FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Carena, M Nardini, G Quiros, M Wagner, CEM AF Carena, M. Nardini, G. Quiros, M. Wagner, C. E. M. TI MSSM electroweak baryogenesis and LHC data SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Supersymmetry Phenomenology ID SUPERSYMMETRIC STANDARD MODEL; PHASE-TRANSITION; FINITE-TEMPERATURE; CP-VIOLATION; BARYON ASYMMETRY; DIMENSIONAL REDUCTION; HIGGS; COLLISIONS; STOP; CONSTRAINTS AB Electroweak baryogenesis is an attractive scenario for the generation of the baryon asymmetry of the universe as its realization depends on the presence at the weak scale of new particles which may be searched for at high energy colliders. In the MSSM it may only be realized in the presence of light stops, and with moderate or small mixing between the left-and right-handed components. Consistency with the observed Higgs mass around 125 GeV demands the heavier stop mass to be much larger than the weak scale. Moreover the lighter stop leads to an increase of the gluon-gluon fusion Higgs production cross section which seems to be in contradiction with indications from current LUC data. We show that this tension may be considerably relaxed in the presence of a light neutralino with a mass lower than about 60 GeV, satisfying all present experimental constraints. In such a case the Iliggs may have a significant invisible decay width and the stop fled a three or four body decay channel, including a bottom quark and the lightest neutralino in the final state. All these properties make this scenario testable at a high luminosity LHC. C1 [Carena, M.] Fermilab Natl Accelerator Lab, Dept Theoret Phys, Batavia, IL 60510 USA. [Nardini, G.] Univ Bielefeld, Fak Phys, D-33615 Bielefeld, Germany. [Quiros, M.] Univ Autonoma Barcelona, IFAE, E-08193 Barcelona, Spain. [Quiros, M.] Univ Autonoma Barcelona, ICREA, E-08193 Barcelona, Spain. [Wagner, C. E. M.] Argonne Natl Lab, HEP Div, Argonne, IL 60439 USA. [Wagner, C. E. M.] Univ Chicago, EFI, KICP, Chicago, IL 60637 USA. [Wagner, C. E. M.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. RP Carena, M (reprint author), Fermilab Natl Accelerator Lab, Dept Theoret Phys, POB 500, Batavia, IL 60510 USA. EM carena@fnal.gov; germano@physik.uni-bielefeld.de; quiros@ifae.es; cwagner@hep.anl.gov FU Spanish Consolider-Ingenio [CSD2007-00042]; CICYT-FEDER [FPA2008-01430]; Fermi Research Alliance, LLC [DE-AC02-07CH11359]; U.S. Department of Energy; U.S. Department of Energy (DOE), Div. of HEP [DE-AC02-06CH11357] FX GN thanks F. Recchia and A. Triossi for programming troubleshooting. MQ was supported in part by the Spanish Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042) and by CICYT-FEDER-FPA2008-01430. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. Work at ANL is supported in part by the U.S. Department of Energy (DOE), Div. of HEP, Contract DE-AC02-06CH11357. NR 86 TC 31 Z9 31 U1 1 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB PY 2013 IS 2 AR 001 DI 10.1007/JHEP02(2013)001 PG 26 WC Physics, Particles & Fields SC Physics GA 108DW UT WOS:000316272900001 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Aguilo, E Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Pernicka, M Rahbaran, B Rohringer, C Rohringer, H Schofbeck, R Strauss, J Taurok, A Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Luyckx, S Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Staykova, Z Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Suarez, RG Kalogeropoulos, A Maes, M Olbrechts, A Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hreus, T Leonard, A Marage, PE Mohammadi, A Reis, T Thomas, L Vander Marcken, G Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Cimmino, A Costantini, S Garcia, G Grunewald, M Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Strobbe, N Thyssen, F Tytgat, M Verwilligen, P Walsh, S Yazgan, E Zaganidis, N Basegmez, S Bruno, G Castello, R Ceard, L Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Schul, N Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Damiao, DD Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Custodio, A Da Costa, EM Martins, CD De Souza, SF Figueiredo, DM Mundim, L Nogima, H Oguri, V Da Silva, WLP Santoro, A Jorge, LS Sznajder, A Anjos, TS Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vutova, M Dimitrov, A Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Zang, J Zhang, Z Asawatangtrakuldee, C Ban, Y Guo, Y Li, W Liu, S Mao, Y Qian, SJ Teng, H Wang, D Zhang, L Zou, W Avila, C Gomez, JP Moreno, BG Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Duric, S Kadija, K Luetic, J Morovic, S Attikis, A Galanti, M Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Elgammal, S Kamel, AE Mahmoud, MA Radi, A Kadastik, M Muntel, M Raidal, M Rebane, L Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Karjalainen, A Korpela, A Tuuva, T Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Millischer, L Nayak, A Rander, J Rosowsky, A Shreyber, I Titov, M Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Daci, N Dahms, T Dobrzynski, L de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Juillot, P Le Bihan, AC Van Hove, P Fassi, F Mercier, D Beauceron, S Beaupere, N Bondu, O Boudoul, G Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Sgandurra, L Sordini, V Tschudi, Y Verdier, P Viret, S Tsamalaidze, Z Anagnostou, G Autermann, C Beranek, S Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Weber, M Bontenackels, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Perchalla, L Pooth, O Sauerland, P Stahl, A Martin, MA Behr, J Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Castro, E Costanza, F Dammann, D Pardos, CD Eckerlin, G Eckstein, D Flucke, G Geiser, A Glushkov, I Gunnellini, P Habib, S Hauk, J Hellwig, G Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Knutsson, A Kramer, M Krucker, D Kuznetsova, E Lange, W Lohmann, W Lutz, B Mankel, R Marfin, I Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Novgorodova, O Olzem, J Perrey, H Petrukhin, A Pitzl, D Raspereza, A Cipriano, PMR Riedl, C Ron, E Rosin, M Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Spiridonov, A Stein, M Walsh, R Wissing, C Blobel, V Draeger, J Enderle, H Erfle, J Gebbert, U Gorner, M Hermanns, T Hoing, RS Kaschube, K Kaussen, G Kirschenmann, H Klanner, R Lange, J Mura, B Nowak, F Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schroder, M Schum, T Seidel, M Sola, V Stadie, H Steinbruck, G Thomsen, J Vanelderen, L Barth, C Berger, J Boser, C Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hackstein, C Hartmann, F Hauth, T Heinrich, M Held, H Hoffmann, KH Honc, S Katkov, I Komaragiri, JR Pardo, PL Martschei, D Mueller, S Muller, T Niegel, M Nurnberg, A Oberst, O Oehler, A Ott, J Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Rocker, S Scheurer, A Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Zeise, M Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Ntomari, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Malhotra, S Naimuddin, M Ranjan, K Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Dutta, S Gomber, B Jain, S Jain, S Khurana, R Sarkar, S Sharan, M Abdulsalam, A Choudhury, RK Dutta, D Kailas, S Kumar, V Mehta, P Mohanty, AK Pant, LM Shukla, P Aziz, T Ganguly, S Guchait, M Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Banerjee, S Dugad, S Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Hesari, H Jafari, A Khakzad, M Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Selvaggi, G Silvestris, L Singh, G Venditti, R Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Tosi, S Benaglia, A De Guio, F Di Matteo, L Fiorendi, S Gennai, S Ghezzi, A Malvezzi, S Manzoni, RA Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Buontempo, S Montoya, CAC Cavallo, N De Cosa, A Dogangun, O Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Dosselli, U Gasparini, F Gasparini, U Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Gabusi, M Ratti, SP Riccardi, C Torre, P Vitulo, P Biasini, M Bilei, GM Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Romeo, F Saha, A Santocchia, A Spiezia, A Taroni, S Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Diemoz, M Fanelli, C Grassi, M Longo, E Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Sigamani, M Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Cartiglia, N Costa, M Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Sacchi, R Solano, A Staiano, A Trapani, PP Pereira, AV Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B Marone, M Montanino, D Penzo, A Schizzi, A Heo, SC Kim, TY Nam, SK Chang, S Kim, DH Kim, GN Kong, DJ Park, H Ro, SR Son, DC Son, T Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Moon, DH Park, SK Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Cho, Y Choi, Y Choi, YK Goh, J Kim, MS Kwon, E Lee, B Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Juodagalvis, A Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de la Cruz, I Lopez-Fernandez, R Villalba, RM Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Bell, AJ Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Ansari, MH Asghar, MI Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Boimska, B Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Almeida, N Bargassa, P David, A Faccioli, P Parracho, PCF Gallinaro, M Seixas, J Varela, J Vischia, P Belotelov, I Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Kozlov, G Lanev, A Malakhov, A Moisenz, P Palichik, V Perelygin, V Savina, M Shmatov, S Smirnov, V Volodko, A Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Erofeeva, M Gavrilov, V Kossov, M Lychkovskaya, N Popov, V Safronov, G Semenov, S Stolin, V Vlasov, E Zhokin, A Belyaev, A Boos, E Bunichev, V Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Markina, A Obraztsov, S Perfilov, M Petrushanko, S Popov, A Sarycheva, L Savrin, V Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Azhgirey, I Bayshev, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Olmeda, AQ Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C Codispoti, G de Troconiz, JF Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Gomez, JP Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Graziano, A Jorda, C Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC D'Enterria, D Dabrowski, A De Roeck, A Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Frisch, B Funk, W Georgiou, G Giffels, M Gigi, D Gill, K Giordano, D Girone, M Giunta, M Glege, F Garrido, RGR Govoni, P Gowdy, S Guida, R Hansen, M Harris, P Hartl, C Harvey, J Hegner, B Hinzmann, A Innocente, V Janot, P Kaadze, K Karavakis, E Kousouris, K Lecoq, P Lee, YJ Lenzi, P Lourenco, C Magini, N Maeki, T Malberti, M Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Musella, P Nesvold, E Orimoto, T Orsini, L Cortezon, EP Perez, E Perrozzi, L Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Polese, G Quertenmont, L Racz, A Reece, W Antunes, JR Rolandi, G Rovelli, C Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Segoni, I Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Tsirou, A Veres, GI Vlimant, JR Wohri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Bani, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eugster, J Freudenreich, K Grab, C Hits, D Lecomte, P Lustermann, W Marini, AC del Arbol, PMR Mohr, N Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pape, L Pauss, F Peruzzi, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Wehrli, L Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Mejias, BM Otiougova, P Robmann, P Snoek, H Tupputi, S Verzetti, M Chang, YH Chen, KH Kuo, CM Li, SW Lin, W Liu, ZK Lu, YJ Mekterovic, D Singh, AP Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wan, X Wang, M Asavapibhop, B Srimanobhas, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Karaman, T Karapinar, G Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, LN Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Yildirim, E Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Cankocak, K Levchuk, L Bostock, F Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Williams, T Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Ball, G Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Stoye, M Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Whyntie, T Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Hatakeyama, K Liu, H Scarborough, T Charaf, O Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A St John, J Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Alimena, J Bhattacharya, S Cutts, D Ferapontov, A Heintz, U Jabeen, S Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Nguyen, D Segala, M Sinthuprasith, T Speer, T Tsang, KV Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Dolen, J Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Miceli, T Pellett, D Ricci-Tam, F Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Andreev, V Cline, D Cousins, R Duris, J Erhan, S Everaerts, P Farrell, C Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Traczyk, P Valuev, V Weber, M Babb, J Clare, R Dinardo, ME Ellison, J Gary, JW Giordano, F Hanson, G Jeng, GY Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Mangano, B Padhi, S Palmer, C Petrucciani, G Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lowette, S Mccoll, N Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Chen, Y Di Marco, E Duarte, J Gataullin, M Ma, Y Mott, A Newman, HB Rogan, C Spiropulu, M Timciuc, V Veverka, J Wilkinson, R Xie, S Yang, Y Zhu, RY Akgun, B Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Liu, YF Paulini, M Vogel, H Vorobiev, I Cumalat, JP Drell, BR Edelmaier, CJ Ford, WT Gaz, A Heyburn, B Lopez, EL Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Eggert, N Gibbons, LK Heltsley, B Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Vaughan, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Elvira, VD Fisk, I Freeman, J Gao, Y Green, D Gutsche, O Hanlon, J Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kilminster, B Klima, B Kunori, S Kwan, S Leonidopoulos, C Linacre, J Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Park, M Remington, R Rinkevicius, A Sellers, P Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Bucinskaite, I Callner, J Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Lacroix, F Malek, M O'Brien, C Silkworth, C Strom, D Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Duru, F Griffiths, S Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Onel, Y Ozok, F Sen, S Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Whitbeck, A Baringer, P Bean, A Benelli, G Kenny, RP Murray, M Noonan, D Sanders, S Stringer, R Tinti, G Wood, JS Zhukova, V Barfuss, AF Bolton, T Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Gronberg, J Lange, D Wright, D Baden, A Boutemeur, M Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Peterman, A Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Apyan, A Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Ceballos, GG Goncharov, M Hahn, KA Kim, Y Klute, M Krajczar, K Li, W Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Stockli, F Sumorok, K Sung, K Velicanu, D Wenger, EA Wolf, R Wyslouch, B Yang, M Yilmaz, Y Yoon, AS Zanetti, M Cooper, SI Dahmes, B De Benedetti, A Franzoni, G Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Cremaldi, LM Kroeger, R Perera, L Rahmat, R Sanders, DA Avdeeva, E Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Keller, J Kravchenko, I Lazo-Flores, J Malbouisson, H Malik, S Snow, GR Baur, U Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Shipkowski, SP Smith, K Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Nash, D Trocino, D Wood, D Zhang, J Anastassov, A Kubik, A Mucia, N Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Brinkerhoff, A Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Bylsma, B Durkin, LS Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Vuosalo, C Williams, G Winer, BL Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hebda, P Hegeman, J Hunt, A Jindal, P Pegna, DL Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Safdi, B Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Brownson, E Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatserklyaniy, A Alagoz, E Barnes, VE Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Marono, MV Yoo, HD Zablocki, J Zheng, Y Guragain, S Parashar, N Adair, A Boulahouache, C Ecklund, KM Geurts, FJM Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Rose, K Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Sengupta, S Suarez, I Tatarinov, A Toback, D Akchurin, N Damgov, J Dragoiu, C Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Roh, Y Volobouev, I Appelt, E Delannoy, AG Florez, C Greene, S Gurrola, A Johns, W Johnston, C Kurt, P Maguire, C Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Yohay, R Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Sakharov, A Anderson, M Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Friis, E Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Loveless, R Mohapatra, A Ojalvo, I Palmonari, F Pierro, GA Ross, I Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Aguilo, E. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Pernicka, M. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Waltenberger, W. Walzel, G. Widl, E. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Luyckx, S. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Staykova, Z. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, M. Olbrechts, A. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hreus, T. Leonard, A. Marage, P. E. Mohammadi, A. Reis, T. Thomas, L. Vander Marcken, G. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Cimmino, A. Costantini, S. Garcia, G. Grunewald, M. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Strobbe, N. Thyssen, F. Tytgat, M. Verwilligen, P. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Bruno, G. Castello, R. Ceard, L. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Schul, N. Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Correa Martins Junior, M. De Jesus Damiao, D. Martins, T. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Custodio, A. Da Costa, E. M. De Oliveira Martins, C. Fonseca De Souza, S. Matos Figueiredo, D. Mundim, L. Nogima, H. Oguri, V. Prado Da Silva, W. L. Santoro, A. Soares Jorge, L. Sznajder, A. Anjos, T. S. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vutova, M. Dimitrov, A. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Zang, J. Zhang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, W. Liu, S. Mao, Y. Qian, S. J. Teng, H. Wang, D. Zhang, L. Zou, W. Avila, C. Gomez, J. P. Gomez Moreno, B. Osorio Oliveros, A. F. Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Morovic, S. Attikis, A. Galanti, M. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Elgammal, S. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Muentel, M. Raidal, M. Rebane, L. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Karjalainen, A. Korpela, A. Tuuva, T. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Millischer, L. Nayak, A. Rander, J. Rosowsky, A. Shreyber, I. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Daci, N. Dahms, T. Dobrzynski, L. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Veelken, C. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Ferro, C. Fontaine, J. -C. Gele, D. Goerlach, U. Juillot, P. Le Bihan, A. -C. Van Hove, P. Fassi, F. Mercier, D. Beauceron, S. Beaupere, N. Bondu, O. Boudoul, G. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Sgandurra, L. Sordini, V. Tschudi, Y. Verdier, P. Viret, S. Tsamalaidze, Z. Anagnostou, G. Autermann, C. Beranek, S. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Weber, M. Bontenackels, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Perchalla, L. Pooth, O. Sauerland, P. Stahl, A. Martin, M. Aldaya Behr, J. Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Castro, E. Costanza, F. Dammann, D. Pardos, C. Diez Eckerlin, G. Eckstein, D. Flucke, G. Geiser, A. Glushkov, I. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Olzem, J. Perrey, H. Petrukhin, A. Pitzl, D. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Rosin, M. Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Spiridonov, A. Stein, M. Walsh, R. Wissing, C. Blobel, V. Draeger, J. Enderle, H. Erfle, J. Gebbert, U. Goerner, M. Hermanns, T. Hoeing, R. S. Kaschube, K. Kaussen, G. Kirschenmann, H. Klanner, R. Lange, J. Mura, B. Nowak, F. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schroeder, M. Schum, T. Seidel, M. Sola, V. Stadie, H. Steinbrueck, G. Thomsen, J. Vanelderen, L. Barth, C. Berger, J. Boeser, C. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hackstein, C. Hartmann, F. Hauth, T. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Katkov, I. Komaragiri, J. R. Pardo, P. Lobelle Martschei, D. Mueller, S. Mueller, Th Niegel, M. Nuernberg, A. Oberst, O. Oehler, A. Ott, J. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Roecker, S. Scheurer, A. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Zeise, M. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Ntomari, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Dutta, S. Gomber, B. Jain, Sa Jain, Sh Khurana, R. Sarkar, S. Sharan, M. Abdulsalam, A. Choudhury, R. K. Dutta, D. Kailas, S. Kumar, V. Mehta, P. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Ganguly, S. Guchait, M. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Hesari, H. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Tosi, S. Benaglia, A. De Guio, F. Di Matteo, L. Fiorendi, S. Gennai, S. Ghezzi, A. Malvezzi, S. Manzoni, R. A. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Buontempo, S. Montoya, C. A. Carrillo Cavallo, N. De Cosa, A. Dogangun, O. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Dosselli, U. Gasparini, F. Gasparini, U. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Torre, P. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Taroni, S. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Fanelli, C. Grassi, M. Longo, E. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Sigamani, M. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Cartiglia, N. Costa, M. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Sacchi, R. Solano, A. Staiano, A. Trapani, P. P. Pereira, A. Vilela Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Heo, S. C. Kim, T. Y. Nam, S. K. Chang, S. Kim, D. H. Kim, G. N. Kong, D. J. Park, H. Ro, S. R. Son, D. C. Son, T. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Cho, Y. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Kwon, E. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Juodagalvis, A. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de la Cruz, I. Lopez-Fernandez, R. Magana Villalba, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Bell, A. J. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Ansari, M. H. Asghar, M. I. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Boimska, B. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Almeida, N. Bargassa, P. David, A. Faccioli, P. Ferreira Parracho, P. C. Gallinaro, M. Seixas, J. Varela, J. Vischia, P. Belotelov, I. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Kozlov, G. Lanev, A. Malakhov, A. Moisenz, P. Palichik, V. Perelygin, V. Savina, M. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Erofeeva, M. Gavrilov, V. Kossov, M. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Stolin, V. Vlasov, E. Zhokin, A. Belyaev, A. Boos, E. Bunichev, V. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Perfilov, M. Petrushanko, S. Popov, A. Sarycheva, L. Savrin, V. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Maestre, J. Alcaraz Arce, P. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Piedra Gomez, J. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Graziano, A. Jorda, C. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa D'Enterria, D. Dabrowski, A. De Roeck, A. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Frisch, B. Funk, W. Georgiou, G. Giffels, M. Gigi, D. Gill, K. Giordano, D. Girone, M. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Govoni, P. Gowdy, S. Guida, R. Hansen, M. Harris, P. Hartl, C. Harvey, J. Hegner, B. Hinzmann, A. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Kousouris, K. Lecoq, P. Lee, Y. -J. Lenzi, P. Lourenco, C. Magini, N. Maeki, T. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Musella, P. Nesvold, E. Orimoto, T. Orsini, L. Cortezon, E. Palencia Perez, E. Perrozzi, L. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Polese, G. Quertenmont, L. Racz, A. Reece, W. Antunes, J. Rodrigues Rolandi, G. Rovelli, C. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Segoni, I. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Baeni, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eugster, J. Freudenreich, K. Grab, C. Hits, D. Lecomte, P. Lustermann, W. Marini, A. C. del Arbol, P. Martinez Ruiz Mohr, N. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pape, L. Pauss, F. Peruzzi, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Wehrli, L. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Mejias, B. Millan Otiougova, P. Robmann, P. Snoek, H. Tupputi, S. Verzetti, M. Chang, Y. H. Chen, K. H. Kuo, C. M. Li, S. W. Lin, W. Liu, Z. K. Lu, Y. J. Mekterovic, D. Singh, A. P. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wan, X. Wang, M. Asavapibhop, B. Srimanobhas, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Karaman, T. Karapinar, G. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, L. N. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Yildirim, E. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Cankocak, K. Levchuk, L. Bostock, F. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Williams, T. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Ball, G. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Stoye, M. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Whyntie, T. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Hatakeyama, K. Liu, H. Scarborough, T. Charaf, O. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. St John, J. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Alimena, J. Bhattacharya, S. Cutts, D. Ferapontov, A. Heintz, U. Jabeen, S. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Nguyen, D. Segala, M. Sinthuprasith, T. Speer, T. Tsang, K. V. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Dolen, J. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Miceli, T. Pellett, D. Ricci-Tam, F. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Andreev, V. Cline, D. Cousins, R. Duris, J. Erhan, S. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Traczyk, P. Valuev, V. Weber, M. Babb, J. Clare, R. Dinardo, M. E. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Jeng, G. Y. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lowette, S. Mccoll, N. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Chen, Y. Di Marco, E. Duarte, J. Gataullin, M. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Spiropulu, M. Timciuc, V. Veverka, J. Wilkinson, R. Xie, S. Yang, Y. Zhu, R. Y. Akgun, B. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Liu, Y. F. Paulini, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Edelmaier, C. J. Ford, W. T. Gaz, A. Heyburn, B. Lopez, E. Luiggi Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Heltsley, B. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Green, D. Gutsche, O. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kilminster, B. Klima, B. Kunori, S. Kwan, S. Leonidopoulos, C. Linacre, J. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Park, M. Remington, R. Rinkevicius, A. Sellers, P. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Callner, J. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Lacroix, F. Malek, M. O'Brien, C. Silkworth, C. Strom, D. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Duru, F. Griffiths, S. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Onel, Y. Ozok, F. Sen, S. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Stringer, R. Tinti, G. Wood, J. S. Zhukova, V. Barfuss, A. F. Bolton, T. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Wright, D. Baden, A. Boutemeur, M. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Peterman, A. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Apyan, A. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Kim, Y. Klute, M. Krajczar, K. Li, W. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Velicanu, D. Wenger, E. A. Wolf, R. Wyslouch, B. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cooper, S. I. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Cremaldi, L. M. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Avdeeva, E. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kravchenko, I. Lazo-Flores, J. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Shipkowski, S. P. Smith, K. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Nash, D. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Mucia, N. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Brinkerhoff, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Bylsma, B. Durkin, L. S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Vuosalo, C. Williams, G. Winer, B. L. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Jindal, P. Pegna, D. Lopes Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Safdi, B. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Brownson, E. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatserklyaniy, A. Alagoz, E. Barnes, V. E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Marono, M. Vidal Yoo, H. D. Zablocki, J. Zheng, Y. Guragain, S. Parashar, N. Adair, A. Boulahouache, C. Ecklund, K. M. Geurts, F. J. M. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Rose, K. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Sengupta, S. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Damgov, J. Dragoiu, C. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Roh, Y. Volobouev, I. Appelt, E. Delannoy, A. G. Florez, C. Greene, S. Gurrola, A. Johns, W. Johnston, C. Kurt, P. Maguire, C. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Yohay, R. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sakharov, A. Anderson, M. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Friis, E. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Loveless, R. Mohapatra, A. Ojalvo, I. Palmonari, F. Pierro, G. A. Ross, I. Savin, A. Smith, W. H. Swanson, J. CA CMS Collaboration TI Search for exotic resonances decaying into WZ/ZZ in pp collisions at root s=7 TeV SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering ID DYNAMICAL SYMMETRY-BREAKING; PROTON-PROTON COLLISIONS; MASSLESS PARTICLES; BROKEN SYMMETRIES; EXTRA DIMENSIONS; ATLAS DETECTOR; BOSONS; MODEL; COLLABORATION; LEPTONS AB A search for new exotic particles decaying to the VZ final state is performed, where V is either a W or a Z boson decaying into two overlapping jets and the Z decays into a pair of electrons, muons or neutrinos. The analysis uses a data sample of pp collisions corresponding to an integrated luminosity of 5 fb(-1) collected by the CMS experiment at the LHC at root s = 7 TeV in 2011. No significant excess is observed in the mass distribution of the VZ candidates compared with the background expectation from standard model processes. Model-dependent upper limits at the 95% confidence level are set on the product of the cross section times the branching fraction of hypothetical particles decaying to the VZ final state as a function of mass. Sequential standard model W' bosons with masses between 700 and 940 GeV are excluded. In the Randall-Sundrum model for graviton resonances with a coupling parameter of 0.05, masses between 750 and 880 GeV are also excluded. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Garcia, J. M. Vizan] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Custodio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Lagana, C.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Inst Fis Teor CA, Sao Paulo, Brazil. [Anjos, T. S.; Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Estadual Paulista, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Tech, Beijing 100871, Peoples R China. [Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Egyptian Network High Energy Phys, Acad Sci Res & Technol Arab Republ Egypt, Cairo, Egypt. [Giammanco, A.; Kadastik, M.; Muentel, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. [Fassi, F.; Mercier, D.] CNRS IN2P3, Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Anagnostou, G.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Pardos, C. Diez; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Blobel, V.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Goerner, M.; Hermanns, T.; Hoeing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schroeder, M.; Schum, T.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Berger, J.; Boeser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Katkov, I.; Komaragiri, J. R.; Pardo, P. Lobelle; Martschei, D.; Mueller, S.; Mueller, Th; Niegel, M.; Nuernberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Roecker, S.; Scheurer, A.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.] Inst Expt Kernphys, Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa; Jain, Sh; Khurana, R.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Aziz, T.; Ganguly, S.; Guchait, M.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Mumbai, Maharashtra, India. [Guchait, M.; Banerjee, S.; Dugad, S.] Tata Inst Fundamental Res HECR, Mumbai, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.] INFN Sez Bari, Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Lusito, L.; Marangelli, B.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.] INFN Sez Bologna, Bologna, Italy. [Abbiendi, G.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] INFN Sez Catania, Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] INFN Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.] INFN Lab Nazl Frascati, Frascati, Italy. [Fabbricatore, P.; Musenich, R.; Tosi, S.] INFN Sez Genova, Genoa, Italy. [Tosi, S.] Univ Genoa, Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli] INFN Sez Milano Bicocca, Milan, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Ghezzi, A.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] INFN Sez Napoli, Naples, Italy. [De Cosa, A.; Dogangun, O.; Merola, M.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] INFN Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] INFN Sez Pavia, Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.] INFN Sez Perugia, Perugia, Italy. [Biasini, M.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Spiezia, A.; Taroni, S.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] INFN Sez Pisa, Pisa, Italy. [Fiori, F.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.; Rovelli, C.] INFN Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Fanelli, C.; Grassi, M.; Longo, E.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.; Rovelli, C.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.; Staiano, A.; Trapani, P. P.; Pereira, A. Vilela] INFN Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Costa, M.; Migliore, E.; Monaco, V.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.; Trapani, P. P.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.] INFN Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; Marone, M.; Montanino, D.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Heo, S. C.; Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.] Vilnius State Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de la Cruz, I.; Lopez-Fernandez, R.; Magana Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ansari, M. H.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. C.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Belotelov, I.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Maestre, J. Alcaraz; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Genchev, V.; Iaydjiev, P.; Puljak, I.; Chierici, R.; Lingemann, J.; Guthoff, M.; Hauth, T.; Mohanty, A. K.; Calabria, C.; De Filippis, N.; Fasanella, D.; Meneghelli, M.; Di Matteo, L.; Gennai, S.; Massironi, A.; De Cosa, A.; Paolucci, P.; Bacchetta, N.; Branca, A.; Tosi, M.; Lucaroni, A.; D'Agnolo, R. T.; Fiori, F.; Squillacioti, P.; Grassi, M.; Meridiani, P.; Mariotti, C.; Musich, M.; Marone, M.; Montanino, D.; Grishin, V.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Govoni, P.; Gowdy, S.; Guida, R.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y. -J.; Lenzi, P.; Lourenco, C.; Magini, N.; Maeki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.] Paul Scherrer Inst, Villigen, Switzerland. [Baeni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Singh, A. P.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Srimanobhas, N.] Chulalongkorn Univ, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Bostock, F.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Worm, S. D.; Newbold, D. M.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Alimena, J.; Bhattacharya, S.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez] Univ Calif Davis, Davis, CA 95616 USA. [Felcini, M.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Dubinin, M.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Lopez, E. Luiggi; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kilminster, B.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.] UIC, Chicago, IL USA. [Ozturk, S.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Krajczar, K.; Li, W.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Kubik, A.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Brownson, E.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Guragain, S.; Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Johnston, C.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Yohay, R.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Anjos, T. S.; Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Elgammal, S.] Zewail City Sci & Technol, Zewail, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Bluj, M.] Natl Ctr Nucl Res, Otwock, Poland. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Zhukov, V.; Katkov, I.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Arfaei, H.; Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Meola, S.] Univ Guglielmo Marconi, Rome, Italy. [Martini, L.] Univ Siena, I-53100 Siena, Italy. [Serban, A. T.] Univ Bucharest, Fac Phys, Bucharest, Romania. [Rolandi, G.] Scuola Normale, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Starodumov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Jeng, G. Y.] Univ Sydney, Sydney, NSW 2006, Australia. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Krajczar, K.