FN Thomson Reuters Web of Science™ VR 1.0 PT S AU Grace, CR Denes, P Gnani, D von der Lippe, H Walder, JP AF Grace, Carl R. Denes, Peter Gnani, Dario von der Lippe, Henrik Walder, Jean-Pierre BE Yu, B TI Code-Density Calibration of Nyquist-Rate Analog-to-Digital Converters SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc ID ADC AB An analog-to-digital converter (ADC) calibration algorithm based on measuring and correcting the code-density histogram of the converter under calibration is presented. The algorithm constructs a histogram of the ADC response to a linear ramp and stores the calculated correction coefficients in a lookup table. By leveraging circuit density improvements in deep submicron CMOS technology, the algorithm is able to provide substantive improvements to ADC static linearity performance at low silicon cost. The algorithm is applied to a 12-stage prototype Pipelined ADC implemented in 65 nm CMOS technology and is able to improve measured integral nonlinearity from -5.31/1.02 least significant bit (LSB) to -0.24/0.31 LSB at a 10-bit level, an improvement of over three effective bits. C1 [Grace, Carl R.; Denes, Peter; Gnani, Dario; von der Lippe, Henrik; Walder, Jean-Pierre] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Grace, CR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM crgrace@lbl.gov NR 15 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 627 EP 632 PG 6 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814200136 ER PT S AU De Geronimo, G Fried, J Li, SR Metcalfe, J Nambiar, N Vernon, E Polychronakos, V AF De Geronimo, Gianluigi Fried, Jack Li, Shaorui Metcalfe, Jessica Nambiar, Neena Vernon, Emerson Polychronakos, Venetios BE Yu, B TI VMM1-An ASIC for Micropattem Detectors SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc DE ASIC; sub-hysteresis; DDF; ToT; MICROMEGS; TGC; ATLAS; muon; noise AB We present VMM1, the first prototype of a family of front-end ASICs designed for the ATLAS muon upgrade. The ASIC will operate with MICROMEGAS and TGC detectors providing charge and timing measurements along with a number of features including sub-hysteresis discrimination, address of the first event in real time, and digital output per channel for Time-over-Threshold measurements. The shaper, designed using the concept of Delayed Dissipative Feedback (DDF), allows analog dynamic ranges in excess of 10,000. With a capacitance of 200 pF and a nominal peaking time of 25 ns it can provide charge and timing resolution below 1 fC and Ins respectively, for input charges up to 2 pc. Designed in a commercial 130 nm technology it dissipates about 4.5 mW per channel. C1 [De Geronimo, Gianluigi; Fried, Jack; Li, Shaorui; Metcalfe, Jessica; Nambiar, Neena; Vernon, Emerson; Polychronakos, Venetios] Brookhaven Natl Lab, Upton, NY 11973 USA. RP De Geronimo, G (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM degeronimo@bnl.gov NR 14 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 633 EP 639 PG 7 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814200137 ER PT S AU Miller, EA White, TA Jarman, KD Kouzes, RT Kulisek, JA Robinson, SM Scherrer, C Wittman, RA AF Miller, Erin A. White, Timothy A. Jarman, Kenneth D. Kouzes, Richard T. Kulisek, Jonathan A. Robinson, Sean M. Scherrer, Chad Wittman, Richard A. BE Yu, B TI Combining Radiography and Passive Measurements for Radiological Threat Detection in Cargo SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc ID REAL-TIME AB Radiography is widely understood to provide information complementary to passive gamma-ray detection systems: while not directly sensitive to radiological materials, radiography can reveal highly shielded regions that may mask a passive radiological signal. We present a method for combining radiographic and passive gamma-ray measurements that uses the radiograph to provide an estimate of scatter and attenuation for possible sources. This approach allows quantitative use of radiographic images without relying on image interpretation, and results in a probabilistic description of likely source locations and strengths. We present first results for this method for a simple modeled test case of a cargo container driving through a plastic scintillator radiation portal monitor. With this probabilistic "inversion" approach, we address criteria for an integrated passive and radiographic screening system and how detection of special nuclear material might be improved in such a system. C1 [Miller, Erin A.; White, Timothy A.; Jarman, Kenneth D.; Kouzes, Richard T.; Kulisek, Jonathan A.; Robinson, Sean M.; Scherrer, Chad; Wittman, Richard A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Miller, EA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM erin.miller@pnnl.gov; timothy.white@pnnl.gov; kj@pnnl.gov; RKouzes@pnnl.gov; Jonathan.Kulisek@pnnl.gov; sean.robinson@pnnl.gov; richard.wittman@pnnl.gov RI Jarman, Kenneth/B-6157-2011 OI Jarman, Kenneth/0000-0002-4396-9212 NR 13 TC 2 Z9 2 U1 0 U2 6 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 657 EP 661 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814200140 ER PT S AU Huh, S Maltz, J Gunter, D Mihailescu, L Vetter, K AF Huh, Sam Maltz, Jonathan Gunter, Donald Mihailescu, Lucian Vetter, Kai BE Yu, B TI Real-Time Radioactive Source Localization with a Moving Coded-Aperture Detector System at Low Count Rates SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB We present a feasibility study of real-time radioactive source localization in which the effects of low count rates on source localizations with a moving coded-aperture detector system are addressed. The conventional cross-correlation method with the installed binary mask was not reliable enough to filter out background noise at low count rates in this study. To improve the cross-correlation performance, we adopted a new binary mask design method for future work. Off-line data processing to mimic on-line data processing was based on multi-CPUs and multi-GPUs (graphics processing units) parallel processing. We also show an iterative list-mode localization method using background-free simulated data. C1 [Huh, Sam; Maltz, Jonathan; Gunter, Donald; Mihailescu, Lucian; Vetter, Kai] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Appl Nucl Sci Grp, Berkeley, CA 94720 USA. RP Huh, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Appl Nucl Sci Grp, Berkeley, CA 94720 USA. EM sshuh@lbl.gov; jsmaltz@lbl.gov; DLGunter@lbl.gov; LMihailescu@lbl.gov; kvetter@lbl.gov NR 9 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 666 EP 673 PG 8 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814200142 ER PT S AU Chichester, DL Thompson, SJ Watson, SM Johnson, JT Seabury, EH AF Chichester, David L. Thompson, Scott J. Watson, Scott M. Johnson, James T. Seabury, Edward H. BE Yu, B TI Estimation of the Performance of Multiple Active Neutron Interrogation Signatures for Detecting Shielded HEU SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc ID SPECIAL NUCLEAR MATERIAL; HIGHLY-ENRICHED URANIUM; FISSION NEUTRONS; SYSTEM AB A comprehensive modeling study has been carried out to evaluate the utility of multiple active neutron interrogation signatures for detecting shielded highly enriched uranium (HEU). The modeling effort focused on varying HEU masses from 1 kg to 20 kg; varying types of shields including cement, wood, polyethylene, aluminum, and steel; varying depths of the HEU in the shields, and varying engineered shields immediately surrounding the HEU including steel, lead, and cadmium. Neutron and gamma-ray signatures were the focus of the study and false negative detection probabilities versus measurement time were used as a performance metric. To facilitate comparisons among different approaches an automated method was developed to generate receiver operating characteristic (ROC) curves for different sets of model variables for multiple background count rate conditions. This paper summarizes results or the analysis, including laboratory benchmark comparisons between simulations and experiments. C1 [Chichester, David L.; Thompson, Scott J.; Watson, Scott M.; Johnson, James T.; Seabury, Edward H.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Chichester, DL (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM david.chichester@inl.gov; scott.thompson@inl.gov; scott.watson@inl.gov; james.johnson@inl.gov; edward.seabury@inl.gov RI Johnson, James/B-9689-2017 OI Johnson, James/0000-0002-3434-4413 NR 35 TC 0 Z9 0 U1 1 U2 8 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 719 EP 731 PG 13 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814200152 ER PT S AU Sukhanov, A AF Sukhanov, Andrey BE Yu, B TI FPGA-Based Architecture for Fast Feature Extraction with High Resolution SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB Signal processing in real time allows to keep the resolution and sampling frequency of an ADC as well as the data storage size at a reasonable level, providing cost-effective solution for multichannel digitization systems. Modern FPGA are capable of optimal signal processing and can deliver in real time the precision, comparable to offline data processing. An FPGA-based architecture for extracting time and amplitude information of the signal with known shape is described. The matched filter is used to maximize the signal to noise ratio (SNR) in the presence of additive stochastic noise. The timing is determined using quadratic interpolation of the filtered signal. The resulting timing resolution is G*sqrt(N)*T/SNR, where G is a shape-dependent constant, T - sampling period. The systematic errors are corrected based on the interpolated time. The performance of the algorithm is demonstrated using Monte-Carlo simulations. The architecture for 16 ADC channels (14-bit, 80 MHz) have been implemented on a low-cost FPGA (ACTEL A3P600) utilizing 80% of the FPGA resources. The described architecture is expected to be used to process signals from the silicon photomultipliers of upgraded PHENIX experiment at RHIC.. C1 Brookhaven Natl Lab, Upton, NY 11973 USA. RP Sukhanov, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM sukhanov@bnl.gov NR 1 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 805 EP 806 PG 2 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814200168 ER PT S AU Michalowska, A Gevin, O Limousin, O Tindall, CS AF Michalowska, A. Gevin, O. Limousin, O. Tindall, C. S. BE Yu, B TI Multi-Correlated Double Sampling vs. Analog Shaper: Low Power ASIC for Pixelated CdTe SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB Comparison of continuous time and discrete time noise filtering is presented. Two sets of measurements have been performed: one with the classical analog semi-Gaussian shaper (CR-RC2), the other with M-CDS (Multi-Correlated Double Sampling). The Charge Sensitive Amplifier used in the measurements is optimized for input capacitance of 1 pF and detector dark current below 5 pA. With the analog shaper the Equivalent Noise Charge is characterized as a function of peaking time. ENC in the M-CDS method is characterized against the sampling frequency and the number of samples. The two methods have been compared. They show very similar noise performances: in each case the ENC as low as 30 electrons rms was achieved with the input capacitance of 0.3 pF and CSA power consumption of 14 mu W. Spectroscopy measurements with the CSA connected to Si diode were performed using the (CO)-C-57 source. The achieved FWHM resolutions were 390 eV at 14 keV with the analog shaper and 440 eV at 14 keV with the M-CDS method. C1 [Michalowska, A.; Gevin, O.] CEA Saclay, DSM IRFU SEDI, Elect & Detectors Syst Div, F-91191 Gif Sur Yvette, France. [Limousin, O.] CEA Saclay, DSM IRFU SAP, Astrophys Div, Gif Sur Yvette, France. [Tindall, C. S.] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA USA. RP Michalowska, A (reprint author), CEA Saclay, DSM IRFU SEDI, Elect & Detectors Syst Div, F-91191 Gif Sur Yvette, France. EM alicja.michalowska@cea.fr OI Limousin, Olivier/0000-0002-8794-5853 FU French space agency CNES; Antoine Penquer from CNES for supporting this project FX We thank to the French space agency CNES for cofinancing the project and to Antoine Penquer from CNES for supporting this project. NR 8 TC 0 Z9 0 U1 2 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 834 EP 838 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814200174 ER PT S AU Gevin, O Michalowska, A Limousin, O Tindall, CS Dubos, S Renaud, D Coppolani, X AF Gevin, O. Michalowska, A. Limousin, O. Tindall, C. S. Dubos, S. Renaud, D. Coppolani, X. BE Yu, B TI Low power, low noise, Charge Sensitive Amplifier in CMOS 0.18 mu m technology for the readout of fine pitch pixelated CdTe detector SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB Our group is currently developing a new project dedicated to the design of new Cd(Zn)Te spectro-imaging systems for future space borne astrophysics missions. The main goal is to build a spectro-imaging system with matrix ASIC hybridized to pixelated Cd(Zn)Te detector with typical pixel of 300 mu m pitch and typical energy resolution of 0.5 keV at 60 keV. Before designing a complete matrix of readout channels, we designed a prototype ASIC to evaluate the microelectronic technology in terms of noise and tolerance to radiation. We designed an ASIC in the standard AMS 0.18 mu m CMOS technology dedicated to the readout of very low capacitance (<1pF) and very low dark current (<5pA) Cd( Zn) Te detectors. The Caterpylar AMS is a set of 30 low noise low power Charge Sensitive Amplifiers (CSAs). All the CSAs have the same folded cascode architecture, only the type (PMOS or NMOS) and the geometry of the input transistors differ between CSAs. The noise performances of the technology are very good since a minimal ENC of 9 e(-) rms has been measured with power consumption in the CSA of 12 mu W only. Influence of the W/L ratio and W x L product of input transistor on noise has been measured and discussed. We connected one of the CSA to a silicon diode and measured an energy resolution of 580 eV FWHM at 122 keV with a Co-57 source and of 470 eV FWHM at 59.5 keV with a Am-241 source. C1 [Gevin, O.; Michalowska, A.; Coppolani, X.] CEA Saclay, DSM, IRFU, Serv Elect Detecteurs & Informat, Bat 141, F-91191 Gif Sur Yvette, France. [Limousin, O.; Dubos, S.; Renaud, D.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Tindall, C. S.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Gevin, O (reprint author), CEA Saclay, DSM, IRFU, Serv Elect Detecteurs & Informat, Bat 141, F-91191 Gif Sur Yvette, France. EM ogevin@cea.fr OI Limousin, Olivier/0000-0002-8794-5853 NR 7 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 848 EP 853 PG 6 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814200177 ER PT S AU Dragone, A Caragiulo, P Carini, GA Herbst, R Pratte, JF O'Connor, P Rehak, P Siddons, DP Haller, G AF Dragone, A. Caragiulo, P. Carini, G. A. Herbst, R. Pratte, J. F. O'Connor, P. Rehak, P. Siddons, D. P. Haller, G. BE Yu, B TI eLine10k: a High Dynamic Range Front-End ASIC for LCLS Detectors SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc ID READOUT AB eLine10k is a fast-frame, 64-channel readout ASIC for SLAC Linac Coherent Light Source (LCLS) detectors. The circuit has been designed to integrate the charge from high-capacitance 2D sensors with rolling shutter and ID strip sensors. It is suitable for applications requiring large input signal range, on the order of 104 photons/pixel/pulse at 8keV (22Me(-)), and a resolution of half a photon FWHM (500e(-) r.m.s). 2D sensors with a rolling shutter like the X-ray Active Matrix Pixel Sensor (XAMPS), for which the ASIC has been optimized, present several pixels which are bussed on the same readout line. Large input capacitance to each channel is expected leading to stringent noise optimization requirements. The large required number of pixels per channel, and the fixed LCLS beam period impose limitations on the time available for the readout of each single pixel. Giving the periodic nature of the LCLS beam, the ASIC developed for this application is a time-variant system, providing low-noise charge integration, filtering and correlated double-sampling, and a processing speed up to 500k pixel/s on each channel. To cope with the large input dynamic range, a charge pump scheme has been implemented using a synchronous zero-balance measurement method. It provides on-chip 4-bit coarse digital conversion of the integrated charge. The residual charge is sampled using correlated double sampling into an analog memory, multiplexed and measured with the required resolution using an external ADC. In this paper, the ASIC architecture and performance of the final release are presented. C1 [Dragone, A.; Caragiulo, P.; Carini, G. A.; Herbst, R.; Haller, G.] SLAC Natl Accelerator Lab, Res Engn Div, Menlo Pk, CA 94025 USA. [Pratte, J. F.] Univ Sherbrooke, Sherbrooke, PQ J1K 2R1, Canada. [O'Connor, P.; Rehak, P.] Brookhaven Natl Lab, Instrumentat Div, Upton, NY 11973 USA. [Siddons, D. P.] Brookhaven Natl Lab, Natl Synchrotron Light Source Dept, Upton, NY 11973 USA. RP Dragone, A (reprint author), SLAC Natl Accelerator Lab, Res Engn Div, Menlo Pk, CA 94025 USA. EM dragone@slac.stanford.edu FU U.S. Department of Energy; Office of Science; Office of Basic Energy Sciences [DE-AC02-98CH10886, DE-AC02-76SF00515] FX Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Use of the SLAC National Accelerator Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515. NR 16 TC 2 Z9 2 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 898 EP 905 PG 8 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201007 ER PT S AU Chen, W De Geronimo, G Gaskin, JA Li, S Li, Z Ramsey, BD Smith, G AF Chen, W. De Geronimo, G. Gaskin, J. A. Li, S. Li, Z. Ramsey, B. D. Smith, G. BE Yu, B TI Development of Low-resistivity Silicon Drift Detector Arrays for Soft X-rays SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc ID SPECTROMETERS AB New silicon drift detector (SDD) arrays are being developed for use as extraterrestrial X-ray spectrometers. For the first time these SDDs have been produced on low resistivity, n-type silicon, with a thinner thickness than normal, effectively ensuring their radiation hardness in anticipation of operation in potentially harsh radiation environments (such as those found around Jupiter). To achieve low-energy X-ray response, a thin entrance window was produced using a double implantation technology. The design, fabrication and performance of these detectors are presented here. C1 [Chen, W.; De Geronimo, G.; Li, S.; Li, Z.; Smith, G.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Gaskin, J. A.; Ramsey, B. D.] NASA, MSFC, Natl Space Sci & Technol Ctr, Huntsville, AL 35805 USA. RP Chen, W (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM weichen@bnl.gov FU U.S. Department of Energy [DE-AC02-98CHI0886]; NASA FX This work was supported in part by the U.S. Department of Energy under Contract No. DE-AC02-98CHI0886 and also was funded in part by the NASA Research Opportunities in Space and Earth Science, Planetary Instrument Defmition and Development Program. NR 13 TC 2 Z9 2 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 931 EP 935 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201014 ER PT S AU Rawool-Sullivan, MW Mattingly, JK Mitchell, DJ Hutchinson, JD AF Rawool-Sullivan, Mohini W. Mattingly, John K. Mitchell, Dean J. Hutchinson, Jesson D. BE Yu, B TI Combined MCNP/GADRAS Simulation of HPGe Gamma Spectra SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB The ability to accurately simulate gamma spectra from materials that emit both neutrons and gammas is very important to the analysis of special nuclear materials (SNM), e. g., uranium and plutonium. The approach presented in this paper uses MCNP neutron/photon transport simulations coupled to GADRAS detector response calculations to produce realistic estimates of the full gamma spectrum, including full-energy peaks, Compton continua and other features. The approach is expected to generate more accurate gamma ray spectra for complex three-dimensional geometries than can be obtained from one-dimensional deterministic transport simulations (e.g. ONEDANT) like those currently implemented in GADRAS. Although MCNP simulations are generally more time consuming than one-dimensional deterministic transport simulations, MCNP can handle coupled continuous-energy neutron/photon particle transport through complex geometries in three dimensions, and it obviates the need for approximations employed in deterministic multigroup S-N calculations. The main advantage of this approach results from (1) how easy it is to simulate complex three-dimensional geometries in MCNP, and (2) GADRAS's ability to accurately calculate the response of a gamma spectrometer to the incident gamma and neutron field. The approach presented here offers some clear advantages over one-dimensional deterministic transport codes to accurately simulate real-world situations and generate realistic estimates of measured gamma spectra. C1 [Rawool-Sullivan, Mohini W.; Hutchinson, Jesson D.] Los Alamos Natl Lab, MS B230, Los Alamos, NM 87545 USA. [Mattingly, John K.] N Carolina State Univ, Nuclear Engn Dept, Raleigh, NC 27695 USA. [Mitchell, Dean J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rawool-Sullivan, MW (reprint author), Los Alamos Natl Lab, MS B230, Los Alamos, NM 87545 USA. EM mohini@lanl.gov; john_mattingly@ncsu.edu; djmitch@sandia.gov; jesson@lanl.gov FU Department of Homeland Security; National Nuclear Security Administration Office FX Mohini Rawool-Sullivan was funded in part by the Department of Homeland Security, Domestic Nuclear Detection Office's Secondary Reachback Program. John Mattingly was funded in part by the National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development. NR 7 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 944 EP 947 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201017 ER PT S AU Santos-Villalobos, HJ Bingham, PR Gregor, J AF Santos-Villalobos, Hector J. Bingham, Philip R. Gregor, Jens BE Yu, B TI Iterative Reconstruction of Coded Source Neutron Radiographs SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB Use of a coded source facilitates high-resolution neutron imaging but requires that the radiographic data be deconvolved. In this paper, we compare direct deconvolution with two different iterative algorithms, namely, one based on direct deconvolution embedded in an MLE-like framework and one based on a geometric model of the neutron beam and a least squares formulation of the inverse imaging problem. Simulation results show that the model-based reconstruction method is the suitable solution for high-resolution coded source systems and where the illumination of the neutron source is non-uniform. C1 [Santos-Villalobos, Hector J.; Bingham, Philip R.] Oak Ridge Natl Lab, Oak Ridge, TN 37931 USA. [Gregor, Jens] Univ Tennessee, Knoxville, TN 37996 USA. RP Santos-Villalobos, HJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37931 USA. EM hsantos@ornl.gov; binghampr@ornl.gov; jgregor@eecs.utk.edu FU U.S. Department of Energy [DE-ACOS-000R2272S] FX Portions of this manuscript have been authored by UT-Battelle, LLC, under Contract No. DE-ACOS-000R2272S with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purpose NR 12 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 968 EP 971 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201021 ER PT S AU Tomassetti, L Bianchi, F Ciaschini, V Corvo, M Delprete, D Di Simone, A Donvito, G Fella, A Franchini, P Giacomini, F Giannelle, A Gianoli, A Longo, S Luitz, S Luppi, E Manzali, M Pardi, S Perez, A Rama, M Russo, G Santeramo, B Stroili, R AF Tomassetti, Luca Bianchi, Fabrizio Ciaschini, Vincenzo Corvo, Marco Delprete, Domenico Di Simone, Andrea Donvito, Giacinto Fella, Armando Franchini, Paolo Giacomini, Francesco Giannelle, Alessio Gianoli, Alberto Longo, Stefano Luitz, Steffen Luppi, Eleonora Manzali, Matteo Pardi, Silvio Perez, Alejandro Rama, Matteo Russo, Guido Santeramo, Bruno Stroili, Roberto BE Yu, B TI SuperB Production System for Simulated Events SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB The SuperB asymmetric e(+)e(-) collider and detector to be built at the newly founded Nicola Cabibbo Lab will provide a uniquely sensitive probe of New Physics in the flavor sector of the Standard Model. Studying minute effects in the heavy quark and heavy lepton sectors requires a data sample of 7S ab(-1) and a peak luminosity of 10(36) cm(-2) S-1. The SuperB Computing group is working on developing a production system for distributed event simulation capable to support the detector design definition and its performance evaluation studies. During last year the system has evolved from the point of view of job workflow, Grid services, and technologies adoption. A complete code refactoring and sub-component language porting now allows to sustain large distributed production cycles involving resources from three continents and Grid Flavors. In this paper we present a complete description of the production system, its evolution and its integration with Grid services; in particular, we will focus on the utilization of new Grid component features as in LB and WMS version 3. C1 [Tomassetti, Luca; Luppi, Eleonora] Univ Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. [Tomassetti, Luca; Bianchi, Fabrizio] Ist Nazl Fis Nucl, Turin, Italy. [Ciaschini, Vincenzo; Franchini, Paolo; Giacomini, Francesco; Longo, Stefano] Ist Nazl Fis Nucl, CNAF, Bologna, Italy. [Corvo, Marco] Ist Nazl Fis Nucl, Padua, Italy. [Delprete, Domenico; Pardi, Silvio; Russo, Guido] Ist Nazl Fis Nucl, Naples, Italy. [Di Simone, Andrea] CNRS, F-75700 Paris, France. [Donvito, Giacinto; Santeramo, Bruno] Ist Nazl Fis Nucl, Bari, Italy. [Fella, Armando] Univ Ferrara, CNRS, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Gianoli, Alberto; Manzali, Matteo] Ist Nazl Fis Nucl, Ferrara, Italy. [Luitz, Steffen] SLAC, Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Luppi, Eleonora] Univ Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Perez, Alejandro] Ist Nazl Fis Nucl, Pisa, Italy. [Rama, Matteo] Ist Nazl Fis Nucl, LNF, Frascati, Italy. [Stroili, Roberto] Univ Padua, Ist Nazl Fis Nucl, I-35100 Padua, Italy. RP Tomassetti, L (reprint author), Univ Ferrara, Via Saragat 1, I-44122 Ferrara, Italy. EM luca.tomassetti@fe.infn.it RI Tomassetti, Luca/G-5065-2012; Luppi, Eleonora/A-4902-2015; Di Simone, Andrea/K-6609-2013; Gianoli, Alberto/H-5544-2015; OI Tomassetti, Luca/0000-0003-4184-1335; Luppi, Eleonora/0000-0002-1072-5633; Di Simone, Andrea/0000-0003-0201-3377; Gianoli, Alberto/0000-0002-2456-8667; Donvito, Giacinto/0000-0002-0628-1080; Giacomini, Francesco/0000-0002-3129-2814; Manzali, Matteo/0000-0001-6163-3782 NR 7 TC 0 Z9 0 U1 0 U2 5 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 972 EP 974 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201022 ER PT S AU Fella, A Bianchi, F Ciaschini, V Corvo, M Delprete, D Di Simone, A Donvito, G Franchini, P Giacomini, F Gianoli, A Gianelle, A Longo, S Luiz, S Luppi, E Manzali, M Pardi, S Perez, A Rama, M Russo, G Santeramo, B Stroili, R Tomassetti, L AF Fella, Armando Bianchi, Fabrizio Ciaschini, Vincenzo Corvo, Marco Delprete, Domenico Di Simone, Andrea Donvito, Giacinto Franchini, Paolo Giacomini, Francesco Gianoli, Alberto Gianelle, Alessio Longo, Stefano Luiz, Steffen Luppi, Eleonora Manzali, Matteo Pardi, Silvio Perez, Alejandro Rama, Matteo Russo, Guido Santeramo, Bruno Stroili, Roberto Tomassetti, Luca BE Yu, B TI A Prototype Suite for Data-Analysis Management of the SuperB Experiment SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc DE Distributed computing; Distributed analysis facility; High Energy Physics; SuperB experiment; Ganga AB The SuperB asymmetric e(+)e(-) collider and detector to be built at the newly founded Nicola Cabibbo Lab will provide a uniquely sensitive probe of New Physics in the flavor sector of the Standard Model. Studying minute effects in the heavy quark and heavy lepton sectors requires a data sample of 75ab(-1) and a peak luminosity of 10(36) cm(-2) s(-1). Providing a user-friendly solution to workload management in a distributed resource system is one of the key goal of a HEP community as SuperB experiment. Physicists involved in Monte Carlo simulation productions and in data analysis should be able to perform job management and basic data transfer operations limiting as possible training costs and maximizing flexibility in resource exploitation. The SuperB computing group adopted Ganga as the interface layer of such distributed analysis infrastructure. A SuperB-specific Ganga-plugin has been developed to accomplish experiment requirements as information system interface, use cases implementation, dataset management and job wrapper interactions. This work will present the Ganga plugin design and implementation, and its integration with the wider distributed system adopted by the collaboration. C1 [Fella, Armando] CNRS, Ist Nazl Fis Nucl Pisa INFN Pisa, Largo P Corvo 3, I-56100 Pisa, Italy. [Fella, Armando] Univ Ferrara, I-56100 Pisa, Italy. [Bianchi, Fabrizio] Ist Nazl Fis Nucl, Turin, Italy. [Ciaschini, Vincenzo; Franchini, Paolo; Giacomini, Francesco; Longo, Stefano] Ist Nazl Fis Nucl, CNAF, Bologna, Italy. [Gianelle, Alessio] Ist Nazl Fis Nucl, Padua, Italy. [Gianelle, Alessio; Manzali, Matteo] Ist Nazl Fis Nucl, I-44122 Ferrara, Italy. [Luiz, Steffen] SLAC, Natl Accelerator Lab, Menlo Pk, CA 94025 USA. [Luppi, Eleonora; Tomassetti, Luca] Univ Ferrara, Ist Nazl Fis Nucl, I-44100 Ferrara, Italy. [Pardi, Silvio; Russo, Guido] Ist Nazl Fis Nucl, Naples, Italy. [Perez, Alejandro] Ist Nazl Fis Nucl, Pisa, Italy. [Rama, Matteo] Ist Nazl Fis Nucl, LNF, Frascati, Italy. [Stroili, Roberto] Univ Padua, Ist Nazl Fis Nucl, I-35100 Padua, Italy. [Donvito, Giacinto; Santeramo, Bruno] Ist Nazl Fis Nucl, Bari, Italy. RP Fella, A (reprint author), CNRS, Ist Nazl Fis Nucl Pisa INFN Pisa, Largo P Corvo 3, I-56100 Pisa, Italy. EM armando.fella@pi.infn.it; bianchi@to.infn.it; chini@cnaf.infn.it; corvo@pd.infn.it; delprete@na.infn.it; andrea.di.simone@cern.ch; don-vito@ba.infn.it; giaco-mini@cnaf.infn.it; fran-chini@cnaf.infn.it; gianelle@pd.infn.it; longo@cnaf.infn.it; eleonora.luppi@fe.infn.it; matteo.manzali@fe.infn.it; spardi@na.infn.it; perez@pi.infn.it; rama@lnf.infn.it; russo@na.infn.it; santer-amo@ba.infn.it; stroili@pd.infn.it; luca.tomassetti@fe.infn.it RI Tomassetti, Luca/G-5065-2012; Di Simone, Andrea/K-6609-2013; Gianoli, Alberto/H-5544-2015; Luppi, Eleonora/A-4902-2015; OI Tomassetti, Luca/0000-0003-4184-1335; Di Simone, Andrea/0000-0003-0201-3377; Gianoli, Alberto/0000-0002-2456-8667; Donvito, Giacinto/0000-0002-0628-1080; Luppi, Eleonora/0000-0002-1072-5633; Giacomini, Francesco/0000-0002-3129-2814; Manzali, Matteo/0000-0001-6163-3782 NR 9 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 975 EP 977 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201023 ER PT S AU Pozzi, SA Clarke, SD Walsh, WJ Miller, EC Dolan, JL Flaska, M Wieger, BM Enqvist, A Puppato, N Padovani, E Mattingly, JK Chichester, DL Peerani, P AF Pozzi, Sara A. Clarke, Shaun D. Walsh, William J. Miller, Eric C. Dolan, Jennifer L. Flaska, Marek Wieger, Brian M. Enqvist, Andreas Puppato, Natalia Padovani, Enrico Mattingly, John K. Chichester, David L. Peerani, Paolo BE Yu, B TI Validation of MCNPX-PoliMi Fissioa SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB We present new results on the measurement of correlated, outgoing neutrons from spontaneous fission events in a Cf-252 source. 16 EJ-309 liquid scintillation detectors are used to measure neutron-neutron correlations for various detector angles. Anisotropy in neutron emission is observed. The results are compared to MCNPX-PoliMi simulations and good agreement is observed. C1 [Pozzi, Sara A.; Clarke, Shaun D.; Walsh, William J.; Miller, Eric C.; Dolan, Jennifer L.; Flaska, Marek; Wieger, Brian M.; Enqvist, Andreas; Puppato, Natalia] Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. [Padovani, Enrico] Politecn Milan, Dept Energy, Milan, Italy. [Mattingly, John K.] North Carolina State Univ, Dept Nucl Energy, Raleigh, NC 27695 USA. [Chichester, David L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Peerani, Paolo] Joint Res Ctr, European Commiss, Ispra, VA, Italy. RP Pozzi, SA (reprint author), Univ Michigan, Dept Nucl Engn & Radiol Sci, Ann Arbor, MI 48109 USA. EM pozzisa@umich.edu; enrico.padovani@polimi.it; mattingly@ncsu.edu FU National Science Foundation; Domestic Nuclear Detection Office of the Department of Homeland Security through the Academic Research Initiative [CMMI 0938909]; Department of Energy, Nuclear Energy University Programs [DEAC07-05IDI4517-00120867]; Department of Energy, National Nuclear Security Administration [DE-NAOOO1025] FX This research was funded in part by the National Science Foundation and the Domestic Nuclear Detection Office of the Department of Homeland Security through the Academic Research Initiative Award # CMMI 0938909, the Department of Energy, Nuclear Energy University Programs Award DEAC07-05IDI4517-00120867, and the Department of Energy, National Nuclear Security Administration, Award number: DE-NAOOO1025. NR 5 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 997 EP 999 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201027 ER PT S AU Popov, V Mkrtchyan, H AF Popov, Vladimir Mkrtchyan, Hamlet BE Yu, B TI New Photomultiplier Active Base for Hall C Jefferson Lab Lead Tungstate Calorimeter SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB A new photomultiplier tube active base was designed and tested. The base combines active voltage division circuit and fast amplifier, powered by the current flowing through voltage divider. This base is developed to upgrade older photomultiplier bases of Jefferson Lab lead-tungsten calorimeter (about similar to 1200 crystals of PbWO4 from the PrimEx experimental setup). This is needed for the extension of detectors' rate capability to meet requirements of new Hall C proposal PR12-11-102 of measurements of the LIT separated cross sections and their ratio R = sigma L/sigma T in neutral-pion p(e,e'pi(0))p deep exclusive and p(e,e'pi(0))X semi-inclusive scattering regions. New active base is direct replacement of older passive base circuit without adding of additional power or signal lines. However, it extends detectors rate capability with factor over 20. Moreover, transistorized voltage divider improves detector's amplitude resolution due to reduction of photomultiplier gain dependence from tube anode current. The PMT active base is the invention disclosed in V. Popov's U. S. Patent No. 6,791,269, which successfully works over ten years in several Jefferson Lab Cherenkov detectors. The following design is a new revised and improved electronic circuit with better gain stability and linearity in challenge to meet requirements of new Hall C experimental setup. New active base performance was tested using fast LED light source and Pr:LuAG scintillator and gamma sources. Electronics radiation hardness was tested on JLab accelerator. Results of testing R4125 Hamamatsu photomultiplier tube in new active base are presented. C1 [Popov, Vladimir] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Mkrtchyan, Hamlet] Yerevan Phys Inst, Nat Sci Lab, Yerevan 0036, Armenia. RP Popov, V (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM popov@jlab.org; hamlet@jlab.org FU U.S. DOE [DE-AC05-060R23l77] FX Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-060R23l77. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes. NR 5 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 1177 EP 1179 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201065 ER PT S AU Senthilkumaran, A Drake, G Gopalakrishnan, A Mahadik, S Mellado, B Proudfoot, J AF Senthilkumaran, A. Drake, G. Gopalakrishnan, A. Mahadik, S. Mellado, B. Proudfoot, J. CA ATLAS Tile Calorimeter Syst BE Yu, B TI Reliability Analysis of a Low Voltage Power Supply Design for the Front-End Electronics of the Atlas Tile Calorimeter SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB We present a reliability study on a new low voltage power supply design for the front-end electronics of the ATLAS Tile Calorimeter. Using the reliability data from the manufacturers of the components, we derive an estimate of the expected number of failures per year during the normal operating lifetime of the power supply bricks. This may be useful for other power supply designs or front-end electronics designs where high reliability is required. We discuss the factors in the design that limit reliability, and present conclusions for improvements to the power distribution system for the LHC Phase 2 upgrade. C1 [Senthilkumaran, A.; Gopalakrishnan, A.; Mahadik, S.; Mellado, B.] Univ Wisconsin, Madison, WI 53706 USA. [Drake, G.; Proudfoot, J.] Argonne Natl Lab, Chicago, IL USA. RP Senthilkumaran, A (reprint author), Univ Wisconsin, Madison, WI 53706 USA. EM drake@anl.gov FU U.S. Department of Commerce [BS123456]; Argonne National Laboratory under U. S. DOE [DE-AC02-06CHI1357] FX This work was supported in part by the U.S. Department of Commerce under Grant No. BS123456. The work at Argonne National Laboratory' is supported under U. S. DOE contract no. DE-AC02-06CHI1357. NR 9 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 1231 EP 1239 PG 9 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201074 ER PT S AU Lee, S Dong, H McKisson, J McKisson, JE Weisenberger, AG Xi, W Howell, CR Reid, CD Smith, MF AF Lee, S. Dong, H. McKisson, J. McKisson, J. E. Weisenberger, A. G. Xi, W. Howell, C. R. Reid, C. D. Smith, M. F. BE Yu, B TI Ethernet-based Flash ADC for a Plant PET Detector System SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB We have developed a flash analog to digital (A DC) based read out system to be used for a Positron Emission Tomography (PET) system. The custom designed 16 channel 12-bit Ethernet-based flash ADC (EFADC-16) unit operates at 250 MHzls/channel utilizing a gigabit Ethernet interface to parse time-stamped event signals. Each unit allows the user to define a custom coincidence table for triggering. Each EFADC-16 unit can digitize four H8500 position sensitive photomultiplier tubes (PSPMT) equipped with a Jefferson Lab designed 4 channel resistive readout (a total of 16 channels). We present initial performance results of the EFADC-16 with four PET detector modules in a plant biology application to acquire tomographic images of the translocation of C-11 within an oak seedling. C1 [Lee, S.; Dong, H.; McKisson, J.; McKisson, J. E.; Weisenberger, A. G.; Xi, W.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Lee, S (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM sjlee@jlab.org; howell@tunl.duke.edu; msmith7@umm.edu FU U.S. Department of Energy Office of Biological and Environmental Research; DOE Office of Nuclear Physics [U24CA92871, DE-FG02-97ER41033]; National Science Foundation [IBN-9985877, DBI-0649924] FX This work is supported by the U.S. Department of Energy Office of Biological and Environmental Research in the Office of Science. from the DOE Office of Nuclear Physics grants U24CA92871 and DE-FG02-97ER41033 and National Science Foundation IBN-9985877 & DBI-0649924. NR 5 TC 2 Z9 2 U1 0 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 1320 EP 1322 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201093 ER PT S AU Lee, S Kross, B McKisson, J McKisson, JE Weisenberger, AG Xi, W Zorn, C Howell, CR Reid, CD Smith, MF AF Lee, S. Kross, B. McKisson, J. McKisson, J. E. Weisenberger, A. G. Xi, W. Zorn, C. Howell, C. R. Reid, C. D. Smith, M. F. BE Yu, B TI PhytoPET: Design and Initial Results of Modular PET for Plant Biology SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB We have developed a positron emission tomography (PET) system designed specifically for plant imaging in Phytotron at Duke University. Initial evaluation of a PhytoPET system to image the biodistribution of the positron emitting tracer C-11 in live plants is presented. The mechanical arrangement of the detectors is designed to accommodate the unpredictable and random distribution in space of the plant parts such as stems, leaves, and roots. Prototyping such a system requires a completely new PET system design strategy different from preclinical and clinical applications. This PhytoPET design allows flexible arrangements of PET detectors based on individual standalone detector modules built from single 5 cm x 5 cm Hamamatsu H8500 position sensitive photomultiplier tubes. Each H8500 is coupled to a LYSO:Ce scintillator array composed of 48 x 48 elements that are 10 mm thick with a 1 mm pitch. Initial results provide planar PET images from two different arrangements (1 x 4 or 2 x 2) for flexible imaging capability. C1 [Lee, S.; Kross, B.; McKisson, J.; McKisson, J. E.; Weisenberger, A. G.; Xi, W.; Zorn, C.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Lee, S (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM sjlee@jlab.org; howell@tunl.duke.edu; msmith7@umm.edu FU U.S. Department of Energy Office of Biological and Environmental Research; DOE Office of Nuclear Physics [U24CA9287l, DE-FG02-97ER4l033]; National Science Foundation [IBN-9985877, DBI-0649924] FX This work is supported by the U.S. Department of Energy Office of Biological and Environmental Research in the Office of Science, from the DOE Office of Nuclear Physics grants U24CA9287l and DE-FG02-97ER4l033 and National Science Foundation IBN-9985877 & DBI-0649924. NR 3 TC 1 Z9 1 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 1323 EP 1325 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201094 ER PT S AU Li, Z Chen, W AF Li, Zheng Chen, Wei BE Yu, B TI Novel Si Drift Detectors Arrays with Customer-Design, Low Current (Low Heat, Low Power) Spiral Biasing Adapter and Double-Metal Interconnections SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB A novel Si drift detector (SDD) array (array size: NxM) using a customer-design, low current (low heat) biasing adapter and double-metal interconnections between the single cells in the array is proposed here. The spiral biasing adapter (SBA) itself is also a new concept with the following characteristics and advantages: 1) it is customer-design for any desired geometry of SDD single cell with minimum current and minimum drift time of carriers; 2) it has the spiral shaped ion-implants that define the desired voltage profile according to calculations; 3) the radius dependence of the pitch (P-SBA(r)) of the spiral is the same as that of the SDD single cell (P-SBA(r))=P-SDD(r)), which in general varies with radius; 4) the width of the implanted spiral (W-SBA(r)) that varies with radius does not have to equal to that of the SDD single cell (W-SBA(r)not equal W-SDD(r)), and can be made small to minimize the current; 5) it is processed on the same wafer of SDD array; 6) only one SBA chip/side is needed for one SDD array to define the voltage profiles on the front side and backside (two SBA chips for double-side SDD array, one SBA chip for SDD array with uniform backside bias); and 7) the connection of the SBA chip and the SDD array can be either double metal (most convenient, SBA and SDD are attached) or wire bonding (SBA chip is diced off from the SDD array, no heat on the SDD array). The geometry of a single SDD cell is defined by concentric rings of ion-implants (P-SDD(r)= P-SBA(r)) with maximum width (W-SDD(r))>W-SBA(r)) to minimize surface current. The surface potential profiles of the leading single SDD cell are defined by the SBA chips provided by wire bond or second metal interconnections, while those of the rest of single SDD cells in the array are provided by the interconnections (second metal, or in some simple cases, wire bonds) of corresponding rings among the single SDD cells (including the leading one). The interconnections between the SDD single cells in most cases are double-metal ones. For cases with small array and small number of rings (small cells), wire bonding may be doable and desirable for interconnections between single SDD cells. In this new SDD array, minimum or no heat generated by SBA will affect the SDD array, and the power consumption of the new SDD array is reduced by a factor of NxM as compared to the conventional spiral SDD array. C1 [Li, Zheng; Chen, Wei] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Li, Z (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM zhengl@bnl.gov; weichen@bnl.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 1339 EP 1343 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201098 ER PT S AU Aschenauer, EC Cole, B Crowley, KT Di Ruzza, B Hughes, E Malinsky, D Winter, M AF Aschenauer, E. C. Cole, B. Crowley, K. T. Di Ruzza, B. Hughes, E. Malinsky, D. Winter, M. BE Yu, B TI Monolithic Active Pixel Silicon Detectors for Future Electron Ion Colliders: Status and Plans SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc DE EIC; eRHIC; MAPS; Microvertex Silicon Pixel Detector; MIMOSA AB More than thirty years after Quantum Cromodynamics (QCD) was first proposed as the fundamental theory of the strong force, very little is still known about the dynamical basis of hadron structure. How do these fundamental degrees of freedom dynamically generate the mass, spin, motion and spatial distribution of color charges inside hadrons? To investigate these fundamental questions a new electron-proton/electron-ion collider is proposed (EIC). T he inner tracking system of the detectors in these colliders will require very high granularity, low material budget and, radiation hard design. In this talk, it will be shown that monolithic active pixel silicon detectors (MAPS) with sensors based on a CMOS technology satisfy all these requirements and test results will be provided. An overview will be given on eRHIC: a EIC facility designed to be realized in the Brookhaven National Laboratory, on the tests ongoing in Brookhaven National Laboratory and Columbia University on two MAPS prototype MIMOSA-26. C1 [Aschenauer, E. C.; Di Ruzza, B.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Di Ruzza, B (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM bdiruzza@bnl.gov FU BNL LDRD FX Thanks to the members of the BNL Collider Accelerator Department and the BNL EIC Science Task Force for the material provided, for uselful discussions, and for the profound suggestions. This work was supported by the BNL LDRD program NR 7 TC 1 Z9 1 U1 1 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 1370 EP 1372 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201104 ER PT S AU Hertz, KL Johnson, BB Holland, CE Resnick, PJ Schwoebel, PR Chichester, DL AF Hertz, Kristin L. Johnson, Benjamin B. Holland, Christopher E. Resnick, Paul J. Schwoebel, Paul R. Chichester, David L. BE Yu, B TI A Microfabricated Electrostatic Field Desorption Ion Source SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc ID NEUTRON GENERATORS AB The use of an electrostatic field desorption (EFD) ion source would constitute a significant advance in the design and operation of neutron generators. The results would directly benefit the use of neutron generators for active interrogation in the search for special nuclear material and the replacement of radioisotopic sources, particularly in man-portable scenarios. The novel EFD approach uses high electrostatic fields to produce pure atomic deuterium ions from a conductive surface, rather than ions produced from deuterium plasma. This concept has the potential to surpass current state of the art sealed neutron tube designs in many key performance areas including lifetime, reliability, efficiency, and neutron yield. Over the past few years a thorough study of the ion production and neutron yield of fabricated devices has been conducted. Devices that are 1 mm(2) consistently produce approximately 1000 n/cm(2)/s from the deuteron-deuteron reaction when operating in the dc mode. Electric fields of 20 V/nm are consistently achieved resulting in molecular deuterium ions from field ionization. Further increases in electric fields are necessary to reliably produce deuterons from field desorption. Both the modeling and experimental results to date are discussed. C1 [Hertz, Kristin L.; Resnick, Paul J.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Hertz, KL (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. EM klhertz@sandia.gov; kas@unm.edu; resnicpj@sandia.gov; david.chichester@inl.gov FU U.S. Department of Energy; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000, SAND 20l2-9991C] FX This work was supported by the U.S. Department of Energy through the National Nuclear Security Administration's Office of Non-proliferation Research and Development (NA-22l). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for to the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND 20l2-9991C NR 7 TC 1 Z9 1 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 1434 EP 1439 PG 6 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201120 ER PT S AU Anderson, JT Albers, M Alcorta, M Campbell, C Carpenter, MP Chiara, CJ Cromaz, M David, HM Doering, D Doherty, DT Hoffman, CR Janssens, RVF Joseph, J Khoo, TL Kreps, A Lauritsen, T Lee, IY Lionberger, C Lister, CJ Madden, T Oberling, MB Rogers, AM Seweryniak, D Wilt, P Zhu, S Zimmermann, S AF Anderson, J. T. Albers, M. Alcorta, M. Campbell, C. Carpenter, M. P. Chiara, C. J. Cromaz, M. David, H. M. Doering, D. Doherty, D. T. Hoffman, C. R. Janssens, R. V. F. Joseph, J. Khoo, T. L. Kreps, A. Lauritsen, T. Lee, I. Y. Lionberger, C. Lister, C. J. Madden, T. Oberling, M. B. Rogers, A. M. Seweryniak, D. Wilt, P. Zhu, S. Zimmermann, S. BE Yu, B TI A Digital Data Acquisition System for the Detectors at Gammasphere SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB A new data acquisition system for experiments using the Gammasphere detector array and associated detectors including the double-sided silicon strip detector (DSSD) is under development. Waveform digitization and triggering hardware identical to that developed for GRETINA has been procured and interfaced to the both the existing Gammasphere and DSSD detectors to provide significantly increased data throughput and increased event rates. A new parasitic signal connection and cable plant provides the ability to simultaneously measure the same events using both the old and new systems. A triggering interface module has been manufactured that connects the Gammasphere trigger and clock to the new system. A second digital data acquisition system has been attached to the DSSD detector located downstream from Gammasphere. The trigger systems of Gammasphere, Digital Gammasphere and Digital DSSD have successfully synchronized the clocks of all three data acquisition systems demonstrating timestamp correlation across multiple detector systems. New firmware for the digitizer modules specific to the signals provided by the Gammasphere detector has been developed and is currently being tested in situ to directly compare the energy resolution of the two data acquisition systems. We describe the system as implemented and show test results to date, where significantly faster event processing rates have been obtained with nearly equivalent energy resolution. C1 [Anderson, J. T.; Albers, M.; Alcorta, M.; Campbell, C.; Carpenter, M. P.; Chiara, C. J.; Hoffman, C. R.; Janssens, R. V. F.; Khoo, T. L.; Kreps, A.; Lauritsen, T.; Madden, T.; Oberling, M. B.; Rogers, A. M.; Seweryniak, D.; Wilt, P.; Zhu, S.] Argonne Natl Lab, Lemont, IL 60439 USA. [Cromaz, M.; Doering, D.; Joseph, J.; Lee, I. Y.; Lionberger, C.; Zimmermann, S.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chiara, C. J.] Univ Maryland, Dept Chem, College Pk, MD USA. [David, H. M.; Doherty, D. T.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Lister, C. J.] Univ Massachusetts, Lowell, MA 01854 USA. RP Anderson, JT (reprint author), Argonne Natl Lab, Lemont, IL 60439 USA. EM jta@anl.gov RI Alcorta, Martin/G-7107-2011; Carpenter, Michael/E-4287-2015 OI Alcorta, Martin/0000-0002-6217-5004; Carpenter, Michael/0000-0002-3237-5734 FU U. S. Department of Energy [DEAC02-06CH 11357] FX This work was supported in part by the U. S. Department of Energy under contract DEAC02-06CH 11357. NR 6 TC 3 Z9 3 U1 1 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 1536 EP 1540 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201139 ER PT S AU De Lurgio, P Djurcic, Z Drake, G Hashemian, R Kreps, A Oberling, M Pearson, T Sahoo, H AF De Lurgio, P. Djurcic, Z. Drake, G. Hashemian, R. Kreps, A. Oberling, M. Pearson, T. Sahoo, H. BE Yu, B TI A Wireless Power and Data Acquisition System for Large Detectors SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB A new prototype wireless data acquisition system has been developed with the intended application to read-out instrumentation systems having thousands of channels. The data acquisition and control is based on a compliant implementation of 802.11 based hardware and protocols. Our case study is for a large detector containing photomultiplier tubes. The front-end circuitry, including a high-voltage power supply is powered wirelessly thus creating an all-wireless detector readout. The bench marked performance of the prototype system and how a large scale implementation of the system might be realized are discussed. C1 [De Lurgio, P.; Djurcic, Z.; Drake, G.; Kreps, A.; Oberling, M.; Sahoo, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Hashemian, R.; Pearson, T.] Northern Illinois Univ, De Kalb, IL USA. RP De Lurgio, P (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM zdjurcic@anl.gov FU U.S. Department of Commerce [BS 123456]; U. S. DOE [DE-AC02-06CH 11357] FX Manuscript received November 16,2012. This work was supported in part by the U.S. Department of Commerce under Grant No. BS 123456. The work at Argonne National Laboratory' is supported under U. S. DOE contract no. DE-AC02-06CH 11357. NR 9 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 1607 EP 1614 PG 8 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201154 ER PT S AU McVittie, P Contarato, D Denes, P Doering, D Joseph, J Weizeorick, J AF McVittie, Patrick Contarato, Devis Denes, Peter Doering, Dionisio Joseph, John Weizeorick, John BE Yu, B TI A Readout System for High-Speed CCD Cameras Based on Advanced Telecommunications Computing Architecture SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB This paper describes the performance of a scalable readout system for high-speed CCD sensors based on the Advanced Telecommunication Computing Architecture specification. The paper reports the readout system performance tested with a IMPixel Frame Store CCD sensor for soft X-ray applications at synchrotron light sources. This camera is capable of producing image data at over 400 MB/s which must be processed in real-time and stored to disk. The high-level hardware architecture, signal processing data flow, and network protocol optimization are also be presented. C1 [McVittie, Patrick; Contarato, Devis; Denes, Peter; Doering, Dionisio; Joseph, John] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS50A6134, Berkeley, CA 94720 USA. [Weizeorick, John] Argonne Natl Lab, Argonne, IL USA. RP McVittie, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS50A6134, Berkeley, CA 94720 USA. EM PJMcvittie@lbl.gov; DContarato@lbl.gov; PDenes@lbl.gov; ddoering@lbl.gov; JMJoseph@lbl.gov; jweizeorick@anl.gov FU Lawrence Berkeley National Laboratory; Director, Office of Science, Office of Basic Energy Sciences; U.S. Department of Energy (DOE) [DE-AC02-05CHI1231] FX Manuscript received November 12, 2012. Lawrence Berkeley National Laboratory is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CHI1231. NR 3 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 1623 EP 1625 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201157 ER PT S AU Diez, S AF Diez, Sergio CA ATLAS Upgrade Collaboration BE Yu, B TI Silicon strip prototypes for the ATLAS Upgrade tracker of the HL-LHC SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB This paper describes the integration structures for the silicon strips tracker of the ATLAS detector for the Phase-II upgrade of the Large Hadron Collider (LHC), also referred to as High-Luminosity LHC (HL-LHC). Silicon strip sensors are arranged in highly modular structures, called 'staves' and 'petals'. This paper focuses on the prototyping effort developed by the strips tracker barrel community, as well as on the description of one of the latest stave prototypes. This new prototype is composed of a particular core structure, in which a shield-less bus tape is embedded in between carbon fiber lay-ups. Electrical and thermal performances of the prototype are presented, as well as a description of the assembly procedures and tools. C1 [Diez, Sergio] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Diez, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM sdiezcornell@lbl.gov NR 14 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 1639 EP 1645 PG 7 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201161 ER PT S AU Cherepy, NJ Seeley, ZM Payne, SA Beck, PR Drury, OB O'Neal, SP Figueroa, KM Hunter, S Ahle, L Thelin, PA Stefanik, T Kindem, J AF Cherepy, N. J. Seeley, Z. M. Payne, S. A. Beck, P. R. Drury, O. B. O'Neal, S. P. Figueroa, K. Morales Hunter, S. Ahle, L. Thelin, P. A. Stefanik, T. Kindem, J. BE Yu, B TI Development of Transparent Ceramic Ce-Doped Gadolinium Garnet Gamma Spectrometers SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc DE Gamma-ray spectroscopy; Garnets; Scintillators ID SCINTILLATOR NON-PROPORTIONALITY; CRYSTAL-GROWTH; FACILITY AB Transparent polycrystalline ceramic scintillators based on the garnet structure and incorporating gadolinium for high stopping power are being developed for use in gamma spectrometers. Optimization of energy resolution for gamma spectroscopy involves refining the material composition for high stopping and high light yield, developing ceramics fabrication methodology for material homogeneity, as well as selecting the size and geometry of the scintillator to match the photodetector characteristics and readout electronics. We have demonstrated energy resolution of 4% at 662 keV for 0.05 cm(3) GYGAG(Ce) ceramics with photodiode readout, and 4.9% resolution at 662 keV for 18 cm(3) GYGAG(Ce) ceramics and PMT readout. Comparative gamma spectra acquired with GYGAG(Ce) and NaI(TI) depict the higher resolution of GYGAG(Ce) for radioisotope identification applications. Light yield non-proportionality of garnets fabricated following different methods reveal that the fundamental shapes of the light yield dependence on energy are not intrinsic to the crystal structure, but may instead depend on trap state distributions. With exposure to 9 MeV Brehmsstrahlung radiation, we also find that GYGAG(Ce) ceramics exhibit excellent radiation hardness. C1 [Cherepy, N. J.; Seeley, Z. M.; Payne, S. A.; Beck, P. R.; Drury, O. B.; O'Neal, S. P.; Figueroa, K. Morales; Hunter, S.; Ahle, L.; Thelin, P. A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Stefanik, T.] Nanocerox Inc, Ann Arbor, MI USA. [Kindem, J.] Digirad Inc, Suwanee, GA USA. RP Cherepy, NJ (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM cherepy1@llnl.gov RI Cherepy, Nerine/F-6176-2013 OI Cherepy, Nerine/0000-0001-8561-923X FU US Department of Homeland Security; Domestic Nuclear Detection Office [IAA HSHQDC-09-x-00208 I P00002] FX Manuscript received November 15, 2012. This work has been supported by the US Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded IAA HSHQDC-09-x-00208 I P00002. This support does not constitute an express or implied endorsement on the part of the Government. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 18 TC 3 Z9 3 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 1692 EP 1697 PG 6 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201171 ER PT S AU Friedman, PS Ball, R Beene, JR Benhammou, Y Bentefour, EH Chapman, JW Etzion, E Ferretti, C Guttman, N Levin, DS Moshe, MB Silver, Y Varner, RL Weaverdyck, C Zhou, B AF Friedman, P. S. Ball, R. Beene, J. R. Benhammou, Y. Bentefour, E. H. Chapman, J. W. Etzion, E. Ferretti, C. Guttman, N. Levin, D. S. Moshe, M. B. Silver, Y. Varner, R. L. Weaverdyck, C. Zhou, B. BE Yu, B TI Plasma Panel Sensors for Particle and Beam Detection SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB The plasma panel sensor (PPS) is an inherently digital, high gain, novel variant of micropattern gas detectors inspired by many operational and fabrication principles common to plasma display panels (PDPs). The PPS is comprised of a dense array of small, plasma discharge, gas cells within a hermetically-sealed glass panel, and is assembled from non-reactive, intrinsically radiation-hard materials such as glass substrates, metal electrodes and mostly inert gas mixtures. We are developing the technology to fabricate these devices with very low mass and small thickness, using gas gaps of at least a few hundred micrometers. Our tests with these devices demonstrate a spatial resolution of about 1 mm. We intend to make PPS devices with much smaller cells and the potential for much finer position resolutions. Our PPS tests also show response times of several nanoseconds. We report here our results in detecting betas, cosmic-ray muons, and our first proton beam tests. C1 [Friedman, P. S.] Integrated Sensors LLC, Ottawa Hills, OH 43606 USA. [Ball, R.; Chapman, J. W.; Ferretti, C.; Levin, D. S.; Weaverdyck, C.; Zhou, B.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Beene, J. R.; Varner, R. L.] Oak Ridge Natl Lab, Div Phys, POB 2008, Oak Ridge, TN 37831 USA. [Benhammou, Y.; Etzion, E.; Guttman, N.; Moshe, M. B.; Silver, Y.] Tel Aviv Univ, Sch Phys, IL-69978 Tel Aviv, Israel. [Bentefour, E. H.] Ion Beam Applicat, B-1348 Louvain, Belgium. RP Friedman, PS (reprint author), Integrated Sensors LLC, Ottawa Hills, OH 43606 USA. EM peter@isensors.net FU U. S. Department of Energy [DE-FG02-07ER84749, DE-SC0006204, DE-SC0006219]; Office of Nuclear Physics at the U. S. Department of Energy; United States-Israel Binational Science Foundation [2008123] FX Manuscript received November 17, 2012. This work was supported in part by the U. S. Department of Energy under Grant Numbers: DE-FG02-07ER84749, DE-SC0006204, and DE-SC0006219. This work was also partially supported by the Office of Nuclear Physics at the U. S. Department of Energy, and by the United States-Israel Binational Science Foundation under Grant No. 2008123. NR 15 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 1775 EP 1780 PG 6 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201187 ER PT S AU Zitzer, B Anderson, J Byrum, K Drake, G Krennrich, F Kreps, A Oberling, M Orr, M Schroedter, M Weinstein, A AF Zitzer, Benjamin Anderson, John Byrum, Karen Drake, Gary Krennrich, Frank Kreps, Andrew Oberling, Micheal Orr, Matthew Schroedter, Martin Weinstein, Amanda CA VERITAS Collaboration BE Yu, B TI The Topological Trigger System for the VERITAS Upgrade SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB VERITAS (Very Energetic Radiation Imaging Telescope Array System) is an array of four IACTs (Imaging Air Cherenkov Telescopes) located south of Tucson, Arizona, USA. VERITAS observes the Northern Hemisphere sky in VHE (E>100 GeV) gamma rays. A major upgrade of the VERITAS trigger electronics and cameras is currently underway. The upgrade aims to increase the sensitivity and lower the energy threshold of the instrument. The energy threshold can potentially be lowered by more stringent timing discrimination of accidental triggers due to night sky background (NSB). The new VERITAS FPGA-based pattern trigger has been in operation since Novemeber 2011 and provides more stringent timing discrimination by narrowing the required coincidence gate to as low as 3ns. Technical details and operational status of the new VERITAS pattern trigger will be detailed in this work. C1 [Zitzer, Benjamin; Anderson, John; Byrum, Karen; Drake, Gary; Kreps, Andrew; Oberling, Micheal] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. RP Zitzer, B (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM bzitzer@hep.anl.gov; krennrich@iastate.edu; mschroedter@cfa.harvard.edu FU U.S. Department of Energy, Basic Energy Sciences, Office of Science [DE-AC02-06CH11357]; US National Science Foundation; Smithsonian Institution; Science Foundation Ireland; STFC in the UK; NSERC in Canada FX VERITAS research is supported by grants from the US Department of Energy, the US National Science Foundation, the Smithsonian Institution, NSERC in Canada, Science Foundation Ireland, and STFC in the UK. We acknowledge the excellent work of the technical support staff at the FLWO and at the collaborating institutions in the construction and operation of the instrument. This work is supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under contract # DE-AC02-06CH11357. NR 5 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 1812 EP 1816 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201194 ER PT S AU Wu, JY AF Wu, Jinyuan BE Yu, B TI The Trapezoidal Clocking SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc DE Clocking; Synchronization; De-skew AB Usually, transmission lines such as coaxial cables, twist pair cables, printed circuit board traces etc. are carefully terminated to eliminate reflections when transmitting important signals such as system clocks. However, if appropriately designed, the reflection signal from the un-terminated cable end carries useful information which can be utilized to improve system performance. In this paper, multi-tap transmission lines with one open end are studied for clock distribution. When trapezoidal clock pulses with sufficiently long rising and falling ramps are fed into such a transmission line, the timing skews at different taps due to propagation delays can be compensated naturally as a result of the superposition of the transmitting and reflecting signals. Higher order effect due to resistive loss of the transmission lines is also discussed and the curve shapes of the raising/falling ramps for reducing higher order skews are derived and tested. Measurements are made on actual cables to validate this clock distribution scheme. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Wu, JY (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM jywu168@fnal.gov NR 6 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 1817 EP 1823 PG 7 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814201195 ER PT S AU Contarato, D Denes, P Doering, D Joseph, J Krieger, B Schindler, S AF Contarato, Devis Denes, Peter Doering, Dionisio Joseph, John Krieger, Brad Schindler, Simon BE Yu, B TI A 2.5 mu m Pitch CMOS Active Pixel Sensor in 65 nm Technology for Electron Microscopy SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB This work presents the design and characterization of a monolithic active pixel sensor manufactured in a commercial 65 nm CMOS process. The chip is the first prototype of our third generation development of CMOS pixel sensors as direct detectors for Transmission Electron Microscopy, and follows previous designs manufactured in 0.35 mu m and 0.18 mu m processes. The sensor features square pixels of 2.5 mu m pitch, arrayed on a 400x400 pixel matrix and subdivided in four sections implementing different layouts for the charge collecting diode and the readout transistors. The paper will present results from the characterization performed in the laboratory and in an electron microscope, including the evaluation of the sensor performance after irradiation to a 200 Mrad dose, and compare them to those obtained on the previous sensors. C1 [Contarato, Devis; Denes, Peter; Doering, Dionisio; Joseph, John; Krieger, Brad; Schindler, Simon] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Contarato, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM dcontarato@lbl.gov NR 8 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 2036 EP 2040 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814202031 ER PT S AU Park, R Miller, BW Jha, AK Furenlid, LR Hunter, WCJ Barrett, HH AF Park, Ryeojin Miller, Brian W. Jha, Abhinav K. Furenlid, Lars R. Hunter, William C. J. Barrett, Harrison H. BE Yu, B TI A Prototype Detector for a Novel High-Resolution PET System: BazookaPET SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc DE silicon photomultiplier (SiPM); image intensifier; monolithic LaBr3:Ce; PET imaging; molecular imaging; CCD-based gamma camera ID GAMMA-CAMERA; SILICON; SIPM; EMISSION; PERFORMANCE AB We have designed and are developing a novel proof-of-concept PET system called BazookaPET. In order to complete the PET configuration, at least two detector elements are required to detect positron-electron annihilation events. Each detector element of the BazookaPET has two independent data acquisition channels. One side of the scintillation crystal is optically coupled to a 4 x 4 silicon photomultiplier (SiPM) array and the other side is a CCO-based gamma camera. Using these two separate channels, we can obtain data with high energy, temporal and spatial resolution data by associating the data outputs via several maximum-likelihood estimation (MLE) steps. In this work, we present the concept of the system and the prototype detector element. We focus on characterizing individual detector channels, and initial experimental calibration results are shown along with preliminary performance-evaluation results. We measured energy resolution and the integrated traces of the slit-beam images from both detector channel outputs. A photo-peak energy resolution of similar to 5.3% FWHM was obtained from the SiPM and similar to 48% FWHM from the CCO at 662 keY. We assumed SiPM signals follow Gaussian statistics and estimated the 20 interaction position using MLE. Based on our the calibration experiments, we computed the Cramer-Rao bound (CRB) for the SiPM detector channel and found that the CRB resolution is better than 1 mm in the center of the crystal. C1 [Park, Ryeojin; Jha, Abhinav K.; Furenlid, Lars R.; Barrett, Harrison H.] Univ Arizona, Dept Med Imaging, Tucson, AZ 85724 USA. [Miller, Brian W.] Univ Arizona, Dept Radiol, Tucson, AZ 85724 USA. [Miller, Brian W.] Pacific NorthWest Natl Lab, Radiat Detect & Nucl Sci Grp, Richland, WA 99352 USA. [Hunter, William C. J.] Univ Washington, Dept Radiol, Seattle, WA 98195 USA. RP Park, R (reprint author), Univ Arizona, Dept Med Imaging, Tucson, AZ 85724 USA. EM rpark@email.arizona.edu RI Miller, Brian/A-3710-2014 OI Miller, Brian/0000-0002-3435-8268 FU NIH [P41 EB002035, R01 EB 000803]; Technology and Research Initiative Fund fellowship FX The Center for Gamma-Ray Imaging is supported by NIH Grant P41 EB002035. Aspects of this work were supported by NIH grant R01 EB 000803. R. Park, is partially supported by the Technology and Research Initiative Fund fellowship. The authors would like to thank Ronan 1. Havelin and H. B. Barber for assistance in image acquisition and insightful discussion. The authors also would like to thank James Proffitt of AiT Instruments for assistance in the SiPM data-acquisition electronics NR 30 TC 1 Z9 1 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 2123 EP 2127 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814202046 ER PT S AU Budassi, M Purschke, ML Fried, J Cao, T Stoll, S Gualtieri, E Karp, JS O'Connor, P Schlyer, DJ Woody, CL Vaska, P AF Budassi, M. Purschke, M. L. Fried, J. Cao, T. Stoll, S. Gualtieri, E. Karp, J. S. O'Connor, P. Schlyer, D. J. Woody, C. L. Vaska, P. BE Yu, B TI First Results from the BNL/Penn PET-MRI System for Whole Body Rodent Imaging at 9.4T SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB A new PET system has been developed for the purposes of simultaneous PET/MR whole body rodent imaging in conjunction with a Varian large-bore 9.4T MRI system with a commercial Insight birdcage coil. The detector and readout technology is based on that developed for the RatCAP PET system, resulting in a highly robust and compact design that is compatible with MRI systems at the highest field strength. Testing of the full readout chain has shown a successful implementation of both modalities, with indications of only modest cross-interference on MRI image quality or PET detection efficiency. The final design cycle is complete, and supports operation of the full system with upgrades to the data acquisition electronics, firmware, and software. First results from the complete PET system will be presented, including preliminary imaging and tests of interference between modalities. C1 [Budassi, M.; Purschke, M. L.; Fried, J.; Cao, T.; Stoll, S.; Gualtieri, E.; Karp, J. S.; O'Connor, P.; Schlyer, D. J.; Woody, C. L.; Vaska, P.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Budassi, M (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM vaska@bnl.gov NR 3 TC 1 Z9 1 U1 3 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 2753 EP 2755 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814202186 ER PT S AU Eiland, D Mitra, D Abdalah, M Buchko, R Gullberg, GT AF Eiland, Daniel Mitra, Debasis Abdalah, Mahmoud Buchko, Rostyslav Gullberg, Grant T. BE Yu, B TI SinoCor: Inter-frame and Intra-frame motion correction tool SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc C1 [Eiland, Daniel; Mitra, Debasis; Abdalah, Mahmoud] Florida Inst Technol, Melbourne, FL 32901 USA. [Buchko, Rostyslav; Gullberg, Grant T.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Eiland, D (reprint author), Florida Inst Technol, Melbourne, FL 32901 USA. NR 11 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 2963 EP 2966 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814203014 ER PT S AU Mohy-ud-Din, H Karakatsanis, NA Goddard, JS Baba, J Wills, W Tahari, AK Wong, DF Rahmim, A AF Mohy-ud-Din, Hassan Karakatsanis, Nicolas A. Goddard, James S. Baba, Justin Wills, William Tahari, Abdel K. Wong, Dean F. Rahmim, Arman BE Yu, B TI Generalized Dynamic PET Inter-Frame and Intra-Frame Motion Correction - Phantom and Human Validation Studies SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc DE inter-frame motion correction; intra-frame motion correction; Karcher's mean; inter-iteration smoothing; time-weighted averaged attenuation sinogram; (MLEM)-type deconvolution; transmission-emission mismatch artifacts ID POSITRON-EMISSION-TOMOGRAPHY; HEAD MOVEMENT; BRAIN IMAGES; IMPLEMENTATION; COMPENSATION; ROTATIONS; SYSTEM AB Patient motion can significantly hamper the high-resolution imaging capability of PET scanners. Frame-acquired (dynamic) PET images are degraded by inter-frame and intra-frame motion artifacts that can degrade the quantitative and qualitative analysis of acquired PET data. This calls for appropriate motion-correction techniques that can considerably reduce (ideally eliminate) inter-frame and intra-frame motion artifacts in dynamic PET images. We present a novel approach called Generalized Inter-frame and Intra-frame Motion Correction (GIIMC) algorithm [1] that unifies in one framework the inter-frame motion correction capability of Multiple Acquisition Frames and the intra-frame motion correction feature of (MLEM)-type Deconvolution methods. Our method employs a fairly simple but new approach of using time-weighted average of attenuation sinograms to reconstruct individual (dynamic) frames. We also provide a mean-motion threshold for individual frames to construct a framing sequence. We conduct three sets of experiments using a real-patient motion profile acquired by a Polaris motion tracker that estimates 3-D motion transformations during PET acquisition. The first experiment is based on the Conventional Approach where we use one of the attenuation sinograms (preferably the one corresponding to the J.L-map transformed by the median motion-transformation) to reconstruct individual frames. The second experiment is based on the Proposed Approach where we use the time-weighted average of attenuation sinograms to reconstruct individual frames. The third experiment is based on the Hypothetical Approach where we use the same attenuation sinogram in the forward projection (generating brain-sinograms) and back-projection (reconstructing images) processes. This approach is extremely pivotal in helping us to nail down the nature of motion artifacts that appear in motion-compensated images. Results from Hypothetical Approach clearly attribute these artifacts to transmission-emission mismatches induced by patient motion. We show, through extensive simulation studies and patient data that the proposed GIIMC algorithm outperforms conventional techniques producing images with superior quality and quantitative accuracy. Ongoing work revolves around markerless motion tracking approach to extract patient motion. We employ a novel natural feature tracking set-up that provides reliably accurate pose measurements without imposing any attachments to the head. Natural or intrinsic feature tracking performs numerous natural facial feature extractions followed by centroid computations that give reliably accurate pose measurements during scans for motion compensation. C1 [Mohy-ud-Din, Hassan; Rahmim, Arman] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21287 USA. [Karakatsanis, Nicolas A.; Wills, William; Tahari, Abdel K.; Wong, Dean F.; Rahmim, Arman] Johns Hopkins Univ, Dept Radiol & Radiol Sci, Baltimore, MD 21287 USA. [Goddard, James S.; Baba, Justin] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Mohy-ud-Din, H (reprint author), Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21287 USA. OI Karakatsanis, Nicolas/0000-0001-7326-3053 NR 42 TC 3 Z9 3 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 3067 EP 3078 PG 12 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814203038 ER PT S AU Baba, JS Bale, BA Scheel, LF Davern, SM McKnight, TE Fabris, L AF Baba, J. S. Bale, B. A. Scheel, Logan F. Davern, S. M. McKnight, T. E. Fabris, L. BE Yu, B TI Investigation of Cadmium Zinc Telluride Based System as a Room Temperature Planar Imager for Plant Functional Imaging SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB The development of plant based renewable sources of energy will greatly benefit from the development of a dedicated radionuclide SPECT imager. This will facilitate the elucidation of plant physiology geared towards optimizing the development of suitable biofuel feedstocks. Our efforts have focused on the development of a room temperature based gamma SPECT whole plant imager to enable functional imaging investigations. We report on the evaluation of a Redlen CZT planar imager system that successfully detected the presence of trace amounts (<1 mu Ci) of a 125-I labeled CmPP16-1 bioprobe that was introduced to plant leaves via carbon nano-fiber chip delivery. This establishes a basis for continued investigation of CZT based sensor technology for the development of a room temperature based, dedicated whole plant gamma SPECT imager. C1 [Baba, J. S.; Bale, B. A.; Scheel, Logan F.; Davern, S. M.; McKnight, T. E.; Fabris, L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Baba, JS (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM babajs@ornl.gov RI Fabris, Lorenzo/E-4653-2013 OI Fabris, Lorenzo/0000-0001-5605-5615 NR 6 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 3284 EP 3286 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814203085 ER PT S AU Xi, W McKisson, JE Weisenberger, AG Lee, S Taylor, M Stepanyan, A Zorn, C AF Xi, W. McKisson, J. E. Weisenberger, A. G. Lee, S. Taylor, M. Stepanyan, A. Zorn, C. BE Yu, B TI Calibration Methodology for a Dual-ended Readout Silicon Photomultiplier Based Depth-of-interaction PET Detector Module SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB We developed a novel calibration methodology for a PET detector with dual-ended readout of an LYSO array by two silicon photomultipliers (SiPMs). By introducing a detector gain balancing step in the calibration process, improved depth-of-interaction calibration uniformity and accuracy can be achieved. The entire calibration process has four steps: scintillation crystal array mappings for two SiPM readouts, detector gain balancing, energy calibration, and depth-of-interaction calibration. This document provides a detailed description on the detector calibration system setup. C1 [Xi, W.; McKisson, J. E.; Weisenberger, A. G.; Lee, S.; Taylor, M.; Stepanyan, A.; Zorn, C.] Jefferson Lab, Newport News, VA USA. RP Xi, W (reprint author), Jefferson Lab, Newport News, VA USA. EM wxi@jlab.org NR 4 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 3493 EP 3495 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814203134 ER PT S AU Budassi, M Stoll, S Purschke, ML Ravindranath, B Fried, J Cao, T Pratte, JF O'Connor, P Babst, B Woody, CL Vaska, P Schlyer, DJ AF Budassi, M. Stoll, S. Purschke, M. L. Ravindranath, B. Fried, J. Cao, T. Pratte, J. -F. O'Connor, P. Babst, B. Woody, C. L. Vaska, P. Schlyer, D. J. BE Yu, B TI First Results from the BNL Plant Imaging System SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB The BNL PET Imaging group has developed PET detector technology that can be used in many different configurations. The same technology has been adapted to a configuration with a larger diameter to accommodate plants up to a meter in height. The scanner is mounted on a computer controlled motorized support that can be moved up and down over 50 cm which allows for scanning the plants over nearly the entire length so that activity administered to the leaves can be followed as it migrates down the plant length to the roots. The larger field of view puts new demands on the image reconstruction processes since the vertical position of the scanner in relationship to the plant must be incorporated into the final image analysis. The details of the system construction will be described and preliminary imaging results presented. C1 [Budassi, M.; Cao, T.] SUNY Stony Brook, Stony Brook, NY 11794 USA. [Vaska, P.] SUNY Stony Brook, Dept Biomed Engn, Stony Brook, NY 11794 USA. [Stoll, S.; Purschke, M. L.; Ravindranath, B.; Fried, J.; Pratte, J. -F.; O'Connor, P.; Babst, B.; Woody, C. L.; Schlyer, D. J.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Budassi, M (reprint author), SUNY Stony Brook, Stony Brook, NY 11794 USA. EM schlyer@bnl.gov OI Babst, Benjamin/0000-0001-5657-0633 FU Brookhaven National Laboratory with U.S. Department of Energy [DE-AC02-98CH10886, 631-344-4587] FX This research was carried out at Brookhaven National Laboratory under contract DE-AC02-98CH10886 with the U.S. Department of Energy. Most authors are with Brookhaven National Laboratory, Upton, NY (e-mail: chlyer@bnl.gov, telephone: 631-344-4587) P. Vaska has a Joint Appointment with the Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY. NR 2 TC 2 Z9 2 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 3530 EP 3532 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814203144 ER PT S AU Lou, TP Mihailescu, L AF Lou, T. P. Mihailescu, L. BE Yu, B TI A Study of Proton Activation Tracer for Real-Time Dose Monitoring in Radiotherapy SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc AB In proton or heavy-ion therapies, in-beam dose monitoring is a desirable feature that can enhance the accuracy of delivered dosage and potentially improve the number of treatments allowed by a facility per day. While many gammas are generated from protons or heavy-ions passing through a patient's body, only a small fraction of these gammas are useful for locating the Bragg peaks. Extracting these gammas from the background can be more challenging than expected. This study attempts to decompose the gammas from the irradiation-induced activities into different species, spatial, energy, and time domains and applies these extracted information to typical operating parameters of proton therapy machines. In order to achieve a spatial resolution better than a few millimeters in a real-time measurement, the less abundant positron emitters that have lower activation threshold energies are considered. The study reveals that N-12 is a problematic activation product in soft tissue for in-beam dose monitor due to its high positron energy. This result eventually leads to a search of suitable proton activation tracers for dose monitoring purpose. Y-89 was identified as a potential tracer at the end of this search but further study shows that its application is currently limited by the amount of Y-89 deliverable to a tumor site. C1 [Lou, T. P.; Mihailescu, L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Lou, TP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM TPLou@LBL.gov; LMihailescu@LBL.gov NR 13 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 3895 EP 3897 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814203230 ER PT S AU Fochuk, P Dyachenko, L Ostapov, S Kopach, O Bolotnikov, AE James, RB AF Fochuk, P. Dyachenko, L. Ostapov, S. Kopach, O. Bolotnikov, A. E. James, R. B. BE Yu, B TI Software for Inclusions Recognition and Analisys SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc ID (CDZN)TE AB For the past years much attention has been paid to inclusion elimination in CdZnTe crystals used for radiation detectors. One of the important parts of this is accurate determinations of inclusion size and concentration. Usually researchers create their own software to calculate these parameters from IR transmission images. Therefore it is important to determine the validity of these programs. For this purpose we developed a software environment that can be used to model the real inclusion distribution in the sample volume and then analyze it. It includes two parts: (1) virtual crystal creation with a subsystem of different structural defect parameters such as types, sizes and distribution of defects (dot, linear and plane defects are supported; distributions: uniform, random, Poisson and Gaussian), and (2) IR images recognition to visualize inclusions and other defects created during scanning of actual crystals or generated by the first pro ram. Also, it is possible to view all created defects in the sample in three ways: in the three-dimensional image, in the set of test photos, and in the crystals description file where coordinates and the sizes of all created defects are stored. In the last case we can use the generated set of images for testing of the recognition quality of defects, a threshold under noise characteristics of the pictures, brightness and contrast. In addition the virtual crystal creation program is able to generate the defects with shadow from IR lantern. The recognition program is able to cut off the shadows and helps us to choose the optimal scanning step to minimize the shadows influence. Using the developed software we tested the correctness of our recognition algorithm. Furthermore, it allows for testing the recognition programs developed by other authors, and helps to choose the optimal IR scanning step for samples with different thickness. C1 [Fochuk, P.; Kopach, O.] Chernivtsi Natl Univ, Inorgan Chem, Chernovtsy, Ukraine. [Dyachenko, L.; Ostapov, S.] Chernivtsi Natl Univ, Program Software Comp Syst, Chernovtsy, Ukraine. [Bolotnikov, A. E.; James, R. B.] Brookhaven Natl Lab, Upton, NY USA. RP Fochuk, P (reprint author), Chernivtsi Natl Univ, Inorgan Chem, Chernovtsy, Ukraine. RI Fochuk, Petro/D-9409-2016; Kopach, Oleh/C-3993-2017 OI Fochuk, Petro/0000-0002-4149-4882; Kopach, Oleh/0000-0002-1513-5261 NR 7 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 4165 EP 4169 PG 5 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814204055 ER PT S AU Mandal, KC Muzykov, PG Chaudhuri, SK Terry, JR AF Mandal, Krishna C. Muzykov, Peter G. Chaudhuri, Sandeep K. Terry, J. Russell BE Yu, B TI High-Resolution x- and gamma-ray Detection Using 4H-SiC n-type Epitaxial Layer SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc ID SILICON-CARBIDE; SCHOTTKY DIODES AB Schottky barrier diode (SBD) radiation detectors on n-type 4H-SiC epitaxial layer have been fabricated and evaluated for low energy x- and gamma-rays detection. The detectors were highly sensitive to soft x-rays in the 50 eV to few keV range and showed 2.1 % resolution in detecting low energy gamma-rays of 59.6 keV from Am-241 x/gamma ray source. The detector's response to soft x-rays was significantly higher than that of commercial off-the-shelf (COTS) SiC UV photodiode. The devices have been characterized by current-voltage (I-V) measurements in the 94 - 700 K range, thermally stimulated current (TSC) spectroscopy, x-ray diffraction (XRD) rocking curve measurements, and defect delineating chemical etching. I-V characteristics of the detectors at 500 K showed low leakage current (< 2 nA at 200 V) revealing a possibility of high temperature operation. XRD rocking curve measurements revealed high quality of the epitaxial layer exhibiting full width at half maximum (FWHM) of the rocking curve similar to 3.6 arc sec. TSC studies in wide temperature range of 94 - 550 K revealed relatively shallow levels (similar to 0.25 eV) in the epi bulk with the density similar to 7x10(13) cm(-3) related to AI and B impurities and deeper levels located near the metal-semiconductor interface only. Our measurements showed no effect of charge trapping on detector's responsivity in the low energy x-ray range. C1 [Mandal, Krishna C.; Chaudhuri, Sandeep K.] Univ South Carolina, Dept Elect Engn, Columbia, SC 29208 USA. [Terry, J. Russell] Los Alamos Natl Lab, Intelligence & Space Res Div, Space Sci & Applicat Grp ISR 1, Los Alamos, NM 87545 USA. RP Mandal, KC (reprint author), Univ South Carolina, Dept Elect Engn, Columbia, SC 29208 USA. EM mandalk@cec.sc.edu FU Los Alamos National Laboratory/DOE [143479] FX This work was supported in part by Los Alamos National Laboratory/DOE (Grant #143479). NR 22 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 4216 EP 4221 PG 6 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814204065 ER PT S AU Chan, W Sams, V Kim, K Kassu, A James, R AF Chan, Wing Sams, Valissa Kim, KiHyun Kassu, Aschalew James, Ralph BE Yu, B TI Comparative Study of Dislocation Densities in CdZnTe Ingots Grown with Different Carbon Coatings SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc DE CdZnTe; dislocations; carbon-coating thickness; ampoule's shape; etch-pit densities ID CDTE CRYSTALS; ETCH-PIT; BRIDGMAN GROWTH; DEFECTS AB Cadmium Zinc Telluride (CdZnTe) is known to be one of the best room temperature X-ray and gamma-ray radiation detector's materials. However, the supply of high-quality CdZnTe detectors is limited due to crystal defects such as dislocations, impurities, Te inclusions that are generated during the crystal growth process. Dislocations are generated due to the stress/strain in the growth process. In this study, we characterized dislocation densities in CdZnTe crystals grown by different techniques (i.e. different carbon-coating thickness and ampoule's shapes) for the suggestion of better growth techniques. Dislocations densities were revealed using a Saucedo solution and analyzed by an infrared microscope. The thick carbon-coated ampoules generated fewer dislocations than the thin carbon-coated ampoule and the ampoule design did not affect the etch pit densities (EPD) as much than carbon-coating thickness. Also, we concluded that a proper crystal growth rate and cooling down rate is one important factor in minimizing dislocations in CdZnTe crystals. The effects of dislocations on the CdZnTe detector's performance was evaluated from the 241Am gamma-response, which fabricated from low and high densities of etch pit region. C1 [Chan, Wing; Sams, Valissa; Kassu, Aschalew] Alabama A&M Univ, Normal, AL 35762 USA. [Kim, KiHyun] Korea Univ, Dept Radiol Sci, Seoul, South Korea. [James, Ralph] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Chan, W (reprint author), Alabama A&M Univ, Normal, AL 35762 USA. EM wing.chan@aamu.edu; khkim1@korea.ac.kr; rjames@bnl.gov FU U.S. Department of Energy - Office of Education Program; NSF/DNDO Academic Research Infrastructure Program; ARI-MA Development of Improved CMT and CZT Radiation Detectors for Homeland Security Applications; Nonproliferation Research and Treaty Verification; Nonproliferation and National Security Department of Brookhaven National Laboratory FX Manuscript received November 16,2012. This work was supported in part by the U.S. Department of Energy - Office of Education Program, the NSF/DNDO Academic Research Infrastructure Program Entitled: ARI-MA Development of Improved CMT and CZT Radiation Detectors for Homeland Security Applications, Nonproliferation Research and Treaty Verification, NA22, and Nonproliferation and National Security Department of Brookhaven National Laboratory. NR 12 TC 1 Z9 1 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 4241 EP 4244 PG 4 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814204071 ER PT S AU Babentsov, V Sizov, F Franc, J James, RB AF Babentsov, V. Sizov, F. Franc, J. James, R. B. BE Yu, B TI Observations of a Deep-Donor Recharge and Its Influence on Trapping in Detector-Grade CdZnTe SO 2012 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE RECORD (NSS/MIC) SE IEEE Nuclear Science Symposium Conference Record LA English DT Proceedings Paper CT IEEE Nuclear Science Symposium / Medical Imaging Conference Record (NSS/MIC) / 19th Room-Temperature Semiconductor X-ray and Gamma-ray Detector Workshop CY OCT 29-NOV 03, 2012 CL Anaheim, CA SP IEEE, IEEE Nucl & Plasma Sci Soc ID CDTE AB We report on the recharging of the deep-donor that can drastically decrease the efficiency of charge collection in detector-grade CdZnTe:In crystals. We used several complementary experimental methods to characterize the material. Photoconductivity mapping was performed using measurements for both the contactless method and with evaporated Au contacts. Measurements of photoconductivity, photoconductivity quenching, surface photo voltage and thermoelectric effect spectroscopy revealed a rechargeable energy level at E-C-0.65 eV. Photoluminescence measurements identified this level as responsible for the 0.68-eV emission. Its neutral charge can be converted into a positive one by the downward displacement of the Fermi level, thus increasing the trapping of photoelectrons. Our research attributed this near-middle-gap donor level to a tellurium antisite, Te-Cd or Te vacancy. This report demonstrates that even in some carefully-grown samples of CdZnTe, unintentional impurities, mainly alkali metals or Te precipitates, can shift the Fermi level thus influencing carrier trapping. C1 [Babentsov, V.; Sizov, F.] Acad Sci, Inst Semicond Phys, UA-03028 Kiev, Ukraine. [Franc, J.] Charles Univ Prague, Fac Math & Phys, Inst Phys, CZ-12116 Prague, Czech Republic. [James, R. B.] Brookhaven Natl Lab, Natl Secur Dept, Upton, NY 11973 USA. RP Babentsov, V (reprint author), Acad Sci, Inst Semicond Phys, UA-03028 Kiev, Ukraine. EM v.babentsov@gmail.com RI Franc, Jan/C-3802-2017 OI Franc, Jan/0000-0002-9493-3973 FU US Department of Energy; Otlice of Nonproliferation and Verification Research and Development [NA-22.] FX Manuscript received November , 2012. This work was supported in part by the US Department of Energy, Otlice of Nonproliferation and Verification Research and Development, NA-22. NR 3 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1082-3654 BN 978-1-4673-2030-6; 978-1-4673-2028-3 J9 IEEE NUCL SCI CONF R PY 2012 BP 4255 EP 4257 PG 3 WC Engineering, Electrical & Electronic; Physics, Applied SC Engineering; Physics GA BHW16 UT WOS:000326814204074 ER PT S AU Nielson, GN Okandan, M Cruz-Campa, JL Resnick, PR Sanchez, CA Sweatt, WC Lentine, AL Gupta, VP Nelson, JS AF Nielson, G. N. Okandan, M. Cruz-Campa, J. L. Resnick, P. R. Sanchez, C. A. Sweatt, W. C. Lentine, A. L. Gupta, V. P. Nelson, J. S. BE Lin, Q Claeys, C Huang, D Wu, H Kuo, Y Huang, R Lai, K Zhang, Y Guo, Z Wang, S Liu, R Jiang, T Song, P Lam, C TI Next Generation Photovoltaic Cells and Systems through MEMS Technology SO CHINA SEMICONDUCTOR TECHNOLOGY INTERNATIONAL CONFERENCE 2012 (CSTIC 2012) SE ECS Transactions LA English DT Proceedings Paper CT China Semiconductor Technology International Conference (CSTIC) CY MAR 18-19, 2012 CL Shanghai, PEOPLES R CHINA AB We report on the application of MEMS and other microsystem technologies to photovoltaic (PV) cells, modules, and systems, taking advantage of several, significant benefits that are realized as the size of solar cells decrease to sub-mm length scales. To demonstrate these effects, we have developed both crystalline silicon and III-V PV cells. These cells are from 2 to 20 microns thick and from 250 microns to one millimeter across. We have demonstrated conversion efficiencies of up to 14.9% for a 14 micron thick crystalline silicon PV cell. This work contributes to two broad PV applications: 1) highly flexible PV modules with conversion efficiencies greater than 20%, and 2) commercial/utility scale PV systems using moderate concentration flat plate modules with simple single-axis or coarse dual-axis tracking. Cost models indicate that systems based on these technologies can achieve unsubsidized energy costs of less than $0.10/kWh. C1 [Nielson, G. N.; Okandan, M.; Cruz-Campa, J. L.; Resnick, P. R.; Sanchez, C. A.; Sweatt, W. C.; Lentine, A. L.; Gupta, V. P.; Nelson, J. S.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Nielson, GN (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 10 TC 1 Z9 1 U1 0 U2 1 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-318-6; 978-1-60768-319-3 J9 ECS TRANSACTIONS PY 2012 VL 44 IS 1 BP 1347 EP 1352 DI 10.1149/1.3694470 PG 6 WC Electrochemistry; Engineering, Electrical & Electronic; Physics, Applied SC Electrochemistry; Engineering; Physics GA BHH23 UT WOS:000325403600182 ER PT S AU Stuckless, JS Levich, RA AF Stuckless, John S. Levich, Robert A. BE Stuckless, JS TI Characterizing the proposed geologic repository for high-level radioactive waste at Yucca Mountain, Nevada-Hydrology and geochemistry SO HYDROLOGY AND GEOCHEMISTRY OF YUCCA MOUNTAIN AND VICINITY, SOUTHERN NEVADA AND CALIFORNIA SE Geological Society of America Memoir LA English DT Article; Book Chapter ID DISPOSAL; ZONES AB This hydrology and geochemistry volume is a companion volume to the 2007 Geological Society of America Memoir 199, The Geology and Climatology of Yucca Mountain and Vicinity, Southern Nevada and California, edited by Stuckless and Levich. The work in both volumes was originally reported in the U. S. Department of Energy regulatory document Yucca Mountain Site Description, for the site characterization study of Yucca Mountain, Nevada, as the proposed U. S. geologic repository for high-level radioactive waste. The selection of Yucca Mountain resulted from a nationwide search and numerous committee studies during a period of more than 40 yr. The waste, largely from commercial nuclear power reactors and the government's nuclear weapons programs, is characterized by intense penetrating radiation and high heat production, and, therefore, it must be isolated from the biosphere for tens of thousands of years. The extensive, unique, and often innovative geoscience investigations conducted at Yucca Mountain for more than 20 yr make it one of the most thoroughly studied geologic features on Earth. The results of these investigations contribute extensive knowledge to the hydrologic and geochemical aspects of radioactive waste disposal in the unsaturated zone. The science, analyses, and interpretations are important not only to Yucca Mountain, but also to the assessment of other sites or alternative processes that may be considered for waste disposal in the future. Groundwater conditions, processes, and geochemistry, especially in combination with the heat from radionuclide decay, are integral to the ability of a repository to isolate waste. Hydrology and geochemistry are discussed here in chapters on unsaturated zone hydrology, saturated zone hydrology, paleohydrology, hydrochemistry, radionuclide transport, and thermally driven coupled processes affecting long-term waste isolation. This introductory chapter reviews some of the reasons for choosing to study Yucca Mountain as a repository site. C1 [Stuckless, John S.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [Levich, Robert A.] US DOE, Las Vegas, NV 89107 USA. RP Stuckless, JS (reprint author), US Geol Survey, Denver Fed Ctr, MS 421, Denver, CO 80225 USA. NR 38 TC 2 Z9 2 U1 0 U2 2 PU GEOLOGICAL SOC AMER INC PI BOULDER PA 3300 PENROSE PL, PO BOX 9140, BOULDER, CO 80301 USA SN 0072-1069 BN 978-0-8137-1209-3 J9 GEOL SOC AM MEM JI Geol. Soc. Am. Mem. PY 2012 VL 209 BP 1 EP 7 DI 10.1130/2012.1209(01) D2 10.1130/9780813712093 PG 7 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA BHX41 UT WOS:000326933300001 ER PT S AU Belcher, WR Stuckless, JS James, SC AF Belcher, Wayne R. Stuckless, John S. James, Scott C. BE Stuckless, JS TI The saturated zone hydrology of Yucca Mountain and the surrounding area, southern Nevada and adjacent areas of California, USA SO HYDROLOGY AND GEOCHEMISTRY OF YUCCA MOUNTAIN AND VICINITY, SOUTHERN NEVADA AND CALIFORNIA SE Geological Society of America Memoir LA English DT Article; Book Chapter ID DEVILS-HOLE; SOUTHWESTERN NEVADA; GROUNDWATER SYSTEM; RECHARGE; SITE; FLOW; FRAMEWORK; POROSITY; AQUIFER; MODELS AB In 2002, Yucca Mountain, Nevada, was selected as the proposed site for the U.S. high-level nuclear waste repository. Yucca Mountain lies within a large topographically closed basin, in which surface water is internally drained. Groundwater, however, can and does flow into and out of this basin at depth through a regional carbonate-rock aquifer (commonly referred to as the lower carbonate-rock aquifer). Most groundwater recharge (water infiltrating downward through the unsaturated zone into the water table) originates in the highlands north of Yucca Mountain and flows generally southward. Some groundwater discharges within the basin, as in Oasis Valley and the southern Amargosa Desert, but the ultimate discharge is in Death Valley, where water is returned to the atmosphere by evapotranspiration. Groundwater flows through a heterogeneous medium produced by a complex geologic history including both compressional and extensional tectonics. For hydrologic purposes, the rocks and alluvium are divided into 25 hydrogeologic units. Regionally, the most important unit for regional groundwater flow is composed of Paleozoic carbonate rocks, which are locally separated into two aquifers by an intervening shale. Rocks of the southwestern Nevada volcanic field form thick deposits in the northern part of the basin, and these rocks host both aquifers and confining units. The potentiometric surface of the site-scale flow system contains areas of large hydraulic gradient (as great as 0.13) and small hydraulic gradient (as small as 0.0001). Both extremes are found within the Yucca Mountain site area, where they are well constrained by numerous boreholes. At Yucca Mountain, a single borehole penetrates to the regional carbonate-rock aquifer, and, at this locality, the hydraulic head at depth is 20 m greater than in the overlying volcanic rocks. This head difference is likely widespread, as indicated by thermal highs at the groundwater table in the vicinity of block-bounding faults, where upward leakage of water from the regional carbonate-rock aquifer is postulated. Since the early 1980s, numerous two-and three-dimensional flow models have been developed to depict regional groundwater flow. A 2004 transient flow model of the Death Valley region has 16 layers and a 1500 m/side horizontal grid; it is composed of 194 rows and 160 columns. The model was first calibrated to a steady-state condition and then to transient conditions. The model matches observed flow patterns well, and it generally agrees with measured water levels except in areas of large hydraulic gradient. The regional model provides the boundary conditions for a detailed site-scale flow model. The finite-element heat and mass transfer code, FEHM v2.24, was used to simulate flow through the saturated zone at Yucca Mountain. Cells in the site-scale model are 250 m/side in the horizontal grid; it is composed of 181 rows and 121 columns. The model may use as many as 67 layers, but the framework model allows a stair-stepped ground surface, so the number of layers is variable. Layer thickness ranges from 600 m at the bottom of the model to 10 m south of Yucca Mountain. The site-scale flow model was constructed and calibrated, matching observed hydrologic data well. The site-scale flow model provides a means for assessing the hypothetical flow path for any radioactive materials originating from the proposed repository. C1 [Belcher, Wayne R.] US Geol Survey, Henderson, NV 89074 USA. [Stuckless, John S.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. [James, Scott C.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Belcher, WR (reprint author), US Geol Survey, 160 North Stephanie St, Henderson, NV 89074 USA. OI James, Scott/0000-0001-7955-0491 NR 183 TC 7 Z9 7 U1 1 U2 1 PU GEOLOGICAL SOC AMER INC PI BOULDER PA 3300 PENROSE PL, PO BOX 9140, BOULDER, CO 80301 USA SN 0072-1069 BN 978-0-8137-1209-3 J9 GEOL SOC AM MEM JI Geol. Soc. Am. Mem. PY 2012 VL 209 BP 73 EP 142 DI 10.1130/2012.1209(03) D2 10.1130/9780813712093 PG 70 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA BHX41 UT WOS:000326933300003 ER PT S AU Simmons, AM Neymark, LA AF Simmons, Ardyth M. Neymark, Leonid A. BE Stuckless, JS TI Conditions and processes affecting radionuclide transport SO HYDROLOGY AND GEOCHEMISTRY OF YUCCA MOUNTAIN AND VICINITY, SOUTHERN NEVADA AND CALIFORNIA SE Geological Society of America Memoir LA English DT Article; Book Chapter ID VALLEY CALDERA COMPLEX; NEVADA VOLCANIC FIELD; GRANITIC GROUNDWATER SYSTEMS; NUCLEAR-WASTE REPOSITORY; SILICA MINERAL FORMATION; STABLE-ISOTOPE EVIDENCE; PENA-BLANCA DISTRICT; TOPOPAH SPRING TUFF; ASH-FLOW TUFFS; YUCCA MOUNTAIN AB Characteristics of host rocks, secondary minerals, and fluids would affect the transport of radionuclides from a previously proposed repository at Yucca Mountain, Nevada. Minerals in the Yucca Mountain tuffs that are important for retarding radionuclides include clinoptilolite and mordenite (zeolites), clay minerals, and iron and manganese oxides and hydroxides. Water compositions along flow paths beneath Yucca Mountain are controlled by dissolution reactions, silica and calcite precipitation, and ion-exchange reactions. Radionuclide concentrations along flow paths from a repository could be limited by (1) low waste-form dissolution rates, (2) low radionuclide solubility, and (3) radionuclide sorption onto geological media. The chief sources of radioactivity in spent nuclear fuel are americium, plutonium, and neptunium. Therefore, studies have concentrated on their geochemical mobility. Uranium-233, uranium-234, iodine-129, technetium-99, and other radionuclides also have been included in some experiments. Solubilities were determined experimentally in representative Yucca Mountain waters. Sorption coefficients were determined using water, rock, and pure mineral samples from Yucca Mountain. Batch experiments were performed at several pH levels and oxidizing conditions. Dynamic transport-column experiments, diffusion experiments, and solid-rock beaker experiments also were conducted. The batch tests gave slightly lower retardation factors than those derived from column-breakthrough experiments. This finding indicates that using batch-sorption coefficients to predict radionuclide transport will yield conservative results in a performance assessment. Understanding of unsaturated-zone transport is based on laboratory and field-scale experiments. Fractures provide advective transport pathways. Sorption and matrix diffusion may contribute to retardation of radionuclides. Conversely, sorption onto mobile colloids may enhance radionuclide transport. C1 [Simmons, Ardyth M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Neymark, Leonid A.] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA. EM ardythms@aol.com NR 277 TC 4 Z9 4 U1 2 U2 14 PU GEOLOGICAL SOC AMER INC PI BOULDER PA 3300 PENROSE PL, PO BOX 9140, BOULDER, CO 80301 USA SN 0072-1069 BN 978-0-8137-1209-3 J9 GEOL SOC AM MEM JI Geol. Soc. Am. Mem. PY 2012 VL 209 BP 277 EP 362 DI 10.1130/2012.1209(06) D2 10.1130/9780813712093 PG 86 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA BHX41 UT WOS:000326933300006 ER PT S AU Tsang, Y AF Tsang, Yvonne BE Stuckless, JS TI Effects of coupled processes on a proposed high-level radioactive waste repository at Yucca Mountain, Nevada SO HYDROLOGY AND GEOCHEMISTRY OF YUCCA MOUNTAIN AND VICINITY, SOUTHERN NEVADA AND CALIFORNIA SE Geological Society of America Memoir LA English DT Article; Book Chapter ID SATURATED FRACTURED TUFF; DRIFT SCALE TEST; UNSATURATED ZONE; HEATER TEST; FLUID-FLOW; THERMOHYDROLOGIC CONDITIONS; HYDROTHERMAL ALTERATION; EMPLACEMENT TUNNELS; REACTIVE TRANSPORT; ROCK AB Heat from radionuclide decay causes coupled thermal (T), hydrological (H), chemical (C), and mechanical (M) processes in the rock mass. These coupled processes impact the ability of a repository to isolate waste by affecting water seepage into waste-emplacement drifts and by affecting radionuclide transport. The U.S. Department of Energy's Thermal Testing Program at the proposed high-level radioactive waste repository at Yucca Mountain, Nevada, began in the mid-1990s and consisted of three large-scale in situ thermal tests. Although in 2010, the U.S. government decided to pursue alternative solutions to geologic disposal of radioactive waste at Yucca Mountain, the work reported throughout this volume refers to "the proposed repository" at Yucca Mountain, which was the status at the time the chapters were written (2009). The main objective of these thermal tests was to gain an in-depth understanding of the coupled THCM processes that would occur in the repository rock. Numerical models that capture coupled processes were constructed for the respective thermal tests, and the predictions from these numerical models, when compared to measured data, enabled the evaluation of processes occurring in the thermal tests. In turn, analysis of the thermal tests, particularly of the drift-scale test (the largest of these tests), has provided information on THCM processes that were incorporated in drift-scale and mountain-scale numerical models for the proposed repository at Yucca Mountain to predict repository performance during thermal loading. Such coupled-processes models for the proposed repository show that TH processes would produce a vaporization barrier, which would prevent water from seeping into the drifts when the temperature near the drifts rises above boiling. THC and THM processes cause permeability changes that modify flow paths near the drifts and, in turn, seepage of water into drifts. The impact of thermally driven coupled processes is largest near the drifts, where the increase in temperature is the greatest. Further away (tens of meters) from the drifts, the impact of THCM processes on radionuclide transport is insignificant. The detailed THCM studies at Yucca Mountain indicate that, overall, the effects of heating due to radioactive decay would not degrade the long-term ability of the proposed repository to isolate waste. On the contrary, the THCM coupled processes lead to more diversion of water around and less seepage into the waste-emplacement drifts than that at ambient conditions, thus making Yucca Mountain a more effective natural barrier to potential release of radionuclides to the biosphere. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Tsang, Y (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. NR 60 TC 5 Z9 5 U1 0 U2 1 PU GEOLOGICAL SOC AMER INC PI BOULDER PA 3300 PENROSE PL, PO BOX 9140, BOULDER, CO 80301 USA SN 0072-1069 BN 978-0-8137-1209-3 J9 GEOL SOC AM MEM JI Geol. Soc. Am. Mem. PY 2012 VL 209 BP 363 EP 393 DI 10.1130/2012.1209(07) D2 10.1130/9780813712093 PG 31 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA BHX41 UT WOS:000326933300007 ER PT S AU MacDowell, AA Parkinson, DY Haboub, A Schaible, E Nasiatka, JR Yee, CA Jameson, JR Ajo-Franklin, JB Brodersen, CR McElrone, AJ AF MacDowell, A. A. Parkinson, D. Y. Haboub, A. Schaible, E. Nasiatka, J. R. Yee, C. A. Jameson, J. R. Ajo-Franklin, J. B. Brodersen, C. R. McElrone, A. J. BE Stock, SR TI X-ray micro-Tomography at the Advanced Light Source SO DEVELOPMENTS IN X-RAY TOMOGRAPHY VIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Developments in X-Ray Tomography VIII CY AUG 13-15, 2012 CL San Diego, CA SP SPIE DE X-ray micro-Tomography; X-ray; micro-tomography; synchrotron ID EMBOLISM REPAIR; LAURUS-NOBILIS; RESOLUTION; MICROTOMOGRAPHY AB The X-ray micro-Tomography Facility at the Advanced Light Source has been in operation since 2004. The source is a superconducting bend magnet of critical energy 11.5 keV; photon energy coverage is 8-45 KeV in monochromatic mode, and a filtered white light option yields useful photons up to 50 keV. A user-friendly graphical user interface allows users to collect tomographic and radiographic data sets with options including tiled and time series data sets. We will focus on recent projects that utilize sample environments for in-situ imaging. These environments include a high pressure triaxial flow cell which has allowed study of supercritical CO2 transport through brine-saturated sandstone at pressures typical of in-situ conditions for subsurface CO2 sequestration and water transportation within live plants. C1 [MacDowell, A. A.; Parkinson, D. Y.; Haboub, A.; Schaible, E.; Nasiatka, J. R.; Yee, C. A.; Jameson, J. R.; Ajo-Franklin, J. B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP MacDowell, AA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RI Ajo-Franklin, Jonathan/G-7169-2015; Brodersen, Craig/J-1112-2016; Parkinson, Dilworth/A-2974-2015; OI Brodersen, Craig/0000-0002-0924-2570; Parkinson, Dilworth/0000-0002-1817-0716; Ajo-Franklin, Jonathan/0000-0002-6666-4702 NR 20 TC 12 Z9 12 U1 0 U2 10 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9223-4 J9 PROC SPIE PY 2012 VL 8506 AR UNSP 850618 DI 10.1117/12.930243 PG 14 WC Optics; Radiology, Nuclear Medicine & Medical Imaging SC Optics; Radiology, Nuclear Medicine & Medical Imaging GA BHN31 UT WOS:000325968800035 ER PT S AU Miller, EA Xiao, XH Miller, M Keller, P White, TA Marshall, M AF Miller, Erin A. Xiao, Xianghui Miller, Micah Keller, Paul White, Timothy A. Marshall, Matthew BE Stock, SR TI Investigating biofilm structure using X-ray microtomography and gratings-based phase contrast SO DEVELOPMENTS IN X-RAY TOMOGRAPHY VIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Developments in X-Ray Tomography VIII CY AUG 13-15, 2012 CL San Diego, CA SP SPIE DE x-ray imaging; microtomography; synchrotron; phase contrast; Talbot imaging; biofilm; Shewanella oneidensis ID SHEWANELLA AB Direct examination of natural and engineered environments has revealed that the majority of microorganisms in these systems live in structured communities termed biofilms. To gain a better understanding for how biofilms function and interact with their local environment, fundamental capabilities for enhanced visualization, compositional analysis, and functional characterization of biofilms are needed. For pore-scale and community-scale analysis (100"s of nm to 10"s of microns), a variety of surface tools are available. However, understanding biofilm structure in complex three-dimensional (3-D) environments is considerably more difficult. X-ray microtomography can reveal a biofilm"s internal structure, but obtaining sufficient contrast to image low atomic number (Z) biological material against a higher-Z substrate makes detecting biofilms difficult. Here we present results imaging Shewanella oneidensis biofilms on a Hollow-fiber Membrane Biofilm Reactor (HfMBR), using the x-ray microtomography system at sector 2-BM of the Advanced Photon Source (APS), at energies ranging from 12.9-15.4 keV and pixel sizes of 0.7 and 1.3 mu m/pixel. We examine the use of osmium (Os) as a contrast agent to enhance biofilm visibility and demonstrate that staining improves imaging of hydrated biofilms. We also present results using a Talbot interferometer to provide phase and scatter contrast information in addition to absorption. Talbot interferometry allows imaging of unstained hydrated biofilms with phase contrast, while absorption contrast primarily highlights edges and scatter contrast provides little information. However, the gratings used here limit the spatial resolution to no finer than 2 mu m, which hinders the ability to detect small features. Future studies at higher resolution or higher Talbot order for greater sensitivity to density variations may improve imaging. C1 [Miller, Erin A.; Miller, Micah; Keller, Paul; White, Timothy A.; Marshall, Matthew] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Miller, EA (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. NR 22 TC 1 Z9 1 U1 1 U2 8 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9223-4 J9 PROC SPIE PY 2012 VL 8506 AR UNSP 85061H DI 10.1117/12.930105 PG 9 WC Optics; Radiology, Nuclear Medicine & Medical Imaging SC Optics; Radiology, Nuclear Medicine & Medical Imaging GA BHN31 UT WOS:000325968800041 ER PT S AU Xiao, XH Fusseis, F De Carlo, F AF Xiao, Xianghui Fusseis, Florian De Carlo, Francesco BE Stock, SR TI X-ray fast tomography and its applications in dynamical phenomena studies in geosciences at Advanced Photon Source SO DEVELOPMENTS IN X-RAY TOMOGRAPHY VIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Developments in X-Ray Tomography VIII CY AUG 13-15, 2012 CL San Diego, CA SP SPIE DE synchrotron radiation tomography; fast tomography; time resolving; phase contrast imaging; geosciences; dynamics; image processing; environmental cell ID PHASE-CONTRAST TOMOGRAPHY; RETRIEVAL; MICROTOMOGRAPHY; FORMULAS; DISTANCE AB State-of-art synchrotron radiation based micro-computed tomography provides high spatial and temporal resolution. This matches the needs of many research problems in geosciences. In this letter we report the current capabilities in microtomography at sector 2BM at the Advanced Photon Source (APS) of Argonne National Laboratory. The beamline is well suited to routinely acquire three-dimensional data of excellent quality with sub-micron resolution. Fast cameras in combination with a polychromatic beam allow time-lapse experiments with temporal resolutions of down to 200 ms. Data processing utilizes quantitative phase retrieval to optimize contrast in phase contrast tomographic data. The combination of these capabilities with purpose-designed experimental cells allows for a wide range of dynamic studies on geoscientific topics, two of which are summarized here. In the near future, new experimental cells capable of simulating conditions in most geological reservoirs will be available for general use. Ultimately, these advances will be matched by a new wide-field imaging beam line, which will be constructed as part of the APS upgrade. It is expected that even faster tomography with larger field of view can be conducted at this beam line, creating new opportunities for geoscientific studies. C1 [Xiao, Xianghui; De Carlo, Francesco] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. RP Xiao, XH (reprint author), Argonne Natl Lab, Adv Photon Source, 9700 S Cass Ave, Lemont, IL 60439 USA. RI Fusseis, Florian/M-5321-2016 OI Fusseis, Florian/0000-0002-3104-8109 NR 26 TC 4 Z9 4 U1 7 U2 15 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9223-4 J9 PROC SPIE PY 2012 VL 8506 AR UNSP 85060K DI 10.1117/12.936331 PG 8 WC Optics; Radiology, Nuclear Medicine & Medical Imaging SC Optics; Radiology, Nuclear Medicine & Medical Imaging GA BHN31 UT WOS:000325968800016 ER PT S AU Taylor, G Ellis, RA Harvey, RW Hosea, JC Smirnov, AP AF Taylor, G. Ellis, R. A. Harvey, R. W. Hosea, J. C. Smirnov, A. P. BE Westerhof, E Nuij, PWJM TI ECRH/EBWH SYSTEM FOR NSTX-U SO EC-17 - 17TH JOINT WORKSHOP ON ELECTRON CYCLOTRON EMISSION AND ELECTRON CYCLOTRON RESONANCE HEATING SE EPJ Web of Conferences LA English DT Proceedings Paper CT 17th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC) CY MAY 07-10, 2012 CL Eindhoven Univ Technol, Control Syst Technol, Deurne, NETHERLANDS SP Eindhoven Univ Technol, Sci & Technol Nucl Fus Sect, Dutch Inst Fundamental Energy Res, FOM Inst, Gycom, Commun & Power Ind, Gen Atom, Eindhoven Univ Technol, Dutch Inst Fundamental Energy Res HO Eindhoven Univ Technol, Control Syst Technol ID PLASMA; WAVES; MODE AB The National Spherical Torus Experiment Upgrade (NSTX-U) will operate at an axial toroidal field of up to 1 T, about twice the field available on NSTX. A 28 GHz electron cylotron resonance heating (ECRH) system is currently being planned for NSTX-U. A 1 MW 28 GHz gyrotron will be employed. Intially the system will use short, 10-50 ms, 1 MW pulses for ECRH-assisted discharge start-up. Later the pulse length will be extended to 1-5 s to study electron Bernstein wave heating (EBWH) during the plasma current flat top. A mirror launcher will be used to couple microwave power to the plasma via O-mode to the slow X-mode to EBW (O-X-B) double mode conversion. This paper presents a pre-conceptual design for the ECRH/EBWH system proposed for NSTX-U and includes ray tracing and Fokker-Planck modeling results for 28 GHz ECRH during plasma start-up and EBW heating and current drive during the plasma current flattop of a NSTX-U advanced H-mode plasma scenario. C1 [Taylor, G.; Ellis, R. A.; Hosea, J. C.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Taylor, G (reprint author), Princeton Univ, Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Smirnov, Alexander /A-4886-2014; P V, Subhash/C-6249-2017 OI P V, Subhash/0000-0001-5409-5154 NR 16 TC 3 Z9 3 U1 0 U2 4 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2012 VL 32 AR 02014 DI 10.1051/epjconf/20123202014 PG 6 WC Physics, Fluids & Plasmas; Physics, Condensed Matter SC Physics GA BHQ65 UT WOS:000326388800030 ER PT S AU Du, MH Biswas, K Singh, DJ AF Du, Mao-Hua Biswas, Koushik Singh, David J. BE James, RB Burger, A Franks, LA Fiederle, M TI Resistivity, carrier trapping, and polarization phenomenon in semiconductor radiation detection materials SO HARD X-RAY, GAMMA-RAY, AND NEUTRON DETECTOR PHYSICS XIV SE Proceedings of SPIE LA English DT Proceedings Paper CT SPIE Conference on Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIV CY AUG 13-15, 2012 CL San Diego, CA SP SPIE DE Radiation detection; semiconductor; CdTe; TlBr; Tl6SeI4; resistivity; defects; polarization phenomenon ID ELECTRICAL-PROPERTIES; (CD,ZN)TE CRYSTALS; PEROVSKITE OXIDES; TLBR DETECTORS; GAMMA-RAY; X-RAY; CDTE; COMPENSATION; PERFORMANCE; GROWTH AB In this paper, we report theoretical studies of native defects and dopants in a number of room-temperature semiconductor radiation detection materials, i.e., CdTe, TlBr, and Tl6SeI4. We address several important questions, such as what causes high resistivity in these materials, what explains good mu tau product (carrier mobility-lifetime product) in soft-lattice ionic compounds that have high defect density, and how to obtain high resistivity and low carrier trapping simultaneously. Our main results are: (1) shallow donors rather than deep ones are responsible for high resistivity in high-quality detectorgrade CdTe; (2) large dielectric screening and the lack of deep levels from low-energy native defects may contribute to the good mu tau products for both electrons and holes in TlBr; (3) the polarization phenomenon in Tl6SeI4 is expected to be much reduced compared to that in TlBr. C1 [Du, Mao-Hua] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Du, MH (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Du, Mao-Hua/B-2108-2010 OI Du, Mao-Hua/0000-0001-8796-167X NR 49 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9224-1 J9 PROC SPIE PY 2012 VL 8507 AR 85070M DI 10.1117/12.930072 PG 11 WC Optics; Physics, Particles & Fields SC Optics; Physics GA BHT68 UT WOS:000326642600008 ER PT S AU Du, MH Biswas, K Singh, DJ AF Du, Mao-Hua Biswas, Koushik Singh, David J. BE James, RB Burger, A Franks, LA Fiederle, M TI Electronic structure, energy transport, and optical properties of halide scintillators SO HARD X-RAY, GAMMA-RAY, AND NEUTRON DETECTOR PHYSICS XIV SE Proceedings of SPIE LA English DT Proceedings Paper CT SPIE Conference on Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIV CY AUG 13-15, 2012 CL San Diego, CA SP SPIE DE Scintillator; halide; electronic structure; polaron; self-trapped exciton; optical properties ID AUGMENTED-WAVE METHOD; THALLIUM LEAD IODIDE; ANOMALOUS EMISSION; CRYSTALS; RAY; SPECTROSCOPY; ELPASOLITES; GROWTH AB There are thousands of halides that are potentially useful as scintillator hosts. Establishing understanding of trends and fundamental mechanisms for energy transport is important for identifying those that are most likely to be useful. We report calculations of electronic structures in relation to energy transport and optical properties in halide scintillators. These include hybrid functional studies of rare earth activator energy levels, calculations of self-trapping energies of carriers, and electronic structures in relation to energy transport in elpasolites. We use the relationship between electronic structure and energy transport to suggest a path for identifying new high light output elpasolite scintillators. We also present the electronic structure for TlPbI3, which with activation is a potential low band gap scintillator. C1 [Du, Mao-Hua] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Du, MH (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Du, Mao-Hua/B-2108-2010 OI Du, Mao-Hua/0000-0001-8796-167X NR 32 TC 0 Z9 0 U1 2 U2 6 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9224-1 J9 PROC SPIE PY 2012 VL 8507 AR 850705 DI 10.1117/12.929131 PG 9 WC Optics; Physics, Particles & Fields SC Optics; Physics GA BHT68 UT WOS:000326642600003 ER PT S AU Simms, LM Jernigan, JG Malphrus, BK McNeil, R Brown, KZ Rose, TG Lim, HS Anderson, S Kruth, JA Doty, JP Wampler-Doty, M Cominsky, LR Prasad, KS Thomas, ET Combs, MS Kroll, RT Cahall, BJ Turba, TT Molton, BL Powell, MM Fitzpatrick, JF Graves, DC Gaalema, SD Sun, SM AF Simms, Lance M. Jernigan, J. Garrett Malphrus, Benjamin K. McNeil, Roger Brown, Kevin Z. Rose, Tyler G. Lim, Hyoung Sup Anderson, Steve Kruth, Jeffrey A. Doty, John P. Wampler-Doty, Matthew Cominsky, Lynn R. Prasad, Kamal S. Thomas, Eric T. Combs, Michael S. Kroll, Robert T. Cahall, Benjamin J. Turba, Tyler T. Molton, Brandon L. Powell, Margaret M. Fitzpatrick, Jonathan F. Graves, Daniel C. Gaalema, Stephen D. Sun, Shunming BE James, RB Burger, A Franks, LA Fiederle, M TI CXBN: A Blueprint for an Improved Measurement of the Cosmological X-ray Background SO HARD X-RAY, GAMMA-RAY, AND NEUTRON DETECTOR PHYSICS XIV SE Proceedings of SPIE LA English DT Proceedings Paper CT SPIE Conference on Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIV CY AUG 13-15, 2012 CL San Diego, CA SP SPIE DE X-ray Background; CZT Detectors; NanoSat; Hard X-ray ID NEAR-EARTH ORBIT; HEAO-1 AB A precise measurement of the Cosmic X-ray Background (CXB) is crucial for constraining models of the evolution and composition of the universe. While several large, expensive satellites have measured the CXB as a secondary mission, there is still disagreement about normalization of its spectrum. The Cosmic X-ray Background NanoSat (CXBN) is a small, low-cost satellite whose primary goal is to measure the CXB over its two-year lifetime. Benefiting from a low instrument-induced background due to its small mass and size, CXBN will use a novel, pixelated Cadmium Zinc Telluride (CZT) detector with energy resolution < 1 keV over the range 1-60 keV to measure the CXBN with unprecedented accuracy. This paper describes CXBN and its science payload, including the GEANT4 model that has been used to predict overall performance and the backgrounds from secondary particles in Low Earth Orbit. It also addresses the strategy for scanning the sky and calibrating the data, and presents the expected results over the two-year mission lifetime. C1 [Simms, Lance M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Simms, LM (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 14 TC 0 Z9 0 U1 0 U2 2 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9224-1 J9 PROC SPIE PY 2012 VL 8507 AR 850719 DI 10.1117/12.953573 PG 12 WC Optics; Physics, Particles & Fields SC Optics; Physics GA BHT68 UT WOS:000326642600021 ER PT J AU Karnesky, RA Yang, NYC Marchi, CS Topping, TD Zhang, ZU Li, Y Lavernia, EJ AF Karnesky, Richard A. Yang, Nancy Y. C. Marchi, Chris San Topping, Troy D. Zhang, Zhiui Li, Ying Lavernia, Enrique J. BE Weiland, H Rollett, AD Cassada, WA TI Solute Distribution and Mechanical Properties of Ultra-Fine-Grained Al-Mg Alloys SO PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON ALUMINUM ALLOYS (ICAA13) LA English DT Proceedings Paper CT 13th International Conference on Aluminum Alloys (ICAA) CY JUN 03-07, 2012 CL Carnegie Mellon Univ, Pittsburgh, PA SP TMS HO Carnegie Mellon Univ DE atom-probe tomography; cryomilled; magnesium; nanocrystalline ID SPECIMEN PREPARATION; BEHAVIOR; MICROSTRUCTURE; DEFORMATION; TEMPERATURE; DUCTILITY; STRENGTH; SIZE AB Ultra-fine-grained (d similar to 200 nm) Al-Mg alloys exhibit outstanding strength due to both Hall-Petch grain-size strengthening and solid-solution strengthening. When the solubility limit is exceeded, some Mg segregates to grain boundaries. This impacts both thermal stability and mechanical properties. In this study, alloys with between 0 wt.% Mg (pure Al) and 10.5 wt.% Mg are made by ball milling powders in liquid nitrogen, and consolidated by hot isostatic pressing and extrusion. The alloys are exposed to temperatures up to 500 deg. C. Microhardness and tensile behavior are measured and correlated with the microstructure, as measured by local-electrode atom-probe tomography, X-ray diffraction, and electron microscopy. C1 [Karnesky, Richard A.; Yang, Nancy Y. C.; Marchi, Chris San] Sandia Natl Labs, Livermore, CA 94550 USA. RP Karnesky, RA (reprint author), Sandia Natl Labs, 7011 East Ave, Livermore, CA 94550 USA. RI Karnesky, Richard/D-1649-2010 OI Karnesky, Richard/0000-0003-4717-457X NR 16 TC 0 Z9 0 U1 1 U2 2 PU JOHN WILEY & SONS PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER, W SUSSEX PO 19 8SQ, ENGLAND BN 978-1-11845-804-4 PY 2012 BP 1033 EP 1038 PG 6 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA BHI12 UT WOS:000325479800154 ER PT J AU Ryu, S Li, DS AF Ryu, Seun Li, Dongsheng BE DeGraef, M Poulsen, HF Lewis, A Simmons, J Spanos, G TI OPTIMIZING STOCHASTIC PROCESS FOR EFFICIENT MICROSTRUCTURE RECONSTRUCTION SO PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON 3D MATERIALS SCIENCE LA English DT Proceedings Paper CT 1st International Conference on 3D Materials Science (3DMS) CY JUL 08-12, 2012 CL Seven Springs, PA SP Minerals, Met & Mat Soc (TMS) DE correlation; microstructure reconstruction; simulated annealing; cooling schedule; stochastic process ID RANDOM-MEDIA; OPTIMIZATION; ALGORITHMS AB To improve the efficiency in microstructure reconstruction is critical to build a high resolution statistical stable representative volume element practically. Using correlation function to reconstruct image using simulated annealing is revisited in this study. Different cooling schedules in simulated annealing were utilized and compared. Dramatic increase of computation efficiency has been achieved by optimizing cooling schedule, making it feasible for future computation intensive study on upscaling prediction. C1 [Ryu, Seun; Li, Dongsheng] Pacific NW Natl Lab, Fundamental & Computat Sci Div, Richland, WA 99354 USA. RP Ryu, S (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Div, 902 Battelle Blvd, Richland, WA 99354 USA. NR 23 TC 0 Z9 0 U1 0 U2 1 PU JOHN WILEY & SONS PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER, W SUSSEX PO 19 8SQ, ENGLAND BN 978-1-11847-039-8 PY 2012 BP 171 EP 176 PG 6 WC Materials Science, Characterization & Testing SC Materials Science GA BGU65 UT WOS:000324176000026 ER PT S AU Martin, TM Robinson, DB Narayan, RJ AF Martin, T. M. Robinson, D. B. Narayan, R. J. BE Webster, TJ TI Nanoporous gold for biomedical applications: structure, properties and applications SO NANOMEDICINE: TECHNOLOGIES AND APPLICATIONS SE Woodhead Publishing Series in Biomaterials LA English DT Article; Book Chapter DE nanoporous material; drug delivery; biosensor ID FABRICATION; ELECTRODES; BIOSENSORS; SENSORS AB Nanoporous gold is a material that can be utilized in several medical applications, including in biosensors and drug delivery devices. This chapter highlights current information regarding the medical applications of nanoporous gold. Methods for processing nanoporous gold, characterization of nanoporous gold and medical applications of nanoporous gold are presented. Efforts to improve the mechanical properties of nanoporous gold are also considered. C1 [Martin, T. M.; Narayan, R. J.] Univ N Carolina, Joint Dept Biomed Engn, Raleigh, NC 27695 USA. [Martin, T. M.; Narayan, R. J.] N Carolina State Univ, Raleigh, NC 27695 USA. [Robinson, D. B.] Sandia Natl Labs, Livermore, CA USA. RP Narayan, RJ (reprint author), Univ N Carolina, Joint Dept Biomed Engn, Box 7115, Raleigh, NC 27695 USA. EM roger_narayan@msn.com NR 21 TC 0 Z9 0 U1 1 U2 2 PU WOODHEAD PUBL LTD PI CAMBRIDGE PA ABINGTON HALL ABINGTON, CAMBRIDGE CB1 6AH, CAMBS, ENGLAND SN 2049-9485 BN 978-0-85709-644-9; 978-0-85709-233-5 J9 WOODH PUBL SER BIOM PY 2012 VL 49 BP 68 EP 83 D2 10.1533/9780857096449 PG 16 WC Cell & Tissue Engineering; Nanoscience & Nanotechnology; Materials Science, Biomaterials SC Cell Biology; Science & Technology - Other Topics; Materials Science GA BHS34 UT WOS:000326566700004 ER PT B AU Gupta, NK Harris, S AF Gupta, Narendra K. Harris, Stephen GP ASME TI 2012 ASME Pressure Vessels and Piping Conference SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 7: OPERATIONS, APPLICATIONS AND COMPONENTS LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div C1 [Gupta, Narendra K.; Harris, Stephen] Savannah River Natl Lab, Aiken, SC USA. RP Gupta, NK (reprint author), Savannah River Natl Lab, Aiken, SC USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5506-5 PY 2012 BP 169 EP 169 PG 1 WC Engineering, Mechanical SC Engineering GA BGR22 UT WOS:000323866200025 ER PT B AU Gupta, N Han, ZH Smith, AC AF Gupta, Narendra Han, Zenghu Smith, Allen C. GP ASME TI Proceedings of the ASME PRESSURE VESSELS AND PIPING CONFERENCE-2012-VOLUME 7, OPERATIONS, APPLICATIONS AND COMPONENTS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 7: OPERATIONS, APPLICATIONS AND COMPONENTS LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div C1 [Gupta, Narendra] Savannah River Natl Lab, Aiken, SC USA. RP Gupta, N (reprint author), Savannah River Natl Lab, Aiken, SC USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5506-5 PY 2012 BP 193 EP 193 PG 1 WC Engineering, Mechanical SC Engineering GA BGR22 UT WOS:000323866200029 ER PT B AU Gupta, NK Abramczyk, G AF Gupta, Narendra K. Abramczyk, Glenn GP ASME TI THERMAL UPGRADING OF 9977 RADIOACTIVE MATERIAL (RAM) TYPE B PACKAGE SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 7: OPERATIONS, APPLICATIONS AND COMPONENTS LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div AB The 9977 package is a radioactive material package that was originally certified to ship Heat Sources and RTG contents up to 19 watts and it is now being reviewed to significantly expand its contents in support of additional DOE missions. Thermal upgrading will be accomplished by employing stacked 3013 containers, a 3013 aluminum spacer and an external aluminum sleeve for enhanced heat transfer. The 7th Addendum to the original 9977 package Safety Basis Report describing these modifications is under review for the DOE certification. The analyses described in this paper show that this well-designed and conservatively analyzed package can be upgraded to carry contents with decay heat up to 38 watts with some simple design modifications. C1 [Gupta, Narendra K.; Abramczyk, Glenn] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Gupta, NK (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM nick.gupta@sml.doe.gov; glenn.abramczyk@srnl.doe.gov NR 3 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5506-5 PY 2012 BP 195 EP 200 PG 6 WC Engineering, Mechanical SC Engineering GA BGR22 UT WOS:000323866200030 ER PT B AU Askew, NM Hensel, SJ Laurinat, JE Skidmore, TE AF Askew, Neal M. Hensel, Steve J. Laurinat, James E. Skidmore, T. Eric GP ASME TI PRESSURIZATION OF CONTAINMENT VESSELS FROM PLUTONIUM OXIDE CONTENTS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 7: OPERATIONS, APPLICATIONS AND COMPONENTS LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div AB Transportation and storage of plutonium oxide is typically done using a convenience container to hold the oxide powder which is then placed inside a containment vessel. Intermediate containers which act as uncredited confinement barriers may also be used. The containment vessel is subject to an internal pressure due to several sources including; (1) plutonium oxide provides a heat source which raises the temperature of the gas space, (2) helium generation due to alpha decay of the plutonium, (3) hydrogen generation due to radiolysis of the water which has been adsorbed onto the plutonium oxide, and (4) degradation of plastic bags which may be used to bag out the convenience can from a glove box. The contributions of these sources are evaluated in a reasonably conservative manner. C1 [Askew, Neal M.; Hensel, Steve J.; Laurinat, James E.; Skidmore, T. Eric] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Askew, NM (reprint author), Savannah River Natl Lab, Savannah River Site, Aiken, SC 29808 USA. EM neal.askew@srnl.doe.gov; steve.hensel@srnl.doe.gov; james.laurinat@srnl.doe.gov; eric.skidmore@srnl.doe.gov NR 9 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5506-5 PY 2012 BP 201 EP 205 PG 5 WC Engineering, Mechanical SC Engineering GA BGR22 UT WOS:000323866200031 ER PT B AU Laurinat, JE Hensel, SJ AF Laurinat, James E. Hensel, Steve J. GP ASME TI ANALYSIS OF VENTING OF A RESIN SLURRY SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 7: OPERATIONS, APPLICATIONS AND COMPONENTS LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div ID FLOW AB A resin slurry venting analysis was conducted to address safety issues associated with overpressurization of ion exchange columns used in the Purex process at the Savannah River Site (SRS). If flow to these columns were inadvertently interrupted, an exothermic runaway reaction could occur between the ion exchange resin and the nitric acid used in the feed stream. The nitric acid-resin reaction generates significant quantities of noncondensable gases, which would pressurize the column. To prevent the column from rupturing during such events, rupture disks are installed on the column vent lines. The venting analysis models accelerating rate calorimeter (ARC) tests and data from tests that were performed in a vented test vessel with a rupture disk. The tests showed that the pressure inside the test vessel continued to increase after the rupture disk opened, though at a slower rate than prior to the rupture. Calculated maximum discharge rates for the resin venting tests exceeded the measured rates of gas generation, so the vent size was sufficient to relieve the pressure in the test vessel if the vent flow rate was constant. The increase in the vessel pressure is modeled as a transient phenomenon associated with expansion of the resin slurry/gas mixture upon rupture of the disk. It is postulated that the maximum pressure at the end of this expansion is limited by energy minimization to approximately 1.5 times the rupture disk burst pressure. The magnitude of this pressure increase is consistent with the measured pressure transients. The results of this analysis demonstrate the need to allow for a margin between the design pressure and the rupture disk burst pressure in similar applications. C1 [Laurinat, James E.; Hensel, Steve J.