 1 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD NOV PY 2011 VL 46 IS 22 SI SI BP 7090 EP 7097 DI 10.1007/s10853-011-5663-9 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 809NV UT WOS:000294064900005 ER PT J AU King, V Phillips, C Saia, J Young, M AF King, Valerie Phillips, Cynthia Saia, Jared Young, Maxwell TI Sleeping on the Job: Energy-Efficient and Robust Broadcast for Radio Networks SO ALGORITHMICA LA English DT Article DE Radio networks; Fault tolerance; Byzantine; Reliable broadcast; Bad Santa ID WIRELESS SENSOR NETWORKS AB We address the problem of minimizing power consumption when broadcasting a message from one node to all the other nodes in a radio network. To enable power savings for such a problem, we introduce a compelling new data streaming problem which we call the Bad Santa problem. Our results on this problem apply for any situation where: (1) a node can listen to a set of n nodes, out of which at least half are non-faulty and know the correct message; and (2) each of these n nodes sends according to some predetermined schedule which assigns each of them its own unique time slot. In this situation, we show that in order to receive the correct message with probability 1, it is necessary and sufficient for the listening node to listen to a Theta (root n) expected number of time slots. Moreover, if we allow for repetitions of transmissions so that each sending node sends the message O(log*n) times (i.e. in O(log*n) rounds each consisting of the n time slots), then listening to O(log*n) expected number of time slots suffices. We show that this is near optimal. We describe an application of our result to the popular grid model for a radio network. Each node in the network is located on a point in a two dimensional grid, and whenever a node sends a message m, all awake nodes within L-infinity distance r receive m. In this model, up to t < r/2 (2r + 1) nodes within any 2r+1 by 2r+1 square in the grid can suffer Byzantine faults. Moreover, we assume that the nodes that suffer Byzantine faults are chosen and controlled by an adversary that knows everything except for the random bits of each non-faulty node. This type of adversary models worst-case behavior due to malicious attacks on the network; mobile nodes moving around in the network; or static nodes losing power or ceasing to function. Let n=r(2r+1). We show how to solve the broadcast problem in this model with each node sending and receiving an expected O(n log(2) vertical bar m vertical bar + root n vertical bar m vertical bar) bits where vertical bar m vertical bar is the number of bits in m, and, after broadcasting a fingerprint of m, each node is awake only an expected O(root n) time slots. Moreover, for t <= (1-epsilon)(r/2)(2r + 1), for any constant epsilon > 0, we can achieve an even better energy savings. In particular, if we allow each node to send O(log* n) times, we achieve reliable broadcast with each node sending O(n log(2) vertical bar m vertical bar + (log* n)vertical bar m vertical bar) bits and receiving an expected O(n log(2)vertical bar m vertical bar+(log*n)vertical bar m vertical bar) bits and, after broadcasting a fingerprint of m, each node is awake for only an expected O(log*n) time slots. Our results compare favorably with previous protocols that required each node to send Theta (vertical bar m vertical bar) bits, receive Theta (n vertical bar m vertical bar) bits and be awake for Theta (n) time slots. C1 [Young, Maxwell] Univ Waterloo, David R Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada. [King, Valerie] Univ Victoria, Dept Comp Sci, Victoria, BC, Canada. [Phillips, Cynthia] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Saia, Jared] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. RP Young, M (reprint author), Univ Waterloo, David R Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada. EM val@cs.uvic.ca; caphill@sandia.gov; saia@cs.unm.edu; m22young@cs.uwaterloo.ca NR 38 TC 0 Z9 0 U1 1 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0178-4617 J9 ALGORITHMICA JI Algorithmica PD NOV PY 2011 VL 61 IS 3 BP 518 EP 554 DI 10.1007/s00453-010-9422-0 PG 37 WC Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 808FK UT WOS:000293962400002 ER PT J AU Ouellet-Plamondon, C Marcet, S Klem, JF Francoeur, S AF Ouellet-Plamondon, C. Marcet, S. Klem, J. F. Francoeur, S. TI Excitonic fine structure of out-of-plane nitrogen dyads in GaAs SO JOURNAL OF LUMINESCENCE LA English DT Article DE Excitons; Semiconductors; Isoelectronic traps; Exchange and crystal-field interactions ID PHOTOLUMINESCENCE; PAIR AB We report on the excitonic photoluminescence from a nitrogen dyad of C(2v) symmetry located in a plane parallel to the emitted light wavevector (out-of-plane). We determine that the spectral signature of out-of-plane dyads is composed of five transitions linearly polarized along [1 0 0] or [0 1 0]. A sixth transition is in principle allowed but could not be observed due to its relatively low oscillator strength. However, a perturbation in the close vicinity of a dyad can significantly influence the fine structure and the polarization sequence of the emission and can bring out this sixth transition. (C) 2011 Elsevier B.V. All rights reserved. C1 [Ouellet-Plamondon, C.; Marcet, S.; Francoeur, S.] Ecole Polytech, Dept Genie Phys, Montreal, PQ H3C 3A7, Canada. [Klem, J. F.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Francoeur, S (reprint author), Ecole Polytech, Dept Genie Phys, Montreal, PQ H3C 3A7, Canada. EM sebastien.francoeur@polymtl.ca RI Francoeur, Sebastien/E-6614-2011 OI Francoeur, Sebastien/0000-0002-6129-7026 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 13 TC 1 Z9 1 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2313 J9 J LUMIN JI J. Lumines. PD NOV PY 2011 VL 131 IS 11 BP 2339 EP 2341 DI 10.1016/j.jlumin.2011.05.045 PG 3 WC Optics SC Optics GA 806IY UT WOS:000293802300019 ER PT J AU Wang, J Botterud, A Bessa, R Keko, H Carvalho, L Issicaba, D Sumaili, J Miranda, V AF Wang, J. Botterud, A. Bessa, R. Keko, H. Carvalho, L. Issicaba, D. Sumaili, J. Miranda, V. TI Wind power forecasting uncertainty and unit commitment SO APPLIED ENERGY LA English DT Article DE Electricity markets; Forecasting; Dispatch; Stochastic optimization; Unit commitment; Wind power ID PROBABILISTIC FORECASTS; GENERATION; SECURITY AB In this paper, we investigate the representation of wind power forecasting (WPF) uncertainty in the unit commitment (UC) problem. While deterministic approaches use a point forecast of wind power output, WPF uncertainty in the stochastic UC alternative is captured by a number of scenarios that include cross-temporal dependency. A comparison among a diversity of UC strategies (based on a set of realistic experiments) is presented. The results indicate that representing WPF uncertainty with wind power scenarios that rely on stochastic UC has advantages over deterministic approaches that mimic the classical models. Moreover, the stochastic model provides a rational and adaptive way to provide adequate spinning reserves at every hour, as opposed to increasing reserves to predefined, fixed margins that cannot account either for the system's costs or its assumed risks. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Wang, J.; Botterud, A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Bessa, R.; Keko, H.; Carvalho, L.; Issicaba, D.; Sumaili, J.; Miranda, V.] Univ Porto, Fac Engn, INESC Porto, P-4200465 Oporto, Portugal. [Bessa, R.; Keko, H.; Carvalho, L.; Issicaba, D.; Sumaili, J.; Miranda, V.] Univ Porto, Fac Engn, FEUP, P-4200465 Oporto, Portugal. RP Wang, J (reprint author), Argonne Natl Lab, 9700 S Cass Ave,Bldg 221, Argonne, IL 60439 USA. EM jianhui.wang@anl.gov; abotterud@anl.gov; rbessa@inescporto.pt; hkeko@inescporto.pt; lcarvalho@inescporto.pt; diego.issicaba@inescporto.pt; jean.sumaili@inesporto.pt; vmiranda@inescporto.pt RI Miranda, Vladimiro/H-6245-2012; Issicaba, Diego/E-5509-2013; OI Issicaba, Diego/0000-0002-7937-8115; Carvalho, Leonel/0000-0002-9097-3679; Bessa, Ricardo/0000-0002-3808-0427; Sumaili, Jean/0000-0002-0231-1043; Miranda, Vladimiro/0000-0002-5772-8452 FU US Department of Energy, Office of Energy Efficiency and Renewable Energy; US Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; Fundacao para a Ciencia e a Tecnologia (FCT) [SFRH/BD/33738/2009] FX The authors acknowledge the US Department of Energy, Office of Energy Efficiency and Renewable Energy through its Wind and Hydropower Technologies Program for funding the research presented in this paper. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a US Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.; The author Ricardo J. Bessa acknowledges Fundacao para a Ciencia e a Tecnologia (FCT) for PhD Scholarship SFRH/BD/33738/2009 NR 27 TC 111 Z9 113 U1 7 U2 41 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 J9 APPL ENERG JI Appl. Energy PD NOV PY 2011 VL 88 IS 11 BP 4014 EP 4023 DI 10.1016/j.apenergy.2011.04.011 PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 798ID UT WOS:000293195500048 ER PT J AU Xiong, XY Rong, CB Rubanov, S Zhang, Y Liu, JP AF Xiong, X. Y. Rong, C. B. Rubanov, S. Zhang, Y. Liu, J. P. TI Atom probe study on the bulk nanocomposite SmCo/Fe permanent magnet produced by ball-milling and warm compaction SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE SmCo permanent magnet; Nanocomposite; Microstructure; Atom probe tomography; TEM; Ball-mill AB The microstructure and compositions of the bulk nanocomposite SmCo/Fe permanent magnet were studied using transmission electron microscopy and 3-dimensional atom probe techniques. The excellent magnetic properties were related to the uniform nanocomposite structure with nanometer alpha-Fe particles uniformly distributed in the SmCo phase matrix. The alpha-Fe phase contained similar to 26 at% Co, and the SmCo phase contained similar to 19 at% Fe, confirming that the interdiffusion of Fe and Co atoms between the two phases occurred. The formation of the alpha-Fe(Co) phase explained why the saturation magnetization of the nanocomposite permanent magnet was higher than that expected from the original pure alpha-Fe and SmCo(5) powders, which enhanced further the maximum energy product of the nanocomposite permanent magnet. (C) 2011 Elsevier B.V. All rights reserved. C1 [Xiong, X. Y.] Monash Univ, Monash Ctr Electron Microscopy, Clayton, Vic 3800, Australia. [Xiong, X. Y.] Monash Univ, Dept Mat Engn, Clayton, Vic 3800, Australia. [Rong, C. B.; Liu, J. P.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Rubanov, S.] Univ Melbourne, Inst Bio21, Electron Microscopy Unit, Parkville, Vic 3052, Australia. [Zhang, Y.] Iowa State Univ, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. RP Xiong, XY (reprint author), Monash Univ, Monash Ctr Electron Microscopy, Clayton, Vic 3800, Australia. EM xiangyuan.xiong@mcem.monash.edu.au RI Rubanov, Sergey/O-9798-2016 FU US Office of Naval Research/MURI [N00014-05-1-0497]; University of Texas-Arlington FX This work has been supported in part by the US Office of Naval Research/MURI project under Grant N00014-05-1-0497 and by the University of Texas-Arlington. NR 19 TC 8 Z9 9 U1 3 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD NOV PY 2011 VL 323 IS 22 BP 2855 EP 2858 DI 10.1016/j.jmmm.2011.06.035 PG 4 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 794PM UT WOS:000292912900026 ER PT J AU Zandalazini, C Esquinazi, P Bridoux, G Barzola-Quiquia, J Ohldag, H Arenholz, E AF Zandalazini, C. Esquinazi, P. Bridoux, G. Barzola-Quiquia, J. Ohldag, H. Arenholz, E. TI Uncompensated magnetization and exchange-bias field in La0.7Sr0.3MnO3/YMnO3 bilayers: The influence of the ferromagnetic layer SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Exchange-bias effect; Magnetic bilayer; Magnetic oxide ID YMNO3 THIN-FILMS AB We studied the magnetic behavior of bilayers of multiferroic and nominally antiferromagnetic o-YMnO3 (375 nm thick) and ferromagnetic La0.7Sr0.3MnO3 and La0.67Ca0.33MnO3 (8 ... 225 nm), in particular the vertical magnetization shift M-E and exchange-bias field H-E for different thickness and magnetic dilutions of the ferromagnetic layer at different temperatures and cooling fields. We have found very large M-E shifts equivalent to up to 100% of the saturation value of the o-YMO layer alone. The overall behavior, including XMCD magnetization shift measured at the Mn-L edge of the LSMO layer only, indicates that the properties of the ferromagnetic layer contribute substantially to the M-E shift and that this does not correlate straightforwardly with the measured exchange-bias field H-E. (C) 2011 Elsevier B.V. All rights reserved. C1 [Zandalazini, C.; Esquinazi, P.; Bridoux, G.; Barzola-Quiquia, J.] Univ Leipzig, Div Superconductiv & Magnetism, D-04103 Leipzig, Germany. [Ohldag, H.] Stanford Univ, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. [Arenholz, E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Esquinazi, P (reprint author), Univ Leipzig, Div Superconductiv & Magnetism, Linnestr 5, D-04103 Leipzig, Germany. EM esquin@physik.uni-leipzig.de RI Ohldag, Hendrik/F-1009-2014; OI Esquinazi, Pablo/0000-0003-0649-1472 FU Sachsisches Staatsministerium fur Wissenschaft und Kunst [4-7531.50-04-0361-09/1]; DFG within the Collaborative Research Center [SFB 762]; Department of Energy, Office of Basic Energy Sciences FX Supported by the Sachsisches Staatsministerium fur Wissenschaft und Kunst under 4-7531.50-04-0361-09/1.; Supported by the DFG within the Collaborative Research Center (SFB 762) "Functionality of Oxide Interfaces".; SSRL and ALS are national user facilities supported by the Department of Energy, Office of Basic Energy Sciences. SSRL is operated by Stanford University and ALS is operated by the University of California. NR 32 TC 14 Z9 14 U1 4 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD NOV PY 2011 VL 323 IS 22 BP 2892 EP 2898 DI 10.1016/j.jmmm.2011.06.053 PG 7 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 794PM UT WOS:000292912900033 ER PT J AU Phatak, C Pokharel, R Beleggia, M De Graef, M AF Phatak, C. Pokharel, R. Beleggia, M. De Graef, M. TI On the magnetostatics of chains of magnetic nanoparticles SO JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS LA English DT Article DE Magnetostatic interaction; Shape amplitude; Magnetic chain ID MAGNETOTACTIC BACTERIA; DEMAGNETIZATION TENSOR; ARBITRARY SHAPE; COMPUTATION; HOLOGRAPHY AB A novel approach is presented for the computation of the magnetostatic energy of straight and bent chains of identical, uniformly magnetized particles of arbitrary shape. The formalism relies on the concept of the magnetometric tensor field, and allows for closed form expressions for the magnetostatic energy, demagnetization factor, Young's modulus, and bending modulus of chains in terms of the shape amplitude of the particles. Analytical solutions are presented for straight chains of spheres, cubes, and cylinders, and for bent chains of spheres. Numerical results include chains of octahedra, tetrahedra, cuboctahedra, and bi-cones. The axial demagnetization factor for the bi-cone shape is derived in analytical form. An approximate energy expression, using the full shape-dependent interaction formalism for short separation distances, and the standard dipolar interaction expression for larger distances, is introduced. (C) 2011 Elsevier B.V. All rights reserved. C1 [Phatak, C.; Pokharel, R.; De Graef, M.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Phatak, C.] Argonne Natl Lab, Argonne, IL 60439 USA. [Beleggia, M.] Tech Univ Denmark, Ctr Electron Nanoscopy, DK-2800 Lyngby, Denmark. RP De Graef, M (reprint author), Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. EM degraef@cmu.edu RI Phatak, Charudatta/A-1874-2010; DeGraef, Marc/G-5827-2010; OI DeGraef, Marc/0000-0002-4721-6226; Beleggia, Marco/0000-0002-2888-1888 FU US Department of Energy, Basic Energy Sciences [DE-FG02-01ER45893]; Argonne National Laboratory, a US DOE Science Laboratory [DE-AC02-06CH11357] FX Stimulating discussions with M. McHenry and D. Laughlin are gratefully acknowledged. M.D.G., C.P., and R.P. acknowledge support from the US Department of Energy, Basic Energy Sciences, on contract no. DE-FG02-01ER45893. C.P. would also like to acknowledge funding provided by Argonne National Laboratory, a US DOE Science Laboratory operated under contract no. DE-AC02-06CH11357 by UChicago Argonne, LLC. NR 20 TC 8 Z9 8 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-8853 J9 J MAGN MAGN MATER JI J. Magn. Magn. Mater. PD NOV PY 2011 VL 323 IS 22 BP 2912 EP 2922 DI 10.1016/j.jmmm.2011.06.058 PG 11 WC Materials Science, Multidisciplinary; Physics, Condensed Matter SC Materials Science; Physics GA 794PM UT WOS:000292912900036 ER PT J AU Gupta, SB Bihari, B Biruduganti, M Sekar, R AF Gupta, Sreenath B. Bihari, Bipin Biruduganti, Munidhar Sekar, Raj TI In-Cylinder Equivalence Ratio Measurements in an EGR Equipped Engine SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article ID INDUCED BREAKDOWN SPECTROSCOPY; LASER-INDUCED SPARK; TO-AIR RATIO; SPECTROMETRY AB A single-cylinder natural gas fueled engine equipped with an exhaust gas recirculation (EGR) system was ignited using a laser. The broadband emission from the spark kernel was spectrally resolved, and the peaks corresponding to H(alpha), N, and O atoms were measured for a range of conditions with global equivalence ratios ranging between 0.6 and 1.0 and for exhaust gas recirculation fractions up to 29%. The (H(alpha)/O) and (H(alpha)/N) peak intensity ratios from the spectral scans correlated extremely well (R(2) >0.97) with local oxygen based equivalence ratios. Appropriate relations were developed to relate such values to global equivalence ratios and the EGR rate. For a homogeneous intake charge, the present laser induced breakdown spectroscopy diagnostic enables an estimation of one of the two values, global equivalence ratio or EGR rate, with the knowledge of the other. [DOI: 10.1115/1.4003789] C1 [Gupta, Sreenath B.; Bihari, Bipin; Biruduganti, Munidhar; Sekar, Raj] Argonne Natl Lab, Argonne, IL 60439 USA. RP Gupta, SB (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM sgupta@anl.gov FU U.S. Department of Energy [DE-AC02-06CH11357] FX The authors wish to acknowledge financial support from the U.S. Department of Energy under Contract No. DE-AC02-06CH11357 with Dr. Robert Gemmer as contract monitor. NR 10 TC 0 Z9 0 U1 1 U2 5 PU ASME-AMER SOC MECHANICAL ENG PI NEW YORK PA THREE PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD NOV PY 2011 VL 133 IS 11 AR 114504 DI 10.1115/1.4003789 PG 5 WC Engineering, Mechanical SC Engineering GA 766ET UT WOS:000290764500018 ER PT J AU Liu, YH Wang, KK Lin, WZ Chinchore, A Shi, M Pak, J Smith, AR Constantin, C AF Liu, Y. H. Wang, Kangkang Lin, Wenzhi Chinchore, Abhijit Shi, Meng Pak, Jeongihm Smith, A. R. Constantin, Costel TI The effect of growth parameters on CrN thin films grown by molecular beam epitaxy SO THIN SOLID FILMS LA English DT Article DE Chromium nitride; Crystalline orientation; Thin films; Molecular beam epitaxy; Scanning tunneling microscopy; Reflection high energy electron diffraction; X-ray diffraction ID SURFACE MORPHOLOGICAL EVOLUTION; PHASE-TRANSITION; CRN(001) LAYERS AB In this paper, we report on the controlling of the effect of growth parameters such as substrate temperature and the ratio of Cr and N atoms on phase formation, surface morphology and crystallization of CrN(001) thin films grown by plasma-assisted molecular beam epitaxy on the MgO(001) substrate. The reflection high energy electron diffraction, atomic force microscopy. X-ray diffraction and scanning tunneling microscopy are used to characterize the thin films grown under various conditions. High-quality CrN(001) thin films are achieved at a substrate temperature 430 degrees C with a low Cr deposition rate. (C) 2011 Elsevier B.V. All rights reserved. C1 [Liu, Y. H.; Wang, Kangkang; Lin, Wenzhi; Chinchore, Abhijit; Shi, Meng; Pak, Jeongihm; Smith, A. R.] Ohio Univ, Dept Phys & Astron, Nanoscale & Quantum Phenomena Inst, Athens, OH 45701 USA. [Constantin, Costel] James Madison Univ, Dept Phys & Astron, Harrisonburg, VA 22807 USA. RP Liu, YH (reprint author), Los Alamos Natl Lab, MPA CINT, MS K771, Los Alamos, NM 87545 USA. EM yhaoliu76@gmail.com; smitha2@ohio.edu RI Liu, Yinghao/A-9427-2012; Lin, Wenzhi/G-4484-2013 FU (U.S.) Department of Energy (DOE), Office of Basic Energy Sciences [DE-FG02-06ER46317]; National Science Foundation (NSF) [0730257] FX This work is supported by the (U.S.) Department of Energy (DOE), Office of Basic Energy Sciences (Grant No. DE-FG02-06ER46317) and the National Science Foundation (NSF) (Grant No. 0730257). NR 12 TC 3 Z9 3 U1 3 U2 13 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD OCT 31 PY 2011 VL 520 IS 1 BP 90 EP 94 DI 10.1016/j.tsf.2011.06.052 PG 5 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 853QQ UT WOS:000297441200014 ER PT J AU Herbert, EG Tenhaeff, WE Dudney, NJ Pharr, GM AF Herbert, E. G. Tenhaeff, W. E. Dudney, N. J. Pharr, G. M. TI Mechanical characterization of LiPON films using nanoindentation SO THIN SOLID FILMS LA English DT Article DE LiPON; Solid electrolytes; Dendrite suppression; Nanoindentation ID ELASTIC-MODULUS; LITHIUM; ELECTROLYTE; INDENTATION; INTERFACES; MORPHOLOGY; BATTERIES; HARDNESS; STRESS; LOAD AB Nanoindentation has been used to characterize the elastic modulus and hardness of LiPON films ranging in thickness from 1 to 10 mu m. Four fully dense, amorphous films were deposited on glass and sapphire substrates with one film annealed at 200 degrees C for 20 min. The modulus of LiPON is found to be approximately 77 GPa, and argued to be independent of the substrate type, film thickness, and annealing. Based on the numerical analysis of Monroe and Newman, this value may be sufficiently high to mechanically suppress dendrite formation at the lithium/LiPON interface in thin film batteries [1]. Using Sneddon's stiffness equation and assuming the modulus is 77 GPa, the hardness is found to be approximately 3.9 GPa for all but the annealed film. The hardness of the annealed film is approximately 5% higher, at 4.1 GPa. Atomic force microscopy images of the residual hardness impressions confirm the unexpected increase in hardness of the annealed film. Surprisingly, the indentation data also reveal time-dependent behavior in all four films. This indicates that creep may also play a significant role in determining how LiPON responds to complex loading conditions and could be important in relieving stresses as they develop during service. (C) 2011 Elsevier B.V. All rights reserved. C1 [Herbert, E. G.; Pharr, G. M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Tenhaeff, W. E.; Dudney, N. J.; Pharr, G. M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Herbert, EG (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM eherbert@utk.edu; tenhaeffwe@ornl.gov; dudneynj@ornl.gov; pharr@utk.edu RI Dudney, Nancy/I-6361-2016 OI Dudney, Nancy/0000-0001-7729-6178 FU Oak Ridge National Laboratory FX Research is sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. NR 14 TC 27 Z9 27 U1 7 U2 69 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0040-6090 J9 THIN SOLID FILMS JI Thin Solid Films PD OCT 31 PY 2011 VL 520 IS 1 BP 413 EP 418 DI 10.1016/j.tsf.2011.07.068 PG 6 WC Materials Science, Multidisciplinary; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 853QQ UT WOS:000297441200066 ER PT J AU Dunlop, JC Lisa, MA Sorensen, P AF Dunlop, J. C. Lisa, M. A. Sorensen, P. TI Constituent quark scaling violation due to baryon number transport SO PHYSICAL REVIEW C LA English DT Article ID COALESCENCE; COLLISIONS; RECOMBINATION AB In ultrarelativistic heavy-ion collisions at root s(NN) approximate to 200 GeV, the azimuthal emission anisotropy of hadrons with low and intermediate transverse momentum (p(T) less than or similar to 4 GeV/c) displays an intriguing scaling. In particular, the baryon (meson) emission patterns are consistent with a scenario in which a bulk medium of flowing quarks coalesces into three-quark (two-quark) "bags." While a full understanding of this number-of-constituent-quark (NCQ) scaling remains elusive, it is suggestive of a thermalized bulk system characterized by colored dynamical degrees of freedom-a quark-gluon plasma (QGP). In this scenario, one expects the scaling to break down as the central energy density is reduced below the QGP formation threshold; for this reason, NCQ-scaling violation searches are of interest in the energy scan program at the Relativistic Heavy Ion Collider. However, as root s(NN) is reduced, it is not only the initial energy density that changes; there is also an increase in the net baryon number at midrapidity, as stopping transports entrance-channel partons to midrapidity. This phenomenon can result in violations of simple NCQ scaling. Still in the context of the quark coalescence model, we describe a specific pattern for the breakdown of the scaling that includes different flow strengths for particles and their antipartners. Related complications in the search for recently suggested exotic phenomena are also discussed. C1 [Dunlop, J. C.; Sorensen, P.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Lisa, M. A.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. RP Dunlop, JC (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. OI Sorensen, Paul/0000-0001-5056-9391 FU US National Science Foundation [PHY-0970048]; Offices of NP within the US Department of Energy Office of Science [DE-FG02-88ER40412, DE-AC02-98CH10886]; Offices of HEP within the US Department of Energy Office of Science [DE-FG02-88ER40412, DE-AC02-98CH10886] FX We would like to thank Dr. Michael Mitrovski and Dr. Rosi Reed for helpful discussions. This work was supported by the US National Science Foundation under Grant No. PHY-0970048 and by the Offices of NP and HEP within the US Department of Energy Office of Science under Contracts No. DE-FG02-88ER40412 and No. DE-AC02-98CH10886. NR 35 TC 34 Z9 36 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 31 PY 2011 VL 84 IS 4 AR 044914 DI 10.1103/PhysRevC.84.044914 PG 6 WC Physics, Nuclear SC Physics GA 841OF UT WOS:000296521000011 ER PT J AU Marley, P Jenkins, DG Davies, PJ Robinson, AP Wadsworth, R Lister, CJ Carpenter, MP Janssens, RVF Jiang, CL Khoo, TL Lauritsen, T Seweryniak, D Zhu, S Courtin, S Haas, F Lebhertz, D Bouhelal, M Lighthall, JC Wuosmaa, AH O'Donnell, D AF Marley, P. Jenkins, D. G. Davies, P. J. Robinson, A. P. Wadsworth, R. Lister, C. J. Carpenter, M. P. Janssens, R. V. F. Jiang, C. L. Khoo, T. L. Lauritsen, T. Seweryniak, D. Zhu, S. Courtin, S. Haas, F. Lebhertz, D. Bouhelal, M. Lighthall, J. C. Wuosmaa, A. H. O'Donnell, D. TI High-resolution spectroscopy of decay pathways in the C-12(C-12,gamma) reaction SO PHYSICAL REVIEW C LA English DT Article ID CLUSTER MODEL; CROSS-SECTION; ENERGY-LEVELS; MG-24; NUCLEI; RESONANCES; STATES AB The decay branchings of a resonance in the C-12(C-12,gamma)Mg-24 reaction at E-c.m. = 8.0 MeV have been studied with high resolution using the Gammasphere array. Radiative capture residues were discriminated from scattered beam and the dominant evaporation channels using the fragment mass analyzer coupled to a multistage Parallel Grid Avalanche Counter (PGAC)/ion chamber system. The clean selection of residues has allowed the population of excited states up to 10 MeV in Mg-24 to be examined in detail. Strong feeding of an excited K-pi = 0(-) band is observed. A J(pi) = 4(+) assignment to the resonance is strongly favored. C1 [Marley, P.; Jenkins, D. G.; Davies, P. J.; Robinson, A. P.; Wadsworth, R.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Lister, C. J.; Carpenter, M. P.; Janssens, R. V. F.; Jiang, C. L.; Khoo, T. L.; Lauritsen, T.; Seweryniak, D.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Courtin, S.; Haas, F.; Lebhertz, D.; Bouhelal, M.] Univ Strasbourg, IPHC, CNRS, IN2P3, F-67037 Strasbourg 2, France. [Lighthall, J. C.; Wuosmaa, A. H.