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Fassi, Farida/F-3571-2016; Menasce, Dario Livio/A-2168-2016; Sguazzoni, Giacomo/J-4620-2015; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Yazgan, Efe/C-4521-2014; Gerbaudo, Davide/J-4536-2012; Bargassa, Pedrame/O-2417-2016; KIM, Tae Jeong/P-7848-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Azarkin, Maxim/N-2578-2015; Dubinin, Mikhail/I-3942-2016; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Haj Ahmad, Wael/E-6738-2016; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Ragazzi, Stefano/D-2463-2009; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Matorras, Francisco/I-4983-2015; TUVE', Cristina/P-3933-2015; Marinho, Franciole/N-8101-2014; Ferguson, Thomas/O-3444-2014; Benussi, Luigi/O-9684-2014; Leonidov, Andrey/P-3197-2014; Dahms, Torsten/A-8453-2015; Grandi, Claudio/B-5654-2015; Raidal, Martti/F-4436-2012; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Ligabue, Franco/F-3432-2014; Wulz, Claudia-Elisabeth/H-5657-2011; Codispoti, Giuseppe/F-6574-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Hill, Christopher/B-5371-2012; Liu, Sheng/K-2815-2013; Zhukov, Valery/K-3615-2013; Venturi, Andrea/J-1877-2012; Wimpenny, Stephen/K-8848-2013; Markina, Anastasia/E-3390-2012; Dudko, Lev/D-7127-2012; Dogangun, Oktay/L-9252-2013; Marlow, Daniel/C-9132-2014; de Jesus Damiao, Dilson/G-6218-2012; Oguri, Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Bartalini, Paolo/E-2512-2014; Montanari, Alessandro/J-2420-2012; Petrushanko, Sergey/D-6880-2012; Tomei, Thiago/E-7091-2012; Zalewski, Piotr/H-7335-2013; Mundim, Luiz/A-1291-2012; Kodolova, Olga/D-7158-2012; Ivanov, Andrew/A-7982-2013; Tinti, Gemma/I-5886-2013; Lokhtin, Igor/D-7004-2012; Novaes, Sergio/D-3532-2012; Tinoco Mendes, Andre David/D-4314-2011; Rolandi, Luigi (Gigi)/E-8563-2013 OI Heath, Helen/0000-0001-6576-9740; Tricomi, Alessia Rita/0000-0002-5071-5501; Fassi, Farida/0000-0002-6423-7213; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Fiorendi, Sara/0000-0003-3273-9419; Martelli, Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Lloret Iglesias, Lara/0000-0002-0157-4765; Sguazzoni, Giacomo/0000-0002-0791-3350; Casarsa, Massimo/0000-0002-1353-8964; Diemoz, Marcella/0000-0002-3810-8530; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Yazgan, Efe/0000-0001-5732-7950; Gerbaudo, Davide/0000-0002-4463-0878; Bargassa, Pedrame/0000-0001-8612-3332; Safdi, Benjamin R./0000-0001-9531-1319; Bean, Alice/0000-0001-5967-8674; KIM, Tae Jeong/0000-0001-8336-2434; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982; Dubinin, Mikhail/0000-0002-7766-7175; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Haj Ahmad, Wael/0000-0003-1491-0446; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Ragazzi, Stefano/0000-0001-8219-2074; Rovelli, Tiziano/0000-0002-9746-4842; Matorras, Francisco/0000-0003-4295-5668; TUVE', Cristina/0000-0003-0739-3153; Marinho, Franciole/0000-0002-7327-0349; Ferguson, Thomas/0000-0001-5822-3731; Benussi, Luigi/0000-0002-2363-8889; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Ligabue, Franco/0000-0002-1549-7107; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Codispoti, Giuseppe/0000-0003-0217-7021; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Hill, Christopher/0000-0003-0059-0779; Wimpenny, Stephen/0000-0003-0505-4908; Dudko, Lev/0000-0002-4462-3192; Dogangun, Oktay/0000-0002-1255-2211; de Jesus Damiao, Dilson/0000-0002-3769-1680; Montanari, Alessandro/0000-0003-2748-6373; Tomei, Thiago/0000-0002-1809-5226; Mundim, Luiz/0000-0001-9964-7805; Ivanov, Andrew/0000-0002-9270-5643; Novaes, Sergio/0000-0003-0471-8549; Tinoco Mendes, Andre David/0000-0001-5854-7699; Rolandi, Luigi (Gigi)/0000-0002-0635-274X FU BMWF; FWF (Austria); FNRS; FWO (Belgium); CNPq; CAPES; FAPERJ; FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS; MoST; NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER; ERDF (Estonia); Academy of Finland; MEC; HIP (Finland); CEA; CNRS/IN2P3 (France); BMBF; DFG; HGF (Germany); GSRT (Greece); OTKA; NKTH (Hungary); DAE; DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF; WCU (Korea); LAS (Lithuania); CINVESTAV; CONACYT; SEP; UASLP-FAI (Mexico); MST (New Zealand); PAEC (Pakistan); MSHE; NSC (Poland); FCT (Portugal); JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); MON; RosAtom; RAS; RFBR (Russia); MSTD (Serbia); SEIDI; CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEP; IPST; NECTEC (Thailand); TUBITAK; TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE; NSF (USA); Marie-Curie programme; European Research Council (European Union); Leventis Foundation; A. P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of Czech Republic; Council of Science and Industrial Research, India; Compagnia di San Paolo (Torino); HOMING PLUS programme of Foundation for Polish Science; European Union, Regional Development Fund; [SF0690030s09] FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MST (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEP, IPST and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund. NR 65 TC 3 Z9 3 U1 3 U2 93 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB PY 2013 IS 2 AR 036 DI 10.1007/JHEP02(2013)036 PG 41 WC Physics, Particles & Fields SC Physics GA 108DW UT WOS:000316272900036 ER PT J AU Cirigliano, V Gonzalez-Alonso, M Graesser, ML AF Cirigliano, Vincenzo Gonzalez-Alonso, Martin Graesser, Michael L. TI Non-standard charged current interactions: beta decays versus the LHC SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; Standard Model ID TENSOR INTERACTION; BRANCHING RATIO; STANDARD MODEL; PION DECAY; NEUTRINO; QUESTION; TESTS; MASS AB We discuss low-energy and collider constraints on the effective couplings characterizing non-standard charged current interactions. A direct comparison of low-energy and LHC probes can be performed within an effective theory framework, when the new physics mediating these interactions originates in the multi-TeV scale. We find that for the effective couplings involving right-handed neutrinos the LHC bounds from pp -> e + MET + X are at the (sub)percent level, already stronger than those from beta decays. For operators involving left-handed neutrinos, the (axial-)vector and pseudo-scalar effective couplings are best probed at low energy, while scalar and tensor couplings are currently probed at the same level by beta decays and the LHC channels pp -> e + MET + X and, by using SU(2) gauge invariance, pp -> e(+)e(-) + X. Future beta decay experiments at the 0.1% level or better will compete in sensitivity with higher statistics and higher energy data from the LHC. C1 [Cirigliano, Vincenzo; Graesser, Michael L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Gonzalez-Alonso, Martin] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. RP Cirigliano, V (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM cirigliano@lanl.gov; gonzalezalon@wisc.edu; mgraesser@lanl.gov RI Gonzalez-Alonso, Martin/O-1480-2016; OI Gonzalez-Alonso, Martin/0000-0003-0319-8828; Cirigliano, Vincenzo/0000-0002-9056-754X FU LANL T-2 Group; DOE Office of Science; LDRD program at Los Alamos National Laboratory; U.S. DOE [DE-FG02-08ER41531]; Wisconsin Alumni Research Foundation FX We thank Tanmoy Bhattacharya and Rajan Gupta for discussions, and Bruce Campbell for correspondence concerning ref. [21]. MGA thanks the LANL T-2 Group for its hospitality and support during the completion of this work. VC and MG acknowledge support by the DOE Office of Science and the LDRD program at Los Alamos National Laboratory. MGA was supported by the U.S. DOE contract DE-FG02-08ER41531 and by the Wisconsin Alumni Research Foundation. NR 37 TC 15 Z9 15 U1 0 U2 10 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB PY 2013 IS 2 AR 046 DI 10.1007/JHEP02(2013)046 PG 18 WC Physics, Particles & Fields SC Physics GA 108DW UT WOS:000316272900046 ER PT J AU Dobrescu, BA Lykken, JD AF Dobrescu, Bogdan A. Lykken, Joseph D. TI Coupling spans of the Higgs-like boson SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Higgs Physics; Beyond Standard Model ID STANDARD MODEL; LHC; DECAYS AB Using the LHC and Tevatron data, we set upper and lower limits on the total width of the Higgs-like boson. The upper limit is based on the well-motivated assumption that the Higgs coupling to a W or Z pair is not much larger than in the Standard Model. These width limits allow us to convert the rate measurements into ranges for the Higgs couplings to various particles. A corollary of the upper limit on the total width is an upper limit on the branching fraction of exotic Higgs decays. Currently, this limit is 47% at the 95% CL if the electroweak symmetry is broken only by doublets. C1 [Dobrescu, Bogdan A.; Lykken, Joseph D.] Fermilab Natl Accelerator Lab, Theoret Phys Dept, Batavia, IL 60510 USA. RP Dobrescu, BA (reprint author), Fermilab Natl Accelerator Lab, Theoret Phys Dept, POB 500, Batavia, IL 60510 USA. EM bdob@fnal.gov; lykken@fnal.gov NR 45 TC 32 Z9 32 U1 1 U2 3 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB PY 2013 IS 2 AR 073 DI 10.1007/JHEP02(2013)073 PG 16 WC Physics, Particles & Fields SC Physics GA 108DW UT WOS:000316272900073 ER PT J AU Chen, ZH Ren, Y Jansen, AN Lin, CK Weng, W Amine, K AF Chen, Zonghai Ren, Yang Jansen, Andrew N. Lin, Chi-kai Weng, Wei Amine, Khalil TI New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries SO NATURE COMMUNICATIONS LA English DT Article ID CATHODE MATERIALS; DIFLUORO(OXALATO)BORATE; ELECTRODES; CAPACITY; ENERGY; CELLS; OXIDE AB Long-life and safe lithium-ion batteries have been long pursued to enable electrification of the transportation system and for grid applications. However, the poor safety characteristics of lithium-ion batteries have been the major bottleneck for the widespread deployment of this promising technology. Here, we report a novel nonaqueous Li2B12F12-xHx electrolyte, using lithium difluoro(oxalato) borate as an electrolyte additive, that has superior performance to the conventional LiPF6-based electrolyte with regard to cycle life and safety, including tolerance to both overcharge and thermal abuse. Cells tested with the Li2B12F9H3-based electrolyte maintained about 70% initial capacity when cycled at 55 degrees C for 1,200 cycles, and the intrinsic overcharge protection mechanism was active up to 450 overcharge abuse cycles. Results from in situ high-energy X-ray diffraction showed that the thermal decomposition of the delithiated Li1-x[Ni(1/3M)n(1/3)Co(1/3)](0.9)O-2 cathode was delayed by about 20 degrees C when using the Li2B12F12-based electrolyte. C1 [Chen, Zonghai; Jansen, Andrew N.; Lin, Chi-kai; Weng, Wei; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Ren, Yang] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Amine, K (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM amine@anl.gov RI Chen, Zonghai/K-8745-2013; Amine, Khalil/K-9344-2013; lin, chikai/D-4986-2014; Jansen, Andrew/Q-5912-2016 OI Jansen, Andrew/0000-0003-3244-7790 FU US Department of Energy, FreedomCAR and Vehicle Technologies Office; US Department of Energy by UChicago Argonne, LLC [DE-AC02-06CH11357]; US Department of Energy, Office of Science, Office of Basic Energy Sciences FX Research was funded by US Department of Energy, FreedomCAR and Vehicle Technologies Office. Argonne National Laboratory is operated for the US Department of Energy by UChicago Argonne, LLC, under contract DE-AC02-06CH11357. We also acknowledge the use of the Advanced Photon Source of Argonne National Laboratory supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. We thank Air Products and Chemicals, Inc., for supplying the samples and technical discussion. We also thank EnerDel Lithium Power for supplying pouch cells for this work. NR 24 TC 45 Z9 45 U1 9 U2 199 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2013 VL 4 AR 1513 DI 10.1038/ncomms2518 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 112TL UT WOS:000316616400083 PM 23443541 ER PT J AU Cordoba, R Baturina, TI Sese, J Mironov, AY De Teresa, JM Ibarra, MR Nasimov, DA Gutakovskii, AK Latyshev, AV Guillamon, I Suderow, H Vieira, S Baklanov, MR Palacios, JJ Vinokur, VM AF Cordoba, R. Baturina, T. I. Sese, J. Mironov, A. Yu De Teresa, J. M. Ibarra, M. R. Nasimov, D. A. Gutakovskii, A. K. Latyshev, A. V. Guillamon, I. Suderow, H. Vieira, S. Baklanov, M. R. Palacios, J. J. Vinokur, V. M. TI Magnetic field-induced dissipation-free state in superconducting nanostructures SO NATURE COMMUNICATIONS LA English DT Article ID TIN FILMS; TRANSITION; VORTICES; LATTICES AB A superconductor in a magnetic field acquires a finite electrical resistance caused by vortex motion. A quest to immobilize vortices and recover zero resistance at high fields made intense studies of vortex pinning one of the mainstreams of superconducting research. Yet, the decades of efforts resulted in a realization that even promising nanostructures, utilizing vortex matching, cannot withstand high vortex density at large magnetic fields. Here, we report a giant reentrance of vortex pinning induced by increasing magnetic field in a W-based nanowire and a TiN-perforated film densely populated with vortices. We find an extended range of zero resistance with vortex motion arrested by self-induced collective traps. The latter emerge due to order parameter suppression by vortices confined in narrow constrictions by surface superconductivity. Our findings show that geometric restrictions can radically change magnetic properties of superconductors and reverse detrimental effects of magnetic field. C1 [Cordoba, R.; Sese, J.; De Teresa, J. M.; Ibarra, M. R.] Univ Zaragoza, Inst Nanociencia Aragon, Lab Microscopias Avanzadas, E-50018 Zaragoza, Spain. [Cordoba, R.; Sese, J.; De Teresa, J. M.; Ibarra, M. R.] Univ Zaragoza, Dept Fis Mat Condensada, Zaragoza 50009, Spain. [Baturina, T. I.; Mironov, A. Yu; Nasimov, D. A.; Gutakovskii, A. K.; Latyshev, A. V.] AV Rzhanov Inst Semicond Phys SB RAS, Novosibirsk 630090, Russia. [Baturina, T. I.; Vinokur, V. M.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [De Teresa, J. M.; Ibarra, M. R.] Univ Zaragoza CSIC, Fac Ciencias, Inst Ciencia Mat Aragon, Zaragoza 50009, Spain. [Guillamon, I.; Suderow, H.; Vieira, S.] Univ Autonoma Madrid, Dept Fis Mat Condensada, Lab Bajas Temp, Inst Ciencia Mat Nicolas Cabrera,Fac Ciencias, E-28049 Madrid, Spain. [Guillamon, I.] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England. [Baklanov, M. R.] IMEC, B-3001 Louvain, Belgium. [Palacios, J. J.] Univ Autonoma Madrid, Dept Fis Mat Condensada, Fac Ciencias, Inst Ciencia Mat Nicolas Cabrera, E-28049 Madrid, Spain. RP Suderow, H (reprint author), Univ Autonoma Madrid, Dept Fis Mat Condensada, Lab Bajas Temp, Inst Ciencia Mat Nicolas Cabrera,Fac Ciencias, Cantoblanco, E-28049 Madrid, Spain. EM Hermann.suderow@uam.es RI vieira, sebastian/L-5216-2014; Guillamon, Isabel/C-9744-2014; DE TERESA, JOSE/E-2430-2011; Cordoba, Rosa/M-3060-2014; Sese, Javier/K-6229-2013; Palacios, Juan Jose/A-9872-2011; Nasimov, Dmirtiy/R-4419-2016; Gutakovskii, Anton/N-3603-2013; Suderow, Hermann/L-6612-2013; Ibarra, Manuel Ricardo/K-1150-2014 OI vieira, sebastian/0000-0002-3854-1377; Guillamon, Isabel/0000-0002-2606-3355; DE TERESA, JOSE/0000-0001-9566-0738; Cordoba, Rosa/0000-0002-6180-8113; Sese, Javier/0000-0002-7742-9329; Palacios, Juan Jose/0000-0003-2378-0866; Gutakovskii, Anton/0000-0002-4712-8736; Suderow, Hermann/0000-0002-5902-1880; Ibarra, Manuel Ricardo/0000-0003-0681-8260 FU Spanish MICINN [CSD2007-00010, MAT2011-27553-C02, FIS2011-23488, FIS2010-21883, ACI-2009-0905]; Spanish MEC [CSD2007-00010, MAT2011-27553-C02, FIS2011-23488, FIS2010-21883, ACI-2009-0905]; Comunidad de Madrid; Aragon regional Governement; Russian Academy of Sciences; Russian Foundation for Basic Research [12-02-00152, 12-02-31302]; US Department of Energy Office of Science [DEAC02- 06CH11357] FX We are delighted to thank Yu. Galperin, A. Glatz, N. Kopnin, A. Mel'nikov, A. Bezryadin and B. Shapiro for illuminating discussions. The Laboratorio de Bajas Temperaturas is associated to the ICMM of the CSIC. This work was supported by the Spanish MICINN and MEC (Consolider Ingenio Molecular Nanoscience CSD2007-00010 programme, MAT2011-27553-C02, FIS2011-23488, FIS2010-21883 and ACI-2009-0905), by the Comunidad de Madrid through program Nanobiomagnet and by the Aragon regional Governement, by the Program 'Quantum mesoscopic and disordered structures' of the Russian Academy of Sciences, by the Russian Foundation for Basic Research (Grant No. 12-02-00152 and Grant No. 12-02-31302), and by the US Department of Energy Office of Science under the Contract No. DEAC02- 06CH11357. NR 35 TC 38 Z9 38 U1 4 U2 84 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2013 VL 4 AR 1437 DI 10.1038/ncomms2437 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 112TL UT WOS:000316616400013 PM 23385582 ER PT J AU Habraken, WJEM Tao, JH Brylka, LJ Friedrich, H Bertinetti, L Schenk, AS Verch, A Dmitrovic, V Bomans, PHH Frederik, PM Laven, J van der Schoot, P Aichmayer, B de With, G DeYoreo, JJ Sommerdijk, NAJM AF Habraken, Wouter J. E. M. Tao, Jinhui Brylka, Laura J. Friedrich, Heiner Bertinetti, Luca Schenk, Anna S. Verch, Andreas Dmitrovic, Vladimir Bomans, Paul H. H. Frederik, Peter M. Laven, Jozua van der Schoot, Paul Aichmayer, Barbara de With, Gijsbertus DeYoreo, James J. Sommerdijk, Nico A. J. M. TI Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate SO NATURE COMMUNICATIONS LA English DT Article ID X-RAY-DIFFRACTION; OCTACALCIUM PHOSPHATE; IN-VITRO; ANGLE SCATTERING; GERM-FORMATION; HYDROXYAPATITE; CLUSTERS; BONE; PRECIPITATION; SPECTROSCOPY AB Despite its importance in many industrial, geological and biological processes, the mechanism of crystallization from supersaturated solutions remains a matter of debate. Recent discoveries show that in many solution systems nanometre-sized structural units are already present before nucleation. Still little is known about the structure and role of these so-called pre-nucleation clusters. Here we present a combination of in situ investigations, which show that for the crystallization of calcium phosphate these nanometre-sized units are in fact calcium triphosphate complexes. Under conditions in which apatite forms from an amorphous calcium phosphate precursor, these complexes aggregate and take up an extra calcium ion to form amorphous calcium phosphate, which is a fractal of Ca-2(HPO4)(3)(2-) clusters. The calcium triphosphate complex also forms the basis of the crystal structure of octacalcium phosphate and apatite. Finally, we demonstrate how the existence of these complexes lowers the energy barrier to nucleation and unites classical and non-classical nucleation theories. C1 [Habraken, Wouter J. E. M.; Brylka, Laura J.; Friedrich, Heiner; Dmitrovic, Vladimir; Bomans, Paul H. H.; Frederik, Peter M.; Laven, Jozua; de With, Gijsbertus; Sommerdijk, Nico A. J. M.] Eindhoven Univ Technol, Dept Chem Engn & Chem, Lab Mat & Interface Chem, NL-5600 MB Eindhoven, Netherlands. [Habraken, Wouter J. E. M.; Brylka, Laura J.; Friedrich, Heiner; Dmitrovic, Vladimir; Bomans, Paul H. H.; Frederik, Peter M.; Laven, Jozua; de With, Gijsbertus; Sommerdijk, Nico A. J. M.] Soft Matter CryoTEM Res Unit, NL-5600 MB Eindhoven, Netherlands. [Habraken, Wouter J. E. M.; Bertinetti, Luca; Schenk, Anna S.; Aichmayer, Barbara] Max Planck Inst Colloids & Interfaces, Dept Biomat, D-14424 Potsdam, Germany. [Tao, Jinhui; DeYoreo, James J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Verch, Andreas] Max Planck Inst Colloids & Interfaces, Dept Colloid Chem, D-14424 Potsdam, Germany. [van der Schoot, Paul] Eindhoven Univ Technol, Grp Theory Polymers & Soft Matter, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands. RP DeYoreo, JJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM James.DeYoreo@pnnl.gov; N.Sommerdijk@tue.nl RI bertinetti, luca/G-1436-2013; Friedrich, Heiner/F-7981-2010; Brylka, Laura/D-7908-2014; de With, Gijsbertus/E-3235-2014; Sommerdijk, Nico/B-7239-2013; Foundry, Molecular/G-9968-2014; Bertinetti, Luca/M-8242-2016 OI bertinetti, luca/0000-0002-4666-9610; Brylka, Laura/0000-0003-4734-9966; Sommerdijk, Nico/0000-0002-8956-195X; Bertinetti, Luca/0000-0002-4666-9610 FU National Institutes of Health [DK61673]; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH1123]; VICI grant of The Netherlands Organization for Scientific Research (NWO-CW) FX We would like to thank Dr Stefan Siegel and Dr Chenghao Li for the support during the synchrotron measurements at the mu-Spot beamline of the BESSY II synchrotron facility (Helmholtz Zentrum Berlin) and Peter Fratzl for fruitful and inspiring discussions. We also thank Adelheid Elemans-Mehring for help with ICP measurements, Frits Boogaard and Jarno van Roosmalen for their contribution to the 3D reconstructions, and Dr Fabio Nudelman for taking cryo-TEM images and performing LDSEAD. J.J.D. and J.T. acknowledge grant no. DK61673 from the National Institutes of Health. Theoretical analysis was supported by the Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract no. DE-AC02-05CH1123. This research was supported by a VICI grant of The Netherlands Organization for Scientific Research (NWO-CW). NR 60 TC 113 Z9 114 U1 32 U2 268 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2013 VL 4 AR 1507 DI 10.1038/ncomms2490 PG 12 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 112TL UT WOS:000316616400077 PM 23422675 ER PT J AU Huang, WL Dulong, F Wu, TP Khan, SI Miller, JT Cantat, T Diaconescu, PL AF Huang, Wenliang Dulong, Florian Wu, Tianpin Khan, Saeed I. Miller, Jeffrey T. Cantat, Thibault Diaconescu, Paula L. TI A six-carbon 10 pi-electron aromatic system supported by group 3 metals SO NATURE COMMUNICATIONS LA English DT Article ID DENSITY-FUNCTIONAL THEORY; CHEMICAL-SHIFTS; COMPLEXES; BENZENE; HETEROCYCLES; CRYSTALLINE; REDUCTION; CHEMISTRY; LIGANDS; RINGS AB Aromaticity is a fundamental concept with implications spanning all the chemical sciences. Huckel's (4n + 2)pi-electron rule is the standard criterion to determine aromaticity and it applies well to neutral arenes as well as to charged species such as the cyclopentadienyl anion, the cyclooctatetraene dianion and the cycloheptatrienyl cation (tropylium). In the series of all-carbon aromatic compounds, no example of a benzene tetraanion, which is theoretically a 6C, 10 pi-electron aromatic system, has been reported although heteroatom analogues of such a system, known as 'electron-rich aromatics', have been studied in detail for a long time. Here we present the isolation of the first tetraanionic-substituted benzene as a ligand coordinated to group 3 metals. The nature of the substituted benzene tetraanion and the aromaticity of the 6C, 10 pi-electron system were established by X-ray crystallographic studies, multi-nuclei nuclear magnetic resonance spectroscopy, X-ray absorption spectroscopy and density functional theory calculations. C1 [Huang, Wenliang; Khan, Saeed I.; Diaconescu, Paula L.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Dulong, Florian; Cantat, Thibault] CEA, IRAMIS, CNRS, SIS2M,UMR 3299, F-91191 Gif Sur Yvette, France. [Wu, Tianpin; Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Diaconescu, PL (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. EM pld@chem.ucla.edu RI BM, MRCAT/G-7576-2011; Cantat, Thibault/A-8167-2010 OI Cantat, Thibault/0000-0001-5265-8179 FU US Department of Energy, Office of Basic Energy Sciences, Heavy Element Chemistry programme [ER15984]; NSF [0847735]; Sloan Foundation; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy; MRCAT; US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; US Department of Energy [DE-AC0-06CH11357]; CINES [c2012086494] FX The work conducted at UCLA was mainly supported by the US Department of Energy, Office of Basic Energy Sciences, Heavy Element Chemistry programme under Grant No. ER15984; some aspects were supported by the NSF (CAREER Grant 0847735) and Sloan Foundation. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Basic Energy Sciences, under contract DE-AC02-06CH11357. Materials Research Collaborative Access Team (MRCAT) operations are supported by the Department of Energy and the MRCAT member institutions. Funding for J.T.M. and T. W. was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Argonne is operated by U. Chicago Argonne, LLC, for the US Department of Energy under contract DE-AC0-06CH11357. Computer time was supported by CINES (Project No. c2012086494). NR 34 TC 19 Z9 19 U1 3 U2 49 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2013 VL 4 AR 1448 DI 10.1038/ncomms2473 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 112TL UT WOS:000316616400024 PM 23385592 ER PT J AU Ross, JS Wu, SF Yu, HY Ghimire, NJ Jones, AM Aivazian, G Yan, JQ Mandrus, DG Xiao, D Yao, W Xu, XD AF Ross, Jason S. Wu, Sanfeng Yu, Hongyi Ghimire, Nirmal J. Jones, Aaron M. Aivazian, Grant Yan, Jiaqiang Mandrus, David G. Xiao, Di Yao, Wang Xu, Xiaodong TI Electrical control of neutral and charged excitons in a monolayer semiconductor SO NATURE COMMUNICATIONS LA English DT Article ID BOSE-EINSTEIN CONDENSATION; GAAS QUANTUM-WELLS; VALLEY POLARIZATION; BAND-GAPS; MOS2; PHOTOLUMINESCENCE; TRIONS; SPECTROSCOPY; SYSTEMS; STATE AB Monolayer group-VI transition metal dichalcogenides have recently emerged as semiconducting alternatives to graphene in which the true two-dimensionality is expected to illuminate new semiconducting physics. Here we investigate excitons and trions (their singly charged counterparts), which have thus far been challenging to generate and control in the ultimate two-dimensional limit. Utilizing high-quality monolayer molybdenum diselenide, we report the unambiguous observation and electrostatic tunability of charging effects in positively charged (X+), neutral (X-o) and negatively charged (X-) excitons in field-effect transistors via photoluminescence. The trion charging energy is large (30 meV), enhanced by strong confinement and heavy effective masses, whereas the linewidth is narrow (5 meV) at temperatures <55 K. This is greater spectral contrast than in any known quasi-two-dimensional system. We also find the charging energies for X+ and X- to be nearly identical implying the same effective mass for electrons and holes. C1 [Ross, Jason S.; Xu, Xiaodong] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. [Wu, Sanfeng; Jones, Aaron M.; Aivazian, Grant; Xu, Xiaodong] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Yu, Hongyi; Yao, Wang] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China. [Yu, Hongyi; Yao, Wang] Univ Hong Kong, Ctr Theoret & Computat Phys, Hong Kong, Hong Kong, Peoples R China. [Ghimire, Nirmal J.; Mandrus, David G.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Ghimire, Nirmal J.; Yan, Jiaqiang; Mandrus, David G.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Yan, Jiaqiang; Mandrus, David G.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Xiao, Di] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. RP Xu, XD (reprint author), Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. EM xuxd@uw.edu RI Xiao, Di/B-1830-2008; Yao, Wang/C-1353-2008; Mandrus, David/H-3090-2014; Wu, Sanfeng/L-1323-2016; OI Xiao, Di/0000-0003-0165-6848; Yao, Wang/0000-0003-2883-4528; Wu, Sanfeng/0000-0002-6227-6286; Jones, Aaron/0000-0002-8326-1294 FU US DoE, BES, Materials Sciences and Engineering Division [DE-SC0008145]; Research Grant Council of Hong Kong [HKU706412P]; NSF FX We thank David Cobden and Ming Gong for their helpful discussions. This work is mainly supported by the US DoE, BES, Materials Sciences and Engineering Division (DE-SC0008145). H.Y. and W.Y. were supported by Research Grant Council of Hong Kong (HKU706412P). N.J.G., J.Y., D.G.M. and D.X. were supported by the US DoE, BES, Materials Sciences and Engineering Division. Device fabrication was performed at the University of Washington Microfabrication Facility and NSF-funded Nanotech User Facility. NR 31 TC 323 Z9 326 U1 52 U2 370 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2013 VL 4 AR 1474 DI 10.1038/ncomms2498 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 112TL UT WOS:000316616400044 PM 23403575 ER PT J AU You, JB Dou, LT Yoshimura, K Kato, T Ohya, K Moriarty, T Emery, K Chen, CC Gao, J Li, G Yang, Y AF You, Jingbi Dou, Letian Yoshimura, Ken Kato, Takehito Ohya, Kenichiro Moriarty, Tom Emery, Keith Chen, Chun-Chao Gao, Jing Li, Gang Yang, Yang TI A polymer tandem solar cell with 10.6% power conversion efficiency SO NATURE COMMUNICATIONS LA English DT Article ID FIELD-EFFECT TRANSISTORS; OPEN-CIRCUIT VOLTAGE; LOW-BANDGAP POLYMER; PHOTOVOLTAIC CELLS; HIGH-PERFORMANCE; ORGANIC PHOTOVOLTAICS; OXIDE NANOPARTICLES; CONJUGATED POLYMERS; TRANSPORT; ACCEPTOR AB An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap <1.4 eV), poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5H-dithieno[3,2-b:2',3'-d]pyran)-alt-4,7-(5,6-difluoro-2,1,3-benzothia diazole)] with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 degrees C, 1,000 Wm(-2), IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%. C1 [You, Jingbi; Dou, Letian; Chen, Chun-Chao; Gao, Jing; Li, Gang; Yang, Yang] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. [Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro] Sumitomo Chem Co Ltd, Tsukuba Mat Dev Lab, Tsukuba, Ibaraki 3003294, Japan. [Moriarty, Tom; Emery, Keith] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Yang, Yang] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA. RP Li, G (reprint author), Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA. EM gangl@ucla.edu; yangy@ucla.edu RI Li, Gang/A-5667-2012; Yang, Yang/A-2944-2011; You, Jingbi/A-2941-2011; OI Li, Gang/0000-0001-8399-7771; You, Jingbi/0000-0002-4651-9081; GAO, JING/0000-0003-2059-0290 FU Air Force Office of Scientific Research (AFOSR) [FA9550-09-1-0610]; US Department of Energy [DE-AC36-08-GO28308]; NREL; UCLA Henry Samuli School of Engineering and Applied Science FX This work was financially supported by the Air Force Office of Scientific Research (AFOSR, grant no. FA9550-09-1-0610) as well as by the US Department of Energy (contract no. DE-AC36-08-GO28308), together with the NREL. G. L. thank the UCLA Henry Samuli School of Engineering and Applied Science for financial support. The author thanks Professor Z.H. Zhou and I. Atanasov from Electron Imaging Center for NanoMachines (EICN) in UCLA for EFTEM measurement, Y. Yang (student) for Photo-CELIV measurement, Dr Y.J. He, Dr S. Murase, W. S. Chang in UCLA for ICBA, ZnO nanoparticles synthesis, and conducting DFT simulation, respectively. The author also thank Eric Richard for proof reading the manuscript. Y. Y and G. L. thank Dr Dimitri Krut, and Dr Richard King of Spectrolab Inc. for valuable technical discussion. NR 55 TC 1741 Z9 1758 U1 117 U2 1179 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD FEB PY 2013 VL 4 AR 1446 DI 10.1038/ncomms2411 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 112TL UT WOS:000316616400022 PM 23385590 ER PT J AU Albers, M Nomura, K Warr, N Blazhev, A Jolie, J Mucher, D Bastin, B Bauer, C Bernards, C Bettermann, L Bildstein, V Butterworth, J Cappellazzo, M Cederkall, J Cline, D Darby, I Das Gupta, S Daugas, JM Davinson, T De Witte, H Diriken, J Filipescu, D Fiori, E Fransen, C Gaffney, LP Georgiev, G Gernhauser, R Hackstein, M Heinze, S Hess, H Huyse, M Jenkins, D Konki, J Kowalczyk, M Kroll, T Krucken, R Litzinger, J Lutter, R Marginean, N Mihai, C Moschner, K Napiorkowski, P Singh, BSN Nowak, K Pakarinen, J Pfeiffer, M Radeck, D Reiter, P Rigby, S Robledo, LM Rodriguez-Guzman, R Rudigier, M Scheck, M Seidlitz, M Siebeck, B Simpson, GS Thole, P Thomas, T de Walle, JV Van Duppen, P Vermeulen, M Voulot, D Wadsworth, R Wenander, F Wimmer, K Zell, KO Zielinska, M AF Albers, M. Nomura, K. Warr, N. Blazhev, A. Jolie, J. Muecher, D. Bastin, B. Bauer, C. Bernards, C. Bettermann, L. Bildstein, V. Butterworth, J. Cappellazzo, M. Cederkaell, J. Cline, D. Darby, I. Das Gupta, S. Daugas, J. M. Davinson, T. De Witte, H. Diriken, J. Filipescu, D. Fiori, E. Fransen, C. Gaffney, L. P. Georgiev, G. Gernhaeuser, R. Hackstein, M. Heinze, S. Hess, H. Huyse, M. Jenkins, D. Konki, J. Kowalczyk, M. Kroell, T. Kruecken, R. Litzinger, J. Lutter, R. Marginean, N. Mihai, C. Moschner, K. Napiorkowski, P. Singh, B. S. Nara Nowak, K. Pakarinen, J. Pfeiffer, M. Radeck, D. Reiter, P. Rigby, S. Robledo, L. M. Rodriguez-Guzman, R. Rudigier, M. Scheck, M. Seidlitz, M. Siebeck, B. Simpson, G. S. Thoele, P. Thomas, T. de Walle, J. Van Van Duppen, P. Vermeulen, M. Voulot, D. Wadsworth, R. Wenander, F. Wimmer, K. Zell, K. O. Zielinska, M. TI Shape dynamics in neutron-rich Kr isotopes: Coulomb excitation of Kr-92, Kr-94 and Kr-96 SO NUCLEAR PHYSICS A LA English DT Article DE NUCLEAR REACTIONS Pt-194,Pt-196(Kr-92, Kr-92); (Kr-94, Kr-94 '); (Kr-96, Kr-96 '); E=2.85 MeV/nucleon; ID INTERACTING BOSON MODEL; COLLECTIVE NUCLEAR STATES; RADIOACTIVE ION-BEAM; DATA SHEETS; REX-ISOLDE; DETECTOR AB We report on the study of excited states in Kr-92,Kr-94,Kr-96 populated via projectile Coulomb excitation at safe energies. The radioactive ion beams at energies of 2.85 MeV/u were delivered by the REX-ISOLDE, facility at CERN and impinged on self-supporting (194,196) pt targets. The emitted y gamma-rays were detected by the Miniball detector-array. A detailed description of the experimental techniques used for extracting diagonal and transitional matrix elements and of the theoretical framework is given. The present experiment reveals the moderate evolution of the collective structure in the considered neutron-rich Kr isotopic chain, whicb is supported by the interacting boson model combined with the self-consistent mean-field method using a microscopic Gogny energy-density functional. The theory also suggests possible shape coexistence in the exotic nucleus Kr-96. (C) 2013 Elsevier B.V. All rights reserved. C1 [Albers, M.; Nomura, K.; Warr, N.; Blazhev, A.; Jolie, J.; Bettermann, L.; Cappellazzo, M.; Fransen, C.; Hackstein, M.; Heinze, S.; Hess, H.; Litzinger, J.; Moschner, K.; Pfeiffer, M.; Radeck, D.; Reiter, P.; Rudigier, M.; Seidlitz, M.; Siebeck, B.; Thoele, P.; Thomas, T.; Zell, K. O.] Univ Cologne, Inst Kernphys, D-50937 Cologne, Germany. [Muecher, D.; Bildstein, V.; Gernhaeuser, R.; Kruecken, R.; Nowak, K.; Wimmer, K.] Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany. [Bastin, B.; Darby, I.; De Witte, H.; Diriken, J.; Huyse, M.; Van Duppen, P.] Katholieke Univ Leuven, Inst Kern Stralingsfys, B-3001 Louvain, Belgium. [Bauer, C.; Kroell, T.; Scheck, M.] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany. [Bernards, C.] Yale Univ, Wright Nucl Struct Lab, New Haven, CT 06511 USA. [Butterworth, J.; Jenkins, D.; Singh, B. S. Nara; Vermeulen, M.; Wadsworth, R.] Univ York, Dept Phys, Nucl Phys Grp, York YO10 5DD, N Yorkshire, England. [Cederkaell, J.; Pakarinen, J.; de Walle, J. Van; Voulot, D.; Wenander, F.] CERN, CH-1211 Geneva 23, Switzerland. [Cline, D.] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA. [Das Gupta, S.] Univ Camerino, Dipartimento Fis, I-62032 Camerino, Italy. [Daugas, J. M.] DIF, DAM, CEA, F-91297 Arpajon, France. [Davinson, T.] Univ Edinburgh, Sch Phys & Astron, Edinburgh EH9 3JZ, Midlothian, Scotland. [Diriken, J.] CEN SCK, B-2400 Mol, Belgium. [Filipescu, D.; Marginean, N.; Mihai, C.] H Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Fiori, E.; Georgiev, G.] Univ Paris 11, IN2P3, CSNSM CNSR, F-91405 Orsay, France. [Gaffney, L. P.; Rigby, S.; Scheck, M.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 7ZE, Merseyside, England. [Konki, J.] Univ Jyvaskyla, Dept Phys, FI-40014 Jyvaskyla, Finland. [Kowalczyk, M.; Napiorkowski, P.; Zielinska, M.] Univ Warsaw, Heavy Ion Lab, PL-02093 Warsaw, Poland. [Kruecken, R.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Lutter, R.] Univ Munich, Fak Phys, D-85748 Garching, Germany. [Robledo, L. M.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain. [Rodriguez-Guzman, R.] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Rodriguez-Guzman, R.] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Simpson, G. S.] LPSC Grenoble, F-38026 Grenoble, France. RP Albers, M (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM malbers@phy.anl.gov RI Mihai, Constantin/A-7863-2012; Filipescu, Dan Mihai/C-3789-2011; Bernards, Christian/C-4879-2013; Pakarinen, Janne/F-6695-2010; Gaffney, Liam/G-3169-2014; Robledo, Luis Miguel/L-2557-2013; Marginean, Nicolae Marius/C-4732-2011; Georgiev, Georgi/C-5110-2008; Kruecken, Reiner/A-1640-2013; OI BASTIN, Beyhan/0000-0001-5959-0875; Filipescu, Dan Mihai/0000-0003-3282-1594; Bernards, Christian/0000-0001-5346-1415; Pakarinen, Janne/0000-0001-8944-8757; Gaffney, Liam/0000-0002-2938-3696; Robledo, Luis Miguel/0000-0002-6061-1319; Georgiev, Georgi/0000-0003-1467-1764; Kruecken, Reiner/0000-0002-2755-8042; Scheck, Marcus/0000-0002-9624-3909 FU BMBF [06KY91361, 06MT238, 06DA90361]; ENSAR; FWO-Vlaanderen (Belgium); IUAP-Belgian State Belgian Science Policy (BriX network P7/12); DFG Cluster of Excellence Origin and Structure of the Universe; Interuniversity Attraction Pool; UK STFC; JSPS Postdoctoral Fellowships for Research Abroad FX This work was supported by the BMBF under contract No. 06KY91361, 06MT238 and 06DA90361, by ENSAR, by the FWO-Vlaanderen (Belgium), by the IUAP-Belgian State Belgian Science Policy (BriX network P7/12), by the DFG Cluster of Excellence Origin and Structure of the Universe, by the Interuniversity Attraction Pool and the UK STFC. The author K.N. acknowledges the support of the JSPS Postdoctoral Fellowships for Research Abroad. NR 41 TC 18 Z9 18 U1 1 U2 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0375-9474 EI 1873-1554 J9 NUCL PHYS A JI Nucl. Phys. A PD FEB 1 PY 2013 VL 899 BP 1 EP 28 DI 10.1016/j.nuclphysa.2013.01.013 PG 28 WC Physics, Nuclear SC Physics GA 113EK UT WOS:000316649100001 ER PT J AU Fisher, RA Gordon, JE Hardy, F Mickelson, WE Oeschler, N Phillips, NE Zettl, A AF Fisher, R. A. Gordon, J. E. Hardy, F. Mickelson, W. E. Oeschler, N. Phillips, N. E. Zettl, A. TI Specific heat of Mg(B1-xCx)(2), x=0.05, 0.1 SO PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS LA English DT Article DE C-doped MgB2; Superconductivity; Two gaps; Electron density of states ID CARBON-SUBSTITUTED MGB2; MAGNESIUM DIBORIDE; OVERLAPPING BANDS; 2-BAND MODEL; SUPERCONDUCTIVITY; STATES; FIELD AB We report measurements of the specific heat of two samples of carbon-doped MgB2, Mg(B-1 C-x(x))(2), x = 0.05 and 0.1, in magnetic fields to mu H-0 = 9 T and at temperatures from similar to 1 K to somewhat above the critical temperature for superconductivity for each sample. The carbon doping reduced the critical temperature from 39 K for MgB2 to 31.4 K and 19.7 K for the x = 0.05 and 0.1 samples, respectively. The results give the electron-phonon coupling and the electron density of states, including the individual contributions of the pi and sigma bands. These quantities are compared with theoretical calculations. The results also give the energy gaps on the pi and alpha bands, which are compared with other experimental determinations, and also with theoretical calculations that include predictions of the "merging" of the two gaps as a consequence of the band filling and increased interband scattering associated with doping. (C) 2012 Elsevier B.V. All rights reserved. C1 [Fisher, R. A.; Hardy, F.; Mickelson, W. E.; Oeschler, N.; Phillips, N. E.; Zettl, A.] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Fisher, R. A.; Hardy, F.; Oeschler, N.; Phillips, N. E.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Gordon, J. E.] Amherst Coll, Dept Phys, Amherst, MA 01002 USA. [Mickelson, W. E.; Zettl, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Phillips, NE (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM nephill@berkeley.edu RI Mickelson, Willi/D-8813-2013; Zettl, Alex/O-4925-2016 OI Mickelson, Willi/0000-0002-6398-6212; Zettl, Alex/0000-0001-6330-136X FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy [DE-AC02-05CH11231]; Deutsche Akademische Austauch Dienst; Faculty's Emeriti Fund FX The work at Berkeley was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. N.O. also acknowledges support by the Deutsche Akademische Austauch Dienst. The work at Amherst College received support from the Dean of the Faculty's Emeriti Fund. NR 47 TC 3 Z9 3 U1 0 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-4534 J9 PHYSICA C JI Physica C PD FEB PY 2013 VL 485 BP 168 EP 176 DI 10.1016/j.physc.2012.12.004 PG 9 WC Physics, Applied SC Physics GA 117DP UT WOS:000316932700031 ER PT J AU Wachtor, AJ Grinstein, FF DeVore, CR Ristorcelli, JR Margolin, LG AF Wachtor, A. J. Grinstein, F. F. DeVore, C. R. Ristorcelli, J. R. Margolin, L. G. TI Implicit large-eddy simulation of passive scalar mixing in statistically stationary isotropic turbulence SO PHYSICS OF FLUIDS LA English DT Article ID HIGH-REYNOLDS-NUMBER; HOMOGENEOUS TURBULENCE; FLOWS; FLUX; TRANSPORT; GRADIENT; SCHEMES; JETS AB Turbulent mixing of a passive scalar by forced isotropic turbulence with a prescribed mean scalar gradient is studied in the context of implicit large-eddy simulation. The simulation strategy uses a multi-dimensional compressible flux-corrected transport algorithm, with low wavenumber momentum forcing imposed separately for the solenoidal and dilatational velocity components. Effects of grid resolution on the flow and scalar mixing are investigated at turbulent Mach numbers 0.13 and 0.27. Turbulence metrics are used to show that an implicit large-eddy simulation can accurately capture the mixing transition and asymptotic self-similar behaviors predicted by previous theoretical, laboratory, and direct numerical simulation studies, including asymptotically constant scalar variance and increasing velocity-to-scalar Taylor micro-scales ratio as function of effective Reynolds number determined by grid resolution. The results demonstrate the feasibility of predictive under-resolved simulations of high Reynolds number turbulent scalar mixing using implicit large-eddy simulation. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4783924] C1 [Wachtor, A. J.; Grinstein, F. F.; Ristorcelli, J. R.; Margolin, L. G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [DeVore, C. R.] USN, Res Lab, Washington, DC 20375 USA. RP Wachtor, AJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. RI DeVore, C/A-6067-2015; OI DeVore, C/0000-0002-4668-591X; Wachtor, Adam/0000-0003-0609-9171 FU U.S. Department of Energy NNSA [DE-AC52-06NA25396]; LANL LDRD-ER [20100441ER] FX The authors thank Daniel Livescu for stimulating discussions and for sharing detailed information on his compressible turbulence forcing strategy. Los Alamos National Laboratory (LANL) is operated by the Los Alamos National Security, LLC for the U.S. Department of Energy NNSA under Contract No. DE-AC52-06NA25396. This work was made possible by funding from the LANL LDRD-ER on "LES Modeling for Predictive Simulations of Material Mixing," through exploratory research Project No. 20100441ER. NR 50 TC 14 Z9 14 U1 0 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 J9 PHYS FLUIDS JI Phys. Fluids PD FEB PY 2013 VL 25 IS 2 AR 025101 DI 10.1063/1.4783924 PG 19 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 117KI UT WOS:000316951700028 ER PT J AU Apruzese, JP Giuliani, JL Thornhill, JW Coverdale, CA Jones, B Ampleford, DJ AF Apruzese, J. P. Giuliani, J. L. Thornhill, J. W. Coverdale, C. A. Jones, B. Ampleford, D. J. TI Analysis of spatially resolved Z-pinch spectra to investigate the nature of "bright spots" SO PHYSICS OF PLASMAS LA English DT Article ID K-SHELL RADIATION; X-RAY SPECTROSCOPY; WIRE ARRAYS; ATOMIC-NUMBER; HOT-SPOTS; PLASMAS; PHYSICS; ARGON; LINE; MA AB Localized, intensely radiating regions are often observed in Z pinches. High resolution images of such areas have been recorded at least as far back as the 1970s. However, there is as yet no widely accepted consensus on the nature of these "bright spots" or how they are formed. This phenomenon has also been referred to "hot spots" or "micropinches." To shed further light on this issue, we have analyzed axially resolved K-shell spectra from 4 Z pinches driven by the refurbished Z generator ("ZR") at Sandia National Laboratories, and the previous version of the Z machine ("Z"). The atomic numbers of the loads varied from 13 to 29. We find that higher spatial K-shell intensity in the Al pinch correlates with density. The K-shell intensity within a copper shot taken on ZR correlates strongly with increased electron temperature, but another, somewhat less well-diagnosed copper shot from Z shows correlation with density. The bright spots in a Ti pinch correlate with neither density nor temperature, but do correlate with the product of density and diameter (proportional to opacity). This opacity correlation is also observed in the other 3 pinches. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4792256] C1 [Apruzese, J. P.; Giuliani, J. L.; Thornhill, J. W.] USN, Res Lab, Div Plasma Phys, Washington, DC 20375 USA. [Coverdale, C. A.; Jones, B.; Ampleford, D. J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Apruzese, JP (reprint author), NRL Engil Corp, Chantilly, VA 20151 USA. FU U. S. Department of Energy, National Nuclear Security Administration [DE-AC04-94AL85000]; Sandia National Laboratories FX This work was supported by the U. S. Department of Energy, National Nuclear Security Administration, and by Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration, under contract DE-AC04-94AL85000. NR 40 TC 10 Z9 10 U1 0 U2 20 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2013 VL 20 IS 2 AR 022707 DI 10.1063/1.4792256 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 122BK UT WOS:000317289800046 ER PT J AU Baumgaertel, JA Hammett, GW Mikkelsen, DR AF Baumgaertel, J. A. Hammett, G. W. Mikkelsen, D. R. TI Comparing linear ion-temperature-gradient-driven mode stability of the National Compact Stellarator Experiment and a shaped tokamak SO PHYSICS OF PLASMAS LA English DT Article ID CONFIGURATION FLEXIBILITY; HIGH-BETA; TURBULENCE; PHYSICS; TRANSPORT; NCSX; ITER; JET AB One metric for comparing confinement properties of different magnetic fusion energy configurations is the linear critical gradient of drift wave modes. The critical gradient scale length determines the ratio of the core to pedestal temperature when a plasma is limited to marginal stability in the plasma core. The gyrokinetic turbulence code GS2 was used to calculate critical temperature gradients for the linear, collisionless ion temperature gradient (ITG) mode in the National Compact Stellarator Experiment (NCSX) and a prototypical shaped tokamak, based on the profiles of a JET H-mode shot and the stronger shaping of ARIES-AT. While a concern was that the narrow cross section of NCSX at some toroidal locations would result in steep gradients that drive instabilities more easily, it is found that other stabilizing effects of the stellarator configuration offset this so that the normalized critical gradients for NCSX are competitive with or even better than for the tokamak. For the adiabatic ITG mode, NCSX and the tokamak had similar adiabatic ITG mode critical gradients, although beyond marginal stability, NCSX had larger growth rates. However, for the kinetic ITG mode, NCSX had a higher critical gradient and lower growth rates until a/L-T approximate to 1.5 a/L-T,L-crit, when it surpassed the tokamak's. A discussion of the results presented with respect to a/L-T vs. R/L-T is included. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4791657] C1 [Baumgaertel, J. A.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Hammett, G. W.; Mikkelsen, D. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Baumgaertel, JA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. RI Hammett, Gregory/D-1365-2011 OI Hammett, Gregory/0000-0003-1495-6647 FU U.S. Department of Energy through the Sci-DAC Center for the Study of Plasma Microturbulence; Princeton Plasma Physics Laboratory under DOE [DE-AC02-09CH11466]; Los Alamos National Security, LLC under DOE [DE-AC52-06NA25396] FX The authors wish to thank Neil Pomphrey for creating the NCSX equilibrium, Pavlos Xanthopoulos for the use of and assistance with GIST, and W. Dorland, M. A. Barnes, and W. Guttenfelder for their help with GS2. This work was supported by the U.S. Department of Energy through the Sci-DAC Center for the Study of Plasma Microturbulence, the Princeton Plasma Physics Laboratory under DOE Contract No. DE-AC02-09CH11466, and Los Alamos National Security, LLC under DOE Contract No. DE-AC52-06NA25396. NR 49 TC 4 Z9 4 U1 2 U2 9 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2013 VL 20 IS 2 AR 022305 DI 10.1063/1.4791657 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 122BK UT WOS:000317289800026 ER PT J AU Bobrova, NA Sasorov, PV Benedetti, C Bulanov, SS Geddes, CGR Schroeder, CB Esarey, E Leemans, WP AF Bobrova, N. A. Sasorov, P. V. Benedetti, C. Bulanov, S. S. Geddes, C. G. R. Schroeder, C. B. Esarey, E. Leemans, W. P. TI Laser-heater assisted plasma channel formation in capillary discharge waveguides SO PHYSICS OF PLASMAS LA English DT Article ID GAS-FILLED CAPILLARY; PULSES; ACCELERATORS AB A method of creating plasma channels with controllable depth and transverse profile for the guiding of short, high power laser pulses for efficient electron acceleration is proposed. The plasma channel produced by the hydrogen-filled capillary discharge waveguide is modified by a ns-scale laser pulse, which heats the electrons near the capillary axis. This interaction creates a deeper plasma channel within the capillary discharge that evolves on a ns-time scale, allowing laser beams with smaller spot sizes than would otherwise be possible in the unmodified capillary discharge. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793447] C1 [Bobrova, N. A.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bobrova, N. A.; Sasorov, P. V.] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia. [Sasorov, P. V.] MV Keldysh Appl Math Inst, Moscow 125047, Russia. [Benedetti, C.; Geddes, C. G. R.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bulanov, S. S.; Leemans, W. P.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Bobrova, NA (reprint author), Inst Theoret & Expt Phys, Moscow 117218, Russia. OI Schroeder, Carl/0000-0002-9610-0166 FU NSF [PHY-0935197]; Office of Science of the U.S. DOE [DE-AC02-05CH11231]; DOE FX We appreciate support from the NSF under Grant No. PHY-0935197 and the Office of Science of the U.S. DOE under Contract No. DE-AC02-05CH11231. N.B. acknowledges support from DOE that allowed her to visit LBNL to work on the laser heating method proposed by W.P.L. NR 30 TC 9 Z9 9 U1 3 U2 17 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2013 VL 20 IS 2 AR 020703 DI 10.1063/1.4793447 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 122BK UT WOS:000317289800003 ER PT J AU Guan, XY Qin, H Liu, J Fisch, NJ AF Guan, Xiaoyin Qin, Hong Liu, Jian Fisch, Nathaniel J. TI On the toroidal plasma rotations induced by lower hybrid waves SO PHYSICS OF PLASMAS LA English DT Article ID ALCATOR C-MOD; TOKAMAK PLASMA; PARAMETRIC-INSTABILITIES; ION-SOUND AB A theoretical model is developed to explain the plasma rotations induced by lower hybrid waves in Alcator C-Mod. In this model, torodial rotations are driven by the Lorentz force on the bulk-electron flow across flux surfaces, which is a response of the plasma to the resonant-electron flow across flux surfaces induced by the lower hybrid waves. The flow across flux surfaces of the resonant electrons and the bulk electrons are coupled through the radial electric field initiated by the resonant electrons, and the friction between ions and electrons transfers the toroidal momentum to ions from electrons. An improved quasilinear theory with gyrophase dependent distribution function is developed to calculate the perpendicular resonant-electron flow. Toroidal rotations are determined using a set of fluid equations for bulk electrons and ions, which are solved numerically by a finite-difference method. Numerical results agree well with the experimental observations in terms of flow profile and amplitude. The model explains the strong correlation between torodial flow and internal inductance observed experimentally, and predicts both counter-current and co-current flows, depending on the perpendicular wave vectors of the lower hybrid waves. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4791666] C1 [Guan, Xiaoyin; Qin, Hong; Fisch, Nathaniel J.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Qin, Hong; Liu, Jian] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. RP Guan, XY (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI Liu, Jian/E-5857-2010 FU U.S. Department of Energy [AC02-76CH03073]; ITER-China program [2010GB107001]; National Natural Science Foundation of China [NSFC-11075162] FX This research was supported by the U.S. Department of Energy (AC02-76CH03073), ITER-China program (2010GB107001), and National Natural Science Foundation of China (NSFC-11075162). NR 41 TC 9 Z9 10 U1 1 U2 15 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2013 VL 20 IS 2 AR 022502 DI 10.1063/1.4791666 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 122BK UT WOS:000317289800034 ER PT J AU Haines, BM Grinstein, FF Welser-Sherrill, L Fincke, JR AF Haines, Brian M. Grinstein, Fernando F. Welser-Sherrill, Leslie Fincke, James R. TI Simulations of material mixing in laser-driven reshock experiments SO PHYSICS OF PLASMAS LA English DT Article ID RICHTMYER-MESHKOV INSTABILITIES; RAYLEIGH-TAYLOR; TURBULENT FLOWS; TRANSITION; MODEL AB We perform simulations of a laser-driven reshock experiment [Welser-Sherrill et al., High Energy Density Phys. (unpublished)] in the strong-shock high energy-density regime to better understand material mixing driven by the Richtmyer-Meshkov instability. Validation of the simulations is based on direct comparison of simulation and radiographic data. Simulations are also compared with published direct numerical simulation and the theory of homogeneous isotropic turbulence. Despite the fact that the flow is neither homogeneous, isotropic nor fully turbulent, there are local regions in which the flow demonstrates characteristics of homogeneous isotropic turbulence. We identify and isolate these regions by the presence of high levels of turbulent kinetic energy (TKE) and vorticity. After reshock, our analysis shows characteristics consistent with those of incompressible isotropic turbulence. Self-similarity and effective Reynolds number assessments suggest that the results are reasonably converged at the finest resolution. Our results show that in shock-driven transitional flows, turbulent features such as self-similarity and isotropy only fully develop once de-correlation, characteristic vorticity distributions, and integrated TKE, have decayed significantly. Finally, we use three-dimensional simulation results to test the performance of two-dimensional Reynolds-averaged Navier-Stokes simulations. In this context, we also test a presumed probability density function turbulent mixing model extensively used in combustion applications. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793443] C1 [Haines, Brian M.; Grinstein, Fernando F.; Welser-Sherrill, Leslie; Fincke, James R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Haines, BM (reprint author), Los Alamos Natl Lab, MS F644, Los Alamos, NM 87545 USA. OI Haines, Brian/0000-0002-3889-7074 FU U.S. Department of Energy NNSA [DE-AC52-06NA25396] FX Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the U.S. Department of Energy NNSA under Contract No. DE-AC52-06NA25396. The authors thank Forrest Doss for helpful and stimulating discussions. NR 33 TC 7 Z9 7 U1 0 U2 13 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2013 VL 20 IS 2 AR 022309 DI 10.1063/1.4793443 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 122BK UT WOS:000317289800030 ER PT J AU Kim, H Zhang, LN Samulyak, R Parks, P AF Kim, Hyoungkeun Zhang, Lina Samulyak, Roman Parks, Paul TI On the structure of plasma liners for plasma jet induced magnetoinertial fusion SO PHYSICS OF PLASMAS LA English DT Article AB The internal structure and self-collapse properties of plasma liners, formed by the merger of argon plasma jets, have been studied via 3-dimensional numerical simulations using the FronTier code. We have shown that the jets merger process is accomplished through a cascade of oblique shock waves that heat the liner and reduce its Mach number. Oblique shock waves and the adiabatic compression heating have led to the 10 times reduction of the self-collapse pressure of a 3-dimensional argon liner compared to a spherically symmetric liner with the same pressure and density profiles at the merging radius. We have also observed a factor of 10 variations of pressure and density in the leading edge of the liner along spherical surfaces close to the interaction with potential plasma targets. Such a non-uniformity of imploding plasma liners presents problems for the stability of targets during compression. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789887] C1 [Kim, Hyoungkeun; Zhang, Lina; Samulyak, Roman] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. [Samulyak, Roman] Brookhaven Natl Lab, Computat Sci Ctr, Upton, NY 11973 USA. [Parks, Paul] Gen Atom Co, San Diego, CA 92186 USA. RP Kim, H (reprint author), SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA. NR 20 TC 5 Z9 5 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2013 VL 20 IS 2 AR 022704 DI 10.1063/1.4789887 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 122BK UT WOS:000317289800043 ER PT J AU Martinell, JJ del-Castillo-Negrete, D AF Martinell, Julio J. del-Castillo-Negrete, Diego TI Gyroaverage effects on chaotic transport by drift waves in zonal flows SO PHYSICS OF PLASMAS LA English DT Article ID PARTICLE-TRANSPORT; TURBULENCE; PLASMA; STOCHASTICITY; RECONNECTION; SUPPRESSION; SYSTEMS AB Finite Larmor radius (FLR) effects on E x B test particle chaotic transport in the presence of zonal flows is studied. The FLR effects are introduced by the gyro-average of a simplified E x B guiding center model consisting of the linear superposition of a non-monotonic zonal flow and drift waves. Non-monotonic zonal flows play a critical role on transport because they exhibit robust barriers to chaotic transport in the region(s) where the shear vanishes. In addition, the non-monotonicity gives rise to nontrivial changes in the topology of the orbits of the E x B Hamiltonian due to separatrix reconnection. The present study focuses on the role of FLR effects on these two signatures of non-monotonic zonal flows: shearless transport barriers and separatrix reconnection. It is shown that, as the Larmor radius increases, the effective zonal flow profile bifurcates and multiple shearless regions are created. As a result, the topology of the gyro-averaged Hamiltonian exhibits very complex separatrix reconnection bifurcations. It is also shown that FLR effects tend to reduce chaotic transport. In particular, the restoration of destroyed transport barriers is observed as the Larmor radius increases. A detailed numerical study is presented on the onset of global chaotic transport as function of the amplitude of the drift waves and the Larmor radius. For a given amplitude, the threshold for the destruction of the shearless transport barrier, as function of the Larmor radius, exhibits a fractal-like structure. The FLR effects on a thermal distribution of test particles are also studied. In particular, the fraction of confined particles with a Maxwellian distribution of gyroradii is computed, and an effective transport suppression is found for high enough temperatures. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790639] C1 [Martinell, Julio J.] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. [del-Castillo-Negrete, Diego] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Martinell, JJ (reprint author), Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Mexico City 04510, DF, Mexico. OI Martinell, Julio J/0000-0002-2728-220X; del-Castillo-Negrete, Diego/0000-0001-7183-801X FU Oak Ridge National Laboratory, U.S. Department of Energy [DE-AC05-00OR22725]; Conacyt, Mexico [152905]; [PAPIIT-UNAM IN106911] FX This work was sponsored by the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725, and by projects PAPIIT-UNAM IN106911 and Conacyt 152905, Mexico. NR 22 TC 5 Z9 5 U1 0 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2013 VL 20 IS 2 AR 022303 DI 10.1063/1.4790639 PG 12 WC Physics, Fluids & Plasmas SC Physics GA 122BK UT WOS:000317289800024 ER PT J AU Squire, J Qin, H Tang, WM Chandre, C AF Squire, J. Qin, H. Tang, W. M. Chandre, C. TI The Hamiltonian structure and Euler-Poincare formulation of the Vlasov-Maxwell and gyrokinetic systems SO PHYSICS OF PLASMAS LA English DT Article ID GUIDING-CENTER THEORIES; VARIATIONAL INTEGRATORS; CONSERVATION-LAWS; FLUID-DYNAMICS; CONTINUUM-THEORIES; EQUATIONS; PLASMAS; MAGNETOHYDRODYNAMICS; SIMULATIONS; PRINCIPLE AB We present a new variational principle for the gyrokinetic system, similar to the Maxwell-Vlasov action presented in H. Cendra et al., [J. Math. Phys. 39, 3138 (1998)]. The variational principle is in the Eulerian frame and based on constrained variations of the phase space fluid velocity and particle distribution function. Using a Legendre transform, we explicitly derive the field theoretic Hamiltonian structure of the system. This is carried out with a modified Dirac theory of constraints, which is used to construct meaningful brackets from those obtained directly from Euler-Poincare theory. Possible applications of these formulations include continuum geometric integration techniques, large-eddy simulation models, and Casimir type stability methods. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4791664] C1 [Squire, J.; Qin, H.; Tang, W. M.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Qin, H.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China. [Chandre, C.] Aix Marseille Univ, Ctr Phys Theor, CNRS, F-13009 Marseille, France. RP Squire, J (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. OI Chandre, Cristel/0000-0003-3667-259X FU U.S. DOE [DE-AC02-09CH11466]; Agence Nationale de la Recherche; European Community FX We extend our thanks to Dr. John Krommes and Joshua Burby for enlightening discussion. This research is supported by U.S. DOE (DE-AC02-09CH11466). CC acknowledges financial support from the Agence Nationale de la Recherche and from the European Community under the contract of Association between EURATOM, CEA, and the French Research Federation for fusion studies. NR 73 TC 11 Z9 11 U1 1 U2 20 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2013 VL 20 IS 2 AR 022501 DI 10.1063/1.4791664 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 122BK UT WOS:000317289800033 ER PT J AU White, RB AF White, R. B. TI Representation of ideal magnetohydrodynamic modes SO PHYSICS OF PLASMAS LA English DT Article ID HYDROMAGNETIC STABILITY; PLASMA; EQUILIBRIUM AB One of the most fundamental properties of ideal magnetohydrodynamics is the condition that plasma motion cannot change magnetic topology. The conventional representation of ideal magnetohydrodynamic modes by perturbing a toroidal equilibrium field through delta(B) over right arrow = del x ((xi) over right arrow x (B) over right arrow) ensures that delta(B) over right arrow . del psi = 0 at a resonance, with psi labelling an equilibrium flux surface. Also useful for the analysis of guiding center orbits in a perturbed field is the representation delta(B) over right arrow = del x alpha(B) over right arrow. These two representations are equivalent, but the vanishing of delta(B) over right arrow . del psi at a resonance is necessary but not sufficient for the preservation of field line topology, and a indiscriminate use of either perturbation in fact destroys the original equilibrium flux topology. It is necessary to find the perturbed field to all orders (xi) over right arrow to conserve the original topology. The effect of using linearized perturbations on stability and growth rate calculations is discussed. (C) 2013 American Institute of Physics. [ http://dx.doi.org/10.1063/1.4791661] C1 Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. RP White, RB (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI White, Roscoe/D-1773-2013 OI White, Roscoe/0000-0002-4239-2685 FU U.S. Department of Energy [DE-AC02-09CH11466] FX The author gratefully acknowledges conversations with Russell Kulsrud. This work was partially supported by the U.S. Department of Energy Grant No. DE-AC02-09CH11466. NR 13 TC 6 Z9 6 U1 0 U2 5 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X J9 PHYS PLASMAS JI Phys. Plasmas PD FEB PY 2013 VL 20 IS 2 AR 022105 DI 10.1063/1.4791661 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 122BK UT WOS:000317289800009 ER PT J AU Allorent, G Tokutsu, R Roach, T Peers, G Cardol, P Girard-Bascou, J Seigneurin-Berny, D Petroutsos, D Kuntz, M Breyton, C Franck, F Wollman, FA Niyogi, KK Krieger-Liszkay, A Minagawa, J Finazzi, G AF Allorent, Guillaume Tokutsu, Ryutaro Roach, Thomas Peers, Graham Cardol, Pierre Girard-Bascou, Jacqueline Seigneurin-Berny, Daphne Petroutsos, Dimitris Kuntz, Marcel Breyton, Cecile Franck, Fabrice Wollman, Francis-Andre Niyogi, Krishna K. Krieger-Liszkay, Anja Minagawa, Jun Finazzi, Giovanni TI A Dual Strategy to Cope with High Light in Chlamydomonas reinhardtii SO PLANT CELL LA English DT Article ID CYCLIC ELECTRON FLOW; DIATOM PHAEODACTYLUM-TRICORNUTUM; STATE TRANSITIONS; PHOTOSYSTEM-II; PHOTOSYNTHETIC ACCLIMATION; CHLOROPHYLL FLUORESCENCE; PROTEIN-PHOSPHORYLATION; THYLAKOID MEMBRANES; XANTHOPHYLL-CYCLE; SINGLET OXYGEN AB Absorption of light in excess of the capacity for photosynthetic electron transport is damaging to photosynthetic organisms. Several mechanisms exist to avoid photodamage, which are collectively referred to as nonphotochemical quenching. This term comprises at least two major processes. State transitions (qT) represent changes in the relative antenna sizes of photosystems II and I. High energy quenching (qE) is the increased thermal dissipation of light energy triggered by lumen acidification. To investigate the respective roles of qE and qT in photoprotection, a mutant (npq4 stt7-9) was generated in Chlamydomonas reinhardtii by crossing the state transition-deficient mutant (stt7-9) with a strain having a largely reduced qE capacity (npq4). The comparative phenotypic analysis of the wild type, single mutants, and double mutants reveals that both state transitions and qE are induced by high light. Moreover, the double mutant exhibits an increased photosensitivity with respect to the single mutants and the wild type. Therefore, we suggest that besides qE, state transitions also play a photoprotective role during high light acclimation of the cells, most likely by decreasing hydrogen peroxide production. These results are discussed in terms of the relative photoprotective benefit related to thermal dissipation of excess light and/or to the physical displacement of antennas from photosystem II. C1 [Allorent, Guillaume; Seigneurin-Berny, Daphne; Petroutsos, Dimitris; Kuntz, Marcel; Finazzi, Giovanni] CNRS, UMR 5168, Lab Physiol Cellulaire & Vegetale, F-38054 Grenoble, France. [Allorent, Guillaume; Seigneurin-Berny, Daphne; Petroutsos, Dimitris; Kuntz, Marcel; Finazzi, Giovanni] Commissariat Energie Atom & Energies Alternat, Inst Rech Technol & Sci Vivant, F-38054 Grenoble, France. [Allorent, Guillaume; Seigneurin-Berny, Daphne; Petroutsos, Dimitris; Kuntz, Marcel; Finazzi, Giovanni] Univ Grenoble 1, F-38041 Grenoble, France. [Allorent, Guillaume; Seigneurin-Berny, Daphne; Petroutsos, Dimitris; Kuntz, Marcel; Finazzi, Giovanni] INRA, UMR 1200, F-38054 Grenoble, France. [Tokutsu, Ryutaro; Minagawa, Jun] Natl Inst Nat Sci, Natl Inst Basic Biol, Div Environm Photobiol, Okazaki, Aichi 4448585, Japan. [Roach, Thomas; Krieger-Liszkay, Anja] Commissariat Energie Atom & Energies Alternat Sac, Inst Biol & Technol Saclay, CNRS, Serv Bioenerget Biol Struct & Mecanisme,UMR 8221, F-91191 Gif Sur Yvette, France. [Peers, Graham] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA. [Cardol, Pierre] Univ Liege, Dept Sci Vie, Lab Genet Microorganismes, B-4000 Liege, Belgium. [Girard-Bascou, Jacqueline; Wollman, Francis-Andre] Univ Paris 06, Inst Biol Physico Chim, CNRS, UMR 7141, F-75005 Paris, France. [Breyton, Cecile] Univ Grenoble 1, CEA, CNRS, UMR 5075,Inst Biol Struct, F-38054 Grenoble, France. [Franck, Fabrice] Univ Liege, Dept Sci Vie, Lab Bioenerget, B-4000 Liege, Belgium. [Niyogi, Krishna K.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Niyogi, Krishna K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Finazzi, G (reprint author), CNRS, UMR 5168, Lab Physiol Cellulaire & Vegetale, F-38054 Grenoble, France. EM giovanni.finazzi@cea.fr RI Roach, Thomas/O-6940-2015; Petroutsos, Dimitris/E-4958-2011; OI Roach, Thomas/0000-0002-0259-0468; Petroutsos, Dimitris/0000-0002-9656-661X; Cardol, Pierre/0000-0001-9799-0546 FU Agence Nationale de la Recherche [NT09_567009]; Japanese Society of Technology-Centre National de la Recherche Scientifique cooperative program on Marine Genomics and Marine Biology; Research Fellowship for Young Scientists [21001384]; NEXT Program; Council for Science and Technology Policy Grant [GS026]; Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [449B]; Fonds de la Recherche Scientifique [MIS F.4520, FRFC 2.4597]; European Union FP7 Marie Curie Initial Training Network HARVEST (FP7 Project) [238017]; National Institute for Basic Biology Cooperative Research Program for the Okazaki Large Spectrograph [12-513]; [ANR-09-BLAN-0055-01] FX G.A., G. F., M. K., C. B., D. P., and D.S.-B. thank financial support from Agence Nationale de la Recherche Grant "phytadapt" NT09_567009. G. F. and J.M. thank the Japanese Society of Technology-Centre National de la Recherche Scientifique cooperative program on Marine Genomics and Marine Biology for support. R. T. and J.M. acknowledge financial support from the Research Fellowship for Young Scientists (21001384) and the NEXT Program initiated by the Council for Science and Technology Policy Grant (GS026), respectively. K.K.N. and G. P. were supported by a grant from the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (Field Work Proposal number 449B). K.K.N. is an investigator of the Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation. P. C. and F. F. are junior and senior research associates of the Fonds de la Recherche Scientifique, respectively. This work was also supported by Fonds de la Recherche Scientifique grants (MIS F.4520 and FRFC 2.4597) and by ANR-09-BLAN-0055-01 to A. K.-L. T. R. was supported by the European Union FP7 Marie Curie Initial Training Network HARVEST (FP7 Project 238017). This study was carried out under the National Institute for Basic Biology Cooperative Research Program for the Okazaki Large Spectrograph number 12-513. We thank James Connorton (Commissariat a l'Energie Atomique) for critical reading of the article and Marion Fargier for help during the first phase of this study. NR 66 TC 65 Z9 67 U1 5 U2 88 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 J9 PLANT CELL JI Plant Cell PD FEB PY 2013 VL 25 IS 2 BP 545 EP 557 DI 10.1105/tpc.112.108274 PG 13 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA 115IL UT WOS:000316805700017 PM 23424243 ER PT J AU Sanjaya Miller, R Durrett, TP Kosma, DK Lydic, TA Muthan, B Koo, AJK Bukhman, YV Reid, GE Howe, GA Ohlrogge, J Benning, C AF Sanjaya Miller, Rachel Durrett, Timothy P. Kosma, Dylan K. Lydic, Todd A. Muthan, Bagyalakshmi Koo, Abraham J. K. Bukhman, Yury V. Reid, Gavin E. Howe, Gregg A. Ohlrogge, John Benning, Christoph TI Altered Lipid Composition and Enhanced Nutritional Value of Arabidopsis Leaves following Introduction of an Algal Diacylglycerol Acyltransferase 2 SO PLANT CELL LA English DT Article ID TANDEM MASS-SPECTROMETRY; PROBE LEVEL DATA; CHLAMYDOMONAS-REINHARDTII; TRIACYLGLYCEROL BIOSYNTHESIS; WAX-ESTER; EXPRESSION; IDENTIFICATION; OIL; THALIANA; GENE AB Enhancement of acyl-CoA-dependent triacylglycerol (TAG) synthesis in vegetative tissues is widely discussed as a potential avenue to increase the energy density of crops. Here, we report the identification and characterization of Chlamydomonas reinhardtii diacylglycerol acyltransferase type two (DGTT) enzymes and use DGTT2 to alter acyl carbon partitioning in plant vegetative tissues. This enzyme can accept a broad range of acyl-CoA substrates, allowing us to interrogate different acyl pools in transgenic plants. Expression of DGTT2 in Arabidopsis thaliana increased leaf TAG content, with some molecular species containing very-long-chain fatty acids. The acyl compositions of sphingolipids and surface waxes were altered, and cutin was decreased. The increased carbon partitioning into TAGs in the leaves of DGTT2-expressing lines had little effect on transcripts of the sphingolipid/wax/cutin pathway, suggesting that the supply of acyl groups for the assembly of these lipids is not transcriptionally adjusted. Caterpillars of the generalist herbivore Spodoptera exigua reared on transgenic plants gained more weight. Thus, the nutritional value and/or energy density of the transgenic lines was increased by ectopic expression of DGTT2 and acyl groups were diverted from different pools into TAGs, demonstrating the interconnectivity of acyl metabolism in leaves. C1 [Sanjaya; Muthan, Bagyalakshmi; Koo, Abraham J. K.; Reid, Gavin E.; Howe, Gregg A.; Benning, Christoph] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Sanjaya; Durrett, Timothy P.; Ohlrogge, John; Benning, Christoph] Michigan State Univ, Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Miller, Rachel] Michigan State Univ, Cell & Mol Biol Program, E Lansing, MI 48824 USA. [Miller, Rachel; Koo, Abraham J. K.; Howe, Gregg A.] Michigan State Univ, Dept Energy Plant Res Lab, E Lansing, MI 48824 USA. [Durrett, Timothy P.; Kosma, Dylan K.; Ohlrogge, John] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Lydic, Todd A.; Reid, Gavin E.] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA. [Bukhman, Yury V.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP Benning, C (reprint author), Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. EM benning@cns.msu.edu OI Bukhman, Yury/0000-0002-8111-7651 FU Department of Energy Great Lakes Bioenergy Research Center [FC02-07ER64494]; U.S. Air Force Office of Scientific Research [FA9550-11-1-0264]; Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-FG02-91ER20021] FX We thank Azrin Jamalruddin and Jeremy Letchford (Department of Biochemistry and Molecular Biology, Michigan State University) for technical assistance. We also thank Alicia Pastor for TEM sections, Melinda Frame for assistance with confocal microscopy and Carol Flegler for scanning electron microscopy (Center for Advanced Microscopy, Michigan State University), Kathy Richmond, Nick Santoro, and Shane Cantu (Enabling Technologies) for microarrays, starch, and sugars analysis at the Great Lakes Bioenergy Research Center, Michigan State University. We thank Christopher Saffron and Jonathan Bovee (Department of Biosystems and Agricultural Engineering, Michigan State University) for helpful discussion on elemental analysis and calculation of heating values. This work was funded by the Department of Energy Great Lakes Bioenergy Research Center under the Cooperative Agreement DE-FC02-07ER64494 and by a grant from the U.S. Air Force Office of Scientific Research (Grant FA9550-11-1-0264) to C. B. Insect feeding assays and jasmonate measurements were supported by a grant from the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (Grant DE-FG02-91ER20021). NR 62 TC 25 Z9 25 U1 6 U2 70 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 J9 PLANT CELL JI Plant Cell PD FEB PY 2013 VL 25 IS 2 BP 677 EP 693 DI 10.1105/tpc.112.104752 PG 17 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA 115IL UT WOS:000316805700026 PM 23417035 ER PT J AU Gopalakrishnan, P Tafti, D AF Gopalakrishnan, Pradeep Tafti, Danesh TI Development of parallel DEM for the open source code MFIX SO POWDER TECHNOLOGY LA English DT Article DE MFIX; Discrete Element Method; Parallelization; Fluidized beds ID MAGNETIC-RESONANCE MEASUREMENTS; FLUIDIZED-BED; SIMULATION; MODEL; VALIDATION; SOFTWARE; FLOW AB The paper presents the development of a parallel Discrete Element Method (DEM) solver for the open source code, Multiphase Flow with Interphase exchange (MFIX) based on the domain decomposition method. The performance of the code was evaluated by simulating a bubbling fluidized bed with 2.5 million particles. The DEM solver shows strong scalability up to 256 processors with an efficiency of 81%. Further, to analyze weak scaling, the static height of the fluidized bed was increased to hold 5 and 10 million particles. The results show that global communication cost increases with problem size while the computational cost remains constant. Further the effects of static bed height on the bubble hydrodynamics and mixing characteristics are analyzed. (C) 2012 Elsevier B.V. All rights reserved. C1 [Gopalakrishnan, Pradeep] Natl Energy Technol Lab, Morgantown, WV USA. [Gopalakrishnan, Pradeep; Tafti, Danesh] Virginia Tech, Blacksburg, VA 24061 USA. RP Gopalakrishnan, P (reprint author), Virginia Tech, Blacksburg, VA 24061 USA. EM pradeepg@vt.edu RI Tafti, Danesh/A-7486-2009 FU National Energy Technology Laboratory's ongoing research in advanced numerical simulation of multiphase flow under RES contract [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in advanced numerical simulation of multiphase flow under the RES contract DE-FE0004000. NR 25 TC 21 Z9 22 U1 3 U2 22 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD FEB PY 2013 VL 235 BP 33 EP 41 DI 10.1016/j.powtec.2012.09.006 PG 9 WC Engineering, Chemical SC Engineering GA 105BA UT WOS:000316039400005 ER PT J AU Oveisi, E Lau, A Sokhansanj, S Lim, CJ Bi, XT Larsson, SH Melin, S AF Oveisi, Ehsan Lau, Anthony Sokhansanj, Shahab Lim, C. Jim Bi, Xiaotao Larsson, Sylvia H. Melin, Staffan TI Breakage behavior of wood pellets due to free fall SO POWDER TECHNOLOGY LA English DT Article DE Wood pellets; Breakage; Mass loss; Dust; Drop test; Free fall ID PARTICLE FRACTURE AB Three series of experiments were performed to investigate the effect of drop height, mass of pellets, and repeated handling (drops) on the breakage of pellets in drop test. Results showed that the mass loss of pellets increases with drop height, and the amount of dust and fine particles generated upon breakage depends on the bedding material. A harder concrete surface had greater impact on pellets compared to a softer layer of pellets. Tests with repeated drops indicated that the percentage of dust increased significantly after each drop as the pellets tended to break more readily, and the accumulation of fines was approximately 10% after five drops. A linear relation was observed between drop height and mass of pellets for samples that are less than 1000 g in mass; however, an asymptote was observed for samples with mass greater than 1000 g. According to our particle size distribution analysis, the largest amount of fines generated from drop tests are within the size range of 1-2 mm.(C) 2012 Elsevier B.V. All rights reserved. C1 [Oveisi, Ehsan; Lau, Anthony; Sokhansanj, Shahab; Lim, C. Jim; Bi, Xiaotao; Melin, Staffan] Univ British Columbia, Vancouver, BC V6T 1Z3, Canada. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Larsson, Sylvia H.] Swedish Univ Agr Sci, Unit Biomass Technol & Chem, SE-90183 Umea, Sweden. [Melin, Staffan] Delta Res Corp, Delta, BC V4L 2L5, Canada. RP Lau, A (reprint author), Univ British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada. EM aklau@chbe.ubc.ca RI Lau, Anthony/J-8519-2015 FU NSERC (Natural Sciences and Engineering Research Council of Canada); Ministry of Forest, and the U.S. DOE Office of Biomass Program FX This research was made possible through NSERC (Natural Sciences and Engineering Research Council of Canada), B.C. Ministry of Forest, and the U.S. DOE Office of Biomass Program in support of co-author S. Sokhansanj. We wish to thank doctoral candidate Bahman Ghiasi for his technical assistance. NR 27 TC 11 Z9 12 U1 0 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD FEB PY 2013 VL 235 BP 493 EP 499 DI 10.1016/j.powtec.2012.10.022 PG 7 WC Engineering, Chemical SC Engineering GA 105BA UT WOS:000316039400063 ER PT J AU Dietiker, JF Li, TW Garg, R Shahnam, M AF Dietiker, Jean-Francois Li, Tingwen Garg, Rahul Shahnam, Mehrdad TI Cartesian grid simulations of gas-solids flow systems with complex geometry SO POWDER TECHNOLOGY LA English DT Article DE Gas-solids flow; Hydrodynamics; Fluidized beds; Cartesian grid ID CUT CELL METHOD; FLUIDIZED-BED; HEAT-TRANSFER; BOUNDARIES; TUBE AB Complex geometries encountered in many applications of gas-solids flow need special treatment in most legacy multiphase flow solvers with Cartesian numerical grid. This paper briefly outlines the implementation of a cut cell technique in the open-source multiphase flow solver-MFIX for accurate representation of complex geometries. Specifically, applications of the Cartesian cut cell method to different gas-solids fluidization systems including a small scale bubbling fluidized bed with submerged tube bundle and a complete pilot-scale circulating fluidized bed will be presented. In addition to qualitative predictions on the general flow behaviors inside each system, quantitative comparison with the available experimental data will be presented. Furthermore, some results on extending the current cut-cell technique to Lagrangian-Eulerian simulations will be presented. (C) 2012 Elsevier B.V. All rights reserved. C1 [Dietiker, Jean-Francois; Li, Tingwen; Garg, Rahul; Shahnam, Mehrdad] Natl Energy Technol Lab, Morgantown, WV 26505 USA. [Dietiker, Jean-Francois] W Virginia Univ Res Corp, Morgantown, WV 26506 USA. [Li, Tingwen; Garg, Rahul] URS Corp, Morgantown, WV 26505 USA. RP Dietiker, JF (reprint author), Natl Energy Technol Lab, Morgantown, WV 26505 USA. EM jeff.dietiker@mail.wvu.edu RI Garg, Rahul/I-4174-2013; OI Li, Tingwen/0000-0002-1900-308X FU National Energy Technology Laboratory under the RES [DE-FE0004000]; National Energy Technology Laboratory Research Participation Program; U.S. Department of Energy FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research in advanced multiphase flow simulation under the RES contract DE-FE0004000. This research was also supported in part by an appointment to the National Energy Technology Laboratory Research Participation Program, sponsored by the U.S. Department of Energy and administrated by the Oak Ridge Institute for Science and Education. NR 26 TC 14 Z9 14 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0032-5910 EI 1873-328X J9 POWDER TECHNOL JI Powder Technol. PD FEB PY 2013 VL 235 BP 696 EP 705 DI 10.1016/j.powtec.2012.11.028 PG 10 WC Engineering, Chemical SC Engineering GA 105BA UT WOS:000316039400086 ER PT J AU Gaballa, O Ball, JH Cook, B Peters, JS Russell, A AF Gaballa, Osama Ball, Jonathon H. Cook, Bruce Peters, J. S. Russell, Alan TI Properties of AlMgB14 hot pressed with additions of ZrB2 and HfB2 SO POWDER TECHNOLOGY LA English DT Article DE Hard materials; Aluminum magnesium boride; Hafnium diboride; Zirconium diboride; Hot press ID COMPOSITES; RESISTANCE; TOUGHNESS; COATINGS AB Powders of AlMgB14, ZrB2, and HfB2 were combined by high-energy milling to produce AlMgB14+ 60 vol.% ZrB2 and AlMgB14+ 60 vol.% HfB2 composites. The powder constituents were hot pressed at two different temperatures, depending on prior conditioning of the milling vials. SEM and EDS were used to analyze microstructure impurities, and fracture mechanisms. XRD was used to verify proper phase formation and to check for impurity phases. The bulk AlMgB14+ZrB2 and AlMgB14+HfB2 show up to 973% and 98% densification, 222 and 24.5 GPa hardness (measured at 5K-gf), and 4.1 and 3.7 MPa(m)(1/2) toughness, respectively. Also the study of bulk AlMgB14+ZrB2 and AlMgB14+HfB2 composites has shown that these materials exhibit high resistance to erosive and abrasive wear. Multi-hour ASTM erosion tests with Al2O3 abrasive material against composite samples comprised of AlMgB14 (40 vol.%) + ZrB2 (60 vol.%) and AlMgB14 (40 vol.%) +HfB2 (60 vol.%) resulted in erosion rates as low as 4.49 mm(3) of (AlMgB14+ZrB2) wear per kg of erodent and 2.85 mm(3) of (AlMgB14+HfB2) wear per kg of erodent. These values were compared with 14.9 mm(3)/kg for wear-resistant grades of WC-6%Co. (C) 2012 Elsevier B.V. All rights reserved. C1 [Gaballa, Osama; Russell, Alan] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Gaballa, Osama] Jazan Univ, Dept Mech Engn, Fac Engn, Jazan, Saudi Arabia. [Gaballa, Osama] Cent Met Res & Dev Inst, Cairo, Egypt. [Ball, Jonathon H.] Clemson Univ, Dept Mat Sci & Engn, Clemson, SC 29634 USA. [Cook, Bruce; Peters, J. S.; Russell, Alan] Iowa State Univ, Div Mat Sci & Engn, Ames Lab, Ames, IA 50011 USA. RP Gaballa, O (reprint author), 53 Schilletter Village,Apt D, Ames, IA 50010 USA. EM ogaballa@iastate.edu; jhball@clemson.edu; cook@ameslab.gov; jphomer@gmail.com; russell@iastate.edu RI gaballa, osama/B-9408-2014; OI Gaballa, Osama/0000-0003-4474-6501; Russell, Alan/0000-0001-5264-0104 FU U.S. Department of Energy, Division of Materials Science Engineering [DE-AC02-07CH11358] FX Work at the Ames Laboratory was supported by the U.S. Department of Energy, Division of Materials Science & Engineering under contract DE-AC02-07CH11358. NR 18 TC 2 Z9 2 U1 3 U2 25 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0032-5910 J9 POWDER TECHNOL JI Powder Technol. PD FEB PY 2013 VL 235 BP 968 EP 974 DI 10.1016/j.powtec.2012.12.015 PG 7 WC Engineering, Chemical SC Engineering GA 105BA UT WOS:000316039400118 ER PT J AU Tooyserkani, Z Kumar, L Sokhansanj, S Saddler, J Bi, XTT Lim, CJ Lau, A Melin, S AF Tooyserkani, Zahra Kumar, Linoj Sokhansanj, Shahab Saddler, Jack Bi, Xiaotao T. Lim, C. Jim Lau, Anthony Melin, Staffan TI SO2-catalyzed steam pretreatment enhances the strength and stability of softwood pellets SO BIORESOURCE TECHNOLOGY LA English DT Article DE SO2-catalyzed steam treatment; Pelletization; Douglas fir; Softwoods; Bioconversion ID ENZYMATIC-HYDROLYSIS; PARTICLE-SIZE; WOOD; BIOMASS; CHEMISTRY; RESIDUES; SAWDUST; PINE; FUEL AB Densification can partially resolve the logistical challenges encountered when large volumes of biomass are required for bioconversion processes to benefit from economies-of-scale. Despite the higher bulk density of pellets, their lower mechanical strength and sensitivity to moisture are still recurring issues hindering long term transportation and storage. In this study, we have evaluated the potential benefits of SO2-catalyzed steam treatment to achieve both the needed size reduction prior to pelletization while improving the stability of the produced pellets. This pretreatment substantially reduced the particle size of the woodchips eliminating any further grinding. The treated pellets had a higher density and exhibited a two-time higher mechanical strength compared to untreated pellets. Despite a higher moisture adsorption capacity, treated pellets remained intact even under highly humid conditions. The high heating values, low ash content and good overall carbohydrate recovery of treated pellets indicated their potential suitability for both biochemical and thermochemical applications. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Tooyserkani, Zahra; Sokhansanj, Shahab; Bi, Xiaotao T.; Lim, C. Jim; Lau, Anthony; Melin, Staffan] Univ British Columbia, Dept Chem & Biol Engn, Biomass & Bioenergy Res Grp, Vancouver, BC V6T 1Z3, Canada. [Kumar, Linoj; Saddler, Jack] Univ British Columbia, Dept Wood Sci, Forest Prod Biotechnol Bioenergy Grp, Vancouver, BC V6T 1Z4, Canada. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Melin, Staffan] Delta Res Corp, Delta, BC V4L 2L5, Canada. RP Tooyserkani, Z (reprint author), Univ British Columbia, Dept Chem & Biol Engn, Biomass & Bioenergy Res Grp, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada. EM ztooyserkani@chbe.ubc.ca RI Saddler, Jack (John)/A-9103-2013; Naduvile Veettil Kunchikannan, Linoj Kumar/E-9534-2010; Lau, Anthony/J-8519-2015 OI Naduvile Veettil Kunchikannan, Linoj Kumar/0000-0003-4156-637X; FU British Columbia Innovation Council; Natural Resources and Applied Sciences Endowment Fund (NRAS); Natural Sciences & Engineering Research Council of Canada; U.S. DOE Office of Biomass Program FX This research is funded by the British Columbia Innovation Council, Natural Resources and Applied Sciences Endowment Fund (NRAS), Natural Sciences & Engineering Research Council of Canada and The U.S. DOE Office of Biomass Program supported this research at the University of British Columbia. NR 34 TC 8 Z9 8 U1 0 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD FEB PY 2013 VL 130 BP 59 EP 68 DI 10.1016/j.biortech.2012.12.004 PG 10 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 104YI UT WOS:000316032300009 PM 23347905 ER PT J AU Kridelbaugh, DM Nelson, J Engle, NL Tschaplinski, TJ Graham, DE AF Kridelbaugh, Donna M. Nelson, Joshua Engle, Nancy L. Tschaplinski, Timothy J. Graham, David E. TI Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media SO BIORESOURCE TECHNOLOGY LA English DT Article DE Clostridium thermocellum; Caldicellulosiruptor bescii; Nitrogen source; Sulfur source; Defined growth medium ID ETHANOL-PRODUCTION; FERMENTATION; CARBON; GROWTH; BATCH; ACETOBUTYLICUM; METABOLISM; CULTURES; STRAINS; DESIGN AB Growth media for cellulolytic Clostridium thermocellum ATCC 27405 and Caldicellulosiruptor bescii bacteria usually contain excess nutrients that would increase costs for consolidated bioprocessing for biofuel production and create a waste stream with nitrogen, sulfur and phosphate. C thermocellum was grown on crystalline cellulose with varying concentrations of nitrogen and sulfur compounds, and growth rate and ethanol production response curves were determined. Both bacteria assimilated sulfate in the presence of ascorbate reductant, increasing the ratio of oxidized to reduced fermentation products. From these results, a low ionic strength, defined minimal nutrient medium with decreased nitrogen, sulfur, phosphate and vitamin supplements was developed for the fermentation of cellobiose, cellulose and acid-pretreated Populus. Carbon and electron balance calculations indicate the unidentified residual fermentation products must include highly reduced molecules. Both bacterial populations were maintained in co-cultures with substrates containing cellulose and xylan in defined medium with sulfate and basal vitamin supplements. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Kridelbaugh, Donna M.; Engle, Nancy L.; Tschaplinski, Timothy J.; Graham, David E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Nelson, Joshua] Farragut High Sch, Dept Sci, Knoxville, TN 37922 USA. [Engle, Nancy L.; Tschaplinski, Timothy J.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Graham, David E.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. RP Graham, DE (reprint author), Oak Ridge Natl Lab, Biosci Div, POB 2008,MS 6038, Oak Ridge, TN 37831 USA. EM grahamde@ornl.gov RI Graham, David/F-8578-2010; Kridelbaugh, Donna/G-5961-2011; OI Graham, David/0000-0001-8968-7344; Tschaplinski, Timothy/0000-0002-9540-6622; Engle, Nancy/0000-0003-0290-7987 FU U.S. Department of Energy [DE-AC05-00OR22725]; DOE Office of Science, Workforce Development of Teachers and Scientists, Academies for Creating Teacher Scientists FX This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.; This research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. J.N. was supported in part by the DOE Office of Science, Workforce Development of Teachers and Scientists, Academies for Creating Teacher Scientists. We thank Miguel Rodriguez, Jr. for preparing MTC medium, Tommy Phelps, Lezlee Dice, Scott Hamilton-Brehm, James Moberly, Adam Guss, Jim Campbell, Alisha Campbell, and Kelsey Yee for many useful discussions. The Obsidian Pool sample was obtained under permit YELL-2008-SCI-5714 from the National Park Service. NR 35 TC 15 Z9 15 U1 0 U2 31 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD FEB PY 2013 VL 130 BP 125 EP 135 DI 10.1016/j.biortech.2012.12.006 PG 11 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 104YI UT WOS:000316032300018 PM 23306120 ER PT J AU Kumar, R Hu, F Hubbell, CA Ragauskas, AJ Wyman, CE AF Kumar, Rajeev Hu, Fan Hubbell, Christopher A. Ragauskas, Arthur J. Wyman, Charles E. TI Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass SO BIORESOURCE TECHNOLOGY LA English DT Article DE Delignification; Selectivity; Cellulose; Crystallinity; Reducing ends ID ENZYMATIC DIGESTIBILITY; CORN STOVER; PRETREATMENT; LIGNIN; HYDROLYSIS; SOFTWOOD; TECHNOLOGIES; SWITCHGRASS; EXTRACTION; FEATURES AB Two established delignification methods employing sodium chlorite-acetic acid (SC/AA) and peracetic acid (PAA) are often used, and are reportedly highly selective. However, these reports are mostly for highly recalcitrant and unpretreated softwoods and hardwoods species, and information for less recalcitrant lignocellulosic feedstocks and pretreated biomass is scarce. Furthermore, the effects on cellulose structure are not documented. Thus, in this study, delignification kinetics and selectivity were evaluated when SC/AA and PM were applied to untreated switchgrass, poplar, corn stover, and pine sawdust; poplar subjected to AFEX, controlled pH, lime, and SO2 pretreatments; and the cellulose model compounds. Both methods proved effective in removing >90% lignin, but selectivity for lignin and carbohydrates removal was substrate and pretreatment dependent. For untreated biomass, PAA was more selective in removing lignin than SC/AA; however, both methods were less selective for pretreated solids. Cellulose characterizations revealed that PAA had less pronounced impacts on cellulose structure. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Kumar, Rajeev; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, Riverside, CA 92507 USA. [Kumar, Rajeev; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Dept Chem & Environm Engn, Riverside, CA 92521 USA. [Hu, Fan; Hubbell, Christopher A.; Ragauskas, Arthur J.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. [Kumar, Rajeev; Hu, Fan; Hubbell, Christopher A.; Ragauskas, Arthur J.; Wyman, Charles E.] Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA. RP Kumar, R (reprint author), Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol, 1084 Columbia Ave, Riverside, CA 92507 USA. EM rajeev.dartmouth@gmail.com OI Kumar, Rajeev/0000-0001-7523-0108; Ragauskas, Arthur/0000-0002-3536-554X FU Office of Biological and Environmental Research in the DOE Office of Science through the BioEnergy Science Center (BESC); Ford Motor Company FX We gratefully acknowledge support by the Office of Biological and Environmental Research in the DOE Office of Science through the BioEnergy Science Center (BESC). We are thankful to the Center for Environmental Research and Technology (CE-CERT) for providing facilities and equipments used in this research. We would also like to thank the Ford Motor Company for their support of the Chair in Environmental Engineering at the University of California Riverside (UCR). NR 36 TC 42 Z9 42 U1 1 U2 79 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD FEB PY 2013 VL 130 BP 372 EP 381 DI 10.1016/j.biortech.2012.12.028 PG 10 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 104YI UT WOS:000316032300050 PM 23313683 ER PT J AU Sjogreen, B Banks, JW AF Sjoegreen, Bjoern Banks, Jeffrey W. TI Stability of Finite Difference Discretizations of Multi-Physics Interface Conditions SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS LA English DT Article DE Fluid-structure interaction; finite difference method; summation by parts; multi-physics interface condition ID WAVE-EQUATION; BOUNDARY-CONDITIONS; HYPERBOLIC SYSTEMS; APPROXIMATIONS; SUMMATION; PARTS AB We consider multi-physics computations where the Navier-Stokes equations of compressible fluid flow on some parts of the computational domain are coupled to the equations of elasticity on other parts of the computational domain. The different subdomains are separated by well-defined interfaces. We consider time accurate computations resolving all time scales. For such computations, explicit time stepping is very efficient. We address the issue of discrete interface conditions between the two domains of different physics that do not lead to instability, or to a significant reduction of the stable time step size. Finding such interface conditions is non-trivial. We discretize the problem with high order centered difference approximations with summation by parts boundary closure. We derive L-2 stable interface conditions for the linearized one dimensional discretized problem. Furthermore, we generalize the interface conditions to the full non-linear equations and numerically demonstrate their stable and accurate performance on a simple model problem. The energy stable interface conditions derived here through symmetrization of the equations contain the interface conditions derived through normal mode analysis by Banks and Sjogreen in [8] as a special case. C1 [Sjoegreen, Bjoern; Banks, Jeffrey W.] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. RP Sjogreen, B (reprint author), Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA. EM sjogreen2@llnl.gov; banks20@llnl.gov RI Banks, Jeffrey/A-9718-2012 FU Lawrence Livermore National Laboratory; U.S. Department of Energy [DE-AC52-07NA27344] FX This study has been supported by Lawrence Livermore National Laboratory under the auspices of the U.S. Department of Energy through contract number DE-AC52-07NA27344. NR 17 TC 1 Z9 1 U1 0 U2 4 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1815-2406 J9 COMMUN COMPUT PHYS JI Commun. Comput. Phys. PD FEB PY 2013 VL 13 IS 2 BP 386 EP 410 DI 10.4208/cicp.280711.070212a PG 25 WC Physics, Mathematical SC Physics GA 104ID UT WOS:000315984700003 ER PT J AU Lani, A Sjogreen, B Yee, HC Henshaw, WD AF Lani, Andrea Sjoegreen, Bjoern Yee, H. C. Henshaw, William D. TI Variable High-Order Multiblock Overlapping Grid Methods for Mixed Steady and Unsteady Multiscale Viscous Flows, Part II: Hypersonic Nonequilibrium Flows SO COMMUNICATIONS IN COMPUTATIONAL PHYSICS LA English DT Article DE Unstructured mesh; hypersonic flows; thermo-chemical nonequilibrium; residual distribution schemes; double cone ID NUMERICAL DISSIPATION; SCHEMES; MESHES AB The variable high-order multiblock overlapping (overset) grids method of Sjogreen & Yee [CiCP, Vol. 5, 2009] for a perfect gas has been extended to nonequilibrium flows. This work makes use of the recently developed high-order well-balanced shock-capturing schemes and their filter counterparts [Wang et al., J. Comput. Phys., 2009, 2010] that exactly preserve certain non-trivial steady state solutions of the chemical nonequilibrium governing equations. Multiscale turbulence with strong shocks and flows containing both steady and unsteady components is best treated by mixing of numerical methods and switching on the appropriate scheme in the appropriate subdomains of the flow fields, even under the multiblock grid or adaptive grid refinement framework. While low dissipative sixth- or higher-order shock-capturing filter methods are appropriate for unsteady turbulence with shocklets, second- and third-order shock-capturing methods are more effective for strong steady or nearly steady shocks in terms of convergence. It is anticipated that our variable high-order overset grid framework capability with its highly modular design will allow for an optimum synthesis of these new algorithms in such a way that the most appropriate spatial discretizations can be tailored for each particular region of the flow. In this paper some of the latest developments in single block high-order filter schemes for chemical nonequilibrium flows are applied to overset grid geometries. The numerical approach is validated on a number of test cases characterized by hypersonic conditions with strong shocks, including the reentry flow surrounding a 3D Apollo-like NASA Crew Exploration Vehicle that might contain mixed steady and unsteady components, depending on the flow conditions. C1 [Lani, Andrea] NASA Ames Stanford Ctr Turbulence Res, Palo Alto, CA USA. [Sjoegreen, Bjoern; Henshaw, William D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Yee, H. C.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. RP Lani, A (reprint author), NASA Ames Stanford Ctr Turbulence Res, Palo Alto, CA USA. EM alani0@stanford.edu; sjogreen2@llnl.gov; helen.m.yee@nasa.gov; henshaw@llnl.gov OI Lani, Andrea/0000-0003-4017-215X FU DOE/SciDAC SAP grant [DE-AI02-06ER25796]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors wish to express their gratitude to A. Lazanoff and J. Chang of the Scientific Consultant Group, Code TN, NASA Ames and their help. The support of the DOE/SciDAC SAP grant DE-AI02-06ER25796 is acknowledged. Work by the second and fourth authors was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Part of the work by the third author was performed under NASA Fundamental Aeronautics Hypersonic Program. Special thanks to Wei Wang, former CTR postdoc, who implemented all WENO schemes for nonequilibrium flows. NR 37 TC 2 Z9 2 U1 1 U2 12 PU GLOBAL SCIENCE PRESS PI WANCHAI PA ROOM 3208, CENTRAL PLAZA, 18 HARBOUR RD, WANCHAI, HONG KONG 00000, PEOPLES R CHINA SN 1815-2406 J9 COMMUN COMPUT PHYS JI Commun. Comput. Phys. PD FEB PY 2013 VL 13 IS 2 BP 583 EP 602 DI 10.4208/cicp.240811.090312a PG 20 WC Physics, Mathematical SC Physics GA 104ID UT WOS:000315984700013 ER PT J AU Baggetto, L Allcorn, E Manthiram, A Veith, GM AF Baggetto, Loic Allcorn, Eric Manthiram, Arumugam Veith, Gabriel M. TI Cu2Sb thin films as anode for Na-ion batteries SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Copper antimony (Cu2Sb) anodes; Thin film electrodes; Na3Sb composition; X-ray diffraction (XRD); X-ray photoelectron spectroscopy (XPS) ID LITHIUM BATTERIES; HIGH-CAPACITY; ELECTROLYTE; SODIUM; INSERTION; STORAGE AB Cu2Sb thin films prepared by magnetron sputtering are evaluated as an anode material for Na-ion batteries. The starting material is composed of nanocrystallites with the desired tetragonal P4/nmm structure. The study of the reaction mechanism reveals the formation of an amorphous/nanocrystalline phase of composition close to Na3Sb as the final reaction product. The solid electrolyte interphase (SEI) material is mostly composed of carbonates (Na2CO3, NaCO3R) and possibly ethers. The Cu2Sb anode possesses moderate capacity retention with a reversible storage capacity (250 mAh/g or 2100 mAh/cm(3)) close to the theoretical value (323 mAh/g), an average reaction potential of around 055 V vs. Na/Na+, and a high rate performance (10 C-rate). (C) 2012 Elsevier B.V. All rights reserved. C1 [Baggetto, Loic; Veith, Gabriel M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Allcorn, Eric; Manthiram, Arumugam] Univ Texas Austin, Electrochem Energy Lab, Austin, TX 78712 USA. [Allcorn, Eric; Manthiram, Arumugam] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA. RP Baggetto, L (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM baggettol@ornl.gov RI Baggetto, Loic/D-5542-2017 OI Baggetto, Loic/0000-0002-9029-2363 FU U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division [DE-SC0005397]; DOE-BES FX This work was supported by the U.S. Department of Energy (DOE), Basic Energy Sciences (BES), Materials Sciences and Engineering Division (work at U. Texas under award number DE-SC0005397), and through a SEM user project supported by ORNL's Shared Research Equipment (ShaRE) User Program, which is also supported by DOE-BES. EA and AM prepared the Cu2Sb powder. LB and GMV designed the experiments and conducted the fabrication and characterization of the thin film electrodes. NR 22 TC 59 Z9 59 U1 13 U2 179 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD FEB PY 2013 VL 27 BP 168 EP 171 DI 10.1016/j.elecom.2012.11.030 PG 4 WC Electrochemistry SC Electrochemistry GA 106QG UT WOS:000316159200042 ER PT J AU Choi, E Chern, GW Perkins, NB AF Choi, Eunsong Chern, Gia-Wei Perkins, Natalia B. TI Helimagnons in a chiral ground state of the pyrochlore antiferromagnets SO EPL LA English DT Article ID FRUSTRATED ANTIFERROMAGNETS; LIQUID; PHASE; ORDER; YMN2 AB The Goldstone mode in a helical magnetic phase, also known as the helimagnon, is a propagating mode with a highly anisotropic dispersion relation. Here we study theoretically the magnetic excitations in a complex chiral ground state of pyrochlore antiferromagnets such as spinel CdCr2O4 and itinerant magnet YMn2. We show that the effective theory of the soft modes in the helical state possesses a symmetry similar to that of smectic liquid crystals. An overall agreement is obtained between experiments and our dynamics simulations with realistic model parameters. By exactly diagonalizing the linearized Landu-Lifshitz equation in various commensurate limits of the spiral order, we find a low-energy dispersion relation characteristic of the helimagnons. Our calculation thus reveals the first example of helimagnon excitations in geometrically frustrated spin systems. Copyright (c) EPLA, 2013 C1 [Choi, Eunsong; Chern, Gia-Wei; Perkins, Natalia B.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Chern, Gia-Wei] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Choi, E (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. FU NSF [DMR-1005932, DMR-0844115]; ICAM FX We thank J. DEISENHOFER, O. SUSHKOV, O. TCHERNYSHYOV for stimulating discussions. NBP and EC acknowledge the support from NSF grant DMR-1005932. G-WC is supported by ICAM and NSF Grant DMR-0844115. NBP and G-WC also acknowledge the hospitality of the visitors program at MPIPKS, where part of the work on this manuscript has been done. NR 33 TC 1 Z9 1 U1 2 U2 18 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD FEB PY 2013 VL 101 IS 3 AR 37004 DI 10.1209/0295-5075/101/37004 PG 6 WC Physics, Multidisciplinary SC Physics GA 096KH UT WOS:000315402200025 ER PT J AU Culp, JT Chen, DL Liu, JC Chirdon, D Kauffman, K Goodman, A Johnson, JK AF Culp, Jeffrey T. Chen, De-Li Liu, Jinchen Chirdon, Danielle Kauffman, Kristi Goodman, Angela Johnson, J. Karl TI Effect of Spin-Crossover-Induced Pore Contraction on CO2-Host Interactions in the Porous Coordination Polymers [Fe(pyrazine)M(CN)(4)] (M = Ni, Pt) SO EUROPEAN JOURNAL OF INORGANIC CHEMISTRY LA English DT Article DE Metal-organic frameworks; Spin crossover; Density functional calculations; IR spectroscopy; Adsorption ID MOLECULAR-DYNAMICS SIMULATIONS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; CARBON-DIOXIDE; ROOM-TEMPERATURE; CO2 BINDING; FRAMEWORK; TRANSITION; CYANIDE; PD AB Variable-temperature in situ ATR-FTIR spectra are presented for the porous spin-crossover compounds [Fe(pyrazine)Ni(CN)(4)] and [Fe(pyrazine)Pt(CN)(4)] under CO2 pressures of up to 8 bar. Significant shifts in the nu(3) and nu(2) IR absorption bands of adsorbed CO2 are observed as the host materials undergo transition between low- and high-spin states. Computational models used to determine the packing arrangement of CO2 within the pore structures show a preferred orientation of one of the adsorbed CO2 molecules with close O=C=O center dot center dot center dot H contacts with the pyrazine pillar ligands. The interaction is a consequence of the commensurate distance of the inter-pyrazine separations and the length of the CO2 molecule, which allows the adsorbed CO2 to effectively bridge the pyrazine pillars in the structure. The models were used to assign the distinct shifts in the IR absorption bands of the adsorbed CO2 that arise from changes in the O=C=O center dot center dot center dot H contacts that strengthen and weaken in correlation with changes in the Fe-N bond lengths as the spin state of Fe changes. The results indicate that spin-crossover compounds can function as a unique type of flexible sorbent in which the pore contractions associated with spin transition can affect the strength of CO2-host interactions. C1 [Culp, Jeffrey T.; Liu, Jinchen; Chirdon, Danielle; Kauffman, Kristi; Goodman, Angela; Johnson, J. Karl] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Culp, Jeffrey T.] URS Corp, South Pk, PA 15129 USA. [Chen, De-Li; Liu, Jinchen; Johnson, J. Karl] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. RP Culp, JT (reprint author), Natl Energy Technol Lab, 626 Cochrans Mill Rd, Pittsburgh, PA 15236 USA. EM jeffrey.culp@contr.netl.doe.gov RI Culp, Jeffrey/B-1219-2010; Chen, De-Li/H-6867-2012; Johnson, Karl/E-9733-2013 OI Culp, Jeffrey/0000-0002-7422-052X; Johnson, Karl/0000-0002-3608-8003 FU National Energy Technology Laboratory (NETL) (RES) [DE-FE0004000]; U.S. Department of Energy FX This technical effort was performed with the support of the National Energy Technology Laboratory (NETL) through its ongoing research program into CO2 capture (RES contract DE-FE0004000). D. C. was supported by an appointment to the NETL Research Participation Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831-0117. NR 42 TC 7 Z9 7 U1 5 U2 41 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1434-1948 J9 EUR J INORG CHEM JI Eur. J. Inorg. Chem. PD FEB PY 2013 IS 4 BP 511 EP 519 DI 10.1002/ejic.201201265 PG 9 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 108KC UT WOS:000316290700005 ER PT J AU GhattyVenkataKrishna, PK Carri, GA AF GhattyVenkataKrishna, Pavan K. Carri, Gustavo A. TI The effect of complex solvents on the structure and dynamics of protein solutions: The case of Lysozyme in trehalose/water mixtures SO EUROPEAN PHYSICAL JOURNAL E LA English DT Article ID GLYCEROL-WATER MIXTURES; HYDROGEN-BOND DYNAMICS; MOLECULAR-DYNAMICS; NEUTRON-SCATTERING; HYDRATION WATER; LIQUID WATER; PERCOLATION TRANSITION; DIELECTRIC-RELAXATION; MICROSCOPIC INSIGHTS; DIMETHYL-SULFOXIDE AB We present a Molecular Dynamics simulation study of the effect of trehalose concentration on the structure and dynamics of individual proteins immersed in trehalose/water mixtures. Hen egg-white Lysozyme is used in this study and trehalose concentrations of 0%, 10%, 20%, 30% and 100% by weight are explored. Surprisingly, we have found that changes in trehalose concentration do not change the global structural characteristics of the protein as measured by standard quantities like the mean square deviation, radius of gyration, solvent accessible surface area, inertia tensor and asphericity. Only in the limit of pure trehalose these metrics change significantly. Specifically, we found that the protein is compressed by 2% when immersed in pure trehalose. At the amino acid level there is noticeable rearrangement of the surface residues due to the change in polarity of the surrounding environment with the addition of trehalose. From a dynamic perspective, our computation of the Incoherent Intermediate Scattering Function shows that the protein slows down with increasing trehalose concentration; however, this slowdown is not monotonic. Finally, we also report in-depth results for the hydration layer around the protein including its structure, hydrogen-bonding characteristics and dynamic behavior at different length scales. C1 [GhattyVenkataKrishna, Pavan K.] Oak Ridge Natl Lab, Computat Biol & Bioinformat Grp, Oak Ridge, TN 37830 USA. [Carri, Gustavo A.] Univ Akron, Dept Polymer Sci, Akron, OH 44325 USA. [Carri, Gustavo A.] Univ Akron, Inst Polymer Sci & Polymer Engn, Akron, OH 44325 USA. RP GhattyVenkataKrishna, PK (reprint author), Oak Ridge Natl Lab, Computat Biol & Bioinformat Grp, Oak Ridge, TN 37830 USA. EM pkc@ornl.gov; gac@uakron.edu FU U.S. DOE [DE-AC05-00OR22725]; UT-Battelle FX PKG thanks Dr. Kei Moritsugu and Dr. Edward C. Uberbacher for useful inputs. This work was sponsored by the U.S. DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC managing contractor for Oak Ridge National Laboratory. NR 85 TC 7 Z9 7 U1 0 U2 48 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1292-8941 J9 EUR PHYS J E JI Eur. Phys. J. E PD FEB PY 2013 VL 36 IS 2 AR 14 DI 10.1140/epje/i2013-13014-3 PG 16 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Polymer Science SC Chemistry; Materials Science; Physics; Polymer Science GA 108BV UT WOS:000316266900004 PM 23404569 ER PT J AU Santarosa, CS Crandall, D Haljasmaa, IV Hur, TB Fazio, JJ Warzinski, RP Heemann, R Ketzer, JMM Romanov, VN AF Santarosa, Cristian S. Crandall, Dustin Haljasmaa, Igor V. Hur, Tae-Bong Fazio, James J. Warzinski, Robert P. Heemann, Roberto Ketzer, J. Marcelo M. Romanov, Vyacheslav N. TI CO2 sequestration potential of Charqueadas coal field in Brazil SO INTERNATIONAL JOURNAL OF COAL GEOLOGY LA English DT Article DE Coal; Carbon dioxide; Sequestration; Permeability ID CARBON-DIOXIDE; ADSORPTION-ISOTHERMS; STRESSED COAL; SORPTION; TRANSPORT; BEHAVIOR; METHANE; GASES AB Although coal is not the primary source of energy in Brazil there is growing interest to evaluate the potential of coal from the south of the country for various activities. The I2B coal seam in the Charqueadas coal field has been considered a target for enhanced coal bed methane production and CO2 sequestration. A detailed experimental study of the samples from this seam was conducted at the NETL with assistance from the Pontificia Universidade Catolica Do Rio Grande Do Sul. Such properties as sorption capacity, internal structure of the samples, porosity and permeability were of primary interest in this characterization study. The samples used were low rank coals (high volatile bituminous and sub-bituminous) obtained from the I2B seam. It was observed that the temperature effect on adsorption capacity correlates negatively with as-received water and mineral content. Langmuir CO2 adsorption capacity of the coal samples ranged 0.61-2.09 mmol/g. The upper I2B seam appears to be overall more heterogeneous and less permeable than the lower I2B seam. The lower seam coal appears to have a large amount of micro-fractures that do not close even at 11 MPa of confining pressure. Published by Elsevier B.V. C1 [Santarosa, Cristian S.] Petrobras Res Ctr, Rio De Janeiro, Brazil. [Santarosa, Cristian S.] Pontificia Univ Catolica Rio Grande do Sul, BR-90619900 Porto Alegre, RS, Brazil. [Santarosa, Cristian S.; Crandall, Dustin; Haljasmaa, Igor V.; Hur, Tae-Bong; Fazio, James J.; Warzinski, Robert P.; Romanov, Vyacheslav N.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Crandall, Dustin; Haljasmaa, Igor V.] URS, South Pk, PA 15129 USA. [Hur, Tae-Bong] Univ Pittsburgh, Dept Geol & Planetary Sci, Pittsburgh, PA 15260 USA. [Heemann, Roberto; Ketzer, J. Marcelo M.] CEPAC, Ctr Excellence Res & Innovat Petr Mineral Resourc, Porto Alegre, RS, Brazil. RP Romanov, VN (reprint author), Natl Energy Technol Lab, POB 10940, Pittsburgh, PA 15236 USA. EM romanov@netl.doe.gov RI Romanov, Vyacheslav/C-6467-2008 OI Romanov, Vyacheslav/0000-0002-8850-3539 FU National Energy Technology Laboratory; NETL-Regional University Alliance (NETL-RUA) [DE-FE000-4000] FX The authors appreciate the support provided by the National Energy Technology Laboratory staff within framework of the Memorandum of Understanding between NEIL, PETROBRAS and Pontificia Universidade Catolica Do Rio Grande Do Sul. This project was partially supported through the NETL-Regional University Alliance (NETL-RUA) in support of the National Energy Technology Laboratory's ongoing research in carbon sequestration under the RES Contract DE-FE000-4000. NR 47 TC 5 Z9 5 U1 0 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0166-5162 J9 INT J COAL GEOL JI Int. J. Coal Geol. PD FEB 1 PY 2013 VL 106 BP 25 EP 34 DI 10.1016/j.coal.2013.01.005 PG 10 WC Energy & Fuels; Geosciences, Multidisciplinary SC Energy & Fuels; Geology GA 110IT UT WOS:000316436500003 ER PT J AU Yang, Y Mims, CA Mei, DH Peden, CHF Campbell, CT AF Yang, Y. Mims, C. A. Mei, D. H. Peden, C. H. F. Campbell, C. T. TI Mechanistic studies of methanol synthesis over Cu from CO/CO2/H-2/H2O mixtures: The source of C in methanol and the role of water SO JOURNAL OF CATALYSIS LA English DT Article DE Methanol synthesis; Water-gas shift; Copper; Isotope tracing; Water promotion; Autocatalysis; Carboxyl intermediate; Formate; Carbon source; CO ID GAS SHIFT REACTION; SUPPORTED COPPER-CATALYSTS; SUBSURFACE OXIDATION; CARBON-DIOXIDE; NITROUS-OXIDE; CO2; HYDROGENATION; KINETICS; CU(111); FORMATE AB The low temperature (403-453 K) conversions of CO/hydrogen and CO2/hydrogen mixtures (6 bar total pressure) to methanol over copper catalysts are both assisted by the presence of small amounts of water (mole fraction similar to 0.04-0.5%). For CO2/hydrogen reaction mixtures, the water product from both methanol synthesis and reverse water-gas shift serves to initiate both reactions in an autocatalytic manner. In the case of CO/D-2 mixtures, very little methanol is produced until small amounts of water are added. The effect of water on methanol production is more immediate than in CO2/D-2, yet the steady-state rates are similar. Tracer experiments in (CO)-C-13/(CO2)-C-12/hydrogen (with or without added water) show that the dominant source of C in the methanol product gradually shifts from CO2 to CO as the temperature is lowered. Cu-bound formate, the major IR visible surface species under CO2/hydrogen, is not visible in CO/moist hydrogen. Though formate is visible in the tracer experiments, the symmetric stretch is absent. These results, in conjunction with recent DFT calculations on Cu(111), point to carboxyl as a common intermediate for both methanol synthesis and reverse water-gas shift, with formate playing a spectator co-adsorbate role. (c) 2012 Elsevier Inc. All rights reserved. C1 [Yang, Y.; Mei, D. H.; Peden, C. H. F.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99354 USA. [Mims, C. A.] Univ Toronto, Dept Chem Engn, Toronto, ON M5S 3E5, Canada. [Yang, Y.; Campbell, C. T.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. RP Mims, CA (reprint author), Univ Toronto, Dept Chem Engn & Appl Chem, 200 Coll St, Toronto, ON M5S 3E5, Canada. EM charles.mims@utoronto.ca RI Mei, Donghai/A-2115-2012; Mei, Donghai/D-3251-2011; OI Mei, Donghai/0000-0002-0286-4182; Peden, Charles/0000-0001-6754-9928 FU Laboratory Directed Research and Development (LDRD) grant, Catalysis Initiative program; US Department of Energy Office of Biological and Environmental Research; Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences; [DE-FG02-96ER14630] FX This study was performed at the Institute for Integrated Catalysis (IIC) at Pacific Northwest National Laboratory (PNNL), and partially funded by a Laboratory Directed Research and Development (LDRD) grant as part of the Catalysis Initiative program administered by PNNL. The work was carried out in the Environmental Molecular Sciences Laboratory (EMSL) at PNNL, a National Scientific User facility supported by the US Department of Energy Office of Biological and Environmental Research. PNNL is operated by Battelle for the US Department of Energy. C.T.C. (Grant number DE-FG02-96ER14630) and C.H.F.P. would like to acknowledge the Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences and Geosciences, for support of their participation in this work. C.A.M. gratefully acknowledges PNNL support for his participation in the IIC as a visiting professor. Helpful discussions with Enrique Iglesia are gratefully acknowledged. NR 45 TC 53 Z9 55 U1 11 U2 248 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD FEB PY 2013 VL 298 BP 10 EP 17 DI 10.1016/j.jcat.2012.10.028 PG 8 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 106OZ UT WOS:000316155700002 ER PT J AU Wei, HJ Gomez, C Liu, JJ Guo, N Wu, TP Lobo-Lapidus, R Marshall, CL Miller, JT Meyer, RJ AF Wei, Haojuan Gomez, Carolina Liu, Jingjing Guo, Neng Wu, Tianpin Lobo-Lapidus, Rodrigo Marshall, Christopher L. Miller, Jeffrey T. Meyer, Randall J. TI Selective hydrogenation of acrolein on supported silver catalysts: A kinetics study of particle size effects SO JOURNAL OF CATALYSIS LA English DT Article DE Acrolein; Silver; Hydrogenation; Aldehyde; Particle size effect; Heterogeneous catalysis; Reaction pathway analysis ID ALPHA,BETA-UNSATURATED ALDEHYDES; UNSATURATED ALDEHYDES; GOLD CATALYSTS; STRUCTURAL-PROPERTIES; STRUCTURE SENSITIVITY; CARBONYL-COMPOUNDS; REAL STRUCTURE; ALLYL ALCOHOL; ACTIVE-SITES; SURFACE AB The hydrogenation of acrolein was studied on a series of silica-supported silver catalysts with various particle sizes (1-9 nm). Particle sizes were determined by EXAFS and confirmed by TEM as well. The selectivity to allyl alcohol (as opposed to propanal) and turnover frequency increased with increasing particle size. The results are somewhat unusual in that the most active catalyst is also the most selective. Increasing the total pressure from 1 to 5 atm was also found to increase the selectivity and decrease the activation energy. The results suggest that the orientation of acrolein on flat surfaces with high coverage is desirable for high selectivity and high activity. However, the selectivity to allyl alcohol decreases with increasing conversion due to the isomerization of allyl alcohol to propanal. (c) 2012 Elsevier Inc. All rights reserved. C1 [Wei, Haojuan; Gomez, Carolina; Liu, Jingjing; Meyer, Randall J.] Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA. [Guo, Neng; Wu, Tianpin; Lobo-Lapidus, Rodrigo; Marshall, Christopher L.; Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. RP Meyer, RJ (reprint author), Univ Illinois, Dept Chem Engn, 810 S Clinton St, Chicago, IL 60607 USA. EM rjm@uic.edu RI BM, MRCAT/G-7576-2011; ID, MRCAT/G-7586-2011; liu, jingjing/K-1183-2016; Marshall, Christopher/D-1493-2015 OI Marshall, Christopher/0000-0002-1285-7648 FU National Science Foundation (CBET) [0747646]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; U.S. DOE [DE-ACO2-06CH11357]; [GU-20770]; [GU-25167] FX R.J.M., C.G. and H.W. gratefully acknowledge funding for this work from the National Science Foundation (CBET Grant Number 0747646). This material is based upon work supported as part of the Institute for Atom-efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Use of the 9-BM, 10-BM and 10-ID beamlines at the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-ACO2-06CH11357 and general user proposals GU-20770 and GU-25167. NR 37 TC 25 Z9 25 U1 5 U2 141 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD FEB PY 2013 VL 298 BP 18 EP 26 DI 10.1016/j.jcat.2012.10.027 PG 9 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 106OZ UT WOS:000316155700003 ER PT J AU Pretzer, LA Song, HJ Fang, YL Zhao, Z Guo, N Wu, TP Arslan, I Miller, JT Wong, MS AF Pretzer, Lori A. Song, Hyun J. Fang, Yu-Lun Zhao, Zhun Guo, Neng Wu, Tianpin Arslan, Ilke Miller, Jeffrey T. Wong, Michael S. TI Hydrodechlorination catalysis of Pd-on-Au nanoparticles varies with particle size SO JOURNAL OF CATALYSIS LA English DT Article DE Hydrodechlorination; Palladium; Gold; Nanoparticle; Catalysis; Trichloroethene ID RAY-ABSORPTION SPECTROSCOPY; X-RAY; BIMETALLIC NANOPARTICLES; TRICHLOROETHENE HYDRODECHLORINATION; SUPPORTED CATALYSTS; PALLADIUM CATALYSTS; GOLD NANOPARTICLES; ORGANIC-COMPOUNDS; PDCU(110) ALLOY; SURFACE ALLOYS AB Trichloroethene (TCE), a common carcinogen and groundwater contaminant in industrialized nations, can be catalytically degraded by Au nanoparticles partially coated with Pd ("Pd-on-Au NPs"). In this work, we synthesized Pd-on-Au NPs using 3,7, and 10 nm Au NPs with Pd surface coverages between 0-150% and studied how particle size and composition influenced their TCE hydrodechlorination (HDC) activity. We observed volcano-shape dependence on both Au particle size and Pd surface coverage, with 7 nm Au NPs with Pd coverages of 60-70% having maximum activity. Using extended X-ray absorption fine-structure spectroscopy, we found a strong correlation between catalytic activity and the presence of 2-D Pd ensembles (as small as 2-3 atoms). Aberration-corrected scanning transmission electron microscopy further confirmed the presence of Pd ensembles. The Pd dispersion and oxidation state generally changed from isolated, metallic Pd atoms to metallic 2-D Pd ensembles of varying sizes, and to partially oxidized 3-D Pd ensembles, as Pd surface coverage increased. These changes occurred at different surface coverages for different Au particle sizes. These findings highlight the importance of controlling particle size and surface coverage in bimetallic catalysts. (C) 2012 Elsevier Inc. All rights reserved. C1 [Pretzer, Lori A.; Song, Hyun J.; Wong, Michael S.] Rice Univ, Dept Chem, Houston, TX 77005 USA. [Fang, Yu-Lun; Zhao, Zhun; Wong, Michael S.] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA. [Guo, Neng; Wu, Tianpin; Miller, Jeffrey T.] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Arslan, Ilke] Pacific NW Natl Lab, Richland, WA 99352 USA. [Wong, Michael S.] Rice Univ, Dept Civil & Environm Engn, Houston, TX 77005 USA. RP Wong, MS (reprint author), Rice Univ, Dept Chem, POB 1892, Houston, TX 77005 USA. EM mswong@rice.edu RI Zhao, Zhun/G-3007-2013; BM, MRCAT/G-7576-2011; ID, MRCAT/G-7586-2011; Wong, Michael/F-9286-2010 OI Zhao, Zhun/0000-0002-4577-5470; Wong, Michael/0000-0002-3652-3378 FU Welch Foundation [C-1676]; National Science Foundation [CBET-1134535, CHE-1214092, EEC-0118007]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory; U.S. Department of Energy [DE-AC05-76RL01830] FX We gratefully acknowledge the Welch Foundation (C-1676) and the National Science Foundation (CBET-1134535, CHE-1214092, EEC-0118007) for financial support. We thank Dr. W. Guo for assisting in the collection of TEM images; Mr. J. Velazquez and Dr. S. Leekumjorn, for assistance with the collection and analysis of GC-MS data; and Dr. H.G. Bagaria, Dr. G.C. Kini, and Dr. N. Soultanidis for helpful discussions. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. PNNL is operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NR 64 TC 31 Z9 33 U1 14 U2 110 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 J9 J CATAL JI J. Catal. PD FEB PY 2013 VL 298 BP 206 EP 217 DI 10.1016/j.jcat.2012.11.005 PG 12 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 106OZ UT WOS:000316155700023 ER PT J AU Aad, G Abajyan, T Abbott, B Abdallah, J Khaek, SA Abdelalim, AA Abdinov, O Abi, B Abolins, M AbouZeid, OS Abramowicz, H Abreu, H Acharya, BS Adamczyk, L Adams, DL Addy, TN Adelman, J Adomeit, S Adragna, P Adye, T Aesky, S Agar-Savedra, JA Agustoni, M Ahlen, SP Ahles, F Ahmad, A Ahsan, M Aielli, G Akesson, TPA Akimoto, G Akimov, AV Alam, MA Albert, J Albrand, S Aleksa, M Aleksandrov, IN Alessandria, F Alexa, C Alexander, G Alexandre, G Alexopoulos, T Alhroob, M Aliev, M Alimonti, G Alison, J Allbrooke, BMM Allison, LJ Allport, PP Allwood-Spiers, SE Almond, J Aloisio, A Alon, R Alonso, A Alonso, F Altheimer, A Gonzalez, BA Alviggi, MG Amako, K Amelung, C Ammosov, VV Dos Santos, SPA Amorim, A Amoroso, S Amram, N Anastopoulos, C Ancu, LS Andari, N Andeen, T Anders, CF Anders, G Anderson, KJ Andreazza, A Andrei, V Andrieux, ML Anduaga, XS Angelidakis, S Anger, P Angerami, A Anghinolfi, F Anisenkov, A Anjos, N Annovi, A Antonaki, A Antonelli, M Antonov, A Antos, J Anulli, F Aoki, M Aoun, S Bella, LA Apolle, R Arabidze, G Aracena, I Arai, Y Arce, ATH Arfaoui, S Arguin, JF Argyropoulos, S Arik, E Arik, M Armbruster, AJ Arnaez, O Arnal, V Artamonov, A Artoni, G Arutinov, D Asai, S Ask, S Asman, B Asquith, L Assamagan, K Astbury, A Atkinson, M Aubert, B Auge, E Augsten, K Aurousseau, M Avolio, G Axen, A Azuelos, G Azuma, Y Baak, MA Baccaglioni, G Bacci, C Bach, AM Bachacou, H Bachas, K Backes, M Backhaus, M Mayes, JB Badescu, E Bagnaia, P Bai, Y Bailey, DC Bain, T Baines, JT Baker, OK Baker, S Balek, P Banas, E Banerjee, P Banerjee, S Banfi, D Bangert, A Bansal, V Bansil, HS Barak, L Baranov, SP Barber, T Barberio, EL Barberis, D Barbero, N Bardin, DY Barillari, T Barisonzi, M Barklow, T Barlow, N Barnett, BM Barnett, RM Baroncelli, A Barone, G Barr, AJ Barreiro, F da Costa, JBG Bartoldus, R Barton, AE Bartsch, V Basye, A Bates, RL Batkova, L Batley, JR Battaglia, A Battistin, M Bauer, F Bawa, HS Beale, S Beau, T Beauchemin, PH Beccherle, R Bechtle, P Beck, HP Becker, K Becker, S Beckingham, M Becks, KH Beddall, AJ Beddall, A Bedikian, S Bednyakov, VA Bee, CP Beemster, LJ Begel, M Harpaz, SB Behera, PK Beimforde, N Belanger-Champagne, C Bell, PJ Bell, WH Bella, G Bellagamba, L Bellomo, M Belloni, A Beloborodova, O Belotskiy, K Beltramello, O Benary, O Benchekroun, D Bendtz, K Benekos, N Benhammou, Y Noccioli, EB Garcia, JAB Benjarnin, DP Benoit, M Bensinger, JR Benslama, K Bentvelsen, S Berge, D Kuutmann, EB Berger, N Berghaus, F Berglund, E Beringer, J Bernat, P Bernhard, R Bernius, C Berry, T Bertella, C Bertin, A Bertolucci, F Besana, MI Besjes, GJ Besson, N Bethke, S Bhimji, W Bianchi, RM Bianchini, L Bianco, M Biebel, O Bieniek, SP Bierwagen, K Biesiada, J Biglietti, M Bilokon, H Bindi, M Binet, S Bingul, A Bini, C Biscarat, C Bittner, B Black, CW Black, KM Blair, RE Blanchard, JB Blazek, T Bloch, I Blocker, C Blocki, J Blum, W Blumenschein, U Bobbink, GJ Bobrovnikov, VS Bocchetta, SS Bocci, A Boddy, CR Boehler, M Boek, J Boek, TT Bioelaert, N Bogaerts, JA Bogdanchikov, A Bogouch, A Bohm, C Bohm, J Boisvert, V Bold, T Boldea, V Bolnet, NM Bomben, M Bona, M Boonekamp, M Bordoni, S Borer, C Borisov, A Borissov, G Borjanovic, I Borri, M Borroni, S Bortfeldt, J Bortolotto, V Bos, K Boscherini, D Bosman, M Boterenbrood, H Bouchami, J Boudreau, J Bouhova-Thacker, EV Boumediene, D Bourdarios, C Bousson, N Boveia, A Boyd, J Boyko, IR Bozovic-Jelisavcic, I Bracinik, J Branchini, P Brandt, A Brandt, G Brandt, O Bratzler, U Brau, B Brau, JE Braun, HM Brazzale, SF Brelier, B Bremer, J Brendlinger, K Brenner, R Bressler, S Bristow, TM Britton, D Brochu, FM Brock, I Brock, R Broggi, F Bromberg, C Bronner, J Brooijmans, G Brooks, T Brooks, WK Brown, G de Renstrom, PAB Bruncko, D Bruneliere, R Brunet, S Bruni, A Bruni, G Bruschi, M Bryngemark, L Buanes, T Buat, Q Bucci, F Buchanan, J Buchholz, P Buckingham, RM Buckley, AG Buda, SI Budagov, IA Budick, B Buscher, V Bugge, L Bulekov, O Bundock, AC Bunse, M Buran, T Burckhart, H Burdin, S Burgess, T Burke, S Busato, E Bussey, P Buszello, CP Butler, B Butler, JM Buttar, CM Butterworth, JM Buttinger, W Byszewski, M Urban, SC Caforio, D Cakir, O Calafiura, P Calderini, G Calfayan, P Calkins, R Caloba, LP Caloi, H Calvet, D Calvet, S Toro, RC Camarri, P Cameron, D Caminada, LM Armadans, RC Campana, S Campanelli, M Canale, V Canelli, F Canepa, A Cantero, J Cantrill, R Garrido, MDMC Caprini, I Caprini, M Capriotti, D Capua, M Caputo, R Cardarelli, R Carli, T Carlino, G Carminati, L Caron, S Carquin, E Carrillo-Montoya, GD Carter, AA Carter, JR Carvalho, J Casadei, D Casado, MP Cascella, M Caso, C Hernandez, AMC Castaneda-Miranda, E Gimenez, VC Castro, NF Cataldi, C Catastini, P Catinaccio, A Catmore, JR Cattai, A Cattani, C Caughron, S Cavaliere, V Cavalleri, P Cavalli, D Cavalli-Sforza, M Cavsinni, V Ceradini, F Cerqueira, AS Cerri, A Cerrito, L Cerutti, F Cetin, SA Chafaq, A Chakraborty, D Chalupkova, I Chan, K Chang, P Chapleau, B Chapman, JD Chapman, JW Charlton, DG Chavda, V Barojas, CAC Cheatham, S Chekanov, S Chekulaev, SV Chelkov, GA Chelstowska, MA Chen, C Chen, H Chen, S Chen, X Chen, Y Cheng, Y Cheplakov, A El Moursli, RC Chernyatin, V Cheu, E Cheung, SL Chevalier, L Chiefari, C Chikovani, L Childers, JT Chilingarov, A Chiodini, C Chisholm, AS Chislett, RT Chitan, A Chizhov, MV Choudalakis, G Chouridou, S Christidi, IA Christov, A Chromek-Burckhart, D Chu, ML Chudoba, J Ciapetti, G Ciftci, AK Ciftci, R Cinca, D Cindro, V Ciocio, A Cirilli, N Cirkovic, P Citron, ZH Citterio, M Ciubancan, M Clark, A Clark, PJ Clarke, RN Cleland, W Clemens, JC Clement, B Clement, C Coadou, Y Cobal, M Coccaro, A Cochran, J Coffey, L Cogan, JG Coggeshall, J Colas, J Cole, S Colijn, AP Collins, NJ Collins-Tooth, C Collot, J Colombo, T Colon, G Compostella, G Muino, PC Coniavitis, E Conidi, MC Consonni, SM Consorti, V Constantinescu, S Conta, C Conti, G Conventi, F Cooke, M Cooper, BD Cooper-Sarkar, AM Copic, K Cornelissen, F Corradi, M Corriveau, F Cortes-Gonzalez, A Cortiana, G Costa, G Costa, MJ Costanzo, D Cote, D Courneyea, L Cowan, G Cox, BE Cranmer, K Crescioli, F Cristinziani, M Crosetti, G Crepe-Renaudin, S Cuciuc, CM Almenar, CC Donszelmann, TC Cummings, J Curatolo, M Curtis, CJ Cuthbert, C Cwetanski, P Czirr, H Czodrowski, P Czyezula, Z D'Auria, S D'Onofrio, M D'Orazio, A De Sousa, MJDS Da Via, C Dabrowski, V Dafinca, A Dai, T Dallaire, F Dallapiccola, C Dam, M Dameri, M Damiani, DS Danielsson, HO Dao, V Darbo, G Darlea, GL Dassoulas, JA Davey, W Davidek, T Davidson, N Davidson, R Davies, E Davies, M Davignon, O Davison, AR Davygora, Y Dawe, E Dawson, I Daya-Ishmukhametova, RK De, K de Asmundis, R De Castro, S De Cecco, S de Graat, J De Groot, N de Jong, P De la Taille, C De la Torre, H De Lorenzio, F De Nooij, L De Pedis, D De Salvo, A De Sanctis, E De Santo, A De Regie, JBD De Zorzi, G Dearnaley, WJ Debbe, R Debenedetti, C Dechenaux, B Dedovich, DV Degenhardt, J Del Peso, J Del Prete, T Delemontex, T Deliyergiyev, M Dell'Acqua, A Dell'Asta, L Della Pietra, M della Volpe, D Delmastro, M Delsart, PA Deluca, C Demers, S Demichev, M Demirkoz, B Denisov, SP Derendarz, D Derkaoui, JE Derue, F Dervan, P Desch, K Devetak, E Deviveiros, PO Dewhurst, A DeWilde, B Dhaliwal, S Dhullipudi, R Di Ciaccio, A Di Ciaccio, L Di Donato, C Di Girolamo, A Di Girolamo, B Di Luise, S Di Mattia, A Di Micco, B Di Nardo, R Di Simone, A Di Sipio, R Diaz, MA Diehl, EB Dietrich, J Dietzsch, TA Diglio, S Yagci, KD Dingfelder, J Dinut, F Dionisi, C Dita, P Dita, S Dittus, F Djama, F Djobava, T do Vale, MAB Wemans, AD Doan, TKO Dobbs, M Dobos, D Dobson, E Dodd, J Doglioni, C Doherty, T Doi, Y Dolcjsi, J Dolezal, Z Dolgoshein, BA Dohmac, T Donadelli, M Donini, J Dopke, J Doria, A Dos Anjos, A Dotti, A Dova, MT Doxiadis, AD Doyle, AT Dressnandt, N Dris, M Dubbert, J Dube, S Dubreuil, E Duchovni, E Duckeck, C Duda, D Dudarev, A Dudziak, F Duhrssen, M Duerdoth, IP Duflot, L Dufour, MA Duguid, L Dunford, M Yildiz, HD Duxfield, R Dwuznik, M Duren, M Ebenstein, WL Ebke, J Eckweiler, S Edson, W Edwards, CA Edwards, NC Ehrenfeld, W Eifert, T Eigen, G Einsweiler, K Eisenhandler, E Ekelof, T El Kacimi, M Ellert, M Elles, S Ellinghaus, F Ellis, K Ellis, N Elmsheuser, J Elsing, M Emeliyanov, D Engelmann, R Engl, A Epp, B Erdmann, J Ereditato, A Eriksson, D Ernst, J Ernst, M Ernwein, J Errede, D Errede, S Ertel, E Escalier, M Esch, H Escobar, C Curull, XE Esposito, B Etienne, F Etienvre, AI Etzion, E Evangelakou, D Evans, H Fabbri, L Fabre, C Fakhrutdinov, RM Falciano, S Fang, Y Fanti, M Farbin, A Fakhrutdinov, RM Farooque, T Fang, Y Fanti, M Farbin, A Farilla, A Farley, J Farooque, T Farrell, S Farrington, SM Farthouat, P Fassi, F Fassnacht, P Fassouliotis, D Fatholahzadeh, B Favareto, A Fayard, L Federic, P Fedin, OL Fedorko, W Fehling-Kaschek, M Feligioni, L Feng, C Feng, EJ Fenyuk, AB Ferencei, J Fernando, W Ferrag, S Ferrando, J Ferrara, V Ferrari, A Ferrari, P Ferrari, R de Lima, DEF Ferrer, A Ferrere, D Ferretti, C Parodi, AF Fiascaris, N Fiedler, F Filipcic, A Filthaut, F Fincke-Keeler, M Fiolhais, MCN Fiorini, L Firan, A Fischer, G Fischer, MJ Fitzgerald, EA Flechl, M Fleck, I Fleckner, J Fleischmann, P Fleischmann, S Fletcher, G Flick, T Floderus, A Castillo, LRF Bustos, ACF Flowerdew, MJ Martin, TF Formica, A Forti, A Fortin, D Fournier, D Fower, AJ Fox, H Francavilla, P Franchini, M Franchino, S Francis, D Frank, T Franklin, M Franz, S Fraternali, M Fratina, S French, ST Friedrich, C Friedrich, F Froidevaux, D Frost, JA Fukunaga, C Torregrosa, EF Fulsom, BG Fuster, J Gabaldon, C Gabizon, O Cadfort, T Gadomski, S Gagliardi, G Gagnon, P Galea, C Galhardo, B Gallas, EJ Gallo, V Gallop, BJ Gallus, P Gan, KK Gao, YS Gaponenko, A Garberson, F Garcia-Sciveres, M Garcia, C Navarro, JEG Gardner, RW Garelli, N Garonne, V Gatti, C Gaudio, G Gaur, B Gauthier, L Gauzzi, P Gavrilenko, IL Gay, C Gaycken, G Gazis, EN Ge, P Gecse, Z Gee, CNP Geerts, DAA Geich-Gimbel, C Gellerstedt, K Gemme, C Gemmell, A Genest, MH Gentile, S George, M George, S Gerbaudo, D Gerlach, P Gershon, A Geweniger, C Ghazlane, H Ghodbane, N Giacobbe, B Giagu, S Giangiobbe, V Gianotti, F Gibbard, B Gibson, A Gibson, SM Gilchriese, M Gillberg, D Gillman, AR Gingrich, DM Ginzburg, J Giokaris, N Giordani, MP Giordano, R Giorgi, FM Giovannini, P Giraud, PF Giugni, D Giunta, M Gjelsten, BK Gladilin, LK Glasman, C Glatzer, J Glazov, A Glonti, GL Goddard, JR Godfrey, I Godlewski, J Goebel, M Gopfert, T Goeringer, C Gossling, C Goldfarb, S Golling, T Golubkov, D Gomes, A Fajardo, LSG Goncalo, R Da Costa, JGPF Gonella, L de la Hoz, SG Parra, GG Silva, MLG Gonzalez-Sevilla, S Goodson, JJ Goossens, L Gorbounov, PA Gordon, HA Gorelov, I Gorfine, G Gorini, B Gorini, F Gorisek, A Gornicki, F Goshaw, AT Gosselink, M Gostkin, MI Eschrich, JG Gouighri, M Goujdami, D Goulette, MP Goussiou, AG Goy, C Gozpinar, S Grabowska-Bold, I Grafstrom, P Grahn, KJ Gramstad, E Grancagnolo, F Grancagnolo, S Grassi, V Gratchev, V Gray, HM Gray, JA Graziani, E Grebenyuk, OG Greenshaw, T Greenwood, ZD Gregersen, N Gregor, IM Grenier, P Griffiths, J Grigalashvili, N Grillo, AA Grimm, K Grinstein, S Gris, P Grishkevich, YV Grivaz, JF Grohsjean, A Gross, E Grosse-Knetter, J Groth-Jensen, J Grybel, K Guest, D Guichenev, C Guido, E Guillemin, T Guindon, S Gul, U Gunther, J Guo, B Guo, J Gutierrez, P Guttman, N Gutzwiller, O Guyot, C Gwenlan, C Gwilliam, CB Haas, A Haas, S Haber, C Hadavand, HK Hadley, DR Haefner, P Hahn, F Hajduk, Z Hakobyan, H Hall, D Halladjian, G Hamacher, K Hamal, P Hamano, K Hamer, M Hamilton, A Hamilton, S Han, L Hanagaki, K Hanawa, K Hance, M Handel, C Hanke, P Hansen, JR Hansen, JB Hansen, DJ Hansen, PH Hansson, P Hara, K Harenberg, T Harkusha, S Harper, D Harrington, RD Harris, OM Hartert, J Hartjes, F Haruyama, T Harvey, A Hasegawa, S Hasegawa, Y Hassani, S Haug, S Hauschild, M Hauser, R Havranek, M Hawkes, CM Hawkings, RJ Hawkins, AD Hayakawa, T Hayashi, T Hayden, D Hays, CP Hayward, HS Haywood, SJ Head, SJ Hedberg, V Heelan, L Heim, S Heinemann, B Heisterkamp, S Helary, L Heller, C Heller, M Hellman, S Dellmich, D Helsens, C Henderson, RCW Henke, M Henrichs, A Correia, AMH Henrot-Versille, S Hensel, C Hernandez, CM Jimenez, YH Herrberg, R Herten, G Hertenberg, R Hervas, L Hesketg, GG Hessey, NP Hickling, R Higon-Rodriguez, E Hill, JC Hiller, KH Hillert, S Hillier, SJ Hinchliffe, I Hines, E Hirose, M Hirsch, F Hirschbuehl, D Hobbs, J Hod, N Hodgkinson, MC Hodgson, P Hoecker, A Hoeferkamp, MR Hoffman, J Hoffmann, D Hohlfeld, M Holder, M Homgren, SO Holy, T Holzbauer, JL Hong, TM van Huysduynen, LH Horner, S Hostachy, JY Hou, S Hoummada, A Howard, J Howarth, J Hristova, I Hrivnac, J Hryn'ova, T Hsu, PJ Hsu, SC Hu, D Hubacek, Z Hubaut, FH Huegging, F Huettmann, A Huffman, TB Hubaut, F Huegging, F Huettmann, A Huffman, TB Hughes, EW Hughes, G Huhtinen, M Hurwitz, M Huseynov, N Huston, J Huth, J Iacobucci, G Iakovidis, G Ibbotson, M Ibragimov, I Iconomidou-Fayard, L Idarraga, J Iengo, P Igonkina, O Ikegami, Y Ikeno, M Iliadis, D Ilie, N Ince, T Ioannou, P Iodice, M Iordanidou, N Ippolito, V Quiles, AI Isaksson, C Ishino, M Ishitsuka, M Ishmukhametov, R Issever, C Istin, S Ivashin, AV Iwanski, W Iwasaki, H Izen, JM Izzo, V Jackson, B Jackson, JN Jackson, P Jaekel, MR Jain, V Jakobs, K Jakobsen, S Jakoubek, O Jakubek, J Jamin, DO Jana, DK Jansen, E Jansen, H Janssen, J Jantsch, A Janus, M Jared, RC Jarlskog, G Jeanty, L Jen-La Plante, I Jeng, GY Jennens, D Jenni, P Loevsehall-Jensen, AE Jez, P Jezequel, S Jha, MK Ji, H Ji, W Jia, J Jiang, Y Belenguer, AJ Jin, S Jinnouchi, O Joergensen, MD Joffe, D Johansen, M Johansson, KE Johansson, P Johnert, S Johns, KA Jon-And, K Jones, G Jones, RWL Jones, TJ Joram, C Jorge, PM Joshi, KD Jovicevic, I Jovin, T Ju, X Jung, CA Jungst, RM Juranek, V Jussel, P Rozas, AJ Kabana, S Kaci, M Kaczmarska, A Kadlecik, P Kado, M Kagan, H Kagan, M Kajomovitz, E Kalinin, S Kalinovskaya, LV Kama, S Kanaya, N Kaneda, M Kaneti, S Kanno, T Kantserov, VA Kanzaki, J Kaplan, B Kapliy, A Kar, D Karagounis, M Karakostas, K Karnevskiy, M Kartvelishvili, V Karyukhin, AN Kashif, L Kasieczka, G Kass, RD Kastanas, A Kataoka, M Kataoka, Y Katzy, J Kaushik, V Kawagoe, K Kawamoto, T Kawamura, G Kazama, S Kazanin, VF Kazarinov, MY Keeler, R Keener, PT Kehoe, R Keil, M Kekelidze, GD Keller, JS Kenyon, M Keoshkerian, H Kepka, O Kerschen, N Kersevan, HP Kersten, S Kessoku, K Keung, J Khalil-zada, F Khandanyan, H Khanov, A Kharchenko, D Khodinov, A Khomich, A Khoo, TJ Khoriauli, G Khoroshilov, A Khovanskiy, V Khramov, E Khubua, J Kim, H Kim, SH Kimura, N Kind, O King, BT King, M King, RSB Kirk, J Kiryunin, AE Kishimoto, T Kisielewska, D Kitamura, T Kittelmann, T Kiuchi, K Kladiva, E Klein, M Klein, U Kleinknecht, K Klemetti, M Klier, A Klimek, F Klimentov, A Klingenberg, R Klinger, JA Klinkby, EB Klioutehnikova, T Kiok, PF Klous, S Kluge, EE Kluge, T Kluit, P Kluth, S Kneringer, E Knoops, EBEG Knue, A Ko, BR Kobayashi, T Kobel, M Kocian, M Kodys, P Koeneke, K Koenig, AC Koenig, S Koepke, L Koetsveld, F Koevesarki, P Koffas, T Koffernan, E Kogan, LA Kohlmann, S Kohn, F Kohout, Z Kohriki, T Koi, T Kolachev, GM Kolanoski, H Kolesnikov, V Koletsou, I Koll, J Komar, AA Komori, Y Kondo, T Kono, T Kononov, AI Konoplich, R Konstantinidis, N Kopeliansky, R Koperny, S Korcyl, K Kordas, K Korn, A Korol, A Korolkov, I Korolkova, EV Korotkov, VA Kortner, O Kortner, S Kostyukhin, VV Kotov, S Kotov, VM Kotwal, A Kourkoumelis, C Kouskoura, V Koutsman, A Kowalewski, R Kowalski, TZ Kozanecki, W Kozhin, AS Kral, V Krarnarenko, VA Kramberger, G Krasny, MW Krasznahorkay, A Kraus, JK Kravchenko, A Kreiss, S Krejci, F Kretzschmar, J Kreutzfeldt, K Krieger, N Krieger, P Kroeninger, K Kroha, H Kroll, J Kroseberg, J Krstic, J Kruchonak, U Krueger, H Kruker, T Krunanack, N Krumshteyn, ZV Kruse, MK Kubota, T Kuday, S Kuehn, S Kugel, A Kuhl, T Kukhtin, V Kulchitsky, Y Kuleshov, S Kuna, M Kunkle, J Kupco, A Kurashige, H Kurata, N Kurochkin, YA Kus, V Kuwertz, ES Kuze, M Kvita, J Kwee, R La Rosa, A La Rotorida, L Labarga, L Lablak, S Lacasta, C Lacava, P Lacey, J Lacker, H Lacour, D Lacuesta, VR Ladygin, E Lafaye, R Laforgc, B Lagouri, T Lai, S Laisne, E Lambourne, L Lampen, CL Lampl, W Lancon, E Landgraf, U Landon, MPJ Lang, VS Lange, C Lankord, AJ Lanni, F Lantzsch, K Lanza, A Laplace, S Lapoire, C Laporte, JF Lari, T Larner, A Lassnig, M Laurelli, P Lavorini, V Lavrijsen, W Laycock, P Le Dortz, O Le Guirriec, E Le Menedeu, E LeCompte, T Ledroit-Guillon, F Lee, H Lee, JSH Lee, SC Lee, L Lefebvre, M Legendre, M Legger, F Leggett, C Lehmacher, M Miotto, GL Leister, AG Leite, MAL Leitner, R Lellouch, D Lernmer, B Lendermann, V Leney, KJC Lenz, T Lenzen, G Lenzi, B Leonhardt, K Leontsinis, S Lepold, F Leroy, C Lessard, JR Lester, CC Lester, CM Leveque, J Levin, B Levinson, LJ Lewis, A Lewis, GH Leyko, AM Leyton, M Li, B Li, B Li, H Li, HL Li, S Li, X Liang, Z Liao, H Liberti, B Lichard, P Lie, K Liebig, W Limbach, C Limosani, A Limper, N Lin, SC Linde, F Linnemann, JT Lipeles, E Lipniacka, A Liss, TN Lssauer, D Lister, A Litke, AM Liu, D Liu, JB Liu, L Liu, M Liu, Y Livan, N Livermore, SSA Lleres, A Merino, JL Lloyd, SL Lobodinska, E Loch, P Locknaan, WS Loddenkoetter, T Loebinger, FK Loginov, A Loh, CW Lohse, T Lohwasser, K Lokajicek, M Lombardo, VP Long, RE Lopes, L Mateos, BL Lorenz, J Martinez, NL Losada, M Loscutoff, P Lo Sterzo, F Losty, MJ Lou, X Lounis, A Loureiro, KF Love, J Love, PA Lowe, AJ Lu, F Lubatti, HJ Luci, C Lucotte, A Ludwig, D Ludwig, I Ludwig, J Luehring, F Luijckx, G Lukas, W Luminari, L Lund, E Lund-Jensen, R Lundberg, B Lundberg, J Lundberg, O Lundquist, J Lungwitz, M Lynn, D Lytken, E Ma, H Ma, LL Maccarrone, G Macchiolo, A Macek, B Niguens, JM Macina, B Mackeprang, R Madaras, RJ Maddocks, HJ Mader, WF Maeno, T Maettig, P Maettig, S Magnoni, L Magradze, E Mahboubi, K Mahlstedt, J Mahmoud, S Mahout, G Maiani, C Maidantchik, C Maio, A Majewski, S Makida, Y MovAkec, N Mal, P Malaescu, B Malecki, P Malecki, P Maleev, VP Malek, F Mallik, U Malon, D Malone, C Maltezos, S Malyshev, V Malyukov, S Mamuzic, J Manabe, A Mandelli, L Mandic, I Mandrysch, R Maneira, J Manfredini, A de Andrade, LM Ramos, JAM Mann, A Manning, PM Manouakis-Katsikakis, A Manoulie, B Mantifel, R Mapelli, A Mapelli, L March, L Marchand, JF Marchese, F Marchiori, G Marcisovsky, M Marino, CP Marroquim, F Marshall, Z Marti, LF Marti-Garcia, S Martin, B Martin, B Martin, JP Martin, TA Martin, VJ Latour, BMD Martin-Haugh, S Martinez, H Martinez, M Otschoorn, VM Martyniuk, AC Marx, M Marzano, F Marzin, A Masetti, L Mashinto, T Mashinistov, R Masik, J Maslennikov, AL Massa, I Massaro, G Massol, N Mastrandrea, P Mastroberardino, A Masubuchi, T Matsunaga, H Matsushita, T Mattravers, C Maurer, J Maxfield, SJ Maximov, DA Mazini, R Mazur, M Mazzaferro, L Mazzanti, M Mc Donald, J Mc Kee, SP McCarn, A McCarty, RL McCarthy, TG McCubbin, NA McFarlane, KW Mcfayden, IA Mchedlidze, G Mclaughlan, T McMahon, SJ McPherson, RA Meade, A Mechnich, J Mechtel, M Medinnis, M Meehan, S Meera-Lebbai, R Meguro, T Mehlhase, S Mehta, A Meier, K Meirose, B Melachrinos, C Garcia, BRM Meloni, F Navas, LM Meng, Z Mengarelli, A Menke, S Meoni, E Mercurio, KM Mermod, P Merola, L Meroni, C Merritt, FS Merritt, H Messina, A Metcalfe, J Mete, AS Meyer, C Meyer, C Meyer, JP Meyer, J Meyer, J Michal, S Micu, L Middleton, RP Migas, S Mijovic, L Mikenberg, G Mikestikova, M Mikuz, M Miller, DW Miller, RJ Mills, WJ Mills, C Milov, A Milstead, DA Milstein, D Minaenko, AA Moya, MM Minashvili, IA Mincer, AI Mindur, B Mineev, M Ming, Y Mir, LM Mirabelli, G Mitrevski, J Mitsou, VA Mitsui, S Miyagawa, PS Mjornmark, JU Moa, T Moeller, V Monig, K Moser, N Mohapatra, S Mohr, W Moles-Valls, R Molfetas, A Monk, J Monnier, E Berlingen, JM Monticelli, F Monzani, S Moore, RW Moorhead, CF Herrera, CM Moraes, A Morange, N Morel, J Morello, C Moreno, D Llacer, MM Morettini, P Morgenstern, M Morii, M Morley, AK Mornacchi, G Morris, JD Morvaj, L Moser, HG Mosidze, M Moss, J Mount, R Mountricha, E Mouraviev, SV Moyse, EJW Mueller, F Mueller, J Mueller, K Muller, TA Mueller, T Muenstermann, D Munwes, Y Murray, WJ Mussche, I Musto, E Myagkov, AG Myska, M Nackenhorst, O Nadal, J Nagai, K Nagai, R Nagano, K Nagarkar, A Nagasaka, Y Nagel, M Nairz, AM Nakahama, Y Nakamura, K Nakamura, T Nakano, I Nanava, G Napier, A Narayan, R Nash, M Nattermann, T Naumann, T Navarro, G Neal, HA Nechaeva, PY Neep, TJ Negri, A Negri, G Negrini, M Nektarijevic, S Nelson, A Nelson, TK Nemecek, S Nernethy, P Nepomuceno, AA Nessi, M Neubauer, MS Neumann, M Neusiedl, A Neves, RM Nevski, P Newcomer, FM Newman, PR Hong, VNT Nickcrson, RB Nicolaidou, R Nicquevert, B Niedercorn, F Niclsen, J Nikiforou, N Nikiforov, A Nikolaenko, V Nikolic-Audit, I Nikolics, K Nikolopoulos, K Nilsen, H Nilsson, P Ninomiya, Y Nisati, A Nisius, R Nobe, T Nodulman, L Nomachi, M Nomidis, I Norberg, S Nordberg, M Novakova, J Nozaki, M Nozka, L Nuncio-Quiroz, AE Hanninger, GN Nunnemann, T Nurse, E O'Brien, BJ O'Neil, DC O'Shea, V Oakes, LB Oakham, FG Oberlack, H Ocariz, J Ochi, A Oda, S Odaka, S Odier, J Ogren, H Oh, A Oh, SH Ohm, CC Ohshima, T Okamura, W Okawa, H Okumura, Y Okuyama, T Olariu, A Olchevski, AG Pino, SAO Oliveira, M Damazio, DO Garcia, EO Olivito, D Olszewski, A Olszowska, J Onofre, A Onyisi, PUE Oram, CJ Oreglia, MJ Oren, Y Orestano, D Orlando, N Barrera, CO Orr, RS Osculati, B Ospanov, R Osuna, C Garzon, GOY Ottersbach, JP Ouchrif, M Ouellette, EA Ould-Saada, F Ouraou, A Ouyang, Q Ovcharova, A Owen, M Owen, S Ozcan, VE Ozturk, N Pages, AP Aranda, CP Griso, SP Paganis, E Pahl, C Paige, F Pais, P Pajchel, K Palacino, G Paleari, CP Palestini, S Pallin, D Palma, A Palmer, JD Pan, YB Panagiotopoulou, E Vazquez, JGP Pani, P Panikashvili, N Panitkin, S Pantea, D Papadelis, A Papadopoulou, TD Paramonov, A Hernandez, DP Park, W Parker, MA Parodl, F Parsons, JA Parzefall, U Pashapour, S Pasqualucci, E Passaggio, S Passeri, A Pastore, F Pastore, F Pasztor, G Pataraia, S Patel, N Pater, JR Patricelli, S Pauly, T Lopez, SP Morales, MIP Peleganchuk, SV Pelikan, D Peng, H Penning, B Penson, A Penwell, J Perantoni, M Perez, K Cavalcanti, TP Codina, EP Garcia-Estan, MTP Reale, VP Perini, L Pernegger, H Perrino, R Perrodo, P Peshekhonov, VD Peters, K Petersen, BA Petersen, J Petersen, TC Petit, E Petridis, A Petridou, C Petrolo, E Petrucci, F Petschull, D Petteni, M Pezoa, R Phan, A Phillips, PW Piacquadio, G Picazio, A Piccaro, E Piccinini, M Piec, SM Piegaia, R Pignotti, DT Pilcher, JE Pilkington, AD Pina, J Pinamonti, M Pinder, A Pinfold, JL Pingel, A Pinto, B Pizio, C Pleier, MA Plotnikova, E Poblaguev, A Poddar, S Podlyski, F Poggioli, L Pohl, D Pohl, M Polesello, G Policicchio, A Polifka, R Polini, A Poll, J Polychronakos, V Pomeroy, D Pommes, K Pontecorvo, L Pope, BG Popeneciu, GA Popovic, DS Poppleton, A Bueso, XP Pospelov, GE Pospisil, S Potrap, IN Potter, CJ Potter, CT Poulard, G Poveda, J Pozdnyakov, V Prabhu, R Pralavorio, P Pranko, A Prasad, S Pravahan, R Prell, S Pretzl, K Price, D Price, J Price, LE Prieur, D Primavera, M Prokofiev, K Prokoshin, F Protopopescu, S Proudfoot, J Prudent, X Przybycien, M Przysiezniak, H Psoroulas, S Ptacek, E Pueschel, E Puldon, D Purdham, J Purohit, M Puzo, P Pylypchenko, Y Qian, J Quadt, A Quarrie, DR Quayle, WB Raas, M Radeka, V Radescu, V Radloff, P Ragusa, F Rahal, G Rahimi, AM Rahm, D Rajagopalan, S Rammensee, M Rammes, N Randle-Conde, AS Randrianarivony, K Rao, K Rauscher, F Rave, TC Raymond, M Read, AL Rebuzzi, DM Redelbach, A Redlinger, G Reece, R Reeves, K Reinsch, A Reisinger, I Rembser, C Ren, ZL Renaud, A Rescigno, M Resconi, S Resende, B Reznicek, P Rezvani, R Richter, R Richter-Was, E Ridel, M Rijssenbeek, M Rimoldi, A Rinaldi, L Rios, RR Ritsch, E Riu, I Rivoltella, G Rizatdinova, F Rizvi, E Robertson, SH Robichaud-Veronneau, A Robinson, D Robinson, JEM Robson, A de Lima, JGR Roda, C Dos Santos, DR Roe, A Roe, S Rohne, O Rolli, S Romaniouk, A Romano, M Romeo, G Adam, ER Rompotis, N Roos, L Ros, E Rosati, S Rosbach, K Rose, A Rose, M Rosenbaum, GA Rosendahl, PL Rosenthal, O Rosselet, L Rossetti, V Rossi, E Rossi, LP Rotaru, M Roth, I Rothberg, J Rouseau, D Royon, CR Rozanov, A Rozen, Y Ruan, X Rubbo, F Rubinskiy, I Ruckstuhl, N Rud, VI Rudolph, C Ruhr, F Ruiz-Martinez, A Rumyantsev, L Rurikova, Z Rusakovich, NA Ruschke, A Rutherfoord, JP Ruthmann, N Ruzicka, P Ryabov, YF Rybar, M Rybkin, G Ryder, NC Saavedra, AF Sadeh, I Sadrozinski, HFW Sadykov, R Tehrani, FS Sakamoto, H Salamanna, G Salamon, A Saleem, M Salek, D Salihagic, D Salnikov, A Salt, J Ferrando, BMS Salvatore, D Salvatore, F Salvucci, A Salzburger, A Sampsonidis, D Samset, BH Sanchez, A Martinez, VS Sandaker, H Sander, HG Sanders, MP Sandhoff, M Sandoval, T Sandoval, C Sandstroem, R Sankey, DPC Sansoni, AA Rios, CS Santoni, C Santonico, R Santos, H Castillo, IS Saraiva, JG Sarangi, T Sarkisyan-Grinbaum, E Sarrazin, B Sarri, F Sartisohn, G Sasaki, O Sasaki, Y Sasao, N Satsounkevitch, I Sauvage, G Sauvan, E Sauvan, JB Savard, P Savinov, V Savu, DO Sawyer, L Saxon, DH Saxon, J Sbarra, C Sbrizzi, A Scannicchio, DA Scarcella, M Schaarschmidt, J Schacht, P Sehaefer, D Schafer, U Schaelicke, A Sehaepe, S Schaetzel, S Sehaffer, AC Schaile, D Sehamberger, RD Scharf, V Schegelsky, VA Scheirich, D Schernau, M Scherzer, MI Schiavi, C Sehieck, J Schioppa, M Sehlenker, S Sehmidt, E Schmieden, K Schmitt, C Schmitt, S Schneider, B Schnoor, U Schoeffel, L Schoening, A Schorlemmer, ALS Schott, M Schouten, D Schovancova, J Schram, M Schroeder, C Schroer, N Schultens, MJ Schultes, J Schultz-Coulon, HC Schulz, H Schumacher, M Schumm, BA Schune, P Schwartzman, A Sehwegler, P Schwemling, P Schwienhorst, R Schwindling, J Schwindt, T Schwoerer, M Sciacca, FG Scifo, E Sciolla, G Scott, WG Searcy, J Sedov, G Sedykh, E Seidel, SC Seiden, A Seifert, F Seixas, JM Sekhniaidze, G Sekula, SJ Selbach, KE Seliverstov, DM Sellden, B Sellers, G Seman, M Semprini-Cesari, N Serfon, C Serin, L Serkin, L Seuster, R Severini, H Sfyrla, A Shabalina, E Shamim, M Shan, LY Shank, JT Shao, QT Shapiro, M Shatalov, PB Shaw, K Sherman, D Sherwood, P Shimizu, S Shimojima, M Shin, T Shiyakova, M Shmeleva, A Shochet, MJ Short, D Shrestha, S Shulga, E Shupe, MA Sicho, P Sidoti, A Siegert, F Sijacki, D Silbert, O Silva, J Silver, Y Silverstein, D Silverstein, SB Simak, V Simard, O Simic, L Simion, S Simioni, E Simmons, B Simoniello, R Simonyan, M Sinervo, P Sinev, NB Sipica, V Siragusa, G Sircar, A Sisakyan, AN Sivoklokov, SY Sjolin, J Sjursen, TB Skinnari, LA Skottowe, HP Skovpen, K Skubic, P Slater, M Slavicek, T Sliwa, K Smakhtin, V Smart, BH Smestad, L Smirnov, SY Smirnov, Y Smirnova, LN Smirnova, O Smith, BC Smith, KM Smizanska, M Smolek, K Snesarev, AA Snow, SW Snow, J Snyder, S Sobie, R Sodomka, J Soffer, A Solans, CA Solar, M Solc, J Soldatov, EY Soldevila, U Camillocci, ES Solodkov, AA Solovyanov, OV Solovyev, V Soni, N Sood, A Sopko, V Sopko, B Sosebee, M Soualah, R Soueid, P Soukharev, A South, D Spagnolo, S Spano, F Spighi, R Spigo, G Spiwoks, R Spousta, M Spreitzer, T Spurlock, B St Denis, RD Stahlman, J Stamen, R Stanecka, E Stanek, RW Staneseu, C Stanescu-Bellu, M Stanitzki, MM Stapnes, S Starchenko, EA Stark, J Staroba, P Starovoitov, P Staszewski, R Staude, A Stavina, P Steele, G Steinbach, P Steinberg, P Stekl, I Stelzer, B Stelzer, HJ Stelzer-Chilton, O Stenzel, H Stern, S Stewart, GA Stillings, JA Stockton, MC Stoebe, M Stoerig, K Stoicea, G Stonjek, S Strachota, P Stradling, AR Straessner, A Strandberg, J Strandberg, S Strandlie, A Strang, M Strauss, E Strauss, M Strizenec, P Strohmer, R Strom, DM Strong, JA Stroynowski, R Stugu, B Stumer, I Stupark, J Sturm, P Styles, NA Soh, DA Su, D Subramania, HS Subramaniam, R Succurro, A Sugaya, Y Suhr, C Suk, M Sulin, VV Sultansoy, S Sumida, T Sun, X Sundermann, JE Suruliz, K Susinno, G Sutton, MR Suzuki, Y Suzuki, Y Svatos, M Swedish, S Sykora, I Sykora, T Sanchez, J Ta, D Tackmann, K Taffard, A Tafirout, R Taiblum, N Takahashi, Y Takai, H Takashima, R Takeda, H Takeshita, T Takubo, Y Talby, M Talyshev, A Tamsett, MC Tan, KG Tanaka, J Tanaka, R Tanaka, S Tanaka, S Tanasijczuk, AJ Tani, K Tannoury, N Tapprogge, S Tardif, D Tarem, S Tarrade, F Tartarelli, CF Tas, P Tasevsky, M Tassi, E Tayalati, Y Taylor, C Taylor, FE Taylor, GN Taylor, W Teinturier, M Teischinger, FA Castanheira, MTD Teixeira-Dias, P Temming, KK Ten Kate, H Teng, PK Terada, S Terashi, K Terron, J Testa, M Teuscher, RJ Therhaag, J Theveneaux-Pelzer, T Thoma, S Thomas, JP Thompson, EN Thompson, PD Thompson, PD Thompson, AS Thomsen, LA Thomson, E Thomson, M Thong, WM Thun, RP Tian, F Tibbetts, MJ Tic, T Tikhomirov, VO Tikhonov, YA Timoshenko, S Tiouchichine, E Tipton, P Tisscrant, S Todorov, T Todorova-Nova, S Toggerson, B Tojo, J Tokar, S Tokushuku, K Tollefson, K Tomoto, M Tompkins, L Toms, K Tonoyan, A Topfel, C Topilin, ND Torrence, E Torres, H Pastor, ET Toth, J Touchard, F Tovey, FR Trefzger, T Tremblet, L Tricoli, A Trigger, IM Trincaz-Duvoid, S Tripiana, MF Triplett, N Trischuk, W Trocme, B Troncon, C Trottier-McDonald, M True, P Trzebinski, M Trzupek, A Tsarouchas, C Tseng, JCL Tsiakiris, M Tsiareshka, PV Tsionou, D Tsipolitis, G Tsiskaridze, S Tsiskaridze, V Tskhadadze, EG Tsukerman, II Tsulaia, V Tsung, JW Tsuno, S Tsybychev, D Tua, A Tudorache, A Tudorache, V Tuggle, JM Turala, M Turecek, D Cakir, IT Turra, R Tuts, PM Tykhonov, A Tylmad, M Tyndel, M Tzanakos, G Uchida, K Ueda, I Ueno, R Ughetto, N Ugland, M Uhlenbrock, M Ukegawa, F Unal, G Undrus, A Unel, G Unno, Y Urbaniec, D Urquijo, P Usai, G Vacavant, L Vacek, V Vachon, B Vahsen, S Valentinetti, S Valero, A Valery, L Valkar, S Gallego, EV Vallecorsa, S Ferrer, JAV Van Berg, R Van der Deij, PC van der Geer, R van der Graaf, H Van der Leeuw, R van der Poel, E van der Ster, D van Eldik, N van Gemmeren, P Van Nieuwkoop, J Van Vulpen, I Vanadia, M Vandelli, W Vaniachine, A Vankov, P Vannucci, F Vari, R Varnes, EW Varol, T Varouchas, D Vartapetian, A Varvell, KE Vassilakopoulos, VI Vazeille, F Schroeder, TV Vegni, G Veillet, JJ Veloso, F Veness, R Veneziano, S Ventura, A Ventura, D Venturi, M Venturi, N Vercesi, V Verducci, M Verkerke, W Vermeulen, JC Vest, A Vetterli, MC Viehou, I Vickey, T Boeriu, OEV Viehhauser, GHA Viel, S Villa, M Perez, MV Vilucchi, E Vincter, MG Vinek, E Vinogradov, VB Virchaux, M Virzi, J Vitells, O Viti, M Vivarelli, I Vaque, FV Vlachos, S Vladoiu, D Vlasak, M Vogel, A Vokac, P Volpi, G Volpi, M Volpini, G von der Schmitt, H von Radziewski, H von Toerne, E Vorobel, V Vorwerk, V Vos, M Voss, R Vossebeld, JH Vranjes, N Milosavljevic, MV Vrba, V Vreeswijk, M Anh, TV Vuillermet, R Vukotic, I Wagner, W Wagner, P Wahlen, H Wahrmund, S Wakabayashi, J Walch, S Walder, J Walker, R Walkowiak, W Wall, R Waller, P Walsh, B Wang, C Wang, H Wang, H Wang, J Wang, J Wang, R Wang, SM Wang, T Warburton, A Ward, CP Wardrope, DR Warsinsky, M Washbrook, A Wasicki, C Watanabe, I Watkins, PM Watson, AT Watson, IJ Watson, MF Watts, G Watts, S Waugh, AT Waugh, BM Weber, MS Webster, JS Weidberg, AR Weigell, P Weingarten, J Weiser, C Wells, PS Wenaus, T Wendland, D Weng, Z Wengler, T Wenig, S Wermes, N Werner, M Werner, P Werth, M Wessels, M Wetter, J Weydert, C Whalen, K White, A White, MJ White, S Whitehead, SR Whiteson, D Whittington, D Wicke, D Wickens, FJ Wiedenmann, W Wielers, M Wienemann, P Wiglesworth, C Wiik-Fuchs, LAM Wijeratne, PA Wildauer, A Wildt, MA Wilhelm, I Wilkens, HG Will, JZ Williams, E Williams, HH Williams, S Willis, W Willocq, S Wilson, JA Wilson, MG Wilson, A Wingerter-Seez, I Winkelmann, S Winklmeier, F Wittgen, M Wollstadt, SJ Wolter, MW Wolters, H Wong, WC Wooden, G Wosiek, BK Wotschack, J Woudstra, MJ Wozniak, KW Wraight, K Wright, M Wrona, B Wu, SL Wu, X Wu, Y Wulf, E Wynne, BM Xella, S Xiao, M Xie, S Xu, C Xu, D Xu, L Yabsley, B Yacoob, S Yamada, N Yamaguchi, H Yamamoto, A Yamamoto, K Yamamoto, S Yamamura, T Yamanaka, T Yamauchi, K Yamazaki, T Yamazaki, Y Yan, Z Yang, H Yang, H Yang, UK Yang, Y Yang, Z Yanush, S Yao, L Yasu, Y Yatsenko, E Ye, J Ye, S Yen, AL Yilmaz, M Yoosoofmiya, R Yorita, K Yoshida, R Yoshihara, K Young, C Young, CJ Youssef, S Yu, D Yu, DR Yu, J Yu, J Yuan, L Yurkewicz, A Zabinski, B Zaidan, R Zaitsev, AM Zanello, L Zanzi, D Zaytsev, A Zeitnitz, C Zeman, M Zemla, A Zenin, O Zenis, T Zinonos, Z Zerwas, D della Porta, GZ Zhang, D Zhang, H Zhang, J Zhang, X Zhang, Z Zhao, L Zhao, Z Zhemchugov, A Zhong, J Zhou, B Zhou, N Zhou, Y Zhu, CG Zhu, H Zhu, J Zhu, Y Zhuang, X Zhuravlov, V Zibell, A Zieminska, D Zimin, NI Zimmermann, R Zimmermann, S Zimmermann, S Ziolkowski, M Zitoun, R Zivkovic, L Zmouchko, VV Zobernig, G Zoccoli, A zur Nedden, M Zutshi, V Zwalinski, L AF Aad, G. Abajyan, T. Abbott, B. Abdallah, J. Khaek, S. Abdel Abdelalim, A. A. Abdinov, O. Abi, B. Abolins, M. AbouZeid, O. S. Abramowicz, H. Abreu, H. Acharya, B. S. Adamczyk, L. Adams, D. L. Addy, T. N. Adelman, J. Adomeit, S. Adragna, P. Adye, T. Aesky, S. Agar-Savedra, J. A. Agustoni, M. Ahlen, S. P. Ahles, F. Ahmad, A. Ahsan, M. Aielli, G. Akesson, T. P. A. Akimoto, G. Akimov, A. V. Alam, M. A. Albert, J. Albrand, S. Aleksa, M. Aleksandrov, I. N. Alessandria, F. Alexa, C. Alexander, G. Alexandre, G. Alexopoulos, T. Alhroob, M. Aliev, M. Alimonti, G. Alison, J. Allbrooke, B. M. M. Allison, L. J. Allport, P. P. Allwood-Spiers, S. E. Almond, J. Aloisio, A. Alon, R. Alonso, A. Alonso, F. Altheimer, A. Gonzalez, B. Alvarez Alviggi, M. G. Amako, K. Amelung, C. Ammosov, V. V. Amor Dos Santos, S. P. Amorim, A. Amoroso, S. Amram, N. Anastopoulos, C. Ancu, L. S. Andari, N. Andeen, T. Anders, C. F. Anders, G. Anderson, K. J. Andreazza, A. Andrei, V. Andrieux, M-L. Anduaga, X. S. Angelidakis, S. Anger, P. Angerami, A. Anghinolfi, F. Anisenkov, A. Anjos, N. Annovi, A. Antonaki, A. Antonelli, M. Antonov, A. Antos, J. Anulli, F. Aoki, M. Aoun, S. Bella, L. Aperio Apolle, R. Arabidze, G. Aracena, I. Arai, Y. Arce, A. T. H. Arfaoui, S. Arguin, J-F. Argyropoulos, S. Arik, E. Arik, M. Armbruster, A. J. Arnaez, O. Arnal, V. Artamonov, A. Artoni, G. Arutinov, D. Asai, S. Ask, S. Asman, B. Asquith, L. Assamagan, K. Astbury, A. Atkinson, M. Aubert, B. Auge, E. Augsten, K. Aurousseau, M. Avolio, G. Axen, A. Azuelos, G. Azuma, Y. Baak, M. A. Baccaglioni, G. Bacci, C. Bach, A. M. Bachacou, H. Bachas, K. Backes, M. Backhaus, M. Mayes, J. Backus Badescu, E. Bagnaia, P. Bai, Y. Bailey, D. C. Bain, T. Baines, J. T. Baker, O. K. Baker, S. Balek, P. Banas, E. Banerjee, P. Banerjee, Sw. Banfi, D. Bangert, A. Bansal, V. Bansil, H. S. Barak, L. Baranov, S. P. Barber, T. Barberio, E. L. Barberis, D. Barbero, N. Bardin, D. Y. Barillari, T. Barisonzi, M. Barklow, T. Barlow, N. Barnett, B. M. Barnett, R. M. Baroncelli, A. Barone, G. Barr, A. J. Barreiro, F. da