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Laurinat, JE (reprint author), Savannah River Natl Lab, Savannah River Site, Aiken, SC 29808 USA. EM james.laurinat@srnl.doe.gov; steve.hensel@srnl.doe.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5506-5 PY 2012 BP 207 EP 215 PG 9 WC Engineering, Mechanical SC Engineering GA BGR22 UT WOS:000323866200032 ER PT B AU Mok, GC Anderson, BL DeMicco, MF Hafner, RS Hagler, LB Russell, EW Syn, CK AF Mok, G. C. Anderson, B. L. DeMicco, M. F. Hafner, R. S. Hagler, L. B. Russell, E. W., Jr. Syn, C. K. GP ASME TI Annealing Requirements for Flow-Formed Containment Vessels for Type B Radioactive Materials SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 7: OPERATIONS, APPLICATIONS AND COMPONENTS LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div AB Flow forming, an advanced version of metal spinning, is becoming a popular technique for the fabrication of containers for the storage and transportation of radioactive materials. A previous article by the authors([1]) gave a cursory review of the operation, benefits, and possible problems associated with this method. The same article also addressed the ASME Boiler & Pressure Vessel Code (ASME BPVC) requirements([2]) of the method, and recommended desirable quality control measures. One of the recommendations was that the product be annealed after flow forming, even though the authors were not yet convinced that ASME BPVC always requires it. The current article reports new findings from a comprehensive review of material specifications, which ASME BPVC chose to adopt, or to ignore, for pressure application. The new findings suggest that ASME BPVC actually prefers annealing, so that the cold work has an insignificant effect on the product's properties. Each ASME BPVC specification describes key property requirements and heat treatments to help meet the requirements. C1 [Mok, G. C.; Anderson, B. L.; DeMicco, M. F.; Hafner, R. S.; Hagler, L. B.; Russell, E. W., Jr.; Syn, C. K.] Lawrence Livermore Natl Lab, Packaging & Transportat Safety Grp, Livermore, CA USA. RP Mok, GC (reprint author), Lawrence Livermore Natl Lab, Packaging & Transportat Safety Grp, Livermore, CA USA. NR 23 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5506-5 PY 2012 BP 255 EP 259 PG 5 WC Engineering, Mechanical SC Engineering GA BGR22 UT WOS:000323866200038 ER PT B AU Han, ZH Shah, VN Liu, YY AF Han, Zenghu Shah, Vikram N. Liu, Yung Y. GP ASME TI Dynamic Finite Element Analysis of Drum-type Shipping Packages for Radioactive Materials SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 7: OPERATIONS, APPLICATIONS AND COMPONENTS LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div AB The US Department of Energy (DOE) often uses Type AF and Type B drum-type packages for shipment of radioactive materials (RAM), both of which shall be designed and certified to meet the regulatory requirements specified in 10 CFR 71, to ensure safety, public health and protection of environment. In particular for the hypothetical accident conditions (HAC) prescribed in 10 CFR 71.73, RAM packages are subjected to sequential tests of 30-ft drop, crush, puncture, engulfing fire, and water immersions. Packages shall maintain structural integrity of containment, radiation shielding, and criticality control following these HAC tests. The structural evaluation (i.e., drop, crush, and puncture) of packages should address different combinations of test conditions, such as drop orientations, sequence, temperature and payload during the drop, crush and puncture tests. The combinations to be considered are those which would produce most damage to the package, challenge the most vulnerable packaging components, and cause the most cumulative damages. The evaluation of the most damage should also consider the effects of fire and water immersions following the structural tests. In this paper, the structural evaluation details of two drum-type packages, Model 9979 Type AF and Model ES-3100 Type B(U)F, are discussed. The design and performance of these packages were evaluated by physical testing of full-size prototype units. However, it is not practical to account for the worst test conditions and sequence in physical testing. Therefore, confirmatory finite element analyses have been performed to determine whether the cumulative damage resulting from the worst test sequence and conditions is acceptable. It was found for the 9979 package, the corner drop followed by corner crush causes most damage, and most unfavorably challenges its split-ring closures; for the ES-3100 package, the containment vessel (CV) experiences maximum strain following the sequence of bottom-to-lid slapdown and side crush. Although a lower temperature does not compromise their structural performance, the ES-3100 CV does experience slightly more strain because the impact limiter imparts more impact load because of its higher stiffness at lower temperature. In summary, the confirmatory analysis results show that the structural performance of the packages meets the regulatory requirements. C1 [Han, Zenghu; Shah, Vikram N.; Liu, Yung Y.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Han, ZH (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 3 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5506-5 PY 2012 BP 281 EP 287 PG 7 WC Engineering, Mechanical SC Engineering GA BGR22 UT WOS:000323866200042 ER PT B AU Jordan, J Flach, G AF Jordan, Jeff Flach, Greg GP ASME TI CONTAINMENT OF LOW-LEVEL RADIOACTIVE WASTE AT THE DOE SALTSTONE DISPOSAL FACILITY SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 7: OPERATIONS, APPLICATIONS AND COMPONENTS LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div AB As facilities look for permanent storage of toxic materials, they are forced to address the long-term impacts to the environment as well as any individuals living in affected area. As these materials are stored underground, modeling of the contaminant transport through the ground is an essential part of the evaluation. The contaminant transport model must address the long-term degradation of the containment system as well as any movement of the contaminant through the soil and into the groundwater. In order for disposal facilities to meet their performance objectives, engineered and natural barriers are relied upon. Engineered barriers include things like the design of the disposal unit, while natural barriers include things like the depth of soil between the disposal unit and the water table. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) in South Carolina is an example of a waste disposal unit that must be evaluated over a timeframe of thousands of years. The engineered and natural barriers for the SDF allow it to meet its performance obejective over the long time frame. C1 [Jordan, Jeff; Flach, Greg] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Jordan, J (reprint author), Savannah River Natl Lab, Savannah River Site, Aiken, SC 29808 USA. EM jeffrey.jordan@srnl.doe.gov; gregory.flach@srnl.doe.gov NR 1 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5506-5 PY 2012 BP 295 EP 298 PG 4 WC Engineering, Mechanical SC Engineering GA BGR22 UT WOS:000323866200044 ER PT B AU Gupta, NK AF Gupta, Narendra K. GP ASME TI PU/SS EUTECTIC ASSESSMENT IN 9975 PACKAGINGS IN A STORAGE FACILITY DURING EXTENDED FIRE SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 7: OPERATIONS, APPLICATIONS AND COMPONENTS LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div AB In a radioactive material (RAM) packaging, the formation of eutectic at the Pu/SS (plutonium/stainless steel) interface is a serious concern and must be avoided to prevent of leakage of fissile material to the environment. The eutectic temperature for the Pu/SS is rather low (410 degrees C) and could seriously impact the structural integrity of the containment vessel under accident conditions involving fire. The 9975 packaging is used for long term storage of Pu bearing materials in the DOE complex where the Pu comes in contact with the stainless steel containment vessel. Due to the serious consequences of the containment breach at the eutectic site, the Pu/SS interface temperature is kept well below the eutectic formation temperature of 410 degrees C. This paper discusses the thermal models and the results for the extended fire conditions (1500 degrees F for 86 minutes) that exist in a long term storage facility and concludes that the 9975 packaging Pu/SS interface temperature is well below the eutectic temperature. C1 Savannah River Natl Lab, Aiken, SC 29808 USA. RP Gupta, NK (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM nick.gupta@srnl.doe.gov NR 10 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5506-5 PY 2012 BP 299 EP 304 PG 6 WC Engineering, Mechanical SC Engineering GA BGR22 UT WOS:000323866200045 ER PT S AU Moody, DI Brumby, SP Rowland, JC Gangodagamage, C AF Moody, Daniela I. Brumby, Steven P. Rowland, Joel C. Gangodagamage, Chandana BE Huang, B Plaza, AJ Thiebaut, C TI Learning Sparse Discriminative Representations for Land Cover Classification in the Arctic SO SATELLITE DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING VIII SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Satellite Data Compression, Communications, and Processing VIII CY AUG 12-13, 2012 CL San Diego, CA SP SPIE DE land cover classification; multispectral learned dictionaries; sparse representations; clustering of sparse approximations ID SIGNAL APPROXIMATION; NORTHERN CANADA; MACKENZIE DELTA; DICTIONARIES; TUNDRA; PERMAFROST; VEGETATION; ALGORITHM; FREQUENCY; PURSUIT AB Neuroscience-inspired machine vision algorithms are of current interest in the areas of detection and monitoring of climate change impacts, and general Land Use/Land Cover classification using satellite image data. We describe an approach for automatic classification of land cover in multispectral satellite imagery of the Arctic using sparse representations over learned dictionaries. We demonstrate our method using DigitalGlobe Worldview-2 8-band visible/near infrared high spatial resolution imagery of the MacKenzie River basin. We use an on-line batch Hebbian learning rule to build spectral-textural dictionaries that are adapted to this multispectral data. We learn our dictionaries from millions of overlapping image patches and then use a pursuit search to generate sparse classification features. We explore unsupervised clustering in the sparse representation space to produce land-cover category labels. This approach combines spectral and spatial textural characteristics to detect geologic, vegetative, and hydrologic features. We compare our technique to standard remote sensing algorithms. Our results suggest that neuroscience-based models are a promising approach to practical pattern recognition problems in remote sensing, even for datasets using spectral bands not found in natural visual systems. C1 [Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; Gangodagamage, Chandana] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Moody, DI (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM damoody@lanl.gov OI Moody, Daniela/0000-0002-4452-8208; Gangodagamage, Chandana/0000-0001-6511-1711 NR 39 TC 1 Z9 1 U1 0 U2 12 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9231-9 J9 PROC SPIE PY 2012 VL 8514 AR UNSP 85140Q DI 10.1117/12.930182 PG 14 WC Engineering, Electrical & Electronic; Optics; Telecommunications SC Engineering; Optics; Telecommunications GA BHT13 UT WOS:000326602600017 ER PT S AU Martin, MC Dumas, P AF Martin, Michael C. Dumas, Paul BE Yarwood, J Douthwaite, R Duckett, SB TI Materials sciences using synchrotron infrared light sources SO SPECTROSCOPIC PROPERTIES OF INORGANIC AND ORGANOMETALLIC COMPOUNDS: TECHNIQUES, MATERIALS AND APPLICATIONS, VOL 43 SE Specialist Periodical Reports Spectroscopic Properties of Inorganic and Organometallic Compounds LA English DT Article; Book Chapter ID TERAHERTZ RADIATION; SPATIAL-RESOLUTION; METALLIC HYDROGEN; STORAGE-RING; SPECTROSCOPY; MICROSPECTROSCOPY; ELLIPSOMETRY; GRAPHENE; PHASE; FIELD AB Synchrotron Infrared spectroscopy has witnessed several important applications in Materials Science over the recent years. This chapter is aimed at highlighting the most recent studies that could inspire new studies from readers. Soft matter (in particular polymer science), catalysis and microscopic ellipsometry have achieved important steps forward in their applications recently, while well-established studies in semiconductors and high pressure studies have generated important results and findings. The field is evolving quickly towards new directions, mainly in the production of intense THz beams that are opening new research directions, in time resolved studies, in fast imaging and in near field infrared microscopy. The recent advances are reported in this chapter. C1 [Martin, Michael C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source Div, Berkeley, CA 94720 USA. [Dumas, Paul] Synchrotron SOLEIL, F-91192 Gif Sur Yvette, France. RP Martin, MC (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source Div, 1 Cyclotron Rd,B6R2100, Berkeley, CA 94720 USA. EM MCMartin@lbl.gov; dumas@synchrotron-soleil.fr NR 82 TC 3 Z9 3 U1 0 U2 2 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, CAMBRIDGE CB4 4WF, CAMBS, ENGLAND SN 0584-8555 BN 978-1-84973-489-9; 978-1-84973-395-3 J9 SPEC PER REP SPECTRO PY 2012 VL 43 BP 141 EP 165 DI 10.1039/9781849734899-00141 D2 10.1039/9781849734899 PG 25 WC Spectroscopy SC Spectroscopy GA BHS04 UT WOS:000326526000007 ER PT J AU Aad, G Abbott, B Abdallah, J Abdelalim, AA Abdesselam, A Abdinov, O Abi, B Abolins, M Abramowicz, H Abreu, H Acerbi, E Acharya, BS Adams, DL Addy, TN Adelman, J Aderholz, M Adomeit, S Adragna, P Adye, T Aefsky, S Aguilar-Saavedra, JA Aharrouche, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akdogan, T Akesson, TPA Akimoto, G Akimov, AV Akiyama, A Alam, MS Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexaa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Aliyev, M Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alviggi, MG Amako, K Amaral, P Amelung, C Ammosov, VV Amorim, A Amoros, G Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angerami, A Anghinolfi, F Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Archambault, JP Arfaoui, S Arguin, JF Arik, E Arik, M Armbruster, AJ Arnaez, O Arnault, C Artamonov, A Artoni, G Arutinov, D Asai, S Asfandiyarov, R Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Astvatsatourov, A Atoian, G Aubert, B Auge, E Augsten, K Aurousseau, M Austin, N Avolio, G Avramidou, R Axen, D Ay, C Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Bachy, G Backes, M Backhaus, M Badescu, E Bagnaia, P Bahinipati, S Bai, Y Bailey, DC Bain, T Baines, T Baker, OK Baker, MD Baker, S Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barashkou, A Galtieri, AB Barber, T Barberio, EL Barberis, D Barbero, M Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Barrillon, P Bartoldus, R Barton, AE Bartsch, D Bartsch, V Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Battistoni, G Bauer, F Bawa, HS Beare, B Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Begel, M Harpaz, SB Behera, PK Beimforde, M Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellina, F Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Ben Ami, S Benary, O Benchekroun, D Benchouk, C Bendel, M Benekos, N Benhammou, Y Benjamin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernardet, K Bernat, P Bernhard, R Bernius, C Berry, T Bertin, A Bertinelli, F Bertolucci, F Besana, MI Besson, N Bethke, S Bhimji, W Bianchi, RM Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bitenc, U Black, KM Blair, RE Blanchard, JB Blanchot, G Blazek, T Blocker, C Blocki, J Blondel, A Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VB Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boelaert, N Boser, S Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Boisvert, V Bold, T Boldea, V Bolnet, NM Bona, M Bondarenko, VG Bondioli, M Boonekamp, M Boorman, G Booth, CN Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borroni, S Bos, K Boscherini, D Bosman, M Boterenbrood, H Botterill, D Bouchami, J Boudreau, J Bouhova-Thacker, EV Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozhko, NI Bozovic-Jelisavcic, I Bracinik, J Braem, A Branchini, P Brandenburg, GW Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brelier, B Bremer, J Brenner, R Bressler, S Breton, D Britton, D Brochu, FM Brock, I Brock, R Brodbeck, TJ Brodet, E Broggi, F Bromberg, C Brooijmans, G Brooks, WK Brown, G Brown, H de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Buanes, T Bucci, F Buchanan, J Buchanan, NJ Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Buira-Clark, D Bulekov, O Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butin, F Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, R Calvet, D Calvet, S Toro, RC Camarri, P Cambiaghi, M Cameron, D Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Capasso, L Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, B Caron, S Montoya, GDC Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, G Cataneo, F Catinaccio, A Catmore, JR Cattai, A Cattani, G Caughron, S Cauz, D Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavasinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Cevenini, F Chafaq, A Chakraborty, D Chan, K Chapleau, B Chapman, JD Chapman, JW Chareyre, E Charlton, DG Chavda, V Barajas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, T Chen, X Cheng, S Cheplakov, A Chepurnov, VF El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, G Chikovani, L Childers, JT Chilingarov, A Chiodini, G Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciba, K Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciobotaru, MD Ciocca, C Ciocio, A Cirilli, M Ciubancan, M Clark, A Clark, PJ Cleland, W Clemens, JC Clement, B Clement, C Clifft, RW Coadou, Y Cobal, M Coccaro, A Cochran, J Coe, P Cogan, JG Coggeshall, J Cogneras, E Cojocaru, CD Colas, J Colijn, AP Collard, C Collins, NJ Collins-Tooth, C Collot, J Colon, G Muino, PC Coniavitis, E Conidi, MC Consonni, M Consorti, V Constantinescu, S Conta, C Conventi, F Cook, J Cooke, M Cooper, BD Cooper-Sarkar, AM Cooper-Smith, NJ Copic, K Cornelissen, T Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Costin, T Cote, D Courneyea, L Cowan, G Cowden, C Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crupi, R Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Curatolo, M Curtis, CJ Cwetanski, P Czirr, H Czyczula, Z D'Auria, S D'Onofrio, M D'Orazio, A Da Silva, PVM Da Via, C Dabrowski, W Dai, T Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dannheim, D Dao, V Darbo, G Darlea, GL Daum, C Dauvergne, JP Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davison, AR Davygora, Y Dawe, E Dawson, I Dawson, JW Daya, RK De, K de Asmundis, R De Castro, S Salgado, PEDF De Cecco, S De Graat, J De Groot, N de Jong, P De La Taille, C De la Torre, H De Lotto, B De Mora, L De Nooij, L De Pedis, D De Salvo, A De Sanctis, U De Santo, A De Regie, JBD Dean, S Debbe, R Dedovich, DV Degenhardt, J Dehchar, M Del Papa, C Del Peso, J Del Prete, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delpierre, P Delruelle, N Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Deng, J Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diblen, F Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, ADV Doan, TKO Dobbs, M Dobinson, R Dobos, D Dobson, E Dobson, M Dodd, J Doglioni, C Doherty, T Doi, Y Dolejsi, J Dolenc, I Dolezal, Z Dolgoshein, BA Dohmae, T Donadelli, M Donega, M Donini, J Dopke, J Doria, A Dos Anjos, A Dosil, M Dotti, A Dova, MT Dowell, JD Doxiadis, AD Doyle, AT Drasal, Z Drees, J Dressnandt, N Drevermann, H Driouichi, C Dris, M Dubbert, J Dubbs, T Dube, S Duchovni, E Duckeck, G Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Dydak, F Duren, M Ebenstein, WL Ebke, J Eckert, S Eckweiler, S Edmonds, K Edwards, CA Edwards, NC Ehrenfeld, W Ehrich, T Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Eppig, A Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrington, SM Farthouat, P Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Fazio, S Febbraro, R Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Felzmann, CU Feng, C Feng, EJ Fenyuk, AB Ferencei, J Ferland, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R Ferrer, A Ferrer, ML Ferrere, D Ferretti, C Parodi, AF Fiascaris, M Fiedler, F Filipcic, A Filippas, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, P Fisher, MJ Fisher, SM Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Flick, T Castillo, LRF Flowerdew, MJ Fokitis, M Martin, TF Forbush, DA Formica, A Forti, A Fortin, D Foster, JM Fournier, D Foussat, A Fowler, AJ Fowler, K Fox, H Francavilla, P Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, F Froeschl, R Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fuster, J Gabaldon, C Gabizon, O Gadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Gallas, EJ Gallo, V Gallop, BJ Gallus, P Galyaev, E Gan, KK Gao, YS Gapienko, VA Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garitaonandia, H Garonne, V Garvey, J Gatti, C Gaudio, G Gaumer, O Gaur, B Gauthier, L Gavrilenko, IL Gay, C Gaycken, G Gayde, JC Gazis, EN Ge, P Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghez, P Ghodbane, N Giacobbe, B Giagu, S Giakoumopoulou, V Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilbert, LM Gilchriese, M Gilewsky, V Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Giusti, P Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glitza, KW Glonti, GL Godfrey, J Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Gottfert, T Goldfarb, S Golling, T Golovnia, SN Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L Gonidec, A Gonzalez, S de la Hoz, SG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, E Gorisek, A Gornicki, E Gorokhov, SA Goryachev, VN Gosdzik, B Gosselink, M Gostkin, MI Eschrich, IG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Grabowska-Bold, I Grafstrom, P Grah, C Grahn, KJ Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Grau, N Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenfield, D Greenshaw, T Greenwood, ZD Gregersen, K Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grinstein, S Grishkevich, YV Grivaz, JF Groh, M Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guarino, VJ Guest, D Guicheney, C Guida, A Guillemin, T Guindon, S Guler, H Gunther, J Guo, B Guo, J Gupta, A Gusakov, Y Gushchin, VN Gutierrez, A Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hackenburg, R Hadavand, HK Hadley, DR Haefner, P Hahn, F Haider, S Hajduk, Z Hakobyan, H Haller, J Hamacher, K Hamal, P Hamilton, A Hamilton, S Han, H Han, L Hanagaki, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, JD Hansen, PH Hansson, P Hara, K Hare, GA Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Harrison, K Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Hatch, M Hauff, D Haug, S Hauschild, M Hauser, R Havranek, M Hawes, BM Hawkes, CM Hawkings, RJ Hawkins, D Hayakawa, T Hayashi, T Hayden, D Hayward, HS Haywood, SJ Hazen, E He, M Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, M Hellman, S Hellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Henry-Couannier, F Hensel, C Henss, T Hernandez, CM Jimenez, YH Herrberg, R Hershenhorn, AD Herten, G Hertenberger, R Hervas, L Hessey, NP Hidvegi, A Higon-Rodriguez, E Hill, D Hill, JC Hill, N Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Holmgren, SO Holy, T Holzbauer, JL Homma, Y Hong, TM van Huysduynen, LH Horazdovsky, T Horn, C Horner, S Horton, K Hostachy, JY Hou, S Houlden, MA Hoummada, A Howarth, J Howell, DF Hristova, I Hrivnac, J Hruska, I Hryn'ova, T Hsu, PJ Hsu, SC Huang, GS Hubacek, Z Hubaut, F Huegging, F Huffman, TB Hughes, EW Hughes, G Hughes-Jones, RE Huhtinen, M Hurst, P Hurwitz, M Husemann, U Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Ichimiya, R Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Ilchenko, Y Iliadis, D Imbault, D Imori, M Ince, T Inigo-Golfin, J Ioannou, P Iodice, M Quiles, AI Ishikawa, A Ishino, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakubek, J Jana, DK Jankowski, E Jansen, E Jantsch, A Janus, M Jarlskog, G Jeanty, L Jelen, K Plante, IJL Jenni, P Jeremie, A Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, MJ Jin, G Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, LG Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TW Jones, TJ Jonsson, O Joram, C Jorge, PM Joseph, J Jovin, T Ju, X Jung, CA Juranek, V Jussel, P Rozas, AJ Kabachenko, VV Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kaiser, S Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kaplon, J Kar, D Karagoz, M Karnevskiy, M Karr, K Kartvelishvili, V Karyukhin, AN Kashif, L Kasmi, A Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katsoufis, E Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kayl, MS Kazanin, VA Kazarinov, MY Keates, JR Keeler, R Kehoe, R Keil, M Kekelidze, GD Kelly, M Kennedy, J Kenney, CJ Kenyon, M Kepka, O Kerschen, N Kersevan, BP Kersten, S Kessoku, K Ketterer, C Keung, J Khakzad, M Khalil-Zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Kholodenko, AG Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, N Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, MS Kim, PC Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kirsch, LE Kiryunin, AE Kishimoto, T Kisielewska, D Kittelmann, T Kiver, AM Kladiva, E Klaiber-Lodewigs, J Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimentov, A Klingenberg, R Klinkby, EB Klioutchnikova, T Klok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Knecht, NS Kneringer, E Knobloch, J Knoops, EBFG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kocnar, A Kodys, P Koneke, K Konig, AC Koenig, S Kopke, L Koetsveld, F Koevesarki, P Koffas, T Koffeman, E Kohn, F Kohout, Z Kohriki, T Koi, T Kokott, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Kollar, D Kollefrath, M Kolya, SD Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kootz, A Koperny, S Kopikov, SV Korcyl, K Kordas, K Koreshev, V Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotamaki, MJ Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Kramarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, J Kraus, JK Kreisel, A Krejci, F Kretzschmar, J Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Kruger, H Kruker, T Krumshteyn, ZV Kruth, A Kubota, T Kuehn, S Kugel, A Kuhl, T Kuhn, D Kukhtin, V Kulchitsky, Y Kuleshov, S Kummer, C Kuna, M Kundu, N Kunkle, J Kupco, A Kurashige, H Kurata, M Kurochkin, YA Kus, V Kuze, M Kuzhir, P Kvita, J Kwee, R La Rosa, A La Rotonda, L Labarga, L Labbe, J Lablak, S Lacasta, C Lacava, F Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforge, B Lagouri, T Lai, S Laisne, E Lamanna, M Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Landsman, H Lane, JL Lange, C Lankford, AJ Lanni, F Lantzsch, K Laplace, S Lapoire, C Laporte, JF Lari, T Larionov, AV Larner, A Lasseur, C Lassnig, M Laurelli, P Lavrijsen, W Laycock, P Lazarev, AB Le Dortz, O Le Guirriec, E Le Maner, C Le Menedeu, E Lebel, C LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Leger, A LeGeyt, BC Legger, F Leggett, C Lehmacher, M Miotto, GL Lei, X Leite, MAL Leitner, R Lellouch, D Leltchouk, M Lemmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Leroy, C Lessard, JR Lesser, J Lester, CG Cheong, ALF Leveque, J Levin, D Levinson, LJ Levitski, MS Lewandowska, M Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, H Li, S Li, X Liang, Z Liang, Z Liao, H Liberti, B Lichard, P Lichtnecker, M Lie, K Liebig, W Lifshitz, R Lilley, JN Limbach, C Limosani, A Limper, M Lin, SC Linde, F Linnemann, JT Lipeles, E Lipinsky, L Lipniacka, A Liss, TM Lissauer, D Lister, A Litke, AM Liu, C Liu, D Liu, H Liu, JB Liu, M Liu, S Liu, Y Livan, M Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodzinska, E Loch, P Lockman, WS Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Loken, J Lombardo, VP Long, RE Lopes, L Mateos, DL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lumb, D Luminari, L Lund, E Lund-Jensen, B Lundberg, B Lundberg, J Lundquist, J Lungwitz, M Lupi, A Lutz, G Lynn, D Lys, J Lytken, E Ma, H Ma, LL Goia, JAM Maccarrone, G Macchiolo, A Macek, B Miguens, JM Mackeprang, R Madaras, RJ Mader, WF Maenner, R Maeno, T Mattig, P Mattig, S Magnoni, L Magradze, E Mahalalel, Y Mahboubi, K Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y Makovec, N Mal, P Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mameghani, R Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Mangeard, PS Manjavidze, ID Mann, A Manning, PM Manousakis-Katsikakis, A Mansoulie, B Manz, A Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marin, A Marino, CP Marroquim, F Marshall, R Marshall, Z Martens, FK Marti-Garcia, S Martin, AJ Martin, B Martin, B Martin, FF Martin, JP Martin, P Martin, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, M Outschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashimo, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Mathes, M Matricon, P Matsumoto, H Matsunaga, H Matsushita, T Mattravers, C Maugain, JM Maxfield, SJ Maximov, DA May, EN Mayne, A Mazini, R Mazur, M Mazzanti, M Mazzoni, E Mc Kee, SP McCarn, A McCarthy, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, JA McGlone, H Mchedlidze, G McLaren, RA Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meera-Lebbai, R Meguro, T Mehdiyev, R Mehlhase, S Mehta, A Meier, K Meinhardt, J Meirose, B Melachrinos, C Garcia, BRM Navas, LM Meng, Z Mengarelli, A Menke, S Menot, C Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, JP Meyer, J Meyer, J Meyer, TC Meyer, WT Miao, J Michal, S Micu, L Middleton, RP Miele, P Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Minano, M Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Verge, LM Misiejuk, A Mitrevski, J Mitrofanov, GY Mitsou, VA Mitsui, S Miyagawa, PS Miyazaki, K Mjornmark, JU Moa, T Mockett, P Moed, S Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Mohrdieck-Mock, S Moisseev, AM Moles-Valls, R Molina-Perez, J Monk, J Monnier, E Montesano, S Monticelli, F Monzani, S Moore, RW Moorhead, GF Herrera, CM Moraes, A Morange, N Morel, J Morello, G Moreno, D Llacer, MM Morettini, P Morii, M Morin, J Morley, AK Mornacchi, G Morozov, SV Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mudrinic, M Mueller, F Mueller, J Mueller, K Muller, TA Muenstermann, D Muir, A Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nadal, J Nagai, K Nagano, K Nagasaka, Y Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Nanava, G Napier, A Nash, M Nation, NR Nattermann, T Naumann, T Navarro, G Neal, HA Nebot, E Nechaeva, PY Negri, A Negri, G Nektarijevic, S Nelson, A Nelson, S Nelson, TK Nemecek, S Nemethy, P Nepomuceno, AA Nessi, M Nesterov, SY Neubauer, MS Neusiedl, A Neves, RM Nevski, P Newman, PR Hong, VNT Nickerson, RB Nicolaidou, R Nicolas, L Nicquevert, B Niedercorn, F Nielsen, J Niinikoski, T Nikiforou, N Nikiforov, A Nikolaenko, V Nikolaev, K Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nishiyama, T Nisius, R Nodulman, L Nomachi, M Nomidis, I Nordberg, M Nordkvist, B Norton, PR Novakova, J Nozaki, M Nozka, L Nugent, IM Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E Nyman, T O'Brien, BJ O'Neale, SW O'Neil, DC O'Shea, V Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Ohshita, H Ohsugi, T Okada, S Okawa, H Okumura, Y Okuyama, T Olcese, M Olchevski, AG Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Omachi, C Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlov, I Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ould-Saada, F Ouraou, A Ouyang, Q Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Paige, F Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Panes, B Panikashvili, N Panitkin, S Pantea, D Panuskova, M Paolone, V Papadelis, A Papadopoulou, TD Paramonov, A Park, W Parker, MA Parodi, F Parsons, JA Parzefall, U Pasqualucci, E Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Pecsy, M Morales, MIP Peleganchuk, SV Peng, H Pengo, R Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Persembe, S Peshekhonov, VD Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, AW Phillips, PW Piacquadio, G Piccaro, E Piccinini, M Pickford, A Piec, SM Piegaia, R Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Ping, J Pinto, B Pirotte, O Pizio, C Placakyte, R Plamondon, M Pleier, MA Pleskach, AV Poblaguev, A Poddar, S Podlyski, F Poggioli, L Poghosyan, T Pohl, M Polci, F Polesello, G Policicchio, A Polini, A Poll, J Polychronakos, V Pomarede, DM Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Posch, C Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Prabhu, R Pralavorio, P Prasad, S Pravahan, R Prell, S Pretzl, K Pribyl, L Price, D Price, LE Price, MJ Prichard, PM Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Qian, Z Qin, Z Quadt, A Quarrie, DR Quayle, WB Quinonez, F Raas, M Radescu, V Radics, B Rador, T Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, M Ramstedt, M Randle-Conde, AS Randrianarivony, K Ratoff, PN Rauscher, F Rauter, E Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reichold, A Reinherz-Aronis, E Reinsch, A Reisinger, I Reljic, D Rembser, C Ren, ZL Renaud, A Renkel, P Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richards, A Richter, R Richter-Was, E Ridel, M Rieke, S Rijpstra, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robinson, M Robson, A de Lima, JGR Roda, C Dos Santos, DR Rodier, S Rodriguez, D Roe, A Roe, S Rohne, O Rojo, V Rolli, S Romaniouk, A Romano, M Romanov, VM Romeo, G Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosenberg, EI Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rossi, L Rotaru, M Roth, I Rothberg, J Rousseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubinskiy, I Ruckert, B Ruckstuhl, N Rud, VI Rudolph, C Rudolph, G Ruhr, F Ruggieri, F Ruiz-Martinez, A Rulikowska-Zarebska, E Rumiantsev, V Rumyantsev, L Runge, K Runolfsson, O Rurikova, Z Rusakovich, NA Rust, DR Rutherfoord, JP Ruwiedel, C Ruzicka, P Ryabov, YF Ryadovikov, V Ryan, P Rybar, M Rybkin, G Ryder, NC Rzaeva, S Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sandvoss, S Sankey, DPC Sansoni, A Rios, CS Santoni, C Santonico, R Santos, H Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarri, F Sartisohn, G Sasaki, O Sasaki, T Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Savva, P Sawyer, L Saxon, DH Says, LP Sbarra, C Sbrizzi, A Scallon, O Scannicchio, DA Schaarschmidt, J Schacht, P Schafer, U Schaepe, S Schaetzel, S Schaffer, AC Schaile, D Schamberger, RD Schamov, AG Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Schieck, J Schioppa, M Schlenker, S Schlereth, JL Schmidt, E Schmieden, K Schmitt, C Schmitt, S Schmitz, M Schoning, A Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schuh, S Schuler, G Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, JW Schumacher, M Schumm, BA Schune, P Schwanenberger, C Schwartzman, A Schwemling, P Schwienhorst, R Schwierz, R Schwindling, J Schwindt, T Scott, WG Searcy, J Sedov, G Sedykh, E Segura, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Seuster, R Severini, H Sevior, ME Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaver, L Shaw, K Sherman, D Sherwood, P Shibata, A Shichi, H Shimizu, S Shimojima, M Shin, T Shmeleva, A Shochet, MJ Short, D Shupe, MA Sicho, P Sidoti, A Siebel, A Siegert, F Siegrist, J Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simmons, B Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Skvorodnev, N Slater, M Slavicek, T Sliwa, K Sloper, J Smakhtin, V Smirnov, SY Smirnova, LN Smirnova, O Smith, BC Smith, D Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snuverink, J Snyder, S Soares, M Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, E Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Sondericker, J Soni, N Sopko, V Sopko, B Sorbi, M Sosebee, M Soualah, R Soukharev, A Spagnolo, S Spano, F Spighi, R Spigo, G Spila, F Spiriti, E Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahl, T Stahlman, J Stamen, R Stanecka, E Stanek, RW Stanescu, C Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staude, A Stavina, P Stavropoulos, G Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stevenson, K Stewart, GA Stillings, JA Stockmanns, T Stockton, MC Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Strube, J Stugu, B Stumer, I Stupak, J Sturm, P Soh, DA Su, D Subramania, HS Succurro, A Sugaya, Y Sugimoto, T Suhr, C Suita, K Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Sushkov, S Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Sviridov, YM Swedish, S Sykora, I Sykora, T Szeless, B Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Talby, M Talyshev, A Tamsett, MC Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanaka, Y Tani, K Tannoury, N Tappern, GP Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, GF Tas, P Tasevsky, M Tassi, E Tatarkhanov, M Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Terwort, M Testa, M Teuscher, RJ Thadome, J Therhaag, J Theveneaux-Pelzer, T Thioye, M Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomson, E Thomson, M Thun, RP Tian, F Tic, T Tikhomirov, VO Tikhonov, YA Timmermans, CJWP Tipton, P Viegas, FJTA Tisserant, S Tobias, J Toczek, B Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokunaga, K Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tong, G Tonoyan, A Topfel, C Topilin, ND Torchiani, I Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, DR Traynor, D Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Trinh, TN Tripiana, MF Trischuk, W Trivedi, A Trocme, B Troncon, C Trottier-McDonald, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakir, IT Turlay, E Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tyrvainen, H Tzanakos, G Uchida, K Ueda, I Ueno, R Ugland, M Uhlenbrock, M Uhrmacher, M Ukegawa, F Unal, G Underwood, DG Undrus, A Unel, G Unno, Y Urbaniec, D Urkovsky, E Urrejola, P Usai, G Uslenghi, M Vacavant, L Vacek, V Vachon, B Vahsen, S Valenta, J Valente, P Valentinetti, S Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV van der Graaf, H van der Kraaij, E Van Der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P van Kesteren, Z van Vulpen, I Vandelli, W Vandoni, G Vaniachine, A Vankov, P Vannucci, F Rodriguez, FV Vari, R Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Vegni, G Veillet, JJ Vellidis, C Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Vichou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vlasov, N Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Loeben, J von Radziewski, H von Toerne, E Vorobel, V Vorobiev, AP Vorwerk, V Vos, M Voss, R Voss, TT Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wakabayashi, J Walbersloh, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Wang, C Wang, H Wang, H Wang, J Wang, J Wang, JC Wang, R Wang, SM Warburton, A Ward, CP Warsinsky, M Watkins, PM Watson, AT Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, J Weber, M Weber, MS Weber, P Weidberg, AR Weigell, P Weingarten, J Weiser, C Wellenstein, H Wells, PS Wen, M Wenaus, T Wendler, S Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Weydert, C Whalen, K Wheeler-Ellis, SJ Whitaker, SP White, A White, MJ Whitehead, SR Whiteson, D Whittington, D Wicek, F Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wraight, K Wright, C Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wunstorf, R Wynne, BM Xaplanteris, L Xella, S Xie, S Xie, Y Xu, C Xu, D Xu, G Yabsley, B Yacoob, S Yamada, M Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamaoka, J Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, UK Yang, Y Yang, Y Yang, Z Yanush, S Yao, Y Yasu, Y Smit, GVY Ye, J Ye, S Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Young, C Youssef, S Yu, D Yu, J Yu, J Yuan, L Yurkewicz, A Zaets, VG Zaidan, R Zaitsev, AM Zajacova, Z Zalite, YK Zanello, L Zarzhitsky, P Zaytsev, A Zeitnitz, C Zeller, M Zeman, M Zemla, A Zendler, C Zenin, O Zenis, T Zenonos, Z Zenz, S Zerwas, D della Porta, GZ Zhan, Z Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, T Zhao, Z Zhemchugov, A Zheng, S Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zieminska, D Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A Zolnierowski, Y Zsenei, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abbott, B. Abdallah, J. Abdelalim, A. A. Abdesselam, A. Abdinov, O. Abi, B. Abolins, M. Abramowicz, H. Abreu, H. Acerbi, E. Acharya, B. S. Adams, D. L. Addy, T. N. Adelman, J. Aderholz, M. Adomeit, S. Adragna, P. Adye, T. Aefsky, S. Aguilar-Saavedra, J. A. Aharrouche, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akdogan, T. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Akiyama, A. Alam, M. S. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexaa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Aliyev, M. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alviggi, M. G. Amako, K. Amaral, P. Amelung, C. Ammosov, V. V. Amorim, A. Amoros, G. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angerami, A. Anghinolfi, F. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Archambault, J. P. Arfaoui, S. Arguin, J-F. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnault, C. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Asfandiyarov, R. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Astvatsatourov, A. Atoian, G. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Austin, N. Avolio, G. Avramidou, R. Axen, D. Ay, C. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Bachy, G. Backes, M. Backhaus, M. Badescu, E. Bagnaia, P. Bahinipati, S. Bai, Y. Bailey, D. C. Bain, T. Baines, T. Baker, O. K. Baker, M. D. Baker, S. Banas, E. Banerjee, P. Banerjee, Sw Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barashkou, A. Galtieri, A. Barbaro Barber, T. Barberio, E. L. Barberis, D. Barbero, M. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Barrillon, P. Bartoldus, R. Barton, A. E. Bartsch, D. Bartsch, V. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Battistoni, G. Bauer, F. Bawa, H. S. Beare, B. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, M. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellina, F. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Ben Ami, S. Benary, O. Benchekroun, D. Benchouk, C. Bendel, M. Benekos, N. Benhammou, Y. Benjamin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernardet, K. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertin, A. Bertinelli, F. Bertolucci, F. Besana, M. I. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bitenc, U. Black, K. M. Blair, R. E. Blanchard, J. -B. Blanchot, G. Blazek, T. Blocker, C. Blocki, J. Blondel, A. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. B. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boelaert, N. Boeser, S. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bona, M. Bondarenko, V. G. Bondioli, M. Boonekamp, M. Boorman, G. Booth, C. N. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borroni, S. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Botterill, D. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozhko, N. I. Bozovic-Jelisavcic, I. Bracinik, J. Braem, A. Branchini, P. Brandenburg, G. W. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brelier, B. Bremer, J. Brenner, R. Bressler, S. Breton, D. Britton, D. Brochu, F. M. Brock, I. Brock, R. Brodbeck, T. J. Brodet, E. Broggi, F. Bromberg, C. Brooijmans, G. Brooks, W. K. Brown, G. Brown, H. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Buanes, T. Bucci, F. Buchanan, J. Buchanan, N. J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Buira-Clark, D. Bulekov, O. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butin, F. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, R. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cambiaghi, M. Cameron, D. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Capasso, L. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, B. Caron, S. Montoya, G. D. Carrillo Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Gimenez, V. Castillo Castro, N. F. Cataldi, G. Cataneo, F. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, G. Caughron, S. Cauz, D. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavasinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Cevenini, F. Chafaq, A. Chakraborty, D. Chan, K. Chapleau, B. Chapman, J. D. Chapman, J. W. Chareyre, E. Charlton, D. G. Chavda, V. Barajas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, T. Chen, X. Cheng, S. Cheplakov, A. Chepurnov, V. F. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, G. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, G. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciba, K. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciobotaru, M. D. Ciocca, C. Ciocio, A. Cirilli, M. Ciubancan, M. Clark, A. Clark, P. J. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Clifft, R. W. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coe, P. Cogan, J. G. Coggeshall, J. Cogneras, E. Cojocaru, C. D. Colas, J. Colijn, A. P. Collard, C. Collins, N. J. Collins-Tooth, C. Collot, J. Colon, G. Muino, P. Conde Coniavitis, E. Conidi, M. C. Consonni, M. Consorti, V. Constantinescu, S. Conta, C. Conventi, F. Cook, J. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Cooper-Smith, N. J. Copic, K. Cornelissen, T. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Costin, T. Cote, D. Courneyea, L. Cowan, G. Cowden, C. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crupi, R. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Curatolo, M. Curtis, C. J. Cwetanski, P. Czirr, H. Czyczula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Silva, P. V. M. Da Via, C. Dabrowski, W. Dai, T. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dannheim, D. Dao, V. Darbo, G. Darlea, G. L. Daum, C. Dauvergne, J. P. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Dawson, J. W. Daya, R. K. De, K. de Asmundis, R. De Castro, S. Salgado, P. E. De Castro Faria De Cecco, S. De Graat, J. De Groot, N. de Jong, P. De La Taille, C. De la Torre, H. De Lotto, B. De Mora, L. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, U. De Santo, A. De Regie, J. B. De Vivie Dean, S. Debbe, R. Dedovich, D. V. Degenhardt, J. Dehchar, M. Del Papa, C. Del Peso, J. Del Prete, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delpierre, P. Delruelle, N. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Deng, J. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diblen, F. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Wemans, A. Do Valle Doan, T. K. O. Dobbs, M. Dobinson, R. Dobos, D. Dobson, E. Dobson, M. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolejsi, J. Dolenc, I. Dolezal, Z. Dolgoshein, B. A. Dohmae, T. Donadelli, M. Donega, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dosil, M. Dotti, A. Dova, M. T. Dowell, J. D. Doxiadis, A. D. Doyle, A. T. Drasal, Z. Drees, J. Dressnandt, N. Drevermann, H. Driouichi, C. Dris, M. Dubbert, J. Dubbs, T. Dube, S. Duchovni, E. Duckeck, G. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Dunford, M. Yildiz, H. Duran Duxfield, R. Dwuznik, M. Dydak, F. Dueren, M. Ebenstein, W. L. Ebke, J. Eckert, S. Eckweiler, S. Edmonds, K. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Ehrich, T. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Eppig, A. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrington, S. M. Farthouat, P. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Fazio, S. Febbraro, R. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Felzmann, C. U. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Ferland, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. Ferrer, A. Ferrer, M. L. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, M. Fiedler, F. Filipcic, A. Filippas, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, P. Fisher, M. J. Fisher, S. M. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Flick, T. Castillo, L. R. Flores Flowerdew, M. J. Fokitis, M. Martin, T. Fonseca Forbush, D. A. Formica, A. Forti, A. Fortin, D. Foster, J. M. Fournier, D. Foussat, A. Fowler, A. J. Fowler, K. Fox, H. Francavilla, P. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, F. Froeschl, R. Froidevaux, D. Frost, J. A. Fukunaga, C. Torregrosa, E. Fullana Fuster, J. Gabaldon, C. Gabizon, O. Gadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Galyaev, E. Gan, K. K. Gao, Y. S. Gapienko, V. A. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Navarro, J. E. Garcia Gardner, R. W. Garelli, N. Garitaonandia, H. Garonne, V. Garvey, J. Gatti, C. Gaudio, G. Gaumer, O. Gaur, B. Gauthier, L. Gavrilenko, I. L. Gay, C. Gaycken, G. Gayde, J-C. Gazis, E. N. Ge, P. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghez, P. Ghodbane, N. Giacobbe, B. Giagu, S. Giakoumopoulou, V. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilbert, L. M. Gilchriese, M. Gilewsky, V. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Giusti, P. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glitza, K. W. Glonti, G. L. Godfrey, J. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goettfert, T. Goldfarb, S. Golling, T. Golovnia, S. N. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonidec, A. Gonzalez, S. Gonzalez de la Hoz, S. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, E. Gorisek, A. Gornicki, E. Gorokhov, S. A. Goryachev, V. N. Gosdzik, B. Gosselink, M. Gostkin, M. I. Eschrich, I. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Grabowska-Bold, I. Grafstroem, P. Grah, C. Grahn, K-J. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Grau, N. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenfield, D. Greenshaw, T. Greenwood, Z. D. Gregersen, K. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grinstein, S. Grishkevich, Y. V. Grivaz, J. -F. Groh, M. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guarino, V. J. Guest, D. Guicheney, C. Guida, A. Guillemin, T. Guindon, S. Guler, H. Gunther, J. Guo, B. Guo, J. Gupta, A. Gusakov, Y. Gushchin, V. N. Gutierrez, A. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hackenburg, R. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Haider, S. Hajduk, Z. Hakobyan, H. Haller, J. Hamacher, K. Hamal, P. Hamilton, A. Hamilton, S. Han, H. Han, L. Hanagaki, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, J. D. Hansen, P. H. Hansson, P. Hara, K. Hare, G. A. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Harrison, K. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Hatch, M. Hauff, D. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawes, B. M. Hawkes, C. M. Hawkings, R. J. Hawkins, D. Hayakawa, T. Hayashi, T. Hayden, D. Hayward, H. S. Haywood, S. J. Hazen, E. He, M. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, M. Hellman, S. Hellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Henry-Couannier, F. Hensel, C. Henss, T. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Hershenhorn, A. D. Herten, G. Hertenberger, R. Hervas, L. Hessey, N. P. Hidvegi, A. Higon-Rodriguez, E. Hill, D. Hill, J. C. Hill, N. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Holmgren, S. O. Holy, T. Holzbauer, J. L. Homma, Y. Hong, T. M. van Huysduynen, L. Hooft Horazdovsky, T. Horn, C. Horner, S. Horton, K. Hostachy, J-Y. Hou, S. Houlden, M. A. Hoummada, A. Howarth, J. Howell, D. F. Hristova, I. Hrivnac, J. Hruska, I. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Huang, G. S. Hubacek, Z. Hubaut, F. Huegging, F. Huffman, T. B. Hughes, E. W. Hughes, G. Hughes-Jones, R. E. Huhtinen, M. Hurst, P. Hurwitz, M. Husemann, U. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Ichimiya, R. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Ilchenko, Y. Iliadis, D. Imbault, D. Imori, M. Ince, T. Inigo-Golfin, J. Ioannou, P. Iodice, M. Irles Quiles, A. Ishikawa, A. Ishino, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakubek, J. Jana, D. K. Jankowski, E. Jansen, E. Jantsch, A. Janus, M. Jarlskog, G. Jeanty, L. Jelen, K. Plante, I. Jen-La Jenni, P. Jeremie, A. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, M. Jimenez Jin, G. Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, L. G. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. W. Jones, T. J. Jonsson, O. Joram, C. Jorge, P. M. Joseph, J. Jovin, T. Ju, X. Jung, C. A. Juranek, V. Jussel, P. Rozas, A. Juste Kabachenko, V. V. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kaiser, S. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kaplon, J. Kar, D. Karagoz, M. Karnevskiy, M. Karr, K. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasmi, A. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katsoufis, E. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kayl, M. S. Kazanin, V. A. Kazarinov, M. Y. Keates, J. R. Keeler, R. Kehoe, R. Keil, M. Kekelidze, G. D. Kelly, M. Kennedy, J. Kenney, C. J. Kenyon, M. Kepka, O. Kerschen, N. Kersevan, B. P. Kersten, S. Kessoku, K. Ketterer, C. Keung, J. Khakzad, M. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Kholodenko, A. G. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, N. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, M. S. Kim, P. C. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kirsch, L. E. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kittelmann, T. Kiver, A. M. Kladiva, E. Klaiber-Lodewigs, J. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimentov, A. Klingenberg, R. Klinkby, E. B. Klioutchnikova, T. Klok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Knecht, N. S. Kneringer, E. Knobloch, J. Knoops, E. B. F. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kocnar, A. Kodys, P. Koeneke, K. Konig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffeman, E. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kokott, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Kollar, D. Kollefrath, M. Kolya, S. D. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kootz, A. Koperny, S. Kopikov, S. V. Korcyl, K. Kordas, K. Koreshev, V. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotamaeki, M. J. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Kramarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. Kraus, J. K. Kreisel, A. Krejci, F. Kretzschmar, J. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krumshteyn, Z. V. Kruth, A. Kubota, T. Kuehn, S. Kugel, A. Kuhl, T. Kuhn, D. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kummer, C. Kuna, M. Kundu, N. Kunkle, J. Kupco, A. Kurashige, H. Kurata, M. Kurochkin, Y. A. Kus, V. Kuze, M. Kuzhir, P. Kvita, J. Kwee, R. La Rosa, A. La Rotonda, L. Labarga, L. Labbe, J. Lablak, S. Lacasta, C. Lacava, F. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforge, B. Lagouri, T. Lai, S. Laisne, E. Lamanna, M. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Landsman, H. Lane, J. L. Lange, C. Lankford, A. J. Lanni, F. Lantzsch, K. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larionov, A. V. Larner, A. Lasseur, C. Lassnig, M. Laurelli, P. Lavrijsen, W. Laycock, P. Lazarev, A. B. Le Dortz, O. Le Guirriec, E. Le Maner, C. Le Menedeu, E. Lebel, C. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Leger, A. LeGeyt, B. C. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Lei, X. Leite, M. A. L. Leitner, R. Lellouch, D. Leltchouk, M. Lemmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Leroy, C. Lessard, J-R. Lesser, J. Lester, C. G. Cheong, A. Leung Fook Leveque, J. Levin, D. Levinson, L. J. Levitski, M. S. Lewandowska, M. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, H. Li, S. Li, X. Liang, Z. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lichtnecker, M. Lie, K. Liebig, W. Lifshitz, R. Lilley, J. N. Limbach, C. Limosani, A. Limper, M. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipinsky, L. Lipniacka, A. Liss, T. M. Lissauer, D. Lister, A. Litke, A. M. Liu, C. Liu, D. Liu, H. Liu, J. B. Liu, M. Liu, S. Liu, Y. Livan, M. Livermore, S. S. A. Lleres, A. Llorente Merino, J. Lloyd, S. L. Lobodzinska, E. Loch, P. Lockman, W. S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Loken, J. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, D. Lopez Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lumb, D. Luminari, L. Lund, E. Lund-Jensen, B. Lundberg, B. Lundberg, J. Lundquist, J. Lungwitz, M. Lupi, A. Lutz, G. Lynn, D. Lys, J. Lytken, E. Ma, H. Ma, L. L. Goia, J. A. Macana Maccarrone, G. Macchiolo, A. Macek, B. Miguens, J. Machado Mackeprang, R. Madaras, R. J. Mader, W. F. Maenner, R. Maeno, T. Maettig, P. Maettig, S. Magnoni, L. Magradze, E. Mahalalel, Y. Mahboubi, K. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. Makovec, N. Mal, P. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mameghani, R. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Mangeard, P. S. Manjavidze, I. D. Mann, A. Manning, P. M. Manousakis-Katsikakis, A. Mansoulie, B. Manz, A. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marin, A. Marino, C. P. Marroquim, F. Marshall, R. Marshall, Z. Martens, F. K. Marti-Garcia, S. Martin, A. J. Martin, B. Martin, B. Martin, F. F. Martin, J. P. Martin, Ph Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martin-Haugh, S. Martinez, M. Outschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashimo, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Mathes, M. Matricon, P. Matsumoto, H. Matsunaga, H. Matsushita, T. Mattravers, C. Maugain, J. M. Maxfield, S. J. Maximov, D. A. May, E. N. Mayne, A. Mazini, R. Mazur, M. Mazzanti, M. Mazzoni, E. Mc Kee, S. P. McCarn, A. McCarthy, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, J. A. McGlone, H. Mchedlidze, G. McLaren, R. A. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meera-Lebbai, R. Meguro, T. Mehdiyev, R. Mehlhase, S. Mehta, A. Meier, K. Meinhardt, J. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Navas, L. Mendoza Meng, Z. Mengarelli, A. Menke, S. Menot, C. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Meyer, T. C. Meyer, W. T. Miao, J. Michal, S. Micu, L. Middleton, R. P. Miele, P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Minano, M. Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Miralles Verge, L. Misiejuk, A. Mitrevski, J. Mitrofanov, G. Y. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Miyazaki, K. Mjornmark, J. U. Moa, T. Mockett, P. Moed, S. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Mohrdieck-Moeck, S. Moisseev, A. M. Moles-Valls, R. Molina-Perez, J. Monk, J. Monnier, E. Montesano, S. Monticelli, F. Monzani, S. Moore, R. W. Moorhead, G. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, G. Moreno, D. Moreno Llacer, M. Morettini, P. Morii, M. Morin, J. Morley, A. K. Mornacchi, G. Morozov, S. V. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mudrinic, M. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Muenstermann, D. Muir, A. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nadal, J. Nagai, K. Nagano, K. Nagasaka, Y. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Nanava, G. Napier, A. Nash, M. Nation, N. R. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nebot, E. Nechaeva, P. Yu Negri, A. Negri, G. Nektarijevic, S. Nelson, A. Nelson, S. Nelson, T. K. Nemecek, S. Nemethy, P. Nepomuceno, A. A. Nessi, M. Nesterov, S. Y. Neubauer, M. S. Neusiedl, A. Neves, R. M. Nevski, P. Newman, P. R. Hong, V. Nguyen Thi Nickerson, R. B. Nicolaidou, R. Nicolas, L. Nicquevert, B. Niedercorn, F. Nielsen, J. Niinikoski, T. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolaev, K. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nishiyama, T. Nisius, R. Nodulman, L. Nomachi, M. Nomidis, I. Nordberg, M. Nordkvist, B. Norton, P. R. Novakova, J. Nozaki, M. Nozka, L. Nugent, I. M. Nuncio-Quiroz, A. -E. Hanninger, G. Nunes Nunnemann, T. Nurse, E. Nyman, T. O'Brien, B. J. O'Neale, S. W. O'Neil, D. C. O'Shea, V. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Ohshita, H. Ohsugi, T. Okada, S. Okawa, H. Okumura, Y. Okuyama, T. Olcese, M. Olchevski, A. G. Oliveira, M. Damazio, D. Oliveira Oliver Garcia, E. Olivito, D. Olszewski, A. Olszowska, J. Omachi, C. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlov, I. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ould-Saada, F. Ouraou, A. Ouyang, Q. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pacheco Pages, A. Padilla Aranda, C. Griso, S. Pagan Paganis, E. Paige, F. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Panes, B. Panikashvili, N. Panitkin, S. Pantea, D. Panuskova, M. Paolone, V. Papadelis, A. Papadopoulou, Th D. Paramonov, A. Park, W. Parker, M. A. Parodi, F. Parsons, J. A. Parzefall, U. Pasqualucci, E. Passeri, A. Pastore, F. Pastore, Fr Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Pecsy, M. Morales, M. I. Pedraza Peleganchuk, S. V. Peng, H. Pengo, R. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Perez Codina, E. Perez Garcia-Estan, M. T. Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Persembe, S. Peshekhonov, V. D. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, A. W. Phillips, P. W. Piacquadio, G. Piccaro, E. Piccinini, M. Pickford, A. Piec, S. M. Piegaia, R. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Ping, J. Pinto, B. Pirotte, O. Pizio, C. Placakyte, R. Plamondon, M. Pleier, M. -A. Pleskach, A. V. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Poghosyan, T. Pohl, M. Polci, F. Polesello, G. Policicchio, A. Polini, A. Poll, J. Polychronakos, V. Pomarede, D. M. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Posch, C. Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Prabhu, R. Pralavorio, P. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Pribyl, L. Price, D. Price, L. E. Price, M. J. Prichard, P. M. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Qian, Z. Qin, Z. Quadt, A. Quarrie, D. R. Quayle, W. B. Quinonez, F. Raas, M. Radescu, V. Radics, B. Rador, T. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, M. Ramstedt, M. Randle-Conde, A. S. Randrianarivony, K. Ratoff, P. N. Rauscher, F. Rauter, E. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reichold, A. Reinherz-Aronis, E. Reinsch, A. Reisinger, I. Reljic, D. Rembser, C. Ren, Z. L. Renaud, A. Renkel, P. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richards, A. Richter, R. Richter-Was, E. Ridel, M. Rieke, S. Rijpstra, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robinson, M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Rodier, S. Rodriguez, D. Roe, A. Roe, S. Rohne, O. Rojo, V. Rolli, S. Romaniouk, A. Romano, M. Romanov, V. M. Romeo, G. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosenberg, E. I. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rossi, L. Rotaru, M. Roth, I. Rothberg, J. Rousseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubinskiy, I. Ruckert, B. Ruckstuhl, N. Rud, V. I. Rudolph, C. Rudolph, G. Ruehr, F. Ruggieri, F. Ruiz-Martinez, A. Rulikowska-Zarebska, E. Rumiantsev, V. Rumyantsev, L. Runge, K. Runolfsson, O. Rurikova, Z. Rusakovich, N. A. Rust, D. R. Rutherfoord, J. P. Ruwiedel, C. Ruzicka, P. Ryabov, Y. F. Ryadovikov, V. Ryan, P. Rybar, M. Rybkin, G. Ryder, N. C. Rzaeva, S. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W. Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sandvoss, S. Sankey, D. P. C. Sansoni, A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, T. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Savva, P. Sawyer, L. Saxon, D. H. Says, L. P. Sbarra, C. Sbrizzi, A. Scallon, O. Scannicchio, D. A. Schaarschmidt, J. Schacht, P. Schaefer, U. Schaepe, S. Schaetzel, S. Schaffer, A. C. Schaile, D. Schamberger, R. D. Schamov, A. G. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Schieck, J. Schioppa, M. Schlenker, S. Schlereth, J. L. Schmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schmitz, M. Schoening, A. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schuh, S. Schuler, G. Schultes, J. Schultz-Coulon, H. -C. Schulz, H. Schumacher, J. W. Schumacher, M. Schumm, B. A. Schune, Ph Schwanenberger, C. Schwartzman, A. Schwemling, Ph Schwienhorst, R. Schwierz, R. Schwindling, J. Schwindt, T. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Segura, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Seuster, R. Severini, H. Sevior, M. E. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaver, L. Shaw, K. Sherman, D. Sherwood, P. Shibata, A. Shichi, H. Shimizu, S. Shimojima, M. Shin, T. Shmeleva, A. Shochet, M. J. Short, D. Shupe, M. A. Sicho, P. Sidoti, A. Siebel, A. Siegert, F. Siegrist, J. Sijacki, Dj Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj Simion, S. Simmons, B. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Skvorodnev, N. Slater, M. Slavicek, T. Sliwa, K. Sloper, J. Smakhtin, V. Smirnov, S. Yu Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, D. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snuverink, J. Snyder, S. Soares, M. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Sondericker, J. Soni, N. Sopko, V. Sopko, B. Sorbi, M. Sosebee, M. Soualah, R. Soukharev, A. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spila, F. Spiriti, E. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahl, T. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Stanescu, C. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staude, A. Stavina, P. Stavropoulos, G. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stevenson, K. Stewart, G. A. Stillings, J. A. Stockmanns, T. Stockton, M. C. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Stroehmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Strube, J. Stugu, B. Stumer, I. Stupak, J. Sturm, P. Soh, D. A. Su, D. Subramania, H. S. Succurro, A. Sugaya, Y. Sugimoto, T. Suhr, C. Suita, K. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Sushkov, S. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Sviridov, Yu M. Swedish, S. Sykora, I. Sykora, T. Szeless, B. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Talby, M. Talyshev, A. Tamsett, M. C. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanaka, Y. Tani, K. Tannoury, N. Tappern, G. P. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, G. F. Tas, P. Tasevsky, M. Tassi, E. Tatarkhanov, M. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Terwort, M. Testa, M. Teuscher, R. J. Thadome, J. Therhaag, J. Theveneaux-Pelzer, T. Thioye, M. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomson, E. Thomson, M. Thun, R. P. Tian, F. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timmermans, C. J. W. P. Tipton, P. Viegas, F. J. Tique Aires Tisserant, S. Tobias, J. Toczek, B. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokunaga, K. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tong, G. Tonoyan, A. Topfel, C. Topilin, N. D. Torchiani, I. Torrence, E. Torres, H. Torro Pastor, E. Toth, J. Touchard, F. Tovey, D. R. Traynor, D. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Trinh, T. N. Tripiana, M. F. Trischuk, W. Trivedi, A. Trocme, B. Troncon, C. Trottier-McDonald, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L. Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J. -W. Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turlay, E. Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tyrvainen, H. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ugland, M. Uhlenbrock, M. Uhrmacher, M. Ukegawa, F. Unal, G. Underwood, D. G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urkovsky, E. Urrejola, P. Usai, G. Uslenghi, M. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valenta, J. Valente, P. Valentinetti, S. Valkar, S. Valladolid Gallego, E. Vallecorsa, S. Valls Ferrer, J. A. van der Graaf, H. van der Kraaij, E. Van Der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. van Kesteren, Z. van Vulpen, I. Vandelli, W. Vandoni, G. Vaniachine, A. Vankov, P. Vannucci, F. Rodriguez, F. Varela Vari, R. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Vegni, G. Veillet, J. J. Vellidis, C. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Vichou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Villaplana Perez, M. Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vlasov, N. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Loeben, J. von Radziewski, H. von Toerne, E. Vorobel, V. Vorobiev, A. P. Vorwerk, V. Vos, M. Voss, R. Voss, T. T. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wakabayashi, J. Walbersloh, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, J. C. Wang, R. Wang, S. M. Warburton, A. Ward, C. P. Warsinsky, M. Watkins, P. M. Watson, A. T. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, J. Weber, M. Weber, M. S. Weber, P. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wellenstein, H. Wells, P. S. Wen, M. Wenaus, T. Wendler, S. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Weydert, C. Whalen, K. Wheeler-Ellis, S. J. Whitaker, S. P. White, A. White, M. J. Whitehead, S. R. Whiteson, D. Whittington, D. Wicek, F. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wraight, K. Wright, C. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wunstorf, R. Wynne, B. M. Xaplanteris, L. Xella, S. Xie, S. Xie, Y. Xu, C. Xu, D. Xu, G. Yabsley, B. Yacoob, S. Yamada, M. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamaoka, J. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, U. K. Yang, Y. Yang, Y. Yang, Z. Yanush, S. Yao, Y. Yasu, Y. Smit, G. V. Ybeles Ye, J. Ye, S. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Young, C. Youssef, S. Yu, D. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zaets, V. G. Zaidan, R. Zaitsev, A. M. Zajacova, Z. Zalite, Yo. K. Zanello, L. Zarzhitsky, P. Zaytsev, A. Zeitnitz, C. Zeller, M. Zeman, M. Zemla, A. Zendler, C. Zenin, O. Zenis, T. Zenonos, Z. Zenz, S. Zerwas, D. della Porta, G. Zevi Zhan, Z. Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, T. Zhao, Z. Zhemchugov, A. Zheng, S. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zieminska, D. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. Zolnierowski, Y. Zsenei, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI A study of the material in the ATLAS inner detector using secondary hadronic interactions SO JOURNAL OF INSTRUMENTATION LA English DT Article DE Detector modelling and simulations I (interaction of radiation with matter, interaction; of photons with matter, interaction of hadrons with matter, etc); Particle tracking detectors (Solid-state detectors); Si microstrip and pad detectors; Large detector systems for particle and astroparticle physics AB The ATLAS inner detector is used to reconstruct secondary vertices due to hadronic interactions of primary collision products, so probing the location and amount of material in the inner region of ATLAS. Data collected in 7 TeV pp collisions at the LHC, with a minimum bias trigger, are used for comparisons with simulated events. The reconstructed secondary vertices have spatial resolutions ranging from similar to 200 mu m to 1 mm. The overall material description in the simulation is validated to within an experimental uncertainty of about 7%. This will lead to a better understanding of the reconstruction of various objects such as tracks, leptons, jets, and missing transverse momentum. C1 [Aad, G.; Ahles, F.; Bernhard, R.; Bitenc, U.; Bruneliere, R.; Caron, S.; Christov, A.; Consorti, V.; Eckert, S.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Ketterer, C.; Kollefrath, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Meinhardt, J.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Runge, K.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tobias, J.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik, L. A. M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Alam, M. S.; Ernst, J.; Rojo, V.] SUNY Albany, Albany, NY 12222 USA. [Bahinipati, S.; Buchanan, N. J.; Chan, K.; Gingrich, D. M.; Kim, M. S.; Liu, S.; Moore, R. W.; Pinfold, J. L.; Soni, N.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Persembe, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Yildiz, H. Duran] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] CNRS, LAPP, IN2P3, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Ghez, P.; Goy, C.; Guillemin, T.; Helary, L.; Hryn'ova, T.; Jeremie, A.; Jezequel, S.; Kataoka, M.; Labbe, J.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Perrodo, P.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.; Zolnierowski, Y.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Dawson, J. W.; Guarino, V. J.; Hill, D.; Hill, N.; Karr, K.; LeCompte, T.; Malon, D.; May, E. N.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Schlereth, J. L.; Stanek, R. W.; Underwood, D. G.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Lei, X.; Loch, P.; Mal, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shaver, L.; Shupe, M. A.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; Brown, H.; De, K.; Farbin, A.; Heelan, L.; Hernandez, C. M.; Kim, H.; Nilsson, P.; Ozturk, N.; Pravahan, R.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Antonaki, A.; Fassouliotis, D.; Giakoumopoulou, V.; Giokaris, N.; Ioannou, P.; Kourkoumelis, C.; Manousakis-Katsikakis, A.; Tzanakos, G.; Vellidis, C.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Avramidou, R.; Dris, M.; Filippas, A.; Fokitis, M.; Gazis, E. N.; Iakovidis, G.; Katsoufis, E.; Leontsinis, S.; Maltezos, S.; Panagiotopoulou, E.; Papadopoulou, Th D.; Savva, P.; Tsipolitis, G.; Vlachos, S.; Xaplanteris, L.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdinov, O.; Aliyev, M.; Khalil-zada, F.; Rzaeva, S.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abdallah, J.; Bosman, M.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Dosil, M.; Espinal Curull, X.; Grinstein, S.; Helsens, C.; Rozas, A. Juste; Korolkov, I.; Martinez, M.; Meoni, E.; Mir, L. M.; Miralles Verge, L.; Nadal, J.; Osuna, C.; Pacheco Pages, A.; Padilla Aranda, C.; Perez Codina, E.; Riu, I.; Rossetti, V.; Segura, E.; Succurro, A.; Sushkov, S.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Reljic, D.; Sijacki, Dj; Simic, Lj; Vranjes, N.] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Jovin, T.; Mamuzic, J.; Mudrinic, M.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Johansen, L. G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Arguin, J-F.; Bach, A. M.; Galtieri, A. Barbaro; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Ciocio, A.; Cooke, M.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hsu, S. -C.; Hurwitz, M.; Joseph, J.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Lys, J.; Madaras, R. J.; Griso, S. Pagan; Quarrie, D. R.; Ruwiedel, C.; Scherzer, M. I.; Shapiro, M.; Siegrist, J.; Skinnari, L. A.; Stavropoulos, G.; Tatarkhanov, M.; Tompkins, L.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yao, Y.; Zenz, S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Brandt, G.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Mandrysch, R.; Nikiforov, A.; Schulz, H.; zur Nedden, M.] Humboldt Univ, Dept Phys, Berlin, Germany. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Pretzl, K.; Topfel, C.; Venturi, N.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Collins, N. J.; Curtis, C. J.; Dowell, J. D.; Garvey, J.; Hadley, D. R.; Harrison, K.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Lilley, J. N.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; O'Neale, S. W.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Akdogan, T.; Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.; Rador, T.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.; Diblen, F.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Ciocca, C.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Giacobbe, B.; Giusti, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; Ciocca, C.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartimento Fis, Bologna, Italy. [Alhroob, M.; Anders, C. F.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bartsch, D.; Brock, I.; Cristinziani, M.; Desch, K.; Dingfelder, J.; Fischer, P.; Gaycken, G.; Geich-Gimbel, Ch; Gonella, L.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Ince, T.; Janus, M.; Khoriauli, G.; Koevesarki, P.; Kokott, T.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Kruth, A.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mathes, M.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A. -E.; Poghosyan, T.; Psoroulas, S.; Radics, B.; Runolfsson, O.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schumacher, J. W.; Schwindt, T.; Stillings, J. A.; Stockmanns, T.; Therhaag, J.; Tsung, J. -W.; Uchida, K.; Uhlenbrock, M.; Vlasov, N.; Vogel, A.; von Toerne, E.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Hazen, E.; Lewandowska, M.; Love, J.; Marin, A.; Nation, N. R.; Posch, C.; Shank, J. T.; Whitaker, S. P.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aefsky, S.; Amelung, C.; Bensinger, J. R.; Blocker, C.; Kirsch, L. E.; Pomeroy, D.; Skvorodnev, N.; Wellenstein, H.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Cerqueira, A. S.; Da Silva, P. V. M.; do Vale, M. A. B.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPE, EE, IF, Rio De Janeiro, Brazil. Fed Univ Juiz de Fora UFJF, Juiz De Fora, Brazil. Fed Univ Sao Joao del Rei UFSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Baker, M. D.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Salgado, P. E. De Castro Faria; Debbe, R.; Dhullipudi, R.; Ernst, M.; Gadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Hackenburg, R.; Klimentov, A.; Lanni, F.; Lissauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Nevski, P.; Nikolopoulos, K.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M. -A.; Poblaguev, A.; Polychronakos, V.; Protopopescu, S.; Purohit, M.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Sondericker, J.; Steinberg, P.; Stumer, I.; Takai, H.; Tamsett, M. C.; Trivedi, A.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexaa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dita, P.; Dita, S.; Micu, L.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barber, T.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; Cowden, C.; French, S. T.; Frost, J. A.; Hill, J. C.; Khoo, T. J.; Lester, C. G.; Moeller, V.; Parker, M. A.; Phillips, A. W.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Archambault, J. P.; Cojocaru, C. D.; Gillberg, D.; Khakzad, M.; Koffas, T.; Liu, C.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Amaral, P.; Anastopoulos, C.; Anghinolfi, F.; Arfaoui, S.; Baak, M. A.; Bachas, K.; Bachy, G.; Banfi, D.; Battistin, M.; Bellina, F.; Bellomo, M.; Beltramello, O.; Berge, D.; Bertinelli, F.; Bianchi, R. M.; Blanchot, G.; Bogaerts, J. A.; Boyd, J.; Braem, A.; Bremer, J.; Burckhart, H.; Butin, F.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Cataneo, F.; Catinaccio, A.; Cattai, A.; Cerri, A.; Barajas, C. A. Chavez; Chromek-Burckhart, D.; Cook, J.; Cote, D.; Danielsson, H. O.; Dauvergne, J. P.; Dell'Acqua, A.; Delmastro, M.; Delruelle, N.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobinson, R.; Dobos, D.; Dobson, E.; Dopke, J.; Drevermann, H.; Dudarev, A.; Duehrssen, M.; Dunford, M.; Dydak, F.; Eifert, T.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Foussat, A.; Francis, D.; Franz, S.; Froeschl, R.; Froidevaux, D.; Torregrosa, E. Fullana; Gabaldon, C.; Garelli, N.; Garonne, V.; Gayde, J-C.; Gianotti, F.; Gibson, S. M.; Godlewski, J.; Gonidec, A.; Goossens, L.; Gorini, B.; Grafstroem, P.; Gray, H. M.; Haas, S.; Hahn, F.; Haider, S.; Hatch, M.; Hauschild, M.; Hawkings, R. J.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Huhtinen, M.; Inigo-Golfin, J.; Jaekel, M. R.; Jenni, P.; Jonsson, O.; Joram, C.; Kaneda, M.; Kaplon, J.; Kerschen, N.; Klioutchnikova, T.; Knobloch, J.; Koeneke, K.; Kollar, D.; Kotamaeki, M. J.; Kvita, J.; Lamanna, M.; Lantzsch, K.; Lasseur, C.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Magnoni, L.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Maugain, J. M.; McLaren, R. A.; Menot, C.; Messina, A.; Meyer, T. C.; Michal, S.; Miele, P.; Molina-Perez, J.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Niinikoski, T.; Nordberg, M.; Nyman, T.; Palestini, S.; Pauly, T.; Pengo, R.; Pernegger, H.; Petersen, B. A.; Petersen, J.; Piacquadio, G.; Pirotte, O.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Pribyl, L.; Price, M. J.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salzburger, A.; Savu, D. O.; Schlenker, S.; Schott, M.; Schuh, S.; Schuler, G.; Sfyrla, A.; Shimizu, S.; Sloper, J.; Spigo, G.; Spiwoks, R.; Stanecka, E.; Stewart, G. A.; Stockton, M. C.; Sumida, T.; Szeless, B.; Tappern, G. P.; Ten Kate, H.; Viegas, F. J. Tique Aires; Torchiani, I.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Tyrvainen, H.; Unal, G.; van der Ster, D.; Vandelli, W.; Vandoni, G.; Rodriguez, F. Varela; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zajacova, Z.; Zsenei, A.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Choudalakis, G.; Costin, T.; Feng, E. J.; Fiascaris, M.; Gardner, R. W.; Gupta, A.; Plante, I. Jen-La; Kapliy, A.; Melachrinos, C.; Merritt, F. S.; Miller, D. W.; Onyisi, P. U. E.; Oreglia, M. J.; Pilcher, J. E.; Shochet, M. J.; Tuggle, J. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Panes, B.; Quinonez, F.; Urrejola, P.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Cheng, S.; Han, H.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Tong, G.; Xie, Y.; Xu, G.; Yang, Y.; Yuan, L.; Zheng, S.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Jiang, Y.; Jin, G.; Li, S.; Liu, M.; Liu, Y.; Peng, H.; Wang, H.; Wu, Y.; Xu, C.; Zhang, D.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.; Chen, T.; Ping, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; He, M.; Miao, J.; Wang, J.; Zhan, Z.; Zhang, X.; Zhu, C. G.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Clermont Univ, Phys Corpusculaire Lab, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] Univ Clermont Ferrand, Aubiere, France. [Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Febbraro, R.; Ghodbane, N.; Guicheney, C.; Liao, H.; Pallin, D.; Podlyski, F.; Santoni, C.; Says, L. P.; Vazeille, F.] CNRS, IN2P3, Aubiere, France. [Andeen, T.; Angerami, A.; Brooijmans, G.; Copic, K.; Dodd, J.; Grau, N.; Guo, J.; Hughes, E. W.; Leltchouk, M.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Boelaert, N.; Dam, M.; Driouichi, C.; Gregersen, K.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Petersen, T. C.; Simonyan, M.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Ist Nazl Fis Nucl, Grp Collegato Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; Fazio, S.; La Rotonda, L.; Mastroberardino, A.; Morello, G.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Bold, T.; Ciba, K.; Dabrowski, W.; Dwuznik, M.; Jelen, K.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Rulikowska-Zarebska, E.; Toczek, B.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, E.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Daya, R. K.; Yagci, K. Dindar; Firan, A.; Hadavand, H. K.; Hoffman, J.; Ilchenko, Y.; Ishmukhametov, R.; Joffe, D.; Kama, S.; Kasmi, A.; Kehoe, R.; Liang, Z.; Randle-Conde, A. S.; Renkel, P.; Rios, R. R.; Stroynowski, R.; Ye, J.; Zarzhitsky, P.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Galyaev, E.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Sedov, G.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, D-2000 Hamburg, Germany. [Bechtle, P.; Kuutmann, E. Bergeaas; Boehler, M.; Dietrich, J.; Ehrenfeld, W.; Ferrara, V.; Fischer, G.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Gosdzik, B.; Grahn, K-J.; Gregor, I. M.; Hiller, K. H.; Husemann, U.; Belenguer, M. Jimenez; Johnert, S.; Karnevskiy, M.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodzinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Mijovic, L.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Placakyte, R.; Qin, Z.; Rubinskiy, I.; Sedov, G.; Tackmann, K.; Terwort, M.; Vankov, P.; Viti, M.; Wildt, M. A.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klaiber-Lodewigs, J.; Klingenberg, R.; Reisinger, I.; Walbersloh, J.; Weber, J.; Wunstorf, R.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Friedrich, F.; Goepfert, T.; Kar, D.; Kobel, M.; Leonhardt, K.; Ludwig, A.; Mader, W. F.; Prudent, X.; Rudolph, C.; Schwierz, R.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjamin, D. P.; Bocci, A.; Ebenstein, W. L.; Fowler, A. J.; Ko, B. R.; Kotwal, A.; Oh, S. H.; Wang, C.; Yamaoka, J.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Harrington, R. D.; Martin, V. J.; O'Brien, B. J.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. Fachhsch Wiener Neustadt, A-2700 Wiener Neustadt, Austria. [Annovi, A.; Antonelli, M.; Bilokon, H.; Cerutti, F.; Curatolo, M.; Esposito, B.; Ferrer, M. L.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A.; Testa, M.; Vilucchi, E.; Volpi, G.; Wen, M.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Abdelalim, A. A.; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Berglund, E.; Blondel, A.; Bucci, F.; Clark, A.; Dao, V.; Ferrere, D.; Gadomski, S.; Navarro, J. E. Garcia; Gaumer, O.; Gonzalez-Sevilla, S.; Goulette, M. P.; Hamilton, A.; Iacobucci, G.; Leger, A.; Lister, A.; Latour, B. Martin Dit; Herrera, C. Mora; Nektarijevic, S.; Nikolics, K.; Pasztor, G.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Coccaro, A.; Cornelissen, T.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Morettini, P.; Olcese, M.; Osculati, B.; Parodi, F.; Rossi, L. P.; Schiavi, C.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Barberis, D.; Caso, C.; Coccaro, A.; Cornelissen, T.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Osculati, B.; Parodi, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Georgian Acad Sci, E Andronikashvili Inst Phys, GE-380060 Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Astvatsatourov, A.; Dueren, M.; Stenzel, H.] Univ Giessen, Inst Phys 2, D-6300 Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; Gemmell, A.; Kenyon, M.; McGlone, H.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Pickford, A.; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, C.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Ay, C.; Bierwagen, K.; Blumenschein, U.; Brandt, O.; Erdmann, J.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Haller, J.; Henrichs, A.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lemmer, B.; Magradze, E.; Mann, A.; Meyer, J.; Morel, J.; Quadt, A.; Roe, A.; Shabalina, E.; Uhrmacher, M.; Weber, P.; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS, IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Delsart, P. A.; Donini, J.; Hostachy, J-Y.; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Martin, Ph; Polci, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Brandenburg, G. W.; Franklin, M.; Hurst, P.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, D. Lopez; Outschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Moed, S.; Morii, M.; Prasad, S.; Skottowe, H. P.; Smith, B. C.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Childers, J. T.; Davygora, Y.; Dietzsch, T. A.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lendermann, V.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H. -C.; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Radescu, V.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, D-6900 Heidelberg, Germany. [Kugel, A.; Maenner, R.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, D-6800 Mannheim, Germany. [Ohsugi, T.] Hiroshima Univ, Fac Sci, Hiroshima 730, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Jain, V.; Luehring, F.; Ogren, H.; Penwell, J.; Price, D.; Rust, D. R.; Whittington, D.; Yang, Y.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Limper, M.; Mallik, U.; Mete, A. S.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; Dudziak, F.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Ruiz-Martinez, A.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Barashkou, A.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chepurnov, V. F.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Gusakov, Y.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khovanskiy, N.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Lazarev, A. B.; Manjavidze, I. D.; Minashvili, I. A.; Mineev, M.; Nikolaev, K.; Olchevski, A. G.; Peshekhonov, V. D.; Romanov, V. M.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Sasaki, T.; Suzuki, Y.; Tanaka, S.; Terada, S.; Tojo, J.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, M.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Akiyama, A.; Hayakawa, T.; Homma, Y.; Ichimiya, R.; Ishikawa, A.; Kawagoe, K.; King, M.; Kishimoto, T.; Kurashige, H.; Matsushita, T.; Miyazaki, K.; Nishiyama, T.; Ochi, A.; Okada, S.; Omachi, C.; Suita, K.; Suzuki, Y.; Takeda, H.; Tani, K.; Tokunaga, K.; Yamazaki, Y.] Kobe Univ, Grad Sch, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Buenos Aires, Argentina. [Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Brodbeck, T. J.; Catmore, J. R.; Chilingarov, A.; Davidson, R.; De Mora, L.; Fox, H.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Ratoff, P. N.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, G.; Chiodini, G.; Crupi, R.; Gorini, E.; Grancagnolo, F.; Guida, A.; Perrino, R.; Primavera, M.; Spagnolo, S.; Ventura, A.] Ist Nazl Fis Nucl, Sez Lecce, I-73100 Lecce, Italy. [Bianco, M.; Crupi, R.; Gorini, E.; Guida, A.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Fis, Lecce, Italy. [Allport, P. P.; Austin, N.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Houlden, M. A.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Maxfield, S. J.; Mehta, A.; Migas, S.; Prichard, P. M.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Dolenc, I.; Filipcic, A.; Gorisek, A.; Kersevan, B. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Landon, M. P. J.; Lloyd, S. L.; Morin, J.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Stevenson, K.; Castanheira, M. Teixeira Dias; Traynor, D.; Wiglesworth, C.] Queen Mary Univ London, Dept Phys, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Boorman, G.; Cooper-Smith, N. J.; Cowan, G.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Misiejuk, A.; Pastore, Fr; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Egham, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Boeser, S.; Butterworth, J. M.; Campanelli, M.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Dean, S.; Jansen, E.; Jones, T. W.; Konstantinidis, N.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Richards, A.; Robinson, J. E. M.; Sherwood, P.; Simmons, B.; Taylor, C.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] UPMC, Lab Phys Nucl & Hautes Energies, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] Univ Paris Diderot, Paris, France. [Beau, T.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Chareyre, E.; De Cecco, S.; Derue, F.; Imbault, D.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforge, B.; Laplace, S.; Le Dortz, O.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Trinh, T. N.; Vannucci, F.; Yuan, L.] CNRS, IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjornmark, J. U.; Smirnova, O.] Lund Univ, Fysiska Inst, Lund, Sweden. [Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Lagouri, T.; Llorente Merino, J.; March, L.; Nebot, E.; Rodier, S.; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C15, Madrid, Spain. [Aharrouche, M.; Arnaez, O.; Bendel, M.; Blum, W.; Buescher, V.; Eckweiler, S.; Edmonds, K.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Neusiedl, A.; Rieke, S.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Tapprogge, S.; Anh, T. Vu] Johannes Gutenberg Univ Mainz, Inst Phys, D-6500 Mainz, Germany. [Almond, J.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Foster, J. M.; Howarth, J.; Hughes-Jones, R. E.; Ibbotson, M.; Jones, G.; Keates, J. R.; Kelly, M.; Kolya, S. D.; Lane, J. L.; Loebinger, F. K.; Marshall, R.; Martyniuk, A. C.; Marx, M.; Masik, J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Schwanenberger, C.; Snow, S. W.; Watts, S.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Bee, C. P.; Benchouk, C.; Bernardet, K.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Delpierre, P.; Djama, F.; Etienne, F.; Feligioni, L.; Henry-Couannier, F.; Hoffmann, D.; Hubaut, F.; Knoops, E. B. F. G.; Le Guirriec, E.; Li, B.; Monnier, E.; Odier, J.; Petit, E.; Pralavorio, P.; Qian, Z.; Rozanov, A.; Talby, M.; Tannoury, N.; Tisserant, S.; Toth, J.; Touchard, F.; Vacavant, L.] CNRS, IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pueschel, E.; Thompson, E. N.; van Eldik, N.; Willocq, S.; Woudstra, M. J.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Guler, H.; Klemetti, M.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davey, W.; Davidson, N.; Felzmann, C. U.; Kubota, T.; Limosani, A.; Moorhead, G. F.; Hanninger, G. Nunes; Phan, A.; Sevior, M. E.; Shao, Q. T.; Taylor, G. N.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Borroni, S.; Chapman, J. W.; Cirilli, M.; Dai, T.; Diehl, E. B.; Eppig, A.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, D.; Li, X.; Liu, H.; Liu, J. B.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Yang, H.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Di Mattia, A.; Fedorko, W.; Hauser, R.; Heim, S.; Holzbauer, J. L.; Huston, J.; Koll, J.; Kraus, J.; Linnemann, J. T.; Mangeard, P. S.; Martin, B.; Miller, R. J.; Pope, B. G.; Ryan, P.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Acerbi, E.; Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Battistoni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Costa, G.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meroni, C.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Tartarelli, G. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy. [Acerbi, E.; Andreazza, A.; Besana, M. I.; Carminati, L.; Dell'Asta, L.; Fanti, M.; Favareto, A.; Montesano, S.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Rossi, L.; Sorbi, M.; Turra, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Gilewsky, V.; Kuzhir, P.; Rumiantsev, V.; Starovoitov, P.; Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Azuelos, G.; Banerjee, P.; Bouchami, J.; Davies, M.; Ferland, J.; Giunta, M.; Gutierrez, A.; Lebel, C.; Leroy, C.; Goia, J. A. Macana; Martin, J. P.; Mehdiyev, R.; Scallon, O.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] ITEP, Moscow, Russia. [Antonov, A.; Belotskiy, K.; Bondarenko, V. G.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Morozov, S. V.; Romaniouk, A.; Smirnov, S. Yu; Soldatov, E.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Kramarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu; Smirnova, L. N.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Adomeit, S.; Biebel, O.; Calfayan, P.; De Graat, J.; Duckeck, G.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Genest, M. H.; Hertenberger, R.; Kennedy, J.; Kummer, C.; Legger, F.; Lichtnecker, M.; Mameghani, R.; Mueller, T. A.; Nunnemann, T.; Rauscher, F.; Reznicek, P.; Ruckert, B.; Sanders, M. P.; Schaile, D.; Schieck, J.; Serfon, C.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Zhuang, X.] Univ Munich, Fak Phys, Munich, Germany. [Aderholz, M.; Barillari, T.; Beimforde, M.; Bethke, S.; Capriotti, D.; Cortiana, G.; Dannheim, D.; Dubbert, J.; Ehrich, T.; Flowerdew, M. J.; Giovannini, P.; Goettfert, T.; Groh, M.; Haefner, P.; Hauff, D.; Jantsch, A.; Kaiser, S.; Kiryunin, A. E.; Kluth, S.; Kortner, O.; Kortner, S.; Kotov, S.; Kroha, H.; Lutz, G.; Macchiolo, A.; Manz, A.; Menke, S.; Mohrdieck-Moeck, S.; Moser, H. G.; Nisius, R.; Oberlack, H.; Pospelov, G. E.; Potrap, I. N.; Rauter, E.; Richter, R.; Salihagic, D.; Sandstroem, R.; Schacht, P.; Seuster, R.; Stonjek, S.; von der Schmitt, H.; von Loeben, J.; Weigell, P.; Zhuravlov, V.] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany. [Shimojima, M.; Tanaka, Y.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Hasegawa, S.; Morvaj, L.; Ohshima, T.; Okumura, Y.; Shichi, H.; Sugimoto, T.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Carlino, G.; Cevenini, F.; Chiefari, G.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Capasso, L.; Cevenini, F.; Chiefari, G.; della Volpe, D.; Giordano, R.; Iengo, P.; Merola, L.; Musto, E.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fis, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Metcalfe, J.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Chelstowska, M. A.; Consonni, M.; De Groot, N.; Filthaut, F.; Klok, P. F.; Konig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.; Timmermans, C. J. W. P.] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Nikhef, NL-6525 ED Nijmegen, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] NIKHEF H, Natl Inst Subat Phys, NL-1009 DB Amsterdam, Netherlands. [Bentvelsen, S.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; Daum, C.; de Jong, P.; De Nooij, L.; Doxiadis, A. D.; Ferrari, P.; Garitaonandia, H.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Kayl, M. S.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; de Lima, J. G. Rocha; Suhr, C.; Zutshi, V.] Univ Illinois, Dept Phys, De Kalb, IL USA. [Beloborodova, O.; Bobrovnikov, V. B.; Bogdanchikov, A.; Kazanin, V. A.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Orlov, I.; Peleganchuk, S. V.; Schamov, A. G.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.; Zaytsev, A.] BINP, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; van Huysduynen, L. Hooft; Konoplich, R.; Krasznahorkay, A.; Lewis, G. H.; Mincer, A. I.; Nemethy, P.; Neves, R. M.; Prokofiev, K.; Shibata, A.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fernando, W.; Fisher, M. J.; Gan, K. K.; Kagan, H.; Kass, R. D.; Moss, J.; Rahimi, A. M.; Strang, M.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abbott, B.; Gutierrez, P.; Huang, G. S.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Kocnar, A.; Nozka, L.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Reinsch, A.; Robinson, M.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Abreu, H.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Blanchard, J. -B.; Bourdarios, C.; Breton, D.; Collard, C.; De La Taille, C.; De Regie, J. B. De Vivie; Diglio, S.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Heller, M.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Ruan, X.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Schaffer, A. C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Vukotic, I.; Wicek, F.; Zerwas, D.; Zhang, Z.] CNRS, IN2P3, F-91405 Orsay, France. [Hanagaki, K.; Hirose, M.; Meguro, T.; Nomachi, M.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Pylypchenko, Y.; Read, A. L.; Rohne, O.; Samset, B. H.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Abdesselam, A.; Apolle, R.; Barr, A. J.; Beauchemin, P. H.; Boddy, C. R.; Buchanan, J.; Buckingham, R. M.; Buira-Clark, D.; Coe, P.; Coniavitis, E.; Cooper-Sarkar, A. M.; Davies, E.; Dehchar, M.; Doglioni, C.; Farrington, S. M.; Gallas, E. J.; Gilbert, L. M.; Gwenlan, C.; Hawes, B. M.; Horton, K.; Howell, D. F.; Huffman, T. B.; Issever, C.; Karagoz, M.; King, R. S. B.; Korn, A.; Kundu, N.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Loken, J.; Mattravers, C.; Mermod, P.; Nickerson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L.; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.] Univ Oxford, Dept Phys, Oxford, England. [Cambiaghi, M.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Livan, M.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.; Vercesi, V.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Cambiaghi, M.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, M.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.; Uslenghi, M.] Univ Pavia, Dipartimento Fis Nucl & Teor, I-27100 Pavia, Italy. [Alison, J.; Degenhardt, J.; Donega, M.; Dressnandt, N.; Fratina, S.; Hines, E.; Hong, T. M.; Jackson, B.; Kroll, J.; Kunkle, J.; LeGeyt, B. C.; Lipeles, E.; Martin, F. F.; Olivito, D.; Ospanov, R.; Reece, R.; Stahlman, J.; Thomson, E.; Wagner, P.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Nesterov, S. Y.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Zalite, Yo. K.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavasinni, V.; Crescioli, F.; Del Prete, T.; Dotti, A.; Francavilla, P.; Giangiobbe, V.; Lupi, A.; Mazzoni, E.; Roda, C.; Sarri, F.; Zenonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Paolone, V.; Prieur, D.; Savinov, V.; Wendler, S.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Muino, P. Conde; Wemans, A. Do Valle; Fiolhais, M. C. N.; Gomes, A.; Jorge, P. M.; Lopes, L.; Miguens, J. Machado; Maio, A.; Maneira, J.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Soares, M.; Veloso, F.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Aguilar-Saavedra, J. A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Aguilar-Saavedra, J. A.] Univ Granada, CAFPE, Granada, Spain. [Chudoba, J.; Gallus, P.; Gunther, J.; Hruska, I.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lipinsky, L.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Panuskova, M.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Valenta, J.; Vrba, V.; Zeman, M.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Davidek, T.; Dolejsi, J.; Dolezal, Z.; Drasal, Z.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Augsten, K.; Holy, T.; Horazdovsky, T.; Hubacek, Z.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Bozhko, N. I.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Gapienko, V. A.; Golovnia, S. N.; Gorokhov, S. A.; Goryachev, V. N.; Gushchin, V. N.; Ivashin, A. V.; Kabachenko, V. V.; Karyukhin, A. N.; Kholodenko, A. G.; Kiver, A. M.; Kopikov, S. V.; Koreshev, V.; Korotkov, V. A.; Kozhin, A. S.; Larionov, A. V.; Levitski, M. S.; Minaenko, A. A.; Mitrofanov, G. Y.; Moisseev, A. M.; Myagkov, A. G.; Nikolaenko, V.; Pleskach, A. V.; Ryadovikov, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Sviridov, Yu M.; Vorobiev, A. P.; Zaets, V. G.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] State Res Ctr, Inst High Energy Phys, Protvino, Russia. [Adye, T.; Apolle, R.; Baines, T.; Barnett, B. M.; Botterill, D.; Burke, S.; Clifft, R. W.; Davies, E.; Dewhurst, A.; Emeliyanov, D.; Fisher, S. M.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Greenfield, D.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Nash, M.; Norton, P. R.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Strube, J.; Tyndel, M.; Weber, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.; Ju, X.; Ming, Y.; Smit, G. V. Ybeles] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; Dionisi, C.; Falciano, S.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Maiani, C.; Marzano, F.; Mastrandrea, P.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petrolo, E.; Pontecorvo, L.; Rescigno, M.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Valente, P.; Vari, R.; Veneziano, S.; Zanello, L.] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, R.; Ciapetti, G.; D'Orazio, A.; Dionisi, C.; Gentile, S.; Giagu, S.; Lacava, F.; Lo Sterzo, F.; Luci, C.; Maiani, C.; Mastrandrea, P.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Spila, F.; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Liberti, B.; Marchese, F.; Salamon, A.; Santonico, R.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, G.; Di Ciaccio, A.; Di Nardo, R.; Di Simone, A.; Marchese, F.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petrucci, F.; Ruggieri, F.; Spiriti, E.; Stanescu, C.] Ist Nazl Fis Nucl, Sez Roma Tre, Rome, Italy. [Bacci, C.; Biglietti, M.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petrucci, F.; Ruggieri, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Fac Sci Ain Chock, Reseau Univ Phys Hautes Energies, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, Dept Phys, Marrakech 40000, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed 5, Fac Sci, Rabat, Morocco. [Bachacou, H.; Bauer, F.; Besson, N.; Bolnet, N. M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A. I.; Formica, A.; Gauthier, L.; Giraud, P. F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J. F.; Le Menedeu, E.; Legendre, M.; Mansoulie, B.; Meyer, J-P.; Morange, N.; Mountricha, E.; Hong, V. Nguyen Thi; Nicolaidou, R.; Ouraou, A.; Pomarede, D. M.; Resende, B.; Royon, C. R.; Schune, Ph; Schwindling, J.; Simard, O.; Virchaux, M.; Xu, C.] CEA Saclay, DSM IRFU, Inst Rech Lois Fondamentales Univers, Commissariat Energie Atom, F-91191 Gif Sur Yvette, France. [Bangert, A.; Chouridou, S.; Damiani, D. S.; Dubbs, T.; Fowler, K.; Grillo, A. A.; Hare, G. A.; Litke, A. M.; Lockman, W. S.; Manning, P. M.; Mitrevski, J.; Nielsen, J.; Sadrozinski, H. F-W.; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Forbush, D. A.; Goussiou, A. G.; Griffiths, J.; Harris, O. M.; Lubatti, H. J.; Mockett, P.; Policicchio, A.; Rothberg, J.; Ventura, D.; Verducci, M.; Wang, J. C.; Watts, G.; Zhao, T.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Booth, C. N.; Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mayne, A.; Mcfayden, J. A.; Miyagawa, P. S.; Nicolas, L.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, D. R.; Tua, A.; Xu, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Ohshita, H.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, M.; Rosenthal, O.; Sipica, V.; Stahl, T.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-5900 Siegen, Germany. [Dawe, E.; Godfrey, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Trottier-McDonald, M.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Gao, Y. S.; Grenier, P.; Haas, A.; Hansson, P.; Horn, C.; Jackson, P.; Kenney, C. J.; Kim, P. C.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, S.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Smith, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Pecsy, M.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey; Yacoob, S.] Univ Witwatersrand, Sch Phys, ZA-2050 Johannesburg, South Africa. [Asman, B.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Hidvegi, A.; Holmgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Lesser, J.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Papadelis, A.; Ramstedt, M.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Lundberg, J.; Milstead, D. A.; Moa, T.; Nordkvist, B.; Ohm, C. C.; Ramstedt, M.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Lund-Jensen, B.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Caputo, R.; Deluca, C.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; McCarthy, R. L.; Mohapatra, S.; Rijssenbeek, M.; Schamberger, R. D.; Stupak, J.; Tsybychev, D.; Yurkewicz, A.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Lee, J. S. H.; Patel, N.; Saavedra, A. F.; Varvell, K. E.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, H.; Wang, J.; Wang, S. M.; Weng, Z.; Zhang, D.; Zhong, J.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Ben Ami, S.; Bressler, S.; Hershenhorn, A. D.; Kajomovitz, E.; Landsman, H.; Lifshitz, R.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Brodet, E.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Kreisel, A.; Mahalalel, Y.; Munwes, Y.; Oren, Y.; Reinherz-Aronis, E.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.; Urkovsky, E.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Veillet, J. J.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmae, T.; Imori, M.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashimo, T.; Masubuchi, T.; Matsumoto, H.; Matsunaga, H.; Nakamura, K.; Nakamura, T.; Ninomiya, Y.; Oda, S.; Okuyama, T.; Sakamoto, H.; Tanaka, J.; Terashi, K.; Ueda, I.; Veillet, J. J.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.] Univ Tokyo, Dept Phys, Tokyo 113, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Jinnouchi, O.; Kanno, T.; Kuze, M.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [Bailey, D. C.; Bain, T.; Beare, B.; Brelier, B.; Cheung, S. L.; Deviveiros, P. O.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Jankowski, E.; Keung, J.; Knecht, N. S.; Krieger, P.; Le Maner, C.; Martens, F. K.; Orr, R. S.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Azuelos, G.; Canepa, A.; Caron, B.; Chekulaev, S. V.; Fortin, D.; Gingrich, D. M.; Losty, M. J.; Nugent, I. M.; Oakham, F. G.; Oram, C. J.; Savard, P.; Schouten, D.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hara, K.; Hayashi, T.; Kim, S. H.; Kurata, M.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Inst Pure & Appl Sci, Tsukuba, Ibaraki 305, Japan. [Hamilton, S.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.] Tufts Univ, Ctr Sci & Technol, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Rodriguez, D.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Avolio, G.; Bondioli, M.; Ciobotaru, M. D.; Deng, J.; Dobson, M.; Eschrich, I. Gough; Grabowska-Bold, I.; Hawkins, D.; Lankford, A. J.; Nelson, A.; Okawa, H.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Wheeler-Ellis, S. J.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Pinamonti, M.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Collegato Udine, Trieste, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Cauz, D.; Cobal, M.; De Lotto, B.; De Sanctis, U.; Del Papa, C.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [Benekos, N.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Khandanyan, H.; Lie, K.; Liss, T. M.; McCarn, A.; Neubauer, M. S.; Vichou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Ekelof, T.; Ellert, M.; Ferrari, A.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Amoros, G.; Cabrera Urban, S.; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Amoros, G.; Cabrera Urban, S.; Gimenez, V. Castillo; Costa, M. J.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; Marti-Garcia, S.; Minano, M.; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Perez Garcia-Estan, M. T.; Ros, E.; Salt, J.; Solans, C. A.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valladolid Gallego, E.; Valls Ferrer, J. A.; Villaplana Perez, M.; Vos, M.; Wildauer, A.] CSIC, Valencia, Spain. [Axen, D.; Gay, C.; Loh, C. W.; Mills, W. J.; Muir, A.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; McPherson, R. A.; Plamondon, M.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Asfandiyarov, R.; Banerjee, Sw; Montoya, G. D. Carrillo; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Fang, Y.; Castillo, L. R. Flores; Gonzalez, S.; Gutzwiller, O.; Ji, H.; Kashif, L.; La Rosa, A.; Cheong, A. Leung Fook; Li, H.; Ma, L. L.; Garcia, B. R. Mellado; Pan, Y. B.; Morales, M. I. Pedraza; Poveda, J.; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Stroehmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys & Astron, Wurzburg, Germany. [Barisonzi, M.; Becks, K. H.; Boek, J.; Braun, H. M.; Drees, J.; Fleischmann, S.; Flick, T.; Gerlach, P.; Glitza, K. W.; Gorfine, G.; Grah, C.; Hamacher, K.; Harenberg, T.; Henss, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kootz, A.; Lenzen, G.; Maettig, P.; Mechtel, M.; Pataraia, S.; Sandhoff, M.; Sandvoss, S.; Sartisohn, G.; Schultes, J.; Siebel, A.; Sturm, P.; Thadome, J.; Voss, T. T.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Atoian, G.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Czyczula, Z.; Demers, S.; Garberson, F.; Golling, T.; Guest, D.; Hsu, P. J.; Kaplan, B.; Lee, L.; Loginov, A.; Martin, A. J.; Sherman, D.; Thioye, M.; Tipton, P.; Wall, R.; Zeller, M.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Cogneras, E.; Rahal, G.] CNRS, Domaine Sci Doua, Ctr Calcul, IN2P3, Villeurbanne, France. [Aguilar-Saavedra, J. A.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Jorge, P. M.; Lopes, L.; Palma, A.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Jorge, P. M.; Lopes, L.; Palma, A.; Pinto, B.; Saraiva, J. G.; Silva, J.] Univ Lisbon, CFNUL, P-1699 Lisbon, Portugal. [Arfaoui, S.; Li, S.] Aix Marseille Univ, CPPM, Marseille, France. [Arfaoui, S.; Li, S.] CNRS, IN2P3, Marseille, France. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Canelli, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Conventi, F.; Della Pietra, M.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Grabowska-Bold, I.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Guler, H.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Huseynov, N.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Kono, T.; Terwort, M.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Liu, D.; Meng, Z.] Shandong Univ, High Energy Phys Grp, Jinan, Shandong, Peoples R China. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Park, W.; Purohit, M.; Trivedi, A.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Pasztor, G.; Toth, J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Vickey, T.] Univ Oxford, Dept Phys, Oxford, England. [Wu, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Zhong, J.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Grinstein, Sebastian/N-3988-2014; la rotonda, laura/B-4028-2016; Juste, Aurelio/I-2531-2015; Capua, Marcella/A-8549-2015; Tartarelli, Giuseppe Francesco/A-5629-2016; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; Prokoshin, Fedor/E-2795-2012; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Mashinistov, Ruslan/M-8356-2015; Solodkov, Alexander/B-8623-2017; Zaitsev, Alexandre/B-8989-2017; Monzani, Simone/D-6328-2017; Fullana Torregrosa, Esteban/A-7305-2016; Doyle, Anthony/C-5889-2009; Tikhomirov, Vladimir/M-6194-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Smirnova, Oxana/A-4401-2013; Aguilar Saavedra, Juan Antonio/F-1256-2016; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Olshevskiy, Alexander/I-1580-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; Cavalli-Sforza, Matteo/H-7102-2015; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Chekulaev, Sergey/O-1145-2015; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Carvalho, Joao/M-4060-2013; Booth, Christopher/B-5263-2016; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Lei, Xiaowen/O-4348-2014; Demirkoz, Bilge/C-8179-2014; Ventura, Andrea/A-9544-2015; Villaplana Perez, Miguel/B-2717-2015; Livan, Michele/D-7531-2012; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Ferrer, Antonio/H-2942-2015; Morozov, Sergey/C-1396-2014; Villa, Mauro/C-9883-2009; Nozka, Libor/G-5550-2014; Nemecek, Stanislav/G-5931-2014; Lokajicek, Milos/G-7800-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Snesarev, Andrey/H-5090-2013; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Loh, Chang Wei/I-1310-2014; Peleganchuk, Sergey/J-6722-2014; Kuleshov, Sergey/D-9940-2013; Amorim, Antonio/C-8460-2013; Boyko, Igor/J-3659-2013; Annovi, Alberto/G-6028-2012; Marti-Garcia, Salvador/F-3085-2011; Castro, Nuno/D-5260-2011; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; O'Shea, Val/G-1279-2010; Lee, Jason/B-9701-2014; Moraes, Arthur/F-6478-2010; Ishikawa, Akimasa/G-6916-2012; Tudorache, Valentina/D-2743-2012; Casadei, Diego/I-1785-2013; Solfaroli Camillocci, Elena/J-1596-2012; La Rosa, Alessandro/I-1856-2013; Tudorache, Alexandra/L-3557-2013; Vanyashin, Aleksandr/H-7796-2013; Conde Muino, Patricia/F-7696-2011; Dawson, Ian/K-6090-2013; Brooks, William/C-8636-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Kuzhir, Polina/H-8653-2012; Di Micco, Biagio/J-1755-2012; Wemans, Andre/A-6738-2012; Giordano, Raffaele/J-3695-2012; Delmastro, Marco/I-5599-2012; Gutierrez, Phillip/C-1161-2011; Kurashige, Hisaya/H-4916-2012; Della Pietra, Massimo/J-5008-2012; Weigell, Philipp/I-9356-2012; Petrucci, Fabrizio/G-8348-2012; Di Nardo, Roberto/J-4993-2012; Fabbri, Laura/H-3442-2012; Rotaru, Marina/A-3097-2011; Cascella, Michele/B-6156-2013; Moorhead, Gareth/B-6634-2009; Bergeaas Kuutmann, Elin/A-5204-2013; Veneziano, Stefano/J-1610-2012; Smirnov, Sergei/F-1014-2011; Takai, Helio/C-3301-2012; Fazio, Salvatore /G-5156-2010; Wolter, Marcin/A-7412-2012; valente, paolo/A-6640-2010; Andreazza, Attilio/E-5642-2011; de Groot, Nicolo/A-2675-2009; Orlov, Ilya/E-6611-2012; Stoicea, Gabriel/B-6717-2011; OI Gray, Heather/0000-0002-5293-4716; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; Mincer, Allen/0000-0002-6307-1418; Grinstein, Sebastian/0000-0002-6460-8694; la rotonda, laura/0000-0002-6780-5829; Osculati, Bianca Maria/0000-0002-7246-060X; Amorim, Antonio/0000-0003-0638-2321; Adye, Tim/0000-0003-0627-5059; Santos, Helena/0000-0003-1710-9291; Anjos, Nuno/0000-0002-0018-0633; Giordani, Mario/0000-0002-0792-6039; Juste, Aurelio/0000-0002-1558-3291; Begel, Michael/0000-0002-1634-4399; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Capua, Marcella/0000-0002-2443-6525; Vari, Riccardo/0000-0002-2814-1337; Di Micco, Biagio/0000-0002-4067-1592; Tartarelli, Giuseppe Francesco/0000-0002-4244-502X; Nisati, Aleandro/0000-0002-5080-2293; Nielsen, Jason/0000-0002-9175-4419; Grancagnolo, Francesco/0000-0002-9367-3380; Dell'Asta, Lidia/0000-0002-9601-4225; Chen, Hucheng/0000-0002-9936-0115; Cataldi, Gabriella/0000-0001-8066-7718; Sawyer, Lee/0000-0001-8295-0605; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Prokoshin, Fedor/0000-0001-6389-5399; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Mashinistov, Ruslan/0000-0001-7925-4676; Solodkov, Alexander/0000-0002-2737-8674; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Troncon, Clara/0000-0002-7997-8524; Bailey, David C/0000-0002-7970-7839; Fullana Torregrosa, Esteban/0000-0003-3082-621X; Doyle, Anthony/0000-0001-6322-6195; Tikhomirov, Vladimir/0000-0002-9634-0581; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Smirnova, Oxana/0000-0003-2517-531X; Aguilar Saavedra, Juan Antonio/0000-0002-5475-8920; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Olshevskiy, Alexander/0000-0002-8902-1793; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Carvalho, Joao/0000-0002-3015-7821; Booth, Christopher/0000-0002-6051-2847; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Lei, Xiaowen/0000-0002-2564-8351; Ventura, Andrea/0000-0002-3368-3413; Villaplana Perez, Miguel/0000-0002-0048-4602; Livan, Michele/0000-0002-5877-0062; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Riu, Imma/0000-0002-3742-4582; Ferrer, Antonio/0000-0003-0532-711X; Morozov, Sergey/0000-0002-6748-7277; Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Kuleshov, Sergey/0000-0002-3065-326X; Boyko, Igor/0000-0002-3355-4662; Annovi, Alberto/0000-0002-4649-4398; Castro, Nuno/0000-0001-8491-4376; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; O'Shea, Val/0000-0001-7183-1205; Lee, Jason/0000-0002-2153-1519; Moraes, Arthur/0000-0002-5157-5686; Solfaroli Camillocci, Elena/0000-0002-5347-7764; La Rosa, Alessandro/0000-0001-6291-2142; Vanyashin, Aleksandr/0000-0002-0367-5666; Conde Muino, Patricia/0000-0002-9187-7478; Brooks, William/0000-0001-6161-3570; Della Volpe, Domenico/0000-0001-8530-7447; Cranmer, Kyle/0000-0002-5769-7094; Pomarede, Daniel/0000-0003-2038-0488; Vos, Marcel/0000-0001-8474-5357; Casadei, Diego/0000-0002-3343-3529; Mendes Saraiva, Joao Gentil/0000-0002-7006-0864; Evans, Harold/0000-0003-2183-3127; Coccaro, Andrea/0000-0003-2368-4559; De Lotto, Barbara/0000-0003-3624-4480; Cristinziani, Markus/0000-0003-3893-9171; Chromek-Burckhart, Doris/0000-0003-4243-3288; Qian, Jianming/0000-0003-4813-8167; Haas, Andrew/0000-0002-4832-0455; Kuzhir, Polina/0000-0003-3689-0837; Wemans, Andre/0000-0002-9669-9500; Delmastro, Marco/0000-0003-2992-3805; Della Pietra, Massimo/0000-0003-4446-3368; Petrucci, Fabrizio/0000-0002-5278-2206; Fabbri, Laura/0000-0002-4002-8353; Rotaru, Marina/0000-0003-3303-5683; Pina, Joao /0000-0001-8959-5044; Farrington, Sinead/0000-0001-5350-9271; Turra, Ruggero/0000-0001-8740-796X; Robson, Aidan/0000-0002-1659-8284; Canelli, Florencia/0000-0001-6361-2117; Weber, Michele/0000-0002-2770-9031; Strube, Jan/0000-0001-7470-9301; Beck, Hans Peter/0000-0001-7212-1096; Salamanna, Giuseppe/0000-0002-0861-0052; Cascella, Michele/0000-0003-2091-2501; Moorhead, Gareth/0000-0002-9299-9549; Veneziano, Stefano/0000-0002-2598-2659; Smirnov, Sergei/0000-0002-6778-073X; Takai, Helio/0000-0001-9253-8307; valente, paolo/0000-0002-5413-0068; Andreazza, Attilio/0000-0001-5161-5759; Orlov, Ilya/0000-0003-4073-0326; Stoicea, Gabriel/0000-0002-7511-4614; Prokofiev, Kirill/0000-0002-2177-6401; Lacasta, Carlos/0000-0002-2623-6252; Chen, Chunhui /0000-0003-1589-9955; Price, Darren/0000-0003-2750-9977; Filthaut, Frank/0000-0003-3338-2247; abi, babak/0000-0001-7036-9645; Quinonez Granados, Fernando Andres/0000-0002-0153-6160; Belanger-Champagne, Camille/0000-0003-2368-2617 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq; FAPESP, Brazil; NSERC; NRC; CFI, Canada; CERN; CONICYT, Chile; CAS; MOST; NSFC, China; COLCIENCIAS, Colombia; MSMT CR; MPO CR; VSC CR, Czech Republic; DNRF; DNSRC; Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS; CEA-DSM/IRFU, France; GNAS, Georgia; BMBF; DFG; HGF; MPG; AvH Foundation, Germany; GSRT, Greece; ISF; MINERVA; GIF; DIP; Benoziyo Center, Israel; INFN, Italy; MEXT; JSPS, Japan; CNRST, Morocco; FOM; NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC; Wallenberg Foundation, Sweden; SER; SNSF; Canton of Bern, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC; Royal Society; Leverhulme Trust, United Kingdom; DOE; NSF, United States of America; Canton of Geneva, Switzerland FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 9 TC 2 Z9 2 U1 3 U2 39 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD JAN PY 2012 VL 7 AR P01013 DI 10.1088/1748-0221/7/01/P01013 PG 40 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 939JP UT WOS:000303806200127 ER PT S AU Bunce, M Regan, PH Werner, V Anagnostatou, V Beausang, CW Bowry, M Casperson, RJ Chen, D Cooper, N Goddard, P Hughes, RO Ilie, G Mason, PJR Pauerstein, B Reed, MW Ross, TJ AF Bunce, M. Regan, P. H. Werner, V. Anagnostatou, V. Beausang, C. W. Bowry, M. Casperson, R. J. Chen, D. Cooper, N. Goddard, P. Hughes, R. O. Ilie, G. Mason, P. J. R. Pauerstein, B. Reed, M. W. Ross, T. J. BE Freeman, S Andreyev, A Bruce, A Deacon, A Jenkins, D Joss, D MacGregor, D Regan, P Simpson, J Tungate, G Wadsworth, R Watts, D TI A shell model study of the high spin states of Y-88 SO RUTHERFORD CENTENNIAL CONFERENCE ON NUCLEAR PHYSICS, 2011 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT Rutherford Centennial Conference on Nuclear Physics CY AUG 08-12, 2011 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester ID CLOVER; ARRAY; YALE; ESTU AB Experiments were carried out at the Wright Nuclear Structure Laboratory at Yale University using the 21MV ESTU Tandem Van de Graaff accelerator with the purpose of studying Y-88. A beam of O-18 impinged at laboratory energies of 60, 65 and 70 MeV on a 600 mu g/cm(2) Ge-74 target with a thick (10mg/cm(2)) Au-197 backing. This experiment was performed with the specific aim of accessing medium spin states of the nucleus of interest. A second experiment was undertaken to populate the nucleus of interest in higher spin states by impinging the same O-18 beam on a thin 62 mu g/cm(2) Ge-78 target with a 20 mu g/cm(2) carbon backing at a laboratory beam energy of 90 MeV. Gamma rays emitted following the decay of excited states in Y-88 and other nuclei populated in the reactions were measured using the YRAST ball detector array, consisting of 10 Compton suppressed HPGe clover detectors. In conjunction with the experimental study presented here, nuclear shell model calculations using a truncated valence space have also been performed in an attempt to describe the single-particle make-up of the states observed. Preliminary results from these experiments and theoretical calculations are presented. C1 [Bunce, M.; Regan, P. H.; Anagnostatou, V.; Bowry, M.; Goddard, P.; Mason, P. J. R.; Reed, M. W.; Ross, T. J.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Werner, V.; Anagnostatou, V.; Cooper, N.; Goddard, P.; Ilie, G.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06520 USA. [Beausang, C. W.; Chen, D.; Hughes, R. O.; Pauerstein, B.; Ross, T. J.] Univ Richmond, Dept Phys, Richmond, VA 23173 USA. [Casperson, R. J.] Lawrence Livermore Natl Lab, Berkeley, CA 94720 USA. [Ilie, G.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. RP Bunce, M (reprint author), Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. EM m.bunce@surrey.ac.uk FU STFC UK; U.S. DOE [DE-FG02-91ER40609, FG52-06NA26206, DE-FG02-05ER41379] FX This work is supported by STFC UK and U.S. DOE under grant no. DE-FG02-91ER40609, DE-FG52-06NA26206 and DE-FG02-05ER41379. NR 15 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 381 AR 012068 DI 10.1088/1742-6596/381/1/012068 PG 6 WC Physics, Particles & Fields SC Physics GA BEE76 UT WOS:000316303200069 ER PT S AU Cornejo, JC Herraiz, JL Camsonne, A Saha, A Udias, JM Urciuoli, G Vignote, JR Aniol, KA AF Cornejo, J. C. Herraiz, J. L. Camsonne, A. Saha, A. Udias, J. M. Urciuoli, G. Vignote, J. R. Aniol, K. A. CA Jefferson Lab Hall A Collaboration BE Freeman, S Andreyev, A Bruce, A Deacon, A Jenkins, D Joss, D MacGregor, D Regan, P Simpson, J Tungate, G Wadsworth, R Watts, D TI Quasi elastic cross sections for the Bi-209(e, e ' p)Pb-208 reaction: Jefferson Lab experiment E06007 SO RUTHERFORD CENTENNIAL CONFERENCE ON NUCLEAR PHYSICS, 2011 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT Rutherford Centennial Conference on Nuclear Physics CY AUG 08-12, 2011 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester AB Quasi elastic cross sections were measured for the first time for both negative and positive missing momenta for the Bi-209(e, e'p)Pb-208 reaction leading to the ground state and hole states of Pb-208. Experimental cross sections obtained between -0.3 GeV/c to 0.3 GeV/c agree with theoretical calculations using RDWIA techniques both in shape and magnitude for the ground state. The data for the ground state production of Pb-208 are consistent with a theoretical model assuming a single proton(1.06 +/- 0.10) in the 1h9/2 orbit in Bi-209. C1 [Cornejo, J. C.] Coll William & Mary, Williamsburg, VA 23187 USA. [Herraiz, J. L.; Udias, J. M.] Univ Complutense Madrid, Madrid, Spain. [Camsonne, A.; Saha, A.; Jefferson Lab Hall A Collaboration] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 12957 USA. [Urciuoli, G.] Inst Nazl Fis Nucl Roma, Rome, Italy. [Vignote, J. R.] IEM CSIC, Madrid, Spain. [Aniol, K. A.] Calif State Univ Los Angeles, Los Angeles, CA 90032 USA. RP Cornejo, JC (reprint author), Coll William & Mary, Williamsburg, VA 23187 USA. EM kaniol@calstatela.edu RI Udias, Jose/A-7523-2010; LOPEZ HERRAIZ, JOAQUIN/E-9234-2010 OI Udias, Jose/0000-0003-3714-764X; LOPEZ HERRAIZ, JOAQUIN/0000-0001-7208-8863 NR 9 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 381 AR 012101 DI 10.1088/1742-6596/381/1/012101 PG 6 WC Physics, Particles & Fields SC Physics GA BEE76 UT WOS:000316303200102 ER PT S AU Dracoulis, GD Lane, GJ Byrne, AP Watanabe, H Hughes, RO Palalani, N Kondev, FG Carpenter, MP Seweryniak, D Zhu, S Janssens, RVF Lister, CJ Lauritsen, T Chowdhury, P Shi, Y Xu, FR AF Dracoulis, G. D. Lane, G. J. Byrne, A. P. Watanabe, H. Hughes, R. O. Palalani, N. Kondev, F. G. Carpenter, M. P. Seweryniak, D. Zhu, S. Janssens, R. V. F. Lister, C. J. Lauritsen, T. Chowdhury, P. Shi, Y. Xu, F. R. BE Freeman, S Andreyev, A Bruce, A Deacon, A Jenkins, D Joss, D MacGregor, D Regan, P Simpson, J Tungate, G Wadsworth, R Watts, D TI Isomers and alignments in Ir-191 and Os-192 SO RUTHERFORD CENTENNIAL CONFERENCE ON NUCLEAR PHYSICS, 2011 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT Rutherford Centennial Conference on Nuclear Physics CY AUG 08-12, 2011 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester ID NUCLEI; COLLECTIVITY; STATES AB Deep-Inelastic reactions have been used to populate high-spin states in the even-even osmium isotopes and in the iridium neighbors. New isomers have been identified in Os-190, Os-192, Os-194, Ir-191 and Ir-193. These include a 2 ns 12(+) state at 2865 keV and a 295 ns, 20(+) state at 4580 keV in Os-192. Although a number of multi-quasiparticle states arising from prolate and triaxial deformations are expected in these nuclei, the main structures in Os-192 can be interpreted as a two-stage alignment of (i)(13/2) neutrons at oblate deformation, in close analogy with similar structures in the isotones Pt-194 and Hg-196. The isomers are attributed to low-energy E2 transitions at the point of the alignment gains. The isomer observed in Ir-191 is long-lived (tau(m) similar to 8 s) and probably arises from coupling of the h(11/2) proton to the 10(-) v9/2(-)[505]11/2(+)[615] prolate configuration that gives rise to long-lived isomers in Os-190 and Os-192, although potential-energy-surface calculations indicate that the resultant three-quasiparticle state will be triaxial. C1 [Dracoulis, G. D.; Lane, G. J.; Byrne, A. P.; Watanabe, H.; Hughes, R. O.; Palalani, N.] Australian Natl Univ, Dept Nucl Phys, RSPE, GPO Box 4, Canberra, ACT 0200, Australia. [Watanabe, H.] RIKEN Nishina Ctr, Wako, Saitama, Japan. [Kondev, F. G.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL USA. [Carpenter, M. P.; Seweryniak, D.; Zhu, S.; Janssens, R. V. F.; Lister, C. J.; Lauritsen, T.] Argonne Natl Lab, Div Phys, Argonne, IL USA. [Chowdhury, P.] Univ Massachusetts Lowell, Dept Phys, Lowell, MA 01854 USA. [Shi, Y.; Xu, F. R.] Peking Univ, Sch Phys, Beijing 100871, Peoples R China. RP Dracoulis, GD (reprint author), Australian Natl Univ, Dept Nucl Phys, RSPE, GPO Box 4, Canberra, ACT 0200, Australia. EM george.dracoulis@anu.edu.au RI Xu, Furong/K-4178-2013; Lane, Gregory/A-7570-2011; Carpenter, Michael/E-4287-2015; OI Lane, Gregory/0000-0003-2244-182X; Carpenter, Michael/0000-0002-3237-5734; Byrne, Aidan/0000-0002-7096-6455 FU Australian Research Council Discovery Programme; U.S. Department of Energy; Office of Nuclear Physics [DE-ACO2-06CH11357, DE-FG02-94ER40848] FX This work was supported by the Australian Research Council Discovery Programme and the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-ACO2-06CH11357 and Grant No. DE-FG02-94ER40848. NR 21 TC 5 Z9 5 U1 2 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 381 AR 012060 DI 10.1088/1742-6596/381/1/012060 PG 6 WC Physics, Particles & Fields SC Physics GA BEE76 UT WOS:000316303200061 ER PT S AU Elliott, SR AF Elliott, Steven R. BE Freeman, S Andreyev, A Bruce, A Deacon, A Jenkins, D Joss, D MacGregor, D Regan, P Simpson, J Tungate, G Wadsworth, R Watts, D TI Double Beta Decay SO RUTHERFORD CENTENNIAL CONFERENCE ON NUCLEAR PHYSICS, 2011 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT Rutherford Centennial Conference on Nuclear Physics CY AUG 08-12, 2011 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester ID NUCLEAR-MATRIX ELEMENTS; GE-76; NEUTRINOS; RESPONSES; PROBE; MOON AB At least one neutrino has a mass of about 50 meV or larger. However, the absolute mass scale for the neutrino remains unknown. Furthermore, the critical question: Is the neutrino its own antiparticle? is unanswered. Studies of double beta decay offer hope for determining the absolute mass scale. In particular, zero-neutrino double beta decay (0 nu beta beta) can address the issues of lepton number conservation, the particle-antiparticle nature of the neutrino, and its mass. A summary of the recent results in 0 nu beta beta, and the related technologies will be discussed in the context of the future 0 nu beta beta program. C1 Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Elliott, SR (reprint author), Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. EM elliotts@lanl.gov NR 70 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 381 AR 012003 DI 10.1088/1742-6596/381/1/012003 PG 8 WC Physics, Particles & Fields SC Physics GA BEE76 UT WOS:000316303200004 ER PT S AU Howard, AM Freeman, SJ Schiffer, JP Bloxham, T Clark, JA Deibel, CM Kay, BP Parker, PD Sharp, DK Thomas, JS AF Howard, A. M. Freeman, S. J. Schiffer, J. P. Bloxham, T. Clark, J. A. Deibel, C. M. Kay, B. P. Parker, P. D. Sharp, D. K. Thomas, J. S. BE Freeman, S Andreyev, A Bruce, A Deacon, A Jenkins, D Joss, D MacGregor, D Regan, P Simpson, J Tungate, G Wadsworth, R Watts, D TI Neutron-hole strength in the N=81 isotones SO RUTHERFORD CENTENNIAL CONFERENCE ON NUCLEAR PHYSICS, 2011 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT Rutherford Centennial Conference on Nuclear Physics CY AUG 08-12, 2011 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester ID OPTICAL-MODEL ANALYSIS; ND-141; STATES; SM-143; CE-139; RANGE; D,T AB The distribution of neutron-hole strength has been studied in the N = 81 isotones Ba-137, Ce-139, Nd-141 and Sm-143 through the single-neutron removing reactions (p, d) and (He-3, alpha), at energies of 23 and 34 MeV, respectively. Systematic cross section measurements were made at angles sensitive to the transferred angular momentum, and spectroscopic factors extracted through a distorted-wave Born approximation analysis. Application of the MacFarlane-French sum rules indicate an anomalously low summed g(7/2) spectroscopic factor, most likely due to extensive fragmentation of the single-particle strength. Single-particle energies, based upon the centroids of observed strength, are presented. C1 [Howard, A. M.; Freeman, S. J.; Sharp, D. K.; Thomas, J. S.] Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. [Schiffer, J. P.; Clark, J. A.; Deibel, C. M.; Kay, B. P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Bloxham, T.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Deibel, C. M.