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [O'Donnell, D.] Univ W Scotland, Nucl Phys Grp, Sch Sci & Engn, Paisley PA1 2BE, Renfrew, Scotland. RP Marley, P (reprint author), Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. EM david.jenkins@york.ac.uk RI O'Donnell, David/J-7786-2013; Carpenter, Michael/E-4287-2015 OI O'Donnell, David/0000-0002-4710-3803; Carpenter, Michael/0000-0002-3237-5734 FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX Discussions with Y. Taniguchi, Y. Kanada-En'yo, and J. Cseh are gratefully acknowledged. This work was supported in part by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. NR 31 TC 1 Z9 1 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 31 PY 2011 VL 84 IS 4 AR 044332 DI 10.1103/PhysRevC.84.044332 PG 8 WC Physics, Nuclear SC Physics GA 841OF UT WOS:000296521000004 ER PT J AU Sarmento, R Calviani, M Praena, J Colonna, N Belloni, F Goncalves, IF Vaz, P Aerts, G Alvarez, H Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Assimakopoulos, P Audouin, L Barbagallo, M Badurek, G Baumann, P Becvar, F Berthoumieux, E Calvino, F Cano-Ott, D Capote, R Carrapico, C de Albornoz, AC Cennini, P Chepel, V Chiaveri, E Cortes, G Couture, A Cox, J Dahlfors, M David, S Diakaki, M Dillmann, I Dolfini, R Domingo-Pardo, C Dridi, W Duran, I Eleftheriadis, C Ferrant, L Ferrari, A Ferreira-Marques, R Frais-Koelbl, H Fuji, K Furman, W Gonzalez-Romero, E Goverdovski, A Gramegna, F Griesmayer, E Guerrero, C Gunsing, F Haas, B Haight, R Heil, M Herrera-Martinez, A Igashira, M Isaev, S Jericha, E Kappeler, F Kadi, Y Karadimos, D Karamanis, D Kerveno, M Ketlerov, V Koehler, P Konovalov, V Kossionides, E Krticka, M Lampoudis, C Lederer, C Leeb, H Lindote, A Lopes, I Lozano, M Lukic, S Marganiec, J Marques, L Marrone, S Martinez, T Massimi, C Mastinu, P Mendoza, E Mengoni, A Milazzo, PM Moreau, C Mosconi, M Neves, F Oberhummer, H O'Brien, S Oshima, M Pancin, J Papachristodoulou, C Papadopoulos, C Paradela, C Patronis, N Pavlik, A Pavlopoulos, P Perrot, L Pigni, MT Plag, R Plompen, A Plukis, A Poch, A Pretel, C Quesada, J Rauscher, T Reifarth, R Rosetti, M Rubbia, C Rudolf, G Rullhusen, P Salgado, J Sarchiapone, L Savvidis, I Stephan, C Tagliente, G Tain, JL Tarrio, D Tassan-Got, L Tavora, L Terlizzi, R Vannini, G Ventura, A Villamarin, D Vicente, MC Vlachoudis, V Vlastou, R Voss, F Walter, S Wendler, H Wiescher, M Wisshak, K AF Sarmento, R. Calviani, M. Praena, J. Colonna, N. Belloni, F. Goncalves, I. F. Vaz, P. Aerts, G. Alvarez, H. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Assimakopoulos, P. Audouin, L. Barbagallo, M. Badurek, G. Baumann, P. Becvar, F. Berthoumieux, E. Calvino, F. Cano-Ott, D. Capote, R. Carrapico, C. Carrillo de Albornoz, A. Cennini, P. Chepel, V. Chiaveri, E. Cortes, G. Couture, A. Cox, J. Dahlfors, M. David, S. Diakaki, M. Dillmann, I. Dolfini, R. Domingo-Pardo, C. Dridi, W. Duran, I. Eleftheriadis, C. Ferrant, L. Ferrari, A. Ferreira-Marques, R. Frais-Koelbl, H. Fuji, K. Furman, W. Gonzalez-Romero, E. Goverdovski, A. Gramegna, F. Griesmayer, E. Guerrero, C. Gunsing, F. Haas, B. Haight, R. Heil, M. Herrera-Martinez, A. Igashira, M. Isaev, S. Jericha, E. Kaeppeler, F. Kadi, Y. Karadimos, D. Karamanis, D. Kerveno, M. Ketlerov, V. Koehler, P. Konovalov, V. Kossionides, E. Krticka, M. Lampoudis, C. Lederer, C. Leeb, H. Lindote, A. Lopes, I. Lozano, M. Lukic, S. Marganiec, J. Marques, L. Marrone, S. Martinez, T. Massimi, C. Mastinu, P. Mendoza, E. Mengoni, A. Milazzo, P. M. Moreau, C. Mosconi, M. Neves, F. Oberhummer, H. O'Brien, S. Oshima, M. Pancin, J. Papachristodoulou, C. Papadopoulos, C. Paradela, C. Patronis, N. Pavlik, A. Pavlopoulos, P. Perrot, L. Pigni, M. T. Plag, R. Plompen, A. Plukis, A. Poch, A. Pretel, C. Quesada, J. Rauscher, T. Reifarth, R. Rosetti, M. Rubbia, C. Rudolf, G. Rullhusen, P. Salgado, J. Sarchiapone, L. Savvidis, I. Stephan, C. Tagliente, G. Tain, J. L. Tarrio, D. Tassan-Got, L. Tavora, L. Terlizzi, R. Vannini, G. Ventura, A. Villamarin, D. Vicente, M. C. Vlachoudis, V. Vlastou, R. Voss, F. Walter, S. Wendler, H. Wiescher, M. Wisshak, K. CA N TOF Collaboration TI Measurement of the U-236(n, f) cross section from 170 meV to 2 MeV at the CERN n_TOF facility SO PHYSICAL REVIEW C LA English DT Article ID NUCLEAR-DATA LIBRARY; FISSION; RANGE AB The neutron-induced fission cross section of U-236 was measured at the neutron Time-of-Flight (n_TOF) facility at CERN relative to the standard U-235(n, f) cross section for neutron energies ranging from above thermal to several MeV. The measurement, covering the full range simultaneously, was performed with a fast ionization chamber, taking advantage of the high resolution of the n_TOF spectrometer. The n_TOF results confirm that the first resonance at 5.45 eV is largely overestimated in some nuclear data libraries. The resonance triplet around 1.2 keV was measured with high resolution and resonance parameters were determined with good accuracy. Resonances at high energy have also been observed and characterized and different values for the cross section are provided for the region between 10 keV and the fission threshold. The present work indicates various shortcomings of the current nuclear data libraries in the subthreshold region and provides the basis for an accurate re-evaluation of the U-236(n, f) cross section, which is of great relevance for the development of emerging or innovative nuclear reactor technologies. C1 [Sarmento, R.; Goncalves, I. F.; Vaz, P.; Carrapico, C.; Carrillo de Albornoz, A.; Marques, L.; Salgado, J.; Tavora, L.] ITN, Sacavem, Portugal. [Calviani, M.; Andriamonje, S.; Chiaveri, E.; Guerrero, C.; Vlachoudis, V.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Colonna, N.; Barbagallo, M.; Marrone, S.; Tagliente, G.; Terlizzi, R.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Belloni, F.; Fuji, K.; Milazzo, P. M.; Moreau, C.] Ist Nazl Fis Nucl, Trieste, Italy. [Alvarez-Velarde, F.; Cano-Ott, D.; Gonzalez-Romero, E.; Guerrero, C.; Martinez, T.; Mendoza, E.; Villamarin, D.; Vicente, M. C.] Ctr Invest Energet Medioambientales & Technol CIE, Madrid, Spain. [Andrzejewski, J.; Karamanis, D.; Marganiec, J.] Univ Lodz, PL-90131 Lodz, Poland. [Assimakopoulos, P.; Karadimos, D.; Papachristodoulou, C.; Patronis, N.] Univ Ioannina, GR-45110 Ioannina, Greece. [Audouin, L.; David, S.; Ferrant, L.; Isaev, S.; Stephan, C.; Tassan-Got, L.] Ctr Natl Rech Sci IN2P3 IPN, Orsay, France. [Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.; Pigni, M. T.] Techn Univ Wien, Atominst Osterreich Univ, Vienna, Austria. [Baumann, P.; Kerveno, M.; Lukic, S.; Rudolf, G.] Ctr Natl Rech Sci IN2P3 IReS, Strasbourg, France. [Becvar, F.; Krticka, M.] Charles Univ Prague, Prague, Czech Republic. [Calvino, F.] Univ Politecn Madrid, E-28040 Madrid, Spain. [Capote, R.; Frais-Koelbl, H.; Griesmayer, E.; Mengoni, A.] IAEA, Nucl Data Sect, A-1400 Vienna, Austria. [Praena, J.; Capote, R.; Lozano, M.; Quesada, J.] Univ Seville, Seville, Spain. [Cennini, P.; Dahlfors, M.; Ferrari, A.; Gramegna, F.; Herrera-Martinez, A.; Kadi, Y.; Mastinu, P.; Sarchiapone, L.; Wendler, H.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy. [Chepel, V.; Ferreira-Marques, R.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, LIP Coimbra, P-3000 Coimbra, Portugal. [Chepel, V.; Ferreira-Marques, R.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, Dept Fis, P-3000 Coimbra, Portugal. [Aerts, G.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Lampoudis, C.; Pancin, J.; Perrot, L.; Plukis, A.] CEA Saclay, DSM Irfu, F-91191 Gif Sur Yvette, France. [Cortes, G.; Poch, A.; Pretel, C.] Univ Politecn Cataluna, Barcelona, Spain. [Couture, A.; Cox, J.; O'Brien, S.; Wiescher, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Dillmann, I.; Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] KIT, Inst Nucl Phys, Karlsruhe, Germany. [Dolfini, R.; Rubbia, C.] Univ Pavia, I-27100 Pavia, Italy. [Domingo-Pardo, C.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain. [Eleftheriadis, C.; Lampoudis, C.; Savvidis, I.] Aristotle Univ Thessaloniki, Thessaloniki, Greece. [Furman, W.; Konovalov, V.] Joint Inst Nucl Res, Frank Lab, Dubna, Russia. [Goverdovski, A.; Ketlerov, V.] Inst Phys & Power Engn, Obninsk, Kaluga Region, Russia. [Alvarez, H.; Duran, I.; Paradela, C.; Tarrio, D.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Haas, B.] Ctr Natl Rech Sci IN2P3 CENBG, Bordeaux, France. [Haight, R.; Reifarth, R.] Los Alamos Natl Lab, Los Alamos, NM USA. [Igashira, M.] Tokyo Inst Technol, Tokyo 152, Japan. [Koehler, P.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Kossionides, E.] NCSR, Athens, Greece. [Massimi, C.; Vannini, G.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy. [Massimi, C.; Vannini, G.] Sez INFN Bologna, Bologna, Italy. [Oshima, M.] Japan Atom Energy Res Inst, Tokai, Japan. [Diakaki, M.; Papadopoulos, C.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Lederer, C.; Pavlik, A.] Univ Vienna, Inst Isotopenforsch & Kernphys, A-1010 Vienna, Austria. [Pavlopoulos, P.] Pole Univ Leonard de Vinci, Paris, France. [Plompen, A.; Rullhusen, P.] CEC JRC IRMM, Geel, Belgium. [Rauscher, T.] Univ Basel, Dept Phys & Astron, Basel, Switzerland. [Mengoni, A.; Rosetti, M.; Ventura, A.] ENEA, Bologna, Italy. RP Sarmento, R (reprint author), ITN, Sacavem, Portugal. RI Cano Ott, Daniel/K-4945-2014; Quesada Molina, Jose Manuel/K-5267-2014; Mendoza Cembranos, Emilio/K-5789-2014; Guerrero, Carlos/L-3251-2014; Gonzalez Romero, Enrique/L-7561-2014; Pretel Sanchez, Carme/L-8287-2014; Martinez, Trinitario/K-6785-2014; Capote Noy, Roberto/M-1245-2014; Massimi, Cristian/B-2401-2015; Duran, Ignacio/H-7254-2015; Alvarez Pol, Hector/F-1930-2011; Massimi, Cristian/K-2008-2015; Neves, Francisco/H-4744-2013; Goncalves, Isabel/J-6954-2013; Vaz, Pedro/K-2464-2013; Lopes, Isabel/A-1806-2014; Cortes, Guillem/B-6869-2014; Tain, Jose L./K-2492-2014; Becvar, Frantisek/D-3824-2012; Jericha, Erwin/A-4094-2011; Chepel, Vitaly/H-4538-2012; Ventura, Alberto/B-9584-2011; Rauscher, Thomas/D-2086-2009; Lindote, Alexandre/H-4437-2013; Lederer, Claudia/H-4677-2013; Paradela, Carlos/J-1492-2012; Gramegna, Fabiana/B-1377-2012; Calvino, Francisco/K-5743-2014; Mengoni, Alberto/I-1497-2012; OI Cano Ott, Daniel/0000-0002-9568-7508; Quesada Molina, Jose Manuel/0000-0002-2038-2814; Mendoza Cembranos, Emilio/0000-0002-2843-1801; Guerrero, Carlos/0000-0002-2111-546X; Gonzalez Romero, Enrique/0000-0003-2376-8920; Martinez, Trinitario/0000-0002-0683-5506; Capote Noy, Roberto/0000-0002-1799-3438; Massimi, Cristian/0000-0001-9792-3722; Alvarez Pol, Hector/0000-0001-9643-6252; Massimi, Cristian/0000-0003-2499-5586; Neves, Francisco/0000-0003-3635-1083; Vaz, Pedro/0000-0002-7186-2359; Lopes, Isabel/0000-0003-0419-903X; Jericha, Erwin/0000-0002-8663-0526; Ventura, Alberto/0000-0001-6748-7931; Rauscher, Thomas/0000-0002-1266-0642; Lindote, Alexandre/0000-0002-7965-807X; Paradela Dobarro, Carlos/0000-0003-0175-8334; Koehler, Paul/0000-0002-6717-0771; Domingo-Pardo, Cesar/0000-0002-2915-5466; Tarrio, Diego/0000-0002-9858-3341; Marques, Rui/0000-0003-3549-8198; Gramegna, Fabiana/0000-0001-6112-0602; Calvino, Francisco/0000-0002-7198-4639; Mengoni, Alberto/0000-0002-2537-0038; Lozano Leyva, Manuel Luis/0000-0003-2853-4103; Pavlik, Andreas/0000-0001-7526-3372; Goncalves, Isabel/0000-0002-1997-955X; Sarmento, Raul/0000-0002-5018-5467; Chepel, Vitaly/0000-0003-0675-4586 FU European Commission [FIKW-CT-2000-00107]; Portuguese Foundation for Science and Technology (FCT) [SFRH/BD/43811/2008] FX This work has been supported by the European Commission's 5th Framework Programme under contract number FIKW-CT-2000-00107 (n_TOF-ND-ADS Project). The corresponding author of this work wishes to acknowledge the support of the Portuguese Foundation for Science and Technology (FCT) through grant SFRH/BD/43811/2008. NR 34 TC 9 Z9 9 U1 2 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 31 PY 2011 VL 84 IS 4 AR 044618 DI 10.1103/PhysRevC.84.044618 PG 10 WC Physics, Nuclear SC Physics GA 841OF UT WOS:000296521000006 ER PT J AU Vogt, R Randrup, J AF Vogt, R. Randrup, J. TI Event-by-event study of neutron observables in spontaneous and thermal fission SO PHYSICAL REVIEW C LA English DT Article ID PROMPT NEUTRONS; FRAGMENTS; EMISSION; ENERGY; MASS; MULTIPLICITY; CF-252; PU-239; CM-244; U-235 AB The event-by-event fission model FREYA is extended to spontaneous fission of actinides and a variety of neutron observables are studied for spontaneous fission and fission induced by thermal neutrons with a view toward possible applications for detection of special nuclear materials. C1 [Vogt, R.] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 USA. [Vogt, R.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Randrup, J.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Vogt, R (reprint author), Lawrence Livermore Natl Lab, Div Phys, POB 5508, Livermore, CA 94551 USA. FU Office of Nuclear Physics in the US Department of Energy's Office of Science [DE-AC02-05CH11231, DE-AC52-07NA27344]; National Science Foundation [NSF PHY-0555660]; US Department of Energy National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development FX We wish to acknowledge helpful discussions with A. Bernstein, D. A. Brown, and C. Hagmann. This work was supported by the Office of Nuclear Physics in the US Department of Energy's Office of Science under Contracts No. DE-AC02-05CH11231 (J.R.) and No. DE-AC52-07NA27344 (R. V.) and by the National Science Foundation, Grant No. NSF PHY-0555660 (R. V.). This research is also supported by the US Department of Energy National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development. NR 36 TC 19 Z9 19 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 31 PY 2011 VL 84 IS 4 AR 044621 DI 10.1103/PhysRevC.84.044621 PG 14 WC Physics, Nuclear SC Physics GA 841OF UT WOS:000296521000009 ER PT J AU Edwards, RG Dudek, JJ Richards, DG Wallace, SJ AF Edwards, Robert G. Dudek, Jozef J. Richards, David G. Wallace, Stephen J. TI Excited state baryon spectroscopy from lattice QCD SO PHYSICAL REVIEW D LA English DT Article ID QUARK-MODEL; MASSES AB We present a calculation of the Nucleon and Delta excited state spectra on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including J = 7/2, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of SU(6) circle times O(3) representations and a counting of levels that is consistent with the nonrelativistic qqq constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states. C1 [Edwards, Robert G.; Dudek, Jozef J.; Richards, David G.] Jefferson Lab, Newport News, VA 23606 USA. [Dudek, Jozef J.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Wallace, Stephen J.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RP Edwards, RG (reprint author), Jefferson Lab, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM edwards@jlab.org; dudek@jlab.org; dgr@jlab.org; stevewal@umd.edu FU U.S. Department of Energy INCITE at Oak Ridge National Lab; NSF Teragrid at the Texas Advanced Computer Center; Pittsburgh Supercomputer Center; Jefferson Laboratory; U.S. Department of Energy [DE-FG02-93ER-40762, DE-AC05-06OR23177] FX We thank our colleagues within the Hadron Spectrum Collaboration. We also acknowledge illuminating discussions with Simon Capstick and Winston Roberts. CHROMA [45] and QUDA [46,47] were used to perform this work on clusters at Jefferson Laboratory under the USQCD Initiative and the LQCD ARRA project. Gauge configurations were generated using resources awarded from the U.S. Department of Energy INCITE program at Oak Ridge National Lab, the NSF Teragrid at the Texas Advanced Computer Center and the Pittsburgh Supercomputer Center, as well as at Jefferson Laboratory. S.J.W. acknowledges support from U.S. Department of Energy Contract No. DE-FG02-93ER-40762. R. G. E., J.J.D. and D. G. R. acknowledge support from U.S. Department of Energy Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC, manages and operates Jefferson Laboratory. NR 47 TC 150 Z9 152 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 31 PY 2011 VL 84 IS 7 AR 074508 DI 10.1103/PhysRevD.84.074508 PG 29 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 846HM UT WOS:000296887800002 ER PT J AU Ren, Y Almagri, AF Fiksel, G Prager, SC Sarff, JS Terry, PW AF Ren, Y. Almagri, A. F. Fiksel, G. Prager, S. C. Sarff, J. S. Terry, P. W. TI Experimental Observation of Anisotropic Magnetic Turbulence in a Reversed Field Pinch Plasma SO PHYSICAL REVIEW LETTERS LA English DT Article ID MAGNETOHYDRODYNAMIC DYNAMO; ALFVEN WAVES; FLUCTUATIONS; TRANSPORT; DISCRETE AB In this Letter we report an experimental study of fully developed anisotropic magnetic turbulence in a laboratory plasma. The turbulence has broad (narrow) spectral power in the perpendicular (parallel) direction to the local mean magnetic field extending beyond the ion cyclotron frequency. Its k(perpendicular to) spectrum is asymmetric in the ion and electron diamagnetic directions. The wave number scaling for the short wavelength fluctuations shows exponential falloff indicative of dissipation. A standing wave structure is found for the turbulence in the minor radial direction of the toroidal plasma. C1 [Ren, Y.; Almagri, A. F.; Fiksel, G.; Prager, S. C.; Sarff, J. S.; Terry, P. W.] Univ Wisconsin, Dept Phys, Ctr Magnet Self Org Lab & Astrophys Plasmas, Madison, WI 53706 USA. RP Ren, Y (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM yren@pppl.gov FU DOE; NSF FX The authors are grateful to the MST research team for their excellent help and support. This work is funded by DOE and NSF. NR 24 TC 12 Z9 12 U1 0 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 31 PY 2011 VL 107 IS 19 AR 195002 DI 10.1103/PhysRevLett.107.195002 PG 5 WC Physics, Multidisciplinary SC Physics GA 847WY UT WOS:000297004600008 PM 22181614 ER PT J AU Giovannini, L Montoncello, F Nizzoli, F Vavassori, P Grimsditch, M AF Giovannini, L. Montoncello, F. Nizzoli, F. Vavassori, P. Grimsditch, M. TI Comment on "Mapping of localized spin-wave excitations by near-field Brillouin light scattering" [Appl. Phys. Lett. 97, 152502 (2010)] SO APPLIED PHYSICS LETTERS LA English DT Editorial Material C1 [Giovannini, L.; Montoncello, F.; Nizzoli, F.] Dipartimento Fis, I-44122 Ferrara, Italy. [Giovannini, L.; Montoncello, F.; Nizzoli, F.] CNISM, I-44122 Ferrara, Italy. [Vavassori, P.] CIC NanoGUNE Consolider, Donostia San Sebastian 20018, Spain. [Vavassori, P.] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain. [Grimsditch, M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Giovannini, L (reprint author), Dipartimento Fis, Via G Saragat 1, I-44122 Ferrara, Italy. EM giovannini@fe.infn.it RI Vavassori, Paolo/B-4299-2014; nanoGUNE, CIC/A-2623-2015 OI Vavassori, Paolo/0000-0002-4735-6640; NR 8 TC 1 Z9 1 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 31 PY 2011 VL 99 IS 18 AR 186101 DI 10.1063/1.3656967 PG 1 WC Physics, Applied SC Physics GA 843GD UT WOS:000296659400104 ER PT J AU Vayssieres, L Persson, C Guo, JH AF Vayssieres, L. Persson, C. Guo, J. -H. TI Size effect on the conduction band orbital character of anatase TiO2 nanocrystals SO APPLIED PHYSICS LETTERS LA English DT Article ID X-RAY-ABSORPTION; ELECTRON-GAS; TITANIUM; EFFICIENCY; OXIDES; WATER AB O 1s x-ray absorption spectroscopy and first principle calculation have been used to probe the size effect on the orbital character and hybridization of the conduction band of anatase TiO2 nanocrystals over two orders of magnitude in diameter (2-200 nm). The appearance and predominance of unoccupied delocalized states derived from the hybridization of antibonding O 2p and Ti 4s rather than 3d is observed when the nanoparticle size approaches the exciton radius. These results provide an experimental evidence of quantum size effect on unoccupied states in anatase TiO2 nanocrystals. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3657147] C1 [Vayssieres, L.] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki, Japan. [Persson, C.] Univ Oslo, Dept Phys, Oslo, Norway. [Guo, J. -H.] Univ Calif Berkeley, Lawrence Berkeley Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Vayssieres, L (reprint author), Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, Tsukuba, Ibaraki, Japan. EM Vayssieres.lionel@nims.go.jp NR 36 TC 18 Z9 18 U1 0 U2 40 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0003-6951 J9 APPL PHYS LETT JI Appl. Phys. Lett. PD OCT 31 PY 2011 VL 99 IS 18 AR 183101 DI 10.1063/1.3657147 PG 3 WC Physics, Applied SC Physics GA 843GD UT WOS:000296659400074 ER PT J AU Chiu, YT Padmanabhan, M Gokmen, T Shabani, J Tutuc, E Shayegan, M Winkler, R AF Chiu, YenTing Padmanabhan, Medini Gokmen, T. Shabani, J. Tutuc, E. Shayegan, M. Winkler, R. TI Effective mass and spin susceptibility of dilute two-dimensional holes in GaAs SO PHYSICAL REVIEW B LA English DT Article ID CYCLOTRON-RESONANCE; QUANTUM-WELLS; ELECTRON-GAS; SYSTEMS; HETEROSTRUCTURES; HETEROJUNCTIONS; ENHANCEMENT AB We report effective hole mass (m*) measurements through analyzing the temperature dependence of Shubnikov-de Haas oscillations in dilute (density p similar to 7 x 10(10) cm(-2), r(s) similar to 6) two-dimensional (2D) hole systems confined to a 20-nm-wide, (311) A GaAs quantum well. The holes in this system occupy two nearly degenerate spin subbands whose m* we measure to be similar to 0.2 (in units of the free electron mass). Despite the relatively large r(s) in our 2D system, the measured m* is in reasonably good agreement with the results of our energy band calculations, which do not take interactions into account. We then apply a sufficiently strong parallel magnetic field to fully depopulate one of the spin subbands, and measure m* for the populated subband. We find that this latter m* is close to the m* we measure in the absence of the parallel field. We also deduce the spin susceptibility of the 2D hole system from the depopulation field, and we conclude that the susceptibility is enhanced by about 50% relative to the value expected from the band calculations. C1 [Chiu, YenTing; Padmanabhan, Medini; Gokmen, T.; Shabani, J.; Tutuc, E.; Shayegan, M.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. [Winkler, R.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Winkler, R.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Chiu, YT (reprint author), Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. FU Department of Energy [DEFG02-00-ER45841]; National Science Foundation [MRSEC DMR-0819860, ECCS-1001719, 0829872]; DOE BES [DE-AC02-06CH11357] FX We acknowledge support through the Department of Energy (Grant No. DEFG02-00-ER45841) for sample fabrication, and the National Science Foundation (Grants No. MRSEC DMR-0819860, No. ECCS-1001719, and No. 0829872) for characterization and measurements. Work at Argonne was supported by DOE BES under Contract No. DE-AC02-06CH11357. NR 47 TC 8 Z9 8 U1 1 U2 10 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 31 PY 2011 VL 84 IS 15 AR 155459 DI 10.1103/PhysRevB.84.155459 PG 7 WC Physics, Condensed Matter SC Physics GA 845VT UT WOS:000296853700026 ER PT J AU Matsuo, M Okamoto, S Koshibae, W Mori, M Maekawa, S AF Matsuo, M. Okamoto, S. Koshibae, W. Mori, M. Maekawa, S. TI Nonmonotonic temperature dependence of thermopower in strongly correlated electron systems SO PHYSICAL REVIEW B LA English DT Article ID MEAN-FIELD THEORY; INFINITE DIMENSIONS; TRANSPORT-PROPERTIES; HUBBARD-MODEL; TRANSITION; METALS AB We examine the temperature dependence of thermopower in the single-band Hubbard model using dynamical mean-field theory. The strong Coulomb interaction brings about the coherent-to-incoherent crossover as temperature increases. As a result, the thermopower exhibits nonmonotonic temperature dependence and asymptotically approaches values given by the Mott-Heikes formula. In the light of our theoretical result, we discuss the thermopower in some transition metal oxides. The magnetic field dependence of the thermopower is also discussed. C1 [Matsuo, M.; Mori, M.; Maekawa, S.] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. [Matsuo, M.; Koshibae, W.; Mori, M.; Maekawa, S.] Japan Sci & Technol Agcy, CREST, Tokyo 1020075, Japan. [Okamoto, S.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Koshibae, W.] RIKEN, Cross Correlated Mat Res Grp CMRG, Wako, Saitama 3510198, Japan. RP Matsuo, M (reprint author), Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan. EM matsuo.mari@jaea.go.jp RI Okamoto, Satoshi/G-5390-2011; Koshibae, Wataru/B-2838-2013 OI Okamoto, Satoshi/0000-0002-0493-7568; FU MEXT [19204035, 21360043, 22102501]; JST; FIRST-Program; US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division FX The authors are grateful to V. Zlatic for useful discussions. This work is partly supported by Grants-in-Aid for Scientific Research from MEXT (Grants No. 19204035, No. 21360043, and No. 22102501), the "K" computer project of the Nanoscience Program, JST-CREST, and the FIRST-Program. S.O. was supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. NR 32 TC 7 Z9 7 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 31 PY 2011 VL 84 IS 15 AR 153107 DI 10.1103/PhysRevB.84.153107 PG 4 WC Physics, Condensed Matter SC Physics GA 845VT UT WOS:000296853700001 ER PT J AU Pan, W Baldwin, KW West, KW Pfeiffer, LN Tsui, DC AF Pan, W. Baldwin, K. W. West, K. W. Pfeiffer, L. N. Tsui, D. C. TI Quantitative examination of the collapse of spin splitting in the quantum Hall regime SO PHYSICAL REVIEW B LA English DT Article ID 2-DIMENSIONAL ELECTRON-GAS; MAGNETIC-FIELDS; EXCHANGE ENHANCEMENT; EFFECTIVE-MASS; DENSITY; SYSTEMS; STATES AB We have quantitatively tested the theoretical model on the collapse of spin slitting in the quantum Hall effect regime proposed by Fogler and Shklovskii [ Phys. Rev. B 52, 17366 (1995)] in a high-mobility two-dimensional electron system (2DES) realized in a heterojunction insulated-gate field-effect transistor. In the 2DES density range between n = 2 x 10(10) and 2 x 10(11) cm(-2), the Landau level number N displays a power-law dependence on the critical electron density n(c) where the spin splitting collapses and N = 11.47 x n(c)(0.64 +/- 0.01) (n(c) is in units of 10(11) cm(-2)). This power-law dependence is in good agreement with the theoretical prediction in the low-density regime. C1 [Pan, W.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA. RP Pan, W (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU DOE Office of Basic Energy Science [DE-AC52-06NA25396, DE-AC04-94AL85000]; DOE [DE-FG02-98ER45683]; Gordon and Betty Moore Foundation; National Science Foundation through the Princeton Center for Complex Materials [DMR-0819860] FX We thank M. Fogler and M. Lilly for very helpful discussions. The work at Sandia was supported by the DOE Office of Basic Energy Science and was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences, user facility at Los Alamos National Laboratory (Contract No. DE-AC52-06NA25396) and Sandia National Laboratories (Contract No. DE-AC04-94AL85000). We would like to thank Michael Lilly and John Nogan for their help. The work at Princeton was supported by the DOE under Grant No. DE-FG02-98ER45683 and was partially funded by the Gordon and Betty Moore Foundation as well as the National Science Foundation MRSEC Program through the Princeton Center for Complex Materials (Grant No. DMR-0819860). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 24 TC 5 Z9 5 U1 0 U2 3 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 31 PY 2011 VL 84 IS 16 AR 161307 DI 10.1103/PhysRevB.84.161307 PG 4 WC Physics, Condensed Matter SC Physics GA 845WP UT WOS:000296857700001 ER PT J AU Dan, WL Fregoso, BM Guo, H Chien, CC Levin, K AF Dan Wulin Fregoso, Benjamin M. Guo, Hao Chien, Chih-Chun Levin, K. TI Conductivity in pseudogapped superconductors: A sum-rule-consistent preformed-pair scenario SO PHYSICAL REVIEW B LA English DT Article ID T-C; STATE; CROSSOVER AB We calculate the dc conductivity sigma in a pseudogapped high T(c) superconductor within a precursor superconductivity theory which is consistent with gauge invariance. Our results contain physical effects beyond those identified previously. Rather than presuming that lifetime effects dominate the T dependence of transport, here we show (consistent with growing experimental support) that the temperature dependence of the effective carrier number is a natural consequence of the pseudogap, and demonstrate reasonable agreement with dc transport in the underdoped cuprates. C1 [Dan Wulin; Fregoso, Benjamin M.; Levin, K.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Dan Wulin; Fregoso, Benjamin M.; Levin, K.