Costa, J. Barreiro Guimaraes Bartoldus, R. Barton, A. E. Bartsch, V. Basye, A. Bates, R. L. Batkova, L. Batley, J. R. Battaglia, A. Battistin, M. Bauer, F. Bawa, H. S. Beale, S. Beau, T. Beauchemin, P. H. Beccherle, R. Bechtle, P. Beck, H. P. Becker, K. Becker, S. Beckingham, M. Becks, K. H. Beddall, A. J. Beddall, A. Bedikian, S. Bednyakov, V. A. Bee, C. P. Beemster, L. J. Begel, M. Harpaz, S. Behar Behera, P. K. Beimforde, Ni. Belanger-Champagne, C. Bell, P. J. Bell, W. H. Bella, G. Bellagamba, L. Bellomo, M. Belloni, A. Beloborodova, O. Belotskiy, K. Beltramello, O. Benary, O. Benchekroun, D. Bendtz, K. Benekos, N. Benhammou, Y. Noccioli, E. Benhar Garcia, J. A. Benitez Benjarnin, D. P. Benoit, M. Bensinger, J. R. Benslama, K. Bentvelsen, S. Berge, D. Kuutmann, E. Bergeaas Berger, N. Berghaus, F. Berglund, E. Beringer, J. Bernat, P. Bernhard, R. Bernius, C. Berry, T. Bertella, C. Bertin, A. Bertolucci, F. Besana, M. I. Besjes, G. J. Besson, N. Bethke, S. Bhimji, W. Bianchi, R. M. Bianchini, L. Bianco, M. Biebel, O. Bieniek, S. P. Bierwagen, K. Biesiada, J. Biglietti, M. Bilokon, H. Bindi, M. Binet, S. Bingul, A. Bini, C. Biscarat, C. Bittner, B. Black, C. W. Black, K. M. Blair, R. E. Blanchard, J-B. Blazek, T. Bloch, I. Blocker, C. Blocki, J. Blum, W. Blumenschein, U. Bobbink, G. J. Bobrovnikov, V. S. Bocchetta, S. S. Bocci, A. Boddy, C. R. Boehler, M. Boek, J. Boek, T. T. Bioelaert, N. Bogaerts, J. A. Bogdanchikov, A. Bogouch, A. Bohm, C. Bohm, J. Boisvert, V. Bold, T. Boldea, V. Bolnet, N. M. Bomben, M. Bona, M. Boonekamp, M. Bordoni, S. Borer, C. Borisov, A. Borissov, G. Borjanovic, I. Borri, M. Borroni, S. Bortfeldt, J. Bortolotto, V. Bos, K. Boscherini, D. Bosman, M. Boterenbrood, H. Bouchami, J. Boudreau, J. Bouhova-Thacker, E. V. Boumediene, D. Bourdarios, C. Bousson, N. Boveia, A. Boyd, J. Boyko, I. R. Bozovic-Jelisavcic, I. Bracinik, J. Branchini, P. Brandt, A. Brandt, G. Brandt, O. Bratzler, U. Brau, B. Brau, J. E. Braun, H. M. Brazzale, S. F. Brelier, B. Bremer, J. Brendlinger, K. Brenner, R. Bressler, S. Bristow, T. M. Britton, D. Brochu, F. M. Brock, I. Brock, R. Broggi, F. Bromberg, C. Bronner, J. Brooijmans, G. Brooks, T. Brooks, W. K. Brown, G. de Renstrom, P. A. Bruckman Bruncko, D. Bruneliere, R. Brunet, S. Bruni, A. Bruni, G. Bruschi, M. Bryngemark, L. Buanes, T. Buat, Q. Bucci, F. Buchanan, J. Buchholz, P. Buckingham, R. M. Buckley, A. G. Buda, S. I. Budagov, I. A. Budick, B. Buescher, V. Bugge, L. Bulekov, O. Bundock, A. C. Bunse, M. Buran, T. Burckhart, H. Burdin, S. Burgess, T. Burke, S. Busato, E. Bussey, P. Buszello, C. P. Butler, B. Butler, J. M. Buttar, C. M. Butterworth, J. M. Buttinger, W. Byszewski, M. Cabrera Urban, S. Caforio, D. Cakir, O. Calafiura, P. Calderini, G. Calfayan, P. Calkins, R. Caloba, L. P. Caloi, H. Calvet, D. Calvet, S. Toro, R. Camacho Camarri, P. Cameron, D. Caminada, L. M. Caminal Armadans, R. Campana, S. Campanelli, M. Canale, V. Canelli, F. Canepa, A. Cantero, J. Cantrill, R. Garrido, M. D. M. Capeans Caprini, I. Caprini, M. Capriotti, D. Capua, M. Caputo, R. Cardarelli, R. Carli, T. Carlino, G. Carminati, L. Caron, S. Carquin, E. Carrillo-Montoya, G. D. Carter, A. A. Carter, J. R. Carvalho, J. Casadei, D. Casado, M. P. Cascella, M. Caso, C. Hernandez, A. M. Castaneda Castaneda-Miranda, E. Castillo Gimenez, V. Castro, N. F. Cataldi, C. Catastini, P. Catinaccio, A. Catmore, J. R. Cattai, A. Cattani, C. Caughron, S. Cavaliere, V. Cavalleri, P. Cavalli, D. Cavalli-Sforza, M. Cavsinni, V. Ceradini, F. Cerqueira, A. S. Cerri, A. Cerrito, L. Cerutti, F. Cetin, S. A. Chafaq, A. Chakraborty, D. Chalupkova, I. Chan, K. Chang, P. Chapleau, B. Chapman, J. D. Chapman, J. W. Charlton, D. G. Chavda, V. Barojas, C. A. Chavez Cheatham, S. Chekanov, S. Chekulaev, S. V. Chelkov, G. A. Chelstowska, M. A. Chen, C. Chen, H. Chen, S. Chen, X. Chen, Y. Cheng, Y. Cheplakov, A. El Moursli, R. Cherkaoui Chernyatin, V. Cheu, E. Cheung, S. L. Chevalier, L. Chiefari, C. Chikovani, L. Childers, J. T. Chilingarov, A. Chiodini, C. Chisholm, A. S. Chislett, R. T. Chitan, A. Chizhov, M. V. Choudalakis, G. Chouridou, S. Christidi, I. A. Christov, A. Chromek-Burckhart, D. Chu, M. L. Chudoba, J. Ciapetti, G. Ciftci, A. K. Ciftci, R. Cinca, D. Cindro, V. Ciocio, A. Cirilli, Nit. Cirkovic, P. Citron, Z. H. Citterio, M. Ciubancan, M. Clark, A. Clark, P. J. Clarke, R. N. Cleland, W. Clemens, J. C. Clement, B. Clement, C. Coadou, Y. Cobal, M. Coccaro, A. Cochran, J. Coffey, L. Cogan, J. G. Coggeshall, J. Colas, J. Cole, S. Colijn, A. P. Collins, N. J. Collins-Tooth, C. Collot, J. Colombo, T. Colon, G. Compostella, G. Conde Muino, P. Coniavitis, E. Conidi, M. C. Consonni, S. M. Consorti, V. Constantinescu, S. Conta, C. Conti, G. Conventi, F. Cooke, M. Cooper, B. D. Cooper-Sarkar, A. M. Copic, K. Cornelissen, F. Corradi, M. Corriveau, F. Cortes-Gonzalez, A. Cortiana, G. Costa, G. Costa, M. J. Costanzo, D. Cote, D. Courneyea, L. Cowan, G. Cox, B. E. Cranmer, K. Crescioli, F. Cristinziani, M. Crosetti, G. Crepe-Renaudin, S. Cuciuc, C. -M. Almenar, C. Cuenca Donszelmann, T. Cuhadar Cummings, J. Curatolo, M. Curtis, C. J. Cuthbert, C. Cwetanski, P. Czirr, H. Czodrowski, P. Czyezula, Z. D'Auria, S. D'Onofrio, M. D'Orazio, A. Da Cunha Sargedas De Sousa, M. J. Da Via, C. Dabrowski, V. Dafinca, A. Dai, T. Dallaire, F. Dallapiccola, C. Dam, M. Dameri, M. Damiani, D. S. Danielsson, H. O. Dao, V. Darbo, G. Darlea, G. L. Dassoulas, J. A. Davey, W. Davidek, T. Davidson, N. Davidson, R. Davies, E. Davies, M. Davignon, O. Davison, A. R. Davygora, Y. Dawe, E. Dawson, I. Daya-Ishmukhametova, R. K. De, K. de Asmundis, R. De Castro, S. De Cecco, S. de Graat, J. De Groot, N. de Jong, P. De la Taille, C. De la Torre, H. De Lorenzio, F. De Nooij, L. De Pedis, D. De Salvo, A. De Sanctis, E. De Santo, A. De Regie, J. B. De Vivie De Zorzi, G. Dearnaley, W. J. Debbe, R. Debenedetti, C. Dechenaux, B. Dedovich, D. V. Degenhardt, J. Del Peso, J. Del Prete, T. Delemontex, T. Deliyergiyev, M. Dell'Acqua, A. Dell'Asta, L. Della Pietra, M. della Volpe, D. Delmastro, M. Delsart, P. A. Deluca, C. Demers, S. Demichev, M. Demirkoz, B. Denisov, S. P. Derendarz, D. Derkaoui, J. E. Derue, F. Dervan, P. Desch, K. Devetak, E. Deviveiros, P. O. Dewhurst, A. DeWilde, B. Dhaliwal, S. Dhullipudi, R. Di Ciaccio, A. Di Ciaccio, L. Di Donato, C. Di Girolamo, A. Di Girolamo, B. Di Luise, S. Di Mattia, A. Di Micco, B. Di Nardo, R. Di Simone, A. Di Sipio, R. Diaz, M. A. Diehl, E. B. Dietrich, J. Dietzsch, T. A. Diglio, S. Yagci, K. Dindar Dingfelder, J. Dinut, F. Dionisi, C. Dita, P. Dita, S. Dittus, F. Djama, F. Djobava, T. do Vale, M. A. B. Do Valle Wemans, A. Doan, T. K. O. Dobbs, M. Dobos, D. Dobson, E. Dodd, J. Doglioni, C. Doherty, T. Doi, Y. Dolcjsi, J. Dolezal, Z. Dolgoshein, B. A. Dohmac, T. Donadelli, M. Donini, J. Dopke, J. Doria, A. Dos Anjos, A. Dotti, A. Dova, M. T. Doxiadis, A. D. Doyle, A. T. Dressnandt, N. Dris, M. Dubbert, J. Dube, S. Dubreuil, E. Duchovni, E. Duckeck, C. Duda, D. Dudarev, A. Dudziak, F. Duehrssen, M. Duerdoth, I. P. Duflot, L. Dufour, M-A. Duguid, L. Dunford, M. Duran Yildiz, H. Duxfield, R. Dwuznik, M. Dueren, M. Ebenstein, W. L. Ebke, J. Eckweiler, S. Edson, W. Edwards, C. A. Edwards, N. C. Ehrenfeld, W. Eifert, T. Eigen, G. Einsweiler, K. Eisenhandler, E. Ekelof, T. El Kacimi, M. Ellert, M. Elles, S. Ellinghaus, F. Ellis, K. Ellis, N. Elmsheuser, J. Elsing, M. Emeliyanov, D. Engelmann, R. Engl, A. Epp, B. Erdmann, J. Ereditato, A. Eriksson, D. Ernst, J. Ernst, M. Ernwein, J. Errede, D. Errede, S. Ertel, E. Escalier, M. Esch, H. Escobar, C. Espinal Curull, X. Esposito, B. Etienne, F. Etienvre, A. I. Etzion, E. Evangelakou, D. Evans, H. Fabbri, L. Fabre, C. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Fakhrutdinov, R. M. Falciano, S. Fang, Y. Fanti, M. Farbin, A. Farilla, A. Farley, J. Farooque, T. Farrell, S. Farrington, S. M. Farthouat, P. Fassi, F. Fassnacht, P. Fassouliotis, D. Fatholahzadeh, B. Favareto, A. Fayard, L. Federic, P. Fedin, O. L. Fedorko, W. Fehling-Kaschek, M. Feligioni, L. Feng, C. Feng, E. J. Fenyuk, A. B. Ferencei, J. Fernando, W. Ferrag, S. Ferrando, J. Ferrara, V. Ferrari, A. Ferrari, P. Ferrari, R. de Lima, D. E. Ferreira Ferrer, A. Ferrere, D. Ferretti, C. Parodi, A. Ferretto Fiascaris, Ni. Fiedler, F. Filipcic, A. Filthaut, F. Fincke-Keeler, M. Fiolhais, M. C. N. Fiorini, L. Firan, A. Fischer, G. Fischer, M. J. Fitzgerald, E. A. Flechl, M. Fleck, I. Fleckner, J. Fleischmann, P. Fleischmann, S. Fletcher, G. Flick, T. Floderus, A. Castillo, L. R. Flores Bustos, A. C. Florez Flowerdew, M. J. Martin, T. Fonseca Formica, A. Forti, A. Fortin, D. Fournier, D. Fower, A. J. Fox, H. Francavilla, P. Franchini, M. Franchino, S. Francis, D. Frank, T. Franklin, M. Franz, S. Fraternali, M. Fratina, S. French, S. T. Friedrich, C. Friedrich, F. Froidevaux, D. Frost, J. A. Fukunaga, C. Fullana Torregrosa, E. Fulsom, B. G. Fuster, J. Gabaldon, C. Gabizon, O. Cadfort, T. Gadomski, S. Gagliardi, G. Gagnon, P. Galea, C. Galhardo, B. Gallas, E. J. Gallo, V. Gallop, B. J. Gallus, P. Gan, K. K. Gao, Y. S. Gaponenko, A. Garberson, F. Garcia-Sciveres, M. Garcia, C. Garcia Navarro, J. E. Gardner, R. W. Garelli, N. Garonne, V. Gatti, C. Gaudio, G. Gaur, B. Gauthier, L. Gauzzi, P. Gavrilenko, I. L. Gay, C. Gaycken, G. Gazis, E. N. Ge, P. Gecse, Z. Gee, C. N. P. Geerts, D. A. A. Geich-Gimbel, Ch. Gellerstedt, K. Gemme, C. Gemmell, A. Genest, M. H. Gentile, S. George, M. George, S. Gerbaudo, D. Gerlach, P. Gershon, A. Geweniger, C. Ghazlane, H. Ghodbane, N. Giacobbe, B. Giagu, S. Giangiobbe, V. Gianotti, F. Gibbard, B. Gibson, A. Gibson, S. M. Gilchriese, M. Gillberg, D. Gillman, A. R. Gingrich, D. M. Ginzburg, J. Giokaris, N. Giordani, M. P. Giordano, R. Giorgi, F. M. Giovannini, P. Giraud, P. F. Giugni, D. Giunta, M. Gjelsten, B. K. Gladilin, L. K. Glasman, C. Glatzer, J. Glazov, A. Glonti, G. L. Goddard, J. R. Godfrey, I. Godlewski, J. Goebel, M. Goepfert, T. Goeringer, C. Goessling, C. Goldfarb, S. Golling, T. Golubkov, D. Gomes, A. Fajardo, L. S. Gomez Goncalo, R. Da Costa, J. Goncalves Pinto Firmino Gonella, L. Gonzalez de la Hoz, S. Gonzalez Parra, G. Gonzalez Silva, M. L. Gonzalez-Sevilla, S. Goodson, J. J. Goossens, L. Gorbounov, P. A. Gordon, H. A. Gorelov, I. Gorfine, G. Gorini, B. Gorini, F. Gorisek, A. Gornicki, F. Goshaw, A. T. Gosselink, M. Gostkin, M. I. Eschrich, J. Gough Gouighri, M. Goujdami, D. Goulette, M. P. Goussiou, A. G. Goy, C. Gozpinar, S. Grabowska-Bold, I. Grafstrom, P. Grahn, K-J. Gramstad, E. Grancagnolo, F. Grancagnolo, S. Grassi, V. Gratchev, V. Gray, H. M. Gray, J. A. Graziani, E. Grebenyuk, O. G. Greenshaw, T. Greenwood, Z. D. Gregersen, N. Gregor, I. M. Grenier, P. Griffiths, J. Grigalashvili, N. Grillo, A. A. Grimm, K. Grinstein, S. Gris, Ph. Grishkevich, Y. V. Grivaz, J. -F. Grohsjean, A. Gross, E. Grosse-Knetter, J. Groth-Jensen, J. Grybel, K. Guest, D. Guichenev, C. Guido, E. Guillemin, T. Guindon, S. Gul, U. Gunther, J. Guo, B. Guo, J. Gutierrez, P. Guttman, N. Gutzwiller, O. Guyot, C. Gwenlan, C. Gwilliam, C. B. Haas, A. Haas, S. Haber, C. Hadavand, H. K. Hadley, D. R. Haefner, P. Hahn, F. Hajduk, Z. Hakobyan, H. Hall, D. Halladjian, G. Hamacher, K. Hamal, P. Hamano, K. Hamer, M. Hamilton, A. Hamilton, S. Han, L. Hanagaki, K. Hanawa, K. Hance, M. Handel, C. Hanke, P. Hansen, J. R. Hansen, J. B. Hansen, D. J. Hansen, P. H. Hansson, P. Hara, K. Harenberg, T. Harkusha, S. Harper, D. Harrington, R. D. Harris, O. M. Hartert, J. Hartjes, F. Haruyama, T. Harvey, A. Hasegawa, S. Hasegawa, Y. Hassani, S. Haug, S. Hauschild, M. Hauser, R. Havranek, M. Hawkes, C. M. Hawkings, R. J. Hawkins, A. D. Hayakawa, T. Hayashi, T. Hayden, D. Hays, C. P. Hayward, H. S. Haywood, S. J. Head, S. J. Hedberg, V. Heelan, L. Heim, S. Heinemann, B. Heisterkamp, S. Helary, L. Heller, C. Heller, M. Hellman, S. Dellmich, D. Helsens, C. Henderson, R. C. W. Henke, M. Henrichs, A. Correia, A. M. Henriques Henrot-Versille, S. Hensel, C. Hernandez, C. M. Hernandez Jimenez, Y. Herrberg, R. Herten, G. Hertenberg, R. Hervas, L. Hesketg, G. G. Hessey, N. P. Hickling, R. Higon-Rodriguez, E. Hill, J. C. Hiller, K. H. Hillert, S. Hillier, S. J. Hinchliffe, I. Hines, E. Hirose, M. Hirsch, F. Hirschbuehl, D. Hobbs, J. Hod, N. Hodgkinson, M. C. Hodgson, P. Hoecker, A. Hoeferkamp, M. R. Hoffman, J. Hoffmann, D. Hohlfeld, M. Holder, M. Homgren, S. O. Holy, T. Holzbauer, J. L. Hong, T. M. van Huysduynen, L. Hoof Horner, S. Hostachy, J-Y Hou, S. Hoummada, A. Howard, J. Howarth, J. Hristova, I. Hrivnac, J. Hryn'ova, T. Hsu, P. J. Hsu, S. -C. Hu, D. Hubacek, Z. Hubaut, F. H. Huegging, F. Huettmann, A. Huffman, T. B. Hubaut, F. Huegging, F. Huettmann, A. Huffman, T. B. Hughes, E. W. Hughes, G. Huhtinen, M. Hurwitz, M. Huseynov, N. Huston, J. Huth, J. Iacobucci, G. Iakovidis, G. Ibbotson, M. Ibragimov, I. Iconomidou-Fayard, L. Idarraga, J. Iengo, P. Igonkina, O. Ikegami, Y. Ikeno, M. Iliadis, D. Ilie, N. Ince, T. Ioannou, P. Iodice, M. Iordanidou, N. Ippolito, V. Irles Quiles, A. Isaksson, C. Ishino, M. Ishitsuka, M. Ishmukhametov, R. Issever, C. Istin, S. Ivashin, A. V. Iwanski, W. Iwasaki, H. Izen, J. M. Izzo, V. Jackson, B. Jackson, J. N. Jackson, P. Jaekel, M. R. Jain, V. Jakobs, K. Jakobsen, S. Jakoubek, O. Jakubek, J. Jamin, D. O. Jana, D. K. Jansen, E. Jansen, H. Janssen, J. Jantsch, A. Janus, M. Jared, R. C. Jarlskog, G. Jeanty, L. Jen-La Plante, I. Jeng, G. -Y. Jennens, D. Jenni, P. Loevsehall-Jensen, A. E. Jez, P. Jezequel, S. Jha, M. K. Ji, H. Ji, W. Jia, J. Jiang, Y. Belenguer, Al. Jimenez Jin, S. Jinnouchi, O. Joergensen, M. D. Joffe, D. Johansen, M. Johansson, K. E. Johansson, P. Johnert, S. Johns, K. A. Jon-And, K. Jones, G. Jones, R. W. L. Jones, T. J. Joram, C. Jorge, P. M. Joshi, K. D. Jovicevic, I. Jovin, T. Ju, X. Jung, C. A. Jungst, R. M. Juranek, V. Jussel, P. Juste Rozas, A. Kabana, S. Kaci, M. Kaczmarska, A. Kadlecik, P. Kado, M. Kagan, H. Kagan, M. Kajomovitz, E. Kalinin, S. Kalinovskaya, L. V. Kama, S. Kanaya, N. Kaneda, M. Kaneti, S. Kanno, T. Kantserov, V. A. Kanzaki, J. Kaplan, B. Kapliy, A. Kar, D. Karagounis, M. Karakostas, K. Karnevskiy, M. Kartvelishvili, V. Karyukhin, A. N. Kashif, L. Kasieczka, G. Kass, R. D. Kastanas, A. Kataoka, M. Kataoka, Y. Katzy, J. Kaushik, V. Kawagoe, K. Kawamoto, T. Kawamura, G. Kazama, S. Kazanin, V. F. Kazarinov, M. Y. Keeler, R. Keener, P. T. Kehoe, R. Keil, M. Kekelidze, G. D. Keller, J. S. Kenyon, M. Keoshkerian, H. Kepka, O. Kerschen, N. Kersevan, H. P. Kersten, S. Kessoku, K. Keung, J. Khalil-zada, F. Khandanyan, H. Khanov, A. Kharchenko, D. Khodinov, A. Khomich, A. Khoo, T. J. Khoriauli, G. Khoroshilov, A. Khovanskiy, V. Khramov, E. Khubua, J. Kim, H. Kim, S. H. Kimura, N. Kind, O. King, B. T. King, M. King, R. S. B. Kirk, J. Kiryunin, A. E. Kishimoto, T. Kisielewska, D. Kitamura, T. Kittelmann, T. Kiuchi, K. Kladiva, E. Klein, M. Klein, U. Kleinknecht, K. Klemetti, M. Klier, A. Klimek, F. Klimentov, A. Klingenberg, R. Klinger, J. A. Klinkby, E. B. Klioutehnikova, T. Kiok, P. F. Klous, S. Kluge, E. -E. Kluge, T. Kluit, P. Kluth, S. Kneringer, E. Knoops, E. B. E. G. Knue, A. Ko, B. R. Kobayashi, T. Kobel, M. Kocian, M. Kodys, P. Koeneke, K. Koenig, A. C. Koenig, S. Koepke, L. Koetsveld, F. Koevesarki, P. Koffas, T. Koffernan, E. Kogan, L. A. Kohlmann, S. Kohn, F. Kohout, Z. Kohriki, T. Koi, T. Kolachev, G. M. Kolanoski, H. Kolesnikov, V. Koletsou, I. Koll, J. Komar, A. A. Komori, Y. Kondo, T. Kono, T. Kononov, A. I. Konoplich, R. Konstantinidis, N. Kopeliansky, R. Koperny, S. Korcyl, K. Kordas, K. Korn, A. Korol, A. Korolkov, I. Korolkova, E. V. Korotkov, V. A. Kortner, O. Kortner, S. Kostyukhin, V. V. Kotov, S. Kotov, V. M. Kotwal, A. Kourkoumelis, C. Kouskoura, V. Koutsman, A. Kowalewski, R. Kowalski, T. Z. Kozanecki, W. Kozhin, A. S. Kral, V. Krarnarenko, V. A. Kramberger, G. Krasny, M. W. Krasznahorkay, A. Kraus, J. K. Kravchenko, A. Kreiss, S. Krejci, F. Kretzschmar, J. Kreutzfeldt, K. Krieger, N. Krieger, P. Kroeninger, K. Kroha, H. Kroll, J. Kroseberg, J. Krstic, J. Kruchonak, U. Krueger, H. Kruker, T. Krunanack, N. Krumshteyn, Z. V. Kruse, M. K. Kubota, T. Kuday, S. Kuehn, S. Kugel, A. Kuhl, T. Kukhtin, V. Kulchitsky, Y. Kuleshov, S. Kuna, M. Kunkle, J. Kupco, A. Kurashige, H. Kurata, N. Kurochkin, Y. A. Kus, V. Kuwertz, E. S. Kuze, M. Kvita, J. Kwee, R. La Rosa, A. La Rotorida, L. Labarga, L. Lablak, S. Lacasta, C. Lacava, P. Lacey, J. Lacker, H. Lacour, D. Lacuesta, V. R. Ladygin, E. Lafaye, R. Laforgc, B. Lagouri, T. Lai, S. Laisne, E. Lambourne, L. Lampen, C. L. Lampl, W. Lancon, E. Landgraf, U. Landon, M. P. J. Lang, V. S. Lange, C. Lankord, A. J. Lanni, F. Lantzsch, K. Lanza, A. Laplace, S. Lapoire, C. Laporte, J. F. Lari, T. Larner, A. Lassnig, M. Laurelli, P. Lavorini, V. Lavrijsen, W. Laycock, P. Le Dortz, O. Le Guirriec, E. Le Menedeu, E. LeCompte, T. Ledroit-Guillon, F. Lee, H. Lee, J. S. H. Lee, S. C. Lee, L. Lefebvre, M. Legendre, M. Legger, F. Leggett, C. Lehmacher, M. Miotto, G. Lehmann Leister, A. G. Leite, M. A. L. Leitner, R. Lellouch, D. Lernmer, B. Lendermann, V. Leney, K. J. C. Lenz, T. Lenzen, G. Lenzi, B. Leonhardt, K. Leontsinis, S. Lepold, F. Leroy, C. Lessard, J-R. Lester, C. C. Lester, C. M. Leveque, J. Levin, B. Levinson, L. J. Lewis, A. Lewis, G. H. Leyko, A. M. Leyton, M. Li, B. Li, B. Li, H. Li, H. L. Li, S. Li, X. Liang, Z. Liao, H. Liberti, B. Lichard, P. Lie, K. Liebig, W. Limbach, C. Limosani, A. Limper, Ni. Lin, S. C. Linde, F. Linnemann, J. T. Lipeles, E. Lipniacka, A. Liss, T. N. Lssauer, D. Lister, A. Litke, A. M. Liu, D. Liu, J. B. Liu, L. Liu, M. Liu, Y. Livan, Ni. Livermore, S. S. A. Lleres, A. Merino, J. Llorente Lloyd, S. L. Lobodinska, E. Loch, P. Locknaan, W. S. Loddenkoetter, T. Loebinger, F. K. Loginov, A. Loh, C. W. Lohse, T. Lohwasser, K. Lokajicek, M. Lombardo, V. P. Long, R. E. Lopes, L. Mateos, B. Lopez Lorenz, J. Martinez, N. Lorenzo Losada, M. Loscutoff, P. Lo Sterzo, F. Losty, M. J. Lou, X. Lounis, A. Loureiro, K. F. Love, J. Love, P. A. Lowe, A. J. Lu, F. Lubatti, H. J. Luci, C. Lucotte, A. Ludwig, D. Ludwig, I. Ludwig, J. Luehring, F. Luijckx, G. Lukas, W. Luminari, L. Lund, E. Lund-Jensen, R. Lundberg, B. Lundberg, J. Lundberg, O. Lundquist, J. Lungwitz, M. Lynn, D. Lytken, E. Ma, H. Ma, L. L. Maccarrone, G. Macchiolo, A. Macek, B. Niguens, J. Machado Macina, B. Mackeprang, R. Madaras, R. J. Maddocks, H. J. Mader, W. F. Maeno, T. Maettig, P. Maettig, S. Magnoni, L. Magradze, E. Mahboubi, K. Mahlstedt, J. Mahmoud, S. Mahout, G. Maiani, C. Maidantchik, C. Maio, A. Majewski, S. Makida, Y. MovAkec, N. Mal, P. Malaescu, B. Malecki, Pa. Malecki, P. Maleev, V. P. Malek, F. Mallik, U. Malon, D. Malone, C. Maltezos, S. Malyshev, V. Malyukov, S. Mamuzic, J. Manabe, A. Mandelli, L. Mandic, I. Mandrysch, R. Maneira, J. Manfredini, A. Manhaes de Andrade Filho, L. Ramos, J. A. Manjarres Mann, A. Manning, P. M. Manouakis-Katsikakis, A. Manoulie, B. Mantifel, R. Mapelli, A. Mapelli, L. March, L. Marchand, J. F. Marchese, F. Marchiori, G. Marcisovsky, M. Marino, C. P. Marroquim, F. Marshall, Z. Marti, L. F. Marti-Garcia, S. Martin, B. Martin, B. Martin, J. P. Martin, T. A. Martin, V. J. Latour, B. Martin Dit Martin-Haugh, S. Martinez, H. Martinez, M. Otschoorn, V. Martinez Martyniuk, A. C. Marx, M. Marzano, F. Marzin, A. Masetti, L. Mashinto, T. Mashinistov, R. Masik, J. Maslennikov, A. L. Massa, I. Massaro, G. Massol, N. Mastrandrea, P. Mastroberardino, A. Masubuchi, T. Matsunaga, H. Matsushita, T. Mattravers, C. Maurer, J. Maxfield, S. J. Maximov, D. A. Mazini, R. Mazur, M. Mazzaferro, L. Mazzanti, M. Mc Donald, J. Mc Kee, S. P. McCarn, A. McCarty, R. L. McCarthy, T. G. McCubbin, N. A. McFarlane, K. W. Mcfayden, I. A. Mchedlidze, G. Mclaughlan, T. McMahon, S. J. McPherson, R. A. Meade, A. Mechnich, J. Mechtel, M. Medinnis, M. Meehan, S. Meera-Lebbai, R. Meguro, T. Mehlhase, S. Mehta, A. Meier, K. Meirose, B. Melachrinos, C. Garcia, B. R. Mellado Meloni, F. Navas, L. Mendoza Meng, Z. Mengarelli, A. Menke, S. Meoni, E. Mercurio, K. M. Mermod, P. Merola, L. Meroni, C. Merritt, F. S. Merritt, H. Messina, A. Metcalfe, J. Mete, A. S. Meyer, C. Meyer, C. Meyer, J-P. Meyer, J. Meyer, J. Michal, S. Micu, L. Middleton, R. P. Migas, S. Mijovic, L. Mikenberg, G. Mikestikova, M. Mikuz, M. Miller, D. W. Miller, R. J. Mills, W. J. Mills, C. Milov, A. Milstead, D. A. Milstein, D. Minaenko, A. A. Moya, M. Minano Minashvili, I. A. Mincer, A. I. Mindur, B. Mineev, M. Ming, Y. Mir, L. M. Mirabelli, G. Mitrevski, J. Mitsou, V. A. Mitsui, S. Miyagawa, P. S. Mjoernmark, J. U. Moa, T. Moeller, V. Moenig, K. Moeser, N. Mohapatra, S. Mohr, W. Moles-Valls, R. Molfetas, A. Monk, J. Monnier, E. Berlingen, J. Montejo Monticelli, F. Monzani, S. Moore, R. W. Moorhead, C. F. Herrera, C. Mora Moraes, A. Morange, N. Morel, J. Morello, C. Moreno, D. Moreno Llacer, M. Morettini, P. Morgenstern, M. Morii, M. Morley, A. K. Mornacchi, G. Morris, J. D. Morvaj, L. Moser, H. G. Mosidze, M. Moss, J. Mount, R. Mountricha, E. Mouraviev, S. V. Moyse, E. J. W. Mueller, F. Mueller, J. Mueller, K. Mueller, T. A. Mueller, T. Muenstermann, D. Munwes, Y. Murray, W. J. Mussche, I. Musto, E. Myagkov, A. G. Myska, M. Nackenhorst, O. Nadal, J. Nagai, K. Nagai, R. Nagano, K. Nagarkar, A. Nagasaka, Y. Nagel, M. Nairz, A. M. Nakahama, Y. Nakamura, K. Nakamura, T. Nakano, I. Nanava, G. Napier, A. Narayan, R. Nash, M. Nattermann, T. Naumann, T. Navarro, G. Neal, H. A. Nechaeva, P. Yu Neep, T. J. Negri, A. Negri, G. Negrini, M. Nektarijevic, S. Nelson, A. Nelson, T. K. Nemecek, S. Nernethy, P. Nepomuceno, A. A. Nessi, M. Neubauer, M. S. Neumann, M. Neusiedl, A. Neves, R. M. Nevski, P. Newcomer, F. M. Newman, P. R. Hong, V. Nguyen Thi Nickcrson, R. B. Nicolaidou, R. Nicquevert, B. Niedercorn, F. Niclsen, J. Nikiforou, N. Nikiforov, A. Nikolaenko, V. Nikolic-Audit, I. Nikolics, K. Nikolopoulos, K. Nilsen, H. Nilsson, P. Ninomiya, Y. Nisati, A. Nisius, R. Nobe, T. Nodulman, L. Nomachi, M. Nomidis, I. Norberg, S. Nordberg, M. Novakova, J. Nozaki, M. Nozka, L. Nuncio-Quiroz, A-E Hanninger, G. Nunes Nunnemann, T. Nurse, E. O'Brien, B. J. O'Neil, D. C. O'Shea, V. Oakes, L. B. Oakham, F. G. Oberlack, H. Ocariz, J. Ochi, A. Oda, S. Odaka, S. Odier, J. Ogren, H. Oh, A. Oh, S. H. Ohm, C. C. Ohshima, T. Okamura, W. Okawa, H. Okumura, Y. Okuyama, T. Olariu, A. Olchevski, A. G. Pino, S. A. Olivares Oliveira, M. Damazio, D. Oliveira Garcia, E. Oliver Olivito, D. Olszewski, A. Olszowska, J. Onofre, A. Onyisi, P. U. E. Oram, C. J. Oreglia, M. J. Oren, Y. Orestano, D. Orlando, N. Barrera, C. Oropeza Orr, R. S. Osculati, B. Ospanov, R. Osuna, C. Otero y Garzon, G. Ottersbach, J. P. Ouchrif, M. Ouellette, E. A. Ould-Saada, F. Ouraou, A. Ouyang, Q. Ovcharova, A. Owen, M. Owen, S. Ozcan, V. E. Ozturk, N. Pages, A. Pacheco Aranda, C. Padilla Griso, S. Pagan Paganis, E. Pahl, C. Paige, F. Pais, P. Pajchel, K. Palacino, G. Paleari, C. P. Palestini, S. Pallin, D. Palma, A. Palmer, J. D. Pan, Y. B. Panagiotopoulou, E. Vazquez, J. G. Panduro Pani, P. Panikashvili, N. Panitkin, S. Pantea, D. Papadelis, A. Papadopoulou, Th D. Paramonov, A. Hernandez, D. Paredes Park, W. Parker, M. A. Parodl, F. Parsons, J. A. Parzefall, U. Pashapour, S. Pasqualucci, E. Passaggio, S. Passeri, A. Pastore, F. Pastore, Fr Pasztor, G. Pataraia, S. Patel, N. Pater, J. R. Patricelli, S. Pauly, T. Lopez, S. Pedraza Morales, M. I. Pedraza Peleganchuk, S. V. Pelikan, D. Peng, H. Penning, B. Penson, A. Penwell, J. Perantoni, M. Perez, K. Cavalcanti, T. Perez Codina, E. Perez Garcia-Estan, M. T. Perez Reale, V. Perez Perini, L. Pernegger, H. Perrino, R. Perrodo, P. Peshekhonov, V. D. Peters, K. Petersen, B. A. Petersen, J. Petersen, T. C. Petit, E. Petridis, A. Petridou, C. Petrolo, E. Petrucci, F. Petschull, D. Petteni, M. Pezoa, R. Phan, A. Phillips, P. W. Piacquadio, G. Picazio, A. Piccaro, E. Piccinini, M. Piec, S. M. Piegaia, R. Pignotti, D. T. Pilcher, J. E. Pilkington, A. D. Pina, J. Pinamonti, M. Pinder, A. Pinfold, J. L. Pingel, A. Pinto, B. Pizio, C. Pleier, M-A Plotnikova, E. Poblaguev, A. Poddar, S. Podlyski, F. Poggioli, L. Pohl, D. Pohl, M. Polesello, G. Policicchio, A. Polifka, R. Polini, A. Poll, J. Polychronakos, V. Pomeroy, D. Pommes, K. Pontecorvo, L. Pope, B. G. Popeneciu, G. A. Popovic, D. S. Poppleton, A. Bueso, X. Portell Pospelov, G. E. Pospisil, S. Potrap, I. N. Potter, C. J. Potter, C. T. Poulard, G. Poveda, J. Pozdnyakov, V. Prabhu, R. Pralavorio, P. Pranko, A. Prasad, S. Pravahan, R. Prell, S. Pretzl, K. Price, D. Price, J. Price, L. E. Prieur, D. Primavera, M. Prokofiev, K. Prokoshin, F. Protopopescu, S. Proudfoot, J. Prudent, X. Przybycien, M. Przysiezniak, H. Psoroulas, S. Ptacek, E. Pueschel, E. Puldon, D. Purdham, J. Purohit, M. Puzo, P. Pylypchenko, Y. Qian, J. Quadt, A. Quarrie, D. R. Quayle, W. B. Raas, M. Radeka, V. Radescu, V. Radloff, P. Ragusa, F. Rahal, G. Rahimi, A. M. Rahm, D. Rajagopalan, S. Rammensee, M. Rammes, N. Randle-Conde, A. S. Randrianarivony, K. Rao, K. Rauscher, F. Rave, T. C. Raymond, M. Read, A. L. Rebuzzi, D. M. Redelbach, A. Redlinger, G. Reece, R. Reeves, K. Reinsch, A. Reisinger, I. Rembser, C. Ren, Z. L. Renaud, A. Rescigno, M. Resconi, S. Resende, B. Reznicek, P. Rezvani, R. Richter, R. Richter-Was, E. Ridel, M. Rijssenbeek, M. Rimoldi, A. Rinaldi, L. Rios, R. R. Ritsch, E. Riu, I. Rivoltella, G. Rizatdinova, F. Rizvi, E. Robertson, S. H. Robichaud-Veronneau, A. Robinson, D. Robinson, J. E. M. Robson, A. de Lima, J. G. Rocha Roda, C. Dos Santos, D. Roda Roe, A. Roe, S. Rohne, O. Rolli, S. Romaniouk, A. Romano, M. Romeo, G. Adam, E. Romero Rompotis, N. Roos, L. Ros, E. Rosati, S. Rosbach, K. Rose, A. Rose, M. Rosenbaum, G. A. Rosendahl, P. L. Rosenthal, O. Rosselet, L. Rossetti, V. Rossi, E. Rossi, L. P. Rotaru, M. Roth, I. Rothberg, J. Rouseau, D. Royon, C. R. Rozanov, A. Rozen, Y. Ruan, X. Rubbo, F. Rubinskiy, I. Ruckstuhl, N. Rud, V. I. Rudolph, C. Ruehr, F. Ruiz-Martinez, A. Rumyantsev, L. Rurikova, Z. Rusakovich, N. A. Ruschke, A. Rutherfoord, J. P. Ruthmann, N. Ruzicka, P. Ryabov, Y. F. Rybar, M. Rybkin, G. Ryder, N. C. Saavedra, A. F. Sadeh, I. Sadrozinski, H. F-W Sadykov, R. Tehrani, F. Safai Sakamoto, H. Salamanna, G. Salamon, A. Saleem, M. Salek, D. Salihagic, D. Salnikov, A. Salt, J. Ferrando, B. M. Salvachua Salvatore, D. Salvatore, F. Salvucci, A. Salzburger, A. Sampsonidis, D. Samset, B. H. Sanchez, A. Sanchez Martinez, V. Sandaker, H. Sander, H. G. Sanders, M. P. Sandhoff, M. Sandoval, T. Sandoval, C. Sandstroem, R. Sankey, D. P. C. Sansoni, A. A. Rios, C. Santamarina Santoni, C. Santonico, R. Santos, H. Castillo, I. Santoyo Saraiva, J. G. Sarangi, T. Sarkisyan-Grinbaum, E. Sarrazin, B. Sarri, F. Sartisohn, G. Sasaki, O. Sasaki, Y. Sasao, N. Satsounkevitch, I. Sauvage, G. Sauvan, E. Sauvan, J. B. Savard, P. Savinov, V. Savu, D. O. Sawyer, L. Saxon, D. H. Saxon, J. Sbarra, C. Sbrizzi, A. Scannicchio, D. A. Scarcella, M. Schaarschmidt, J. Schacht, P. Sehaefer, D. Schaefer, U. Schaelicke, A. Sehaepe, S. Schaetzel, S. Sehaffer, A. C. Schaile, D. Sehamberger, R. D. Scharf, V. Schegelsky, V. A. Scheirich, D. Schernau, M. Scherzer, M. I. Schiavi, C. Sehieck, J. Schioppa, M. Sehlenker, S. Sehmidt, E. Schmieden, K. Schmitt, C. Schmitt, S. Schneider, B. Schnoor, U. Schoeffel, L. Schoening, A. Schorlemmer, A. L. S. Schott, M. Schouten, D. Schovancova, J. Schram, M. Schroeder, C. Schroer, N. Schultens, M. J. Schultes, J. Schultz-Coulon, H-C Schulz, H. Schumacher, M. Schumm, B. A. Schune, Ph Schwartzman, A. Sehwegler, Ph Schwemling, Ph Schwienhorst, R. Schwindling, J. Schwindt, T. Schwoerer, M. Sciacca, F. G. Scifo, E. Sciolla, G. Scott, W. G. Searcy, J. Sedov, G. Sedykh, E. Seidel, S. C. Seiden, A. Seifert, F. Seixas, J. M. Sekhniaidze, G. Sekula, S. J. Selbach, K. E. Seliverstov, D. M. Sellden, B. Sellers, G. Seman, M. Semprini-Cesari, N. Serfon, C. Serin, L. Serkin, L. Seuster, R. Severini, H. Sfyrla, A. Shabalina, E. Shamim, M. Shan, L. Y. Shank, J. T. Shao, Q. T. Shapiro, M. Shatalov, P. B. Shaw, K. Sherman, D. Sherwood, P. Shimizu, S. Shimojima, M. Shin, T. Shiyakova, M. Shmeleva, A. Shochet, M. J. Short, D. Shrestha, S. Shulga, E. Shupe, M. A. Sicho, P. Sidoti, A. Siegert, F. Sijacki, Dj Silbert, O. Silva, J. Silver, Y. Silverstein, D. Silverstein, S. B. Simak, V. Simard, O. Simic, Lj Simion, S. Simioni, E. Simmons, B. Simoniello, R. Simonyan, M. Sinervo, P. Sinev, N. B. Sipica, V. Siragusa, G. Sircar, A. Sisakyan, A. N. Sivoklokov, S. Yu Sjolin, J. Sjursen, T. B. Skinnari, L. A. Skottowe, H. P. Skovpen, K. Skubic, P. Slater, M. Slavicek, T. Sliwa, K. Smakhtin, V. Smart, B. H. Smestad, L. Smirnov, S. Yu Smirnov, Y. Smirnova, L. N. Smirnova, O. Smith, B. C. Smith, K. M. Smizanska, M. Smolek, K. Snesarev, A. A. Snow, S. W. Snow, J. Snyder, S. Sobie, R. Sodomka, J. Soffer, A. Solans, C. A. Solar, M. Solc, J. Soldatov, E. Yu Soldevila, U. Camillocci, E. Solfaroli Solodkov, A. A. Solovyanov, O. V. Solovyev, V. Soni, N. Sood, A. Sopko, V. Sopko, B. Sosebee, M. Soualah, R. Soueid, P. Soukharev, A. South, D. Spagnolo, S. Spano, F. Spighi, R. Spigo, G. Spiwoks, R. Spousta, M. Spreitzer, T. Spurlock, B. St Denis, R. D. Stahlman, J. Stamen, R. Stanecka, E. Stanek, R. W. Staneseu, C. Stanescu-Bellu, M. Stanitzki, M. M. Stapnes, S. Starchenko, E. A. Stark, J. Staroba, P. Starovoitov, P. Staszewski, R. Staude, A. Stavina, P. Steele, G. Steinbach, P. Steinberg, P. Stekl, I. Stelzer, B. Stelzer, H. J. Stelzer-Chilton, O. Stenzel, H. Stern, S. Stewart, G. A. Stillings, J. A. Stockton, M. C. Stoebe, M. Stoerig, K. Stoicea, G. Stonjek, S. Strachota, P. Stradling, A. R. Straessner, A. Strandberg, J. Strandberg, S. Strandlie, A. Strang, M. Strauss, E. Strauss, M. Strizenec, P. Strohmer, R. Strom, D. M. Strong, J. A. Stroynowski, R. Stugu, B. Stumer, I. Stupark, J. Sturm, P. Styles, N. A. Soh, D. A. Su, D. Subramania, H. S. Subramaniam, R. Succurro, A. Sugaya, Y. Suhr, C. Suk, M. Sulin, V. V. Sultansoy, S. Sumida, T. Sun, X. Sundermann, J. E. Suruliz, K. Susinno, G. Sutton, M. R. Suzuki, Y. Suzuki, Y. Svatos, M. Swedish, S. Sykora, I. Sykora, T. Sanchez, J. Ta, D. Tackmann, K. Taffard, A. Tafirout, R. Taiblum, N. Takahashi, Y. Takai, H. Takashima, R. Takeda, H. Takeshita, T. Takubo, Y. Talby, M. Talyshev, A. Tamsett, M. C. Tan, K. G. Tanaka, J. Tanaka, R. Tanaka, S. Tanaka, S. Tanasijczuk, A. J. Tani, K. Tannoury, N. Tapprogge, S. Tardif, D. Tarem, S. Tarrade, F. Tartarelli, C. F. Tas, P. Tasevsky, M. Tassi, E. Tayalati, Y. Taylor, C. Taylor, F. E. Taylor, G. N. Taylor, W. Teinturier, M. Teischinger, F. A. Castanheira, M. Teixeira Dias Teixeira-Dias, P. Temming, K. K. Ten Kate, H. Teng, P. K. Terada, S. Terashi, K. Terron, J. Testa, M. Teuscher, R. J. Therhaag, J. Theveneaux-Pelzer, T. Thoma, S. Thomas, J. P. Thompson, E. N. Thompson, P. D. Thompson, P. D. Thompson, A. S. Thomsen, L. A. Thomson, E. Thomson, M. Thong, W. M. Thun, R. P. Tian, F. Tibbetts, M. J. Tic, T. Tikhomirov, V. O. Tikhonov, Y. A. Timoshenko, S. Tiouchichine, E. Tipton, P. Tisscrant, S. Todorov, T. Todorova-Nova, S. Toggerson, B. Tojo, J. Tokar, S. Tokushuku, K. Tollefson, K. Tomoto, M. Tompkins, L. Toms, K. Tonoyan, A. Topfel, C. Topilin, N. D. Torrence, E. Torres, H. Pastor, E. Torro Toth, J. Touchard, F. Tovey, F. R. Trefzger, T. Tremblet, L. Tricoli, A. Trigger, I. M. Trincaz-Duvoid, S. Tripiana, M. F. Triplett, N. Trischuk, W. Trocme, B. Troncon, C. Trottier-McDonald, M. True, P. Trzebinski, M. Trzupek, A. Tsarouchas, C. Tseng, J. C-L Tsiakiris, M. Tsiareshka, P. V. Tsionou, D. Tsipolitis, G. Tsiskaridze, S. Tsiskaridze, V. Tskhadadze, E. G. Tsukerman, I. I. Tsulaia, V. Tsung, J-W Tsuno, S. Tsybychev, D. Tua, A. Tudorache, A. Tudorache, V. Tuggle, J. M. Turala, M. Turecek, D. Cakir, I. Turk Turra, R. Tuts, P. M. Tykhonov, A. Tylmad, M. Tyndel, M. Tzanakos, G. Uchida, K. Ueda, I. Ueno, R. Ughetto, N. Ugland, M. Uhlenbrock, M. Ukegawa, F. Unal, G. Undrus, A. Unel, G. Unno, Y. Urbaniec, D. Urquijo, P. Usai, G. Vacavant, L. Vacek, V. Vachon, B. Vahsen, S. Valentinetti, S. Valero, A. Valery, L. Valkar, S. Gallego, E. Valladolid Vallecorsa, S. Ferrer, J. A. Valls Van Berg, R. Van der Deij, P. C. van der Geer, R. van der Graaf, H. Van der Leeuw, R. van der Poel, E. van der Ster, D. van Eldik, N. van Gemmeren, P. Van Nieuwkoop, J. Van Vulpen, I. Vanadia, M. Vandelli, W. Vaniachine, A. Vankov, P. Vannucci, F. Vari, R. Varnes, E. W. Varol, T. Varouchas, D. Vartapetian, A. Varvell, K. E. Vassilakopoulos, V. I. Vazeille, F. Schroeder, T. Vazquez Vegni, G. Veillet, J. J. Veloso, F. Veness, R. Veneziano, S. Ventura, A. Ventura, D. Venturi, M. Venturi, N. Vercesi, V. Verducci, M. Verkerke, W. Vermeulen, J. C. Vest, A. Vetterli, M. C. Viehou, I. Vickey, T. Boeriu, O. E. Vickey Viehhauser, G. H. A. Viel, S. Villa, M. Perez, M. Villaplana Vilucchi, E. Vincter, M. G. Vinek, E. Vinogradov, V. B. Virchaux, M. Virzi, J. Vitells, O. Viti, M. Vivarelli, I. Vaque, F. Vives Vlachos, S. Vladoiu, D. Vlasak, M. Vogel, A. Vokac, P. Volpi, G. Volpi, M. Volpini, G. von der Schmitt, H. von Radziewski, H. von Toerne, E. Vorobel, V. Vorwerk, V. Vos, M. Voss, R. Vossebeld, J. H. Vranjes, N. Milosavljevic, M. Vranjes Vrba, V. Vreeswijk, M. Anh, T. Vu Vuillermet, R. Vukotic, I. Wagner, W. Wagner, P. Wahlen, H. Wahrmund, S. Wakabayashi, J. Walch, S. Walder, J. Walker, R. Walkowiak, W. Wall, R. Waller, P. Walsh, B. Wang, C. Wang, H. Wang, H. Wang, J. Wang, J. Wang, R. Wang, S. M. Wang, T. Warburton, A. Ward, C. P. Wardrope, D. R. Warsinsky, M. Washbrook, A. Wasicki, C. Watanabe, I. Watkins, P. M. Watson, A. T. Watson, I. J. Watson, M. F. Watts, G. Watts, S. Waugh, A. T. Waugh, B. M. Weber, M. S. Webster, J. S. Weidberg, A. R. Weigell, P. Weingarten, J. Weiser, C. Wells, P. S. Wenaus, T. Wendland, D. Weng, Z. Wengler, T. Wenig, S. Wermes, N. Werner, M. Werner, P. Werth, M. Wessels, M. Wetter, J. Weydert, C. Whalen, K. White, A. White, M. J. White, S. Whitehead, S. R. Whiteson, D. Whittington, D. Wicke, D. Wickens, F. J. Wiedenmann, W. Wielers, M. Wienemann, P. Wiglesworth, C. Wiik-Fuchs, L. A. M. Wijeratne, P. A. Wildauer, A. Wildt, M. A. Wilhelm, I. Wilkens, H. G. Will, J. Z. Williams, E. Williams, H. H. Williams, S. Willis, W. Willocq, S. Wilson, J. A. Wilson, M. G. Wilson, A. Wingerter-Seez, I. Winkelmann, S. Winklmeier, F. Wittgen, M. Wollstadt, S. J. Wolter, M. W. Wolters, H. Wong, W. C. Wooden, G. Wosiek, B. K. Wotschack, J. Woudstra, M. J. Wozniak, K. W. Wraight, K. Wright, M. Wrona, B. Wu, S. L. Wu, X. Wu, Y. Wulf, E. Wynne, B. M. Xella, S. Xiao, M. Xie, S. Xu, C. Xu, D. Xu, L. Yabsley, B. Yacoob, S. Yamada, N. Yamaguchi, H. Yamamoto, A. Yamamoto, K. Yamamoto, S. Yamamura, T. Yamanaka, T. Yamauchi, K. Yamazaki, T. Yamazaki, Y. Yan, Z. Yang, H. Yang, H. Yang, U. K. Yang, Y. Yang, Z. Yanush, S. Yao, L. Yasu, Y. Yatsenko, E. Ye, J. Ye, S. Yen, A. L. Yilmaz, M. Yoosoofmiya, R. Yorita, K. Yoshida, R. Yoshihara, K. Young, C. Young, C. J. Youssef, S. Yu, D. Yu, D. R. Yu, J. Yu, J. Yuan, L. Yurkewicz, A. Zabinski, B. Zaidan, R. Zaitsev, A. M. Zanello, L. Zanzi, D. Zaytsev, A. Zeitnitz, C. Zeman, M. Zemla, A. Zenin, O. Zenis, T. Zinonos, Z. Zerwas, D. della Porta, G. Zevi Zhang, D. Zhang, H. Zhang, J. Zhang, X. Zhang, Z. Zhao, L. Zhao, Z. Zhemchugov, A. Zhong, J. Zhou, B. Zhou, N. Zhou, Y. Zhu, C. G. Zhu, H. Zhu, J. Zhu, Y. Zhuang, X. Zhuravlov, V. Zibell, A. Zieminska, D. Zimin, N. I. Zimmermann, R. Zimmermann, S. Zimmermann, S. Ziolkowski, M. Zitoun, R. Zivkovic, L. Zmouchko, V. V. Zobernig, G. Zoccoli, A. zur Nedden, M. Zutshi, V. Zwalinski, L. CA ATLAS Collaboration TI Search for the neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at root s=7 TeV with the ATLAS detector SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering ID MASSLESS PARTICLES; BROKEN SYMMETRIES; MSSM; LHC; PHYSICS; PAIRS AB A search for neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) is reported. The analysis is based on a sample of proton-proton collisions at a centre-of-mass energy of 7 TeV recorded with the ATLAS detector at the Large Hadron Collider. The data were recorded in 2011 and correspond to an integrated luminosity of 4.7 fb(-1) to 4.8 fb(-1). Higgs boson decays into oppositely-charged in muon or tau lepton pairs are considered for final states requiring either the presence or absence of b-jets. No statistically significant excess over the expected background is observed and exclusion limits at the 95% confidence level are derived. The exclusion limits are for the production cross-section of a generic neutral Higgs boson, phi, as a function of the Higgs boson mass and for h/A/H production in the MSSM as a function of the parameters m(A) and tan beta in the m(h)(max) scenario for m(A) in the range of 90 GeV to 500 GeV. C1 [Jackson, P.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia. [Edson, W.; Ernst, J.; Jain, V.] SUNY Albany, Dept Phys, Albany, NY 12222 USA. [Chan, K.; Gingrich, D. M.; Moore, R. W.; Pinfold, J. L.; Subramania, H. S.; Vaque, F. Vives] Univ Alberta, Dept Phys, Edmonton, AB, Canada. [Cakir, O.; Ciftci, A. K.; Ciftci, R.; Duran Yildiz, H.; Kuday, S.] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey. [Duran Yildiz, H.] Dumlupinar Univ, Dept Phys, Kutahya, Turkey. [Yilmaz, M.] Gazi Univ, Dept Phys, Ankara, Turkey. [Sultansoy, S.] TOBB Univ Econ & Technol, Div Phys, Ankara, Turkey. [Cakir, I. Turk] Turkish Atom Energy Commiss, Ankara, Turkey. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Kataoka, M.; Keoshkerian, H.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Peshekhonov, V. D.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] CNRS IN2P3, LAPP, Annecy Le Vieux, France. [Bella, L. Aperio; Aubert, B.; Berger, N.; Colas, J.; Delmastro, M.; Di Ciaccio, L.; Doan, T. K. O.; Elles, S.; Goy, C.; Hryn'ova, T.; Jezequel, S.; Kataoka, M.; Keoshkerian, H.; Lafaye, R.; Leveque, J.; Lombardo, V. P.; Massol, N.; Peshekhonov, V. D.; Petit, E.; Przysiezniak, H.; Richter-Was, E.; Sauvage, G.; Sauvan, E.; Schwoerer, M.; Todorov, T.; Tsionou, D.; Wingerter-Seez, I.; Zitoun, R.] Univ Savoie, Annecy Le Vieux, France. [Asquith, L.; Blair, R. E.; Chekanov, S.; Feng, E. J.; Fernando, W.; Goshaw, A. T.; LeCompte, T.; Love, J.; Malon, D.; Nodulman, L.; Paramonov, A.; Price, L. E.; Proudfoot, J.; Ferrando, B. M. Salvachua; Stanek, R. W.; van Gemmeren, P.; Vaniachine, A.; Yoshida, R.; Zhang, J.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Cheu, E.; Johns, K. A.; Kaushik, V.; Lampen, C. L.; Lampl, W.; Loch, P.; Paleari, C. P.; Ruehr, F.; Rutherfoord, J. P.; Shupe, M. A.; Varnes, E. W.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Brandt, A.; De, K.; Farbin, A.; Griffiths, J.; Hadavand, H. K.; Heelan, L.; Hernandez, C. M.; Nilsson, P.; Ozturk, N.; Sarkisyan-Grinbaum, E.; Sosebee, M.; Spurlock, B.; Stradling, A. R.; Usai, G.; Vartapetian, A.; White, A.; Yu, J.] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Angelidakis, S.; Antonaki, A.; Fassouliotis, D.; Giokaris, N.; Ioannou, P.; Iordanidou, N.; Kourkoumelis, C.; Manouakis-Katsikakis, A.; Tzanakos, G.] Univ Athens, Dept Phys, Athens, Greece. [Alexopoulos, T.; Dris, M.; Gazis, E. N.; Iakovidis, G.; Karakostas, K.; Konoplich, R.; Leontsinis, S.; Maltezos, S.; Mountricha, E.; Panagiotopoulou, E.; Papadopoulou, Th D.; Tsipolitis, G.; Vlachos, S.] Natl Tech Univ Athens, Dept Phys, Zografos, Greece. [Abdelalim, A. A.; Khalil-zada, F.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Abbott, B.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Barcelona, Spain. [Abbott, B.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain. [Abbott, B.; Bosman, M.; Caminal Armadans, R.; Casado, M. P.; Cavalli-Sforza, M.; Conidi, M. C.; Demirkoz, B.; Espinal Curull, X.; Francavilla, P.; Gerbaudo, D.; Giangiobbe, V.; Gonzalez Parra, G.; Grinstein, S.; Helsens, C.; Juste Rozas, A.; Korolkov, I.; Le Menedeu, E.; Martinez, M.; Mir, L. M.; Berlingen, J. Montejo; Nadal, J.; Osuna, C.; Pages, A. Pacheco; Aranda, C. Padilla; Riu, I.; Rossetti, V.; Rubbo, F.; Succurro, A.; Tsiskaridze, S.; Vorwerk, V.] ICREA, Barcelona, Spain. [Borjanovic, I.; Krstic, J.; Popovic, D. S.; Sijacki, Dj; Simic, Lj] Univ Belgrade, Inst Phys, Belgrade, Serbia. [Bozovic-Jelisavcic, I.; Cirkovic, P.; Jovin, T.; Mamuzic, J.