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Parker, P. D.] Yale Univ, AW Wright Nucl Struct Lab, New Haven, CT 06520 USA. RP Howard, AM (reprint author), Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. EM ahoward3@nd.edu FU UK Science and Technology Facilities Council; US Department of Energy; Office of Nuclear Physics [DEFG02-91ER-40609, DE-ACO2-06C1111357] FX Funding was provided for this work through the UK Science and Technology Facilities Council and the US Department of Energy, Office of Nuclear Physics, under Contract numbers DEFG02-91ER-40609 and DE-ACO2-06C1111357. NR 13 TC 0 Z9 0 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 381 AR 012098 DI 10.1088/1742-6596/381/1/012098 PG 6 WC Physics, Particles & Fields SC Physics GA BEE76 UT WOS:000316303200099 ER PT S AU Hughes, RO Beausang, CW Ross, TJ Burke, JT Scielzo, ND Basunia, MS Campbell, CM Casperson, RJ Crawford, HL Munson, J Phair, L Ressler, JJ AF Hughes, R. O. Beausang, C. W. Ross, T. J. Burke, J. T. Scielzo, N. D. Basunia, M. S. Campbell, C. M. Casperson, R. J. Crawford, H. L. Munson, J. Phair, L. Ressler, J. J. BE Freeman, S Andreyev, A Bruce, A Deacon, A Jenkins, D Joss, D MacGregor, D Regan, P Simpson, J Tungate, G Wadsworth, R Watts, D TI To the continuum and beyond: Structure of U nuclei SO RUTHERFORD CENTENNIAL CONFERENCE ON NUCLEAR PHYSICS, 2011 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT Rutherford Centennial Conference on Nuclear Physics CY AUG 08-12, 2011 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester AB An experiment was performed at the 88-inch cyclotron at LBNL to investigate the structure of uranium isotopes and concurrently test the so-called surrogate ratio method. A 28 MeV proton beam was used to bombard U-236 and U-238 targets and the outgoing light ions were detected using the STARS silicon telescope allowing isotopic assignments and the excitation energy of the compound nucleus to be measured. A fission detector was placed at backward angles to give particle-fission coincidences, while the six clover germanium detectors of the LIBERACE array were used for particle-gamma coincidences. The (p,d) reaction channels on U-236 and U-238 targets were used as a surrogate to measure the sigma(U-234(n,f))/sigma(U-236(n,f)) cross section ratio. The results give reasonable agreement with literature values over an equivalent neutron energy range between 0 MeV and 6 MeV. Structure results in U-235 include a new (3/2(-)) level at 1035 keV, that is tentatively assigned as the 3/2(-)[501] Nilsson state. The analogue 3/2(-)[501] state in U-237 may be associated with a previously observed level at 1201 keV, whose spin/parity is restricted to J(pi) = 3/2(-) on the basis of newly observed decays to the ground band. C1 [Hughes, R. O.; Beausang, C. W.; Ross, T. J.] Univ Richmond, Dept Phys, 28 Westhampton Way, Richmond, VA 23173 USA. [Burke, J. T.; Scielzo, N. D.; Casperson, R. J.; Ressler, J. J.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Basunia, M. S.; Campbell, C. M.; Munson, J.; Phair, L.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Hughes, RO (reprint author), Univ Richmond, Dept Phys, 28 Westhampton Way, Richmond, VA 23173 USA. EM rhughes2@richmond.edu RI Burke, Jason/I-4580-2012 FU US Department of Energy [DE-FG0205ER41379, DE-FG52-06NA26206 (U of R), DE- AC52-07NA27344 (LLNL), DE-ACO205C1-111231 (LBNL)] FX This work was supported by the US Department of Energy under grant numbers DE-FG0205ER41379 & DE-FG52-06NA26206 (U of R), DE- AC52-07NA27344 (LLNL) and DE-ACO205C1-111231 (LBNL).YY NR 18 TC 0 Z9 0 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 381 AR 012064 DI 10.1088/1742-6596/381/1/012064 PG 6 WC Physics, Particles & Fields SC Physics GA BEE76 UT WOS:000316303200065 ER PT S AU Kay, BP Alcorta, M Back, BB Baker, SI Bedoor, S Bloxham, T Clark, JA Deibel, CM Freeman, SJ Hoffman, CR Howard, AM Lighthall, JC Marley, ST Mitchell, AJ Rehm, KE Schiffer, JP Sharp, DK Shetty, DV Thomas, JS Wuosmaa, AH Zhu, S AF Kay, B. P. Alcorta, M. Back, B. B. Baker, S. I. Bedoor, S. Bloxham, T. Clark, J. A. Deibel, C. M. Freeman, S. J. Hoffman, C. R. Howard, A. M. Lighthall, J. C. Marley, S. T. Mitchell, A. J. Rehm, K. E. Schiffer, J. P. Sharp, D. K. Shetty, D. V. Thomas, J. S. Wuosmaa, A. H. Zhu, S. BE Freeman, S Andreyev, A Bruce, A Deacon, A Jenkins, D Joss, D MacGregor, D Regan, P Simpson, J Tungate, G Wadsworth, R Watts, D TI HELIOS - progress and possibilities SO RUTHERFORD CENTENNIAL CONFERENCE ON NUCLEAR PHYSICS, 2011 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT Rutherford Centennial Conference on Nuclear Physics CY AUG 08-12, 2011 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester ID INVERSE KINEMATICS; STATES; BEAMS AB The helical orbit spectrometer, HELIOS, at Argonne National Laboratory has been developed to measure transfer reactions in inverse kinematics with good Q-value resolution. The technique is discussed alongside examples of measurements with medium-mass beams, the first exploration of reactions in the the forward hemisphere, and a future outlook. C1 [Kay, B. P.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. [Alcorta, M.; Back, B. B.; Baker, S. I.; Clark, J. A.; Deibel, C. M.; Hoffman, C. R.; Lighthall, J. C.; Marley, S. T.; Rehm, K. E.; Schiffer, J. P.; Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Bedoor, S.; Lighthall, J. C.; Marley, S. T.; Shetty, D. V.; Wuosmaa, A. H.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Bloxham, T.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Freeman, S. J.; Howard, A. M.; Mitchell, A. J.; Sharp, D. K.; Thomas, J. S.] Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. [Deibel, C. M.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. RP Kay, BP (reprint author), Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. EM benjamin.kay@york.ac.uk RI Alcorta, Martin/G-7107-2011; Mitchell, Alan John/M-4486-2015; Freeman, Sean/B-1280-2010 OI Alcorta, Martin/0000-0002-6217-5004; Mitchell, Alan John/0000-0002-6742-695X; Freeman, Sean/0000-0001-9773-4921 FU US Department of Energy; Office of Nuclear Physics [DE-ACO2-06C1111357, DE-FG02-04ER41320]; NSF [PHY-08022648]; UK Science and Technology Facilities Council FX This work was supported by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-ACO2-06C1111357 (ANL) and Grant No. DE-FG02-04ER41320 (WMU), NSF Grant No. PHY-08022648 (JINA), and the UK Science and Technology Facilities Council. NR 21 TC 3 Z9 3 U1 1 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 381 AR 012095 DI 10.1088/1742-6596/381/1/012095 PG 6 WC Physics, Particles & Fields SC Physics GA BEE76 UT WOS:000316303200096 ER PT S AU Lister, CJ AF Lister, C. J. (Kim) BE Freeman, S Andreyev, A Bruce, A Deacon, A Jenkins, D Joss, D MacGregor, D Regan, P Simpson, J Tungate, G Wadsworth, R Watts, D TI Precise measurements of electromagnetic transitions in light nuclei: what we can learn and why it matters SO RUTHERFORD CENTENNIAL CONFERENCE ON NUCLEAR PHYSICS, 2011 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT Rutherford Centennial Conference on Nuclear Physics CY AUG 08-12, 2011 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester AB A new generation of calculations for light nuclei based on realistic two and three-nucleon interactions is being developed. The project is very much a "work in progress" and experimental tests of the predicted wave functions help refine the computational methods and better constrain the modeling of important three-body correlations. However, to be useful, the data need to be both accurate and precise. I will present new measurements of electromagnetic matrix elements of the A = 10 nuclei C-10, B-10 and Be-10 as an example of the interplay between measurement and calculation, and discuss some successes and open challenges. C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Lister, CJ (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM lister@anl.gov NR 22 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 381 AR 012010 DI 10.1088/1742-6596/381/1/012010 PG 7 WC Physics, Particles & Fields SC Physics GA BEE76 UT WOS:000316303200011 ER PT S AU Malcolm, JD Freer, M Ashwood, NI Curtis, N Munoz-Britton, T Wheldon, C Ziman, VA Catford, WN Brown, S Wilson, G Soic, N Bardayan, D Pain, SD Achouri, NL Chipps, K Crzywacz-Jones, K AF Malcolm, J. D. Freer, M. Ashwood, N. I. Curtis, N. Munoz-Britton, T. Wheldon, C. Ziman, V. A. Catford, W. N. Brown, S. Wilson, G. Soic, N. Bardayan, D. Pain, S. D. Achouri, N. L. Chipps, K. Crzywacz-Jones, K. BE Freeman, S Andreyev, A Bruce, A Deacon, A Jenkins, D Joss, D MacGregor, D Regan, P Simpson, J Tungate, G Wadsworth, R Watts, D TI Study of states in C-14 via the Be-10(He-4,He-4)Be-10 reaction SO RUTHERFORD CENTENNIAL CONFERENCE ON NUCLEAR PHYSICS, 2011 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT Rutherford Centennial Conference on Nuclear Physics CY AUG 08-12, 2011 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester AB A study of the Be-10(He-4,He-4)Be-10 reaction has been performed at Be-10 beam energies of 25.0, 27.0, 29.0, 32.0, 34.0, 38.0, 40.0, 42.0, 44.0 and 46.0 MeV. The measurements were to explore possible molecular rotational bands in C-14. Three states at excitation energies of E-x = 18.8, 19.76 and 20.66 MeV have been measured and their spins have been determined to be 5(-), 5(-) and 6(+), respectively. C1 [Malcolm, J. D.; Freer, M.; Ashwood, N. I.; Curtis, N.; Munoz-Britton, T.; Wheldon, C.; Ziman, V. A.] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. [Catford, W. N.; Brown, S.; Wilson, G.] Univ Surrey, Sch Elect & Phys Sci, Guildford GU2 7XH, Surrey, England. [Soic, N.] Rudjer Boskovic Inst, Dept Expt Phys, HR-10000 Zagreb, Croatia. [Bardayan, D.; Pain, S. D.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN USA. [Achouri, N. L.] ISMRA & Univ Caen, Laboratoire Phys Corpusculaire, F-14050 Caen, France. [Chipps, K.] Rutgers State Univ, Rutgers University, NJ USA. [Crzywacz-Jones, K.] Univ Tennessee, Sch Phys & Astron, Knoxville, TN 37996 USA. RP Malcolm, JD (reprint author), Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England. EM jxm354@bham.ac.uk; M.Freer@bham.ac.uk RI Wheldon, Carl/F-9203-2013; Freer, Martin/F-9379-2013; Pain, Steven/E-1188-2011; OI Pain, Steven/0000-0003-3081-688X; Chipps, Kelly/0000-0003-3050-1298 NR 5 TC 2 Z9 2 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 381 AR 012077 DI 10.1088/1742-6596/381/1/012077 PG 4 WC Physics, Particles & Fields SC Physics GA BEE76 UT WOS:000316303200078 ER PT S AU McAllister, SA Kay, BP Freeman, SJ Schiffer, JP Diebel, CM Bloxham, T Howard, AM Parker, PD Sharp, DK Thomas, JS AF McAllister, S. A. Kay, B. P. Freeman, S. J. Schiffer, J. P. Diebel, C. M. Bloxham, T. Howard, A. M. Parker, P. D. Sharp, D. K. Thomas, J. S. BE Freeman, S Andreyev, A Bruce, A Deacon, A Jenkins, D Joss, D MacGregor, D Regan, P Simpson, J Tungate, G Wadsworth, R Watts, D TI Constraining neutrinoless double beta decay matrix elements in Te-130 SO RUTHERFORD CENTENNIAL CONFERENCE ON NUCLEAR PHYSICS, 2011 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT Rutherford Centennial Conference on Nuclear Physics CY AUG 08-12, 2011 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester ID TELLURIUM ISOTOPES AB If a reliable measurement of a neutrinoless double beta decay (0 nu 2 beta) rate is made, the effective neutrino masses can be determined from the nuclear matrix element. Theoretical calculations of nuclear matrix elements, however, show some disagreement. To test the suitability of various theoretical models, they should be benchmarked against experimentally measured nuclear properties, such as the ground-state distribution of nucleons in the parent-daughter nuclei, and how they change as a result of the decay process. Single neutron-adding reactions have been performed on the 0 nu 2 beta candidate nucleus, Te-130. The Macfarlane-French sum rules have then been used to determine the single-particle vacancies. Some quasi-random phase approximations (QRPA) can greatly simplify theoretical calculations by describing the ground state of even-even nuclei using a BCS wavefunction. This assumption has been tested using two-neutron removal, (p,t) reactions. The BCS wavefunction appeared to be a valid approximation for valence neutrons. C1 [McAllister, S. A.; Freeman, S. J.; Sharp, D. K.; Thomas, J. S.] Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. [Kay, B. P.] Univ York, Dept Phys, York Y10 5DD, N Yorkshire, England. [Schiffer, J. P.; Diebel, C. M.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Bloxham, T.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Howard, A. M.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Sharp, D. K.] Yale Univ, A W Wright Nucl Struct Lab, New Haven, CT 06520 USA. RP McAllister, SA (reprint author), Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. EM sean.mcallister@postgrad.manchester.ac.uk FU UK Science and Technologies facilities council FX This work was supported by the UK Science and Technologies facilities council. NR 14 TC 1 Z9 1 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 381 AR 012043 DI 10.1088/1742-6596/381/1/012043 PG 4 WC Physics, Particles & Fields SC Physics GA BEE76 UT WOS:000316303200044 ER PT S AU Mitchell, AJ Freeman, SJ Schiffer, JP Clark, JA Deibel, CM Hoffman, CR Howard, AM Kay, BP Parker, PD Sharp, DK Thomas, JS AF Mitchell, A. J. Freeman, S. J. Schiffer, J. P. Clark, J. A. Deibel, C. M. Hoffman, C. R. Howard, A. M. Kay, B. P. Parker, P. D. Sharp, D. K. Thomas, J. S. BE Freeman, S Andreyev, A Bruce, A Deacon, A Jenkins, D Joss, D MacGregor, D Regan, P Simpson, J Tungate, G Wadsworth, R Watts, D TI Investigating trends in proton single-particle states in Z=51 isotopes using transfer reactions SO RUTHERFORD CENTENNIAL CONFERENCE ON NUCLEAR PHYSICS, 2011 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT Rutherford Centennial Conference on Nuclear Physics CY AUG 08-12, 2011 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester ID TIN AB A study of low-lying excited states in Z = 51 isotopes has been performed using single-proton adding reactions, (alpha,t) and (He-3,d), on the series of stable, even mass Z = 50 isotopes. Our goal was to build upon results from a previous (alpha,t) study [1] by examining the fragmentation of high-j (g(7/2) and h(11/2)) single-proton strengths utilising greater statistics. Data from the (He-3,d) measurements provide further information regarding the low-j orbitals within this nuclear shell. Preliminary findings from the analysis are presented in this report. C1 [Mitchell, A. J.; Freeman, S. J.; Howard, A. M.; Sharp, D. K.; Thomas, J. S.] Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. [Schiffer, J. P.; Clark, J. A.; Deibel, C. M.; Hoffman, C. R.; Kay, B. P.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Deibel, C. M.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Parker, P. D.] Yale Univ, AW Wright Nucl Struct Lab, New Haven, CT 06520 USA. RP Mitchell, AJ (reprint author), Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. EM alan.mitchell@postgrad.manchester.ac.uk RI Mitchell, Alan John/M-4486-2015 OI Mitchell, Alan John/0000-0002-6742-695X FU US Department of Energy; Office of Nuclear Physics [DE-ACO2-06C1111357, DE-FG02-04ER41320]; NSF [PHY08022648]; UK Science and Technology Facilities Council FX This work was funded by the US Department of Energy, Office of Nuclear Physics, under Contract Nos. DE-ACO2-06C1111357 and DE-FG02-04ER41320, NSF Grant No. PHY08022648, and the UK Science and Technology Facilities Council. NR 14 TC 0 Z9 0 U1 2 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 381 AR 012099 DI 10.1088/1742-6596/381/1/012099 PG 6 WC Physics, Particles & Fields SC Physics GA BEE76 UT WOS:000316303200100 ER PT S AU Pennington, MR AF Pennington, M. R. BE Freeman, S Andreyev, A Bruce, A Deacon, A Jenkins, D Joss, D MacGregor, D Regan, P Simpson, J Tungate, G Wadsworth, R Watts, D TI Glimpsing Colour in a World of Black and White SO RUTHERFORD CENTENNIAL CONFERENCE ON NUCLEAR PHYSICS, 2011 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT Rutherford Centennial Conference on Nuclear Physics CY AUG 08-12, 2011 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester ID MESON PRODUCTION; EXOTIC MESON; MODEL; DECAYS; GEV/C AB The past 40 years have taught us that nucleons are built of constituents that carry colour charges with interactions governed by Quantum Chromodynamics (QCD). How experiments (past, present and future) at Jefferson Lab probe colourless nuclei to map out these internal colour degrees of freedom is presented. When combined with theoretical calculations, these will paint a picture of how the confinement of quarks and gluons, and the structure of the QCD vacuum, determine the properties of all (light) strongly interacting states. C1 Jefferson Lab, Ctr Theory, Newport News, VA 23606 USA. RP Pennington, MR (reprint author), Jefferson Lab, Ctr Theory, 12000 Jefferson Ave, Newport News, VA 23606 USA. EM michaelp@jlab.org NR 24 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 381 AR 012004 DI 10.1088/1742-6596/381/1/012004 PG 8 WC Physics, Particles & Fields SC Physics GA BEE76 UT WOS:000316303200005 ER PT S AU Phillips, DG Aguayo, E Avignone, FT Back, HO Barabash, AS Bergevin, M Bertrand, FE Boswell, M Brudanin, V Busch, M Chan, YD Christofferson, CD Collar, JI Combs, DC Cooper, RJ Detwiler, JA Doe, PJ Efremenko, Y Egorov, V Ejiri, H Elliott, SR Esterline, J Fast, JE Fields, N Finnerty, P Fraenkle, FM Gehman, VM Giovanetti, GK Green, MP Guiseppe, VE Gusey, K Hallin, AL Hazama, R Henning, R Hime, A Hoppe, EW Horton, M Howard, S Howe, MA Johnson, RA Keeter, KJ Keller, C Kidd, MF Knecht, A Kochetov, O Konovalov, SI Kouzes, RT LaFerriere, B LaRoque, BH Leon, J Leviner, LE Loach, JC MacMullin, S Marino, MG Martin, RD Mei, DM Merriman, J Miller, ML Mizouni, L Nomachi, M Orrell, JL Overman, NR Poon, AWP Perumpilly, G Prior, G Radford, DC Rielage, K Robertson, RGH Ronquest, MC Schubert, AG Shima, T Shirchenko, M Snavely, KJ Steele, D Strain, J Thomas, K Timkin, V Tornow, W Vanyushin, I Varner, RL Vetter, K Vorren, K Wilkerson, JF Wolfe, BA Yakushev, E Young, AR Yu, CH Yumatov, V Zhang, C AF Phillips, D. G., II Aguayo, E. Avignone, F. T., III Back, H. O. Barabash, A. S. Bergevin, M. Bertrand, F. E. Boswell, M. Brudanin, V. Busch, M. Chan, Y-D Christofferson, C. D. Collar, J. I. Combs, D. C. Cooper, R. J. Detwiler, J. A. Doe, P. J. Efremenko, Y. Egorov, V. Ejiri, H. Elliott, S. R. Esterline, J. Fast, J. E. Fields, N. Finnerty, P. Fraenkle, F. M. Gehman, V. M. Giovanetti, G. K. Green, M. P. Guiseppe, V. E. Gusey, K. Hallin, A. L. Hazama, R. Henning, R. Hime, A. Hoppe, E. W. Horton, M. Howard, S. Howe, M. A. Johnson, R. A. Keeter, K. J. Keller, C. Kidd, M. F. Knecht, A. Kochetov, O. Konovalov, S. I. Kouzes, R. T. LaFerriere, B. LaRoque, B. H. Leon, J. Leviner, L. E. Loach, J. C. MacMullin, S. Marino, M. G. Martin, R. D. Mei, D-M Merriman, J. Miller, M. L. Mizouni, L. Nomachi, M. Orrell, J. L. Overman, N. R. Poon, A. W. P. Perumpilly, G. Prior, G. Radford, D. C. Rielage, K. Robertson, R. G. H. Ronquest, M. C. Schubert, A. G. Shima, T. Shirchenko, M. Snavely, K. J. Steele, D. Strain, J. Thomas, K. Timkin, V. Tornow, W. Vanyushin, I. Varner, R. L. Vetter, K. Vorren, K. Wilkerson, J. F. Wolfe, B. A. Yakushev, E. Young, A. R. Yu, C-H Yumatov, V. Zhang, C. BE Freeman, S Andreyev, A Bruce, A Deacon, A Jenkins, D Joss, D MacGregor, D Regan, P Simpson, J Tungate, G Wadsworth, R Watts, D TI The MAJORANA experiment: an ultra-low background search for neutrinoless double-beta decay SO RUTHERFORD CENTENNIAL CONFERENCE ON NUCLEAR PHYSICS, 2011 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT Rutherford Centennial Conference on Nuclear Physics CY AUG 08-12, 2011 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester ID PROSPECTS; MASS AB The observation of neutrinoless double-beta decay would resolve the Majorana nature of the neutrino and could provide information on the absolute scale of the neutrino mass. The initial phase of the MAJORANA experiment, known as the DEMONSTRATOR, will house 40 kg of Ge in an ultra-low background shielded environment at the 4850' level of the Sanford Underground Laboratory in Lead, SD. The objective of the DEMONSTRATOR is to determine whether a future 1-tonne experiment can achieve a, background goal of one count per tonne-year in a narrow region of interest around the Ge-76 neutrinoless double-beta decay peak. C1 [Phillips, D. G., II; Finnerty, P.; Fraenkle, F. M.; Giovanetti, G. K.; Green, M. P.; Henning, R.; Howe, M. A.; MacMullin, S.; Snavely, K. J.; Strain, J.; Vorren, K.; Wilkerson, J. F.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27515 USA. [Phillips, D. G., II; Back, H. O.; Busch, M.; Combs, D. C.; Esterline, J.; Finnerty, P.; Fraenkle, F. M.; Giovanetti, G. K.; Green, M. P.; Henning, R.; Howe, M. A.; Leviner, L. E.; MacMullin, S.; Snavely, K. J.; Strain, J.; Tornow, W.; Vorren, K.; Wilkerson, J. F.; Yakushev, E.] Triangle Univ Nucl Lab, Durham, NC USA. [Aguayo, E.; Fast, J. E.; Hoppe, E. W.; Kouzes, R. T.; LaFerriere, B.; Merriman, J.; Mizouni, L.; Orrell, J. L.; Overman, N. R.] Pacific Northwest Natl Lab, Richland, WA USA. [Avignone, F. T., III; Mizouni, L.] Univ South Carolina, Dept Phys & Astron, Columbia, SC USA. [Avignone, F. T., III; Bertrand, F. E.; Cooper, R. J.; Varner, R. L.; Wilkerson, J. F.; Young, A. R.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Back, H. O.; Combs, D. C.; Leviner, L. E.; Yakushev, E.] North Carolina State Univ, Dept Phys, Raleigh, NC USA. [Barabash, A. S.; Konovalov, S. I.; Vanyushin, I.; Yumatov, V.] Inst Theoret & Expt Phys, Moscow, Russia. [Bergevin, M.; Chan, Y-D; Detwiler, J. A.; Martin, R. D.; Poon, A. W. P.; Prior, G.; Vetter, K.] Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA USA. [Boswell, M.; Elliott, S. R.; Gehman, V. M.; Hime, A.; Kidd, M. F.; LaRoque, B. H.; Rielage, K.; Ronquest, M. C.; Steele, D.] Los Alamos Natl Lab, Los Alamos, NM USA. [Brudanin, V.; Egorov, V.; Gusey, K.; Kochetov, O.; Shirchenko, M.; Timkin, V.; Wolfe, B. A.] Joint Inst Nucl Res, Dubna, Russia. [Busch, M.; Esterline, J.; Tornow, W.] Duke Univ, Dept Phys, Durham, NC USA. [Christofferson, C. D.; Horton, M.; Howard, S.] South Dakota Sch Mines & Technol, Rapid City, SD USA. [Collar, J. I.; Fields, N.] Univ Chicago, Dept Phys, Chicago, IL USA. [Efremenko, Y.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN USA. [Doe, P. J.; Johnson, R. A.; Knecht, A.; Leon, J.; Marino, M. G.; Miller, M. L.; Robertson, R. G. H.; Schubert, A. G.] Univ Washington, Ctr Expt Nucl Phys & Particle Astrophys, Seattle, WA USA. [Doe, P. J.; Johnson, R. A.; Knecht, A.; Leon, J.; Marino, M. G.; Miller, M. L.; Robertson, R. G. H.; Schubert, A. G.] Univ Washington, Dept Phys, Seattle, WA USA. [Ejiri, H.; Hazama, R.; Nomachi, M.; Shima, T.] Osaka Univ, Nucl Phys Res Ctr, Ibaraki, Osaka, Japan. [Hazama, R.; Nomachi, M.; Shima, T.] Osaka Univ, Dept Phys, Ibaraki, Osaka, Japan. [Guiseppe, V. E.; Keller, C.; Mei, D-M; Perumpilly, G.; Thomas, K.; Zhang, C.] Univ South Dakota, Dept Phys, Vermillion, SD USA. [Hallin, A. L.] Univ Alberta, Ctr Particle Phys, Edmonton, AB, Canada. [Keeter, K. J.] Black Hills State Univ, Dept Phys, Spearfish, SD USA. [Vetter, K.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA USA. RP Phillips, DG (reprint author), Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27515 USA. EM dgp@email.uncedu RI radford, David/A-3928-2015; Barabash, Alexander/S-8851-2016; OI Wilkerson, John/0000-0002-0342-0217; Marino, Michael/0000-0003-1226-6036; Rielage, Keith/0000-0002-7392-7152; Green, Matthew/0000-0002-1958-8030 NR 21 TC 9 Z9 9 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 381 AR 012044 DI 10.1088/1742-6596/381/1/012044 PG 6 WC Physics, Particles & Fields SC Physics GA BEE76 UT WOS:000316303200045 ER PT S AU Sakaguchi, T AF Sakaguchi, Takao CA PHENIX Collaboration BE Freeman, S Andreyev, A Bruce, A Deacon, A Jenkins, D Joss, D MacGregor, D Regan, P Simpson, J Tungate, G Wadsworth, R Watts, D TI Electromagnetic emission from hot medium measured by the PHENIX experiment at RHIC SO RUTHERFORD CENTENNIAL CONFERENCE ON NUCLEAR PHYSICS, 2011 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT Rutherford Centennial Conference on Nuclear Physics CY AUG 08-12, 2011 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester ID PHOTON PRODUCTION; COLLISIONS AB Electromagnetic radiation has been of interest in heavy ion collisions because it sheds light on early stages of the collisions where hadronic probes do not provide direct information since hadronization and hadronic interactions occur later. The latest results on photon measurement from the PHENIX experiment at RHIC reflect thermodynamic properties of the matter produced in the heavy ion collisions. An unexpectedly large positive elliptic flow measured for direct photons are hard to be explained by many models. C1 [Sakaguchi, Takao; PHENIX Collaboration] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Sakaguchi, T (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM takao@bnl.gov NR 15 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 381 AR 012036 DI 10.1088/1742-6596/381/1/012036 PG 6 WC Physics, Particles & Fields SC Physics GA BEE76 UT WOS:000316303200037 ER PT S AU Schiffer, JP AF Schiffer, John P. BE Freeman, S Andreyev, A Bruce, A Deacon, A Jenkins, D Joss, D MacGregor, D Regan, P Simpson, J Tungate, G Wadsworth, R Watts, D TI Perspectives on nuclear physics over the past 100 years SO RUTHERFORD CENTENNIAL CONFERENCE ON NUCLEAR PHYSICS, 2011 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT Rutherford Centennial Conference on Nuclear Physics CY AUG 08-12, 2011 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester AB An attempt is made to review a small fraction of what has happened in Nuclear Physics after Rutherford, some milestones and the shifting focus of the field. In a hundred years enormous progress had been made, but there is still a great deal about the properties of hadronic matter that we do not understand, matter that makes up virtually all of the visible mass in our Universe. C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Schiffer, JP (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM schiffer@anl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 381 AR 012002 DI 10.1088/1742-6596/381/1/012002 PG 12 WC Physics, Particles & Fields SC Physics GA BEE76 UT WOS:000316303200003 ER PT S AU Sharp, DK Kay, BP Freeman, SJ Schiffer, JP Back, BB Bloxham, T Clark, JA Deibe, CM Hoffman, CR Howard, AM Lighthall, JC Marley, ST Mitchell, AJ Parker, PD Thomas, JS Wuosmaa, AH AF Sharp, D. K. Kay, B. P. Freeman, S. J. Schiffer, J. P. Back, B. B. Bloxham, T. Clark, J. A. Deibe, C. M. Hoffman, C. R. Howard, A. M. Lighthall, J. C. Marley, S. T. Mitchell, A. J. Parker, P. D. Thomas, J. S. Wuosmaa, A. H. BE Freeman, S Andreyev, A Bruce, A Deacon, A Jenkins, D Joss, D MacGregor, D Regan, P Simpson, J Tungate, G Wadsworth, R Watts, D TI Trends in the g(7/2) and h(11/2) neutron single-particle energies in N=51 isotones SO RUTHERFORD CENTENNIAL CONFERENCE ON NUCLEAR PHYSICS, 2011 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT Rutherford Centennial Conference on Nuclear Physics CY AUG 08-12, 2011 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester ID HOLE STATES; RANGE AB The energies of the g(7/2) and h(11/2) neutron orbitals in N = 51 isotones have been investigated. The single-neutron adding reactions (d,p) and (alpha,He-3) have been performed on Sr-88, Zr-90 and Mo-92 targets, at beam energies of 15 MeV and 50 MeV, respectively. These measurements were supplemented by studying the d(Kr-86,p)Kr-87 reaction at an energy of 10 MeV/u, in inverse kinematics. Absolute cross sections were measured, l assignments made and spectroscopic factors extracted. The energy centroids of the single-particle strength have been deduced and the observed trends are discussed. C1 [Sharp, D. K.; Freeman, S. J.; Howard, A. M.; Mitchell, A. J.; Thomas, J. S.] Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. [Kay, B. P.; Schiffer, J. P.; Back, B. B.; Clark, J. A.; Deibe, C. M.; Hoffman, C. R.; Lighthall, J. C.; Marley, S. T.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Bloxham, T.] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Deibe, C. M.] Michigan State Univ, Joint Inst Nucl Astrophys, E Lansing, MI 48824 USA. [Lighthall, J. C.; Marley, S. T.; Wuosmaa, A. H.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Parker, P. D.] Yale Univ, AW Wright Nucl Struct Lab, New Haven, CT 06520 USA. RP Sharp, DK (reprint author), Univ Manchester, Schuster Lab, Manchester M13 9PL, Lancs, England. EM david.sharp@postgrad.manchester.ac.uk RI Kay, Benjamin/F-3291-2011; Mitchell, Alan John/M-4486-2015 OI Kay, Benjamin/0000-0002-7438-0208; Mitchell, Alan John/0000-0002-6742-695X FU UK Science and Technologies Facilities Council; Engineering and Physical Sciences Research Council; US Department of Energy; Office of Nuclear Physics [DE-F002-91ER-40609, DE-ACO2-06CH11357] FX This work was supported by the UK Science and Technologies Facilities Council, the Engineering and Physical Sciences Research Council and the US Department of Energy, Office of Nuclear Physics, under Contract Nos. DE-F002-91ER-40609 and DE-ACO2-06CH11357. NR 19 TC 0 Z9 0 U1 1 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 381 AR 012100 DI 10.1088/1742-6596/381/1/012100 PG 6 WC Physics, Particles & Fields SC Physics GA BEE76 UT WOS:000316303200101 ER PT S AU Tang, AH AF Tang, Aihong CA STAR Collaboration BE Freeman, S Andreyev, A Bruce, A Deacon, A Jenkins, D Joss, D MacGregor, D Regan, P Simpson, J Tungate, G Wadsworth, R Watts, D TI Observation of the antimatter partner of Rutherford's alpha-particle - (4)(He)over-bar SO RUTHERFORD CENTENNIAL CONFERENCE ON NUCLEAR PHYSICS, 2011 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT Rutherford Centennial Conference on Nuclear Physics CY AUG 08-12, 2011 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester ID COSMIC-RAYS AB The antimatter helium-4 nucleus ((4)(He) over bar, or anti-alpha) has not been observed previously although the alpha-particle was identified a century ago by Rutherford. High-energy nuclear collisions recreate energy densities similar to that of the universe microseconds after the Big Bang, and in both cases, matter and antimatter are created with comparable abundances. However, the relatively short-lived expansion in nuclear collisions makes it possible for antimatter to decouple quickly from matter. This makes a high-energy accelerator facility the ideal environment for producing and studying antimatter. In this paper, we report 18 antihelium-4 nuclei discovered by the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The measured invariant differential cross section is consistent with expectation from thermodynamics and coalescent nucleosynthesis models, which has implications for future production of even heavier antimatter nuclei, as well as for experimental searches. for new phenomena in the cosmos. Future directions of rare and exotic matter searches from STAR will also be discussed. C1 [Tang, Aihong; STAR Collaboration] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Tang, AH (reprint author), Brookhaven Natl Lab, Dept Phys, POB 5000, Upton, NY 11973 USA. EM aihong@bnl.gov NR 18 TC 0 Z9 0 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 381 AR 012038 DI 10.1088/1742-6596/381/1/012038 PG 6 WC Physics, Particles & Fields SC Physics GA BEE76 UT WOS:000316303200039 ER PT S AU Tang, XD Esbensen, H Fang, X Bucher, B Jiang, CL Rehm, KE Lin, CJ Brown, E AF Tang, X. D. Esbensen, H. Fang, X. Bucher, B. Jiang, C. L. Rehm, K. E. Lin, C. J. Brown, E. BE Freeman, S Andreyev, A Bruce, A Deacon, A Jenkins, D Joss, D MacGregor, D Regan, P Simpson, J Tungate, G Wadsworth, R Watts, D TI Does the C-12+C-12 fusion reaction trigger superburst? SO RUTHERFORD CENTENNIAL CONFERENCE ON NUCLEAR PHYSICS, 2011 SE Journal of Physics Conference Series LA English DT Proceedings Paper CT Rutherford Centennial Conference on Nuclear Physics CY AUG 08-12, 2011 CL Univ Manchester, Manchester, ENGLAND HO Univ Manchester ID CROSS-SECTIONS; ENERGIES; RESONANCES; SCATTERING; O-16 AB Superbursts are long, energetic, rare explosions, probably triggered by the C-12+C-12 burning in the crust of neutron stars. However, with the current adopted 12C+12C fusion reaction rate, it is impossible for the current model to explain observations. Therefore, a strong resonance at E-c.m.=1.5 MeV has been proposed to enhance the carbon fusion reaction rate. By comparing the cross sections of the three carbon isotope fusion reactions, C-12+C-12, C-12+C-13 and C-13+C-13, we have established an upper limit for the C-12+C-12 fusion reaction rate. Our preliminary results show that the proposed strong resonance might not be realistic. The superburst puzzle is still unsolved. C1 [Tang, X. D.; Fang, X.; Bucher, B.] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Esbensen, H.; Jiang, C. L.; Rehm, K. E.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Lin, C. J.] China Inst Atom Energy, Beijing 102413, Peoples R China. [Brown, E.] JINA, Dept Phys, Michigan State Universit, MI USA. RP Tang, XD (reprint author), Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. RI Tang, Xiaodong /F-4891-2016 FU NSF [PHY-0758100, PHY-0822648]; DOE [DE-AC02-06CH11357]; National Natural Science Foundation of China [11021504]; University of Notre Dame FX This work was supported by the NSF under Grant No. PHY-0758100 and PHY-0822648, the DOE office a Science through DE-AC02-06CH11357, the National Natural Science Foundation of China under Grant No. 11021504, and the University of Notre Dame. Stimulating discussions with M. Wiescher, J. Kolata, M. Beard, T. Hagino, J. Schiffer and J. Zickefoose are gratefully acknowledged. NR 27 TC 2 Z9 2 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA DIRAC HOUSE, TEMPLE BACK, BRISTOL BS1 6BE, ENGLAND SN 1742-6588 J9 J PHYS CONF SER PY 2012 VL 381 AR 012120 DI 10.1088/1742-6596/381/1/012120 PG 6 WC Physics, Particles & Fields SC Physics GA BEE76 UT WOS:000316303200121 ER PT B AU Kim, SJ Son, SW Liao, WK Kandemir, M Thakur, R Choudhary, A AF Kim, Seong Jo Son, Seung Woo Liao, Wei-keng Kandemir, Mahmut Thakur, Rajeev Choudhary, Alok GP IEEE TI IOPin: Runtime Profiling of Parallel I/O in HPC Systems SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE AB Many I/O- and data-intensive scientific applications use parallel I/O software to access files in high performance. On modern parallel machines, the I/O software consists of several layers, including high-level libraries such as Parallel netCDF and HDF, middleware such as MPI-IO, and low-level POSIX interface supported by the file systems. For the I/O software developers, ensuring data flow is important among these software layers with performance close to the hardware limits. This task requires understanding the design of individual libraries and the characteristics of data flow among them. In this paper, we propose a dynamic instrumentation framework that can be used to understand the complex interactions across different I/O layers from applications to the underlying parallel file systems. Our preliminary experience indicates that the costs of using the proposed dynamic instrumentation is about 7% of the application execution time. C1 [Kim, Seong Jo; Kandemir, Mahmut] Penn State Univ, University Pk, PA 16802 USA. [Son, Seung Woo; Liao, Wei-keng; Choudhary, Alok] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA. [Thakur, Rajeev] Argonne Natl Lab, Math & Comp Sci, Argonne, IL 60439 USA. RP Kim, SJ (reprint author), Penn State Univ, University Pk, PA 16802 USA. EM seokim@cse.psu.edu; sson@eecs.northwestern.edu; wkliao@eecs.northwestern.edu; kandemir@cse.psu.edu; thakur@mcs.anl.gov; choudhar@eecs.northwestern.edu NR 32 TC 2 Z9 2 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 18 EP 23 DI 10.1109/SC.Companion.2012.14 PG 6 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300004 ER PT B AU Goodell, D Kim, SJ Latham, R Kandemir, M Ross, R AF Goodell, David Kim, Seong Jo Latham, Robert Kandemir, Mahmut Ross, Robert GP IEEE TI An Evolutionary Path to Object Storage Access SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE ID FILE SYSTEM AB High-performance computing (HPC) storage systems typically consist of an object storage system that is accessed via the POSIX file interface. However, rapid increases in system scales and storage system complexity have uncovered a number of limitations in this model. In particular, applications and libraries are limited in their ability to partition data into units with independent concurrency control, and mapping complex science data models into the POSIX file model is inconvenient at best. In this paper we propose an alternative interface for use by applications and libraries that provides direct access to underlying storage objects. This model allows applications and libraries to organize storage access around these objects in order to avoid lock contention without needing to create many separate files. Additionally, complex data models are more readily organized into multiple object data streams, simplifying the storage of variable-length data and allowing a choice of degree of parallelism related to access needs. Our approach provides for datasets stored in this new model to coexist with POSIX files, allowing evolution to the new model over time. We apply these concepts in the PVFS, PLFS, and Parallel netCDF packages to prototype the model and describe our experiences. C1 [Goodell, David; Latham, Robert; Ross, Robert] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. [Kim, Seong Jo; Kandemir, Mahmut] Penn State Univ, Dept Comp Sci & Engn, University Pk, PA 16802 USA. RP Goodell, D (reprint author), Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. EM goodell@mcs.anl.gov; seokim@cse.psu.edu; robl@mcs.anl.gov; kandemir@cse.psu.edu; rross@mcs.anl.gov FU U.S. Department of Energy [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy, under Contract DE-AC02-06CH11357. We thank Lee Ward and Eric Barton for participating in discussions that have helped guide us to this model. NR 24 TC 1 Z9 1 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 36 EP 41 DI 10.1109/SC.Companion.2012.17 PG 6 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300007 ER PT B AU Carns, P Harms, K Kimpe, D Wozniak, JM Ross, R Ward, L Curry, M Klundt, R Danielson, G Karakoyunlu, C Chandy, J Settlemyer, B Gropp, W AF Carns, Philip Harms, Kevin Kimpe, Dries Wozniak, Justin M. Ross, Robert Ward, Lee Curry, Matthew Klundt, Ruth Danielson, Geoff Karakoyunlu, Cengiz Chandy, John Settlemyer, Bradley Gropp, William GP IEEE TI A Case for Optimistic Coordination in HPC Storage Systems SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE ID CONCURRENCY-CONTROL AB High-performance computing (HPC) storage systems rely on access coordination to ensure that concurrent updates do not produce incoherent results. HPC storage systems typically employ pessimistic distributed locking to provide this functionality in cases where applications cannot perform their own coordination. This approach, however, introduces significant performance overhead and complicates fault handling. In this work we evaluate the viability of optimistic conditional storage operations as an alternative to distributed locking in HPC storage systems. We investigate design strategies and compare the two approaches in a prototype object storage system using a parallel read/modify/write benchmark. Our prototype illustrates that conditional operations can be easily integrated into distributed object storage systems and can outperform standard coordination primitives for simple update workloads. Our experiments show that conditional updates can achieve over two orders of magnitude higher performance than pessimistic locking for some parallel read/modify/write workloads. C1 [Carns, Philip; Harms, Kevin; Kimpe, Dries; Wozniak, Justin M.; Ross, Robert] Argonne Natl Lab, Argonne, IL 60439 USA. RP Carns, P (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM carns@mcs.anl.gov; harms@alcf.anl.gov; dkimpe@mcs.anl.gov; wozniak@mcs.anl.gov; rross@mcs.anl.gov; lee@sandia.gov; mlcurry@sandia.gov; rklundt@sandia.gov; gcdanie@sandia.gov; cengiz@uconn.edu; john.chandy@uconn.edu; settlemyerbw@ornl.gov; wgropp@illinois.edu OI Gropp, William/0000-0003-2905-3029; Chandy, John/0000-0003-3449-3205 NR 18 TC 1 Z9 1 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 48 EP 53 DI 10.1109/SC.Companion.2012.19 PG 6 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300009 ER PT B AU Peterka, T Kwan, J Pope, A Finkel, H Heitmann, K Habib, S Wang, JY Zagaris, G AF Peterka, Tom Kwan, Juliana Pope, Adrian Finkel, Hal Heitmann, Katrin Habib, Salman Wang, Jingyuan Zagaris, George GP IEEE TI Meshing t.he Universe: Integrating Analysis in Cosmological Simulations SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE DE In situ analysis; computational geometry; Voronoi tessellation ID ALGORITHM AB Mesh tessellations are indispensable tools for analyzing point data because they transform sparse discrete samples into dense continuous functions. Meshing the output of petascale simulations, however, can be as data-intensive as the simulations themselves and often must be executed in parallel on the same supercomputers in order to fit in memory. To date, however, no general-purpose large-scale parallel tessellation tools exist. We present a prototype method for computing such a Voronoi tessellation in situ during cosmological simulations. In principle, similar methods can be applied to other computational geometry problems such as Delaunay tetrahedralizations and convex hulls in other science domains. We demonstrate the utility of our approach as part of an in situ cosmology tools framework that runs various analysis tools at selected time steps, saves results to parallel storage, and includes visualization and further analysis in a widely used visualization package. In the example highlighted in this paper, connected components of Voronoi cells are interrogated to detect and characterize cosmological voids. C1 [Peterka, Tom; Kwan, Juliana; Pope, Adrian; Finkel, Hal; Heitmann, Katrin; Habib, Salman] Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. [Wang, Jingyuan] Univ Tennessee, Knoxville, TN USA. [Zagaris, George] Kitware Inc, Clifton Pk, NY USA. RP Peterka, T (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM tpeterka@mcs.anl.gov NR 23 TC 2 Z9 2 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 186 EP 195 DI 10.1109/SC.Companion.2012.34 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300024 ER PT B AU Sewell, C Meredith, J Moreland, K Peterka, T DeMarle, D Lo, LT Ahrens, J Maynard, R Geveci, B AF Sewell, Christopher Meredith, Jeremy Moreland, Kenneth Peterka, Tom DeMarle, Dave Lo, Li-ta Ahrens, James Maynard, Robert Geveci, Berk GP IEEE TI The SDAV Software Frameworks for Visualization and Analysis on Next-Generation Multi-Core and Many-Core Architectures SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE DE SDAV; data-parallel; in-situ; visualization; mult-core and many-core architectures; VTK-m AB This paper surveys the four software frameworks being developed as part of the visualization pillar of the SDAV (Scalable Data Management, Analysis, and Visualization) Institute, one of the SciDAC (Scientific Discovery through Advanced Computing) Institutes established by the ASCR (Advanced Scientific Computing Research) Program of the U.S. Department of Energy. These frameworks include EAVL (Extreme-scale Analysis and Visualization Library), DAX (Data Analysis at Extreme), DIY (Do It Yourself), and PISTON. The objective of these frameworks is to facilitate the adaptation of visualization and analysis algorithms to take advantage of the available parallelism in emerging multi-core and many-core hardware architectures, in anticipation of the need for such algorithms to be run in-situ with LCF (leadership-class facilities) simulation codes on supercomputers. C1 [Sewell, Christopher; Lo, Li-ta; Ahrens, James] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Meredith, Jeremy] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Moreland, Kenneth] Sandia Natl Labs, Albuquerque, NM USA. [Peterka, Tom] Argonne Natl Lab, Argonne, IL USA. [DeMarle, Dave; Maynard, Robert; Geveci, Berk] Kitware, Clifton Pk, NY USA. RP Sewell, C (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM csewell@lanl.gov; jsmeredith@ornl.gov; kmorel@sandia.gov; tpeterka@mcs.anl.gov; berk.geveci@kitware.com FU SciDAC Institute of Scalable Data Management, Analysis, and Visualization (SDAV); DOE Office of Science through the Office of Advanced Scientific Computing Research; Advanced Simulation and Computing Program FX The SciDAC Institute of Scalable Data Management, Analysis, and Visualization (SDAV) is funded by the DOE Office of Science through the Office of Advanced Scientific Computing Research. Arie Shoshani is the Institute Director, and James Ahrens and Wes Bethel are the Visualization Project Chairs. Related work has been funded by the Advanced Simulation and Computing Program. NR 7 TC 0 Z9 0 U1 0 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 206 EP 214 DI 10.1109/SC.Companion.2012.36 PG 9 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300026 ER PT B AU Moreland, K AF Moreland, Kenneth GP IEEE TI Oh, $#*@! Exascale! The Effect of Emerging Architectures on Scientific Discovery SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE ID VISUALIZATION AB The predictions for exascale computing are dire. Although we have benefited from a consistent supercomputer architecture design, even across manufacturers, for well over a decade, recent trends indicate that future high-performance computers will have different hardware structure and programming models to which software must adapt. This paper provides an informal discussion on the ways in which changes in high-performance computing architecture will profoundly affect the scalability of our current generation of scientific visualization and analysis codes and how we must adapt our applications, workflows, and attitudes to continue our success at exascale computing. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Moreland, K (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 36 TC 4 Z9 4 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 224 EP 231 DI 10.1109/SC.Companion.2012.38 PG 8 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300028 ER PT B AU Jimenez, ES Orr, LJ Thompson, KR AF Jimenez, Edward S. Orr, Laurel J. Thompson, Kyle R. GP IEEE TI An Irregular Approach to Large-Scale Computed Tomography on Multiple Graphics Processors Improves Voxel Processing Throughput SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE ID RECONSTRUCTION; HARDWARE; TIME AB While much work has been done on applying GPU technology to computed tomography (CT) reconstruction algorithms, many of these implementations focus on smaller datasets that are better suited for medical applications. This paper proposes an irregular approach to the algorithm design which utilizes the GPU hardware's unique cache structure and employs small x-ray image data prefetches on the host to upload to the GPUs while the devices are operating on large contiguous subvolumes of the reconstruction. This approach will improve the overall cache hit-rates and thus improve the performance of the massively multithreaded environment of the GPU. Overall, utilizing small prefetches of x-ray image data improved the volumetric pixel (voxel) processing rate when compared to utilizing large data prefetches which would minimize data transfers and kernel launches. Additionally, this approach does not sacrifice performance on small datasets and is thus suitable for medical and industrial applications. This work utilizes the CUDA programming environment and Nvidia's Tesla GPUs. C1 [Jimenez, Edward S.; Orr, Laurel J.; Thompson, Kyle R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Jimenez, ES (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM esjimen@sandia.gov; ljorr@sandia.gov; krthomp@sandia.gov NR 14 TC 2 Z9 2 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 254 EP 260 DI 10.1109/SC.Companion.2012.42 PG 7 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300032 ER PT B AU Halappanavar, M Chen, YS Adolf, R Haglin, D Huang, ZY Rice, M AF Halappanavar, Mahantesh Chen, Yousu Adolf, Robert Haglin, David Huang, Zhenyu Rice, Mark GP IEEE TI Towards Efficient N-x Contingency Selection Using Group Betweenness Centrality SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE DE Contingency analysis; group betweenness centrality; graph centrality ID COMPLEX NETWORKS; POWER GRIDS; ALGORITHM; VULNERABILITY AB The goal of N - x contingency selection is to pick a subset of critical cases to assess their potential to initiate a severe crippling of an electric power grid. Even for a moderate-sized system there can be an overwhelmingly large number of contingency cases that need to be studied. The number grows exponentially with x. This combinatorial explosion renders any exhaustive search strategy computationally infeasible, even for small to medium sized systems. We propose a novel method for N - x contingency selection for x >= 2 using group betweenness centrality and show that computation can be relatively decoupled from the problem size. Thus, making contingency analysis feasible for large systems with x >= 2. Consequently, it may be that N - x (for x >= 2) contingency selection can be effectively deployed despite the combinatorial explosion of the number of potential N - x contingencies. C1 [Halappanavar, Mahantesh; Adolf, Robert; Haglin, David] Pacific Northwest Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Chen, Yousu; Huang, Zhenyu; Rice, Mark] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Halappanavar, M (reprint author), Pacific Northwest Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. EM Mahantesh.Halappanavar@pnnl.gov; Yousu.Chen@pnnl.gov; Robert.Adolf@pnnl.gov; David.Haglin@pnnl.gov; Zhenyu.Huang@pnnl.gov; Mark.Rice@pnnl.gov FU Center for Adaptive Super Computing Software - MultiThreaded Architectures (CASS-MT) at the U.S. Department of Energy's Pacific Northwest National Laboratory; Pacific Northwest National Laboratory [DEACO6-76RL01830] FX This work was funded by the Center for Adaptive Super Computing Software - MultiThreaded Architectures (CASS-MT) at the U.S. Department of Energys Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute under Contract DEACO6- 76RL01830. NR 34 TC 0 Z9 0 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 273 EP 282 DI 10.1109/SC.Companion.2012.45 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300035 ER PT B AU Abhyankar, S Flueck, AJ AF Abhyankar, Shrirang Flueck, Alexander J. GP IEEE TI Real-Time Power System Dynamics Simulation Using a Parallel Block-Jacobi Preconditioned Newton-GMRES Scheme SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE DE Transient Stability; Parallel Computing; Block-Jacobi Preconditioner; Newton-GMRES; PETSc ID IMPLEMENTATION AB Real-time dynamics simulation of large-scale power systems is a computational challenge because of the need to solve a large set of stiff, nonlinear differential-algebraic equations. The main bottleneck in these simulations is the solution of the linear system during each nonlinear iteration of Newton's method. We present a parallel linear solution scheme using the Krylov subspace-based iterative solver GMRES with a Block-Jacobi preconditioner. The scheme shows promise for real-time dynamics simulation, with a good speed up for a 2383-bus, 327-generator test case. Results obtained for both stable and unstable operating conditions show that real-time simulation speed can be realized by using the proposed parallel linear solution scheme. C1 [Abhyankar, Shrirang] Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. [Flueck, Alexander J.] IIT, Dept Elect & Comp Engn, Chicago, IL 60616 USA. RP Abhyankar, S (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM abhyshr@mcs.anl.gov; flueck@iit.edu FU Office of Advanced Scientific Computing Research; Office of Science; U.S. Dept. of Energy [DE-AC02-06CH11357] FX This work was supported in part by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy, under Contract DE-AC02-06CH11357. NR 25 TC 3 Z9 3 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 299 EP 305 DI 10.1109/SC.Companion.2012.48 PG 7 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300038 ER PT B AU Hui, P Lee, B Chikkagoudar, S AF Hui, Peter Lee, Barry Chikkagoudar, Satish GP IEEE TI Towards Real-Time High Performance Computing For Power Grid Analysis SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE AB Real-time computing has traditionally been considered largely in the context of single-processor and embedded systems, and indeed, the terms real-time computing, embedded systems, and control systems are often mentioned in closely related contexts. However, real-time computing in the context of multinode systems, specically high-performance, cluster-computing systems, remains relatively unexplored. Imposing real-time constraints on a parallel ( cluster) computing environment introduces a variety of challenges with respect to the formal verification of the system's timing properties. In this paper, we give a motivating example to demonstrate the need for such a system-an application to estimate the electromechanical states of the power grid-and we introduce an formal method for performing verification of certain temporal properties within a system of parallel processes. We describe our work towards a full real-time implementation of the target application-namely, our progress towards extracting a key mathematical kernel from the application, the formal process by which we analyze the intricate timing behavior of the processes on the cluster, as well as timing measurements taken on our test cluster to demonstrate use of these concepts. C1 [Hui, Peter; Lee, Barry; Chikkagoudar, Satish] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hui, P (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM peter.hui@pnnl.gov; barry.lee@pnnl.gov; satish.chikkagoudar@pnnl.gov NR 15 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 306 EP 312 DI 10.1109/SC.Companion.2012.49 PG 7 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300039 ER PT B AU Villa, O Tumeo, A Ciraci, S Daily, JA Fuller, JC AF Villa, Oreste Tumeo, Antonino Ciraci, Selim Daily, Jeff A. Fuller, Jason C. GP IEEE TI A High Performance Computing Network and System Simulator for the Power Grid: NGNS(2) SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE AB Designing and planing next generation power grid systems composed of large power distribution networks, monitoring and control networks, autonomous generators and consumers of power requires advanced simulation infrastructures. The objective is to predict and analyze in time the behavior of networks of systems for unexpected events such as loss of connectivity, malicious attacks and power loss scenarios. This ultimately allows one to answer questions such as: "What could happen to the power grid if ... ". We want to be able to answer as many questions as possible in the shortest possible time for the largest possible systems. In this paper we present a new High Performance Computing (HPC) oriented simulation infrastructure named Next Generation Network and System Simulator (NGNS(2)). NGNS(2) allows for the distribution of a single simulation among multiple computing elements by using MPI and OpenMP threads. NGNS(2) provides extensive configuration, fault tolerant and load balancing capabilities needed to simulate large and dynamic systems for long periods of time. We show the preliminary results of the simulator running approximately two million simulated entities both on a 64-node commodity Infiniband cluster and a 48-core SMP workstation. C1 [Villa, Oreste; Tumeo, Antonino; Ciraci, Selim; Daily, Jeff A.; Fuller, Jason C.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Villa, O (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM oreste.villa@pnnl.gov; antonino.tumeo@pnnl.gov; selim.ciraci@pnnl.gov; jeff.daily@pnnl.gov; jason.fuller@pnnl.gov RI Tumeo, Antonino/L-3106-2016; Fuller, Jason/C-9951-2014; OI Fuller, Jason/0000-0002-0462-0093; Daily, Jeff/0000-0001-6212-5173 NR 19 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 313 EP 322 DI 10.1109/SC.Companion.2012.50 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300040 ER PT B AU Chen, YS Huang, ZY Rice, M AF Chen, Yousu Huang, Zhenyu Rice, Mark GP IEEE TI Evaluation of Counter-Based Dynamic Load Balancing Schemes for Massive Contingency Analysis on Over 10,000 Cores SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE DE Contingency Analysis; Dynamic Load balancing; Parallel Programming; Energy Management Systems ID SYSTEMS AB Contingency analysis studies are necessary to assess the impact of possible power system component failures. The results of the contingency analysis are used to ensure the grid reliability, and in power market operation for the feasibility test of market solutions. Currently, these studies are performed in real time based on the current operating conditions of the grid with a set of pre-selected contingency list, which might result in overlooking some critical contingencies caused by variable system status. To have a complete picture of a power grid, more contingencies need to be studied to improve grid reliability. High-performance computing techniques hold the promise of being able to perform the analysis for more contingency cases within a much shorter time frame. This paper evaluates the performance of counter-based dynamic load balancing schemes for a massive contingency analysis program on 10,000+ cores. One million N-2 contingency analysis cases with a Western Electricity Coordinating Council power grid model have been used to demonstrate the performance. The speedup of 3964 with 4096 cores and 7877 with 10240 cores are obtained. This paper reports the performance of the load balancing scheme with a single counter and two counters, describes disk I/O issues, and discusses other potential techniques for further improving the performance. C1 [Chen, Yousu] Pacific Northwest Natl Labs, Battelle Seattle Res Ctr, Seattle, WA 99354 USA. [Huang, Zhenyu; Rice, Mark] Pacific Northwest Natl Labs, Adv Power & Energy Syst, Seattle, WA USA. RP Chen, YS (reprint author), Pacific Northwest Natl Labs, Battelle Seattle Res Ctr, Seattle, WA 99354 USA. EM yousu.chen@pnnl.gov; zhenyu.huang@pnnl.gov; mark.rice@pnnl.gov FU U.S. Department of Energy (DOE) through its Advanced Grid Modeling Program; Battelle for the DOE [DE-AC05-76RL01830] FX This work is supported by the U.S. Department of Energy (DOE) through its Advanced Grid Modeling Program. Pacific Northwest National Laboratory (PNNL) is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. NR 11 TC 2 Z9 2 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 341 EP 346 DI 10.1109/SC.Companion.2012.53 PG 6 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300043 ER PT B AU Huang, ZY Jin, SS Diao, RS AF Huang, Zhenyu Jin, Shuangshuang Diao, Ruisheng GP IEEE TI Predictive Dynamic Simulation for Large-Scale Power Systems through High-Performance Computing SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE DE Dynamic simulation; high performance computing; differential algebraic equations; power systems AB Power system dynamic simulation solves a set of differential-algebraic equations to determine the time-series trajectory when the system is subject to disturbances such as a short-circuit fault, generator tripping, or line switching. Due to computational inefficiency, dynamic simulation, though widely used for off-line studies, has not been used in real-time operation. That limits the ability to operate a much-evolved power system with significant dynamic and stochastic behaviors introduced by the increasing penetration of renewable generation and the deployment of smart grid technologies. The need for performing dynamic simulation in real-time or faster than real-time for power grid operation becomes apparent. And such predictive dynamic simulation can enable many new power grid operation functions such as real-time path rating. To improve the computational efficiency of dynamic simulation requires parallel computing implementation of the solution methods, as computers no longer have only a single core. This paper examines the equations and implements a parallel version of power system dynamic simulation. The testing results clearly show a significant improvement in performance. Dynamic simulation of a large-scale power system with a size equivalent to the Western U.S. power grid achieves a performance of three times faster than real time for the first time. This makes the simulation predictive in time. Applying such predictive dynamic simulation for real-time path rating is discussed as well. C1 [Huang, Zhenyu; Jin, Shuangshuang; Diao, Ruisheng] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Huang, ZY (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM zhenyu.huang@pnnl.gov; shuangshuang.jin@pnnl.gov; ruisheng.diao@pnnl.gov NR 8 TC 10 Z9 10 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 347 EP 354 DI 10.1109/SC.Companion.2012.54 PG 8 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300044 ER PT B AU Barrett, RF Hammond, SD Vaughan, CT Doerfler, DW Heroux, MA Luitjens, JP Roweth, D AF Barrett, R. F. Hammond, S. D. Vaughan, C. T. Doerfler, D. W. Heroux, M. A. Luitjens, J. P. Roweth, D. GP IEEE TI Navigating An Evolutionary Fast Path to Exascale SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE DE scientific applications; high performance computing; parallel architectures ID GPU AB The computing community is in the midst of a disruptive architectural change. The advent of manycore and heterogeneous computing nodes forces us to reconsider every aspect of the system software and application stack. To address this challenge there is a broad spectrum of approaches, which we roughly classify as either revolutionary or evolutionary. With the former, the entire code base is re-written, perhaps using a new programming language or execution model. The latter, which is the focus of this work, seeks a piecewise path of effective incremental change. The end effect of our approach will be revolutionary in that the control structure of the application will be markedly different in order to utilize single-instruction multiple-data/thread (SIMD/SIMT), manycore and heterogeneous nodes, but the physics code fragments will be remarkably similar. Our approach is guided by a set of mission driven applications and their proxies, focused on balancing performance potential with the realities of existing application code bases. Although the specifics of this process have not yet converged, we find that there are several important steps that developers of scientific and engineering application programs can take to prepare for making effective use of these challenging platforms. Aiding an evolutionary approach is the recognition that the performance potential of the architectures is, in a meaningful sense, an extension of existing capabilities: vectorization, threading, and a re-visiting of node interconnect capabilities. Therefore, as architectures, programming models, and programming mechanisms continue to evolve, the preparations described herein will provide significant performance benefits on existing and emerging architectures. C1 [Barrett, R. F.; Hammond, S. D.; Vaughan, C. T.; Doerfler, D. W.; Heroux, M. A.] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [Luitjens, J. P.] NVIDIA Corp, Santa Clara, CA USA. [Roweth, D.] Cray Inc, Reading, Berks, England. RP Barrett, RF (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rfbarre@sandia.gov; sdhammo@sandia.gov; ctvaugh@sandia.gov; dwdoerf@sandia.gov; maherou@sandia.gov; jluitjens@nvidia.com; droweth@cray.com FU Department of Energy's NNSA ASC program; Office of Science Advanced Scientific Computing Research (ASCR) program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The test beds used for this research are funded by the Department of Energys NNSA ASC program and the Office of Science Advanced Scientific Computing Research (ASCR) program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 26 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 355 EP 365 DI 10.1109/SC.Companion.2012.55 PG 11 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300045 ER PT B AU Mubarak, M Carothers, CD Ross, R Carns, P AF Mubarak, Misbah Carothers, Christopher D. Ross, Robert Carns, Philip GP IEEE TI Modeling a Million-Node Dragonfly Network using Massively Parallel Discrete-Event Simulation SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE ID TIME AB A low-latency and low-diameter interconnection network will be an important component of future exascale architectures. The dragonfly network topology, a two-level directly connected network, is a candidate for exascale architectures because of its low diameter and reduced latency. To date, small-scale simulations with a few thousand nodes have been carried out to examine the dragonfly topology. However, future exascale machines will have millions of cores and up to 1 million nodes. In this paper, we focus on the modeling and simulation of large-scale dragonfly networks using the Rensselaer Optimistic Simulation System (ROSS). We validate the results of our model against the cycle-accurate simulator "booksim". We also compare the performance of booksim and ROSS for the dragonfly network model at modest scales. We demonstrate the performance of ROSS on both the Blue Gene/P and Blue Gene/Q systems on a dragonfly model with up to 50 million nodes, showing a peak event rate of 1.33 billion events/second and a total of 872 billion committed events. The dragonfly network model for million-node configurations strongly scales when going from 1,024 to 65,536 MPI tasks on IBM Blue Gene/P and IBM Blue Gene/Q systems. We also explore a variety of ROSS tuning parameters to get optimal results with the dragonfly network model. C1 [Mubarak, Misbah; Carothers, Christopher D.] Rensselaer Polytech Inst, Dept Comp Sci, 110 8th St, Troy, NY 12180 USA. [Ross, Robert; Carns, Philip] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Mubarak, M (reprint author), Rensselaer Polytech Inst, Dept Comp Sci, 110 8th St, Troy, NY 12180 USA. EM mubarm@cs.rpi.edu; chrisc@cs.rpi.edu; rross@mcs.anl.gov; carns@mcs.anl.gov FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357] FX The manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. This research used resources of Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. NR 25 TC 7 Z9 7 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 366 EP 376 DI 10.1109/SC.Companion.2012.56 PG 11 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300046 ER PT B AU Gahvari, H Gropp, W Jordan, KE Schulz, M Yang, UM AF Gahvari, Hormozd Gropp, William Jordan, Kirk E. Schulz, Martin Yang, Ulrike Meier GP IEEE TI Performance Modeling of Algebraic Multigrid on Blue Gene/Q: Lessons Learned SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE ID INTERPOLATION AB The IBM Blue Gene/Q represents a large step in the evolution of massively parallel machines. It features 16-core compute nodes, with additional parallelism in the form of four simultaneous hardware threads per core, connected together by a five-dimensional torus network. Machines are being built with core counts in the hundreds of thousands, with the largest, Sequoia, featuring over 1.5 million cores. In this paper, we develop a performance model for the solve cycle of algebraic multigrid on Blue Gene/Q to help us understand the issues this popular linear solver for large, sparse linear systems faces on this architecture. We validate the model on a Blue Gene/Q at IBM, and conclude with a discussion of the implications of our results. C1 [Gahvari, Hormozd; Gropp, William] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA. [Jordan, Kirk E.] IBM TJ Watson Res Ctr, Cambridge, MA 02142 USA. [Schulz, Martin; Yang, Ulrike Meier] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP Gahvari, H (reprint author), Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA. EM gahvari@illinois.edu; wgropp@illinois.edu; kjordan@us.ibm.com; schulzm@llnl.gov; umyang@llnl.gov OI Gropp, William/0000-0003-2905-3029 FU Office of Advanced Scientific Computing Research; Office of Science; U.S. Department of Energy [DE-SC0004131]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DEAC52-07NA27344 (LLNL-CONF-580692)] FX This work was supported in part by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy award DE-SC0004131, and performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DEAC52-07NA27344 (LLNL-CONF-580692). NR 17 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 377 EP 385 DI 10.1109/SC.Companion.2012.57 PG 9 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300047 ER PT B AU Rajan, M Doerfler, DW Lin, PT Hammond, SD Barrett, RF Vaughan, CT AF Rajan, M. Doerfler, D. W. Lin, P. T. Hammond, S. D. Barrett, R. F. Vaughan, C. T. GP IEEE TI Unprecedented Scalability and Performance of the New NNSA Tri-Lab Linux Capacity Cluster 2 SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE DE Scientific Applications; High Performance Computing; Parallel Architectures AB As one of the largest users of supercomputing resources in the world, capacity computing is a critical component in the NNSA's (National Nuclear Security Administration) Advanced Simulation and Computing (ASC) program. The latest acquisitions in this program - named the Tri-Lab Linux Capacity Cluster 2 (TLCC2) machines - have recently been installed at the three NNSA laboratories: Sandia National Laboratories, Los Alamos National Laboratories and Lawrence Livermore National Laboratories. In this paper we investigate performance on Chama, Sandia's 1232 node cluster, with dual socket Intel Xeon Sandy Bridge processors connected using Qlogic QDR InfiniBand. Production applications benchmarked on Chama reveal significant improvements in the time to solution and scalability when compared against our earlier generation capacity clusters and a PetaFlops class capability machine. C1 [Rajan, M.; Doerfler, D. W.; Lin, P. T.; Hammond, S. D.; Barrett, R. F.; Vaughan, C. T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Rajan, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mrajan@sandia.gov; dwdoerf@sandia.gov; ptlin@sandia.gov; sdhammo@sandia.gov; rfbarre@sandia.gov; ctvaugh@sandia.gov NR 14 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 417 EP 425 DI 10.1109/SC.Companion.2012.61 PG 9 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300051 ER PT B AU Janjusic, T Kavi, KM Kartsaklis, C AF Janjusic, Tomislav Kavi, Krishna M. Kartsaklis, Christos GP IEEE TI Trace Driven Data Structure Transformations SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE ID INSTRUMENTATION; TOOL AB As the complexity of scientific codes and computational hardware increases it is increasingly important to study the effects of data-structure layouts on program memory behavior. Program structure layouts affect the memory performance differently, therefore we need the capability to effectively study such transformations without the need to rewrite application codes. Trace-driven simulations are an effective and convenient mechanism to simulate program behavior at various granularities. During an application's execution, a tool known as a tracer or profiler, collects program flow data and records program instructions. The trace-file consists of tuples that associate each program instruction with program internal variables. In this paper we outline a proof-of-concept mechanism to apply data-structure transformations during trace simulation and observe effects on memory without the need to manually transform an application's code. C1 [Janjusic, Tomislav; Kavi, Krishna M.] Univ North Texas, Comp Sci & Engn, Denton, TX 76207 USA. [Kartsaklis, Christos] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37830 USA. RP Janjusic, T (reprint author), Univ North Texas, Comp Sci & Engn, Denton, TX 76207 USA. EM tjanjusic@unt.edu; krishna.kavi@unt.edu; kartsaklisc@ornl.gov FU NSF Net-Centric Industry/University Research Center; ORNL summer internship support; UNT's High Performance Computing Initiative; Oak Ridge National Laboratory FX This work is made possible in part by support from the NSF Net-Centric Industry/University Research Center, and ORNL summer internship support. Computational resources were provided by UNTs High Performance Computing Initiative, and Oak Ridge National Laboratory. NR 13 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 456 EP 464 DI 10.1109/SC.Companion.2012.65 PG 9 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300055 ER PT B AU Yi, J Kettimuthu, R Vishwanath, V AF Yi, Jun Kettimuthu, Rajkumar Vishwanath, Venkatram GP IEEE TI Accelerating Data Movement Leveraging End-system and Network Parallelism SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE AB Data volumes produced by simulation, experimental and observational science is rapidly increasing. This data needs to be moved from its source to another resource for analysis, visualization and archival purposes. The destination resource could be either local or remote. The data intensive science is critically dependent upon the high-performance parallel file and storage end systems to read/write and high-speed networks to move their enormous data between local and remote computing and storage facilities. 100 Gigabit per second networks such as DOE's Advanced Network Initiative (ANI), Internet2's 100G network represent a major step forward in wide area network performance. Effective utilization of these networks requires substantial and pervasive parallelism, at the file system, end system, and network levels. Additional obstacles such as heterogeneity and time-varying conditions of network and end system arise that, if not adequately addressed, will render high performance storage and network systems extremely under-performed. In this paper, we propose a data movement system that dynamically and adaptively adjusts end systems and networks parallelisms in response to changing conditions of end systems and networks to sustain high-throughput for data transfers. We evaluate our system in multiple settings and show that (1) in a homogeneous configuration, the design can achieve better throughput for light and medium workload than GridFTP and achieve comparable throughput for heavy workload, (2) and in a heterogeneous configuration, the design can achieve several factors higher throughput for all workloads than GridFTP. C1 [Yi, Jun; Kettimuthu, Rajkumar; Vishwanath, Venkatram] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Yi, J (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM jyi@mcs.anl.gov; kettimut@mcs.anl.gov; venkatv@mcs.anl.gov NR 14 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 516 EP 525 DI 10.1109/SC.Companion.2012.74 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300064 ER PT B AU Gu, JM Smith, D Chervenak, AL Sim, A AF Gu, Junmin Smith, David Chervenak, Ann L. Sim, Alex GP IEEE TI Adaptive Data Transfers that Utilize Policies for Resource Sharing SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE DE data transfers; adaptation; resource sharing; policy; passive performance monitoring ID DATA PLACEMENT AB With scientific data collected at unprecedented volumes and rates, the success of large scientific collaborations requires that they provide distributed data access with improved data access latencies and increased reliability to a large user community. The goal of the ADAPT (Adaptive Data Access and Policy-driven Transfers) project is to develop and deploy a general-purpose data access framework for scientific collaborations that provides fine-grained and adaptive data transfer management and the use of site and VO policies for resource sharing. This paper presents our initial design and implementation of an adaptive data transfer framework. We also present preliminary performance measurements showing that adaptation and policy improve network performance. C1 [Gu, Junmin; Sim, Alex] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Gu, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM jgu@lbl.gov; smithd@isi.edu; annc@isi.edu; asim@lbl.gov NR 18 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 547 EP 555 DI 10.1109/SC.Companion.2012.78 PG 9 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300068 ER PT B AU Harrison, C Navratil, P Moussalem, M Jiang, M Childs, H AF Harrison, Cyrus Navratil, Paul Moussalem, Maysam Jiang, Ming Childs, Hank GP IEEE TI Efficient Dynamic Derived Field Generation on Many-Core Architectures Using Python SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE ID STANDARD AB Derived field generation is a critical aspect of many visualization and analysis systems. This capability is frequently implemented by providing users with a language to create new fields and then translating their "programs" into a pipeline of filters that are combined in sequential fashion. Although this design is highly extensible and practical for development, the runtime characteristics of the typical implementation are poor, since it iterates over large arrays many times. As we reconsider visualization and analysis systems for many-core architectures, we must re-think the best way to implement derived fields while being cognizant of data movement. In this paper, we describe a flexible Python-based framework that realizes efficient derived field generation on many-core architectures using OpenCL. Our framework supports the development of different execution strategies for composing operations using a common library of building blocks. We present an evaluation of our framework by testing three execution strategies to explore tradeoffs between runtime performance and memory constraints. We successfully demonstrate our framework in an HPC environment using the vortex detection application on a large-scale simulation. C1 [Harrison, Cyrus; Jiang, Ming] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Harrison, C (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM cyrush@llnl.gov; pnav@tacc.utexas.edu; maysam@cs.utexas.edu; jiang4@llnl.gov; hchilds@lbl.gov NR 38 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 583 EP 592 DI 10.1109/SC.Companion.2012.82 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300072 ER PT B AU Van Essen, B Hsieh, H Ames, S Gokhale, M AF Van Essen, Brian Hsieh, Henry Ames, Sasha Gokhale, Maya GP IEEE TI DI-MMAP: A High Performance Memory-Map Runtime for Data-Intensive Applications SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE DE data-intensive; memory-map runtime; memory architecture; NVRAM AB We present DI-MMAP, a high-performance runtime that memory-maps large external data sets into an application's address space and shows significantly better performance than the Linux mmap system call. Our implementation is particularly effective when used with high performance locally attached Flash arrays on highly concurrent, latency-tolerant data-intensive HPC applications. We describe the kernel module and show performance results on a benchmark test suite and on a new bioinformatics metagenomic classification application. For the complex metagenomics classification application, DI-MMAP performs up to 4.88x better than standard Linux mmap. C1 [Van Essen, Brian; Hsieh, Henry; Ames, Sasha; Gokhale, Maya] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. RP Van Essen, B (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. EM vanessen1@llnl.gov; hsieh7@llnl.gov; ames4@llnl.gov; gokhale2@llnl.gov NR 7 TC 3 Z9 3 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 731 EP 735 DI 10.1109/SC.Companion.2012.99 PG 5 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300089 ER PT B AU Mehta, K Bent, J Torres, A Grider, G Gabriel, E AF Mehta, Kshitij Bent, John Torres, Aaron Grider, Gary Gabriel, Edgar GP IEEE TI A Plugin for HDF5 using PLFS for Improved I/O Performance and Semantic Analysis SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE DE HDF5; PLFS; semantic analysis AB HDF5 is a data model, library and file format for storing and managing data. It is designed for flexible and efficient I/O for high volume and complex data. Natively, it uses a single-file format where multiple HDF5 objects are stored in a single file. In a parallel HDF5 application, multiple processes access a single file, thereby resulting in a performance bottleneck in I/O. Additionally, a single-file format does not allow semantic post processing on individual objects outside the scope of the HDF5 application. We have developed a new plugin for HDF5 using its Virtual Object Layer that serves two purposes: 1) it uses PLFS to convert the single-file layout into a data layout that is optimized for the underlying file system, and 2) it stores data in a unique way that enables semantic post-processing on data. We measure the performance of the plugin and discuss work leveraging the new semantic post-processing functionality enabled. We further discuss the applicability of this approach for exascale burst buffer storage systems. C1 [Mehta, Kshitij; Gabriel, Edgar] Univ Houston, Dept Comp Sci, Houston, TX 77004 USA. [Bent, John] EMC Corp, Hopkinton, MA USA. [Torres, Aaron; Grider, Gary] Los Alamos Natl Lab, Los Alamos, NM USA. RP Mehta, K (reprint author), Univ Houston, Dept Comp Sci, Houston, TX 77004 USA. NR 9 TC 2 Z9 2 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 746 EP 752 DI 10.1109/SC.Companion.2012.102 PG 7 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300092 ER PT B AU Schmidt, D Ostrouchov, G Chen, WC Patel, P AF Schmidt, Drew Ostrouchov, George Chen, Wei-Chen Patel, Pragneshkumar GP IEEE TI Tight Coupling of R and Distributed Linear Algebra for High-Level Programming with Big Data SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE DE Big data; Large scale analytics; Distributed computing; R; ScaLAPACK; MPI AB We present a new distributed programming extension of the R programming language. By tightly coupling R to the well-known ScaLAPACK and MPI libraries, we are able to achieve highly scalable implementations of common statistical methods, allowing the user to analyze bigger datasets with R than ever before. Early benchmarks show great optimism for the project and its future. C1 [Schmidt, Drew; Ostrouchov, George; Patel, Pragneshkumar] Univ Tennessee, Remote Anal & Visualizat Ctr, Knoxville, TN 37996 USA. [Ostrouchov, George; Chen, Wei-Chen] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37830 USA. RP Schmidt, D (reprint author), Univ Tennessee, Remote Anal & Visualizat Ctr, Knoxville, TN 37996 USA. FU "NICS Remote Data Analysis and Visualization Center" - Office of Cyberinfrastructure of the U.S. National Science Foundation under Award for NICS-RDAV center [ARRA-NSF-OCI-0906324]; "Visual Data Exploration and Analysis of Ultra-large Climate Data" - U.S. DOE Office of Science [DE-AC05-00OR22725]; Office of Cyberinfrastructure of the U.S. National Science Foundation under Award for NICSRDAV center [ARRA-NSF-OCI-0906324]; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX D. Schmidt, G. Ostrouchov, and P. Patel were supported in part by the project NICS Remote Data Analysis and Visualization Center funded by the Office of Cyberinfrastructure of the U.S. National Science Foundation under Award No. ARRA-NSF-OCI-0906324 for NICS-RDAV center. G. Ostrouchov and W.-C. Chen were supported in part by the project Visual Data Exploration and Analysis of Ultra-large Climate Data funded by U.S. DOE Office of Science under Contract No. DE-AC05-00OR22725. This work used resources of National Institute for Computational Sciences at the University of Tennessee, Knoxville, which is supported by the Office of Cyberinfrastructure of the U.S. National Science Foundation under Award No. ARRA-NSF-OCI-0906324 for NICSRDAV center. The computations were performed on Kraken and Nautilus at the National Institute for Computational Sciences. This work also used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. This work used resources of the Newton HPC Program at the University of Tennessee, Knoxville. NR 18 TC 2 Z9 2 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 811 EP 815 DI 10.1109/SC.Companion.2012.113 PG 5 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300103 ER PT B AU Zou, HB Zheng, F Wolf, M Eisenhauer, G Schwan, K Abbasi, H Liu, Q Podhorszki, N Klasky, S AF Zou, Hongbo Zheng, Fang Wolf, Matthew Eisenhauer, Greg Schwan, Karsten Abbasi, Hasan Liu, Qing Podhorszki, Norbert Klasky, Scott GP IEEE TI Quality-Aware Data Management for Large Scale Scientific Applications SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE DE Data management; HPC simulation; compression; visualization; quality of information AB Increasingly larger scale simulations are generating an unprecedented amount of output data, causing researchers to explore new 'data staging' methods that buffer, use, and/or reduce such data online rather than simply pushing it to disk. Leveraging the capabilities of data staging, this study explores the potential for data reduction via online data compression, first using general compression techniques and then proposing use-specific methods that permit users to define simple data queries that cause only the data identified by those queries to be emitted. Using online methods for code generation and deployment, with such dynamic data queries, end users can precisely identify the quality of information (QoI) of their output data, by explicitly determining what data may be lost vs. retained, in contrast to general-purpose lossy compression methods that do not provide such levels of control. The paper also describes the key elements of a quality-aware data management system (QADMS) for high-end machines enabled by this approach. Initial experimental results demonstrate that QADMS can effectively reduce data movement cost and improve the QoS while meeting the QoI constraint stated by users. C1 [Zou, Hongbo; Zheng, Fang; Wolf, Matthew; Eisenhauer, Greg; Schwan, Karsten] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA. [Abbasi, Hasan; Liu, Qing; Podhorszki, Norbert; Klasky, Scott] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37830 USA. RP Zou, HB (reprint author), Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA. EM hongbo@cc.gatech.edu; fzheng@cc.gatech.edu; mwolf@cc.gatech.edu; eisen@cc.gatech.edu; schwan@cc.gatech.edu; habbasi@ornl.gov; liuq@ornl.gov; pnorbert@ornl.gov; sklasky@ornl.gov NR 14 TC 2 Z9 2 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 816 EP 820 DI 10.1109/SC.Companion.2012.114 PG 5 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300104 ER PT B AU Moreland, K King, B Maynard, R Ma, KL AF Moreland, Kenneth King, Brad Maynard, Robert Ma, Kwan-Liu GP IEEE TI Flexible Analysis Software for Emerging Architectures SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE AB We are on the threshold of a transformative change in the basic architecture of high-performance computing. The use of accelerator processors, characterized by large core counts, shared but asymmetrical memory, and heavy thread loading, is quickly becoming the norm in high performance computing. These accelerators represent significant challenges in updating our existing base of software. An intrinsic problem with this transition is a fundamental programming shift from message passing processes to much more fine thread scheduling with memory sharing. Another problem is the lack of stability in accelerator implementation; processor and compiler technology is currently changing rapidly. In this paper we describe our approach to address these two immediate problems with respect to scientific analysis and visualization algorithms. Our approach to accelerator programming forms the basis of the Dax toolkit, a framework to build data analysis and visualization algorithms applicable to exascale computing. C1 [Moreland, Kenneth] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. [King, Brad; Maynard, Robert] Kitware Inc, Clifton Park, NY 12065 USA. [Ma, Kwan-Liu] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA. RP Moreland, K (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. FU DOE Office of Science, Advanced Scientific Computing Research [10-014707]; SAND [2012-8450C] FX This work was supported in whole by the DOE Office of Science, Advanced Scientific Computing Research, under award number 10-014707, program manager Lucy Nowell. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration. SAND 2012-8450C NR 17 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 821 EP 826 DI 10.1109/SC.Companion.2012.115 PG 6 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300105 ER PT B AU Yin, J Gorton, I Poorva, S AF Yin, Jian Gorton, Ian Poorva, Sharma GP IEEE TI Toward Real Time Data Analysis for Smart Grids (Work-In-Progress) SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE ID INFRASTRUCTURE; SERVICES AB This paper describes the architecture and design of a novel system for supporting large-scale real-time data analysis for future power grid systems. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components of the grid. As a result, the whole system becomes highly dynamic and requires constant adjusting based on real time data. Even though millions of sensors such as phase measurement units (PMU) and smart meters are being widely deployed, a data layer that can analyze this amount of data in real time is needed. Unlike the data fabric in other cloud services, the data layer for smart grids has some unique design requirements. First, this layer must provide real time guarantees. Second, this layer must be scalable to allow a large number of applications to access the data from millions of sensors in real time. Third, reliability is critical and this layer must be able to continue to provide service in face of failures. Fourth, this layer must be secure. We address these challenges though a scalable system architecture that integrates the I/O and data processing capability in a devise set of devices. Data process operations can be placed anywhere from sensors, data storage devices, to control centers. We further employ compression to improve performance. We design a lightweight compression customized for power grid data. Our system can reduce end-to-end response time by reduce I/O overhead through compression and overlap compression operations with I/O. The initial prototype of our system was demonstrated with several use cases from PNNL's FPGI and show that our system can provide real time guarantees to a diverse set of applications. C1 [Yin, Jian; Gorton, Ian; Poorva, Sharma] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Yin, J (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM jian.yin.@pnnl.gov NR 19 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 827 EP 832 DI 10.1109/SC.Companion.2012.116 PG 6 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300106 ER PT B AU Vatsavai, RR AF Vatsavai, Ranga Raju GP IEEE TI Scalable Multi-Instance Learning Approach for Mapping the Slums of the World SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE DE Multi-instance learning; patch-based classification ID NEURAL-NETWORK; LOGISTIC-REGRESSION; CLASSIFICATION; FRAMEWORK AB Remote sensing imagery is widely used in mapping thematic classes, such as, forests, crops, forests and other natural and man-made objects on the Earth. With the availability of very high-resolution satellite imagery, it is now possible to identify complex patterns such as formal and informal (slums) settlements. However, predominantly used single-instance learning algorithms that are widely used in thematic classification are not sufficient for recognizing complex settlement patterns. On the other hand, newer multi-instance learning schemes are useful in recognizing complex structures in images, but they are computationally expensive. In this paper, we present an adaptation of a multi-instance learning algorithm for informal settlement classification and its efficient implementation on shared memory architectures. Experimental evaluation shows that this approach is scalable and as well as accurate than commonly used single-instance learning algorithms. C1 Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. RP Vatsavai, RR (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. EM vatsavairr@ornl.gov NR 15 TC 1 Z9 1 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 833 EP 837 DI 10.1109/SC.Companion.2012.117 PG 5 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300107 ER PT B AU Tschudi, B Martinez, D AF Tschudi, Bill Martinez, David GP IEEE TI Energy Efficient HPC Data Centers SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE C1 [Tschudi, Bill] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. Sandia Natl Labs, Livermore, CA 94550 USA. RP Tschudi, B (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM wftschudi@lbl.aov; davmart@sandia.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 848 EP 897 PG 50 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300109 ER PT B AU Shalf, J AF Shalf, John GP IEEE TI The Analysis of Impact of Energy Efficiency Requirements on Programming Environments SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE C1 Lawrence Berkeley Natl Lab, NERSC CTO, Berkeley, CA 94720 USA. RP Shalf, J (reprint author), Lawrence Berkeley Natl Lab, NERSC CTO, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 920 EP 941 PG 22 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300111 ER PT B AU Rogers, J AF Rogers, Jim GP IEEE TI Power Efficiency and Performance with ORNL's Cray XK7 Titan SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE C1 Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. RP Rogers, J (reprint author), Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1040 EP 1050 PG 11 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300116 ER PT B AU Liu, B Sotomayor, B Madduri, R Chard, K Foster, I AF Liu, Bo Sotomayor, Borja Madduri, Ravi Chard, Kyle Foster, Ian GP IEEE TI Deploying Bioinformatics Workflows on Clouds with Galaxy and Globus Provision SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE DE Scientific workflow; Cloud computing; Galaxy; Globus provision AB Cloud computing is attracting increasing attention as a means of providing users with fast provisioning of computational and storage resources, elastic scaling, and pay-as-you-go pricing. The integration of scientific workflows and Cloud computing has the potential to significantly improve resource utilization, processing speed, and user experience. This paper proposes a novel approach for deploying bioinformatics workflows in Cloud environments using Galaxy, a platform for scientific workflows, and Globus Provision, a tool for deploying distributed computing clusters on Amazon EC2. Collectively this combination of tools provides an easy to use, high performance and scalable workflow environment that addresses the needs of data-intensive applications through dynamic cluster configuration, automatic user-defined node provisioning, high speed data transfer, and automated deployment and configuration of domain-specific software. To demonstrate how this approach can be used in practice we present a domain-specific workflow use case and performance evaluation. C1 [Liu, Bo; Madduri, Ravi; Chard, Kyle; Foster, Ian] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Liu, Bo; Madduri, Ravi; Chard, Kyle; Foster, Ian] Argonne Natl Lab, Argonne, IL 60439 USA. [Sotomayor, Borja] Univ Chicago, Dept Comp Sci, Chicago, IL 60637 USA. RP Liu, B (reprint author), Univ Chicago, Computat Inst, Chicago, IL 60637 USA. EM boliu@uchicago.edu; borja@cs.uchicago.edu; madduri@mcs.anl.gov; kyle@ci.uchicago.edu; foster@mcs.anl.gov FU NIH through the NHLBI grant; Cardiovascular Research Grid [R24HL085343]; US Department of Energy [DE-AC02-06CH11357]; US National Science Foundation [OCI-534113] FX We appreciate the help of CVRG community and Globus Online team. We also appreciate the Galaxy Team for their support and maintenance of Galaxy. This work is supported by the NIH through the NHLBI grant, The Cardiovascular Research Grid, under contract number R24HL085343; US Department of Energy, under contract number DE-AC02-06CH11357; and US National Science Foundation, under contract OCI-534113. NR 21 TC 6 Z9 6 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1087 EP 1095 DI 10.1109/SC.Companion.2012.131 PG 9 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300121 ER PT B AU Ghoshal, D Ramakrishnan, L AF Ghoshal, Devarshi Ramakrishnan, Lavanya GP IEEE TI FRIEDA: Flexible Robust Intelligent Elastic Data Management in Cloud Environments SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE AB Scientific applications are increasingly using cloud resources for their data analysis workflows. However, managing data effectively and efficiently over these cloud resources is challenging due to the myriad storage choices with different performance-cost trade-offs, complex application choices, complexity associated with elasticity and, failure rates. The explosion in scientific data coupled with unique characteristics of cloud environments require a more flexible and robust distributed data management solution than the ones currently in existence. This paper describes the design and implementation of FRIEDA - a Flexible Robust Intelligent Elastic Data Management framework. FRIEDA coordinates data in a transient cloud environment taking into account specific application characteristics. Additionally, we describe a range of data management strategies and show the benefit of flexible data management schemes in cloud environments. We study two distinct scientific applications from bioinformatics and image analysis to understand the effectiveness of such a framework. C1 [Ghoshal, Devarshi] Indiana Univ, Sch Informat & Comp, Bloomington, IN 47405 USA. [Ramakrishnan, Lavanya] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Ghoshal, D (reprint author), Indiana Univ, Sch Informat & Comp, Bloomington, IN 47405 USA. EM dghoshal@cs.indiana.edu; lramakrishnan@lbl.gov FU National Science Foundation [1032873]; Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This material is based upon work supported by the National Science Foundation under Grant No. 1032873. This work was also supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We would like to thank Ilia Baldine, Jeff Chase, Anirban Mandal, Paul Ruth, Victor J. Orlikowski for help with the ExoGENI testbed. NR 23 TC 7 Z9 7 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1096 EP 1105 DI 10.1109/SC.Companion.2012.132 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300122 ER PT B AU Gunter, D Cholia, S Jain, A Kocher, M Persson, K Ramakrishnan, L Ong, SP Ceder, G AF Gunter, Dan Cholia, Shreyas Jain, Anubhav Kocher, Michael Persson, Kristin Ramakrishnan, Lavanya Ong, Shyue Ping Ceder, Gerbrand GP IEEE TI Community Accessible Datastore of High-Throughput Calculations: Experiences from the Materials Project SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE ID ION AB Efforts such as the Human Genome Project provided a dramatic example of opening scientific datasets to the community. Making high quality scientific data accessible through an online database allows scientists around the world to multiply the value of that data through scientific innovations. Similarly, the goal of the Materials Project is to calculate physical properties of all known inorganic materials and make this data freely available, with the goal of accelerating to invention of better materials. However, the complexity of scientific data, and the complexity of the simulations needed to generate and analyze it, pose challenges to current software ecosystem. In this paper, we describe the approach we used in the Materials Project to overcome these challenges and create and disseminate a high quality database of materials properties computed by solving the basic laws of physics. Our infrastructure requires a novel combination of high-throughput approaches with broadly applicable and scalable approaches to data storage and dissemination. C1 [Gunter, Dan; Cholia, Shreyas; Jain, Anubhav; Kocher, Michael; Persson, Kristin; Ramakrishnan, Lavanya] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ong, Shyue Ping; Ceder, Gerbrand] MIT, Cambridge, MA 02139 USA. RP Gunter, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM dkgunter@lbl.gov; scholia@lbl.gov; ajain@lbl.gov; mpkocher@lbl.gov; kapersson@lbl.gov; lramakrishnan@lbl.gov; shyue@mit.edu; ceder@mit.edu RI Ong, Shyue Ping/D-7573-2014 OI Ong, Shyue Ping/0000-0001-5726-2587 FU U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 21 TC 1 Z9 1 U1 1 U2 7 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1244 EP 1251 DI 10.1109/SC.Companion.2012.150 PG 8 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300140 ER PT B AU Barrett, R Crozier, P Doerfler, D Hammond, S Heroux, M Lin, P Trucano, T Vaughan, C Williams, A AF Barrett, Richard Crozier, Paul Doerfler, Doug Hammond, Simon Heroux, Mike Lin, Paul Trucano, Tim Vaughan, Courtenay Williams, Alan GP IEEE TI Assessing the Predictive Capabilities of Mini-applications SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE C1 [Barrett, Richard; Crozier, Paul; Doerfler, Doug; Hammond, Simon; Heroux, Mike; Lin, Paul; Trucano, Tim; Vaughan, Courtenay; Williams, Alan] Sandia Natl Labs, Livermore, CA 94550 USA. RP Barrett, R (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. NR 2 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1333 EP 1334 PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300159 ER PT B AU Mayes, ML Fletcher, GD Gordon, MS AF Mayes, Maricris L. Fletcher, Graham D. Gordon, Mark S. GP IEEE TI Towards Highly Accurate Large-Scale Ab initio Calculations Using Fragment Molecular Orbital Method in GAMESS SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE C1 [Mayes, Maricris L.; Fletcher, Graham D.] Argonne Natl Lab, Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 USA. [Gordon, Mark S.] Iowa State Univ, US DOE, Ames Lab, Dept Chem, Ames, IA 50011 USA. RP Mayes, ML (reprint author), Argonne Natl Lab, Leadership Comp Facil, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1335 EP 1335 PG 1 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300160 ER PT B AU Mayes, ML Fletcher, GD Gordon, MS AF Mayes, Maricris Lodriguito Fletcher, Graham D. Gordon, Mark S. GP IEEE TI Towards Highly Accurate Large-Scale Ab Initio Calculations Using Fragment Molecular Orbital Method in GAMESS SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE C1 [Mayes, Maricris Lodriguito; Fletcher, Graham D.] Argonne Natl Lab, Leadership Comp Facil ALCF, Argonne, IL 60439 USA. [Gordon, Mark S.] Iowa State Univ, US DOE, Ames Lab, Dept Chem, Ames, IA 50011 USA. RP Mayes, ML (reprint author), Argonne Natl Lab, Leadership Comp Facil ALCF, Argonne, IL 60439 USA. EM mmayes@alcf.anl.gov; fletcher@alcf.anl.gov; mark@si.msg.chem.iastate.edu NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1336 EP 1336 PG 1 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300161 ER PT B AU Dong, TX Kolev, T Rieben, R Dobrev, V AF Dong, Tingxing Kolev, Tzanio Rieben, Robert Dobrev, Veselin GP IEEE TI Acceleration of the BLAST Hydro Code on GPU SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE AB The BLAST code implements a high-order numerical algorithm that solves the equations of compressible hydrodynamics using the Finite Element Method in a moving Lagrangian frame. BLAST is coded in C++ and parallelized by MPI. We accelerate the most computationally intensive parts (80%-95%) of BLAST on an NVIDIA GPU with the CUDA programming model. Several 2D and 3D problems were tested and a maximum speedup of 4.3x was delivered. Our results demonstrate the validity and capability of GPU computing. C1 [Dong, Tingxing; Kolev, Tzanio; Dobrev, Veselin] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. [Rieben, Robert] Lawrence Livermore Natl Lab, Weapons & Complex Integrat, Livermore, CA 94550 USA. [Dong, Tingxing] Univ Tennessee, Innovat Comp Lab, Knoxville, TN 37996 USA. RP Dong, TX (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94550 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1337 EP 1337 PG 1 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300162 ER PT B AU Solca, R Haidar, A Tomov, S Schulthess, T Dongarra, J AF Solca, Raffaele Haidar, Azzam Tomov, Stanimire Schulthess, Thomas Dongarra, Jack GP IEEE TI A novel hybrid CPU-GPU generalized eigensolver for electronic structure calculations based on fine grained memory aware tasks SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE AB The adoption of hybrid GPU-CPU nodes in traditional supercomputing platforms such as the Cray-XK6 opens acceleration opportunities for electronic structure calculations in materials science and chemistry applications, where medium-sized generalized eigenvalue problems must be solved many times. These eigenvalue problems are too small to effectively solve on distributed systems, but can benefit from the massive compute performance concentrated on a single node, hybrid GPU-CPU system. However, hybrid systems call for the development of new algorithms that efficiently exploit heterogeneity and massive parallelism of not just GPUs, but of multi/many-core CPUs as well. Addressing these demands, we developed a novel algorithm featuring innovative: Fine grained memory aware tasks, Hybrid execution/scheduling, and Increased computational intensity. The resulting eigensolvers are state-of-the-art in HPC, significantly outperforming existing libraries. We describe the algorithm and analyze its performance impact on applications of interest when different fractions of eigenvectors are needed by the host electronic structure code. C1 [Solca, Raffaele; Schulthess, Thomas] Swiss Fed Inst Technol, Inst Theoret Phys, Zurich, Switzerland. [Schulthess, Thomas] Swiss Natl Supercomp Ctr, Lugano, Switzerland. [Tomov, Stanimire; Dongarra, Jack] Univ Tennessee, Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Dongarra, Jack] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN USA. [Dongarra, Jack] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England. [Dongarra, Jack] Univ Manchester, Sch Comp Sci, Manchester M13 9PL, Lancs, England. RP Solca, R (reprint author), Swiss Fed Inst Technol, Inst Theoret Phys, Zurich, Switzerland. EM rasolca@itp.phys.ethz.ch; haidar@eecs.utk.edu; tomov@eecs.utk.edu; schultho@ethz.ch; dongarra@eecs.utk.edu RI Dongarra, Jack/E-3987-2014 NR 4 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1338 EP + PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300163 ER PT B AU Isaacs, KE Landge, AG Gamblin, T Bremer, PT Pascucci, V Hamann, B AF Isaacs, Katherine E. Landge, Aaditya G. Gamblin, Todd Bremer, Peer-Timo Pascucci, Valerio Hamann, Bernd GP IEEE TI Exploring Performance Data with Boxfish SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE C1 [Isaacs, Katherine E.] Univ Calif Davis, Inst Data Anal & Visualizat, Dept Comp Sci, Davis, CA 95616 USA. [Gamblin, Todd; Bremer, Peer-Timo] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. [Landge, Aaditya G.; Pascucci, Valerio] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA. RP Isaacs, KE (reprint author), Univ Calif Davis, Inst Data Anal & Visualizat, Dept Comp Sci, Davis, CA 95616 USA. EM keisaaacs@ucdavis.edu; aaditya@sci.utah.edu; tgamblin@llnl.gov; ptbremer@llnl.gov; pascucci@sci.utah.edu; hamann@cs.ucdavis.edu FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-CONF- 568312]; Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF) [DE-AC05-06OR23100] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-CONF- 568312. This research is supported in part by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), administered by ORISE-ORAU under contract no. DE-AC05-06OR23100. NR 8 TC 2 Z9 2 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1380 EP + PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300190 ER PT B AU Kale, V Gamblin, T Hoefler, T de Supinski, BR Gropp, WD AF Kale, Vivek Gamblin, Todd Hoefler, Torsten de Supinski, Bronis R. Gropp, William D. GP IEEE TI Slack-conscious Lightweight Loop Scheduling for Improving Scalability of Bulk-synchronous MPI Applications SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE C1 [Kale, Vivek; Hoefler, Torsten; Gropp, William D.] Univ Illinois, Urbana, IL 61801 USA. [Kale, Vivek; Gamblin, Todd; de Supinski, Bronis R.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Kale, V (reprint author), Univ Illinois, Urbana, IL 61801 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1392 EP 1392 PG 1 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300198 ER PT B AU DeMar, P Dykstra, D Garzoglio, G Mhashikar, P Rajendran, A Wu, W AF DeMar, P. Dykstra, D. Garzoglio, G. Mhashikar, P. Rajendran, A. Wu, W. GP IEEE TI Networking Research Activities at Fermilab for Big Data Analysis SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE DE Exascale; Multicore-Aware Data; HTDP; ESCPS; 100GE; GridFTP; CVMFS; Globus Online AB Exascale science translates to big data. In the case of the Large Hadron Collider (LHC), the data is not only immense, it is also globally distributed. Fermilab is host to the LHC Compact Muon Solenoid (CMS) experiment's US Tier-1 Center. It must deal with both scaling and wide-area distribution challenges in processing its CMS data. This poster will describe the ongoing network-related R& D activities at Fermilab as a mosaic of efforts that combine to facilitate big data processing and movement. C1 [DeMar, P.; Dykstra, D.; Garzoglio, G.; Mhashikar, P.; Rajendran, A.; Wu, W.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP DeMar, P (reprint author), Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. EM demar@fnal.gov; dwd@fnal.gov; garzogli@fnal.gov; parag@fnal.gov; arajend5@hawk.iit.edu; wenji@fnal.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1398 EP 1399 PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300203 ER PT B AU Lam, MO Hollingsworth, JK de Supinski, BR LeGendre, MP AF Lam, Michael O. Hollingsworth, Jeffrey K. de Supinski, Bronis R. LeGendre, Matthew P. GP IEEE TI Automatically Adapting Programs for Mixed-Precision Floating-Point Computation SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE AB As scientific computation continues to scale, efficient use of floating-point arithmetic processors is critical. Lower precision allows streaming architectures to perform more operations per second and can reduce memory bandwidth pressure on all architectures. However, using a precision that is too low for a given algorithm and data set leads to inaccurate results. We present a framework that uses binary instrumentation and modification to build mixed-precision configurations of existing binaries that were originally developed to use only double-precision. This allows developers to easily experiment with mixed-precision configurations without modifying their source code, and it permits auto-tuning of floating-point. We include a search algorithm identify which code regions can use lower precision. Initial results with the Algebraic MultiGrid kernel demonstrate a nearly 2X speedup. C1 [Lam, Michael O.; Hollingsworth, Jeffrey K.] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA. [de Supinski, Bronis R.; LeGendre, Matthew P.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Lam, MO (reprint author), Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA. EM lam@cs.umd.edu; hollings@cs.umd.edu; bronis@llnl.gov; legendre1@llnl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1423 EP 1423 PG 1 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300221 ER PT B AU Sharma, S Gopalakrishnan, G Bronevetsky, G AF Sharma, Subodh Gopalakrishnan, Ganesh Bronevetsky, Greg GP IEEE TI MAAPED: Predictive Dynamic Analysis Tool for MPI Applications SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE ID VERIFICATION; PROGRAMS AB Formal dynamic analysis of MPI programs is critically important since conventional testing tools for message passing programs do not cover the space of possible non-deterministic communication matches, thus may miss bugs in the unexamined execution scenarios. While modern dynamic verification techniques guarantee the coverage of non-deterministic communication matches, they do so indiscriminately, inviting exponential interleaving explosion. Though the general problem is difficult to solve, we show that a specialized dynamic analysis method can be developed for dramatically reducing the number of interleavings when looking for certain safety properties such as deadlocks. Our MAAPED (Messaging Application Analysis with Predictive Error Discovery) tool collects a single program trace and predicts deadlock presence in other (unexplored) traces of an MPI program for the same input. MAAPED hinges on initially computing the potential alternate matches for non-deterministic communication operations and then analyzes such matches which may lead to a deadlock. The results collected are encouraging. C1 [Sharma, Subodh] Univ Oxford, Oxford OX1 2JD, England. [Gopalakrishnan, Ganesh] Univ Utah, Salt Lake City, UT 84112 USA. [Bronevetsky, Greg] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Sharma, S (reprint author), Univ Oxford, Oxford OX1 2JD, England. FU NSF OCI [1148127] FX The research was supported by the grant NSF OCI 1148127. We also thank Sriram Aananthkrishnan for his feedback and discussions related to this topic. NR 7 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1424 EP + PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300222 ER PT B AU Karlin, I McGraw, J Keasler, J Leon, EA Still, B Gallardo, E AF Karlin, Ian McGraw, Jim Keasler, Jeff Leon, Edgar A. Still, Bert Gallardo, Esthela GP IEEE TI Memory and Parallelism Exploration using the LULESH Proxy Application SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE AB Current and planned computer systems present challenges for scientific programming. Memory capacity and bandwidth are limiting performance as floating point capability increases due to more cores per processor and wider vector units. Effectively using hardware requires finding greater parallelism in programs while using relatively less memory. In this poster, we present how we tuned the Livermore Unstructured Lagrange Explicit Shock Hydrodynamics proxy application for on-node performance resulting in 62% fewer memory reads, a 19% smaller memory footprint, 770% more floating point operations vectorizing and less than 0.1% serial section runtime. Tests show serial code version runtime decreases of up to 57% and parallel runtime reductions of up to 75%. We are also applying these optimizations to GPUs and a subset of ALE3D, from which the proxy application was derived. So far we achieve up to a 1.9x speedup on GPUs, and a 13% runtime reduction in the application for the same problem. C1 [Karlin, Ian; McGraw, Jim; Keasler, Jeff; Leon, Edgar A.; Still, Bert] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Gallardo, Esthela] Univ Texas El Paso, El Paso, TX USA. RP Karlin, I (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM karlin1@llnl.gov; mcgraw1@llnl.gov; keasler1@llnl.gov; leon@llnl.gov; egallardo5@miners.utep.edu FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344.0] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.0 NR 3 TC 0 Z9 0 U1 0 U2 6 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1426 EP + PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300223 ER PT B AU Karlin, I McGraw, J Gallardo, E Keasler, J Leon, EA Still, B AF Karlin, Ian McGraw, Jim Gallardo, Esthela Keasler, Jeff Leon, Edgar A. Still, Bert GP IEEE TI Memory and Parallelism Exploration Using the LULESH Proxy Application SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE AB Current and planned computer systems present challenges for scientific programming. Memory capacity and bandwidth are limiting performance as floating point capability increases due to more cores per processor and wider vector units. Effectively using hardware requires finding greater parallelism in programs while using relatively less memory. In this poster, we present how we tuned the Livermore Unstructured Lagrange Explicit Shock Hydrodynamics proxy application for on-node performance resulting in 62% fewer memory reads, a 19% smaller memory footprint, 770% more floating point operations vectorizing and less than 0.1% serial section runtime. Tests show serial runtime decreases of up to 57% and parallel runtime reductions of up to 75%. We are also applying these optimizations to GPUs and a subset of ALE3D, from which the proxy application was derived. So far we achieve up to a 1.9x speedup on GPUs, and a 13% runtime reduction in the application for the same problem. C1 [Karlin, Ian; McGraw, Jim; Gallardo, Esthela; Keasler, Jeff; Leon, Edgar A.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Still, Bert] Univ Texas El Paso, El Paso, TX USA. RP Karlin, I (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 2 TC 0 Z9 0 U1 0 U2 6 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1428 EP 1428 PG 1 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300224 ER PT B AU Wang, B Ethier, S Tang, WM Ibrahim, KZ Madduri, K Williams, SW Oliker, L Williams, TJ AF Wang, B. Ethier, S. Tang, W. M. Ibrahim, K. Z. Madduri, K. Williams, S. W. Oliker, L. Williams, T. J. GP IEEE TI Advances in gyrokinetic particle in cell simulation for fusion plasmas to extreme scale SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE AB The Gyrokinetic Particle-in-cell (PIC) method has been successfully applied in studies of low-frequency microturbulence in magnetic fusion plasmas. While the excellent scaling of PIC codes on modern computing platforms is well established [1], significant challenges remain in achieving high on-chip concurrency for the new path to exascale systems. In addressing associated issues, it is necessary to deal with the basic gather-scatter operation and the relatively low computational intensity in the PIC method. Significant advancements have been achieved in optimizing gather-scatter operations in the gyrokinetic PIC method for next-generation multi-core CPU and GPU architectures. In particular, we improve on previous work [2,3] with new techniques that improve locality, reduce memory conflict, and efficiently utilize shared memory on GPU's. Performance benchmarks on two high-end computing platforms - the IBM BlueGene/Q (Mira) system at the Argonne Leadership Computing Facility (ALCF) and the Cray XK6 (Titan Dev) with the latest GPU at Oak Ridge Leadership Computing Facility (OLCF) - will be presented. C1 [Wang, B.; Ethier, S.; Tang, W. M.] Princeton Univ, PPPL, Princeton, NJ 08544 USA. [Ibrahim, K. Z.; Madduri, K.; Williams, S. W.; Oliker, L.] LBNL, Los Angeles, CA USA. [Williams, T. J.] ANL, Chicago, IL USA. RP Wang, B (reprint author), Princeton Univ, PPPL, Princeton, NJ 08544 USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1441 EP 1441 PG 1 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300233 ER PT B AU Balaprakash, P Buntinas, D Chan, A Guha, A Gupta, R Narayanan, HK Chien, AA Hovland, P Norris, B AF Balaprakash, Prasanna Buntinas, Darius Chan, Anthony Guha, Apala Gupta, Rinku Narayanan, Hari Krishna Chien, Andrew A. Hovland, Paul Norris, Boyana GP IEEE TI An Exascale Workload Study SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE C1 [Balaprakash, Prasanna; Buntinas, Darius; Chan, Anthony; Gupta, Rinku; Narayanan, Hari Krishna; Hovland, Paul; Norris, Boyana] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP Balaprakash, P (reprint author), Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. FU U.S. Department of Energy Office of Science [DE-AC02-06CH11357]; NSF [OCI-1-57921] FX This work was supported by the U.S. Department of Energy Office of Science DE-AC02-06CH11357 and NSF OCI-1-57921 NR 10 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1463 EP + PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300249 ER PT B AU Monteiro, S Bronevetsky, G Casas-Guix, M AF Monteiro, Steena Bronevetsky, Greg Casas-Guix, Marc GP IEEE TI Autonomic Modeling of Data-driven Application Behavior SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE DE component; performance modeling and evaluation; scientific applications; resource management; scheduling; mpiBLAST AB Computational behavior of large-scale data driven applications is a complex function of their input, configuration settings, and underlying system architecture. Difficulty in predicting the behavior of these applications makes it challenging to optimize their performance and schedule them onto compute resources. However, manually diagnosing performance problems and reconfiguring resource settings to improve application performance is infeasible and inefficient. We thus need autonomic optimization techniques that observe the application, learn from the observations, and subsequently successfully predict application behavior across different systems and load scenarios. This work presents a modular modeling approach for complex data-driven applications using statistical techniques. These techniques capture important characteristics of input data, consequent dynamic application behavior and system properties to predict application behavior with minimum human intervention. The work demonstrates how to adaptively structure and configure the models based on the observed complexity of application behavior in different input and execution scenarios. C1 [Monteiro, Steena; Bronevetsky, Greg; Casas-Guix, Marc] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Monteiro, S (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM monteiro1@llnl.gov; bronevetsky1@llnl.gov; casas-guix1@llnl.gov NR 0 TC 0 Z9 0 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1485 EP 1486 PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300265 ER PT B AU Monteiro, S Bronevetsky, G Casas-Guix, M AF Monteiro, Steena Bronevetsky, Greg Casas-Guix, Marc GP IEEE TI Autonomic Modeling of Data-driven Application Behavior SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE C1 [Monteiro, Steena; Bronevetsky, Greg; Casas-Guix, Marc] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Monteiro, S (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM monteiro1@llnl.gov; bronevetsky1@llnl.gov; casasguix1@llnl.gov NR 0 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1487 EP 1487 PG 1 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300266 ER PT B AU Jacob, RL Krishna, J Xu, XB Mickelson, S Tautges, T Wilde, M Latham, R Foster, I Ross, R Hereld, M Larson, J Bochev, P Peterson, K Taylor, M Schuchardt, K Yin, J Middleton, D Haley, M Brown, D Brownrigg, R Huang, W Shea, D Vertenstein, M Ma, KL Xie, JR AF Jacob, Robert L. Krishna, Jayesh Xu, Xiabing Mickelson, Sheri Tautges, Tim Wilde, Mike Latham, Robert Foster, Ian Ross, Rob Hereld, Mark Larson, Jay Bochev, Pavel Peterson, Kara Taylor, Mark Schuchardt, Karen Yin, Jian Middleton, Don Haley, Mary Brown, David Brownrigg, Richard Huang, Wei Shea, Dennis Vertenstein, Mariana Ma, Kwan-Liu Xie, Jinrong GP IEEE TI Bringing Task and Data Parallelism to Analysis of Climate Model Output SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE ID PERFORMANCE AB Climate models are both outputting larger and larger amounts of data and are doing it on more sophisticated numerical grids. The tools climate scientists have used to analyze climate output, an essential component of climate modeling, are single threaded and assume rectangular structured grids in their analysis algorithms. We are bringing both task- and data-parallelism to the analysis of climate model output. We have created a new data-parallel library, the Parallel Gridded Analysis Library (ParGAL) which can read in data using parallel I/O, store the data on a compete representation of the structured or unstructured mesh and perform sophisticated analysis on the data in parallel. ParGAL has been used to create a parallel version of a script-based analysis and visualization package. Finally, we have also taken current workflows and employed task- based parallelism to decrease the total execution time. C1 [Jacob, Robert L.; Krishna, Jayesh; Xu, Xiabing; Mickelson, Sheri; Tautges, Tim; Wilde, Mike; Latham, Robert; Foster, Ian; Ross, Rob; Hereld, Mark; Larson, Jay] Argonne Natl Lab, Argonne, IL 60439 USA. RP Jacob, RL (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. OI Hereld, Mark/0000-0002-0268-2880; Jacob, Robert/0000-0002-9444-6593 FU U.S. National Science Foundation via contributions from the National Center for Atmospheric Research, Boulder, CO; Lockheed Martin Corporation; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported in part by the Office of Bio- logical and Environmental Research, Office of Science, U.S. Department of Energy, under contract DE-ACO2-O6CH11357. The project is co-sponsored by the U.S. National Science Foundation via contributions from the National Center for Atmospheric Research, Boulder, CO. We gratefully acknowl- edge the computing resources provided on Fusion, a 320- node computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. Sandia Na- tional Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 13 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1493 EP + PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300270 ER PT B AU Jacob, R Krishna, J Xu, XB Mickelson, S Tautges, T Wilde, M Latham, R Foster, I Ross, R Hereld, M Larson, J Bochev, P Peterson, K Taylor, M Schuchardt, K Yin, J Middleton, D Haley, M Brown, D Huang, W Shea, D Brownrigg, R Vertenstein, M Ma, KL Xie, JR AF Jacob, Robert Krishna, Jayesh Xu, Xiabing Mickelson, Sheri Tautges, Tim Wilde, Mike Latham, Robert Foster, Ian Ross, Robert Hereld, Mark Larson, Jay Bochev, Pavel Peterson, Kara Taylor, Mark Schuchardt, Karen Yin, Jain Middleton, Don Haley, Mary Brown, David Huang, Wei Shea, Dennis Brownrigg, Richard Vertenstein, Mariana Ma, Kwan-Liu Xie, Jingrong GP IEEE TI Bringing Task- and Data-Parallelism to Analysis of Climate Model Output SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE C1 [Jacob, Robert; Krishna, Jayesh; Xu, Xiabing; Mickelson, Sheri; Tautges, Tim; Wilde, Mike; Latham, Robert; Foster, Ian; Ross, Robert; Hereld, Mark; Larson, Jay] Argonne Natl Lab, Argonne, IL 60439 USA. RP Jacob, R (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. FU U.S. National Science Foundation via contributions from the National Center for Atmospheric Research, Boulder, CO; Lockheed Martin Corporation; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported in part by the Office of Bio- logical and Environmental Research, Office of Science, U.S. Department of Energy, under contract DE-ACO2-O6CH11357. The project is co-sponsored by the U.S. National Science Foundation via contributions from the National Center for Atmospheric Research, Boulder, CO. We gratefully acknowledge the computing resources provided on Fusion, a 320-node computing cluster operated by the Laboratory Computing Resource Center at Argonne National Laboratory. Sandia Na- tional Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1495 EP 1495 PG 1 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300271 ER PT B AU Balman, M AF Balman, Mehmet GP IEEE TI MemzNet: Memory-Mapped Zero-copy Network Channel for Moving Large Datasets over 100Gbps Network SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Balman, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM mbalman@lbl.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1511 EP 1512 PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300282 ER PT B AU Balman, M AF Balman, Mehmet GP IEEE TI MemzNet: Memory-Mapped Zero-copy Network Channel for Moving Large Datasets over 100Gbps Networks SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE C1 Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Balman, M (reprint author), Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. EM mbalman@lbl.gov NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1513 EP 1513 PG 1 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300283 ER PT B AU Klimentov, A Vaniachine, A De, K Wenaus, T Panitkin, S Yu, D Zaruba, G Titov, M AF Klimentov, A. Vaniachine, A. De, K. Wenaus, T. Panitkin, S. Yu, D. Zaruba, G. Titov, M. CA PanDA Team ATLAS Collaboration GP IEEE TI PanDA: Next Generation Workload Management and Analysis System for Big Data SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE C1 [Klimentov, A.; Wenaus, T.; Panitkin, S.; Yu, D.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Klimentov, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. RI Vanyashin, Aleksandr/H-7796-2013 OI Vanyashin, Aleksandr/0000-0002-0367-5666 NR 5 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1521 EP + PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300289 ER PT B AU Knoll, A Insley, J Papka, ME Nomura, K Kalia, RK Nakano, A Vashishta, P AF Knoll, Aaron Insley, Joe Papka, Michael E. Nomura, Ken-ichi Kalia, Rajiv K. Nakano, Aiichiro Vashishta, Priya GP IEEE TI Molecular Dynamics Simulation of Amorphous SiO2 Fracture SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE C1 [Knoll, Aaron; Insley, Joe; Papka, Michael E.] Argonne Natl Lab, Lemont, IL USA. RP Knoll, A (reprint author), Argonne Natl Lab, Lemont, IL USA. EM knoll@mcs.anl.gov; insley@mcs.anl.gov; papka@mcs.anl.gov; knomura@usc.edu; rkalia@usc.edu; anakano@usc.edu; priyav@usc.edu FU DOE SciDAC- 2 program, the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357]; Argonne National Laboratory under the American Reinvestment and Recovery Act (ARRA) FX This work was supported by the DOE SciDAC- 2 program, the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357, and the Computational Postdoctoral Fellowship at Argonne National Laboratory under the American Reinvestment and Recovery Act (ARRA). NR 6 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1569 EP + PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300316 ER PT B AU Insley, JA Hereld, M Papka, ME Wagner, R Harkness, R Norman, ML Reynolds, DR AF Insley, Joseph A. Hereld, Mark Papka, Michael E. Wagner, Rick Harkness, Robert Norman, Michael L. Reynolds, Daniel R. GP IEEE TI Direct Numerical Simulations of Cosmological Reionization: Field Comparison: Density SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE AB The light from early galaxies had a dramatic impact on the gasses filling the universe. This video highlights the spatial structure of the light's effect, by comparing two simulations: one with a self-consistent radiation field (radiative), and one without (non-radiative), each with a very high dynamic range. Looking at the simulations side-by-side it's hard to see any difference. However, because the simulations have the same initial conditions, we can directly compare them, by looking at the relative difference of the density. The corallike blobs are regions where light has radiated out, heating the gas, and raising the pressure. The red regions show where the density is much higher in the radiative simulation, while the yellow regions are where the non-radiative has more density, showing where gravity was able to pull the filaments into tighter cylinders, without having to work against pressure from stellar heating. This is the first known visualization of this process, known as Jeans smoothing. C1 [Insley, Joseph A.; Hereld, Mark; Papka, Michael E.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Insley, JA (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM insley@anl.gov; hereld@anl.gov; papka@anl.gov; rpwagner@sdsc.edu; harkness@sdsc.edu; mlnorman@sdsc.edu; reynolds@smu.edu FU Argonne Leadership Computing Facility at Argonne National Laboratory; Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357]; National Science Foundation under TeraGrid award [TG-MCA98N020]; National Center for Computational Sciences, under a 2011 DOE INCITE award FX This work was supported in part by the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. The non-radiative simulation was performed using resources of the National Institute for Computational Sciences, with support from the National Science Foundation under TeraGrid award TG-MCA98N020. The radiation-hydrodynamics simulation was performed using resources of the National Center for Computational Sciences, under a 2011 DOE INCITE award. Visualizations were produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1572 EP + PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300317 ER PT B AU Insley, JA Hereld, M Papka, ME Wagner, R Harkness, R Norman, ML Reynolds, DR AF Insley, Joseph A. Hereld, Mark Papka, Michael E. Wagner, Rick Harkness, Robert Norman, Michael L. Reynolds, Daniel R. GP IEEE TI Direct Numerical Simulations of Cosmological Reionization: Field Comparison: Ionization Fraction SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE AB The light from early galaxies had a dramatic impact on the gasses filling the universe. This video highlights the spatial structure of the light's effect, by comparing two simulations: one with a self-consistent radiation field (radiative), and one without (non-radiative), each with a very high dynamic range. Ionization fraction is the amount of the gas that has been ionized. Looking at this quantity from the simulations side-by-side one can clearly see differences but it can be difficult to decipher how the regions of concentration in the two simulations relate to one another. However, because the simulations have the same initial conditions, we can directly compare them, by looking at the relative difference of the ionization fraction in a single view. The yellow and red regions show where the gas has been ionized in the radiative simulation, while at the center of these blobs are small blue regions where the ionized gas from the non-radiative simulation is concentrated. The purple illustrates the boundary at the advancing edge of the ionization from the radiative simulation, where the two simulations are the same. [GRAPHICS] . C1 [Insley, Joseph A.; Hereld, Mark; Papka, Michael E.