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Guo, Hao] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Chien, Chih-Chun] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Dan, WL (reprint author), Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. FU NSF-MRSEC [0820054]; US Department of Energy via the LANL/LDRD FX This work is supported by NSF-MRSEC Grant No. 0820054. C. C. C. acknowledges the support of the US Department of Energy via the LANL/LDRD Program. NR 24 TC 0 Z9 0 U1 1 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 31 PY 2011 VL 84 IS 14 AR 140509 DI 10.1103/PhysRevB.84.140509 PG 4 WC Physics, Condensed Matter SC Physics GA 843JH UT WOS:000296667600004 ER PT J AU Thaler, A Hodovanets, H Torikachvili, MS Ran, S Kracher, A Straszheim, W Yan, JQ Mun, E Canfield, PC AF Thaler, A. Hodovanets, H. Torikachvili, M. S. Ran, S. Kracher, A. Straszheim, W. Yan, J. Q. Mun, E. Canfield, P. C. TI Physical and magnetic properties of Ba(Fe1-xMnx)(2)As-2 single crystals SO PHYSICAL REVIEW B LA English DT Article ID SUPERCONDUCTIVITY; BAFE2AS2 AB Single crystals of Ba(Fe1-xMnx)(2)As-2, 0 < x < 0.148, have been grown and characterized by structural, magnetic, electrical transport, and thermopower measurements. Although growths of single crystals of Ba(Fe1-xMnx)(2)As-2 for the full 0 <= x <= 1 range were made, we find evidence for phase separation (associated with some form of immiscibility) starting for x > 0.1-0.2. Our measurements show that whereas the structural/magnetic phase transition found in pure BaFe2As2 at 134 K is initially suppressed by Mn substitution, superconductivity is not observed at any substitution level. Although the effect of hydrostatic pressure up to 20 kbar in the parent BaFe2As2 compound is to suppress the structural/magnetic transition at the approximate rate of 0.9 K/kbar, the effects of pressure and Mn substitution in the x = 0.102 compound are not cumulative. Phase diagrams of transition temperature versus substitution concentration x based on electrical transport, magnetization, and thermopower measurements have been constructed and compared to those of the Ba(Fe1-xTMx)(2)As-2 (TM=Co and Cr) series. C1 [Thaler, A.; Hodovanets, H.; Torikachvili, M. S.; Ran, S.; Kracher, A.; Straszheim, W.; Yan, J. Q.; Mun, E.; Canfield, P. C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Thaler, A.; Hodovanets, H.; Torikachvili, M. S.; Ran, S.; Kracher, A.; Straszheim, W.; Yan, J. Q.; Mun, E.; Canfield, P. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Torikachvili, M. S.] San Diego State Univ, Dept Phys, San Diego, CA 92182 USA. RP Thaler, A (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RI Canfield, Paul/H-2698-2014; Thaler, Alexander/J-5741-2014 OI Thaler, Alexander/0000-0001-5066-8904 FU Department of Energy, Basic Energy Sciences [DE-AC02-07CH11358]; National Science Foundation [DMR-0805335] FX Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. Pressure measurements were supported by the National Science Foundation under Grant No. DMR-0805335. We would like to thank S. Bud'ko, A. Kreyssig, S. Kim, X. Lin, R. Hu, E. Colombier, W. McCallum, K. Dennis, and M. G. Kim for help and useful discussions. NR 39 TC 29 Z9 29 U1 5 U2 31 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD OCT 31 PY 2011 VL 84 IS 14 AR 144528 DI 10.1103/PhysRevB.84.144528 PG 10 WC Physics, Condensed Matter SC Physics GA 843JH UT WOS:000296667600019 ER PT J AU Doughty, B Haber, LH Leone, SR AF Doughty, Benjamin Haber, Louis H. Leone, Stephen R. TI Pump-probe photoelectron velocity-map imaging of autoionizing singly excited 4s(1)4p(6)np(1)(n=7,8) and doubly excited 4s(2)4p(4)5s(1)6p(1) resonances in atomic krypton SO PHYSICAL REVIEW A LA English DT Article ID ANGULAR-DISTRIBUTIONS; MULTIPHOTON IONIZATION; PHOTOIONIZATION CONTINUUM; CONFIGURATION-INTERACTION; ABSORPTION-SPECTRA; LINE-PROFILES; STATES; XENON; KR; PARAMETERS AB Pump-probe photoelectron velocity-map imaging, using 27-eV high-harmonic excitation and 786-nm ionization, is used to resolve overlapping autoionizing resonances in atomic krypton, obtaining two-photon photoelectron angular distributions (PADs) for singly and doubly excited states. Two features in the photoelectron spectrum are assigned to singly excited 4s(1)4p(6)np(1) (n = 7,8) configurations and four features provide information about double excitation configurations. The anisotropy parameters for the singly excited 7p configuration are measured to be beta(2) = 1.61 +/- 0.06 and beta(4) = 1.54 +/- 0.16 while the 8p configuration gives beta(2) = 1.23 +/- 0.19 and beta(4) = 0.60 +/- 0.15. These anisotropies most likely represent the sum of overlapping PADs from states of singlet and triplet spin multiplicities. Of the four bands corresponding to ionization of doubly excited states, two are assigned to 4s(2)4p(4)5s(1)6p(1) configurations that are probed to different J-split ion states. The two remaining doubly excited states are attributed to a previously observed, but unassigned, resonance in the vacuum-ultraviolet photoabsorption spectrum. The PADs from each of the double excitation states are also influenced by overlap from neighboring states that are not completely spectrally resolved. The anisotropies of the observed double excitation states are reported, anticipating future theoretical and experimental work to separate the overlapping PADs into the state resolved PADs. The results can be used to test theories of excited state ionization. C1 Univ Calif Berkeley, Dept Chem, Dept Phys, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. RP Doughty, B (reprint author), Columbia Univ, Dept Chem, New York, NY 10027 USA. EM srl@berkeley.edu RI Haber, Louis/A-6762-2013; Doughty, Benjamin /M-5704-2016 OI Doughty, Benjamin /0000-0001-6429-9329 FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy [DE-AC02-05CH11231] FX The authors acknowledge many useful and stimulating conversations with Dr. Zhi-Heng Loh. Financial support is provided by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. NR 34 TC 3 Z9 3 U1 2 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 J9 PHYS REV A JI Phys. Rev. A PD OCT 31 PY 2011 VL 84 IS 4 AR 043433 DI 10.1103/PhysRevA.84.043433 PG 8 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 838XW UT WOS:000296328600013 ER PT J AU Parker, D Singh, DJ AF Parker, David Singh, David J. TI Potential Thermoelectric Performance from Optimization of Hole-Doped Bi2Se3 SO PHYSICAL REVIEW X LA English DT Article ID THERMAL-CONDUCTIVITY; TRANSPORT-PROPERTIES; THIN-FILMS; SUPERLATTICES; MERIT; CRYSTALS; FIGURE; MOBILITY; PBSE; PBTE AB We present an analysis of the potential thermoelectric performance of hole-doped Bi2Se3, which is commonly considered to show inferior room temperature performance when compared to Bi2Te3. We find that if the lattice thermal conductivity can be reduced by nanostructuring techniques (as have been applied to Bi2Te3 in Refs. [W. Xie, X. Tang, Y. Yan, Q. Zhang, and T. M. Tritt, Unique Nanostructures and Enhanced Thermoelectric Performance of Melt-Spun BiSbTe Alloys, Appl. Phys. Lett. 94, 102111 (2009); B. Poudel et al., High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys, Science 320, 634 (2008).]) the material may show optimized ZT values of unity or more in the 300-500 K temperature range and thus be suitable for cooling and moderate temperature waste heat recovery and thermoelectric solar cell applications. Central to this conclusion are the larger band gap and the relatively heavier valence bands of Bi2Se3. C1 [Parker, David; Singh, David J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Parker, D (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. FU U.S. Department of Energy; EERE; Vehicle Technologies; Propulsion Materials Program; Solid State Solar-Thermal Energy Conversion Center (S3 TEC), an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001299/DE-FG02-09ER46577] FX We thank Jiong Yang, Wenqing Zhang, and Zhifeng Ren for useful discussions. This research was supported by the U.S. Department of Energy, EERE, Vehicle Technologies, Propulsion Materials Program (D. P.), and the Solid State Solar-Thermal Energy Conversion Center (S3 TEC), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-SC0001299/DE-FG02-09ER46577 (D.J.S.). NR 43 TC 36 Z9 36 U1 5 U2 82 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2160-3308 J9 PHYS REV X JI Phys. Rev. X PD OCT 31 PY 2011 VL 1 IS 2 AR 021005 DI 10.1103/PhysRevX.1.021005 PG 9 WC Physics, Multidisciplinary SC Physics GA 029OX UT WOS:000310506300001 ER PT J AU Harvey, SD Wright, BW AF Harvey, Scott D. Wright, Bob W. TI Development of a simple field test for vehicle exhaust to detect illicit use of dyed diesel fuel SO TALANTA LA English DT Article DE Vehicle exhaust analysis; Dyed diesel fuel; CI Solvent Red 164; Alkyl aryl amines; Micro-analytical color tests; Tax evasion ID AROMATIC-AMINES; TEMPERATURE; FLUORESCAMINE; PERFORMANCE; ENGINE; MS AB Tax-free diesel fuel is intended for off-road uses such as agricultural operations, but illicit use of this fuel does occur and is a convenient way of evading payment of excise taxes. Current enforcement to prevent this practice involves visual inspection for the red azo dye added to the fuel to indicate its tax-free status. This approach, while very effective, has shortcomings such as the invasive nature of the tests and/or various deceptive tactics applied by tax evaders. A test designed to detect illicit dyed-fuel use by analyzing the vehicle exhaust would circumvent these shortcomings. This paper describes the development of a simple color spot test designed to detect the use of tax-free (i.e., dyed) fuel by analyzing the engine exhaust. Development efforts first investigated the combustion products of C.I. Solvent Red 164 (the azo dye formulation used in the United States to tag tax-free fuel). A variety of aryl amines were identified as characteristic molecular remnants that appear to survive combustion. A number of micro-analytical color tests specific for aryl amines were then investigated. One test that detected aryl amines by reacting with 4-(dimethylamino)benzaldehyde seemed to be particularly applicable and was used in a proof-of-principle experiment. The 4-(dimethylamino)benzaldehyde color spot test was able to clearly distinguish between engines that were burning regular fuel and those that were burning dyed diesel fuel. Further development will refine this color spot test to provide an easy-to-use field test. (C) 2011 Elsevier B.V. All rights reserved. C1 [Harvey, Scott D.; Wright, Bob W.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Harvey, SD (reprint author), Pacific NW Natl Lab, POB 999-MSIN P7-50, Richland, WA 99352 USA. EM scott.harvey@pnnl.gov FU Internal Revenue Service (IRS); U.S. Department of Energy (DOE) [DE-AC05-76RLO1830] FX This work was supported by the Internal Revenue Service (IRS) under an Interagency Agreement with the U.S. Department of Energy (DOE) under Contract DE-AC05-76RLO1830. The views, opinions, and findings contained within this paper are those of the authors and should not be construed as an official position, policy, or decision of the DOE or IRS unless designated by other documentation. The authors gratefully acknowledge the GC/MS NR 25 TC 2 Z9 2 U1 2 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-9140 J9 TALANTA JI Talanta PD OCT 30 PY 2011 VL 86 BP 148 EP 156 DI 10.1016/j.talanta.2011.08.050 PG 9 WC Chemistry, Analytical SC Chemistry GA 862XB UT WOS:000298126300019 PM 22063524 ER PT J AU Elezovic, NR Babic, BM Radmilovic, VR Vracar, LM Krstajic, NV AF Elezovic, N. R. Babic, B. M. Radmilovic, V. R. Vracar, Lj. M. Krstajic, N. V. TI Nb-TiO2 supported platinum nanocatalyst for oxygen reduction reaction in alkaline solutions SO ELECTROCHIMICA ACTA LA English DT Article DE Nb-TiO2 support; Nb-TiO2/Pt catalyst; Pt nanoparticles; Oxygen reduction reaction; Alkaline solutions ID MEMBRANE FUEL-CELLS; ELECTROCHEMICAL REDUCTION; ELECTROCATALYTIC ACTIVITY; CARBON CRYOGEL; NIOBIUM OXIDE; O-2 REDUCTION; THIN-FILM; ELECTRODES; STABILITY; KINETICS AB Platinum based nanocatalyst at home made Nb-TiO2 support was synthesized and characterized as the catalyst for oxygen reduction reaction in 0.1 mol dm(-3) NaOH, at 25 degrees C. Nb doped TiO2 catalyst support, containing 5% of Nb, has been synthesized by modified acid-catalyzed sol-gel procedure in non-aqueous medium. BET and X-ray diffraction (XRD) techniques were applied for characterization of synthesized supporting material. XRD analysis revealed only presence of anatase TiO2 phase in synthesized support powder. Existence of any peaks belonging to Nb compounds has not been observed, indicating Nb incorporated into the lattice. Nb-TiO2 supported Pt nanocatalyst synthesized, using borohydride reduction method, was characterized by TEM and HRTEM techniques. Platinum nanoparticles distribution, over Nb doped TiO2 support, was quite homogenous. Mean particle size of about 4 nm was found with no pronounced particle agglomeration. Electrochemical techniques: cyclic voltammetry and linear sweep voltammetry at rotating disc electrode were applied in order to study kinetics and estimate catalytic activity of this new catalyst for the oxygen reduction reaction in alkaline solution. Two different Tafel slopes were found: one close to -90 mV dec(-1) in low current density region and other approximately 200 my dec(-1) in high current density region, which is in good accordance with literature results for oxygen reduction at Pt single crystals, as well as Pt nanocatalysts in alkaline solutions. Similar specific catalytic activity (expressed in term of kinetic current density per real surface area) of Nb(5%)-TiO2/Pt catalyst for oxygen reduction reaction in comparison with the carbon supported platinum (Vulcan/Pt) nanocatalyst, was found. (C) 2011 Published by Elsevier Ltd. C1 [Elezovic, N. R.] Univ Belgrade, Inst Multidisciplinary Res, Belgrade, Serbia. [Babic, B. M.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Radmilovic, V. R.] LBNL Univ Calif, Natl Ctr Electron Microscopy, Berkeley, CA USA. [Vracar, Lj. M.; Krstajic, N. V.] Univ Belgrade, Fac Technol & Met, Belgrade 11000, Serbia. RP Elezovic, NR (reprint author), Univ Belgrade, Inst Multidisciplinary Res, Kneza Viseslava 1, Belgrade, Serbia. EM nelezovic@tmf.bg.ac.rs FU Ministry of Science and Technological Development, Republic of Serbia [172054] FX This work is financially supported by the Ministry of Science and Technological Development, Republic of Serbia, under Contract No. 172054. NR 42 TC 16 Z9 18 U1 4 U2 60 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD OCT 30 PY 2011 VL 56 IS 25 BP 9020 EP 9026 DI 10.1016/j.electacta.2011.04.075 PG 7 WC Electrochemistry SC Electrochemistry GA 834XE UT WOS:000295997000002 ER PT J AU Norberg, NS Kostecki, R AF Norberg, Nick S. Kostecki, Robert TI FTIR spectroscopy of a LiMnPO4 composite cathode SO ELECTROCHIMICA ACTA LA English DT Article DE Li-ion batteries; Cathode; LiMnPO4; FTIR spectroscopy; Jahn-Teller distortion ID RECHARGEABLE LITHIUM BATTERIES; POSITIVE-ELECTRODE MATERIALS; LI-ION; LOCAL-STRUCTURE; LIFEPO4; LI-X(MNYFE1-Y)PO4; PHOSPHATES; LIXFEPO4; MN; FE AB A LixMnPO4 (x=1.0-0.15) composite cathode was investigated by Fourier-transform infrared spectroscopy at different states of charge. Significant spectral changes of the PO43- vibrations, which are correlated with the Jahn-Teller distortion of Mn3+ in MnPO4 and the 3rd ionization potential of Mn, were observed upon electrochemical delithiation of LiMnPO4. The presence of two sets of peaks observed in the series of delithiated LixMnPO4 spectra is consistent with a two-phase process for delithiation. These results provide insight into the structural changes that occur during lithium extraction and insertion in LiMnPO4. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Norberg, Nick S.; Kostecki, Robert] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Kostecki, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM r_kostecki@lbl.gov FU Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy, under contract no. DE-AC02-05CH11231. We thank High Power Lithium, Inc. (currently the Dow Chemical Company) for supplying samples of the LiMnPO4 electrode, and Dr. Guoying Chen for helpful discussions. NR 26 TC 9 Z9 9 U1 2 U2 54 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD OCT 30 PY 2011 VL 56 IS 25 BP 9168 EP 9171 DI 10.1016/j.electacta.2011.07.116 PG 4 WC Electrochemistry SC Electrochemistry GA 834XE UT WOS:000295997000022 ER PT J AU English, NB McDowell, NG Allen, CD Mora, C AF English, Nathan B. McDowell, Nate G. Allen, Craig D. Mora, Claudia TI The effects of alpha-cellulose extraction and blue-stain fungus on retrospective studies of carbon and oxygen isotope variation in live and dead trees SO RAPID COMMUNICATIONS IN MASS SPECTROMETRY LA English DT Article ID WOOD; MORTALITY; RATIOS; DENDROCLIMATOLOGY; HOLOCELLULOSE; MECHANISMS; DELTA-O-18; DROUGHT; CLIMATE; QUERCUS AB Tree-ring carbon and oxygen isotope ratios from live and recently dead trees may reveal important mechanisms of tree mortality. However, wood decay in dead trees may alter the delta C-13 and delta O-18 values of whole wood obscuring the isotopic signal associated with factors leading up to and including physiological death. We examined whole sapwood and a-cellulose from live and dead specimens of ponderosa pine (Pinus ponderosa), one-seed juniper (Juniperous monosperma), pi on pine (Pinus edulis) and white fir (Abies concolor), including those with fungal growth and beetle frass in the wood, to determine if a-cellulose extraction is necessary for the accurate interpretation of isotopic compositions in the dead trees. We found that the offset between the delta C-13 or delta O-18 values of a-cellulose and whole wood was the same for both live and dead trees across a large range of inter-annual and regional climate differences. The method of a-cellulose extraction, whether Leavitt-Danzer or Standard Brendel modified for small samples, imparts significant differences in the delta C-13 (up to 0.4 parts per thousand) and delta O-18 (up to 1.2 parts per thousand) of a-cellulose, as reported by other studies. There was no effect of beetle frass or blue-stain fungus (Ophiostoma) on the delta C-13 and delta O-18 of whole wood or a-cellulose. The relationships between whole wood and a-cellulose delta C-13 for ponderosa, pi on and juniper yielded slopes of similar to 1, while the relationship between delta O-18 of whole wood and alpha-cellulose was less clear. We conclude that there are few analytical or sampling obstacles to retrospective studies of isotopic patterns of tree mortality in forests of the western United States. Published in 2011 by John Wiley & Sons, Ltd. C1 [English, Nathan B.; McDowell, Nate G.; Mora, Claudia] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Allen, Craig D.] US Geol Survey, Ft Collins Sci Ctr, Jemez Mt Stn, Los Alamos, NM 87544 USA. RP English, NB (reprint author), Los Alamos Natl Lab, EES-14,MS J495, Los Alamos, NM 87545 USA. EM nenglish@lanl.gov RI English, Nathan/B-4615-2008; James Cook University, TESS/B-8171-2012; OI English, Nathan/0000-0002-6936-8079; Mora, Claudia/0000-0003-2042-0208 FU Directed Research and Development fellowship for Nathan English; Department of Energy, Office of Biological and Environmental Research; Western Mountain Isotope Project, a United States Geological Survey program in Global Change FX This research was funded in part by a Laboratory Directed Research and Development fellowship for Nathan English, the Department of Energy, Office of Biological and Environmental Research, and the Western Mountain Isotope Project, a United States Geological Survey program in Global Change. Samples were collected by Craig Allen, Jamie Resnick and Kelsey Neal. We wish to thank Kent Coombs, Jamie Resnick, Kelsey Neal, Kelly Steinberg, Meghan Montoya, Josh Bowman, Zach Breshears and Samantha Stutz for preparing whole wood and alpha-cellulose samples at the TA51 Stable Isotope Preparation Laboratory. Tree-ring cores and sections were measured and dated by Chris Baisan at the Laboratory of Tree-Ring Research at the University of Arizona. We are especially grateful to Kevin Anchukaitis, who reviewed the manuscript, and to Steven Leavitt, both of whom provided many useful insights on sample processing strategies and results. Two anonymous reviewers provided useful comments and greatly improved the manuscript. We are grateful to Turin Dickman, Clif Meyer, Debora Mourachov, David Podlesak, Heath Powers, and Nancy Torres for institutional support. NR 25 TC 6 Z9 8 U1 2 U2 20 PU WILEY-BLACKWELL PI MALDEN PA COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA SN 0951-4198 J9 RAPID COMMUN MASS SP JI Rapid Commun. Mass Spectrom. PD OCT 30 PY 2011 VL 25 IS 20 BP 3083 EP 3090 DI 10.1002/rcm.5192 PG 8 WC Biochemical Research Methods; Chemistry, Analytical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 831JH UT WOS:000295725900014 PM 21953963 ER PT J AU Hay, MB Stoliker, DL Davis, JA Zachara, JM AF Hay, Michael B. Stoliker, Deborah L. Davis, James A. Zachara, John M. TI Characterization of the intragranular water regime within subsurface sediments: Pore volume, surface area, and mass transfer limitations SO WATER RESOURCES RESEARCH LA English DT Article ID CONTAMINATED HANFORD SEDIMENTS; AGGREGATED POROUS-MEDIA; ROCK OPALINUS CLAY; LONG-TERM SORPTION; SOLUTE TRANSPORT; ELECTROLYTE INTERFACE; URANIUM SPECIATION; STRUCTURED SOILS; TRITIUM EXCHANGE; GAS-ADSORPTION AB Although "intragranular'' pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet'' and "dry'') techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of similar to 1% of the solid volume and intragranular surface areas of similar to 20%-35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity. C1 [Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.] US Geol Survey, Div Water Resources, Menlo Pk, CA 94025 USA. [Davis, James A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Zachara, John M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hay, MB (reprint author), US Geol Survey, Div Water Resources, 345 Middlefield Rd,Mail Stop 496, Menlo Pk, CA 94025 USA. EM mbhay@usgs.gov RI Davis, James/G-2788-2015 FU USGS; U.S. Department of Energy, Office of Biological and Environmental Research (BER) through Hanford Science Focus Area (SFA); Hanford Integrated Field Research Challenge (IFRC) FX We thank Li Yang for assistance in N2 gas adsorption analyses, as well as Douglas Kent, John Nimmo, William Ball, and two anonymous reviewers for helpful comments on the manuscript. This research was supported by the USGS Hydrologic Research and Development Program and by the U.S. Department of Energy, Office of Biological and Environmental Research (BER) Subsurface Biogeochemistry Research (SBR) Program through the Hanford Science Focus Area (SFA) and the Hanford Integrated Field Research Challenge (IFRC). NR 62 TC 15 Z9 15 U1 4 U2 32 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 J9 WATER RESOUR RES JI Water Resour. Res. PD OCT 29 PY 2011 VL 47 AR W10531 DI 10.1029/2010WR010303 PG 19 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 839CA UT WOS:000296341000001 ER PT J AU Vivoni, ER Mascaro, G Mniszewski, S Fasel, P Springer, EP Ivanov, VY Bras, RL AF Vivoni, Enrique R. Mascaro, Giuseppe Mniszewski, Susan Fasel, Patricia Springer, Everett P. Ivanov, Valeriy Y. Bras, Rafael L. TI Real-world hydrologic assessment of a fully-distributed hydrological model in a parallel computing environment SO JOURNAL OF HYDROLOGY LA English DT Article DE Watershed model; Rainfall-runoff processes; Sub-basin partitioning; Ensemble forecasting; Parallel computing ID TRIANGULATED IRREGULAR NETWORKS; INTERCOMPARISON PROJECT DMIP; SCALE-DEPENDENCE; RESOLUTION; SURFACE; GENERATION; BASIN; FRAMEWORK; FLOW AB A major challenge in the use of fully-distributed hydrologic models has been the lack of computational capabilities for high-resolution, long-term simulations in large river basins. In this study, we present the parallel model implementation and real-world hydrologic assessment of the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator (tRIBS). Our parallelization approach is based on the decomposition of a complex watershed using the channel network as a directed graph. The resulting sub-basin partitioning divides effort among processors and handles hydrologic exchanges across boundaries. Through numerical experiments in a set of nested basins, we quantify parallel performance relative to serial runs for a range of processors, simulation complexities and lengths, and sub-basin partitioning methods, while accounting for inter-run variability on a parallel computing system. In contrast to serial simulations, the parallel model speed-up depends on the variability of hydrologic processes. Load balancing significantly improves parallel speed-up with proportionally faster runs as simulation complexity (domain resolution and channel network extent) increases. The best strategy for large river basins is to combine a balanced partitioning with an extended channel network, with potential savings through a lower TIN resolution. Based on these advances, a wider range of applications for fully-distributed hydrologic models are now possible. This is illustrated through a set of ensemble forecasts that account for precipitation uncertainty derived from a statistical downscaling model. (C) 2011 Elsevier B.V. All rights reserved. C1 [Vivoni, Enrique R.] Arizona State Univ, Bateman Phys Sci Ctr, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Vivoni, Enrique R.] Arizona State Univ, Sch Sustainable Engn & Built Environm, Tempe, AZ 85287 USA. [Mascaro, Giuseppe] Univ Cagliari, Dipartimento Ingn Terr, I-09123 Cagliari, Italy. [Mniszewski, Susan; Fasel, Patricia; Springer, Everett P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Ivanov, Valeriy Y.] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA. [Bras, Rafael L.