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Buanes, T.; Burgess, T.; Eigen, G.; Kastanas, A.; Liebig, W.; Lipniacka, A.; Rosendahl, P. L.; Sandaker, H.; Sjursen, T. B.; Stugu, B.; Tonoyan, A.; Ugland, M.] Univ Bergen, Dept Phys & Technol, Bergen, Norway. [Bach, A. M.; Barnett, R. M.; Beringer, J.; Biesiada, J.; Calafiura, P.; Caminada, L. M.; Cerri, A.; Cerutti, F.; Ciocio, A.; Clarke, R. N.; Cooke, M.; Copic, K.; Dube, S.; Einsweiler, K.; Gaponenko, A.; Garcia-Sciveres, M.; Gilchriese, M.; Haber, C.; Hance, M.; Heinemann, B.; Hinchliffe, I.; Hurwitz, M.; Lavrijsen, W.; Leggett, C.; Loscutoff, P.; Madaras, R. J.; Ovcharova, A.; Griso, S. Pagan; Pranko, A.; Quarrie, D. R.; Shapiro, M.; Skinnari, L. A.; Sood, A.; Tibbetts, M. J.; Tsulaia, V.; Vahsen, S.; Varouchas, D.; Virzi, J.; Yu, D. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Aliev, M.; Giorgi, F. M.; Grancagnolo, S.; Herrberg, R.; Hristova, I.; Kind, O.; Kolanoski, H.; Kwee, R.; Lacker, H.; Leyton, M.; Lohse, T.; Nikiforov, A.; Schulz, H.; Wendland, D.] Humboldt Univ, Dept Phys, Berlin, Germany. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Agustoni, M.; Ancu, L. S.; Battaglia, A.; Beck, H. P.; Borer, C.; Ereditato, A.; Martin, T. Fonseca; Gallo, V.; Haug, S.; Kabana, S.; Kruker, T.; Marti, L. F.; Pretzl, K.; Schneider, B.; Sciacca, F. G.; Topfel, C.; Weber, M. S.] Univ Bern, High Energy Phys Lab, Bern, Switzerland. [Allbrooke, B. M. M.; Bansil, H. S.; Bracinik, J.; Charlton, D. G.; Chisholm, A. S.; Collins, N. J.; Curtis, C. J.; Hadley, D. R.; Hawkes, C. M.; Head, S. J.; Hillier, S. J.; Mahout, G.; Martin, T. A.; Mclaughlan, T.; Newman, P. R.; Nikolopoulos, K.; Palmer, J. D.; Slater, M.; Thomas, J. P.; Thompson, P. D.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Wilson, J. A.] Univ Birmingham, Sch Phys & Astron, Birmingham, W Midlands, England. [Arik, E.; Arik, M.; Istin, S.; Ozcan, V. E.] Bogazici Univ, Dept Phys, Istanbul, Turkey. [Cetin, S. A.] Dogus Univ, Div Phys, Istanbul, Turkey. [Beddall, A. J.; Beddall, A.; Bingul, A.] Gaziantep Univ, Dept Engn Phys, Gaziantep, Turkey. [Beddall, A. J.] Istanbul Tech Univ, Dept Phys, TR-80626 Istanbul, Turkey. [Bellagamba, L.; Bertin, A.; Bindi, M.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Caforio, D.; Corradi, M.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Giacobbe, B.; Grafstrom, P.; Jha, M. K.; Massa, I.; Mengarelli, A.; Monzani, S.; Negrini, M.; Piccinini, M.; Polini, A.; Rinaldi, L.; Romano, M.; Sbarra, C.; Sbrizzi, A.; Semprini-Cesari, N.; Spighi, R.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bertin, A.; Bindi, M.; Caforio, D.; De Castro, S.; Di Sipio, R.; Fabbri, L.; Franchini, M.; Grafstrom, P.; Massa, I.; Mengarelli, A.; Monzani, S.; Piccinini, M.; Romano, M.; Sbrizzi, A.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.] Univ Bologna, Dipartmento Fis, Bologna, Italy. [Arutinov, D.; Backhaus, M.; Barbero, N.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Ehrenfeld, W.; Gaycken, G.; Geich-Gimbel, Ch.; Glatzer, J.; Gonella, L.; Haefner, P.; Havranek, M.; Dellmich, D.; Hillert, S.; Huegging, F.; Janssen, J.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V. V.; Kraus, J. K.; Kroseberg, J.; Krueger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A. M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moeser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A-E; Pohl, D.; Psoroulas, S.; Sarrazin, B.; Sehaepe, S.; Schmieden, K.; Schultens, M. J.; Schwindt, T.; Stillings, J. A.; Therhaag, J.; Tsung, J-W; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; von Toerne, E.; Wagner, P.; Wang, T.; Wermes, N.; Wienemann, P.; Wiik-Fuchs, L. A. M.; Zimmermann, R.; Zimmermann, S.] Univ Bonn, Inst Phys, Bonn, Germany. [Ahlen, S. P.; Black, K. M.; Butler, J. M.; Dell'Asta, L.; Helary, L.; Shank, J. T.; Yan, Z.; Youssef, S.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Aesky, S.; Amelung, C.; Bensinger, J. R.; Bianchini, L.; Blocker, C.; Coffey, L.; Daya-Ishmukhametova, R. K.; Fitzgerald, E. A.; Gozpinar, S.; Pomeroy, D.; Sciolla, G.] Brandeis Univ, Dept Phys, Waltham, MA 02254 USA. [Caloba, L. P.; Maidantchik, C.; Marroquim, F.; Nepomuceno, A. A.; Perantoni, M.; Seixas, J. M.] Univ Fed Rio de Janeiro, COPPEE EE IF, Rio De Janeiro, Brazil. [Cerqueira, A. S.; Manhaes de Andrade Filho, L.] Univ Fed Juiz de Fora, Juiz de Fora, Brazil. [do Vale, M. A. B.] Fed Univ Sao Joao Rei URSJ, Sao Joao Del Rei, Brazil. [Donadelli, M.; Leite, M. A. L.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Adams, D. L.; Assamagan, K.; Begel, M.; Bernius, C.; Chen, H.; Chernyatin, V.; Debbe, R.; Dhullipudi, R.; Ernst, M.; Cadfort, T.; Gibbard, B.; Gordon, H. A.; Greenwood, Z. D.; Klimentov, A.; Kravchenko, A.; Lanni, F.; Lssauer, D.; Lynn, D.; Ma, H.; Maeno, T.; Majewski, S.; Metcalfe, J.; Nevski, P.; Okawa, H.; Damazio, D. Oliveira; Paige, F.; Panitkin, S.; Park, W.; Pleier, M-A; Poblaguev, A.; Polychronakos, V.; Pravahan, R.; Protopopescu, S.; Purohit, M.; Radeka, V.; Rahm, D.; Rajagopalan, S.; Redlinger, G.; Sawyer, L.; Sircar, A.; Snyder, S.; Steinberg, P.; Stumer, I.; Subramaniam, R.; Takai, H.; Tamsett, M. C.; Triplett, N.; Undrus, A.; Wenaus, T.; Ye, S.; Yu, D.; Zaytsev, A.] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Alexa, C.; Badescu, E.; Boldea, V.; Buda, S. I.; Caprini, I.; Caprini, M.; Chitan, A.; Ciubancan, M.; Constantinescu, S.; Cuciuc, C. -M.; Dinut, F.; Dita, P.; Dita, S.; Micu, L.; Olariu, A.; Pantea, D.; Popeneciu, G. A.; Rotaru, M.; Stoicea, G.; Tudorache, A.; Tudorache, V.] Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Darlea, G. L.] Univ Politehn Bucuresti, Bucharest, Romania. [Tudorache, V.] W Univ Timisoara, Timisoara, Romania. [Gonzalez Silva, M. L.; Otero y Garzon, G.; Piegaia, R.; Romeo, G.] Univ Buenos Aires, Dept Fis, Buenos Aires, DF, Argentina. [Ask, S.; Barlow, N.; Batley, J. R.; Brochu, F. M.; Buttinger, W.; Carter, J. R.; Chapman, J. D.; French, S. T.; Frost, J. A.; Hill, J. C.; Kaneti, S.; Khoo, T. J.; Lester, C. C.; Moeller, V.; Parker, M. A.; Robinson, D.; Sandoval, T.; Thomson, M.; Ward, C. P.; Williams, S.] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England. [Koffas, T.; Lacey, J.; Marchand, J. F.; McCarthy, T. G.; Oakham, F. G.; Randrianarivony, K.; Tarrade, F.; Ueno, R.; Vincter, M. G.; Whalen, K.] Carleton Univ, Dept Phys, Ottawa, ON K1S 5B6, Canada. [Aleksa, M.; Anastopoulos, C.; Anghinolfi, F.; Avolio, G.; Baak, M. A.; Banfi, D.; Battistin, M.; Bellomo, M.; Beltramello, O.; Berge, D.; Bianchi, R. M.; Bogaerts, J. A.; Boyd, J.; Bremer, J.; Burckhart, H.; Byszewski, M.; Campana, S.; Garrido, M. D. M. Capeans; Carli, T.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Barojas, C. A. Chavez; Childers, J. T.; Chromek-Burckhart, D.; Cote, D.; Danielsson, H. O.; Dell'Acqua, A.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Dittus, F.; Dobos, D.; Dobson, E.; Dopke, J.; Dudarev, A.; Duehrssen, M.; Ellis, N.; Elsing, M.; Fabre, C.; Farthouat, P.; Fassnacht, P.; Francis, D.; Franz, S.; Froidevaux, D.; Gabaldon, C.; Garonne, V.; Gianotti, F.; Gibson, S. M.; Gillberg, D.; Godlewski, J.; Goossens, L.; Gorini, B.; Gray, H. M.; Haas, S.; Hahn, F.; Hauschild, M.; Hawkings, R. J.; Heller, M.; Correia, A. M. Henriques; Hervas, L.; Hoecker, A.; Hubacek, Z.; Huhtinen, M.; Jaekel, M. R.; Jansen, H.; Jenni, P.; Joram, C.; Jungst, R. M.; Kaneda, M.; Kerschen, N.; Klioutehnikova, T.; Koeneke, K.; Lantzsch, K.; Lassnig, M.; Miotto, G. Lehmann; Lenzi, B.; Lichard, P.; Macina, B.; Malyukov, S.; Mapelli, A.; Mapelli, L.; Marshall, Z.; Martin, B.; Messina, A.; Michal, S.; Molfetas, A.; Morley, A. K.; Mornacchi, G.; Muenstermann, D.; Nairz, A. M.; Nakahama, Y.; Negri, G.; Nessi, M.; Nicquevert, B.; Nordberg, M.; Ohm, C. C.; Palestini, S.; Pauly, T.; Pernegger, H.; Perrino, R.; Piacquadio, G.; Pommes, K.; Poppleton, A.; Bueso, X. Portell; Poulard, G.; Prasad, S.; Raymond, M.; Rembser, C.; Dos Santos, D. Roda; Roe, S.; Salek, D.; Salzburger, A.; Savu, D. O.; Sehlenker, S.; Schott, M.; Serfon, C.; Sfyrla, A.; Solans, C. A.; Spigo, G.; Spiwoks, R.; Stewart, G. A.; Teischinger, F. A.; Ten Kate, H.; Tremblet, L.; Tricoli, A.; Tsarouchas, C.; Unal, G.; van der Ster, D.; van Eldik, N.; Vandelli, W.; Veness, R.; Vinek, E.; Voss, R.; Vuillermet, R.; Wells, P. S.; Wengler, T.; Wenig, S.; Werner, P.; Wilkens, H. G.; Winklmeier, F.; Wotschack, J.; Zwalinski, L.] CERN, Geneva, Switzerland. [Anderson, K. J.; Boveia, A.; Canelli, F.; Cheng, Y.; Choudalakis, G.; Fiascaris, Ni.; Gardner, R. W.; Jen-La Plante, I.; Kapliy, A.; Li, H. L.; Meehan, S.; Melachrinos, C.; Merritt, F. S.; Meyer, C.; Miller, D. W.; Okumura, Y.; Onyisi, P. U. E.; Oreglia, M. J.; Penning, B.; Pilcher, J. E.; Shochet, M. J.; Tompkins, L.; Tuggle, J. M.; Vukotic, I.; Webster, J. S.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Diaz, M. A.; Pino, S. A. Olivares; Ruan, X.] Pontificia Univ Catolica Chile, Dept Fis, Santiago, Chile. [Brooks, W. K.; Carquin, E.; Jiang, Y.; Kuleshov, S.; Pezoa, R.; Prokoshin, F.] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Bai, Y.; Fang, Y.; Jin, S.; Lu, F.; Ouyang, Q.; Shan, L. Y.; Wang, J.; Xu, D.; Yao, L.] Chinese Acad Sci, Inst High Energy Phys, Beijing, Peoples R China. [Han, L.; Li, B.; Li, S.; Liu, J. B.; Liu, M.; Liu, Y.; Peng, H.; Wu, Y.; Xu, C.; Xu, L.; Zhao, Z.; Zhu, Y.] Univ Sci & Technol China, Dept Modern Phys, Hefei, Anhui, Peoples R China. [Chen, S.] Nanjing Univ, Dept Phys, Nanjing, Jiangsu, Peoples R China. [Feng, C.; Ge, P.; Zhang, X.; Zhu, C. G.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Yang, H.] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guichenev, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Lab Phys Corpusculaire, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guichenev, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Valery, L.; Vazeille, F.] Univ Clermont Ferrand, Clermont Ferrand, France. [Boumediene, D.; Busato, E.; Calvet, D.; Calvet, S.; Toro, R. Camacho; Cinca, D.; Donini, J.; Dubreuil, E.; Ghodbane, N.; Gris, Ph.; Guichenev, C.; Liao, H.; Pallin, D.; Hernandez, D. Paredes; Podlyski, F.; Santoni, C.; Valery, L.; Vazeille, F.] CNRS IN2P3, Clermont Ferrand, France. [Altheimer, A.; Andeen, T.; Angerami, A.; Bain, T.; Brooijmans, G.; Chen, Y.; Dodd, J.; Guo, J.; Hu, D.; Hughes, E. W.; Nikiforou, N.; Parsons, J. A.; Penson, A.; Perez, K.; Reale, V. Perez; Scherzer, M. I.; Thompson, E. N.; Tian, F.; Tuts, P. M.; Urbaniec, D.; Williams, E.; Willis, W.; Wulf, E.; Zivkovic, L.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Bioelaert, N.; Dam, M.; Gregersen, N.; Hansen, J. R.; Hansen, J. B.; Hansen, D. J.; Hansen, P. H.; Heisterkamp, S.; Jakobsen, S.; Loevsehall-Jensen, A. E.; Jez, P.; Joergensen, M. D.; Kadlecik, P.; Klinkby, E. B.; Lundquist, J.; Mackeprang, R.; Mehlhase, S.; Perrodo, P.; Pingel, A.; Simonyan, M.; Thomsen, L. A.; Xella, S.] Univ Copenhagen, Niels Bohr Inst, Copenhagen, Denmark. [Capua, M.; Crosetti, G.; La Rotorida, L.; Lavorini, V.; Mastroberardino, A.; Morello, C.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, INFN, Grp Coll Cosenza, Arcavacata Di Rende, Italy. [Capua, M.; Crosetti, G.; La Rotorida, L.; Lavorini, V.; Mastroberardino, A.; Morello, C.; Policicchio, A.; Salvatore, D.; Schioppa, M.; Susinno, G.; Tassi, E.] Univ Calabria, Dipartimento Fis, Arcavacata Di Rende, Italy. [Adamczyk, L.; Bold, T.; Dabrowski, V.; Dwuznik, M.; Grabowska-Bold, I.; Kisielewska, D.; Koperny, S.; Kowalski, T. Z.; Mindur, B.; Przybycien, M.] AGH Univ Sci & Technol, Fac Phys & Appl Comp Sci, Krakow, Poland. [Banas, E.; Blocki, J.; de Renstrom, P. A. Bruckman; Derendarz, D.; Gornicki, F.; Hajduk, Z.; Iwanski, W.; Kaczmarska, A.; Korcyl, K.; Malecki, Pa.; Malecki, P.; Olszewski, A.; Olszowska, J.; Stanecka, E.; Staszewski, R.; Trzebinski, M.; Trzupek, A.; Turala, M.; Wolter, M. W.; Wosiek, B. K.; Wozniak, K. W.; Zabinski, B.; Zemla, A.] Polish Acad Sci, Henryk Niewodniczanski Inst Nucl Phys, Krakow, Poland. [Yagci, K. Dindar; Firan, A.; Hoffman, J.; Joffe, D.; Kama, S.; Kehoe, R.; Randle-Conde, A. S.; Rios, R. R.; Sekula, S. J.; Stroynowski, R.; Wang, H.; Ye, J.] So Methodist Univ, Dept Phys, Dallas, TX 75275 USA. [Ahsan, M.; Izen, J. M.; Lou, X.; Reeves, K.; Wong, W. C.] Univ Texas Dallas, Dept Phys, Richardson, TX 75083 USA. [Argyropoulos, S.; Kuutmann, E. Bergeaas; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Huettmann, A.; Belenguer, Al. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Zhu, H.] DESY, Hamburg, Germany. [Argyropoulos, S.; Kuutmann, E. Bergeaas; Bloch, I.; Borroni, S.; Dassoulas, J. A.; Dietrich, J.; Ferrara, V.; Fischer, G.; Friedrich, C.; Glazov, A.; Goebel, M.; Fajardo, L. S. Gomez; Da Costa, J. Goncalves Pinto Firmino; Grahn, K-J.; Gregor, I. M.; Grohsjean, A.; Hiller, K. H.; Belenguer, Al. Jimenez; Johnert, S.; Katzy, J.; Kono, T.; Kuhl, T.; Lange, C.; Lobodinska, E.; Ludwig, D.; Maettig, S.; Medinnis, M.; Moenig, K.; Naumann, T.; Cavalcanti, T. Perez; Petschull, D.; Piec, S. M.; Radescu, V.; Rubinskiy, I.; Sedov, G.; South, D.; Stanescu-Bellu, M.; Stanitzki, M. M.; Starovoitov, P.; Styles, N. A.; Tackmann, K.; Vankov, P.; Viti, M.; Wasicki, C.; Wildt, M. A.; Yatsenko, E.; Zhu, H.] DESY, Zeuthen, Germany. [Bunse, M.; Esch, H.; Goessling, C.; Hirsch, F.; Jung, C. A.; Klingenberg, R.; Reisinger, I.] Tech Univ Dortmund, Inst Expt Phys 4, Dortmund, Germany. [Anger, P.; Czodrowski, P.; Friedrich, F.; Goepfert, T.; Kobel, M.; Leonhardt, K.; Mader, W. F.; Morgenstern, M.; Parsons, J. A.; Prudent, X.; Rudolph, C.; Schnoor, U.; Seifert, F.; Steinbach, P.; Straessner, A.; Vest, A.; Wahrmund, S.] Tech Univ Dresden, Inst Kern & Teilchenphys, D-01062 Dresden, Germany. [Arce, A. T. H.; Benjarnin, D. P.; Bocci, A.; Ebenstein, W. L.; Fower, A. J.; Ko, B. R.; Kotwal, A.; Kruse, M. K.; Oh, S. H.; Wang, C.] Duke Univ, Dept Phys, Durham, NC 27706 USA. [Bhimji, W.; Buckley, A. G.; Clark, P. J.; Debenedetti, C.; Harrington, R. D.; Martin, V. J.; O'Brien, B. J.; Schaelicke, A.; Selbach, K. E.; Smart, B. H.; Washbrook, A.; Wynne, B. M.] Univ Edinburgh, SUPA Sch Phys & Astron, Edinburgh, Midlothian, Scotland. [Annovi, A.; Antonelli, M.; Bilokon, H.; Curatolo, M.; Di Nardo, R.; Esposito, B.; Gatti, C.; Laurelli, P.; Maccarrone, G.; Sansoni, A. A.; Testa, M.; Vilucchi, E.; Volpi, G.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Aad, G.; Ahles, F.; Amoroso, S.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kononov, A. I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T. C.; Rurikova, Z.; Ruthmann, N.; Sehmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J. E.; Temming, K. K.; Thoma, S.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; von Radziewski, H.; Anh, T. Vu; Warsinsky, M.; Weiser, C.; Werner, M.; Winkelmann, S.; Xie, S.; Zimmermann, S.] Univ Freiburg, Fak Math & Phys, D-79106 Freiburg, Germany. [Khaek, S. Abdel; Alexandre, G.; Backes, M.; Barone, G.; Bell, P. J.; Bell, W. H.; Noccioli, E. Benhar; Bucci, F.; Clark, A.; Doglioni, C.; Ferrere, D.; Gadomski, S.; Gonzalez-Sevilla, S.; Goulette, M. P.; Iacobucci, G.; La Rosa, A.; Lister, A.; Latour, B. Martin Dit; Mermod, P.; Herrera, C. Mora; Nektarijevic, S.; Nikolics, K.; Pasztor, G.; Picazio, A.; Pohl, M.; Rosbach, K.; Rosselet, L.; Wu, X.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Barberis, D.; Beccherle, R.; Caso, C.; Dameri, M.; Darbo, G.; Parodi, A. Ferretto; Gagliardi, G.; Gemme, C.; Guido, E.; Morettini, P.; Osculati, B.; Parodl, F.; Passaggio, S.; Rossi, L. P.; Schiavi, C.] Univ Genoa, INFN, Sez Genova, Genoa, Italy. [Barberis, D.; Caso, C.; Dameri, M.; Parodi, A. Ferretto; Gagliardi, G.; Guido, E.; Osculati, B.; Parodl, F.; Schiavi, C.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Chikovani, L.; Tskhadadze, E. G.] Iv Javakhishvili Tbilisi State Univ, E Andronikashvili Inst Phys, Tbilisi, Rep of Georgia. [Djobava, T.; Khubua, J.; Mchedlidze, G.; Mosidze, M.] Tbilisi State Univ, Inst High Energy Phys, Tbilisi, Rep of Georgia. [Dueren, M.; Kreutzfeldt, K.; Stenzel, H.] Univ Giessen, Inst Phys 2, Giessen, Germany. [Allwood-Spiers, S. E.; Bates, R. L.; Britton, D.; Bussey, P.; Buttar, C. M.; Collins-Tooth, C.; D'Auria, S.; Doherty, T.; Doyle, A. T.; Edwards, N. C.; Ferrag, S.; Ferrando, J.; de Lima, D. E. Ferreira; Gemmell, A.; Gul, U.; Kar, D.; Kenyon, M.; Moraes, A.; O'Shea, V.; Barrera, C. Oropeza; Robson, A.; Saxon, D. H.; Smith, K. M.; St Denis, R. D.; Steele, G.; Thompson, A. S.; Wraight, K.; Wright, M.] Univ Glasgow, SUPA Sch Phys & Astron, Glasgow, Lanark, Scotland. [Bierwagen, K.; Blumenschein, U.; Brandt, O.; Evangelakou, D.; George, M.; Grosse-Knetter, J.; Guindon, S.; Hamer, M.; Hensel, C.; Keil, M.; Knue, A.; Kohn, F.; Krieger, N.; Kroeninger, K.; Lernmer, B.; Magradze, E.; Meyer, J.; Morel, J.; Nackenhorst, O.; Pashapour, S.; Quadt, A.; Roe, A.; Schorlemmer, A. L. S.; Serkin, L.; Shabalina, E.; Schroeder, T. Vazquez; Weingarten, J.] Univ Gottingen, Inst Phys 2, Gottingen, Germany. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] CNRS IN2P3, Grenoble, France. [Albrand, S.; Andrieux, M-L.; Buat, Q.; Clement, B.; Collot, J.; Crepe-Renaudin, S.; Dechenaux, B.; Delemontex, T.; Delsart, P. A.; Genest, M. H.; Hostachy, J-Y; Laisne, E.; Ledroit-Guillon, F.; Lleres, A.; Lucotte, A.; Malek, F.; Stark, J.; Sun, X.; Trocme, B.; Weydert, C.] Inst Natl Polytech Grenoble, F-38031 Grenoble, France. [Addy, T. N.; Harvey, A.; McFarlane, K. W.; Shin, T.; Vassilakopoulos, V. I.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [da Costa, J. Barreiro Guimaraes; Belloni, A.; Catastini, P.; Conti, G.; Franklin, M.; Huth, J.; Jeanty, L.; Kagan, M.; Mateos, B. Lopez; Otschoorn, V. Martinez; Mercurio, K. M.; Mills, C.; Morii, M.; Skottowe, H. P.; Smith, B. C.; Yen, A. L.; della Porta, G. Zevi] Harvard Univ, Lab Particle Phys & Cosmol, Cambridge, MA 02138 USA. [Anders, G.; Andrei, V.; Davygora, Y.; Dietzsch, T. A.; Dunford, M.; Geweniger, C.; Hanke, P.; Henke, M.; Khomich, A.; Kluge, E. -E.; Lang, V. S.; Lendermann, V.; Lepold, F.; Meier, K.; Mueller, F.; Poddar, S.; Scharf, V.; Schultz-Coulon, H-C; Stamen, R.; Wessels, M.] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany. [Anders, C. F.; Karnevskiy, M.; Kasieczka, G.; Narayan, R.; Schaetzel, S.; Schmitt, S.; Schoening, A.] Heidelberg Univ, Inst Phys, Heidelberg, Germany. [Kugel, A.; Schroer, N.] Heidelberg Univ, ZITI Inst Tech Informat, Mannheim, Germany. [Nagasaka, Y.] Hiroshima Inst Technol, Fac Appl Informat Sci, Hiroshima, Japan. [Brunet, S.; Cwetanski, P.; Evans, H.; Gagnon, P.; Luehring, F.; Ogren, H.; Penwell, J.; Poveda, J.; Price, D.; Whittington, D.; Zieminska, D.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Epp, B.; Jussel, P.; Kneringer, E.; Lukas, W.; Ritsch, E.] Leopold Franzens Univ, Inst Astro & Teilchenphys, Innsbruck, Austria. [Behera, P. K.; Halladjian, G.; Limper, Ni.; Mallik, U.; Mandrysch, R.; Pylypchenko, Y.; Zaidan, R.] Univ Iowa, Iowa City, IA USA. [Chen, C.; Cochran, J.; De Lorenzio, F.; Dudziak, F.; Krunanack, N.; Prell, S.; Ruiz-Martinez, A.; Shrestha, S.; Yamamoto, K.] Iowa State Univ, Dept Phys & Astron, Ames, IA USA. [Aleksandrov, I. N.; Bardin, D. Y.; Bednyakov, V. A.; Boyko, I. R.; Budagov, I. A.; Chelkov, G. A.; Cheplakov, A.; Chizhov, M. V.; Dedovich, D. V.; Demichev, M.; Glonti, G. L.; Gostkin, M. I.; Grigalashvili, N.; Huseynov, N.; Kalinovskaya, L. V.; Kazarinov, M. Y.; Kekelidze, G. D.; Kharchenko, D.; Khramov, E.; Kolesnikov, V.; Kotov, V. M.; Kruchonak, U.; Krumshteyn, Z. V.; Kukhtin, V.; Ladygin, E.; Minashvili, I. A.; Mineev, M.; Olchevski, A. G.; Plotnikova, E.; Pozdnyakov, V.; Rumyantsev, L.; Rusakovich, N. A.; Sadykov, R.; Shiyakova, M.; Sisakyan, A. N.; Topilin, N. D.; Vinogradov, V. B.; Zhemchugov, A.; Zimin, N. I.] JINR Dubna, Joint Inst Nucl Res, Dubna, Russia. [Amako, K.; Arai, Y.; Doi, Y.; Haruyama, T.; Ikegami, Y.; Ikeno, M.; Iwasaki, H.; Kanzaki, J.; Kohriki, T.; Kondo, T.; Makida, Y.; Manabe, A.; Mitsui, S.; Nagano, K.; Nakamura, K.; Nozaki, M.; Odaka, S.; Sasaki, O.; Suzuki, Y.; Takubo, Y.; Tanaka, S.; Terada, S.; Tokushuku, K.; Tsuno, S.; Unno, Y.; Yamada, N.; Yamamoto, A.; Yasu, Y.] High Energy Accelerator Res Org, KEK, Tsukuba, Ibaraki, Japan. [Hayakawa, T.; King, M.; Kishimoto, T.; Kitamura, T.; Kurashige, H.; Matsushita, T.; Ochi, A.; Suzuki, Y.; Takeda, H.; Tani, K.; Watanabe, I.; Yamazaki, Y.; Yuan, L.] Kobe Univ, Grad Sch Sci, Kobe, Hyogo 657, Japan. [Ishino, M.; Sasao, N.; Sumida, T.] Kyoto Univ, Fac Sci, Kyoto, Japan. [Takashima, R.] Kyoto Univ, Kyoto 612, Japan. [Kawagoe, K.; Oda, S.; Tojo, J.] Kyushu Univ, Dept Phys, Fukuoka 812, Japan. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Univ Nacl La Plata, Inst Fis La Plata, La Plata, Argentina. [Alonso, F.; Anduaga, X. S.; Dova, M. T.; Monticelli, F.; Tripiana, M. F.] Consejo Nacl Invest Cient & Tecn, La Plata, Argentina. [Allison, L. J.; Barton, A. E.; Borissov, G.; Bouhova-Thacker, E. V.; Chilingarov, A.; Davidson, R.; Dearnaley, W. J.; Fox, H.; Grimm, K.; Henderson, R. C. W.; Hughes, G.; Jones, R. W. L.; Kartvelishvili, V.; Long, R. E.; Love, P. A.; Maddocks, H. J.; Parsons, J. A.; Smizanska, M.; Walder, J.] Univ Lancaster, Dept Phys, Lancaster, England. [Bianco, M.; Cataldi, C.; Chiodini, C.; Gorini, F.; Grancagnolo, F.; Orlando, N.; Primavera, M.; Spagnolo, S.; Ventura, A.] Univ Salento, INFN, Sez Lecce, Lecce, Italy. [Bianco, M.; Gorini, F.; Orlando, N.; Spagnolo, S.; Ventura, A.] Univ Salento, Dipartimento Matemat & Fis, Lecce, Italy. [Allport, P. P.; Bundock, A. C.; Burdin, S.; D'Onofrio, M.; Dervan, P.; Greenshaw, T.; Gwilliam, C. B.; Hayward, H. S.; Jackson, J. N.; Jones, T. J.; King, B. T.; Klein, M.; Klein, U.; Kluge, T.; Kretzschmar, J.; Laycock, P.; Mahmoud, S.; Maxfield, S. J.; Mehta, A.; Migas, S.; Price, J.; Sellers, G.; Vossebeld, J. H.; Waller, P.; Wrona, B.] Univ Liverpool, Oliver Lodge Lab, Liverpool L69 3BX, Merseyside, England. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, H. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Jozef Stefan Inst, Dept Phys, Ljubljana, Slovenia. [Cindro, V.; Deliyergiyev, M.; Filipcic, A.; Gorisek, A.; Kersevan, H. P.; Kramberger, G.; Macek, B.; Mandic, I.; Mikuz, M.; Tykhonov, A.] Univ Ljubljana, Ljubljana, Slovenia. [Adragna, P.; Bona, M.; Carter, A. A.; Cerrito, L.; Eisenhandler, E.; Ellis, K.; Fletcher, G.; Goddard, J. R.; Hickling, R.; Landon, M. P. J.; Lloyd, S. L.; Moles-Valls, R.; Morris, J. D.; Piccaro, E.; Poll, J.; Rizvi, E.; Salamanna, G.; Castanheira, M. Teixeira Dias; Wiglesworth, C.] Queen Mary Univ London, Sch Phys & Astron, London, England. [Alam, M. A.; Berry, T.; Boisvert, V.; Brooks, T.; Cantrill, R.; Cowan, G.; Duguid, L.; Edwards, C. A.; George, S.; Goncalo, R.; Hayden, D.; Vazquez, J. G. Panduro; Pastore, Fr; Rose, M.; Spano, F.; Strong, J. A.; Teixeira-Dias, P.] Royal Holloway Univ London, Dept Phys, Surrey, England. [Baker, S.; Bernat, P.; Bieniek, S. P.; Butterworth, J. M.; Campanelli, M.; Chislett, R. T.; Christidi, I. A.; Cooper, B. D.; Davison, A. R.; Hesketg, G. G.; Jansen, E.; Konstantinidis, N.; Lambourne, L.; Monk, J.; Nash, M.; Nurse, E.; Prabhu, R.; Sherwood, P.; Simmons, B.; Taylor, C.; Wardrope, D. R.; Waugh, B. M.; Wijeratne, P. A.] UCL, Dept Phys & Astron, London, England. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforgc, B.; Laplace, S.; Le Dortz, O.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] UPMC, Lab Phys Nucl & Haul Energies, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforgc, B.; Laplace, S.; Le Dortz, O.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] Univ Paris Diderot, Paris, France. [Beau, T.; Bomben, M.; Bordoni, S.; Calderini, G.; Cavalleri, P.; Crescioli, F.; Davignon, O.; De Cecco, S.; Derue, F.; Krasny, M. W.; Kuna, M.; Lacour, D.; Laforgc, B.; Laplace, S.; Le Dortz, O.; Malaescu, B.; Marchiori, G.; Nikolic-Audit, I.; Ocariz, J.; Ridel, M.; Roos, L.; Schwemling, Ph; Theveneaux-Pelzer, T.; Torres, H.; Trincaz-Duvoid, S.; Vannucci, F.] CNRS IN2P3, Paris, France. [Akesson, T. P. A.; Alonso, A.; Bocchetta, S. S.; Bryngemark, L.; Floderus, A.; Hawkins, A. D.; Hedberg, V.; Jarlskog, G.; Lundberg, B.; Lytken, E.; Meirose, B.; Mjoernmark, J. U.; Smirnova, O.] Lund Univ, Fys Inst, Lund, Sweden. [Arnal, V.; Barreiro, F.; Cantero, J.; De la Torre, H.; Del Peso, J.; Glasman, C.; Labarga, L.; Merino, J. Llorente; Terron, J.] Univ Autonoma Madrid, Dept Fis Teor C 15, Madrid, Spain. [Arnaez, O.; Blum, W.; Buescher, V.; Caputo, R.; Eckweiler, S.; Ellinghaus, F.; Ertel, E.; Fiedler, F.; Fleckner, J.; Goeringer, C.; Handel, C.; Hohlfeld, M.; Hsu, P. J.; Ji, W.; Kawamura, G.; Kleinknecht, K.; Koenig, S.; Koepke, L.; Lungwitz, M.; Masetti, L.; Meyer, C.; Moreno, D.; Mueller, T.; Neusiedl, A.; Sander, H. G.; Schaefer, U.; Schmitt, C.; Schroeder, C.; Simioni, E.; Tapprogge, S.; Wollstadt, S. J.] Johannes Gutenberg Univ Mainz, Inst Phys, Mainz, Germany. [Almond, J.; Borri, M.; Brown, G.; Chavda, V.; Cox, B. E.; Da Via, C.; Duerdoth, I. P.; Forti, A.; Howarth, J.; Ibbotson, M.; Joshi, K. D.; Klinger, J. A.; Loebinger, F. K.; Marx, M.; Masik, J.; Neep, T. J.; Oh, A.; Owen, M.; Pater, J. R.; Pilkington, A. D.; Robinson, J. E. M.; Snow, S. W.; Watts, S.; Woudstra, M. J.; Yang, U. K.] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F. H.; Hubaut, F.; Knoops, E. B. E. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisscrant, S.; Toth, J.; Touchard, F.; Ughetto, N.; Vacavant, L.] Aix Marseille Univ, CPPM, Marseille, France. [Aoun, S.; Bee, C. P.; Bertella, C.; Bousson, N.; Clemens, J. C.; Coadou, Y.; Djama, F.; Etienne, F.; Feligioni, L.; Hoffmann, D.; Hubaut, F. H.; Knoops, E. B. E. G.; Le Guirriec, E.; Li, B.; Maurer, J.; Monnier, E.; Odier, J.; Pralavorio, P.; Rozanov, A.; Talby, M.; Tannoury, N.; Tiouchichine, E.; Tisscrant, S.; Toth, J.; Touchard, F.; Ughetto, N.; Vacavant, L.] CNRS IN2P3, Marseille, France. [Brau, B.; Colon, G.; Dallapiccola, C.; Meade, A.; Moyse, E. J. W.; Pais, P.; Pueschel, E.; Varol, T.; Ventura, D.; Willocq, S.] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA. [Belanger-Champagne, C.; Chapleau, B.; Cheatham, S.; Corriveau, F.; Dobbs, M.; Dufour, M-A.; Klemetti, M.; Mantifel, R.; Mc Donald, J.; Robertson, S. H.; Rios, C. Santamarina; Schram, M.; Stockton, M. C.; Stoebe, M.; Vachon, B.; Warburton, A.] McGill Univ, Dept Phys, Montreal, PQ, Canada. [Barberio, E. L.; Davidson, N.; Diglio, S.; Hamano, K.; Jennens, D.; Kubota, T.; Limosani, A.; Moles-Valls, R.; Moorhead, C. F.; Hanninger, G. Nunes; Phan, A.; Shao, Q. T.; Tan, K. G.; Taylor, G. N.; Thong, W. M.; Volpi, M.; White, M. J.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Armbruster, A. J.; Chapman, J. W.; Cirilli, Nit.; Dai, T.; Diehl, E. B.; Ferretti, C.; Goldfarb, S.; Harper, D.; Levin, B.; Li, X.; Liu, L.; Mc Kee, S. P.; Neal, H. A.; Panikashvili, N.; Purdham, J.; Qian, J.; Scheirich, D.; Thun, R. P.; Walch, S.; Wilson, A.; Wooden, G.; Zhang, D.; Zhou, B.; Zhu, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Abolins, M.; Gonzalez, B. Alvarez; Arabidze, G.; Brock, R.; Bromberg, C.; Caughron, S.; Hauser, R.; Holzbauer, J. L.; Huston, J.; Koll, J.; Linnemann, J. T.; Martin, B.; Miller, R. J.; Pope, B. G.; Schwienhorst, R.; Stelzer, H. J.; Tollefson, K.; True, P.; Zhang, H.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Alessandria, F.; Alimonti, G.; Andreazza, A.; Baccaglioni, G.; Besana, M. I.; Broggi, F.; Carminati, L.; Cavalli, D.; Citterio, M.; Consonni, S. M.; Costa, G.; Fanti, M.; Favareto, A.; Giugni, D.; Koletsou, I.; Lari, T.; Mandelli, L.; Mazzanti, M.; Meloni, F.; Meroni, C.; Perini, L.; Pizio, C.; Ragusa, F.; Resconi, S.; Rivoltella, G.; Simoniello, R.; Tartarelli, C. F.; Troncon, C.; Turra, R.; Vegni, G.; Volpini, G.] Univ Milan, INFN, Sez Milano, Milan, Italy. [Andreazza, A.; Besana, M. I.; Carminati, L.; Consonni, S. M.; Favareto, A.; Meloni, F.; Perini, L.; Pizio, C.; Ragusa, F.; Rivoltella, G.; Simoniello, R.; Vegni, G.] Univ Milan, Dipartimento Fis, Milan, Italy. [Bogouch, A.; Harkusha, S.; Kulchitsky, Y.; Kurochkin, Y. A.; Satsounkevitch, I.; Tsiareshka, P. V.] Natl Acad Sci Belarus, BI Stepanov Phys Inst, Minsk, Byelarus. [Yanush, S.] Natl Sci & Educ Ctr Particle & High Energy Phys, Minsk, Byelarus. [Taylor, F. E.] MIT, Dept Phys, Cambridge, MA 02139 USA. [Arguin, J-F.; Azuelos, G.; Banerjee, P.; Bouchami, J.; Dallaire, F.; Davies, M.; Giunta, M.; Leroy, C.; Martin, J. P.; Soueid, P.] Univ Montreal, Grp Particle Phys, Montreal, PQ, Canada. [Akimov, A. V.; Baranov, S. P.; Gavrilenko, I. L.; Komar, A. A.; Mashinistov, R.; Mouraviev, S. V.; Nechaeva, P. Yu; Shmeleva, A.; Snesarev, A. A.; Sulin, V. V.; Tikhomirov, V. O.] Acad Sci, PN Lebedev Phys Inst, Moscow, Russia. [Artamonov, A.; Gorbounov, P. A.; Khovanskiy, V.; Shatalov, P. B.; Tsukerman, I. I.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Antonov, A.; Belotskiy, K.; Bulekov, O.; Dolgoshein, B. A.; Kantserov, V. A.; Khodinov, A.; Romaniouk, A.; Shulga, E.; Smirnov, S. Yu; Smirnov, Y.; Soldatov, E. Yu; Timoshenko, S.] Moscow Engn & Phys Inst MEPhI, Moscow, Russia. [Gladilin, L. K.; Grishkevich, Y. V.; Krarnarenko, V. A.; Rud, V. I.; Sivoklokov, S. Yu; Smirnova, L. N.] Moscow MV Lomonosov State Univ, DV Skobeltsyn Inst Nucl Pliys, Moscow, Russia. [Adomeit, S.; Beale, S.; Becker, S.; Biebel, O.; Bortfeldt, J.; Calfayan, P.; de Graat, J.; Duckeck, C.; Ebke, J.; Elmsheuser, J.; Engl, A.; Galea, C.; Heller, C.; Hertenberg, R.; Legger, F.; Lorenz, J.; Mann, A.; Mueller, T. A.; Nunnemann, T.; Oakes, L. B.; Rauscher, F.; Reznicek, P.; Ruschke, A.; Sanders, M. P.; Schaile, D.; Sehieck, J.; Staude, A.; Vladoiu, D.; Walker, R.; Will, J. Z.; Zhuang, X.; Zibell, A.] Univ Munich, Fak Phys, Munich, Germany. [Shimojima, M.] Nagasaki Inst Appl Sci, Nagasaki, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648601, Japan. [Aoki, M.; Hasegawa, S.; Morvaj, L.; Ohshima, T.; Shimizu, S.; Takahashi, Y.; Tomoto, M.; Wakabayashi, J.; Yamauchi, K.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648601, Japan. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Carlino, G.; Chiefari, C.; Conventi, F.; de Asmundis, R.; Della Pietra, M.; della Volpe, D.; Di Donato, C.; Doria, A.; Giordano, R.; Iengo, P.; Izzo, V.; Merola, L.; Patricelli, S.; Sanchez, A.; Sekhniaidze, G.] Univ Naples Federico II, INFN, Sez Napoli, Naples, Italy. [Aloisio, A.; Alviggi, M. G.; Canale, V.; Chiefari, C.; della Volpe, D.; Di Donato, C.; Giordano, R.; Merola, L.; Patricelli, S.; Sanchez, A.] Univ Naples Federico II, Dipartimento Sci Fisiche, Naples, Italy. [Gorelov, I.; Hoeferkamp, M. R.; Seidel, S. C.; Toms, K.; Wang, R.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Besjes, G. J.; Caron, S.; Chelstowska, M. A.; Dao, V.; De Groot, N.; Filthaut, F.; Kiok, P. F.; Koenig, A. C.; Koetsveld, F.; Raas, M.; Salvucci, A.] Radboud Univ Nijmegen Nikhef, Inst Math Astrophys & Particle Phys, Nijmegen, Netherlands. [Abdinov, O.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Klous, S.; Kluit, P.; Koffernan, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Mahlstedt, J.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Van der Deij, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van der Poel, E.; Van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Nikhef Natl Inst Subatom Phys, Amsterdam, Netherlands. [Abdinov, O.; Beemster, L. J.; Bentvelsen, S.; Berglund, E.; Bobbink, G. J.; Bos, K.; Boterenbrood, H.; Colijn, A. P.; de Jong, P.; De Nooij, L.; Deluca, C.; Deviveiros, P. O.; Doxiadis, A. D.; Ferrari, P.; Geerts, D. A. A.; Gosselink, M.; Hartjes, F.; Hessey, N. P.; Igonkina, O.; Klous, S.; Kluit, P.; Koffernan, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Mahlstedt, J.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J. P.; Pani, P.; Ruckstuhl, N.; Ta, D.; Tsiakiris, M.; Van der Deij, P. C.; van der Geer, R.; van der Graaf, H.; Van der Leeuw, R.; van der Poel, E.; Van Vulpen, I.; Verkerke, W.; Vermeulen, J. C.; Milosavljevic, M. Vranjes; Vreeswijk, M.] Univ Amsterdam, Amsterdam, Netherlands. [Calkins, R.; Chakraborty, D.; Cole, S.; de Lima, J. G. Rocha; Suhr, C.; Yurkewicz, A.; Zutshi, V.] No Illinois Univ, Dept Phys, De Kalb, IL USA. [Anisenkov, A.; Beloborodova, O.; Bobrovnikov, V. S.; Bogdanchikov, A.; Kazanin, V. F.; Kolachev, G. M.; Korol, A.; Malyshev, V.; Maslennikov, A. L.; Maximov, D. A.; Peleganchuk, S. V.; Skovpen, K.; Soukharev, A.; Talyshev, A.; Tikhonov, Y. A.] SB RAS, Budker Inst Nucl Phys, Novosibirsk, Russia. [Budick, B.; Casadei, D.; Cranmer, K.; Haas, A.; van Huysduynen, L. Hoof; Kaplan, B.; Konoplich, R.; Krasznahorkay, A.; Kreiss, S.; Lewis, G. H.; Mincer, A. I.; Nernethy, P.; Neves, R. M.; Prokofiev, K.; Zhao, L.] NYU, Dept Phys, New York, NY 10003 USA. [Fischer, M. J.; Gan, K. K.; Ishmukhametov, R.; Kagan, H.; Kass, R. D.; Merritt, H.; Moss, J.; Nagarkar, A.; Pignotti, D. T.; Rahimi, A. M.; Strang, M.; Yang, Y.] Ohio State Univ, Columbus, OH 43210 USA. [Nakano, I.] Okayama Univ, Fac Sci, Okayama 700, Japan. [Abajyan, T.; Gutierrez, P.; Jana, D. K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.] Univ Oklahoma, Homer L Dodge Dept Phys & Astron, Norman, OK 73019 USA. [Abi, B.; Khanov, A.; Rizatdinova, F.; Yu, J.] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA. [Hamal, P.; Nozka, L.] Palacky Univ, BCPTM, CR-77147 Olomouc, Czech Republic. [Brau, J. E.; Potter, C. T.; Ptacek, E.; Radloff, P.; Reinsch, A.; Searcy, J.; Shamim, M.; Sinev, N. B.; Strom, D. M.; Torrence, E.] Univ Oregon, Ctr High Energy Phys, Eugene, OR 97403 USA. [Abdallah, J.; Andari, N.; Auge, E.; Benoit, M.; Binet, S.; Bourdarios, C.; De la Taille, C.; De Regie, J. B. De Vivie; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J. -F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Martinez, N. Lorenzo; Lounis, A.; MovAkec, N.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rouseau, D.; Rybkin, G.; Sauvan, J. B.; Schaarschmidt, J.; Sehaffer, A. C.; Scifo, E.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J. J.; Zerwas, D.; Zhang, Z.] Univ Paris 11, LAL, Orsay, France. [Hanagaki, K.; Hirose, M.; Lee, J. S. H.; Meguro, T.; Nomachi, M.; Okamura, W.; Sugaya, Y.] Osaka Univ, Grad Sch Sci, Osaka, Japan. [Bugge, L.; Buran, T.; Cameron, D.; Gjelsten, B. K.; Gramstad, E.; Lund, E.; Ould-Saada, F.; Pajchel, K.; Read, A. L.; Rohne, O.; Samset, B. H.; Smestad, L.; Stapnes, S.; Strandlie, A.] Univ Oslo, Dept Phys, Oslo, Norway. [Apolle, R.; Barr, A. J.; Boddy, C. R.; Brandt, G.; Buchanan, J.; Buckingham, R. M.; Cooper-Sarkar, A. M.; Dafinca, A.; Davies, E.; Gallas, E. J.; Gwenlan, C.; Hall, D.; Hays, C. P.; Howard, J.; Huffman, T. B.; Issever, C.; King, R. S. B.; Kogan, L. A.; Korn, A.; Larner, A.; Lewis, A.; Liang, Z.; Livermore, S. S. A.; Mattravers, C.; Moles-Valls, R.; Nickcrson, R. B.; Pinder, A.; Robichaud-Veronneau, A.; Ryder, N. C.; Short, D.; Tseng, J. C-L; Viehhauser, G. H. A.; Weidberg, A. R.; Whitehead, S. R.; Young, C. J.; Zhong, J.] Univ Oxford, Dept Phys, Oxford, England. [Colombo, T.; Conta, C.; Ferrari, R.; Franchino, S.; Fraternali, M.; Gaudio, G.; Lanza, A.; Livan, Ni.; Negri, A.; Polesello, G.; Rebuzzi, D. M.; Rimoldi, A.; Vercesi, V.] Univ Pavia, INFN, Sez Pavia, Pavia, Italy. [Colombo, T.; Conta, C.; Franchino, S.; Fraternali, M.; Livan, Ni.; Negri, A.; Rebuzzi, D. M.; Rimoldi, A.] Univ Pavia, Dipartimento Fis, Pavia, Italy. [Alison, J.; Brendlinger, K.; Degenhardt, J.; Dressnandt, N.; Fratina, S.; Heim, S.; Hines, E.; Hong, T. M.; Jackson, B.; Keener, P. T.; Kroll, J.; Kunkle, J.; Lester, C. M.; Lipeles, E.; Newcomer, F. M.; Olivito, D.; Ospanov, R.; Reece, R.; Saxon, J.; Sehaefer, D.; Stahlman, J.; Thomson, E.; Van Berg, R.; Williams, H. H.] Univ Penn, Dept Phys, Philadelphia, PA 19104 USA. [Fedin, O. L.; Gratchev, V.; Grebenyuk, O. G.; Maleev, V. P.; Ryabov, Y. F.; Schegelsky, V. A.; Sedykh, E.; Seliverstov, D. M.; Solovyev, V.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Bertolucci, F.; Cascella, M.; Cavsinni, V.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, INFN, Sez Pisa, Pisa, Italy. [Bertolucci, F.; Cascella, M.; Cavsinni, V.; Del Prete, T.; Dotti, A.; Roda, C.; Sarri, F.; White, S.; Zinonos, Z.] Univ Pisa, Dipartimento Fis E Fermi, Pisa, Italy. [Boudreau, J.; Cleland, W.; Escobar, C.; Kittelmann, T.; Mueller, J.; Prieur, D.; Savinov, V.; Yoosoofmiya, R.] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Amor Dos Santos, S. P.; Amorim, A.; Anjos, N.; Carvalho, J.; Castro, N. F.; Conde Muino, P.; Da Cunha Sargedas De Sousa, M. J.; Do Valle Wemans, A.; Fiolhais, M. C. N.; Galhardo, B.; Gomes, A.; Jorge, P. M.; Lopes, L.; Niguens, J. Machado; Maio, A.; Maneira, J.; Moles-Valls, R.; Oliveira, M.; Onofre, A.; Palma, A.; Pina, J.; Pinto, B.; Santos, H.; Saraiva, J. G.; Silva, J.; Veloso, F.; Ventura, A.; Wolters, H.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Palma, A.] Univ Granada, Dept Fis Teor & Cosmos, Granada, Spain. [Jorge, P. M.] Univ Granada, CAFPE, Granada, Spain. [Bohm, J.; Chudoba, J.; Gunther, J.; Jakoubek, O.; Juranek, V.; Kepka, O.; Kupco, A.; Kus, V.; Lokajicek, M.; Marcisovsky, M.; Mikestikova, M.; Myska, M.; Nemecek, S.; Ruzicka, P.; Schovancova, J.; Sicho, P.; Staroba, P.; Svatos, M.; Tasevsky, M.; Tic, T.; Vrba, V.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Augsten, K.; Gallus, P.; Holy, T.; Jakubek, J.; Kohout, Z.; Kral, V.; Krejci, F.; Pospisil, S.; Simak, V.; Slavicek, T.; Smolek, K.; Sodomka, J.; Solar, M.; Solc, J.; Sopko, V.; Sopko, B.; Stekl, I.; Turecek, D.; Vacek, V.; Vlasak, M.; Vokac, P.; Zeman, M.] Czech Tech Univ, CR-16635 Prague, Czech Republic. [Balek, P.; Chalupkova, I.; Davidek, T.; Dolcjsi, J.; Dolezal, Z.; Fullana Torregrosa, E.; Kodys, P.; Leitner, R.; Novakova, J.; Rybar, M.; Spousta, M.; Strachota, P.; Suk, M.; Sykora, T.; Tas, P.; Valkar, S.; Vorobel, V.; Wilhelm, I.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Ammosov, V. V.; Borisov, A.; Denisov, S. P.; Fakhrutdinov, R. M.; Fenyuk, A. B.; Golubkov, D.; Ivashin, A. V.; Karyukhin, A. N.; Korotkov, V. A.; Kozhin, A. S.; Minaenko, A. A.; Myagkov, A. G.; Nikolaenko, V.; Solodkov, A. A.; Solovyanov, O. V.; Starchenko, E. A.; Zaitsev, A. M.; Zenin, O.; Zmouchko, V. V.] Inst High Energy Phys, State Res Ctr, Protvino, Russia. [Adye, T.; Baines, J. T.; Barnett, B. M.; Burke, S.; Dewhurst, A.; Emeliyanov, D.; Gallop, B. J.; Gee, C. N. P.; Gillman, A. R.; Haywood, S. J.; Kirk, J.; McCubbin, N. A.; McMahon, S. J.; Middleton, R. P.; Murray, W. J.; Phillips, P. W.; Sankey, D. P. C.; Scott, W. G.; Tyndel, M.; Wickens, F. J.; Wielers, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Benslama, K.] Univ Regina, Dept Phys, Regina, SK S4S 0A2, Canada. [Tehrani, F. Safai; Tanaka, S.] Ritsumeikan Univ, Kusatsu, Shiga, Japan. [Anulli, F.; Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, H.; Ciapetti, G.; D'Orazio, A.; De Pedis, D.; De Salvo, A.; De Zorzi, G.; Dionisi, C.; Falciano, S.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, P.; Lo Sterzo, F.; Luci, C.; Luminari, L.; Marzano, F.; Mirabelli, G.; Nisati, A.; Pasqualucci, E.; Petersen, J.; Petrolo, E.; Pontecorvo, L.; Rosati, S.; Rossi, E.; Tehrani, F. Safai; Sidoti, A.; Camillocci, E. Solfaroli; Vari, R.; Veneziano, S.; Zanello, L.] Univ Roma La Sapienza, INFN, Sez Roma 1, Rome, Italy. [Artoni, G.; Bagnaia, P.; Bini, C.; Caloi, H.; Ciapetti, G.; D'Orazio, A.; De Zorzi, G.; Dionisi, C.; Gauzzi, P.; Gentile, S.; Giagu, S.; Ippolito, V.; Lacava, P.; Lo Sterzo, F.; Luci, C.; Rossi, E.; Camillocci, E. Solfaroli; Zanello, L.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Aielli, G.; Camarri, P.; Cardarelli, R.; Cattani, C.; Di Ciaccio, A.; Di Simone, A.; Liberti, B.; Marchese, F.; Mazzaferro, L.; Salamon, A.; Santonico, R.] Univ Roma Tor Vergata, INFN, Sez Roma Tor Vergata, Rome, Italy. [Aielli, G.; Camarri, P.; Cattani, C.; Di Ciaccio, A.; Di Simone, A.; Marchese, F.; Mazzaferro, L.; Santonico, R.