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Insley, JA (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM insley@anl.gov; hereld@anl.gov; papka@anl.gov; rpwagner@sdsc.edu; harkness@sdsc.edu; mlnorman@sdsc.edu; reynolds@smu.edu FU Argonne Leadership computing Facility at Argonne National Laboratory; Office of Science of the U.S. Department of Energy [DE-AC02-06CH11357]; National Science Foundation under TeraGrid award [TG-MCA98N020] FX This work was supported in part by the Argonne Leadership computing Facility at Argonne National Laboratory, which is supported by the sOffice of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357. The non-radiative simulation was performed using resourceof the National Institute for Computational Sciences, with support from the National Science Foundation under TeraGrid award TG-MCA98N020. The radiation-hydrodynamics simulation was performed using resources of the National Center for Computational Sciences, under a 2011 DOE INCITE award. Visualizations were produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1574 EP + PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300318 ER PT B AU Carvey, B Fabian, N Rogers, D AF Carvey, Brad Fabian, Nathan Rogers, David GP IEEE TI Explosive Charge Blowing a Hole in a Steel Plate Animation SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE C1 [Carvey, Brad; Fabian, Nathan; Rogers, David] Sandia Natl Labs, Livermore, CA 94550 USA. RP Carvey, B (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1576 EP 1577 PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300319 ER PT B AU Insley, JA Paliath, U Premasuthan, S AF Insley, Joseph A. Paliath, Umesh Premasuthan, Sachin GP IEEE TI Effect of Installation Geometry on Turbulent Mixing Noise from Jet Engine Exhaust SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE AB Jet noise is one of the most dominant noise components from an aircraft engine that radiates over a wide frequency range. Empirical and semi-empirical models that rely on scaling laws and calibrations of constants based on the far field acoustic measurements are limited in their range of applicability, as universal calibration over variations in operating conditions and nozzle geometries is impossible. In recent years direct jet noise prediction using large eddy simulation (LES) and computational aero-acoustics methodology has attracted increasing attention in the jet noise community. Although it is still too expensive, the continuous advance in numerical algorithms and computer hardware is making direct jet noise prediction more and more affordable. Over the past decades jet noise reduction has been achieved mainly through increase of engine bypass ratio, which lowers jet speed for a given thrust. As under-wing-mounted engine diameters increase, jet axes must move closer to the airframe, to maintain the same ground clearance. This close-coupling now means that installation noise plays a major part in community noise reduction matrix. This effect of jet-flap interaction is an experimentally very expensive and hard to quantify effect. Most noise reduction technology studies are carried out at isolated conditions due to prohibitively expensive test costs. It is essential to be able to predict and understand the altering of the noise source generation and propagation mechanisms in the presence of forward flight and installation geometries like pylon, wing and flap. Very few studies have been conducted to assess this aspect of nozzle design. Such knowledge is vital to engine and airframe integration. General Electric has demonstrated the ability of the LES approach to predict the acoustic signature and examine noise source generation from canonical nozzles and passive noise control devices such as chevrons/lobed mixers. This same numerical approach can be suitably expanded to examine the effects of installed geometry with one primary risk higher computational cost. The approach is being evaluated for a canonical wing/flap geometry configuration under static operating conditions. Building on this previous work the applicability of the LES based approach will be extended to predict jet flap interaction (JFI) effects from more realistic wing/flap configurations. Comparisons will be made to data to ensure the numerical approach is capturing the physical shielding as well as acoustic scattering effects. The approach will aim to capture the noise source variation due to both the jet-plume deflection as well as impingement of the jet-plume on the flap, at higher flap deployment angles. This visualization compares the results of applying this approach to various jet nozzle configurations, without installation geometries. C1 [Insley, Joseph A.] Argonne Natl Lab, Argonne, IL 60439 USA. [Paliath, Umesh; Premasuthan, Sachin] Gen Elect Global Res, Niskayuna, NY 12309 USA. RP Insley, JA (reprint author), Argonne Natl Lab, Argonne, IL 60439 USA. EM insley@anl.gov; paliath@ge.com; premasut@ge.com NR 0 TC 0 Z9 0 U1 0 U2 6 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1579 EP + PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300321 ER PT B AU Gunter, D Kettimuthu, R Kissel, E Swany, M Yi, J Zurawski, J AF Gunter, Dan Kettimuthu, Raj Kissel, Ezra Swany, Martin Yi, Jun Zurawski, Jason GP IEEE TI Exploiting Network Parallelism for Improving Data Transfer Performance SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE ID SYSTEM AB Many scientific applications, including bulk data transfer, can achieve significantly higher performance from virtually loss-free dedicated resources provisioned on shared links, than from opportunistic network use. Research and Education (R&E) backbones, including the Energy Sciences Network and Internet2, provide general-purpose services to allocate dedicated bandwidth. However, in order to fully take advantage of this technology, applications need to move from coarse-grained "reservation" strategies, to more sophisticated control based on software defined networking (SDN) with technologies such as OpenFlow. We propose here, as one practical step in this direction, using multiple paths for the same application transfer session. This can add bandwidth from "best effort" and dedicated networks, and can also facilitate performance with applications using multiple 10G NICs over 100G capable paths. C1 [Gunter, Dan] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Comp Sci Dept, Berkeley, CA 94720 USA. [Kettimuthu, Raj] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Kissel, Ezra; Swany, Martin] Indiana Univ, Sch Informat & Comp, Bloomington, IN 47405 USA. [Yi, Jun] Univ Chicago, Argonne Natl Lab, Inst Computat, Chicago, IL 60637 USA. [Zurawski, Jason] Internet2, Washington, DC 20036 USA. RP Gunter, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Comp Sci Dept, Berkeley, CA 94720 USA. NR 22 TC 4 Z9 4 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1600 EP 1606 PG 7 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300328 ER PT B AU Monga, I Pouyoul, E Guok, C AF Monga, Inder Pouyoul, Eric Guok, Chin GP IEEE TI Software-defined networking for big-data science Architectural models from campus to the WAN SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE DE Network Virtualization; OpenFlow; Software-Defined Networking; Multi-Domain; OSCARS; Science DMZ AB University campuses, Supercomputer centers and R&E networks are challenged to architect, build and support IT infrastructure to deal effectively with the data deluge facing most science disciplines. Hybrid network architecture, multi-domain bandwidth reservations, performance monitoring and GLIF Open Lightpath Exchanges (GOLE) are examples of network architectures that have been proposed, championed and implemented successfully to meet the needs of science. Most recently, Science DMZ, a campus design pattern that bypasses traditional performance hotspots in typical campus network implementation, has been gaining momentum. In this paper and corresponding demonstration, we build upon the SC11 SCinet Research Sandbox demonstrator with Software-Defined networking to explore new architectural approaches. A virtual switch network abstraction is explored, that when combined with software-defined networking concepts provides the science users a simple, adaptable network framework to meet their upcoming application requirements. C1 [Monga, Inder; Pouyoul, Eric; Guok, Chin] Lawrence Berkeley Lab, Energy Sci Network, Berkeley, CA 94720 USA. RP Monga, I (reprint author), Lawrence Berkeley Lab, Energy Sci Network, Berkeley, CA 94720 USA. EM inder@es.net; lomax@es.net; chin@es.net NR 6 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1629 EP 1635 PG 7 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300332 ER PT B AU Brown, WM AF Brown, W. Michael GP IEEE TI Porting LAMMPS to the Titan System SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE C1 Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. RP Brown, WM (reprint author), Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1749 EP 1758 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300339 ER PT B AU Joubert, W AF Joubert, Wayne GP IEEE TI Porting DENOVO to the Titan System SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE C1 Oak Ridge Natl Lab, Oak Ridge Leadership Comp Facil, Sci Comp Grp, Oak Ridge, TN 37831 USA. RP Joubert, W (reprint author), Oak Ridge Natl Lab, Oak Ridge Leadership Comp Facil, Sci Comp Grp, Oak Ridge, TN 37831 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 1799 EP 1821 PG 23 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300342 ER PT B AU Almgren, A Bell, J Malone, C Nonaka, A Woosley, S Zingale, M AF Almgren, Ann Bell, John Malone, Chris Nonaka, Andy Woosley, Stan Zingale, Michael GP IEEE TI Ann Almgren Center for Computational Sciences and Engineering Lawrence Berkeley National Laboratory SO 2012 SC COMPANION: HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SCC) LA English DT Proceedings Paper CT 25th ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC) CY NOV 10-16, 2012 CL Salt Lake City, UT SP IEEE Comp Soc, Assoc Comp Machinery (ACM), IEEE C1 [Almgren, Ann] Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA USA. RP Almgren, A (reprint author), Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4956-9; 978-1-4673-6218-4 PY 2012 BP 2096 EP 2119 PG 24 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO96 UT WOS:000320824300350 ER PT B AU Brake, MR Segalman, DJ AF Brake, M. R. Segalman, D. J. GP ASME TI A NEW APPROACH TO MODELING DISCRETE NONLINEAR CONSTRAINTS IN CONTINUOUS SYSTEMS: THE METHOD OF DISCONTINUOUS BASIS FUNCTIONS SO PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2011, VOL 1, PTS A AND B: 23RD BIENNIAL CONFERENCE ON MECHANICAL VIBRATION AND NOISE LA English DT Proceedings Paper CT ASME Internationl Design Engineering Technical Conferences / Computers and Information in Engineering Conference (IDETC/CIE) CY AUG 28-31, 2011 CL Washington, DC SP Amer Soc Mech Engineers, Design Engn Div, Amer Soc Mech Engineers, Comp & Informat Engn Div ID ROTATING FLEXIBLE STRUCTURES; BEAM SYSTEM; DYNAMICS; IMPACT; VIBRATION; OSCILLATOR; EXCITATION; REDUCTION; JOINTS; FLOW AB Solutions for analytical models of systems with nonlinear constraints have focused on exact methods for satisfying the constraint conditions. Exact methods often require that the constraint can be expressed in a piecewise-linear manner, and result in a series of mapping equations from one linear regime of the constraint to the next. Due to the complexity of these methods, exact methods are often limited to analyzing a small number of constraints for practical reasons. This paper proposes a new method for analyzing continuous systems with arbitrary nonlinear constraints by approximately satisfying the constraint conditions. Instead of dividing the constraints into multiple linear regimes, a discontinuous basis function is used to supplement the system's linear basis functions. As a result, precise contact times are not needed, enabling this method to be more computationally efficient than exact methods. While the discontinuous basis functions are continuous in displacement, their derivatives contain discontinuities that allow for the nonlinear forces to be accounted for with the assumption that the nonlinear constraints are able to be modeled in a discrete manner. Since each nonlinear constraint requires only one associated discontinuous basis function, this method is easily expanded to handle large numbers of constraints. In order to illustrate the application of this method, an example with a pinned-pinned beam is presented. C1 [Brake, M. R.; Segalman, D. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brake, MR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mrbrake@sandia.gov NR 32 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5478-5 PY 2012 BP 675 EP 684 PG 10 WC Engineering, Mechanical SC Engineering GA BGM94 UT WOS:000323529700079 ER PT B AU Greco, A Ajayi, O Erck, R AF Greco, Aaron Ajayi, Oyelayo Erck, Robert GP ASME TI MICRO-SCALE SURFACE TEXTURE DESIGN FOR IMPROVED SCUFFING RESISTANCE IN GEAR APPLICATIONS SO PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 8 LA English DT Proceedings Paper CT ASME Internationl Design Engineering Technical Conferences / Computers and Information in Engineering Conference (IDETC/CIE) CY AUG 28-31, 2011 CL Washington, DC SP Amer Soc Mech Engineers, Design Engn Div, Amer Soc Mech Engineers, Comp & Informat Engn Div ID CONTACT AB The reliability and durability of gear components are critical issues especially in advanced power transmissions subject to increased power density and extreme operating conditions. In general the three main tribological failure modes present in gear tooth contact are: wear, contact fatigue/pitting, and scuffing. The present work investigates the influence of surface texturing in the form of micro-scale dimples as a method to enhance scuff resistance. Flat H13 steel samples were micro-dimpled using a laser surface texturing process. For scuffing and wear evaluation the flats were tested in point contact under lubricated linear reciprocating sliding. A threefold increase in scuffing resistance was observed for textured surfaces over comparable non-textured flats, however, for prolonged operation at high loads an increase wear rate of the counterface is observed. For gear application the design and location of surface texture requires careful consideration to balance scuffing resistance with potential influence to increased wear and fatigue pitting. C1 [Greco, Aaron; Ajayi, Oyelayo; Erck, Robert] Argonne Natl Lab, Argonne, IL 60439 USA. RP Greco, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 8 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5485-3 PY 2012 BP 579 EP 584 PG 6 WC Engineering, Manufacturing; Engineering, Electrical & Electronic; Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA BGW27 UT WOS:000324349100061 ER PT B AU Wang, JAJ Ren, F Tan, T AF Wang, Jy-An John Ren, Fei Tan, Ting GP ASME TI SPIRAL NOTCH TORSION TEST USE FOR DETERMINING FRACTURE TOUGHNESS OF STRUCTURAL MATERIALS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 6, PTS A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div ID EPOXY-RESIN AB Spiral Notch Torsion Fracture Toughness Test (SNTT) was developed recently to measure the intrinsic fracture toughness (K-IC) of structural materials. The SNTT system operates by applying pure torsion to uniform cylindrical specimens with a notch line that spirals around the specimen at a 450 pitch. The K-IC values are obtained with the aid of a three-dimensional finite-element computer code, TOR3D-KIC. The SNTT method is uniquely suitable for testing a wide variety of materials used extensively in pressure vessel and piping structural components and weldments, including others such as ceramics, their composites, graphite, concrete, and polymeric composites. The SNTT test results for some of these structural materials are demonstrated in this paper. C1 [Wang, Jy-An John; Ren, Fei; Tan, Ting] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Wang, JAJ (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6069, Oak Ridge, TN 37831 USA. EM wangja@ornl.gov; renf@ornl.gov; tant@ornl.gov OI Wang, Jy-An/0000-0003-2402-3832 NR 15 TC 0 Z9 0 U1 2 U2 6 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5505-8 PY 2012 BP 119 EP 124 PG 6 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BGR73 UT WOS:000323916100015 ER PT B AU Duncan, A AF Duncan, Andrew GP ASME TI Proceedings of the ASME PRESSURE VESSELS AND PIPING CONFERENCE-2012-VOLUME 6 PART B MATERIALS AND FABRICATION SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 6, PTS A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div C1 Savannah River Natl Lab, Aiken, SC 29808 USA. RP Duncan, A (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5505-8 PY 2012 BP 173 EP 173 PG 1 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BGR73 UT WOS:000323916100022 ER PT B AU Yin, SJ Williams, PT Klasky, HB Bass, BR AF Yin, Shengjun Williams, Paul T. Klasky, Hilda B. Bass, B. Richard GP ASME TI Analysis Of Ductile Crack Growth In Pipe Test In STYLE Project SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 6, PTS A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div ID PLASTIC FRACTURE-MECHANICS; TIP FIELDS; R-CURVES; CONSTRAINT; SPECIMENS; PARAMETER AB The Oak Ridge National Laboratory (ORNL) is conducting structural analyses, both deterministic and probabilistic, to simulate a large scale mock-up experiment planned within the European Network for Structural Integrity for Lifetime Management - non-RPV Components (STYLE). The paper summarizes current ORNL analyses of STYLE's Mock-Up3 experiment to simulate/evaluate ductile crack growth in a cladded ferritic pipe. Deterministic analyses of the large-scale bending test of a ferritic surge pipe, with an internal circumferential crack, are being simulated with a number of local micromechanical approaches, such as Gurson-Tvergaard-Needleman (GTN) model. Both FEACrack [1] and ABAQUS [2] general purpose finite element programs are being used to predict the failure load and the failure mode, i.e. ductile tearing or net-section collapse, as part of the pre-test phase of the project. Companion probabilistic analyses of the experiment are utilizing the ORNL developed open-source Structural Integrity Assessment Modular - Probabilistic Fracture Mechanics (SIAM-PFM) framework. SIAM-PFM contains engineering assessment methodologies such as the tearing instability (J-T analysis) module developed for inner surface cracks under bending load. The driving force J-integral estimations are based on the SC.ENG1 or SC.ENG2 models. The J-A(2) methodology is used to transfer (constraint-adjust) J-R curve material data from standard test specimens to the Mock-Up3 experiment configuration. The probabilistic results of the Mock-Up3 experiment obtained from SIAM-PFM will be compared to those generated using the deterministic finite element modeling approach. The objective of the probabilistic analysis is to provide uncertainty bounds that will assist in assessing the more detailed 3D finite-element solutions and to also assess the level of confidence that can be placed in the best-estimate finite-element solutions. C1 [Yin, Shengjun; Williams, Paul T.; Klasky, Hilda B.; Bass, B. Richard] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Yin, SJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM yins@ornl.gov NR 24 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5505-8 PY 2012 BP 487 EP 496 PG 10 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BGR73 UT WOS:000323916100062 ER PT B AU Cochran, KB Erickson, M Williams, PT Klasky, HB Bass, BR AF Cochran, Kristine B. Erickson, Marjorie Williams, Paul T. Klasky, Hilda B. Bass, B. Richard GP ASME TI A DISLOCATION-BASED CLEAVAGE INITIATION MODEL FOR PRESSURE VESSEL STEELS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 6, PTS A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div ID BRITTLE-FRACTURE; CRITERION; MECHANICS; STRESS; CRACK AB Efforts are under way to develop a theoretical, multi-scale model for the prediction of fracture toughness of ferritic steels in the ductile-to-brittle transition temperature (DBTT) region that accounts for temperature, irradiation, strain rate, and material condition (chemistry and heat treatment) effects. This new model is intended to address difficulties associated with existing empirically-derived models of the DBTT region that cannot be extrapolated to conditions for which data are unavailable. Dislocation distribution equations, derived from the theories of Yokobori et al., are incorporated to account for the local stress state prior to and following initiation of a microcrack from a second-phase particle. The new model is the basis for the DISlocation-based FRACture (DISFRAC) computer code being developed at the Oak Ridge National Laboratory (ORNL). The purpose of this code is to permit fracture safety assessments of ferritic structures with only tensile properties required as input. The primary motivation for the code is to assist in the prediction of radiation effects on nuclear reactor pressure vessels, in parallel with the EURATOM PERFORM 60 project. This paper begins with a brief overview of the strategy for implementing the new model into the DISFRAC computer code. The balance of the paper focuses on efforts to model the nucleation of a carbide particle crack near an existing macrocrack under applied load. The carbide microcrack initiation model applies dislocation mechanics to assess the stress intensity exerted on a stiff, elastic carbide particle embedded in an elastic-plastic ferrite matrix near a macrocrack tip. The paper derives and discusses the governing equations for the model; including (1) computation of a slip band dislocation pileup distribution by enforcing equilibrium with the macrocrack-induced elastic-plastic stress, field, (2) calculation of the mode I stress intensity on the particle crack plane due to the dislocation pileup and (3) determination of the particle fracture toughness. Together, these calculations provide the basis for determining the applied load required to initiate particle fracture. This paper demonstrates how the prediction of particle fracture depends on various microstructure parameters. C1 [Cochran, Kristine B.; Williams, Paul T.; Klasky, Hilda B.; Bass, B. Richard] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Klasky, HB (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM klaskyhb@ornl.gov NR 19 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5505-8 PY 2012 BP 497 EP 506 PG 10 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BGR73 UT WOS:000323916100063 ER PT B AU Wiersma, B Jaske, C Cohn, M AF Wiersma, Bruce Jaske, Carl Cohn, Marvin GP ASME TI INTRODUCTION SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 6, PTS A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div C1 [Wiersma, Bruce] Savannah River Natl Lab, Aiken, SC USA. RP Wiersma, B (reprint author), Savannah River Natl Lab, Aiken, SC USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5505-8 PY 2012 BP 589 EP 589 PG 1 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BGR73 UT WOS:000323916100074 ER PT B AU Mitchell, EM Gross, RE Harris, SP AF Mitchell, Emily M. Gross, Robert E. Harris, Stephen P. GP ASME TI Estimated SIL Levels and Risk Comparisons for Relief Valves as a Function of Time-in-Service SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 6, PTS A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div AB The probability of failure on demand for spring-operated pressure relief valves (SORVs) is estimated by applying the Frechet and Weibull probability distributions using proof test data from the United States Department of Energy's Savannah River Site (SRS) in Aiken, South Carolina. The data can be accessed through the Center for Chemical Process Safety (CCPS) Process Equipment Reliability Database (PERD). The probability distributions enable the evaluation of risk, estimation of ANSI/ISA-84.00.01 Safety Integrity Levels (SILs), and the impact of potential modifications of the maintenance plan. Current SRS practices are reviewed, and recommendations are made for risk-based adjustments to the maintenance plan. Subsets of valves are identified in which maintenance times can be extended and in which increased safety margins may be needed. C1 [Mitchell, Emily M.; Harris, Stephen P.] Savannah River Natl Lab, Aiken, SC USA. RP Mitchell, EM (reprint author), Savannah River Natl Lab, Aiken, SC USA. NR 9 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5505-8 PY 2012 BP 591 EP 600 PG 10 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BGR73 UT WOS:000323916100075 ER PT B AU Ren, WJ AF Ren, Weiju GP ASME TI Proceedings of the ASME PRESSURE VESSELS AND PIPING CONFERENCE-2012-VOLUME 6 PART B MATERIALS AND FABRICATION SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 6, PTS A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Ren, WJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5505-8 PY 2012 BP 779 EP 779 PG 1 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BGR73 UT WOS:000323916100097 ER PT B AU Marchi, CS Harris, A Yip, M Somerday, BP Nibur, KA AF Marchi, C. San Harris, A. Yip, M. Somerday, B. P. Nibur, K. A. GP ASME TI PRESSURE CYCLING OF STEEL PRESSURE VESSELS WITH GASEOUS HYDROGEN SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 6, PTS A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div AB Steel pressure vessels are commonly used for the transport of pressurized gases, including gaseous hydrogen. In the majority of cases, these transport cylinders experience relatively few pressure cycles over their lifetime, perhaps as many as 25 per year, and generally significantly less. For fueling applications, as in fuel tanks on hydrogen-powered industrial trucks, the hydrogen fuel systems may experience thousands of cycles over their lifetime. Similarly, it can be anticipated that the use of tube trailers for large-scale distribution of gaseous hydrogen will require lifetimes of thousands of pressure cycles. This study investigates the fatigue life of steel pressure vessels that are similar to transport cylinders by subjecting full-scale vessels to pressure cycles with gaseous hydrogen between nominal pressure of 3 and 44 MPa. In,addition to pressure cycling of vessels that are similar to those in service, engineered defects were machined on the inside of several pressure vessels to simulate manufacturing defects and to initiate failure after relatively low number of cycles. Failure was not observed in as-manufactured vessels with more than 55,000 pressure cycles, nor in vessels with relatively small, engineered defects subjected to more than 40,000 cycles. Large engineered defects (with depth greater than 5% of the wall thickness) resulted in failure after 8,000 to 15,000 pressure cycles. Defects machined to depths less than 5% wall thickness did not induce failures. Four pressure vessel failures were observed during the course of this project and, in all cases, failure occurred by leak before burst. The performance of the tested vessels is compared to two design approaches: fracture mechanics design approach and traditional fatigue analysis design approach. The results from this work have been used as the basis for the design rules for Type 1 fuel tanks in the standard entitled "Compressed Hydrogen-Powered Industrial Truck, On-board Fuel Storage and Handling Components (HPIT1)" from CSA America. C1 [Marchi, C. San; Harris, A.; Yip, M.; Somerday, B. P.] Sandia Natl Labs, Livermore, CA USA. RP Marchi, CS (reprint author), Sandia Natl Labs, Livermore, CA USA. NR 14 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5505-8 PY 2012 BP 835 EP 844 PG 10 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BGR73 UT WOS:000323916100104 ER PT S AU Smith, SJ AF Smith, S. J. BE Lovegrove, K Stein, W TI The long-term market potential of concentrating solar power (CSP) systems SO CONCENTRATING SOLAR POWER TECHNOLOGY: PRINCIPLES, DEVELOPMENTS AND APPLICATIONS SE Woodhead Publishing Series in Energy LA English DT Article; Book Chapter DE concentrating solar power; electric generation ID PHOTOVOLTAICS PV; CLIMATE-CHANGE; ENERGY; TECHNOLOGY; LIMITS; US AB This chapter will examine the conditions under which thermal concentrating solar power (CSP) systems might play a larger role in the global energy system during the twenty-first century. CSP technologies, such as parabolic troughs or power towers, have a large advantage over other solar technologies in that they offer the potential for firm power delivery, mitigating intermittency issues. These systems require relatively cloud-free conditions to operate, however, which limits their geographic applicability. C1 [Smith, S. J.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Smith, S. J.] Univ Maryland, College Pk, MD 20740 USA. RP Smith, SJ (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, 5825 Univ Res Court,Suite 3500, College Pk, MD 20740 USA. EM ssmith@pnnl.gov NR 37 TC 0 Z9 0 U1 0 U2 0 PU WOODHEAD PUBL LTD PI CAMBRIDGE PA ABINGTON HALL ABINGTON, CAMBRIDGE CB1 6AH, CAMBS, ENGLAND SN 2044-9364 BN 978-0-85709-617-3; 978-1-84569-769-3 J9 WOODHEAD PUBL SER EN PY 2012 IS 21 BP 437 EP 465 D2 10.1533/9780857096173 PG 29 WC Energy & Fuels SC Energy & Fuels GA BHG53 UT WOS:000325345300015 ER PT S AU Zavadil, KR AF Zavadil, K. R. BE Kish, JR Frankel, GS Davenport, AJ Birbilis, N Zavadil, K TI Correlating Pit Initiation in Aluminum with Passive Oxide Defect Structure SO CRITICAL FACTORS IN LOCALIZED CORROSION 7 SE ECS Transactions LA English DT Proceedings Paper CT 7th Symposium on Critical Factors in Localized Corrosion held during the 220th Electrochemical-Society (ECS) Meeting CY OCT 10-13, 2011 CL Boston, MA SP Electrochem Soc, Corros Div, Bio-Logic ID BREAKDOWN; NUCLEATION; CORROSION; GROWTH; METALS; REPAIR; FILMS AB Microelectrochemical methods are combined with scanning electron microscopy to explore passive oxide breakdown and pit initiation on Al(111) thin films. Anodic galvanostatic polarization is conducted in a microcapillary cell to limit the available current and to restrict the analysis area for subsequent microscopic evaluation. An ability to drive a single pit initiation event is demonstrated using this approach. Subsequent microscopy shows that pore cluster formation on the off-(111) axis facets that are emergent from the grain boundaries is responsible for pit initiation. Early stage, fully formed pits possess oxide membranes that contain pore clusters. Pores evolve from voids that form at the oxide-Al interface, establishing a link between these interfacial voids and pit initiation. Localized oxygen vacancy saturation and the anion-cation vacancy annihilation reaction during anodic polarization drive void growth, the void-to-pore transition, and pit initiation at off-(111) axis facets in this system. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Zavadil, KR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 17 TC 1 Z9 1 U1 1 U2 7 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-324-7; 978-1-56677-965-4 J9 ECS TRANSACTIONS PY 2012 VL 41 IS 25 BP 133 EP 142 DI 10.1149/1.3697584 PG 10 WC Electrochemistry; Materials Science, Multidisciplinary SC Electrochemistry; Materials Science GA BHG95 UT WOS:000325392600012 ER PT J AU Makarov, YV Du, PW Kintner-Meyer, MCW Jin, CL Illian, HF AF Makarov, Yuri V. Du, Pengwei Kintner-Meyer, Michael C. W. Jin, Chunlian Illian, Howard F. TI Sizing Energy Storage to Accommodate High Penetration of Variable Energy Resources SO IEEE TRANSACTIONS ON SUSTAINABLE ENERGY LA English DT Article DE Discrete Fourier transform (DFT); energy storage; imbalance power; integration of variable resources; Western Electricity Coordinating Council (WECC) system ID WIND ENERGY; SYSTEMS AB The variability and nondispatchable nature of wind and solar energy production presents substantial challenges for maintaining system balance. Depending on the economic considerations, energy storage can be a viable solution to balance energy production with consumption. This paper proposes to use discrete Fourier transform to decompose the required balancing power into different time-varying periodic components, i.e., intraweek, intraday, intrahour, and real-time. Each component can be used to quantify the maximum energy storage requirement for different types of energy storage. This requirement is the physical limit that could be theoretically accommodated by a power system. The actual energy storage capacity can be further quantified within this limit by the cost-benefit analysis (future work). The proposed approach has been successfully used in a study conducted for the 2030 Western Electricity Coordinating Council system model. Some results of this study are provided in this paper. C1 [Makarov, Yuri V.; Du, Pengwei; Kintner-Meyer, Michael C. W.; Jin, Chunlian] Pacific NW Natl Lab, Energy Sci & Technol Div, Richland, WA 99352 USA. [Illian, Howard F.] Energy Mark Inc, Buffalo Grove, IL 60089 USA. RP Makarov, YV (reprint author), Pacific NW Natl Lab, Energy Sci & Technol Div, Richland, WA 99352 USA. EM yuri.makarov@pnl.gov; pengwei.du@pnl.gov; michael.kintner-meyer@pnl.gov; chunlian.jin@pnl.gov; howard.illian@energymark.com NR 27 TC 61 Z9 66 U1 2 U2 21 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1949-3029 J9 IEEE T SUSTAIN ENERG JI IEEE Trans. Sustain. Energy PD JAN PY 2012 VL 3 IS 1 BP 34 EP 40 DI 10.1109/TSTE.2011.2164101 PG 7 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Engineering, Electrical & Electronic SC Science & Technology - Other Topics; Energy & Fuels; Engineering GA 231RA UT WOS:000325433800004 ER PT S AU Jana, S Hovanski, Y Pilli, SP Field, DP Yu, H Pan, TY Santella, ML AF Jana, Saumyadeep Hovanski, Yuri Pilli, Siva P. Field, David P. Yu, Hao Pan, Tsung-Yu Santella, M. L. BE Mathaudhu, SN Sillekens, WH Neelameggham, NR Hort, N TI SOLID STATE JOINING OF MAGNESIUM TO STEEL SO MAGNESIUM TECHNOLOGY 2012 SE Magnesium Technology Series LA English DT Proceedings Paper CT Symposium on Magnesium Technology held during TMS Annual Meeting and Exhibition CY MAR 11-15, 2012 CL Orlando, FL SP Minerals, Met & Mat Soc, Minerals, Met & Mat Soc, Light Met Div, Magnesium Comm, TMS ASM Phase Transformat Comm DE Magnesium; Steel; Friction stir welding; Ultrasonic welding ID ALLOY AB Friction stir welding and ultrasonic welding techniques were applied to join automotive magnesium alloys to steel sheet. The effect of tooling and process parameters on the post-weld microstructure, texture and mechanical properties was investigated. Static and dynamic loading were utilized to investigate the joint strength of both cast and wrought magnesium alloys including their susceptibility and degradation under corrosive media. The conditions required to produce joint strengths in excess of 75% of the base metal strength were determined, and the effects of surface coatings, tooling and weld parameters on weld properties are presented. C1 [Jana, Saumyadeep; Hovanski, Yuri; Pilli, Siva P.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Jana, S (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. RI Field, David/D-5216-2012 OI Field, David/0000-0001-9415-0795 NR 11 TC 0 Z9 0 U1 1 U2 4 PU JOHN WILEY & SONS PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER, W SUSSEX PO 19 8SQ, ENGLAND SN 1545-4150 BN 978-1-11829-121-4 J9 MAGNESIUM TECHNOLOGY PY 2012 BP 11 EP 16 PG 6 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA BHA22 UT WOS:000324801400003 ER PT S AU Pan, TY Santella, ML AF Pan, Tsung-Yu Santella, Michael L. BE Mathaudhu, SN Sillekens, WH Neelameggham, NR Hort, N TI CORROSION OF ULTRASONIC SPOT WELDED JOINTS OF MAGNESIUM TO STEEL SO MAGNESIUM TECHNOLOGY 2012 SE Magnesium Technology Series LA English DT Proceedings Paper CT Symposium on Magnesium Technology held during TMS Annual Meeting and Exhibition CY MAR 11-15, 2012 CL Orlando, FL SP Minerals, Met & Mat Soc, Minerals, Met & Mat Soc, Light Met Div, Magnesium Comm, TMS ASM Phase Transformat Comm DE Magnesium; Steel; Ultrasonic Spot Welding; Galvanic Corrosion; Automotive ID BEHAVIOR AB Mixed-metal joining, especially between magnesium and steel, is one of the critical technologies in achieving light-weighting vehicle body construction. However, galvanic corrosion between mixed metal joints is inevitable but not well quantified. In this study. 1.6 mm thick Mg AZ31B-H24 was joined to 0.8 mm thick hot-dipped galvanized (HDG) mild steel by ultrasonic spot welding in lap-shear configuration. No specific corrosion protection was applied in order to study worst-case conditions for corrosion behavior. The approach used an automotive cyclic corrosion test - Ford Arizona Proving Ground Equivalent Corrosion Cycle (APGE), which includes cycles of dipping in a salt bath, air drying, then holding in constant humidity environment. Lap-shear strength of the joints decreased linearly with the exposure cycles. All the joints were either taken out of test cycle for mechanical test or they separated within the humidity chamber before 25th cycle. X-ray diffraction analysis confirmed the formation of Mg(OH)(2) deposit in the crevice between the AZ31 and steel sheets and on the surface of the AZ31. The deposit grew thicker with cycles with exerting enough force to deform the AZ31 and HDG steel and causing a gradual opening of joints. The corrosion of the AZ31 was localized and non-uniform. The most severe corrosion occurred not at the intersection of AZ31 and the steel but rather 15-20 mm away from the spot welds. C1 [Pan, Tsung-Yu; Santella, Michael L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Pan, TY (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd,POB 2008, Oak Ridge, TN 37831 USA. NR 15 TC 0 Z9 0 U1 0 U2 4 PU JOHN WILEY & SONS PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER, W SUSSEX PO 19 8SQ, ENGLAND SN 1545-4150 BN 978-1-11829-121-4 J9 MAGNESIUM TECHNOLOGY PY 2012 BP 265 EP 269 PG 5 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA BHA22 UT WOS:000324801400049 ER PT S AU Barker, E Li, DS Sun, X Khaleel, M AF Barker, Erin Li, Dongsheng Sun, Xin Khaleel, Mohammad BE Mathaudhu, SN Sillekens, WH Neelameggham, NR Hort, N TI MICROSTRUCTURE MODELING OF MAGNESIUM ALLOYS FOR ENGINEERING PROPERTY PREDICTION SO MAGNESIUM TECHNOLOGY 2012 SE Magnesium Technology Series LA English DT Proceedings Paper CT Symposium on Magnesium Technology held during TMS Annual Meeting and Exhibition CY MAR 11-15, 2012 CL Orlando, FL SP Minerals, Met & Mat Soc, Minerals, Met & Mat Soc, Light Met Div, Magnesium Comm, TMS ASM Phase Transformat Comm DE Mg alloys; microstructure; porosity; casting ID DIE-CAST AM50; MG-ALLOY; TENSILE PROPERTIES; DUCTILITY; VARIABILITY; BEHAVIOR AB Magnesium alloys have found increasing application in the transportation industry due to their low weight and high strength. However, wider application is hindered by limited ductility. Microstructural features, such as porosity, brittle eutectics, and grain size, can significantly influence the macroscopic response of a component. These features can vary widely throughout a component. Our approach to studying the microstructures influence on bulk properties begins with measuring microstructural features in different regions of a component. These measurements are used to create statistically equivalent, 3D synthetic samples of the microstructure. The synthetic microstructures are meshed using finite elements and used to simulate the response and investigate the influence of specific features. We will demonstrate how the digital microstructure samples are generated, how variations in microstructural features influence the bulk properties, and how this methodology can be used to predict component performance and optimize processing. C1 [Barker, Erin; Li, Dongsheng; Sun, Xin; Khaleel, Mohammad] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Barker, E (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. OI khaleel, mohammad/0000-0001-7048-0749 NR 13 TC 0 Z9 0 U1 0 U2 0 PU JOHN WILEY & SONS PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER, W SUSSEX PO 19 8SQ, ENGLAND SN 1545-4150 BN 978-1-11829-121-4 J9 MAGNESIUM TECHNOLOGY PY 2012 BP 335 EP 337 PG 3 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA BHA22 UT WOS:000324801400061 ER PT S AU Bostedt, C Willey, TM Franco, N Terminello, LJ van Buuren, T AF Bostedt, C. Willey, T. M. Franco, N. Terminello, L. J. van Buuren, T. BE Lockwood, DJ Mascher, P TI Particle Size-Dependent Photoelectron Plasmon Loss Features In Deposited Germanium Nanocrystals SO NANOSCALE LUMINESCENT MATERIALS 2 SE ECS Transactions LA English DT Proceedings Paper CT 2nd International Symposium on Nanoscale Luminescent Materials as Part of the 221st Meeting of the Electrochemical-Society (ECS) CY MAY 06-11, 2012 CL Seattle, WA SP Electrochem Soc, Luminescence & Display Mat Div, Dielectr Sci & Technol Div ID ELECTRON-ENERGY; POROUS SILICON; SPECTROSCOPY; CLUSTERS; SPECTRA AB The plasmon loss features of deposited and well-characterized germanium nanocrystals with average sizes of 3.5 and 4.5 similar to nm, respectively, are investigated with photoelectron spectroscopy at the Ge similar to 3d core level. We observe a particle size dependence of the surface plasmon amplitude with respect to the bulk plasmon consistent with the changing surface-to-bulk atom ratio. Additionally, the nanocrystal surface plasmons are redshifted with respect to a bulk reference by up to 0.4 similar to eV for 3.5 similar to nm particles. For the bulk plasmons no significant size dependent energy shifts can be observed for nanoparticle sizes down to 3.5 similar to nm. C1 [Bostedt, C.] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA. RP Bostedt, C (reprint author), Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford, CA 94309 USA. NR 19 TC 0 Z9 0 U1 1 U2 3 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-315-5; 978-1-56677-957-9 J9 ECS TRANSACTIONS PY 2012 VL 45 IS 5 BP 139 EP 145 DI 10.1149/1.3700420 PG 7 WC Electrochemistry; Materials Science, Multidisciplinary SC Electrochemistry; Materials Science GA BHH30 UT WOS:000325408200017 ER PT S AU Merzari, E Fischer, P Pointer, WD Pellegrini, M Ninokata, H AF Merzari, Elia Fischer, Paul Pointer, W. David Pellegrini, Marco Ninokata, Hisashi GP ASME TI ON THE INTERACTION OF BOUNDARY LAYER AND MIXING LAYER IN STRATIFIED PIPE FLOW SO PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING, 2012, VOL 1, PTS A AND B, SYMPOSIA SE ASME Fluids Engineering Division Summer Meeting LA English DT Proceedings Paper CT ASME Fluids Engineering Division Summer Meeting (FEDSM) CY JUL 08-12, 2012 CL Rio Grande, PR SP ASME, Fluids Engn Div AB Stratified pipe flow in a pipe has been the subject of several investigations over the years. In fact it is relevant to the operation of thermal energy systems involving significant temperature gradients and low flow conditions. Stratification affects mixing, and is one the key phenomena that need to be addressed in the design of any mixing system of devices involving significant density difference. In order for thermal stratification in a pipe to be correctly modeled the underlying hydrodynamic behavior related to the mixing of two streams in a pipe needs to be fully understood. The present paper deals with the numerical simulation of the flow in a pipe where the bottom half has a lower velocity compared to the upper half. A turbulent mixing layer develops in the streamwise direction at the interface between low flow region and higher flow region. Since the Reynolds number is low, the boundary layer and the mixing layer are about the same size. This translates in non trivial interactions between the structures in the boundary layer and the mixing layer. The failure of RANS models in accounting for the mixing points in this direction. An LES of the flow in this geometry has been performed with the spectral code Nek5000. The averaged statistics have been compared with available experimental results. Proper Orthogonal Decomposition has been applied to clarify outstanding issues in RANS modeling. C1 [Merzari, Elia; Pointer, W. David] Argonne Natl Lab, Nucl Engn Div, Lemont, IL USA. RP Merzari, E (reprint author), Argonne Natl Lab, Nucl Engn Div, Lemont, IL USA. OI Pointer, W. David/0000-0003-0946-7937 NR 9 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA SN 1093-4928 BN 978-0-7918-4475-5 J9 ASME FLUID ENG DIV PY 2012 BP 767 EP 773 PG 7 WC Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA BGX48 UT WOS:000324506700087 ER PT S AU Merzari, E Fischer, P Pointer, WD AF Merzari, Elia Fischer, Paul Pointer, W. David GP ASME TI OPTIMAL DISTURBANCES IN THREE-DIMENSIONAL NATURAL CONVECTION FLOWS SO PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING, 2012, VOL 1, PTS A AND B, SYMPOSIA SE ASME Fluids Engineering Division Summer Meeting LA English DT Proceedings Paper CT ASME Fluids Engineering Division Summer Meeting (FEDSM) CY JUL 08-12, 2012 CL Rio Grande, PR SP ASME, Fluids Engn Div ID INSTABILITY AB Buoyancy-driven systems are subject to several types of flow instabilities. To evaluate the performance of such systems it is becoming increasingly crucial to be able to predict the stability of a given base flow configuration. Traditional Modal Linear stability Analysis requires the solution of very large eigenvalue systems for three-dimensional flows, which make this problem difficult to tackle. An alternative to modal Linear stability Analysis is the use of adjoint solvers [1] in combination with a power iteration [2]. Such methodology allows for the identification of an optimal disturbance or forcing and has been recently used to evaluate the stability of several isothermal flow systems [2]. In this paper we examine the extension of the methodology to non-isothermal flows driven by buoyancy. The contribution of buoyancy in the momentum equation is modeled through the Boussinesq approximation. The method is implemented in the spectral element code Nek5000. The test case is the flow is a two-dimensional cavity with differential heating and conductive walls and the natural circulation flow in a toroidal thermosiphon. C1 [Merzari, Elia; Pointer, W. David] Argonne Natl Lab, Nucl Engn Div, Lemont, IL USA. RP Merzari, E (reprint author), Argonne Natl Lab, Nucl Engn Div, Lemont, IL USA. OI Pointer, W. David/0000-0003-0946-7937 NR 11 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA SN 1093-4928 BN 978-0-7918-4475-5 J9 ASME FLUID ENG DIV PY 2012 BP 921 EP 928 PG 8 WC Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA BGX48 UT WOS:000324506700106 ER PT S AU Cleveland, M Apte, S Palmer, T AF Cleveland, Mathew Apte, Sourabh Palmer, Todd GP ASME TI TURBULENCE RADIATION INTERACTIONS IN A STATISTICALLY HOMOGENEOUS TURBULENCE WITH APPROXIMATED COAL TYPE PARTICULATE SO PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING, 2012, VOL 1, PTS A AND B, SYMPOSIA SE ASME Fluids Engineering Division Summer Meeting LA English DT Proceedings Paper CT ASME Fluids Engineering Division Summer Meeting (FEDSM) CY JUL 08-12, 2012 CL Rio Grande, PR SP ASME, Fluids Engn Div ID BINARY STOCHASTIC MEDIA; HEAT-TRANSFER; PARTICLE POLYDISPERSIONS; SIMULATION; COMBUSTION; TRANSPORT AB Turbulent radiation interaction (TRI) effects are associated with the differences in the time scales of the fluid dynamic equations and the radiative transfer equations. Solving on the fluid dynamic time step size produces large changes in the radiation field over the time step. We have modified the statistically homogeneous, non-premixed flame problem of Deshmukh et al. [1] to include coal-type particulate. The addition of low mass loadings of particulate minimally impacts the TRI effects. Observed differences in the TRI effects from variations in the packing fractions and Stokes numbers are difficult to analyze because of the significant effect of variations in problem initialization. The TRI effects are very sensitive to the initialization of the turbulence in the system. The TRI parameters are somewhat sensitive to the treatment of particulate temperature and the particulate optical thickness, and this effect is amplified by increased particulate loading. C1 [Cleveland, Mathew] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Cleveland, M (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM cleveland7@llnl.gov; sva@oregonstate.edu; palmerts@engr.oregonstate.edu NR 22 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA SN 1093-4928 BN 978-0-7918-4475-5 J9 ASME FLUID ENG DIV PY 2012 BP 1115 EP 1125 PG 11 WC Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA BGX48 UT WOS:000324506700128 ER PT S AU Rollin, B Andrews, MJ AF Rollin, Bertrand Andrews, Malcolm J. GP ASME TI SIMULATION OF THE TILTED RIG EXPERIMENT SO PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING, 2012, VOL 1, PTS A AND B, SYMPOSIA SE ASME Fluids Engineering Division Summer Meeting LA English DT Proceedings Paper CT ASME Fluids Engineering Division Summer Meeting (FEDSM) CY JUL 08-12, 2012 CL Rio Grande, PR SP ASME, Fluids Engn Div AB The tilted rig experiment is a derivative of the rocket rig experiment designed to study mixing of fluids by the Rayleigh-Taylor instability. In the latter experiment, a tank containing two fluids of different densities is accelerated downwards between two parallel guide rods by a rocket motor. Misalignment between density and pressure gradients trigger the instability leading turbulence and mixing of the fluids. In the tilted rig experiment, the rocket rig is inclined by few degrees off the vertical before firing, creating a slanted initial perturbation interface. The purpose of the tilted rig experiment was to help with calibration of mixing models, as it is a unique two-dimensional Rayleigh-Taylor instability flow. We reproduce conditions similar to this experiment using a Monotone Integrated Large Eddy Simulation (MILES) technique, and for the first time look at statistics of turbulence quantities that appears in "RANS-type" variable density turbulence model. Our statistics show that for the most part, the turbulence quantities in this two-dimensional Rayleigh-Taylor instability configuration behave in a similar fashion as in the planar Rayleigh-Taylor instability configuration when looking in a direction perpendicular to the mixing layer centerline. C1 [Rollin, Bertrand; Andrews, Malcolm J.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Rollin, B (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. NR 11 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA SN 1093-4928 BN 978-0-7918-4475-5 J9 ASME FLUID ENG DIV PY 2012 BP 1159 EP 1166 PG 8 WC Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA BGX48 UT WOS:000324506700133 ER PT S AU Escobar, J Celik, I Ferguson, D AF Escobar, Jose Celik, Ismail Ferguson, Donald GP ASME TI DEVELOPMENT OF A LOG-TIME INTEGRATION METHOD FOR REACTIVE FLOWS SO PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING, 2012, VOL 1, PTS A AND B, SYMPOSIA SE ASME Fluids Engineering Division Summer Meeting LA English DT Proceedings Paper CT ASME Fluids Engineering Division Summer Meeting (FEDSM) CY JUL 08-12, 2012 CL Rio Grande, PR SP ASME, Fluids Engn Div ID REDUCED MECHANISMS; COMBUSTION AB In reactive flow simulations integration of the stiff species transport equations consumes most of the computational time. Another important aspect of combustion simulation is the need to simulate at least tens of species in order to accurately predict emissions and the related combustion dynamics. Small time scales and systems with tens of species lead to very high computational costs. Classic integration methods such as Euler method are restricted by the smallest characteristic time scale, and explicit Runge-Kutta methods require intermediate predictor corrector steps which make the problem computationally expensive. On the other hand, implicit methods are also computationally expensive due the calculation of the Jacobian. This work presents a strategy to significantly reduce computational time for integration of species transport equations using a new explicit integration scheme called Log-Time Integration Method (LTIM). LTIM is fairly robust and can compete with methods such as the 5th order Runge-Kutta method. Results showed that LTIM applied to the solution of a zero dimensional reactive system which consists of 4 chemical species obtains the solution around 4 times faster than 5th order Runge-Kutta method. LTIM was also applied to the solution of a one dimensional methane-air flame. The chemical reactions were modeled using a reduced chemical mechanism ARM9 that consists of 9 chemical species and 5 global reactions. The solution was carried out for 9 species transport equations along with the energy equation. Governing equations were decoupled into flow and chemical parts and were solved separately using a split formulation. Thermodynamic properties were obtained using NASA format polynomials and transport properties using kinetic-theory formulation. It is shown that the new one dimensional flame code is able to calculate the adiabatic flame temperature of the system and corresponding flame speed for the methane-air flame thus validating its robustness and accuracy. C1 [Escobar, Jose; Celik, Ismail; Ferguson, Donald] US DOE, Natl Energy Technol Lab, Morgantown, WV USA. RP Escobar, J (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV USA. NR 9 TC 0 Z9 0 U1 1 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA SN 1093-4928 BN 978-0-7918-4475-5 J9 ASME FLUID ENG DIV PY 2012 BP 1253 EP 1258 PG 6 WC Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA BGX48 UT WOS:000324506700144 ER PT B AU Hallett, KC AF Hallett, Kathleen C. GP ASME TI ENERGY INTENSITY OF WATER: LITERATURE SUGGESTS INCREASING INTEREST DESPITE LIMITED AND INCONSISTENT DATA SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 1 LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn DE water; wastewater treatment; energy use; energy intensity; energy data AB Water agencies use energy to pump, treat, and distribute potable water. Wastewater treatment plants use energy to collect, treat, and discharge wastewater. The energy intensity of water-the energy embedded in a unit of water delivered-varies considerably depending on the water source, the location and size of the agency's service area, and the treatment technology employed. The frequency at which agencies collect energy use data also varies, as does the degree to which those data are available. Available estimates of the energy intensity of water also vary greatly. There is a growing recognition within the water and energy communities that new water supplies will likely be increasingly energy intensive and that water conservation efforts will thus result in energy savings. As a result, there is increasing interest in understanding baseline energy use, projected energy use, and opportunities for reducing energy consumption by water and wastewater agencies. The collection of additional, more consistent and more granular data is essential to gaining this understanding." C1 Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO 80401 USA. RP Hallett, KC (reprint author), Natl Renewable Energy Lab, Strateg Energy Anal Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM kc.hallett@nrel.gov NR 34 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5487-7 PY 2012 BP 409 EP 419 PG 11 WC Engineering, Aerospace; Energy & Fuels; Engineering, Mechanical SC Engineering; Energy & Fuels GA BHD13 UT WOS:000325040500044 ER PT B AU Vorum, M AF Vorum, Martin GP ASME TI AN ENERGY APPETITE OF US WATER SYSTEMS HOW MUCH ENERGY DOES IT TAKE TO SUPPLY OUR WATER? SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 1 LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn DE Water Energy Nexus; Energy Demand Model; National Water Supplies; Local Water Supplies; Water Cycle; Scalable Energy Model; Integrated Energy Model; USGS Data AB This paper reports a new method to estimate energy used in water supply and return phases of the water cycle. An example is a composite case for energy used in water systems of the United States (U.S.) using data from the U.S. Geological Survey (USGS). The new method is innovatively simple: it avoids complexities of data-intensive, bottom-up models, often used to map water networks. This method helps to prioritize how to improve energy efficiency in water systems. The method uses a top-down approach requiring limited system data, and relying on a transparent computation of energy. The method applies to standalone or composite systems. It applies to small-scale, single-user systems, to large water supply/return networks, or to summations of data for classes of systems whether simple or complex, and whether interconnected or not. The reported example shows transport could account for about 95 percent of U.S. water systems' energy use. Energy use for transport among different water- sectors ranged from roughly 80 percent to nearly 100 percent of total sectoral energy demand. Contrasting that generalization, specific data for standalone systems would show when energy demand depends, for example, more on treatment needed to meet quality standards. C1 Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO 80401 USA. RP Vorum, M (reprint author), Natl Renewable Energy Lab, Strateg Energy Anal Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. EM martin.vorum@nrel.gov NR 10 TC 0 Z9 0 U1 1 U2 5 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5487-7 PY 2012 BP 633 EP 643 PG 11 WC Engineering, Aerospace; Energy & Fuels; Engineering, Mechanical SC Engineering; Energy & Fuels GA BHD13 UT WOS:000325040500069 ER PT B AU Harvego, EA McKellar, MG AF Harvego, Edwin A. McKellar, Michael G. GP ASME TI OPTIMIZATION AND COMPARISON OF DIRECT AND INDIRECT SUPERCRITICAL CARBON DIOXIDE POWER PLANT CYCLES FOR NUCLEAR APPLICATIONS SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn AB Results of analyses performed using the UniSim process analyses software to evaluate the performance of both a direct and indirect supercritical CO2 Brayton power plant cycle with recompression at different reactor outlet temperatures are presented. The direct supercritical CO2 power plant cycle transferred heat directly from a 600 MWt reactor to the supercritical CO2 working fluid supplied to the turbine generator at approximately 20 MPa. The indirect supercritical CO2 cycle assumed a helium-cooled Very High Temperature Reactor (VHTR), operating at a primary system pressure of approximately 7.0 MPa, delivered heat through an intermediate heat exchanger to the secondary indirect supercritical CO2 recompression Brayton cycle, again operating at a pressure of about 20 MPa. For both the direct and indirect power plant cycles, sensitivity calculations were performed for reactor outlet temperature between 550 degrees C and 850 degrees C. The UniSim models used realistic component parameters and operating conditions to model the complete reactor and power conversion systems. CO2 properties were evaluated, and the operating ranges of the cycles were adjusted to take advantage of the rapidly changing properties of CO2 near the critical point. The results of the analyses showed that, for the direct supercritical CO2 power plant cycle, thermal efficiencies in the range of approximately 40 to 50% can be achieved over the reactor coolant outlet temperature range of 550 degrees C to 850 degrees C. For the indirect supercritical CO2 power plant cycle, thermal efficiencies were approximately 11 - 13% lower than those obtained for the direct cycle over the same reactor outlet temperature range. C1 [Harvego, Edwin A.; McKellar, Michael G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Harvego, EA (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 12 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5490-7 PY 2012 BP 75 EP 81 PG 7 WC Thermodynamics; Engineering, Mechanical; Nanoscience & Nanotechnology SC Thermodynamics; Engineering; Science & Technology - Other Topics GA BHC53 UT WOS:000324959300010 ER PT B AU Sabau, AS Yin, HB Pawel, SJ Gruszkiewicz, M McFarlane, J Conklin, JC Qualls, LA AF Sabau, Adrian S. Yin, Hebi Pawel, Steven J. Gruszkiewicz, Miroslaw McFarlane, Joanna Conklin, James C. Qualls, Lou A. GP ASME TI MIXTURES OF CO2-SF6 AS WORKING FLUIDS FOR GEOTHERMAL PLANTS SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID ORGANIC RANKINE-CYCLE; ATMOSPHERIC LIFETIMES; POWER-GENERATION; CO2-H2O SYSTEM; WASTE HEAT; TEMPERATURE; STATE; CARBON; MPA; EQUILIBRIA AB In this paper, mixtures of CO2 and SF6 were evaluated as working fluids for geothermal plants based on property measurements, molecular dynamics modeling, thermodynamic cycle analysis, and materials compatibility assessment. The CO2 - SF6 was evaluated for a reservoir temperature of 160 degrees C. Increasing the efficiency for these low reservoir sources will increase the options available for geothermal energy utilization in more sites across the country. The properties for the mixtures were obtained either from thermodynamic property measurements and molecular dynamics simulations. Optimum compositions of the CO2 - SF6 were identified for a well reservoir temperature and a given water-cooling condition. Concerning the global warming potential, it was estimated that the equivalent CO2 emissions per 1kWh for a Rankine cycle operating with 100% SF6 would be approximately of 7.6% than those for a coal-fired power plant. C1 [Sabau, Adrian S.; Yin, Hebi; Pawel, Steven J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Sabau, AS (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Gruszkiewicz, Miroslaw/L-2389-2016 OI Gruszkiewicz, Miroslaw/0000-0002-6551-6724 NR 37 TC 0 Z9 0 U1 0 U2 5 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5490-7 PY 2012 BP 227 EP 235 PG 9 WC Thermodynamics; Engineering, Mechanical; Nanoscience & Nanotechnology SC Thermodynamics; Engineering; Science & Technology - Other Topics GA BHC53 UT WOS:000324959300027 ER PT B AU McKellar, MG Wood, RA Stoots, CM Mulloth, L Luna, B AF McKellar, Michael G. Wood, Rick A. Stoots, Carl M. Mulloth, Lila Luna, Bernadette GP ASME TI THE MATHEMATICAL ANALYSIS OF A NOVEL APPROACH TO MAXIMIZE WASTE RECOVERY IN A LIFE SUPPORT SYSTEM SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn AB NASA has been evaluating closed-loop atmosphere revitalization architectures that include carbon dioxide (CO2) reduction technologies. The CO2 and steam (H2O) co-electrolysis process is one of the reduction options that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide (CO) and hydrogen (H-2) mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. Two process models were developed to evaluate novel approaches for energy storage and resource recovery in a life support system. In the first model, products from the INL co-electrolysis process are combined to produce methanol fuel. In the second co-electrolysis, products are separated with a pressure swing adsorption (PSA) process. In both models the fuels are burned with added oxygen to produce H2O and CO2, the original reactants. For both processes, the overall power increases as the syngas ratio, H-2/CO, increases because more water is needed to produce more hydrogen at a set CO2 incoming flow rate. The power for the methanol cases is less than pressure swing adsorption, PSA, because heat is available from the methanol reactor to preheat the water and carbon dioxide entering the co-electrolysis process. C1 [McKellar, Michael G.; Wood, Rick A.; Stoots, Carl M.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP McKellar, MG (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 7 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5490-7 PY 2012 BP 335 EP 342 PG 8 WC Thermodynamics; Engineering, Mechanical; Nanoscience & Nanotechnology SC Thermodynamics; Engineering; Science & Technology - Other Topics GA BHC53 UT WOS:000324959300038 ER PT B AU Grauer, DK Reed, ME AF Grauer, Diana K. Reed, Michael E. GP ASME TI ELECTRICAL POWER GRID DELIVERY DYNAMIC ANALYSIS: USING PRIME MOVER ENGINES TO BALANCE DYNAMIC WIND TURBINE OUTPUT SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn AB This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy. C1 [Grauer, Diana K.; Reed, Michael E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Grauer, DK (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 13 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5490-7 PY 2012 BP 413 EP 419 PG 7 WC Thermodynamics; Engineering, Mechanical; Nanoscience & Nanotechnology SC Thermodynamics; Engineering; Science & Technology - Other Topics GA BHC53 UT WOS:000324959300046 ER PT B AU Liese, E AF Liese, Eric GP ASME TI MODELING OF A STEAM TURBINE INCLUDING PARTIAL ARC ADMISSION FOR USE IN A PROCESS SIMULATION SOFTWARE ENVIRONMENT SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn AB A dynamic process model of a steam turbine, including partial arc admission operation, is presented. Models were made for the first stage and last stage, with the middle stages presently assumed to have a constant pressure ratio and efficiency. A condenser model is also presented. The paper discusses the function and importance of the steam turbines entrance design and the first stage. The results for steam turbines with a partial arc entrance are shown, and compare well with experimental data available in the literature, in particular, the "valve loop" behavior as the steam flow rate is reduced. This is important to model correctly since it significantly influences the downstream state variables of the steam, and thus the characteristic of the entire steam turbine, e.g., state conditions at extractions, overall turbine flow, and condenser behavior. The importance of the last stage (the stage just upstream of the condenser) in determining the overall flowrate and exhaust conditions to the condenser is described and shown via results. C1 US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Liese, E (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd,POB 880, Morgantown, WV 26507 USA. EM eric.liese@netl.doe.gov NR 10 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5490-7 PY 2012 BP 429 EP 437 PG 9 WC Thermodynamics; Engineering, Mechanical; Nanoscience & Nanotechnology SC Thermodynamics; Engineering; Science & Technology - Other Topics GA BHC53 UT WOS:000324959300048 ER PT B AU O'Brien, JE O'Brien, RC Zhang, X Tao, GG Butler, BJ AF O'Brien, J. E. O'Brien, R. C. Zhang, X. Tao, G. G. Butler, B. J. GP ASME TI LONG-TERM PERFORMANCE OF SOLID OXIDE STACKS WITH ELECTRODE-SUPPORTED CELLS OPERATING IN THE STEAM ELECTROLYSIS MODE SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID HYDROGEN-PRODUCTION; NUCLEAR PRODUCTION; DEGRADATION; ENERGY AB Performance characterization and durability testing have been completed on two five-cell high-temperature electrolysis stacks constructed with advanced cell and stack technologies. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. The per-cell active area is 100 cm(2). The stack is internally manifolded with compliant seals. Treated metallic interconnects with integral flow channels separate the cells and electrode gases. Stack compression is accomplished by means of a custom spring-loaded test fixture. Initial stack performance characterization was determined through a series of DC potential sweeps in both fuel cell and electrolysis modes of operation. Results of these sweeps indicated very good initial performance, with area-specific resistance values less than 0.5 Omega.cm(2). Long-term durability testing was performed with a test duration of 1000 hours. Overall performance degradation was less than 10% over the 1000-hour period. Final stack performance characterization was again determined by a series of DC potential sweeps at the same flow conditions as the initial sweeps in both electrolysis and fuel cell modes of operation. A final sweep in the fuel cell mode indicated a power density of 0.356 W/cm(2), with average per-cell voltage of 0.71 Vat a current of 50 A. C1 [O'Brien, J. E.; Zhang, X.] Idaho Natl Lab, Idaho Falls, ID 83401 USA. RP O'Brien, JE (reprint author), Idaho Natl Lab, Idaho Falls, ID 83401 USA. RI O'Brien, Robert/C-3355-2017 OI O'Brien, Robert/0000-0002-7479-6764 NR 21 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5490-7 PY 2012 BP 495 EP 503 PG 9 WC Thermodynamics; Engineering, Mechanical; Nanoscience & Nanotechnology SC Thermodynamics; Engineering; Science & Technology - Other Topics GA BHC53 UT WOS:000324959300056 ER PT B AU Hawkes, GL O'Brien, JE Tao, GG AF Hawkes, Grant L. O'Brien, James E. Tao, Greg G. GP ASME TI 3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID HIGH-TEMPERATURE ELECTROLYSIS; HYDROGEN-PRODUCTION; NUCLEAR-ENERGY AB A three-dimensional computational fluid dynamics (CFD) and electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated experimentally at the Idaho National Laboratory (INL) for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation are numerically solved by means of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Results will be presented for a five-cell stack configuration that simulates the geometry of five-cell stack tests performed at the INL and at Materials and System Research, Inc. (MSRI). Results will also be presented for a single cell that simulates conditions in the middle of a large stack. Flow enters the stack from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down "U" shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein. C1 [Hawkes, Grant L.; O'Brien, James E.] Idaho Natl Lab, Idaho Falls, ID 83401 USA. RP Hawkes, GL (reprint author), Idaho Natl Lab, Idaho Falls, ID 83401 USA. NR 6 TC 0 Z9 0 U1 2 U2 7 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5490-7 PY 2012 BP 505 EP 512 PG 8 WC Thermodynamics; Engineering, Mechanical; Nanoscience & Nanotechnology SC Thermodynamics; Engineering; Science & Technology - Other Topics GA BHC53 UT WOS:000324959300057 ER PT B AU O'Brien, RC O'Brien, JE Stoots, CM Zhang, X Farmer, SC Cable, TL Setlock, JA AF O'Brien, R. C. O'Brien, J. E. Stoots, C. M. Zhang, X. Farmer, S. C. Cable, T. L. Setlock, J. A. GP ASME TI TESTING AND PERFORMANCE ANALYSIS OF NASA 5 CM BY 5 CM BI-SUPPORTED SOLID OXIDE ELECTROLYSIS CELLS OPERATED IN BOTH FUEL CELL AND STEAM ELECTROLYSIS MODES SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID HYDROGEN-PRODUCTION; NUCLEAR PRODUCTION; DEGRADATION; ENERGY AB A series of 5 cm by 5 cm bi-supported Solid Oxide Electrolysis Cells (SOEC) were produced by NASA for the Idaho National Laboratory (INL) and tested under the INL High Temperature Steam Electrolysis program. The results from the experimental demonstration of cell operation for both hydrogen production and operation as fuel cells is presented. An overview of the cell technology, test apparatus and performance analysis is also provided. C1 [O'Brien, R. C.] INL, Ctr Space Nucl Res, Idaho Falls, ID USA. RP O'Brien, RC (reprint author), INL, Ctr Space Nucl Res, Idaho Falls, ID USA. RI O'Brien, Robert/C-3355-2017 OI O'Brien, Robert/0000-0002-7479-6764 NR 23 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5490-7 PY 2012 BP 513 EP 521 PG 9 WC Thermodynamics; Engineering, Mechanical; Nanoscience & Nanotechnology SC Thermodynamics; Engineering; Science & Technology - Other Topics GA BHC53 UT WOS:000324959300058 ER PT B AU Diakov, V Ruth, M Goldsby, ME Sa, TJ AF Diakov, Victor Ruth, Mark Goldsby, Michael E. Sa, Timothy J. GP ASME TI MACRO-SYSTEM MODEL FOR HYDROGEN ENERGY SYSTEMS ANALYSIS IN TRANSPORTATION SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn AB The introduction of hydrogen as an energy carrier for light-duty vehicles involves concomitant technological development of an array of infrastructure elements, such as production, delivery, and dispensing, all associated with energy consumption and emission levels. To analyze these at a system level, the suite of corresponding models developed by the United States Department of Energy and involving several national laboratories is combined in one macro-system model (MSM). The MSM uses a federated simulation framework for consistent data transfer between the component models. The framework is built to suit cross-model as well as cross-platform data exchange and involves features of "over-the-net" computation. While the MSM can address numerous hydrogen systems analysis aspects, of particular interest is the optimal deployment scenario. Depending on user-defined geographic location and hydrogen demand curve parameters, the cost-optimal succession of production/delivery/dispensing pathways undergo significant changes (the most important of these being the transition between distributed and central H-2 production with delivery). Some 'tipping' (break-even) points are identified. C1 [Diakov, Victor; Ruth, Mark] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Diakov, V (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. NR 10 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5490-7 PY 2012 BP 539 EP 546 PG 8 WC Thermodynamics; Engineering, Mechanical; Nanoscience & Nanotechnology SC Thermodynamics; Engineering; Science & Technology - Other Topics GA BHC53 UT WOS:000324959300061 ER PT B AU Recknagle, KP Ryan, EM Khaleel, MA AF Recknagle, Kurtis P. Ryan, Emily M. Khaleel, Moe A. GP ASME TI NUMERICAL MODELING OF THE DISTRIBUTED ELECTROCHEMISTRY AND PERFORMANCE OF SOLID OXIDE FUELS CELLS SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID GAS-TRANSPORT; ANODE; CATHODE; SOFCS AB A cell-level distributed electrochemistry (DEC) modeling tool has been developed to enable predicting trends in solid oxide fuel cell performance by considering the coupled and spatially varying multi-physics that occur within the tri-layer. The approach calculates the distributed electrochemistry within the electrodes, which includes the charge transfer and electric potential fields, ion transport throughout the tri-layer, and gas distributions within the composite and porous electrodes. The thickness of the electrochemically active regions within the electrodes is calculated along with the distributions of charge transfer. The DEC modeling tool can examine the overall SOFC performance based on electrode microstructural parameters, such as particle size, pore size, porosity, electrolyte- and electrode-phase volume fractions, and triple-phase-boundary length. Recent developments in electrode fabrication methods have lead to increased interest in using graded and nanostructured electrodes to improve the electrochemical performance of SOFCs. This paper demonstrates how the DEC modeling tool can be used to help design novel electrode microstructures by optimizing a graded anode for high electrochemical performance. C1 [Recknagle, Kurtis P.; Khaleel, Moe A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Recknagle, KP (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 23 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5490-7 PY 2012 BP 571 EP 580 PG 10 WC Thermodynamics; Engineering, Mechanical; Nanoscience & Nanotechnology SC Thermodynamics; Engineering; Science & Technology - Other Topics GA BHC53 UT WOS:000324959300065 ER PT B AU Zhang, X O'Brien, JE O'Brien, RC Petigny, N AF Zhang, X. O'Brien, J. E. O'Brien, R. C. Petigny, N. GP ASME TI Performance Assessment of Single Electrode-Supported Solid Oxide Cells Operating in the Steam Electrolysis Mode SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID HYDROGEN-PRODUCTION; STACKS AB An experimental study has been conducted to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. Results presented in this paper were obtained from single cells, with an active area of 16 cm(2) per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes (similar to 10 mu m thick), nickel-YSZ steam/hydrogen electrodes (similar to 1400 mu m thick), and modified LSM or LSCF air-side electrodes (similar to 90 mu m thick). The purpose of the present study is to document and compare the performance and degradation rates of these cells in the fuel cell mode and in the electrolysis mode under various operating conditions. Initial performance was documented through a series of voltage-current (VI) sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-term testing, first in the fuel cell mode, then in the electrolysis mode. Results generally indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of an improved single-cell test apparatus developed specifically for these experiments. C1 [Zhang, X.; O'Brien, J. E.; O'Brien, R. C.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Zhang, X (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM Xiaoyu.Zhang@inl.gov; James.OBrien@inl.gov; Robert.OBrien@inl.gov; Nathalie.Petigny@saint-gobain.com NR 12 TC 0 Z9 0 U1 2 U2 4 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5490-7 PY 2012 BP 599 EP 604 PG 6 WC Thermodynamics; Engineering, Mechanical; Nanoscience & Nanotechnology SC Thermodynamics; Engineering; Science & Technology - Other Topics GA BHC53 UT WOS:000324959300069 ER PT B AU Hawkes, GL O'Brien, JE McKellar, MG AF Hawkes, G. L. O'Brien, J. E. McKellar, M. G. GP ASME TI LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID HYDROGEN-PRODUCTION; NUCLEAR-ENERGY AB Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition froni HTSE. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. lNL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. C1 [Hawkes, G. L.; O'Brien, J. E.; McKellar, M. G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Hawkes, GL (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 24 TC 0 Z9 0 U1 1 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5490-7 PY 2012 BP 747 EP 756 PG 10 WC Thermodynamics; Engineering, Mechanical; Nanoscience & Nanotechnology SC Thermodynamics; Engineering; Science & Technology - Other Topics GA BHC53 UT WOS:000324959300085 ER PT B AU Ridouane, E Bianchi, MVA AF Ridouane, El Hassan Bianchi, Marcus V. A. GP ASME TI THREE-DIMENSIONAL NUMERICAL EVALUATION OF THERMAL PERFORMANCE OF UNINSULATED WALL ASSEMBLIES SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID NATURAL-CONVECTION; SQUARE ENCLOSURE; HEAT-TRANSFER; FACADE ELEMENTS; RADIATION; CAVITIES; LAMINAR AB Uninsulated wall assemblies are typical in older homes, as many were built before building codes required insulation. Building engineers need to understand the thermal performance of these assemblies as they consider home energy upgrades if they are to properly predict pre-upgrade performance and, consequently, prospective energy savings from the upgrade. Most whole-building energy simulation tools currently use simplified, 1D characterizations of building envelopes and assume a fixed thermal resistance that does not vary over a building's temperature range. This study describes a detailed 3D computational fluid dynamics model that evaluates the thermal performance of uninsulated wall assemblies. It accounts for conduction through framing, convection, and radiation and allows for material property variations with temperature. Parameters that were varied include ambient outdoor temperature and cavity surface emissivity. The results may serve as input for building energy simulation tools that model the temperature-dependent energy performance of homes with uninsulated walls. C1 [Ridouane, El Hassan; Bianchi, Marcus V. A.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Ridouane, E (reprint author), Natl Renewable Energy Lab, 1617 Cole Blvd, Golden, CO 80401 USA. EM elhassan.ridouane@nrel.gov; marcus.bianchi@nrel.gov NR 24 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5490-7 PY 2012 BP 865 EP 872 PG 8 WC Thermodynamics; Engineering, Mechanical; Nanoscience & Nanotechnology SC Thermodynamics; Engineering; Science & Technology - Other Topics GA BHC53 UT WOS:000324959300100 ER PT B AU McKellar, MG AF McKellar, Michael G. GP ASME TI THE INTEGRATION OF PROCESS HEAT APPICATIONS TO HIGH TEMPERATURE GAS REACTORS SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn AB A high temperature gas reactor, HTGR, can produce industrial process steam, high-temperature heat-transfer gases, and/or electricity. In conventional industrial processes, these products are generated by the combustion of fossil fuels such as coal and natural gas, resulting in significant emissions of greenhouse gases such as carbon dioxide. Heat or electricity produced in an HTGR could be used to supply process heat or electricity to conventional processes without generating any greenhouse gases. Process heat from a reactor needs to be transported by a gas to the industrial process. Two such gases were considered in this study: helium and steam. For this analysis, it was assumed that steam was delivered at 17 MPa and 540 degrees C and helium was delivered at 7 MPa and at a variety of temperatures. The temperature of the gas returning from the industrial process and going to the HTGR must be within certain temperature ranges to maintain the correct reactor inlet temperature for a particular reactor outlet temperature. The returning gas may be below the reactor inlet temperature, ROT, but not above. The optimal return temperature produces the maximum process heat gas flow rate. For steam, the delivered pressure sets an optimal reactor outlet temperature based on the condensation temperature of the steam. ROTs greater than 769.7 degrees C produce no additional advantage for the production of steam. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP McKellar, MG (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 8 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5490-7 PY 2012 BP 1011 EP 1015 PG 5 WC Thermodynamics; Engineering, Mechanical; Nanoscience & Nanotechnology SC Thermodynamics; Engineering; Science & Technology - Other Topics GA BHC53 UT WOS:000324959300116 ER PT B AU Diakov, V Short, W AF Diakov, Victor Short, Walter GP ASME TI The value of geographic diversity of wind and solar - a vector analysis SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID ENERGY; POWER AB The variability of wind and solar is perceived as a major obstacle in employing otherwise abundant renewable energy resources. Based on the available geographically dispersed data for the WECC U.S. area (excluding Alaska) and eastern U.S., we analyze to what extent the geographic diversity of these resources can offset their variability. It is common to discern baseload (i.e. constantly employed cheaper power generation, as from nuclear and coal plants) from more expensive dispatchable power sources which help meet variable electric load. The spot electricity price depends on the difference between the load and baseload. With significant amounts of power coming from wind and solar, we use generation with low variable cost (GLVC) to include baseload and wind/solar generation. The GLVC will then become variable as well. The electricity price, however, will be determined by the difference between load and GLVC. While the details of future electricity spot-pricing are harder to predict, the overall trend will remain: a higher hourly difference between load and the low-variable-cost generation increases the electricity price. This difference can serve as an approximate measure of the (hourly) revenue from producing electricity. Currently, the variable load follows fairly well defined daily and weekly load cycles. Significant amount of wind-produced power will inevitably alter the cyclic nature for the variable load time-dependence. Additionally, wind and solar farms generation profiles may be expected to poorly correlate with the variable load. C1 [Diakov, Victor; Short, Walter] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Diakov, V (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. NR 16 TC 0 Z9 0 U1 1 U2 5 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5490-7 PY 2012 BP 1093 EP 1100 PG 8 WC Thermodynamics; Engineering, Mechanical; Nanoscience & Nanotechnology SC Thermodynamics; Engineering; Science & Technology - Other Topics GA BHC53 UT WOS:000324959300125 ER PT B AU Short, W Diakov, V AF Short, Walter Diakov, Victor GP ASME TI Renewable energy load matching for continental US SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID WIND ENERGY; POWER AB The variability of wind and solar energy technologies is perceived as a major obstacle to employing otherwise abundant renewable energy resources. Based on the available geographically dispersed data for the continental U.S. (excluding Alaska), we analyze to what extent the geographic diversity of these resources can offset their variability. We determine the best match to loads that can be achieved with wind power and photovoltaics with no transmission limitations. Without storage, wind and PV can meet up to 50% of loads in Western US. It is beneficial to build more wind than PV mostly because the wind contributes at night. When storage is available, the optimal mix has almost 75% as much nominal PV capacity as wind, with the PV energy contribution being 32% of the electricity produced from wind. With only 40 GW of storage (twice the pumped hydro storage capacity that already exists in the continental US), up to 82% of the load can be matched with wind and PV, while at the same time curtailing less than 10% of the renewable energy throughout the year. C1 [Short, Walter; Diakov, Victor] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Short, W (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. NR 16 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5490-7 PY 2012 BP 1179 EP 1185 PG 7 WC Thermodynamics; Engineering, Mechanical; Nanoscience & Nanotechnology SC Thermodynamics; Engineering; Science & Technology - Other Topics GA BHC53 UT WOS:000324959300136 ER PT B AU Brown, AL Dodd, AB Pickett, BM AF Brown, Alexander L. Dodd, Amanda B. Pickett, Brent M. GP ASME TI INTERMEDIATE SCALE COMPOSITE MATERIAL FIRE TESTING SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn AB Composite materials are increasingly being used in aviation applications. As the quantity of composite material increases, there is a corresponding need to develop a better understanding of composite material response in fire environments. We have recently developed a program to examine this problem experimentally and computationally. Although Sandia National Laboratories and Air Force Research Laboratories at Tyndall have slightly different focuses, we are collaborating to focus on understanding duration, intensity, and the underlying physics during composite fires, as well as the technology and procedures to safely manage composite fire events. In the past year, we have been performing both small and intermediate scale testing to understand the behavior of composite materials used in aviation applications. The current focus is on a set of intermediate scale tests to generate data useful for understanding the behavior of carbon fiber epoxy composites in adverse thermal environments. A series of tests has been performed in a 90 cm cubic enclosure with 25-40 kg of composite materials to generate a severe fire environment fueled mostly by the composites. Preliminary results of these tests will be reported to provide data on the severity of the environment in terms of thermal intensity, duration, and chemical products. C1 [Brown, Alexander L.] Sandia Natl Labs, Fire & Aerosol Sci Dept, Albuquerque, NM 87185 USA. RP Brown, AL (reprint author), Sandia Natl Labs, Fire & Aerosol Sci Dept, POB 5800, Albuquerque, NM 87185 USA. EM albrown@sandia.gov; ajbarra@sandia.gov; brent.pickett@tyndall.af.mil NR 1 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5490-7 PY 2012 BP 1281 EP 1282 PG 2 WC Thermodynamics; Engineering, Mechanical; Nanoscience & Nanotechnology SC Thermodynamics; Engineering; Science & Technology - Other Topics GA BHC53 UT WOS:000324959300147 ER PT B AU Brown, AL Mowry, CD Mowry, CD AF Brown, Alexander L. Mowry, Curtis D. Mowry, Curtis D. GP ASME TI BENCH-SCALE PYROLYSIS OF WOOD PELLETS SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn AB Past work has demonstrated the feasibility of pyrolyzing biomass and condensing the resulting vapor to form a low quality combustible liquid. The product, often termed pyrolysis oil, bio-oil, or bio-crude, can be refined to a transportation grade fuel. Because the pyrolysis process is comparatively simple, we speculate that a mobile pyrolysis system might be able to process the biomass at the site of harvest, generating a dense liquid for transportation. This would be expected to result in improved transportation economics compared to transporting the raw biomass fuel. This technology is being considered for northern New Mexico forests that are presently managed by periodic thinning efforts with little utilization of the products. We have designed a bench-scale system and pyrolyzed biomass pellets, which function in these tests as surrogate material for the forest trimmings. The system features controllable furnace temperatures, augur feed, gas recirculation, and multi-stage condensation. We have analyzed gases, chars, and liquids resulting from various operating conditions and report product quantities and qualities through various standard chemical methods. Good liquid mass yields of over 50% of the original material are typically found, with varying product quality and quantity depending on the operating temperature. Our results suggest the current configuration gives better yields and functions more optimally at pyrolysis temperatures around 525 degrees C. For a practical system, combustion of the non-condensable fuel gases may be able to replace the electrically heated furnace used in these tests. C1 [Brown, Alexander L.] Sandia Natl Labs, Fire & Aerosol Sci Dept, Albuquerque, NM 87185 USA. RP Brown, AL (reprint author), Sandia Natl Labs, Fire & Aerosol Sci Dept, POB 5800, Albuquerque, NM 87185 USA. EM albrown@sandia.gov; cdmowry@sandia.gov; cdmowry@sandia.gov NR 9 TC 0 Z9 0 U1 1 U2 5 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5490-7 PY 2012 BP 1379 EP 1388 PG 10 WC Thermodynamics; Engineering, Mechanical; Nanoscience & Nanotechnology SC Thermodynamics; Engineering; Science & Technology - Other Topics GA BHC53 UT WOS:000324959300159 ER PT B AU Height, JL Donaldson, BA Gill, W Parigger, CG AF Height, Jonathan L. Donaldson, Burl A. Gill, Walter Parigger, Christian G. GP ASME TI MEASUREMENTS IN SOLID PROPELLANT PLUMES AT AMBIENT CONDITIONS SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 4, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn AB The study of aluminum particle ignition in an open atmosphere propellant burn is of particular interest when considering accident scenarios for rockets carrying high-value payloads. This study investigates the temperature of an open atmosphere Atlas V solid propellant burn as a function of height from the burning surface. Two instruments were used to infer this temperature: a two-color pyrometer and a spectrometer. The spectra were fitted to a model of energy states for aluminum monoxide. The temperature which provided the best match between the model and data was taken as the reaction temperature. Emissions above 30 inches from the surface of the propellant were not sufficiently strong for data reduction, perhaps obscured by the alumina smoke cloud. The temperature distribution in the plume increased slightly with distance from the burning surface, presumably indicating the delay in ignition and heat release from the larger aluminum particles in the propellant. The pyrometer and spectrometer results were found to be in excellent agreement indicating plume temperatures in the range of 2300K to 3000K. C1 [Height, Jonathan L.; Donaldson, Burl A.; Gill, Walter] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Height, JL (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Parigger, Christian/M-4925-2013 OI Parigger, Christian/0000-0003-1286-7405 NR 8 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5490-7 PY 2012 BP 1409 EP 1414 PG 6 WC Thermodynamics; Engineering, Mechanical; Nanoscience & Nanotechnology SC Thermodynamics; Engineering; Science & Technology - Other Topics GA BHC53 UT WOS:000324959300162 ER PT B AU Neilsen, M Vianco, P AF Neilsen, Michael Vianco, Paul GP ASME TI UNIFIED CREEP PLASTICITY DAMAGE (UCPD) MODEL FOR SOLDER SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 8 LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID FATIGUE AB A unified creep plasticity damage (UCPD) model for Sn-Pb and Pb-free solders was developed and implemented into finite element analysis codes. The new model will be described along with the relationship between the model's damage evolution equation and an empirical Coffin-Manson relationship for solder fatigue. Next, two significant developments were needed to model crack initiation and growth in solder joints. First, an ability to accelerate the simulations such that the effects of hundreds or thousands of thermal cycles could be modeled in a reasonable amount of time was needed. This was accomplished by applying a user prescribed acceleration factor to the damage evolution; then, damage generated by an acceleration factor of cycles could be captured by the numerical simulation of a single thermal cycle. Second, an ability to capture the geometric effects of crack initiation and growth was needed. This was accomplished by replacing material in finite elements that had met the cracking failure criterion with very flexible elastic material. This diffuse crack modeling approach with local finite elements is known to generate mesh dependent solutions. However, introduction of an element size dependent term into the damage evolution equation was found to be effective in controlling mesh dependency Finally, experimentally observed cracks in a typical solder joint subjected to thermal mechanical fatigue are compared with model predictions. C1 [Neilsen, Michael; Vianco, Paul] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Neilsen, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 15 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5494-5 PY 2012 BP 497 EP 504 PG 8 WC Acoustics; Engineering, Mechanical SC Acoustics; Engineering GA BHC47 UT WOS:000324956000064 ER PT B AU Littlewood, DJ AF Littlewood, David J. GP ASME TI A NONLOCAL APPROACH TO MODELING CRACK NUCLEATION IN AA 7075-T651 SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 8 LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID ELASTICITY THEORY; SOLID MECHANICS; DAMAGE AB A critical stage in micro structurally small fatigue crack growth in AA 7075-T65I is the nucleation of cracks originating in constituent particles into the matrix material. Previous work has focused on a geometric approach to modeling microstrucwrally small fatigue crack growth in which damage metrics derived from an elastic-viscoplastic constitutive model are used to predict the nucleation event [1,2]. While a geometric approach based on classical finite elements was successful in explicitly modeling the polycrystalline grain structure, singularities at the crack tip necessitated the use of a nonlocal sampling approach to remove mesh size dependence. This study is an initial investigation of the peridynamic ornzulation of continuum mechanics as an alternative approach to modeling microstructurally small fatigue crack growth. Peridynamics, a nonlocal extension of continuum mechanics, is based on an integral formulation that remains valid in the presence of material discontinuities. To capture accurately the material response at the grain scale, a crystal elastic-viscoplastic constitutive model is adapted for use in non-ordinary state-based peridynamics through the use of a regularized deformation gradient. The peridynamic approach is demonstrated on a baseline model consisting of a hard elastic inclusion in a single crystal. Coupling the elastic-viscoplastic material model with peridynamics successfidly facilitates the modeling of plastic deformation and damage accumulation in the vicinity of the particle inclusion. Lattice orientation is shown to have a strong influence on material response. C1 Sandia Natl Labs, Multiphys Simulat Technol Org 1444, Albuquerque, NM 87185 USA. RP Littlewood, DJ (reprint author), Sandia Natl Labs, Multiphys Simulat Technol Org 1444, POB 5800,MS 1322, Albuquerque, NM 87185 USA. EM djlittl@sandia.gov NR 18 TC 0 Z9 0 U1 5 U2 9 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5494-5 PY 2012 BP 567 EP 576 PG 10 WC Acoustics; Engineering, Mechanical SC Acoustics; Engineering GA BHC47 UT WOS:000324956000073 ER PT B AU Sabharwall, P Kim, ES Siahpush, AS Patterson, M AF Sabharwall, Piyush Kim, Eung Soo Siahpush, Ali S. Patterson, Mike GP ASME TI PRELIMINARY DESIGN FOR CONVENTIONAL AND COMPACT SECONDARY HEAT EXCHANGER IN A MOLTEN SALT REACTOR SO PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, 2012, VOL 1 LA English DT Proceedings Paper CT ASME Summer Heat Transfer Conference (SHTC) CY JUL 08-12, 2012 CL Rio Grande, PR SP ASME, Heat Transfer Div AB In this study, the heat transfer coolant utilized in the heat exchanger is a molten salt, which transfers thermal energy to water (steam) for power production by a supercritical Rankine (25MPa) or subcritical Rankine (17MPa) cycle. Molten salts are excellent coolants, with 25% higher volumetric heat capacity than pressurized water, and nearly five times that of liquid sodium. The greater heat capacity of molten salts results in more compact components like pumps and heat exchangers. However, the use of a molten salt provides potential materials compatibility issues. After studying a variety of individual molten salt mixtures, chlorides and fluorides have been given the most serious consideration because of their heat transport and transfer characteristics In this study thermal designs of conventional (shell and tube), and compact (printed circuit) heat exchangers are carried out and compared for a given thermal duty. There are a couple of main issues that need to be addressed before this technology could be commercialized. The main issue is with the material compatibility of molten salts (especially fluoride salts) and secondarily, with the pressure difference across the heat exchanger. The heat exchanger's primary side pressure is nearly atmospheric and the secondary side (power production) is pressurized to about 25MPa for supercritical cycle and 17MPa for subcritical cycle. Further in the analysis, the comparison of both the cycles will be carried out with recommendations. C1 [Sabharwall, Piyush; Siahpush, Ali S.; Patterson, Mike] Idaho Natl Lab, Idaho Falls, ID USA. RP Sabharwall, P (reprint author), Idaho Natl Lab, Idaho Falls, ID USA. OI Patterson, Michael/0000-0002-8698-3284 NR 16 TC 0 Z9 0 U1 2 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4477-9 PY 2012 BP 1 EP 12 PG 12 WC Engineering, Mechanical SC Engineering GA BHC49 UT WOS:000324956600001 ER PT B AU Serrano, JR Piekos, ES Phinney, LM AF Serrano, Justin R. Piekos, Edward S. Phinney, Leslie M. GP ASME TI RAMAN THERMOMETRY AND THERMAL MODELING OF HIGHLY DOPED SILICON-ON-INSULATOR JOULE HEATED MEMS BRIDGES UNDER VARYING GAS PRESSURES SO PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, 2012, VOL 1 LA English DT Proceedings Paper CT ASME Summer Heat Transfer Conference (SHTC) CY JUL 08-12, 2012 CL Rio Grande, PR SP ASME, Heat Transfer Div ID CONDUCTIVITY; SCATTERING; ACTUATORS; SI AB This paper reports on experimental and numerical investigations of electrically powered MEMS structures operated under different gas pressure and electrical power conditions. The structures studied are boron-doped single crystal silicon-on-insulator (SOT) microbridges that are heated by an electrical current. The microbridges are 85 mu m wide, 125 mu m tall and 5.5 mm long and lie 2 mu m above the substrate. The impact of the narrow gap in the gas phase thermal transport is evaluated by operating the devices under various nitrogen gas pressure conditions, ranging from 625 Torr to similar to 1 mTorr - spanning the continuum to noncontinuum gas heat transfer regimes. Raman thermometry is used to obtain spatiallyresolved temperature measurements along the length of the device under the various operating conditions. The large dopant concentration (similar to 4 x 10(19) cm(-3)) within the active silicon layer is found to affect the Raman spectrum used for thermometry via Fano-type interactions, resulting in an asymmetric Raman line shape. With large Raman peak asymmetries, use of the Raman line width as the temperature metric is less reliable as it shows decreased sensitivity to temperature. However, the asymmetry itself, when considered as a fitting parameter, was found to be a reliable indicator of sample temperature. The measured device temperatures are compared to finite element simulations of the structures. Noncontinuum gas phase heat transfer effects are incorporated into the continuum simulations via temperature discontinuities at the solid-gas interface, provided by a model developed from noncontinuum simulation results. Additionally, the impact of the large dopant concentrations is incorporated into the thermal models via a modified thermal conductivity model which considers impurity scattering effects on thermal transport. The simulation and experimental results show reasonable agreement. C1 [Serrano, Justin R.; Piekos, Edward S.; Phinney, Leslie M.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Serrano, JR (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. NR 25 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4477-9 PY 2012 BP 525 EP 531 PG 7 WC Engineering, Mechanical SC Engineering GA BHC49 UT WOS:000324956600062 ER PT B AU Brown, AL Pierce, F AF Brown, Alexander L. Pierce, Flint GP ASME TI THE M-1 RADIATION MODEL: EVALUATION FOR PREDICTING THERMAL RADIATION FROM FIRES SO PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, 2012, VOL 2 LA English DT Proceedings Paper CT ASME Summer Heat Transfer Conference (SHTC) CY JUL 08-12, 2012 CL Rio Grande, PR SP ASME, Heat Transfer Div ID EDDINGTON FACTORS AB The M-1 radiation model is a thermal radiation transport model that is derived from a maximum entropy approximation to the radiative transport equation. It involves the solution of four hyperbolic equations for conservation of radiative energy. The M-1 model has similarities to the classical diffusion approximations (like P-1), but is able to better predict directed flux. Consequently, shadowing and long-range transport can be well resolved for a fraction of the cost of methods with exponentially increasing accuracy costs like the method of discrete ordinates and Monte Carlo ray-tracing. The M-1 method is mostly used historically in astronomical radiation transport, but has recently been shown to work for combustion applications of smaller scale. Past work has shown it to give good comparisons to fire problems with length scales of interest. Because of the potential for the model to predict radiation transport more cost-effectively, it is being examined for implementation as an option in our fire codes. We present the theory behind the model. The Eddington factor is used to partition directed and diffuse radiation. It is normally modeled since it is derived from a transcendental functional relationship. We analyze Eddington factor models presented in previous work, and present a new model that we show to be superior in most ways to all the previously presented models. Some 1-dimensional calculations are also shown that illustrate the potential accuracy and challenges with implementing the M-1 model. Such challenges include the specification of boundary conditions and the development of robust solver methods. C1 [Brown, Alexander L.] Sandia Natl Labs, Fire & Aerosol Sci Dept, Albuquerque, NM 87185 USA. RP Brown, AL (reprint author), Sandia Natl Labs, Fire & Aerosol Sci Dept, POB 5800, Albuquerque, NM 87185 USA. EM albrown@sandia.gov; fpierce@sandia.gov NR 7 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4478-6 PY 2012 BP 151 EP 160 PG 10 WC Engineering, Mechanical SC Engineering GA BHC50 UT WOS:000324956800018 ER PT B AU Brown, AL Brady, PD AF Brown, Alexander L. Brady, Patrick D. GP ASME TI A TECHNOECONOMIC ANALYSIS OF THE POTENTIAL FOR PORTABLE PYROLYSIS IN NORTHERN NEW MEXICO FORESTS SO PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, 2012, VOL 2 LA English DT Proceedings Paper CT ASME Summer Heat Transfer Conference (SHTC) CY JUL 08-12, 2012 CL Rio Grande, PR SP ASME, Heat Transfer Div ID OIL AB Biomass pyrolysis systems can be designed to yield significant quantities of liquid. The liquids have approximately half the heating value of transportation fuels, depending strongly on the water content in the liquids. They are acidic, and tend to change with time, becoming more viscous and higher in molecular weight. However the process required to generate them is simple, and they hold promise to be a renewable source of liquid fuel if they can be produced in a way that is cost-effective. Northern New Mexico forests are mostly characterized by small diameter (less than or equal to 10 cm) conifer trees. For mitigation of fire risk, land owners are required to periodically thin their lands. This generates significant waste product with little or no commercial value. The most widely used current practice is to accumulate and burn the cut wood, or to leave it to rot. Seeking a more effective and ecologically friendly use of the waste, a scaled experimental pyrolysis system was developed using design principles focused on the portable model. The data from this test unit and historical data are used to evaluate the break-even costs of performing pyrolysis. The char co-product is found to have a slight beneficial effect on the economics of the analysis. Labor is a significant fraction of the cost. Economies of scale are important, so the largest system that can be transported will make the most economic sense. On a price per unit energy, this model may be competitive with liquid transportation fuels and fuel oil. However pyrolysis oils will have difficulty competing with natural gas at current regional prices. Other regions may show a more positive comparison, especially in parts of the world where labor is much less expensive. C1 [Brown, Alexander L.; Brady, Patrick D.] Sandia Natl Labs, Fire & Aerosol Sci Dept, Albuquerque, NM 87185 USA. RP Brown, AL (reprint author), Sandia Natl Labs, Fire & Aerosol Sci Dept, POB 5800, Albuquerque, NM 87185 USA. EM albrown@sandia.gov; patbrad@sandia.gov NR 10 TC 0 Z9 0 U1 1 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4478-6 PY 2012 BP 161 EP 171 PG 11 WC Engineering, Mechanical SC Engineering GA BHC50 UT WOS:000324956800019 ER PT B AU Noble, DR AF Noble, David R. GP ASME TI A CONFORMAL DECOMPOSITION FINITE ELEMENT METHOD FOR MATERIAL DEATH SO PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, 2012, VOL 2 LA English DT Proceedings Paper CT ASME Summer Heat Transfer Conference (SHTC) CY JUL 08-12, 2012 CL Rio Grande, PR SP ASME, Heat Transfer Div AB A Conformal Decomposition Finite Element Method (CDFEM) is developed for modeling material death. Material death is used to model the continuous removal of material that exceeds a prescribed temperature. CDFEM allows for the moving front to move through the material without having to conform to the finite element geometry. The method is tested using 2-dimensional simulations of a 1-dimensional problem with an analytical solution. CDFEM is shown to be optimal for the chosen discretization with first order convergence in time and second order convergence in space. In comparison, a traditional element death algorithm does not converge at all on unstructured meshes. A correction is proposed for remedying this problem, resulting in first order convergence for traditional element death in space and time. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Noble, DR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4478-6 PY 2012 BP 1059 EP 1063 PG 5 WC Engineering, Mechanical SC Engineering GA BHC50 UT WOS:000324956800119 ER PT B AU Subia, SR Dempsey, JF Crane, NK Thomas, JD AF Subia, Samuel R. Dempsey, J. Frank Crane, Nathan K. Thomas, Jesse D. GP ASME TI A METHODOLOGY FOR MODELLING ENCLOSURE RADIATION HEAT TRANSFER UNDER LARGE STRUCTURAL DEFORMATION SO PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, 2012, VOL 2 LA English DT Proceedings Paper CT ASME Summer Heat Transfer Conference (SHTC) CY JUL 08-12, 2012 CL Rio Grande, PR SP ASME, Heat Transfer Div AB Finite element method (FEM) numerical simulations of heat transfer for high-temperature regimes often require modeling of grey-body enclosure radiation where enclosure geometry definitions are obtained as part of the model grid generation process. Owing to the expense of solving the radiation problem, typical.FEM approaches loosely couple the radiative transfer solution as boundary conditions to a standard conduction formulation. When the,problem at hand is thermal-mechanical and relative motion occurs between enclosure surfaces, the simulation code is tasked with providing a means of updating the original enclosure surface geometry to reflect the deformed configuration. While this scenario is manageable for contiguously meshed discretizations, the difficulty of updating enclosure geometry is greatly increased when the model admits sliding. Here the analysis code must employ both mechanical and thermal contact, relying heavily on geometric search and contact constraints to enforce closure for the conduction formulation. General purpose large-deformation FEM structural codes employ surface contact utilities to provide geometric search and contact constraint definitions. This paper describes an ongoing effort to leverage contact utilities for solving the enclosure radiation problem in deforming and sliding mesh scenarios while having minimal impact to a traditional modeling approach. The current effort is divided into two areas, enclosure definitions and thermal contact, but the primary focus here is on enabling use of contact to provide definition of the enclosure. The proposed methodology is demonstrated on simple enclosure radiation models using SNL Sierra Mechanics Dash contact utilities and the Chaparral enclosure radiation library with Sierra Mechanics Structural and Thermal application codes. C1 [Subia, Samuel R.] Sandia Natl Labs, Computat Thermal & Fluid Mech, Albuquerque, NM 87185 USA. RP Subia, SR (reprint author), Sandia Natl Labs, Computat Thermal & Fluid Mech, POB 5800, Albuquerque, NM 87185 USA. EM srsubia@sandia.gov; jfdemps@sandia.gov; nkcrane@sandia.gov; jdthom@sandia.gov NR 4 TC 0 Z9 0 U1 1 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4478-6 PY 2012 BP 1121 EP 1127 PG 7 WC Engineering, Mechanical SC Engineering GA BHC50 UT WOS:000324956800126 ER PT S AU Burch, J Woods, J Kozubal, E Boranian, A AF Burch, Jay Woods, Jason Kozubal, Eric Boranian, Aaron BE Haberle, A TI Zero energy communities with central solar plants using liquid desiccants and local storage SO 1ST INTERNATIONAL CONFERENCE ON SOLAR HEATING AND COOLING FOR BUILDINGS AND INDUSTRY (SHC 2012) SE Energy Procedia LA English DT Proceedings Paper CT 1st International Conference on Solar Heating and Cooling for Buildings and Industry (SHC) CY JUL 09-11, 2012 CL San Francisco, CA DE Solar thermal; community-scale; district heating/cooling; liquid desiccants; pipe size reduction AB The zero energy community considered here consists of tens to tens-of-thousands of residences coupled to a central solar plant that produces all the community's electrical and thermal needs. A distribution network carries fluids to meet the heating and cooling loads. Large central solar systems can significantly reduce cost of energy vs. single-family systems, and they enable economical seasonal heat storage. However, the thermal distribution system is costly. Conventional district heating/cooling systems use a water/glycol solution to deliver sensible energy. Piping is sized to meet the peak instantaneous load. A new district system introduced here differs in two key ways: i) it continuously distributes a hot liquid desiccant (LD) solution to LD-based heating and cooling equipment in each home; and ii) it uses central and local storage of both LD and heat to reduce flow rates to meet average loads. Results for piping sizes in conventional and LD thermal communities show that the LD zero energy community reduces distribution piping diameters meeting heating loads by similar to 5X and meeting cooling loads by similar to 8X for cooling, depending on climate. (C) 2012 The Authors. Published by Elsevier Ltd. C1 [Burch, Jay; Woods, Jason; Kozubal, Eric] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Burch, J (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM jay.burch@nrel.gov OI Woods, Jason/0000-0002-7661-2658 NR 12 TC 5 Z9 5 U1 0 U2 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1876-6102 J9 ENRGY PROCED PY 2012 VL 30 BP 55 EP 64 DI 10.1016/j.egypro.2012.11.008 PG 10 WC Construction & Building Technology; Energy & Fuels SC Construction & Building Technology; Energy & Fuels GA BGB44 UT WOS:000322163100007 ER PT S AU Rogers, DM Jiao, DA Pratt, LR Rempe, SB AF Rogers, David M. Jiao, Dian Pratt, Lawrence R. Rempe, Susan B. BE Wheeler, RA TI Structural Models and Molecular Thermodynamics of Hydration of Ions and Small Molecules SO ANNUAL REPORTS IN COMPUTATIONAL CHEMISTRY, VOL 8 SE Annual Reports in Computational Chemistry LA English DT Article; Book Chapter ID POTASSIUM-CHANNEL SELECTIVITY; QUASI-CHEMICAL THEORY; AQUEOUS-ELECTROLYTE SOLUTIONS; DENSITY-FUNCTIONAL THEORY; MINIMUM ENERGY STRUCTURES; LIQUID-VAPOR INTERFACE; SCALED-PARTICLE THEORY; CARBONIC-ANHYDRASE; FORCE-FIELD; STATISTICAL-MECHANICS AB Solution equilibria are at the core of solvent-catalyzed reactions, solute separations, drug delivery, vapor partitioning and interfacial phenomena. Molecular simulation using thermodynamic integration or perturbation theory allows the calculation of these equilibria from parameterized force field models; however, the statistical many-body nature of solution environments inevitably complicates molecular interpretations of these phenomena. If our goal is molecular understanding in addition to prediction, then the statistical thermodynamic theories designed for mechanistic insight from structural analyses are especially important. In this report, we survey recent advances in the thermodynamic analysis of rigorous local structural models based on chemical structure. C1 [Rogers, David M.; Jiao, Dian; Rempe, Susan B.] Sandia Natl Labs, Ctr Biol & Mat Sci, Albuquerque, NM 87185 USA. [Pratt, Lawrence R.] Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA. RP Rempe, SB (reprint author), Sandia Natl Labs, Ctr Biol & Mat Sci, POB 5800, Albuquerque, NM 87185 USA. EM slrempe@sandia.gov NR 183 TC 20 Z9 20 U1 7 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1574-1400 BN 978-0-44-459459-4; 978-0-44-459440-2 J9 ANN REP COMP CHEM PY 2012 VL 8 BP 71 EP 127 DI 10.1016/B978-0-444-59440-2.00004-1 PG 57 WC Chemistry, Physical SC Chemistry GA BHC39 UT WOS:000324929000005 ER PT S AU Ziomek-Moroz, M Holcomb, GR Tylczak, J Beck, J Fedkin, M Lvov, S AF Ziomek-Moroz, M. Holcomb, G. R. Tylczak, J. Beck, J. Fedkin, M. Lvov, S. BE Fujimoto, S Hansen, DC Virtanen, S TI Surface and Electrochemical Behavior of HSLA in Supercritical CO2-H2O Environment SO CORROSION POSTERS (GENERAL) - 220TH ECS MEETING SE ECS Transactions LA English DT Proceedings Paper CT Symposium on Corrosion General Poster Session held during the 220th Meeting of the Electrochemical-Society (ECS) CY OCT 09-14, 2011 CL Boston, MA SP Electrochem Soc, Corrosion ID CO2; MICROSTRUCTURE; STEELS AB General corrosion was observed on high strength low alloy carbon steel after electrochemical impedance spectroscopy experiments (EIS) performed in H2O saturated with CO2 at 50 degrees C and 15.2 MPa. However, general and localized were observed on the same material surfaces after the EIS experiments performed in supercritical CO2 containing approximately 6100 ppmv H2O at 50 degrees C and 15.2 MPa. The general corrosion areas were uniformly covered by the FeCO3-like phase identified by X-ray diffraction (XRD). In the area of localized corrosion, XRD also revealed FeCO3-rich islands embedded in alpha-iron. The energy dispersive X-ray (EDX) analysis revealed high concentrations of iron, carbon, and oxygen in the area affected by general corrosion and in the islands formed in the area of localized corrosion. The real and imaginary impedances were lower in H2O saturated with CO2 than those in the supercritical CO2 containing the aqueous phase indicating faster corrosion kinetics in the former. C1 [Ziomek-Moroz, M.; Holcomb, G. R.; Tylczak, J.; Beck, J.; Fedkin, M.; Lvov, S.] US DOE, Natl Energy Technol Lab, Albany, OR 97321 USA. RP Ziomek-Moroz, M (reprint author), US DOE, Natl Energy Technol Lab, Albany, OR 97321 USA. RI Holcomb, Gordon/G-9070-2013; Tylczak, Joseph/C-7956-2009 OI Holcomb, Gordon/0000-0003-3542-5319; Tylczak, Joseph/0000-0002-0391-2350 NR 6 TC 2 Z9 2 U1 1 U2 8 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-60768-323-0 J9 ECS TRANSACTIONS PY 2012 VL 41 IS 24 BP 61 EP 70 DI 10.1149/1.3692436 PG 10 WC Electrochemistry; Materials Science, Multidisciplinary SC Electrochemistry; Materials Science GA BHF09 UT WOS:000325213700008 ER PT S AU Shet, S AF Shet, S. BE Zhou, XD Brisard, G Mustain, WE Mogensen, MB Fenton, J TI Charge Compensated (Al, N) co-doped Zinc Oxide (ZnO) Films for Photlelectrochemical Application SO ELECTROCHEMICAL SYNTHESIS OF FUELS 1 SE ECS Transactions LA English DT Proceedings Paper CT 1st International Symposium on Electrochemical Synthesis of Fuels (ESF) CY OCT 09-14, 2011 CL Boston, MA SP Electrochem Soc, High Temp Mat Div, Electrochem Soc, Phys & Analyt Electrochemistry Div, Electrochem Soc, Energy Technol Div, New Technol Subcommittee ID P-TYPE ZNO; THIN-FILMS; SUBSTRATE-TEMPERATURE; ALIGNED NANORODS; ZNO(AL,N) FILMS; PHOTOCATALYSIS; CELLS AB ZnO thin films with significantly reduced bandgaps were synthesized by doping N and co-doping Al and N at 100 degrees C. All the films were synthesized by radio-frequency magnetron sputtering on F-doped tin-oxide-coated glass. We found that co-doped ZnO:(Al,N) thin films exhibited significantly enhanced crystallinity as compared to ZnO doped solely with N, ZnO:N, at the same growth conditions. Furthermore, annealed ZnO:(Al,N) thin films exhibited enhanced N incorporation over ZnO:N films. As a result, ZnO:(Al,N) films exhibited improved photocurrents than ZnO:N films grown with pure N doping, suggesting that charge-compensated donor-acceptor co-doping could be a potential method for bandgap reduction of wide-bandgap oxide materials to improve their photoelectrochemical performance. C1 Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Shet, S (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. NR 21 TC 1 Z9 1 U1 6 U2 9 PU ELECTROCHEMICAL SOC INC PI PENNINGTON PA 65 S MAIN ST, PENNINGTON, NJ 08534-2839 USA SN 1938-5862 BN 978-1-56677-973-9 J9 ECS TRANSACTIONS PY 2012 VL 41 IS 33 BP 183 EP 190 DI 10.1149/1.3702425 PG 8 WC Electrochemistry; Energy & Fuels SC Electrochemistry; Energy & Fuels GA BHF17 UT WOS:000325217700018 ER PT B AU Zhang, XY O'Brien, JE O'Brien, RC AF Zhang, Xiaoyu O'Brien, James E. O'Brien, Robert C. GP ASME TI RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: SINGLE CELL TESTS SO PROCEEDINGS OF THE ASME 10TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2012 LA English DT Proceedings Paper CT 10th ASME Fuel Cell Science, Engineering and Technology Conference CY JUL 23-26, 2012 CL San Diego, CA SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div ID HYDROGEN-PRODUCTION; NUCLEAR-ENERGY; DEGRADATION; PERFORMANCE; STACKS AB An experimental investigation on the performance and durability of single solid oxide electrolysis cells (SOECs) is under way at the Idaho National Laboratory. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOECs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus has been developed for single cell and small stack tests from different vendors. Single cells from Ceramatec Inc. show improved durability compared to our previous stack tests. Single cells from Materials and Systems Research Inc. (MSRI) demonstrate low degradation both in fuel cell and electrolysis modes. Single cells from Saint Gobain Advanced Materials (St. Gobain) show stable performance in fuel cell mode, but rapid degradation in the electrolysis mode. Electrolyte-electrode delamination is found to have significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the microstructure help to mitigate degradation. Polarization scans and AC impedance measurements are performed during the tests to characterize the cell performance and degradation. C1 [Zhang, Xiaoyu; O'Brien, James E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Zhang, XY (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 12 TC 52 Z9 52 U1 1 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4482-3 PY 2012 BP 1 EP 8 DI 10.1109/ACC.2007.4282196 PG 8 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BHD12 UT WOS:000325037500001 ER PT B AU Zhang, XY O'Brien, JE O'Brien, RC Hartvigsen, JJ Tao, G Petigny, N AF Zhang, Xiaoyu O'Brien, James E. O'Brien, Robert C. Hartvigsen, Joseph J. Tao, Greg Petigny, Nathalie GP ASME TI RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: STACK TESTS SO PROCEEDINGS OF THE ASME 10TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2012 LA English DT Proceedings Paper CT 10th ASME Fuel Cell Science, Engineering and Technology Conference CY JUL 23-26, 2012 CL San Diego, CA SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div ID HYDROGEN-PRODUCTION; NUCLEAR-ENERGY; PERFORMANCE AB High temperature steam electrolysis is a promising technology for efficiently sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolyte-supported and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technologies developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Optimizations of electrode materials, interconnect coatings, and electrolyte-electrode interface microstructures contribute to better durability of SOEC stacks. C1 [Zhang, Xiaoyu; O'Brien, James E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Zhang, XY (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. RI Zhang, Xiaoyu/N-6847-2014 NR 15 TC 0 Z9 0 U1 1 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4482-3 PY 2012 BP 9 EP 17 PG 9 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BHD12 UT WOS:000325037500002 ER PT B AU Warren, J Das, S Zhang, W AF Warren, Joshua Das, Sujit Zhang, Wei GP ASME TI MANUFACTURING PROCESS MODELING OF 100-400 kWe COMBINED HEAT AND POWER STATIONARY FUEL CELL SYSTEMS SO PROCEEDINGS OF THE ASME 10TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2012 LA English DT Proceedings Paper CT 10th ASME Fuel Cell Science, Engineering and Technology Conference CY JUL 23-26, 2012 CL San Diego, CA SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB Despite significant cost reductions and reliability improvements in recent decades, combined heat and power (CHP) stationary fuel cells are expected to remain relatively limited in their commercial acceptance until additional advancements are realized. In the present study, three stationary CHP fuel cell technologies - phosphoric acid (PAFC), molten carbonate (MCFC), and solid oxide (SOFC) - operating in the 100-400 kWe range were examined with process based cost models to estimate manufacturing costs and to highlight high cost steps where alternative production methods may have the greatest potential for high impact cost reduction. PAFC manufacturing costs, estimated to be $3049/kWe for a baseline manufacturing volume of 20 MWe/yr, may benefit most from reduced catalyst loading, lower cost substrates, reduced fuel processing balance of plant (BOP) costs, and near net shape bipolar plate manufacturing. MCFC manufacturing costs, while not reported in detail due to the proprietary nature of inputs employed in the model, may be reduced through advances in fuel desulfurization and stainless steel stack component manufacturing. SOFC manufacturing costs, estimated to be $1242/kWe, approach a commercially acceptable level, but significant advancements in seal and bipolar plate reliability are likely required before a commercially acceptable stack life of 40,000 hours is realized. C1 [Warren, Joshua; Das, Sujit; Zhang, Wei] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Warren, J (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. NR 24 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4482-3 PY 2012 BP 25 EP 34 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BHD12 UT WOS:000325037500004 ER PT B AU Siefert, N Litster, S AF Siefert, Nicholas Litster, Shawn GP ASME TI EXERGY & ECONOMIC ANALYSIS OF CATALYTIC COAL GASIFIERS COUPLED WITH SOLID OXIDE FUEL CELLS SO PROCEEDINGS OF THE ASME 10TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2012 LA English DT Proceedings Paper CT 10th ASME Fuel Cell Science, Engineering and Technology Conference CY JUL 23-26, 2012 CL San Diego, CA SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div ID POWER-PLANTS; GASIFICATION; PERFORMANCE AB The National Energy Technology Laboratory (NETL) as well as Li et al. [1] have shown that integrating a catalytic coal gasifier with a solid oxide fuel cell (SOFC) can achieve high system efficiencies (similar to 60%) while capturing and sequestering >90% of the carbon dioxide. Integration of a catalytic gasifier with a SOFC is aided by the minimal exergy destruction inside a catalytic, steam-coal gasifier producing a high-methane content syngas, and the decreased exergy destruction in the SOFC due to the ability to operate at lower air stoichiometric flow ratios compared with a SOFC operating only on hydrogen. For a given temperature difference across the inlet and outlet of the fuel cell and for a given current density, a SOFC can be operated at a lower air stoichiometric ratio if there is a significant amount of methane in syngas and if the pressure of the fuel cell is above atmospheric pressure. Here, we present both an exergy analysis of one possible way of integrating a SOFC with a catalytic gasifier. The gasifier is a fluidized bed gasifier that uses similar to 20%wt potassium carbonate along with the coal. Before entering the SOFC, carbon dioxide in the syngas is captured using lime, and then the anode tail gas from the SOFC is recycled back to the gasifier, similar to the configuration modeled by Li et al. [2]. We will present the exergy efficiency as a function of the pressure of the SOFC, and compare the exergy efficiency to other coal-based powerplants on the scale of 100-500 MWe. In addition, we use capital and other cost estimates from NETL [3] and others [4] to estimate the internal rate of return on investment (IRR) of various coal based fuel cell power plants, and compare the IRR of these plants with other fossil fuel based base load power plants. We also present the IRR of the catalytic gasification-SOFC power plant as a function of the pressure of the SOFC. Assuming recent fuel & electricity prices, a natural gas combined cycle (NGCC) power plant yields the highest value of rate of return on investment. However, our results suggest that, in the case of a CO2 tax near $30/t CO2, then three different configurations are equally viable economically: NGCC, advanced IGCC-CCS-EOR, and advanced IGFC-CCS-EOR that integrates a catalytic coal gasifier with a pressurized SOFC. C1 [Siefert, Nicholas] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Siefert, N (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. NR 11 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4482-3 PY 2012 BP 35 EP 42 PG 8 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BHD12 UT WOS:000325037500005 ER PT B AU Colella, WG Pilli, SP AF Colella, Whitney G. Pilli, Siva P. GP ASME TI INDEPENDENT EVALUATION OF MICRO-COGENERATIVE FUEL CELL SYSTEMS FOR COMMERCIAL BUILDINGS SO PROCEEDINGS OF THE ASME 10TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2012 LA English DT Proceedings Paper CT 10th ASME Fuel Cell Science, Engineering and Technology Conference CY JUL 23-26, 2012 CL San Diego, CA SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div ID HEALTH; AIR AB The United States (U.S.) Department of Energy (DOE)'s Pacific Northwest National Laboratory (PNNL) is spearheading a program with industry to deploy and independently monitor five kilowatt-electric (kWe) combined heat and power (CHP) fuel cell systems (FCSs) in light commercial buildings. This publication discusses results from PNNL's research efforts to independently evaluate manufacturer-stated engineering, economic, and environmental performance of these CHP FCSs at installation sites. The analysis was done by developing parameters for economic comparison of CHP installations. Key thermodynamic terms are first defined, followed by an economic analysis using both a standard accounting approach and a management accounting approach. Key economic and environmental performance parameters are evaluated, including (1) the average per unit cost of the CUP FCSs per unit of power, (2) the average per unit cost of the CHP FCSs per unit of energy, (3) the change in greenhouse gas (GHG) and air pollution emissions with a switch from conventional power plants and furnaces to CUP FCSs; (4) the change in GHG mitigation costs from the switch; and (5) the change in human health costs related to air pollution. C1 [Colella, Whitney G.; Pilli, Siva P.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Colella, WG (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 38 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4482-3 PY 2012 BP 51 EP 70 PG 20 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BHD12 UT WOS:000325037500007 ER PT B AU Chen, KS Carnes, B Hao, L Luo, G Wang, CY AF Chen, Ken S. Carnes, Brian Hao, Liang Luo, Gang Wang, Chao-Yang GP ASME TI A THREE-DIMENSIONAL TWO-PHASE MODEL FOR SIMULATING PEM FUEL CELL PERFORMANCE SO PROCEEDINGS OF THE ASME 10TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2012 LA English DT Proceedings Paper CT 10th ASME Fuel Cell Science, Engineering and Technology Conference CY JUL 23-26, 2012 CL San Diego, CA SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div ID LIQUID WATER TRANSPORT; GAS-DIFFUSION LAYER; POLYMER-ELECTROLYTE MEMBRANES; DIRECT NUMERICAL-SIMULATION; INTERDIGITATED FLOW-FIELDS; LARGE-SCALE SIMULATION; LOW-HUMIDITY OPERATION; MATHEMATICAL-MODEL; CATALYST-LAYER; TEMPERATURE DISTRIBUTION AB For the last couple of years, we have been working on developing and validating a three-dimensional, two-phase, comprehensive PEM (polymer electrolyte membrane) fuel cell model, and our efforts were funded by the US Department of Energy. In this paper, we provide an up-to-date progress report on our team efforts. Specifically, we present comparisons of simulation results (liquid-water saturation distribution) computed by our improved partially two-phase and fully two-phase models. We also present sample model-validation results by comparing model prediction with experimental data. C1 [Chen, Ken S.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Chen, KS (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. RI Hao, Liang/A-4457-2014 OI Hao, Liang/0000-0002-2584-490X NR 160 TC 0 Z9 0 U1 1 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4482-3 PY 2012 BP 429 EP 436 PG 8 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BHD12 UT WOS:000325037500049 ER PT B AU Colella, WG Srivastava, V AF Colella, Whitney G. Srivastava, Viraj GP ASME TI EXAMINING THE INTEGRATION OF FUEL CELL SYSTEMS INTO BUILDINGS THROUGH SIMULATION SO PROCEEDINGS OF THE ASME 10TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2012 LA English DT Proceedings Paper CT 10th ASME Fuel Cell Science, Engineering and Technology Conference CY JUL 23-26, 2012 CL San Diego, CA SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB The widespread use of combined heat and power (CRP) distributed generation (DG) for buildings could significantly increase energy efficiency and reduce greenhouse gas and air pollution emissions. By displacing both electricity from conventional centralized power plants and heat from decentralized boilers, CHP DG could reduce primary feedstock fuel consumption in the U.S. by approximately 20%, or 6,000 terawaft hours. However, optimally integrating CHP DG within buildings is challenging. This work aims to elucidate optimal system sizing and design of micro-CHP fuel cell systems (FCSs) integrated with commercial buildings. C1 [Colella, Whitney G.; Srivastava, Viraj] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Colella, WG (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 3 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4482-3 PY 2012 BP 485 EP 496 PG 12 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BHD12 UT WOS:000325037500056 ER PT B AU Dillon, HE Colella, WG AF Dillon, Heather E. Colella, Whitney G. GP ASME TI REAL-TIME MEASURED PERFORMANCE OF MICRO COMBINED HEAT AND POWER FUEL CELL SYSTEMS INDEPENDENTLY EVALUATED IN THE FIELD SO PROCEEDINGS OF THE ASME 10TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2012 LA English DT Proceedings Paper CT 10th ASME Fuel Cell Science, Engineering and Technology Conference CY JUL 23-26, 2012 CL San Diego, CA SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB Pacific Northwest National Laboratory (PNNL) is working with industry to independently monitor up to fifteen distinct 5 kilowatt-electric (kWe) combined heat and power (CHP) high temperature (HT) proton exchange membrane (PEM) fuel cell systems (FCSs) installed in light commercial buildings. This research paper discusses an evaluation of the first six months of measured performance data acquired at a one-second sampling rate from real-time monitoring equipment attached to the FCSs at building sites. Engineering performance parameters are independently evaluated. Based on an analysis of the first few months of measured operating data, FCS performance is consistent with manufacturer-stated performance. Initial data indicate that the FCSs have relatively stable performance and a long term average production of about 4.57 kWe of power. This value is consistent with, but slightly below, the manufacturer's stated rated electric power output of 5 kWe. The measured system net electric efficiency has averaged 33.7%, based on the higher heating value (HHV) of natural gas fuel. This value, also, is consistent with, but slightly below, the manufacturer's stated rated electric efficiency of 36%. The FCSs provide low-grade hot water to the building at a measured average temperature of about 48.4 degrees C, lower than the manufacturer's stated maximum hot water delivery temperature of 65 degrees C. The uptime of the systems is also evaluated. System availability can be defined as the quotient of total operating time compared to time since commissioning. The average values for system availability vary between 96.1 and 97.3%, depending on the FCS evaluated in the field. Performance at Rated Value for electrical efficiency (PRVeff) can be defined as the quotient of the system time operating at or above the rated electric efficiency and the time since commissioning. The PRVeff varies between 5.6% and 31.6%, depending on the FCS field unit evaluated. Performance at Rated Value for electrical power (PRVp) can be defined as the quotient of the system time operating at or above the rated electric power and the time since commissioning. PRVp varies between 6.5% and 16.2%. Performance at Rated Value for electrical efficiency and power (PRVt) can be defined as the quotient of the system time operating at or above both the rated electric efficiency and the electric power output compared to the time since commissioning. PRVt varies between 0.2% and 1.4%. Optimization to determine the manufacturer rating required to achieve PRVt greater than 80% has been performed based on the collected data. For example, for FCS unit 130 to achieve a PRVt of 95%, it would have to be down-rated to an electrical power output of 3.2 kWe and an electrical efficiency of 29%. The use of PRV as an assessment metric for FCSs has been developed and reported for the first time in this paper. For FCS Unit 130, a 20% decline in electric power output was observed from approximately 5 kWe to 4 kWe over a 1,500 hour period between Dec. 14th 2011 and Feb. 14th 2012. C1 [Dillon, Heather E.; Colella, Whitney G.