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. RP Vivoni, ER (reprint author), Arizona State Univ, Bateman Phys Sci Ctr, Sch Earth & Space Explorat, F Wing,650-A, Tempe, AZ 85287 USA. EM vivoni@asu.edu RI Vivoni, Enrique/E-1202-2012; Springer, Everett/B-6376-2012; Ivanov, Valeriy/B-4510-2013; Mascaro, Giuseppe/K-5504-2013; OI Vivoni, Enrique/0000-0002-2659-9459; Springer, Everett/0000-0002-9816-8148; Mascaro, Giuseppe/0000-0003-4516-1206; Mniszewski, Susan/0000-0002-0077-0537 FU NSF Science and Technology Center for Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA); Los Alamos National Laboratory (LANL) FX We acknowledge financial support from the NSF Science and Technology Center for Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA). The Los Alamos National Laboratory (LANL) Directed Research and Development and Computing Programs also supported this effort. We also thank the ASU Ira A. Fulton Schools of Engineering High Performance Computing Initiative for the use of Saguaro for the final production runs. The comments from several anonymous reviewers also helped improve the quality of the manuscript. NR 49 TC 34 Z9 38 U1 2 U2 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-1694 J9 J HYDROL JI J. Hydrol. PD OCT 28 PY 2011 VL 409 IS 1-2 BP 483 EP 496 DI 10.1016/j.jhydrol.2011.08.053 PG 14 WC Engineering, Civil; Geosciences, Multidisciplinary; Water Resources SC Engineering; Geology; Water Resources GA 842LT UT WOS:000296601600041 ER PT J AU Dunlop, MH Dray, E Zhao, WX Tsai, MS Wiese, C Schild, D Sung, P AF Dunlop, Myun Hwa Dray, Eloise Zhao, Weixing Tsai, Miaw-Sheue Wiese, Claudia Schild, David Sung, Patrick TI RAD51-associated Protein 1 (RAD51AP1) Interacts with the Meiotic Recombinase DMC1 through a Conserved Motif SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID HOMOLOGOUS RECOMBINATION; SACCHAROMYCES-CEREVISIAE; BINDING PROTEIN; RECA PROTEIN; MEIOSIS; DNA; COMPLEXES; MECHANISM; SYNAPSIS; PROMOTES AB Homologous recombination (HR) reactions mediated by the RAD51 recombinase are essential for DNA and replication fork repair, genome stability, and tumor suppression. RAD51-associated protein 1 (RAD51AP1) is an important HR factor that associates with and stimulates the recombinase activity of RAD51. We have recently shown that RAD51AP1 also partners with the meiotic recombinase DMC1, displaying isoform-specific interactions with DMC1. Here, we have characterized the DMC1 interaction site in RAD51AP1 by a series of truncations and point mutations to uncover a highly conserved WVPP motif critical for DMC1 interaction but dispensable for RAD51 association. This RAD51AP1 motif is reminiscent of the FVPP motif in the tumor suppressor protein BRCA2 that mediates DMC1 interaction. These results further implicate RAD51AP1 in meiotic HR via RAD51 and DMC1. C1 [Dunlop, Myun Hwa; Dray, Eloise; Zhao, Weixing; Sung, Patrick] Yale Univ, Dept Mol Biophys & Biochem, Sch Med, New Haven, CT 06520 USA. [Tsai, Miaw-Sheue; Wiese, Claudia; Schild, David] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Sung, P (reprint author), Yale Univ, Dept Mol Biophys & Biochem, Sch Med, 333 Cedar St,SHM C-130, New Haven, CT 06520 USA. EM patrick.sung@yale.edu RI Dray, Eloise/E-3938-2012; zhao, weixing/H-3154-2013; OI Dray, Eloise/0000-0001-6793-9838 FU National Institutes of Health [RO1 ES015252, RO1 ES015632, RO1 ES07061, PO1 CA092584, PO1 CA129186, R01 CA120315] FX This work was supported, in whole or in part, by National Institutes of Health Grants RO1 ES015252, RO1 ES015632, RO1 ES07061, PO1 CA092584, PO1 CA129186, and R01 CA120315. NR 42 TC 7 Z9 8 U1 0 U2 7 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD OCT 28 PY 2011 VL 286 IS 43 BP 37328 EP 37334 DI 10.1074/jbc.M111.290015 PG 7 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 841VD UT WOS:000296542400033 PM 21903585 ER PT J AU Kalita, MK Sargsyan, K Tian, B Paulucci-Holthauzen, A Najm, HN Debusschere, BJ Brasier, AR AF Kalita, Mridul K. Sargsyan, Khachik Tian, Bing Paulucci-Holthauzen, Adriana Najm, Habib N. Debusschere, Bert J. Brasier, Allan R. TI Sources of Cell-to-cell Variability in Canonical Nuclear Factor-kappa B (NF-kappa B) Signaling Pathway Inferred from Single Cell Dynamic Images SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID GENE-EXPRESSION; EPITHELIAL-CELLS; ACTIVATION; ALPHA; IDENTIFICATION; OSCILLATIONS; PROTEINS; NETWORK; MODEL; IKK AB The canonical nuclear factor-kappa B (NF-kappa B) signaling pathway controls a gene network important in the cellular inflammatory response. Upon activation, NF-kappa B/RelA is released from cytoplasmic inhibitors, from where it translocates into the nucleus, subsequently activating negative feedback loops producing either monophasic or damped oscillatory nucleo-cytoplasmic dynamics. Although the population behavior of the NF-kappa B pathway has been extensively modeled, the sources of cell-to-cell variability are not well understood. We describe an integrated experimental-computational analysis of NF-kappa B/RelA translocation in a validated cell model exhibiting monophasic dynamics. Quantitative measures of cellular geometry and total cytoplasmic concentration and translocated RelA amounts were used as priors in Bayesian inference to estimate biophysically realistic parameter values based on dynamic live cell imaging studies of enhanced GFP-tagged RelA in stable transfectants. Bayesian inference was performed on multiple cells simultaneously, assuming identical reaction rate parameters, whereas cellular geometry and initial and total NF-kappa B concentration-related parameters were cell-specific. A subpopulation of cells exhibiting distinct kinetic profiles was identified that corresponded to differences in the I kappa B alpha translation rate. We conclude that cellular geometry, initial and total NF-kappa B concentration, I kappa B alpha translation, and I kappa B alpha degradation rates account for distinct cell-to-cell differences in canonical NF-kappa B translocation dynamics. C1 [Kalita, Mridul K.; Tian, Bing; Brasier, Allan R.] Univ Texas Med Branch, Dept Med, Galveston, TX 77555 USA. [Paulucci-Holthauzen, Adriana] Univ Texas Med Branch, Opt Imaging Lab, Galveston, TX 77555 USA. [Brasier, Allan R.] Univ Texas Med Branch, Sealy Ctr Mol Med, Galveston, TX 77555 USA. [Sargsyan, Khachik; Najm, Habib N.; Debusschere, Bert J.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Brasier, AR (reprint author), Univ Texas Med Branch, Dept Med, MRB 8-138,301 Univ Blvd, Galveston, TX 77555 USA. EM arbrasie@utmb.edu FU National Institutes of Health (NIH) [AI062885]; NIH, NHLBI [BAA-HL-02-04]; NIH [RO1 GM086885]; University of Texas-Sandia National Laboratories; Sandia Laboratory; United States Department of Energy Office of Science through Office of Advanced Scientific Computing Research [07-012783]; Sandia Corp. [DE-AC04-94AL85000] FX This work was supported, in whole or in part, by National Institutes of Health (NIH) Grant AI062885 (to A. R. B.), NIH, NHLBI, Contract BAA-HL-02-04 (to A. R. B.) and NIH Grant RO1 GM086885 (to M. Kimmel, Rice University). This work was supported in part by a University of Texas-Sandia National Laboratories joint postdoctoral program (to M. K. K.).; Supported by the Sandia Laboratory Directed Research and Development program as well as the United States Department of Energy Office of Science through the Applied Mathematics program in the Office of Advanced Scientific Computing Research under Contract 07-012783 with Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 40 TC 26 Z9 26 U1 0 U2 8 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD OCT 28 PY 2011 VL 286 IS 43 BP 37741 EP 37757 DI 10.1074/jbc.M111.280925 PG 17 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 841VD UT WOS:000296542400070 PM 21868381 ER PT J AU Biller, A Tamblyn, I Neaton, JB Kronik, L AF Biller, Ariel Tamblyn, Isaac Neaton, Jeffrey B. Kronik, Leeor TI Electronic level alignment at a metal-molecule interface from a short-range hybrid functional SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE electron correlations; electronic structure; exchange interactions (electron); gold; graphite; interface states; organic compounds; photoemission; renormalisation ID DENSITY FUNCTIONALS; DERIVATIVE DISCONTINUITIES; EXACT EXCHANGE; BAND-GAPS; ENERGY; APPROXIMATIONS; SPECTROSCOPY; EIGENVALUES; PARAMETERS; MONOLAYERS AB Hybrid functionals often exhibit a marked improvement over semi-local functionals in the description of the electronic structure of organic materials. Because short-range hybrid functionals, notably the Heyd-Scuseria-Ernzerhof (HSE) functional, can also describe the electronic structure of metals reasonably well, it is interesting to examine to which extent they can correctly describe the electronic structure at metal-organic interfaces. Here, we address this question by comparing HSE calculations with many-body perturbation theory calculations in the GW approximation, or with experimental photoemission data, for two prototypical systems: benzene on graphite and benzene diamine on gold. For both cases, we find that while HSE yields results that are somewhat closer to experiment than those of semi-local functionals, the HSE prediction is still lacking quantitatively by similar to 1 eV. We show that this quantitative failure arises because HSE does not correctly capture the fundamental gap of the organic or its renormalization by the metal. These discrepancies are traced back to missing long-range exchange and correlation components, an explanation which applies to any conventional or short-range hybrid functional. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3655357] C1 [Biller, Ariel; Kronik, Leeor] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel. [Tamblyn, Isaac; Neaton, Jeffrey B.] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Biller, A (reprint author), Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel. EM jbneaton@lbl.gov; leeor.kronik@weizmann.ac.il RI Neaton, Jeffrey/F-8578-2015; OI Neaton, Jeffrey/0000-0001-7585-6135; Tamblyn, Isaac/0000-0002-8146-6667 FU US-Israel Binational Science Foundation; Israel Science Foundation; Lise Meitner-Minerva Center for Computational Quantum Chemistry; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (DOE) [DEAC02-05CH11231]; NSERC FX We thank G. Heimel (Humboldt University) for helpful discussions. Work at the Weizmann Institute was supported by the US-Israel Binational Science Foundation, the Israel Science Foundation, and the Lise Meitner-Minerva Center for Computational Quantum Chemistry. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (DOE) (Contract No. DEAC02-05CH11231). Computational work was performed using a NERSC allocation provided by the Office of Basic Energy Sciences. I. T. acknowledges financial support from NSERC. NR 87 TC 37 Z9 37 U1 0 U2 30 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 28 PY 2011 VL 135 IS 16 AR 164706 DI 10.1063/1.3655357 PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 841OH UT WOS:000296521200041 PM 22047262 ER PT J AU Hedges, LO Whitelam, S AF Hedges, Lester O. Whitelam, Stephen TI Limit of validity of Ostwald's rule of stages in a statistical mechanical model of crystallization SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article DE crystallisation; free energy; self-assembly; statistical analysis ID CRYSTAL NUCLEATION; DYNAMICS; KINETICS AB We have only rules of thumb with which to predict how a material will crystallize, chief among which is Ostwald's rule of stages. It states that the first phase to appear upon transformation of a parent phase is the one closest to it in free energy. Although sometimes upheld, the rule is without theoretical foundation and is not universally obeyed, highlighting the need for microscopic understanding of crystallization controls. Here we study in detail the crystallization pathways of a prototypical model of patchy particles. The range of crystallization pathways it exhibits is richer than can be predicted by Ostwald's rule, but a combination of simulation and analytic theory reveals clearly how these pathways are selected by microscopic parameters. Our results suggest strategies for controlling self-assembly pathways in simulation and experiment. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3655358] C1 [Hedges, Lester O.; Whitelam, Stephen] Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Hedges, LO (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM swhitelam@lbl.gov FU Center for Nanoscale Control of Geologic CO2, a U.S. DOE Energy Frontier Research Center [DE-AC02-05CH11231]; DOE [DE-AC02-05CH11231] FX We thank Jim DeYoreo, Tom Haxton, Rob Jack, Daphne Klotsa, and Dina Mirijanian for comments on the paper, and Daan Frenkel, Phill Geissler, Lutz Maibaum and Will McKerrow for discussions. L.O.H. was supported by the Center for Nanoscale Control of Geologic CO2, a U.S. DOE Energy Frontier Research Center, under Contract No. DE-AC02-05CH11231. This work was done at the Molecular Foundry, Lawrence Berkeley National Laboratory, supported under the same DOE contract number. We thank NERSC for computational resources. NR 34 TC 24 Z9 24 U1 0 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 EI 1089-7690 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 28 PY 2011 VL 135 IS 16 AR 164902 DI 10.1063/1.3655358 PG 7 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 841OH UT WOS:000296521200043 PM 22047264 ER PT J AU Niklasson, AMN Steneteg, P Bock, N AF Niklasson, Anders M. N. Steneteg, Peter Bock, Nicolas TI Extended Lagrangian free energy molecular dynamics SO JOURNAL OF CHEMICAL PHYSICS LA English DT Article ID ELECTRONIC-STRUCTURE CALCULATIONS; DENSITY-FUNCTIONAL THEORY; AB-INITIO CALCULATION; EQUILIBRIUM GEOMETRIES; POLYATOMIC-MOLECULES; FORCE-CONSTANTS; MATRIX; ORBITALS; SYSTEMS; TRAJECTORIES AB Extended free energy Lagrangians are proposed for first principles molecular dynamics simulations at finite electronic temperatures for plane-wave pseudopotential and local orbital density matrix-based calculations. Thanks to the extended Lagrangian description, the electronic degrees of freedom can be integrated by stable geometric schemes that conserve the free energy. For the local orbital representations both the nuclear and electronic forces have simple and numerically efficient expressions that are well suited for reduced complexity calculations. A rapidly converging recursive Fermi operator expansion method that does not require the calculation of eigenvalues and eigen-functions for the construction of the fractionally occupied density matrix is discussed. An efficient expression for the Pulay force that is valid also for density matrices with fractional occupation occurring at finite electronic temperatures is also demonstrated. (C) 2011 American Institute of Physics. [doi:10.1063/1.3656977] C1 [Niklasson, Anders M. N.; Bock, Nicolas] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Steneteg, Peter] Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden. RP Niklasson, AMN (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM amn@lanl.gov FU US-DoE [DE-AC52-06NA25396]; (U.S.) Department of Energy through the LANL LDRD/ER; Swedish Foundation for Strategic Research (SSF) via Strategic Materials Research Center on Materials Science for Nanoscale Surface Engineering [MS2E]; Gran Gustafsson Foundation for Research in Natural Sciences and Medicine; T-Division Ten-Bar Java Group FX The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the NNSA of the US-DoE under Contract No. DE-AC52-06NA25396. We gratefully acknowledge the support of the (U.S.) Department of Energy through the LANL LDRD/ER program and the Swedish Foundation for Strategic Research (SSF) via Strategic Materials Research Center on Materials Science for Nanoscale Surface Engineering (MS2E), and The Gran Gustafsson Foundation for Research in Natural Sciences and Medicine for this work. Discussions with Marc Cawkwell, Erik Holmstrom, Igor Abrikosov, and Anders Odell as well as support from Travis Peery at the T-Division Ten-Bar Java Group are gratefully acknowledged. NR 68 TC 7 Z9 7 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 0021-9606 J9 J CHEM PHYS JI J. Chem. Phys. PD OCT 28 PY 2011 VL 135 IS 16 AR 164111 DI 10.1063/1.3656977 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 841OH UT WOS:000296521200012 PM 22047232 ER PT J AU Johs, A Harwood, IM Parks, JM Nauss, RE Smith, JC Liang, LY Miller, SM AF Johs, Alexander Harwood, Ian M. Parks, Jerry M. Nauss, Rachel E. Smith, Jeremy C. Liang, Liyuan Miller, Susan M. TI Structural Characterization of Intramolecular Hg (2+) Transfer between Flexibly Linked Domains of Mercuric Ion Reductase SO JOURNAL OF MOLECULAR BIOLOGY LA English DT Article DE mercury resistance; metal trafficking; SAXS; SANS; intramolecular metal ion transfer ID X-RAY-SCATTERING; SMALL-ANGLE SCATTERING; ACTIVE-SITE; ESCHERICHIA-COLI; PSEUDOMONAS-AERUGINOSA; TRAFFICKING PROTEINS; TRANSPORTING ATPASES; NUCLEOTIDE-SEQUENCE; CATALYTIC CORE; FUSION PROTEIN AB The enzyme mercuric ion reductase MerA is the central component of bacterial mercury resistance encoded by the mer operon. Many MerA proteins possess metallochaperone-like N-terminal domains (NmerA) that can transfer Hg2+ to the catalytic core domain (Core) for reduction to Hg-0. These domains are tethered to the homodimeric Core by similar to 30-residue linkers that are susceptible to proteolysis, the latter of which has prevented characterization of the interactions of NmerA and the Core in the full-length protein. Here, we report purification of homogeneous full-length MerA from the Tn21 mer operon using a fusion protein construct and combine small-angle X-ray scattering and small-angle neutron scattering with molecular dynamics simulation to characterize the structures of full-length wild-type and mutant MerA proteins that mimic the system before and during handoff of Hg2+ from NmerA to the Core. The radii of gyration, distance distribution functions, and Kratky plots derived from the small-angle X-ray scattering data are consistent with full-length MerA adopting elongated conformations as a result of flexibility in the linkers to the NmerA domains. The scattering profiles are best reproduced using an ensemble of linker conformations. This flexible attachment of NmerA may facilitate fast and efficient removal of Hg2+ from diverse protein substrates. Using a specific mutant of MerA allowed the formation of a metal-mediated interaction between NmerA and the Core and the determination of the position and relative orientation of NmerA to the Core during Hg2+ handoff. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Harwood, Ian M.; Miller, Susan M.] Univ Calif San Francisco, Grad Grp Biophys, San Francisco, CA 94158 USA. [Johs, Alexander; Liang, Liyuan] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Harwood, Ian M.; Nauss, Rachel E.; Miller, Susan M.] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94158 USA. [Parks, Jerry M.; Smith, Jeremy C.] Univ Tennessee, Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA. RP Miller, SM (reprint author), Univ Calif San Francisco, Grad Grp Biophys, 600 16th St, San Francisco, CA 94158 USA. EM smiller@cgl.ucsf.edu RI smith, jeremy/B-7287-2012; Johs, Alexander/F-1229-2011; Parks, Jerry/B-7488-2009; Liang, Liyuan/O-7213-2014 OI smith, jeremy/0000-0002-2978-3227; Johs, Alexander/0000-0003-0098-2254; Parks, Jerry/0000-0002-3103-9333; Liang, Liyuan/0000-0003-1338-0324 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy [DE-AC02-05CH11231]; Office of Biological and Environmental Research, U.S. Department of Energy [DE-SC0004735]; ORNL; DOE [DE-AC05-00OR22725] FX We thank Wei Yang and Guobin Luo for providing CHARMM force field parameters for FAD, Jinkui Zhao and Carrie Gao for assistance with the EQ-SANS instrument at the Spallation Neutron Source at ORNL, and Elaine Kirschke and Daniel Southworth for assistance with the MALS instrument. A portion of this research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The SIBYLS beamline (BL12.3.1) at the Advanced Light Source of Lawrence Berkeley National Laboratory is supported by the U.S. Department of Energy under contract number DE-AC02-05CH11231. This research was supported by the Office of Biological and Environmental Research, U.S. Department of Energy with funding to the Mercury Science Focus Area Program at ORNL and to S.M.M. through grant DE-SC0004735. ORNL is managed by UT-Battelle, LLC, for DOE under Contract No. DE-AC05-00OR22725. NR 83 TC 13 Z9 13 U1 1 U2 20 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2836 J9 J MOL BIOL JI J. Mol. Biol. PD OCT 28 PY 2011 VL 413 IS 3 BP 639 EP 656 DI 10.1016/j.jmb.2011.08.042 PG 18 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 847CT UT WOS:000296950200012 PM 21893070 ER PT J AU Fortuna, F Borodin, VA Ruault, MO Oliviero, E Kirk, MA AF Fortuna, F. Borodin, V. A. Ruault, M-O. Oliviero, E. Kirk, M. A. TI Synergetic effects of dual-beam implantation on the microstructural development in silicon SO PHYSICAL REVIEW B LA English DT Article ID MOLECULAR-DYNAMICS SIMULATION; DEFECT PRODUCTION; ION-BEAM; CASCADES; SI; IRRADIATION; NUCLEATION; DAMAGE; METALS; INTERSTITIALS AB We report a synergy effect on the microstructural development of silicon specimens as a result of dual-beam high temperature irradiation/implantation. In situ transmission electron microscopy experiments using two different experimental setups have been used, where the primary 50 keV Co(+) ion implantation beam was supplemented with either a 300 keV electron beam or a 500 keV Si(+) ion beam. In both cases, the secondary beam intensity was such that both beams created comparable overall primary damage. Completely different microstructural response has been found in these two cases. An intensive electron irradiation was found to sharply accelerate the evolution of dislocation structure, only weakly affecting the disilicide kinetics. On the contrary, the Si ion beam weakly affected the kinetics of either dislocation loops or coherent CoSi(2) precipitates, but drastically increased the number density of thermodynamically unstable semicoherent precipitates. Possible microstructural reasons for the observed effects and the implications for both dislocation loop and cobalt disilicide nucleation mechanisms in high-temperature implanted TEM samples are discussed and supported by detailed molecular dynamics calculations of annealing of cascade remnants produced by the energetic silicon recoils. C1 [Fortuna, F.; Ruault, M-O.; Oliviero, E.] CSNSM, F-91405 Orsay, France. [Borodin, V. A.] NRC Kurchatov Inst, Moscow 123182, Russia. [Kirk, M. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Fortuna, F (reprint author), CSNSM, Batiment 108, F-91405 Orsay, France. RI Oliviero, Erwan/A-8055-2015 OI Oliviero, Erwan/0000-0002-7828-9137 FU CNRS; Argonne National Laboratory; Russian Basic Research Foundation [10-08-90041]; CSNSM, France FX We are grateful to the JANNuS-Orsay team for ion beam supplies. We want to especially thank P. Baldo at IVEM, without whom no online experiment would be possible. The work was supported in part by a bilateral French-US collaboration program between CNRS and Argonne National Laboratory (2006-2008) and in part by the Grant No. 10-08-90041 from the Russian Basic Research Foundation. V.A.B. is deeply thankful to CSNSM for funding his research stays in France. NR 51 TC 7 Z9 7 U1 2 U2 23 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD OCT 28 PY 2011 VL 84 IS 14 AR 144118 DI 10.1103/PhysRevB.84.144118 PG 16 WC Physics, Condensed Matter SC Physics GA 843IH UT WOS:000296665000002 ER PT J AU Arguin, JF Freytsis, M Ligeti, Z AF Arguin, Jean-Francois Freytsis, Marat Ligeti, Zoltan TI Comment on measuring the t(t)over-bar forward-backward asymmetry at ATLAS and CMS SO PHYSICAL REVIEW D LA English DT Article AB We suggest a new possibility for ATLAS and CMS to explore the t (t) over bar forward-backward asymmetry measured at the Tevatron, by attempting to reconstruct t (t) over bar events, with one of the tops decaying semileptonically in the central region (vertical bar eta vertical bar < 2.5) and the other decaying hadronically in the forward region (vertical bar eta vertical bar > 2.5). For several models which give comparable Tevatron signals, we study the charge asymmetry at the LHC as a function of cuts on vertical bar eta vertical bar and on the (t) over bar invariant mass, m(t (t) over bar). We show that there is an interesting complementarity between cuts on vertical bar eta vertical bar and m(t (t) over bar) to suppress the dominant and symmetric gg -> t (t) over bar rate, and different combinations of cuts enhance the distinguishing power between models. This complementarity is likely to hold in other new physics scenarios as well, which affect the t (t) over bar cross section, so it motivates extending t (t) over bar reconstruction to higher vertical bar eta vertical bar. C1 [Arguin, Jean-Francois; Freytsis, Marat; Ligeti, Zoltan] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Freytsis, Marat] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Theoret Phys, Berkeley, CA 94720 USA. RP Arguin, JF (reprint author), Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. FU Office of Science, Office of High Energy Physics of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Jernej Kamenik, Gilad Perez, and especially Martin Schmaltz for helpful conversations, and Johan Alwall and Tim Tait for help with MadGraph. Z. L. thanks the Aspen Center for Physics for hospitality while parts of this work were completed. This work was supported in part by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231. NR 36 TC 10 Z9 10 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD OCT 28 PY 2011 VL 84 IS 7 AR 071504 DI 10.1103/PhysRevD.84.071504 PG 6 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 846HK UT WOS:000296887600002 ER PT J AU Lees, JP Poireau, V Tisserand, V Tico, JG Grauges, E Martinelli, M Milanes, DA Palano, A Pappagallo, M Eigen, G Stugu, B Sun, L Brown, DN Kerth, LT Kolomensky, YG Lynch, G Koch, H Schroeder, T Asgeirsson, DJ Hearty, C Mattison, TS McKenna, JA Khan, A Blinov, VE Buzykaev, AR Druzhinin, VP Golubev, VB Kravchenko, EA Onuchin, AP Serednyakov, SI Skovpen, YI Solodov, EP Todyshev, KY Yushkov, AN Bondioli, M Curry, S Kirkby, D Lankford, AJ Mandelkern, M Stoker, DP Atmacan, H Gary, JW Liu, F Long, O Vitug, GM Campagnari, C Hong, TM Kovalskyi, D Richman, JD West, CA Eisner, AM Kroseberg, J Lockman, WS Martinez, AJ Schalk, T Schumm, BA Seiden, A Cheng, CH Doll, DA Echenard, B Flood, KT Hitlin, DG Ongmongkolkul, P Porter, FC Rakitin, AY Andreassen, R Dubrovin, MS Meadows, BT Sokoloff, MD Bloom, PC Ford, WT Gaz, A Nagel, M Nauenberg, U Smith, JG Wagner, SR Ayad, R Toki, WH Spaan, B Kobel, MJ Schubert, KR Schwierz, R Bernard, D Verderi, M Clark, PJ Playfer, S Bettoni, D Bozzi, C Calabrese, R Cibinetto, G Fioravanti, E Garzia, I Luppi, E Munerato, M Negrini, M Piemontese, L Baldini-Ferroli, R Calcaterra, A De Sangro, R Finocchiaro, G Nicolaci, M Patteri, P Peruzzi, IM Piccolo, M Rama, M Zallo, A Contri, R Guido, E Lo Vetere, M Monge, MR Passaggio, S Patrignani, C Robutti, E Bhuyan, B Prasad, V Lee, CL Morii, M Edwards, AJ Adametz, A Marks, J Uwer, U Bernlochner, FU Ebert, M Lacker, HM Lueck, T Dauncey, PD Tibbetts, M Behera, PK Mallik, U Chen, C Cochran, J Crawley, HB Meyer, WT Prell, S Rosenberg, EI Rubin, AE Gritsan, AV Guo, ZJ Arnaud, N Davier, M Grosdidier, G Le Diberder, F Lutz, AM Malaescu, B Roudeau, P Schune, MH Stocchi, A Wormser, G Lange, DJ Wright, DM Bingham, I Chavez, CA Coleman, JP Fry, JR Gabathuler, E Hutchcroft, DE Payne, DJ Touramanis, C Bevan, AJ Di Lodovico, F Sacco, R Sigamani, M Cowan, G Paramesvaran, S Brown, DN Davis, CL Denig, AG Fritsch, M Gradl, W Hafner, A Prencipe, E Alwyn, KE Bailey, D Barlow, RJ Jackson, G Lafferty, GD Cenci, R Hamilton, B Jawahery, A Roberts, DA Simi, G Dallapiccola, C Cowan, R Dujmic, D Sciolla, G Lindemann, D Patel, PM Robertson, SH Schram, M Biassoni, P Lazzaro, A Lombardo, V Palombo, F Stracka, S Cremaldi, L Godang, R Kroeger, R Sonnek, P Summers, DJ Nguyen, X Taras, P De Nardo, G Monorchio, D Onorato, G Sciacca, C Raven, G Snoek, HL Jessop, CP Knoepfel, KJ LoSecco, JM Wang, WF Honscheid, K Kass, R Brau, J Frey, R Sinev, NB Strom, D Torrence, E Feltresi, E Gagliardi, N Margoni, M Morandin, M Posocco, M Rotondo, M Simonetto, F Stroili, R Ben-Haim, E Bomben, M Bonneaud, GR Briand, H Calderini, G Chauveau, J Hamon, O Leruste, P Marchiori, G Ocariz, J Sitt, S Biasini, M Manoni, E Pacetti, S Rossi, A Angelini, C Batignani, G Bettarini, S Carpinelli, M Casarosa, G Cervelli, A Forti, F Giorgi, MA Lusiani, A Neri, N Oberhof, B Paoloni, E Perez, A Rizzo, G Walsh, JJ Pegna, DL Lu, C Olsen, J Smith, AJS Telnov, AV Anulli, F Cavoto, G Faccini, R Ferrarotto, F Ferroni, F Gaspero, M Gioi, LL Mazzoni, MA Piredda, G Bunger, C Grunberg, O Hartmann, T Leddig, T Schroder, H Waldi, R Adye, T Olaiya, EO Wilson, FF Emery, S de Monchenault, GH Vasseur, G Yeche, C Aston, D Bard, DJ Bartoldus, R Benitez, JF Cartaro, C Convery, MR Dorfan, J Dubois-Felsmann, GP Dunwoodie, W Field, RC Sevilla, MF Fulsom, BG Gabareen, AM Graham, MT Grenier, P Hast, C Innes, WR Kelsey, MH Kim, H Kim, P Kocian, ML Leith, DWGS Lewis, P Li, S Lindquist, B Luitz, S Luth, V Lynch, HL MacFarlane, DB Muller, DR Neal, H Nelson, S Ofte, I Perl, M Pulliam, T Ratcliff, BN Roodman, A Salnikov, AA Santoro, V Schindler, RH Snyder, A Su, D Sullivan, MK Va'vra, J Wagner, AP Weaver, M Wisniewski, WJ Wittgen, M Wright, DH Wulsin, HW Yarritu, AK Young, CC Ziegler, V Park, W Purohit, MV White, RM Wilson, JR Randle-Conde, A Sekula, SJ Bellis, M Burchat, PR Miyashita, TS Petersen, BA Alam, MS Ernst, JA Gorodeisky, R Guttman, N Peimer, DR Soffer, A Lund, P Spanier, SM Eckmann, R Ritchie, JL Ruland, AM Schilling, CJ Schwitters, RF Wray, BC Izen, JM Lou, XC Bianchi, F Gamba, D Lanceri, L Vitale, L Lopez-March, N Martinez-Vidal, F Oyanguren, A Ahmed, H Albert, J Banerjee, S Choi, HHF King, GJ Kowalewski, R Lewczuk, MJ Lindsay, C Nugent, IM Roney, JM Sobie, RJ Gershon, TJ Harrison, PF Latham, TE Puccio, EMT Band, HR Dasu, S Pan, Y Prepost, R Vuosalo, CO Wu, SL AF Lees, J. P. Poireau, V. Tisserand, V. Tico, J. Garra Grauges, E. Martinelli, M. Milanes, D. A. Palano, A. Pappagallo, M. Eigen, G. Stugu, B. Sun, L. Brown, D. N. Kerth, L. T. Kolomensky, Yu G. Lynch, G. Koch, H. Schroeder, T. Asgeirsson, D. J. Hearty, C. Mattison, T. S. McKenna, J. A. Khan, A. Blinov, V. E. Buzykaev, A. R. Druzhinin, V. P. Golubev, V. B. Kravchenko, E. A. Onuchin, A. P. Serednyakov, S. I. Skovpen, Yu I. Solodov, E. P. Todyshev, K. Yu Yushkov, A. N. Bondioli, M. Curry, S. Kirkby, D. Lankford, A. J. Mandelkern, M. Stoker, D. P. Atmacan, H. Gary, J. W. Liu, F. Long, O. Vitug, G. M. Campagnari, C. Hong, T. M. Kovalskyi, D. Richman, J. D. West, C. A. Eisner, A. M. Kroseberg, J. Lockman, W. S. Martinez, A. J. Schalk, T. Schumm, B. A. Seiden, A. Cheng, C. H. Doll, D. A. Echenard, B. Flood, K. T. Hitlin, D. G. Ongmongkolkul, P. Porter, F. C. Rakitin, A. Y. Andreassen, R. Dubrovin, M. S. Meadows, B. T. Sokoloff, M. D. Bloom, P. C. Ford, W. T. Gaz, A. Nagel, M. Nauenberg, U. Smith, J. G. Wagner, S. R. Ayad, R. Toki, W. H. Spaan, B. Kobel, M. J. Schubert, K. R. Schwierz, R. Bernard, D. Verderi, M. Clark, P. J. Playfer, S. Bettoni, D. Bozzi, C. Calabrese, R. Cibinetto, G. Fioravanti, E. Garzia, I. Luppi, E. Munerato, M. Negrini, M. Piemontese, L. Baldini-Ferroli, R. Calcaterra, A. De Sangro, R. Finocchiaro, G. Nicolaci, M. Patteri, P. Peruzzi, I. M. Piccolo, M. Rama, M. Zallo, A. Contri, R. Guido, E. Lo Vetere, M. Monge, M. R. Passaggio, S. Patrignani, C. Robutti, E. Bhuyan, B. Prasad, V. Lee, C. L. Morii, M. Edwards, A. J. Adametz, A. Marks, J. Uwer, U. Bernlochner, F. U. Ebert, M. Lacker, H. M. Lueck, T. Dauncey, P. D. Tibbetts, M. Behera, P. K. Mallik, U. Chen, C. Cochran, J. Crawley, H. B. Meyer, W. T. Prell, S. Rosenberg, E. I. Rubin, A. E. Gritsan, A. V. Guo, Z. J. Arnaud, N. Davier, M. Grosdidier, G. Le Diberder, F. Lutz, A. M. Malaescu, B. Roudeau, P. Schune, M. H. Stocchi, A. Wormser, G. Lange, D. J. Wright, D. M. Bingham, I. Chavez, C. A. Coleman, J. P. Fry, J. R. Gabathuler, E. Hutchcroft, D. E. Payne, D. J. Touramanis, C. Bevan, A. J. Di Lodovico, F. Sacco, R. Sigamani, M. Cowan, G. Paramesvaran, S. Brown, D. N. Davis, C. L. Denig, A. G. Fritsch, M. Gradl, W. Hafner, A. Prencipe, E. Alwyn, K. E. Bailey, D. Barlow, R. J. Jackson, G. Lafferty, G. D. Cenci, R. Hamilton, B. Jawahery, A. Roberts, D. A. Simi, G. Dallapiccola, C. Cowan, R. Dujmic, D. Sciolla, G. Lindemann, D. Patel, P. M. Robertson, S. H. Schram, M. Biassoni, P. Lazzaro, A. Lombardo, V. Palombo, F. Stracka, S. Cremaldi, L. Godang, R. Kroeger, R. Sonnek, P. Summers, D. J. Nguyen, X. Taras, P. De Nardo, G. Monorchio, D. Onorato, G. Sciacca, C. Raven, G. Snoek, H. L. Jessop, C. P. Knoepfel, K. J. LoSecco, J. M. Wang, W. F. Honscheid, K. Kass, R. Brau, J. Frey, R. Sinev, N. B. Strom, D. Torrence, E. Feltresi, E. Gagliardi, N. Margoni, M. Morandin, M. Posocco, M. Rotondo, M. Simonetto, F. Stroili, R. Ben-Haim, E. Bomben, M. Bonneaud, G. R. Briand, H. Calderini, G. Chauveau, J. Hamon, O. Leruste, Ph Marchiori, G. Ocariz, J. Sitt, S. Biasini, M. Manoni, E. Pacetti, S. Rossi, A. Angelini, C. Batignani, G. Bettarini, S. Carpinelli, M. Casarosa, G. Cervelli, A. Forti, F. Giorgi, M. A. Lusiani, A. Neri, N. Oberhof, B. Paoloni, E. Perez, A. Rizzo, G. Walsh, J. J. Pegna, D. Lopes Lu, C. Olsen, J. Smith, A. J. S. Telnov, A. V. Anulli, F. Cavoto, G. Faccini, R. Ferrarotto, F. Ferroni, F. Gaspero, M. Gioi, L. Li Mazzoni, M. A. Piredda, G. Buenger, C. Gruenberg, O. Hartmann, T. Leddig, T. Schroeder, H. Waldi, R. Adye, T. Olaiya, E. O. Wilson, F. F. Emery, S. de Monchenault, G. Hamel Vasseur, G. Yeche, Ch Aston, D. Bard, D. J. Bartoldus, R. Benitez, J. F. Cartaro, C. Convery, M. R. Dorfan, J. Dubois-Felsmann, G. P. Dunwoodie, W. Field, R. C. Sevilla, M. Franco Fulsom, B. G. Gabareen, A. M. Graham, M. T. Grenier, P. Hast, C. Innes, W. R. Kelsey, M. H. Kim, H. Kim, P. Kocian, M. L. Leith, D. W. G. S. Lewis, P. Li, S. Lindquist, B. Luitz, S. Luth, V. Lynch, H. L. MacFarlane, D. B. Muller, D. R. Neal, H. Nelson, S. Ofte, I. Perl, M. Pulliam, T. Ratcliff, B. N. Roodman, A. Salnikov, A. A. Santoro, V. Schindler, R. H. Snyder, A. Su, D. Sullivan, M. K. Va'vra, J. Wagner, A. P. Weaver, M. Wisniewski, W. J. Wittgen, M. Wright, D. H. Wulsin, H. W. Yarritu, A. K. Young, C. C. Ziegler, V. Park, W. Purohit, M. V. White, R. M. Wilson, J. R. Randle-Conde, A. Sekula, S. J. Bellis, M. Burchat, P. R. Miyashita, T. S. Petersen, B. A. Alam, M. S. Ernst, J. A. Gorodeisky, R. Guttman, N. Peimer, D. R. Soffer, A. Lund, P. Spanier, S. M. Eckmann, R. Ritchie, J. L. Ruland, A. M. Schilling, C. J. Schwitters, R. F. Wray, B. C. Izen, J. M. Lou, X. C. Bianchi, F. Gamba, D. Lanceri, L. Vitale, L. Lopez-March, N. Martinez-Vidal, F. Oyanguren, A. Ahmed, H. Albert, J. Banerjee, Sw Choi, H. H. F. King, G. J. Kowalewski, R. Lewczuk, M. J. Lindsay, C. Nugent, I. M. Roney, J. M. Sobie, R. J. Gershon, T. J. Harrison, P. F. Latham, T. E. Puccio, E. M. T. Band, H. R. Dasu, S. Pan, Y. Prepost, R. Vuosalo, C. O. Wu, S. L. CA BaBar Collaboration TI Searches for rare or forbidden semileptonic charm decays SO PHYSICAL REVIEW D LA English DT Article ID MESONS; D-S(+); D+ AB We present searches for rare or forbidden charm decays of the form X-c(+) -> h(+/-)l(+/-)l((l)+), where X-c(+) is a charm hadron (D+, D-s(+), or A(c)(+)), h +/- is a pion, kaon, or proton, and l((l)+/-) is an electron or muon. The analysis is based on 384 fb(-1) of e(+)e(-) annihilation data collected at or close to the gamma(4S) resonance with the BABAR detector at the SLAC National Accelerator Laboratory. No significant signal is observed for any of the 35 decay modes that are investigated. We establish 90% confidence-level upper limits on the branching fractions between 1 x 10(-6) and 44 x 10(-6) depending on the channel. In most cases, these results represent either the first limits or significant improvements on existing limits for the decay modes studied. C1 [Lees, J. P.; Poireau, V.; Tisserand, V.] Univ Savoie, CNRS IN2P3, Lab Annecy Le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. [Tico, J. Garra; Grauges, E.] Univ Barcelona, Fac Fis, Dept ECM, E-08028 Barcelona, Spain. [Martinelli, M.; Milanes, D. A.; Palano, A.; Pappagallo, M.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Martinelli, M.; Palano, A.; Pappagallo, M.] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy. [Eigen, G.; Stugu, B.; Sun, L.] Univ Bergen, Inst Phys, N-5007 Bergen, Norway. [Brown, D. N.; Kerth, L. T.; Kolomensky, Yu G.; Lynch, G.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Koch, H.; Schroeder, T.] Ruhr Univ Bochum, Inst Expt Phys, D-44780 Bochum, Germany. [Asgeirsson, D. J.; Hearty, C.; Mattison, T. S.; McKenna, J. A.] Univ British Columbia, Vancouver, BC V6T 1Z1, Canada. [Khan, A.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu I.; Solodov, E. P.; Todyshev, K. Yu; Yushkov, A. N.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Bondioli, M.; Curry, S.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Stoker, D. P.] Univ Calif Irvine, Irvine, CA 92697 USA. [Atmacan, H.; Gary, J. W.; Liu, F.; Long, O.; Vitug, G. M.] Univ Calif Riverside, Riverside, CA 92521 USA. [Campagnari, C.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Eisner, A. M.; Kroseberg, J.; Lockman, W. S.; Martinez, A. J.; Schalk, T.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Inst Particle Phys, Santa Cruz, CA 95064 USA. [Cheng, C. H.; Doll, D. A.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Rakitin, A. Y.] CALTECH, Pasadena, CA 91125 USA. [Andreassen, R.; Dubrovin, M. S.; Meadows, B. T.; Sokoloff, M. D.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Bloom, P. C.; Ford, W. T.; Gaz, A.; Nagel, M.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Ayad, R.; Toki, W. H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Spaan, B.] Tech Univ Dortmund, Fak Phys, D-44221 Dortmund, Germany. [Kobel, M. J.; Schubert, K. R.; Schwierz, R.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Bernard, D.; Verderi, M.] Ecole Polytech, Lab Leprince Ringuet, CNRS IN2P3, F-91128 Palaiseau, France. [Clark, P. J.; Playfer, S.] Univ Edinburgh, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.; Piemontese, L.] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara, Italy. [Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Munerato, M.; Negrini, M.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Baldini-Ferroli, R.; Calcaterra, A.; De Sangro, R.; Finocchiaro, G.; Nicolaci, M.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Patrignani, C.] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. [Bhuyan, B.; Prasad, V.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Lee, C. L.; Morii, M.] Harvard Univ, Cambridge, MA 02138 USA. [Edwards, A. J.] Harvey Mudd Coll, Claremont, CA 91711 USA. [Adametz, A.; Marks, J.; Uwer, U.] Heidelberg Univ, Inst Phys, D-69120 Heidelberg, Germany. [Bernlochner, F. U.; Ebert, M.; Lacker, H. M.; Lueck, T.] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany. [Dauncey, P. D.; Tibbetts, M.] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England. [Behera, P. K.; Mallik, U.] Univ Iowa, Iowa City, IA 52242 USA. [Chen, C.; Cochran, J.; Crawley, H. B.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Rubin, A. E.] Iowa State Univ, Ames, IA 50011 USA. [Gritsan, A. V.; Guo, Z. J.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Arnaud, N.; Davier, M.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.] IN2P3 CNRS, Lab Accelerateur Lineaire, F-91898 Orsay, France. [Arnaud, N.; Davier, M.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Schune, M. H.; Stocchi, A.; Wormser, G.] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay, France. [Lange, D. J.; Wright, D. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Bingham, I.; Chavez, C. A.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Sigamani, M.] Univ London, London E1 4NS, England. [Cowan, G.; Paramesvaran, S.] Univ London, Royal Holloway & Bedford New Coll, Egham TW20 0EX, Surrey, England. [Brown, D. N.; Davis, C. L.] Univ Louisville, Louisville, KY 40292 USA. [Denig, A. G.; Fritsch, M.; Gradl, W.; Hafner, A.; Prencipe, E.] Johannes Gutenberg Univ Mainz, Inst Kernphys, D-55099 Mainz, Germany. [Alwyn, K. E.; Bailey, D.; Barlow, R. J.; Jackson, G.; Lafferty, G. D.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Simi, G.] Univ Maryland, College Pk, MD 20742 USA. [Dallapiccola, C.] Univ Massachusetts, Amherst, MA 01003 USA. [Cowan, R.; Dujmic, D.; Sciolla, G.] MIT, Nucl Sci Lab, Cambridge, MA 02139 USA. [Lindemann, D.; Patel, P. M.; Robertson, S. H.; Schram, M.] McGill Univ, Montreal, PQ H3A 2T8, Canada. [Biassoni, P.; Lazzaro, A.; Lombardo, V.; Palombo, F.; Stracka, S.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Biassoni, P.; Lazzaro, A.; Palombo, F.; Stracka, S.] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy. [Cremaldi, L.; Godang, R.; Kroeger, R.; Sonnek, P.; Summers, D. J.] Univ Mississippi, University, MS 38677 USA. [Nguyen, X.; Taras, P.] Univ Montreal, Montreal, PQ H3C 3J7, Canada. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy. [De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy. [Raven, G.; Snoek, H. L.] Natl Inst Nucl Phys & High Energy Phys, NIKHEF, NL-1009 DB Amsterdam, Netherlands. [Jessop, C. P.; Knoepfel, K. J.; LoSecco, J. M.; Wang, W. F.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Honscheid, K.; Kass, R.] Ohio State Univ, Columbus, OH 43210 USA. [Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.; Lewczuk, M. J.] Univ Oregon, Eugene, OR 97403 USA. [Feltresi, E.; Gagliardi, N.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Feltresi, E.; Gagliardi, N.; Margoni, M.; Simonetto, F.; Stroili, R.] Univ Padua, Dipartimento Fis, I-35131 Padua, Italy. [Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Hamon, O.; Leruste, Ph; Marchiori, G.; Ocariz, J.; Sitt, S.] Univ Paris 07, Univ Paris 06, IN2P3 CNRS, Lab Phys Nucl & Hautes Energies, F-75252 Paris, France. [Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Peruzzi, I. M.; Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.] Univ Perugia, Dipartimento Fis, I-06100 Perugia, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Neri, N.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Neri, N.; Oberhof, B.; Paoloni, E.; Rizzo, G.] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy. [Lusiani, A.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Pegna, D. Lopes; Lu, C.; Olsen, J.; Smith, A. J. S.; Telnov, A. V.] Princeton Univ, Princeton, NJ 08544 USA. [Anulli, F.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Gioi, L. Li; Mazzoni, M. A.; Piredda, G.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Faccini, R.; Ferroni, F.; Gaspero, M.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Buenger, C.; Gruenberg, O.; Hartmann, T.; Leddig, T.; Schroeder, H.; Waldi, R.] Univ Rostock, D-18051 Rostock, Germany. [Adye, T.; Olaiya, E. O.; Wilson, F. F.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Emery, S.; de Monchenault, G. Hamel; Vasseur, G.; Yeche, Ch] CEA, Irfu, SPP, Ctr Saclay, F-91191 Gif Sur Yvette, France. [Aston, D.; Bard, D. J.; Bartoldus, R.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Field, R. C.; Sevilla, M. Franco; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Grenier, P.; Hast, C.; Innes, W. R.; Kelsey, M. H.; Kim, H.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Li, S.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Ofte, I.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Santoro, V.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Weaver, M.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Yarritu, A. K.; Young, C. C.; Ziegler, V.] SLAC Natl Accelerator Lab, Stanford, CA 94309 USA. [Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.] Univ S Carolina, Columbia, SC 29208 USA. [Randle-Conde, A.; Sekula, S. J.] So Methodist Univ, Dallas, TX 75275 USA. [Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Petersen, B. A.] Stanford Univ, Stanford, CA 94305 USA. [Alam, M. S.; Ernst, J. A.] SUNY Albany, Albany, NY 12222 USA. [Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Lund, P.; Spanier, S. M.] Univ Tennessee, Knoxville, TN 37996 USA. [Eckmann, R.; Ritchie, J. L.; Ruland, A. M.; Schilling, C. J.; Schwitters, R. F.; Wray, B. C.] Univ Texas Austin, Austin, TX 78712 USA. [Izen, J. M.; Lou, X. C.] Univ Texas Dallas, Richardson, TX 75083 USA. [Bianchi, F.; Gamba, D.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Bianchi, F.; Gamba, D.] Univ Turin, Dipartimento Fis Sperimentale, I-10125 Turin, Italy. [Lanceri, L.; Vitale, L.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Lanceri, L.; Vitale, L.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Lopez-March, N.; Martinez-Vidal, F.; Oyanguren, A.] Univ Valencia CSIC, IFIC, E-46071 Valencia, Spain. [Ahmed, H.; Albert, J.; Banerjee, Sw; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lindsay, C.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.] Univ Victoria, Victoria, BC V8W 3P6, Canada. [Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Puccio, E. M. T.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Vuosalo, C. O.; Wu, S. L.] Univ Wisconsin, Madison, WI 53706 USA. [Godang, R.] Univ S AL, Mobile, AL 36688 USA. [Carpinelli, M.] Univ Sassari, I-07100 Sassari, Italy. RP Lees, JP (reprint author), Univ Savoie, CNRS IN2P3, Lab Annecy Le Vieux Phys Particules LAPP, F-74941 Annecy Le Vieux, France. RI Martinez Vidal, F*/L-7563-2014; Kolomensky, Yury/I-3510-2015; Lo Vetere, Maurizio/J-5049-2012; Lusiani, Alberto/N-2976-2015; Lusiani, Alberto/A-3329-2016; Morandin, Mauro/A-3308-2016; Stracka, Simone/M-3931-2015; Di Lodovico, Francesca/L-9109-2016; Pappagallo, Marco/R-3305-2016; Calcaterra, Alessandro/P-5260-2015; Frey, Raymond/E-2830-2016; Oyanguren, Arantza/K-6454-2014; Luppi, Eleonora/A-4902-2015; White, Ryan/E-2979-2015; Kravchenko, Evgeniy/F-5457-2015; Calabrese, Roberto/G-4405-2015; Neri, Nicola/G-3991-2012; Forti, Francesco/H-3035-2011; Rotondo, Marcello/I-6043-2012; de Sangro, Riccardo/J-2901-2012; Passaggio, Stefano/B-6843-2013; Negrini, Matteo/C-8906-2014; Patrignani, Claudia/C-5223-2009; Monge, Maria Roberta/G-9127-2012; Rizzo, Giuliana/A-8516-2015; OI Sciacca, Crisostomo/0000-0002-8412-4072; Ebert, Marcus/0000-0002-3014-1512; Paoloni, Eugenio/0000-0001-5969-8712; Bettarini, Stefano/0000-0001-7742-2998; Cibinetto, Gianluigi/0000-0002-3491-6231; Pacetti, Simone/0000-0002-6385-3508; Martinez Vidal, F*/0000-0001-6841-6035; Kolomensky, Yury/0000-0001-8496-9975; Lo Vetere, Maurizio/0000-0002-6520-4480; Lusiani, Alberto/0000-0002-6876-3288; Lusiani, Alberto/0000-0002-6876-3288; Morandin, Mauro/0000-0003-4708-4240; Stracka, Simone/0000-0003-0013-4714; Di Lodovico, Francesca/0000-0003-3952-2175; Pappagallo, Marco/0000-0001-7601-5602; Calcaterra, Alessandro/0000-0003-2670-4826; Frey, Raymond/0000-0003-0341-2636; Martinelli, Maurizio/0000-0003-4792-9178; Lanceri, Livio/0000-0001-8220-3095; Oyanguren, Arantza/0000-0002-8240-7300; Luppi, Eleonora/0000-0002-1072-5633; White, Ryan/0000-0003-3589-5900; Calabrese, Roberto/0000-0002-1354-5400; Neri, Nicola/0000-0002-6106-3756; Forti, Francesco/0000-0001-6535-7965; Rotondo, Marcello/0000-0001-5704-6163; de Sangro, Riccardo/0000-0002-3808-5455; Negrini, Matteo/0000-0003-0101-6963; Patrignani, Claudia/0000-0002-5882-1747; Monge, Maria Roberta/0000-0003-1633-3195; Adye, Tim/0000-0003-0627-5059; Rizzo, Giuliana/0000-0003-1788-2866; Faccini, Riccardo/0000-0003-2613-5141; Cavoto, Gianluca/0000-0003-2161-918X; Chen, Chunhui /0000-0003-1589-9955; Raven, Gerhard/0000-0002-2897-5323; Bellis, Matthew/0000-0002-6353-6043 FU SLAC; US Department of Energy; Natural Sciences and Engineering Research Council (Canada); Commissariat a l'Energie Atomique (France); Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung (Germany); Deutsche Foschungsgemeinschaft (Germany); Istituto Nazionale di Fisica Nucleare (Italy); Foundation for Fundamental Research on Matter (The Netherlands); Research Council of Norway; Ministry of Education and Science of the Russian Federation; Ministerio de Ciencia e Innovacion (Spain); Science and Technology Facilities Council (United Kingdom); European Union; A. P. Sloan Foundation (USA); Binational Science Foundation (USA-Israel); National Science Foundation FX We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat a l'Energie Atomique and Institut National de Physique Nucleaire et de Physique des Particules (France), the Bundesministerium fur Bildung und Forschung and Deutsche Foschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovacion (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union), the A. P. Sloan Foundation (USA), and the Binational Science Foundation (USA-Israel). NR 23 TC 22 Z9 22 U1 1 U2 7 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 28 PY 2011 VL 84 IS 7 AR 072006 DI 10.1103/PhysRevD.84.072006 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 846HK UT WOS:000296887600003 ER PT J AU Wang, XL Shen, CP Yuan, CZ Wang, P Adachi, I Aihara, H Asner, DM Aushev, T Bakich, AM Barberio, E Belous, K Bhuyan, B Bozek, A Bracko, M Browder, TE Chang, MC Chen, A Cheon, BG Chilikin, K Cho, IS Cho, K Choi, Y Dalseno, J Danilov, M Dolezal, Z Eidelman, S Fast, JE Feindt, M Gaur, V Goh, YM Haba, J Hayasaka, K Hayashii, H Hoshi, Y Hsiung, YB Hyun, HJ Iijima, T Ishikawa, A Itoh, R Iwabuchi, M Iwasaki, Y Iwashita, T Julius, T Kang, JH Katayama, N Kawasaki, T Kichimi, H Kim, HJ Kim, HO Kim, JB Kim, JH Kim, KT Kim, MJ Kim, YJ Kinoshita, K Ko, BR Kobayashi, N Koblitz, S Krizan, P Kuzmin, A Kwon, YJ Lange, JS Lee, SH Li, J Li, XR Li, Y Libby, J Lim, CL Liu, C Liventsev, D Louvot, R Matvienko, D McOnie, S Miyabayashi, K Miyata, H Miyazaki, Y Mohanty, GB Mussa, R Nagasaka, Y Nakao, M Nakazawa, H Natkaniec, Z Neubauer, S Nishida, S Nishimura, K Nitoh, O Ogawa, S Ohshima, T Okuno, S Olsen, SL Onuki, Y Pakhlov, P Pakhlova, G Park, H Park, HK Pedlar, TK Pestotnik, R Petric, M Piilonen, LE Ritter, M Ryu, S Sahoo, H Sakai, Y Sanuki, T Schneider, O Schwanda, C Senyo, K Seon, O Sevior, ME Shapkin, M Shibata, TA Shiu, JG Shwartz, B Simon, F Smerkol, P Sohn, YS Solovieva, E Stanic, S Staric, M Sumihama, M Tatishvili, G Teramoto, Y Trabelsi, K Uchida, M Uehara, S Unno, Y Uno, S Usov, Y Varner, G Wang, CH Wang, MZ Watanabe, Y Won, E Yabsley, BD Yamashita, Y Yamauchi, M Zhang, ZP Zhilich, V AF Wang, X. L. Shen, C. P. Yuan, C. Z. Wang, P. Adachi, I. Aihara, H. Asner, D. M. Aushev, T. Bakich, A. M. Barberio, E. Belous, K. Bhuyan, B. Bozek, A. Bracko, M. Browder, T. E. Chang, M. -C. Chen, A. Cheon, B. G. Chilikin, K. Cho, I. -S. Cho, K. Choi, Y. Dalseno, J. Danilov, M. Dolezal, Z. Eidelman, S. Fast, J. E. Feindt, M. Gaur, V. Goh, Y. M. Haba, J. Hayasaka, K. Hayashii, H. Hoshi, Y. Hsiung, Y. B. Hyun, H. J. Iijima, T. Ishikawa, A. Itoh, R. Iwabuchi, M. Iwasaki, Y. Iwashita, T. Julius, T. Kang, J. H. Katayama, N. Kawasaki, T. Kichimi, H. Kim, H. J. Kim, H. O. Kim, J. B. Kim, J. H. Kim, K. T. Kim, M. J. Kim, Y. J. Kinoshita, K. Ko, B. R. Kobayashi, N. Koblitz, S. Krizan, P. Kuzmin, A. Kwon, Y. -J. Lange, J. S. Lee, S. -H. Li, J. Li, X. R. Li, Y. Libby, J. Lim, C. -L. Liu, C. Liventsev, D. Louvot, R. Matvienko, D. McOnie, S. Miyabayashi, K. Miyata, H. Miyazaki, Y. Mohanty, G. B. Mussa, R. Nagasaka, Y. Nakao, M. Nakazawa, H. Natkaniec, Z. Neubauer, S. Nishida, S. Nishimura, K. Nitoh, O. Ogawa, S. Ohshima, T. Okuno, S. Olsen, S. L. Onuki, Y. Pakhlov, P. Pakhlova, G. Park, H. Park, H. K. Pedlar, T. K. Pestotnik, R. Petric, M. Piilonen, L. E. Ritter, M. Ryu, S. Sahoo, H. Sakai, Y. Sanuki, T. Schneider, O. Schwanda, C. Senyo, K. Seon, O. Sevior, M. E. Shapkin, M. Shibata, T. -A. Shiu, J. -G. Shwartz, B. Simon, F. Smerkol, P. Sohn, Y. -S. Solovieva, E. Stanic, S. Staric, M. Sumihama, M. Tatishvili, G. Teramoto, Y. Trabelsi, K. Uchida, M. Uehara, S. Unno, Y. Uno, S. Usov, Y. Varner, G. Wang, C. H. Wang, M. -Z. Watanabe, Y. Won, E. Yabsley, B. D. Yamashita, Y. Yamauchi, M. Zhang, Z. P. Zhilich, V. CA Belle Collaboration TI Search for charmonium and charmoniumlike states in gamma(2S) radiative decays SO PHYSICAL REVIEW D LA English DT Article ID BELLE; IDENTIFICATION; KEKB AB Using a sample of 158 x 10(6) gamma (2S) events collected with the Belle detector, charmonium and charmoniumlike states with even charge parity are searched for in gamma (2S) radiative decays. No significant chi(cJ) or eta(c) signal is observed, and the following upper limits at 90% confidence level (C. L.) are obtained: B(gamma(2S)-> gamma chi(c0)) < 1.0 x 10(-4), B(gamma(2S) -> gamma chi(c1)) < 3.6 x 10(-6), B(gamma(2S) -> gamma chi(c2)) < 1.5 x 10(-5), and B(gamma(2S) ->gamma eta(c)) < 2.7 x 10(-5). No significant signal of any charmoniumlike state is observed, and we obtain the limits B(gamma(2S) -> gamma X(3872)) x B(X(3872) -> pi(+)pi(-) J/psi) < 0.8 x 10(-6), B(gamma(2S) -> gamma X(3872)) x B(X(3872) -> pi(+)pi(-)pi(0) J/psi) < 2.4 x 10(-6), B(gamma(2S) -> gamma X(3915)) x B(X(3915) -> omega J/psi) < 2.8 x 10(-6), B(gamma(2S) -> gamma Y(4140)) x B(Y(4140) -> phi J/psi) < 1.2 x 10(-6), and B(gamma(2S) -> gamma X(4350) x B(X(4350) -> phi J/psi)) < 1.3 x 10(-6) at 90% C. L. C1 [Wang, X. L.; Yuan, C. Z.; Wang, P.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Eidelman, S.; Kuzmin, A.; Matvienko, D.; Shwartz, B.; Usov, Y.; Zhilich, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Eidelman, S.; Kuzmin, A.; Matvienko, D.; Shwartz, B.; Usov, Y.; Zhilich, V.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Dolezal, Z.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Kinoshita, K.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Chang, M. -C.] Fu Jen Catholic Univ, Dept Phys, Taipei, Taiwan. [Lange, J. S.] Univ Giessen, Giessen, Germany. [Cheon, B. G.; Goh, Y. M.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Sumihama, M.] Gifu Univ, Gifu, Japan. [Browder, T. E.; Nishimura, K.; Olsen, S. L.; Sahoo, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Haba, J.; Itoh, R.; Iwasaki, Y.; Katayama, N.; Kichimi, H.; Nakao, M.; Nishida, S.; Sakai, Y.; Trabelsi, K.; Uehara, S.; Uno, S.; Yamauchi, M.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Hiroshima, Japan. [Bhuyan, B.] Indian Inst Technol Guwahati, Gauhati, Assam, India. [Libby, J.] Indian Inst Technol Madras, Madras, Tamil Nadu, India. [Schwanda, C.] Inst High Energy Phys, Vienna, Austria. [Belous, K.; Shapkin, M.] Inst High Energy Phys, Protvino, Russia. [Mussa, R.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Aushev, T.; Chilikin, K.; Danilov, M.; Liventsev, D.; Pakhlov, P.; Pakhlova, G.; Solovieva, E.] Inst Theoret & Expt Phys, Moscow, Russia. [Bracko, M.; Krizan, P.; Pestotnik, R.; Petric, M.; Smerkol, P.; Staric, M.] Jozef Stefan Inst, Ljubljana, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa, Japan. [Feindt, M.; Neubauer, S.] Karlsruher Inst Technol, Inst Expt Kernphys, Karlsruhe, Germany. [Cho, K.; Kim, J. H.; Kim, Y. J.] Korea Inst Sci & Technol Informat, Taejon, South Korea. [Kim, J. B.; Kim, K. T.; Ko, B. R.; Lee, S. -H.; Won, E.] Korea Univ, Seoul, South Korea. [Hyun, H. J.; Kim, H. J.; Kim, H. O.; Kim, M. J.; Park, H.; Park, H. K.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Louvot, R.; Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. [Bracko, M.; Dalseno, J.; Simon, F.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Koblitz, S.; Ritter, M.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Barberio, E.; Julius, T.; Sevior, M. E.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Shen, C. P.; Hayasaka, K.; Iijima, T.; Miyazaki, Y.; Ohshima, T.; Senyo, K.; Seon, O.] Nagoya Univ, Nagoya, Aichi 4648601, Japan. [Hayashii, H.; Iwashita, T.; Miyabayashi, K.] Nara Womens Univ, Nara 630, Japan. [Chen, A.; Nakazawa, H.] Natl Cent Univ, Chungli, Taiwan. [Wang, C. H.] Natl United Univ, Miaoli, Taiwan. [Hsiung, Y. B.; Shiu, J. -G.; Wang, M. -Z.] Natl Taiwan Univ, Dept Phys, Taipei, Taiwan. [Bozek, A.; Natkaniec, Z.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Yamashita, Y.] Nippon Dent Univ, Niigata, Japan. [Kawasaki, T.; Miyata, H.] Niigata Univ, Niigata, Japan. [Stanic, S.] Univ Nova Gorica, Nova Gorica, Slovenia. [Teramoto, Y.] Osaka City Univ, Osaka 558, Japan. [Asner, D. M.; Fast, J. E.; Tatishvili, G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kobayashi, N.; Shibata, T. -A.; Sumihama, M.; Uchida, M.] Nucl Phys Res Ctr, Osaka, Japan. [Liu, C.; Zhang, Z. P.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Li, J.; Li, X. R.; Olsen, S. L.; Ryu, S.] Seoul Natl Univ, Seoul, South Korea. [Choi, Y.] Sungkyunkwan Univ, Suwon, South Korea. [Bakich, A. M.; McOnie, S.; Yabsley, B. D.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Gaur, V.; Mohanty, G. B.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Dalseno, J.; Simon, F.] Tech Univ Munich, D-8046 Garching, Germany. [Ogawa, S.] Toho Univ, Funabashi, Chiba 274, Japan. [Hoshi, Y.] Tohoku Gakuin Univ, Tagajo, Miyagi, Japan. [Ishikawa, A.; Onuki, Y.; Sanuki, T.] Tohoku Univ, Sendai, Miyagi 980, Japan. [Aihara, H.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Kobayashi, N.; Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 152, Japan. [Nitoh, O.] Tokyo Univ Agr & Technol, Tokyo, Japan. [Li, Y.; Piilonen, L. E.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA. RP Wang, XL (reprint author), Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. RI Aihara, Hiroaki/F-3854-2010; Nitoh, Osamu/C-3522-2013; Pakhlov, Pavel/K-2158-2013; Danilov, Mikhail/C-5380-2014; Chilikin, Kirill/B-4402-2014; Pakhlova, Galina/C-5378-2014; Solovieva, Elena/B-2449-2014 OI Aihara, Hiroaki/0000-0002-1907-5964; Pakhlov, Pavel/0000-0001-7426-4824; Danilov, Mikhail/0000-0001-9227-5164; Chilikin, Kirill/0000-0001-7620-2053; Pakhlova, Galina/0000-0001-7518-3022; Solovieva, Elena/0000-0002-5735-4059 FU MEXT (Japan); JSPS (Japan); Nagoya's TLPRC (Japan); ARC (Australia); DIISR (Australia); NSFC (China); MSMT (Czechia); DST (India); MEST (Korea); NRF (Korea); NSDC of KISTI (Korea); WCU (Korea); MNiSW (Poland); MES (Russia); RFAAE (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC (Taiwan); MOE (Taiwan); DOE (USA) FX We thank the KEKB group for excellent operation of the accelerator, the KEK cryogenics group for efficient solenoid operations, and the KEK computer group and the NII for valuable computing and SINET4 network support. We acknowledge support from MEXT, JSPS and Nagoya's TLPRC (Japan); ARC and DIISR (Australia); NSFC (China); MSMT (Czechia); DST (India); MEST, NRF, NSDC of KISTI, and WCU (Korea); MNiSW (Poland); MES and RFAAE (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE (USA). NR 23 TC 9 Z9 9 U1 0 U2 5 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 28 PY 2011 VL 84 IS 7 AR 071107 DI 10.1103/PhysRevD.84.071107 PG 7 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 846HK UT WOS:000296887600001 ER PT J AU Harrison, N AF Harrison, N. TI Near Doping-Independent Pocket Area from an Antinodal Fermi Surface Instability in Underdoped High Temperature Superconductors SO PHYSICAL REVIEW LETTERS LA English DT Article ID CUPRATE SUPERCONDUCTORS; QUANTUM OSCILLATIONS; PHASE-TRANSITIONS; STRIPE ORDER; PSEUDOGAP; INSULATOR; STATES; METAL AB Fermi surface models applied to the underdoped cuprates predict the small pocket area to be strongly dependent on doping whereas quantum oscillations in YBa2Cu3O6+x find precisely the opposite to be true-seemingly at odds with the Luttinger volume. We show that such behavior can be explained by an incommensurate antinodal Fermi surface nesting-type instability-further explaining the doping-dependent superstructures seen in cuprates using scanning tunneling microscopy. We develop a Fermi surface reconstruction scheme involving orthogonal density waves in two dimensions and show that their incommensurate behavior requires momentum-dependent coupling. A cooperative modulation of the charge and bond strength is therefore suggested. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Harrison, N (reprint author), Los Alamos Natl Lab, MS E536, Los Alamos, NM 87545 USA. OI Harrison, Neil/0000-0001-5456-7756 NR 32 TC 9 Z9 9 U1 1 U2 17 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 28 PY 2011 VL 107 IS 18 AR 186408 DI 10.1103/PhysRevLett.107.186408 PG 4 WC Physics, Multidisciplinary SC Physics GA 847WX UT WOS:000297004400004 PM 22107657 ER PT J AU Guruharsha, KG Rual, JF Zhai, B Mintseris, J Vaidya, P Vaidya, N Beekman, C Wong, C Rhee, DY Cenaj, O McKillip, E Shah, S Stapleton, M Wan, KH Yu, C Parsa, B Carlson, JW Chen, X Kapadia, B VijayRaghavan, K Gygi, SP Celniker, SE Obar, RA Artavanis-Tsakonas, S AF Guruharsha, K. G. Rual, Jean-Francois Zhai, Bo Mintseris, Julian Vaidya, Pujita Vaidya, Namita Beekman, Chapman Wong, Christina Rhee, David Y. Cenaj, Odise McKillip, Emily Shah, Saumini Stapleton, Mark Wan, Kenneth H. Yu, Charles Parsa, Bayan Carlson, Joseph W. Chen, Xiao Kapadia, Bhaveen VijayRaghavan, K. Gygi, Steven P. Celniker, Susan E. Obar, Robert A. Artavanis-Tsakonas, Spyros TI A Protein Complex Network of Drosophila melanogaster SO CELL LA English DT Article ID SACCHAROMYCES-CEREVISIAE; MASS-SPECTROMETRY; COMPREHENSIVE ANALYSIS; INTERACTION MAP; YEAST; GENE; RESOURCE; INTERACTOME; EVOLUTION; SUBUNIT AB Determining the composition of protein complexes is an essential step toward understanding the cell as an integrated system. Using coaffinity purification coupled to mass spectrometry analysis, we examined protein associations involving nearly 5,000 individual, FLAG-HA epitope-tagged Drosophila proteins. Stringent analysis of these data, based on a statistical framework designed to define individual protein-protein interactions, led to the generation of a Drosophila protein interaction map (DPiM) encompassing 556 protein complexes. The high quality of the DPiM and its usefulness as a paradigm for metazoan proteomes are apparent from the recovery of many known complexes, significant enrichment for shared functional attributes, and validation in human cells. The DPiM defines potential novel members for several important protein complexes and assigns functional links to 586 protein-coding genes lacking previous experimental annotation. The DPiM represents, to our knowledge, the largest metazoan protein complex map and provides a valuable resource for analysis of protein complex evolution. C1 [Guruharsha, K. G.; Rual, Jean-Francois; Zhai, Bo; Mintseris, Julian; Vaidya, Pujita; Vaidya, Namita; Beekman, Chapman; Wong, Christina; Rhee, David Y.; Cenaj, Odise; McKillip, Emily; Shah, Saumini; Gygi, Steven P.; Obar, Robert A.; Artavanis-Tsakonas, Spyros] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA. [Wan, Kenneth H.; Yu, Charles; Parsa, Bayan; Carlson, Joseph W.; Chen, Xiao; Kapadia, Bhaveen; Celniker, Susan E.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley Drosophila Genome Project, Berkeley, CA 94720 USA. [VijayRaghavan, K.] Tata Inst Fundamental Res, Natl Ctr Biol Sci, Bangalore 560065, Karnataka, India. RP Obar, RA (reprint author), Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA. EM robert_obar@hms.harvard.edu; artavanis@hms.harvard.edu OI Rual, Jean-Francois/0000-0003-4465-8819 FU National Institutes of Health (NIH) [5RO1HG003616]; Deutsche Jose Carreras Leukamie-Stiftung e.V.; National Human Genome Research Institute (NHGRI) [P41HG3487] FX This work was supported by a grant from the National Institutes of Health (NIH 5RO1HG003616) to S.A.-T. and a fellowship from the Deutsche Jose Carreras Leukamie-Stiftung e.V. to J.-F.R. Generation of the clone set was supported by a grant from the National Human Genome Research Institute (NHGRI P41HG3487 to S.E.C.). Special thanks to Anne-Claude Gavin, Bernhard Kuster, and Charlie Cohen, whose help was critical in the initiation of the project, as well as Gerry Rubin for help throughout. We thank Norbert Perrimon for S2R+ cells, Lucy and Peter Cherbas for help in cell culture, William Gelbart and the FlyBase team for making DPiM data available on FlyBase, and Alexey Veraksa, Ashim Mukherjee, Kadalmani Krishnan, Mathew Sowa, Dan Finley, Robin Reed, Angeliki Louvi, and members of the S.A.-T., S.E.C., S.P.G., and K.V. labs for helpful discussion and comments. We thank members of CCSB, Vidal and Harper labs, and David Hill and Eric Bennett in particular, for help with the human ORFeome collection. We also thank Manolis Kellis and Rogerio Candeias for their help. NR 65 TC 229 Z9 234 U1 5 U2 39 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 J9 CELL JI Cell PD OCT 28 PY 2011 VL 147 IS 3 BP 690 EP 703 DI 10.1016/j.cell.2011.08.047 PG 14 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 842EH UT WOS:000296573700022 PM 22036573 ER PT J AU Masters, A Schwartz, SJ Henley, EM Thomsen, MF Zieger, B Coates, AJ Achilleos, N Mitchell, J Hansen, KC Dougherty, MK AF Masters, A. Schwartz, S. J. Henley, E. M. Thomsen, M. F. Zieger, B. Coates, A. J. Achilleos, N. Mitchell, J. Hansen, K. C. Dougherty, M. K. TI Electron heating at Saturn's bow shock SO JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS LA English DT Article ID INTERPLANETARY MAGNETIC-FIELD; PARTICLE-ACCELERATION; SUPERNOVA REMNANT; DYNAMICS; IONS; SPECTROMETER; ORIENTATION; TEMPERATURE; WAVES; FOOT AB Collisionless shock waves are a widespread phenomenon in both solar system and astrophysical contexts. The nature of energy dissipation at such shocks is of particular interest, especially at high Mach numbers. We use data taken by the Cassini spacecraft to investigate electron heating at Saturn's bow shock, one of the strongest collisionless shocks encountered by spacecraft to date. Measurements of the upstream solar wind ion parameters are scarce due to spacecraft pointing constraints and the absence of an upstream monitor. To address this, we use solar wind speed predictions from the Michigan Solar Wind Model. Since these model predictions are based on near-Earth solar wind measurements, we restrict our analysis to bow shock crossings made by Cassini within +/- 75 days of apparent opposition of Earth and Saturn. An analysis of the resulting set of 94 crossings made in 2005 and 2007 reveals a positive correlation between the electron temperature increase across the shock and the kinetic energy of an incident proton, where electron heating accounts for between similar to 3% and similar to 7% of this incident ram energy. This percentage decreases with increasing Alfven Mach number, a trend that we confirm continues into the hitherto poorly explored high-Mach number regime, up to an Alfven Mach number of similar to 150. This work reveals that further studies of the Saturnian bow shock will bridge the gap between the more modest Mach numbers encountered in near-Earth space and more exotic astrophysical regimes where shock processes play central roles. C1 [Masters, A.; Coates, A. J.] Univ Coll London, Mullard Space Sci Lab, Dept Space & Climate Phys, Dorking RH5 6NT, Surrey, England. [Masters, A.; Coates, A. J.; Achilleos, N.] Univ London Birkbeck Coll, Ctr Planetary Sci, London WC1E 6BT, England. [Schwartz, S. J.; Henley, E. M.; Mitchell, J.; Dougherty, M. K.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Space & Atmospher Phys Grp, London SW7 2AZ, England. [Hansen, K. C.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Thomsen, M. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Zieger, B.] Austrian Acad Sci, Space Res Inst, A-8042 Graz, Austria. [Achilleos, N.] Univ London Imperial Coll Sci Technol & Med, Dept Phys & Astron, Atmospher Phys Lab, London SW7 2AZ, England. RP Masters, A (reprint author), Univ Coll London, Mullard Space Sci Lab, Dept Space & Climate Phys, Holmbury St Mary, Dorking RH5 6NT, Surrey, England. EM am2@mssl.ucl.ac.uk RI Hansen, Kenneth/F-3693-2011; Coates, Andrew/C-2396-2008; Zieger, Bertalan/H-3616-2014 OI Achilleos, Nicholas/0000-0002-5886-3509; Hansen, Kenneth/0000-0002-8502-1980; Coates, Andrew/0000-0002-6185-3125; FU UK STFC FX We acknowledge the support of the MAG and CAPS data processing and distribution staff and L.K. Gilbert and G.R. Lewis for ELS data processing. This work was supported by UK STFC through rolling grants to MSSL/UCL and Imperial College London. NR 42 TC 20 Z9 20 U1 2 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0148-0227 J9 J GEOPHYS RES-SPACE JI J. Geophys. Res-Space Phys. PD OCT 28 PY 2011 VL 116 AR A10107 DI 10.1029/2011JA016941 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 839HI UT WOS:000296355700002 ER PT J AU Nagle, JL Frawley, AD Levy, LAL Wysocki, MG AF Nagle, J. L. Frawley, A. D. Levy, L. A. Linden Wysocki, M. G. TI Modeling of J/psi modifications in deuteron-nucleus collisions at high energies SO PHYSICAL REVIEW C LA English DT Article ID HEAVY-ION COLLISIONS; DRELL-YAN; SUPPRESSION; DEPENDENCE; ABSORPTION AB Understanding the detailed production and hadronization mechanisms for heavy quarkonia and their modification in a nuclear environment presents one of the major challenges in QCD. Calculations including nuclear-modified parton distribution functions (nPDFs) and the fitting of breakup cross sections (sigma(br)) as parameters have been successful at describing many features of J/psi modifications in proton (deuteron)-nucleus collisions. In this paper, we extend these calculations to explore different geometric dependencies of the modifications and confront them with new experimental results from the PHENIX experiment. We find that no combination of nPDFs and sigma(br), regardless of the nPDF parameter set and the assumed geometric dependence, can simultaneously describe the entire rapidity and centrality dependence of J/psi modifications in d + Au collisions at root S(NN) = 200 GeV. We extend these calculations to incorporate initial-state parton energy loss, which results in an improved description of the experimental data. Finally, we compare the data with previously published calculations, including coherence effects, and find them unable to describe the full rapidity and centrality dependence. C1 [Nagle, J. L.; Wysocki, M. G.] Univ Colorado, Boulder, CO 80309 USA. [Frawley, A. D.] Florida State Univ, Tallahassee, FL 32306 USA. [Levy, L. A. Linden] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Nagle, JL (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM jamie.nagle@colorado.edu; afrawley@fsu.edu; lindenle@llnl.gov; matthew.wysocki@colorado.edu FU Division of Nuclear Physics of the US Department of Energy [DE-FG02-00ER41152]; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Science Foundation [PHY-07-56474]; Institute for Nuclear Theory at the University of Washington; US Department of Energy FX We thank Kirill Tuchin for providing us with the color-glass condensate calculation results and useful discussions, and Michael Stone for generating the PYTHIA event samples. We also acknowledge useful discussions with Mike Leitch, Darren McGlinchy, and Ramona Vogt. J.L.N and M. G. W acknowledge funding from the Division of Nuclear Physics of the US Department of Energy under Grant No. DE-FG02-00ER41152. L. A. L. L acknowledges that this work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. A. D. F acknowledges funding from the National Science Foundation under Contract No. PHY-07-56474. We also thank the Institute for Nuclear Theory at the University of Washington for its hospitality and the US Department of Energy for partial support during some of this work. NR 33 TC 10 Z9 10 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 28 PY 2011 VL 84 IS 4 AR 044911 DI 10.1103/PhysRevC.84.044911 PG 11 WC Physics, Nuclear SC Physics GA 841OE UT WOS:000296520900003 ER PT J AU Han, TYJ Stadermann, M Baumann, TF Murphy, KE Satcher, JH AF Han, T. Yong-Jin Stadermann, Michael Baumann, Theodore F. Murphy, Kristen E. Satcher, Joe H., Jr. TI Template directed formation of nanoparticle decorated multi-walled carbon nanotube bundles with uniform diameter SO NANOTECHNOLOGY LA English DT Article ID MESOPOROUS SILICA; HYDROGEN STORAGE; METAL; ARRAYS; ADSORPTION; COPOLYMER AB Bundles of multi-walled carbon nanotubes of uniform diameter decorated with Ni nanoparticles were synthesized using mesoporous silicates as templates. The ordered morphology and the narrow pore size distribution of mesoporous silicates provide an ideal platform to synthesize uniformly sized carbon nanotubes. In addition, homogeneous sub-10 nm pore sizes of the templates allow in situ formation of catalytic nanoparticles with uniform diameters which end up decorating the carbon nanotubes. The resulting carbon nanotubes are multi-walled with a uniform diameter corresponding to the pore diameter of the template used during the synthesis that are decorated with the catalysts used to synthesize them. They have a narrow size distribution which can be used in many energy related fields of research. C1 [Han, T. Yong-Jin; Stadermann, Michael; Baumann, Theodore F.; Murphy, Kristen E.; Satcher, Joe H., Jr.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Han, TYJ (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, 7000 East Ave, Livermore, CA 94550 USA. EM han5@llnl.gov RI Stadermann, Michael /A-5936-2012 OI Stadermann, Michael /0000-0001-8920-3581 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; LLNL [09-LW-024] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. The project 09-LW-024 was funded by the Laboratory Directed Research and Development Program at LLNL. NR 26 TC 2 Z9 2 U1 3 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-4484 J9 NANOTECHNOLOGY JI Nanotechnology PD OCT 28 PY 2011 VL 22 IS 43 AR 435603 DI 10.1088/0957-4484/22/43/435603 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 834NW UT WOS:000295969600013 PM 21967786 ER PT J AU Pindzola, MS Lee, TG Colgan, J AF Pindzola, M. S. Lee, T. G. Colgan, J. TI Antiproton-impact ionization of H, He and Li SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID DYNAMIC CORRELATION; ATOMIC-HYDROGEN; COLLISIONS; HELIUM AB Time-dependent close-coupling methods based on the expansion of one-and two-active-electron wavefunctions in spherical harmonics are used to calculate antiproton-impact single-ionization cross sections for H, He and Li. The single active electron cross sections are found to be in fair agreement with previous calculations and experiment for H and in good agreement with previous calculations for Li. However, the single active electron cross sections for He are found to be considerably larger than current and the previous two active electron cross sections, other calculations and experiment. It appears that electron correlation effects play a significant role in antiproton-impact ionization of He. C1 [Pindzola, M. S.; Lee, T. G.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Colgan, J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. RP Pindzola, MS (reprint author), Auburn Univ, Dept Phys, Auburn, AL 36849 USA. RI Lee, Teck Ghee/D-5037-2012; OI Lee, Teck Ghee/0000-0001-9472-3194; Colgan, James/0000-0003-1045-3858 FU US Department of Energy; US National Science Foundation FX This work was supported in part by grants from the US Department of Energy and the US National Science Foundation. Computational production work was carried out at the National Energy Research Scientific Computing Center in Oakland, CA, and the National Institute for Computational Sciences in Knoxville, TN. NR 23 TC 10 Z9 10 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD OCT 28 PY 2011 VL 44 IS 20 AR 205204 DI 10.1088/0953-4075/44/20/205204 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 829QQ UT WOS:000295599500014 ER PT J AU Slaughter, DS Adaniya, H Rescigno, TN Haxton, DJ Orel, AE McCurdy, CW Belkacem, A AF Slaughter, D. S. Adaniya, H. Rescigno, T. N. Haxton, D. J. Orel, A. E. McCurdy, C. W. Belkacem, A. TI Dissociative electron attachment to carbon dioxide via the 8.2 eV Feshbach resonance SO JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS LA English DT Article ID CROSS SECTIONS; CO2; IONS; AFFINITY; STATES; COLLISION; IMPACT AB Momentum imaging experiments on dissociative electron attachment (DEA) to CO2 are combined with the results of ab initio calculations to provide a detailed and consistent picture of the dissociation dynamics through the 8.2 eV resonance, which is the major channel for DEA in CO2. The present study resolves several puzzling misconceptions about this system. C1 [Slaughter, D. S.; Adaniya, H.; Rescigno, T. N.; Haxton, D. J.; Belkacem, A.] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. [Orel, A. E.] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA. [McCurdy, C. W.] Univ Calif Davis, Dept Chem, Davis, CA 95616 USA. RP Slaughter, DS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA. OI Slaughter, Daniel/0000-0002-4621-4552 FU US DOE by LBNL [DE-AC02-05CH11231]; US DOE Office of Basic Energy Sciences, Division of Chemical Sciences FX This work was performed under the auspices of the US DOE by LBNL under contract DE-AC02-05CH11231 and was supported by the US DOE Office of Basic Energy Sciences, Division of Chemical Sciences. NR 25 TC 12 Z9 12 U1 0 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-4075 J9 J PHYS B-AT MOL OPT JI J. Phys. B-At. Mol. Opt. Phys. PD OCT 28 PY 2011 VL 44 IS 20 AR 205203 DI 10.1088/0953-4075/44/20/205203 PG 5 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 829QQ UT WOS:000295599500013 ER PT J AU Kohler, S Bauer, S Mungall, CJ Carletti, G Smith, CL Schofield, P Gkoutos, GV Robinson, PN AF Koehler, Sebastian Bauer, Sebastian Mungall, Chris J. Carletti, Gabriele Smith, Cynthia L. Schofield, Paul Gkoutos, Georgios V. Robinson, Peter N. TI Improving ontologies by automatic reasoning and evaluation of logical definitions SO BMC BIOINFORMATICS LA English DT Article ID HUMAN PHENOTYPE ONTOLOGY; INFORMATION; DATABASE; SUPPORT; MODEL; TOOL AB Background: Ontologies are widely used to represent knowledge in biomedicine. Systematic approaches for detecting errors and disagreements are needed for large ontologies with hundreds or thousands of terms and semantic relationships. A recent approach of defining terms using logical definitions is now increasingly being adopted as a method for quality control as well as for facilitating interoperability and data integration. Results: We show how automated reasoning over logical definitions of ontology terms can be used to improve ontology structure. We provide the Java software package GULO ( Getting an Understanding of LOgical definitions), which allows fast and easy evaluation for any kind of logically decomposed ontology by generating a composite OWL ontology from appropriate subsets of the referenced ontologies and comparing the inferred relationships with the relationships asserted in the target ontology. As a case study we show how to use GULO to evaluate the logical definitions that have been developed for the Mammalian Phenotype Ontology ( MPO). Conclusions: Logical definitions of terms from biomedical ontologies represent an important resource for error and disagreement detection. GULO gives ontology curators a fast and simple tool for validation of their work. C1 [Koehler, Sebastian; Bauer, Sebastian; Robinson, Peter N.] Charite, Inst Med Genet & Human Genet, D-13353 Berlin, Germany. [Koehler, Sebastian; Robinson, Peter N.] Charite, Berlin Brandenburg Ctr Regenerat Therapies BCRT, D-13353 Berlin, Germany. [Mungall, Chris J.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Carletti, Gabriele] Univ Camerino, Dipartimento Matemat & Informat, I-62032 Camerino, MC, Italy. [Smith, Cynthia L.; Schofield, Paul] Jackson Lab, Bar Harbor, ME 04609 USA. [Schofield, Paul] Univ Cambridge, Dept Physiol Dev & Neurosci, Cambridge CB2 3EG, England. [Gkoutos, Georgios V.] Univ Cambridge, Dept Genet, Cambridge CB2 3EH, England. [Robinson, Peter N.] Max Planck Inst Mol Genet, D-14195 Berlin, Germany. RP Kohler, S (reprint author), Charite, Inst Med Genet & Human Genet, Augustenburger Pl 1, D-13353 Berlin, Germany. EM sebastian.koehler@charite.de; peter.robinson@charite.de RI Kohler, Sebastian/A-2029-2012; Smith, Cynthia/A-5646-2009; OI Kohler, Sebastian/0000-0002-5316-1399; Smith, Cynthia/0000-0003-3691-0324; Robinson, Peter/0000-0002-0736-9199 FU Deutsche Forschungsgemeinschaft (DFG) [RO 2005/4-1]; Bundesministerium fur Bildung und Forschung (BMBF) [0313911]; NIH [R01 HG004838-02] FX This work was supported by grants of the Deutsche Forschungsgemeinschaft (DFG RO 2005/4-1), the Bundesministerium fur Bildung und Forschung (BMBF project number 0313911), and the NIH (R01 HG004838-02). NR 30 TC 17 Z9 17 U1 0 U2 5 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD OCT 27 PY 2011 VL 12 AR 418 DI 10.1186/1471-2105-12-418 PG 8 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 852JE UT WOS:000297353000001 PM 22032770 ER PT J AU Aaltonen, T Gonzalez, BA Amerio, S Amidei, D Anastassov, A Annovi, A Antos, J Apollinari, G Appel, JA Arisawa, T Artikov, A Asaadi, J Ashmanskas, W Auerbach, B Aurisano, A Azfar, F Badgett, W Bae, T Barbaro-Galtieri, A Barnes, VE Barnett, BA Barria, P Bartos, P Bauce, M Bedeschi, F Beecher, D Behari, S Bellettini, G Bellinger, J Benjamin, D Beretvas, A Bhatti, A Binkley, M Bisello, D Bizjak, I Bland, KR Blumenfeld, B Bocci, A Bodek, A Bortoletto, D Boudreau, J Boveia, A Brigliadori, L Bromberg, C Brucken, E Budagov, J Budd, HS Burkett, K Busetto, G Bussey, P Buzatu, A Calamba, A Calancha, C Camarda, S Campanelli, M Campbell, M Canelli, F Carls, B Carlsmith, D Carosi, R Carrillo, S Carron, S Casal, B Casarsa, M Castro, A Catastini, P Cauz, D Cavaliere, V Cavalli-Sforza, M Cerri, A Cerrito, L Chen, YC Chertok, M Chiarelli, G Chlachidze, G Chlebana, F Cho, K Chokheli, D Chung, WH Chung, YS Ciocci, MA Clark, A Clark, C Compostella, G Convery, ME Conway, J Corbo, M Cordelli, M Cox, CA Cox, DJ Crescioli, F Cuevas, J Culbertson, R Dagenhart, D d'Ascenzo, N Datta, M de Barbaro, P Dell'Orso, M Demortier, L Deninno, M Devoto, F d'Errico, M Di Canto, A Di Ruzza, B Dittmann, JR D'Onofrio, M Donati, S Dong, P Dorigo, M Dorigo, T Ebina, K Elagin, A Eppig, A Erbacher, R Errede, S Ershaidat, N Eusebi, R Fang, HC Farrington, S Feindt, M Fernandez, JP Field, R Flanagan, G Forrest, R Frank, MJ Franklin, M Freeman, JC Funakoshi, Y Furic, I Gallinaro, M Garcia, JE Garfinkel, AF Garosi, P Gerberich, H Gerchtein, E Giakoumopoulou, V Giannetti, P Gibson, K Ginsburg, CM Giokaris, N Giromini, P Giurgiu, G Glagolev, V Glenzinski, D Gold, M Goldin, D Goldschmidt, N Golossanov, A Gomez, G Gomez-Ceballos, G Goncharov, M Gonzalez, O Gorelov, I Goshaw, AT Goulianos, K Grinstein, S Grosso-Pilcher, C Group, RC da Costa, JG Gunay-Unalan, Z Haber, C Hahn, SR Halkiadakis, E Hamaguchi, A Han, JY Happacher, F Hara, K Hare, D Hare, M Harr, RF Hatakeyama, K Hays, C Heck, M Heinrich, J Herndon, M Hewamanage, S Hocker, A Hopkins, W Horn, D Hou, S Hughes, RE Hurwitz, M Husemann, U Hussain, N Hussein, M Huston, J Introzzi, G Iori, M Ivanov, A James, E Jang, D Jang, HJ Jayatilaka, B Jeon, EJ Jindariani, S Johnson, W Jones, M Joo, KK Jun, SY Junk, TR Kamon, T Karchin, PE Kasmi, A Kato, Y Ketchum, W Keung, J Khotilovich, V Kilminster, B Kim, DH Kim, HS Kim, JE Kim, MJ Kim, SB Kim, SH Kim, YK Kim, YJ Kimura, N Kirby, M Knoepfel, K Kondo, K Kong, DJ Konigsberg, J Kotwal, AV Kreps, M Kroll, J Krop, D Kruse, M Krutelyov, V Kuhr, T Kurata, M Kwang, S Laasanen, AT Lami, S Lammel, S Lancaster, M Lander, RL Lannon, K Lath, A Latino, G LeCompte, T Lee, E Lee, HS Lee, JS Lee, SW Leo, S Leone, S Lewis, JD Limosani, A Lin, CJ Linacre, J Lindgren, M Lipeles, E Lister, A Litvintsev, DO Liu, C Liu, H Liu, Q Liu, T Lockwitz, S Loginov, A Lucchesi, D Lueck, J Lujan, P Lukens, P Lungu, G Lys, J Lysak, R Madrak, R Maeshima, K Maestro, P Malik, S Manca, G Manousakis-Katsikakis, A Margaroli, F Marino, C Martinez, M Matera, K Mattson, ME Mazzacane, A Mazzanti, P McFarland, KS McIntyre, P McNulty, R Mehta, A Mehtala, P Mesropian, C Miao, T Mietlicki, D Mitra, A Miyake, H Moed, S Moggi, N Mondragon, MN Moon, CS Moore, R Morello, MJ Morlock, J Fernandez, PM Mukherjee, A Muller, T Murat, P Mussini, M Nachtman, J Nagai, Y Naganoma, J Nakano, I Napier, A Nett, J Neu, C Neubauer, MS Nielsen, J Nodulman, L Noh, SY Norniella, O Nurse, E Oakes, L Oh, SH Oh, YD Oksuzian, I Okusawa, T Orava, R Ortolan, L Griso, SP Pagliarone, C Palencia, E Papadimitriou, V Paramonov, AA Patrick, J Pauletta, G Paulini, M Paus, C Pellett, DE Penzo, A Phillips, TJ Piacentino, G Pianori, E Pilot, J Pitts, K Plager, C Pondrom, L Poprocki, S Potamianos, K Poukhov, O Prokoshin, F Pranko, A Ptohos, F Punzi, G Rahaman, A Ramakrishnan, V Ranjan, N Redondo, I Renton, P Rescigno, M Riddick, T Rimondi, F Ristori, L Robson, A Rodrigo, T Rodriguez, T Rogers, E Rolli, S Roser, R Rubbo, F Ruffini, F Ruiz, A Russ, J Rusu, V Safonov, A Sakumoto, WK Sakurai, Y Santi, L Sato, K Saveliev, V Savoy-Navarro, A Schlabach, P Schmidt, A Schmidt, EE Schmidt, MP Schwarz, T Scodellaro, L Scribano, A Scuri, F Sedov, A Seidel, S Seiya, Y Semenov, A Sforza, F Shalhout, SZ Shears, T Shepard, PF Shimojima, M Shochet, M Shreyber-Tecker, I Simonenko, A Sinervo, P Sissakian, A Sliwa, K Smith, JR Snider, FD Soha, A Sorin, V Squillacioti, P Stancari, M St Denis, R Stelzer, B Stelzer-Chilton, O Stentz, D Strologas, J Strycker, GL Sudo, Y Sukhanov, A Suslov, I Takemasa, K Takeuchi, Y Tang, J Tecchio, M Teng, PK Thom, J Thome, J Thompson, GA Thomson, E Toback, D Tokar, S Tollefson, K Tomura, T Tonelli, D Torre, S Torretta, D Totaro, P Trovato, M Tu, Y Ukegawa, F Uozumi, S Varganov, A Vazquez, F Velev, G Vellidis, C Vidal, M Vila, I Vilar, R Vizan, J Vogel, M Volpi, G Wagner, P Wagner, RL Wakisaka, T Wallny, R Wang, SM Warburton, A Waters, D Wester, WC Whiteson, D Wicklund, AB Wicklund, E Wilbur, S Wick, F Williams, HH Wilson, JS Wilson, P Winer, BL Wittich, P Wolbers, S Wolfe, H Wright, T Wu, X Wu, Z Yamamoto, K Yang, T Yang, UK Yang, YC Yao, WM Yeh, GP Yi, K Yoh, J Yorita, K Yoshida, T Yu, GB Yu, I Yu, SS Yun, JC Zanetti, A Zeng, Y Zucchelli, S AF Aaltonen, T. Alvarez Gonzalez, B. Amerio, S. Amidei, D. Anastassov, A. Annovi, A. Antos, J. Apollinari, G. Appel, J. A. Arisawa, T. Artikov, A. Asaadi, J. Ashmanskas, W. Auerbach, B. Aurisano, A. Azfar, F. Badgett, W. Bae, T. Barbaro-Galtieri, A. Barnes, V. E. Barnett, B. A. Barria, P. Bartos, P. Bauce, M. Bedeschi, F. Beecher, D. Behari, S. Bellettini, G. Bellinger, J. Benjamin, D. Beretvas, A. Bhatti, A. Binkley, M. Bisello, D. Bizjak, I. Bland, K. R. Blumenfeld, B. Bocci, A. Bodek, A. Bortoletto, D. Boudreau, J. Boveia, A. Brigliadori, L. Bromberg, C. Brucken, E. Budagov, J. Budd, H. S. Burkett, K. Busetto, G. Bussey, P. Buzatu, A. Calamba, A. Calancha, C. Camarda, S. Campanelli, M. Campbell, M. Canelli, F. Carls, B. Carlsmith, D. Carosi, R. Carrillo, S. Carron, S. Casal, B. Casarsa, M. Castro, A. Catastini, P. Cauz, D. Cavaliere, V. Cavalli-Sforza, M. Cerri, A. Cerrito, L. Chen, Y. C. Chertok, M. Chiarelli, G. Chlachidze, G. Chlebana, F. Cho, K. Chokheli, D. Chung, W. H. Chung, Y. S. Ciocci, M. A. Clark, A. Clark, C. Compostella, G. Convery, M. E. Conway, J. Corbo, M. Cordelli, M. Cox, C. A. Cox, D. J. Crescioli, F. Cuevas, J. Culbertson, R. Dagenhart, D. d'Ascenzo, N. Datta, M. de Barbaro, P. Dell'Orso, M. Demortier, L. Deninno, M. Devoto, F. d'Errico, M. Di Canto, A. Di