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Colella, WG (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM wcolella@alumni.princeton.edu NR 15 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4482-3 PY 2012 BP 551 EP 560 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BHD12 UT WOS:000325037500063 ER PT B AU Anton, SR Farinholt, KM AF Anton, Steven R. Farinholt, Kevin M. GP ASME TI PIEZOELECTRET FOAM-BASED VIBRATION ENERGY HARVESTER FOR LOW-POWER ENERGY GENERATION SO PROCEEDINGS OF THE ASME CONFERENCE ON SMART MATERIALS, ADAPTIVE STRUCTURES AND INTELLIGENT SYSTEMS, VOL 2 LA English DT Proceedings Paper CT ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems CY SEP 19-21, 2012 CL Stone Mountain, GA SP ASME, Gen Motors, Parker Hannifin, Dynalloy Inc, Teledyne Sci & Imag, IOP Publish, Sage Publish, NextGen Aeronaut, Natl Sci Fdn, Air Force Off Sci Res ID CELLULAR ELECTRET FILMS; D(33) COEFFICIENT; POLYMERS; POLYPROPYLENE; TRANSDUCERS; EXPANSION; EMFI AB The use of energy harvesting systems to provide power to low-power electronic devices has the potential to create autonomous, self-powered electronics. While research has been performed to study the harvesting of ambient energy through a wide variety of transduction mechanisms, this paper presents the investigation of a novel material for vibration-based energy harvesting. Piezoelectret foam, a polymer-based electret material exhibiting piezoelectric properties, is investigated for low-power energy generation. An overview of the fabrication and operation of piezoelectret foams is first given. Mechanical testing is then performed to evaluate the tensile properties of the material, where anisotropy in the length direction is found along with Young's moduli between 0.5 - 1 GPa and tensile strengths from 35 - 70 MPa. Dynamic electromechanical characterization is performed in order to measure the piezoelectric d(33) coefficient of the foam over a wide frequency range. The d(33) coefficient is found to be relatively constant at 35 pC/N from 5 Hz - 1 kHz. Lastly, energy harvesting tests are performed to evaluate the ability of piezoelectric foam to harvest vibration energy. Frequency response measurements of foam samples excited along the length direction confirm the anisotropic behavior of the material. Harmonic excitation of a pre-tensioned 15.2 cm x 15.2 cm sample at a frequency of 60 Hz and displacement of +/- 73 mu m yields an average power of 5.8 mu W delivered to a 1 mF storage capacitor through a simple diode bridge rectifier. The capacitor is charged to 4.67 V in 30 minutes, proving the ability of piezoelectret foam to supply power to low-power electronics. C1 [Anton, Steven R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. RP Anton, SR (reprint author), Los Alamos Natl Lab, Engn Inst, POB 1663, Los Alamos, NM 87545 USA. NR 25 TC 4 Z9 4 U1 1 U2 6 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4510-3 PY 2012 BP 929 EP 937 PG 9 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Materials Science, Biomaterials SC Engineering; Materials Science GA BGX46 UT WOS:000324504300109 ER PT B AU Muth, D McCorkle, D Abodeely, J Koch, J Nelson, R Bryden, K AF Muth, David, Jr. McCorkle, Douglas Abodeely, Jared Koch, Joshua Nelson, Richard Bryden, Kenneth GP ASME TI DEVELOPING AN INTEGRATED MODEL FRAMEWORK FOR THE ASSESSMENT OF SUSTAINABLE AGRICULTURAL RESIDUE REMOVAL LIMITS FOR BIOENERGY SYSTEMS SO PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 2, PTS A AND B LA English DT Proceedings Paper CT ASME Internationl Design Engineering Technical Conferences / Computers and Information in Engineering Conference (IDETC/CIE) CY AUG 28-31, 2011 CL Washington, DC SP Amer Soc Mech Engineers, Design Engn Div, Amer Soc Mech Engineers, Comp & Informat Engn Div ID CORN STOVER; METHODOLOGY AB Agricultural residues have significant potential as a feedstock for bioenergy production, but removing these residues from the land can have negative impacts on soil health. Because of this computational tools are needed that can help guide decisions on the amount of agricultural residue that can be sustainably removed. Models and datasets that can support decisions about sustainable agricultural residue removal are available; however, no tools currently exist that are capable of simultaneously addressing all of the environmental factors that can limit the availability of residue for bioenergy production. This paper presents an integrated framework of models and data that provide a coupled a set of environmental process models and databases that can support agricultural residue removal decisions. Specifically the RUSLE2, WEPS, and Soil Conditioning Index models have been integrated together with the disparate set of databases providing the soils, climate, and management practice data required. The integrated system has been demonstrated for two example cases. In the first case the potential impact of agricultural residue removal is explored. In the second case an aggregate assessment of the agricultural residues available bioenergy production in the state of Iowa is performed. C1 [Muth, David, Jr.; Abodeely, Jared; Koch, Joshua] US DOE, Idaho Natl Lab, Idaho Falls, ID USA. RP Muth, D (reprint author), US DOE, Idaho Natl Lab, Idaho Falls, ID USA. NR 35 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5479-2 PY 2012 BP 259 EP 268 PG 10 WC Computer Science, Interdisciplinary Applications; Engineering, Manufacturing; Engineering, Mechanical SC Computer Science; Engineering GA BGU92 UT WOS:000324221200029 ER PT B AU McCorkle, DS Bryden, KM AF McCorkle, Douglas S. Bryden, Kenneth M. GP ASME TI AN EXPLORATORY FRAMEWORK FOR COMBINING CFD ANALYSIS AND EVOLUTIONARY OPTIMIZATION INTO A SINGLE INTEGRATED COMPUTATIONAL ENVIRONMENT SO PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 2, PTS A AND B LA English DT Proceedings Paper CT ASME Internationl Design Engineering Technical Conferences / Computers and Information in Engineering Conference (IDETC/CIE) CY AUG 28-31, 2011 CL Washington, DC SP Amer Soc Mech Engineers, Design Engn Div, Amer Soc Mech Engineers, Comp & Informat Engn Div ID GENETIC ALGORITHMS; SHAPE OPTIMIZATION; VIRTUAL-REALITY; DESIGN; SYSTEMS AB Several recent reports and workshops have identified integrated computational engineering as an emerging technology with the potential to transform engineering design. The goal is to integrate geometric models, analyses, simulations, optimization and decision-making tools, and all other aspects of the engineering process into a shared, interactive computer-generated environment that facilitates multidisciplinary and collaborative engineering. While integrated computational engineering environments can be constructed from scratch with high-level programming languages, the complexity of these proposed environments makes this type of approach prohibitively slow and expensive. Rather, a high-level software framework is needed to provide the user with the capability to construct an application in an intuitive manner using existing models and engineering tools with minimal programming. In this paper, we present an exploratory open source software framework that can be used to integrate the geometric models, computational fluid dynamics (CFD), and optimization tools needed for shape optimization of complex systems. This framework is demonstrated using the multiphase flow analysis of a complete coal transport system for an 800 MW pulverized coal power station. The framework uses engineering objects and three-dimensional visualization to enable the user to interactively design and optimize the performance of the coal transport system. C1 [McCorkle, Douglas S.] US DOE, Ames Lab, Ames, IA 50011 USA. RP McCorkle, DS (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. RI Bryden, Kenneth/G-6918-2012 NR 23 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5479-2 PY 2012 BP 1589 EP 1598 PG 10 WC Computer Science, Interdisciplinary Applications; Engineering, Manufacturing; Engineering, Mechanical SC Computer Science; Engineering GA BGU92 UT WOS:000324221200164 ER PT B AU Thompson, D Pebay, P AF Thompson, David Pebay, Philippe GP ASME TI A METHOD FOR INFERRING CONDITIONAL STOCHASTIC FAILURE RATES FROM THE TIME-HISTORY OF OBSERVED FAILURES SO PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 7 LA English DT Proceedings Paper CT ASME Internationl Design Engineering Technical Conferences / Computers and Information in Engineering Conference (IDETC/CIE) CY AUG 28-31, 2011 CL Washington, DC SP Amer Soc Mech Engineers, Design Engn Div, Amer Soc Mech Engineers, Comp & Informat Engn Div AB Observed failures, rather than first principles, are used to estimate fatigue rates probabilistically conditioned on operating conditions. The method developed assumes that a normal random variable may be used to approximate the damage limit (remaining lifetime) of components subjected to cumulative damage and that when a component fails, its damage limit has vanished at a rate proportional to the amount of time spent at each operating condition experienced during its lifetime. By considering differences in cumulative damage between pairs of failed components, we obtain the relative rates at which damage is accumulated for each observed operating condition. When the differences in component lifetimes are dominated by variations in experienced conditions, it is possible to estimate absolute rates. Otherwise, variations in initial damage limits dominate and it is only possible to estimate the mean and variance of this distribution. We demonstrate the procedure on synthetic data, including a test for the dominant source of lifetime variations. C1 [Thompson, David; Pebay, Philippe] Sandia Natl Labs, Livermore, CA 94551 USA. RP Thompson, D (reprint author), Sandia Natl Labs, MS 9152,POB 969, Livermore, CA 94551 USA. EM dcthomp@sandia.gov; pppebay@sandia.gov NR 9 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5484-6 PY 2012 BP 877 EP 885 PG 9 WC Engineering, Manufacturing; Engineering, Mechanical; Nanoscience & Nanotechnology SC Engineering; Science & Technology - Other Topics GA BGY21 UT WOS:000324564200103 ER PT B AU Phinney, LM McKenzie, BB Ohlhausen, JA Buchheit, TE Shul, RJ AF Phinney, Leslie M. McKenzie, Bonnie B. Ohlhausen, James A. Buchheit, Thomas E. Shul, Randy J. GP ASME TI CHARACTERIZATION OF SOI MEMS SIDEWALL ROUGHNESS SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 11 LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID SILICON; ADHESION; SYSTEM AB Deep reactive ion etching (DRIE) of silicon enables high aspect ratio, deep silicon features that can be incorporated into the fabrication of microelectromechanical systems (MEMS) sensors and actuators. The DRIE process creates silicon structures and consists of three steps: conformal polymer deposition, ion sputtering, and chemical etching. The sequential three step process results in sidewalls with roughness that varies with processing conditions. This paper reports the sidewall roughness for DRIE etched MEMS as a function of trench width from 5 gm to 500 mu m for a 125 mu m thick device layer corresponding to aspect ratios from 25 to 0.25. Using a scanning electron microscope (SEM), the surfaces were imaged detecting an upper region exhibiting a scalloping morphology and a rougher lower region exhibiting a curtaining morphology. The height of rougher curtaining region increases linearly with aspect ratio when the etch cleared the entire device layer. The surface roughness for two trench widths: 15 mu m and 100 mu m were further characterized using an atomic force microscope (AFM), and RMS roughness values are reported as a function of height along the surface. The sidewall roughness varies with height and depends on the trench width. C1 [Phinney, Leslie M.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Phinney, LM (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. NR 20 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5497-6 PY 2012 BP 187 EP 193 PG 7 WC Engineering, Mechanical; Nanoscience & Nanotechnology SC Engineering; Science & Technology - Other Topics GA BGX44 UT WOS:000324503800030 ER PT B AU Narumanchi, S DeVoto, D Mihalic, M Popp, T McCluskey, P AF Narumanchi, Sreekant DeVoto, Douglas Mihalic, Mark Popp, Tim McCluskey, Patrick GP ASME TI THERMAL PERFORMANCE AND RELIABILITY OF LARGE-AREA BONDED INTERFACES IN POWER ELECTRONICS PACKAGES SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 11 LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID JOINTS AB In automotive power electronics packages (e.g., insulated gate bipolar transistor [IGBT] packages), conventional polymeric thermal interface materials (TIMs) such as greases, gels, and phase-change materials pose a bottleneck to heat removal and are also associated with reliability concerns. High thermal performance bonded interfaces have become an industry trend. However, due to mismatches in the coefficient of thermal expansion between materials/layers and the resultant thermomechanical stresses, there could be voids and crack formations in these bonded interfaces as well as delaminations, which pose a problem from a reliability standpoint. These defects manifest themselves in increased thermal resistance in the package, which acts as a bottleneck to heat removal from the package. Hence, the objective of this research is to investigate and improve the thermal performance and reliability of novel bonded interface materials for power electronics packaging applications. Thermal performance and reliability of bonds/joints is presented for bonds based on a thermoplastic (polyamide) adhesive with embedded micron-sized carbon fibers, sintered silver (Ag), and conventional lead (Pb)-based solder materials. These materials form a bond between 50.8 mm x 50.8 mm footprint direct-bond-copper (DBC) substrate and copper (Cu) base plate samples. Samples undergo thermal cycling (-40 degrees C to 150 degrees C) for up to 2,000 cycles as an upper limit. Damage occurrence is monitored every 100 temperature cycles by several non-destructive techniques, including steady-state thermal resistance measurement, acoustic microscopy, and high-voltage potential testing. This yields a consistent story on the thermal performance and reliability of large-area joints under accelerated stress conditions. C1 [Narumanchi, Sreekant; DeVoto, Douglas; Mihalic, Mark; Popp, Tim; McCluskey, Patrick] Natl Renewable Energy Lab, Golden, CO USA. RP Narumanchi, S (reprint author), Natl Renewable Energy Lab, Golden, CO USA. EM sreekant.narumanchi@nrel.gov NR 18 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5497-6 PY 2012 BP 837 EP 842 PG 6 WC Engineering, Mechanical; Nanoscience & Nanotechnology SC Engineering; Science & Technology - Other Topics GA BGX44 UT WOS:000324503800122 ER PT B AU Yu, ZZ Feng, ZL Choo, H Vogel, S AF Yu, Zhenzhen Feng, Zhili Choo, Hahn Vogel, Sven GP ASME TI TEXTURE MODIFICATION AND DUCTILITY ENHANCEMENT IN MG ALLOY THROUGH FRICTION STIR PROCESSING SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2011, VOL 3 LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID AZ31 MAGNESIUM ALLOY; MECHANICAL-PROPERTIES; TENSILE BEHAVIOR; HOT-WORKING; GRAIN-SIZE; MICROSTRUCTURE; DEFORMATION; EXTRUSION; EVOLUTION; STRENGTH AB The effects of friction stir processing (FSP) parameters, i.e., rotation and travel rates of the processing tool, on the texture modification and ductility enhancement of an Mg alloy AZ31B were investigated. With the systematic change in processing parameters as a function of the Zener-Hollomon parameter, a transition of different crystallographic texture was observed through neutron diffraction measurement, which correlated well with the changes in deformation and recrystallization mechanism activated during the processing. The variation in the texture leads to dramatic changes in the strength and ductility in the stir zone of the processed Mg plate. A maximum of three-fold increase in the ductility was achieved in the Mg alloy through FSP when the Zener-Hollomon parameter exceeds 10(12) s(-1) which is associated with low rotation speed and high travel speed processing conditions. C1 [Yu, Zhenzhen; Feng, Zhili; Choo, Hahn; Vogel, Sven] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Yu, ZZ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Feng, Zhili/H-9382-2012 OI Feng, Zhili/0000-0001-6573-7933 NR 23 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5489-1 PY 2012 BP 523 EP 527 PG 5 WC Engineering, Manufacturing; Engineering, Mechanical SC Engineering GA BHC52 UT WOS:000324958900058 ER PT B AU Leishear, RA Lee, SY Fowley, MD Poirier, MR Steeper, TJ AF Leishear, Robert A. Lee, Si Y. Fowley, Mark D. Poirier, Michael R. Steeper, Timothy J. GP ASME TI COMPARISON OF EXPERIMENTAL RESULTS TO CFD MODELS FOR BLENDING IN A TANK USING DUAL OPPOSING JETS SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 6, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn AB Research has been completed in a pilot scale, eight foot diameter tank to investigate blending, using a pump with dual opposing jets. The jets re-circulate fluids in the tank to promote blending when fluids are added to the tank. Different jet diameters and different horizontal and vertical orientations of the jets were investigated. In all, eighty five tests were performed both in a tank without internal obstructions and a tank with vertical obstructions similar to a tube bank in a heat exchanger. These obstructions provided scale models of several miles of two inch diameter, serpentine, vertical cooling coils below the liquid surface for a full scale, 1.3 million gallon, liquid radioactive waste storage tank. Two types of tests were performed. One type of test used a tracer fluid, which was homogeneously blended into solution. Data were statistically evaluated to determine blending times for solutions of different density and viscosity, and the blending times were successfully compared to computational fluid dynamics (CFD) models. The other type of test blended solutions of different viscosity. For example, in one test a half tank of water was added to a half tank of a more viscous, concentrated salt solution. In this case, the fluid mechanics of the blending process was noted to significantly change due to stratification of fluids. CFD models for stratification were not investigated. This paper is the fourth in a series of papers resulting from this research (Leishear, et.al. [1- 4]), and this paper documents final test results, statistical analysis of the data, a comparison of experimental results to CFD models, and scale-up of the results to a full scale tank. C1 [Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.; Steeper, Timothy J.] Savannah River Natl Lab, Aiken, SC USA. RP Leishear, RA (reprint author), Savannah River Natl Lab, Aiken, SC USA. NR 14 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5492-1 PY 2012 BP 1 EP 13 PG 13 WC Engineering, Mechanical SC Engineering GA BHC54 UT WOS:000324959400001 ER PT B AU Leishear, RA Fowley, MD Poirier, MR Lee, SY Steeper, TJ AF Leishear, Robert A. Fowley, Mark D. Poirier, Michael R. Lee, Si Y. Steeper, Timothy J. GP ASME TI BLENDING TIME AND VELOCITY VARIATIONS DURING BLENDING IN A TANK USING DUAL OPPOSING JETS SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 6, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn AB Blending times are required for many process industries, and statistical analysis of the measured blending times was used to determine a relationship between CFD (computational fluid dynamics) predictions and experiments. A 95% blending time occurs when tank contents are sufficiently blended to ensure that concentration throughout the tank is within +/- 5% of the total change in concentration. To determine 95% blending times, acid and base tracers were added to an eight foot diameter tank, and the pH data were recorded to monitor blending. The data for six pH probes located throughout the tank were normalized to a range of 0 to 1. Then the blending time was established when the pH converged between 0.95 and 1.05 on the normalized graphs. Evaluation of results from 79 different tests concluded that the maximum blending time occurred randomly at any one of the six pH probes. The research then considered the calculated 95% blending times, which had uncertainties up to more than 100% at a 95% confidence level. However, this uncertainty is considered to be an actual variation in blending time, rather than an experimental error. Not only were there significant variations in the blending times, but there were significant variations in the velocities measured at different points in the blending tank. C1 [Leishear, Robert A.; Fowley, Mark D.; Poirier, Michael R.; Lee, Si Y.; Steeper, Timothy J.] Savannah River Natl Lab, Aiken, SC USA. RP Leishear, RA (reprint author), Savannah River Natl Lab, Aiken, SC USA. NR 8 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5492-1 PY 2012 BP 15 EP 25 PG 11 WC Engineering, Mechanical SC Engineering GA BHC54 UT WOS:000324959400002 ER PT B AU Bamberger, JA Minette, MJ Meyer, PA Fort, JA Baer, EBK AF Bamberger, Judith Ann Minette, Michael J. Meyer, Perry A. Fort, James A. Baer, Ellen B. K. GP ASME TI ASSESSMENT OF PROTOTYPIC AND CLOSED LOOP OPERATION DURING PULSE JET MIXER TESTS WITH NON-COHESIVE SOLIDS TO DEVELOP SCALE-UP RELATIONSHIPS SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 6, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn AB The Hanford Waste Treatment Plant (WTP) in Richland, Washington is applying pulse jet mixer (PJM) technology for slurry mixing applications requiring solids mixing, solids suspension, fluid blending, and release of gases generated by radiolysis and thermal processes. Experiments were conducted to investigate pulse jet mixer performance in two different experimental configurations: one using intermittent flow through the pulse tube with non-prototypic refill and the other with prototypic reciprocating flow. Models developed to predict the critical suspension velocity (U-CS), cloud height, and concentration based on the intermittent flow data. This model under predicted the Ucs condition for data obtained using prototypic reciprocating flow. When an adjustment to the settling velocity was incorporated into the model to address the effects of intermittent flow, the resulting reciprocating flow model more closely matched the experimental data. C1 [Bamberger, Judith Ann; Minette, Michael J.; Fort, James A.; Baer, Ellen B. K.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Bamberger, JA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Judith.bamberger@pnnl.gov; Michael.minette@pnnl.gov NR 27 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5492-1 PY 2012 BP 379 EP 391 PG 13 WC Engineering, Mechanical SC Engineering GA BHC54 UT WOS:000324959400047 ER PT B AU Abdou, A Wendel, M Riemer, B Volpenheini, E Brewster, R AF Abdou, Ashraf Wendel, Mark Riemer, Bernard Volpenheini, Eric Brewster, Robert GP ASME TI Two-Phase Flow Simulations of Protective Gas Layer for Spallation Neutron Source Target SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 6, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID MERCURY; SURFACE AB The Spallation Neutron Source (SNS) is an accelerator-based neutron source at Oak Ridge National Laboratory (ORNL). The nuclear spallation reaction occurs when a proton beam hits liquid mercury. This interaction causes thermal expansion of the liquid mercury which produces high pressure waves. When these pressure waves hit the target vessel wall, cavitation can occur and erode the wall. Research and development efforts at SNS include creation of a vertical protective gas layer between the flowing liquid mercury and target vessel wall to mitigate the cavitation damage erosion and extend the life time of the target. Since mercury is opaque, computational fluid dynamics (CFD) has been used to visualize the general behavior of a protective gas layer arising from various delivery and retention concepts as a guide for design of experimental efforts. Recent advancements in capacity for large scale CFD modeling via the high performance compute systems of ORNL now enable high-fidelity simulation approaching full geometric scale. Accordingly, in this study, CFD simulations of three dimensional, unsteady, turbulent, two-phase flow of helium gas injection in flowing liquid mercury over textured walls are carried out for target design purposes with the commercially available CFD code STARCCM+. The Volume of Fluid (VOF) model is used to track the helium-mercury interface. Different combinations of conical pits and V-shaped straight grooves at different orientations with respect to the gravity vector are simulated at the SNS proton beam window to increase the helium gas holdup. Time integration of predicted helium gas volume fraction over time is done for the design alternatives considered to compare the gas coverage and average thickness of the helium gas layer. C1 [Abdou, Ashraf; Wendel, Mark; Riemer, Bernard] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Abdou, A (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM abdouaa@ornl.gov; wendelmw@ornl.gov; riemerbw@ornl.gov; evolp@us.cd-adapco.com; robertb@us.cd-adapco.com NR 21 TC 0 Z9 0 U1 1 U2 4 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5492-1 PY 2012 BP 421 EP 428 PG 8 WC Engineering, Mechanical SC Engineering GA BHC54 UT WOS:000324959400051 ER PT B AU Yang, XF Zheng, ZC AF Yang, Xiaofan Zheng, Z. Charlie GP ASME TI CONTINUUM/NANO-SCALE SIMULATION OF SURFACE DIFFUSION PROCESS IN FLOW SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 6, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn C1 [Yang, Xiaofan] Pacific Northwest Lab, Richland, WA USA. RP Yang, XF (reprint author), Pacific Northwest Lab, Richland, WA USA. EM xiaofan.yang@gmail.com; zzheng@ku.edu NR 2 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5492-1 PY 2012 BP 1063 EP 1064 PG 2 WC Engineering, Mechanical SC Engineering GA BHC54 UT WOS:000324959400129 ER PT B AU Brake, MR Starr, MJ Segalman, DJ AF Brake, M. R. Starr, M. J. Segalman, D. J. GP ASME TI MODELING CONSTRAINED LAYER FRICTIONAL INTERFACES WITH DISCONTINUOUS BASIS FUNCTIONS SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 7, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID ROTATING FLEXIBLE STRUCTURES; VIBRATORY RESPONSE; DYNAMICS; EXCITATION; REDUCTION; MICROSLIP AB Constrained layer frictional interfaces, such as joints, are prevalent in engineering applications. Because these interfaces are often used in built-up structures, reduced order modeling techniques are utilized for developing simulations of them. One limitation of the existing reduced order modeling techniques, though, is the loss of the local kinematics due to regularization of the frictional interfaces. This paper aims to avoid the use of regularization in the modeling of constrained layer frictional interfaces by utilizing a new technique, the discontinuous basis function method. This method supplements the linear mode shapes of the system with a series of discontinuous basis functions that are used to account for nonlinear forces acting on the system. A symmetric, constrained layer frictional interface is modeled as a continuous system connected to two rigid planes by a series of Iwan elements. This symmetric model is used to test the hypothesis that symmetric problems are not subjected to the range of variability seen in physical structures, which have non-uniform pressure and friction distributions. Insights from solving the symmetric problem are used to consider the case where a non-uniform distribution of friction and pressure exists. C1 [Brake, M. R.; Starr, M. J.; Segalman, D. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brake, MR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mrbrake@sandia.gov NR 32 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5493-8 PY 2012 BP 485 EP 495 PG 11 WC Automation & Control Systems; Engineering, Electrical & Electronic; Engineering, Mechanical SC Automation & Control Systems; Engineering GA BHC46 UT WOS:000324955900053 ER PT B AU Brake, MR Massad, JE Smith, RC Beheshti, B Chowdhary, K Davis, J Wang, S AF Brake, M. R. Massad, J. E. Smith, R. C. Beheshti, B. Chowdhary, K. Davis, J. Wang, S. GP ASME TI UNCERTAINTY ENABLED DESIGN OF AN ACCELERATION SWITCH SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 7, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID IMPROVED NUMERICAL DISSIPATION; LARGE-SCALE SYSTEMS; STRUCTURAL DYNAMICS; THRESHOLD; SENSITIVITY; MODEL AB A mechanical acceleration switch has been developed to synchronize instrumentation during a destructive acceleration test. The tests are of short durations and involve very high velocities and accelerations, and a destructive impact. Therefore, accurately synchronized instrumentation is critical. When the switch detects a desired acceleration time history, the switch closes to complete a circuit for instrument activation. Preliminary tests on the proposed switch have shown that switch-to-switch variations exist due to fabrication and assembly tolerances, and that combinations of variations may lead to a switch that does not respond properly. If the switch does not close at the proper time, improper data may be collected; or, at worst, no data may be collected before destructive impact. In this paper, a nonlinear model of the switch closing dynamics is developed in order to investigate the effect of uncertainty on its operation. In particular, the propagation of uncertainty from the switch parameters to the switch dynamics is quantified, and then the design is optimized such that the operation of the switch is insensitive to the variation and uncertainty. The results of the analysis elucidate the parameters that significantly impact switch operation, quantify the reliability of the existing switch design, and ultimately are used to recommend a design that could significantly improve reliability. C1 [Brake, M. R.; Massad, J. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brake, MR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mrbrake@sandia.gov NR 17 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5493-8 PY 2012 BP 607 EP 616 PG 10 WC Automation & Control Systems; Engineering, Electrical & Electronic; Engineering, Mechanical SC Automation & Control Systems; Engineering GA BHC46 UT WOS:000324955900068 ER PT B AU Brake, MR AF Brake, M. R. GP ASME TI AN ANALYTICAL ELASTIC-PLASTIC CONTACT MODEL SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 7, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID STATIC NORMAL INDENTATION; FORCE-DISPLACEMENT MODEL; FINITE-ELEMENT; RIGID SPHERE; HALF-SPACE; MICROCONTACT MODEL; ROUGH SURFACES; RESTITUTION; COEFFICIENT; FLAT AB This paper presents a new formulation for elastic-plastic contact in the normal direction between two round surfaces that is solely based on material properties and contact geometries. The problem is formulated as three separate domains: the elastic regime, mixed elastic-plastic behavior, and unconstrained (fully plastic) flow. Solutions for the force-displacement relationship in the elastic regime follow from Hertz's classical solution. In the fully plastic regime, two assumptions are made: that there is a uniform pressure distribution and that there is conservation of volume. The force-displacement relationship in the intermediate, mixed elastic-plastic regime is approximated by enforcing continuity between the elastic and fully plastic regimes. Transitions between the three regimes are determined based on empirical quantities: the von Mises yield criterion is used to determine the initiation of mixed elastic-plastic deformation, and Brinell's hardness for the onset of unconstrained flow. Unloading from each of these three regimes is modeled as an elastic process with different radii of curvature based on the regime in which the maximum force occurred. Simulation results explore the relationship between the impact velocity and coefficient of restitution. Further comparisons are made between the model, experimental results found in the literature, and other existing elastic-plastic models. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brake, MR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mrbrake@sandia.gov NR 44 TC 0 Z9 0 U1 1 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5493-8 PY 2012 BP 685 EP 695 PG 11 WC Automation & Control Systems; Engineering, Electrical & Electronic; Engineering, Mechanical SC Automation & Control Systems; Engineering GA BHC46 UT WOS:000324955900078 ER PT B AU Brake, MR Reu, PL VanGoethem, DJ Bejarano, MV Sumali, A AF Brake, M. R. Reu, P. L. VanGoethem, D. J. Bejarano, M. V. Sumali, A. GP ASME TI EXPERIMENTAL VALIDATION OF AN ELASTIC-PLASTIC CONTACT MODEL SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 7, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID FORCE-DISPLACEMENT MODEL; FINITE-ELEMENT; RIGID FLAT; RESIDUAL-STRESS; RESTITUTION; COEFFICIENT; IMPACT; SPHERES; INDENTATION; DEFORMATION AB In many engineered structures and components, impact events frequently occur between sub-components. Numerical models are able to adequately capture the salient features of these events; however, with high fidelity finite element models, an unreasonably large number of elements are needed to accurately model just the elastic regime when arbitrary contact is considered. In order to solve real engineering problems with elastic-plastic impacts in complex or built up systems, an analytical expression is needed to make solutions practical. To this end, a series of experiments are designed to test a new elastic plastic model for impact dynamics. A hard metal ball is attached as the end of a pendulum, and is struck against a relatively compliant metal puck. Digital image analysis is used to measure the displacement and velocity of the metal ball across the impact events. Frictional losses in the system are minimized, and the coefficient of restitution is calculated as a function of velocity. These measurements are used to validate an elastic-plastic impact model, which is further compared to and other models from the literature. Good agreement is found between the new analytical model and the experiments. C1 [Brake, M. R.; Reu, P. L.; VanGoethem, D. J.; Bejarano, M. V.; Sumali, A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brake, MR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mrbrake@sandia.gov NR 40 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5493-8 PY 2012 BP 733 EP 744 PG 12 WC Automation & Control Systems; Engineering, Electrical & Electronic; Engineering, Mechanical SC Automation & Control Systems; Engineering GA BHC46 UT WOS:000324955900083 ER PT B AU Ford, KR Brake, MR VanGoethem, DJ Cobert, A AF Ford, K. R. Brake, M. R. VanGoethem, D. J. Cobert, A. GP ASME TI IMPERFECTION ANALYSIS OF A BISTABLE SHELL SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 7, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID SHALLOW SPHERICAL CAP; POSTBUCKLING BEHAVIOR; ANNULAR POLYNOMIALS; BUCKLING ANALYSIS; ELEMENT-METHOD; CIRCULAR HOLE; VIBRATION; SYSTEMS; PLATES AB Bistable compliant flexures serve as mechanical memory and threshold devices for switches and sensors. One class of bistable compliant flexures is the annular, spherical shell, termed a bistable snap disc. These structures offer flexibility for mechanical memory and threshold devices because large changes in buckling loads can be achieved without significantly modifying the geometry. The sensitivity of these bistable snap discs to imperfections, however, prevents them from withstanding pre-buckling loads predicted by idealized models. A method to incorporate geometric imperfections into an existing finite element mesh of the idealized geometry using a set of orthonormal polynomials, specifically the annular Zernike polynomials, is proposed in this paper. A sensitivity analysis of five terms from the Zernike polynomial expansion is performed with a geometrically nonlinear finite element model to identify their effect on buckling, snap-through, and quasi-static stability. The effects of the perturbations are established by identifying key points on a force-deflection curve and potential energy curve. Results show that the geometric perturbations may account for the discrepancy in buckling between the idealized model and experiments. Error between the experiments and the model with geometric perturbations persist because the actual imperfections of the discs used in the experiments have not yet been characterized, and the finite element model does not account for non-homogeneous material properties and residual stresses. C1 [Ford, K. R.; Brake, M. R.; VanGoethem, D. J.; Cobert, A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brake, MR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mrbrake@sandia.gov NR 45 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5493-8 PY 2012 BP 751 EP 759 PG 9 WC Automation & Control Systems; Engineering, Electrical & Electronic; Engineering, Mechanical SC Automation & Control Systems; Engineering GA BHC46 UT WOS:000324955900085 ER PT B AU Prikhodko, VY Curran, SJ Barone, TL Lewis, SA Storey, JM Cho, K Wagner, RM Parks, JE AF Prikhodko, Vitaly Y. Curran, Scott J. Barone, Teresa L. Lewis, Samuel A. Storey, John M. Cho, Kukwon Wagner, Robert M. Parks, James E., II GP ASME TI DIESEL OXIDATION CATALYST CONTROL OF HYDROCARBON AEROSOLS FROM REACTIVITY CONTROLLED COMPRESSION IGNITION COMBUSTION SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 9 LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn AB Reactivity Controlled Compression Ignition (RCCI) is a novel combustion process that utilizes two fuels with different reactivity to stage and control combustion and enable homogeneous combustion. The technique has been proven experimentally in previous work with diesel and gasoline fuels; low NOx emissions and high efficiencies were observed from RCCI in comparison to conventional combustion. In previous studies on a multi-cylinder engine, particulate matter (PM) emission measurements from RCCI suggested that hydrocarbons were a major component of the PM mass. Further studies were conducted on this multi-cylinder engine platform to characterize the PM emissions in more detail and understand the effect of a diesel oxidation catalyst (DOC) on the hydrocarbon-dominated PM emissions. Results from the study show that the DOC can effectively reduce the hydrocarbon emissions as well as the overall PM from RCCI combustion. The bimodal size distribution of PM from RCCI is altered by the DOC which reduces the smaller mode 10 nm size particles. C1 [Prikhodko, Vitaly Y.; Curran, Scott J.; Barone, Teresa L.; Lewis, Samuel A.; Storey, John M.; Cho, Kukwon; Wagner, Robert M.; Parks, James E., II] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Prikhodko, VY (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 9 TC 0 Z9 0 U1 0 U2 4 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5495-2 PY 2012 BP 273 EP 278 PG 6 WC Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA BGZ58 UT WOS:000324716700028 ER PT B AU Smith, C Schwieder, D Bjornard, T AF Smith, Curtis Schwieder, David Bjornard, Trond GP ASME TI AUGMENTING PROBABILISTIC RISK ASSESSMENT WITH MALEVOLENT INITIATORS SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 9 LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn AB As commonly practiced, the use of probabilistic risk assessment (PRA) in nuclear power plants only considers accident initiators such as natural hazards, equipment failures, and human error. Malevolent initiators are ignored in PRA, but are considered the domain of physical security, which uses vulnerability assessment based on an officially specified threat (design basis threat). This work explores the implications of augmenting and extending existing PRA models by considering new and modified scenarios resulting from malevolent initiators. Teaming the augmented PRA models with conventional vulnerability assessments can cost-effectively enhance security of a nuclear power plant. This methodology is useful for operating plants, as well as in the design of new plants. For the methodology, we have proposed an approach that builds on and extends the practice of PRA for nuclear power plants for security-related issues. Rather than only considering "random" failures, we demonstrated a framework that is able to represent and model malevolent initiating events and associated plant impacts. C1 [Smith, Curtis; Schwieder, David; Bjornard, Trond] Idaho Natl Lab, Idaho Falls, ID USA. RP Smith, C (reprint author), Idaho Natl Lab, Idaho Falls, ID USA. NR 7 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5495-2 PY 2012 BP 489 EP 498 PG 10 WC Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA BGZ58 UT WOS:000324716700054 ER PT B AU Dryepondt, S Mitchell, RD Pint, BA AF Dryepondt, Sebastien Mitchell, Ryan D. Pint, Bruce A. GP ASME TI EFFECT OF HUMIDITY LEVEL ON THE CREEP PROPERTIES OF ALLOY 903 AT 650 degrees C SO PROCEEDINGS OF THE ASME TURBO EXPO 2012, VOL 5 LA English DT Proceedings Paper CT ASME Turbo Expo 2012 CY JUN 11-15, 2012 CL Copenhagen, DENMARK SP Int Gas Turine Inst ID EMBRITTLEMENT; OXYGEN AB Alloy 903 (FeNiCo+Nb) is currently used for certain components in industrial gas turbines for low coefficient of thermal expansion applications. A variance in creep behavior for material quality control evaluations suggested a possible effect of moisture level on stress rupture properties. To investigate the role of water vapor on the creep properties of alloy 903, controlled laboratory experiments were conducted at 650 degrees C with 0 to 100% relative humidity. The water content was controlled by flowing thy air through a water bath at a constant temperature. A significant decrease of lifetime was observed in the presence of water vapor which is likely related to grain boundary embrittlement by the inward diffusion of hydrogen. The increase of the microstructure grain aspect ratio by different forging processes generally improved the rupture lifetime and elongation in air. However, all specimens had reduced lifetime in the presence of water vapor despite the microstructure grain aspect ratios. C1 [Dryepondt, Sebastien; Pint, Bruce A.] Oak Ridge Natl Lab, Knoxville, TN 37831 USA. RP Dryepondt, S (reprint author), Oak Ridge Natl Lab, Knoxville, TN 37831 USA. RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 NR 15 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4471-7 PY 2012 BP 119 EP 127 PG 9 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Engineering; Materials Science; Metallurgy & Metallurgical Engineering GA BHC48 UT WOS:000324956100013 ER PT B AU Alvin, MA Zhu, D Klotz, K McMordie, B Warnes, B Gleeson, B Kang, B Tannenbaum, J AF Alvin, M. A. Zhu, D. Klotz, K. McMordie, B. Warnes, B. Gleeson, B. Kang, B. Tannenbaum, J. GP ASME TI DEVELOPMENT AND ASSESSMENT OF COATINGS FOR FUTURE POWER GENERATION TURBINES SO PROCEEDINGS OF THE ASME TURBO EXPO 2012, VOL 5 LA English DT Proceedings Paper CT ASME Turbo Expo 2012 CY JUN 11-15, 2012 CL Copenhagen, DENMARK SP Int Gas Turine Inst AB The NETL-Regional University Alliance (RUA) continues to advance technology development critical to turbine manufacturer efforts for achieving DOE Fossil Energy (FE's) Advanced Turbine Program Goals. In conjunction with NETL, Coatings for Industry (CFI), the University of Pittsburgh, NASA GRC, and Corrosion Control Inc., efforts have been focused on development of composite thermal barrier coating (TBC) architectures that consist of an extreme temperature coating, a commercially applied 7-8 YSZ TBC, a reduced cost bond coat, and a diffusion barrier coating that are applied to nickel-based superalloys or single crystal airfoil substrate materials for use at temperatures >= 1450 degrees C (>= 2640 degrees F). Additionally, construction of a unique, high temperature (similar to 1100 degrees C; similar to 2010 degrees F), bench-scale, micro-indentation, non-destructive (NDE) test facility at West Virginia University (WVU) was completed to experimentally address in-situ changes in TBC stiffness during extended cyclic oxidation exposure of coated single crystal coupons in air or steam-containing environments. The efforts and technical accomplishments in these areas are presented in the following sections of this paper. C1 [Alvin, M. A.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Alvin, MA (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. NR 19 TC 0 Z9 0 U1 1 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4471-7 PY 2012 BP 163 EP 173 PG 11 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Engineering; Materials Science; Metallurgy & Metallurgical Engineering GA BHC48 UT WOS:000324956100018 ER PT B AU Conboy, T Wright, S Pasch, J Fleming, D Rochau, G Fuller, R AF Conboy, Thomas Wright, Steven Pasch, James Fleming, Darryn Rochau, Gary Fuller, Robert GP ASME TI PERFORMANCE CHARACTERISTICS OF AN OPERATING SUPERCRITICAL CO2 BRAYTON CYCLE SO PROCEEDINGS OF THE ASME TURBO EXPO 2012, VOL 5 LA English DT Proceedings Paper CT ASME Turbo Expo 2012 CY JUN 11-15, 2012 CL Copenhagen, DENMARK SP Int Gas Turine Inst AB Supercritical CO2 (S-CO2) power cycles offer the potential for better overall plant economics due to their high power conversion efficiency over a moderate range of heat source temperatures, compact size, and potential use of standard materials in construction [1,2,3,4]. Sandia National Labs (Albuquerque, NM, US) and the US Department of Energy (DOE-NE) are in the process of constructing and operating a megawatt-scale supercritical CO2 split-flow recompression Brayton cycle with contractor Barber-Nichols Inc. [5] (Arvada, CO, US). This facility can be counted among the first and only S-CO2 power producing Brayton cycles anywhere in the world. The Sandia-DOE test-loop has recently concluded a phase of construction that has substantially upgraded the facility by installing additional heaters, a second recuperating printed circuit heat exchanger (PCHE), more waste heat removal capability, higher capacity load banks, higher temperature piping, and more capable scavenging pumps to reduce windage within the turbomachinery. With these additions, the loop has greatly increased its potential for electrical power generation -according to models, as much as 80 kWe per generator depending on loop configuration -- and its ability to reach higher temperatures. To date, the loop has been primarily operated as a simple recuperated Brayton cycle, meaning a single turbine, single compressor, and undivided flow paths. In this configuration, the test facility has begun to realize its upgraded capacity by achieving new records in turbine inlet temperature (650 F/615K), shaft speed (52,000 rpm), pressure ratio (1.65), flow rate (2.7 kg/s), and electrical power generated (20kWe). Operation at higher speeds, flow rates, pressures and temperatures has allowed a more revealing look at the performance of essential power cycle components in a supercritical CO2 working fluid, including recuperation and waste heat rejection heat exchangers (PCHEs), turbines and compressors, bearings and seals, as well as auxiliary equipment. In this report, performance of these components to date will be detailed, including a discussion of expected operational limits as higher speeds and temperatures are approached. C1 [Conboy, Thomas; Wright, Steven; Pasch, James; Fleming, Darryn; Rochau, Gary] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Conboy, T (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM tmconbo@sandia.gov NR 9 TC 0 Z9 1 U1 1 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4471-7 PY 2012 BP 941 EP 952 PG 12 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Engineering; Materials Science; Metallurgy & Metallurgical Engineering GA BHC48 UT WOS:000324956100095 ER PT B AU Fleming, D Holschuh, T Conboy, T Rochau, G Fuller, R AF Fleming, Darryn Holschuh, Thomas Conboy, Tom Rochau, Gary Fuller, Robert GP ASME TI Scaling Considerations for a Multi-Megawatt Class Supercritical CO2 Brayton Cycle and Path Forward for Commercialization SO PROCEEDINGS OF THE ASME TURBO EXPO 2012, VOL 5 LA English DT Proceedings Paper CT ASME Turbo Expo 2012 CY JUN 11-15, 2012 CL Copenhagen, DENMARK SP Int Gas Turine Inst AB Small-scale supercritical CO2 demonstration loops are successful at identifying the important technical issues that one must face in order to scale up to larger power levels. The Sandia National Laboratories (Sandia) Supercritical CO2 Brayton cycle test loops are identifying technical needs to scale the technology to commercial power levels such as 10 MWe. The small demonstration loops provide a scalable approach to identify cost, technical hurdles, and future commercialization plans of commercial applications. The small size of the Sandia 1 MWth loop has demonstration of the split flow loop efficiency and effectiveness of the Printed Circuit Heat Exchangers (PCHEs) leading to the design of a fully recuperated, split flow, supercritical CO2 Brayton cycle demonstration system. However there were many problems that were encountered such as; the high rotational speeds in these units identified the need to address bearing, seals, thermal boundaries, and motor controller problems to prove a reliable power source in the 300 kWe range. Although these issues were anticipated in smaller demonstration units, we also understood that commercially scaled hardware would eliminate these problems caused by high rotational speeds at small scale. The economic viability and development of the future scalable 10 MW, solely depends on the interest of DOE and private industry. The Intellectual Property collected by Sandia proves that the 10 MWe Supercritical CO2 power conversion loop to be very beneficial when coupled to a 20 MWth heat source (either solar, geothermal, fossil, or nuclear). This paper will identify a commercialization plan, as well as, a roadmap from the simple 1 MW th supercritical CO2 development loop to a power producing 10 MWe supercritical CO2 Brayton loop C1 [Fleming, Darryn; Holschuh, Thomas; Conboy, Tom; Rochau, Gary] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Fleming, D (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 0 TC 0 Z9 1 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4471-7 PY 2012 BP 953 EP 960 PG 8 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Engineering; Materials Science; Metallurgy & Metallurgical Engineering GA BHC48 UT WOS:000324956100096 ER PT B AU Turchi, CS Ma, ZW Dyreby, J AF Turchi, Craig S. Ma, Zhiwen Dyreby, John GP ASME TI SUPERCRITICAL CARBON DIOXIDE POWER CYCLE CONFIGURATIONS FOR USE IN CONCENTRATING SOLAR POWER SYSTEMS SO PROCEEDINGS OF THE ASME TURBO EXPO 2012, VOL 5 LA English DT Proceedings Paper CT ASME Turbo Expo 2012 CY JUN 11-15, 2012 CL Copenhagen, DENMARK SP Int Gas Turine Inst AB Concentrating Solar Power (CSP) plants utilize oil, molten salt or steam as the heat transfer fluid (HTF) to transfer solar energy to the power block. These fluids have properties that limit plant performance; for example, the synthetic oil and molten salt have upper temperature limits of approximately 390 degrees C and 565 degrees C, respectively. While direct steam generation has been tested, it requires complex controls and has limited options for integration of thermal energy storage. Use of carbon dioxide as the HTF and power cycle working fluid offers the potential to increase thermal cycle efficiency while maintaining simplicity of operation and thermal storage. options. Supercritical CO2 (s-CO2) operated in a closed-loop recompressidn Brayton cycle offers the potential of higher cycle efficiency versus superheated or supercritical steam cycles at temperatures relevant for CSP applications. Braytoncycle systems using s-CO2 have smaller weight and volume, lower thermal mass, and less complex power blocks versus Rankine cycles due to the higher density of the fluid and simpler cycle design. Many s-CO2 Brayton power cycle configurations have been proposed and studied for nuclear applications; the most promising candidates include recompression, precompression, and partial cooling cycles. Three factors are important for incorporating s-CO2 into CSP plants: superior performance vs. steam Rankine cycles, ability to integrate thermal energy storage, and dry-cooling. This paper will present air-cooled s-CO2 cycle configurations specifically selected for a CSP application. The systems will consider 10-MW power blocks that are tower-mounted with an s-CO2 HTF and 100-MW, ground-mounted s-CO2 power blocks designed to receive molten salt HTF from a power tower. C1 [Turchi, Craig S.; Ma, Zhiwen] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Turchi, CS (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM craig.turchi@nrel.gov; zhiwen.ma@nrel.gov; jjdyreby@wisc.edu NR 16 TC 2 Z9 2 U1 1 U2 10 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4471-7 PY 2012 BP 967 EP 973 PG 7 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Engineering; Materials Science; Metallurgy & Metallurgical Engineering GA BHC48 UT WOS:000324956100098 ER PT S AU Galbraith, AE Brumby, SP Chartrand, R AF Galbraith, Amy E. Brumby, Steven P. Chartrand, Rick GP IEEE TI Simulating vision through time: Hierarchical, sparse models of visual cortex for motion imagery SO 2012 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR) SE IEEE Applied Imagery Pattern Recognition Workshop LA English DT Proceedings Paper CT IEEE Applied Imagery Pattern Recognition Workshop (AIPR) CY OCT 09-11, 2012 CL Washington, DC SP IEEE ID REPRESENTATION; RECONSTRUCTION; MINIMIZATION; SCENE AB Efficient pattern recognition in motion imagery has become a growing challenge as the number of video sources proliferates worldwide. Historically, automated analysis of motion imagery, such as object detection, classification and tracking, has been accomplished using hand-designed feature detectors. Though useful, these feature detectors are not easily extended to new data sets or new target categories since they are often task specific, and typically require substantial effort to design. Rather than hand-designing filters, recent advances in the field of image processing have resulted in a theoretical framework of sparse, hierarchical, learned representations that can describe video data of natural scenes at many spatial and temporal scales and many levels of object complexity. These sparse, hierarchical models learn the information content of imagery and video from the data itself and lead to state-of-the-art performance and more efficient processing. Processing efficiency is important as it allows scaling up of research to work with dataset sizes and numbers of categories approaching real-world conditions. We now describe recent work at Los Alamos National Laboratory developing hierarchical sparse learning computer vision models that can process high definition color video in real time. We present preliminary results extending our prior work on object classification in still imagery [1] to discovery of useful features at different time scales in motion imagery for detection, classification and tracking of objects. C1 [Galbraith, Amy E.; Brumby, Steven P.; Chartrand, Rick] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Galbraith, AE (reprint author), Los Alamos Natl Lab, Mailstop B244, Los Alamos, NM 87545 USA. EM amyg@lanl.gov; brumby@lanl.gov; rickc@lanl.gov NR 49 TC 0 Z9 0 U1 1 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1550-5219 BN 978-1-4673-4558-3; 978-1-4673-4556-9 J9 IEEE APP IMG PAT PY 2012 PG 8 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BGV67 UT WOS:000324312300012 ER PT S AU Moody, DI Brumby, SP Rowland, JC Gangodagamage, C AF Moody, Daniela I. Brumby, Steven P. Rowland, Joel C. Gangodagamage, Chandana GP IEEE TI Unsupervised Land Cover Classification in Multispectral Imagery with Sparse Representations on Learned Dictionaries SO 2012 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR) SE IEEE Applied Imagery Pattern Recognition Workshop LA English DT Proceedings Paper CT IEEE Applied Imagery Pattern Recognition Workshop (AIPR) CY OCT 09-11, 2012 CL Washington, DC SP IEEE DE learned dictionaries; sparse approximation; unsupervised classification; undercomplete ID NATURAL IMAGES; VEGETATION; CANADA; ALASKA AB Techniques for automated feature extraction, including neuroscience-inspired machine vision, are of current interest in the areas of climate change monitoring, change detection, and Land Use/Land Cover classification using satellite image data. We describe an approach for automatic classification of land cover in multispectral satellite imagery of the Arctic using sparse representations over learned dictionaries. We demonstrate our method using DigitalGlobe Worldview-2 visible/near infrared high spatial resolution imagery. We use a Hebbian learning rule to build spectral-textural dictionaries that are adapted to the data. We learn our dictionaries from millions of overlapping image patches and then use a pursuit search to generate sparse classification features. These sparse representations of pixel patches are used to perform unsupervised k-means clustering into land-cover categories. Our approach combines spectral and spatial textural characteristics to detect geologic, vegetative, and hydrologic features. We compare our technique to standard remote sensing classification algorithms. Our results suggest that neuroscience-based models are a promising approach to practical pattern recognition problems in remote sensing, even for datasets using spectral bands not found in natural visual systems. C1 [Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; Gangodagamage, Chandana] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Moody, DI (reprint author), Los Alamos Natl Lab, MS D436, Los Alamos, NM 87545 USA. NR 32 TC 0 Z9 0 U1 3 U2 8 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1550-5219 BN 978-1-4673-4558-3; 978-1-4673-4556-9 J9 IEEE APP IMG PAT PY 2012 PG 10 WC Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BGV67 UT WOS:000324312300002 ER PT B AU Van Valkenburg, T Tepley, D Holmes, R AF Van Valkenburg, Taunia Tepley, Daniel Holmes, Rick GP ASME TI NQA-1 REQUIREMENTS FOR COMMERCIAL GRADE ITEM ACCEPTANCE SO PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING AND THE ASME 2012 POWER CONFERENCE - 2012, VOL 1 LA English DT Proceedings Paper CT 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference (ICONE20-POWER2012) CY JUL 30-AUG 03, 2012 CL Anaheim, CA SP Amer Soc Mech Engineers, Nucl Engn Div, Japan Soc Mech Engineers, Chinese Nucl Soc, Int Atom Energy Agcy, Canadian Nucl Soc, European Nucl Soc, Soc Nucl Mexicana, Nucl Soc Slovenia, Atom Energy Soc Japan, Austrian Nucl Soc, Canadian Standard Assoc DE ASME NQA-1; Commercial Grade; CMRR; LANL AB Most of the products and services used in industry, commerce, and highly critical and hazardous fields such as those associated with the nuclear enterprise must and do rely on commercial grade items and services to achieve fruition. The ASME has established criteria within the ASME Standards for competent review, testing, selection and utilization of such commercial items and services. Since these items and services are essential for achieving the requirements for function, operation and safety understanding and utilization of these Standards and similar codes and regulations is a requirement for U.S. industry. C1 [Van Valkenburg, Taunia; Tepley, Daniel; Holmes, Rick] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Van Valkenburg, T (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM tauniav@lanl.gov; djt@lanl.gov; raholmes@lanl.gov NR 4 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4495-3 PY 2012 BP 175 EP 179 PG 5 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BGU19 UT WOS:000324149200022 ER PT B AU Bahn, CB Bakhtiari, S Park, J Majumdar, S AF Bahn, Chi Bum Bakhtiari, Sasan Park, Jangyul Majumdar, Saurin GP ASME TI MANUFACTURING STRESS CORROSION CRACKING TUBE SPECIMENS FOR EDDY CURRENT TECHNIQUE EVALUATION SO PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING AND THE ASME 2012 POWER CONFERENCE - 2012, VOL 1 LA English DT Proceedings Paper CT 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference (ICONE20-POWER2012) CY JUL 30-AUG 03, 2012 CL Anaheim, CA SP Amer Soc Mech Engineers, Nucl Engn Div, Japan Soc Mech Engineers, Chinese Nucl Soc, Int Atom Energy Agcy, Canadian Nucl Soc, European Nucl Soc, Soc Nucl Mexicana, Nucl Soc Slovenia, Atom Energy Soc Japan, Austrian Nucl Soc, Canadian Standard Assoc DE steam generator tube; stress corrosion cracking; eddy current technique; crack specimens AB To detect degradation in steam generator (SG) tubes, periodic inspection using non-destructive examination techniques, such as an eddy current testing, is a common practice. Therefore, it is critical to evaluate and validate the reliability of the eddy current technique for ensuring the structural integrity of the SG tubes. The eddy current technique could be evaluated by comparing the data estimated by the eddy current with the destructive examination data of field cracks, which would be both costly and labor intensive. A viable alternative to pulled tube data is to manufacture crack specimens that closely represent actual field cracks in laboratory environments. A crack manufacturing method that can be conducted at room temperature and atmospheric pressure conditions is proposed. The method was applied to manufacture different types of stress corrosion cracking (SCC) specimens: axial outer-diameter (OD) SCC for straight tubes, circumferential ODSCC and primary water SCC (PWSCC) at hydraulic expansion transition regions, axial PWSCC at the apex and tangential regions of U-bend tubes. To help the growth of SCC into the tube, corrosive chemicals (sodium tetrathionate) and tensile stress were applied. Eddy current and destructive examination data for SCC specimens were compared with the available field crack data to determine whether those SCC specimens are representative. It was determined that the proposed method could manufacture the representative crack specimens. C1 [Bahn, Chi Bum; Bakhtiari, Sasan; Park, Jangyul; Majumdar, Saurin] Argonne Natl Lab, Lemont, IL USA. RP Bahn, CB (reprint author), Argonne Natl Lab, Lemont, IL USA. NR 24 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4495-3 PY 2012 BP 619 EP 628 PG 10 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BGU19 UT WOS:000324149200076 ER PT B AU Van Valkenburg, T Holmes, R Sandquist, G AF Van Valkenburg, Taunia Holmes, Rick Sandquist, Gary GP ASME TI CMRR QA APPLICATION AND GRADED APPROACH SO PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING AND THE ASME 2012 POWER CONFERENCE - 2012, VOL 4 LA English DT Proceedings Paper CT 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference (ICONE20-POWER2012) CY JUL 30-AUG 03, 2012 CL Anaheim, CA SP Amer Soc Mech Engineers, Nucl Engn Div, Japan Soc Mech Engineers, Chinese Nucl Soc, Int Atom Energy Agcy, Canadian Nucl Soc, European Nucl Soc, Soc Nucl Mexicana, Nucl Soc Slovenia, Atom Energy Soc Japan, Austrian Nucl Soc, Canadian Standard Assoc DE ASME; NQA-1; CMRR; Graded Approach AB The Los Alamos National Laboratory Chemical-Metallurgical Research Replacement (CMRR) Project Quality Assurance (QA) Program was developed to ensure that ASME/NQA-1 is applied as necessary to ensure quality work using a graded approach. Using this systematic application and the graded approach method ensure that nuclear safety is achieved in the most cost-effective manner for CMRR. The CMRR Project QA Program embodies two levels of application. First, the general nature of the work determines the general applicability of requirements. Second, the Program provides for the determination of the applicability of requirements based on the importance of the work, defined by whether or not it is quality-affecting work. Once the general and specific applicability of requirements are determined, then grading is performed. Grading is the process of ensuring that levels of analyses, documentation, and actions used to comply with requirements are commensurate with (a) the relative importance to safety, safeguards, and security; (b) the magnitude of any hazard involved; (c) the life-cycle stage of a facility or item; (d) the programmatic mission of a facility; (e) the particular characteristics of a facility or item; (f) the relative importance to radiological and nonradiological hazards; and (g) any other relevant factors. The CMRR Project implements grading by identifying critical items, and specifying critical characteristics and related controls in design output documents. For safety software, a grading process is also used and levels are used to select and implement applicable software quality work activities to ensure that safety software performs its intended functions. C1 [Van Valkenburg, Taunia; Holmes, Rick] Los Alamos Natl Lab, Los Alamos, NM USA. RP Van Valkenburg, T (reprint author), Los Alamos Natl Lab, Los Alamos, NM USA. NR 2 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4498-4 PY 2012 BP 153 EP 156 PG 4 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BGU24 UT WOS:000324153200016 ER PT B AU Paviet-Hartmann, P Akbarzadeh, M AF Paviet-Hartmann, Patricia Akbarzadeh, Mansour GP ASME TI EDUCATION AND TRAINING IN RADIOCHEMISTRY - THE NAMP INITIATIVE SO PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING AND THE ASME 2012 POWER CONFERENCE - 2012, VOL 4 LA English DT Proceedings Paper CT 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference (ICONE20-POWER2012) CY JUL 30-AUG 03, 2012 CL Anaheim, CA SP Amer Soc Mech Engineers, Nucl Engn Div, Japan Soc Mech Engineers, Chinese Nucl Soc, Int Atom Energy Agcy, Canadian Nucl Soc, European Nucl Soc, Soc Nucl Mexicana, Nucl Soc Slovenia, Atom Energy Soc Japan, Austrian Nucl Soc, Canadian Standard Assoc AB In 2009, the nuclear industry employed approximately 120,000 people. Nearly 38 percent of this work force will be eligible to retire within the next five years. To maintain current levels, the industry will need to hire approximately 25,000 more workers by 2015 [1]. Given that the current radiochemistry workforce is approaching the age for retirement and that a limited number of universities in the United States (U.S.) provides radiochemistry curriculum, this country is faced with a growing demand for the education and training of scientists in the radiochemistry arena. Furthermore, it is critical for the U.S. to maintain global leadership in the next generation of safe nuclear energy technology from both a national security and an environmental perspective. This will require a robust program that focuses entirely on educating and training the next generation of radiochemists in subjects such as radioanalysis of actinides and radioelements not only in the environment, but also in medium pertinent to the back end of the nuclear fuel cycle; speciation of radionuclides; detection methods; safeguards, etc. Therefore, the National Analytical Management Program (NAMP) has organized a subcommittee focused on training and education in radiochemistry [1]. Through the efforts of this subcommittee, NAMP has established collaborative associations to foster the exchange of scientific and technical information with professors in radiochemistry programs at different universities. This paper presents our accomplishments and highlights our plans for the development of a curriculum for an intermediate radiochemistry course in cooperation with the U.S. Environmental Protection Agency (EPA). Short (2-hour) webinar presentations on specific radiochemistry topics have been developed and will be offered as interactive on-line conferences. The webinars will be recorded and archived to become a library or collection of seminars for on-line access from the NAMP website. C1 [Paviet-Hartmann, Patricia] Idaho Natl Lab, Idaho Falls, ID 83402 USA. RP Paviet-Hartmann, P (reprint author), Idaho Natl Lab, 995 Univ Pl, Idaho Falls, ID 83402 USA. EM Patricia.Paviet-Hartmann@inl.gov; Mansour.Akbarzadeh@wipp.ws NR 5 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4498-4 PY 2012 BP 247 EP 251 PG 5 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BGU24 UT WOS:000324153200028 ER PT B AU Merzari, E Gohar, Y AF Merzari, Elia Gohar, Yousry GP ASME TI NUMERICAL SIMULATION OF A COMPLETELY PASSIVE SPENT FUEL POOL: LESSONS LEARNED SO PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING AND THE ASME 2012 POWER CONFERENCE - 2012, VOL 4 LA English DT Proceedings Paper CT 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference (ICONE20-POWER2012) CY JUL 30-AUG 03, 2012 CL Anaheim, CA SP Amer Soc Mech Engineers, Nucl Engn Div, Japan Soc Mech Engineers, Chinese Nucl Soc, Int Atom Energy Agcy, Canadian Nucl Soc, European Nucl Soc, Soc Nucl Mexicana, Nucl Soc Slovenia, Atom Energy Soc Japan, Austrian Nucl Soc, Canadian Standard Assoc ID NATURAL-CONVECTION; THERMOSIPHON; STABILITY; MODEL AB As part of the design and safety analyses of the KIPT accelerator driven subcritical assembly system of Ukraine, a passive cooled spent fuel pool has been conceived, designed and analyzed numerically. The total decay power of the pool is low and The maximum heat load is 0.5 kW. Air cooling of the spent fuel pool tank through a natural convection thermosiphon is deemed sufficient to provide sufficiently low temperatures. Natural convection of the water within the tank removes the decay heat from the fuel elements to the tank surface. The present work discusses the numerical simulations of such facility by the means of CFD. While the system has low power and it is relatively simple, it poses significant challenges for the CFD simulations. In fact the presence of two natural convection patterns is a source of numerical instability at such low power. These issues and the obtained solutions are discussed in this paper. Since the problem (the simulation of two coupled natural convection systems) is general and likely to be of significant relevance to the design of future power plants, this paper is targeted to a broader audience. Rather than the specific design the focus will be on the theoretical and the practical problems involved with this kind of simulations. The problem is analyzed theoretically and numerically. For CFD simulations, the range of meshes used ranges from 1 million points to 40 million points. Several turbulence models and wall modeling approaches have been tried and tested. Several set of simulations have been performed: sets of simplified simulations considering only the external air thermo-siphon assuming a constant heat flux at the tank wall as well as a set of simulations of the coupled system using a porous medium approach in the fuel tank. All simulations provided consistent predictions and helped confirm that the temperature within the pool is below boiling point. C1 [Merzari, Elia; Gohar, Yousry] Argonne Natl Lab, Nucl Engn Div, Lemont, IL USA. RP Merzari, E (reprint author), Argonne Natl Lab, Nucl Engn Div, Lemont, IL USA. NR 7 TC 0 Z9 0 U1 2 U2 8 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4498-4 PY 2012 BP 553 EP 561 PG 9 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BGU24 UT WOS:000324153200066 ER PT B AU Akers, DW Harvego, EA AF Akers, Douglas W. Harvego, Edwin A. GP ASME TI EVALUATION OF A METHOD FOR REMOTE DETECTION OF FUEL RELOCATION OUTSIDE THE ORIGINAL CORE VOLUMES OF FUKUSHIMA REACTOR UNITS 1-3 SO PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING AND THE ASME 2012 POWER CONFERENCE - 2012, VOL 5 LA English DT Proceedings Paper CT 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference (ICONE20-POWER2012) CY JUL 30-AUG 03, 2012 CL Anaheim, CA SP Amer Soc Mech Engineers, Nucl Engn Div, Japan Soc Mech Engineers, Chinese Nucl Soc, Int Atom Energy Agcy, Canadian Nucl Soc, European Nucl Soc, Soc Nucl Mexicana, Nucl Soc Slovenia, Atom Energy Soc Japan, Austrian Nucl Soc, Canadian Standard Assoc AB This paper presents the results of a study to evaluate the feasibility of remotely detecting and quantifying fuel relocation from the core to the lower head, and to regions outside the reactor vessel primary containment of the Fukushima 1-3 reactors. The goals of this study were to determine measurement conditions and requirements, and to perform initial radiation transport sensitivity analyses for several potential measurement locations inside the reactor building. The radiation transport sensitivity analyses were performed based on reactor design information for boiling water reactors (BWRs) similar to the Fukushima reactors, ORIGEN2 analyses of 3-cycle BWR fuel inventories, and data on previously molten fuel characteristics from TMI- 2. A 100 kg mass of previously molten fuel material located on the lower head of the reactor vessel was chosen as a fuel interrogation sensitivity target. Two measurement locations were chosen for the transport analyses, one inside the drywell and one outside the concrete biological shield surrounding the drywell. Results of these initial radiation transport analyses indicate that the 100 kg of previously molten fuel material may be detectable at the measurement location inside the drywell, but that it is highly unlikely that any amount of fuel material inside the reactor pressure vessel will be detectable from a location outside the concrete biological shield surrounding the drywell. Three additional fuel relocation scenarios were also analyzed to assess detection sensitivity for varying amount of relocated material in the lower head of the reactor vessel, in the control rods perpendicular to the detector system, and on the lower head of the drywell. Results of these analyses along with an assessment of background radiation effects and a discussion of measurement issues are included in the paper. C1 [Akers, Douglas W.; Harvego, Edwin A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Akers, DW (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 2 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4499-1 PY 2012 BP 687 EP 693 PG 7 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BGU25 UT WOS:000324153400085 ER PT B AU Nie, JR Braverman, JI Hofmayer, CH Choun, YS Kim, MK Choi, IK AF Nie, Jinsuo R. Braverman, Joseph I. Hofmayer, Charles H. Choun, Young-Sun Kim, Min Kyu Choi, In-Kil GP ASME TI SEISMIC FRAGILITY ANALYSIS OF A CONDENSATE STORAGE TANK WITH MULTIPLE UNCERTAIN DEGRADATION SCENARIOS SO PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING AND THE ASME 2012 POWER CONFERENCE - 2012, VOL 5 LA English DT Proceedings Paper CT 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference (ICONE20-POWER2012) CY JUL 30-AUG 03, 2012 CL Anaheim, CA SP Amer Soc Mech Engineers, Nucl Engn Div, Japan Soc Mech Engineers, Chinese Nucl Soc, Int Atom Energy Agcy, Canadian Nucl Soc, European Nucl Soc, Soc Nucl Mexicana, Nucl Soc Slovenia, Atom Energy Soc Japan, Austrian Nucl Soc, Canadian Standard Assoc AB The Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory (BNL) are continuing a collaborative effort to achieve a better understanding of the effects of aging on the performance of structures and passive components (SPCs) in nuclear power plants (NPPs). This paper presents a seismic fragility analysis of a condensate storage tank (CST) with multiple degradation scenarios that are treated in a non-perfectly correlated manner. The analysis utilizes a set of optimum Latin Hypercube samples to characterize the deterioration behavior of the fragility capacity as a function of age-related degradations. This study is an addition to the previous study summarized in an ICONE19 paper entitled "Seismic Fragility Analysis of a Degraded Condensate Storage Tank" [1], which considered individual degradation scenarios and multiple degradations occurring in a perfectly correlated manner. C1 [Nie, Jinsuo R.; Braverman, Joseph I.; Hofmayer, Charles H.] Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11973 USA. RP Nie, JR (reprint author), Brookhaven Natl Lab, Energy Sci & Technol Dept, Upton, NY 11973 USA. EM jnie@bnl.gov NR 8 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4499-1 PY 2012 BP 761 EP 766 PG 6 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BGU25 UT WOS:000324153400092 ER PT S AU Wendel, M Riemer, B Abdou, A AF Wendel, Mark Riemer, Bernard Abdou, Ashraf GP ASME TI Measurements of Gas Bubble Size Distributions in Flowing Liquid Mercury SO PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING, VOL 2: FORA SE ASME Fluids Engineering Division Summer Meeting LA English DT Proceedings Paper CT ASME Fluids Engineering Division Summer Meeting (FEDSM) CY JUL 08-12, 2012 CL Rio Grande, PR SP ASME, Fluids Engn Div ID TARGET AB Pressure waves created in liquid mercury pulsed spallation targets have been shown to induce cavitation damage on the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, measuring such a population in mercury is difficult since it is opaque and the mercury is involved in a turbulent flow. Ultrasonic measurements have been attempted on these types of flows, but the flow noise can interfere with the measurement, and the results are unverifiable and often unrealistic. Recently, a flow loop was built and operated at Oak Ridge National Labarotory to assess the capability of various bubbler designs to deliver an adequate population of bubbles to mitigate cavitation damage. The invented diagnostic technique involves flowing the mercury with entrained gas bubbles in a steady state through a horizontal piping section with a glass-window observation port located on the top. The mercury flow is then suddenly stopped and the bubbles are allowed to settle on the glass due to buoyancy. Using a bright-field illumination and a high-speed camera, the arriving bubbles are detected and counted, and then the images can be processed to determine the bubble populations. After using this technique to collect data on each bubbler, bubble size distributions were built for the purpose of quantifying bubbler performance, allowing the selection of the best bubbler options. This paper presents the novel procedure, photographic technique, sample visual results and some example bubble size distributions. The best bubbler options were subsequently used in proton beam irradiation tests performed at the Los Alamos National Laboratory. The cavitation damage results from the irradiated test plates in contact with the mercury are available for correlation with the bubble populations. The most effective mitigating population can now be designed into prototypical geometries for implementation into an actual SNS target. C1 [Wendel, Mark; Riemer, Bernard; Abdou, Ashraf] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Wendel, M (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. EM wendelmw@ornl.gov; riemerbw@ornl.gov; abdouaa@ornl.gov OI Riemer, Bernard/0000-0002-6922-3056 NR 11 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA SN 1093-4928 BN 978-0-7918-4476-2 J9 ASME FLUID ENG DIV PY 2012 BP 179 EP 185 PG 7 WC Engineering, Mechanical SC Engineering GA BGX51 UT WOS:000324507600020 ER PT S AU Bamberger, JA AF Bamberger, Judith Ann GP ASME TI MULTIPHASE FLOW CONCENTRATION CHARACTERIZATION IN SLURRIES DURING PULSE JET MIXING SO PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER MEETING, VOL 2: FORA SE ASME Fluids Engineering Division Summer Meeting LA English DT Proceedings Paper CT ASME Fluids Engineering Division Summer Meeting (FEDSM) CY JUL 08-12, 2012 CL Rio Grande, PR SP ASME, Fluids Engn Div AB Obtaining real-time, in situ slurry concentration measurements during unsteady mixing can provide increased understanding into mixer performance. During tests of an operating pulse jet mixing system, an ultrasonic attenuation sensor was inserted into a mixing vessel to measure the slurry concentration during unsteady mixing in real time. Pulse jet mixing tests to suspend noncohesive solids in Newtonian liquid were conducted at three geometric scales. To understand the solids suspension process and resulting solids distribution, the concentration of solids in the cloud was measured at various elevations and radial positions during the pulse jet mixer cycle. This paper presents transient concentration data obtained at three scales at the tank center to provide insight into pulse jet mixer performance. C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Bamberger, JA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM judith.bamberger@pnnl.gov NR 21 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA SN 1093-4928 BN 978-0-7918-4476-2 J9 ASME FLUID ENG DIV PY 2012 BP 279 EP 287 PG 9 WC Engineering, Mechanical SC Engineering GA BGX51 UT WOS:000324507600032 ER PT B AU Rohatgi, A Stephens, EV Edwards, DJ Smith, MT Davies, RW AF Rohatgi, Aashish Stephens, Elizabeth V. Edwards, Danny J. Smith, Mark T. Davies, Richard W. GP ASME TI ELECTRO-HYDRAULIC FORMING OF ADVANCED HIGH-STRENGTH STEELS: DEFORMATION AND MICROSTRUCTURAL CHARACTERIZATION SO PROCEEDINGS OF THE ASME INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2012 LA English DT Proceedings Paper CT ASME International Manufacturing Science and Engineering Conference (MSEC2012) CY JUN 04-08, 2012 CL Univ Notre Dame, Notre Dame, IN SP ASME, Mfg Engn Div HO Univ Notre Dame DE Electro-hydraulic forming; digital image correlation; advanced high-strength steel; texture AB The deformation behavior and texture evolution during forming of an advanced high-strength steel (DP600 grade) were characterized. The deformation history of DP600 during electro-hydraulic forming (EHF) was quantified using a unique experimental capability developed at PNNL. The texture evolution during quasi-static and high-strain-rate deformation was determined using the electron backscatter diffraction (EBSD) technique. The deformation history of EHF formed steel sheets shows an amplification of the strain-rate, relative to free-forming conditions, when the forming was carried out inside a conical-die. This strain-rate amplification was attributed to the focusing action of the conical die. The undeformed DP600 sheet was found to possess a {111} fiber texture in the sheet-normal direction. Quasi-static deformation was found to strengthen the pre-existing texture whereas high-rate forming using EHF had a lesser influence. The results of this work demonstrate the unique capability to correlate deformation history during high-strain-rate metal forming processes with the corresponding microstructural evolution. It is expected that results of this work can help fill-in the gaps in our understanding of high-rate forming processes, leading to development of accurate and validated numerical models. C1 [Rohatgi, Aashish; Stephens, Elizabeth V.; Edwards, Danny J.; Smith, Mark T.; Davies, Richard W.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Rohatgi, A (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 11 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5499-0 PY 2012 BP 163 EP 168 PG 6 WC Engineering, Mechanical; Nanoscience & Nanotechnology SC Engineering; Science & Technology - Other Topics GA BGW25 UT WOS:000324347700020 ER PT B AU Choi, WI Kim, K Narurmanchi, S AF Choi, Woon Ih Kim, Kwiseon Narurmanchi, Sreekant GP ASME TI MOLECULAR DYNAMICS MODELING OF THERMAL CONDUCTANCE AT ATOMICALLY CLEAN AND DISORDERED SILICON/ALUMINUM INTERFACES SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 10, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn ID PSEUDOPOTENTIALS; SI AB Thermal resistance between layers impedes effective heat dissipation in electronics packaging applications. Thermal conductance for clean and disordered interfaces between silicon (Si) and aluminum (Al) was computed using realistic Si/Al interfaces and classical molecular dynamics with the modified embedded atom method potential. These realistic interfaces, which include atomically clean as well as disordered interfaces, were obtained using density functional theory. At 300 K, the magnitude of interfacial conductance due to phonon-phonon scattering obtained from the classical molecular dynamics simulations was approximately five times higher than the conductance obtained using analytical elastic diffuse mismatch models. Interfacial disorder reduced the thermal conductance due to increased phonon scattering with respect to the atomically clean interface. Also, the interfacial conductance, due to electron-phonon scattering at the interface, was greater than the conductance due to phonon-phonon scattering. This suggests that phonon-phonon scattering is the bottleneck for interfacial transport at the semiconductor/metal interfaces. The molecular dynamics modeling predictions for interfacial thermal conductance for a 5 nm disordered interface between Si/Al are in-line with recent experimental data in the literature. C1 [Choi, Woon Ih; Kim, Kwiseon; Narurmanchi, Sreekant] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Choi, WI (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM sreekant.narumanchi@nrel.gov NR 19 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5496-9 PY 2012 BP 397 EP 404 PG 8 WC Engineering, Mechanical SC Engineering GA BGZ59 UT WOS:000324716800049 ER PT B AU Moreno, G Narumanchi, S King, C AF Moreno, Gilberto Narumanchi, Sreekant King, Charles GP ASME TI POOL BOILING HEAT TRANSFER CHARACTERISTICS OF HFO-1234yf WITH AND WITHOUT MICROPOROUS-ENHANCED SURFACES SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 10, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn DE Pool boiling heat transfer; HFO-1234yf; critical heat flux; microporous coating ID TRANSFER COEFFICIENTS; CONDENSATION; REFRIGERANTS; PRESSURE; R1234YF; FC-72; PLAIN; FIN AB This fundamental study characterizes the pool boiling performance of a new refrigerant, HFO-1234yf (hydrofluoroolefin 2,3,3,3-tetrafluoropropene). The similarities in thermophysical properties with HFC-134a and low global warming potential make HFO-1234yf the prospective next generation refrigerant in automotive air-conditioning systems. This study examines the possibility of using this refrigerant for two-phase cooling of hybrid and electric vehicle power electronic components. Pool boiling experiments were conducted with HFO-1234yf and HFC-134a at system pressures ranging from 0.7 to 1.7 MPa using horizontally oriented 1 cm(2) heat sources. Results show that the boiling heat transfer coefficients of HFO-1234yf and HFC-134a are nearly identical at lower heat fluxes. HFO-1234yf yielded lower heat transfer coefficients at higher heat fluxes and lower critical heat flux (CHF) as compared with HFC-134a. To enhance boiling heat transfer, a copper microporous coating was applied to the test surfaces. The coating provided enhancement to both the boiling heat transfer coefficients and CHF, for both refrigerants, at all tested pressures. Increasing pressure decreases the level of heat transfer coefficient enhancements while increasing the level of CHF enhancements. C1 [Moreno, Gilberto; Narumanchi, Sreekant; King, Charles] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Moreno, G (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM gilbert.moreno@nrel.gov NR 24 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5496-9 PY 2012 BP 577 EP 587 PG 11 WC Engineering, Mechanical SC Engineering GA BGZ59 UT WOS:000324716800072 ER PT B AU Johnson, RW AF Johnson, Richard W. GP ASME TI PRE-TEST CFD CALCULATIONS FOR A BYPASS FLOW STANDARD PROBLEM SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 10, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 11-17, 2011 CL Denver, CO SP Amer Soc Mech Engn DE HTGR; CFD; Bypass Flow; Standard Problem; NGNP AB The bypass flow in a prismatic high temperature gas-cooled reactor (HTGR) is the flow that occurs between adjacent graphite blocks. Gaps exist between blocks due to variances in their manufacture and installation and because of the expansion and shrinkage of the blocks from heating and irradiation. Although the temperature of fuel compacts and graphite is sensitive to the presence of bypass flow, there is great uncertainty in the level and effects of the bypass flow. The Next Generation Nuclear Plant (NGNP) program at the Idaho National Laboratory has undertaken to produce experimental data of isothermal bypass flow between three adjacent graphite blocks. These data are intended to provide validation for computational fluid dynamic (CFD) analyses of the bypass flow. Such validation data sets are called Standard Problems in the nuclear safety analysis field. Details of the experimental apparatus as well as several pre-test calculations of the bypass flow are provided. Pre-test calculations are useful in examining the nature of the flow and to see if there are any problems associated with the flow and its measurement. The apparatus is designed to be able to provide three different gap widths in the vertical direction (the direction of the normal coolant flow) and two gap widths in the horizontal direction. It is expected that the vertical bypass flow will range from laminar to transitional to turbulent flow for the different gap widths that will be available. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Johnson, RW (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM Rich.Johnson@inl.gov NR 11 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5496-9 PY 2012 BP 1179 EP 1187 PG 9 WC Engineering, Mechanical SC Engineering GA BGZ59 UT WOS:000324716800139 ER PT B AU Kumar, A Karig, D Neethirajan, S Suresh, AK Srijanto, BR Mukherjee, PP Retterer, S Doktycz, MJ AF Kumar, Aloke Karig, David Neethirajan, Suresh Suresh, Anil K. Srijanto, Bernadeta R. Mukherjee, Partha P. Retterer, Scott Doktycz, Mitchel J. GP ASME TI ADHESION AND FORMATION OF MICROBIAL BIOFILMS IN COMPLEX MICROFLUIDIC DEVICES SO PROCEEDINGS OF THE ASME MICRO/NANOSCALE HEAT AND MASS TRANSFER INTERNATIONAL CONFERENCE, 2012 LA English DT Proceedings Paper CT 3rd ASME Micro/Nanoscale Heat and Mass Transfer International Conference (MNHMT2012) CY MAR 03-06, 2012 CL Georgia Tech Global Learn Ctr, Atlanta, GA SP ASME, Nanotechnol Inst, ASME, Heat Transfer Div, Georgia Inst Technol, Natl Sci Fdn, Off Naval Res HO Georgia Tech Global Learn Ctr ID FLOW; HYDRODYNAMICS; STREAMERS; TRANSPORT; BEHAVIOR; MATRIX AB Shewanella oneidensis is a metal reducing bacterium, which is of interest for bioremediation and clean energy applications. S. oneidensis biofilms play a critical role in several situations such as in microbial energy harvesting devices. Here, we use a microfluidic device to quantify the effects of hydrodynamics on the biofilm morphology of S. oneidensis. For different rates of fluid flow through a complex microfluidic device, we studied the spatiotemporal dynamics of biofilms, and we quantified several morphological features such as spatial distribution, cluster formation and surface coverage. We found that hydrodynamics resulted in significant differences in biofilm dynamics. The baffles in the device created regions of low and high flow in the same device. At higher flow rates, a non-uniform biofilm develops, due to unequal advection in different regions of the microchannel. However, at lower flow rates, a more uniform biofilm evolved. This depicts competition between adhesion events, growth and fluid advection. Atomic force microscopy (AFM) revealed that higher production of extra-cellular polymeric substances (EPS) occurred at higher flow velocities. C1 [Kumar, Aloke; Srijanto, Bernadeta R.; Retterer, Scott; Doktycz, Mitchel J.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Kumar, A (reprint author), Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RI Retterer, Scott/A-5256-2011; Karig, David/G-5703-2011; Doktycz, Mitchel/A-7499-2011; OI Retterer, Scott/0000-0001-8534-1979; Karig, David/0000-0002-9508-6411; Doktycz, Mitchel/0000-0003-4856-8343; Neethirajan, Suresh/0000-0003-0990-0235 NR 19 TC 0 Z9 0 U1 2 U2 6 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5477-8 PY 2012 BP 79 EP 84 PG 6 WC Engineering, Mechanical; Nanoscience & Nanotechnology SC Engineering; Science & Technology - Other Topics GA BGW23 UT WOS:000324346800011 ER PT B AU English, TS Phinney, LM Hopkins, PE Serrano, JR AF English, Timothy S. Phinney, Leslie M. Hopkins, Patrick E. Serrano, Justin R. GP ASME TI THERMAL CONDUCTIVITY OF SINGLE-CRYSTAL SILICON MICROBRIDGES MEASURED BY ELECTRICAL RESISTANCE THERMOMETRY AND TIME-DOMAIN THERMOREFLECTANCE SO PROCEEDINGS OF THE ASME MICRO/NANOSCALE HEAT AND MASS TRANSFER INTERNATIONAL CONFERENCE, 2012 LA English DT Proceedings Paper CT 3rd ASME Micro/Nanoscale Heat and Mass Transfer International Conference (MNHMT2012) CY MAR 03-06, 2012 CL Georgia Tech Global Learn Ctr, Atlanta, GA SP ASME, Nanotechnol Inst, ASME, Heat Transfer Div, Georgia Inst Technol, Natl Sci Fdn, Off Naval Res HO Georgia Tech Global Learn Ctr ID PHONON-BOUNDARY SCATTERING; LOW-TEMPERATURES; 3-OMEGA METHOD; METAL-FILMS; TRANSPORT; DEVICES; DIFFUSION; DIAMOND; LAYERS; MODEL AB Accurate thermal conductivity values are essential to the modeling, design, and thermal management of microelectromechanical systems (MEMS) and devices. However, the experimental technique best suited to measure thermal conductivity, as well as thermal conductivity itself varies with the device materials, fabrication conditions, geometry, and operating conditions. In this study, the thermal conductivity of boron doped single-crystal silicon-on-insulator (SOI) microbridges is measured over the temperature range from 77 to 350 K The microbridges are 4.6 mm long, 125 Am tall, and two widths, 50 or 85 Am. Measurements on the 85 Am wide microbridges are made using both steady-state electrical resistance thermometry and optical time-domain thermoreflectance. A thermal conductivity of similar to 77 W/mK is measured for both microbridge widths at room temperature, where both experimental techniques agree. However; a discrepancy at lower temperatures is attributed to differences in the interaction volumes and in turn, material properties, probed by each technique. This finding is qualitatively explained through Boltzmann transport equation modeling under the relaxation time approximation C1 [English, Timothy S.; Phinney, Leslie M.; Serrano, Justin R.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP English, TS (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. NR 50 TC 0 Z9 0 U1 3 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5477-8 PY 2012 BP 713 EP 722 PG 10 WC Engineering, Mechanical; Nanoscience & Nanotechnology SC Engineering; Science & Technology - Other Topics GA BGW23 UT WOS:000324346800091 ER PT J AU Pint, BA Haynes, JA Unocic, KA Zhang, Y AF Pint, B. A. Haynes, J. A. Unocic, K. A. Zhang, Y. BE Huron, ES Reed, RC Hardy, MC Mills, MJ Montero, RE Portella, PD Telesman, J TI THE EFFECT OF WATER VAPOR AND SUPERALLOY COMPOSITION ON THERMAL BARRIER COATING LIFETIME SO SUPERALLOYS 2012 LA English DT Proceedings Paper CT 12th International Symposium on Superalloys CY SEP 09-13, 2012 CL Seven Springs, PA SP TMS DE Thermal barrier coatings; oxidation resistance; water vapor; platinum; MCrAlY; HVOF ID ALUMINA-FORMING ALLOYS; HIGH-TEMPERATURE OXIDATION; NI-PT-AL; BOND COATINGS; CYCLIC OXIDATION; TBC SYSTEMS; SUBSTRATE COMPOSITION; DOPED SUPERALLOYS; BEHAVIOR; PLATINUM AB New power generation concepts may contain higher water vapor in the turbine combustion gas due to the fuel or to steam dilution. To assess the effect of higher water vapor content on thermal barrier coaling performance, furnace cycle (lh) testing was conducted in air with 10, 50 and 90 vol.% water vapor and compared to prior results in dry O-2. The first series of experiments examined Pt diffusion (gamma+gamma') and Pt-modified aluminide (beta) bond coatings on second-generation superalloy N5 at 1150 degrees C with commercially vapor-deposited yttria-stabilized zirconia (YSZ) top coats. Compared to dry O-2, the average coating lifetimes with Pt diffusion coatings were unaffected by the addition of water vapor while the Pt-modified aluminide coating average lifetime was reduced by >50% with 10% water vapor, but less reduction was observed with higher water contents. A similar set of coatings on low Re superalloy N515 showed no debit in lifetime with Pt aluminide bond coatings exposed to 10% water vapor. Characterization of the alumina scale thickness at failure showed a thicker oxide beneath the YSZ coating (compared to the scale without a top coating) for both types of bond coatings, and an increase in the oxide thickness with the addition of 10% water vapor. These observations were further studied using analytical transmission electron microscopy. The second series of experiments examined high velocity oxygen fuel (HVOF) MCrAlY and MCrAlYHfSi bond coatings and air-plasma sprayed YSZ top coatings on X4 superalloy substrates with and without Y and La additions. Compared to a dry O-2 baseline, the addition of 10% water vapor decreased the YSZ coating lifetime for either bond coating by similar to 30% at 1100 degrees C. Substrates with Y and La additions showed no change in the average lifetime in 10% water vapor compared to standard X4. A further increase to 50% water vapor did not further decrease the average lifetime of one group of coatings. To better simulate base-load power generation, one group of specimens was cycled with 100h cycles, which substantially increased the coating lifetime. In each case, higher average lifetimes were observed with Hf in the bond coating. Initial characterization of the alumina scales formed at failure showed little effect of the water vapor addition, bond coating composition or substrate composition. For both series of coatings, the addition of 10% water vapor to the experiment reduced YSZ coating lifetime. However, increasing to 50% or 90% H2O showed no additional decrease in average YSZ lifetime. C1 [Pint, B. A.; Haynes, J. A.; Unocic, K. A.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Zhang, Y.] Tennessee Technol Univ, Dept Mech Engn, Cookeville, TN 38505 USA. RP Pint, BA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 FU U.S. Department of Energy; Office of Coal and Power RD; Office of Fossil Energy; Assistant Secretary for Energy Efficiency and Renewable Energy; Industrial Technologies Program (Combined Heat and Power) FX This research was sponsored by the U.S. Department of Energy, Office of Coal and Power R&D, Office of Fossil Energy, (R.Dennis program manager) and the Assistant Secretary for Energy Efficiency and Renewable Energy, Industrial Technologies Program (Combined Heat and Power). NR 59 TC 4 Z9 4 U1 1 U2 7 PU JOHN WILEY & SONS PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER, W SUSSEX PO 19 8SQ, ENGLAND BN 978-0-470-94320-5 PY 2012 BP 723 EP 732 PG 10 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA BGX57 UT WOS:000324518300080 ER PT J AU Rutherford, BJ Mukhopadhyay, A AF Rutherford, Becky J. Mukhopadhyay, Aindrila BE Arora, R TI Host Engineering for Biofuel-Tolerant Phenotypes SO MICROBIAL BIOTECHNOLOGY: ENERGY AND ENVIRONMENT LA English DT Article; Book Chapter ID RECOMBINANT ESCHERICHIA-COLI; COMPLETE GENOME SEQUENCE; MICROBIAL-PRODUCTION; AMINO-ACIDS; EVOLUTION; PATHWAY; BIOLOGY; STRESS; 1,3-PROPANEDIOL; IDENTIFICATION C1 [Rutherford, Becky J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Mukhopadhyay, Aindrila] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Mukhopadhyay, Aindrila] Joint BioEnergy Inst, Emeryville, CA 94608 USA. RP Rutherford, BJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 57 TC 0 Z9 0 U1 0 U2 1 PU CABI PUBLISHING-C A B INT PI WALLINGFORD PA CABI PUBLISHING, WALLINGFORD 0X10 8DE, OXON, ENGLAND BN 978-1-84593-956-4 PY 2012 BP 148 EP 161 PG 14 WC Biotechnology & Applied Microbiology; Environmental Sciences SC Biotechnology & Applied Microbiology; Environmental Sciences & Ecology GA BGV14 UT WOS:000324256700009 ER PT J AU Bagwell, C AF Bagwell, Chris BE Arora, R TI Going Extreme for Small Solutions to Big Environmental Challenges SO MICROBIAL BIOTECHNOLOGY: ENERGY AND ENVIRONMENT LA English DT Article; Book Chapter ID RADIOACTIVE-WASTE DISPOSAL; LEVEL NUCLEAR WASTE; SAVANNA RIVER SITE; DEINOCOCCUS-RADIODURANS; IONIZING-RADIATION; KINEOCOCCUS-RADIOTOLERANS; SP NOV.; PLUTONIUM TRANSPORT; BACTERIA; RESISTANCE C1 SRNL Environm Sci & Biotechnol, Savannah River Natl Lab, Aiken, SC 29808 USA. RP Bagwell, C (reprint author), SRNL Environm Sci & Biotechnol, Savannah River Natl Lab, Savannah River Site, Aiken, SC 29808 USA. NR 85 TC 0 Z9 0 U1 0 U2 0 PU CABI PUBLISHING-C A B INT PI WALLINGFORD PA CABI PUBLISHING, WALLINGFORD 0X10 8DE, OXON, ENGLAND BN 978-1-84593-956-4 PY 2012 BP 363 EP 381 PG 19 WC Biotechnology & Applied Microbiology; Environmental Sciences SC Biotechnology & Applied Microbiology; Environmental Sciences & Ecology GA BGV14 UT WOS:000324256700020 ER PT B AU Moisseytsev, A Sienicki, JJ AF Moisseytsev, Anton Sienicki, James J. GP ASME TI DYNAMIC ANALYSIS OF S-CO2 CYCLE CONTROL WITH COUPLED PDC-SAS4A/SASSYS-1 CODES SO PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING AND THE ASME 2012 POWER CONFERENCE - 2012, VOL 2 LA English DT Proceedings Paper CT 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference (ICONE20-POWER2012) CY JUL 30-AUG 03, 2012 CL Anaheim, CA SP Amer Soc Mech Engineers, Nucl Engn Div, Japan Soc Mech Engineers, Chinese Nucl Soc, Int Atom Energy Agcy, Canadian Nucl Soc, European Nucl Soc, Soc Nucl Mexicana, Nucl Soc Slovenia, Atom Energy Soc Japan, Austrian Nucl Soc, Canadian Standard Assoc AB The ANL Plant Dynamics Code (PDC) for the analysis of supercritical carbon dioxide (S-CO2) Brayton cycle power converters has been under development at Argonne National Laboratory for several years. It is the leading state of the art capability for modeling S-CO2 cycles at the system level. The SAS4A/SASSYS-1 Liquid Metal Reactor Code System is the leading capability for modeling a SFR or LFR at the system level. The SAS4A/SASSYS-1 code combines reactor dynamics with thermal hydraulics calculations. Coupled together, the two codes allow users to carry out for the first time very detailed transient calculations of an entire plant incorporating a SFR with a S-CO2 cycle energy converter, including simulation of both design and beyond-design events. The developed coupling approach utilizes the restart capability of SAS4A/SASSYS-1 and allows the data transfer between the two codes at each time step. The coupling approach is demonstrated by carrying out S-CO2 cycle control calculations in which the entire plant follows a user-defined electrical grid demand scenario. The automatic control mechanisms on the S-CO2 cycle side allow following of the load changes in the entire 0-100% range. On the reactor side, an autonomous (i.e., no deliberate control other than startup and shutdown) operation is assumed where the reactor power is adjusted by the internal reactivity feedbacks to match the heat removal rate by the balance-of-plant. C1 [Moisseytsev, Anton; Sienicki, James J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Moisseytsev, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 6 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4496-0 PY 2012 BP 633 EP 640 PG 8 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BGU21 UT WOS:000324150800076 ER PT B AU Moisseytsev, A Sienicki, JJ AF Moisseytsev, Anton Sienicki, James J. GP ASME TI MODELING OF THE SNL S-CO2 LOOP WITH ANL PLANT DYNAMICS CODE SO PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING AND THE ASME 2012 POWER CONFERENCE - 2012, VOL 2 LA English DT Proceedings Paper CT 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference (ICONE20-POWER2012) CY JUL 30-AUG 03, 2012 CL Anaheim, CA SP Amer Soc Mech Engineers, Nucl Engn Div, Japan Soc Mech Engineers, Chinese Nucl Soc, Int Atom Energy Agcy, Canadian Nucl Soc, European Nucl Soc, Soc Nucl Mexicana, Nucl Soc Slovenia, Atom Energy Soc Japan, Austrian Nucl Soc, Canadian Standard Assoc AB The ANL Plant Dynamics Code (PDC) for the analysis of supercritical carbon dioxide (S-CO2) Brayton cycle power converters has been under development at Argonne National Laboratory for several years. In previous years, limited validation of the PDC models on an individual basis was carried out using experimental data obtained from facilities directed at individual components. Recently, experimental data from the SNL/BNI small-scale S-CO2 Brayton cycle demonstration that is being assembled in a staged fashion has been provided to ANL. The loop configuration with a single turbo-alternator-compressor (TAC) was modeled with the Plant Dynamics Code and the performance prediction of individual components and the entire loop obtained from the PDC was compared with the experimental data. Overall, reasonably good agreement is obtained for steady state conditions around the loop when a value is inferred for the heat loss downstream of the turbine such that a steady state loop energy balance can be established. C1 [Moisseytsev, Anton; Sienicki, James J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Moisseytsev, A (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 9 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4496-0 PY 2012 BP 641 EP 650 PG 10 WC Energy & Fuels; Engineering, Mechanical; Nuclear Science & Technology SC Energy & Fuels; Engineering; Nuclear Science & Technology GA BGU21 UT WOS:000324150800077 ER PT B AU Sham, TL Barnes, R AF Sham, T. -L. (Sam) Barnes, Richard GP ASME TI INTRODUCTION SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 1 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div C1 [Sham, T. -L. (Sam)] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Sham, TL (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5500-3 PY 2012 BP 727 EP 727 PG 1 WC Engineering, Mechanical SC Engineering GA BGR74 UT WOS:000323916900097 ER PT B AU Morton, DK Jetter, RI Nestell, JE Burchell, TD Sham, TL AF Morton, D. K. Jetter, R. I. Nestell, James E. Burchell, T. D. Sham, T. -L. (Sam) GP ASME TI SECTION III, DIVISION 5-DEVELOPMENT AND FUTURE DIRECTIONS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 1 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div AB This paper provides commentary on a new division under Section III of the ASME Boiler and Pressure Vessel (BPV) Code. This new Division 5 has an issuance date of November 1, 2011 and is part of the 2011 Addenda to the 2010 Edition of the BPV Code. The new Division covers the rules for the design, fabrication, inspection and testing of components for high temperature nuclear reactors. Information is provided on the scope and need for Division 5, the structure of Division 5, where the rules originated, the various changes made in finalizing Division 5, and the future near-term and long-term expectations for Division 5 development. Portions of this paper were based on Chapter 17 of the Companion Guide to the ASME Boiler & Pressure Vessel Code, Fourth Edition, ASME, 2012, Reference [1]. C1 [Morton, D. K.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Morton, DK (reprint author), Idaho Natl Lab, 2525 Fremont Ave, Idaho Falls, ID 83415 USA. EM dana.morton@inl.gov; bjetter@sbcglobal.net; jnestell@mpr.com; burchelltd@ornl.gov; shamt@ornl.gov RI Burchell, Tim/E-6566-2017 OI Burchell, Tim/0000-0003-1436-1192 NR 2 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5500-3 PY 2012 BP 729 EP 737 PG 9 WC Engineering, Mechanical SC Engineering GA BGR74 UT WOS:000323916900098 ER PT S AU Francis, AJ AF Francis, A. J. BE Poinssot, C Geckeis, H TI Impacts of microorganisms on radionuclides in contaminated environments and waste materials SO RADIONUCLIDE BEHAVIOUR IN THE NATURAL ENVIRONMENT: SCIENCE, IMPLICATIONS AND LESSONS FOR THE NUCLEAR INDUSTRY SE Woodhead Publishing Series in Energy LA English DT Article; Book Chapter DE microorganisms; radionuclides; oxidation; reduction; solubilization; immobilization; bioaccumulation; biomethylation; biotransformation; radionuclide-organic complexes; radioactive wastes; gas generation ID METAL-REDUCING BACTERIA; LEVEL RADIOACTIVE-WASTE; NUCLEAR-WASTE; HEAVY-METALS; MICROBIAL TRANSFORMATIONS; SHEWANELLA-ONEIDENSIS; CITRIC-ACID; FE(III)-REDUCING BACTERIA; SACCHAROMYCES-CEREVISIAE; PSEUDOMONAS-FLUORESCENS AB Microorganisms affect the solubility and stability of the radionuclides in nuclear wastes disposed of in the subsurface and deep geological formations, and contaminated environments. A wide variety of microorganisms are present in transuranic (TRU) wastes, Pu-contaminated soils, low-level radioactive wastes, backfill materials, natural analog sites, and waste-repository sites slated for disposal of high-level wastes. Under the appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties of the radionuclides and thus increase or decrease their concentrations in solution and affect their environmental mobility and bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action of the microorganisms or their indirect non-enzymatic action. In this review, I discuss the mechanisms of microbial transformations of the actinides, the fission and activation products and other radionuclides that are of concern under relevant environmental and microbial process conditions in the presence of electron donors and acceptors. C1 [Francis, A. J.] Pohang Univ Sci & Technol, Div Adv Nucl Engn, Pohang, South Korea. [Francis, A. J.] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. RP Francis, AJ (reprint author), Pohang Univ Sci & Technol, Div Adv Nucl Engn, Pohang, South Korea. EM francis@bnl.gov NR 189 TC 2 Z9 2 U1 1 U2 9 PU WOODHEAD PUBL LTD PI CAMBRIDGE PA ABINGTON HALL ABINGTON, CAMBRIDGE CB1 6AH, CAMBS, ENGLAND SN 2044-9364 BN 978-0-85709-719-4 J9 WOODHEAD PUBL SER EN PY 2012 IS 42 BP 161 EP 225 D2 10.1533/9780857097194 PG 65 WC Energy & Fuels; Environmental Sciences; Nuclear Science & Technology SC Energy & Fuels; Environmental Sciences & Ecology; Nuclear Science & Technology GA BGR63 UT WOS:000323908100007 ER PT S AU Kersting, AB AF Kersting, A. B. BE Poinssot, C Geckeis, H TI Impact of colloidal transport on radionuclide migration in the natural environment SO RADIONUCLIDE BEHAVIOUR IN THE NATURAL ENVIRONMENT: SCIENCE, IMPLICATIONS AND LESSONS FOR THE NUCLEAR INDUSTRY SE Woodhead Publishing Series in Energy LA English DT Article; Book Chapter DE colloidal transport; plutonium transport; radionuclide transport; actinide transport; pseudocolloids; intrinsic colloids ID NEVADA TEST-SITE; FACILITATED TRANSPORT; POROUS-MEDIA; HANFORD SITE; SUBSURFACE SEDIMENTS; SIZE FRACTIONATION; AQUATIC COLLOIDS; OXIDATION-STATE; IONIC-STRENGTH; FIELD-SCALE AB Colloids are small, less than one micron particles found in all natural water. They are composed of inorganic, organic or microbial material and can act as carriers for low-solubility radionuclides, such as plutonium, americium and cesium. Some actinides can hydrolyze to form an oxide or other pure phases called intrinsic colloids. However, the presence of colloids does not necessarily guarantee the facilitation of the transport of radionuclides. Other factors such as colloid filtration, stability, groundwater flow rate, groundwater chemistry, and desorption/dissolution rates of the radionuclides are all important parameters that determine colloid facilitated transport of a specific radionuclide. This chapter focuses on our current progress in understanding the conditions and mechanisms that enhance colloidal transport. Additional emphasis is given to field sites where investigations have shown colloids to facilitate the far-field transport of radionuclides. Understanding the biogeochemical conditions that facilitate the transport of low-solubility radionuclides can help us design high-level waste repositories that minimize these conditions, thus limiting transport in the subsurface. C1 Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, Livermore, CA 94550 USA. RP Kersting, AB (reprint author), Lawrence Livermore Natl Lab, Glenn T Seaborg Inst, L-231,POB 808, Livermore, CA 94550 USA. EM Kersting1@LLNL.gov NR 91 TC 2 Z9 3 U1 2 U2 15 PU WOODHEAD PUBL LTD PI CAMBRIDGE PA ABINGTON HALL ABINGTON, CAMBRIDGE CB1 6AH, CAMBS, ENGLAND SN 2044-9364 BN 978-0-85709-719-4 J9 WOODHEAD PUBL SER EN PY 2012 IS 42 BP 384 EP 410 D2 10.1533/9780857097194 PG 27 WC Energy & Fuels; Environmental Sciences; Nuclear Science & Technology SC Energy & Fuels; Environmental Sciences & Ecology; Nuclear Science & Technology GA BGR63 UT WOS:000323908100011 ER PT J AU Harrison, L Spahn, R Iannacone, M Downing, E Goodall, JR AF Harrison, Lane Spahn, Riley Iannacone, Mike Downing, Evan Goodall, John R. BE Schweitzer, D Quist, D Goodall, JR TI NV: Nessus Vulnerability Visualization for the Web SO VIZSEC 2012: PROCEEDINGS OF THE NINTH INTERNATIONAL SYMPOSIUM ON VISUALIZATION FOR CYBER SECURITY LA English DT Proceedings Paper CT 9th International Symposium on Visualization for Cyber Security (VizSec) CY OCT 15, 2012 CL VisWeek, Seattle, WA HO VisWeek DE security visualization; vulnerability visualization; security analysis; information visualization; cyber security AB Network vulnerability is a critical component of network security. Yet vulnerability analysis has received relatively little attention from the security visualization community. This paper describes nv, a web-based Nessus vulnerability visualization. Nv utilizes treemaps and linked histograms to allow security analysts and systems administrators to discover, analyze, and manage vulnerabilities on their networks. In addition to visualizing single Nessus scans, nv supports the analysis of sequential scans by showing which vulnerabilities have been fixed, remain open, or are newly discovered. Nv operates completely in-browser, to avoid sending sensitive data to outside servers. We discuss the design of nv, as well as provide case studies demonstrating vulnerability analysis workflows which include a multiple-node testbed and data from the 2011 VAST Challenge. C1 [Harrison, Lane; Spahn, Riley; Iannacone, Mike; Downing, Evan; Goodall, John R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Harrison, L (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM harrisonlt@ornl.gov; spahnrb1@ornl.gov; iannaconemd@ornl.gov; epdowning@gmail.com; jgoodall@ornl.gov NR 10 TC 0 Z9 0 U1 1 U2 2 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 1515 BROADWAY, NEW YORK, NY 10036-9998 USA BN 978-1-4503-1413-8 PY 2012 BP 25 EP 32 PG 8 WC Computer Science, Information Systems; Computer Science, Software Engineering SC Computer Science GA BGU28 UT WOS:000324160000004 ER PT B AU Gutierrez, B Antaki, G AF Gutierrez, Brent Antaki, George GP ASME TI SEISMIC CAPACITY OF THREADED, BRAZED AND GROOVED FIRE PROTECTION PIPE JOINTS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 8 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div AB A series of static and shake table tests were conducted on pressurized threaded, brazed and mechanical, i.e., grooved pipe joints, commonly used in fire protection systems. The objective of the tests was to understand the behavior and failure modes of these common types of joints under seismic and static lateral loads. The paper presents the measured loads and deflections of the joints up to the point of failure. It also describes the joints' static and dynamic failure modes. While this information may be limited it can be used to model the joint flexibility under large lateral loads, determine their capacity, and help understand the leak and rupture characteristics of threaded, brazed and clamped joints. C1 [Gutierrez, Brent] US DOE, Aiken, SC 29802 USA. RP Gutierrez, B (reprint author), US DOE, Savannah River Site, Aiken, SC 29802 USA. EM brent.gutierrez@srs.gov; gantaki@becht.com NR 6 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5507-2 PY 2012 BP 65 EP 73 PG 9 WC Engineering, Civil; Engineering, Mechanical SC Engineering GA BGR23 UT WOS:000323869900011 ER PT B AU Clark, DT Roussel, G AF Clark, Don T. Roussel, Guy GP ASME TI Seismic Engineering Seismic Evaluation of Systems, Structures, and Components SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 8 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 15-19, 2012 CL Toronto, CANADA SP ASME, Pressure Vessels & Piping Div C1 [Clark, Don T.] Idaho Natl Lab, Idaho Falls, ID USA. RP Clark, DT (reprint author), Idaho Natl Lab, Idaho Falls, ID USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5507-2 PY 2012 BP 75 EP 75 PG 1 WC Engineering, Civil; Engineering, Mechanical SC Engineering GA BGR23 UT WOS:000323869900012 ER PT B AU Gorka, J Dai, S AF Gorka, Joanna Dai, Sheng BE Tascon, JMD TI Adsorption by Soft-Templated Carbons SO NOVEL CARBON ADSORBENTS LA English DT Article; Book Chapter ID ORDERED MESOPOROUS CARBONS; HIERARCHICAL POROUS CARBONS; COLLOID-IMPRINTED CARBONS; OXYGEN REDUCTION REACTION; DIBLOCK COPOLYMER; HYDROGEN STORAGE; MOLECULAR-SIEVES; SILICA TEMPLATES; POLY(ETHYLENE OXIDE)-B-POLYSTYRENE; ELECTROCHEMICAL PROPERTIES C1 [Gorka, Joanna; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Gorka, J (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. NR 110 TC 1 Z9 1 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS BN 978-0-08-097745-4; 978-0-08-097744-7 PY 2012 BP 323 EP 350 DI 10.1016/B978-0-08-097744-7.00011-9 PG 28 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA BGD29 UT WOS:000322380300013 ER PT S AU Billinge, SJL Egami, T AF Billinge, Simon J. L. Egami, Takeshi BA Egami, T Billinge, SJL BF Egami, T Billinge, SJL TI Structure of Complex Materials SO UNDERNEATH THE BRAGG PEAKS: STRUCTURAL ANALYSIS OF COMPLEX MATERIALS, 2ND EDITION SE Pergamon Materials Series LA English DT Article; Book Chapter ID BULK THERMOELECTRIC-MATERIALS; NEUTRON TOTAL SCATTERING; JAHN-TELLER DISTORTION; ATOMIC-SCALE STRUCTURE; X-RAY; SOLID-SOLUTIONS; LOCAL-STRUCTURE; DIFFRACTION; ALLOYS; AGPBMSBTE2+M C1 [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. NR 40 TC 0 Z9 0 U1 0 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI KIDLINGTON PA THE BOULEVARD, LANGFORD LANE,, KIDLINGTON OX5 1GB, OXFORD, ENGLAND SN 1470-1804 BN 978-0-08-097141-4; 978-0-08-097133-9 J9 PERGAMON MATER SER PY 2012 VL 16 BP 1 EP 25 DI 10.1016/B978-0-08-097133-9.00001-0 PG 25 WC Materials Science, Characterization & Testing SC Materials Science GA BGG37 UT WOS:000322826800002 ER PT S AU Billinge, SJL Egami, T AF Billinge, Simon J. L. Egami, Takeshi BA Egami, T Billinge, SJL BF Egami, T Billinge, SJL TI Underneath the Bragg Peaks Structural Analysis of Complex Materials Preface SO UNDERNEATH THE BRAGG PEAKS: STRUCTURAL ANALYSIS OF COMPLEX MATERIALS, 2ND EDITION SE Pergamon Materials Series LA English DT Editorial Material; Book Chapter C1 [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. NR 6 TC 0 Z9 0 U1 2 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI KIDLINGTON PA THE BOULEVARD, LANGFORD LANE,, KIDLINGTON OX5 1GB, OXFORD, ENGLAND SN 1470-1804 BN 978-0-08-097141-4 J9 PERGAMON MATER SER PY 2012 VL 16 BP XI EP XV PG 5 WC Materials Science, Characterization & Testing SC Materials Science GA BGG37 UT WOS:000322826800001 ER PT S AU Billinge, SJL Egami, T AF Billinge, Simon J. L. Egami, Takeshi BA Egami, T Billinge, SJL BF Egami, T Billinge, SJL TI Crystallographic Analysis of Complex Materials SO UNDERNEATH THE BRAGG PEAKS: STRUCTURAL ANALYSIS OF COMPLEX MATERIALS, 2ND EDITION SE Pergamon Materials Series LA English DT Article; Book Chapter ID ATOMIC SIZE; X-RAYS; SCATTERING; ALLOYS; ORDER C1 [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. NR 41 TC 1 Z9 1 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI KIDLINGTON PA THE BOULEVARD, LANGFORD LANE,, KIDLINGTON OX5 1GB, OXFORD, ENGLAND SN 1470-1804 BN 978-0-08-097141-4 J9 PERGAMON MATER SER PY 2012 VL 16 BP 27 EP 54 DI 10.1016/B978-0-08-097133-9.00002-2 PG 28 WC Materials Science, Characterization & Testing SC Materials Science GA BGG37 UT WOS:000322826800003 ER PT S AU Billinge, SJL Egami, T AF Billinge, Simon J. L. Egami, Takeshi BA Egami, T Billinge, SJL BF Egami, T Billinge, SJL TI The Method of Total Scattering and Atomic Pair Distribution Function Analysis SO UNDERNEATH THE BRAGG PEAKS: STRUCTURAL ANALYSIS OF COMPLEX MATERIALS, 2ND EDITION SE Pergamon Materials Series LA English DT Article; Book Chapter ID RADIAL-DISTRIBUTION FUNCTIONS; PULSED-NEUTRON-SCATTERING; FINE-STRUCTURE TECHNIQUE; X-RAY-DIFFRACTION; SHORT-RANGE ORDER; LOCAL-STRUCTURE; ELECTRON-DIFFRACTION; AMORPHOUS MATERIALS; BINARY-ALLOYS; LIQUID C1 [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. NR 78 TC 2 Z9 2 U1 1 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI KIDLINGTON PA THE BOULEVARD, LANGFORD LANE,, KIDLINGTON OX5 1GB, OXFORD, ENGLAND SN 1470-1804 BN 978-0-08-097141-4 J9 PERGAMON MATER SER PY 2012 VL 16 BP 55 EP 111 DI 10.1016/B978-0-08-097133-9.00003-4 PG 57 WC Materials Science, Characterization & Testing SC Materials Science GA BGG37 UT WOS:000322826800004 ER PT S AU Billinge, SJL Egami, T AF Billinge, Simon J. L. Egami, Takeshi BA Egami, T Billinge, SJL BF Egami, T Billinge, SJL TI Total Scattering Experiments SO UNDERNEATH THE BRAGG PEAKS: STRUCTURAL ANALYSIS OF COMPLEX MATERIALS, 2ND EDITION SE Pergamon Materials Series LA English DT Article; Book Chapter ID PAIR DISTRIBUTION FUNCTION; ELECTRON-DIFFRACTION; HIGH-RESOLUTION; DISORDERED MATERIALS; AMORPHOUS MATERIALS; POWDER DIFFRACTION; CRYSTAL-STRUCTURE; DIFFRACTOMETER; FILMS; DECONVOLUTION C1 [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. NR 61 TC 0 Z9 0 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI KIDLINGTON PA THE BOULEVARD, LANGFORD LANE,, KIDLINGTON OX5 1GB, OXFORD, ENGLAND SN 1470-1804 BN 978-0-08-097141-4; 978-0-08-097133-9 J9 PERGAMON MATER SER PY 2012 VL 16 BP 113 EP 158 DI 10.1016/B978-0-08-097133-9.00004-6 PG 46 WC Materials Science, Characterization & Testing SC Materials Science GA BGG37 UT WOS:000322826800005 ER PT S AU Billinge, SJL Egami, T AF Billinge, Simon J. L. Egami, Takeshi BA Egami, T Billinge, SJL BF Egami, T Billinge, SJL TI Data Collection Analysis SO UNDERNEATH THE BRAGG PEAKS: STRUCTURAL ANALYSIS OF COMPLEX MATERIALS, 2ND EDITION SE Pergamon Materials Series LA English DT Article; Book Chapter ID PAIR DISTRIBUTION FUNCTION; X-RAY-DIFFRACTION; RADIAL-DISTRIBUTION FUNCTIONS; LIQUID STRUCTURE DATA; MULTIPLE-SCATTERING; NONCRYSTALLINE MATERIALS; AMORPHOUS MATERIALS; POWDER DIFFRACTION; ELECTRON; DECONVOLUTION C1 [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. NR 92 TC 0 Z9 0 U1 1 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI KIDLINGTON PA THE BOULEVARD, LANGFORD LANE,, KIDLINGTON OX5 1GB, OXFORD, ENGLAND SN 1470-1804 BN 978-0-08-097141-4 J9 PERGAMON MATER SER PY 2012 VL 16 BP 159 EP 257 DI 10.1016/B978-0-08-097133-9.00005-8 PG 99 WC Materials Science, Characterization & Testing SC Materials Science GA BGG37 UT WOS:000322826800006 ER PT S AU Billinge, SJL Egami, T AF Billinge, Simon J. L. Egami, Takeshi BA Egami, T Billinge, SJL BF Egami, T Billinge, SJL TI Extracting Structural Information from the PDF SO UNDERNEATH THE BRAGG PEAKS: STRUCTURAL ANALYSIS OF COMPLEX MATERIALS, 2ND EDITION SE Pergamon Materials Series LA English DT Article; Book Chapter ID REVERSE-MONTE-CARLO; PAIR-DISTRIBUTION FUNCTION; POTENTIAL STRUCTURE REFINEMENT; RADIAL-DISTRIBUTION FUNCTIONS; PULSED-NEUTRON-DIFFRACTION; ABSORPTION FINE-STRUCTURE; AB-INITIO DETERMINATION; HIGH-TEMPERATURE PHASE; X-RAY-DIFFRACTION; SHORT-RANGE ORDER C1 [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. NR 81 TC 0 Z9 0 U1 2 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI KIDLINGTON PA THE BOULEVARD, LANGFORD LANE,, KIDLINGTON OX5 1GB, OXFORD, ENGLAND SN 1470-1804 BN 978-0-08-097141-4 J9 PERGAMON MATER SER PY 2012 VL 16 BP 259 EP 295 DI 10.1016/B978-0-08-097133-9.00006-X PG 37 WC Materials Science, Characterization & Testing SC Materials Science GA BGG37 UT WOS:000322826800007 ER PT S AU Billinge, SJL Egami, T AF Billinge, Simon J. L. Egami, Takeshi BA Egami, T Billinge, SJL BF Egami, T Billinge, SJL TI Dynamics of the Local Structure SO UNDERNEATH THE BRAGG PEAKS: STRUCTURAL ANALYSIS OF COMPLEX MATERIALS, 2ND EDITION SE Pergamon Materials Series LA English DT Article; Book Chapter ID DIFFRACTION; SCATTERING C1 [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. NR 23 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI KIDLINGTON PA THE BOULEVARD, LANGFORD LANE,, KIDLINGTON OX5 1GB, OXFORD, ENGLAND SN 1470-1804 BN 978-0-08-097141-4; 978-0-08-097133-9 J9 PERGAMON MATER SER PY 2012 VL 16 BP 297 EP 324 DI 10.1016/B978-0-08-097133-9.00007-1 PG 28 WC Materials Science, Characterization & Testing SC Materials Science GA BGG37 UT WOS:000322826800008 ER PT S AU Billinge, SJL Egami, T AF Billinge, Simon J. L. Egami, Takeshi BA Egami, T Billinge, SJL BF Egami, T Billinge, SJL TI Local Structure of Well-Ordered Crystals and Systems with Competing Interactions SO UNDERNEATH THE BRAGG PEAKS: STRUCTURAL ANALYSIS OF COMPLEX MATERIALS, 2ND EDITION SE Pergamon Materials Series LA English DT Article; Book Chapter ID PULSED-NEUTRON-SCATTERING; JAHN-TELLER DISTORTION; GLASSY POLARIZATION BEHAVIOR; NEGATIVE THERMAL-EXPANSION; X-RAY-SCATTERING; ATOMIC-STRUCTURE; DOUBLE EXCHANGE; QUASI-CRYSTAL; COLOSSAL MAGNETORESISTANCE; ANTIFERROELECTRIC PBZRO3 C1 [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. NR 111 TC 1 Z9 1 U1 1 U2 2 PU PERGAMON-ELSEVIER SCIENCE LTD PI KIDLINGTON PA THE BOULEVARD, LANGFORD LANE,, KIDLINGTON OX5 1GB, OXFORD, ENGLAND SN 1470-1804 BN 978-0-08-097141-4 J9 PERGAMON MATER SER PY 2012 VL 16 BP 325 EP 369 DI 10.1016/B978-0-08-097133-9.00008-3 PG 45 WC Materials Science, Characterization & Testing SC Materials Science GA BGG37 UT WOS:000322826800009 ER PT S AU Billinge, SJL Egami, T AF Billinge, Simon J. L. Egami, Takeshi BA Egami, T Billinge, SJL BF Egami, T Billinge, SJL TI Defects in Crystals and Crystallographically Challenged Materials SO UNDERNEATH THE BRAGG PEAKS: STRUCTURAL ANALYSIS OF COMPLEX MATERIALS, 2ND EDITION SE Pergamon Materials Series LA English DT Article; Book Chapter ID X-RAY-DIFFRACTION; PAIR DISTRIBUTION FUNCTION; SHORT-RANGE ORDER; NEUTRON-SCATTERING; STRUCTURAL MODEL; NANOCRYSTALLINE MATERIAL; MOLECULAR-GEOMETRY; NANOPOROUS CARBONS; PHASE-TRANSITION; LOCAL-STRUCTURE C1 [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. NR 74 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI KIDLINGTON PA THE BOULEVARD, LANGFORD LANE,, KIDLINGTON OX5 1GB, OXFORD, ENGLAND SN 1470-1804 BN 978-0-08-097141-4; 978-0-08-097133-9 J9 PERGAMON MATER SER PY 2012 VL 16 BP 371 EP 405 DI 10.1016/B978-0-08-097133-9.00009-5 PG 35 WC Materials Science, Characterization & Testing SC Materials Science GA BGG37 UT WOS:000322826800010 ER PT S AU Billinge, SJL Egami, T AF Billinge, Simon J. L. Egami, Takeshi BA Egami, T Billinge, SJL BF Egami, T Billinge, SJL TI Nanoparticles and Clusters SO UNDERNEATH THE BRAGG PEAKS: STRUCTURAL ANALYSIS OF COMPLEX MATERIALS, 2ND EDITION SE Pergamon Materials Series LA English DT Article; Book Chapter ID PAIR DISTRIBUTION FUNCTION; AB-INITIO DETERMINATION; PRUSSIAN BLUE ANALOGS; STRUCTURAL-CHARACTERIZATION; NEUTRON-DIFFRACTION; HYDRATION STRUCTURE; GOLD NANOPARTICLE; TOTAL SCATTERING; ATOMIC-STRUCTURE; ALKALI-METALS C1 [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. NR 65 TC 0 Z9 0 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI KIDLINGTON PA THE BOULEVARD, LANGFORD LANE,, KIDLINGTON OX5 1GB, OXFORD, ENGLAND SN 1470-1804 BN 978-0-08-097141-4 J9 PERGAMON MATER SER PY 2012 VL 16 BP 407 EP 439 DI 10.1016/B978-0-08-097133-9.00010-1 PG 33 WC Materials Science, Characterization & Testing SC Materials Science GA BGG37 UT WOS:000322826800011 ER PT S AU Billinge, SJL Egami, T AF Billinge, Simon J. L. Egami, Takeshi BA Egami, T Billinge, SJL BF Egami, T Billinge, SJL TI Local Packing in Molecular Materials SO UNDERNEATH THE BRAGG PEAKS: STRUCTURAL ANALYSIS OF COMPLEX MATERIALS, 2ND EDITION SE Pergamon Materials Series LA English DT Article; Book Chapter ID PAIR DISTRIBUTION FUNCTION; ELECTRON-DIFFRACTION; SINGLE MOLECULES; SYSTEMS; STATE; SOLUBILITY C1 [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. NR 28 TC 0 Z9 0 U1 0 U2 1 PU PERGAMON-ELSEVIER SCIENCE LTD PI KIDLINGTON PA THE BOULEVARD, LANGFORD LANE,, KIDLINGTON OX5 1GB, OXFORD, ENGLAND SN 1470-1804 BN 978-0-08-097141-4 J9 PERGAMON MATER SER PY 2012 VL 16 BP 441 EP 453 DI 10.1016/B978-0-08-097133-9.00011-3 PG 13 WC Materials Science, Characterization & Testing SC Materials Science GA BGG37 UT WOS:000322826800012 ER PT S AU Billinge, SJL Egami, T AF Billinge, Simon J. L. Egami, Takeshi BA Egami, T Billinge, SJL BF Egami, T Billinge, SJL TI Structure of Amorphous Materials SO UNDERNEATH THE BRAGG PEAKS: STRUCTURAL ANALYSIS OF COMPLEX MATERIALS, 2ND EDITION SE Pergamon Materials Series LA English DT Article; Book Chapter ID X-RAY-DIFFRACTION; METALLIC GLASSES; SHEAR BANDS; DEFORMATION; RELAXATION; STATE; TEMPERATURE; TRANSITION; SIMULATION; DYNAMICS C1 [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. NR 36 TC 0 Z9 0 U1 1 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI KIDLINGTON PA THE BOULEVARD, LANGFORD LANE,, KIDLINGTON OX5 1GB, OXFORD, ENGLAND SN 1470-1804 BN 978-0-08-097141-4 J9 PERGAMON MATER SER PY 2012 VL 16 BP 455 EP 465 DI 10.1016/B978-0-08-097133-9.00012-5 PG 11 WC Materials Science, Characterization & Testing SC Materials Science GA BGG37 UT WOS:000322826800013 ER PT S AU Billinge, SJL Egami, T AF Billinge, Simon J. L. Egami, Takeshi BA Egami, T Billinge, SJL BF Egami, T Billinge, SJL TI Underneath the Bragg Peaks Structural Analysis of Complex Materials Concluding Remarks SO UNDERNEATH THE BRAGG PEAKS: STRUCTURAL ANALYSIS OF COMPLEX MATERIALS, 2ND EDITION SE Pergamon Materials Series LA English DT Editorial Material; Book Chapter C1 [Billinge, Simon J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, Simon J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Egami, Takeshi] Univ Tennessee, Dept Mat Sci & Engn, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Univ Tennessee, Dept Phys & Astron, South Coll, Knoxville, TN 37996 USA. [Egami, Takeshi] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. NR 0 TC 0 Z9 0 U1 0 U2 3 PU PERGAMON-ELSEVIER SCIENCE LTD PI KIDLINGTON PA THE BOULEVARD, LANGFORD LANE,, KIDLINGTON OX5 1GB, OXFORD, ENGLAND SN 1470-1804 BN 978-0-08-097141-4 J9 PERGAMON MATER SER PY 2012 VL 16 BP 467 EP 469 DI 10.1016/B978-0-08-097133-9.00013-7 PG 3 WC Materials Science, Characterization & Testing SC Materials Science GA BGG37 UT WOS:000322826800014 ER PT J AU Pullum, LL Ozmen, O AF Pullum, Laura L. Ozmen, Ozgur GP IEEE TI Early Results from Metamorphic Testing of Epidemiological Models SO 2012 ASE INTERNATIONAL CONFERENCE ON BIOMEDICAL COMPUTING (BIOMEDCOM) LA English DT Proceedings Paper CT ASE International Conference on BioMedical Computing (BioMedCom) CY DEC 14-16, 2012 CL Washington, DC SP Acad Sci & Engn (ASE), IEEE Comp Soc DE Epidemiological models; Verification; 1918 Spanish flu; Agent-based models; Metamorphic testing AB The research reported in this paper is motivated by the need to validate models of disease spread. To date, reasoned confidence in the results of these models is complicated by the increasing complexity of the models and by their desired predictive use. As part of an overall approach to verification and validation of disease spread models, we investigate metamorphic testing. In this paper, we present early results of initial metamorphic testing on agent-based epidemiological models. C1 [Pullum, Laura L.; Ozmen, Ozgur] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA. RP Pullum, LL (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA. EM pullumll@ornl.gov; ozmeno@ornl.gov NR 16 TC 7 Z9 7 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4938-5 PY 2012 BP 62 EP 67 DI 10.1109/BioMedCom.2012.17 PG 6 WC Computer Science, Artificial Intelligence; Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Computer Science; Engineering; Radiology, Nuclear Medicine & Medical Imaging GA BGL92 UT WOS:000323455700011 ER PT J AU Ramanathan, A Steed, CA Pullum, LL AF Ramanathan, Arvind Steed, Chad A. Pullum, Laura L. GP IEEE TI Verification of Compartmental Epidemiological Models using Metamorphic Testing, Model Checking and Visual Analytics SO 2012 ASE INTERNATIONAL CONFERENCE ON BIOMEDICAL COMPUTING (BIOMEDCOM) LA English DT Proceedings Paper CT ASE International Conference on BioMedical Computing (BioMedCom) CY DEC 14-16, 2012 CL Washington, DC SP Acad Sci & Engn (ASE), IEEE Comp Soc AB Compartmental models in epidemiology are widely used as a means to model disease spread mechanisms and understand how one can best control the disease in case an outbreak of a widespread epidemic occurs. However, a significant challenge within the community is in the development of approaches that can be used to rigorously verify and validate these models. In this paper, we present an approach to quantify and verify the behavioral properties of compartmental epidemiological models under several common modeling scenarios including: birth/death rates and multi-host/pathogen species. We build a workflow that uses metamorphic testing, novel visualization tools and model checking to gain insights into the functionality of compartmental epidemiological models. Our initial results indicate that metamorphic testing can be used to verify the implementation of these models and provide insights into special conditions where these mathematical models may fail. The visualization front-end allows the end-user to scan through a variety of parameters commonly used in these models to elucidate the conditions under which an epidemic can occur. Furthermore, specifying these models using a process algebra allows one to automatically construct behavioral properties that can be rigorously verified using model checking. Together, our approach allows for detecting implementation errors as well as handling conditions under which compartmental epidemiological models may fail to provide insights into disease spread dynamics. C1 [Ramanathan, Arvind; Steed, Chad A.; Pullum, Laura L.] Oak Ridge Natl Lab, Comp Sci & Engn Div, Oak Ridge, TN 37830 USA. RP Ramanathan, A (reprint author), Oak Ridge Natl Lab, Comp Sci & Engn Div, Oak Ridge, TN 37830 USA. EM ramanathana@ornl.gov; steedc@ornl.gov; pullumll@ornl.gov OI Steed, Chad/0000-0002-3501-909X NR 12 TC 5 Z9 5 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4938-5 PY 2012 BP 68 EP 73 DI 10.1109/BioMedCom.2012.18 PG 6 WC Computer Science, Artificial Intelligence; Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Computer Science; Engineering; Radiology, Nuclear Medicine & Medical Imaging GA BGL92 UT WOS:000323455700012 ER PT B AU Sukumar, SR Nutaro, JJ AF Sukumar, Sreenivas R. Nutaro, James J. GP IEEE TI Agent-based vs. Equation-based Epidemiological Models A Model Selection Case Study SO 2012 ASE INTERNATIONAL CONFERENCE ON BIOMEDICAL COMPUTING (BIOMEDCOM) LA English DT Proceedings Paper CT ASE International Conference on BioMedical Computing (BioMedCom) CY DEC 14-16, 2012 CL Washington, DC SP Acad Sci & Engn (ASE), IEEE Comp Soc DE model validation; epidemiological models; agent-based models; Spanish flu; model selection ID INFORMATION CRITERION; COMPLEXITY AB This paper is motivated by the need to design model validation strategies for epidemiological disease-spread models. We consider both agent-based and equation-based models of pandemic disease spread and study the nuances and complexities one has to consider from the perspective of model validation. For this purpose, we instantiate an equation-based model and an agent-based model of the 1918 Spanish flu and we leverage data published in the literature for our case study. We present our observations from the perspective of each implementation and discuss the application of model-selection criteria to compare the risk in choosing one modeling paradigm to another. We conclude with a discussion of our experience and document future ideas for a model validation framework. C1 [Sukumar, Sreenivas R.; Nutaro, James J.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. RP Sukumar, SR (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM sukumarsr@ornl.gov; nutarojj@ornl.gov OI Nutaro, James/0000-0001-7360-2836 NR 21 TC 1 Z9 1 U1 0 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-0-7695-4938-5; 978-1-4673-5495-0 PY 2012 BP 74 EP 79 DI 10.1109/BioMedCom.2012.19 PG 6 WC Computer Science, Artificial Intelligence; Engineering, Biomedical; Radiology, Nuclear Medicine & Medical Imaging SC Computer Science; Engineering; Radiology, Nuclear Medicine & Medical Imaging GA BGL92 UT WOS:000323455700013 ER PT J AU Prime, MB De Wald, AT Hill, MR AF Prime, Michael B. De Wald, Adrian T. Hill, Michael R. BE SilvaGomes, JF Vaz, MAP TI FORENSIC DETERMINATION OF RESIDUAL STRESSES FROM FRACTURE SURFACES SO ICEM15: 15TH INTERNATIONAL CONFERENCE ON EXPERIMENTAL MECHANICS LA English DT Proceedings Paper CT 15th International Conference on Experimental Mechanics (ICEM) CY JUL 22-27, 2012 CL Univ Porto, Fac Engn (FEUP), Porto, PORTUGAL SP Portuguese Assoc Expt Mech (APAET), European Soc Expt Mech (EURASEM), Amer Soc Expt Mech (SEM), British Soc Strain Measurement (BSSM), Japanese Soc Mech Engn (JSME), Int Measurement Confederat (IMEKO), Assoc Francaise Mecanique (AFM), European Assoc Dynam Mat (DYMAT), Inst Engenharia Mecanica & Gestao Ind (INEGI), Lab Biomecanica Porto (LABIOMEP), Lab Nacl Engenharia Civil (LNEC), Fundacao Ciencia & Tecnologia (FCT), DYN CORK Tech Ind, Lda, Amorim Cork Composites, Comissao Coordenacao & Desenvolvimento Reg Norte (CCDRN), Camara Municipal Porto (CMP), Guimaraes, Teatro Nacl S Joao, ABREU PCO HO Univ Porto, Fac Engn (FEUP) AB This work describes a new technique for determining in a fractured part the residual stresses that originally existed on the fracture plane prior to fracture. The technique is based on measuring the misfit between the two mating fracture surfaces. The solid mechanics principles involved are fascinating yet conceptually simple. The technique is applied to a 7050-T74 aluminum alloy extrusion and validated by comparison with neutron diffraction measurements on another section of the same extrusion C1 [Prime, Michael B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Prime, MB (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM prime@lanl.gov RI Hill, Michael/A-2525-2016 OI Hill, Michael/0000-0002-9168-211X NR 1 TC 0 Z9 0 U1 0 U2 0 PU INEGI-INST ENGENHARIA MECANICA E GESTAO INDUSTRIAL PI PORTO PA CAMPUS DA FEUP, RUA DR ROBERTO FRIAS, 400, PORTO, 4200-465, PORTUGAL BN 978-972-8826-26-0 PY 2012 AR UNSP 3045 PG 2 WC Engineering, Multidisciplinary; Engineering, Mechanical; Materials Science, Multidisciplinary; Materials Science, Characterization & Testing SC Engineering; Materials Science GA BFO20 UT WOS:000320722902130 ER PT J AU Nowak-Lovato, KL Rector, KD AF Nowak-Lovato, Kristy L. Rector, Kirk D. TI Live Cells as Dynamic Laboratories: Time Lapse Raman Spectral Microscopy of Nanoparticles with Both IgE Targeting and pH-Sensing Functions SO INTERNATIONAL JOURNAL OF ANALYTICAL CHEMISTRY LA English DT Review ID SURFACE-ENHANCED RAMAN; RECEPTOR-MEDIATED ENDOCYTOSIS; SELF-ASSEMBLED MONOLAYERS; FC-EPSILON-RI; LIVING CELLS; ENDOSOME ACIDIFICATION; SERS NANOSENSORS; BAFILOMYCIN A(1); AMYLOID PEPTIDE; SINGLE-MOLECULE AB This review captures the use of live cells as dynamic microlaboratories through implementation of labeled nanoparticles (nanosensors) that have both sensing and targeting functions. The addition of 2,4-epsilon-dinitrophenol-L-lysine (DNP) as a Fc epsilon RI targeting ligand and 4-mercaptopyridine (4-MPy) as a pH-sensing ligand enables spatial and temporal monitoring of Fc epsilon RI receptors and their pH environment within the endocytic pathway. To ensure reliability, the sensor is calibrated in vivo using the ionophore nigericin and standard buffer solutions to equilibrate the external [H+] concentration with that of the cell compartments. This review highlights the nanosensors, ability to traffic and respond to pH of receptor-bound nanosensors (1) at physiological temperature (37 degrees C) versus room temperature (25 degrees C), (2) after pharmacological treatment with bafilomycin, an H+ ATPase pump inhibitor, or amiloride, an inhibitor of Na+/H+ exchange, and (3) in response to both temperature and pharmacological treatment. Whole-cell, time lapse images are demonstrated to show the ability to transform live cells into dynamic laboratories to monitor temporal and spatial endosomal pH. The versatility of these probes shows promise for future applications relevant to intracellular trafficking and intelligent drug design. C1 [Nowak-Lovato, Kristy L.] Los Alamos Natl Lab, Decis Applicat Div, Los Alamos, NM 87545 USA. [Rector, Kirk D.