Ruzza, B. Dittmann, J. R. D'Onofrio, M. Donati, S. Dong, P. Dorigo, M. Dorigo, T. Ebina, K. Elagin, A. Eppig, A. Erbacher, R. Errede, S. Ershaidat, N. Eusebi, R. Fang, H. C. Farrington, S. Feindt, M. Fernandez, J. P. Field, R. Flanagan, G. Forrest, R. Frank, M. J. Franklin, M. Freeman, J. C. Funakoshi, Y. Furic, I. Gallinaro, M. Garcia, J. E. Garfinkel, A. F. Garosi, P. Gerberich, H. Gerchtein, E. Giakoumopoulou, V. Giannetti, P. Gibson, K. Ginsburg, C. M. Giokaris, N. Giromini, P. Giurgiu, G. Glagolev, V. Glenzinski, D. Gold, M. Goldin, D. Goldschmidt, N. Golossanov, A. Gomez, G. Gomez-Ceballos, G. Goncharov, M. Gonzalez, O. Gorelov, I. Goshaw, A. T. Goulianos, K. Grinstein, S. Grosso-Pilcher, C. Group, R. C. da Costa, J. Guimaraes Gunay-Unalan, Z. Haber, C. Hahn, S. R. Halkiadakis, E. Hamaguchi, A. Han, J. Y. Happacher, F. Hara, K. Hare, D. Hare, M. Harr, R. F. Hatakeyama, K. Hays, C. Heck, M. Heinrich, J. Herndon, M. Hewamanage, S. Hocker, A. Hopkins, W. Horn, D. Hou, S. Hughes, R. E. Hurwitz, M. Husemann, U. Hussain, N. Hussein, M. Huston, J. Introzzi, G. Iori, M. Ivanov, A. James, E. Jang, D. Jang, H. J. Jayatilaka, B. Jeon, E. J. Jindariani, S. Johnson, W. Jones, M. Joo, K. K. Jun, S. Y. Junk, T. R. Kamon, T. Karchin, P. E. Kasmi, A. Kato, Y. Ketchum, W. Keung, J. Khotilovich, V. Kilminster, B. Kim, D. H. Kim, H. S. Kim, J. E. Kim, M. J. Kim, S. B. Kim, S. H. Kim, Y. K. Kim, Y. J. Kimura, N. Kirby, M. Knoepfel, K. Kondo, K. Kong, D. J. Konigsberg, J. Kotwal, A. V. Kreps, M. Kroll, J. Krop, D. Kruse, M. Krutelyov, V. Kuhr, T. Kurata, M. Kwang, S. Laasanen, A. T. Lami, S. Lammel, S. Lancaster, M. Lander, R. L. Lannon, K. Lath, A. Latino, G. LeCompte, T. Lee, E. Lee, H. S. Lee, J. S. Lee, S. W. Leo, S. Leone, S. Lewis, J. D. Limosani, A. Lin, C. -J. Linacre, J. Lindgren, M. Lipeles, E. Lister, A. Litvintsev, D. O. Liu, C. Liu, H. Liu, Q. Liu, T. Lockwitz, S. Loginov, A. Lucchesi, D. Lueck, J. Lujan, P. Lukens, P. Lungu, G. Lys, J. Lysak, R. Madrak, R. Maeshima, K. Maestro, P. Malik, S. Manca, G. Manousakis-Katsikakis, A. Margaroli, F. Marino, C. Martinez, M. Matera, K. Mattson, M. E. Mazzacane, A. Mazzanti, P. McFarland, K. S. McIntyre, P. McNulty, R. Mehta, A. Mehtala, P. Mesropian, C. Miao, T. Mietlicki, D. Mitra, A. Miyake, H. Moed, S. Moggi, N. Mondragon, M. N. Moon, C. S. Moore, R. Morello, M. J. Morlock, J. Fernandez, P. Movilla Mukherjee, A. Muller, Th Murat, P. Mussini, M. Nachtman, J. Nagai, Y. Naganoma, J. Nakano, I. Napier, A. Nett, J. Neu, C. Neubauer, M. S. Nielsen, J. Nodulman, L. Noh, S. Y. Norniella, O. Nurse, E. Oakes, L. Oh, S. H. Oh, Y. D. Oksuzian, I. Okusawa, T. Orava, R. Ortolan, L. Griso, S. Pagan Pagliarone, C. Palencia, E. Papadimitriou, V. Paramonov, A. A. Patrick, J. Pauletta, G. Paulini, M. Paus, C. Pellett, D. E. Penzo, A. Phillips, T. J. Piacentino, G. Pianori, E. Pilot, J. Pitts, K. Plager, C. Pondrom, L. Poprocki, S. Potamianos, K. Poukhov, O. Prokoshin, F. Pranko, A. Ptohos, F. Punzi, G. Rahaman, A. Ramakrishnan, V. Ranjan, N. Redondo, I. Renton, P. Rescigno, M. Riddick, T. Rimondi, F. Ristori, L. Robson, A. Rodrigo, T. Rodriguez, T. Rogers, E. Rolli, S. Roser, R. Rubbo, F. Ruffini, F. Ruiz, A. Russ, J. Rusu, V. Safonov, A. Sakumoto, W. K. Sakurai, Y. Santi, L. Sato, K. Saveliev, V. Savoy-Navarro, A. Schlabach, P. Schmidt, A. Schmidt, E. E. Schmidt, M. P. Schwarz, T. Scodellaro, L. Scribano, A. Scuri, F. Sedov, A. Seidel, S. Seiya, Y. Semenov, A. Sforza, F. Shalhout, S. Z. Shears, T. Shepard, P. F. Shimojima, M. Shochet, M. Shreyber-Tecker, I. Simonenko, A. Sinervo, P. Sissakian, A. Sliwa, K. Smith, J. R. Snider, F. D. Soha, A. Sorin, V. Squillacioti, P. Stancari, M. St Denis, R. Stelzer, B. Stelzer-Chilton, O. Stentz, D. Strologas, J. Strycker, G. L. Sudo, Y. Sukhanov, A. Suslov, I. Takemasa, K. Takeuchi, Y. Tang, J. Tecchio, M. Teng, P. K. Thom, J. Thome, J. Thompson, G. A. Thomson, E. Toback, D. Tokar, S. Tollefson, K. Tomura, T. Tonelli, D. Torre, S. Torretta, D. Totaro, P. Trovato, M. Tu, Y. Ukegawa, F. Uozumi, S. Varganov, A. Vazquez, F. Velev, G. Vellidis, C. Vidal, M. Vila, I. Vilar, R. Vizan, J. Vogel, M. Volpi, G. Wagner, P. Wagner, R. L. Wakisaka, T. Wallny, R. Wang, S. M. Warburton, A. Waters, D. Wester, W. C., III Whiteson, D. Wicklund, A. B. Wicklund, E. Wilbur, S. Wick, F. Williams, H. H. Wilson, J. S. Wilson, P. Winer, B. L. Wittich, P. Wolbers, S. Wolfe, H. Wright, T. Wu, X. Wu, Z. Yamamoto, K. Yang, T. Yang, U. K. Yang, Y. C. Yao, W. -M. Yeh, G. P. Yi, K. Yoh, J. Yorita, K. Yoshida, T. Yu, G. B. Yu, I. Yu, S. S. Yun, J. C. Zanetti, A. Zeng, Y. Zucchelli, S. CA CDF Collaboration TI Search for resonant production of t(t)over-bar pairs in 4.8 fb(-1) of integrated luminosity of p(p)over-bar collisions at root s=1.96 TeV SO PHYSICAL REVIEW D LA English DT Article ID SYMMETRY-BREAKING; DETECTOR; CALORIMETER; HIERARCHY; PHYSICS; MASS AB We search for resonant production of t (t) over bar pairs in 4.8 fb(-1) integrated luminosity of p (p) over bar collision data at root s = 1.96 TeV in the lepton + jets decay channel, where one top quark decays leptonically and the other hadronically. A matrix-element reconstruction technique is used; for each event a probability density function of the t (t) over bar candidate invariant mass is sampled. These probability density functions are used to construct a likelihood function, whereby the cross section for resonant t (t) over bar production is estimated, given a hypothetical resonance mass and width. The data indicate no evidence of resonant production of t (t) over bar pairs. A benchmark model of leptophobic Z' -> t (t) over bar is excluded with m(Z') < 900 GeV/c(2) at 95% confidence level. C1 [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. [Chen, Y. C.; Hou, S.; Mitra, A.; Teng, P. K.; Wang, S. M.] Acad Sinica, Inst Phys, Taipei 11529, Taiwan. [LeCompte, T.; Nodulman, L.; Paramonov, A. A.; Wicklund, A. B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Giakoumopoulou, V.; Giokaris, N.; Manousakis-Katsikakis, A.] Univ Athens, GR-15771 Athens, Greece. [Camarda, S.; Cavalli-Sforza, M.; Grinstein, S.; Martinez, M.; Ortolan, L.; Sorin, V.] Univ Autonoma Barcelona, ICREA, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Bland, K. R.; Dittmann, J. R.; Frank, M. J.; Hatakeyama, K.; Hewamanage, S.; Kasmi, A.; Wu, Z.] Baylor Univ, Waco, TX 76798 USA. [Brigliadori, L.; Castro, A.; Deninno, M.; Mazzanti, P.; Moggi, N.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Ist Nazl Fis Nucl, I-40127 Bologna, Italy. [Brigliadori, L.; Castro, A.; Mussini, M.; Rimondi, F.; Zucchelli, S.] Univ Bologna, I-40127 Bologna, Italy. [Chertok, M.; Conway, J.; Cox, C. A.; Cox, D. J.; Erbacher, R.; Forrest, R.; Ivanov, A.; Johnson, W.; Lander, R. L.; Pellett, D. E.; Shalhout, S. Z.; Smith, J. R.] Univ Calif Davis, Davis, CA 95616 USA. [Plager, C.; Wallny, R.] Univ Calif Los Angeles, Los Angeles, CA 90024 USA. [Alvarez Gonzalez, B.; Casal, B.; Cuevas, J.; Gomez, G.; Palencia, E.; Rodrigo, T.; Ruiz, A.; Scodellaro, L.; Vila, I.; Vilar, R.; Vizan, J.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Calamba, A.; Jang, D.; Jun, S. Y.; Paulini, M.; Russ, J.; Thome, J.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Boveia, A.; Canelli, F.; Grosso-Pilcher, C.; Hurwitz, M.; Ketchum, W.; Kim, Y. K.; Krop, D.; Kwang, S.; Lee, H. S.; Shochet, M.; Tang, J.; Wilbur, S.; Yang, U. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Comenius Univ, Bratislava 84248, Slovakia. [Antos, J.; Bartos, P.; Lysak, R.; Tokar, S.] Inst Expt Phys, Kosice 04001, Slovakia. [Artikov, A.; Budagov, J.; Chokheli, D.; Glagolev, V.; Poukhov, O.; Prokoshin, F.; Semenov, A.; Simonenko, A.; Sissakian, A.; Suslov, I.] Joint Inst Nucl Res, RU-141980 Dubna, Russia. [Benjamin, D.; Bocci, A.; Goshaw, A. T.; Jayatilaka, B.; Kotwal, A. V.; Kruse, M.; Limosani, A.; Oh, S. H.; Phillips, T. J.; Yu, G. B.; Zeng, Y.] Duke Univ, Durham, NC 27708 USA. [Anastassov, A.; Apollinari, G.; Appel, J. A.; Ashmanskas, W.; Badgett, W.; Beretvas, A.; Binkley, M.; Burkett, K.; Canelli, F.; Carron, S.; Chlachidze, G.; Chlebana, F.; Convery, M. E.; Corbo, M.; Culbertson, R.; Dagenhart, D.; d'Ascenzo, N.; Datta, M.; Di Ruzza, B.; Dong, P.; Ershaidat, N.; Freeman, J. C.; Gerchtein, E.; Ginsburg, C. M.; Glenzinski, D.; Golossanov, A.; Group, R. C.; Hahn, S. R.; Hocker, A.; Hopkins, W.; James, E.; Jindariani, S.; Junk, T. R.; Kilminster, B.; Kirby, M.; Knoepfel, K.; Lammel, S.; Lewis, J. D.; Lindgren, M.; Litvintsev, D. O.; Liu, T.; Lukens, P.; Madrak, R.; Maeshima, K.; Mazzacane, A.; Miao, T.; Moed, S.; Mondragon, M. N.; Moore, R.; Fernandez, P. Movilla; Mukherjee, A.; Murat, P.; Nachtman, J.; Papadimitriou, V.; Patrick, J.; Poprocki, S.; Pranko, A.; Ristori, L.; Roser, R.; Rusu, V.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Snider, F. D.; Soha, A.; Stancari, M.; Stentz, D.; Sukhanov, A.; Thom, J.; Tonelli, D.; Torretta, D.; Velev, G.; Vellidis, C.; Wagner, R. L.; Wester, W. C., III; Wicklund, E.; Wilson, P.; Wittich, P.; Wolbers, S.; Yang, T.; Yeh, G. P.; Yi, K.; Yoh, J.; Yu, S. S.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carrillo, S.; Field, R.; Furic, I.; Goldschmidt, N.; Konigsberg, J.; Vazquez, F.] Univ Florida, Gainesville, FL 32611 USA. [Annovi, A.; Cordelli, M.; Giromini, P.; Happacher, F.; Kim, M. J.; Ptohos, F.; Torre, S.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Clark, A.; Garcia, J. E.; Lister, A.; Wu, X.] Univ Geneva, CH-1211 Geneva 4, Switzerland. [Bussey, P.; Robson, A.; St Denis, R.] Univ Glasgow, Glasgow G12 8QQ, Lanark, Scotland. [Catastini, P.; Franklin, M.; da Costa, J. Guimaraes] Harvard Univ, Cambridge, MA 02138 USA. [Aaltonen, T.; Brucken, E.; Devoto, F.; Mehtala, P.; Orava, R.] Helsinki Inst Phys, FIN-00014 Helsinki, Finland. [Carls, B.; Cavaliere, V.; Errede, S.; Gerberich, H.; Matera, K.; Neubauer, M. S.; Norniella, O.; Pitts, K.; Rogers, E.; Thompson, G. A.] Univ Illinois, Urbana, IL 61801 USA. [Barnett, B. A.; Behari, S.; Blumenfeld, B.; Giurgiu, G.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Feindt, M.; Heck, M.; Horn, D.; Kreps, M.; Kuhr, T.; Lueck, J.; Marino, C.; Morlock, J.; Muller, Th; Schmidt, A.; Wick, F.] Karlsruhe Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Bae, T.; Cho, K.; Jang, H. J.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Kyungpook Natl Univ, Ctr High Energy Phys, Taegu 702701, South Korea. [Bae, T.; Cho, K.; Jang, H. J.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Seoul Natl Univ, Seoul 151742, South Korea. [Bae, T.; Cho, K.; Jang, H. J.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bae, T.; Cho, K.; Jang, H. J.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Bae, T.; Cho, K.; Jang, H. J.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonnam Natl Univ, Kwangju 500757, South Korea. [Bae, T.; Cho, K.; Jang, H. J.; Jeon, E. J.; Joo, K. K.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, S. B.; Kim, Y. J.; Kong, D. J.; Lee, J. S.; Moon, C. S.; Noh, S. Y.; Oh, Y. D.; Uozumi, S.; Yang, Y. C.; Yu, I.] Chonbuk Natl Univ, Jeonju 561756, South Korea. [Barbaro-Galtieri, A.; Cerri, A.; Fang, H. C.; Haber, C.; Lin, C. -J.; Lujan, P.; Lys, J.; Nielsen, J.; Yao, W. -M.] Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [D'Onofrio, M.; Manca, G.; McNulty, R.; Mehta, A.; Shears, T.] Univ Liverpool, Liverpool L69 7ZE, Merseyside, England. [Beecher, D.; Bizjak, I.; Campanelli, M.; Cerrito, L.; Lancaster, M.; Nurse, E.; Riddick, T.; Waters, D.] UCL, London WC1E 6BT, England. [Calancha, C.; Fernandez, J. P.; Gonzalez, O.; Redondo, I.] Ctr Invest Energet Medioambientales & Tecnol, E-28040 Madrid, Spain. [Gomez-Ceballos, G.; Goncharov, M.; Paus, C.] MIT, Cambridge, MA 02139 USA. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] McGill Univ, Inst Particle Phys, Montreal, PQ H3A 2T8, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] Univ Toronto, Toronto, ON M5S 1A7, Canada. [Buzatu, A.; Hussain, N.; Sinervo, P.; Stelzer, B.; Stelzer-Chilton, O.; Warburton, A.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Amidei, D.; Campbell, M.; Eppig, A.; Mietlicki, D.; Strycker, G. L.; Tecchio, M.; Varganov, A.; Wright, T.] Univ Michigan, Ann Arbor, MI 48109 USA. [Bromberg, C.; Gunay-Unalan, Z.; Hussein, M.; Huston, J.; Tollefson, K.] Michigan State Univ, E Lansing, MI 48824 USA. [Shreyber-Tecker, I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Gold, M.; Gorelov, I.; Seidel, S.; Strologas, J.; Vogel, M.] Univ New Mexico, Albuquerque, NM 87131 USA. [Hughes, R. E.; Lannon, K.; Pilot, J.; Wilson, J. S.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Okayama 7008530, Japan. [Hamaguchi, A.; Kato, Y.; Okusawa, T.; Seiya, Y.; Wakisaka, T.; Yamamoto, K.; Yoshida, T.] Osaka City Univ, Osaka 588, Japan. [Azfar, F.; Farrington, S.; Hays, C.; Linacre, J.; Oakes, L.; Renton, P.] Univ Oxford, Oxford OX1 3RH, England. [Amerio, S.; Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Dorigo, T.; Lucchesi, D.; Griso, S. Pagan; Totaro, P.] Ist Nazl Fis Nucl, Sez Padova Trento, I-35131 Padua, Italy. [Bauce, M.; Bisello, D.; Busetto, G.; Compostella, G.; d'Errico, M.; Lucchesi, D.; Griso, S. Pagan] Univ Padua, I-35131 Padua, Italy. [Heinrich, J.; Keung, J.; Kroll, J.; Lipeles, E.; Pianori, E.; Rodriguez, T.; Thomson, E.; Tu, Y.; Wagner, P.; Whiteson, D.; Williams, H. H.] Univ Penn, Philadelphia, PA 19104 USA. [Barria, P.; Bedeschi, F.; Bellettini, G.; Carosi, R.; Chiarelli, G.; Ciocci, M. A.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Garosi, P.; Giannetti, P.; Introzzi, G.; Lami, S.; Latino, G.; Leo, S.; Leone, S.; Maestro, P.; Morello, M. J.; Piacentino, G.; Punzi, G.; Rubbo, F.; Ruffini, F.; Scribano, A.; Scuri, F.; Sforza, F.; Squillacioti, P.; Trovato, M.] Ist Nazl Fis Nucl, I-56127 Pisa, Italy. [Bellettini, G.; Crescioli, F.; Dell'Orso, M.; Di Canto, A.; Donati, S.; Latino, G.; Leo, S.; Punzi, G.] Univ Pisa, I-56127 Pisa, Italy. [Barria, P.; Ciocci, M. A.; Garosi, P.; Maestro, P.; Ruffini, F.; Scribano, A.; Sforza, F.; Squillacioti, P.] Univ Siena, I-56127 Pisa, Italy. [Morello, M. J.; Trovato, M.] Scuola Normale Super Pisa, I-56127 Pisa, Italy. [Boudreau, J.; Gibson, K.; Liu, C.; Rahaman, A.; Shepard, P. F.] Univ Pittsburgh, Pittsburgh, PA 15260 USA. [Barnes, V. E.; Bortoletto, D.; Flanagan, G.; Garfinkel, A. F.; Jones, M.; Laasanen, A. T.; Liu, Q.; Potamianos, K.; Ranjan, N.; Ristori, L.; Sedov, A.; Vidal, M.] Purdue Univ, W Lafayette, IN 47907 USA. [Bodek, A.; Budd, H. S.; Chung, Y. S.; de Barbaro, P.; Han, J. Y.; McFarland, K. S.; Sakumoto, W. K.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Demortier, L.; Gallinaro, M.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10065 USA. [Iori, M.; Margaroli, F.; Rescigno, M.] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy. [Iori, M.] Univ Roma La Sapienza, I-00185 Rome, Italy. [Halkiadakis, E.; Hare, D.; Lath, A.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Asaadi, J.; Aurisano, A.; Elagin, A.; Eusebi, R.; Goldin, D.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Lee, E.; Lee, S. W.; McIntyre, P.; Nett, J.; Safonov, A.; Toback, D.] Texas A&M Univ, College Stn, TX 77843 USA. [Casarsa, M.; Cauz, D.; Dorigo, M.; Pagliarone, C.; Pauletta, G.; Penzo, A.; Santi, L.; Zanetti, A.] Ist Nazl Fis Nucl Trieste Udine, I-34100 Trieste, Italy. [Pauletta, G.; Santi, L.] Univ Udine, I-33100 Udine, Italy. [Hara, K.; Kim, S. H.; Kurata, M.; Miyake, H.; Nagai, Y.; Sato, K.; Shimojima, M.; Sudo, Y.; Takemasa, K.; Takeuchi, Y.; Tomura, T.; Ukegawa, F.] Univ Tsukuba, Tsukuba, Ibaraki 305, Japan. [Hare, M.; Napier, A.; Rolli, S.; Sliwa, K.] Tufts Univ, Medford, MA 02155 USA. [Liu, H.; Neu, C.; Oksuzian, I.] Univ Virginia, Charlottesville, VA 22906 USA. [Arisawa, T.; Ebina, K.; Funakoshi, Y.; Kimura, N.; Kondo, K.; Naganoma, J.; Sakurai, Y.; Yorita, K.] Waseda Univ, Tokyo 169, Japan. [Clark, C.; Group, R. C.; Harr, R. F.; Karchin, P. E.; Mattson, M. E.] Wayne State Univ, Detroit, MI 48201 USA. [Bellinger, J.; Carlsmith, D.; Chung, W. H.; Herndon, M.; Pondrom, L.; Ramakrishnan, V.] Univ Wisconsin, Madison, WI 53706 USA. [Auerbach, B.; Husemann, U.; Lockwitz, S.; Loginov, A.; Schmidt, M. P.] Yale Univ, New Haven, CT 06520 USA. RP Aaltonen, T (reprint author), Univ Helsinki, Dept Phys, Div High Energy Phys, FIN-00014 Helsinki, Finland. RI Prokoshin, Fedor/E-2795-2012; Canelli, Florencia/O-9693-2016; Moon, Chang-Seong/J-3619-2014; Scodellaro, Luca/K-9091-2014; Paulini, Manfred/N-7794-2014; Russ, James/P-3092-2014; unalan, zeynep/C-6660-2015; Garcia, Jose /H-6339-2015; ciocci, maria agnese /I-2153-2015; Cavalli-Sforza, Matteo/H-7102-2015; Chiarelli, Giorgio/E-8953-2012; Introzzi, Gianluca/K-2497-2015; Piacentino, Giovanni/K-3269-2015; Gorelov, Igor/J-9010-2015; Ruiz, Alberto/E-4473-2011; Robson, Aidan/G-1087-2011; St.Denis, Richard/C-8997-2012; maestro, paolo/E-3280-2010; manca, giulia/I-9264-2012; Amerio, Silvia/J-4605-2012; Zeng, Yu/C-1438-2013; Annovi, Alberto/G-6028-2012; Ivanov, Andrew/A-7982-2013; Warburton, Andreas/N-8028-2013; Kim, Soo-Bong/B-7061-2014; Lysak, Roman/H-2995-2014; Punzi, Giovanni/J-4947-2012 OI Prokoshin, Fedor/0000-0001-6389-5399; Canelli, Florencia/0000-0001-6361-2117; Moon, Chang-Seong/0000-0001-8229-7829; Scodellaro, Luca/0000-0002-4974-8330; Paulini, Manfred/0000-0002-6714-5787; Russ, James/0000-0001-9856-9155; unalan, zeynep/0000-0003-2570-7611; ciocci, maria agnese /0000-0003-0002-5462; Chiarelli, Giorgio/0000-0001-9851-4816; Introzzi, Gianluca/0000-0002-1314-2580; Piacentino, Giovanni/0000-0001-9884-2924; Gorelov, Igor/0000-0001-5570-0133; Ruiz, Alberto/0000-0002-3639-0368; maestro, paolo/0000-0002-4193-1288; Annovi, Alberto/0000-0002-4649-4398; Ivanov, Andrew/0000-0002-9270-5643; Warburton, Andreas/0000-0002-2298-7315; Punzi, Giovanni/0000-0002-8346-9052 FU U.S. Department of Energy; Italian Istituto Nazionale di Fisica Nucleare; Ministry of Education, Culture, Sports, Science and Technology of Japan; Natural Sciences and Engineering Research Council of Canada; National Science Council of the Republic of China; Swiss National Science Foundation; A. P. Sloan Foundation; Bundesministerium fur Bildung und Forschung, Germany; Korean World Class University, the National Research Foundation of Korea; Science and Technology Facilities Council; Royal Society, UK; Institut National de Physique Nucleaire et Physique des Particules/CNRS; Russian Foundation for Basic Research; Ministerio de Ciencia e Innovacion; Programa Consolider-Ingenio, Spain; Slovak RD Agency; Academy of Finland; Australian Research Council (ARC); National Science Foundation FX We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; the Bundesministerium fur Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacion, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC). NR 31 TC 21 Z9 21 U1 2 U2 20 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD OCT 27 PY 2011 VL 84 IS 7 AR 072004 DI 10.1103/PhysRevD.84.072004 PG 8 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 846HI UT WOS:000296887400001 ER PT J AU Adamson, P Auty, DJ Ayres, DS Backhouse, C Barr, G Betancourt, M Bishai, M Blake, A Bock, GJ Boehnlein, DJ Bogert, D Cao, SV Cavanaugh, S Cherdack, D Childress, S Coelho, JAB Corwin, L Cronin-Hennessy, D Danko, IZ de Jong, JK Devenish, NE Diwan, MV Dorman, M Escobar, CO Evans, J Falk, E Feldman, GJ Frohne, MV Gallagher, HR Gomes, RA Goodman, MC Gouffon, P Graf, N Gran, R Grzelak, K Habig, A Hartnell, J Hatcher, R Himmel, A Holin, A Huang, X Hylen, J Irwin, GM Isvan, Z Jaffe, DE James, C Jensen, D Kafka, T Kasahara, SMS Koizumi, G Kopp, S Kordosky, M Kreymer, A Lang, K Lefeuvre, G Ling, J Litchfield, PJ Loiacono, L Lucas, P Mann, WA Marshak, ML Mathis, M Mayer, N McGowan, AM Mehdiyev, R Meier, JR Messier, MD Michael, DG Miller, WH Mishra, SR Mitchell, J Moore, CD Mualem, L Mufson, S Musser, J Naples, D Nelson, JK Newman, HB Nichol, RJ Nowak, JA Ochoa-Ricoux, JP Oliver, WP Orchanian, M Paley, J Patterson, RB Pawloski, G Pearce, GF Phan-Budd, S Plunkett, RK Qiu, X Ratchford, J Rebel, B Rosenfeld, C Rubin, HA Sanchez, MC Schneps, J Schreckenberger, A Schreiner, P Shanahan, P Sharma, R Sousa, A Tagg, N Talaga, RL Thomas, J Thomson, MA Toner, R Torretta, D Tzanakos, G Urheim, J Vahle, P Viren, B Walding, JJ Weber, A Webb, RC White, C Whitehead, L Wojcicki, SG Yang, T Zwaska, R AF Adamson, P. Auty, D. J. Ayres, D. S. Backhouse, C. Barr, G. Betancourt, M. Bishai, M. Blake, A. Bock, G. J. Boehnlein, D. J. Bogert, D. Cao, S. V. Cavanaugh, S. Cherdack, D. Childress, S. Coelho, J. A. B. Corwin, L. Cronin-Hennessy, D. Danko, I. Z. de Jong, J. K. Devenish, N. E. Diwan, M. V. Dorman, M. Escobar, C. O. Evans, J. Falk, E. Feldman, G. J. Frohne, M. V. Gallagher, H. R. Gomes, R. A. Goodman, M. C. Gouffon, P. Graf, N. Gran, R. Grzelak, K. Habig, A. Hartnell, J. Hatcher, R. Himmel, A. Holin, A. Huang, X. Hylen, J. Irwin, G. M. Isvan, Z. Jaffe, D. E. James, C. Jensen, D. Kafka, T. Kasahara, S. M. S. Koizumi, G. Kopp, S. Kordosky, M. Kreymer, A. Lang, K. Lefeuvre, G. Ling, J. Litchfield, P. J. Loiacono, L. Lucas, P. Mann, W. A. Marshak, M. L. Mathis, M. Mayer, N. McGowan, A. M. Mehdiyev, R. Meier, J. R. Messier, M. D. Michael, D. G. Miller, W. H. Mishra, S. R. Mitchell, J. Moore, C. D. Mualem, L. Mufson, S. Musser, J. Naples, D. Nelson, J. K. Newman, H. B. Nichol, R. J. Nowak, J. A. Ochoa-Ricoux, J. P. Oliver, W. P. Orchanian, M. Paley, J. Patterson, R. B. Pawloski, G. Pearce, G. F. Phan-Budd, S. Plunkett, R. K. Qiu, X. Ratchford, J. Rebel, B. Rosenfeld, C. Rubin, H. A. Sanchez, M. C. Schneps, J. Schreckenberger, A. Schreiner, P. Shanahan, P. Sharma, R. Sousa, A. Tagg, N. Talaga, R. L. Thomas, J. Thomson, M. A. Toner, R. Torretta, D. Tzanakos, G. Urheim, J. Vahle, P. Viren, B. Walding, J. J. Weber, A. Webb, R. C. White, C. Whitehead, L. Wojcicki, S. G. Yang, T. Zwaska, R. TI Improved Search for Muon-Neutrino to Electron-Neutrino Oscillations in MINOS SO PHYSICAL REVIEW LETTERS LA English DT Article ID LEPTON CHARGE AB We report the results of a search for nu(e) appearance in a nu(mu) beam in the MINOS long-baseline neutrino experiment. With an improved analysis and an increased exposure of 8.2 x 10(20) protons on the NuMI target at Fermilab, we find that 2sin(2)(theta(23))sin(2)(2 theta(13)) < 0.12(0.20) at 90% confidence level for delta = 0 and the normal ( inverted) neutrino mass hierarchy, with a best-fit of 2sin(2)(theta(23))sin(2)(2 theta(13)) = 0.041(-0.031)(+0.047)(0.079(-0.053)(+0.071)). The theta(13) 0 hypothesis is disfavored by the MINOS data at the 89% confidence level. C1 [Adamson, P.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Childress, S.; Hatcher, R.; Hylen, J.; James, C.; Jensen, D.; Koizumi, G.; Kreymer, A.; Lucas, P.; Moore, C. D.; Plunkett, R. K.; Rebel, B.; Shanahan, P.; Sharma, R.; Torretta, D.; Zwaska, R.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Ayres, D. S.; Goodman, M. C.; Huang, X.; McGowan, A. M.; Paley, J.; Phan-Budd, S.; Schreiner, P.; Talaga, R. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Tzanakos, G.] Univ Athens, Dept Phys, GR-15771 Athens, Greece. [Bishai, M.; Diwan, M. V.; Jaffe, D. E.; Ling, J.; Viren, B.; Whitehead, L.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Himmel, A.; Michael, D. G.; Mualem, L.; Newman, H. B.; Ochoa-Ricoux, J. P.; Orchanian, M.; Patterson, R. B.] CALTECH, Lauritsen Lab, Pasadena, CA 91125 USA. [Blake, A.; Mitchell, J.; Thomson, M. A.; Toner, R.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Coelho, J. A. B.; Escobar, C. O.] Univ Estadual Campinas, IFGW UNICAMP, BR-13083970 Campinas, SP, Brazil. [Gomes, R. A.] Univ Fed Goias, Inst Fis, BR-74001970 Goiania, Go, Brazil. [Cavanaugh, S.; Feldman, G. J.; Sousa, A.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Frohne, M. V.] Coll Holy Cross, Notre Dame, IN 46556 USA. [Graf, N.; Rubin, H. A.; White, C.] IIT, Dept Phys, Chicago, IL 60616 USA. [Corwin, L.; Mayer, N.; Messier, M. D.; Mufson, S.; Musser, J.; Paley, J.; Urheim, J.] Indiana Univ, Bloomington, IN 47405 USA. [Sanchez, M. C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. [Dorman, M.; Evans, J.; Holin, A.; Nichol, R. J.; Thomas, J.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Betancourt, M.; Cronin-Hennessy, D.; Kasahara, S. M. S.; Litchfield, P. J.; Marshak, M. L.; Meier, J. R.; Miller, W. H.; Nowak, J. A.; Schreckenberger, A.] Univ Minnesota, Minneapolis, MN 55455 USA. [Gran, R.; Habig, A.] Univ Minnesota, Dept Phys, Duluth, MN 55812 USA. [Tagg, N.] Otterbein Coll, Westerville, OH 43081 USA. [Backhouse, C.; Barr, G.; de Jong, J. K.; Weber, A.] Univ Oxford, Subdept Particle Phys, Oxford OX1 3RH, England. [Danko, I. Z.; Isvan, Z.; Naples, D.; Sanchez, M. C.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Litchfield, P. J.; Pearce, G. F.; Weber, A.] Sci & Technol Facil Council, Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Gouffon, P.] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil. [Ling, J.; Mishra, S. R.; Rosenfeld, C.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Irwin, G. M.; Pawloski, G.; Qiu, X.; Wojcicki, S. G.; Yang, T.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Auty, D. J.; Devenish, N. E.; Falk, E.; Hartnell, J.; Lefeuvre, G.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Webb, R. C.] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA. [Cao, S. V.; Kopp, S.; Lang, K.; Loiacono, L.; Mehdiyev, R.; Ratchford, J.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Cherdack, D.; Gallagher, H. R.; Kafka, T.; Mann, W. A.; Oliver, W. P.; Schneps, J.] Tufts Univ, Dept Phys, Medford, MA 02155 USA. [Grzelak, K.] Univ Warsaw, Dept Phys, PL-00681 Warsaw, Poland. [Kordosky, M.; Mathis, M.; Nelson, J. K.; Vahle, P.; Walding, J. J.] Coll William & Mary, Dept Phys, Williamsburg, VA 23187 USA. RP Adamson, P (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. RI Gouffon, Philippe/I-4549-2012; Nowak, Jaroslaw/P-2502-2016; Ling, Jiajie/I-9173-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Qiu, Xinjie/C-6164-2012; Gomes, Ricardo/B-6899-2008; Coelho, Joao/D-3546-2013; Evans, Justin/P-4981-2014; OI Gouffon, Philippe/0000-0001-7511-4115; Nowak, Jaroslaw/0000-0001-8637-5433; Ling, Jiajie/0000-0003-2982-0670; Corwin, Luke/0000-0001-7143-3821; Hartnell, Jeffrey/0000-0002-1744-7955; Gomes, Ricardo/0000-0003-0278-4876; Evans, Justin/0000-0003-4697-3337; Cherdack, Daniel/0000-0002-3829-728X; Weber, Alfons/0000-0002-8222-6681; Ochoa-Ricoux, Juan Pedro/0000-0001-7376-5555; Cao, Son/0000-0002-9046-5324 FU U.S. DOE; U.K. STFC; U.S. NSF; State and University of Minnesota; University of Athens, Greece; Brazil's FAPESP; CNPq; CAPES FX This work was supported by the U.S. DOE; the U.K. STFC; the U.S. NSF; the State and University of Minnesota; the University of Athens, Greece; and Brazil's FAPESP, CNPq, and CAPES. We are grateful to the Minnesota Department of Natural Resources, the crew of the Soudan Underground Laboratory, and the staff of Fermilab for their contributions to this effort. NR 32 TC 459 Z9 459 U1 1 U2 27 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 27 PY 2011 VL 107 IS 18 AR 181802 DI 10.1103/PhysRevLett.107.181802 PG 6 WC Physics, Multidisciplinary SC Physics GA 847WV UT WOS:000297004200009 ER PT J AU Fujii, J Sperl, M Ueda, S Kobayashi, K Yamashita, Y Kobata, M Torelli, P Borgatti, F Utz, M Fadley, CS Gray, AX Monaco, G Back, CH van der Laan, G Panaccione, G AF Fujii, J. Sperl, M. Ueda, S. Kobayashi, K. Yamashita, Y. Kobata, M. Torelli, P. Borgatti, F. Utz, M. Fadley, C. S. Gray, A. X. Monaco, G. Back, C. H. van der Laan, G. Panaccione, G. TI Identification of Different Electron Screening Behavior Between the Bulk and Surface of (Ga,Mn)As SO PHYSICAL REVIEW LETTERS LA English DT Article ID FERROMAGNETIC SEMICONDUCTOR; PHOTOEMISSION; MANIPULATION; SPINTRONICS; MN)AS; (GA AB We report x-ray photoemission spectroscopy results on (Ga,Mn)As films as a function of both temperature and Mn doping. Analysis of Mn 2p core level spectra reveals the presence of a distinct electronic screening channel in the bulk, hitherto undetected in more surface sensitive analysis. Comparison with model calculations identifies the character of the Mn 3d electronic states and clarifies the role, and the difference between surface and bulk, of hybridization in mediating the ferromagnetic coupling in (Ga,Mn)As. C1 [Fujii, J.; Torelli, P.; Panaccione, G.] CNR Ist Officina Mat IOM, Lab TASC, I-34149 Trieste, Italy. [Sperl, M.; Utz, M.; Back, C. H.] Univ Regensburg, Inst Expt Phys, D-93040 Regensburg, Germany. [Ueda, S.; Kobayashi, K.; Yamashita, Y.; Kobata, M.] Natl Inst Mat Sci, NIMS Beamline Stn Spring 8, Sayo, Hyogo 6795148, Japan. [Borgatti, F.] CNR Ist Studio Mat Nanostrutturati ISMN, I-40129 Bologna, Italy. [Fadley, C. S.; Gray, A. X.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Fadley, C. S.; Gray, A. X.] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Monaco, G.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [van der Laan, G.] Diamond Light Source, Didcot OX11 0DE, Oxon, England. RP Fujii, J (reprint author), CNR Ist Officina Mat IOM, Lab TASC, SS 14,Km 163-5, I-34149 Trieste, Italy. RI Back, Christian/A-8969-2012; Gray, Alexander/F-9267-2011; MSD, Nanomag/F-6438-2012; UEDA, Shigenori/H-2991-2011; borgatti, francesco/H-9777-2014; van der Laan, Gerrit/Q-1662-2015; YAMASHITA, Yoshiyuki/H-2704-2011; OI Back, Christian/0000-0003-3840-0993; borgatti, francesco/0000-0003-4659-4329; van der Laan, Gerrit/0000-0001-6852-2495; Jun, Fujii/0000-0003-3208-802X; TORELLI, PIERO/0000-0001-9300-9685 FU MEXT, Japan; DFG [SFB 689]; U.S. Department of Energy [DE-AC02-05CH11231] FX The authors are grateful to HiSOR, Hiroshima Univ. and JAEA/SPring-8 for the development of HAXPES at BL15XU of SPring-8. The experiments at BL15XU were performed under the approval of NIMS Beamline Station (Proposal No. 2010B4900) and partially supported by Nanotechnology Network Project, MEXT, Japan. Part of this research has been supported by the DFG through Grant No. SFB 689. Two of us (A. X. G. and C. S. F.) also acknowledge the support of the U.S. Department of Energy (Contract No. DE-AC02-05CH11231). NR 32 TC 15 Z9 15 U1 1 U2 14 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 27 PY 2011 VL 107 IS 18 AR 187203 DI 10.1103/PhysRevLett.107.187203 PG 4 WC Physics, Multidisciplinary SC Physics GA 847WV UT WOS:000297004200024 PM 22107669 ER PT J AU Stock, C Sokolov, DA Bourges, P Tobash, PH Gofryk, K Ronning, F Bauer, ED Rule, KC Huxley, AD AF Stock, C. Sokolov, D. A. Bourges, P. Tobash, P. H. Gofryk, K. Ronning, F. Bauer, E. D. Rule, K. C. Huxley, A. D. TI Anisotropic Critical Magnetic Fluctuations in the Ferromagnetic Superconductor UCoGe SO PHYSICAL REVIEW LETTERS LA English DT Article ID URHGE; COEXISTENCE; STATE; UGE2 AB We report neutron scattering measurements of critical magnetic excitations in the weakly ferromagnetic superconductor UCoGe. The strong non-Landau damping of the excitations we observe, although unusual, has been found in another related ferromagnet, UGe2 at zero pressure. However, we also find that there is a significant anisotropy of the magnetic correlation length in UCoGe that contrasts with an almost isotropic length for UGe2. The values of the magnetic correlation length and damping are found to be compatible with superconductivity on small Fermi-surface pockets. The anisotropy may be important to explain why UCoGe is a superconductor at zero pressure while UGe2 is not. C1 [Stock, C.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Stock, C.] Indiana Univ, Bloomington, IN 47404 USA. [Sokolov, D. A.; Huxley, A. D.] Univ Edinburgh, Sch Phys, Edinburgh EH9 3JZ, Midlothian, Scotland. [Sokolov, D. A.; Huxley, A. D.] Univ Edinburgh, CSEC, Edinburgh EH9 3JZ, Midlothian, Scotland. [Bourges, P.] CEA, Lab Leon Brillouin, CNRS, UMR12, F-91191 Gif Sur Yvette, France. [Tobash, P. H.; Gofryk, K.; Ronning, F.; Bauer, E. D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Rule, K. C.] Helmholtz Zentrum Berlin, D-14109 Berlin, Germany. RP Stock, C (reprint author), NIST, Ctr Neutron Res, 100 Bur Dr, Gaithersburg, MD 20899 USA. RI Gofryk, Krzysztof/F-8755-2014; Sokolov, D/G-7755-2011; OI Bauer, Eric/0000-0003-0017-1937; Gofryk, Krzysztof/0000-0002-8681-6857; Ronning, Filip/0000-0002-2679-7957 FU Royal Society; EPSRC; SUPA; U.S. DOE, OBES, Division of Materials Sciences and Engineering; LANL; NSF [DMR-0944772] FX Support from the Royal Society (A. H.), EPSRC (A. H., D. S.), and SUPA (C. S.) is gratefully acknowledged. Work at Los Alamos National Laboratory was performed under the auspices of the U.S. DOE, OBES, Division of Materials Sciences and Engineering, and funded in part by the LANL LDRD program. Work on MACS was partly supported by the NSF under agreement No. DMR-0944772. NR 23 TC 16 Z9 16 U1 1 U2 24 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD OCT 27 PY 2011 VL 107 IS 18 AR 187202 DI 10.1103/PhysRevLett.107.187202 PG 5 WC Physics, Multidisciplinary SC Physics GA 847WV UT WOS:000297004200023 PM 22107668 ER PT J AU Herranz, T Deng, XY Cabot, A Liu, Z Salmeron, M AF Herranz, Tirma Deng, Xingyi Cabot, Andreu Liu, Zhi Salmeron, Miguel TI In situ XPS study of the adsorption and reactions of NO and O-2 on gold nanoparticles deposited on TiO2 and SiO2 SO JOURNAL OF CATALYSIS LA English DT Article DE Gold; Titanium oxide; Ambient pressure photoelectron spectroscopy; In situ characterization; Band bending; Model catalysts; Nitric oxide ID PRESSURE PHOTOELECTRON-SPECTROSCOPY; NITRIC-OXIDE; AMBIENT-PRESSURE; CARBON-MONOXIDE; CO OXIDATION; PLATINUM NANOPARTICLES; ROOM-TEMPERATURE; OXYGEN; CATALYSTS; SURFACE AB Ambient pressure photoelectron spectroscopy (APPES) has been used to study the adsorption of nitric oxide (NO) and molecular oxygen (O-2) over gold-based model catalysts consisting of mono-dispersed gold nanoparticles with different diameters (2-5 nm) and oxide supports (including polycrystalline silica and titania thin films). APPES is an in situ technique that makes possible to monitor via XPS chemical changes occurring on the catalyst surface and to identify adsorbed species under reaction conditions. In our experiments, no changes were observed on the Au/SiO2 samples during exposure to 0.5 Torr of NO, while adsorbed NO and several N-containing species were detected on Au/TiO2 model catalysts under the same conditions. In addition, shifts in the Ti3p and O 1s peaks in TiO2 were observed relative to the Au 4f peak. Similar behavior, although to a lesser extent, was observed on Au/TiO2 samples when O-2 was used. In both cases, the shifts of the Ti3p and O 1s peaks could be attributed to band bending effects on the TiO2 substrate caused by chemisorption of the gases. (C) 2011 Elsevier Inc. All rights reserved. C1 [Salmeron, Miguel] Univ Calif Berkeley, Mat Sci & Engn Dept, Berkeley, CA 94720 USA. [Herranz, Tirma; Deng, Xingyi; Cabot, Andreu; Salmeron, Miguel] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA USA. [Liu, Zhi] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA. RP Salmeron, M (reprint author), Univ Calif Berkeley, Mat Sci & Engn Dept, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov RI Herranz, Tirma/A-8656-2008; andreu, cabot/B-5683-2014; Liu, Zhi/B-3642-2009; OI Liu, Zhi/0000-0002-8973-6561; Deng, Xingyi/0000-0001-9109-1443; cabot, andreu /0000-0002-7533-3251 FU Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, under the Department of Energy [DE-AC02-05CH11231]; Ramon Areces foundation from Spain FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, under the Department of Energy Contract No. DE-AC02-05CH11231. T.H. acknowledges the Ramon Areces foundation from Spain for financial support. NR 43 TC 20 Z9 20 U1 12 U2 112 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD OCT 27 PY 2011 VL 283 IS 2 BP 119 EP 123 DI 10.1016/j.jcat.2011.06.022 PG 5 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 843NK UT WOS:000296678500001 ER PT J AU Smith, DM Dwyer, JR Hazelton, BJ Grefenstette, BW Martinez-McKinney, GFM Zhang, ZY Lowell, AW Kelley, NA Splitt, ME Lazarus, SM Ulrich, W Schaal, M Saleh, ZH Cramer, E Rassoul, H Cummer, SA Lu, G Shao, XM Ho, C Hamlin, T Blakeslee, RJ Heckman, S AF Smith, D. M. Dwyer, J. R. Hazelton, B. J. Grefenstette, B. W. Martinez-McKinney, G. F. M. Zhang, Z. Y. Lowell, A. W. Kelley, N. A. Splitt, M. E. Lazarus, S. M. Ulrich, W. Schaal, M. Saleh, Z. H. Cramer, E. Rassoul, H. Cummer, S. A. Lu, G. Shao, X. -M. Ho, C. Hamlin, T. Blakeslee, R. J. Heckman, S. TI A terrestrial gamma ray flash observed from an aircraft SO JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES LA English DT Article ID X-RAYS; THUNDERSTORM AB On 21 August 2009, the Airborne Detector for Energetic Lightning Emissions (ADELE), an array of six gamma-ray detectors, detected a brief burst of gamma rays while flying aboard a Gulfstream V jet near two active thunderstorm cells. The duration and spectral characteristics of the event are consistent with the terrestrial gamma ray flashes (TGFs) seen by instruments in low Earth orbit. A long-duration, complex +IC flash was taking place in the nearer cell at the same time, at a distance of similar to 10 km from the plane. The sferics that are probably associated with this flash extended over 54 ms and included several ULF pulses corresponding to charge moment changes of up to 30 C km, this value being in the lower half of the range of sferics associated with TGFs seen from space. Monte Carlo simulations of gamma ray propagation in the Earth's atmosphere show that a TGF of normal intensity would, at this distance, have produced a gamma ray signal in ADELE of approximately the size and spectrum that was actually observed. We conclude that this was the first detection of a TGF from an aircraft. We show that because of the distance, ADELE's directional and spectral capabilities could not strongly constrain the source altitude of the TGF but that such constraints would be possible for TGFs detected at closer range. C1 [Smith, D. M.; Martinez-McKinney, G. F. M.; Zhang, Z. Y.; Kelley, N. A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. [Smith, D. M.; Lowell, A. W.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Dwyer, J. R.; Schaal, M.; Cramer, E.; Rassoul, H.] Florida Inst Technol, Dept Phys & Space Sci, Melbourne, FL 32901 USA. [Hazelton, B. J.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Grefenstette, B. W.] CALTECH, Space Radiat Lab, Pasadena, CA 91125 USA. [Splitt, M. E.; Lazarus, S. M.] Florida Inst Technol, Dept Marine & Environm Syst, Melbourne, FL 32901 USA. [Ulrich, W.] Natl Weather Serv, Key West, FL USA. [Saleh, Z. H.] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10021 USA. [Cummer, S. A.; Lu, G.] Duke Univ, Dept Elect & Comp Engn, Durham, NC USA. [Shao, X. -M.; Ho, C.; Hamlin, T.] Los Alamos Natl Lab, Los Alamos, NM USA. [Blakeslee, R. J.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35805 USA. [Heckman, S.] AWS Convergence Technol Inc, Germantown, MD USA. RP Smith, DM (reprint author), Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Dept Phys, Santa Cruz, CA 95064 USA. RI Lu, Gaopeng/D-9011-2012; Cummer, Steven/A-6118-2008; OI Cummer, Steven/0000-0002-0002-0613; Splitt, Michael/0000-0002-7690-5100; Rassoul, Hamid Kyan Sam/0000-0003-0681-7276; Lazarus, Steven/0000-0002-5918-1059 FU NSF [ATM-0619941, ATM-0846609] FX We thank Allen Schanot, the managing scientist of our field campaign from NCAR/EOL; the other NCAR scientists who filled this role earlier or helped us with GV data, Pavel Romashkin, Jorgen Jensen, and Jeff Stith; and the EOL pilots, engineers, and technicians who provided exemplary support. ADELE's construction was funded by NSF major research instrumentation grant ATM-0619941. Our simulation work was supported by NSF grant ATM-0846609. This work includes publicly available data from the KJAX NEXRAD radar of the National Weather Service. NR 31 TC 16 Z9 16 U1 0 U2 2 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-897X J9 J GEOPHYS RES-ATMOS JI J. Geophys. Res.-Atmos. PD OCT 27 PY 2011 VL 116 AR D20124 DI 10.1029/2011JD016252 PG 10 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 839AK UT WOS:000296336500004 ER PT J AU Shao, N Sun, XG Dai, S Jiang, DE AF Shao, Nan Sun, Xiao-Guang Dai, Sheng Jiang, De-en TI Electrochemical Windows of Sulfone-Based Electrolytes for High-Voltage Li-Ion Batteries SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID RECHARGEABLE LITHIUM BATTERIES; OXIDATION POTENTIALS; ANODIC STABILITY; DENSITY; SOLVENT; LICOPO4 AB Further development of high-voltage lithium-ion batteries requires electrolytes with electrochemical windows greater than 5 V. Sulfone-based electrolytes are promising for such a purpose. Here we compute the electrochemical windows for experimentally tested sulfone electrolytes by different levels of theory in combination with various solvation models. The MP2 method combined with the polarizable continuum model is shown to be the most accurate method to predict oxidation potentials of sulfone-based electrolytes with mean deviation less than 0.29 V. Mulliken charge analysis shows that the oxidation happens on the sulfone group for ethylmethyl sulfone and tetramethylene sulfone, and on the ether group for ether functionalized sulfones. Large electrochemical windows of sulfone-based electrolytes are mainly contributed by the sulfone group in the molecules which helps lower the HOMO level. This study can help understand the voltage limits imposed by the sulfone-based electrolytes and aid in designing new electrolytes with greater electrochemical windows. C1 [Shao, Nan; Sun, Xiao-Guang; Dai, Sheng; Jiang, De-en] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37966 USA. RP Jiang, DE (reprint author), Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA. EM jiangd@ornl.gov RI Jiang, De-en/D-9529-2011; Dai, Sheng/K-8411-2015 OI Jiang, De-en/0000-0001-5167-0731; Dai, Sheng/0000-0002-8046-3931 FU Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 38 TC 50 Z9 53 U1 8 U2 79 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD OCT 27 PY 2011 VL 115 IS 42 BP 12120 EP 12125 DI 10.1021/jp204401t PG 6 WC Chemistry, Physical SC Chemistry GA 837LL UT WOS:000296204800018 PM 21919491 ER PT J AU Cirigliano, V Reddy, S Sharma, R AF Cirigliano, Vincenzo Reddy, Sanjay Sharma, Rishi TI Low-energy theory for superfluid and solid matter and its application to the neutron star crust SO PHYSICAL REVIEW C LA English DT Article ID EFFECTIVE-MASS; ENTRAINMENT COEFFICIENT; CONDUCTION NEUTRONS; ELASTIC-CONSTANTS; SUPERCONDUCTIVITY; LAGRANGIANS; HELIUM; MODELS; PHASE; FIELD AB We formulate a low-energy effective theory describing phases of matter that are both solid and superfluid. These systems simultaneously break translational symmetry and the phase symmetry associated with particle number. The symmetries restrict the combinations of terms that can appear in the effective action and the lowest order terms featuring equal number of derivatives and Goldstone fields are completely specified by the thermodynamic free energy or, equivalently, by the long-wavelength limit of static correlation functions in the ground state. We show that the underlying interaction between particles that constitute the lattice and the superfluid gives rise to entrainment, and mixing between the Goldstone modes. As a concrete example we discuss the low-energy theory for the inner crust of a neutron star, where a lattice of ionized nuclei coexists with a neutron superfluid. C1 [Cirigliano, Vincenzo; Reddy, Sanjay; Sharma, Rishi] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Reddy, Sanjay] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA. [Sharma, Rishi] TRIUMF, Theory Grp, Vancouver, BC V6T 2A3, Canada. RP Cirigliano, V (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM cirigliano@lanl.gov; sareddy@uw.edu; rishi@triumf.ca OI Cirigliano, Vincenzo/0000-0002-9056-754X FU US Department of Energy (DOE) [DE-AC52-06NA25396 (LANL)]; DOE FX We thank Tanmoy Bhattacharya, Nicolas Chamel, Michael Forbes, Michael Graesser, Emil Mottola, Chris Pethick, and Dam Son for useful discussions at various stages of this work. We thank Krishna Rajagopal and Massimo Mannarelli for comments and suggestions on the manuscript. This work was supported by the US Department of Energy (DOE) Grant No. DE-AC52-06NA25396 (LANL) and the DOE topical collaboration to study neutrinos and nucleosynthesis in hot and dense matter. NR 45 TC 17 Z9 17 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD OCT 27 PY 2011 VL 84 IS 4 AR 045809 DI 10.1103/PhysRevC.84.045809 PG 13 WC Physics, Nuclear SC Physics GA 841OD UT WOS:000296520800001 ER PT J AU Fox, DM Harris, RH Bellayer, S Gilman, JW Gelfer, MY Hsaio, BS Maupin, PH Trulove, PC De Long, HC AF Fox, Douglas M. Harris, Richard H., Jr. Bellayer, Severine Gilman, Jeffrey W. Gelfer, Mikhail Y. Hsaio, Benjamin S. Maupin, Paul H. Trulove, Paul C. De Long, Hugh C. TI The pillaring effect of the 1,2-dimethyl-3(benzyl ethyl iso-butyl POSS) imidazolium cation in polymer/montmorillonite nanocomposites SO POLYMER LA English DT Article DE POSS; Montmorillonite; Nanocomposites ID POLYHEDRAL OLIGOMERIC SILSESQUIOXANE; POLYMER/LAYERED SILICATE NANOCOMPOSITES; POLYMER-CLAY NANOCOMPOSITES; LAYERED-SILICATE; THERMAL-PROPERTIES; POLY(NORBORNYL-POSS) COPOLYMERS; MODIFIED MONTMORILLONITE; TREATED MONTMORILLONITE; PS NANOCOMPOSITES; FIRE RETARDANTS AB A polyhedral oligomeric silsesquioxane (ROSS) tethered imidazolium surfactant was used to exchange montmorillonite for the preparation of polymer nanocomposites in polystyrene, poly(ethylene-co-vinyl acetate), and polyamide-6 using a melt blending technique. Simultaneous temperature resolved small angle X-ray scattering and wide angle X-ray diffraction was used to monitor the surfactant stability and phase behavior of the polyamide-6 nanocomposites. Good thermal stability of the surfactant was in agreement with thermogravimetric analysis. Transmission electron microscopy revealed a mixed inter-calated/exfoliated structure, with the presence of small tactoids exhibiting gallery spacings greater than 3.8 nm in all three polymers. Fluorescently tagged organically exchanged montomorillonite was used to assess the quality of nanoparticle dispersion. Exchanging the montmorillonite with lower loadings of the POSS surfactant slightly increased the size of clay tactoids, but did not significantly alter the gallery spacing or overall dispersion. The results suggest that the bulky and rigid structure of POSS, as well as its tendency to aggregate into ordered crystals, form a bilayer structure in the clay galleries and prevent montmorillonite from completely exfoliating, even in polyamide-6. (C) 2011 Elsevier Ltd. All rights reserved. C1 [Fox, Douglas M.] American Univ, Dept Chem, Washington, DC 20016 USA. [Fox, Douglas M.; Harris, Richard H., Jr.; Bellayer, Severine; Maupin, Paul H.] NIST, Fire Res Div, Engn Lab, Gaithersburg, MD 20899 USA. [Gelfer, Mikhail Y.; Hsaio, Benjamin S.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Gelfer, Mikhail Y.; Hsaio, Benjamin S.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Maupin, Paul H.] US DOE, Off Basic Energy Sci, Off Sci, Washington, DC 20585 USA. [Trulove, Paul C.] USN Acad, Dept Chem, Annapolis, MD 21402 USA. [De Long, Hugh C.] AF Off Sci Res, Math Informat & Life Sci Directorate, Arlington, VA 22203 USA. [Gilman, Jeffrey W.] NIST, Div Polymers, Mat Measurement Lab, Gaithersburg, MD 20899 USA. RP Fox, DM (reprint author), American Univ, Dept Chem, Washington, DC 20016 USA. EM dfox@american.edu; jeffrey.gilman@nist.gov FU U.S. Naval Academy; National Research Council; National Institute of Standards and Technology; U.S. Air Force Office of Scientific Research; Air Force Office of Scientific Research [F1ATA00236G002, F1ATA000496G002, FA9550-10-1-0323] FX The authors wish to thank the U.S. Naval Academy, the National Research Council, the National Institute of Standards and Technology, and the U.S. Air Force Office of Scientific Research for funding and facilities while conducting this research. This material is based in part upon work supported by the Air Force Office of Scientific Research under Award No. F1ATA00236G002, Award No. F1ATA000496G002, and Award No. FA9550-10-1-0323. NR 64 TC 7 Z9 7 U1 0 U2 28 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0032-3861 J9 POLYMER JI Polymer PD OCT 27 PY 2011 VL 52 IS 23 BP 5335 EP 5343 DI 10.1016/j.polymer.2011.09.016 PG 9 WC Polymer Science SC Polymer Science GA 838QK UT WOS:000296307100014 ER PT J AU Liemohn, MW De Zeeuw, DL Ilie, R Ganushkina, NY AF Liemohn, Michael W. De Zeeuw, Darren L. Ilie, Raluca Ganushkina, Natalia Y. TI Deciphering magnetospheric cross-field currents SO GEOPHYSICAL RESEARCH LETTERS LA English DT Article ID RING CURRENT; MAGNETIC-FIELD; INNER MAGNETOSPHERE; TAIL CURRENT; CURRENT SYSTEMS; EARTHS MAGNETOSPHERE; STORMS; MODEL; EVENTS; SHEET AB A single near-tail magnetic field line can be part of a variety of cross-field current systems, making the interpretation of such currents difficult. It is shown that global, coupled-model simulation results from the 22 October 1999 storm include a field line crossing downtail at L = 8 during the main phase that contains partial ring current, symmetric ring current, and tail current simultaneously. Such field lines with multiple currents are common in the near-Earth tail. Another time from the same event showed two closely-spaced field lines (L = 6.0 and 6.5) with completely different current systems on them (one entirely symmetric ring current and the other entirely tail current). It is shown that, for this storm from this simulation, the tail current inner edge systematically shifts inward then outward during the storm main phase and that most of the Dst perturbation is from the ring current (both partial and symmetric). Caution is advised when analyzing observational or numerical cross-field currents and when making conclusions about which type of current system dominates the distortion of the near-Earth magnetosphere. Citation: Liemohn, M. W., D. L. De Zeeuw, R. Ilie, and N. Y. Ganushkina (2011), Deciphering magnetospheric cross-field currents, Geophys. Res. Lett., 38, L20106, doi: 10.1029/2011GL049611. C1 [Liemohn, Michael W.; De Zeeuw, Darren L.; Ganushkina, Natalia Y.] Univ Michigan, Dept Atmospher Ocean & Space Sci, Ann Arbor, MI 48109 USA. [Ilie, Raluca] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Ganushkina, Natalia Y.] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland. RP Liemohn, MW (reprint author), Univ Michigan, Dept Atmospher Ocean & Space Sci, 2455 Hayward St, Ann Arbor, MI 48109 USA. EM liemohn@umich.edu RI De Zeeuw, Darren/F-3667-2011; Liemohn, Michael/H-8703-2012; Ilie, Raluca/A-9291-2013; Ganushkina, Natalia/K-6314-2013 OI Liemohn, Michael/0000-0002-7039-2631; FU US government; NASA; NSF; Academy of Finland FX The authors would like to thank the US government for sponsoring this research, in particular NASA and NSF through various research grants. Support for NYG was provided by both Finnish and US sponsors, including the Academy of Finland. NR 51 TC 13 Z9 13 U1 1 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0094-8276 J9 GEOPHYS RES LETT JI Geophys. Res. Lett. PD OCT 27 PY 2011 VL 38 AR L20106 DI 10.1029/2011GL049611 PG 5 WC Geosciences, Multidisciplinary SC Geology GA 839CZ UT WOS:000296343700005 ER PT J AU Cook, AR Sreearunothai, P Asaoka, S Miller, JR AF Cook, Andrew R. Sreearunothai, Paiboon Asaoka, Sadayuki Miller, John R. TI Sudden, "Step" Electron Capture by Conjugated Polymers SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID PICOSECOND PULSE-RADIOLYSIS; DIFFUSION-LIMITED REACTIONS; TO-SOLVENT DYNAMICS; SOLVATED ELECTRONS; CHARGE-TRANSFER; REACTIVE SPHERES; RADICAL-ANIONS; TETRAHYDROFURAN; RECOMBINATION; RATES AB Data showing significant time-resolution-limited "step" capture of electrons following radiolysis by 7 - 10 ps electron pulses in a series of different length and different concentration conjugated polyfluorene polymers in tetrahydrofuran (THF) are presented. At the highest concentration, similar to 48 mM in repeat units for lengths from 20 to 133 fluorenes, similar to 30% of the electrons formed during pulse radiolysis were captured in the step, with a constant efficiency per repeat unit. Step capture per repeat unit (q = 6.9 M-1) is 60% of the presolvated electron capture efficiency previously reported for biphenyl in THF, giving capture per polymer molecule 12-80 times larger than that for biphenyl at the same concentration. This increase in capture efficiency is large compared to the rate constant per repeat unit for diffusion-limited electron attachment to the same molecules, which is 13% of that of a single unit of fluorene. Plausible mechanisms of this fast capture are explored. It is shown that both capture of quasi-free and localized presolvated electrons can adequately explain the observations. The large yield of radical anions at low concentration of polyfluorene enables observation of subsequent chemistry on the picosecond time scale in these systems, which would otherwise been limited by diffusional attachment to the nanosecond regime. C1 [Cook, Andrew R.; Sreearunothai, Paiboon; Miller, John R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11793 USA. [Sreearunothai, Paiboon] Thammasat Univ, Sirindhorn Int Inst Technol, Pathum Thai 12121, Thailand. [Asaoka, Sadayuki] Tokyo Inst Technol, Chem Resources Lab, Yokohama, Kanagawa 2268503, Japan. RP Cook, AR (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11793 USA. EM acook@bnl.gov OI Cook, Andrew/0000-0001-6633-3447 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-AC02-98CH10886] FX This work, and use of the LEAF Facility of the BNL Accelerator Center for Energy Research, was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences under Contract DE-AC02-98CH10886. NR 59 TC 3 Z9 3 U1 3 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 27 PY 2011 VL 115 IS 42 BP 11615 EP 11623 DI 10.1021/jp205790k PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 837LJ UT WOS:000296204500017 PM 21894930 ER PT J AU Davidson, AJ Chellappa, RS Dattelbaum, DM Yoo, CS AF Davidson, Alistair J. Chellappa, Raja S. Dattelbaum, Dana M. Yoo, Choong-Shik TI Pressure Induced Isostructural Metastable Phase Transition of Ammonium Nitrate SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID CRYSTAL-STRUCTURE; STATE AB The energetic material ammonium nitrate (AN, NH4NO3) has been studied under both hydrostatic and nonhydrostatic conditions using diamond anvil cells combined with micro-Raman spectroscopy and synchrotron X-ray powder diffraction. The refined powder X-ray data indicates that under hydrostatic conditions AN-IV (orthorhombic, Pmmn) is stable to above 40 GPa. In one nonhydrostatic compression experiment a volume collapse was observed, suggesting an isostructural phase transition to a "metastable" phase IV' between 17 and 28 GPa. The structures of phase IV and IV are similar with the subtle difference in the hydrogen-bonding network; that is, a noticeably shorter NI center dot center dot center dot O1 distance seen in phase IV. This hydrogen bond has a significant component along the b-axis, which proves to be the most compressible until cell axis over the entire pressure range. It is likely that the shear sties Of the nonhydrostatic experiment drives the phase IV-to-IV' transition to occur. We compare the present isotherms of phase IV and IV' in both static and nonhydrostatic conditions with the previously obtained Hugoniot and find that the nonhydrostatic isotherm approximately matches the Hugoniot. On the basis of this comparison, we conjecture that a chemical reaction or phase transition may occur in AN under dynamic pressure conditions at 22 GPa. C1 [Davidson, Alistair J.; Yoo, Choong-Shik] Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA. [Davidson, Alistair J.; Yoo, Choong-Shik] Washington State Univ, Dept Chem, Pullman, WA 99164 USA. [Chellappa, Raja S.; Dattelbaum, Dana M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Yoo, CS (reprint author), Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA. EM csyoo@wsu.edu FU U.S. Department of Homeland Security [2008-ST-061-ED0001]; NSF-DMR [0854618] FX We thank the CDAC for the provision of X-ray beamtime 16 BDM and 16 IDB, and Dmitry Popov and Stas Sinogeikin for their assistance during the experiments. The present study has been supported by the U.S. Department of Homeland Security under Award Number 2008-ST-061-ED0001 and NSF-DMR (Grant No. 0854618). The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. NR 30 TC 14 Z9 14 U1 2 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD OCT 27 PY 2011 VL 115 IS 42 BP 11889 EP 11896 DI 10.1021/jp207754z PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 837LJ UT WOS:000296204500047 ER EF