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Rector, KD (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM kdr@lanl.gov FU Los Alamos National Security [DE-RP52-05NA25396]; Los Alamos National Laboratory Directed Research and Development [20080001DR] FX This manuscript has been authored by Los Alamos National Security under Contract no. DE-RP52-05NA25396 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, and worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. They acknowledge Los Alamos National Laboratory Directed Research and Development grant no. 20080001DR (to K. D. Rector) for support of this project. They acknowledge use of the UNM-HSC Electron Microscopy Facility and the UNM Cancer Center Fluorescent Microscopy Facility. They also thank Professors Bridget Wilson, Janet Oliver, Diane Lidke and Keith Lidke (University of New Mexico) for advice and input. The authors would also like to thank Dr. Stephen Joyce (Los Alamos National Laboratory) for his SEM imaging experiments, and Dr. David Kimball and Maida Trujillo (Los Alamos National Laboratory) for their help in the artwork of Figure 1(c). Finally, we thank Brian Dyer of Emory University for useful discussions. NR 65 TC 1 Z9 1 U1 3 U2 21 PU HINDAWI PUBLISHING CORPORATION PI NEW YORK PA 410 PARK AVENUE, 15TH FLOOR, #287 PMB, NEW YORK, NY 10022 USA SN 1687-8760 J9 INT J ANAL CHEM JI Int. J. Anal. Chem. PY 2012 AR 390182 DI 10.1155/2012/390182 PG 16 WC Chemistry, Analytical SC Chemistry GA 205IS UT WOS:000323438100001 ER PT J AU Aoki, S Ishii, N Ishikawa, KI Ishizuka, N Izubuchi, T Kadoh, D Kanaya, K Kuramashi, Y Namekawa, Y Nguyen, OH Okawa, M Sasaki, K Taniguchi, Y Ukawa, A Ukita, N Yamazaki, T Yoshie, T AF Aoki, S. Ishii, N. Ishikawa, K. -I. Ishizuka, N. Izubuchi, T. Kadoh, D. Kanaya, K. Kuramashi, Y. Namekawa, Y. Nguyen, O. H. Okawa, M. Sasaki, K. Taniguchi, Y. Ukawa, A. Ukita, N. Yamazaki, T. Yoshie, T. CA PACS-CS Collaboration TI Lattice quantum chromodynamics at the physical point and beyond SO PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS LA English DT Article ID HYBRID MONTE-CARLO; LIGHT-QUARK MASSES; CHIRAL PERTURBATION-THEORY; SCATTERING LENGTHS; GAUGE-THEORIES; CONTINUUM-LIMIT; HADRON MASSES; CP-PACS; QCD; FERMIONS AB We review the work of the PACS-CS Collaboration, which aimed to realize lattice quantum chromodynamics (QCD) calculations at the physical point, i.e., those with quark masses set at physical values. This has been a long-term goal of lattice QCD simulation since its inception in 1979. After reviewing the algorithmic progress, which played a key role in this development, we summarize the simulations that explored the quark mass dependence of hadron masses down to values close to the physical point. In addition to allowing a reliable determination of the light hadron mass spectrum, this work provided clues on the validity range of chiral perturbation theory, which is widely used in phenomenology. We then describe the application of the technique of quark determinant reweighting, which enables lattice QCD calculations exactly on the physical point. The physical quark masses and the strong coupling constants are fundamental constants of the strong interaction. We describe a non-perturbative Schrodinger functional approach to figure out the non-perturbative renormalization needed to calculate them. There are a number of physical applications that can benefit from lattice QCD calculations carried out either near or at the physical point. We take up three illustrative examples: calculation of the physical properties of the rho meson as a resonance, the electromagnetic form factor and charge radius of the pion, and charmed meson spectroscopy. Bringing single hadron properties under control opens up a number of new areas for serious lattice QCD research. One such area is electromagnetic effects in hadronic properties. We discuss the combined QCD plus QED simulation strategy and present results on electromagnetic mass difference. Another area is multi-hadron states, or nuclei. We discuss the motivations and difficulties in this area, and describe our work for deuteron and helium as our initial playground. We conclude with a brief discussion on the future perspective of lattice QCD. C1 [Aoki, S.; Ishii, N.; Ishizuka, N.; Kanaya, K.; Kuramashi, Y.; Taniguchi, Y.; Yoshie, T.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, S.; Ishizuka, N.; Kuramashi, Y.; Namekawa, Y.; Taniguchi, Y.; Ukawa, A.; Ukita, N.; Yoshie, T.] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan. [Ishikawa, K. -I.; Okawa, M.] Hiroshima Univ, Grad Sch Sci, Hiroshima 7398526, Japan. [Izubuchi, T.] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. [Kadoh, D.] RIKEN, Wako, Saitama 35101, Japan. [Kuramashi, Y.] RIKEN Adv Inst Computat Sci, Kobe, Hyogo 6500047, Japan. [Nguyen, O. H.] Vietnam Natl Univ, Coll Nat Sci, Dept Phys, Hanoi, Vietnam. [Sasaki, K.] Tokyo Inst Technol, Grad Sch Sci, Meguro Ku, Tokyo 1528550, Japan. [Yamazaki, T.] Nagoya Univ, Kobayashi Maskawa Inst Origin Particles & Univers, Nagoya, Aichi 4648602, Japan. RP Aoki, S (reprint author), Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. RI Ukawa, Akira/A-6549-2011; Kuramashi, Yoshinobu /C-8637-2016 FU Ministry of Education, Culture, Sports, Science and Technology of Japan [16740147, 17340066, 18104005, 18540250, 18740130, 19740134, 20340047, 20540248, 20740123, 20740139, 21340049, 22244018, 22740138]; [2004: 20105001]; [20105002]; [20105003]; [20105005]; [2104: 22105501] FX Numerical calculations for the present work were carried out on the PACS-CS and T2K-Tsukuba computers under the "Interdisciplinary Computational Science Program" in the Center for Computational Sciences, University of Tsukuba. This work is supported in part by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Nos. 16740147, 17340066, 18104005, 18540250, 18740130, 19740134, 20340047, 20540248, 20740123, 20740139, 21340049, 22244018, and 22740138), and a Grant-in-Aid for Scientific Research on Innovative Areas (No. 2004: 20105001, 20105002, 20105003, 20105005, and No. 2104: 22105501). NR 92 TC 2 Z9 2 U1 0 U2 3 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 2050-3911 J9 PROG THEOR EXP PHYS JI Prog. Theor. Exp. Phys. PY 2012 IS 1 AR 01A102 DI 10.1093/ptep/pts002 PG 31 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA 190CD UT WOS:000322314000005 ER PT J AU Aoki, S Chiu, TW Cossu, G Feng, X Fukaya, H Hashimoto, S Hsieh, TH Kaneko, T Matsufuru, H Noaki, JI Onogi, T Shintani, E Takeda, K AF Aoki, Sinya Chiu, Ting-Wai Cossu, Guido Feng, Xu Fukaya, Hidenori Hashimoto, Shoji Hsieh, Tung-Han Kaneko, Takashi Matsufuru, Hideo Noaki, Jun-Ichi Onogi, Tetsuya Shintani, Eigo Takeda, Kouhei TI Simulation of quantum chromodynamics on the lattice with exactly chiral lattice fermions SO PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS LA English DT Article ID HYBRID MONTE-CARLO; CP-PACS PROJECT; TOPOLOGICAL MODES; MASSLESS QUARKS; DIRAC OPERATOR; QCD; SYMMETRY; ABSENCE; VECTOR; NEUTRINOS AB Numerical simulation of the low-energy dynamics of quarks and gluons is now feasible based on the fundamental theory of strong interaction, i.e. quantum chromodynamics (QCD). With QCD formulated on a 4D hypercubic lattice (called lattice QCD or LQCD), one can simulate the QCD vacuum and hadronic excitations on the vacuum using teraflop-scale supercomputers, which have become available in the last decade. A great deal of work has been done on this subject by many groups around the world; in this article we summarize the work done by the JLQCD and TWQCD collaborations since 2006. These collaborations employ Neuberger's overlap fermion formulation, which preserves the exact chiral and flavor symmetries on the lattice, unlike other lattice fermion formulations. Because of this beautiful property, numerical simulation of the formulation can address fundamental questions on the QCD vacuum, such as the microscopic structure of the quark-antiquark condensate in the chirally broken phase of QCD and its relation to SU(3) gauge field topology. Tests of the chiral effective theory, which is based on the assumption that the chiral symmetry is spontaneously broken in the QCD vacuum, can be performed, including the pion-loop effect test. For many other phenomenological applications, we adopt the all-to-all quark propagator technique, which allows us to compute various correlation functions without substantial extra cost. The benefit of this is not only that the statistical signal is improved but that disconnected quark-loop diagrams can be calculated. Using this method combined with the overlap fermion formulation, we study a wide range of physical quantities that are of both theoretical and phenomenological interest. C1 [Aoki, Sinya] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. [Aoki, Sinya] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan. [Chiu, Ting-Wai] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Chiu, Ting-Wai] Natl Taiwan Univ, Ctr Quantum Sci & Engn, Taipei 10617, Taiwan. [Cossu, Guido; Feng, Xu; Hashimoto, Shoji; Kaneko, Takashi; Matsufuru, Hideo; Noaki, Jun-Ichi; Takeda, Kouhei] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Fukaya, Hidenori; Onogi, Tetsuya] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan. [Hashimoto, Shoji; Kaneko, Takashi] Grad Univ Adv Studies Sokendai, Sch High Energy Accelerator Sci, Tsukuba, Ibaraki 3050801, Japan. [Hsieh, Tung-Han] Acad Sinica, Res Ctr Appl Sci, Taipei 115, Taiwan. [Shintani, Eigo] Brookhaven Natl Lab, RIKEN BNL Res Ctr, Upton, NY 11973 USA. RP Aoki, S (reprint author), Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan. EM shoji.hashimoto@kek.jp RI Shintani, Eigo/C-8623-2016 FU Large Scale Simulation Program [06-13, 07-16, 08-05, 09-05, 09/10-09, 10-11]; Taiwan National Science Council [NSC99-2112-M-002-012-MY3, NSC99-2112-M-001-014-MY3]; NTU-CQSE [10R80914-4]; [18340075]; [20105001]; [20105002]; [20105005]; [21674002]; [23105710]; [23105714] FX We thank the members of the JLQCD and TWQCD collaborations for numerous discussions. Numerical simulations were performed on the Hitachi SR11000 and IBM System Blue Gene Solution at the High Energy Accelerator Research Organization (KEK) with the support of its Large Scale Simulation Program (Nos. 06-13, 07-16, 08-05, 09-05, 09/10-09, and 10-11). This work is supported in part by a Grant-in-aid for Scientific Research of Japan (Nos. 18340075, 20105001, 20105002, 20105005, 21674002, 23105710, 23105714). and by the Taiwan National Science Council (Nos. NSC99-2112-M-002-012-MY3, NSC99-2112-M-001-014-MY3) and NTU-CQSE (No. 10R80914-4). NR 98 TC 0 Z9 0 U1 0 U2 0 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 2050-3911 J9 PROG THEOR EXP PHYS JI Prog. Theor. Exp. Phys. PY 2012 IS 1 AR 01A106 DI 10.1093/ptep/pts006 PG 33 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA 190CD UT WOS:000322314000009 ER PT J AU Carlson, J Gandolfi, S Gezerlis, A AF Carlson, J. Gandolfi, Stefano Gezerlis, Alexandros TI Quantum Monte Carlo approaches to nuclear and atomic physics SO PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS LA English DT Article ID CORRELATED FERMI GAS; GROUND-STATES; ELECTRON-GAS; TEMPERATURE; HELIUM; HE-4 AB Quantum Monte Carlo methods have proven to be valuable in the study of strongly correlated quantum systems, particularly nuclear physics and cold atomic gases. Historically, such ab initio simulations have been used to study properties of light nuclei, including spectra and form factors, low-energy scattering, and high-momentum properties including inclusive scattering and one-and two-body momentum distributions. More recently they have been used to study the properties of homogeneous and inhomogeneous neutron matter and cold atomic gases. There are close analogies between these seemingly diverse systems, including the equation of state, superfluid pairing, and linear response to external probes. In this paper, we compare and contrast results found in nuclear and cold atom physics. We show updated lattice results for the energy of the homogeneous unitary Fermi gas and comparisons with neutron matter, as well as for the dependence of the cold atom energy on the mass ratio between paired particles, which yields insights on the structure of the ground state. We also provide new lattice and continuum results for the harmonically trapped unitary gas, again comparing neutron matter and cold atoms. C1 [Carlson, J.; Gandolfi, Stefano] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Gezerlis, Alexandros] GSI Helmholtzzentrum Schwerionenforsch GmbH, ExtreMe Matter Inst EMMI, D-64291 Darmstadt, Germany. [Gezerlis, Alexandros] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. RP Carlson, J (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM gezerlis@uw.edu RI Gezerlis, Alexandros/O-9426-2014; OI Gezerlis, Alexandros/0000-0003-2232-2484; Gandolfi, Stefano/0000-0002-0430-9035 FU Office of Science of the Department of Energy [DE-AC05-00OR22725]; Nuclear Physics program at the DOE Office of Science; LANL LDRD program; Helmholtz Alliance Program of the Helmholtz Association [HA216/EMMI] FX The authors would like to thank Yusuke Nishida and Steven Pieper for valuable conversations and insights. The authors are grateful to the LANL Institutional computing program, the NERSC computing facility at Berkeley National Laboratory, and the Oak Ridge Leadership Computing Facility located in the Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract DE-AC05-00OR22725. The work of J. C. and S. G. is supported by the Nuclear Physics program at the DOE Office of Science, and S. G. is also supported by the LANL LDRD program. The work of A. G. is supported by the Helmholtz Alliance Program of the Helmholtz Association, contract HA216/EMMI "Extremes of Density and Temperature: Cosmic Matter in the Laboratory". NR 71 TC 11 Z9 11 U1 1 U2 12 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 2050-3911 J9 PROG THEOR EXP PHYS JI Prog. Theor. Exp. Phys. PY 2012 IS 1 AR 01A209 DI 10.1093/ptep/pts031 PG 16 WC Physics, Multidisciplinary; Physics, Particles & Fields SC Physics GA 190CD UT WOS:000322314000020 ER PT J AU Newman, WI AF Newman, William I. BA Newman, WI BF Newman, WI TI Some mathematical essentials SO CONTINUUM MECHANICS IN THE EARTH SCIENCES LA English DT Article; Book Chapter C1 [Newman, William I.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Newman, William I.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90024 USA. [Newman, William I.] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA. [Newman, William I.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM USA. RP Newman, WI (reprint author), Weizmann Inst Sci, IL-76100 Rehovot, Israel. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-0-521-56289-8 PY 2012 BP 1 EP 26 D2 10.1017/CBO9780511980121 PG 26 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA BGA10 UT WOS:000322033700002 ER PT J AU Newman, WI AF Newman, William I. BA Newman, WI BF Newman, WI TI CONTINUUM MECHANICS IN THE EARTH SCIENCES Preface SO CONTINUUM MECHANICS IN THE EARTH SCIENCES LA English DT Editorial Material; Book Chapter C1 [Newman, William I.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Newman, William I.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90024 USA. [Newman, William I.] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA. [Newman, William I.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM USA. RP Newman, WI (reprint author), Weizmann Inst Sci, IL-76100 Rehovot, Israel. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-0-521-56289-8 PY 2012 BP IX EP + D2 10.1017/CBO9780511980121 PG 8 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA BGA10 UT WOS:000322033700001 ER PT J AU Newman, WI AF Newman, William I. BA Newman, WI BF Newman, WI TI Stress principles SO CONTINUUM MECHANICS IN THE EARTH SCIENCES LA English DT Article; Book Chapter C1 [Newman, William I.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Newman, William I.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90024 USA. [Newman, William I.] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA. [Newman, William I.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM USA. RP Newman, WI (reprint author), Weizmann Inst Sci, IL-76100 Rehovot, Israel. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-0-521-56289-8 PY 2012 BP 27 EP 48 D2 10.1017/CBO9780511980121 PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA BGA10 UT WOS:000322033700003 ER PT J AU Newman, WI AF Newman, William I. BA Newman, WI BF Newman, WI TI Deformation and motion SO CONTINUUM MECHANICS IN THE EARTH SCIENCES LA English DT Article; Book Chapter C1 [Newman, William I.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Newman, William I.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90024 USA. [Newman, William I.] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA. [Newman, William I.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM USA. RP Newman, WI (reprint author), Weizmann Inst Sci, IL-76100 Rehovot, Israel. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-0-521-56289-8 PY 2012 BP 49 EP 66 D2 10.1017/CBO9780511980121 PG 18 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA BGA10 UT WOS:000322033700004 ER PT J AU Newman, WI AF Newman, William I. BA Newman, WI BF Newman, WI TI Fundamental laws and equations SO CONTINUUM MECHANICS IN THE EARTH SCIENCES LA English DT Article; Book Chapter C1 [Newman, William I.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Newman, William I.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90024 USA. [Newman, William I.] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA. [Newman, William I.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM USA. RP Newman, WI (reprint author), Weizmann Inst Sci, IL-76100 Rehovot, Israel. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-0-521-56289-8 PY 2012 BP 67 EP 88 D2 10.1017/CBO9780511980121 PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA BGA10 UT WOS:000322033700005 ER PT J AU Newman, WI AF Newman, William I. BA Newman, WI BF Newman, WI TI Linear elastic solids SO CONTINUUM MECHANICS IN THE EARTH SCIENCES LA English DT Article; Book Chapter C1 [Newman, William I.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Newman, William I.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90024 USA. [Newman, William I.] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA. [Newman, William I.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM USA. RP Newman, WI (reprint author), Weizmann Inst Sci, IL-76100 Rehovot, Israel. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-0-521-56289-8 PY 2012 BP 89 EP 111 D2 10.1017/CBO9780511980121 PG 23 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA BGA10 UT WOS:000322033700006 ER PT J AU Newman, WI AF Newman, William I. BA Newman, WI BF Newman, WI TI Classical fluids SO CONTINUUM MECHANICS IN THE EARTH SCIENCES LA English DT Article; Book Chapter C1 [Newman, William I.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Newman, William I.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90024 USA. [Newman, William I.] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA. [Newman, William I.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM USA. RP Newman, WI (reprint author), Weizmann Inst Sci, IL-76100 Rehovot, Israel. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-0-521-56289-8 PY 2012 BP 112 EP 133 D2 10.1017/CBO9780511980121 PG 22 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA BGA10 UT WOS:000322033700007 ER PT J AU Newman, WI AF Newman, William I. BA Newman, WI BF Newman, WI TI Geophysical fluid dynamics SO CONTINUUM MECHANICS IN THE EARTH SCIENCES LA English DT Article; Book Chapter C1 [Newman, William I.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Newman, William I.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90024 USA. [Newman, William I.] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA. [Newman, William I.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM USA. RP Newman, WI (reprint author), Weizmann Inst Sci, IL-76100 Rehovot, Israel. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-0-521-56289-8 PY 2012 BP 134 EP 146 D2 10.1017/CBO9780511980121 PG 13 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA BGA10 UT WOS:000322033700008 ER PT J AU Newman, WI AF Newman, William I. BA Newman, WI BF Newman, WI TI Computation in continuum mechanics SO CONTINUUM MECHANICS IN THE EARTH SCIENCES LA English DT Article; Book Chapter C1 [Newman, William I.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Newman, William I.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90024 USA. [Newman, William I.] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA. [Newman, William I.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM USA. RP Newman, WI (reprint author), Weizmann Inst Sci, IL-76100 Rehovot, Israel. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-0-521-56289-8 PY 2012 BP 147 EP 158 D2 10.1017/CBO9780511980121 PG 12 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA BGA10 UT WOS:000322033700009 ER PT J AU Newman, WI AF Newman, William I. BA Newman, WI BF Newman, WI TI Nonlinearity in the Earth SO CONTINUUM MECHANICS IN THE EARTH SCIENCES LA English DT Article; Book Chapter C1 [Newman, William I.] Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90024 USA. [Newman, William I.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90024 USA. [Newman, William I.] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA. [Newman, William I.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM USA. RP Newman, WI (reprint author), Weizmann Inst Sci, IL-76100 Rehovot, Israel. NR 0 TC 0 Z9 0 U1 0 U2 0 PU CAMBRIDGE UNIV PRESS PI CAMBRIDGE PA THE PITT BUILDING, TRUMPINGTON ST, CAMBRIDGE CB2 1RP, CAMBS, ENGLAND BN 978-0-521-56289-8 PY 2012 BP 159 EP 174 D2 10.1017/CBO9780511980121 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA BGA10 UT WOS:000322033700010 ER PT J AU Xu, ZJ Fang, YL Scheibe, TD Bonneville, A AF Xu, Zhijie Fang, Yilin Scheibe, Timothy. D. Bonneville, Alain BE SalazarVillalpando, MD Neelameggham, NR Guillen, DP Pati, S Krumdick, GK TI A Hydro-mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration SO ENERGY TECHNOLOGY 2012: CARBON DIOXIDE MANAGEMENT AND OTHER TECHNOLOGIES LA English DT Proceedings Paper CT 5th Conference on Energy Technology - Carbon Dioxide Management and Other Technologies held during the TMS Annual Meeting and Exhibition CY MAR 11-15, 2012 CL Orlando, FL SP TMS, Extract & Processing Div, Energy Comm, The Minerals, Met & Mat Soc (TMS), Light Met Div DE sequestration; geomechanics; Multi-scale; poro-elasticity; hydro-mechanical ID CONSOLIDATION AB We present a hydro-mechanical model for geological sequestration of carbon dioxide. The. model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcy's law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution. C1 [Xu, Zhijie] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Computat Math Grp, Richland, WA 99352 USA. RP Xu, ZJ (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Computat Math Grp, Richland, WA 99352 USA. EM zhijie.xu@pnnl.gov RI Fang, Yilin/J-5137-2015; Xu, Zhijie/A-1627-2009; OI Xu, Zhijie/0000-0003-0459-4531; Bonneville, Alain/0000-0003-1527-1578 NR 11 TC 0 Z9 0 U1 0 U2 0 PU JOHN WILEY & SONS PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER, W SUSSEX PO 19 8SQ, ENGLAND BN 978-1-11829-138-2 PY 2012 BP 47 EP 53 PG 7 WC Energy & Fuels SC Energy & Fuels GA BGG02 UT WOS:000322799600007 ER PT J AU Guillen, DP AF Guillen, Donna Post BE SalazarVillalpando, MD Neelameggham, NR Guillen, DP Pati, S Krumdick, GK TI EFFECT OF MATERIALS ON THE AUTOIGNITION OF CYCLOPENTANE SO ENERGY TECHNOLOGY 2012: CARBON DIOXIDE MANAGEMENT AND OTHER TECHNOLOGIES LA English DT Proceedings Paper CT 5th Conference on Energy Technology - Carbon Dioxide Management and Other Technologies held during the TMS Annual Meeting and Exhibition CY MAR 11-15, 2012 CL Orlando, FL SP TMS, Extract & Processing Div, Energy Comm, The Minerals, Met & Mat Soc (TMS), Light Met Div DE cyclopentane autoignition; ignition delay time; Organic Rankine Cycle ID SHOCK-TUBE; IGNITION; CYCLOHEXANE; PRESSURES; OXIDATION AB Cyclopentane, a flammable hydrocarbon, is being considered as a working fluid for waste heat recovery applications using Organic Rankine Cycles with Direct Evaporators. A postulated failure mode consisting of a pinhole leak in a heat exchanger tube raises safety concerns due to autoignition of the working fluid. Experiments were conducted to determine the ignition delay time (IDT) of cyclopentane using an Ignition Quality Test (TM) (IQT (TM)) device. Two sets of experiments were conducted per ASTM D6890 (with exception to charge pressure and temperature) to determine ignition delay of the fuel at atmospheric pressure for standard air (similar to 20.95% oxygen) and vitiated air (13.3% oxygen) at a temperature of 803 K. Operation of the IQT device at a much lower pressure (1 bar) than normal operation (21.4 bar) with a standard injector led to very rich conditions and wetting of the stainless steel chamber walls. Catalytic effects are postulated to produce the small IDTs observed. Experiments were repeated with a modified injector to prevent wall wetting, resulting in average IDTs that are substantially longer. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Guillen, DP (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. RI Guillen, Donna/B-9681-2017 OI Guillen, Donna/0000-0002-7718-4608 NR 12 TC 1 Z9 1 U1 0 U2 0 PU JOHN WILEY & SONS PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER, W SUSSEX PO 19 8SQ, ENGLAND BN 978-1-11829-138-2 PY 2012 BP 151 EP 158 PG 8 WC Energy & Fuels SC Energy & Fuels GA BGG02 UT WOS:000322799600019 ER PT J AU Jensen, B Dennis, KW McCallum, RW AF Jensen, B. Dennis, K. W. McCallum, R. W. BE SalazarVillalpando, MD Neelameggham, NR Guillen, DP Pati, S Krumdick, GK TI SEARCH FOR NEW RARE EARTH BASED PERMANENT MAGNETIC MATERIALS SO ENERGY TECHNOLOGY 2012: CARBON DIOXIDE MANAGEMENT AND OTHER TECHNOLOGIES LA English DT Proceedings Paper CT 5th Conference on Energy Technology - Carbon Dioxide Management and Other Technologies held during the TMS Annual Meeting and Exhibition CY MAR 11-15, 2012 CL Orlando, FL SP TMS, Extract & Processing Div, Energy Comm, The Minerals, Met & Mat Soc (TMS), Light Met Div DE Permanent Magnet; Rare Earth; New Material ID ZR; CR; ND AB There are substantial challenges in the exploration of magnetic materials in the R-TM-X system (R = rare earth, TM = transition metal, X = stabilizing element) where X is an element which has high vapor pressure, high reactivity, toxicity, or a refractory nature. This research focuses on discovering new phases with high anisotropy and high magnetization through closed diffusion couples inside high purity Fe crucibles. Either vapor-solid reactions or powder metallurgy techniques are then employed to isolate a stoichiometric sample based on a potentially magnetic phase found in the diffusion couple. For this research, X = F, Ca, Sr, Se, Zn, Bi or Cd, TM = Fe, and R = Nd. New ternary phases have been discovered with WDS and EDS, and magnetic transition temperatures have been measured with a SQUID magnetometer and VSM. C1 [Jensen, B.; Dennis, K. W.; McCallum, R. W.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. RP Jensen, B (reprint author), Iowa State Univ, US DOE, Ames Lab, Wilhelm Hall, Ames, IA 50011 USA. NR 5 TC 1 Z9 1 U1 1 U2 2 PU JOHN WILEY & SONS PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER, W SUSSEX PO 19 8SQ, ENGLAND BN 978-1-11829-138-2 PY 2012 BP 247 EP 253 PG 7 WC Energy & Fuels SC Energy & Fuels GA BGG02 UT WOS:000322799600030 ER PT J AU Nanstad, RK Sokolov, MA Chen, X AF Nanstad, Randy K. Sokolov, Mikhail A. Chen, Xiang (Frank) BE SalazarVillalpando, MD Neelameggham, NR Guillen, DP Pati, S Krumdick, GK TI FRACTURE TOUGHNESS OF 9Cr-1MoV AND THERMALLY AGED ALLOY 617 FOR ADVANCED REACTOR APPLICATIONS SO ENERGY TECHNOLOGY 2012: CARBON DIOXIDE MANAGEMENT AND OTHER TECHNOLOGIES LA English DT Proceedings Paper CT 5th Conference on Energy Technology - Carbon Dioxide Management and Other Technologies held during the TMS Annual Meeting and Exhibition CY MAR 11-15, 2012 CL Orlando, FL SP TMS, Extract & Processing Div, Energy Comm, The Minerals, Met & Mat Soc (TMS), Light Met Div DE Nickel; fracture toughness; thermal aging; Alloy 617; Grade 91; Charpy impact; high temperature; small specimen; bias ID STEEL AB Nickel-base Alloy 617 is being considered as a structural material for application in the secondary heat exchanger of the New Generation Nuclear Plant, a very high temperature gas-cooled reactor. Thermal aging of Alloy 617 plate and welds is being performed with tensile, Charpy impact, and fracture toughness tests conducted at temperatures to 950 degrees C. Results of testing for thermal aging to 5,300 h have been obtained and are presented; varying effects of thermal aging temperature and time on fracture toughness are observed. The 9Cr-1MoV (Grade 91) ferritic steel is a candidate for structural applications in the sodium fast reactor. Fracture toughness testing of unaged Grade 91 steel has been performed to evaluate specimen size effects in preparation for future testing of the material in the thermally aged condition. Results for material in the mill-annealed and heat treated conditions are presented and show that this heat of Grade 91 steel does not indicate a small specimen bias on the fracture toughness Master Curve reference temperature. C1 [Nanstad, Randy K.; Sokolov, Mikhail A.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Nanstad, RK (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN USA. NR 26 TC 0 Z9 0 U1 0 U2 2 PU JOHN WILEY & SONS PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER, W SUSSEX PO 19 8SQ, ENGLAND BN 978-1-11829-138-2 PY 2012 BP 343 EP 356 PG 14 WC Energy & Fuels SC Energy & Fuels GA BGG02 UT WOS:000322799600041 ER PT J AU Hattar, K Buchheit, T Kotula, P McGinnis, A Brewer, L AF Hattar, Khalid Buchheit, Thomas Kotula, Paul McGinnis, Alexander Brewer, Luke BE SalazarVillalpando, MD Neelameggham, NR Guillen, DP Pati, S Krumdick, GK TI NANOINDENTATION AND TEM CHARACTERIZATION OF ION IRRADIATED 316L STAINLESS STEELS SO ENERGY TECHNOLOGY 2012: CARBON DIOXIDE MANAGEMENT AND OTHER TECHNOLOGIES LA English DT Proceedings Paper CT 5th Conference on Energy Technology - Carbon Dioxide Management and Other Technologies held during the TMS Annual Meeting and Exhibition CY MAR 11-15, 2012 CL Orlando, FL SP TMS, Extract & Processing Div, Energy Comm, The Minerals, Met & Mat Soc (TMS), Light Met Div DE Ion Irradiation; Nanoindentation; Transmission Electron Microscopy ID ENERGETIC ATOMS AB Understanding the effects of extensive radiation damage in structural metals provides necessary insight for predicting the performance of those metals considered for application in the extreme radiation environment. Predicting mechanical performance after long term radiation exposure is of great importance to extending the life of current nuclear reactors and for developing future materials for the next generation of reactors. A combination of finite element modeling, nanoindentation, and TEM characterization were used to rapidly determine the microstructure and mechanical properties influences of ion irradiation on a standard 316L stainless steel sample. The results of this study found that ion irradiation and small scale mechanical property testing can be used to characterize extensive levels of radiation damage structure, only when significant consideration is given to ion irradiation depth, surface roughness and polishing condition, the irradiation temperature, and. many other experimental parameters. C1 [Hattar, Khalid; Buchheit, Thomas; Kotula, Paul] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Hattar, K (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. RI Kotula, Paul/A-7657-2011 OI Kotula, Paul/0000-0002-7521-2759 NR 12 TC 0 Z9 0 U1 4 U2 13 PU JOHN WILEY & SONS PI CHICHESTER PA THE ATRIUM, SOUTHERN GATE, CHICHESTER, W SUSSEX PO 19 8SQ, ENGLAND BN 978-1-11829-138-2 PY 2012 BP 373 EP 380 PG 8 WC Energy & Fuels SC Energy & Fuels GA BGG02 UT WOS:000322799600043 ER PT J AU Jain, R Urban, L Stacey, GS Balbach, H Webb, MD AF Jain, Ravi Urban, Lloyd Stacey, Gary S. Balbach, Harold Webb, M. Diana BA Jain, R Urban, L Stacey, GS Balbach, H Webb, MD BF Jain, R Urban, L Stacey, GS Balbach, H Webb, MD TI Environmental Assessment in Engineering and Planning SO HANDBOOK OF ENVIRONMENTAL ENGINEERING ASSESSMENT: STRATEGY, PLANNING, AND MANAGEMENT LA English DT Article; Book Chapter C1 [Jain, Ravi] Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Urban, Lloyd] Texas Tech Univ, Water Resources Ctr, Lubbock, TX 79409 USA. [Urban, Lloyd] Texas Tech Univ, Lubbock, TX 79409 USA. [Balbach, Harold] US Army Engn Res & Dev Ctr, Champaign, IL USA. [Webb, M. Diana] Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. [Webb, M. Diana] Los Alamos Natl Lab, Policy Off, Los Alamos, NM 87545 USA. RP Jain, R (reprint author), Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER BUTTERWORTH-HEINEMANN PI BURLINGTON PA 30 CORPORATE DRIVE, STE 400, BURLINGTON, MA 01803 USA BN 978-0-12-388445-9 PY 2012 BP 1 EP 17 PG 17 WC Engineering, Environmental SC Engineering GA BFZ64 UT WOS:000321980200002 ER PT J AU Jain, R Urban, L Stacey, GS Balbach, H Webb, MD AF Jain, Ravi Urban, Lloyd Stacey, Gary S. Balbach, Harold Webb, M. Diana BA Jain, R Urban, L Stacey, GS Balbach, H Webb, MD BF Jain, R Urban, L Stacey, GS Balbach, H Webb, MD TI HANDBOOK OF ENVIRONMENTAL ENGINEERING ASSESSMENT Strategy, Planning, and Management PREFACE SO HANDBOOK OF ENVIRONMENTAL ENGINEERING ASSESSMENT: STRATEGY, PLANNING, AND MANAGEMENT LA English DT Editorial Material; Book Chapter C1 [Jain, Ravi] Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Urban, Lloyd] Texas Tech Univ, Water Resources Ctr, Lubbock, TX 79409 USA. [Urban, Lloyd] Texas Tech Univ, Lubbock, TX 79409 USA. [Balbach, Harold] US Army Engn Res & Dev Ctr, Champaign, IL USA. [Webb, M. Diana] Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. [Webb, M. Diana] Los Alamos Natl Lab, Policy Off, Los Alamos, NM 87545 USA. RP Jain, R (reprint author), Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. NR 0 TC 0 Z9 0 U1 2 U2 2 PU ELSEVIER BUTTERWORTH-HEINEMANN PI BURLINGTON PA 30 CORPORATE DRIVE, STE 400, BURLINGTON, MA 01803 USA BN 978-0-12-388445-9 PY 2012 BP IX EP + PG 18 WC Engineering, Environmental SC Engineering GA BFZ64 UT WOS:000321980200001 ER PT J AU Jain, R Urban, L Stacey, GS Balbach, H Webb, MD AF Jain, Ravi Urban, Lloyd Stacey, Gary S. Balbach, Harold Webb, M. Diana BA Jain, R Urban, L Stacey, GS Balbach, H Webb, MD BF Jain, R Urban, L Stacey, GS Balbach, H Webb, MD TI Environmental Laws and Regulations SO HANDBOOK OF ENVIRONMENTAL ENGINEERING ASSESSMENT: STRATEGY, PLANNING, AND MANAGEMENT LA English DT Article; Book Chapter C1 [Jain, Ravi] Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Urban, Lloyd] Texas Tech Univ, Water Resources Ctr, Lubbock, TX 79409 USA. [Urban, Lloyd] Texas Tech Univ, Lubbock, TX 79409 USA. [Balbach, Harold] US Army Engn Res & Dev Ctr, Champaign, IL USA. [Webb, M. Diana] Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. [Webb, M. Diana] Los Alamos Natl Lab, Policy Off, Los Alamos, NM 87545 USA. RP Jain, R (reprint author), Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER BUTTERWORTH-HEINEMANN PI BURLINGTON PA 30 CORPORATE DRIVE, STE 400, BURLINGTON, MA 01803 USA BN 978-0-12-388445-9 PY 2012 BP 19 EP 65 PG 47 WC Engineering, Environmental SC Engineering GA BFZ64 UT WOS:000321980200003 ER PT J AU Jain, R Urban, L Stacey, GS Balbach, H Webb, MD AF Jain, Ravi Urban, Lloyd Stacey, Gary S. Balbach, Harold Webb, M. Diana BA Jain, R Urban, L Stacey, GS Balbach, H Webb, MD BF Jain, R Urban, L Stacey, GS Balbach, H Webb, MD TI National Environmental Policy Act SO HANDBOOK OF ENVIRONMENTAL ENGINEERING ASSESSMENT: STRATEGY, PLANNING, AND MANAGEMENT LA English DT Article; Book Chapter C1 [Jain, Ravi] Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Urban, Lloyd] Texas Tech Univ, Water Resources Ctr, Lubbock, TX 79409 USA. [Urban, Lloyd] Texas Tech Univ, Lubbock, TX 79409 USA. [Balbach, Harold] US Army Engn Res & Dev Ctr, Champaign, IL USA. [Webb, M. Diana] Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. [Webb, M. Diana] Los Alamos Natl Lab, Policy Off, Los Alamos, NM 87545 USA. RP Jain, R (reprint author), Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER BUTTERWORTH-HEINEMANN PI BURLINGTON PA 30 CORPORATE DRIVE, STE 400, BURLINGTON, MA 01803 USA BN 978-0-12-388445-9 PY 2012 BP 67 EP 91 PG 25 WC Engineering, Environmental SC Engineering GA BFZ64 UT WOS:000321980200004 ER PT J AU Jain, R Urban, L Stacey, GS Balbach, H Webb, MD AF Jain, Ravi Urban, Lloyd Stacey, Gary S. Balbach, Harold Webb, M. Diana BA Jain, R Urban, L Stacey, GS Balbach, H Webb, MD BF Jain, R Urban, L Stacey, GS Balbach, H Webb, MD TI Environmental Documents and CEQ Regulations SO HANDBOOK OF ENVIRONMENTAL ENGINEERING ASSESSMENT: STRATEGY, PLANNING, AND MANAGEMENT LA English DT Article; Book Chapter C1 [Jain, Ravi] Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Urban, Lloyd] Texas Tech Univ, Water Resources Ctr, Lubbock, TX 79409 USA. [Urban, Lloyd] Texas Tech Univ, Lubbock, TX 79409 USA. [Balbach, Harold] US Army Engn Res & Dev Ctr, Champaign, IL USA. [Webb, M. Diana] Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. [Webb, M. Diana] Los Alamos Natl Lab, Policy Off, Los Alamos, NM 87545 USA. RP Jain, R (reprint author), Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER BUTTERWORTH-HEINEMANN PI BURLINGTON PA 30 CORPORATE DRIVE, STE 400, BURLINGTON, MA 01803 USA BN 978-0-12-388445-9 PY 2012 BP 93 EP 135 PG 43 WC Engineering, Environmental SC Engineering GA BFZ64 UT WOS:000321980200005 ER PT J AU Jain, R Urban, L Stacey, GS Balbach, H Webb, MD AF Jain, Ravi Urban, Lloyd Stacey, Gary S. Balbach, Harold Webb, M. Diana BA Jain, R Urban, L Stacey, GS Balbach, H Webb, MD BF Jain, R Urban, L Stacey, GS Balbach, H Webb, MD TI Elements of Environmental Assessment and Planning SO HANDBOOK OF ENVIRONMENTAL ENGINEERING ASSESSMENT: STRATEGY, PLANNING, AND MANAGEMENT LA English DT Article; Book Chapter C1 [Jain, Ravi] Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Urban, Lloyd] Texas Tech Univ, Water Resources Ctr, Lubbock, TX 79409 USA. [Urban, Lloyd] Texas Tech Univ, Lubbock, TX 79409 USA. [Balbach, Harold] US Army Engn Res & Dev Ctr, Champaign, IL USA. [Webb, M. Diana] Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. [Webb, M. Diana] Los Alamos Natl Lab, Policy Off, Los Alamos, NM 87545 USA. RP Jain, R (reprint author), Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER BUTTERWORTH-HEINEMANN PI BURLINGTON PA 30 CORPORATE DRIVE, STE 400, BURLINGTON, MA 01803 USA BN 978-0-12-388445-9 PY 2012 BP 137 EP 176 PG 40 WC Engineering, Environmental SC Engineering GA BFZ64 UT WOS:000321980200006 ER PT J AU Jain, R Urban, L Stacey, GS Balbach, H Webb, MD AF Jain, Ravi Urban, Lloyd Stacey, Gary S. Balbach, Harold Webb, M. Diana BA Jain, R Urban, L Stacey, GS Balbach, H Webb, MD BF Jain, R Urban, L Stacey, GS Balbach, H Webb, MD TI Environmental Assessment Methodologies SO HANDBOOK OF ENVIRONMENTAL ENGINEERING ASSESSMENT: STRATEGY, PLANNING, AND MANAGEMENT LA English DT Article; Book Chapter C1 [Jain, Ravi] Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Urban, Lloyd] Texas Tech Univ, Water Resources Ctr, Lubbock, TX 79409 USA. [Urban, Lloyd] Texas Tech Univ, Lubbock, TX 79409 USA. [Balbach, Harold] US Army Engn Res & Dev Ctr, Champaign, IL USA. [Webb, M. Diana] Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. [Webb, M. Diana] Los Alamos Natl Lab, Policy Off, Los Alamos, NM 87545 USA. RP Jain, R (reprint author), Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER BUTTERWORTH-HEINEMANN PI BURLINGTON PA 30 CORPORATE DRIVE, STE 400, BURLINGTON, MA 01803 USA BN 978-0-12-388445-9 PY 2012 BP 177 EP 209 PG 33 WC Engineering, Environmental SC Engineering GA BFZ64 UT WOS:000321980200007 ER PT J AU Jain, R Urban, L Stacey, GS Balbach, H Webb, MD AF Jain, Ravi Urban, Lloyd Stacey, Gary S. Balbach, Harold Webb, M. Diana BA Jain, R Urban, L Stacey, GS Balbach, H Webb, MD BF Jain, R Urban, L Stacey, GS Balbach, H Webb, MD TI Generalized Approach for Environmental Assessment SO HANDBOOK OF ENVIRONMENTAL ENGINEERING ASSESSMENT: STRATEGY, PLANNING, AND MANAGEMENT LA English DT Article; Book Chapter C1 [Jain, Ravi] Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Urban, Lloyd] Texas Tech Univ, Water Resources Ctr, Lubbock, TX 79409 USA. [Urban, Lloyd] Texas Tech Univ, Lubbock, TX 79409 USA. [Balbach, Harold] US Army Engn Res & Dev Ctr, Champaign, IL USA. [Webb, M. Diana] Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. [Webb, M. Diana] Los Alamos Natl Lab, Policy Off, Los Alamos, NM 87545 USA. RP Jain, R (reprint author), Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER BUTTERWORTH-HEINEMANN PI BURLINGTON PA 30 CORPORATE DRIVE, STE 400, BURLINGTON, MA 01803 USA BN 978-0-12-388445-9 PY 2012 BP 211 EP 224 PG 14 WC Engineering, Environmental SC Engineering GA BFZ64 UT WOS:000321980200008 ER PT J AU Jain, R Urban, L Stacey, GS Balbach, H Webb, MD AF Jain, Ravi Urban, Lloyd Stacey, Gary S. Balbach, Harold Webb, M. Diana BA Jain, R Urban, L Stacey, GS Balbach, H Webb, MD BF Jain, R Urban, L Stacey, GS Balbach, H Webb, MD TI Procedure for Reviewing Environmental Impact Statements SO HANDBOOK OF ENVIRONMENTAL ENGINEERING ASSESSMENT: STRATEGY, PLANNING, AND MANAGEMENT LA English DT Article; Book Chapter C1 [Jain, Ravi] Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Urban, Lloyd] Texas Tech Univ, Water Resources Ctr, Lubbock, TX 79409 USA. [Urban, Lloyd] Texas Tech Univ, Lubbock, TX 79409 USA. [Balbach, Harold] US Army Engn Res & Dev Ctr, Champaign, IL USA. [Webb, M. Diana] Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. [Webb, M. Diana] Los Alamos Natl Lab, Policy Off, Los Alamos, NM 87545 USA. RP Jain, R (reprint author), Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER BUTTERWORTH-HEINEMANN PI BURLINGTON PA 30 CORPORATE DRIVE, STE 400, BURLINGTON, MA 01803 USA BN 978-0-12-388445-9 PY 2012 BP 225 EP 244 PG 20 WC Engineering, Environmental SC Engineering GA BFZ64 UT WOS:000321980200009 ER PT J AU Jain, R Urban, L Stacey, GS Balbach, H Webb, MD AF Jain, Ravi Urban, Lloyd Stacey, Gary S. Balbach, Harold Webb, M. Diana BA Jain, R Urban, L Stacey, GS Balbach, H Webb, MD BF Jain, R Urban, L Stacey, GS Balbach, H Webb, MD TI International Perspectives on Environmental Assessment, Engineering, and Planning SO HANDBOOK OF ENVIRONMENTAL ENGINEERING ASSESSMENT: STRATEGY, PLANNING, AND MANAGEMENT LA English DT Article; Book Chapter C1 [Jain, Ravi] Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Urban, Lloyd] Texas Tech Univ, Water Resources Ctr, Lubbock, TX 79409 USA. [Urban, Lloyd] Texas Tech Univ, Lubbock, TX 79409 USA. [Balbach, Harold] US Army Engn Res & Dev Ctr, Champaign, IL USA. [Webb, M. Diana] Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. [Webb, M. Diana] Los Alamos Natl Lab, Policy Off, Los Alamos, NM 87545 USA. RP Jain, R (reprint author), Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER BUTTERWORTH-HEINEMANN PI BURLINGTON PA 30 CORPORATE DRIVE, STE 400, BURLINGTON, MA 01803 USA BN 978-0-12-388445-9 PY 2012 BP 245 EP 263 PG 19 WC Engineering, Environmental SC Engineering GA BFZ64 UT WOS:000321980200010 ER PT J AU Jain, R Urban, L Stacey, GS Balbach, H Webb, MD AF Jain, Ravi Urban, Lloyd Stacey, Gary S. Balbach, Harold Webb, M. Diana BA Jain, R Urban, L Stacey, GS Balbach, H Webb, MD BF Jain, R Urban, L Stacey, GS Balbach, H Webb, MD TI Economic and Social Impact Analysis SO HANDBOOK OF ENVIRONMENTAL ENGINEERING ASSESSMENT: STRATEGY, PLANNING, AND MANAGEMENT LA English DT Article; Book Chapter C1 [Jain, Ravi] Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Urban, Lloyd] Texas Tech Univ, Water Resources Ctr, Lubbock, TX 79409 USA. [Urban, Lloyd] Texas Tech Univ, Lubbock, TX 79409 USA. [Balbach, Harold] US Army Engn Res & Dev Ctr, Champaign, IL USA. [Webb, M. Diana] Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. [Webb, M. Diana] Los Alamos Natl Lab, Policy Off, Los Alamos, NM 87545 USA. RP Jain, R (reprint author), Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU ELSEVIER BUTTERWORTH-HEINEMANN PI BURLINGTON PA 30 CORPORATE DRIVE, STE 400, BURLINGTON, MA 01803 USA BN 978-0-12-388445-9 PY 2012 BP 265 EP 309 PG 45 WC Engineering, Environmental SC Engineering GA BFZ64 UT WOS:000321980200011 ER PT J AU Jain, R Urban, L Stacey, GS Balbach, H Webb, MD AF Jain, Ravi Urban, Lloyd Stacey, Gary S. Balbach, Harold Webb, M. Diana BA Jain, R Urban, L Stacey, GS Balbach, H Webb, MD BF Jain, R Urban, L Stacey, GS Balbach, H Webb, MD TI Public Participation SO HANDBOOK OF ENVIRONMENTAL ENGINEERING ASSESSMENT: STRATEGY, PLANNING, AND MANAGEMENT LA English DT Article; Book Chapter C1 [Jain, Ravi] Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Urban, Lloyd] Texas Tech Univ, Water Resources Ctr, Lubbock, TX 79409 USA. [Urban, Lloyd] Texas Tech Univ, Lubbock, TX 79409 USA. [Balbach, Harold] US Army Engn Res & Dev Ctr, Champaign, IL USA. [Webb, M. Diana] Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. [Webb, M. Diana] Los Alamos Natl Lab, Policy Off, Los Alamos, NM 87545 USA. RP Jain, R (reprint author), Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER BUTTERWORTH-HEINEMANN PI BURLINGTON PA 30 CORPORATE DRIVE, STE 400, BURLINGTON, MA 01803 USA BN 978-0-12-388445-9 PY 2012 BP 311 EP 337 PG 27 WC Engineering, Environmental SC Engineering GA BFZ64 UT WOS:000321980200012 ER PT J AU Jain, R Urban, L Stacey, GS Balbach, H Webb, MD AF Jain, Ravi Urban, Lloyd Stacey, Gary S. Balbach, Harold Webb, M. Diana BA Jain, R Urban, L Stacey, GS Balbach, H Webb, MD BF Jain, R Urban, L Stacey, GS Balbach, H Webb, MD TI Energy and Environmental Implications SO HANDBOOK OF ENVIRONMENTAL ENGINEERING ASSESSMENT: STRATEGY, PLANNING, AND MANAGEMENT LA English DT Article; Book Chapter C1 [Jain, Ravi] Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Urban, Lloyd] Texas Tech Univ, Water Resources Ctr, Lubbock, TX 79409 USA. [Urban, Lloyd] Texas Tech Univ, Lubbock, TX 79409 USA. [Balbach, Harold] US Army Engn Res & Dev Ctr, Champaign, IL USA. [Webb, M. Diana] Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. [Webb, M. Diana] Los Alamos Natl Lab, Policy Off, Los Alamos, NM 87545 USA. RP Jain, R (reprint author), Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER BUTTERWORTH-HEINEMANN PI BURLINGTON PA 30 CORPORATE DRIVE, STE 400, BURLINGTON, MA 01803 USA BN 978-0-12-388445-9 PY 2012 BP 339 EP 360 PG 22 WC Engineering, Environmental SC Engineering GA BFZ64 UT WOS:000321980200013 ER PT J AU Jain, R Urban, L Stacey, GS Balbach, H Webb, MD AF Jain, Ravi Urban, Lloyd Stacey, Gary S. Balbach, Harold Webb, M. Diana BA Jain, R Urban, L Stacey, GS Balbach, H Webb, MD BF Jain, R Urban, L Stacey, GS Balbach, H Webb, MD TI Contemporary Issues in Environmental Assessment SO HANDBOOK OF ENVIRONMENTAL ENGINEERING ASSESSMENT: STRATEGY, PLANNING, AND MANAGEMENT LA English DT Article; Book Chapter C1 [Jain, Ravi] Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Urban, Lloyd] Texas Tech Univ, Water Resources Ctr, Lubbock, TX 79409 USA. [Urban, Lloyd] Texas Tech Univ, Lubbock, TX 79409 USA. [Balbach, Harold] US Army Engn Res & Dev Ctr, Champaign, IL USA. [Webb, M. Diana] Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. [Webb, M. Diana] Los Alamos Natl Lab, Policy Off, Los Alamos, NM 87545 USA. RP Jain, R (reprint author), Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. NR 0 TC 0 Z9 1 U1 0 U2 0 PU ELSEVIER BUTTERWORTH-HEINEMANN PI BURLINGTON PA 30 CORPORATE DRIVE, STE 400, BURLINGTON, MA 01803 USA BN 978-0-12-388445-9 PY 2012 BP 361 EP 447 PG 87 WC Engineering, Environmental SC Engineering GA BFZ64 UT WOS:000321980200014 ER PT J AU Jain, R Urban, L Stacey, GS Balbach, H Webb, MD AF Jain, Ravi Urban, Lloyd Stacey, Gary S. Balbach, Harold Webb, M. Diana BA Jain, R Urban, L Stacey, GS Balbach, H Webb, MD BF Jain, R Urban, L Stacey, GS Balbach, H Webb, MD TI National Environmental Policy Act SO HANDBOOK OF ENVIRONMENTAL ENGINEERING ASSESSMENT: STRATEGY, PLANNING, AND MANAGEMENT LA English DT Article; Book Chapter C1 [Jain, Ravi] Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Urban, Lloyd] Texas Tech Univ, Water Resources Ctr, Lubbock, TX 79409 USA. [Urban, Lloyd] Texas Tech Univ, Lubbock, TX 79409 USA. [Balbach, Harold] US Army Engn Res & Dev Ctr, Champaign, IL USA. [Webb, M. Diana] Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. [Webb, M. Diana] Los Alamos Natl Lab, Policy Off, Los Alamos, NM 87545 USA. RP Jain, R (reprint author), Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER BUTTERWORTH-HEINEMANN PI BURLINGTON PA 30 CORPORATE DRIVE, STE 400, BURLINGTON, MA 01803 USA BN 978-0-12-388445-9 PY 2012 BP 449 EP 458 PG 10 WC Engineering, Environmental SC Engineering GA BFZ64 UT WOS:000321980200015 ER PT J AU Jain, R Urban, L Stacey, GS Balbach, H Webb, MD AF Jain, Ravi Urban, Lloyd Stacey, Gary S. Balbach, Harold Webb, M. Diana BA Jain, R Urban, L Stacey, GS Balbach, H Webb, MD BF Jain, R Urban, L Stacey, GS Balbach, H Webb, MD TI Attribute Descriptor Package SO HANDBOOK OF ENVIRONMENTAL ENGINEERING ASSESSMENT: STRATEGY, PLANNING, AND MANAGEMENT LA English DT Article; Book Chapter C1 [Jain, Ravi] Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Urban, Lloyd] Texas Tech Univ, Water Resources Ctr, Lubbock, TX 79409 USA. [Urban, Lloyd] Texas Tech Univ, Lubbock, TX 79409 USA. [Balbach, Harold] US Army Engn Res & Dev Ctr, Champaign, IL USA. [Webb, M. Diana] Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. [Webb, M. Diana] Los Alamos Natl Lab, Policy Off, Los Alamos, NM 87545 USA. RP Jain, R (reprint author), Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER BUTTERWORTH-HEINEMANN PI BURLINGTON PA 30 CORPORATE DRIVE, STE 400, BURLINGTON, MA 01803 USA BN 978-0-12-388445-9 PY 2012 BP 459 EP 642 PG 184 WC Engineering, Environmental SC Engineering GA BFZ64 UT WOS:000321980200016 ER PT J AU Jain, R Urban, L Stacey, GS Balbach, H Webb, MD AF Jain, Ravi Urban, Lloyd Stacey, Gary S. Balbach, Harold Webb, M. Diana BA Jain, R Urban, L Stacey, GS Balbach, H Webb, MD BF Jain, R Urban, L Stacey, GS Balbach, H Webb, MD TI A Step-by-Step Procedure for Preparing Environmental Assessments and Statements SO HANDBOOK OF ENVIRONMENTAL ENGINEERING ASSESSMENT: STRATEGY, PLANNING, AND MANAGEMENT LA English DT Article; Book Chapter C1 [Jain, Ravi] Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Urban, Lloyd] Texas Tech Univ, Water Resources Ctr, Lubbock, TX 79409 USA. [Urban, Lloyd] Texas Tech Univ, Lubbock, TX 79409 USA. [Balbach, Harold] US Army Engn Res & Dev Ctr, Champaign, IL USA. [Webb, M. Diana] Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. [Webb, M. Diana] Los Alamos Natl Lab, Policy Off, Los Alamos, NM 87545 USA. RP Jain, R (reprint author), Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER BUTTERWORTH-HEINEMANN PI BURLINGTON PA 30 CORPORATE DRIVE, STE 400, BURLINGTON, MA 01803 USA BN 978-0-12-388445-9 PY 2012 BP 643 EP 661 PG 19 WC Engineering, Environmental SC Engineering GA BFZ64 UT WOS:000321980200017 ER PT J AU Jain, R Urban, L Stacey, GS Balbach, H Webb, MD AF Jain, Ravi Urban, Lloyd Stacey, Gary S. Balbach, Harold Webb, M. Diana BA Jain, R Urban, L Stacey, GS Balbach, H Webb, MD BF Jain, R Urban, L Stacey, GS Balbach, H Webb, MD TI Regulations for Implementing Procedural Provisions of the National Environmental Policy Act SO HANDBOOK OF ENVIRONMENTAL ENGINEERING ASSESSMENT: STRATEGY, PLANNING, AND MANAGEMENT LA English DT Article; Book Chapter C1 [Jain, Ravi] Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Urban, Lloyd] Texas Tech Univ, Water Resources Ctr, Lubbock, TX 79409 USA. [Urban, Lloyd] Texas Tech Univ, Lubbock, TX 79409 USA. [Balbach, Harold] US Army Engn Res & Dev Ctr, Champaign, IL USA. [Webb, M. Diana] Los Alamos Natl Lab, Ecol Grp, Los Alamos, NM 87545 USA. [Webb, M. Diana] Los Alamos Natl Lab, Policy Off, Los Alamos, NM 87545 USA. RP Jain, R (reprint author), Univ Pacific, Sch Engn & Comp Sci, Stockton, CA 95211 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER BUTTERWORTH-HEINEMANN PI BURLINGTON PA 30 CORPORATE DRIVE, STE 400, BURLINGTON, MA 01803 USA BN 978-0-12-388445-9 PY 2012 BP 663 EP 722 PG 60 WC Engineering, Environmental SC Engineering GA BFZ64 UT WOS:000321980200018 ER PT S AU Brovelli, S Garcia-Santamaria, F Viswanatha, R Pal, BN Crooker, SA Klimov, VI AF Brovelli, Sergio Garcia-Santamaria, Florencio Viswanatha, Ranjani Pal, Bhola N. Crooker, Scott A. Klimov, Victor I. BE Clark, J Silva, C TI Wavefunction engineering in core-shell semiconductor nanocrystals: from fine tuned exciton dynamics and suppressed Auger recombination to dual-color electroluminescence SO PHYSICAL CHEMISTRY OF INTERFACES AND NANOMATERIALS XI SE Proceedings of SPIE LA English DT Proceedings Paper CT Conference on Physical Chemistry of Interfaces and Nanomaterials XI CY AUG 12-15, 2012 CL San Diego, CA SP SPIE DE nanocrystal; multiexciton; Auger recombination; core-shell heterostructure; interfacial alloy; fluorescence line narrowing ID LIGHT-EMITTING-DIODES; CDSE/CDS CORE/SHELL NANOCRYSTALS; COLLOIDAL QUANTUM DOTS; CHEMICAL-COMPOSITION; CARRIER DYNAMICS; SEEDED GROWTH; LAYER; BLINKING; HETEROSTRUCTURES; EMISSION AB Using semiconductor nanocrystals (NCs) one can produce extremely strong spatial confinement of electronic wave functions not accessible with other types of nanostructures. As a result, NCs exhibit important physical properties which, in combination with the chemical stability and solution processability, make this class of functional materials particularly appealing for several technological fields, such as solid-state lighting, lasers, photovoltaics, and electronics. Generally, the tunability of their physical properties is achieved through particle-size control of the quantum confinement effect. Wavefunction engineering adds a degree of freedom for manipulating the physical properties of NCs by selectively confining the carriers in specific domains of the material, thereby controlling the spatial overlap between the electron and hole wavefunctions. This design has been applied to several material systems in different geometries and has been shown to successfully control the emission energy and recombination dynamics as well as to reduce nonradiative Auger recombination, a process in which, as a consequence of strong spatial confinement, the energy of one electron-hole pair is nonradiatively transferred to a third charge carrier. The focus of this presentation is on nanocrystal heterostructures that comprise a small CdSe core overcoated with a thick shell of wider-gap CdS. These quasi-type II structures show greatly suppressed Auger recombination, which allows us to realize broadband optical gain (extends over 500 meV)1, and are a remarkable class of model compounds for investigating the influence of nanoengineered electron-hole overlap on the exciton fine structure.2 We indeed recently showed that this quasi-type II motif can be used to tune the energy splitting between optically active ("bright") and optically passive ("dark") excitons due to strong electron-hole exchange interaction, which is typical of quantum-confined semiconductor nanocrystals. This design provides a new tool for controlling excitonic dynamics including absolute recombination time scales and temperature and magnetic field dependences separately from the confinement energy. As a result of reduced Auger recombination, in combination with essentially complete suppression of energy-transfer in thick-shell NCs films, we recently fabricated bright, monochrome LEDs based on these nanostructures. Our results indicate that the luminance and efficiency can be improved dramatically by increasing the shell thickness without detrimental effects of increased turn-on voltage.3 Detailed structural and spectroscopic studies reveal a crucial role of interfaces on the Auger recombination process ion these heterostructures. Specifically, we observe a sharp transition to Auger-recombination-free behavior for shell thickness similar to 1.8-2.5 nm, accompanied by the development of an intense phonon mode characteristic of a CdSeS alloy.4 These results suggest that the likely reason for suppressed Auger recombination in these nanostructures is the "smoothing out" of the otherwise sharp confinement potential due to formation of a graded interfacial CdSeS layer between the CdSe core and the CdS shell, as was recently proposed by theoretical calculations by Cragg and Efros.5 C1 [Brovelli, Sergio; Garcia-Santamaria, Florencio; Viswanatha, Ranjani; Pal, Bhola N.; Klimov, Victor I.] Los Alamos Natl Lab, Ctr Adv Solar Photophys, Los Alamos, NM 87545 USA. RP Brovelli, S (reprint author), Los Alamos Natl Lab, Ctr Adv Solar Photophys, POB 1663, Los Alamos, NM 87545 USA. EM sergio.brovelli@unimib.it OI Brovelli, Sergio/0000-0002-5993-855X; Klimov, Victor/0000-0003-1158-3179 NR 73 TC 0 Z9 0 U1 0 U2 14 PU SPIE-INT SOC OPTICAL ENGINEERING PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA SN 0277-786X BN 978-0-8194-9176-3 J9 PROC SPIE PY 2012 VL 8459 AR 84590L DI 10.1117/12.959441 PG 12 WC Chemistry, Physical; Nanoscience & Nanotechnology; Optics SC Chemistry; Science & Technology - Other Topics; Optics GA BGH00 UT WOS:000322915500006 ER PT S AU Daily, J Krishnamoorthy, S Kalyanaraman, A AF Daily, Jeff Krishnamoorthy, Sriram Kalyanaraman, Ananth GP IEEE TI Towards Scalable Optimal Sequence Homology Detection SO 2012 19TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING (HIPC) SE Proceedings-International Conference on High Performance Computing LA English DT Proceedings Paper CT 19th International Conference on High Performance Computing (HiPC) CY DEC 18-22, 2012 CL Pune, INDIA ID SMITH-WATERMAN; PARALLEL COMPUTERS; QUANTUM-CHEMISTRY; SEARCH; BLAST; SENSITIVITY; SELECTIVITY; ALIGNMENT; HARDWARE; FASTA AB The field of bioinformatics and computational biology is experiencing a data revolution - experimental techniques to procure data have increased in throughput, improved in accuracy and reduced in costs. This has spurred an array of high profile sequencing and data generation projects. While the data repositories represent untapped reservoirs of rich information critical for scientific breakthroughs, the analytical software tools that are needed to analyze large volumes of such sequence data have significantly lagged behind in their capacity to scale. In this paper, we address homology detection, which is a fundamental problem in large-scale sequence analysis with numerous applications. We present a scalable framework to conduct large-scale optimal homology detection on massively parallel super-computing platforms. Our approach employs distributed memory work stealing to effectively parallelize optimal pairwise alignment computation tasks. Results on 120,000 cores of the Hopper Cray XE6 supercomputer demonstrate strong scaling and up to 2.42 x 10(7) optimal pairwise sequence alignments computed per second (PSAPS), the highest reported in the literature. C1 [Daily, Jeff; Krishnamoorthy, Sriram] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Daily, J (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM jeff.daily@pnnl.gov; sriram@pnnl.gov; ananth@eecs.wsu.edu NR 36 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1094-7256 BN 978-1-4673-2370-3 J9 P INT C HIGH PERFORM PY 2012 PG 8 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods SC Computer Science GA BGC51 UT WOS:000322311400050 ER PT S AU Vishnu, A Daily, J Palmer, B AF Vishnu, Abhinav Daily, Jeff Palmer, Bruce GP IEEE TI Designing Scalable PGAS Communication Subsystems on Cray Gemini Interconnect SO 2012 19TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING (HIPC) SE Proceedings-International Conference on High Performance Computing LA English DT Proceedings Paper CT 19th International Conference on High Performance Computing (HiPC) CY DEC 18-22, 2012 CL Pune, INDIA ID HIGH-PERFORMANCE; NETWORK AB The Cray Gemini Interconnect has been recently introduced as a next generation network architecture for building multi-petaflop supercomputers. Cray XE6 systems including LANL Cielo, NERSC Hopper, and the proposed NCSA Blue-Waters, as well as the Cray XK6 ORNL Titan leverage the Gemini Interconnect as their primary Interconnection network. At the same time, programming models such as the Message Passing Interface (MPI) and Partitioned Global Address Space (PGAS) models such as Unified Parallel C (UPC) and Co-Array Fortran (CAF) have become available on these systems. Global Arrays is a popular PGAS model used in a variety of application domains including hydrodynamics, chemistry and visualization. Global Arrays uses Aggregate Remote Memory Copy Interface (ARMCI) as the communication runtime system for Remote Memory Access (RMA) communication. This paper presents a design, implementation and performance evaluation of scalable and high performance communication ARMCI on Cray Gemini. The design space is explored and time-space complexities of communication protocols for one-sided communication primitives such as contiguous and uniformly non-contiguous datatypes, atomic memory operations (AMOs) and memory synchronization is presented. An implementation of the proposed design (referred as ARMCI-Gemini) demonstrates the efficacy on communication primitives, application kernels such as LU decomposition and applications such as Smooth Particle Hydrodynamics (SPH). C1 [Vishnu, Abhinav; Daily, Jeff; Palmer, Bruce] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Vishnu, A (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM abhinav.vishnu@pnnl.gov; jeff.daily@pnnl.gov; bruce.palmer@pnnl.gov NR 26 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1094-7256 BN 978-1-4673-2370-3 J9 P INT C HIGH PERFORM PY 2012 PG 10 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods SC Computer Science GA BGC51 UT WOS:000322311400033 ER PT S AU Leckbee, J Pointon, TD Cordova, SR Oliver, BV Webb, TJ Toury, M Caron, M Droemer, DW AF Leckbee, J. J. Pointon, T. D. Cordova, S. R. Oliver, B. V. Webb, T. J. Toury, M. Caron, M. Droemer, D. W. BE Hegeler, F TI Commissioning and Power Flow Studies of the 2.5-MeV Ursa Minor LTD SO PROCEEDINGS OF THE 2012 IEEE INTERNATIONAL POWER MODULATOR AND HIGH VOLTAGE CONFERENCE SE IEEE International Power Modulator and High Voltage Conference LA English DT Proceedings Paper CT IEEE International Power Modulator and High Voltage Conference (IPMHVC) CY JUN 03-07, 2012 CL San Diego, CA SP IEEE, IEEE Dielectr & Elect Insulat Soc, IEEE Nucl & Plasma Sci Soc, IEEE Electron Devices Soc, Sandia Natl Labs, Dept Navy, Naval Res Lab, GE, INP Greifswald, L3 Appl Technologies, Pulse Sci, Lockheed Martin, Ness Engn Inc ID SIMULATION AB Ursa Minor is a 21-cavity Linear Transformer Driver (LTD) that has been built to evaluate LTD technology as a driver for electron beam diode research. Initial testing has been conducted at +/- 90 kV charge. In this configuration the generator has produced 2.0 MV on a 30-ohm MITL when driving an electron beam diode. 2-D PIC simulations of the MITL predict about 15% higher peak voltage and current than seen in experiments. Monte Carlo radiation transport calculations indicate the measured x-ray dose is consistent with the measured diode current and voltage. Triggering experiments indicate that single LTD cavities are insensitive to trigger polarity, whereas the 21-cavity Ursa Minor shows clear sensitivity to trigger polarity. C1 [Leckbee, J. J.; Pointon, T. D.; Cordova, S. R.; Oliver, B. V.; Webb, T. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Leckbee, J (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 9 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2380-808X BN 978-1-4673-1225-7; 978-1-4673-1222-6 J9 IEEE INT POWER MODUL PY 2012 BP 169 EP 173 PG 5 WC Engineering, Electrical & Electronic SC Engineering GA BGB05 UT WOS:000322131200041 ER PT S AU Rose, CR Ekdahl, C Schulze, M AF Rose, C. R. Ekdahl, C. Schulze, M. BE Hegeler, F TI Linear-Induction-Accelerator Beam-Energy-Spread Minimization: Cell Models and Timing Optimization SO PROCEEDINGS OF THE 2012 IEEE INTERNATIONAL POWER MODULATOR AND HIGH VOLTAGE CONFERENCE SE IEEE International Power Modulator and High Voltage Conference LA English DT Proceedings Paper CT IEEE International Power Modulator and High Voltage Conference (IPMHVC) CY JUN 03-07, 2012 CL San Diego, CA SP IEEE, IEEE Dielectr & Elect Insulat Soc, IEEE Nucl & Plasma Sci Soc, IEEE Electron Devices Soc, Sandia Natl Labs, Dept Navy, Naval Res Lab, GE, INP Greifswald, L3 Appl Technologies, Pulse Sci, Lockheed Martin, Ness Engn Inc DE linear induction accelerator; beam; energy spread; models; optimization; synthesis AB The second axis (Axis II) of the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL) is a linear induction accelerator (LIA) using 74 cells, each driven by a separate pulsed-power modulator. The summation of the injector and 74 cell voltages is the beam-energy temporal profile. The ability to perform precise multi-pulse radiography is heavily influenced by the temporal beam energy spread, related beam motion, and other focusing and target factors. Beam loading affects both the shape and magnitude of each cell's voltage during the pulse. Ideally, each pulsed-power modulator/cell pair is tuned such that the loaded-cell voltage is flat with minimal amplitude variation during the pulse. However, changes in operating parameters on Axis II (beam current, operating cell voltage) have altered the amount of flattop variation resulting in more energy spread than when commissioned. \In this paper, we present an optimization and synthesis method which minimizes the beam's temporal energy spread by adjusting the timing of cell voltages, either advancing or retarding them, such that the injector voltage plus the summed cell voltages in the LIA result in a flatter energy profile. The method accepts as inputs the beam current, injector voltage, cell-voltages, and synthesizes loaded cell voltages as needed. Simulations and experimental data for both unloaded and loaded-cell timing optimizations are presented. For the unloaded cells, the pre-optimization baseline energy spread was reduced by over 30 % as compared to baseline. For the loaded-cell case, the measured energy spread was reduced by 49% compared to baseline. C1 [Rose, C. R.; Ekdahl, C.; Schulze, M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Rose, CR (reprint author), Los Alamos Natl Lab, WX-5, Los Alamos, NM 87545 USA. NR 27 TC 0 Z9 0 U1 1 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2380-808X BN 978-1-4673-1225-7; 978-1-4673-1222-6 J9 IEEE INT POWER MODUL PY 2012 BP 250 EP 255 PG 6 WC Engineering, Electrical & Electronic SC Engineering GA BGB05 UT WOS:000322131200062 ER PT S AU Le Galloudec, B Arnold, P James, G Pendleton, D Petersen, D Arellano-Womack, G Cano, J Harkey, A Lao, N Magat, M McIntosh, M Ngo, Q Robison, S Schwedler, D Lopez, M AF Le Galloudec, Bruno Arnold, Phil James, Glen Pendleton, Dave Petersen, Dave Arellano-Womack, Geoff Cano, Javier Harkey, Allen Lao, Norris Magat, Manuel McIntosh, Michael Quang Ngo Robison, Seth Schwedler, David Lopez, Mark BE Hegeler, F TI Status Update of the Power Conditioning System in the National Ignition Facility SO PROCEEDINGS OF THE 2012 IEEE INTERNATIONAL POWER MODULATOR AND HIGH VOLTAGE CONFERENCE SE IEEE International Power Modulator and High Voltage Conference LA English DT Proceedings Paper CT IEEE International Power Modulator and High Voltage Conference (IPMHVC) CY JUN 03-07, 2012 CL San Diego, CA SP IEEE, IEEE Dielectr & Elect Insulat Soc, IEEE Nucl & Plasma Sci Soc, IEEE Electron Devices Soc, Sandia Natl Labs, Dept Navy, Naval Res Lab, GE, INP Greifswald, L3 Appl Technologies, Pulse Sci, Lockheed Martin, Ness Engn Inc AB The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory operates the world's largest and most energetic laser. The facility supports studies of high energy density physics with the ultimate goal of achieving ignition and energy gain for the first time in a laboratory setting. The success of its mission depends heavily on key subsystems like the Power Conditioning System (PCS), where near 100% availability is required in supporting 24/7 laser operation. The 192 modules of PCS store and then deliver approximately 400 MJ of electrical energy to the laser amplifiers. The sheer number of modules coupled with the aggressive shot schedule present a challenge for both preventive maintenance and the implementation of engineering changes. Because the system comes into play very late during the shot process, it is extremely important to minimize the number of occurrences and duration of reactive maintenance activities. We will discuss PCS performance, training and maintenance strategies, along with a series of development and upgrades that will help assure long-term system reliability and availability while supporting NIF's missions. C1 [Le Galloudec, Bruno; Arnold, Phil; James, Glen; Pendleton, Dave; Petersen, Dave; Magat, Manuel] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Le Galloudec, B (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. NR 4 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2380-808X BN 978-1-4673-1225-7; 978-1-4673-1222-6 J9 IEEE INT POWER MODUL PY 2012 BP 292 EP 295 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA BGB05 UT WOS:000322131200072 ER PT S AU Solley, DJ Anderson, DE Patel, GP Peplov, VV Saethre, R Wezensky, MW AF Solley, Dennis J. Anderson, David E. Patel, Gunjan P. Peplov, Vladimir V. Saethre, Robert Wezensky, Mark W. BE Hegeler, F TI IGBT Gate Driver Upgrades to the HVCM at the SNS SO PROCEEDINGS OF THE 2012 IEEE INTERNATIONAL POWER MODULATOR AND HIGH VOLTAGE CONFERENCE SE IEEE International Power Modulator and High Voltage Conference LA English DT Proceedings Paper CT IEEE International Power Modulator and High Voltage Conference (IPMHVC) CY JUN 03-07, 2012 CL San Diego, CA SP IEEE, IEEE Dielectr & Elect Insulat Soc, IEEE Nucl & Plasma Sci Soc, IEEE Electron Devices Soc, Sandia Natl Labs, Dept Navy, Naval Res Lab, GE, INP Greifswald, L3 Appl Technologies, Pulse Sci, Lockheed Martin, Ness Engn Inc AB The SNS at ORNL has been fully operational since 2006 and in September 2009, the design goal of 1 MW of sustained beam power on target was achieved. Historically, the high voltage converter modulators (HVCM) have been a known problem area and, in order to reach another SNS milestone of >= 90% availability, a new gate driver was one of several areas targeted to improve the overall reliability of the HVCM systems. The drive capability and fault protection of the large IGBT modules in the HVCM were specifically addressed to improve IGBT switching characteristics and provide enhanced troubleshooting and monitoring capabilities for the critical IGBT/driver pair. This paper outlines the work involved; the result obtained and documents the driver's long-term performance. Enhanced features, designed to be used in conjunction with a new controller presently under development, will also be discussed. C1 [Solley, Dennis J.; Anderson, David E.; Patel, Gunjan P.; Peplov, Vladimir V.; Saethre, Robert; Wezensky, Mark W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Solley, DJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. OI Saethre, Robert/0000-0002-7907-3960 NR 3 TC 1 Z9 1 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2380-808X BN 978-1-4673-1225-7; 978-1-4673-1222-6 J9 IEEE INT POWER MODUL PY 2012 BP 358 EP 361 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA BGB05 UT WOS:000322131200089 ER PT S AU Solley, DJ Anderson, DE Patel, GP Peplov, VV Saethre, R Wezensky, MW AF Solley, Dennis J. Anderson, David E. Patel, Gunjan P. Peplov, Vladimir V. Saethre, Robert Wezensky, Mark W. BE Hegeler, F TI HVCM Topology Enhancements to Support a Power Upgrade Required by a Second Target Station (STS) at SNS SO PROCEEDINGS OF THE 2012 IEEE INTERNATIONAL POWER MODULATOR AND HIGH VOLTAGE CONFERENCE SE IEEE International Power Modulator and High Voltage Conference LA English DT Proceedings Paper CT IEEE International Power Modulator and High Voltage Conference (IPMHVC) CY JUN 03-07, 2012 CL San Diego, CA SP IEEE, IEEE Dielectr & Elect Insulat Soc, IEEE Nucl & Plasma Sci Soc, IEEE Electron Devices Soc, Sandia Natl Labs, Dept Navy, Naval Res Lab, GE, INP Greifswald, L3 Appl Technologies, Pulse Sci, Lockheed Martin, Ness Engn Inc AB This paper discusses the topology used in the HVCMs at SNS to process power for both the cold and warm linac sections of the klystron gallery in support of extended operations at the megawatt level. In anticipation of a second target station and higher anticipated power levels, an enhancement to the present topology is being investigated. SPICE circuit simulations and preliminary experimental data will be presented. C1 [Solley, Dennis J.; Anderson, David E.; Patel, Gunjan P.; Peplov, Vladimir V.; Saethre, Robert; Wezensky, Mark W.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Solley, DJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. OI Saethre, Robert/0000-0002-7907-3960 NR 4 TC 1 Z9 1 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2380-808X BN 978-1-4673-1225-7; 978-1-4673-1222-6 J9 IEEE INT POWER MODUL PY 2012 BP 362 EP 365 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA BGB05 UT WOS:000322131200090 ER PT S AU Elizondo-Decanini, JM Dudley, E Youngman, K AF Elizondo-Decanini, Juan M. Dudley, Evan Youngman, Kevin BE Hegeler, F TI Pulsed High-Voltage Breakdown of Thin Film Parylene-C SO PROCEEDINGS OF THE 2012 IEEE INTERNATIONAL POWER MODULATOR AND HIGH VOLTAGE CONFERENCE SE IEEE International Power Modulator and High Voltage Conference LA English DT Proceedings Paper CT IEEE International Power Modulator and High Voltage Conference (IPMHVC) CY JUN 03-07, 2012 CL San Diego, CA SP IEEE, IEEE Dielectr & Elect Insulat Soc, IEEE Nucl & Plasma Sci Soc, IEEE Electron Devices Soc, Sandia Natl Labs, Dept Navy, Naval Res Lab, GE, INP Greifswald, L3 Appl Technologies, Pulse Sci, Lockheed Martin, Ness Engn Inc ID CONDUCTION AB Measurements of polymer dielectric high-voltage (HV) strength at thicknesses in the 1 to 10 mu m range have always been difficult to validate and repeat. We report results of experiments done using Parylene-C films of 2-, 4-, and 6-mu m thickness in a series of configurations intended to determine the high-voltage breakdown (HVB) of the material itself with a minimum of externally undefined parameters. The experiments used an alumina substrate coated with a conductive gold film with Parylene-C film deposited on top of the lower gold film. One edge of the lower gold film was exposed to provide electrical connection, and a triangular or circular gold electrode was deposited on the surface of the Parylene-C. The intent was to test the dielectric breakdown strength of bare Parylene-C as well as to evaluate the effects of field enhancements produced by the two electrode shapes. C1 [Elizondo-Decanini, Juan M.; Dudley, Evan; Youngman, Kevin] Sandia Natl Labs, Livermore, CA 94550 USA. RP Elizondo-Decanini, JM (reprint author), Sandia Natl Labs, Livermore, CA 94550 USA. NR 7 TC 0 Z9 0 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2380-808X BN 978-1-4673-1225-7; 978-1-4673-1222-6 J9 IEEE INT POWER MODUL PY 2012 BP 395 EP 398 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA BGB05 UT WOS:000322131200098 ER PT S AU Glover, SF White, FE Pena, GE Foster, PJ AF Glover, S. F. White, F. E. Pena, G. E. Foster, P. J. BE Hegeler, F TI Status of Protogen: The First Integration of Genesis Technologies SO PROCEEDINGS OF THE 2012 IEEE INTERNATIONAL POWER MODULATOR AND HIGH VOLTAGE CONFERENCE SE IEEE International Power Modulator and High Voltage Conference LA English DT Proceedings Paper CT IEEE International Power Modulator and High Voltage Conference (IPMHVC) CY JUN 03-07, 2012 CL San Diego, CA SP IEEE, IEEE Dielectr & Elect Insulat Soc, IEEE Nucl & Plasma Sci Soc, IEEE Electron Devices Soc, Sandia Natl Labs, Dept Navy, Naval Res Lab, GE, INP Greifswald, L3 Appl Technologies, Pulse Sci, Lockheed Martin, Ness Engn Inc AB Development of solid dielectric insulation concepts has enabled an ultra-low impedance high current driver concept called Genesis. A prototype demonstration called Protogen includes interfaces for up to twelve modules and can be operated in a repetitive mode to generate reliability data. Initial operation of Protogen is focusing on the integration of key solid dielectric concepts, dielectric lifetime, and integrated system performance. Multiple configurations of Protogen have already been tested demonstrating the flexibility of Genesis technology. This paper expands on previously published results paying particular attention to versatility, reliability, and modeling of the Protogen system. C1 [Glover, S. F.; Pena, G. E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Glover, SF (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sfglove@sandia.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2380-808X BN 978-1-4673-1225-7; 978-1-4673-1222-6 J9 IEEE INT POWER MODUL PY 2012 BP 641 EP 644 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA BGB05 UT WOS:000322131200161 ER PT S AU Patel, GP Anderson, DE Solley, DJ Wezensky, MW AF Patel, Gunjan P. Anderson, David E. Solley, Dennis J. Wezensky, Mark W. BE Hegeler, F TI Operational Results of Pulse Shaping Techniques for the High Voltage Convertor Modulator SO PROCEEDINGS OF THE 2012 IEEE INTERNATIONAL POWER MODULATOR AND HIGH VOLTAGE CONFERENCE SE IEEE International Power Modulator and High Voltage Conference LA English DT Proceedings Paper CT IEEE International Power Modulator and High Voltage Conference (IPMHVC) CY JUN 03-07, 2012 CL San Diego, CA SP IEEE, IEEE Dielectr & Elect Insulat Soc, IEEE Nucl & Plasma Sci Soc, IEEE Electron Devices Soc, Sandia Natl Labs, Dept Navy, Naval Res Lab, GE, INP Greifswald, L3 Appl Technologies, Pulse Sci, Lockheed Martin, Ness Engn Inc DE HVCM; IGBT; PWM; droop; losses AB The High Voltage Converter Modulators (HVCMs) are used to power the RF klystrons used throughout the accelerator systems at Spallation Neutron Source (SNS). The output voltage of the HVCM has significant droop and ripple which, combined with low level RF (LLRF) system limitations, affect performance and efficiency of accelerator cavities. In conjunction with the progress in development of the new HVCM controller, different pulse modulation techniques were implemented and studied on the test modulator. This paper discusses the results of implementation of frequency modulation and phase modulation on output voltage. Operational data, including full average power operation, of test modulator is also discussed. Future plans for the new modulation scheme will be presented. C1 [Patel, Gunjan P.; Anderson, David E.; Solley, Dennis J.; Wezensky, Mark W.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. RP Patel, GP (reprint author), Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. NR 9 TC 0 Z9 0 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2380-808X BN 978-1-4673-1225-7; 978-1-4673-1222-6 J9 IEEE INT POWER MODUL PY 2012 BP 653 EP 656 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA BGB05 UT WOS:000322131200164 ER PT S AU Peplov, VV Saethre, RB AF Peplov, Vladimir V. Saethre, Robert B. BE Hegeler, F TI SNS LEBT Chopper Pulse Width Limitation SO PROCEEDINGS OF THE 2012 IEEE INTERNATIONAL POWER MODULATOR AND HIGH VOLTAGE CONFERENCE SE IEEE International Power Modulator and High Voltage Conference LA English DT Proceedings Paper CT IEEE International Power Modulator and High Voltage Conference (IPMHVC) CY JUN 03-07, 2012 CL San Diego, CA SP IEEE, IEEE Dielectr & Elect Insulat Soc, IEEE Nucl & Plasma Sci Soc, IEEE Electron Devices Soc, Sandia Natl Labs, Dept Navy, Naval Res Lab, GE, INP Greifswald, L3 Appl Technologies, Pulse Sci, Lockheed Martin, Ness Engn Inc AB The Spallation Neutron Source (SNS) linac beam shall be chopped in the manner which supports accumulation of protons in the accumulating ring and assures low loss and activation free extraction of charged particles from the ring to the SNS target. The Low Energy Beam Transport (LEBT) Chopper System uses four identical pulsed power supplies (pulsers) to create the required series of bipolar HV pulses. Each pulser supplies a +/-3 kV pulse or ground to an electrostatic einzel lens split into four quadrants to deflect the beam for 200 ns to 1 us. The SNS linac Timing System provides a series of input trigger signals of different widths to drive the pulser's MOSFET switches. The width of the pulser's output pulse is variable for multiple purposes such as change of average beam energy delivered to the target or for a beam study process. Lower and upper pulse width limits for the Chopper System depend on the characteristics of the pulsers, LEBT load, beam energy, extraction kicker and timing system. This paper presents timing limits for the existing SNS chopping system. C1 [Peplov, Vladimir V.; Saethre, Robert B.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Peplov, VV (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. OI Saethre, Robert/0000-0002-7907-3960 NR 3 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2380-808X BN 978-1-4673-1225-7; 978-1-4673-1222-6 J9 IEEE INT POWER MODUL PY 2012 BP 700 EP 703 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA BGB05 UT WOS:000322131200176 ER PT S AU Saethre, R Peplov, V AF Saethre, Robert Peplov, Vladimir BE Hegeler, F TI SNS LEBT Chopper Improvements SO PROCEEDINGS OF THE 2012 IEEE INTERNATIONAL POWER MODULATOR AND HIGH VOLTAGE CONFERENCE SE IEEE International Power Modulator and High Voltage Conference LA English DT Proceedings Paper CT IEEE International Power Modulator and High Voltage Conference (IPMHVC) CY JUN 03-07, 2012 CL San Diego, CA SP IEEE, IEEE Dielectr & Elect Insulat Soc, IEEE Nucl & Plasma Sci Soc, IEEE Electron Devices Soc, Sandia Natl Labs, Dept Navy, Naval Res Lab, GE, INP Greifswald, L3 Appl Technologies, Pulse Sci, Lockheed Martin, Ness Engn Inc DE pulsed power; LEBT; Power MOSFET; gate drive AB The Low Energy Beam Transport (LEBT) Chopper for the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory has experienced failures of the power semiconductors within the tri-state pulsed power supplies. These power supplies deliver a +/-3 kV pulse or ground potential to an electrostatic einzel lens split into four quadrants to deflect the beam for 200 ns to 1 us. The four power supplies are ac coupled to a -50 kV dc supply for steering offset of the lens. This paper discusses the failure modes and improvements to mitigate future failures. C1 [Saethre, Robert; Peplov, Vladimir] Oak Ridge Natl Lab, SNS, Oak Ridge, TN 37831 USA. RP Saethre, R (reprint author), Oak Ridge Natl Lab, SNS, Oak Ridge, TN 37831 USA. OI Saethre, Robert/0000-0002-7907-3960 NR 3 TC 1 Z9 1 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2380-808X BN 978-1-4673-1225-7; 978-1-4673-1222-6 J9 IEEE INT POWER MODUL PY 2012 BP 704 EP 707 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA BGB05 UT WOS:000322131200177 ER PT S AU Reass, WA Baca, DM Partridge, ER Rees, DE AF Reass, W. A. Baca, D. M. Partridge, E. R. Rees, D. E. BE Hegeler, F TI Klystron Modulator Design for the Los Alamos Neutron Science Center Accelerator SO PROCEEDINGS OF THE 2012 IEEE INTERNATIONAL POWER MODULATOR AND HIGH VOLTAGE CONFERENCE SE IEEE International Power Modulator and High Voltage Conference LA English DT Proceedings Paper CT IEEE International Power Modulator and High Voltage Conference (IPMHVC) CY JUN 03-07, 2012 CL San Diego, CA SP IEEE, IEEE Dielectr & Elect Insulat Soc, IEEE Nucl & Plasma Sci Soc, IEEE Electron Devices Soc, Sandia Natl Labs, Dept Navy, Naval Res Lab, GE, INP Greifswald, L3 Appl Technologies, Pulse Sci, Lockheed Martin, Ness Engn Inc AB This paper describes the design of the 44 modulator systems that will be installed to upgrade the Los Alamos Neutron Science Center (LANSCE) accelerator RF system. The klystrons can operate up to 86 kV with a nominal 32 Amp beam current with a 120 Hz repetition rate and 15% duty cycle. The klystrons are a mod-anode design. The modulator is designed with analog feedback control to ensure the klystron beam current is flat-top regulated. To achieve fast switching whilst maintaining linear feedback control, a grid-clamp, totem-pole modulator configuration is used with an "on" deck and an "off" deck. The on and off deck modulators are of identical design and utilize a cascode connected planar triode, cathode driven with a high speed MOSFET. The derived feedback is connected to the planar triode grid to enable the flat-top control. Although modern design approaches suggest solid state designs may be considered, the planar triode (Eimac Y-847B) is very cost effective, is easy to integrate with the existing hardware, and provides a simplified linear feedback control mechanism. The design is very compact and fault tolerant. This paper will review the complete electrical design, operational performance, and system characterization as applied to the LANSCE installation. C1 [Reass, W. A.; Baca, D. M.; Partridge, E. R.; Rees, D. E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Reass, WA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. NR 0 TC 0 Z9 0 U1 1 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2380-808X BN 978-1-4673-1225-7; 978-1-4673-1222-6 J9 IEEE INT POWER MODUL PY 2012 BP 708 EP 711 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA BGB05 UT WOS:000322131200178 ER PT S AU Glover, SF Foster, PJ McDaniel, DH White, FE Pena, GE Zutavern, FJ AF Glover, S. F. Foster, P. J. McDaniel, D. H. White, F. E. Pena, G. E. Zutavern, F. J. BE Hegeler, F TI Pulsed Power Switch Modeling for Broad Operation SO PROCEEDINGS OF THE 2012 IEEE INTERNATIONAL POWER MODULATOR AND HIGH VOLTAGE CONFERENCE SE IEEE International Power Modulator and High Voltage Conference LA English DT Proceedings Paper CT IEEE International Power Modulator and High Voltage Conference (IPMHVC) CY JUN 03-07, 2012 CL San Diego, CA SP IEEE, IEEE Dielectr & Elect Insulat Soc, IEEE Nucl & Plasma Sci Soc, IEEE Electron Devices Soc, Sandia Natl Labs, Dept Navy, Naval Res Lab, GE, INP Greifswald, L3 Appl Technologies, Pulse Sci, Lockheed Martin, Ness Engn Inc AB Dynamic materials properties research at Sandia National Laboratories has resulted in research that is advancing capabilities in precision programmable pulsed power systems operating in multi-mega amp regimes. Programmable pulse shaping capabilities require the gas switches in these systems to perform over a large range of dynamic operating conditions. Runtime, jitter, and the number of channels formed are all impacted by the conditions of these switches at the time of trigger. This paper provides a model and analysis of a 200 kV gas switch designed for linear transformer drivers operating at percentages of self break ranging from 45% to 100%. This work expands on the research performed by T.H. Martin and S.I. Braginskii. C1 [Glover, S. F.; McDaniel, D. H.; Pena, G. E.; Zutavern, F. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Glover, SF (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM sfglove@sandia.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2380-808X BN 978-1-4673-1225-7; 978-1-4673-1222-6 J9 IEEE INT POWER MODUL PY 2012 BP 780 EP 783 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA BGB05 UT WOS:000322131200196 ER PT S AU Bland, M Scheinker, A Reass, W Watson, A Clare, J Ji, C AF Bland, Michael Scheinker, Alex Reass, William Watson, Alan Clare, Jon Ji, Chao BE Hegeler, F TI Droop Compensation with Soft Switching for High Voltage Converter Modulator (HVCM) SO PROCEEDINGS OF THE 2012 IEEE INTERNATIONAL POWER MODULATOR AND HIGH VOLTAGE CONFERENCE SE IEEE International Power Modulator and High Voltage Conference LA English DT Proceedings Paper CT IEEE International Power Modulator and High Voltage Conference (IPMHVC) CY JUN 03-07, 2012 CL San Diego, CA SP IEEE, IEEE Dielectr & Elect Insulat Soc, IEEE Nucl & Plasma Sci Soc, IEEE Electron Devices Soc, Sandia Natl Labs, Dept Navy, Naval Res Lab, GE, INP Greifswald, L3 Appl Technologies, Pulse Sci, Lockheed Martin, Ness Engn Inc AB High Voltage Converter Modulators (HVCM) offer significant performance advantages over conventional modulator technologies for long pulse applications. One of the key advantages of HVCM technology is the ability to compensate for capacitor bank droop. Achieving droop compensation without incurring significant additional switching loss has not been possible in existing designs. This paper presents an analysis of the "Y-point" variant of the HVCM topology using the Combined Phase and Frequency Modulation (CPFM) technique. This, combined with the addition of a 'lossless' snubber circuit, enables droop compensation while achieving soft switching over the entire pulse duration. The rise time and overshoot of the output voltage is optimised using an iterative extreme seeking algorithm. The optimisation reduces the rise time from 100 mu s to 50 mu s with no overshoot. This will lead to an increase in overall accelerator efficiency. C1 [Bland, Michael; Scheinker, Alex; Reass, William] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bland, M (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM michael.bland@hotmail.co.uk; alan.watson@nottingham.ac.uk OI Watson, Alan/0000-0001-6763-5535; Clare, Jon/0000-0001-8243-4280 NR 7 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2380-808X BN 978-1-4673-1225-7; 978-1-4673-1222-6 J9 IEEE INT POWER MODUL PY 2012 BP 812 EP 815 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA BGB05 UT WOS:000322131200205 ER PT B AU McIntyre, DL Woodruff, SD AF McIntyre, Dustin L. Woodruff, Steven D. GP ASME TI Laser Spark Plug Numerical Design Process with Experimental Validation SO PROCEEDINGS OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL CONFERENCE (ICEF) LA English DT Proceedings Paper CT ASME Internal Combustion Engine Division Fall Technical Conference CY SEP 02-05, 2011 CL Morgantown, WV SP ASME, Internal Combust Engine Div ID SATURABLE-ABSORBER AB This work reports the numerical modeling design procedure for a miniaturized laser spark plug. In previous work both side pumped and end pumped laser spark plugs were empirically designed and tested. Experimental data from the previous laser spark plug development cycles is compared to the output predicted by a known set of rate equations. The rate equations are used to develop interrelated inter cavity time dependent waveforms that are then used to identify key variables. These variables are then input to a set of secondary equations for determining the output pulse energy, output power, and output pulse width of the simulated laser system. The physical meaning and the operation of the rate equations is explained in detail. This paper concentrates on the process and decision points needed to successfully design a solid state passively Q-switched laser system, either side pumped or end pumped, that produces the appropriate output needed for use as a laser spark plug for internal combustion engines. C1 [McIntyre, Dustin L.; Woodruff, Steven D.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP McIntyre, DL (reprint author), 3610 Collins Ferry Rd,MS B06, Morgantown, WV 26507 USA. EM dustin.mcintyre@netl.doe.gov NR 25 TC 1 Z9 1 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4442-7 PY 2012 BP 1 EP 19 PG 19 WC Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA BGA66 UT WOS:000322089700001 ER PT B AU Reed, ME Grauer, DK AF Reed, Michael E. Grauer, Diana K. GP ASME TI DYNAMIC ANALYSIS OF PRIME MOVER COMBINED HEAT AND POWER DELIVERY TO CHEMICAL PROCESSING SO PROCEEDINGS OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL CONFERENCE (ICEF) LA English DT Proceedings Paper CT ASME Internal Combustion Engine Division Fall Technical Conference CY SEP 02-05, 2011 CL Morgantown, WV SP ASME, Internal Combust Engine Div AB This paper presents a study of the impact of combined heat and power generation from prime mover engines on coupled chemical processes. Medium- and large-bore engines are frequently used in refineries and chemical plants to provide dedicated mechanical power to unit operations. Currently, the prime mover is included in the chemical process design as a single, steady-state power input. This design does not take into account, dynamic engine operation including load changes, start-up, shut-down, and malfunction, all of which have a direct and immediate impact on unit operations. The research team has developed a dynamic model of a "proof of concept" example chemical process in Aspen Custom Modeler to investigate the impact of dynamic operation and integration of a dedicated prime mover unit on an example chemical process. C1 [Reed, Michael E.; Grauer, Diana K.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Reed, ME (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 11 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4442-7 PY 2012 BP 65 EP 68 PG 4 WC Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA BGA66 UT WOS:000322089700006 ER PT B AU Grauer, DK Reed, ME AF Grauer, Diana K. Reed, Michael E. GP ASME TI DYNAMIC ANALYSIS OF ELECTRICAL POWER GRID DELIVERY: USING PRIME MOVER ENGINES TO BALANCE DYNAMIC WIND TURBINE OUTPUT SO PROCEEDINGS OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL CONFERENCE (ICEF) LA English DT Proceedings Paper CT ASME Internal Combustion Engine Division Fall Technical Conference CY SEP 02-05, 2011 CL Morgantown, WV SP ASME, Internal Combust Engine Div AB This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy. C1 [Grauer, Diana K.; Reed, Michael E.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Grauer, DK (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 14 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4442-7 PY 2012 BP 69 EP 73 PG 5 WC Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA BGA66 UT WOS:000322089700007 ER PT B AU Williams, A Burton, J Christensen, E McCormick, RL Tester, J AF Williams, Aaron Burton, Jonathan Christensen, Earl McCormick, Robert L. Tester, John GP ASME TI Emissions from Various Biodiesel Sources Compared to a Range of Diesel Fuels in DPF Equipped Diesel Engines SO PROCEEDINGS OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL CONFERENCE (ICEF) LA English DT Proceedings Paper CT ASME Internal Combustion Engine Division Fall Technical Conference CY SEP 02-05, 2011 CL Morgantown, WV SP ASME, Internal Combust Engine Div ID COMBUSTION; OXIDATION; IMPACT; SOOT; NOX AB The purpose of this study was to measure the impact of various sources of petroleum-based and bio-based diesel fuels on regulated emissions and fuel economy in diesel particulate filter (DPF) equipped diesel engines. Two model year 2008 diesel engines were tested with nine fuels including a certification ultra-low sulfur diesel (ULSD), local ULSD, high aromatic ULSD, low aromatic ULSD, and twenty percent blends of biodiesel derived from algae, camelina, soy, tallow, and yellow grease. Regulated emissions were measured over the heavy duty diesel transient test cycle. Measurements were also made of DPF-out particle size distribution and total particle count from a 13-mode steady state test using a fast mobility particle sizer. Test engines were a 2008 Cummins ISB and a 2008 International Maxx Force 10, both equipped with actively regenerated DPFs. Fuel consumption was roughly 2% greater over the transient test cycle for the B20 blends versus certification ULSD in both engines, consistent with the slightly lower energy content of biodiesel. Unlike studies conducted on older model engines, these engines equipped with diesel oxidation catalysts and DPFs showed small or no measurable fuel effect on the tailpipe emissions of total hydrocarbons (THC), carbon monoxide (CO) and particulate matter (PM). No differences in particle size distribution or total particle count were seen in a comparison of certification ULSD and B20 soy, with the exception of engine idling conditions where B20 produced a small reduction in the number of nucleation mode particles. In the Cummins engine, B20 prepared from algae, camelina, soy, and tallow resulted in an approximately 2.5% increase in nitrogen oxides (NOx) compared to the base fuel. The International engine demonstrated a higher degree of variability for NOx emissions, and fuel effects could not be resolved (p > 0.05). The group of petroleum diesel test fuels produced a range of NOx emissions very similar to that caused by blending of biodiesel. Test cycles where an active regeneration of the DPF occurred resulted in a nearly threefold increase in NOx emissions and a 15% increase in fuel consumption. The full quantification of DPF regeneration events further complicates the accurate calculation of fuel impacts on emissions and fuel consumption. C1 [Williams, Aaron; Burton, Jonathan; Christensen, Earl; McCormick, Robert L.] Natl Renewable Energy Lab, Golden, CO USA. RP Williams, A (reprint author), Natl Renewable Energy Lab, Golden, CO USA. NR 23 TC 0 Z9 0 U1 2 U2 7 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4442-7 PY 2012 BP 223 EP 241 PG 19 WC Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA BGA66 UT WOS:000322089700022 ER PT B AU Weall, AJ Szybist, JP AF Weall, Adam J. Szybist, James P. GP ASME TI THE EFFECTS OF FUEL CHARACTERISTICS ON STOICHIOMETRIC SPARK-ASSISTED HCCI SO PROCEEDINGS OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL CONFERENCE (ICEF) LA English DT Proceedings Paper CT ASME Internal Combustion Engine Division Fall Technical Conference CY SEP 02-05, 2011 CL Morgantown, WV SP ASME, Internal Combust Engine Div AB The characteristics of fuel lean HCCI operation using a variety of fuels are well known and have been demonstrated using different engine concepts in the past. In contrast, stoichiometric operation of HCCI is less well documented. Recent studies have highlighted the benefits of operating at a stoichiometric condition in terms of load expansion combined with the applicability of three way catalyst technology to reduce NOx emissions. In this study the characterization of stoichiometric HCCI using gasoline-like fuels was undertaken. The fuels investigated are gasoline, a 50 vol% blend of iso-butanol and gasoline (IB50), and an 85% vol blend of ethanol and gasoline (E85). A single cylinder engine operating with direct injection and spark assist combined with a fully variable hydraulic valve actuation system allowed a wide range of operating parameters to be studied. This included the effects of negative valve overlap duration, intake valve closing and valve lift. Furthermore, the interaction between fuel injection timing and spark and how they can affect the required valve timing to achieve stoichiometric HCCI combustion are also studied. A comprehensive combustion and emissions analysis is conducted using gasoline, IB50 and E85 at an engine speed of 2000rpm over a range of operating loads. The resultant fuel properties which differed in terms of octane rating, fuel oxygenation and heat of vaporization show that stoichiometric HCCI is possible using a range of fuels but that these fuel characteristics do have some effect on the combustion characteristics. How these fuel properties can enable an increased engine operating envelope to be achieved, in comparison with both fuel lean HCCI and conventional spark ignited combustion, is then discussed. C1 [Weall, Adam J.; Szybist, James P.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN USA. RP Weall, AJ (reprint author), Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, NTRC Bldg,2360 Cherahala Blvd, Knoxville, TN USA. NR 34 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4442-7 PY 2012 BP 243 EP 259 PG 17 WC Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA BGA66 UT WOS:000322089700023 ER PT B AU Subramanian, SN Ciatti, S AF Subramanian, Swami Nathan Ciatti, Stephen GP ASME TI LOW CETANE FUELS IN COMPRESSION IGNITION ENGINE TO ACHIEVE LTC SO PROCEEDINGS OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL CONFERENCE (ICEF) LA English DT Proceedings Paper CT ASME Internal Combustion Engine Division Fall Technical Conference CY SEP 02-05, 2011 CL Morgantown, WV SP ASME, Internal Combust Engine Div AB The conventional combustion processes of Spark Ignition (SI) and Compression Ignition (CI) have their respective merits and demerits. Internal combustion engines use certain fuels to utilize those conventional combustion technologies. High octane fuels are required to operate the engine in SI mode, while high cetane fuels are preferable for CI mode of operation. Those conventional combustion techniques struggle to meet the current emissions norms while retaining high efficiency. In particular, oxides of nitrogen (NOx) and particulate matter (PM) emissions have limited the utilization of diesel fuel in compression ignition engines, and conventional gasoline operated SI engines are not fuel efficient. Advanced combustion concepts have shown the potential to combine fuel efficiency and improved emissions performance. Low Temperature Combustion (LTC) offers reduced NOx and PM emissions with comparable modern diesel engine efficiencies. The ability of premixed, low-temperature compression ignition to deliver low PM and NOx emissions is dependent on achieving optimal combustion phasing. Variations in injection pressures, injection schemes and Exhaust Gas Recirculation (EGR) are studied with low octane gasoline LTC. Reductions in emissions are a function of combustion phasing and local equivalence ratio. Engine speed, load, EGR quantity, compression ratio and fuel octane number are all factors that influence combustion phasing. Low cetane fuels have shown comparable diesel efficiencies with low NOx emissions at reasonably high power densities C1 [Subramanian, Swami Nathan; Ciatti, Stephen] Argonne Natl Lab, Argonne, IL 60439 USA. RP Subramanian, SN (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 18 TC 0 Z9 0 U1 2 U2 5 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4442-7 PY 2012 BP 317 EP 326 PG 10 WC Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA BGA66 UT WOS:000322089700028 ER PT B AU Curran, SJ Cho, K Briggs, TE Wagner, RM AF Curran, Scott J. Cho, Kukwon Briggs, Thomas E. Wagner, Robert M. GP ASME TI DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE SO PROCEEDINGS OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL CONFERENCE (ICEF) LA English DT Proceedings Paper CT ASME Internal Combustion Engine Division Fall Technical Conference CY SEP 02-05, 2011 CL Morgantown, WV SP ASME, Internal Combust Engine Div AB In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency (BTE) as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent of premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and cylinder pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to enable RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing, and cylinder pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NO and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. BTE was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes. C1 [Curran, Scott J.; Cho, Kukwon; Briggs, Thomas E.; Wagner, Robert M.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN USA. RP Curran, SJ (reprint author), Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN USA. NR 15 TC 0 Z9 0 U1 0 U2 6 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4442-7 PY 2012 BP 557 EP 564 PG 8 WC Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA BGA66 UT WOS:000322089700048 ER PT B AU Prikhodko, VY Pihl, JA Lewis, SA Parks, JE AF Prikhodko, Vitaly Y. Pihl, Josh A. Lewis, Samuel A., Sr. Parks, James E., II GP ASME TI EFFECT OF HYDROCARBON EMISSIONS FROM PCCI-TYPE COMBUSTION ON THE PERFORMANCE OF SELECTIVE CATALYTIC REDUCTION CATALYSTS SO PROCEEDINGS OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL CONFERENCE (ICEF) LA English DT Proceedings Paper CT ASME Internal Combustion Engine Division Fall Technical Conference CY SEP 02-05, 2011 CL Morgantown, WV SP ASME, Internal Combust Engine Div AB Core samples cut from full size commercial Fe-and Cu-zeolite SCR catalysts were exposed to a slipstream of raw engine exhaust from a 1.9-liter 4-cylinder diesel engine operating in conventional and PCCI combustion modes. Subsequently, the NOx reduction performance of the exposed catalysts was evaluated on a laboratory bench- reactor fed with simulated exhaust. The Fe-zeolite NOx conversion efficiency was significantly degraded, especially at low temperatures (<250 degrees C), after the catalyst was exposed to the engine exhaust. The degradation of the Fe-zeolite performance was similar for both combustion modes. The Cu-zeolite was much more resistant to HC fouling than the Fe-zeolite catalyst. In the case of the Cu-zeolite, PCCI exhaust had a more significant impact than the exhaust from conventional combustion on the NOx conversion efficiency. For all cases, the clean catalyst performance was recovered after heating to 600 degrees C. GC-MS analysis of the HCs adsorbed to the catalyst surface provided insights into the observed NOx reduction performance trends. C1 [Prikhodko, Vitaly Y.; Pihl, Josh A.; Lewis, Samuel A., Sr.; Parks, James E., II] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Prikhodko, VY (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 8 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4442-7 PY 2012 BP 643 EP 649 PG 7 WC Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA BGA66 UT WOS:000322089700056 ER PT B AU Malikopoulos, AA Smith, DE AF Malikopoulos, Andreas A. Smith, David E. GP ASME TI AN OPTIMIZATION MODEL FOR PLUG-IN HYBRID ELECTRIC VEHICLES SO PROCEEDINGS OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL CONFERENCE (ICEF) LA English DT Proceedings Paper CT ASME Internal Combustion Engine Division Fall Technical Conference CY SEP 02-05, 2011 CL Morgantown, WV SP ASME, Internal Combust Engine Div DE plug-in hybrid electric vehicle; hybrid-electric vehicle; pre-transmission parallel configuration; post-transmission parallel configuration; design optimization; regression model; fuel economy; greenhouse gas emissions ID LIFE-CYCLE ASSESSMENT; PROPULSION SYSTEM; POWER MANAGEMENT; DESIGN; STRATEGIES AB The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency. C1 [Malikopoulos, Andreas A.] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. RP Malikopoulos, AA (reprint author), Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. NR 26 TC 0 Z9 0 U1 1 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4442-7 PY 2012 BP 739 EP 748 PG 10 WC Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA BGA66 UT WOS:000322089700064 ER PT B AU Aithal, SM AF Aithal, S. M. GP ASME TI EQUILIBRIUM CHEMISTRY CALCULATIONS FOR ASSESSMENT OF NOX ABATEMENT STRATEGIES IN IC ENGINES SO PROCEEDINGS OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL CONFERENCE (ICEF) LA English DT Proceedings Paper CT ASME Internal Combustion Engine Division Fall Technical Conference CY SEP 02-05, 2011 CL Morgantown, WV SP ASME, Internal Combust Engine Div ID DIESEL-ENGINE; COMBUSTION AB Nitrogen Enriched Air (NEA) has shown great potential in NOx reduction without the drawbacks of exhaust gas recirculation (EGR). Use of NEA in stationary natural gas engines has shown up to 70% NOx reduction with a modest 2% nitrogen enrichment. However, nitrogen enrichment beyond a point leads to degradation in engine performance in terms of power density, brake thermal efficiency and unburned hydrocarbons. Optimizing the nitrogen enrichment levels to reduce NOx without performance degradation of the engine would greatly benefit the advancement of the air separation membrane technology. Development of fast and robust modeling tools to compute the temporal variation of the in-cylinder engine pressure, temperature and NOx formation can aid experimental efforts in determining the optimum enrichment levels for a given engine operating condition. This work presents a methodology to compute engine-out NOx for engines with and without nitrogen enrichment. Temporal variation of in-cylinder engine pressure and temperature can be obtained by a solution of the energy equation. Using these temperature and pressure values, along with the instantaneous composition of the working fluid, one can evaluate the equilibrium concentration of the combustion products. Since the NOx formation freezes a few crank angle degrees after the completion of combustion, it is instructive to examine whether the equilibrium computation can provide a reasonable estimate of engine-out NOx. To this end, engine-out NOx computed by using the above-mentioned procedure was obtained as a function of equivalence ratio for cases with nitrogen enrichment of 2% and no nitrogen enrichment. The results showed that the equilibrium NOx concentrations a few crank angle degrees after end of combustion were close to those reported experimentally in stationary natural gas engines. These results suggest that it would be possible to use equilibrium chemistry computations to evaluate various NOx mitigation strategies. C1 Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Aithal, SM (reprint author), Argonne Natl Lab, Div Math & Comp Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 20 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4442-7 PY 2012 BP 847 EP 856 PG 10 WC Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA BGA66 UT WOS:000322089700074 ER PT B AU Som, S Longman, DE Luo, ZY Plomer, M Lu, TF Senecal, PK Pomraning, E AF Som, Sibendu Longman, Douglas E. Luo, Zhaoyu Plomer, Max Lu, Tianfeng Senecal, Peter K. Pomraning, Eric GP ASME TI SIMULATING FLAME LIFT-OFF CHARACTERISTICS OF DIESEL AND BIODIESEL FUELS USING DETAILED CHEMICAL-KINETIC MECHANISMS AND LES TURBULENCE MODEL SO PROCEEDINGS OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION FALL TECHNICAL CONFERENCE (ICEF) LA English DT Proceedings Paper CT ASME Internal Combustion Engine Division Fall Technical Conference CY SEP 02-05, 2011 CL Morgantown, WV SP ASME, Internal Combust Engine Div ID SPRAY; SOOT; IGNITION; DENSITY; JETS AB Combustion in direct-injection diesel engines occurs in a lifted, turbulent diffusion flame mode. Numerous studies indicate that the combustion and emissions in such engines are strongly influenced by the lifted flame characteristics, which are in turn determined by fuel and air mixing in the upstream region of the lifted flame, and consequently by the liquid breakup and spray development processes. From a numerical standpoint, these spray combustion processes depend heavily on the choice of underlying spray, combustion, and turbulence models. The present numerical study investigates the influence of different chemical kinetic mechanisms for diesel and biodiesel fuels, as well as Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence models on predicting flame lift-off lengths (LOLs) and ignition delays. Specifically, two chemical kinetic mechanisms for n-heptane (NHPT) and three for biodiesel surrogates are investigated. In addition, the RNG k-epsilon (RANS) model is compared to the Smagorinsky based LES turbulence model. Using adaptive grid resolution, minimum grid sizes of 250 mu m and 125 mu m were obtained for the RANS and LES cases respectively. Validations of these models were performed against experimental data from Sandia National Laboratories in a constant volume combustion chamber Ignition delay and flame lift-off validations were performed at different ambient temperature conditions. The LES model predicts lower ignition delays and qualitatively better flame structures compared to the RNG k-epsilon model. The use of realistic chemistry and a ternary surrogate mixture, which consists of methyl decanoate, methyl 9-decenoate, and NHPT, results in better predicted LOLs and ignition delays. For diesel fuel though, only marginal improvements are observed by using larger size mechanisms. However these improved predictions come at a significant increase in computational cost. C1 [Som, Sibendu; Longman, Douglas E.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Som, S (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 38 TC 0 Z9 0 U1 1 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4442-7 PY 2012 BP 871 EP 882 PG 12 WC Engineering, Mechanical; Transportation Science & Technology SC Engineering; Transportation GA BGA66 UT WOS:000322089700076 ER PT J AU Li, J Martin, I Buttiker, M Morpurgo, AF AF Li, Jian Martin, Ivar Buettiker, Markus Morpurgo, Alberto F. TI Marginal topological properties of graphene: a comparison with topological insulators SO PHYSICA SCRIPTA LA English DT Article; Proceedings Paper CT Nobel Symposium on Graphene and Quantum Matter CY MAY 27-31, 2010 CL Saltsjobaden, SWEDEN ID HGTE QUANTUM-WELLS; BILAYER GRAPHENE; BERRYS PHASE; STATE; SYMMETRY AB The electronic structures of graphene systems and topological insulators have closely related features, such as a quantized Berry phase and zero-energy edge states. The reason for these similarities is that in both systems there are two relevant orbital bands, which generate the pseudo-spin degree of freedom and, less obviously, there is a correspondence between the valley degree of freedom in graphene and electron spin in topological insulators. Despite the similarities, there are also several important differences, both for the bulk topological properties and for their implications for the edge states-primarily due to the fundamental difference between valley and spin. In view of their peculiar band structure features, gapped graphene systems should be properly characterized as marginal topological insulators, distinct from either the trivial insulators or the true topological insulators. C1 [Li, Jian; Buettiker, Markus] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Martin, Ivar] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Morpurgo, Alberto F.] Univ Geneva, DPMC, CH-1211 Geneva 4, Switzerland. [Morpurgo, Alberto F.] Univ Geneva, GAP, CH-1211 Geneva 4, Switzerland. RP Li, J (reprint author), Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. EM Alberto.Morpurgo@unige.ch RI Li, Jian/B-8398-2011 OI Li, Jian/0000-0003-0297-6528 NR 38 TC 9 Z9 9 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0031-8949 J9 PHYS SCRIPTA JI Phys. Scr. PD JAN PY 2012 VL T146 AR 014021 DI 10.1088/0031-8949/2012/T146/014021 PG 8 WC Physics, Multidisciplinary SC Physics GA 895OD UT WOS:000300504800022 ER PT B AU Clark, DT AF Clark, Don T. BE OBrien, C TI SEISMIC ENGINEERING Seismic Evaluation of Systems, Structures, and Components SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 8 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div C1 Idaho Natl Lab, Idaho Falls, ID USA. RP Clark, DT (reprint author), Idaho Natl Lab, Idaho Falls, ID USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4458-8 PY 2012 BP 157 EP 157 PG 1 WC Engineering, Mechanical SC Engineering GA BFM21 UT WOS:000320479700020 ER PT B AU McClanahan, RD De Leon, PL AF McClanahan, Richard D. De Leon, Phillip L. GP International Speech Communications Association TI Mixture Component Clustering for Efficient Speaker Verification SO 13TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2012 (INTERSPEECH 2012), VOLS 1-3 LA English DT Proceedings Paper CT 13th Annual Conference of the International-Speech-Communication-Association CY SEP 09-13, 2012 CL Portland, OR SP Int Speech Commun Assoc DE speaker recognition; clustering methods AB In speaker verification (SV) systems based on a support vector machine (SVM) using Gaussian mixture model (GMM) supervectors, a large portion of the test-stage computational load is the calculation of the a posteriori probabilities of the feature vectors for the given universal background model (UBM). Furthermore, the calculation of the sufficient statistics for the mean also contributes substantially to computational load. In this paper, we propose several methods to cluster the GMM-UBM mixture components in order to reduce the computational load and speed up the verification. In the adaptation stage, we compare the feature vectors to the clusters and calculate the a posteriori probabilities and update the statistics exclusively for mixture components belonging to appropriate clusters. Our results, demomstrate that (on average) we can, reduce the number of a posteriori probability calculations by a factor up to 2.8x without loss in accuracy. C1 [McClanahan, Richard D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP McClanahan, RD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rmcclan@sandia.gov; pdeleon@nmsu.edu NR 8 TC 1 Z9 1 U1 0 U2 0 PU ISCA-INT SPEECH COMMUNICATION ASSOC PI BAIXAS PA C/O EMMANUELLE FOXONET, 4 RUE DES FAUVETTES, LIEU DIT LOUS TOURILS, BAIXAS, F-66390, FRANCE BN 978-1-62276-759-5 PY 2012 BP 1086 EP 1089 PG 4 WC Computer Science, Artificial Intelligence; Computer Science, Interdisciplinary Applications; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO97 UT WOS:000320827200272 ER PT S AU Sahyoun, S Nelson, C Djouadi, SM Kuruganti, T AF Sahyoun, Samir Nelson, Cale Djouadi, Seddik M. Kuruganti, Teja GP IEEE TI Control and Room Temperature Optimization of Energy Efficient Buildings SO 2012 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS (CCA) SE IEEE International Conference on Control Applications LA English DT Proceedings Paper CT IEEE International Conference on Control Applications (CCA) Part of 6th IEEE Multi-Conference on Systems and Control (IEEE MSC) CY OCT 03-05, 2012 CL Dubrovnik, CROATIA SP IEEE, IEEE Control Syst Soc (CSS), IEEE Conf Control Applicat (CCA), IEEE Int Syposium Intelligent Control (ISIC) AB The building sector consumes a large part of the energy used in the United States and is responsible for nearly 40% of greenhouse gas emissions. It is therefore economically and environmentally important to reduce the building energy consumption to realize massive energy savings. In this paper, a method to control room temperature in buildings is proposed. The approach is based on a distributed parameter model represented by a three dimensional (3D) heat equation in a room with heater/cooler located at ceiling. The latter is resolved using finite element methods, and results in a model for room temperature with thousands of states. The latter is not amenable to control design. A reduced order model of only few states is then derived using Proper Orthogonal Decomposition (POD). A Linear Quadratic Regulator (LQR) is computed based on the reduced model, and applied to the full order model to control room temperature. C1 [Sahyoun, Samir; Nelson, Cale; Djouadi, Seddik M.] Univ Tennessee, Dept EECS, Knoxville, TN 37996 USA. [Kuruganti, Teja] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Sahyoun, S (reprint author), Univ Tennessee, Dept EECS, Knoxville, TN 37996 USA. EM ssahyoun@utk.edu; cnelso23@utk.edu; djouadi@eecs.utk.edu; kurugantipv@ornl.gov FU U. S. Government [DE- AC05- 00OR22725] FX The submitted manuscript has been co- authored by a contractor of the U. S. Government under Contract DE- AC05- 00OR22725. Accordingly, the U. S. Government retains a nonexclusive, royalty- free license to publish or reproduce the published form of this contribution, or allow others to do so, for U. S. Government purposes. NR 11 TC 1 Z9 1 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1085-1992 BN 978-1-4673-4505-7 J9 IEEE INTL CONF CONTR PY 2012 BP 962 EP 967 PG 6 WC Automation & Control Systems; Computer Science, Artificial Intelligence; Engineering, Electrical & Electronic SC Automation & Control Systems; Computer Science; Engineering GA BFK99 UT WOS:000320336200136 ER PT S AU Gong, SP Zhang, ZH Trinkle, M Dimitrovski, AD Li, HS AF Gong, Shuping Zhang, Zhenghao Trinkle, Matthew Dimitrovski, Aleksandar D. Li, Husheng GP IEEE TI GPS Spoofing Based Time Stamp Attack on Real Time Wide Area Monitoring in Smart Grid SO 2012 IEEE THIRD INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM) SE International Conference on Smart Grid Communications LA English DT Proceedings Paper CT IEEE 3rd International Conference on Smart Grid Communications (SmartGridComm) CY NOV 05-08, 2012 CL Natl Cheng Kung Univ (NCKU), Tainan, TAIWAN SP IEEE, Dept Engn Sci, Dept Elect Engn, Ctr Ind Elite Training & Convent Management, Minist Educ, Natl Sci Council, Natl Appl Res Labs, IEEE Commun Soc, Tainan City Govt HO Natl Cheng Kung Univ (NCKU) AB Many operations in power grids, such as fault detection and event location estimation, depend on precise timing information. In this paper, a novel time stamp attack (TSA) is identified in smart grid. Since many applications in smart grid utilize synchronous measurements and most of the measurement devices are equipped with global positioning system (GPS) for precise timing, it is highly probable to attack the measurement system by spoofing the GPS. The effectiveness of TSA is demonstrated by time synchronized transmission line fault detection, as well as regional disturbing event location. To defend against TSA, we proposed a multi-antenna based quickest GPS spoofing detection algorithm. By exploiting the theory of quickest detection, we apply the probabilistic metric of the carrier signal to noise ratio from two receive antennas to conduct the quickest GPS spoofing detection. Experiment results demonstrate that the proposed defense scheme can effectively detect and prevent GPS spoofing attack. C1 [Gong, Shuping; Zhang, Zhenghao; Li, Husheng] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Trinkle, Matthew] Univ Adelaide, Sensor Signal Proc Grp, Adelaide, SA, Australia. [Dimitrovski, Aleksandar D.] Energy & Transport Sci Div, Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Gong, SP (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. RI Gong, Shuping/N-8001-2014; Dimitrovski, Aleksandar/G-5897-2016 OI Dimitrovski, Aleksandar/0000-0001-9109-621X FU National Science Foundation [ECCS-0901425, CNS-1040207, CNS-11 16826]; UT-ORNL Science Alliance JDRD FX This work was supported by the National Science Foundation under grants ECCS-0901425, CNS-1040207, CNS- 11 16826, and UT-ORNL Science Alliance JDRD Award. NR 13 TC 3 Z9 4 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2373-6836 BN 978-1-4673-0911-0; 978-1-4673-0910-3 J9 INT CONF SMART GRID PY 2012 BP 300 EP 305 PG 6 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems SC Computer Science GA BFP17 UT WOS:000320854200051 ER PT S AU Dvijotham, K Backhaus, S Chertkov, M AF Dvijotham, Krishnamurthy Backhaus, Scott Chertkov, Michael GP IEEE TI Distributed Control of Generation in a Transmission Grid with a High Penetration of Renewables SO 2012 IEEE THIRD INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM) SE International Conference on Smart Grid Communications LA English DT Proceedings Paper CT IEEE 3rd International Conference on Smart Grid Communications (SmartGridComm) CY NOV 05-08, 2012 CL Natl Cheng Kung Univ (NCKU), Tainan, TAIWAN SP IEEE, Dept Engn Sci, Dept Elect Engn, Ctr Ind Elite Training & Convent Management, Minist Educ, Natl Sci Council, Natl Appl Res Labs, IEEE Commun Soc, Tainan City Govt HO Natl Cheng Kung Univ (NCKU) AB Deviations of grid frequency from the nominal frequency are an indicator of the global imbalance between generation and load. Two types of control, a distributed proportional control and a centralized integral control, are currently used to keep frequency deviations small. Although generation-load imbalance can be very localized, both controls primarily rely on frequency deviation as their input. The time scales of control require the outputs of the centralized integral control to be communicated to distant generators every few seconds. We reconsider this control/communication architecture and suggest a hybrid approach that utilizes parameterized feedback policies that can be implemented in a fully distributed manner because the inputs to these policies are local observables at each generator. Using an ensemble of forecasts of load and time-intermittent generation representative of possible future scenarios, we perform a centralized off-line stochastic optimization to select the generator-specific feedback parameters. These parameters need only be communicated to generators once per control period (60 minutes in our simulations). We show that inclusion of local power flows as feedback inputs is crucial and reduces frequency deviations by a factor of ten. We demonstrate our control on a detailed transmission model of the Bonneville Power Administration (BPA). Our findings suggest that a smart automatic and distributed control, relying on advanced off-line and system-wide computations communicated to controlled generators infrequently, may be a viable control and communication architecture solution. This architecture is suitable for a future situation when generation-load imbalances are expected to grow because of increased penetration of time-intermittent generation. C1 [Dvijotham, Krishnamurthy] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA. [Backhaus, Scott] Los Alamos Natl Lab, MPA Div, Los Alamos, NM 87545 USA. [Chertkov, Michael] Los Alamos Natl Lab, Theory Div, Los Alamos, NM 87545 USA. [Chertkov, Michael] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA. RP Dvijotham, K (reprint author), Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA. EM dvij@cs.washington.edu; backhaus@lanl.gov; chertkov@lanl.gov RI Chertkov, Michael/O-8828-2015 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; NMC via NSF - Power Grid Spectroscopy [ECCS-1128325] FX The work at LANL was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. SB and MC acknowledge partial support of NMC via NSF collaborative research grant ECCS-1128325 on Power Grid Spectroscopy. NR 8 TC 2 Z9 2 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2373-6836 BN 978-1-4673-0911-0; 978-1-4673-0910-3 J9 INT CONF SMART GRID PY 2012 BP 635 EP 640 PG 6 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems SC Computer Science GA BFP17 UT WOS:000320854200108 ER PT S AU Gomez, V Chertkov, M Backhaus, S Kappen, HJ AF Gomez, Vicenc Chertkov, Michael Backhaus, Scott Kappen, Hilbert J. GP IEEE TI Learning Price-Elasticity of Smart Consumers in Power Distribution Systems SO 2012 IEEE THIRD INTERNATIONAL CONFERENCE ON SMART GRID COMMUNICATIONS (SMARTGRIDCOMM) SE International Conference on Smart Grid Communications LA English DT Proceedings Paper CT IEEE 3rd International Conference on Smart Grid Communications (SmartGridComm) CY NOV 05-08, 2012 CL Natl Cheng Kung Univ (NCKU), Tainan, TAIWAN SP IEEE, Dept Engn Sci, Dept Elect Engn, Ctr Ind Elite Training & Convent Management, Minist Educ, Natl Sci Council, Natl Appl Res Labs, IEEE Commun Soc, Tainan City Govt HO Natl Cheng Kung Univ (NCKU) ID VARIABLE SELECTION; REGRESSION; LASSO AB Demand Response is an emerging technology which will transform the power grid of tomorrow. It is revolutionary, not only because it will enable peak load shaving and will add resources to manage large distribution systems, but mainly because it will tap into an almost unexplored and extremely powerful pool of resources comprised of many small individual consumers on distribution grids. However, to utilize these resources effectively, the methods used to engage these resources must yield accurate and reliable control. A diversity of methods have been proposed to engage these new resources. As opposed to direct load control, many methods rely on consumers and/or loads responding to exogenous signals, typically in the form of energy pricing, originating from the utility or system operator. Here, we propose an open loop communication-lite method for estimating the price elasticity of many customers comprising a distribution system. We utilize a sparse linear regression method that relies on operator-controlled, inhomogeneous minor price variations, which will be fair to all the consumers. Our numerical experiments show that reliable estimation of individual and thus aggregated instantaneous elasticities is possible. We describe the limits of the reliable reconstruction as functions of the three key parameters of the system: (i) ratio of the number of communication slots (time units) per number of engaged consumers; (ii) level of sparsity (in consumer response); and (iii) signal-to-noise ratio. C1 [Gomez, Vicenc; Kappen, Hilbert J.] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, NL-6525 ED Nijmegen, Netherlands. [Chertkov, Michael] LANL, Theory Div, Los Alamos, NM 87545 USA. [Chertkov, Michael] LANL, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Backhaus, Scott] LANL, MPA Div, Los Alamos, NM 87545 USA. RP Gomez, V (reprint author), Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, NL-6525 ED Nijmegen, Netherlands. RI Chertkov, Michael/O-8828-2015; Gomez, Vicenc/D-1984-2009 OI Gomez, Vicenc/0000-0001-5146-7645 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX The work at LANL was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. NR 20 TC 2 Z9 2 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2373-6836 BN 978-1-4673-0911-0; 978-1-4673-0910-3 J9 INT CONF SMART GRID PY 2012 BP 647 EP 652 PG 6 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems SC Computer Science GA BFP17 UT WOS:000320854200110 ER PT S AU Jordanova, VK AF Jordanova, Vania K. BE Summers, D Mann, IR Baker, DN Schulz, M TI The Role of the Earth's Ring Current in Radiation Belt Dynamics SO DYNAMICS OF THE EARTH'S RADIATION BELTS AND INNER MAGNETOSPHERE SE Geophysical Monograph Book Series LA English DT Proceedings Paper CT AGU Chapman Conference Dynamics of the Earth's Radiation Belts and Inner Magnetosphere CY JUL 17-22, 2011 CL St Johns, CANADA ID ION-CYCLOTRON WAVES; CORONAL MASS EJECTIONS; PITCH-ANGLE SCATTERING; STORM MAIN PHASE; GEOMAGNETIC STORMS; INNER MAGNETOSPHERE; MAGNETIC STORM; ELECTRONS; MODEL; ACCELERATION AB The dynamical coupling of the ring current and the radiation belt populations is investigated during geomagnetic storms, employing recent ring current modeling studies that include time-dependent transport in realistic nondipolar and self-consistently calculated magnetic fields. We present results from a ring current-atmosphere interactions model (RAM) that solves the kinetic equation for H+, O+, and He+ ions and electrons and is two-way coupled with a 3-D equilibrium code (SCB) that calculates self-consistently the magnetic field in force balance with the anisotropic ring current plasma pressure. The RAM-SCB boundary conditions are specified by a plasma sheet source population at geosynchronous orbit that varies both in space and time. It is demonstrated that the storm time ring current development affects radiation belt dynamics in three significant ways: (1) it depresses the background magnetic field on the nightside, which affects the subsequent transport of radiation belt electrons, (2) its electron component represents a highly variable, asymmetric, low-energy seed population of the radiation belts, and (3) the unstable ring current ion and electron populations generate electromagnetic ion cyclotron, magnetosonic, and chorus waves (with different intensities and spatial distributions) that scatter radiation belt particles. Therefore, to understand radiation belt dynamics, we need to consider the coupling in the inner magnetosphere across broad spatial, temporal, and energy scales. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Jordanova, VK (reprint author), Los Alamos Natl Lab, POB 1663,MS D466, Los Alamos, NM 87545 USA. EM vania@lanl.gov OI Jordanova, Vania/0000-0003-0475-8743 NR 67 TC 7 Z9 7 U1 0 U2 3 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0065-8448 BN 978-0-87590-489-4 J9 GEOPHYS MONOGR SER PY 2012 VL 199 BP 303 EP 313 DI 10.1029/2012GM001330 PG 11 WC Astronomy & Astrophysics; Geochemistry & Geophysics; Geosciences, Multidisciplinary SC Astronomy & Astrophysics; Geochemistry & Geophysics; Geology GA BFZ10 UT WOS:000321935300024 ER PT S AU Carlson, TJ AF Carlson, Thomas J. BE Popper, AN Hawkins, A TI Barotrauma in Fish and Barotrauma Metrics SO EFFECTS OF NOISE ON AQUATIC LIFE SE Advances in Experimental Medicine and Biology LA English DT Article C1 Pacific NW Natl Lab, Richland, WA 99352 USA. RP Carlson, TJ (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Thomas.Carlson@pnl.gov NR 20 TC 2 Z9 2 U1 0 U2 4 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 0065-2598 BN 978-1-4419-7310-8 J9 ADV EXP MED BIOL JI Adv.Exp.Med.Biol. PY 2012 VL 730 BP 229 EP 233 DI 10.1007/978-1-4419-7311-5_51 PG 5 WC Biology; Medicine, Research & Experimental SC Life Sciences & Biomedicine - Other Topics; Research & Experimental Medicine GA BFV95 UT WOS:000321592700051 PM 22278488 ER PT S AU Halvorsen, MB Casper, BM Carlson, TJ Woodley, CM Popper, AN AF Halvorsen, Michele B. Casper, Brandon M. Carlson, Thomas J. Woodley, Christa M. Popper, Arthur N. BE Popper, AN Hawkins, A TI Assessment of Barotrauma Injury and Cumulative Sound Exposure Level in Salmon After Exposure to Impulsive Sound SO EFFECTS OF NOISE ON AQUATIC LIFE SE Advances in Experimental Medicine and Biology LA English DT Article C1 [Halvorsen, Michele B.; Casper, Brandon M.; Popper, Arthur N.] Univ Maryland, Dept Biol, College Pk, MD 20742 USA. [Carlson, Thomas J.] Pacific NW Natl Lab, Portland, OR 97204 USA. [Woodley, Christa M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Halvorsen, MB (reprint author), Univ Maryland, Dept Biol, College Pk, MD 20742 USA. EM mb_halvorsen@yahoo.com NR 3 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 0065-2598 BN 978-1-4419-7310-8 J9 ADV EXP MED BIOL JI Adv.Exp.Med.Biol. PY 2012 VL 730 BP 235 EP 237 DI 10.1007/978-1-4419-7311-5_52 PG 3 WC Biology; Medicine, Research & Experimental SC Life Sciences & Biomedicine - Other Topics; Research & Experimental Medicine GA BFV95 UT WOS:000321592700052 PM 22278489 ER PT S AU Carlson, TJ de Jong, C Dekeling, RPA AF Carlson, Thomas J. de Jong, Christ Dekeling, Rene P. A. BE Popper, AN Hawkins, A TI Workshop One: Risk Analysis SO EFFECTS OF NOISE ON AQUATIC LIFE SE Advances in Experimental Medicine and Biology LA English DT Article C1 [Carlson, Thomas J.] Pacific NW Natl Lab, Portland, OR 97204 USA. [de Jong, Christ] TNO Sci & Ind, MON Acoust, NL-2600 AD Delft, Netherlands. [Dekeling, Rene P. A.] DG Water, NL-2500 EX The Hague, Netherlands. RP Carlson, TJ (reprint author), Pacific NW Natl Lab, Portland, OR 97204 USA. EM Thomas.Carlson@pnl.gov; christ.dejong@tno.nl; rene.dekeling@minvenw.nl NR 0 TC 0 Z9 0 U1 0 U2 0 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 0065-2598 BN 978-1-4419-7310-8 J9 ADV EXP MED BIOL JI Adv.Exp.Med.Biol. PY 2012 VL 730 BP 657 EP 659 DI 10.1007/978-1-4419-7311-5_149 PG 3 WC Biology; Medicine, Research & Experimental SC Life Sciences & Biomedicine - Other Topics; Research & Experimental Medicine GA BFV95 UT WOS:000321592700149 PM 22278586 ER PT B AU Casey, S Bianchi, M Roberts, D Krarti, M AF Casey, Sean Bianchi, Marcus Roberts, David Krarti, Moncef GP ASME TI A METHODOLOGY TO QUANTIFY RESIDENTIAL ENERGY-EFFICIENCY IN A HEATING-DOMINATED CLIMATE SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB A methodology is presented that uses readily available information such as energy consumption data, limited building characteristics, and local daily temperature data to identify energy-inefficient homes in a heating-dominated climate. Specifically, this methodology is applied to 327 owner-occupied, single-family homes in Boulder, Colorado, which are compared to simulated prototype homes. A home's energy-efficiency is characterized by its construction properties, such as insulation R-values, infiltration rates, and mechanical equipment efficiencies. Previous research indicates a close relationship between these properties and inverse modeling parameters, such as the heating slope (HS) values from variable-base degree-day (VBDD) models. The methodology compares the HS values from VBDD models of monthly natural gas consumption data to simulated HS values of reference homes. The difference, Delta HS, is the primary criterion for quantifying a home's energy-efficiency and energy retrofit potential. To validate the results of the methodology, the results from a detailed energy assessment of a field-test home are used. Using the natural gas consumption noted in the utility data and historical weather data for the dates of bill, a VBDD model is created and the HSfield-test is calculated. HSreference of a 2009-IECC reference home of identical size is calculated and the difference, Delta HS, is calculated. Using UA-values and mechanical efficiencies from the energy assessment report, the theoretical HS values are calculated for both the assessed home and the reference home. The difference, Delta HStheoretical, is calculated. Overall, a 24% difference is found between the Delta HS and Delta HStheoretical. While the accuracy can be improved, the implication is that the energy-efficiency of homes can be inferred from inverse modeling of utility data under a specific set of conditions. C1 [Casey, Sean; Bianchi, Marcus; Roberts, David] Natl Renewable Energy Lab, Elect Resources & Bldg Syst Integrat Ctr, Golden, CO 80401 USA. RP Casey, S (reprint author), Natl Renewable Energy Lab, Elect Resources & Bldg Syst Integrat Ctr, 1617 Cole Blvd, Golden, CO 80401 USA. NR 9 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 175 EP 180 PG 6 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700024 ER PT B AU Siegel, NP Bradshaw, RW Cordaro, JB Kruizenga, AM AF Siegel, Nathan P. Bradshaw, Robert W. Cordaro, Joseph B. Kruizenga, Alan M. GP ASME TI THERMOPHYSICAL PROPERTY MEASUREMENT OF NITRATE SALT HEAT TRANSFER FLUIDS SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB Nitrate salts have been used for decades in the concentrating solar power industry as heat transfer fluids and thermal storage media. For most of this time these inorganic fluids have been restricted to use in central receiver platforms due to the useful working temperature range of the most widely researched formulation, a near eutectic mixture of sodium and potassium nitrate, which melts at 220 degrees C and is stable in air to nearly 580 degrees C. Recent research efforts have led to the development of nitrate salt mixtures that melt at lower temperatures and are suitable for use in parabolic trough systems. These mixtures include three or more components and generally have melting points in the range of 100 degrees C, with stability in air up to 500 degrees C. The design of parabolic trough systems that utilize molten salt heat transfer fluids is complicated by the fact that the properties of these fluids are considerably different from the organic heat transfer fluids that they may replace. In this paper we present measured thermophysical property data for several commercial and non-commercial molten salt mixtures that can be used in the system level design of parabolic trough and central receiver power plants. The data presented include heat capacity, density, thermal conductivity, viscosity, all as a function of temperature, along with melting point and thermal stability limits Some properties, such as density, can be predicted by simple mixing rules. The dependence of viscosity was strongly influenced by the composition of the molten salts and, particularly, the proportion of calcium nitrate. C1 [Siegel, Nathan P.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Siegel, NP (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM npsiege@sandia.gov NR 19 TC 1 Z9 1 U1 0 U2 16 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 439 EP 446 PG 8 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700055 ER PT B AU Ma, ZW Glatzmaier, GC Kutscher, CF AF Ma, Zhiwen Glatzmaier, Greg C. Kutscher, Charles F. GP ASME TI Thermal Energy Storage and Its Potential Applications in Solar Thermal Power Plants and Electricity Storage SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB With the rapid growth of renewable power generation, economically storing large quantities of solar- and wind-generated electricity may become as important as renewable power itself. The combination of renewable power generation and energy storage can overcome the variability of renewable power generation alone and create the opportunity for renewable generation to provide base-load electricity. For peak power usage, the integration of renewable power and storage of excess electricity has several significant and positive impacts: expanding the renewable energy portion of total electricity generation, improving the peak-load response, and coordinating the electricity supply and demand over the grid. Several energy storage approaches exist, with mechanical, chemical, and electrical methods either in use now or being developed. Comparing their efficiencies as well as their economic uses for different scales and applications helps determine the right technology for the right purpose. This paper will study the possibility of using thermal energy storage as a means for electricity storage, and compare it to other energy storage methods including batteries, flywheels, compressed air, and pumped hydropower. C1 [Ma, Zhiwen; Glatzmaier, Greg C.; Kutscher, Charles F.] Natl Renewable Energy Lab, Golden, CO USA. RP Ma, ZW (reprint author), Natl Renewable Energy Lab, Golden, CO USA. EM zhiwen.ma@nrel.gov NR 9 TC 0 Z9 0 U1 2 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 447 EP 456 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700056 ER PT B AU Yellowhair, J Andraka, CE AF Yellowhair, Julius Andraka, Charles E. GP ASME TI PROJECTION OF FLAT-PLANE FLUXMAP IMAGES ONTO NON-FLAT RECEIVER SURFACES SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB When designing or evaluating a dish concentrator system, it is desirable to determine the incident flux profile on the receiver surface, regardless of the absorber surface geometry. During the design process, analytical tools are used to predict flux profiles. During product evaluation, a flux-mapper (beam characterization system) can be used to measure the flux profile on a flat target surface. Radiosity concerns typically limit flux mapping measurements of dish-engine systems to a flat plate target. We propose and demonstrate an analytical method to project such a measured flat-target flux profile onto a non-flat receiver surface. We analytically estimate the angular content of the flux profile, and use this estimate combined with the measured flat-plate flux profile to project an estimate of the flux pattern onto another receiver surface. In this paper, we analytically demonstrate the technique. We first model a dish concentrator using CIRCE2. We then develop an analytic flux-map, in CIRCE2, on a flat target, simulating a flux-mapper output. Next, we use our new software tool and the CIRCE2 angular flux binning to project this flux pattern onto a non-flat receiver surface. Finally, we run a CIRCE2 model of the same dish with the non-flat target geometry, and compare this CIRCE2 output to the projected data. We also demonstrate the technique using a measured flux-map from a dish system in the field. C1 [Yellowhair, Julius; Andraka, Charles E.] Sandia Natl Labs, Natl Solar Thermal Test Facil, Albuquerque, NM 87185 USA. RP Yellowhair, J (reprint author), Sandia Natl Labs, Natl Solar Thermal Test Facil, POB 5800,MS 1127, Albuquerque, NM 87185 USA. NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 485 EP 494 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700060 ER PT B AU Iverson, BD Cordaro, JG Kruizenga, AM AF Iverson, Brian D. Cordaro, Joseph G. Kruizenga, Alan M. GP ASME TI THERMAL PROPERTY TESTING OF NITRATE THERMAL STORAGE SALTS IN THE SOLID-PHASE SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB Implementation of molten salt compounds as the heat transfer fluid and energy storage medium provides specific benefits to energy collection and conversion. Nitrate salts have been identified as a strong candidate for energy transfer and storage and have been demonstrated for use in these applications over time. As nitrate salts have solidification temperatures above ambient, concern for recovery from salt freezing events has instigated efforts to understand and predict this behavior. Accurate information of salt property behavior in the solid-phase is necessary for understanding recovery from a freeze event as well as for phase change thermal energy storage applications. Thermal properties for three representative salts (that span the range of melting temperatures from approximately 90 - 221 degrees C), have been obtained. These properties include specific heat, coefficient of thermal expansion, and thermal conductivity. Specific heat and thermal conductivity were measured using differential scanning calorimetry. C1 [Iverson, Brian D.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Iverson, BD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 12 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 495 EP 502 PG 8 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700061 ER PT B AU Glenn, KW Ho, CK Kolb, GJ AF Glenn, Kyle W. Ho, Clifford K. Kolb, Gregory J. GP ASME TI PARAMETRIC ANALYSIS OF PARASITIC PRESSURE DROP AND HEAT LOSSES FOR A PARABOLIC TROUGH WITH CONSIDERATIONS OF VARYING APERTURE SIZES AND RECEIVER SIZES SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB The collector aperture and diameter of the receiver of a parabolic trough were studied to investigate the relative impacts of parasitic pressure drop, heat losses, and heat flux intercepted by the receiver tube. The configuration of an LS-2 parabolic trough was used as the baseline, and the size of the HCE and collector aperture were parametrically varied using values between the baseline and twice their original size. A Mat lab computer model was created to determine the flux on the receiver, heat loss from the HCE, and pressure drop within the heat transfer fluid (HTF) at each combination of aperture size and receiver diameter. Flux on the receiver is calculated for each geometry assuming a Gaussian flux distribution. Based on pressure data from SEGS VII, the standard Darcy-Weisbach equation for the pressure drop was modified to include the contribution that connective joints of varying quantities and types have on the pressure drop within the HTF. The model employs the Sandia thermal resistive network and iteratively solves for the temperatures accounting for various heat transfer modes that contribute to the heat lost by the HCE. The Mat lab model expresses pressure drop and heat losses in terms of electric power. It does this by calculating both the power required to pump the HTF for varying pressure drops and the power that could have been produced if heat was not lost to the environment. The Mat lab model displays the results in the form of surface plots that represent the values of heat loss, efficiency, pumping power, etc. as a function of aperture size and receiver diameter. The combined effects of pressure drop, heat loss, and heat flux intercepted by the receiver tube were evaluated, and results show that configurations with receiver diameters ranging from 85-90 millimeters and large (up to 10 meter) aperture sizes minimize the overall power consumption and maximize the efficiency of a single loop. Structural effects, wind and gravity loads, and factors associated with the balance of plant were not considered. C1 [Glenn, Kyle W.; Ho, Clifford K.; Kolb, Gregory J.] Sandia Natl Labs, Solar Technol Dept, Albuquerque, NM 87185 USA. RP Glenn, KW (reprint author), Sandia Natl Labs, Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. NR 8 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 537 EP 546 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700066 ER PT B AU Moya, AC Ho, CK AF Moya, Adam C. Ho, Clifford K. GP ASME TI Modeling and Validation of Heliostat Deformation Due to Static Loading SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB Accurate and reliable models are necessary to predict the performance and efficiencies of concentrating solar power plant components and systems such as heliostats and central receiver systems. Heliostat performance is impacted from effects such as wind and gravity, and understanding the impact of these loads on the optical performance can yield heliostat designs that are potentially cheaper, while maintaining required structural stability. Finite element models of heliostats at the National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories in Albuquerque, NM, were developed to simulate displacements under different loading scenarios. Solidworks was used to develop the three-dimensional model of the NSTTF heliostat, and Solidworks Simulation was used to perform the finite element analysis with simulated loads along different points of the heliostat. Static displacement tests were performed on the NSTTF heliostat in order to validate these FEA models. The static test results provide us with a data set in which to properly calibrate the FEA model to better represent the NSTTF heliostat for future simulations of optical performance with impacts of wind and gravity sag. In addition to a single model validation, this real world test provides a method to validate and understand the structural stability of a heliostat under static loads. C1 [Moya, Adam C.; Ho, Clifford K.] Sandia Natl Labs, Concentrating Solar Technol Dept, Albuquerque, NM 87185 USA. RP Moya, AC (reprint author), Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. EM acmoya@sandia.gov NR 11 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 547 EP 555 PG 9 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700067 ER PT B AU Griffith, DT Moya, AC Ho, CK Hunter, PS AF Griffith, D. Todd Moya, Adam C. Ho, Clifford K. Hunter, Patrick S. GP ASME TI STRUCTURAL DYNAMICS TESTING AND ANALYSIS FOR DESIGN EVALUATION AND MONITORING OF HELIOSTATS SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB Heliostat vibrations can degrade optical pointing accuracy while fatiguing the structural components. This paper reports the use of structural dynamic measurements for design evaluation and monitoring of heliostat vibrations. A heliostat located at the National Solar Thermal Testing Facility (NSTTF) at Sandia Labs in Albuquerque, New Mexico, has been instrumented to measure its modes of vibration, strain and displacements under wind loading. The information gained from these tests will be used to evaluate and improve structural models that predict the motions/deformations of the heliostat due to gravitational and dynamic wind loadings. These deformations can cause optical errors and motions that degrade the performance of the heliostat. The main contributions of this work include: (1) demonstration of the role of structural dynamic tests (also known as modal tests) to provide a characterization of the important dynamics of the heliostat structure as they relate to durability and optical accuracy, (2) the use of structural dynamic tests to provide data to evaluate and improve the accuracy of computer-based design models, and (3) the selection of sensors and data-processing techniques that are appropriate for long-term monitoring of heliostat motions. C1 [Griffith, D. Todd; Hunter, Patrick S.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Griffith, DT (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. EM dgriffi@sandia.gov RI Griffith, Daniel/C-2807-2014 OI Griffith, Daniel/0000-0002-7767-3700 NR 6 TC 0 Z9 0 U1 1 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 567 EP 576 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700069 ER PT B AU Christian, JM Ho, CK AF Christian, Joshua M. Ho, Clifford K. GP ASME TI FINITE ELEMENT MODELING AND RAY TRACING OF PARABOLIC TROUGH COLLECTORS FOR EVALUATION OF OPTICAL INTERCEPT FACTORS WITH GRAVITY LOADING SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB Predicting the structural and optical performance of concentrating solar power (CSP) collectors is critical to the design and performance of CSP systems. This paper presents a performance analysis which utilizes finite-element models and ray-tracing of a parabolic trough collector. The finite-element models were used to determine the impact of gravity loads on displacements and rotations of the facet surfaces, resulting in slope error distributions across the reflective surfaces. The geometry of the LUZ LS-2 parabolic trough collector was modeled in Solid Works, and the effects of gravity on the reflective surfaces are analyzed using Solid Works Simulation. The ideal mirror shape, along with the 90 degrees and 0 degrees positions (with gravity deformation) were evaluated for the LS-2. The ray-tracing programs APEX and ASAP are used to assess the impact of gravity deformations on optical performance. In the first part of the analysis, a comprehensive study is performed for the parabolic trough to evaluate a random slope error threshold (i.e., induced by manufacturing errors and assembly processes) above which additional slope errors caused by gravity sag decrease the intercept factor of the system. The optical performance of the deformed shape of the collector (in both positions) is analyzed with additional induced slope errors ranging from zero up to 1 degrees (17.44 mrad). The intercept factor for different solar incident angles found from ray-tracing is then compared to empirical data to demonstrate if the simulations provide consistent answers with experimental data. C1 [Christian, Joshua M.; Ho, Clifford K.] Sandia Natl Labs, Solar Technol Dept, Albuquerque, NM 87185 USA. RP Christian, JM (reprint author), Sandia Natl Labs, Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. EM ckho@sandia.gov NR 8 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 577 EP 585 PG 9 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700070 ER PT B AU Ambrosini, A Lambert, TN Bencomo, M Hall, A vanEvery, K Siegel, NP Ho, CK AF Ambrosini, Andrea Lambert, Timothy N. Bencomo, Marlene Hall, Aaron vanEvery, Kent Siegel, Nathan P. Ho, Clifford K. GP ASME TI IMPROVED HIGH TEMPERATURE SOLAR ABSORBERS FOR USE IN CONCENTRATING SOLAR POWER CENTRAL RECEIVER APPLICATIONS SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div ID OPTICAL-PROPERTIES; COATINGS; SPINELS AB Concentrating solar power (CSP) systems use solar absorbers to convert the heat from sunlight to electric power. Increased operating temperatures are necessary to lower the cost of solar-generated electricity by improving efficiencies and reducing thermal energy storage costs. Durable new materials are needed to cope with operating temperatures > 600 degrees C. The current coating technology (Pyromark High Temperature paint) has a solar absorptance in excess of 0.95 but a thermal emittance greater than 0.8, which results in large thermal losses at high temperatures. In addition, because solar receivers operate in air, these coatings have long term stability issues that add to the operating costs of CSP facilities. Ideal absorbers must have high solar absorptance (>0.95) and low thermal emittance (<0.3 at receiver surface operating temperatures), be stable in air, and be low-cost and readily manufacturable. Recent efforts at Sandia National Laboratories have begun to address the issue of more efficient solar selective coatings for tower applications. This paper will present an overview of these efforts which address the development of new coatings on several fronts. C1 [Ambrosini, Andrea; Lambert, Timothy N.; Bencomo, Marlene; Hall, Aaron; vanEvery, Kent; Siegel, Nathan P.; Ho, Clifford K.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ambrosini, A (reprint author), Sandia Natl Labs, POB 5800,MS 0734, Albuquerque, NM 87185 USA. NR 10 TC 1 Z9 1 U1 1 U2 8 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 587 EP 594 PG 8 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700071 ER PT B AU Wagner, MJ Mehos, MS Kearney, DW McMahan, AC AF Wagner, Michael J. Mehos, Mark S. Kearney, David W. McMahan, Andrew C. GP ASME TI MODELING OF A PARABOLIC TROUGH SOLAR FIELD FOR ACCEPTANCE TESTING: A CASE STUDY SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB As deployment of parabolic trough concentrating solar power (CSP) systems ramps up, the need for reliable and robust performance acceptance test guidelines for the solar field is also amplified. Project owners and/or EPC contractors often require extensive solar field performance testing as part of the plant commissioning process in order to ensure that actual solar field performance satisfies both technical specifications and performance guaranties between the involved parties. Performance test code work is currently underway at the National Renewable Energy Laboratory (NREL) in collaboration with the SolarPACES Task-I activity, and within the ASME PTC-52 committee. One important aspect of acceptance testing is the selection of a robust technology performance model. NREL1 has developed a detailed parabolic trough performance model [1] within the SAM software tool [2]. This model is capable of predicting solar field, sub-system, and component performance. It has further been modified for this work to support calculation at subhourly time steps. This paper presents the methodology and results of a case study comparing actual performance data for a parabolic trough solar field to the predicted results using the modified SAM trough model. Due to data limitations, the methodology is applied to a single collector loop, though it applies to larger subfields and entire solar fields. Special consideration is provided for the model formulation, improvements to the model formulation based on comparison with the collected data, and uncertainty associated with the measured data. Additionally, this paper identifies modeling considerations that are of particular importance in the solar field acceptance testing process and uses the model to provide preliminary recommendations regarding acceptable steady-state testing conditions at the single-loop level. C1 [Wagner, Michael J.; Mehos, Mark S.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Wagner, MJ (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM michael.wagner@nrel.gov NR 7 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 595 EP 603 PG 9 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700072 ER PT B AU Gill, DD Siegel, NP Bradshaw, RW Ho, CK AF Gill, David D. Siegel, Nathan P. Bradshaw, Robert W. Ho, Clifford K. GP ASME TI DESIGN, FABRICATION AND TESTING OF AN APPARATUS FOR MATERIAL COMPATIBILITY TESTING IN NITRATE SALTS AT TEMPERATURES UP TO 700 degrees C SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB Thermal energy storage is one of the key differentiators between Concentrating Solar Power (CSP) and other renewable energy technologies. Molten salt is an effective and affordable method of storing thermal energy. Current salt storage systems charge at temperatures between 390 degrees C and 585 degrees C (oil filled parabolic trough systems to molten salt towers). It is highly desirable to increase the operating temperature of salt storage systems in order to increase the efficiency of the power cycle and to permit the use of alternative, high-temperature cycles. However, higher salt temperatures cause increased reactivity and thus increased corrosion rates in many materials. In order to utilize molten salt at higher temperature, it is necessary to test and understand these corrosion interactions at elevated temperature. A corrosion test system has been designed and built for evaluating molten salt/material interactions to 700 degrees C. The primary components of this system are several salt containment vessels that are constructed of 6 '' dia. x 24 '' long stainless steel, aluminum diffusion treated pipes with flat plate welded to one end and a flanged lid on the other. The vessels are designed to operate with a charge of 10 kg of molten salt and accommodate a "sample tree" on which corrosion test coupons may be suspended. The salt vessels are heated and insulated on the bottom half, roughly to the salt fill level, and cooled on the top half to protect the flange gasket and feedthrough ports. The samples trees have a stainless plate that reduces radiative heat transfer from the molten salt to the lid. Finite element analysis was perfoimed to determine the pipe length and heating and cooling requirements to maintain molten salt at 700 degrees C while limiting the lid gasket to 300 degrees C or less. The vessels are designed to have an oxygen atmosphere in the ullage region to mitigate nitrate decomposition. Oxygen systems for operation at 700 degrees C require careful design including the sizing, routing, cleanliness, and material selection of components in order to reduce risk of fire. Additionally, the system is designed to run at 1-2 psig which requires specialized low pressure / high temperature components. In this paper we present the design of the molten salt corrosion test system including details related to the containment vessels, oxygen handling system, and control software along with a discussion of the safety considerations necessary for these high temperature, high oxygen partial pressure tests. C1 [Gill, David D.; Siegel, Nathan P.; Ho, Clifford K.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Gill, DD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 7 TC 0 Z9 0 U1 2 U2 4 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 605 EP 610 PG 6 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700073 ER PT B AU Turchi, CS Langle, N Bedilion, R Libby, C AF Turchi, Craig S. Langle, Nicholas Bedilion, Robin Libby, Cara GP ASME TI SOLAR-AUGMENT POTENTIAL OF US FOSSIL-FIRED POWER PLANTS SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB Concentrating Solar Power (CSP) systems utilize solar thermal energy for the generation of electric power. This attribute makes it relatively easy to integrate CSP systems with fossil-fired power plants. The "solar-augment" of fossil power plants offers a lower cost and lower risk alternative to stand-alone solar plant construction. This study ranked the potential to add solar thermal energy to coal-fired and natural gas combined cycle (NGCC) plants found throughout 16 states in the southeast and southwest United States. Each generating unit was ranked in six categories to create an overall score ranging from Excellent to Not Considered. Separate analysis was performed for parabolic trough and power tower technologies due to the difference in the steam temperatures that each can generate. The study found a potential for over 11 GWe of parabolic trough and over 21 GWe of power tower capacity. Power towers offer more capacity and higher quality integration due to the greater steam temperatures that can be achieved. The best sites were in the sunny southwest, but all states had at least one site that ranked Good for augmentation. Geographic depiction of the results can be accessed via NREL's Solar Power Prospector at http://maps.nrel.gov/ C1 [Turchi, Craig S.; Langle, Nicholas] Natl Renewable Energy Lab, Golden, CO USA. RP Turchi, CS (reprint author), Natl Renewable Energy Lab, Golden, CO USA. EM craig.turchi@nrel.gov; nicholas.langle@nrel.gov NR 8 TC 0 Z9 0 U1 4 U2 8 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 641 EP 651 PG 11 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700077 ER PT B AU Khalsa, SSS Christian, JM Kolb, GJ Roger, M Amsbeck, L Ho, CK Siegel, NP Moya, AC AF Khalsa, Siri Sahib S. Christian, Joshua M. Kolb, Gregory J. Roeger, Marc Amsbeck, Lars Ho, Clifford K. Siegel, Nathan P. Moya, Adam C. GP ASME TI CFD SIMULATION AND PERFORMANCE ANALYSIS OF ALTERNATIVE DESIGNS FOR HIGH-TEMPERATURE SOLID PARTICLE RECEIVERS SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB Direct-absorption solid particle receivers are theoretically capable of yielding temperatures in excess of 1000 degrees C, which enables higher efficiency power cycles and lower thermal storage costs. This paper presents rigorous CFD simulations of alternative solid particle receiver designs with recirculation to help identify optimal configurations that maximize the receiver thermal efficiency. The alternative receiver designs considered are a north-facing cavity receiver and a face-down surround-field cavity receiver. The CFD simulations model incident solar radiation from a heliostat field as a boundary condition on the model domain. The CFD simulations also couple convective flow with the thermal and discrete-phase (particle) solutions, which in turn affects absorption of incident solar radiation and thermal re-radiation within the receiver. The receivers are optimized to yield comparable particle temperatures at the outlets of 750-850 degrees C, heated from an injection temperature of 300 degrees C, and are compared on the basis of thermal efficiency. The CFD simulations yielded thermal efficiencies of the north-facing receiver at 72.3% (losses were 6.5% radiative and 20.9% convective) and the face-down receiver at 78.9% (losses were 11.4% radiative and 9.6% convective) at solar noon on March 22. Ongoing efforts are focused on reducing convective and radiative losses from both receiver configurations. C1 [Khalsa, Siri Sahib S.] Sandia Natl Labs, Sandia Staffing Alliance, Concentrating Solar Technol Dept, Albuquerque, NM 87185 USA. RP Khalsa, SSS (reprint author), Sandia Natl Labs, Sandia Staffing Alliance, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. NR 13 TC 1 Z9 1 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 687 EP 693 DI 10.1115/ES2011-54430 PG 7 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700082 ER PT B AU Andraka, CE Yellowhair, J Finch, N Carlson, J Francis, M Hunt, K Raffa, C Kulaga, T AF Andraka, Charles E. Yellowhair, Julius Finch, Nolan Carlson, Jeff Francis, Matt Hunt, Kirby Raffa, Carl Kulaga, Tom GP ASME TI AIMFAST: INITIAL DISH SYSTEM ALIGNMENTS RESULTS USING FRINGE REFLECTION METHODS SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB The proper alignment of facets on a dish engine system is critical to the performance of the system. Improper alignment can lead to poor performance and shortened life, through excessively high flux on the receiver surfaces, imbalanced power on multicylinder engines, and intercept losses at the aperture. Alignment approaches used in the past are time consuming field operations, typically taking 4-6 hours per dish with 40-80 facets on the dish. Production systems will need rapid, accurate alignment implemented in a fraction of an hour. In this paper, we present an AIMFAST characterization of a Stirling Energy Systems dish, before and after implementing an alignment using the AIMFAST software. The results of the alignment are correlated with fluxmapper measurements of the dish, and the improvement in the flux pattern projected to an engine receiver is calculated using Sandia's CIRCE 2 dish optical modeling tool. The alignment substantially reduced the peak fluxes on the flat fluxmapper targets as well as the projection onto the receiver. The fluxmap images correlate well with the CIRCE projections of measured facet normals. In addition, we implemented automated actuation of the facet during alignment, improving the response and accuracy of the system, resulting in total dish alignments with under 0.1 mrad RMS alignment error. We also implemented an adaptive alignment strategy that varied the alignment based on the AIMFAST-measured facet shape. C1 [Andraka, Charles E.; Yellowhair, Julius; Finch, Nolan; Carlson, Jeff] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Andraka, CE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 14 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 695 EP 704 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700083 ER PT B AU Finch, NS Andraka, CE AF Finch, Nolan S. Andraka, Charles E. GP ASME TI UNCERTAINTY ANALYSIS AND CHARACTERIZATION OF THE SOFAST MIRROR FACET CHARACTERIZATION SYSTEM SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB Sandia Optical Fringe Analysis Slope Tool (SOFAST) is a mirror facet characterization system based on fringe reflection technology that has been applied to dish and heliostat mirror facet development at Sandia National Laboratories and development partner sites. The tool provides a detailed map of mirror facet surface normals as compared to design and fitted surfaces. In addition, the surface fitting process provides insights into systematic facet slope characterization, such as focal lengths, tilts, and twist of the facet. In this paper, a preliminary analysis of the sensitivities of the facet characterization outputs to variations of SOFAST input parameters is presented. The results of the sensitivity analysis provided the basis for a linear uncertainty analysis which is also included here. Input parameters included hardware parameters and SOFAST setup variables. Output parameters included the fitted shape parameters (focal lengths and twist) and the residuals (typically called slope error). The study utilized empirical propagation of input parameter errors through facet characterization calculations to the output parameters, based on the measurement of an Advanced Dish Development System (ADDS) structural gore point-focus facet. Thus, this study is limited to the characterization of sensitivities of the SOFAST embodiment intended for dish facet characterization. With reasonably careful setup, SOFAST is demonstrated to provide facet focal length characterization within 0.5% of actual. Facet twist is accurate within +/- 0.03 mrad/m. The local slope deviation measurement is accurate within +/- 0.05 mrad, while the global slope residual is accurate within +/- 0.005 mrad. All uncertainties are quoted with 95% confidence. C1 [Finch, Nolan S.; Andraka, Charles E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Finch, NS (reprint author), Sandia Natl Labs, POB 5800,MS 1127, Albuquerque, NM 87185 USA. EM nsfinch@sandia.gov NR 13 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 713 EP 722 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700085 ER PT B AU Ho, CK Khalsa, SS AF Ho, Clifford K. Khalsa, Siri S. GP ASME TI A FLUX MAPPING METHOD FOR CENTRAL RECEIVER SYSTEMS SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div ID DISH AB A new method is described to determine irradiance distributions on receivers and targets from heliostats or other collectors for concentrating solar power applications. The method uses a CCD camera, and, unlike previous beam characterization systems, it does not require additional sensors, calorimeters, or flux gauges on the receiver or target. In addition, spillage can exist (the beam does not need to be contained within the target). The only additional information required besides the digital images recorded from the CCD camera is the direct normal irradiance and the reflectivity of the receiver. Methods are described to calculate either an average reflectivity or a reflectivity distribution for the receiver using the CCD camera. The novel feature of this new PHLUX method is the use of recorded images of the sun to scale both the magnitude of each pixel value and the subtended angle of each pixel. A test was performed to evaluate the PHLUX method using a heliostat beam on the central receiver tower at the National Solar Thermal Test Facility in Albuquerque, NM. Results showed that the PHLUX method was capable of producing an accurate flux map of the heliostat beam with a relative error in the peak flux of 2%. C1 [Ho, Clifford K.] Sandia Natl Labs, Concentrating Solar Technol Dept, Albuquerque, NM 87185 USA. RP Ho, CK (reprint author), Sandia Natl Labs, Concentrating Solar Technol Dept, POB 5800, Albuquerque, NM 87185 USA. EM ckho@sandia.qov NR 9 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 743 EP 751 PG 9 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700089 ER PT B AU Walker, A AF Walker, Andy GP ASME TI ESTIMATING RELIABILITY OF A SYSTEM OF ELECTRIC GENERATORS USING STOCHASTIC INTEGRATION OF RENEWABLE ENERGY TECHNOLOGIES (SIRET) IN THE RENEWABLE ENERGY OPTIMIZATION (REO) METHOD SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB The Renewable Energy Optimization (REO) screening method identifies the optimal combination of renewable energy technologies for a site subject to constraints imposed by the organization or by the physical limits of the site. The REO method calculates the life-cycle cost of a combination of renewable energy generators and then uses a solver to iterate until it finds the size of each generator that minimizes life-cycle cost. In 2007, NREL developed a method called "Stochastic Integration of Renewable Energy Technologies" (SIRET) [1,2,3,7] to account for the interactions between multiple generators serving a load. SIRET calculates the quantity of electricity bought from and sold to the utility within a time interval, which allows an accurate economic model when the retail rate and sell-back rate of electricity differ. These two energy quantities calculated by SIRET are used to calculate utility costs in the REO life-cycle cost calculation. When one or more emergency generators and/or the electric grid are included with renewables as generation resources in the analysis, the SIRET algorithm can also be used to estimate the reliability of the system, where reliability is defined as the fraction of time in which any combination of generation resources is sufficient to meet the load. The SIRET algorithm is capable of analyzing any number of generation resources, and currently includes photovoltaics (PV), wind, solar thermal electric, biomass gasification, anaerobic digestion, landfill gas, daylighting, and an arbitrary number of emergency generators as well as the electric grid. An example consisting of PV, wind, and an emergency generator is presented to illustrate the method. This method is based on very simple and heuristic methods, and thus should be regarded only as a relative indicator of reliability, rather than an accurate prediction, but agreement with hourly simulation is presented as one benchmark of the effectiveness of the method. C1 Natl Renewable Energy Lab, Golden, CO USA. RP Walker, A (reprint author), Natl Renewable Energy Lab, Golden, CO USA. NR 8 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 1425 EP 1431 PG 7 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700169 ER PT B AU Denholm, P AF Denholm, Paul GP ASME TI ENABLING TECHNOLOGIES FOR HIGH PENETRATION OF WIND AND SOLAR ENERGY SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB High penetration of variable wind and solar electricity generation will require modifications to the electric power system. This work examines the impacts of variable generation, including uncertainty, ramp rate, ramp range, and potentially excess generation. Time-series simulations were performed in the Texas (ERCOT) grid where different mixes of wind, solar photovoltaic and concentrating solar power provide up to 80% of the electric demand. Different enabling technologies were examined, including conventional generator flexibility, demand response, load shifting, and energy storage. A variety of combinations of these technologies enabled low levels of surplus or curtailed wind and solar generation depending on the desired penetration of renewable sources. At lower levels of penetration (up to about 30% on an energy basis) increasing flexible generation, combined with demand response may be sufficient to accommodate variability and uncertainty. Introduction of load-shifting through real-time pricing or other market mechanisms further increases the penetration of variable generation. The limited time coincidence of wind and solar generation presents increasing challenges as these sources provide greater than 50% of total demand. System flexibility must be increased to the point of virtually eliminating must-run baseload generators during periods of high wind and solar generation. Energy storage also becomes increasingly important as lower cost flexibility options are exhausted. The study examines three classes of energy storage - electricity storage, including batteries and pumped hydro, hybrid storage (compressed-air energy storage), and thermal energy storage. Ignoring long-distance transmission options, a combination of load shifting and storage equal to about 12 hours of average demand may keep renewable energy curtailment below 10% in the simulated system. C1 Natl Renewable Energy Lab, Golden, CO USA. RP Denholm, P (reprint author), Natl Renewable Energy Lab, Golden, CO USA. NR 8 TC 0 Z9 0 U1 0 U2 5 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 1451 EP 1458 PG 8 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700172 ER PT B AU Akyol, B Haack, J Tews, C Carpenter, B Kulkarni, A Craig, P AF Akyol, Bora Haack, Jereme Tews, Cody Carpenter, Brandon Kulkarni, Anand Craig, Philip GP ASME TI AN INTELLIGENT SENSOR FRAMEWORK FOR THE POWER GRID SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB The number of sensors connected to the electric power system is expected to grow by several orders of magnitude by 2020. However, the information networks which will transmit and analyze the resulting data are ill-equipped to handle the resulting volume with reliable real-time delivery. Without the ability to manage and use this data, deploying sensors such as phasor measurement units in the transmission system and smart meters in the distribution system will not result in the desired improvements in the power grid. The ability to exploit the massive data being generated by new sensors would allow for more efficient flow of power and increased survivability of the grid. Additionally, the power systems of today are not capable of managing two-way power flow to accommodate distributed generation capabilities due to concerns about system stability and lack of system flexibility. The research that we are performing creates a framework to add "intelligence" to the sensors and actuators being used today in the electric power system. Sensors that use our framework will be capable of sharing information through the various layers of the electric power system to enable two-way information flow to help facilitate integration of distributed resources. Several techniques are considered including use of peer-to-peer communication as well as distributed agents. Specifically, we will have software agents operating on systems with differing levels of computing power The agents will cooperate to bring computation closer to the data. The types of computation considered are control decisions, data analysis, and demand/response. When paired with distributed autonomous controllers, the sensors form the basis of an information system that supports deployment of both micro-grids and islanding. Our efforts in the area of developing the next generation information infrastructure for sensors in the power grid form the basis of a broader strategy that enables better integration of distributed generation, distribution automation systems and decentralized control (microgrids). C1 [Akyol, Bora; Haack, Jereme; Tews, Cody; Carpenter, Brandon; Kulkarni, Anand; Craig, Philip] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Akyol, B (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM bora@pnl.gov NR 14 TC 0 Z9 0 U1 1 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 1485 EP 1494 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700176 ER PT B AU Tuffner, F Singh, R AF Tuffner, Francis Singh, Ruchi GP ASME TI ANALYSIS OF DISTRIBUTION FEEDER LOSSES DUE TO ADDITION OF DISTRIBUTED PHOTOVOLTAIC GENERATORS SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB Distributed generators (DG) are small scale power supplying sources owned by customers or utilities and scattered throughout the power system distribution network. Distributed generation can be both renewable and non-renewable. Addition of distributed generation is primarily to increase feeder capacity and to provide peak load reduction. However, this addition comes with several impacts on the distribution feeder. Several studies have shown that addition of DG leads to reduction of feeder loss. However, most of these studies have considered lumped load and distributed load models to analyze the effects on system losses, where the dynamic variation of load due to seasonal changes is ignored. It is very important for utilities to minimize the losses under all scenarios to decrease revenue losses, promote efficient asset utilization, and therefore, increase feeder capacity. This paper will investigate an IEEE 13-node feeder populated with photovoltaic generators on detailed residential houses with water heater, Heating Ventilation and Air conditioning (HVAC) units, lights, and other plug and convenience loads. An analysis of losses for different power system components, such as transformers, underground and overhead lines, and triplex lines, will be performed. The analysis will utilize different seasons and different solar penetration levels (15%, 30%). C1 [Tuffner, Francis; Singh, Ruchi] PNNL, Richland, WA USA. RP Tuffner, F (reprint author), PNNL, Richland, WA USA. NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 1523 EP 1529 PG 7 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700180 ER PT B AU Hoffman, M Russo, B AF Hoffman, Mike Russo, Brian GP ASME TI COMPARING UTILITY CONNECTED TO STAND ALONE MICRO-GRIDS: FROM THE VIEWPOINT OF A UTILITY ENGINEER SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB This paper presents project examples of grid and grid-isolated micro-grids. It discusses micro-grid drivers; economic, environmental, and financial issues; and tools to plan and design micro-grids. Tools covered include modeling software resource options, generation types, fuel options, and services to provide smooth transitions (including required equipment and software controls), ranging from those of minimal expense to maximum functionality. The need for, and construction of, real-time operational interfaces is also addressed, with a focus on real world complications and guidance regarding implementation of planning design and of a micro-grid. This paper attempts to present a broad overview of micro-grids, including project examples, modeling tools, technology options, and practical and business insights to enable interested parties to quickly come up to speed on micro-grid basics. The included information should give interested parties the tools and resources to move forward on their own projects, assuming these parties have sufficient knowledge and experience with electrical distribution systems. C1 [Hoffman, Mike] Pacific NW Natl Lab, Portland, OR USA. RP Hoffman, M (reprint author), Pacific NW Natl Lab, Portland, OR USA. NR 25 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 1553 EP 1564 PG 12 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700183 ER PT B AU Hoffman, M Kintner-Meyer, M DeSteese, J Sadovsky, A AF Hoffman, Mike Kintner-Meyer, Michael DeSteese, John Sadovsky, Artyom GP ASME TI ANALYSIS TOOLS FOR SIZING AND PLACEMENT OF ENERGY STORAGE IN GRID APPLICATIONS SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB In recent decades, research and development has significantly improved the cost and reliability of energy storage systems. However, a relatively small percentage of that work has focused on engineering tools for integrating energy storage into existing or future electric grids. This literature review revealed that only a small number of software tools exist, and that those tools only partially address the needs for placement, sizing, and overall control strategies of stationary energy storage within a smart grid infrastructure. None of the tools comprehensively captures the benefits of energy storage, which would reveal all of the potential values. None of the tools or models provides optimization features that identify optimal placement and sizing options within a transmission or distribution system context. This review identifies a need for tool development to fill the gap in the grid analytics and provides some recommendations of guiding principles for advancing the analytical capabilities needed for the engineering and grid planning communities. C1 [Hoffman, Mike] Pacific NW Natl Lab, Portland, OR USA. RP Hoffman, M (reprint author), Pacific NW Natl Lab, Portland, OR USA. NR 10 TC 0 Z9 0 U1 1 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 1565 EP 1573 PG 9 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076700184 ER PT B AU Chen, KS Hogan, RE AF Chen, Ken S. Hogan, Roy E. GP ASME TI THREE-DIMENSNIONAL MODELING OF SOLAR THERMOCHEMICAL SPLITTING OF CO2 IN A CR5 SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div ID CYCLES AB A three-dimensional (3-D) numerical model for simulating the process of solar thermochemical splitting of carbon dioxide (CO2) into carbon monoxide (CO) in a counter-rotating-ring receiver/reactor/recuperator or CR5 are developed in order to account for three-dimensional effects such as edge effect of side walls. The present 3-D model, which is based on our previous two-dimensional first-generation model, takes into account heat transfer, gas-phase flow, multiple-species transport in open channels and through pores of the porous reactant layer, and redox chemical reactions at the gas/solid interfaces. Sample computed results (e.g., temperature distribution, species concentration contours) are presented to illustrate model utility. The model is employed to examine the effects of rates of CO2 and argon neutral gas injection and the redox chemical reactions on thermochemical solar conversion efficiency. Effects of the CR5 width and argon neutral gas injection on O-2 crossover are also explored. C1 [Chen, Ken S.; Hogan, Roy E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Chen, KS (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 15 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 1641 EP 1649 PG 9 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076701007 ER PT B AU Anderson, K Booth, S Burman, K Callahan, M AF Anderson, Kate Booth, Samuel Burman, Karl Callahan, Michael GP ASME TI NET ZERO ENERGY ANALYSIS APPROACH FOR MILITARY INSTALLATIONS SO PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY 2011, PTS A-C LA English DT Proceedings Paper CT ASME 5th International Conference on Energy Sustainability CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div, ASME, Solar Energy Div AB Net zero energy is a concept of energy self-sufficiency based on minimized demand and use of local renewable energy resources. A net zero energy military installation is defined as: "A military installation that produces as much energy on-site from renewable energy generation or through the on-site use of renewable fuels, as it consumes in its buildings, facilities, and fleet vehicles." [1] The National Renewable Energy Laboratory (NREL) developed a comprehensive, first-of-its-kind strategy for evaluating a military installation's potential to achieve net zero energy status, including an assessment of baseline energy use, energy use reduction opportunities from efficiency or behavior changes, renewable energy generation opportunities, electrical systems analysis of renewable interconnection, microgrid potential, and transportation energy savings. This paper describes NREL's net zero energy assessment strategy and provides a planning guide for other organizations interested in evaluating net zero potential. We also present case studies and describe lessons learned from NREL's net zero energy assessments at seven installations, including the importance of enforcing and funding mandates, providing leadership support, collecting accurate data, and selecting appropriate technologies. Finally, we evaluate whether the net zero concept is a useful framework for analyzing an energy strategy and a reasonable goal. C1 [Anderson, Kate; Booth, Samuel; Burman, Karl; Callahan, Michael] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Anderson, K (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. NR 4 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5468-6 PY 2012 BP 1725 EP 1734 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFR72 UT WOS:000321076701016 ER PT B AU Bamberger, JA Enderlin, CW Tzemos, S AF Bamberger, Judith Ann Enderlin, Carl W. Tzemos, S. GP ASME TI AIR SPARGING FOR MIXING NON-NEWTONIAN SLURRIES SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2010, VOL 7, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 12-18, 2010 CL Vancouver, CANADA SP Amer Soc Mech Engineers AB The mechanics of air sparger systems have been primarily investigated for aqueous-based Newtonian fluids. Tilton et al. (1982) [1] describes the fluid mechanics of air sparging systems in non-Newtonian fluids as having two primary flow regions. A center region surrounding the sparger, referred to as the region of bubbles (ROB), contains upward flow due to the buoyant driving force of the rising bubbles. In an annular region, outside the ROB, referred to as the zone of influence (ZOI), the fluid flow is reversed and is opposed to the direction of bubble rise. Outside the ZOI the fluid is unaffected by the air sparger system. The flow regime in the ROB is often turbulent, and the flow regime in the ZOI is laminar; the flow regime outside the ZOI is quiescent. Tests conducted with shear thinning non-Newtonian fluid in a 34-in, diameter tank showed that the ROB forms an approximately inverted cone that is the envelop of the bubble trajectories. The depth to which the air bubbles reach below the sparger nozzle is a linear function of the air-flow rate. The recirculation time through the ZOI was found to vary proportionally with the inverse square of the sparging air-flow rate. Visual observations of the ROB were made in both water and Carbopol (R). The bubbles released from the sparge tube in Carbopol (R) were larger than those in water. C1 [Bamberger, Judith Ann; Enderlin, Carl W.; Tzemos, S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Bamberger, JA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM judith.bamberger@pnl.gov NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4444-1 PY 2012 BP 645 EP 651 PG 7 WC Engineering, Mechanical SC Engineering GA BFN52 UT WOS:000320625900074 ER PT B AU Duncan, A AF Duncan, Andrew BE Duncan, AJ TI 2011 ASME PRESSURE VESSELS AND PIPING CONFERENCE SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div C1 Savannah River Natl Lab, Aiken, SC 29808 USA. RP Duncan, A (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4456-4 PY 2012 BP 29 EP 29 PG 1 WC Engineering, Manufacturing; Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BFM79 UT WOS:000320566000006 ER PT B AU Yin, SJ Williams, PT Bass, BR AF Yin, Shengjun Williams, Paul T. Bass, B. Richard BE Duncan, AJ TI NESC-VII: FRACTURE MECHANICS ANALYSES OF WPS EXPERIMENTS ON LARGE-SCALE CRUCIFORM SPECIMEN SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div ID FERRITIC STEELS AB This paper describes numerical analyses performed to simulate warm pre-stress (WPS) experiments conducted with large-scale cruciform specimens within the Network for Evaluation of Structural Components (NESC-VII) project. NESC-VII is a European cooperative action in support of WPS application in reactor pressure vessel (RPV) integrity assessment. The project aims in evaluation of the influence of WPS when assessing the structural integrity of RPVs. Advanced fracture mechanics models will be developed and performed to validate experiments concerning the effect of different WPS scenarios on RPV components. The Oak Ridge National Laboratory (ORNL), USA contributes to the Work Package-2 (Analyses of WPS experiments) within the NESC-VII network. A series of WPS type experiments on large-scale cruciform specimens have been conducted at CEA Saclay, France, within the framework of NESC VII project. This paper first describes NESC-VII feasibility test analyses conducted at ORNL. Very good agreement was achieved between AREVA NP SAS and ORNL. Further analyses were conducted to evaluate the NESC-VII WPS tests conducted under Load-Cool-Transient-Fracture (LCTF) and Load-Cool-Fracture (LCF) conditions. This objective of this work is to provide a definitive quantification of WPS effects when assessing the structural integrity of reactor pressure vessels. This information will be utilized to further validate, refine, and improve the WPS models that are being used in probabilistic fracture mechanics computer codes now in use by the NRC staff in their effort to develop risk-informed updates to Title 10 of the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G. C1 [Yin, Shengjun; Williams, Paul T.; Bass, B. Richard] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. RP Yin, SJ (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. NR 17 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4456-4 PY 2012 BP 245 EP 254 PG 10 WC Engineering, Manufacturing; Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BFM79 UT WOS:000320566000035 ER PT B AU Williams, PT Yin, SJ Klasky, HB Bass, BR AF Williams, Paul T. Yin, Shengjun Klasky, Hilda B. Bass, B. Richard BE Duncan, AJ TI ORNL PRE-TEST ANALYSES OF A LARGE-SCALE EXPERIMENT IN STYLE SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div ID PIPE AB Oak Ridge National Laboratory (ORNL) is conducting a series of numerical analyses to simulate a large scale mock-up experiment planned within the European Network for Structural Integrity for Lifetime Management - non-RPV Components (STYLE). STYLE is a European cooperative effort to assess the structural integrity of (non-reactor pressure vessel) reactor coolant pressure boundary components relevant to ageing and life-time management and to integrate the knowledge created in the project into mainstream nuclear industry assessment codes. ORNL contributes "work-in-kind" support to STYLE Work Package 2 (Numerical Analysis/Advanced Tools) and Work Package 3 (Engineering Assessment Methods/LBB Analyses). This paper summarizes the current status of ORNL analyses of the STYLE Mock-Up3 large-scale experiment to simulate and evaluate crack growth in a cladded ferritic pipe. The analyses are being performed in two parts. In the first part, advanced fracture mechanics models are being developed and performed to evaluate several experiment designs taking into account the capabilities of the test facility while satisfying the test objectives. Then these advanced fracture mechanics models will be utilized to simulate the crack growth in the large scale mock-up test. For the second part, the recently developed ORNL SIAM-PFM open-source, cross-platform, probabilistic computational tool will be used to generate an alternative assessment for comparison with the advanced fracture mechanics model results. The SIAM-PFM probabilistic analysis of the Mock-Up3 experiment will utilize fracture modules that are installed into a general probabilistic framework. The probabilistic results of the Mock-Up3 experiment obtained from SIAM-PFM will be compared to those results generated using the deterministic 3D nonlinear finite-element modeling approach. The objective of the probabilistic analysis is to provide uncertainty bounds that will assist in assessing the more detailed 3D finite-element solutions and to also assess the level of confidence that can be placed in the best-estimate finite-element solutions. C1 [Williams, Paul T.; Yin, Shengjun; Klasky, Hilda B.; Bass, B. Richard] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Williams, PT (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM williamspt@ornl.gov NR 15 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4456-4 PY 2012 BP 283 EP 292 PG 10 WC Engineering, Manufacturing; Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BFM79 UT WOS:000320566000039 ER PT B AU Alexandreanu, B Chen, YR Natesan, K Shack, B AF Alexandreanu, Bogdan Chen, Yiren Natesan, Ken Shack, Bill BE Duncan, AJ TI SCC BEHAVIOR OF ALLOY 52M/182 WELD OVERLAY IN A PWR ENVIRONMENT SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB Weld overlays (WOL) of alloys believed to possess superior stress corrosion cracking (SCC) resistance are typically applied over welds made with SCC-susceptible alloys with the expectation that they will act as a barrier to SCC. The objective of this work is to investigate the behavior of a crack initiated in Alloy 182 as it approaches the Alloy 52M WOL interface. For this purpose, an Alloy 52M WOL was deposited on a double-J Alloy 182 weld. Compact tension specimens were fabricated with the notch in Alloy 182 and oriented towards the WOL, and tested in a simulated PWR environment. The first such test revealed that the SCC rates in Alloy 182 were found to decrease by an order of magnitude ahead of the interface, and that the crack advanced from Alloy 182 into Alloy 52M. The post test examination found that crack branching occurred at the interface between the two alloys. Growth in Alloy 52M along the interface appears severe, approx. 10(-10) m/s. While for the most part (70%) the crack propagated along the interface, SCC cracking was also found to extend into Alloy 52M along the original direction. This cracking is substantial, yielding SCC rates of 10(-11) m/s. C1 [Alexandreanu, Bogdan; Chen, Yiren; Natesan, Ken; Shack, Bill] Argonne Natl Lab, Argonne, IL 60439 USA. RP Alexandreanu, B (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 7 TC 0 Z9 0 U1 3 U2 5 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4456-4 PY 2012 BP 367 EP 384 PG 18 WC Engineering, Manufacturing; Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BFM79 UT WOS:000320566000048 ER PT B AU Alexandreanu, B Chen, YR Natesan, K Shack, B AF Alexandreanu, Bogdan Chen, Yiren Natesan, Ken Shack, Bill BE Duncan, AJ TI SCC BEHAVIOR OF ALLOY 690 HAZ IN A PWR ENVIRONMENT SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB The objective of this work is to determine the cyclic and stress corrosion cracking (SCC) crack growth rates (CGRs) in a simulated PWR water environment for Alloy 690 heat affected zone (HAZ). In order to meet the objective, an Alloy 152 J-weld was produced on a piece of Alloy 690 tubing, and the test specimens were aligned with the HAZ. The environmental enhancement of cyclic CGRs for Alloy 690 HAZ was comparable to that measured for the same alloy in the as-received condition. The two Alloy 690 HAZ samples tested exhibited maximum SCC CGR rates of 10(-11) m/s in the simulated PWR environment at 320 degrees C, however, on average, these rates are similar or only slightly higher than those for the as-received alloy. C1 [Alexandreanu, Bogdan; Chen, Yiren; Natesan, Ken; Shack, Bill] Argonne Natl Lab, Argonne, IL 60439 USA. RP Alexandreanu, B (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 10 TC 0 Z9 1 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4456-4 PY 2012 BP 385 EP 398 PG 14 WC Engineering, Manufacturing; Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BFM79 UT WOS:000320566000049 ER PT B AU Wiersma, B Jaske, C Cohn, M AF Wiersma, Bruce Jaske, Carl Cohn, Marvin BE Duncan, AJ TI 2011 ASME PRESSURE VESSELS AND PIPING CONFERENCE SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div C1 [Wiersma, Bruce] Savannah River Natl Lab, Aiken, SC USA. RP Wiersma, B (reprint author), Savannah River Natl Lab, Aiken, SC USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4456-4 PY 2012 BP 495 EP 495 PG 1 WC Engineering, Manufacturing; Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BFM79 UT WOS:000320566000059 ER PT B AU Alexandreanu, B Chen, YR Natesan, K Shack, B AF Alexandreanu, Bogdan Chen, Yiren Natesan, Ken Shack, Bill BE Duncan, AJ TI CYCLIC AND SCC BEHAVIOR OF ALLOY 152 WELD IN A PWR ENVIRONMENT SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB Alloys 600 and 182 are used as structural materials in pressurized water reactors (PWRs) and have been found to undergo stress corrosion cracking (SCC). Alloys 690 and 152 are the replacement materials of choice for Alloys 600 and 182, respectively. The objective of this work is to determine the crack growth rates (CGRs) in a simulated PWR water environment for Alloy 152. In order to meet the objective, specimens made from a laboratory-prepared Alloy 152 double-J weld in the as-welded condition were tested. For the SCC CUR measurements, the specimens were pre-cracked under cyclic loading in a primary water environment, and the cyclic CGRs were monitored to determine the transition from the fatigue transgranular fracture mode to the intergranular SCC fracture mode. The environmental enhancement of cyclic CGRs for Alloy 152 was minimal; nevertheless, the transition from transgranular to intergranular cracking was successful. Weld samples tested from the single heat of Alloy 152 exhibited SCC CUR rates of 10(-11) m/s in the simulated PWR environment at 320 degrees C, which is only about an order of magnitude lower than typical for Alloy 182. C1 [Alexandreanu, Bogdan; Chen, Yiren; Natesan, Ken; Shack, Bill] Argonne Natl Lab, Argonne, IL 60439 USA. RP Alexandreanu, B (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 14 TC 1 Z9 2 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4456-4 PY 2012 BP 639 EP 653 PG 15 WC Engineering, Manufacturing; Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BFM79 UT WOS:000320566000078 ER PT B AU Chen, Y Alexandreanu, B Shack, WJ Natesan, K Rao, AS AF Chen, Y. Alexandreanu, B. Shack, W. J. Natesan, K. Rao, A. S. BE Duncan, AJ TI Cyclic Crack Growth Rate of Irradiated Austenitic Stainless Steel Welds in Simulated BWR Environment SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div ID STRESS-CORROSION CRACKING; ALLOYS AB Reactor core internal components in light water reactors are subjected to neutron irradiation. It has been shown that the austenitic stainless steels used in reactor core internals are susceptible to stress corrosion cracking after extended neutron exposure. This form of material degradation is a complex phenomenon that involves concomitant conditions of irradiation, stress, and corrosion. Interacting with fatigue damage, irradiation-enhanced environmental effects could also contribute to cyclic crack growth. In this paper, the effects of neutron irradiation on cyclic cracking behavior were investigated for austenitic stainless steel welds. Postirradiation cracking growth tests were performed on weld heat-affected zone specimens in a simulated boiling water reactor environment, and cyclic crack growth rates were obtained at two doses. Environmentally enhanced cracking was readily established in irradiated specimens. Crack growth rates of irradiated specimens were significantly higher than those of nonirradiated specimens. The impact of neutron irradiation on environmentally enhanced cyclic cracking behavior is discussed for different load ratios. C1 [Chen, Y.; Alexandreanu, B.; Shack, W. J.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Chen, Y (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 18 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4456-4 PY 2012 BP 655 EP 661 PG 7 WC Engineering, Manufacturing; Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BFM79 UT WOS:000320566000079 ER PT B AU Ren, WJ Swindeman, R Nanstad, R Corwin, W Sham, TL AF Ren, Weiju Swindeman, Robert Nanstad, Randy Corwin, William Sham, T. -L. (Sam) BE Duncan, AJ TI MATERIALS AND FABRICATION Materials and Technologies for Nuclear Power Plants SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div C1 [Ren, Weiju; Nanstad, Randy; Corwin, William; Sham, T. -L. (Sam)] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Ren, WJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4456-4 PY 2012 BP 723 EP 724 PG 2 WC Engineering, Manufacturing; Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BFM79 UT WOS:000320566000088 ER PT B AU Ren, WJ Muralidharan, G Wilson, DF Holcomb, DE AF Ren, Weiju Muralidharan, Govindarajan Wilson, Dane F. Holcomb, David E. BE Duncan, AJ TI CONSIDERATIONS OF ALLOY N FOR FLUORIDE SALT-COOLED HIGH-TEMPERATURE REACTOR APPLICATIONS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div ID STRESS-RUPTURE; HASTELLOY N AB Fluoride Salt-Cooled High-Temperature Reactors (FHRs) are a promising new class of thermal-spectrum nuclear reactors. The reactor structural materials must possess high-temperature strength and chemical compatibility with the liquid fluoride salt as well as with a power cycle fluid such as supercritical water while remaining resistant to residual air within the containment. Alloy N was developed for use with liquid fluoride salts and it possesses adequate strength and chemical compatibility up to about 700 degrees C. A distinctive property of FHRs is that their maximum allowable coolant temperature is restricted by their structural alloy maximum service temperature. As the reactor thermal efficiency directly increases with the maximum coolant temperature, higher temperature resistant alloys are strongly desired. This paper reviews the current status of Alloy N and its relevance to FHRs including its design principles, development history, high temperature strength, environmental resistance, metallurgical stability, component manufacturability, ASME codification status, and reactor service requirements. The review will identify issues and provide guidance for improving the alloy properties or implementing engineering solutions. C1 [Ren, Weiju; Muralidharan, Govindarajan; Wilson, Dane F.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Ren, WJ (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, MS 6155,Bldg 4500-S, Oak Ridge, TN 37831 USA. EM renw@ornl.gov; muralidhargn@ornl.gov; wilsondf@ornl.gov; holcombde@ornl.gov NR 25 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4456-4 PY 2012 BP 725 EP 736 PG 12 WC Engineering, Manufacturing; Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BFM79 UT WOS:000320566000089 ER PT B AU Li, MM Majumdar, S Natesan, K AF Li, Meimei Majumdar, Saurin Natesan, Ken BE Duncan, AJ TI CREEP-FATIGUE BEHAVIOR IN FERRITIC-MARTENSITIC STEELS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB Ferritic-martensitic steels are the lead structural materials for next-generation nuclear energy systems. Due to increased operating temperatures required in advanced high-temperature reactor concepts, the high temperature performance of structural alloys and reliable high temperature structural design methodology have become increasingly urgent issues. Ferritic-martensitic steels experience significant cyclic softening at high temperatures, and this cyclic softening behavior affects consecutive stress relaxation response during hold time under creep-fatigue loading. It is found that the stress relaxation response during hold of the mod.9Cr-1Mo steel can be accurately described by a stress relaxation model. The creep damage associated with the stress relaxation during hold time can then be accurately calculated using the stress relaxation data and creep rupture data. It is shown that the unit creep damage per cycle in mod.9Cr-1Mo steel decreases considerably with increasing number of cycles due to cyclic softening, and the creep damage is sensitive to the initial stress of stress relaxation. Proper evaluation of the creep-fatigue damage in mod.9Cr-1Mo steel must consider the cyclic softening effect and its associated variations in creep damage from stress relaxation during the hold time. C1 [Li, Meimei; Majumdar, Saurin; Natesan, Ken] Argonne Natl Lab, Argonne, IL 60439 USA. RP Li, MM (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 19 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4456-4 PY 2012 BP 767 EP 774 PG 8 WC Engineering, Manufacturing; Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BFM79 UT WOS:000320566000094 ER PT B AU San Marchi, C Somerday, BP Nibur, KA Stalheim, DG Boggess, T Jansto, S AF San Marchi, Chris Somerday, Brian P. Nibur, Kevin A. Stalheim, Douglas G. Boggess, Todd Jansto, Steve BE Duncan, AJ TI FRACTURE RESISTANCE AND FATIGUE CRACK GROWTH OF X80 PIPELINE STEEL IN GASEOUS HYDROGEN SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div ID DELAMINATION AB Gaseous hydrogen is a convenient medium to store and transport energy. As existing petroleum-based platforms are electrified, such as with the growth of fuel cell systems, hydrogen is becoming an attractive fuel which must be distributed, stored and dispensed. Hydrogen is used extensively in refining of petroleum products, and often distributed by pipeline. However, there remains a need to quantify the mechanical properties of low-cost steels in gaseous hydrogen and to relate the measured performance to the variety of microstructures that characterize steels. This study is part of a larger effort to characterize a broad range of steels manufactured for pipelines and to measure their fracture and fatigue resistance in gaseous hydrogen. The fracture resistance and fatigue crack growth rates of two microstructural variations of X80 pipeline steel were measured in gaseous hydrogen at pressure of 21 MPa. The performance of these steels was found to be similar to the performance of other ferritic steels that are currently used to distribute gaseous hydrogen. C1 [San Marchi, Chris; Somerday, Brian P.] Sandia Natl Labs, Livermore, CA USA. RP San Marchi, C (reprint author), Sandia Natl Labs, Livermore, CA USA. NR 18 TC 0 Z9 0 U1 1 U2 4 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4456-4 PY 2012 BP 841 EP 849 PG 9 WC Engineering, Manufacturing; Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BFM79 UT WOS:000320566000102 ER PT B AU San Marchi, C Somerday, BP AF San Marchi, Chris Somerday, Brian P. BE Duncan, AJ TI FATIGUE CRACK GROWTH OF STRUCTURAL METALS FOR HYDROGEN SERVICE SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div ID AUSTENITIC STAINLESS-STEELS; EMBRITTLEMENT; PROPAGATION AB As hydrogen fuel cell technologies achieve market penetration, there is a growing need to characterize a range of structural metals that are used in the hydrogen environments that are encountered in gaseous hydrogen fuel systems. A review of existing data show that hydrogen can significantly accelerate fatigue crack growth of many common structural metals; however, comprehensive characterization of the effects of hydrogen on fatigue properties is generally lacking from the literature, even for structural metals that have been used extensively in high-pressure gaseous hydrogen environments. This report provides new testing data on the effects of hydrogen on fatigue of structural metals that are commonly employed in high-pressure gaseous hydrogen. C1 [San Marchi, Chris; Somerday, Brian P.] Sandia Natl Labs, Livermore, CA USA. RP San Marchi, C (reprint author), Sandia Natl Labs, Livermore, CA USA. NR 23 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4456-4 PY 2012 BP 851 EP 857 PG 7 WC Engineering, Manufacturing; Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BFM79 UT WOS:000320566000103 ER PT B AU Doctor, S Duncan, A Hedden, OF Lam, PS Scarth, D Wiersma, B AF Doctor, Steven Duncan, Andrew Hedden, Owen F. Lam, Poh-Sang Scarth, Doug Wiersma, Bruce BE Duncan, AJ TI MATERIALS AND FABRICATION Risk-Informed Online Monitoring, Modeling and Control of Aging PVP or Complex Systems/Networks SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div C1 [Doctor, Steven] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Doctor, S (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4456-4 PY 2012 BP 927 EP 927 PG 1 WC Engineering, Manufacturing; Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BFM79 UT WOS:000320566000115 ER PT B AU Amidan, BG Ferryman, TA AF Amidan, Brett G. Ferryman, Thomas A. BE Duncan, AJ TI TYPICAL PATTERNS, ATYPICAL EVENTS, AND UNCERTAINTY IN COMPLEX SYSTEMS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB The power grid is a complex system. Multiple quantities are measured from hundreds of locations, at rates up to 30 Hz. There are both correlated and uncorrelated variables. Powerful methods are needed to examine this large amount of data and better understand the complex system, and in the case of the power grid, identify imminent adverse events, such as blackouts. These methods need to sift through any multicollinearity among the variables, account for the random uncertainty that is present within each variable, and focus on practical differences as defined by domain experts in addition to statistical differences. These methods will then help the user to better understand the complex system by uncovering the hidden gems within the data. These gems include identification of the uncertainty, characterization of the typical patterns, and the discovery of atypical events. This paper will discuss the intricate methods used to explore the data, and the novel displays used to communicate the findings. This paper will also delve into the exploration of other complex systems, like aviation safety, using similar methods. C1 [Amidan, Brett G.; Ferryman, Thomas A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Amidan, BG (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN K6-08, Richland, WA 99352 USA. EM b.amidan@pnl.nov; tom.ferryman@pnl.nov NR 4 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4456-4 PY 2012 BP 997 EP 1004 PG 8 WC Engineering, Manufacturing; Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BFM79 UT WOS:000320566000122 ER PT B AU Heasler, PG Sanborn, SE Doctor, SR Anderson, MT AF Heasler, Patrick G. Sanborn, Scott E. Doctor, Steven R. Anderson, Michael T. BE Duncan, AJ TI THE TREATMENT OF ISI UNCERTAINTY IN EXTREMELY LOW PROBABILITY OF RUPTURE SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB The U.S. Nuclear Regulatory Commission (NRC) in cooperation with the nuclear industry is constructing an improved probabilistic fracture model for piping systems that in the past have not been susceptible to known degradation processes that could lead to pipe rupture. Recent operating experience with primary water stress corrosion cracking (PWSCC) has challenged this prior position of leak-before-break and which has now become known as "extremely Low Probability of Rupture" (xLPR). This paper focuses on the xLPR model's treatment of uncertainty for in-service inspection. In the xLPR model, uncertainty is classified as either aleatory or epistemic, and both types of uncertainty are described with probability distributions. Earlier PFM models included aleatory, but ignored epistemic, uncertainty, or attempted to deal with epistemic uncertainty by use of conservative bounds. Thus, inclusion of both types of uncertainty in xLPR should produce more realistic results than the earlier models. This work shows that by including epistemic uncertainty in the xLPR ISI module, there can be a significant effect on rupture probability; however, this depends upon the specific scenarios being studied. Some simple scenarios are presented to illustrate those where there is no effect and those having a significant effect on the probability of rupture. C1 [Heasler, Patrick G.; Sanborn, Scott E.; Doctor, Steven R.; Anderson, Michael T.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Heasler, PG (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 10 TC 0 Z9 0 U1 1 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4456-4 PY 2012 BP 1061 EP 1067 PG 7 WC Engineering, Manufacturing; Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BFM79 UT WOS:000320566000127 ER PT B AU Unwin, SD Lowry, PP Toyooka, MY Ford, BE AF Unwin, Stephen D. Lowry, Peter P. Toyooka, Michael Y. Ford, Benjamin E. BE Duncan, AJ TI DEGRADATION SUSCEPTIBILITY METRICS AS THE BASES FOR BAYESIAN RELIABILITY MODELS OF AGING PASSIVE COMPONENTS AND LONG-TERM REACTOR RISK SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div DE Reactor Aging Management; PRA; Passive Components; Bayesian AB Conventional probabilistic risk assessments (PRAs) are not well-suited to addressing long-term reactor operations. Since passive structures, systems and components are among those for which refurbishment or replacement can be least practical, they might be expected to contribute increasingly to risk in an aging plant. Yet, passives receive limited treatment in PRAs. Furthermore, PRAs produce only snapshots of risk based on the assumption of time-independent component failure rates. This assumption is unlikely to be valid in aging systems. The treatment of aging passive components in PRA does present challenges. First, service data required to quantify component reliability models are sparse, and this problem is exacerbated by the greater data demands of age-dependent reliability models. A compounding factor is that there can be numerous potential degradation mechanisms associated with the materials, design, and operating environment of a given component. This deepens the data problem since the risk-informed management of materials degradation and component aging will demand an understanding of the long-term risk significance of individual degradation mechanisms. In this paper we describe a Bayesian methodology that integrates the metrics of materials degradation susceptibility being developed under the Nuclear Regulatory Commission's Proactive Materials Degradation Assessment Program with available plant service data to estimate age-dependent passive component reliabilities. Integration of these models into conventional PRA will provide a basis for materials degradation management informed by the predicted long-term operational risk. C1 [Unwin, Stephen D.; Lowry, Peter P.; Toyooka, Michael Y.; Ford, Benjamin E.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Unwin, SD (reprint author), Pacific NW Natl Lab, POB 999,K6-52, Richland, WA 99352 USA. EM stephen.unwin@pnl.gov; peter.lowry@pnl.gov; michael.toyooka@pnl.gov; benjamin.ford@pnl.gov NR 12 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4456-4 PY 2012 BP 1069 EP 1075 PG 7 WC Engineering, Manufacturing; Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BFM79 UT WOS:000320566000128 ER PT B AU Lam, PS Scarth, D Lidbury, D Wang, JJA Xu, S AF Lam, Poh-Sang Scarth, Douglas Lidbury, David Wang, John Jy-An Xu, Steven BE Duncan, AJ TI MATERIALS AND FABRICATION The Ted Smith Memorial Symposium: Applications of Fracture Mechanics in Failure Assessment SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div C1 [Lam, Poh-Sang] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Lam, PS (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4456-4 PY 2012 BP 1237 EP 1237 PG 1 WC Engineering, Manufacturing; Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BFM79 UT WOS:000320566000149 ER PT B AU Wang, JJA Ren, F Zhang, W Feng, ZL Anovitz, L Chen, Z Xu, HB AF Wang, John Jy-An Ren, Fei Zhang, Wei Feng, Zhili Anovitz, Lawrence Chen, Zhe Xu, Hanbing BE Duncan, AJ TI DEVELOPMENT OF IN SITU TECHNIQUES FOR TORSION AND TENSION TESTING IN HYDROGEN ENVIRONMENT SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 6, A AND B LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div DE Pipeline steel; Hydrogen; Embrittlement; Welding; In situ testing; Torsion test; Tensile test ID FRACTURE-TOUGHNESS AB Reliability of hydrogen pipelines and storage tanks is significantly influenced by the mechanical performance of the structural materials exposed to the hydrogen environment. Fracture behavior and fracture toughness are of specific interest since they are relevant to structural integrity. However, many conventional fracture testing techniques are difficult to be realized under the presence of hydrogen. Thus it is desired to develop novel in situ techniques to study the fracture behavior of structural materials in hydrogen environments. In this study, two special testing apparatus were designed to facilitate in situ fracture testing in H-2. In addition to a multi-notch tensile fixture, a torsional fixture was developed to utilize an emerging fracture testing technique, Spiral Notch Torsion Test (SNTT). The design concepts will be discussed. Preliminary in situ testing results indicated that the exposure to H-2 significantly reduces the fracture toughness of 4340 high strength steels by up to 50 percent. Furthermore, SNTT tests conducted in air demonstrated a significant fracture toughness reduction in samples subject to simulated welding heat treatment using a Gleeble machine, which illustrated the effect of welding on the fracture toughness of this material. C1 [Wang, John Jy-An; Ren, Fei; Zhang, Wei; Feng, Zhili; Anovitz, Lawrence] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Wang, JJA (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM wangja@ornl.gov RI Feng, Zhili/H-9382-2012; Zhang, Wei/B-9471-2013; Anovitz, Lawrence/P-3144-2016 OI Feng, Zhili/0000-0001-6573-7933; Anovitz, Lawrence/0000-0002-2609-8750 NR 10 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4456-4 PY 2012 BP 1317 EP 1323 PG 7 WC Engineering, Manufacturing; Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA BFM79 UT WOS:000320566000159 ER PT B AU Sabharwall, P Mckellar, M Kim, ES Patterson, M AF Sabharwall, Piyush Mckellar, Michael Kim, Eung Soo Patterson, Mike GP ASME TI SMALL MODULAR MOLTEN SALT REACTOR (SM-MSR) SO PROCEEDINGS OF THE ASME SMALL MODULAR REACTORS SYMPOSIUM (SMR 2011) LA English DT Proceedings Paper CT ASME Small Modular Reactors Symposium CY SEP 28-30, 2011 CL Washington, DC SP ASME AB The strategic goal of the Small Modular Molten Salt Reactor (SM-MSR) is to broaden the environmental and economic benefits of nuclear energy in the United States by producing power to meet growing energy demands and demonstrating its applicability to market sectors not being served by light water reactors. Of primary importance is demonstrating that the SM-MSR can be operated safely and compete economically with larger reactors. Reactor outlet temperatures (ROTs) of SM-MSRs will likely be much higher (around 700 degrees C) than light water reactors, thereby increasing the efficiency of electricity production and potentially providing process heat for industrial applications, which will help offset the higher per kilowatt costs generally associated with smaller reactors, making the SM-MSR more economically competitive. This paper compares thermal power cycles for given ROT, compares thermal performance using figure of merits and sensitivity study and discusses the comparative advantages of SM-MSRs. C1 [Sabharwall, Piyush; Mckellar, Michael; Kim, Eung Soo; Patterson, Mike] Idaho Natl Lab, Idaho Falls, ID USA. RP Sabharwall, P (reprint author), Idaho Natl Lab, Idaho Falls, ID USA. EM Piyush.Sabharwall@inl.gov NR 13 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5473-0 PY 2012 BP 31 EP 39 PG 9 WC Engineering, Mechanical; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA BFZ73 UT WOS:000321987400003 ER PT B AU Lewis, TG Parma, EJ Wright, SA Vernon, ME Fleming, DD Rochau, GE AF Lewis, Tom G. Parma, Edward J. Wright, Steven A. Vernon, Milton E. Fleming, Darryn D. Rochau, Gary E. GP ASME TI SANDIA'S SUPERCRITICAL CO2 DIRECT CYCLE GAS FAST REACTOR (SC-GFR) CONCEPT SO PROCEEDINGS OF THE ASME SMALL MODULAR REACTORS SYMPOSIUM (SMR 2011) LA English DT Proceedings Paper CT ASME Small Modular Reactors Symposium CY SEP 28-30, 2011 CL Washington, DC SP ASME AB The advanced nuclear concept group at Sandia National Laboratories has been investigating two advance right size reactors (RSR); this paper will discuss one of these two systems. The supercritical carbon dioxide (S-CO2), direct cycle gas fast reactor (SC-GFR) concept was developed to determine the feasibility of a RSR type concept using S-CO2 as the working fluid in a direct cycle fast reactor. Although a significant amount of work is still required, this type of reactor concept maintains some potentially significant advantages over ideal gas-cooled systems and liquid metal-cooled systems. The analyses presented in this paper show that a relatively small long-life reactor core could be developed that maintains decay heat removal by natural circulation. The SC-GER. concept is a relatively small (200 MWth) fast reactor that is cooled with CO2 at a pressure of 20 MPa. The CO2 flows out of the reactor vessel at similar to 650 degrees C directly into a turbine-generator unit to produce electrical power. The thermodynamic cycle that is used for the power conversion is a supercritical gas Brayton cycle with CO2 as the working fluid. With the CO2 gas near the critical point after the heat rejection portion of the cycle, it can be compressed with less power as compared to a standard gas Brayton cycle, thereby allowing for a higher thermal efficiency at the same turbine inlet temperature. A cycle efficiency of 45-50% is theoretically achievable for an optimized configuration. The major advantages of the concept include the following: High thermal efficiency at relatively low reactor outlet temperatures; Compact, cost-effective, power conversion system; Non-flammable, stable, inert, non-toxic, inexpensive, and well-characterized coolant; Potential long-life core and closed fuel cycle; Small void reactivity worth from loss of coolant; Natural convection decay heat removal; Feasible design using today's technologies. The goal of this work was to develop a SC-GFR concept and perform scoping analyses, including a review of other concepts that are similar in nature, to determine concept feasibility, advantages, disadvantages, and issues requiring further investigation. Overall, the SC-GFR. concept as described in this paper appears feasible and warrants further study. C1 [Lewis, Tom G.; Parma, Edward J.; Wright, Steven A.; Vernon, Milton E.; Fleming, Darryn D.; Rochau, Gary E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lewis, TG (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 11 TC 0 Z9 0 U1 2 U2 9 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5473-0 PY 2012 BP 91 EP 94 PG 4 WC Engineering, Mechanical; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA BFZ73 UT WOS:000321987400010 ER PT B AU McHugh, KM Gamier, JE Griffith, GW AF McHugh, Kevin M. Gamier, John E. Griffith, George W. GP ASME TI SYNTHESIS AND ANALYSIS OF ALPHA SILICON CARBIDE COMPONENTS FOR ENCAPSULATION OF FUEL RODS AND PELLETS SO PROCEEDINGS OF THE ASME SMALL MODULAR REACTORS SYMPOSIUM (SMR 2011) LA English DT Proceedings Paper CT ASME Small Modular Reactors Symposium CY SEP 28-30, 2011 CL Washington, DC SP ASME ID CHEMICAL-VAPOR-DEPOSITION; DOSE NEUTRON-IRRADIATION; THERMAL-CONDUCTIVITY AB The chemical, mechanical and thermal properties of silicon carbide (SiC) along with its low neutron activation make it an attractive material for encapsulating fuel rods and fuel pellets. The alpha phase of SiC has particularly attractive thermal properties. Unfortunately, it requires very high temperature processing and continuous alpha SiC fiber is not available commercially. This paper describes a method for fabricating continuous, composite (SiC/C) fibers as well as monolithic SiC fibers by direct conversion of carbon fibers using SiO vapor at similar to 1600 degrees C. EDS analysis indicates the converted SiC product contains 1:1 stoichiometric amounts of C and Si. Hexagonal (alpha) SiC was found to be the dominant crystal structure by x-ray diffraction. C1 [McHugh, Kevin M.; Gamier, John E.; Griffith, George W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP McHugh, KM (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 22 TC 0 Z9 0 U1 0 U2 6 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5473-0 PY 2012 BP 165 EP 169 PG 5 WC Engineering, Mechanical; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA BFZ73 UT WOS:000321987400020 ER PT B AU Myers, CW Mahar, JM AF Myers, Carl W. Mahar, James M. GP ASME TI UNDERGROUND SITING OF SMALL MODULAR REACTORS IN BEDROCK: RATIONALE, CONCEPTS, AND APPLICATIONS SO PROCEEDINGS OF THE ASME SMALL MODULAR REACTORS SYMPOSIUM (SMR 2011) LA English DT Proceedings Paper CT ASME Small Modular Reactors Symposium CY SEP 28-30, 2011 CL Washington, DC SP ASME AB Small modular reactors (SMRs) sited 100 to 300 meters deep in underground chambers constructed in bedrock having favorable geotechnical properties could be both cost effective and provide superior levels of safety and physical security. The bedrock adjacent to and enclosing the reactor chamber would become the functional equivalent of a conventional containment structure, but one with increased margins of safety for design-basis accidents, reduced risks for beyond-design-basis accidents, and a high level of inherent physical protection against external threats. In addition, seismic safety could be enhanced at lower cost because seismic waves are generally attenuated with depth in bedrock. Nominal steel and concrete around the reactor would be required as would sealing of tunnels and other penetrations into the reactor chamber. Nonetheless, the net result in capital cost savings could potentially more than offset the cost of underground excavation. For a hypothetical granitic bedrock site with SMRs at a nominal depth of 100 meters, preliminary excavation cost estimates for single- and four-unit installations constructed by drill-and-blast range from around $90 million to $45 million per reactor, respectively, and for a twelve-unit installation constructed by tunnel boring machine from $25 to $15 million per reactor. Specialized applications for bedrock-sited SMRs include collocation at underground hydropower stations, test and demonstration facility for prototype SMR designs, and deployments in regions at risk of terrorist or military attack. C1 [Myers, Carl W.] Los Alamos Natl Lab, Nucl Nonproliferat Div, Los Alamos, NM 87545 USA. RP Myers, CW (reprint author), Los Alamos Natl Lab, Nucl Nonproliferat Div, Los Alamos, NM 87545 USA. NR 16 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5473-0 PY 2012 BP 183 EP 192 PG 10 WC Engineering, Mechanical; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA BFZ73 UT WOS:000321987400023 ER PT B AU Terrani, KA Snead, LL Gehin, JC AF Terrani, Kurt A. Snead, Lance L. Gehin, Jess C. GP ASME TI FCM FUEL DEVELOPMENT FOR SMR APPLICATIONS SO PROCEEDINGS OF THE ASME SMALL MODULAR REACTORS SYMPOSIUM (SMR 2011) LA English DT Proceedings Paper CT ASME Small Modular Reactors Symposium CY SEP 28-30, 2011 CL Washington, DC SP ASME ID FUSION APPLICATIONS; COMPOSITES AB Fully ceramic microencapsulated (FCM) fuels are identified as suitable fuel forms for development and deployment of SMR technologies. High thermal conductivity of the composite fuel coupled with its exceptional radiation and environmental stability enable monolithic compact cores for SMR applications. Meanwhile the built-in redundancy of multiple layers for fission-product retention alleviates the need for structurally demanding pressure vessels and containment buildings. All of the above will enable the reactor designer to achieve a compact and passively safe SMR through utilization of a flexible fuel technology that is currently under active development. C1 [Terrani, Kurt A.; Snead, Lance L.; Gehin, Jess C.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Terrani, KA (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. NR 10 TC 0 Z9 0 U1 1 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5473-0 PY 2012 BP 207 EP 209 PG 3 WC Engineering, Mechanical; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA BFZ73 UT WOS:000321987400026 ER PT B AU Ramuhalli, P Meyer, R Bond, L AF Ramuhalli, Pradeep Meyer, Ryan Bond, Leonard GP ASME TI DIAGNOSTICS AND PROGNOSTICS FOR SAFE AND SECURE OPERATION OF SMALL MODULAR REACTORS SO PROCEEDINGS OF THE ASME SMALL MODULAR REACTORS SYMPOSIUM (SMR 2011) LA English DT Proceedings Paper CT ASME Small Modular Reactors Symposium CY SEP 28-30, 2011 CL Washington, DC SP ASME C1 [Ramuhalli, Pradeep; Meyer, Ryan; Bond, Leonard] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Ramuhalli, P (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 5 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5473-0 PY 2012 BP 337 EP 338 PG 2 WC Engineering, Mechanical; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA BFZ73 UT WOS:000321987400042 ER PT B AU Collins, JW AF Collins, John W. GP ASME TI ASSESSING RISK AND DRIVING RISK MITIGATION FOR FIRST-OF-A-KIND ADVANCED REACTORS SO PROCEEDINGS OF THE ASME SMALL MODULAR REACTORS SYMPOSIUM (SMR 2011) LA English DT Proceedings Paper CT ASME Small Modular Reactors Symposium CY SEP 28-30, 2011 CL Washington, DC SP ASME AB Planning and decision making amidst programmatic and technological risks represent significant challenges for projects. This presentation addresses the four-step risk assessment process needed to determine a clear path forward to mature needed technology and design, license, and construct advanced first-of-a-kind nuclear power plants, including Small Modular Reactors. This four-step process has been carefully applied to the Next Generation Nuclear Plant. C1 Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Collins, JW (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 9 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5473-0 PY 2012 BP 339 EP 345 PG 7 WC Engineering, Mechanical; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA BFZ73 UT WOS:000321987400043 ER PT B AU Cipiti, B AF Cipiti, Ben GP ASME TI RESEARCH ACTIVITIES TO SUPPORT SMR LICENSING SO PROCEEDINGS OF THE ASME SMALL MODULAR REACTORS SYMPOSIUM (SMR 2011) LA English DT Proceedings Paper CT ASME Small Modular Reactors Symposium CY SEP 28-30, 2011 CL Washington, DC SP ASME AB Small Module Reactors (SMRs) face a number of licensing issues due to the fact that existing regulations were designed for large units. The move toward smaller cores, more reliance on passive safety, and modular construction will require new research to meet existing regulations and possibly regulatory change that would be more appropriate to and cost effective for this technology. The Department of Energy is funding a number of research projects to address SMR licensing issues, including both regulatory framework and design-related issues. Near term priorities include Emergency Planning Zone (EPZ) sizing, operations & staffing, and physical security integration. The recent accident in Japan only heightens the need for thorough analysis of these issues. The purpose of these activities is to provide research support to assist SMR vendors with licensing and to assist the Nuclear Regulatory Commission (NRC) in any data needs that might be required for these unique designs. These research activities will be described with attention to how they will address the SMR licensing needs. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Cipiti, B (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 2 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5473-0 PY 2012 BP 347 EP 348 PG 2 WC Engineering, Mechanical; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA BFZ73 UT WOS:000321987400044 ER PT B AU Ingersoll, DT AF Ingersoll, Daniel T. GP ASME TI AN OVERVIEW OF THE SAFETY CASE FOR SMALL MODULAR REACTORS SO PROCEEDINGS OF THE ASME SMALL MODULAR REACTORS SYMPOSIUM (SMR 2011) LA English DT Proceedings Paper CT ASME Small Modular Reactors Symposium CY SEP 28-30, 2011 CL Washington, DC SP ASME AB Several small modular reactor (SMR) designs emerged in the late 1970s and early 1980s in response to lessons learned from the many technical and operational challenges of the large Generation II light-water reactors. After the accident at the Three Mile Island plant in 1979, an ensuing reactor redesign effort spawned the term "inherently safe" designs, which later evolved into "passively safe" terminology. Several new designs were engineered to be deliberately small in order to fully exploit the benefits of passive safety. Today, new SMR. designs are emerging with a similar philosophy of offering highly robust and resilient designs with increased safety margins. Additionally, because these contemporary designs are being developed subsequent to the September 11, 2001, terrorist attack, they incorporate a number of intrinsic design features to further strengthen their safety and security. Several SMR designs are being developed in the United States spanning the full spectrum of reactor technologies, including water-, gas-, and liquid-metal-cooled ones. Despite a number of design differences, most of these designs share a common set of design principles to enhance plant safety and robustness, such as eliminating plant design vulnerabilities where possible, reducing accident probabilities, and mitigating accident consequences. An important consequence of the added resilience provided by these design approaches is that the individual reactor units and the entire plant should be able to survive a broader range of extreme conditions. This will enable them to not only ensure the safety of the general public but also help protect the investment of the owner and continued availability of the power-generating asset. Examples of typical SMR design features and their implications for improved plant safety are given for specific SMR designs being developed in the United States. C1 Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Ingersoll, DT (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. NR 3 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5473-0 PY 2012 BP 369 EP 373 PG 5 WC Engineering, Mechanical; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA BFZ73 UT WOS:000321987400047 ER PT J AU Zylstra, AB Li, CK Rinderknecht, HG Seguin, FH Petrasso, RD Stoeckl, C Meyerhofer, DD Nilson, P Sangster, TC Le Pape, S Mackinnon, A Patel, P AF Zylstra, A. B. Li, C. K. Rinderknecht, H. G. Seguin, F. H. Petrasso, R. D. Stoeckl, C. Meyerhofer, D. D. Nilson, P. Sangster, T. C. Le Pape, S. Mackinnon, A. Patel, P. TI Using high-intensity laser-generated energetic protons to radiograph directly driven implosions SO REVIEW OF SCIENTIFIC INSTRUMENTS LA English DT Article ID NATIONAL-IGNITION-FACILITY; INERTIAL-FUSION IMPLOSIONS; SOLID TARGETS; ION-ACCELERATION; OMEGA LASER; PLASMA; BEAMS; PULSE; IRRADIATION; FIELD AB The recent development of petawatt-class lasers with kilojoule-picosecond pulses, such as OMEGA EP [L. Waxer et al., Opt. Photonics News 16, 30 (2005)], provides a new diagnostic capability to study inertial-confinement-fusion (ICF) and high-energy-density (HED) plasmas. Specifically, petawatt OMEGA EP pulses have been used to backlight OMEGA implosions with energetic proton beams generated through the target normal sheath acceleration (TNSA) mechanism. This allows time-resolved studies of the mass distribution and electromagnetic field structures in ICF and HED plasmas. This principle has been previously demonstrated using Vulcan to backlight six-beam implosions [A. J. Mackinnon et al., Phys. Rev. Lett. 97, 045001 (2006)]. The TNSA proton backlighter offers better spatial and temporal resolution but poorer spatial uniformity and energy resolution than previous (DHe)-He-3 fusion-based techniques [C. Li et al., Rev. Sci. Instrum. 77, 10E725 (2006)]. A target and the experimental design technique to mitigate potential problems in using TNSA backlighting to study full-energy implosions is discussed. The first proton radiographs of 60-beam spherical OMEGA implosions using the techniques discussed in this paper are presented. Sample radiographs and suggestions for troubleshooting failed radiography shots using TNSA backlighting are given, and future applications of this technique at OMEGA and the NIF are discussed. (C) 2012 American Institute of Physics. [doi:10.1063/1.3680110] C1 [Zylstra, A. B.; Li, C. K.; Rinderknecht, H. G.; Seguin, F. H.; Petrasso, R. D.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Stoeckl, C.; Meyerhofer, D. D.; Nilson, P.; Sangster, T. C.] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA. [Le Pape, S.; Mackinnon, A.; Patel, P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Meyerhofer, D. D.] Univ Rochester, Dept Mech Engn, Rochester, NY 14627 USA. [Meyerhofer, D. D.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. RP Zylstra, AB (reprint author), MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. EM zylstra@mit.edu RI Patel, Pravesh/E-1400-2011; MacKinnon, Andrew/P-7239-2014; OI MacKinnon, Andrew/0000-0002-4380-2906; /0000-0003-4969-5571 FU (U.S.) Department of Energy (DOE); LLE [DE-FG52-07NA28059, DE-FG03-03SF22691, 414090-G]; LLNL [B543881, LDRD-ER-898988]; FSC at the University of Rochester [412761-G]; General Atomics [DE- AC52-06NA 27279]; DOE NNSA [DE-FC52-08NA28752] FX This work was done in partial fulfillment of the requirements for the degree of Ph.D. (A.B.Z.). The authors thank the engineering and operations staff at the OMEGA and OMEGA EP facilities for their support. This work was supported in part by (U.S.) Department of Energy (DOE) and LLE National Laser User's Facility (DE-FG52-07NA28059 and DE-FG03-03SF22691), LLNL (B543881 and LDRD-ER-898988), LLE (414090-G), FSC at the University of Rochester (412761-G), and General Atomics (DE- AC52-06NA 27279). A. Zylstra is supported by the DOE NNSA Stewardship Science Graduate Fellowship (DE-FC52-08NA28752). NR 65 TC 24 Z9 24 U1 1 U2 9 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 0034-6748 EI 1089-7623 J9 REV SCI INSTRUM JI Rev. Sci. Instrum. PD JAN PY 2012 VL 83 IS 1 AR 013511 DI 10.1063/1.3680110 PG 9 WC Instruments & Instrumentation; Physics, Applied SC Instruments & Instrumentation; Physics GA 896TS UT WOS:000300594900034 PM 22299955 ER PT J AU Wang, ZF Li, X Muthukumar, V Scaglione, A Peisert, S McParland, C AF Wang, Zhifang Li, Xiao Muthukumar, Vishak Scaglione, Anna Peisert, Sean McParland, Chuck GP IEEE TI Networked Loads in the Distribution Grid SO 2012 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC) LA English DT Proceedings Paper CT Annual Summit and Conference of the Asia-Pacific-Signal-and-Information-Processing-Association (APSIPA) CY DEC 03-06, 2012 CL Hollywood, CA SP Asia Pacific Signal & Informat Proc Assoc (APSIPA) AB Central utility services are increasingly networked systems that use an interconnection of sensors and programmable logic controllers, and feed data to servers and human-machine interfaces. These systems are connected to the Internet so that they can be accessed remotely, and the network in these plants is structured according to the SCADA model. Although the physical systems themselves are generally designed with high degrees of safety in mind, and designers of computer systems are well advised to incorporate computer security principles, a combined framework for supervisory control of the physical and cyber architectures in these systems is still lacking. Often absent are provisions to defend against external and internal attacks, and even operator errors that might bypass currently standalone security measures to cause undesirable consequences. In this paper we examine a prototypical instance of SCADA network in the distribution network that handles central cooling and heating for a set of buildings. The electrical loads are networked through programmable logic controllers (PLCs), electrical meters, and networks that deliver data to and from servers that are part of a SCADA system, which has grown in size and complexity over many years. C1 [Wang, Zhifang] Virginia Commonwealth Univ, Elect & Comp Engn, Richmond, VA 23284 USA. [Li, Xiao; Scaglione, Anna] Univ Calif Davis, Elect & Comp Engn, Davis, CA USA. [Muthukumar, Vishak; Peisert, Sean] Univ Calif Davis, Comp Sci, Davis, CA USA. [Peisert, Sean; McParland, Chuck] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Wang, ZF (reprint author), Virginia Commonwealth Univ, Elect & Comp Engn, Richmond, VA 23284 USA. EM ascaglione@ucdavis.edu FU Division of Mathematical, Information, and Computational Sciences of the U.S.Department of Energy [DEAC02-05CH11231] FX This research was supported in part by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S.Department of Energy, under contract number DEAC02-05CH11231. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect those of any of the sponsors of this work. NR 8 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-4863-8 PY 2012 PG 7 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA BFE52 UT WOS:000319456200124 ER PT S AU Allen, JD Liu, XW Lozano, I Yuan, X AF Allen, Josef D. Liu, Xiuwen Lozano, Ivan Yuan, Xin GP IEEE TI A Cyber-Physical Approach to a Wide-Area Actionable System for the Power Grid SO 2012 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2012) SE IEEE Military Communications Conference LA English DT Proceedings Paper CT IEEE Military Communications Conference (MILCOM) CY OCT 29-NOV 01, 2012 CL Orlando, FL SP IEEE, AFCEA Int, IEEE Commun Soc DE Wide Area Actionable System; power systems; cascading failures; cyber-physical systems; decentralized hierarchical control AB Unexpected occurrences of large-area cascading failures due to small disturbances in worldwide electricity grids serve as evidence of their intrinsic instability. As the grid is the most fundamental critical infrastructure in any modern society, detection and mitigation of such cascading failures due to accidental failures or malicious attacks are of vital importance to both civilian and military applications. However, due to the unique physical properties of electricity, such as its travel speed, systems must be able to react within a fraction of second in order to detect and prevent occurrences of cascading failures. In this paper, by modeling the grid as a cyber-physical system, we propose a decentralized, hierarchical framework to develop and implement a wide-area actionable system, capable of detecting and mitigating potential cascading failures. The states of the grid and physical constraints are modeled as manifolds, and evolution of the grid becomes a path on the manifold. By decomposing the grid into resilience zones with minimal power flow between them, we utilize precomputed scenarios in each resilience zone to develop a parametrized model. During deployment, online phasor measurements will be used to estimate the stability within each zone and interactions among them. The detection of cascading failures will be based on the detection of cascading failing paths among the K hop trees built for each zone. We illustrate the effectiveness of the proposed approach using the 2003 Italy blackout scenarios, and we discuss practical requirements in order to deploy such a system. C1 [Allen, Josef D.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Liu, Xiuwen; Lozano, Ivan; Yuan, Xin] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA. RP Allen, JD (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM allen.josef@gmail.com; liux@cs.fsu.edu; lozano@cs.fsu.edu; xyuan@cs.fsu.edu FU UT- Battelle LLC U.S. Department of Energy [DE-AC05-00OR22725]; National Science Foundation [1027217] FX This manuscript has been authored by UT- Battelle LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paidup, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The paper is based upon work partially supported by the National Science Foundation Grant No. 1027217. NR 17 TC 0 Z9 0 U1 0 U2 3 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2155-7578 BN 978-1-4673-1729-0; 978-1-4673-1730-6 J9 IEEE MILIT COMMUN C PY 2012 PG 6 WC Telecommunications SC Telecommunications GA BEY60 UT WOS:000318702900107 ER PT S AU Kuruganti, T Nutaro, J Djouadi, S AF Kuruganti, Teja Nutaro, James Djouadi, Seddik GP IEEE TI Event-based Transmission Line Matrix Method for Simulating Site-Specific Multipath Propagation Characteristics SO 2012 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2012) SE IEEE Military Communications Conference LA English DT Proceedings Paper CT IEEE Military Communications Conference (MILCOM) CY OCT 29-NOV 01, 2012 CL Orlando, FL SP IEEE, AFCEA Int, IEEE Commun Soc DE wireless channels; transmission-line matrix; multipath; delay spread; site-specific ID EQUIVALENCE AB Accurate radio channel modeling is essential for deploying advanced wireless sensors in harsh industrial and urban environments. Site-specific propagation modeling tools are required to understand the channel parameters with in these environments. Multipath delay spread determines the frequency-selective fading characteristics of the channel. This paper describes a novel, computationally inexpensive technique to determine multipath delay spread. Event-based transmission line matrix-based method is used to simulate the channel. C1 [Kuruganti, Teja; Nutaro, James] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA. [Djouadi, Seddik] Univ Tennesse, Dept Elect Engn & Comp Sci, Knoxville, TN USA. RP Kuruganti, T (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA. EM kurugantipv@ornl.gov; nutarojj@ornl.gov; djouadi@eecs.utk.edu FU UTBattelle, LLC [DE-AC05-00OR22725] FX This paper has been co-authored by employees of UTBattelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes NR 10 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2155-7578 BN 978-1-4673-1729-0; 978-1-4673-1730-6 J9 IEEE MILIT COMMUN C PY 2012 PG 6 WC Telecommunications SC Telecommunications GA BEY60 UT WOS:000318702900261 ER PT S AU Kuruganti, T Ma, X Djouadi, S AF Kuruganti, Teja Ma, Xiao Djouadi, Seddik GP IEEE TI Experimental Validation of Stochastic Wireless Urban Channel Model: Estimation and Prediction SO 2012 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2012) SE IEEE Military Communications Conference LA English DT Proceedings Paper CT IEEE Military Communications Conference (MILCOM) CY OCT 29-NOV 01, 2012 CL Orlando, FL SP IEEE, AFCEA Int, IEEE Commun Soc DE wireless channels; stochastic models; estimation; prediction; wireless sensor networks AB Stochastic state-space models can be used to describe the time-varying nature of wireless channels. This paper validates a long-term fading channel model that predicts signal strength from measured received signal strength measurements. Such channel models can be used for optimizing wireless networks deployed for industrial automation, public Internet access, and other applications. This paper uses two different sets of received signal measurement data to estimate and predict the signal strength based on past measurements. The real-world performance of the estimation and prediction algorithm is demonstrated. C1 [Kuruganti, Teja] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. [Ma, Xiao; Djouadi, Seddik] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. RP Kuruganti, T (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. EM kurugantipv@ornl.gov; xma4@utk.edu; djouadi@eecs.utk.edu FU UTBattelle, LLC [DE-AC05-00OR22725]; U. S. Department of Energy FX This paper has been co- authored by employees of UTBattelle, LLC, under contract DE-AC05-00OR22725 with the U. S. Department of Energy. NR 8 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2155-7578 BN 978-1-4673-1729-0; 978-1-4673-1730-6 J9 IEEE MILIT COMMUN C PY 2012 PG 5 WC Telecommunications SC Telecommunications GA BEY60 UT WOS:000318702900132 ER PT S AU Ma, X Olama, MM Kuruganti, T Smith, SF Djouadi, SM AF Ma, Xiao Olama, Mohammed M. Kuruganti, Teja Smith, Stephen F. Djouadi, Seddik M. GP IEEE TI Determining System Parameters for Optimal Performance of Hybrid DS/FFH Spread-Spectrum SO 2012 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2012) SE IEEE Military Communications Conference LA English DT Proceedings Paper CT IEEE Military Communications Conference (MILCOM) CY OCT 29-NOV 01, 2012 CL Orlando, FL SP IEEE, AFCEA Int, IEEE Commun Soc DE Hybrid spread-spectrum; direct sequence; frequency hopping; wide-band jamming; multi-user interference; Rayleigh/Rician fading; non-convex optimization ID RICIAN-FADING CHANNELS; SEQUENCE AB In recent years there has been great interest in using hybrid spread-spectrum (HSS) techniques for commercial applications in addition to their inherent uses in military communications because they accommodate high data rates with high link integrity, even in the presence of significant multipath effects and interfering signals. A highly useful form of this transmission technique for many types of command, control, and sensing applications is the specific code-related combination of standard direct sequence (DS) modulation with "fast" frequency hopping (FFH), denoted hybrid DS/FFH, wherein multiple frequency hops occur within a single data-bit time. However, the optimum parameter sets for specific HSS applications have not been examined heretofore in the literature. In this paper, an optimization approach is formulated that maximizes the hybrid DS/FFH communication system performance in terms of bit-error probability and solves for the resulting system design parameters. The optimization objective function is non-convex and can be solved by applying the Karush-Kuhn-Tucker conditions. Specific system design parameters of interest are the length of the DS code sequence, number of frequency-hopping channels, number of channels corrupted by wide-band jamming, and number of hops per bit. The proposed formulation takes into account the effects from wide- and partial-band jamming, multi-user interference, and/or varying degrees of Rayleigh and Rician multipath fading. Numerical results are used to illustrate the method's viability. C1 [Ma, Xiao; Djouadi, Seddik M.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Olama, Mohammed M.; Kuruganti, Teja; Smith, Stephen F.] Oak Ridge Natl Lab, Comp Sci & Engn Div, Oak Ridge, TN 37831 USA. RP Ma, X (reprint author), Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. EM xma4@utk.edu; olamahussemm@ornl.gov; kurugantipv@ornl.gov; smithsf@ornl.gov; mdjouadi@utk.edu FU UT-Battelle, LLC U.S. Department of Energy [DE-ACO5-000R22725] FX Oak Ridge National Laboratory is managed by UT-Battelle, LLC, under contract DE-ACO5-000R22725 with the U.S. Department of Energy. NR 15 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2155-7578 BN 978-1-4673-1729-0; 978-1-4673-1730-6 J9 IEEE MILIT COMMUN C PY 2012 PG 6 WC Telecommunications SC Telecommunications GA BEY60 UT WOS:000318702900084 ER PT S AU Miner, NE Van Leeuwen, BP Welch, KM Estill, MD Smith, MA Le, HD Lawton, CR AF Miner, Nadine E. Van Leeuwen, Brian P. Welch, Kimberly M. Estill, M. Donan, Jr. Smith, Mark A. Le, Hai D. Lawton, Craig R. GP IEEE TI Evaluating Communications System Performance Effects at a System of Systems Level SO 2012 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2012) SE IEEE Military Communications Conference LA English DT Proceedings Paper CT IEEE Military Communications Conference (MILCOM) CY OCT 29-NOV 01, 2012 CL Orlando, FL SP IEEE, AFCEA Int, IEEE Commun Soc DE modeling and simulation; integration; heterogeneous tools; system of systems AB The complexity of net-centric system of systems (SoS) being fielded today has the military leadership increasingly dependent on modeling and simulation (M&S) tools for evaluating performance. Several types of M&S tools are required to model different aspects of military systems, yet these tools often have different computational fidelities in terms of time and scale. Current approaches using direct information transfer between M&S tools, such as High Level Architecture (HLA) and MATREX, do not provide the mechanisms for disparate tools to make direct use of each other's information [1], [2]. Thus, many military SoS analyses assume perfect communications, an unrealistic assumption that leaves a gap for conducting more comprehensive analyses for large-scale, net-centric SoS problems. This research addresses this gap by developing general purpose methodologies to bridge the gap between diverse M&S tools resulting in a capability that enables military decision makers to evaluate comms system performance effects at a SoS level [3]. This paper discusses the methodology, including parameter selection, data generation, surrogate modeling and SoS simulation results. C1 [Miner, Nadine E.; Van Leeuwen, Brian P.; Welch, Kimberly M.; Estill, M. Donan, Jr.; Smith, Mark A.; Le, Hai D.; Lawton, Craig R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Miner, NE (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 5 TC 0 Z9 0 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2155-7578 BN 978-1-4673-1729-0; 978-1-4673-1730-6 J9 IEEE MILIT COMMUN C PY 2012 PG 6 WC Telecommunications SC Telecommunications GA BEY60 UT WOS:000318702900126 ER PT S AU Punnoose, RJ Counsil, D Young, D AF Punnoose, Ratish J. Counsil, David Young, Derek GP IEEE TI Focusing a radio signal and simultaneously nulling it at another location using time-reversal: Experimental results SO 2012 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2012) SE IEEE Military Communications Conference LA English DT Proceedings Paper CT IEEE Military Communications Conference (MILCOM) CY OCT 29-NOV 01, 2012 CL Orlando, FL SP IEEE, AFCEA Int, IEEE Commun Soc AB The time-reversal beam-forming technique utilizes the multipath in a cluttered environment to focus beyond the Rayleigh limit. This method makes use of the reciprocity of wireless propagation channels. Time-reversal can also be used to null signals, either to reduce unintentional interference or to prevent eavesdropping. Previous analytical work has also shown the ability to focus a signal at a location while simultaneously nulling it at a different location. We now present experimental results showing time-reversal focus and nulling in a cluttered environment. C1 [Punnoose, Ratish J.; Counsil, David; Young, Derek] Sandia Natl Labs, Livermore, CA USA. RP Punnoose, RJ (reprint author), Sandia Natl Labs, Livermore, CA USA. EM rjpunno@sandia.gov NR 7 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2155-7578 BN 978-1-4673-1729-0 J9 IEEE MILIT COMMUN C PY 2012 PG 6 WC Telecommunications SC Telecommunications GA BEY60 UT WOS:000318702900069 ER PT S AU Urias, V Van Leeuwen, B Richardson, B AF Urias, Vincent Van Leeuwen, Brian Richardson, Bryan GP IEEE TI Supervisory Command and Data Acquisition (SCADA) system Cyber Security Analysis using a Live, Virtual, and Constructive (LVC) Testbed SO 2012 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2012) SE IEEE Military Communications Conference LA English DT Proceedings Paper CT IEEE Military Communications Conference (MILCOM) CY OCT 29-NOV 01, 2012 CL Orlando, FL SP IEEE, AFCEA Int, IEEE Commun Soc AB Modern critical infrastructure systems are built on a hodgepodge of complex, interconnected information systems for control and management For electric power, the critical infrastructure includes the physical systems; comprised of power generation, transmission and distribution capabilities. The control of the physical systems is accomplished via Supervisory Command and Data Acquisition (SCADA) systems. The SCADA systems employ both new and legacy systems along with many of the same information system devices as traditional business information systems. SCADA system networks, just as business information system networks, are connected to external networks, including the Internet Thus, SCADA systems are vulnerable to the same classes of threats as other networked computer systems in addition to threats associated with their legacy systems. Many of these systems have been put in place for decades and often have an unknown security posture Cyber security analysis of these systems remains a significant challenge. Traditional techniques such as red-teaming, vulnerability assessments, and penetration testing are often unsatisfactory and limited in scope because power utilities do not want to risk taking the systems off-line or degrading or damaging the expensive equipment. The consequence is that the effects of a cyber-attack on these SCADA systems are often unknown. In order to provide greater SCADA system security posture insight to utilities and administrators, security experts must perform security analysis. To overcome the problems with security analysis using either an exclusive hardware SCADA testbed or a simulation of a SCADA system, Sandia National Labs has developed a cyber-security analysis capability using physical hardware, extensive virtualization and emulated machines, and simulation to answer complex system questions about SCADA systems. In this paper we will discuss the methodology, several use-cases that were executed during the course of the study which leverage the methodology, the types of cyber-attacks that can be assessed and the class of questions security professionals can now ask and answer about cyber-attacks against SCADA systems. C1 [Urias, Vincent; Van Leeuwen, Brian; Richardson, Bryan] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Urias, V (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM veuria@sandia.gov; bpvanle@sandia.gov; btricha@sandia.gov NR 7 TC 0 Z9 0 U1 1 U2 4 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2155-7578 BN 978-1-4673-1729-0; 978-1-4673-1730-6 J9 IEEE MILIT COMMUN C PY 2012 PG 8 WC Telecommunications SC Telecommunications GA BEY60 UT WOS:000318702900258 ER PT S AU Wasden, DL Loera, J Moradi, H Farhang-Boroujeny, B AF Wasden, Daryl Leon Loera, Jose Moradi, Hussein Farhang-Boroujeny, Behrouz GP IEEE TI Design and Implementation of a Multicarrier Spread Spectrum Communication System SO 2012 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2012) SE IEEE Military Communications Conference LA English DT Proceedings Paper CT IEEE Military Communications Conference (MILCOM) CY OCT 29-NOV 01, 2012 CL Orlando, FL SP IEEE, AFCEA Int, IEEE Commun Soc ID PERFORMANCE; CDMA AB In this paper, we present a novel multicarrier spread spectrum (MC-SS) system based on filter bank theory. We refer to our system as filter bank MC-SS (FB-MC-SS). The system parameters that lend themselves to an efficient implementation are identified, and the relevant signal processing blocks are accordingly developed. The developed FB-MC-SS system is realized on a software radio platform and the experimental results are compared against those of its direct sequence spread spectrum (DS-SS) counterpart Our experiments demonstrate a variety of jamming conditions where FB-MC-SS outperforms the conventional DS-SS by a significant margin. C1 [Wasden, Daryl Leon; Farhang-Boroujeny, Behrouz] Univ Utah, ECE Dept, Salt Lake City, UT 84112 USA. [Loera, Jose; Moradi, Hussein] Idaho Natl Lab, Idaho Falls, ID 83401 USA. RP Wasden, DL (reprint author), Univ Utah, ECE Dept, Salt Lake City, UT 84112 USA. FU LDRD [C.D.00.01.GL.03.03] FX This work was completed in collaboration with Idaho National Laboratory and supported by LDRD 10-075, work package number: C.D.00.01. GL.03.03. NR 13 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2155-7578 BN 978-1-4673-1729-0; 978-1-4673-1730-6 J9 IEEE MILIT COMMUN C PY 2012 PG 7 WC Telecommunications SC Telecommunications GA BEY60 UT WOS:000318702900137 ER PT S AU Ovcharova, A AF Ovcharova, Ana CA ATLAS Collaboration BE Bernardi, G DeCecco, S Enari, Y TI Track-Based Alignment of the Inner Detector of ATLAS SO HADRON COLLIDER PHYSICS SYMPOSIUM, 2011 SE EPJ Web of Conferences LA English DT Proceedings Paper CT 22nd Hadron Collider Physics Symposium CY NOV 14-18, 2011 CL LPNHE, Paris, FRANCE SP Univ Paris VI, Univ Paris VII, CNRS, IN2P3, UPMC, CEA, FRIF, Physique 2 Infinis (P2I), Coll France HO LPNHE AB ATLAS is a multipurpose experiment at the LHC. The tracking system of ATLAS, embedded in a 2 T solenoidal field, is composed of different technologies: silicon planar sensors (pixel and microstrips) and drift-tubes. The procedure used to align the ATLAS tracker and the results of the alignment using data recorded during 2010 and 2011 using LHC proton-proton collision runs at 7 TeV are presented. Validation of the alignment is performed by measuring the alignment observables as well as many other physics observables, notably resonance invariant masses in a wide mass range (K-S, J/Psi and Z). The E/p distributions for electrons from Z -> ee and W -> ev are also extensively used. The results indicate that, after the alignment with real data, the attained precision of the alignment constants is approximately 5 mu m. The systematic errors due to the alignment that may affect physics results are under study. C1 [Ovcharova, Ana; ATLAS Collaboration] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Ovcharova, A (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA USA. EM Ana.Ovcharova@cern.ch NR 2 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2012 VL 28 AR UNSP 12052 DI 10.1051/epjconf/20122812052 PG 3 WC Physics, Particles & Fields SC Physics GA BFJ61 UT WOS:000320121400093 ER PT S AU Patwa, A AF Patwa, Abid CA CDF Collaboration DO Collaboration BE Bernardi, G DeCecco, S Enari, Y TI SUSY plus Beyond Standard Model Higgs Searches at the Tevatron SO HADRON COLLIDER PHYSICS SYMPOSIUM, 2011 SE EPJ Web of Conferences LA English DT Proceedings Paper CT 22nd Hadron Collider Physics Symposium CY NOV 14-18, 2011 CL LPNHE, Paris, FRANCE SP Univ Paris VI, Univ Paris VII, CNRS, IN2P3, UPMC, CEA, FRIF, Physique 2 Infinis (P2I), Coll France HO LPNHE ID TAU(+)TAU(-) PAIRS; BOSONS; MSSM; COLLISIONS; FEYNHIGGS; PROGRAM; TEV AB Recent results by the CDF and Dempty set Collaborations for non-Standard Model Higgs boson searches in p (p) over bar collisions at center-of-mass energy of root s = 1.96 TeV using up to 8.2 fb(-1) of Fermilab Tevatron data are discussed. Searches for neutral Higgs bosons predicted in the Minimal Supersymmetric Standard Model (MSSM), doubly-charged Higgs bosons predicted in extended models, as well as Higgs bosons within Hidden Valley and Fermiophobic models are described. C1 [Patwa, Abid] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Patwa, A (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM abid@fnal.gov NR 16 TC 0 Z9 0 U1 2 U2 5 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2012 VL 28 AR UNSP 09002 DI 10.1051/epjconf/20122809002 PG 4 WC Physics, Particles & Fields SC Physics GA BFJ61 UT WOS:000320121400044 ER PT S AU Quigg, C AF Quigg, Chris BE Bernardi, G DeCecco, S Enari, Y TI Particle Physics in a Season of Change SO HADRON COLLIDER PHYSICS SYMPOSIUM, 2011 SE EPJ Web of Conferences LA English DT Proceedings Paper CT 22nd Hadron Collider Physics Symposium CY NOV 14-18, 2011 CL LPNHE, Paris, FRANCE SP Univ Paris VI, Univ Paris VII, CNRS, IN2P3, UPMC, CEA, FRIF, Physique 2 Infinis (P2I), Coll France HO LPNHE ID SYMMETRIES; MODEL AB A digest of my opening remarks at the 2011 Hadron Collider Physics Symposium. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Quigg, C (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM quigg@fnal.gov OI Quigg, Chris/0000-0002-2728-2445 NR 22 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2012 VL 28 AR UNSP 01001 DI 10.1051/epjconf/20122801001 PG 6 WC Physics, Particles & Fields SC Physics GA BFJ61 UT WOS:000320121400001 ER PT S AU Yao, WM AF Yao, Wei-Ming BE Bernardi, G DeCecco, S Enari, Y TI Standard Model Higgs Boson Combination at the Tevatron SO HADRON COLLIDER PHYSICS SYMPOSIUM, 2011 SE EPJ Web of Conferences LA English DT Proceedings Paper CT 22nd Hadron Collider Physics Symposium CY NOV 14-18, 2011 CL LPNHE, Paris, FRANCE SP Univ Paris VI, Univ Paris VII, CNRS, IN2P3, UPMC, CEA, FRIF, Physique 2 Infinis (P2I), Coll France HO LPNHE AB We present the recent results from combinations of searches for a standard model (SM) Higgs boson (H) by the CDF and D0 experiments at the Tevatron p (p) over bar collider at root s = 1.96 TeV. The data correspond to an integrated total luminosity of 8.2 (CDF) and 8.6 (D0) fb(-1). Compared to the previous Tevatron Higgs boson search combination more data have been added, additional channels have been added, and some previously used channels have been reanalyzed to gain sensitivity. No excess is observed above background expectation, and set 95% C.L. upper limits (median expected) on Higgs boson production at factors of 1.17 (1.16), 1.71 (1.16), and 0.48(0.57) times the SM predictions for Higgs bosons of mass m(H) = 115, 140, and 165 GeV/c(2), respectively. We exclude a standard-model Higgs boson in the mass range 156-177 GeV/c(2) at the 95% C.L, with an expected exclusion region 148-180 GeV/c(2). The absence of a Higgs boson signal also constrains some new physics such as 4th generation models and other exotic models. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Yao, WM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys MS-50B-5239,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM wmyao@lbl.gov NR 9 TC 0 Z9 0 U1 0 U2 0 PU E D P SCIENCES PI CEDEX A PA 17 AVE DU HOGGAR PARC D ACTIVITES COUTABOEUF BP 112, F-91944 CEDEX A, FRANCE SN 2100-014X J9 EPJ WEB CONF PY 2012 VL 28 AR UNSP 08001 DI 10.1051/epjconf/201228808001 PG 4 WC Physics, Particles & Fields SC Physics GA BFJ61 UT WOS:000320121400041 ER PT B AU Brake, MR AF Brake, M. R. GP ASME TI A HYBRID APPROACH FOR THE MODAL ANALYSIS OF CONTINUOUS SYSTEMS WITH LOCALIZED NONLINEAR CONSTRAINTS SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2010, VOL 8, PTS A AND B LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 12-18, 2010 CL Vancouver, CANADA SP Amer Soc Mech Engineers ID VIBRO-IMPACT; LYAPUNOV EXPONENTS; LINEAR-OSCILLATOR; BEAM; CLEARANCE; DYNAMICS; EXCITATION; VIBRATIONS; MOTIONS; FLOWS AB The analysis of continuous systems with nonlinearities in their domain have previously been limited to either numerical approaches, or analytical methods that are constrained in the parameter space, boundary conditions, or order of the system. The present analysis develops a robust method for studying continuous systems with arbitrary boundary conditions and nonlinearities using the assumption that the nonlinear constraint can be modeled with a piecewise-linear force-deflection constitutive relationship. Under this assumption, a superposition method is used to generate homogeneous boundary conditions, and modal analysis is used to find the displacement of the system in each state of the piecewise-linear nonlinearity. In order to map across each nonlinearity in the piecewise-linear force-deflection profile, a variational calculus approach is taken that minimizes the L-2 energy norm between the previous and current states. To illustrate this method, a leaf spring coupled with a connector pin immersed in a viscous fluid is modeled as a beam with a piecewise-linear constraint. From the results of the convergence and parameter studies, a high correlation between the finite-time Lyapunov exponents and the contact time per period of the excitation is observed. The parameter studies also indicate that when the system's parameters are changed in order to reduce the magnitude of the velocity impact between the leaf spring and connector pin, the extent of the regions over which a chaotic response is observed increases. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Brake, MR (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mrbrake@sandia.gov NR 39 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4445-8 PY 2012 BP 843 EP 855 PG 13 WC Automation & Control Systems; Engineering, Mechanical SC Automation & Control Systems; Engineering GA BFQ45 UT WOS:000320970700102 ER PT S AU Holzrichter, M AF Holzrichter, Michael GP IEEE TI An Application of the Constraint Programming to the Design and Operation of Synthetic Aperture Radars SO 2012 IEEE CONFERENCE ON HIGH PERFORMANCE EXTREME COMPUTING (HPEC) SE IEEE High Performance Extreme Computing Conference LA English DT Proceedings Paper CT IEEE Conference on High Performance Extreme Computing (HPEC) CY SEP 10-12, 2012 CL Waltham, MA SP IEEE DE synthetic aperture radar; constraint programming; propagation networks AB The design and operation of synthetic aperture radars require compatible sets of hundreds of quantities. Compatibility is achieved when these quantities satisfy constraints arising from physics, geometry etc. In the aggregate these quantities and constraints form a logical model of the radar. In practice the logical model is distributed over multiple people, documents and software modules thereby becoming fragmented. Fragmentation gives rise to inconsistencies and errors. The SAR Inference Engine addresses the fragmentation problem by implementing the logical model of a Sandia synthetic aperture radar in a form that is intended to be usable from system design to mission planning to actual operation of the radar. These diverse contexts require extreme flexibility that is achieved by employing the constraint programming paradigm. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Holzrichter, M (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 4 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2377-6943 BN 978-1-4673-1576-0; 978-1-4673-1577-7 J9 IEEE HIGH PERF EXTR PY 2012 PG 2 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFM10 UT WOS:000320462800007 ER PT S AU Thomas, DG Chikkagoudar, S Chappell, AR Baker, NA AF Thomas, Dennis G. Chikkagoudar, Satish Chappell, Alan R. Baker, Nathan A. BE Gao, J Dubitzky, W Wu, C Liebman, M Alhaij, R Ungar, L Christianson, A Hu, X TI Annotating the structure and components of a nanoparticle formulation using computable string expressions SO 2012 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW) SE IEEE International Conference on Bioinformatics and Biomedicine Workshop-BIBMW LA English DT Proceedings Paper CT IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW) CY OCT 04-07, 2012 CL Philadelphia, PA SP IEEE, IEEE Comp Soc (CS), Natl Sci Fdn (NSF), Omic Soft Corp, IEEE Comp Soc Tech Comm Bioinformat DE string nomenclature; nanoparticle; ontology; informatics AB Nanoparticle formulations that are being developed and tested for various medical applications are typically multicomponent systems that vary in their structure, chemical composition, and function. It is difficult to compare and understand the differences between the structural and chemical descriptions of hundreds and thousands of nanoparticle formulations found in text documents. We have developed a string nomenclature to create computable string expressions that identify and enumerate the different high-level types of material parts of a nanoparticle formulation and represent the spatial order of their connectivity to each other. The string expressions are intended to be used as IDs, along with terms that describe a nanoparticle formulation and its material parts, in data sharing documents and nanomaterial research databases. The strings can be parsed and represented as a directed acyclic graph. The nodes of the graph can be used to display the string ID, name and other text descriptions of the nanoparticle formulation or its material part, while the edges represent the connectivity between the material parts with respect to the whole nanoparticle formulation. The different patterns in the string expressions can be searched for and used to compare the structure and chemical components of different nanoparticle formulations. The proposed string nomenclature is extensible and can be applied along with ontology terms to annotate the complete description of nanoparticles formulations. C1 [Thomas, Dennis G.; Chikkagoudar, Satish; Chappell, Alan R.; Baker, Nathan A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Thomas, DG (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Dennis.Thomas@pnnl.gov; Satish.Chikkagoudar@pnnl.gov; Alan.Chappell@pnnl.gov; Nathan.Baker@pnnl.gov RI Baker, Nathan/A-8605-2010 OI Baker, Nathan/0000-0002-5892-6506 NR 6 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2163-6966 BN 978-1-4673-2746-6; 978-1-4673-2745-9 J9 IEEE INT C BIO BIO W PY 2012 PG 6 WC Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Medical Informatics SC Computer Science; Mathematical & Computational Biology; Medical Informatics GA BFL42 UT WOS:000320379600155 ER PT B AU Chen, Z Merz, W AF Chen, Z. Merz, W. GP IEEE TI Creating High-Stability High-Precision Bipolar Trim Power Supply SO 2012 IEEE POWER ENGINEERING SOCIETY CONFERENCE AND EXPOSITION IN AFRICA (POWERAFRICA) LA English DT Proceedings Paper CT IEEE-Power-Engineering-Society Conference and Exposition in Africa (PowerAfrica) CY JUL 09-13, 2012 CL Johannesburg, SOUTH AFRICA SP IEEE Power Engn Soc DE trim power supply; integrated circuit; feedback control; temperature test AB Thomas Jefferson National Accelerator Facility (TJNAF) is founded by the US Department of Energy (DOE) office of science for the technology advancement and physics research in electron beam accelerator. This facility has the state of the art technology to carry out world-class cutting-edge experiments for the nucleus composition and atomic characteristics identification and exploration for the nature of the matter in the universe. A continuous wave electron beam is featured for such experiments, thus precise and stable trim power supply is required to meet such purpose. This paper demonstrates the challenges and solutions to design, assemble, fabrication and test such high-precision high-stability power supplies. This paper presents the novel design and first article test of the +/-20A +/-75V bipolar, 100ppm stability level current-regulated high-power trim power supplies for the beam manipulation. This special design can provide valuable documentation and reference values for future designs and special applications in particle accelerator power supply creation. C1 [Chen, Z.; Merz, W.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23602 USA. RP Chen, Z (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23602 USA. EM zhechen@jlab.org NR 6 TC 0 Z9 0 U1 0 U2 0 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-2550-9 PY 2012 PG 5 WC Engineering, Electrical & Electronic SC Engineering GA BFR44 UT WOS:000321047600031 ER PT J AU Morfini, GA Burns, MR Stenoien, DL Brady, ST AF Morfini, Gerardo A. Burns, Matthew R. Stenoien, David L. Brady, Scott T. BE Brady, ST Siegel, GJ Albers, RW Price, DL TI Axonal Transport SO BASIC NEUROCHEMISTRY: PRINCIPLES OF MOLECULAR, CELLULAR, AND MEDICAL NEUROBIOLOGY, 8THEDITION LA English DT Article; Book Chapter ID SLOW COMPONENT-B; MOTOR-NEURON DISEASE; KINESIN LIGHT-CHAINS; CYTOPLASMIC DYNEIN; NERVOUS-SYSTEM; NEURODEGENERATIVE DISEASES; INTRACELLULAR-TRANSPORT; SUPERFAMILY PROTEINS; ORGANELLE TRANSPORT; EXTRUDED AXOPLASM C1 [Morfini, Gerardo A.; Brady, Scott T.] Univ Illinois, Dept Anat & Cell Biol, Chicago, IL 60612 USA. [Stenoien, David L.] Pacific NW Natl Lab, Dept Cell Biol & Biochem, Richland, WA 99352 USA. RP Morfini, GA (reprint author), Univ Illinois, Dept Anat & Cell Biol, 808 S Wood St,Room 578,M-C 512, Chicago, IL 60612 USA. NR 94 TC 7 Z9 7 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA SARA BURGERHARTSTRAAT 25, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS BN 978-0-08-095901-6 PY 2012 BP 146 EP 164 PG 19 WC Biochemistry & Molecular Biology; Neurosciences SC Biochemistry & Molecular Biology; Neurosciences & Neurology GA BFN78 UT WOS:000320652300015 ER PT S AU Hocking, RK Solomon, EI AF Hocking, Rosalie K. Solomon, Edward I. BE Mingos, DMP Day, P Dahl, JP TI Ligand Field and Molecular Orbital Theories of Transition Metal X-ray Absorption Edge Transitions SO MOLECULAR ELECTRONIC STRUCTURES OF TRANSITION METAL COMPLEXES I SE Structure and Bonding LA English DT Review; Book Chapter DE Ligand-field theory; Spectroscopy; Magnetism; X-ray Absorption Spectroscopy; Synchrotron; Molecular Orbital Theory ID ELECTRONIC-STRUCTURE CONTRIBUTIONS; BLUE COPPER SITE; K-EDGE; INORGANIC COMPLEXES; DIRECT PROBE; SPECTROSCOPY; COVALENCY; SPECTRA; PLASTOCYANIN; STATE AB Carl Ballhausen made a wide range of seminal contributions to ligand field theory and its application to ground state and ligand field excited state spectroscopies. These provided a fundamental basis for probing the nature of transition metal complexes using their visible spectra and a range of magnetic spectroscopies. The advent of synchrotrons provided access to high flux electromagnetic radiation that could be tuned across a wide range of energies including X-ray. This expanded the scope of spectroscopic techniques available to inculde X-ray Absorption Edge Spectroscopies. Paralleling a visible absorption experiment, X-ray spectra (metal K-edge, i.e. 1s -> 3d and metal L-edge, i.e. 2p -> 3d) taken at a synchrotron are dominated by ligand field splittings, electron repulsion effects and covalency. These can be used to obtain important insight into the properties of a diverse range of materials from solar cells to the catalytic centers of metalloenzymes. Herein we systematically consider applications of ligand field theory to X-ray absorption edge transitions. C1 [Hocking, Rosalie K.] Monash Univ, Monash Ctr Synchrotron Sci, Australian Ctr Electromat Sci, Melbourne, Vic 3800, Australia. [Hocking, Rosalie K.] Monash Univ, Sch Chem, Melbourne, Vic 3800, Australia. [Solomon, Edward I.] Stanford Univ, Dept Chem, Stanford, CA 94305 USA. [Solomon, Edward I.] Stanford Univ, Stanford Synchrotron Radiat Lightsource, SLAC, Stanford, CA 94309 USA. RP Solomon, EI (reprint author), Stanford Univ, Dept Chem, Stanford, CA 94305 USA. EM Edward.Solomon@stanford.edu RI Hocking, Rosalie/F-5763-2013 OI Hocking, Rosalie/0000-0002-2213-8786 NR 52 TC 11 Z9 11 U1 3 U2 34 PU SPRINGER PI NEW YORK PA 233 SPRING STREET, NEW YORK, NY 10013, UNITED STATES SN 0081-5993 BN 978-3-642-27370-4 J9 STRUCT BOND JI Struct. Bond. PY 2012 VL 142 BP 155 EP 184 DI 10.1007/430_2011_60 D2 10.1007/978-3-642-27370-4 PG 30 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA BFW40 UT WOS:000321627600008 ER PT J AU Guo, Y Keller, J Parker, RG AF Guo, Y. Keller, J. Parker, R. G. BE Sas, P Moens, D Jonckheere, S TI Dynamic analysis of wind turbine planetary gears using an extended harmonic balance approach SO PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2012) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2012) LA English DT Proceedings Paper CT International Conference on Noise and Vibration Engineering (ISMA) / International Conference on Uncertainty in Structural Dynamics (USD) CY SEP 17-19, 2012 CL KU Leuven, Dept Mech Engn, Leuven, BELGIUM HO KU Leuven, Dept Mech Engn ID ROTOR-BEARING SYSTEM; NONLINEAR DYNAMICS; OSCILLATOR; CLEARANCE; MOTIONS AB The dynamics of wind turbine planetary gears with gravity effects are investigated using an extended harmonic balance method that includes simultaneous internal and external excitations. This method along with arc-length continuation and Floquet theory is applied to a lumped-parameter planetary gear model including gravity, fluctuating mesh stiffness, bearing clearance, and nonlinear tooth contact to obtain the planetary gear dynamic response. The calculated responses compare well with time-domain-integrated mathematical models and experimental results. Gravity is a fundamental vibration source in wind turbine planetary gears and plays an important role in system dynamics, causing hardening effects induced by tooth wedging and bearing-raceway contacts. Bearing clearance significantly reduces the lowest resonant frequencies of translational modes. Gravity and bearing clearance together lower the speed at which tooth wedging occurs below the resonant frequency. C1 [Guo, Y.; Keller, J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Guo, Y (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM yi.guo@nrel.gov OI Parker, Robert/0000-0003-3320-8898 NR 25 TC 1 Z9 1 U1 0 U2 4 PU KATHOLIEKE UNIV LEUVEN, DEPT WERKTUIGKUNDE PI HEVERLEE PA CELESTIJNENLAAN 300B, HEVERLEE, B-3001, BELGIUM BN 978-90-73802-89-6 PY 2012 BP 4329 EP 4343 PG 15 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA BFR54 UT WOS:000321063904041 ER PT J AU Keller, J Guo, Y McNiff, B LaCava, W Link, H AF Keller, J. Guo, Y. McNiff, B. LaCava, W. Link, H. BE Sas, P Moens, D Jonckheere, S TI Gearbox Reliability Collaborative Phase 1 and 2: Testing and Modeling Results SO PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2012) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2012) LA English DT Proceedings Paper CT International Conference on Noise and Vibration Engineering (ISMA) / International Conference on Uncertainty in Structural Dynamics (USD) CY SEP 17-19, 2012 CL KU Leuven, Dept Mech Engn, Leuven, BELGIUM HO KU Leuven, Dept Mech Engn AB One activity of the Gearbox Reliability Collaborative (GRC) investigates root causes of wind turbine gearbox premature failures and validates design assumptions that affect gearbox reliability using a combined testing and modeling approach. Knowledge gained from the testing and modeling of the GRC gearboxes builds an understanding of how the selected loads and events translate into internal responses of three-point mounted gearboxes. This paper presents some testing and modeling results of the GRC research during Phase 1 and 2. Non-torque loads from the rotor including shaft bending and thrust, traditionally assumed to be uncoupled with the gearbox, affect gear and bearing loads and resulting gearbox responses. Bearing clearance increases bearing loads and causes cyclic loading, which could contribute to a reduced bearing life. Including model flexibilities of key drivetrain subcomponents is important in order to accurately simulate the measured gearbox response during the tests. C1 [Keller, J.; Guo, Y.; LaCava, W.; Link, H.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Keller, J (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM jonathan.keller@nrel.gov NR 10 TC 1 Z9 1 U1 2 U2 8 PU KATHOLIEKE UNIV LEUVEN, DEPT WERKTUIGKUNDE PI HEVERLEE PA CELESTIJNENLAAN 300B, HEVERLEE, B-3001, BELGIUM BN 978-90-73802-89-6 PY 2012 BP 4381 EP 4389 PG 9 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA BFR54 UT WOS:000321063904045 ER PT J AU Hemez, F AF Hemez, F. BE Sas, P Moens, D Jonckheere, S TI Scientific computing and model validation at Los Alamos SO PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2012) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2012) LA English DT Proceedings Paper CT International Conference on Noise and Vibration Engineering (ISMA) / International Conference on Uncertainty in Structural Dynamics (USD) CY SEP 17-19, 2012 CL KU Leuven, Dept Mech Engn, Leuven, BELGIUM HO KU Leuven, Dept Mech Engn C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hemez, F (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU KATHOLIEKE UNIV LEUVEN, DEPT WERKTUIGKUNDE PI HEVERLEE PA CELESTIJNENLAAN 300B, HEVERLEE, B-3001, BELGIUM BN 978-90-73802-89-6 PY 2012 BP 4807 EP 4807 PG 1 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA BFR54 UT WOS:000321063905026 ER PT B AU Garland, R Dillich, S Miller, E Babick, K Weil, K AF Garland, Roxanne Dillich, Sara Miller, Eric Babick, Kristine Weil, Kenneth GP ASME TI The US Department of Energy's Research and Development Portfolio of Hydrogen Production Technologies SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2011 LA English DT Proceedings Paper CT 9th International Conference on Fuel Cell Science, Engineering and Technology CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div AB The goal of the US Department of Energy (DOE) hydrogen production portfolio is to research and develop low-cost, highly efficient and environmentally friendly production technologies based on diverse, domestic resources. The DOE Hydrogen Program integrates basic and applied research, as well as technology development and demonstration, to adequately address a diverse range of technologies and feedstocks. The program encompasses a broad spectrum of coordinated activities within the DOE Offices of Energy Efficiency and Renewable Energy (EERE), Nuclear Energy (NE), Fossil Energy (FE), and Science (SC). Hydrogen can be produced in small, medium, and larger scale facilities, with small-scale distributed facilities producing from 100 to 1,500 kilograms (kg) of hydrogen per day at fueling stations, and medium-scale (also known as semi-central or city-gate) facilities producing from 1,500 to 50,000 kg per day on the outskirts of cities. The largest central facilities would produce more than 50,000 kg of hydrogen per day. Specific technologies currently under program development for distributed hydrogen production include bio-derived renewable liquids and water electrolysis. Centralized renewable production pathways under development include water electrolysis integrated with renewable power (e.g., wind, solar, hydroelectric, or geothermal), biomass gasification, solar-driven high-temperature thermochemical water splitting, direct photoelectrochemical water splitting, and biological production methods using algal/bacterial processes. To facilitate commercialization of hydrogen production via these various technology pathways in the near and long terms, a "Hydrogen Production Roadmap" has been developed which identifies the key challenges and high-priority research and development needs associated with each technology. The aim is to foster research that will lead to hydrogen production with near-zero net greenhouse gas emissions, using renewable energy sources, nuclear energy, and/or coal (with carbon capture and storage). This paper describes the research and development needs and activities by various DOE offices to address the key challenges in the portfolio of hydrogen production technologies. C1 [Garland, Roxanne; Dillich, Sara; Miller, Eric] US DOE, Washington, DC 20585 USA. RP Garland, R (reprint author), US DOE, Washington, DC 20585 USA. NR 2 TC 0 Z9 0 U1 1 U2 6 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5469-3 PY 2012 BP 1 EP 8 PG 8 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFI75 UT WOS:000320009200001 ER PT B AU Koeppel, BJ Lai, K Khaleel, MA AF Koeppel, Brian J. Lai, Kevin Khaleel, Moe A. GP ASME TI EFFECT OF GEOMETRY AND OPERATING PARAMETERS ON SIMULATED SOFC STACK TEMPERATURE UNIFORMITY SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2011 LA English DT Proceedings Paper CT 9th International Conference on Fuel Cell Science, Engineering and Technology CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div ID OXIDE FUEL-CELLS AB A uniform temperature field is desirable in the solid oxide fuel cell stack to avoid local hot regions that contribute to material degradation, thermal stresses, or very high current densities. Various geometric and operational design changes were simulated by numerical modeling of co-flow and counter-flow multi-cell stacks, and the effects on stack maximum temperature, stack temperature difference, and maximum cell temperature difference were characterized. The results showed that 11-17% methane fuel composition for on-cell steam reforming and a reduced reforming rate of 25-50% of the nominal rate was beneficial for a more uniform temperature field. Fuel exhaust recycling up to 30% was shown to provide lower temperature differences for reforming fuel in the co-flow stack, but counter-flow stacks with hydrogen fuel showed higher temperature differences. Cells with large aspect ratios showed a more uniform temperature response due to either the strong influence of the inlet gas temperatures or the greater thermal exchange with the furnace boundary condition. Improved lateral heat spreading with thicker interconnects was demonstrated, but greater improvements towards a uniform thermal field for the same amount of interconnect mass could be achieved using thicker heat spreader plates appropriately distributed along the stack height. C1 [Koeppel, Brian J.; Lai, Kevin; Khaleel, Moe A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Koeppel, BJ (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 21 TC 0 Z9 0 U1 1 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5469-3 PY 2012 BP 475 EP 484 PG 10 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFI75 UT WOS:000320009200058 ER PT B AU Chen, KS Carnes, B Hao, L Ji, Y Luo, G Wang, CY Wang, Y AF Chen, Ken S. Carnes, Brian Hao, Liang Ji, Yan Luo, Gang Wang, Chao-Yang Wang, Yun GP ASME TI TOWARD THE DEVELOPMENT AND VALIDATION OF A COMPREHENSIVE PEM FUEL CELL MODEL SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2011 LA English DT Proceedings Paper CT 9th International Conference on Fuel Cell Science, Engineering and Technology CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div ID LIQUID WATER TRANSPORT; GAS-DIFFUSION LAYER; POLYMER-ELECTROLYTE MEMBRANES; DIRECT NUMERICAL-SIMULATION; 3-DIMENSIONAL COMPUTATIONAL ANALYSIS; INTERDIGITATED FLOW-FIELDS; LARGE-SCALE SIMULATION; LOW-HUMIDITY OPERATION; 2-PHASE FLOW; MATHEMATICAL-MODEL AB In this paper, we report our ongoing team efforts (which are being funded by the US Department of Energy) toward the development and validation of a three-dimensional, two-phase, comprehensive PEM (polymer electrolyte membrane) fuel cell model. Specifically, we report our progress in following areas: i) a channel two-phase flow submodel to account for the presence of liquid water in flow channels and its effect; ii) an approximate but robust approach for taking MPL (microporous layer) effect into account; iii) an investigation into the effect of cell segmenting; and iv) an ongoing effort in model validation. C1 [Chen, Ken S.; Carnes, Brian] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Chen, KS (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. RI Hao, Liang/A-4457-2014 OI Hao, Liang/0000-0002-2584-490X NR 155 TC 0 Z9 0 U1 1 U2 4 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5469-3 PY 2012 BP 757 EP 765 PG 9 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFI75 UT WOS:000320009200090 ER PT B AU Carnes, B Chen, KS Hao, L Luo, G Ji, Y Wang, CY Spernjak, D AF Carnes, Brian Chen, Ken S. Hao, Liang Luo, Gang Ji, Yan Wang, Chao-Yang Spernjak, Dusan GP ASME TI VALIDATION AND UNCERTAINTY QUANTIFICATION OF A TWO-PHASE, MULTIDIMENSIONAL PEMFC COMPUTER MODEL USING HIGH-RESOLUTION SEGMENTED CURRENT COLLECTOR DATA SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2011 LA English DT Proceedings Paper CT 9th International Conference on Fuel Cell Science, Engineering and Technology CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div ID ELECTROLYTE FUEL-CELLS AB We present work towards validating a multidimensional computer model capable of simulating two-phase, non-isothermal transport in PEMFCs under a wide variety of conditions. The specific hardware used to gather the experimental data is a state-of-the-art 10x10 segmented bipolar plate attached to a 50 cm(2) single cell. The five-way serpentine flow field, bipolar plates and membrane-electrode assembly are all resolved in the model. The data has been collected at Los Alamos National Laboratories under several sets of operating conditions, including different relative humidity of 25%, 50%, 75% and 100% RH and temperatures of 80 and 60 C. Current best practices for model validation are applied, including uncertainty quantification (UQ). Variability in measured data is incorporated by included uncertainty bounds on the data (using either interval bounds or statistical confidence intervals). Sensitivity analysis of model input parameters on predictions is performed using an interface to the the DAKOTA toolkit. The model is calibrated using cell polarization data with uncertainty and then used to predict the local current distribution data. C1 [Carnes, Brian; Chen, Ken S.] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA. RP Carnes, B (reprint author), Sandia Natl Labs, Engn Sci Ctr, POB 5800, Albuquerque, NM 87185 USA. RI Hao, Liang/A-4457-2014 OI Hao, Liang/0000-0002-2584-490X NR 9 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5469-3 PY 2012 BP 773 EP 779 PG 7 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFI75 UT WOS:000320009200092 ER PT B AU Rosen, WG Banta, L Gorrell, M Restrepo, B Tucker, D AF Rosen, William G. Banta, Larry Gorrell, Megan Restrepo, Bernardo Tucker, David GP ASME TI RESPONSE SURFACES FOR KEY CONTROLLED VARIABLES IN A HYBRID SOLID OXIDE FUEL CELL/GAS TURBINE SYSTEM SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2011 LA English DT Proceedings Paper CT 9th International Conference on Fuel Cell Science, Engineering and Technology CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div AB Hybrid generation systems have been extensively modeled as a first step toward the development of automatic controls for the system. In most cases, it is impossible to validate mathematical models against real hardware because only a handful of hardware systems exist in the world. Data taken from the existing hardware has demonstrated significant nonlinearity, complex coupling between controlled variables, and sometimes non-intuitive behavior. This work exploits the capability of the HyPer hardware test bed at the National Energy Technology Laboratory (NETL) to generate data from a real recuperated gas turbine coupled with hardware simulations of a fuel cell cathode and appropriate ancillary equipment. Prior work has characterized the system only over a limited range of its operating envelope, due to the inability to manipulate multiple control inputs simultaneously. The work presented here fills the gaps using data from a 34 factorial experiment to generate quasi-continuous response surfaces describing the operating state space of the HyPer system. Polynomial correlation functions have been fitted to the data with excellent agreement. Relationships between the control inputs and critical state variables such as cathode mass flow, cathode temperature, turbine inlet and exhaust temperatures and other key system parameters are presented. C1 [Rosen, William G.; Banta, Larry; Gorrell, Megan; Restrepo, Bernardo; Tucker, David] Natl Energy Technol Lab, Morgantown, WV USA. RP Rosen, WG (reprint author), Natl Energy Technol Lab, Morgantown, WV USA. NR 15 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5469-3 PY 2012 BP 921 EP 928 PG 8 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFI75 UT WOS:000320009200111 ER PT B AU Gorrell, M Banta, L Rosen, W Restrepo, B Tucker, D AF Gorrell, Megan Banta, Larry Rosen, William Restrepo, Bernardo Tucker, David GP ASME TI CONTROL VALVE TRAJECTORIES FOR SOFC HYBRID SYSTEM STARTUP SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2011 LA English DT Proceedings Paper CT 9th International Conference on Fuel Cell Science, Engineering and Technology CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div AB Control and management of cathode airflow in a solid oxide fuel cell gas turbine hybrid power system was analyzed using the Hybrid Performance (HyPer) hardware simulation at the National Energy Technology (NETL), U.S. Department of Energy. This work delves into previously unexplored operating practices for HyPer, via simultaneous manipulation of bypass valves and the electric load on the generator. The work is preparatory to the development of a Multi-Input, Multi-Output (MIMO) controller for HyPer. A factorial design of experiments was conducted to acquire data for 81 different combinations of the manipulated variables, which consisted of three air flow control valves and the electric load on the turbine generator. From this data the response surface for the cathode airflow with respect to bypass valve positions was analyzed. Of particular interest is the control of airflow through the cathode during system startup and during large load swings. This paper presents an algorithm for controlling air mass flow through the cathode based on a modification of the steepest ascent method. C1 [Gorrell, Megan; Banta, Larry; Rosen, William; Restrepo, Bernardo; Tucker, David] Natl Energy Technol Lab, Morgantown, WV USA. RP Gorrell, M (reprint author), Natl Energy Technol Lab, Morgantown, WV USA. NR 12 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5469-3 PY 2012 BP 929 EP 935 PG 7 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFI75 UT WOS:000320009200112 ER PT B AU Restrepo, B Banta, LE Tucker, D AF Restrepo, Bernardo Banta, Larry E. Tucker, David GP ASME TI CHARACTERIZATION OF A SOLID OXIDE FUEL CELL GAS TURBINE HYBRID SYSTEM BASED ON A FACTORIAL DESIGN OF EXPERIMENTS USING HARDWARE SIMULATION SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2011 LA English DT Proceedings Paper CT 9th International Conference on Fuel Cell Science, Engineering and Technology CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div AB A full factorial experimental design and a replicated fractional factorial design were carried out using the Hybrid Performance (HyPer) project facility installed at the National Energy Technology Laboratory (NETL), U.S. Department of Energy to simulate gasifer/fuel cell/turbine hybrid power systems. The HyPer facility uses hardware in the loop (HIL) technology that couples a modified recuperated gas turbine cycle with hardware driven by a solid oxide fuel cell model. A 34 full factorial design (FFD) was selected to study the effects of four factors: cold-air, hot-air, bleed-air bypass valves, and the electric load on different parameters such as cathode and turbine inlet temperatures, pressure and mass flow. The results obtained, compared with former results where the experiments were made using one-factor-at-a-time (OFAT), show that no strong interactions between the factors are present in the different parameters of the system. This work also presents a fractional factorial design (ffd) 3(4-2) in order to analyze replication of the experiments. In addition, a new envelope is described based on the results of the design of experiments (DoE), compared with OFAT experiments, and analyzed in an off-design integrated fuel cell/gas turbine framework. This paper describes the methodology, strategy, and results of these experiments that bring new knowledge concerning the operating state space for this kind of power generation system. C1 [Restrepo, Bernardo; Banta, Larry E.; Tucker, David] Natl Energy Technol Lab, Morgantown, WV USA. RP Restrepo, B (reprint author), Natl Energy Technol Lab, Morgantown, WV USA. NR 9 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5469-3 PY 2012 BP 937 EP 948 PG 12 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFI75 UT WOS:000320009200113 ER PT B AU Tucker, D Hughes, DO Haynes, CL AF Tucker, David Hughes, Dimitri O. Haynes, Comas L. GP ASME TI IGFC Response to Initial Fuel Cell Load for Various Syngas Compositions SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2011 LA English DT Proceedings Paper CT 9th International Conference on Fuel Cell Science, Engineering and Technology CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div ID PLANAR AB The system response to an initial electric load of the fuel cell during the startup of a direct-fired fuel cell turbine power system was studied using the Hybrid Performance (Hyper) project hardware-based simulation facility at the U.S. Department of Energy, National Energy Technology Laboratory for a range of input fuel compositions. The facility was brought to a steady condition at a temperature deemed adequate to minimize stress on the fuel cell during the initial load transient. A 1D distributed fuel cell model operating in real-time was used to produce individual cell transient temperature profiles during the course of the load change. The process was conducted with humidified hydrogen, and then repeated with various syngas compositions representative of different gasifier technologies. The results provide insight into control strategy requirements for mitigation of expected fuel cell failure modes relevant to available gasifier technology. C1 [Tucker, David] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Tucker, D (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. NR 14 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5469-3 PY 2012 BP 961 EP 974 PG 14 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFI75 UT WOS:000320009200115 ER PT B AU Siefert, N Litster, S AF Siefert, Nicholas Litster, Shawn GP ASME TI EXERGY & ECONOMIC ANALYSIS OF CATALYTIC COAL GASIFIERS COUPLED WITH SOLID OXIDE FUEL CELLS SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY 2011 LA English DT Proceedings Paper CT 9th International Conference on Fuel Cell Science, Engineering and Technology CY AUG 07-10, 2011 CL Washington, DC SP ASME, Adv Energy Syst Div ID GASIFICATION AB The National Energy Technology Laboratory (NETL) has undertaken a review of coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide [1-2]. One way to achieve an overall system efficiency of greater than 60% is in a power plant in which a catalytic coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis and this is sent to a SOFC, with CO2 capture occurring either before or after the SOFC. Integration of a catalytic gasifier with a SOFC, as opposed to a conventional entrained flow gasifier, is improved due to (a) decreased exergy destruction inside a catalytic, steam-coal gasifier producing a high-methane content syngas, and (b) decreased exergy destruction in the SOFC due to the ability to operate at lower air stoichiometric flow ratios. For example, thermal management of the SOFC is greatly improved due to the steam-methane reforming in the anode of the fuel cell. C1 [Siefert, Nicholas] US DOE, Natl Energy Technol Lab, Morgantown, WV USA. RP Siefert, N (reprint author), US DOE, Natl Energy Technol Lab, Morgantown, WV USA. NR 12 TC 0 Z9 0 U1 2 U2 11 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5469-3 PY 2012 BP 975 EP 982 PG 8 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFI75 UT WOS:000320009200116 ER PT B AU Hendricks, TJ AF Hendricks, Terry J. GP ASME TI MICRO- AND NANO-TECHNOLOGIES: ROADMAP ENABLING MORE COMPACT, LIGHTWEIGHT THERMOELECTRIC POWER GENERATION AND COOLING SYSTEMS SO PROCEEDINGS OF THE ASME 9TH INTERNATIONAL CONFERENCE ON NANOCHANNELS, MICROCHANNELS AND MINICHANNELS 2011, VOL 2 LA English DT Proceedings Paper CT 9th International Conference on Nanochannels, Microchannels and Minichannels CY JUN 19-22, 2011 CL Univ Alberta Edmonton, Edmonton, CANADA SP Amer Soc Mech Engineers HO Univ Alberta Edmonton ID HEAT-TRANSFER; MERIT AB Advanced thermoelectric (TE) energy recovery and cooling systems have critical benefits in transportation, industrial process, and military applications because of rising or uncertain energy costs and subsequent need for energy efficiency, geopolitical uncertainties impacting basic energy supplies worldwide, and the need for electrified, distributed cooling and heating systems in automotive applications. Advanced TE energy recovery and cooling technologies will require high-performance heat transfer characteristics to achieve system performance targets and requirements. However, TE energy recovery systems generally have high-temperature thermal transfer requirements (i.e., as high as 750 - 800 degrees C), while TE cooling systems require low temperature thermal transfer (i.e., 25 degrees C - 100 degrees C). Investigations have compared system power and cooling benefits and system thermal integration challenges of energy recovery and cooling systems using microchannel heat exchangers to provide high heat transfer performance in both high-temperature, high-enthalpy energy streams and low-temperature cooling streams. This work explores the roadmap and vision for using micro-technology solutions integrated with advanced thermoelectric materials in advanced TB power generation and cooling systems. Integrated system-level TB power generation and cooling system analyses demonstrate that inter-related system-level requirements on weight, volume, and performance lead to derived requirements for micro-technology solutions. Nano-technologies and micro-technologies will be presented that demonstrate where and how these technologies impact TE system designs. Of course, micro-technology manufacturing cost is critical in all energy recovery and cooling applications. Recent progress in microtechnology cost-modeling elucidates and quantifies key cost-manufacturing interdependencies, relationships, and sensitivities that will be explored in this presentation. This provides critical information on manufacturing processes, production volume dependence, material selections, and ultimately pathways forward leading to low-cost microtechnology heat and mass transfer devices that improve advanced TE energy recovery and cooling system performance (specifically including weight and volume impacts). C1 MicroProd Breakthrough Inst, Pacific NW Natl Lab, Corvallis, OR 97302 USA. RP Hendricks, TJ (reprint author), MicroProd Breakthrough Inst, Pacific NW Natl Lab, 1000 NE Circle Blvd,Suite 11101, Corvallis, OR 97302 USA. NR 21 TC 0 Z9 0 U1 2 U2 7 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4464-9 PY 2012 BP 533 EP 542 PG 10 WC Engineering, Mechanical; Nanoscience & Nanotechnology SC Engineering; Science & Technology - Other Topics GA BFK78 UT WOS:000320286600066 ER PT B AU Wang, Y Cho, SC Mukherjee, PP AF Wang, Yun Cho, Sung Chan Mukherjee, Partha P. GP ASME TI MULTI-PHYSICS, MULTI-SCALE MODELING IN POLYMER ELECTROLYTE FUEL CELLS SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2010, VOL 11 LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 12-18, 2010 CL Vancouver, CANADA SP Amer Soc Mech Engineers ID PROTON-EXCHANGE MEMBRANE; MOLECULAR-DYNAMICS SIMULATIONS; DIRECT NUMERICAL-SIMULATION; REACTIVE FORCE-FIELD; GAS-DIFFUSION LAYER; PERFLUOROSULFONIC ACID MEMBRANE; STATISTICAL-MECHANICAL MODEL; LATTICE BOLTZMANN-EQUATION; CATHODE CATALYST LAYERS; WATER-CONTAINING NAFION AB In recent years, the polymer electrolyte fuel cell (PEFC) has emerged as a promising clean energy conversion device for various applications. One key research direction requiring significant breakthrough in order to alleviate performance limitations in PEFCs involves enhanced understanding of the coupled multi-physics transport phenomena and interfacial processes catering over multiple length scales in the constituent porous components. Multi-physics, multi-scale modeling is envisioned to hold the key toward enhanced understanding of the underlying structure-transport-performance interactions. In this article, a brief overview of several major aspects pertaining to the multi-physicochemical modeling of electrochemical reaction kinetics, species transport, two-phase heat and water transport, and phase change in the PEFC is presented. C1 [Wang, Yun] Univ Calif Irvine, Renewable Energy Resources Lab, Natl Fuel Cell Res Ctr, Irvine, CA 92697 USA. [Cho, Sung Chan] Univ Calif Irvine, Renewable Energy Resources Lab, Mech & Aerosp Engn Dept, Irvine, CA 92697 USA. [Mukherjee, Partha P.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Wang, Y (reprint author), Univ Calif Irvine, Renewable Energy Resources Lab, Natl Fuel Cell Res Ctr, Irvine, CA 92697 USA. NR 149 TC 50 Z9 63 U1 0 U2 14 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4448-9 PY 2012 BP 1 EP + PG 4 WC Computer Science, Software Engineering; Engineering, Mechanical; Transportation Science & Technology SC Computer Science; Engineering; Transportation GA BFL54 UT WOS:000320410000001 ER PT B AU Meunier, V Huang, JS Feng, G Qiao, R Sumpter, BG AF Meunier, Vincent Huang, Jingsong Feng, Guang Qiao, Rui Sumpter, Bobby G. GP ASME TI MODERN THEORIES OF CARBON-BASED ELECTROCHEMICAL CAPACITORS: A SHORT REVIEW SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2010, VOL 11 LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 12-18, 2010 CL Vancouver, CANADA SP Amer Soc Mech Engineers ID ELECTRIC DOUBLE-LAYER; TEMPLATED MESOPOROUS CARBONS; POISSON-BOLTZMANN EQUATION; ACTIVATED CARBONS; SUPERCAPACITOR APPLICATION; DIFFERENTIAL CAPACITANCE; UNIVERSAL MODEL; ENERGY-STORAGE; PORE STRUCTURE; SURFACE-AREA AB Theoretical models for electrochemical capacitors range from the original Helmholtz model and mean-field continuum models, to the surface curvature-based post-Helmholtz models, and to modern atomistic simulations. Here, we review current theoretical models that have been useful at shedding light on experimental findings but also provide predictive capabilities that are needed to achieve the optimization of supercapacitors. Due to the non-planar surface of materials at the nanoscale, the original Helmholtz model is gradually found to be outdated, in particular for carbon materials. We show that the surface Curvature-based models provide a better description of the interfacial behavior of carbon materials. C1 [Meunier, Vincent; Huang, Jingsong; Sumpter, Bobby G.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Feng, Guang; Qiao, Rui] Clemson Univ, Clemson, SC USA. RP Meunier, V (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RI Huang, Jingsong/A-2789-2008 OI Huang, Jingsong/0000-0001-8993-2506 FU Laboratory Directed Research and Development Program of ORNL; Division of Materials Science and Engineering, Basic Energy Sciences; U.S. Department of Energy and the Center for Nanophase Materials Sciences (CNMS); Division of Scientific User Facilities, U. S. Department of Energy; NSF [CBET-0756496]; ORISE FX The authors at ORNL gratefully acknowledge the support from the Laboratory Directed Research and Development Program of ORNL, the Division of Materials Science and Engineering, Basic Energy Sciences, U.S. Department of Energy and the Center for Nanophase Materials Sciences (CNMS), sponsored by the Division of Scientific User Facilities, U. S. Department of Energy. The authors at Clemson acknowledge the support from the NSF under Grant No. CBET-0756496. RQ was partly supported by an appointment to the HERE program for faculty at ORNL administered by ORISE. NR 67 TC 0 Z9 0 U1 2 U2 22 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4448-9 PY 2012 BP 21 EP + PG 4 WC Computer Science, Software Engineering; Engineering, Mechanical; Transportation Science & Technology SC Computer Science; Engineering; Transportation GA BFL54 UT WOS:000320410000003 ER PT B AU Smith, C Vedros, K AF Smith, Curtis Vedros, Kurt GP ASME TI Risk-Informed Decision Making for High-Consequence Outcomes SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2010, VOL 11 LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 12-18, 2010 CL Vancouver, CANADA SP Amer Soc Mech Engineers AB The issues faced during the operation of high-consequence facilities or systems require a blended quantitative and qualitative risk-informed approach to decision-making. For example, in the case of the operation of nuclear power plants or manned space missions, a risk-informed metric one might consider is the probability of loss of the plant or failure of the mission, where this probability is balanced by the consequences of the event. However, as we will discuss, one should focus on the observable event itself (e.g., the actual loss or failure) rather than the probability of the event. We will describe the general approach of making probabilistic decisions, including the focus on predictive distributions for outcomes such as a complex system failure. C1 [Smith, Curtis; Vedros, Kurt] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Smith, C (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. NR 2 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4448-9 PY 2012 BP 271 EP 276 PG 6 WC Computer Science, Software Engineering; Engineering, Mechanical; Transportation Science & Technology SC Computer Science; Engineering; Transportation GA BFL54 UT WOS:000320410000031 ER PT B AU Ickes, AM Wallner, T AF Ickes, Andrew M. Wallner, Thomas GP ASME TI IMPACT OF ETHANOL CONTENT ON FULL-LOAD COMBUSTION BEHAVIOR AND ENGINE CONTROL UNIT RESPONSE FOR A DIRECT-INJECTION, SPARK-IGNITION ENGINE SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2010, VOL 11 LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 12-18, 2010 CL Vancouver, CANADA SP Amer Soc Mech Engineers AB With its high octane number and potentially favorable greenhouse gas and energy balance characteristics, ethanol offers potential to replace portions of gasoline as a transportation fuel. System optimization to utilize the increased knock resistance and evaporative cooling effect of ethanol can increase the performance and efficiency of spark-ignition engines. Though basic engine emissions and performance effects of ethanol fuel blends have been widely reported, limited studies have examined the details of combustion behavior and the interplay between fuel ethanol content and the behavior of the engine control system. This paper quantifies the response of a production engine control unit to ethanol fuel blends, along with the subsequent combustion behavior and resulting engine performance at high-load operating conditions. Steady-state testing is conducted on a modern direct-injection, spark-ignition, four-cylinder engine using a base engine calibration at full-load (wide-open throttle) conditions across a range of engine speeds from 1500 to 4000 rpm. Test fuels include gasoline, neat ethanol, and an intermediate blend of gasoline and ethanol. A combination of low-speed engine measurements and crank angle based cylinder pressure measurements are used to demonstrate the impact of increasing fuel ethanol content on engine control parameters. Ethanol's increased knock resistance, demonstrated by its higher octane number, compared to gasoline makes combustion less susceptible to knock as ethanol fraction in the fuel increases. Accordingly, less spark retard is required to avoid knock at high engine load, translating to higher fuel conversion efficiency and increased specific power output. This effect is explored within the framework of a production engine calibration which uses active knock-avoidance feedback control. The relative contribution between a more aggressive engine calibration and increased fuel-evaporation charge-cooling to the increased efficiency and power resulting from increasing fuel ethanol percentage is also characterized. C1 [Ickes, Andrew M.; Wallner, Thomas] Argonne Natl Lab, Argonne, IL 60439 USA. RP Ickes, AM (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 18 TC 0 Z9 0 U1 0 U2 4 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4448-9 PY 2012 BP 561 EP 571 PG 11 WC Computer Science, Software Engineering; Engineering, Mechanical; Transportation Science & Technology SC Computer Science; Engineering; Transportation GA BFL54 UT WOS:000320410000064 ER PT B AU Devarakonda, M Tonkyn, R Tran, D Lee, JH Herling, D AF Devarakonda, Maruthi Tonkyn, Russell Tran, Diana Lee, Jong H. Herling, Darrell GP ASME TI MODELING COMPETITIVE ADSORPTION IN UREA-SCR CATALYSTS FOR EFFECTIVE LOW TEMPERATURE NOx CONTROL SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2010, VOL 11 LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 12-18, 2010 CL Vancouver, CANADA SP Amer Soc Mech Engineers ID HYDROCARBONS; REDUCTION; ABATEMENT; FE-ZSM5 AB Although the SCR technology exhibits higher NO reduction efficiency over a wider range of temperatures among the lean NO,, reduction technologies, further improvement in low-temperature performance is required to meet the future emission standards and to lower the system cost. In order to improve the catalyst technologies and optimize the system performance, it is critical to understand the reaction mechanisms and catalyst behaviors with respect to operating conditions. For example, it is well known that the ammonia coverage on catalyst surface is critical for NO reduction efficiency. However, the level of ammonia storage is influenced by competitive adsorption by other species, such as H2O and NO2. Moreover, hydrocarbon species that slip through the upstream DOC during the cold-start period can also inhibit the SCR performance, especially at low temperatures. Therefore, a one-dimensional kinetic model that can account for the effects of such competitive adsorption has been developed based on steady state surface isotherm tests on a commercial Fe-zeolite catalyst. The model is developed as a C language S-function and implemented in Matlab/Simulink environment. Rate kinetics of adsorption and desorption of each of the adsorbents are determined from individual adsorption tests and validated for a set of test conditions that had all the adsorbents in the feed gas. Using the competitive adsorption model, a kinetic model for standard-SCR reaction involving NH3 and H2O is developed and validated. C1 [Devarakonda, Maruthi; Tonkyn, Russell; Tran, Diana; Lee, Jong H.; Herling, Darrell] Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. RP Devarakonda, M (reprint author), Pacific NW Natl Lab, Inst Interfacial Catalysis, Richland, WA 99352 USA. EM maruthi.devarakonda@pnl.gov NR 24 TC 0 Z9 0 U1 1 U2 4 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4448-9 PY 2012 BP 587 EP 593 PG 7 WC Computer Science, Software Engineering; Engineering, Mechanical; Transportation Science & Technology SC Computer Science; Engineering; Transportation GA BFL54 UT WOS:000320410000067 ER PT B AU Bhadra, J Nampoothiri, PK Suthar, KJ Mahapatra, DR AF Bhadra, Jolly Nampoothiri, Pramod K. Suthar, Kamlesh J. Mahapatra, D. Roy GP ASME TI EFFECT OF CORE-SHELL STRUCTURE OF HYDROGEL BEADS ON THE THRESHOLD CONCENTRATION OF WATER FOR SWELLING AND ITS PH SENSITIVITY SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION 2010, VOL 2 LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 12-18, 2010 CL Vancouver, CANADA SP Amer Soc Mech Engineers ID GELS AB In this paper we investigate the effect of core-shell structure of Sodium Alginate based hydrogel beads and their size on certain activation threshold concentration of water for applications in swelling and pH sensing. This type of hydrogel experiences diffusive pressure due to transport of certain free charges across its interface with a solvent or electrolyte. This process is essentially a dynamic equilibrium of the electric force field, stress in the polymeric network with cage like structure and molecular diffusion including phase transformation due to pressure imbalance between the hydrogel and its surroundings. The effect of pH of the solvant on the swelling rate of these beads has been studied experimentally. A mathematical model of the swelling process has been developed by considering Nernst-Planck equation representing the migration of mobile ions and Er ions, Poisson equation representing the equilibrium of the electric field and mechanical field equation representing swelling of the gel. An attempt has been made to predict the experimentally observed phenomena using these numerical simulations. It is observed experimentally that certain minimum concentration called activation threshold concentration of the water molecules must be present in the hydrogel in order to activate the swelling process. For the required activation threshold concentration of water in the beads, the pH induced change in the rate of swelling is also investigated. This effect is analyzed for various different core-shell structures of the beads. C1 [Bhadra, Jolly; Nampoothiri, Pramod K.; Mahapatra, D. Roy] Indian Inst Sci, Dept Aerosp Engn, Bangalore 560012, Karnataka, India. [Suthar, Kamlesh J.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Bhadra, J (reprint author), Indian Inst Sci, Dept Aerosp Engn, Bangalore 560012, Karnataka, India. FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-ACO2-06CH11357] FX Use of the Center for Nanoscale Materials (CNM) at Argonne National Laboratory is supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-ACO2-06CH11357. NR 13 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4426-7 PY 2012 BP 283 EP + PG 2 WC Biotechnology & Applied Microbiology; Engineering, Biomedical; Engineering, Mechanical SC Biotechnology & Applied Microbiology; Engineering GA BFJ68 UT WOS:000320140200043 ER PT B AU Lambiase, NE Nelson, DJ Falcone, FJ Wahlstrom, MA De La Rosa, KG AF Lambiase, Nicole E. Nelson, Douglas J. Falcone, Frank J., III Wahlstrom, Michael A. De La Rosa, Kristen G. GP ASME TI USING ONLINE RESOURCES FOR AN ADVANCED VEHICLE TECHNOLOGY ENGINEERING COMPETITION SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE 2010), VOL 6 LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 12-18, 2010 CL Vancouver, CANADA SP Amer Soc Mech Engineers AB Advanced Vehicle Technology Competitions have adopted an online collaboration system to coordinate information sharing and dissemination among hundreds of people from numerous organizations and across multiple countries, including universities, competition organizers, and sponsors involved in the competitions. Microsoft Share Point is a collection of software elements that includes web browser based collaboration functions, process management modules, search modules and a document-management platform that serves as the foundation for this online collaboration system. Share Point is used to host a secure web site that accesses shared workspaces, information stores and documents, as well as threaded discussion forums. Users can manipulate controls called "web parts" or interact with pieces of content such as lists and document libraries. The overall team-based engineering education strategy is facilitated throughout the three year EcoCAR program by a two way flow of information between the teams and organizers. Safety and design rules are updated and posted for teams to access. Each team has their own secure document library area for posting required progress reports, design reports, safety documentation, and technical report deliverables that are scored as part of the competition. Scoring results with comments are returned to each team under the team specific site. Proprietary vehicle and component data are also made available, and can be restricted to only those teams that have approved non disclosure agreements with the sponsor. Specific subject and component-based forums are used for asynchronous, threaded exchange of information and questions to subject matter experts. Issues and solutions discovered by students are shared among all teams. The Share Point Online Collaboration system has significantly improved the information-sharing, evaluation and communications capabilities of the Advanced Vehicle Technology Competitions across a vast audience. This has enabled us to significantly enhance the technical scope of the program and improve the educational value to the university participants. C1 [Lambiase, Nicole E.; Falcone, Frank J., III; Wahlstrom, Michael A.; De La Rosa, Kristen G.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Lambiase, NE (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 1 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4443-4 PY 2012 BP 51 EP 57 PG 7 WC Education, Scientific Disciplines; Engineering, Multidisciplinary SC Education & Educational Research; Engineering GA BFM22 UT WOS:000320480600007 ER PT B AU Levy, E Bilirgen, H Kessen, M Hazel, D Carney, B AF Levy, Edward Bilirgen, Harun Kessen, Michael Hazel, Daniel Carney, Barbara GP ASME TI HEAT EXCHANGERS FOR COOLING BOILER FLUE GAS TO TEMPERATURES BELOW THE WATER VAPOR DEWPOINT SO PROCEEDINGS OF THE ASME POWER CONFERENCE - 2011, VOL 1 LA English DT Proceedings Paper CT ASME 2011 Power Conference CY JUL 12-14, 2011 CL Denver, CO SP ASME, Power Div AB Coal-fired power plants have traditionally operated with stack temperatures in the 300 degrees F range to minimize fouling and corrosion problems due to sulfuric acid condensation and to provide a buoyancy force to assist in the transport of flue gas up the stack. However, as an alternative, there would be benefits to cooling the flue gas to temperatures below the water vapor and acid dew points, while capturing the condensed water vapor. This paper describes experimental results from a DOE and industry-funded project to develop condensing heat exchangers for application to coal-fired power plants. A system of condensing heat exchangers was designed, fabricated and tested using slip streams of boiler flue gas and experiments were performed to measure the effects of process parameters on rates of heat transfer and water vapor condensation. In addition, measurements were made to characterize the acid concentrations in the condensed water which collected on the heat exchanger tubes and to quantify the effects of the heat exchangers on flue gas mercury concentrations. C1 [Levy, Edward; Bilirgen, Harun; Kessen, Michael; Hazel, Daniel] Lehigh Univ, Energy Res Ctr, 117 ATLSS Dr, Bethlehem, PA 18015 USA. [Carney, Barbara] Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Levy, E (reprint author), Lehigh Univ, Energy Res Ctr, 117 ATLSS Dr, Bethlehem, PA 18015 USA. EM EKL0@Lehigh.edu FU U.S. Depai Unent of EnergY [DENT0005648] FX This conference paper was prepared with the support of the U.S. Depai Unent of Energy, under Award No. DENT0005648. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the DOE. The authors are also grateful to Southern Company for providing technical input and to Southern Company and the Pennsylvania Infrastructure Technology Alliance for providing partial funding. Finally, special thanks to Jason Thompson and Zheng Yao for their assistance with the slip stream field tests. NR 9 TC 0 Z9 0 U1 1 U2 9 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4459-5 PY 2012 BP 393 EP + PG 3 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA BFI65 UT WOS:000320008200051 ER PT B AU Sullivan, EJ Anderson, MT Norris, W AF Sullivan, Edmund J. Anderson, Michael T. Norris, Wallace BE Cheta, A TI IN-SERVICE INSPECTION ULTRASONIC TESTING OF REACTOR PRESSURE VESSEL WELDS FOR ASSESSING FLAW DENSITY AND SIZE DISTRIBUTION PER 10 CFR 50.61A, ALTERNATE FRACTURE TOUGHNESS REQUIREMENTS FOR PROTECTION AGAINST PRESSURIZED THERMAL SHOCK SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 7 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB The U.S. Nuclear Regulatory Commission (NRC) completed a research program that concluded that the risk of through-wall cracking of a reactor pressure vessel (RPV) due to a pressurized thermal shock (PTS) event is much lower than previously estimated. The NRC subsequently developed a rule, 50.61a, published on January 4, 2010, entitled "Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events." The 50.61a rule, which is optional, requires licensees to analyze the results from periodic volumetric examinations required by the American Society of Mechanical Engineers (ASME) Code. These analyses are intended to determine if the actual flaw density and size distribution in the licensee's reactor vessel beltline welds are bounded by the flaw density and size distribution values used in the PTS technical basis. Under a contract with the NRC, Pacific Northwest National Laboratory has been working on a program to assess the ability of current inservice inspection ultrasonic testing (UT) techniques, as qualified through the ASME Code to detect small fabrication or inservice-induced flaws located in RPV welds and adjacent base materials. As part of this effort, the investigators have pursued an evaluation, based on the available information, of the capability of UT to provide flaw density/distribution inputs for making RPV weld assessments in accordance with 50.61a. This paper presents the results of an evaluation of data from the 1993 Browns Ferry Nuclear Plant, Unit 3, "Spirit of Appendix VIII reactor vessel examination," a comparison of the flaw density/distribution from this data with the distribution in 50.61a, possible reasons for differences, and plans and recommendations for further work in this area. C1 [Sullivan, Edmund J.; Anderson, Michael T.] Pacific Northwest Natl Lab, Richland, WA 99352 USA. [Norris, Wallace] US Nucl Regulatory Commiss, Rockville, MD USA. RP Sullivan, EJ (reprint author), Pacific Northwest Natl Lab, Richland, WA 99352 USA. EM Edmund.Sullivan@pnl.gov; Michael.Anderson@pnl.gov; Wallace.Norris@nrc.gov NR 7 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4457-1 PY 2012 BP 125 EP + PG 3 WC Engineering, Mechanical SC Engineering GA BFL61 UT WOS:000320411500018 ER PT B AU Gupta, N Han, ZH AF Gupta, Narendra Han, Zenghu BE Cheta, A TI OPERATIONS, APPLICATIONS, AND COMPONENTS Toxic Substances: Storage and Transportation SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 7 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div C1 [Gupta, Narendra] Savannah River Natl Lab, Savannah, GA USA. [Han, Zenghu] Argonne Natl Lab, Argonne, IL USA. RP Gupta, N (reprint author), Savannah River Natl Lab, Savannah, GA USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4457-1 PY 2012 BP 345 EP 345 PG 1 WC Engineering, Mechanical SC Engineering GA BFL61 UT WOS:000320411500049 ER PT B AU Gupta, NK AF Gupta, Narendra K. BE Cheta, A TI Thermal Analysis of a 9975 Package in a Facility Fire Accident SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 7 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB Surplus plutonium bearing materials in the U.S. Department of Energy (DOE) complex are stored in the 3013 containers that are designed to meet the requirements of the DOE standard DOE-STD-3013. The 3013 containers are in turn packaged inside 9975 packages that are designed to meet the NRC 10 CFR Part 71 regulatory requirements for transporting the Type B fissile materials across the DOE complex.([1]) The design requirements for the hypothetical accident conditions (HAC) involving a fire are given in 10 CFR 71.73. The 9975 packages are stored at the DOE Savannah River Site in the K-Area Material Storage (KAMS) facility for long term of up to 50 years. The design requirements for safe storage in KAMS facility containing multiple sources of combustible materials are far more challenging than the HAC requirements in 10 CFR 71.73. While the 10 CFR 71.73 postulates an HAC fire of 1475 F and 30 minutes duration, the facility fire calls for a fire of 1500 F and 86 minutes duration. This paper describes a methodology and the analysis results that meet the design limits of the 9975 components and demonstrate the robustness of the 9975 package. C1 Savannah River Natl Lab, Aiken, SC 29808 USA. RP Gupta, NK (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM nick.gupta@srnl.doe.gov NR 5 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4457-1 PY 2012 BP 347 EP 353 PG 7 WC Engineering, Mechanical SC Engineering GA BFL61 UT WOS:000320411500050 ER PT B AU Askew, NM Laurinat, JE Hensel, SJ AF Askew, N. M. Laurinat, J. E. Hensel, S. J. BE Cheta, A TI HYDROGEN CONCENTRATIONS DURING STORAGE OF 3013 OXIDE SAMPLES SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 7 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div DE Hydrogen Generation; Plutonium Oxide Storage AB As part of a surveillance program intended to ensure the safe storage of plutonium bearing nuclear materials in the Savannah River Site (SRS) K-Area Materials Storage, samples of these materials are shipped to Savannah River National Laboratory (SRNL) for analysis. These samples are in the form of solids or powders which will have absorbed moisture. Potentially flammable hydrogen gas is generated due to radiolysis of the moisture. The samples are shipped for processing after chemical analysis. To preclude the possibility of a hydrogen deflagration or detonation inside the shipping containers, the shipping times are limited to ensure that hydrogen concentration in the vapor space of every layer of confinement is below the lower flammability limit of 4 volume percent (vol%) [1]. This study presents an analysis of the rate of hydrogen accumulation due to radiolysis and calculation of allowable shipping times for typical K-Area materials. C1 [Askew, N. M.; Laurinat, J. E.; Hensel, S. J.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Askew, NM (reprint author), Savannah River Natl Lab, Savannah River Site, Aiken, SC 29808 USA. EM neal.askew@srnl.doe.gov; james.laurinat@srnl.doe.gov; steve.hensel@srnl.doe.gov NR 8 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4457-1 PY 2012 BP 355 EP 359 PG 5 WC Engineering, Mechanical SC Engineering GA BFL61 UT WOS:000320411500051 ER PT B AU Watkins, RW Leduc, DR Smith, AC AF Watkins, Robert W. Leduc, Daniel R. Smith, Allen C. BE Cheta, A TI RADIOACTIVE MATERIAL PACKAGING TORQUE REQUIREMENTS COMPLIANCE SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 7 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB Shipping containers used to transport radioactive material (RAM) in commerce employ a variety of closure mechanisms. Often, these closure mechanisms require a specific amount of torque be applied to a bolt, nut or other threaded fastener. It is important that the required preload is achieved so that the package certification testing and analysis is not invalidated for the purpose of protecting the public, workers, and environment. Torque compliance as a means of ensuring closure preload, is a major factor in accomplishing the package functions of confinement/containment, sub-criticality, and shielding. This paper will address the importance, as a matter of operational practice, of applying proper torque to package closures, discuss torque value nomenclature, and present one methodology to ensure torque compliance is achieved. C1 [Watkins, Robert W.; Leduc, Daniel R.; Smith, Allen C.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Watkins, RW (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. NR 2 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4457-1 PY 2012 BP 361 EP 364 PG 4 WC Engineering, Mechanical SC Engineering GA BFL61 UT WOS:000320411500052 ER PT B AU Smith, AC Gupta, N AF Smith, Allen C. Gupta, Narendra BE Cheta, A TI Issues Associated with Safe Packaging and Transport of Nanoparticles SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 7 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB Nanoparticles have long been recognized a hazardous substances by personnel working in the field. They are not, however, listed as a separate, distinct category of dangerous goods at present. As dangerous goods or hazardous substances, they require packaging and transportation practices which parallel the established practices for hazardous materials transport. Pending establishment of a distinct category for such materials by the Department of Transportation, existing consensus or industrial protocols must be followed. Action by DOT to establish appropriate packaging and transport requirements is recommended C1 [Smith, Allen C.; Gupta, Narendra] Savannah River Nucl Solut, Savannah River Natl Lab, Aiken, SC 29808 USA. RP Smith, AC (reprint author), Savannah River Nucl Solut, Savannah River Natl Lab, Aiken, SC 29808 USA. EM acdocsmith@aol.com; nick.gupta@srnl.doe.gov NR 8 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4457-1 PY 2012 BP 365 EP 368 PG 4 WC Engineering, Mechanical SC Engineering GA BFL61 UT WOS:000320411500053 ER PT B AU Smith, AC Gupta, N AF Smith, Allen C. Gupta, Narendra BE Cheta, A TI Containment Vessel Temperature for Pu-238 Heat Source Container Under Ambient, Free Convection and Low Emissivity Cooling Conditions SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 7 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB The EP-61 primary containment vessel of the 5320 shipping package has been used for storage and transportation of Pu-238 plutonium oxide heat source material. For storage, the material in its convenience canister, called EP-60, is placed in the EP-61 and sealed by two threaded caps with elastomer O-ring seals. When the package is shipped, the outer cap is seal welded to the body. While stored, the EP-61s are placed in a cooling water bath. In preparation for welding, several containers are removed from storage and staged to the welding booth. The significant heat generation of the contents, and resulting rapid rise in component temperature necessitates special handling practices. The test described here was performed to determine the temperature rise with time and peak temperature attained for an EP-61 with 203 watts of internal heat generation, upon its removal from the cooling water bath. C1 [Smith, Allen C.; Gupta, Narendra] Savannah River Nucl Solut, Savannah River Natl Lab, Aiken, SC 29808 USA. RP Smith, AC (reprint author), Savannah River Nucl Solut, Savannah River Natl Lab, Aiken, SC 29808 USA. EM acdocsmith@aol.com; nick.gupta@srnl.doe.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4457-1 PY 2012 BP 369 EP 375 PG 7 WC Engineering, Mechanical SC Engineering GA BFL61 UT WOS:000320411500054 ER PT B AU Abramczyk, G Shuler, J Nathan, SJ Smith, AC AF Abramczyk, Glenn Shuler, James Nathan, Steven J. Smith, Allen C. BE Cheta, A TI Case Study of Certification of Small Quantities of RAM - Comparison with SGQ Concept SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 7 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials, are significantly less hazardous than large amounts of the same materials. The essential functional requirements for RAM packaging are containment of the material, ensuring sub-criticality, and ensuring that the radiation hazard of the package, as represented by the radiation dose for the package, is within the regulatory limits. Knowledge of the composition of the material being shipped is also required. By placing the contents in a containment vessel which is helium leaktight, and limiting the mass so that subcriticality is ensured, the first two requirements are readily met. Some materials emit sufficiently strong photon radiation that a small amount of material can yield a large dose rate. Foreknowledge of the dose rate which will be present for a proposed content is a challenging issue for the SGQ approach. Issues associated with certification for several cases of contents which fall within the SGQ envelop are discussed. C1 [Abramczyk, Glenn; Smith, Allen C.] Savannah River Nucl Solut, Savannah River Natl Lab, Aiken, SC 29896 USA. [Shuler, James] Packaging Certificat Program, US Dept Energy, Washington, DC 20585 USA. RP Abramczyk, G (reprint author), Savannah River Nucl Solut, Savannah River Natl Lab, Aiken, SC 29896 USA. EM glenn.abramczyk@srnl.doe.gov; James.Shuler@em.doe.gov; steve.nathan@srs.gov; acdocsmith@aol.com NR 4 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4457-1 PY 2012 BP 377 EP + PG 2 WC Engineering, Mechanical SC Engineering GA BFL61 UT WOS:000320411500055 ER PT B AU Han, ZH Shah, VN Liu, YY AF Han, Zenghu Shah, Vikram N. Liu, Yung Y. BE Cheta, A TI Dynamic Structural Analysis of the Model 9979 Type AF Shipping Packaging SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 7 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB This paper presents the dynamic structural analysis results of Model 9979 Type AF packaging under hypothetical accident conditions. The submitted compliance documentation, Safety Analysis Report for Packaging Model 9979, with the regulatory requirements in 10 CFR 71.73 was based on testing five full-scale prototype units by the Savannah River National Laboratory. According to the test results under accident conditions, the 55-gallon outer drum maintained structural integrity and retained the inner 30-gallon drum, while the 30-gallon drum maintained its confinement of the contents. However, we identified several structural-related issues during our technical evaluation of the report -- specifically, whether the structural tests were performed under the worst conditions and/or in the worst test sequence that would yield the most cumulative damage to the packaging. These structural-related issues were evaluated using the finite-element code ABAQUS. The dynamic structural analysis results show that a packaging with the full payload would indeed experience more damage during the drop test than a packaging without the payload. The analysis results also indicate that a corner drop of a fully loaded packaging, followed by a corner crush test, is the worst test sequence and results in highly localized plastic deformation of the 55-gallon outer drum, but no loss of its structural integrity. Both the test results and the dynamic structural analysis results demonstrated that the structural design and performance of the 9979 packaging are acceptable. C1 [Han, Zenghu; Shah, Vikram N.; Liu, Yung Y.] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. RP Han, ZH (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, 9700 S Cass Ave, Argonne, IL 60439 USA. NR 2 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4457-1 PY 2012 BP 381 EP 386 PG 6 WC Engineering, Mechanical SC Engineering GA BFL61 UT WOS:000320411500056 ER PT B AU Gelder, LF AF Gelder, Lawrence F. BE Cheta, A TI IMPLEMENTATION OF THE ASME CODE AND NQA-1 IN US DEPARTMENT OF ENERGY PACKAGING CERTIFICATION PROGRAM TRAINING COURSES SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 7 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB Under the authorization of the Department of Transportation, per 49 CFR Part 173.7(d), Type B and fissile radioactive materials packagings made by or under the direction of the U.S. Department of Energy (DOE) may be used for the transportation of Class 7 materials when evaluated, approved, and certified by DOE against packaging standards equivalent to those specified in 10 CFR Part 71. The DOE certificate is issued on the basis of a safety analysis report of the package design and application. The applicant must demonstrate to DOE the package meets the standards in the 10 CFR Part 71. Since the Type B and fissile radioactive materials packaging standards specified in 10 CFR Part 71 are performance based standards, guides and other tools are necessary to demonstrate how a package design meets the standards. Two essential tools used by packaging applicants and reviewers to quantify and demonstrate compliance with the safety standards/requirements of the CFR are the ASME Boiler and Pressure Vessel (B&PV) Code and ASME NQA-1. The DOE Packaging Certification Program develops and sponsors training courses for packaging applicants and reviewers. Many of these courses are required training by DOE for persons that manage or prepare safety analysis reports for package designs (i.e., applications) submitted to the DOE for certification. The ASME B&PV Code and NQA-1 are ubiquitous in the DOE core training courses. This paper provides an overview how the ASME B&PV Code and NQA-1 are implemented in DOE Packaging Certification Program training courses. C1 Savannah River Natl Lab, Aiken, SC USA. RP Gelder, LF (reprint author), Savannah River Natl Lab, Aiken, SC USA. NR 7 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4457-1 PY 2012 BP 395 EP 398 PG 4 WC Engineering, Mechanical SC Engineering GA BFL61 UT WOS:000320411500058 ER PT B AU Bajwa, CS Easton, EP Adkins, H Cuta, J Klymyshyn, N Suffield, S AF Bajwa, Christopher S. Easton, Earl P. Adkins, Harold Cuta, Judith Klymyshyn, Nicholas Suffield, Sarah BE Cheta, A TI Severe Transportation Accidents: Do Used Nuclear Fuel Transportation Packages Survive Real World Accidents? SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 7 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB In 2007, a severe transportation accident occurred near Oakland, California, on a section of Interstate 880 known as the "MacArthur Maze," involving a gasoline tanker truck which impacted an overpass support column and burst into flames. The fire caused the collapse of portions of the Interstate 580 overpass onto the remains of the tractor-trailer. The U.S. Nuclear Regulatory Commission, with assistance from Pacific Northwest National Laboratory, the Center for Nuclear Waste Regulatory Analyses, the Southwest Research Institute, and the National Institute of Standards and Technology, examined the accident conditions in order to characterize the fire and collapse that occurred, analyzed material samples from the collapsed 1-580 overpass as well as the gasoline tanker truck, and developed a fire model of the accident. This was followed by development of a finite element analysis model to determine the impacts of this accident on the thermal and structural performance of a spent nuclear fuel (SNF) transportation package. The analysis results will be used to determine any potential regulatory implications related to the safe transport of SNF in the U.S. This paper provides a summary of this effort and presents some preliminary results and conclusions. C1 [Bajwa, Christopher S.; Easton, Earl P.] US Nucl Regulatory Commiss, Washington, DC 20005 USA. [Adkins, Harold; Cuta, Judith; Klymyshyn, Nicholas; Suffield, Sarah] Pacif NW Natl Lab, Richland, WA 99352 USA. RP Bajwa, CS (reprint author), US Nucl Regulatory Commiss, Washington, DC 20005 USA. NR 14 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4457-1 PY 2012 BP 399 EP + PG 3 WC Engineering, Mechanical SC Engineering GA BFL61 UT WOS:000320411500059 ER PT B AU Sitaraman, S Kim, S Biswas, D Hafner, R Anderson, B AF Sitaraman, Shiva Kim, Soon Biswas, Debdas Hafner, Ronald Anderson, Brian BE Cheta, A TI DEFINITION OF "SMALL GRAM QUANTITY CONTENTS" FOR TYPE B RADIOACTIVE MATERIAL TRANSPORTATION PACKAGES: ACTIVITY-BASED CONTENT LIMITATIONS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 7 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB This paper presents a compendium of allowable masses for a variety of gamma and neutron emitting isotopes (with varying impurity levels of beryllium in some of the actinide isotopes) that, when loaded in an unshielded radioactive material transportation packaging, do not result in an external dose rate on the surface of the package that exceeds 190 mrem/hr (190 mrem/hr was chosen to provide 5% conservatism relative to the regulatory limit). These mass limits define the term "Small Gram Quantity" (SGQ) contents in the context of radioactive material transportation packages. The term SGQ is isotope-specific and pertains to contents in radioactive material transportation packages that do not require shielding and still satisfy the external dose rate requirements. Since these calculated mass limits are for contents without shielding, they are conservative for packaging materials that provide some limited shielding or if the contents are placed into a shielded package. Two sets of mass limit results are presented: (1) mass limits calculated with a "voided sphere" model, and (2) mass limits calculated with the unshielded radioactive material transportation packaging Model 9977-96. C1 [Sitaraman, Shiva; Kim, Soon; Biswas, Debdas; Hafner, Ronald; Anderson, Brian] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Sitaraman, S (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. NR 9 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4457-1 PY 2012 BP 439 EP 446 PG 8 WC Engineering, Mechanical SC Engineering GA BFL61 UT WOS:000320411500063 ER PT B AU Sullivan, EJ Anderson, MT AF Sullivan, Edmund J. Anderson, Michael T. BE Bezensek, B Hasegawa, K Scarth, DA TI IMPLEMENTATION OF ASME CODE, SECTION XI, CODE CASE N-770, ON ALTERNATIVE EXAMINATION REQUIREMENTS FOR CLASS 1 BUTT WELDS FABRICATED WITH ALLOY 82/182 SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE VOL 1: CODES AND STANDARDS LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB In May 2010, the U.S. Nuclear Regulatory Commission (NRC) issued a proposed notice of rulemaking (75 FR 24324) [1] that includes a new section to its rules to require licensees to implement ASME Code Case N=770, "Alternative Examination Requirements and Acceptance Standards for Class 1 PWR Piping and Vessel Nozzle Butt Welds Fabricated with UNS N06082 or UNS W86182 Weld Filler Material With or Without the Application of Listed Mitigation Activities, Section XI, Division 1," [2] with 15 conditions. Code Case N-770 contains baseline and inservice inspection (ISI) requirements for unmitigated Alloy, 82/182 butt welds and preservice and ISI requirements for mitigated Alloy 82/182 butt welds. The NRC stated that application of ASME Code Case N-770 is necessary because the inspections currently required by the ASME Code, Section XI, were not written to address stress corrosion cracking of Alloy 82/182 butt welds, and the safety consequences of inadequate inspections can be significant. The NRC expects to issue the final rule incorporating this Code Case into its regulations toward the middle of 2011. This paper discusses the new examination requirements, the conditions that NRC proposed to impose, and potential areas of concern with implementation of the new Code Case. C1 [Sullivan, Edmund J.; Anderson, Michael T.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Sullivan, EJ (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Edmund.Sullivan@pnl.gov; Michael.Anderson@pnl.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4451-9 PY 2012 BP 177 EP 181 PG 5 WC Engineering, Mechanical SC Engineering GA BFL55 UT WOS:000320410100021 ER PT B AU Crawford, SL Doctor, SR Cinson, AD Watts, MW Moran, TL Anderson, MT AF Crawford, Susan L. Doctor, Steven R. Cinson, Anthony D. Watts, Michael W. Moran, Traci L. Anderson, Michael T. BE Bezensek, B Hasegawa, K Scarth, DA TI ASSESSMENT OF NDE METHODS TO DETECT LACK OF FUSION IN HDPE BUTT FUSION JOINTS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE VOL 1: CODES AND STANDARDS LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, were conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provided information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test for determining joint integrity. A series of butt joints were fabricated in 3408, 12-inch (30.5-cm) IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer diameter (OD) weld beads were removed for microwave evaluation and the pipes ultrasonically re-evaluated. In two of the six pipes, both the outer and inner diameter (ID) weld beads were removed and the pipe joints re-evaluated. Some of the pipes were sectioned and the joints destructively evaluated with the high-speed tensile test and the side-bend test. The fusion parameters, nondestructive and destructive evaluation results have been correlated to validate the effectiveness of what each NDE technology detects and what each does not detect based on the limited testing that was conducted. No single NDE method detected all of the lack-of-fusion flaws; further a combination of NDE methods did not detect all of the flaws. C1 [Crawford, Susan L.; Doctor, Steven R.; Cinson, Anthony D.; Watts, Michael W.; Moran, Traci L.; Anderson, Michael T.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Crawford, SL (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 4 TC 0 Z9 0 U1 3 U2 6 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4451-9 PY 2012 BP 343 EP 349 PG 7 WC Engineering, Mechanical SC Engineering GA BFL55 UT WOS:000320410100044 ER PT B AU Carter, P Sham, TL Jetter, RI AF Carter, Peter Sham, T. -L. (Sam) Jetter, R. I. BE Bezensek, B Hasegawa, K Scarth, DA TI SIMPLIFIED ANALYSIS METHODS FOR PRIMARY LOAD DESIGNS AT ELEVATED TEMPERATURES SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE VOL 1: CODES AND STANDARDS LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div ID BOUNDING THEOREMS; CREEP-RUPTURE AB The use of "simplified" (reference stress) analysis methods is discussed and illustrated for primary load high temperature design. Elastic methods are the basis of the ASME Section III, Subsection NH primary load design procedure. There are practical drawbacks with this current NH approach, particularly for complex geometries. and temperature gradients. The paper describes an approach which addresses these difficulties through the use of temperature-dependent elastic, perfectly-plastic analysis. Traditionally difficulties associated with discontinuity stresses, inelastic strain concentrations and multiaxiality are addressed. A procedure is identified to Provide insight into how this approach could be implemented. Though preliminary in nature, it is intended to provide a basis for further development and eventual Code adaptation. C1 [Carter, Peter] Stress Engn Serv, Cincinnati, OH USA. [Sham, T. -L. (Sam)] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Jetter, R. I.] Consultant, Pebble Beach, Los Angeles, CA USA. RP Carter, P (reprint author), Stress Engn Serv, Cincinnati, OH USA. EM peter.carter@stress.com; shamt@ornl.gov; bjetter@sbcglobal.net NR 15 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4451-9 PY 2012 BP 353 EP + PG 2 WC Engineering, Mechanical SC Engineering GA BFL55 UT WOS:000320410100046 ER PT B AU Dickson, T Yin, SJ Kirk, M Chou, HW AF Dickson, Terry Yin, Shengjun Kirk, Mark Chou, Hsuing-Wei BE Bezensek, B Hasegawa, K Scarth, DA TI DERIVATION OF THE NEW PRESSURIZED THERMAL SHOCK SCREENING CRITERIA SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE VOL 1: CODES AND STANDARDS LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB As a result of a multi-year, multi-disciplinary effort on the part of the United States Nuclear Regulatory Commission (USNRC), its contractors, and the nuclear industry, a technical basis has been established to support a risk-informed revision to pressurized thermal shock (PTS) regulations originally promulgated in the mid-1980s. The revised regulations provide alternative (optional) reference-temperature (RT)-based screening criteria, which is codified in 10 CFR 50.61(a). How the revised screening criteria were determined from the results of the probabilistic fracture mechanics (PFM) analyses will be discussed in this paper. C1 [Dickson, Terry; Yin, Shengjun] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. [Kirk, Mark] United States Nucl Regulatory Commiss, Off Nucl Regulatory Res, Rockville, MD USA. [Chou, Hsuing-Wei] Inst Nucl Energy Res INER, Taoyuan, Taiwan. RP Dickson, T (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. EM tyd@ornl.gov; sy5@ornl.gov; mark.kirk@nrc.gov; hwchou@iner.gov.tw NR 16 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4451-9 PY 2012 BP 545 EP + PG 3 WC Engineering, Mechanical SC Engineering GA BFL55 UT WOS:000320410100072 ER PT B AU Yin, SJ Stevens, GL Bass, BR Kirk, MT AF Yin, Shengjun (Sean) Stevens, Gary L. Bass, B. Richard Kirk, Mark T. BE Bezensek, B Hasegawa, K Scarth, DA TI STRESS AND FRACTURE MECHANICS ANALYSES OF BOILING WATER REACTOR AND PRESSURIZED WATER REACTOR PRESSURE VESSEL NOZZLES SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE VOL 1: CODES AND STANDARDS LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB This paper describes stress analysis and fracture mechanics work performed to assess boiling water reactor (BWR) and pressurized water reactor (PWR) nozzles located in the reactor pressure vessel (RPV) adjacent to the core beltline region. Various RPV nozzle geometries were investigated: 1. BWR recirculation outlet nozzle; 2. BWR core spray nozzle(3); 3. PWR inlet nozzle; 4. PWR outlet nozzle; and 5. BWR partial penetration instrument nozzle. C1 [Yin, Shengjun (Sean); Bass, B. Richard] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. [Stevens, Gary L.; Kirk, Mark T.] US Nucl Regulatory Commiss Off, Nucl Regulatory Res, Rockville, MD USA. RP Yin, SJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA. EM yins@ornl.gov; gary.stevens@nrc.gov; bassbr@ornl.gov; mark.kirk@nrc.gov NR 13 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4451-9 PY 2012 BP 963 EP + PG 2 WC Engineering, Mechanical SC Engineering GA BFL55 UT WOS:000320410100122 ER PT B AU Kirk, MT Stevens, GL Erickson, M Yin, SJ AF Kirk, Mark T. Stevens, Gary L. Erickson, Marjorie Yin, Shengjun (Sean) BE Bezensek, B Hasegawa, K Scarth, DA TI A PROPOSAL FOR THE MAXIMUM K-IC FOR USE IN ASME CODE FLAW AND FRACTURE TOUGHNESS EVALUATIONS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE VOL 1: CODES AND STANDARDS LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div ID STEELS; CURVE AB Nonmandatory Appendices A [1] and G [2] of Section XI of the ASME Code use the K-Ic curve (indexed to the material reference transition temperature, RTNDT) in reactor pressure vessel (RPV) flaw evaluations, and for the purpose of establishing RPV pressure-temperature (P-T) limits. Neither of these appendices places an upper-limit on the K-Ic value that may be used in these assessments. Over the years, it has often been suggested by some of the members of the ASME Section XI Code committees that are responsible for maintaining Appendices A and G that there is a practical upper limit of 200 ksi root in (220 MPa root m) [4]. This upper limit is not well recognized by all users of the ASME Code, is not explicitly documented within the Code itself, and the one source known to the authors where it is defended [4] relies on data that is either in error, or is less than 220 MPa root m. However, as part of the NRC/industry pressurized thermal shock (PTS) re-evaluation effort, empirical models were developed that propose common temperature dependencies for all ferritic steels operating on the upper shelf. These models relate the fracture toughness properties in the transition regime to those on the upper shelf and, combined with data for a wide variety of RPV steels and welds on which they are based, suggest that the practical upper limit of 220 MPa root m exceeds the upper shelf fracture toughness of most RPV steels by a considerable amount, especially for irradiated steels. In this paper, available models and data are used to propose upper bound limits of applicability on the K-Ic curve for use in ASME Code, Section XI, Nonmandatory Appendices A and G evaluations that are consistent with available data for RPV steels. C1 [Kirk, Mark T.; Stevens, Gary L.] US Nucl Regulatory Commiss, Off Nucl Regulatory Res, Rockville, MD 20852 USA. [Erickson, Marjorie] Phoenix Engn Assoc Inc, Davidsonville, MD USA. [Yin, Shengjun (Sean)] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Kirk, MT (reprint author), US Nucl Regulatory Commiss, Off Nucl Regulatory Res, Rockville, MD 20852 USA. EM mark.kirk@nrc.gov; gary.stevens@nrc.gov; erickson@peaiconsulting.com; yins@ornl.gov NR 17 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4451-9 PY 2012 BP 985 EP + PG 2 WC Engineering, Mechanical SC Engineering GA BFL55 UT WOS:000320410100124 ER PT B AU Dickson, T Kirk, M Focht, E AF Dickson, Terry Kirk, Mark Focht, Eric BE Mertiny, P TI MECHANISTIC INSIGHTS INTO RISK-INFORMED REVISION OF ASME SECTION XI - APPENDIX G SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 3: DESIGN AND ANALYSIS LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB The current regulations, as set forth by the United States Nuclear Regulatory Commission (NRC), to insure that light-water nuclear reactor pressure vessels (RPVs) maintain their structural integrity, throughout their operating life, when subjected to planned normal reactor startup (heat-up) and shutdown (cool-down) transients are specified in Appendix G to 10 CFR Part 50, which incorporates by reference Appendix G to Section XI of the American Society of Mechanical Engineers (ASME) Code. The technical basis for these regulations are generally considered to be conservative and some plants are finding it operationally difficult to heat-up and cool-down within the accepted limits. Consequently, the nuclear industry has developed, and submitted to the ASME Code for approval, an alternative risk-informed methodology that reduces the conservatism and is consistent with methods previously used to develop a risk-informed revision to the regulations for accidental transients such as pressurized thermal shock (PTS). The objective of the alternative methodology is to increase operational flexibility while continuing to provide reasonable assurance of adequate protection to public health and safety. The NRC and its contractor at Oak Ridge National Laboratory (ORNL) are reviewing the industry proposed risk-informed methodology. Previous results of this review, have been reported at PVP, and a NRC report summarizing all results is currently in preparation. The objective of this paper is to discuss and illustrate mechanistic insights into trends shown previously associated with normal cool-down. C1 [Dickson, Terry] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. [Kirk, Mark; Focht, Eric] United States Nucl Regulatory Commiss, Off Nucl Regulatory Res, Rockville, MD USA. RP Dickson, T (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. EM tyd@ornl.gov; mark.kirk@nrc.gov; eric.focht@nrc.gov FU Office of Nuclear Regulatory Research; U.S. Nuclear Regulatory Commission [1886-N653-3Y]; U.S. Department of Energy; Oak Ridge National Laboratory; UT-Battelle; LLC [DE-ACO5-000R22725]; U.S. NRC FX Research Sponsored by the Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission under Interagency Agreement 1886-N653-3Y with the U.S. Department of Energy. This paper was prepared by Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge; Tennessee 37831-6285, managed by UT-Battelle, LLC, for the U.S. Department of Energy, under contract DE-ACO5-000R22725. The views expressed herein do not represent an official position of the U.S. NRC. NR 14 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4453-3 PY 2012 BP 937 EP + PG 3 WC Engineering, Mechanical SC Engineering GA BFL08 UT WOS:000320340600113 ER PT B AU Pint, BA Brady, MP Yamamoto, Y Unocic, KA Matthews, WJ AF Pint, Bruce A. Brady, Michael P. Yamamoto, Yukinori Unocic, Kinga A. Matthews, Wendy J. GP ASME TI Evaluation of Commercial Alumina-Forming Austenitic Foil for Advanced Recuperators SO PROCEEDINGS OF THE ASME TURBO EXPO 2011, VOL 3 LA English DT Proceedings Paper CT ASME Turbo Expo 2011 CY JUN 06-10, 2011 CL Vancouver, CANADA SP ASME, Int Gas Turbine Inst ID STAINLESS-STEELS; WATER-VAPOR; OXIDATION; VOLATILIZATION; TECHNOLOGIES; RESISTANCE; ALLOYS AB A corrosion- and creep-resistant austenitic stainless steel has been developed for advanced recuperator applications. This fully austenitic alloy is optimized for creep strength while allowing the formation of a chemically-stable external alumina scale at temperatures up to 900 degrees C. An alumina scale eliminates long-term problems with the formation of volatile Cr oxyhydroxides in the presence of water vapor in exhaust gas. The first batch of commercially fabricated foil was produced with a composition selected from prior laboratory creep and oxidation results. The results for similar to 80 and similar to 105 mu m thick foil are compared to the prior laboratory-fabricated foils and other commercial candidates. Results from initial creep testing at 750 degrees C show comparable creep strength to other commercial Fe-base foil candidates. Laboratory exposures in humid air at 650 degrees similar to 800 degrees C have shown excellent oxidation resistance for this composition. Similar oxidation resistance was observed for sheet specimens of the first set of alloys exposed in a modified 65 kW microturbine for up to 6,000h. C1 [Pint, Bruce A.; Brady, Michael P.; Yamamoto, Yukinori; Unocic, Kinga A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Pint, BA (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM pintba@ornl.gov RI Pint, Bruce/A-8435-2008; Brady, Michael/A-8122-2008 OI Pint, Bruce/0000-0002-9165-3335; Brady, Michael/0000-0003-1338-4747 NR 31 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5463-1 PY 2012 BP 971 EP 976 PG 6 WC Engineering, Mechanical SC Engineering GA BFQ42 UT WOS:000320967100096 ER PT B AU Turchi, CS Ma, ZW Erbes, M AF Turchi, Craig S. Ma, Zhiwen Erbes, Michael GP ASME TI GAS TURBINE/SOLAR PARABOLIC TROUGH HYBRID DESIGNS SO PROCEEDINGS OF THE ASME TURBO EXPO 2011, VOL 3 LA English DT Proceedings Paper CT ASME Turbo Expo 2011 CY JUN 06-10, 2011 CL Vancouver, CANADA SP ASME, Int Gas Turbine Inst AB A strength of parabolic trough concentrating solar power (CSP) plants is the ability to provide reliable power by incorporating either thermal energy storage or backup heat from fossil fuels. Yet these benefits have not been fully realized because thermal energy storage remains expensive at trough operating temperatures and gas usage in CSP plants is less efficient than in dedicated combined cycle plants. For example, while a modern combined cycle plant can achieve an overall efficiency in excess of 55%; auxiliary heaters in a parabolic trough plant convert gas to electricity at below 40%. Thus, one can argue the more effective use of natural gas is in a combined cycle plant, not as backup to a CSP plant. Integrated solar combined cycle (ISCC) systems avoid this pitfall by injecting solar steam into the fossil power cycle; however, these designs are limited to about 10% total solar enhancement. Without reliable, cost-effective energy storage or backup power, renewable sources will struggle to achieve a high penetration in the electric grid. This paper describes a novel gas turbine / parabolic trough hybrid design that combines solar contribution of 57% and higher with gas heat rates that rival that for combined cycle natural gas plants. The design integrates proven solar and fossil technologies, thereby offering high reliability and low financial risk while promoting deployment of solar thermal power. C1 [Turchi, Craig S.; Ma, Zhiwen] Natl Renewable Energy Lab, Golden, CO USA. RP Turchi, CS (reprint author), Natl Renewable Energy Lab, Golden, CO USA. EM craig.turchi@nrel.gov; zhiwen.ma@nrel.gov NR 11 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5463-1 PY 2012 BP 989 EP 996 PG 8 WC Engineering, Mechanical SC Engineering GA BFQ42 UT WOS:000320967100098 ER PT B AU Unocic, RR Unocic, KA Pint, BA Lipschutz, MD AF Unocic, Raymond R. Unocic, Kinga A. Pint, Bruce A. Lipschutz, Mark D. GP ASME TI Characterization of Pre- and Post-Service Grain Boundary Phases in a Cast Austenitic Steel SO PROCEEDINGS OF THE ASME TURBO EXPO 2011, VOL 4 LA English DT Proceedings Paper CT ASME Turbo Expo 2011 CY JUN 06-10, 2011 CL Vancouver, CANADA SP ASME, Int Gas Turbine Inst AB Austenitic steel castings are currently being used in components for industrial gas turbine engines. Service experience has indicated a degradation of mechanical properties with extended exposures at elevated temperature. The purpose of this study was to characterize the grain boundary phases that develop during the casting processes as a likely explanation for the observed performance. In order to isolate these precipitates, a variety of electron microscopy characterization techniques were used to characterize their composition after various heat treatments and service exposure. In the baseline, as-cast and annealed condition, a discontinuous network of grain boundary metal carbides was observed. These precipitates coarsened during short-term annealing at 649 C and a denuded zone formed in the adjacent matrix. When the 38,600 h service-exposed material was analyzed, the grain boundaries were highly decorated with a more continuous film of grain boundary carbides as well as voids attributed to creep cavitation. In addition to carbides, acicular A1N precipitates were identified on the grain boundaries of the casting examined after service exposure. C1 [Unocic, Raymond R.; Unocic, Kinga A.; Pint, Bruce A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Unocic, RR (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 NR 6 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-5464-8 PY 2012 BP 755 EP 760 PG 6 WC Engineering, Mechanical SC Engineering GA BFO07 UT WOS:000320677400071 ER PT S AU Nguyen, TB Wong, SE Lightstone, FC AF Nguyen, Toan B. Wong, Sergio E. Lightstone, Felice C. BE Tari, LW TI Leveraging Structural Information for the Discovery of New Drugs: Computational Methods SO STRUCTURE-BASED DRUG DISCOVERY SE Methods in Molecular Biology LA English DT Article; Book Chapter DE Structure-based drug design; Structure-activity relationships; Multi-target single pharmacophore; Virtual screening; Docking; DNA gyrase ID HIGH-THROUGHPUT DOCKING; ANTIMICROBIAL SURVEILLANCE PROGRAM; MOLECULAR-DYNAMICS SIMULATIONS; EMPIRICAL SCORING FUNCTIONS; PROTEIN-LIGAND INTERACTIONS; DNA GYRASE INHIBITORS; BINDING FREE-ENERGIES; TOPOISOMERASE-IV; DIHYDROFOLATE-REDUCTASE; AUTOMATED DOCKING AB Escalating problems with drug resistance continue to compromise the effectiveness of commercial antibiotics, necessitating the search for novel classes of antimicrobial agents. To circumvent problems with resistance, a multitarget single-pharmacophore approach has been employed to discover inhibitors that possess balanced activity against multiple target enzymes. In this chapter, we examine the application of computational techniques, in particular, structure-based drug design approaches, to design new dual-targeting antibacterial agents against bacterial topoisomerases. C1 [Nguyen, Toan B.; Wong, Sergio E.; Lightstone, Felice C.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Nguyen, TB (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. NR 117 TC 0 Z9 0 U1 0 U2 5 PU HUMANA PRESS INC PI TOTOWA PA 999 RIVERVIEW DR, STE 208, TOTOWA, NJ 07512-1165 USA SN 1064-3745 BN 978-1-61779-519-0 J9 METHODS MOL BIOL JI Methods Mol. Biol. PY 2012 VL 841 BP 209 EP 234 DI 10.1007/978-1-61779-520-6_9 D2 10.1007/978-1-61779-520-6 PG 26 WC Biochemistry & Molecular Biology; Crystallography SC Biochemistry & Molecular Biology; Crystallography GA BFY21 UT WOS:000321875300010 PM 22222454 ER PT S AU Vatsavai, RR AF Vatsavai, Ranga Raju BE Vreeken, J Ling, C Zaki, MJ Siebes, A Yu, JX Goethals, B Webb, G Wu, X TI Rapid Damage eXplorer (RDX): A Probabilistic Framework for Learning Changes From Bitemporal Images (ICDM Demo Paper) SO 12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012) SE International Conference on Data Mining Workshops LA English DT Proceedings Paper CT 12th IEEE International Conference on Data Mining (ICDM) CY DEC 10-13, 2012 CL Brussels, BELGIUM SP IEEE, IEEE Comp Soc (CS), Natl Sci Fdn (NSF), FWO, IBM, SAS, Yahoo, NASA, Biside, KNIME, Univ Antwerpen, Univ Libre Bruxelles (ULB) AB Recent decade has witnessed major changes on the Earth, for example, deforestation, varying cropping and human settlement patterns, and crippling damages due to disasters. Accurate damage assessment caused by major natural and anthropogenic disasters is becoming critical due to increases in human and economic loss. This increase in loss of life and severe damages can be attributed to the growing population, as well as human migration to the disaster prone regions of the world. Rapid assessment of these changes and dissemination of accurate information is critical for creating an effective emergency response. Change detection using high-resolution satellite images is a primary tool in assessing damages, monitoring biomass and critical infrastructures, and identifying new settlements. In this demo, we present a novel supervised probabilistic framework for identifying changes using very high-resolution multispectral, and bitemporal remote sensing images. Our demo shows that the rapid damage explorer (RDX) system is resilient to registration errors and differing sensor characteristics. C1 Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA. RP Vatsavai, RR (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA. EM vatsavairr@ornl.gov NR 6 TC 1 Z9 1 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2375-9232 BN 978-0-7695-4925-5; 978-1-4673-5164-5 J9 INT CONF DAT MIN WOR PY 2012 BP 906 EP 909 DI 10.1109/ICDMW.2012.75 PG 4 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems SC Computer Science GA BFQ26 UT WOS:000320946500127 ER PT S AU Vatsavai, RR AF Vatsavai, Ranga Raju BE Vreeken, J Ling, C Zaki, MJ Siebes, A Yu, JX Goethals, B Webb, G Wu, X TI A Data Mining Framework For Monitoring Nuclear Facilities SO 12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012) SE International Conference on Data Mining Workshops LA English DT Proceedings Paper CT 12th IEEE International Conference on Data Mining (ICDM) CY DEC 10-13, 2012 CL Brussels, BELGIUM SP IEEE, IEEE Comp Soc (CS), Natl Sci Fdn (NSF), FWO, IBM, SAS, Yahoo, NASA, Biside, KNIME, Univ Antwerpen, Univ Libre Bruxelles (ULB) AB Nuclear proliferation is a major national security concern for many countries, especially to the United States. With more understanding and availability of nuclear technologies, and increasing persuasion of nuclear technologies by several new countries, it is increasingly becoming important to monitor the nuclear proliferation activities. For the past three years, we have been developing data mining algorithms to semantically annotate nuclear facilities and identify changes in man made structures using very high resolution images. In this paper, we summarize the recent progress and allude the audience to new opportunities. C1 Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Vatsavai, RR (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN USA. EM vatsavairr@ornl.gov NR 3 TC 2 Z9 2 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2375-9232 BN 978-0-7695-4925-5; 978-1-4673-5164-5 J9 INT CONF DAT MIN WOR PY 2012 BP 917 EP 917 DI 10.1109/ICDMW.2012.77 PG 1 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems SC Computer Science GA BFQ26 UT WOS:000320946500132 ER PT S AU Ndoye, M Kamath, C AF Ndoye, Mandoye Kamath, Chandrika BE Matthews, MB TI Extending MC-SURE to Denoise Sensor Data Streams SO 2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR) SE Conference Record of the Asilomar Conference on Signals Systems and Computers LA English DT Proceedings Paper CT 46th Asilomar Conference on Signals, Systems and Computers CY NOV 04-07, 2012 CL Pacific Grove, CA SP Naval Postgraduate Sch, ATK Miss Res, IEEE Signal Proc Soc AB We propose a method to adaptively denoise sensor data streams corrupted by noise that can be approximated as additive white Gaussian. This on-line filtering method is based on the Monte-Carlo Stein's Unbiased Risk Estimate (MC-SURE) algorithm, which enables a blind optimization of the denoising parameters for a wide class of filters. We first identify the ehallenges that arise as the MC-SURE algorithm is adapted to on-line data processing. We then propose a framework to address these challenges and demonstrate the application of the algorithm using real-world datasets. C1 [Ndoye, Mandoye; Kamath, Chandrika] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Ndoye, M (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM ndoye1@llnl.gov; kamath2@llnl.gov NR 8 TC 0 Z9 0 U1 1 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1058-6393 BN 978-1-4673-5051-8 J9 CONF REC ASILOMAR C PY 2012 BP 782 EP 786 PG 5 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO76 UT WOS:000320768400143 ER PT S AU Young, DP Brewer, J Chang, J Chou, TN Kvam, J Pugh, M AF Young, Derek P. Brewer, Jerry Chang, Jeannette Chou, Tina Kvam, Jacques Pugh, Matthew BE Matthews, MB TI Diffuse Mid-UV Communication in the Presence of Obscurants SO 2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR) SE Conference Record of the Asilomar Conference on Signals Systems and Computers LA English DT Proceedings Paper CT 46th Asilomar Conference on Signals, Systems and Computers CY NOV 04-07, 2012 CL Pacific Grove, CA SP Naval Postgraduate Sch, ATK Miss Res, IEEE Signal Proc Soc AB Communication using mid-ultraviolet radiation between 200 nm and 280 nm has received renewed attention due to advancements in UV LED emitters and unique propagation characteristics at these wavelengths. Atmospheric gases absorb light at mid-UV so that receivers or sensors operating on the earth's surface receive no interference from solar radiation. This so-called "solar-blind" region of the spectrum allows the use of single-photon detection techniques. Further, UV light is strongly scattered by molecules in the air, enabling non-line-of-sight ( NLOS) communication. We extend previous work in this area by incorporating angle-dependent Mie scattering into one of the standard propagation models, in an effort to include the effects of aerosols. Experimental results from outdoor measurements using a fog generator are also presented. C1 [Young, Derek P.; Brewer, Jerry; Chang, Jeannette; Chou, Tina; Kvam, Jacques; Pugh, Matthew] Sandia Natl Labs, Livermore, CA USA. RP Young, DP (reprint author), Sandia Natl Labs, Livermore, CA USA. NR 8 TC 2 Z9 2 U1 0 U2 2 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 1058-6393 BN 978-1-4673-5051-8 J9 CONF REC ASILOMAR C PY 2012 BP 1061 EP 1064 PG 4 WC Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFO76 UT WOS:000320768400195 ER PT S AU Cook, K Grinstein, G Whiting, M Cooper, M Havig, P Liggett, K Nebesh, B Paul, CL AF Cook, Kristin Grinstein, Georges Whiting, Mark Cooper, Michael Havig, Paul Liggett, Kristen Nebesh, Bohdan Paul, Celeste Lyn BE Santucci, G Ward, M TI VAST Challenge 2012: Visual Analytics for Big Data SO 2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST) SE IEEE Conference on Visual Analytics Science and Technology LA English DT Proceedings Paper CT IEEE Conference on Visual Analytics Science and Technology (VAST) CY OCT 14-19, 2012 CL Seattle, WA SP IEEE, IEEE Comp Soc, IEEE Visualizat & Graph Tech Comm (VGTC) DE Visual analytics; human information interaction; sense making; evaluation; metrics; contest AB The 2012 Visual Analytics Science and Technology (VAST) Challenge posed two challenge problems for participants to solve using a combination of visual analytics software and their own analytic reasoning abilities. Challenge 1 (C1) involved visualizing the network health of the fictitious Bank of Money to provide situation awareness and identify emerging trends that could signify network issues. Challenge 2 (C2) involved identifying the issues of concern within a region of the Bank of Money network experiencing operational difficulties utilizing the provided network logs. Participants were asked to analyze the data and provide solutions and explanations for both challenges. The data sets were downloaded by nearly 1100 people by the close of submissions. The VAST Challenge received 40 submissions with participants from 12 different countries, and 14 awards were given. C1 [Cook, Kristin; Whiting, Mark; Cooper, Michael] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Cook, K (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM kris.cook@pnnl.gov; grinstein@cs.uml.edu; mark.whiting@pnnl.gov; michael.cooper@pnnl.gov; paul.havig@wpafb.af.mil; kristen.liggett@wpafb.af.mil; banebes@nsa.gov; clpaul@nsa.gov NR 2 TC 7 Z9 7 U1 0 U2 7 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2325-9442 BN 978-1-4673-4753-2 J9 IEEE CONF VIS ANAL PY 2012 BP 251 EP 255 PG 5 WC Computer Science, Information Systems; Computer Science, Software Engineering; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFK70 UT WOS:000320279600043 ER PT S AU Harrison, L Laska, J Spahn, R Iannacone, M Downing, E Ferragut, EM Goodall, JR AF Harrison, Lane Laska, Jason Spahn, Riley Iannacone, Mike Downing, Evan Ferragut, Erik M. Goodall, John R. BE Santucci, G Ward, M TI situ: Situational Understanding and Discovery for Cyber Attacks SO 2012 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST) SE IEEE Conference on Visual Analytics Science and Technology LA English DT Proceedings Paper CT IEEE Conference on Visual Analytics Science and Technology (VAST) CY OCT 14-19, 2012 CL Seattle, WA SP IEEE, IEEE Comp Soc, IEEE Visualizat & Graph Tech Comm (VGTC) AB Our entry into the VAST 2012 Mini Challenge 2 is a streaming visual analytic system that scores events based on anomalousness and maliciousness and presents each event to the user in a user-defined groupings in animated small-multiple views. The anomaly detection algorithm identifies low probability events, supporting awareness regarding atypical traffic patterns on the network. The maliciousness classifier incorporates both situated knowledge of an environment (policy and machine roles) and domain knowledge (encoded in the IDS alerts). We discuss the visualization design and classification techniques, as well as provide examples of timely detection from the challenge dataset. C1 [Harrison, Lane; Laska, Jason; Spahn, Riley; Iannacone, Mike; Downing, Evan; Ferragut, Erik M.; Goodall, John R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Harrison, L (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM ltharri1@uncc.edu; laskaja@ornl.gov; spahnrb1@ornl.gov; iannaconemd@ornl.gov; epdowning@gmail.com; ferragutem@ornl.gov; jgoodall@ornl.gov NR 2 TC 2 Z9 2 U1 0 U2 1 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA SN 2325-9442 BN 978-1-4673-4753-2 J9 IEEE CONF VIS ANAL PY 2012 BP 307 EP 308 PG 2 WC Computer Science, Information Systems; Computer Science, Software Engineering; Engineering, Electrical & Electronic SC Computer Science; Engineering GA BFK70 UT WOS:000320279600069 ER PT B AU Gullerud, A Emery, JM Jamison, R AF Gullerud, Arne Emery, John M. Jamison, Ryan GP ASME TI COMPUTATIONAL ASSESSMENT OF BRITTLE FRACTURE IN GLASS-TO-METAL SEALS SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE 2010), VOL 9 LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 12-18, 2010 CL Vancouver, CANADA SP Amer Soc Mech Engineers AB Glass-to-metal seals are widely used in engineering applications, but are often plagued by cracking and loss of hermeticity despite design efforts to avoid these problems. Standard computational approaches typically rely on under-refined meshes and rule-of-thumb approaches that are not always effective. This paper investigates improvements to current practice in glass-to-metal seal design. First, material models with more extensive temperature dependence are used to enhance the accuracy of residual stress prediction. Second, a Weibull-statistics approach is adopted for the prediction of the likelihood of failure. These approaches are then applied to a simplified seal geometry The paper demonstrates that the application of these methods, especially the Weibull-statistics approach, have difficulties that need to be addressed before this proposed set of approaches can be effectively used for seal design. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. C1 [Gullerud, Arne] Sandia Natl Labs, Comp Struct Mech & Apps Dept, Albuquerque, NM 87185 USA. RP Gullerud, A (reprint author), Sandia Natl Labs, Comp Struct Mech & Apps Dept, POB 5800, Albuquerque, NM 87185 USA. EM asgulle@sandia.gov; jmemery@sandia.gov; rdjamis@sandia.gov NR 17 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4446-5 PY 2012 BP 161 EP 169 PG 9 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA BFM23 UT WOS:000320481000019 ER PT B AU Littlewood, DJ AF Littlewood, David J. GP ASME TI SIMULATION OF DYNAMIC FRACTURE USING PERIDYNAMICS, FINITE ELEMENT MODELING, AND CONTACT SO PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE 2010), VOL 9 LA English DT Proceedings Paper CT ASME International Mechanical Engineering Congress and Exposition (IMECE) CY NOV 12-18, 2010 CL Vancouver, CANADA SP Amer Soc Mech Engineers ID ELASTICITY THEORY AB Peridynamics is a nonlocal extension of classical solid mechanics that allows for the modeling of bodies in which discontinuities occur spontaneously. Because the peridynamic expression for the balance of linear momentum does not contain spatial derivatives and is instead based on an integral equation, it is well suited for modeling phenomena involving spatial discontinuities such as crack formation and fracture. In this study, both peridynamics and classical finite element analysis are applied to simulate material response under dynamic blast loading conditions. A combined approach is utilized in which the portion of the simulation modeled with peridynamics interacts with the finite element portion of the model via a contact algorithm. The peridynamic portion of the analysis utilizes an elastic-plastic constitutive model with linear hardening. The peridynamic interface to the constitutive model is based on the calculation of an approximate deformation gradient, requiring the suppression of possible zero-energy modes. The classical finite element portion of the model utilizes a Johnson-Cook constitutive model. Simulation results are validated by direct comparison to expanding tube experiments. The coupled modeling approach successfully captures material response at the surface of the tube and the emerging fracture pattern. C1 Sandia Natl Labs, Multiscale Dynam Mat Modeling Org 1435, Albuquerque, NM 87185 USA. RP Littlewood, DJ (reprint author), Sandia Natl Labs, Multiscale Dynam Mat Modeling Org 1435, POB 5800,MS 1322, Albuquerque, NM 87185 USA. EM djlittl@sandia.gov NR 14 TC 0 Z9 0 U1 0 U2 4 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4446-5 PY 2012 BP 209 EP 217 PG 9 WC Engineering, Mechanical; Mechanics SC Engineering; Mechanics GA BFM23 UT WOS:000320481000025 ER PT B AU Palmer, J Chu, D AF Palmer, Jeremy Chu, Dahwey GP ASME TI A PRACTICAL APPROACH FOR LOW-COST HERMETIC LID SEALING SO PROCEEDINGS OF THE ASME PACIFIC RIM TECHNICAL CONFERENCE AND EXHIBITION ON PACKAGING AND INTEGRATION OF ELECTRONIC AND PHOTONIC SYSTEMS, MEMS AND NEMS 2011, VOL 1 LA English DT Proceedings Paper CT ASME Pacific Rim Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Systems, MEMS and NEMS CY JUL 06-08, 2011 CL Portland, OR SP ASME, Japan Soc Mech Engineers AB Hermetic sealing of lids in ceramic microelectronic chip carriers is typically performed with eutectic solder in relatively large belt-style reflow furnaces. This process is characterized by 30 to 45-minute cycle times at temperatures above 350 C. An experimental study was undertaken with the goal of establishing a low-cost lid sealing method marked by a compact belt furnace with lower reflow temperature and lesser cycle time. This is particularly advantageous for GaAs devices which are limited to packaging process temperatures below 300 C. A series of instrumented test samples consisting of a representative die packaged in a HTCC leadless chip carrier (LCC) was prepared. Package lids were installed and sealed in a nitrogen environment with 80-20 Au-Sn lead-free solder under various cycle time and temperature conditions. Gross and fine leak testing confirmed hermeticity. Results indicate that practical sealing can be realized in the compact furnace apparatus with measurable reductions in temperature and cycle time. Seal performance is dependent upon package orientation, which suggests the process must be calibrated for unique package designs. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. C1 [Palmer, Jeremy; Chu, Dahwey] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Palmer, J (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. NR 4 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4461-8 PY 2012 BP 91 EP 93 PG 3 WC Engineering, Electrical & Electronic; Engineering, Mechanical SC Engineering GA BFJ69 UT WOS:000320140300011 ER PT B AU Valdiviez, R Sandoval, PP McNeil, WV AF Valdiviez, Robert Sandoval, Peter P. McNeil, Wendy V. BE Rodriguez, EA TI THE DESIGN, ANALYSIS, TESTING, AND USE OF A SMALL CONFINEMENT VESSEL FOR MATERIAL SHOCK PHYSICS EXPERIMENTS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 5 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB This paper describes the design, supporting analyses, fabrication, acceptance testing, and deployment of the Small Experiment Confinement Vessel (SECV). The vessel is used in a radiographic imaging facility for confining shock physics experiments where materials are driven to extreme loading conditions by the detonation of high explosives. The SECV provides an inexpensive means for confining a small shock physics experiment primarily due to its relatively simple design as compared to other confinement vessels. The main function of the SECV is to protect the nearby diagnostic equipment from damage by materials of the dynamic experiment. The vessel has been designed to the criteria of the ASME Boiler and Pressure Vessel Code, Section VIII, Division 3, Code Case 2564, with the exception of the materials of construction. The SECV is intended for reuse, with the total number of firings for any one vessel structure being primarily dependent on the accumulated wall damage. The main body of the SECV is made of pipe material per the American Petroleum Institute standard ANSI/API 5L. Machined end flange weldments are joined to the pipe body to enable the closure covers to be bolted to the body. The closure covers have various devices mounted to them, for example a manually actuated valve for venting the vessel interior of detonation gasses, and feed through devices for sending electrical and optical signals across the pressure boundary. C1 [Valdiviez, Robert; Sandoval, Peter P.; McNeil, Wendy V.] Los Alamos Nat Lab, Los Alamos, NM USA. RP Valdiviez, R (reprint author), Los Alamos Nat Lab, Los Alamos, NM USA. NR 8 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4455-7 PY 2012 BP 45 EP 54 PG 10 WC Engineering, Mechanical SC Engineering GA BFL59 UT WOS:000320410500008 ER PT B AU Baxter, LR Harris, SP AF Baxter, Lindsay R. Harris, Stephen P. BE Rodriguez, EA TI STATISTICAL SAMPLING FOR IN-SERVICE INSPECTION OF LIQUID WASTE TANKS AT THE SAVANNAH RIVER SITE SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 5 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB Savannah River Remediation, LLC (SRR) is implementing a statistical sampling strategy for in-service inspection (ISI) of liquid waste (LW) tanks at the United States Department of Energy's Savannah River Site (SRS) in Aiken, South Carolina. As a component of SRS's corrosion control program (CCP), the ISI program assesses tank wall structural integrity through the use of ultrasonic testing (UT). The statistical strategy for ISI is based on the random sampling of a number of vertically oriented unit areas, called "strips," within each tank. The number of strips to inspect was determined so as to attain, over time, a high probability of observing at least one of the worst 5% in terms of pitting and corrosion across all tanks. The probability estimation to determine the number of strips to inspect was performed using the hypergeometric distribution. Statistical tolerance limits for pit depth and corrosion rates were calculated by fitting the lognormal distribution to the data. In addition to the strip sampling strategy, a single strip within each tank was identified to serve as the baseline for a longitudinal assessment of the tank safe operational life. The statistical sampling strategy enables the ISI program to develop individual profiles of LW tank wall structural integrity that collectively provide a high confidence in their safety and integrity over operational lifetimes. C1 [Baxter, Lindsay R.; Harris, Stephen P.] Savannah River Natl Lab, Aiken, SC USA. RP Baxter, LR (reprint author), Savannah River Natl Lab, Aiken, SC USA. NR 5 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4455-7 PY 2012 BP 175 EP 184 PG 10 WC Engineering, Mechanical SC Engineering GA BFL59 UT WOS:000320410500023 ER PT B AU Crawford, SL Cinson, AD Moran, TL Prowant, MS Diaz, AA Anderson, MT AF Crawford, Susan L. Cinson, Anthony D. Moran, Traci L. Prowant, Matthew S. Diaz, Aaron A. Anderson, Michael T. BE Rodriguez, EA TI ULTRASONIC PHASED ARRAY EVALUATIONS OF IMPLANTED AND IN-SITU GROWN FLAWS IN CAST AUSTENITIC STAINLESS STEEL PRESSURIZER SURGE LINE PIPING SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 5 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB A set of circumferentially oriented thermal fatigue cracks (TFCs) were implanted into three cast austenitic stainless steel (CASS) pressurizer (PZR) surge-line specimen welds (pipe-to-elbow configuration) that were salvaged from a U.S. commercial nuclear power plant that had not been operated. Thus, these welds were fabricated using vintage CASS materials that were formed in the 1970s. Additionally, in-situ grown TFCs were placed in the adjacent CASS base material of one of these specimens. Ultrasonic phased-array responses from both types of flaws (implanted and in-situ grown) were analyzed for detection and characterization based on sizing and signal-to-noise determination. Multiple probes were employed covering the 0.8 to 2.0 MHz frequency range. To further validate the Pacific Northwest National Laboratory (PNNL) findings, an independent in-service inspection (ISI) supplier evaluated the flaws with their American Society of Mechanical Engineers (ASME) Code, Section XI, Appendix VIII-qualified procedure. The results obtained by PNNL personnel compared favorably to the ISI supplier results. All examined flaws were detected and sized within the ASME Code-allowable limits. C1 [Crawford, Susan L.; Cinson, Anthony D.; Moran, Traci L.; Prowant, Matthew S.; Diaz, Aaron A.; Anderson, Michael T.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Crawford, SL (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 2 TC 0 Z9 0 U1 1 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4455-7 PY 2012 BP 191 EP 197 PG 7 WC Engineering, Mechanical SC Engineering GA BFL59 UT WOS:000320410500025 ER PT B AU Cinson, AD Crawford, SL MacFarlan, PJ Mathews, RA Hanson, BD Diaz, AA AF Cinson, Anthony D. Crawford, Susan L. MacFarlan, Paul J. Mathews, Royce A. Hanson, Brady D. Diaz, Aaron A. BE Rodriguez, EA TI ULTRASONIC PHASED ARRAY EVALUATION OF CONTROL ROD DRIVE MECHANISM (CRDM) NOZZLE INTERFERENCE FIT AND WELD REGION SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 5 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB Ultrasonic phased array data were collected on a removed-from-service CRDM nozzle specimen to assess a previously reported leak path. First a mock-up CRDM specimen was evaluated that contained two 0.076-mm (3.0-mil) interference fit regions formed from an actual Inconel CRDM tube and two 152.4-mm (6.0-in.) thick carbon steel blocks [1,2]. One interference fit region has a series of precision crafted electric discharge machining (EDM) notches at various lengths, widths, depths, and spatial separations for establishing probe sensitivity, resolution and calibration. The other interference fit has zones of boric acid (crystal form) spaced periodically between the tube and block to represent an actively leaking CRDM nozzle assembly in the field. Ultrasonic phased-array evaluations were conducted using an immersion 8-element annular 5.0-MHz probe from the tube inner diameter (ID). A variety of focal laws were employed to evaluate the interference fit regions and I-grove weld, where applicable. Responses from the mock-up specimen were evaluated to determine detection limits and characterization ability as well as contrast the ultrasonic response differences with the presence of boric acid in the fit region. Nozzle 63, from the North Anna Unit-2 nuclear power plant, was evaluated to assess leakage path(s) and was destructively dismantled to allow a visual verification of the leak path(s). C1 [Cinson, Anthony D.; Crawford, Susan L.; MacFarlan, Paul J.; Mathews, Royce A.; Hanson, Brady D.; Diaz, Aaron A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Cinson, AD (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. NR 7 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4455-7 PY 2012 BP 225 EP 234 PG 10 WC Engineering, Mechanical SC Engineering GA BFL59 UT WOS:000320410500029 ER PT B AU Tung, YH Johnson, RW Sato, H AF Tung, Yu-Hsin Johnson, Richard W. Sato, Hiroyuki BE Rodriguez, EA TI EFFECTS OF GRAPHITE SURFACE ROUGHNESS ON BYPASS FLOW COMPUTATIONS FOR AN HTGR SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 5 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div ID HEAT-TRANSFER AB Bypass flow in a prismatic high temperature gas reactor (HTGR) occurs between graphite blocks as they sit side by side in the core. Bypass flow is not intentionally designed to occur in the reactor, but is present because of tolerances in manufacture, imperfect installation and expansion and shrinkage of the blocks from heating and irradiation. It is desired to increase the knowledge of the effects of such flow; it has been suggested that it may be 20% of the total helium coolant flow [INL report 2007, INL/EXT-07-13289]. Computational fluid dynamic (CFD) simulations can provide estimates of the scale and impacts of bypass flow. Previous CFD calculations have examined the effects of bypass gap width, level and distribution of heat generation and effects of shrinkage. The present contribution examines the effects of graphite surface roughness on the bypass flow for different relative roughness factors on three gap widths. Such calculations should be validated using specific bypass flow measurements. While such experiments are currently underway for the specific reference prismatic HTGR design for the next generation nuclear plant (NGNP) program of the U.S. Dept. of Energy, the data are not yet available. To enhance confidence in the present calculations, wall shear stress and heat transfer results for several turbulence models and their associated wall treatments are first compared for flow in a single tube that is representative of a coolant channel in the prismatic HTGR core. The results are compared to published correlations for wall shear stress and Nusselt number in turbulent pipe flow. Turbulence models that perform well are then used to make bypass flow calculations in a symmetric one-twelfth sector of a prismatic block that includes bypass flow. The comparison of shear stress and Nusselt number results with published correlations constitutes a partial validation of the CFD model. Calculations are also compared to ones made previously using a different CFD code. Results indicate that increasing surface roughness increases the maximum fuel and helium temperatures as do increases in gap width. However, maximum coolant temperature variation due to increased gap width is not changed by surface roughness. C1 [Tung, Yu-Hsin] Natl Tsing Hua Univ, INL Intern, Hsinchu, Taiwan. [Johnson, Richard W.] Idaho Natl Lab, Idaho Falls, ID USA. [Sato, Hiroyuki] Japan Atom Energy Agcy, Oarai, Ibaraki, Japan. RP Tung, YH (reprint author), Natl Tsing Hua Univ, INL Intern, Hsinchu, Taiwan. EM Yu-Hsin.Tung@inl.gov; Rich.Johnson@inl.gov; sato.hiroyuki09@jaea.go.jp FU LLC [DE-AC07-051D14517]; U.S. Department of Energy FX This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-051D14517 with the U.S. Department of Energy. NR 14 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4455-7 PY 2012 BP 311 EP + PG 2 WC Engineering, Mechanical SC Engineering GA BFL59 UT WOS:000320410500039 ER PT B AU Guerrero, HN Langton, CA Restivo, ML AF Guerrero, Hector N. Langton, Christine A. Restivo, Michael L. BE Rodriguez, EA TI TESTING AND ANALYSIS OF EARLY AGE STRESS-STRAIN DEVELOPMENT OF CONCRETE OVERLAY FOR REACTOR IN-SITU DECOMMISSIONING SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE (PVP-2011), VOL 5 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div ID PREDICTION; SHRINKAGE AB Non-uniform moisture distribution during early age drying and curing of protective concrete overlays for Savannah River Site reactors decommissioned in-situ were expected to result in differential shrinkage that lead to tensile stresses and possible cracking. The goal was to not exceed the concrete tensile strength of 2.8 MPa or compressive strength of 23.8 MPa. An experimental study was performed on the development of shrinkage and creep strains in concrete slab specimens embedded with strain gages and relative humidity sensors at controlled ambient temperature and relative humidity conditions. The experimental data was used to verify the validity of available physics-based methods and code calculations to predict early age shrinkage and creep strains, respectively. Data on the expansive effect of a shrinkage compensating admixture based on CaO was also obtained. Prediction of the surface stress in the test specimen suggests that without the shrinkage compensating admixture, the tensile strength would be slightly exceeded. However with the admixture, the combined effects of shrinkage, creep and expansion due to the admixture is predicted to result in all compressive stresses within the full scale slab, eliminating the possibility of cracking. C1 [Guerrero, Hector N.; Langton, Christine A.; Restivo, Michael L.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Guerrero, HN (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM hector.guerrero@srnl.doe.gov; christine.langton@srnl.doe.gov; michael.restivo@srnl.doe.gov NR 10 TC 0 Z9 0 U1 0 U2 0 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4455-7 PY 2012 BP 363 EP 370 PG 8 WC Engineering, Mechanical SC Engineering GA BFL59 UT WOS:000320410500046 ER PT B AU Miranda, M Braverman, J Wei, X Hofmayer, C Xu, J AF Miranda, Manuel Braverman, Joseph Wei, Xing Hofmayer, Charles Xu, Jim BE OBrien, C TI STRUCTURAL DESIGN CHALLENGES IN DESIGN CERTIFICATION APPLICATIONS FOR NEW REACTORS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 8 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div ID SEISMIC RESPONSE VECTORS; COMBINATION RULES; ENVELOPES AB The licensing framework established by the U.S. Nuclear Regulatory Commission under Title 10 of the Code of Federal Regulations (10 CFR) Part 52, "Licenses, Certifications, and Approvals for Nuclear Power Plants," provides requirements for standard design certifications (DCs) and combined license (COL) applications. The intent of this process is the early resolution of safety issues at the DC application stage. Subsequent COL applications may incorporate a DC by reference. Thus, the COL review will not reconsider safety issues resolved during the DC process. However, a COL application that incorporates a DC by reference must demonstrate that relevant site-specific design parameters are confined within the bounds postulated by the DC, and any departures from the DC need to be justified. This paper provides an overview of structural design challenges encountered in recent DC applications under the 10 CFR Part 52 process, in which the authors have participated as part of the safety review effort. C1 [Miranda, Manuel; Braverman, Joseph; Wei, Xing; Hofmayer, Charles] Brookhaven Natl Lab, Nucl Sci & Technol Dept, Upton, NY 11973 USA. RP Miranda, M (reprint author), Brookhaven Natl Lab, Nucl Sci & Technol Dept, Upton, NY 11973 USA. EM mmiranda@bnl.gov NR 14 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4458-8 PY 2012 BP 227 EP 232 PG 6 WC Engineering, Mechanical SC Engineering GA BFM21 UT WOS:000320479700031 ER PT B AU Morante, R Miranda, M Xu, J AF Morante, Richard Miranda, Manuel Xu, Jim BE OBrien, C TI SEISMIC ANALYSIS ISSUES IN DESIGN CERTIFICATION APPLICATIONS FOR NEW REACTORS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 8 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB The licensing framework established by the U.S. Nuclear Regulatory Commission under Title 10 of the Code of Federal Regulations (10 CFR) Part 52, "Licenses, Certifications, and Approvals for Nuclear Power Plants," provides requirements for standard design certifications (DCs) and combined license (COL) applications. The intent of this process is the early resolution of safety issues at the DC application stage. Subsequent COL applications may incorporate a DC by reference. Thus, the COL review will not reconsider safety issues resolved during the DC process. However; a COL application that incorporates a DC by reference must demonstrate that relevant site-specific design parameters are within the bounds postulated by the DC, and any departures from the DC need to be justified. This paper provides an overview of several seismic analysis issues encountered during a review of recent DC applications under the 10 CFR Part 52 process, in which the authors have participated as part of the safety review effort. C1 [Morante, Richard; Miranda, Manuel] Brookhaven Natl Lab, Nucl Sci & Technol Dept, Upton, NY 11973 USA. RP Morante, R (reprint author), Brookhaven Natl Lab, Nucl Sci & Technol Dept, Upton, NY 11973 USA. EM mmiranda@bnl.gov NR 10 TC 0 Z9 0 U1 0 U2 2 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4458-8 PY 2012 BP 233 EP 237 PG 5 WC Engineering, Mechanical SC Engineering GA BFM21 UT WOS:000320479700032 ER PT B AU Nie, JS Wei, X AF Nie, Jinsuo Wei, Xing BE OBrien, C TI ON THE USE OF MATERIAL-DEPENDENT DAMPING IN ANSYS FOR MODE SUPERPOSITION TRANSIENT ANALYSIS SO PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2011, VOL 8 LA English DT Proceedings Paper CT ASME Pressure Vessels and Piping Conference CY JUL 17-21, 2011 CL Baltimore, MD SP ASME, Pressure Vessels & Pip Div AB The mode superposition method is often used for dynamic analysis of complex structures, such as the seismic Category I structures in nuclear power plants, in place of the less efficient full method, which uses the full system matrices for calculation of the transient responses. In such applications, specification of material-dependent damping is usually desirable because complex structures can consist of multiple types of materials that may have different energy dissipation capabilities. A recent review of the ANSYS manual for several releases found that the use of material-dependent damping is not clearly explained for performing a mode superposition transient dynamic analysis. This paper includes several mode superposition transient dynamic analyses using different ways to specify damping in ANSYS, in order to determine how material-dependent damping can be specified conveniently in a mode superposition transient dynamic analysis. C1 [Nie, Jinsuo; Wei, Xing] Brookhaven Natl Lab, Nucl Sci & Technol Dept, Upton, NY 11973 USA. RP Nie, JS (reprint author), Brookhaven Natl Lab, Nucl Sci & Technol Dept, Upton, NY 11973 USA. EM jnie@bnl.gov NR 6 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC MECHANICAL ENGINEERS PI NEW YORK PA THREE PARK AVENUE, NEW YORK, NY 10016-5990 USA BN 978-0-7918-4458-8 PY 2012 BP 239 EP 244 PG 6 WC Engineering, Mechanical SC Engineering GA BFM21 UT WOS:000320479700033 ER PT B AU Chen, HY Tian, H Gao, B Yu, SM Liang, JL Kang, JF Zhang, YG Ren, TL Wong, HSP AF Chen, Hong-Yu Tian, He Gao, Bin Yu, Shimeng Liang, Jiale Kang, Jinfeng Zhang, Yuegang Ren, Tian-Ling Wong, H. -S. Philip GP IEEE TI Electrode/Oxide Interface Engineering by Inserting Single-Layer Graphene: Application for HfOx-Based Resistive Random Access Memory SO 2012 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM) LA English DT Proceedings Paper CT IEEE International Electron Devices Meeting (IEDM) CY DEC 10-13, 2012 CL San Francisco, CA SP IEEE ID OXIDE AB Electrode/oxide interface with inserted single-layer graphene (SLG) increases low resistance state (LRS) resistance (> 1M Omega) due to its intrinsically high out-of-plane resistance in HfOx-based resistive random access memory (RRAM). This interface engineering technique enables the reduction of the RESET current by 22 times and the programming power consumption by 47 times. The interface between oxide layer and metal electrode is studied using Ramen spectroscopy coupled with electrical measurement. Raman mapping and single point measurements show noticeable changes in both D-band and G-band signals of SLG during electrical cycling. This observation suggests a possible interaction of oxygen migrated from the metal oxide with the graphene. This work illustrates that interface engineering design plays an important role for RRAM material selection in addition to exploring different metal oxides or metal electrode materials for RRAM. C1 [Chen, Hong-Yu; Gao, Bin; Yu, Shimeng; Liang, Jiale; Wong, H. -S. Philip] Stanford Univ, Ctr Integrated Syst, Stanford, CA 94305 USA. [Tian, He; Zhang, Yuegang; Ren, Tian-Ling] Tsinghua Univ, Inst Microelect, Beijing 100084, Peoples R China. [Tian, He; Zhang, Yuegang; Ren, Tian-Ling] Tsinghua Univ, Tsinghua Natl Lab Informat Sci, Beijing 100084, Peoples R China. [Tian, He; Zhang, Yuegang; Ren, Tian-Ling] Lawrence Berkeley Natl Lab, Mol Fdn, Berkeley, CA 94720 USA. [Chen, Hong-Yu; Gao, Bin; Liang, Jiale; Wong, H. -S. Philip] Peking Univ, Inst Microtech, Beijing 100871, Peoples R China. RP Chen, HY (reprint author), Stanford Univ, Ctr Integrated Syst, Stanford, CA 94305 USA. EM yzhang5@lbl.gov; RenTL@tsinghua.edu.cn; hspwong@stanford.edu RI Liang, Jiale/I-5021-2012; Tian, He/I-1299-2014 OI Liang, Jiale/0000-0003-4843-7765; Tian, He/0000-0001-7328-2182 NR 10 TC 0 Z9 0 U1 0 U2 6 PU IEEE PI NEW YORK PA 345 E 47TH ST, NEW YORK, NY 10017 USA BN 978-1-4673-4870-6; 978-1-4673-4872-0 PY 2012 PG 4 WC Engineering, Electrical & Electronic SC Engineering GA BFN41 UT WOS:000320615600124 ER EF