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Bacci, C.; Baroncelli, A.; Biglietti, M.; Bortolotto, V.; Branchini, P.; Ceradini, F.; Di Luise, S.; Farilla, A.; Graziani, E.; Iodice, M.; Orestano, D.; Passeri, A.; Pastore, F.; Petersen, T. C.; Petrucci, F.; Staneseu, C.] Univ Roma Tre, INFN, Sez Roma Tre, Rome, Italy. [Bacci, C.; Bortolotto, V.; Ceradini, F.; Di Luise, S.; Orestano, D.; Pastore, F.; Petersen, T. C.; Petrucci, F.] Univ Roma Tre, Dipartimento Fis, Rome, Italy. [Benchekroun, D.; Chafaq, A.; Gouighri, M.; Hoummada, A.; Lablak, S.] Univ Hassan 2, Fac Sci Ain Chock, Roseau Univ Phys Hautes Energies, Casablanca, Morocco. [Ghazlane, H.] Ctr Natl Energie Sci Tech Nucl, Rabat, Morocco. [El Kacimi, M.; Goujdami, D.] Univ Cadi Ayyad, Fac Sci Semlalia, LPHEA, Marrakech, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] Univ Mohamed Premier, Fac Sci, Oujda, Morocco. [Derkaoui, J. E.; Ouchrif, M.; Tayalati, Y.] LPTPM, Oujda, Morocco. [El Moursli, R. Cherkaoui] Univ Mohammed V Agdal, Fac Sci, Rabat, Morocco. [Formica, A.] CEA Saclay, DSM IREU, Inst Rech Lois Fondament Univers, Commissariat Energie Atom & Energies Alternat, F-91191 Gif Sur Yvette, France. [Chouridou, S.; Damiani, D. S.; Grillo, A. A.; Litke, A. M.; Locknaan, W. S.; Manning, P. M.; Mitrevski, J.; Niclsen, J.; Sadrozinski, H. F-W; Schumm, B. A.; Seiden, A.] Univ Calif Santa Cruz, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Beckingham, M.; Coccaro, A.; Goussiou, A. G.; Harris, O. M.; Hsu, S. -C.; Keller, J. S.; Lubatti, H. J.; Rompotis, N.; Rothberg, J.; Verducci, M.; Watts, G.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Costanzo, D.; Donszelmann, T. Cuhadar; Dawson, I.; Duxfield, R.; Hodgkinson, M. C.; Hodgson, P.; Johansson, P.; Korolkova, E. V.; Mcfayden, I. A.; Miyagawa, P. S.; Owen, S.; Paganis, E.; Suruliz, K.; Tovey, F. R.; Tua, A.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Hasegawa, Y.; Takeshita, T.] Shinshu Univ, Dept Phys, Nagano, Japan. [Buchholz, P.; Czirr, H.; Fleck, I.; Gaur, B.; Grybel, K.; Holder, M.; Ibragimov, I.; Rammes, N.; Rosenthal, O.; Sipica, V.; Walkowiak, W.; Ziolkowski, M.] Univ Siegen, Fachbereich Phys, D-57068 Siegen, Germany. [Dawe, E.; Godfrey, I.; Kvita, J.; O'Neil, D. C.; Petteni, M.; Stelzer, B.; Tanasijczuk, A. J.; Trottier-McDonald, M.; Van Nieuwkoop, J.; Vetterli, M. C.] Simon Fraser Univ, Dept Phys, Burnaby, BC V5A 1S6, Canada. [Aracena, I.; Mayes, J. Backus; Barklow, T.; Bartoldus, R.; Bawa, H. S.; Butler, B.; Cogan, J. G.; Eifert, T.; Fulsom, B. G.; Gao, Y. S.; Garelli, N.; Grenier, P.; Hansson, P.; Kocian, M.; Koi, T.; Lowe, A. J.; Malone, C.; Mount, R.; Nelson, T. K.; Salnikov, A.; Schwartzman, A.; Silverstein, D.; Strauss, E.; Su, D.; Wilson, M. G.; Wittgen, M.; Young, C.] SLAC Natl Accelerator Lab, Stanford, CA USA. [Batkova, L.; Blazek, T.; Federic, P.; Stavina, P.; Sykora, I.; Tokar, S.; Zenis, T.] Comenius Univ, Fac Math Phys & Informat, Bratislava, Slovakia. [Antos, J.; Bruncko, D.; Ferencei, J.; Kladiva, E.; Seman, M.; Strizenec, P.] Slovak Acad Sci, Inst Expt Phys, Dept Subnucl Phys, Kosice 04353, Slovakia. [Aurousseau, M.; Yacoob, S.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Bristow, T. M.; Carrillo-Montoya, G. D.; Hamilton, A.; Leney, K. J. C.; Vickey, T.; Boeriu, O. E. Vickey] Univ Witwatersrand, Sch Phys, Johannesburg, South Africa. [Asman, B.; Bendtz, K.; Bohm, C.; Clement, C.; Eriksson, D.; Gellerstedt, K.; Hellman, S.; Homgren, S. O.; Johansen, M.; Johansson, K. E.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, F.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Papadelis, A.; Sellden, B.; Silverstein, S. B.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Stockholm Univ, Dept Phys, S-10691 Stockholm, Sweden. [Asman, B.; Bendtz, K.; Clement, C.; Gellerstedt, K.; Hellman, S.; Johansen, M.; Jon-And, K.; Khandanyan, H.; Kim, H.; Klimek, F.; Lundberg, J.; Lundberg, O.; Milstead, D. A.; Moa, T.; Sjolin, J.; Strandberg, S.; Tylmad, M.; Yang, Z.] Oskar Klein Ctr, Stockholm, Sweden. [Jovicevic, I.; Kuwertz, E. S.; Lund-Jensen, R.; Strandberg, J.] Royal Inst Technol, Dept Phys, S-10044 Stockholm, Sweden. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarty, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Sehamberger, R. D.; Stupark, J.; Tsybychev, D.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Ahmad, A.; Arfaoui, S.; Devetak, E.; DeWilde, B.; Engelmann, R.; Farley, J.; Goodson, J. J.; Grassi, V.; Gray, J. A.; Hobbs, J.; Jia, J.; Li, H.; Mastrandrea, P.; McCarty, R. L.; Mohapatra, S.; Puldon, D.; Rijssenbeek, M.; Sehamberger, R. D.; Stupark, J.; Tsybychev, D.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Bartsch, V.; De Santo, A.; Martin-Haugh, S.; Potter, C. J.; Rose, A.; Salvatore, F.; Castillo, I. Santoyo; Sutton, M. R.] Univ Sussex, Dept Phys & Astron, Brighton, E Sussex, England. [Bangert, A.; Black, C. W.; Cuthbert, C.; Jeng, G. -Y.; Patel, N.; Saavedra, A. F.; Scarcella, M.; Varvell, K. E.; Watson, I. J.; Waugh, A. T.; Yabsley, B.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Chu, M. L.; Hou, S.; Jamin, D. O.; Lee, S. C.; Lin, S. C.; Liu, D.; Mazini, R.; Meng, Z.; Ren, Z. L.; Soh, D. A.; Teng, P. K.; Wang, J.; Wang, S. M.; Weng, Z.; Zhou, Y.] Acad Sinica, Inst Phys, Taipei, Taiwan. [Harpaz, S. Behar; Di Mattia, A.; Kajomovitz, E.; Kopeliansky, R.; Musto, E.; Rozen, Y.; Tarem, S.; Vallecorsa, S.] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel. [Abramowicz, H.; Alexander, G.; Amram, N.; Bella, G.; Benary, O.; Benhammou, Y.; Etzion, E.; Gershon, A.; Ginzburg, J.; Guttman, N.; Hod, N.; Munwes, Y.; Oren, Y.; Sadeh, I.; Silver, Y.; Soffer, A.; Taiblum, N.] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Tel Aviv, Israel. [Bachas, K.; Iliadis, D.; Kordas, K.; Kouskoura, V.; Nomidis, I.; Peters, K.; Petersen, B. A.; Petridis, A.; Petridou, C.; Sampsonidis, D.] Aristotle Univ Thessaloniki, Dept Phys, GR-54006 Thessaloniki, Greece. [Akimoto, G.; Asai, S.; Azuma, Y.; Dohmac, T.; Kanaya, N.; Kataoka, Y.; Kawamoto, T.; Kazama, S.; Kessoku, K.; Kobayashi, T.; Komori, Y.; Mashinto, T.; Masubuchi, T.; Matsunaga, H.; Nakamura, T.; Ninomiya, Y.; Okuyama, T.; Sakamoto, H.; Sasaki, Y.; Tanaka, J.; Terashi, K.; Ueda, I.; Yamaguchi, H.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamazaki, T.; Yoshihara, K.] Univ Tokyo, Int Ctr Elementary Particle Phys, Tokyo, Japan. [Bratzler, U.; Fukunaga, C.] Tokyo Metropolitan Univ, Grad Sch Sci & Technol, Tokyo 158, Japan. [Ishitsuka, M.; Jinnouchi, O.; Kanno, T.; Kuze, M.; Nagai, R.; Nobe, T.] Tokyo Inst Technol, Dept Phys, Tokyo 152, Japan. [AbouZeid, O. S.; Bailey, D. C.; Brelier, B.; Cheung, S. L.; Dhaliwal, S.; Farooque, T.; Fatholahzadeh, B.; Gibson, A.; Guo, B.; Ilie, N.; Keung, J.; Krieger, P.; Orr, R. S.; Polifka, R.; Rezvani, R.; Rosenbaum, G. A.; Savard, P.; Sinervo, P.; Spreitzer, T.; Tardif, D.; Teuscher, R. J.; Thompson, P. D.; Trischuk, W.; Venturi, N.] Univ Toronto, Dept Phys, Toronto, ON, Canada. [Canepa, A.; Chekulaev, S. V.; Fortin, D.; Koutsman, A.; Losty, M. J.; Oram, C. J.; Codina, E. Perez; Schouten, D.; Seuster, R.; Stelzer-Chilton, O.; Tafirout, R.; Trigger, I. M.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Garcia, J. A. Benitez; Bustos, A. C. Florez; Palacino, G.; Taylor, W.] York Univ, Dept Phys & Astron, Toronto, ON M3J 2R7, Canada. [Hanawa, K.; Hara, K.; Hayashi, T.; Kim, S. H.; Kiuchi, K.; Kurata, N.; Nagai, K.; Ukegawa, F.] Univ Tsukuba, Fac Pure & Appl Sci, Tsukuba, Ibaraki, Japan. [Beauchemin, P. H.; Hamilton, S.; Meoni, E.; Napier, A.; Rolli, S.; Sliwa, K.; Todorova-Nova, S.; Wetter, J.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Losada, M.; Loureiro, K. F.; Navas, L. Mendoza; Navarro, G.; Sandoval, C.] Univ Antonio Narino, Ctr Invest, Bogota, Colombia. [Farrell, S.; Eschrich, J. Gough; Lankord, A. J.; Magnoni, L.; Mete, A. S.; Nelson, A.; Rao, K.; Scannicchio, D. A.; Schernau, M.; Taffard, A.; Toggerson, B.; Unel, G.; Werth, M.; Whiteson, D.; Zhou, N.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA USA. [Acharya, B. S.; Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, E.; Pinamonti, M.; Shaw, K.; Soualah, R.] Ist Nazl Fis Nucl, Grp Coll Udine, Udine, Italy. [Acharya, B. S.] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy. [Alhroob, M.; Brazzale, S. F.; Cobal, M.; De Sanctis, E.; Giordani, M. P.; Pinamonti, M.; Shaw, K.; Soualah, R.] Univ Udine, Dipartimento Chim Fis & Ambiente, I-33100 Udine, Italy. [Atkinson, M.; Basye, A.; Benekos, N.; Cavaliere, V.; Chang, P.; Coggeshall, J.; Cortes-Gonzalez, A.; Errede, D.; Errede, S.; Lie, K.; Liss, T. N.; McCarn, A.; Neubauer, M. S.; Viehou, I.] Univ Illinois, Dept Phys, Urbana, IL 61801 USA. [Brenner, R.; Buszello, C. P.; Coniavitis, E.; Ekelof, T.; Ellert, M.; Ferrari, A.; Isaksson, C.; Pelikan, D.] Uppsala Univ, Dept Phys & Astron, Uppsala, Sweden. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Inst Fis Corpuscular IFIC, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Dept Fis Atom Mol & Nucl, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Dept Ingn Elect, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] Univ Valencia, Inst Microelect Barcelona IMB CNM, Valencia, Spain. [Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M. J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J. E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V. R.; March, L.; Marti-Garcia, S.; Moya, M. Minano; Mitsou, V. A.; Moles-Valls, R.; Moreno Llacer, M.; Garcia, E. Oliver; Lopez, S. Pedraza; Garcia-Estan, M. T. Perez; Adam, E. Romero; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Pastor, E. Torro; Valero, A.; Gallego, E. Valladolid; Ferrer, J. A. Valls; Perez, M. Villaplana; Vos, M.] CSIC, Valencia, Spain. [Axen, A.; Fedorko, W.; Gay, C.; Gecse, Z.; Loh, C. W.; Mills, W. J.; Swedish, S.; Viel, S.] Univ British Columbia, Dept Phys, Vancouver, BC, Canada. [Albert, J.; Astbury, A.; Bansal, V.; Berghaus, F.; Courneyea, L.; Fincke-Keeler, M.; Keeler, R.; Kowalewski, R.; Lefebvre, M.; Lessard, J-R.; Marino, C. P.; Martyniuk, A. C.; McPherson, R. A.; Ouellette, E. A.; Sobie, R.] Univ Victoria, Dept Phys & Astron, Victoria, BC, Canada. [Farrington, S. M.; Jones, G.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Kimura, N.; Yorita, K.] Waseda Univ, Tokyo, Japan. [Alon, R.; Barak, L.; Bressler, S.; Citron, Z. H.; Duchovni, E.; Frank, T.; Gabizon, O.; Gross, E.; Groth-Jensen, J.; Klier, A.; Lellouch, D.; Levinson, L. J.; Mikenberg, G.; Milov, A.; Milstein, D.; Roth, I.; Silbert, O.; Smakhtin, V.; Vitells, O.] Weizmann Inst Sci, Dept Particle Phys, IL-76100 Rehovot, Israel. [Banerjee, Sw.; Hernandez, A. M. Castaneda; Castaneda-Miranda, E.; Chen, X.; Dos Anjos, A.; Castillo, L. R. Flores; Gutzwiller, O.; Jared, R. C.; Ji, H.; Ju, X.; Kashif, L.; Ma, L. L.; Garcia, B. R. Mellado; Ming, Y.; Pan, Y. B.; Morales, M. I. Pedraza; Quayle, W. B.; Sarangi, T.; Wang, H.; Wiedenmann, W.; Wu, S. L.; Yang, H.; Zobernig, G.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Fleischmann, P.; Meyer, J.; Redelbach, A.; Siragusa, G.; Strohmer, R.; Trefzger, T.] Univ Wurzburg, Fak Phys rind Astron, D-97070 Wurzburg, Germany. [Barisonzi, M.; Becker, K.; Becks, K. H.; Boek, J.; Boek, T. T.; Braun, H. M.; Cornelissen, F.; Duda, D.; Fleischmann, S.; Flick, T.; Gerlach, P.; Gorfine, G.; Hamacher, K.; Harenberg, T.; Hirschbuehl, D.; Kalinin, S.; Kersten, S.; Khoroshilov, A.; Kohlmann, S.; Lenzen, G.; Maettig, P.; Mechtel, M.; Neumann, M.; Pataraia, S.; Sandhoff, M.; Sartisohn, G.; Schultes, J.; Sturm, P.; Wagner, W.; Wahlen, H.; Wicke, D.; Zeitnitz, C.] Berg Univ Wuppertal, Fachbereich Phys C, Wuppertal, Germany. [Adelman, J.; Baker, O. K.; Bedikian, S.; Almenar, C. Cuenca; Cummings, J.; Czyezula, Z.; Demers, S.; Erdmann, J.; Garberson, F.; Golling, T.; Guest, D.; Henrichs, A.; Lagouri, T.; Lee, L.; Leister, A. G.; Loginov, A.; Sherman, D.; Tipton, P.; Wall, R.; Walsh, B.] Yale Univ, Dept Phys, New Haven, CT USA. [Hakobyan, H.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Biscarat, C.; Rahal, G.] Inst Natl Phys Nucl & Phys Particules IN2P3, Ctr Calcul, Villeurbanne, France. [Acharya, B. S.; Onofre, A.; Onyisi, P. U. E.; Park, W.; Pasztor, G.; Perez, K.; Purohit, M.; Richter-Was, E.; Ruan, X.; Smirnova, L. N.; Spousta, M.; Toth, J.; Tsionou, D.; Vickey, T.; Wu, Y.; Yacoob, S.] Kings Coll London, Dept Phys, London WC2R 2LS, England. [Agar-Savedra, J. A.; Onofre, A.] Lab Instrumentacao & Fis Expt Particulas LIP, Lisbon, Portugal. [Amorim, A.; Gomes, A.; Maio, A.; Onyisi, P. U. E.; Pasztor, G.; Pina, J.] Univ Lisbon, Fac Ciencias, Lisbon, Portugal. [Apolle, R.; Davies, E.; Mattravers, C.; Nash, M.; Park, W.; Purohit, M.] Rutherford Appleton Lab, Particle Phys Dept, Didcot OX11 0QX, Oxon, England. [Assamagan, K.; Toth, J.] Univ Johannesburg, Dept Phys, Johannesburg, South Africa. [Azuelos, G.; Gingrich, D. M.; Oakham, F. G.; Perez, K.; Savard, P.; Vetterli, M. C.] TRIUMF, Vancouver, BC V6T 2A3, Canada. [Bawa, H. S.; Gao, Y. S.; Lowe, A. J.; Richter-Was, E.] Calif State Univ Fresno, Dept Phys, Fresno, CA 93740 USA. [Beloborodova, O.; Maximov, D. A.; Ruan, X.; Talyshev, A.; Tikhonov, Y. A.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Carvalho, J.; Fiolhais, M. C. N.; Oliveira, M.; Smirnova, L. N.; Wolters, H.] Univ Coimbra, Dept Phys, Coimbra, Portugal. [Hernandez, A. M. Castaneda; Spousta, M.] UASLP, Dept Phys, San Luis Potosi, Mexico. [Conventi, F.; Della Pietra, M.; Tsionou, D.] Univ Napoli Parthenope, Naples, Italy. [Demirkoz, B.; Wu, Y.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Dhullipudi, R.; Greenwood, Z. D.; Sawyer, L.; Yacoob, S.] Louisiana Tech Univ, Ruston, LA 71270 USA. [Do Valle Wemans, A.] Univ Nova Lisboa, Dep Fis, Caparica, Portugal. [Do Valle Wemans, A.] Univ Nova Lisboa, CEFITEC Fac Ciencias Tecnol, Caparica, Portugal. [Dobson, E.] UCL, Dept Phys & Astron, London, England. [Hamilton, A.] Univ Cape Town, Dept Phys, ZA-7925 Cape Town, South Africa. [Huseynov, N.; Meng, Z.] Azerbaijan Acad Sci, Inst Phys, Baku 370143, Azerbaijan. [Kono, T.; Wildt, M. A.] Univ Hamburg, Inst Expt Phys, Hamburg, Germany. [Konoplich, R.] Manhattan Coll, New York, NY USA. [Li, S.] Aix Marseille Univ, CPPM, Marseille, France. [Li, S.] CNRS, IN2P3, Marseille, France. [Liang, Z.; Soh, D. A.; Weng, Z.] Sun Yat Sen Univ, Sch Phys & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Lin, S. C.] Acad Sinica, Inst Phys, Acad Sinica Grid Comp, Taipei, Taiwan. [Amorim, A.] Shandong Univ, Sch Phys, Jinan, Shandong, Peoples R China. [Messina, A.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Mountricha, E.; Xu, C.] CEA Saclay, DSM IRFU, Commissariat Energie Atom & Energies Alternat, F-91191 Gif Sur Yvette, France. [Nessi, M.] Univ Geneva, Sect Phys, Geneva, Switzerland. [Onofre, A.] Univ Minho, Dept Fis, Braga, Portugal. [Onyisi, P. U. E.] Univ Texas Austin, Dept Phys, Austin, TX USA. [Park, W.; Purohit, M.] Univ S Carolina, Dept Phys & Astron, Columbia, SC 29208 USA. [Toth, J.] Wigner Res Ctr Phys, Inst Particle & Nucl Phys, Budapest, Hungary. [Perez, K.] CALTECH, Pasadena, CA 91125 USA. [Richter-Was, E.] Jagiellonian Univ, Inst Phys, Krakow, Poland. [Ruan, X.] Univ Paris 11, LAL, Orsay, France. [Smirnova, L. N.] Moscow MV Lomonosov State Univ, Fac Phys, Moscow, Russia. [Spousta, M.] Columbia Univ, Nevis Lab, Irvington, NY USA. [Tsionou, D.] Univ Sheffield, Dept Phys & Astron, Sheffield, S Yorkshire, England. [Vickey, T.] Univ Oxford, Dept Phys, Oxford, England. [Wu, Y.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Yacoob, S.] Univ KwaZulu Natal, Discipline Phys, Durban, South Africa. RP Aad, G (reprint author), Univ Freiburg, Fak Math & Phys, Hugstetter Str 55, D-79106 Freiburg, Germany. RI Villa, Mauro/C-9883-2009; Nemecek, Stanislav/G-5931-2014; Kepka, Oldrich/G-6375-2014; Lokajicek, Milos/G-7800-2014; Staroba, Pavel/G-8850-2014; Kupco, Alexander/G-9713-2014; Mikestikova, Marcela/H-1996-2014; Kuday, Sinan/C-8528-2014; Snesarev, Andrey/H-5090-2013; Tomasek, Lukas/G-6370-2014; Svatos, Michal/G-8437-2014; Chudoba, Jiri/G-7737-2014; Peleganchuk, Sergey/J-6722-2014; Ferrando, James/A-9192-2012; Casadei, Diego/I-1785-2013; La Rosa, Alessandro/I-1856-2013; Moraes, Arthur/F-6478-2010; Smirnov, Sergei/F-1014-2011; Conde Muino, Patricia/F-7696-2011; Andreazza, Attilio/E-5642-2011; Boyko, Igor/J-3659-2013; Kuleshov, Sergey/D-9940-2013; Anjos, Nuno/I-3918-2013; Kartvelishvili, Vakhtang/K-2312-2013; Dawson, Ian/K-6090-2013; Pina, Joao /C-4391-2012; Brooks, William/C-8636-2013; Amorim, Antonio/C-8460-2013; Vanyashin, Aleksandr/H-7796-2013; Ma, Hong/F-2725-2011; Rud, Vyacheslav/D-6838-2012; Alexa, Calin/F-6345-2010; Petrucci, Fabrizio/G-8348-2012; Annovi, Alberto/G-6028-2012; Stoicea, Gabriel/B-6717-2011; de Groot, Nicolo/A-2675-2009; Veneziano, Stefano/J-1610-2012; Doyle, Anthony/C-5889-2009; Della Pietra, Massimo/J-5008-2012; Cavalli-Sforza, Matteo/H-7102-2015; Negrini, Matteo/C-8906-2014; Ferrer, Antonio/H-2942-2015; Prokoshin, Fedor/E-2795-2012; Hansen, John/B-9058-2015; Grancagnolo, Sergio/J-3957-2015; spagnolo, stefania/A-6359-2012; Shmeleva, Alevtina/M-6199-2015; Camarri, Paolo/M-7979-2015; Gavrilenko, Igor/M-8260-2015; Tikhomirov, Vladimir/M-6194-2015; Chekulaev, Sergey/O-1145-2015; Santamarina Rios, Cibran/K-4686-2014; Bosman, Martine/J-9917-2014; Castro, Nuno/D-5260-2011; Demirkoz, Bilge/C-8179-2014; Gutierrez, Phillip/C-1161-2011; Ventura, Andrea/A-9544-2015; Mitsou, Vasiliki/D-1967-2009; Joergensen, Morten/E-6847-2015; Mir, Lluisa-Maria/G-7212-2015; Riu, Imma/L-7385-2014; Cabrera Urban, Susana/H-1376-2015; Garcia, Jose /H-6339-2015; Fassi, Farida/F-3571-2016; Zaitsev, Alexandre/B-8989-2017; Yang, Haijun/O-1055-2015; Monzani, Simone/D-6328-2017; Grancagnolo, Francesco/K-2857-2015; Korol, Aleksandr/A-6244-2014; Karyukhin, Andrey/J-3904-2014; Nechaeva, Polina/N-1148-2015; Olshevskiy, Alexander/I-1580-2016; Vanadia, Marco/K-5870-2016; Ippolito, Valerio/L-1435-2016; Mora Herrera, Maria Clemencia/L-3893-2016; Maneira, Jose/D-8486-2011; KHODINOV, ALEKSANDR/D-6269-2015; Goncalo, Ricardo/M-3153-2016; Gauzzi, Paolo/D-2615-2009; O'Shea, Val/G-1279-2010; Gerbaudo, Davide/J-4536-2012; Solodkov, Alexander/B-8623-2017; Gorelov, Igor/J-9010-2015; Gladilin, Leonid/B-5226-2011; Carvalho, Joao/M-4060-2013; Mashinistov, Ruslan/M-8356-2015; Gonzalez de la Hoz, Santiago/E-2494-2016; Guo, Jun/O-5202-2015; Wemans, Andre/A-6738-2012; Leyton, Michael/G-2214-2016; Jones, Roger/H-5578-2011; Vranjes Milosavljevic, Marija/F-9847-2016; SULIN, VLADIMIR/N-2793-2015; Solfaroli Camillocci, Elena/J-1596-2012; Tudorache, Alexandra/L-3557-2013; Tudorache, Valentina/D-2743-2012; Marti-Garcia, Salvador/F-3085-2011; Shabalina, Elizaveta/M-2227-2013; Wolters, Helmut/M-4154-2013; Warburton, Andreas/N-8028-2013; De, Kaushik/N-1953-2013; Sukharev, Andrey/A-6470-2014; Lee, Jason/B-9701-2014; Robson, Aidan/G-1087-2011; Smirnova, Oxana/A-4401-2013; Fabbri, Laura/H-3442-2012 OI Villa, Mauro/0000-0002-9181-8048; Mikestikova, Marcela/0000-0003-1277-2596; Kuday, Sinan/0000-0002-0116-5494; Tomasek, Lukas/0000-0002-5224-1936; Svatos, Michal/0000-0002-7199-3383; Peleganchuk, Sergey/0000-0003-0907-7592; Ferrando, James/0000-0002-1007-7816; La Rosa, Alessandro/0000-0001-6291-2142; Moraes, Arthur/0000-0002-5157-5686; Smirnov, Sergei/0000-0002-6778-073X; Conde Muino, Patricia/0000-0002-9187-7478; Andreazza, Attilio/0000-0001-5161-5759; Boyko, Igor/0000-0002-3355-4662; Kuleshov, Sergey/0000-0002-3065-326X; Pina, Joao /0000-0001-8959-5044; Brooks, William/0000-0001-6161-3570; Vanyashin, Aleksandr/0000-0002-0367-5666; Petrucci, Fabrizio/0000-0002-5278-2206; Annovi, Alberto/0000-0002-4649-4398; Stoicea, Gabriel/0000-0002-7511-4614; Veneziano, Stefano/0000-0002-2598-2659; Doyle, Anthony/0000-0001-6322-6195; Della Pietra, Massimo/0000-0003-4446-3368; Negrini, Matteo/0000-0003-0101-6963; Ferrer, Antonio/0000-0003-0532-711X; Prokoshin, Fedor/0000-0001-6389-5399; Hansen, John/0000-0002-8422-5543; Grancagnolo, Sergio/0000-0001-8490-8304; spagnolo, stefania/0000-0001-7482-6348; Camarri, Paolo/0000-0002-5732-5645; Tikhomirov, Vladimir/0000-0002-9634-0581; Santamarina Rios, Cibran/0000-0002-9810-1816; Bosman, Martine/0000-0002-7290-643X; Castro, Nuno/0000-0001-8491-4376; Ventura, Andrea/0000-0002-3368-3413; Mitsou, Vasiliki/0000-0002-1533-8886; Joergensen, Morten/0000-0002-6790-9361; Mir, Lluisa-Maria/0000-0002-4276-715X; Riu, Imma/0000-0002-3742-4582; Giordani, Mario/0000-0002-0792-6039; Di Micco, Biagio/0000-0002-4067-1592; Doria, Alessandra/0000-0002-5381-2649; Veloso, Filipe/0000-0002-5956-4244; Gomes, Agostinho/0000-0002-5940-9893; Fassi, Farida/0000-0002-6423-7213; Osculati, Bianca Maria/0000-0002-7246-060X; Santos, Helena/0000-0003-1710-9291; Haas, Andrew/0000-0002-4832-0455; Zaitsev, Alexandre/0000-0002-4961-8368; Monzani, Simone/0000-0002-0479-2207; Grancagnolo, Francesco/0000-0002-9367-3380; Korol, Aleksandr/0000-0001-8448-218X; Maio, Amelia/0000-0001-9099-0009; Fiolhais, Miguel/0000-0001-9035-0335; Karyukhin, Andrey/0000-0001-9087-4315; Anjos, Nuno/0000-0002-0018-0633; Smestad, Lillian/0000-0002-0244-8736; Olshevskiy, Alexander/0000-0002-8902-1793; Vanadia, Marco/0000-0003-2684-276X; Ippolito, Valerio/0000-0001-5126-1620; Mora Herrera, Maria Clemencia/0000-0003-3915-3170; Maneira, Jose/0000-0002-3222-2738; KHODINOV, ALEKSANDR/0000-0003-3551-5808; Goncalo, Ricardo/0000-0002-3826-3442; Gauzzi, Paolo/0000-0003-4841-5822; O'Shea, Val/0000-0001-7183-1205; Gerbaudo, Davide/0000-0002-4463-0878; Solodkov, Alexander/0000-0002-2737-8674; Gorelov, Igor/0000-0001-5570-0133; Gladilin, Leonid/0000-0001-9422-8636; Carvalho, Joao/0000-0002-3015-7821; Mashinistov, Ruslan/0000-0001-7925-4676; Gonzalez de la Hoz, Santiago/0000-0001-5304-5390; Guo, Jun/0000-0001-8125-9433; Wemans, Andre/0000-0002-9669-9500; Leyton, Michael/0000-0002-0727-8107; Jones, Roger/0000-0002-6427-3513; Vranjes Milosavljevic, Marija/0000-0003-4477-9733; SULIN, VLADIMIR/0000-0003-3943-2495; Solfaroli Camillocci, Elena/0000-0002-5347-7764; Wolters, Helmut/0000-0002-9588-1773; Warburton, Andreas/0000-0002-2298-7315; De, Kaushik/0000-0002-5647-4489; Lee, Jason/0000-0002-2153-1519; Smirnova, Oxana/0000-0003-2517-531X; Fabbri, Laura/0000-0002-4002-8353 FU ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWIT, Austria; FWF, Austria; ANAS Azerbaijan; SSTC, Belarus; CNPq, Brazil; PAPESP, Brazil; NSERC, Canada; NRC, Canada; CFI, Canada; CERN; CONICYT, Chile; CAS, China; MOST, China; NSFC, China; COLCIENCIAS, Colombia; MSMT CR, Czech Republic; MPO CR, Czech Republic; VSC CR, Czech Republic; DNRF, Denmark; ONSRC, Denmark; Lundbeck Foundation, Denmark; EPLANET; ERC; NSRF; European Union; IN2P3-CNRS, France; CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, Germany; DFG, Germany; HOF, Germany; MPG, Germany; AvH Foundation, Germany; GSRT; NSRF Greece; ISF MINERVA; CIF; DIP; Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; JSPS, Japan; CNRST, Morocco; FOM, Netherlands; NWO, Netherlands; BRF, Norway; RCN, Norway; MNiSW, Poland; GRICES; FCT, Portugal; MERYS (MECTS), Romania; MES of Russia; ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS; MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, United Kingdom; Royal Society, United Kingdom; Leverhulme Trust, United Kingdom; DOE, United States of America; NSF, United States of America FX We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWIT and FWF, Austria; ANAS Azerbaijan; SSTC, Belarus; CNPq and PAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic: DNRF, ONSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HOF, MPG and AvH Foundation, Germany; GSRT and NSRF Greece; ISF MINERVA, CIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal: MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain: SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. NR 73 TC 8 Z9 8 U1 6 U2 151 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB PY 2013 IS 2 AR 095 DI 10.1007/JHEP02(2013)095 PG 47 WC Physics, Particles & Fields SC Physics GA 108EE UT WOS:000316273700018 ER PT J AU Arvanitaki, A Craig, N Dimopoulos, S Villadoro, G AF Arvanitaki, Asimina Craig, Nathaniel Dimopoulos, Savas Villadoro, Giovanni TI Mini-Split SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Beyond Standard Model; Supersymmetric Standard Model; Supersymmetric Effective Theories ID DYNAMICAL SUPERSYMMETRY BREAKING; STANDARD MODEL; CONSTRAINTS; PARTICLE; SEARCH; SCALE; BOSON; MASS; LHC; TEV AB The lack of evidence for new physics beyond the standard model at the LHC points to a paucity of new particles near the weak scale. This suggests that the weak scale is tuned and that supersymmetry, if present at all, is realized at higher energies. The measured Higgs mass constrains the scalar sparticles to be below 10(5) TeV, while gauge coupling unification favors Higgsinos below 100 TeV. Nevertheless, in many models gaugino masses are suppressed and remain within reach of the LHC. Tuning the weak scale and the renormalization group evolution of the scalar masses constrain Split model building. Due to the small gaugino masses, either the squarks or the up-higgs often run tachyonic; in the latter case, successful electroweak breaking requires heavy higgsinos near the scalar sparticles. We discuss the consequences of tuning the weak scale and the phenomenology of several models of Split supersymmetry including anomaly mediation, U(1)(B-L) mediation, and Split gauge mediation. C1 [Arvanitaki, Asimina; Dimopoulos, Savas] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA. [Craig, Nathaniel] Rutgers State Univ, Dept Phys, Piscataway, NJ 08854 USA. [Craig, Nathaniel] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA. [Villadoro, Giovanni] Stanford Univ, SLAC, Menlo Pk, CA 94025 USA. RP Arvanitaki, A (reprint author), Stanford Univ, Stanford Inst Theoret Phys, 382 Via Pueblo Mall, Stanford, CA 94305 USA. EM aarvan@stanford.edu; ncraig@ias.edu; savas@stanford.edu; giovanni.villadoro@cern.ch FU ERC grant BSMOXFORD [228169]; DOE [DE-FG02-96ER40959]; Institute for Advanced Study FX This work was partially supported by ERC grant BSMOXFORD no. 228169. NC was supported in part by DOE grant DE-FG02-96ER40959 and the Institute for Advanced Study. NR 51 TC 119 Z9 119 U1 1 U2 6 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB PY 2013 IS 2 AR 126 DI 10.1007/JHEP02(2013)126 PG 26 WC Physics, Particles & Fields SC Physics GA 108EE UT WOS:000316273700049 ER PT J AU Carena, M Gori, S Low, I Shah, NR Wagner, CEM AF Carena, M. Gori, S. Low, I. Shah, N. R. Wagner, C. E. M. TI Vacuum stability and Higgs diphoton decays in the MSSM SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Supersymmetry Phenomenology ID SUPERSYMMETRIC STANDARD MODEL; EXPLICIT CP VIOLATION; COMPUTATIONAL TOOL; ATLAS DETECTOR; FIELD-THEORY; BOSON; PHENOMENOLOGY; CONSTRAINTS; COUPLINGS; SEARCH AB Current Higgs data at the Large Hadron Collider is compatible with a SM signal at the 2 sigma level, but the central value of the signal strength in the diphoton channel is enhanced with respect to the SM expectation. If the enhancement resides in the diphoton partial decay width, the data could be accommodated in the Minimally Supersymmetric Standard Model (MSSM) with highly mixed light staus. We revisit the issue of vacuum instability induced by large mixing in the stau sector, including effects of a radiatively-corrected tau Yukawa coupling. Further, we emphasize the importance of taking into account the tan beta dependence in the stability bound. While the metastability of the Universe constrains the possible enhancement in the Higgs to diphoton decay width in the light stau scenario, an increase of the order of 50% can be achieved in the region of large tan beta. Larger enhancements may be obtained, but would require values of tan beta associated with non-perturbative values of the tau Yukawa coupling at scales below the GUT scale, thereby implying the presence of new physics beyond the MSSM. C1 [Carena, M.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Carena, M.; Gori, S.; Wagner, C. E. M.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Carena, M.; Wagner, C. E. M.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Gori, S.; Low, I.; Wagner, C. E. M.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Low, I.] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA. [Low, I.] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA. [Shah, N. R.] Univ Michigan, Dept Phys, Michigan Ctr Theoret Phys, Ann Arbor, MI 48109 USA. RP Carena, M (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. EM carena@fnal.gov; goris@uchicago.edu; ilow@anl.gov; nausheen@fnal.gov; cwagner@hep.anl.gov FU U.S. Department of Energy [DE-AC02-07CH11359, DE-AC02-06CH11357, DE-FG02-91ER40684]; National Science Foundation [NSF PHY11-25915]; Simons Foundation [230683]; DoE [DE-SC0007859] FX We acknowledge correspondences with Junji Hisano and Carroll Wainwright. We would like to thank Wolfgang Altmannshofer for discussions. SG thanks the Galileo Galilei Institute for Theoretical Physics for its hospitality during the completion of this work. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy. Work at ANL is supported in part by the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. Work at Northwestern is supported in part by the U.S. Department of Energy under Contract No. DE-FG02-91ER40684. Work at KITP is supported by the National Science Foundation under Grant No. NSF PHY11-25915. I. L. was partially supported by the Simons Foundation under award No. 230683. N.R.S is supported by the DoE grant No. DE-SC0007859. NR 84 TC 44 Z9 44 U1 0 U2 2 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB PY 2013 IS 2 AR 114 DI 10.1007/JHEP02(2013)114 PG 23 WC Physics, Particles & Fields SC Physics GA 108EE UT WOS:000316273700037 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Aguilo, E Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Pernicka, M Rabady, D Rahbaran, B Rohringer, C Rohringer, H Schofbeck, R Strauss, J Taurok, A Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Luyckx, S Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Suarez, RG Kalogeropoulos, A Maes, M Olbrechts, A Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hreus, T Leonard, A Marage, PE Mohammadi, A Reis, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Cimmino, A Costantini, S Garcia, G Grunewald, M Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Sigamani, M Strobbe, N Thyssen, F Tytgat, M Walsh, S Yazgan, E Zaganidis, N Basegmez, S Bruno, G Castello, R Ceard, L Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Malek, M Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santoro, A Jorge, LS Sznajder, A Pereira, AV Anjos, TS Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vutova, M Dimitrov, A Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Zang, J Zhang, Z Asawatangtrakuldee, C Ban, Y Guo, Y Li, W Liu, S Mao, Y Qian, SJ Teng, H Wang, D Zhang, L Zou, W Avila, C Montoya, CAC Gomez, JP Moreno, BG Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Duric, S Kadija, K Luetic, J Mekterovic, D Morovic, S Tikvica, L Attikis, A Galanti, M Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Elgammal, S Kamel, AE Awad, AMK Mahmoud, MA Radi, A Kadastik, M Muntel, M Murumaa, M Raidal, M Rebane, L Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Korpela, A Tuuva, T Besancon, M Choudhury, S Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Locci, PJE Malcles, J Millischer, L Nayak, A Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Busson, P Charlot, C Daci, N Dahms, T Dalchenko, M Dobrzynski, L Florent, A de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Fontaine, JC Gele, D Goerlach, U Juillot, P Le Bihan, AC Van Hove, P Beauceron, S Beaupere, N Bondu, O Boudoul, G Brochet, S Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Sgandurra, L Sordini, V Tschudi, Y Verdier, P Viret, S Tsamalaidze, Z Autermann, C Beranek, S Calpas, B Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Padeken, K Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Thuer, S Weber, M Bontenackels, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Sauerland, P Stahl, A Martin, MA Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Castro, E Costanza, F Dammann, D Pardos, CD Dorland, T Eckerlin, G Eckstein, D Flucke, G Geiser, A Glushkov, I Gunnellini, P Habib, S Hauk, J Hellwig, G Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Knutsson, A Kramer, M Krucker, D Kuznetsova, E Lange, W Leonard, J Lohmann, W Lutz, B Mankel, R Marfin, I Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Novgorodova, O Nowak, F Olzem, J Perrey, H Petrukhin, A Pitzl, D Raspereza, A Cipriano, PMR Riedl, C Ron, E Rosin, M Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Spiridonov, A Stein, M Walsh, R Wissing, C Blobel, V Enderle, H Erfle, J Gebbert, U Gorner, M Gosselink, M Haller, J Hermanns, T Hoeing, RS Kaschube, K Kaussen, G Kirschenmann, H Klanner, R Lange, J Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schroder, M Schum, T Seidel, M Sibille, J Sola, V Stadie, H Steinbruck, G Thomsen, J Vanelderen, L Barth, C Baus, C Berger, J Boser, C Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hackstein, C Hartmann, F Hauth, T Heinrich, M Held, H Hoffmann, KH Husemann, U Katkov, I Komaragiri, JR Pardo, PL Martschei, D Mueller, S Muller, T Niegel, M Nurnberg, A Oberst, O Oehler, A Ott, J Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Rocker, S Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Zeise, M Anagnostou, G Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Ntomari, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mehta, MZ Mittal, M Nishu, N Saini, LK Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Malhotra, S Naimuddin, M Ranjan, K Saxena, P Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Aziz, T Chatterjee, RM Ganguly, S Guchait, M Gurtu, A Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Banerjee, S Dugad, S Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Hesari, H Jafari, A Khakzad, M Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, P Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Tosi, S Benaglia, A De Guio, F Di Matteo, L Fiorendi, S Gennai, S Ghezzi, A Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N De Cosa, A Dogangun, O Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bellan, P Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Dosselli, U Gasparini, F Gasparini, U Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Nespolo, M Pazzini, J Ronchese, P Simonetto, F Torassa, E Vanini, S Zotto, P Zumerle, G Gabusi, M Ratti, SP Riccardi, C Torre, P Vitulo, P Biasini, M Bilei, GM Fano, L Lariccia, P Mantovani, G Menichelli, M Nappi, A Romeo, F Saha, A Santocchia, A Spiezia, A Taroni, S Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Diemoz, M Fanelli, C Grassi, M Longo, E Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Cartiglia, N Casasso, S Costa, M Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B Marone, M Montanino, D Penzo, A Schizzi, A Kim, TY Nam, SK Chang, S Kim, DH Kim, GN Kong, DJ Park, H Son, DC Son, T Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Moon, DH Park, SK Roh, Y Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kim, MS Kwon, E Lee, B Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Juodagalvis, A Castilla-Valdez, H De la Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Martinez-Ortega, J Hernandez, AS Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Bell, AJ Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Asghar, MI Butt, J Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Wolszczak, W Almeida, N Bargassa, P David, A Faccioli, P Parracho, PGF Gallinaro, M Seixas, J Varela, J Vischia, P Belotelov, I Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Malakhov, A Moisenz, P Palichik, V Perelygin, V Shmatov, S Smirnov, V Volodko, A Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Erofeeva, M Gavrilov, V Kossov, M Lychkovskaya, N Popov, V Safronov, G Semenov, S Shreyber, I Stolin, V Vlasov, E Zhokin, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Markina, A Obraztsov, S Perfilov, M Petrushanko, S Popov, A Sarycheva, L Savrin, V Snigirev, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Azhgirey, I Bayshev, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Olmeda, AQ Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C Codispoti, G de Troconiz, JF Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Gomez, JP Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Graziano, A Jorda, C Virto, AL Marco, J Rivero, CM Matorras, F Sanchez, FJM Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC D'Enterria, D Dabrowski, A De Roeck, A Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Frisch, B Funk, W Georgiou, G Giffels, M Gigi, D Gill, K Giordano, D Girone, M Giunta, M Glege, F Garrido, RGR Govoni, P Gowdy, S Guida, R Hammer, J Hansen, M Harris, P Hartl, C Harvey, J Hegner, B Hinzmann, A Innocente, V Janot, P Kaadze, K Karavakis, E Kousouris, K Lecoq, P Lee, YJ Lenzi, P Lourenco, C Magini, N Maki, T Malberti, M Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mulders, M Musella, P Nesvold, E Orsini, L Cortezon, EP Perez, E Perrozzi, L Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Polese, G Quertenmont, L Racz, A Reece, W Antunes, JR Rolandi, G Rovelli, C Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Segoni, I Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Tsirou, A Veres, GI Vlimant, JR Wohri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Bachmair, F Bani, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Eugster, J Freudenreich, K Grab, C Hits, D Lecomte, P Lustermann, W Marini, AC del Arbol, PMR Mohr, N Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pape, L Pauss, F Peruzzi, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Wehrli, L Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Kilminster, B Mejias, BM Otiougova, P Robmann, P Snoek, H Tupputi, S Verzetti, M Chang, YH Chen, KH Ferro, C Kuo, CM Li, SW Lin, W Lu, YJ Singh, AP Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wan, X Wang, M Asavapibhop, B Simili, E Srimanobhas, N Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Karaman, T Karapinar, G Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, LN Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Yildirim, E Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Bahtiyar, H Barlas, E Cankocak, K Gunaydin, YO Vardarli, FI Yucel, M Levchuk, L Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Williams, T Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Ball, G Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Kenzie, M Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Sparrow, A Stoye, M Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Whyntie, T Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Hatakeyama, K Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A John, JS Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Alimena, J Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Jabeen, S Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Dolen, J Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Mall, O Miceli, T Nelson, R Pellett, D Ricci-Tam, F Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Yohay, R Andreev, V Cline, D Cousins, R Duris, J Erhan, S Everaerts, P Farrell, C Hauser, J Ignatenko, M Jarvis, C Rakness, G Schlein, P Traczyk, P Valuev, V Weber, M Babb, J Clare, R Dinardo, ME Ellison, J Gary, JW Giordano, F Hanson, G Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Mangano, B Padhi, S Palmer, C Petrucciani, G Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P George, C Golf, F Incandela, J Justus, C Kalavase, P Kovalskyi, D Krutelyov, V Lowette, S Villalba, RM Mccoll, N Pavlunin, V Ribnik, J Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Chen, Y Di Marco, E Duarte, J Gataullin, M Ma, Y Mott, A Newman, HB Rogan, C Spiropulu, M Timciuc, V Veverka, J Wilkinson, R Xie, S Yang, Y Zhu, RY Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Liu, YF Paulini, M Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Eggert, N Gibbons, LK Heltsley, B Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Vaughan, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Elvira, VD Fisk, I Freeman, J Gao, Y Green, D Gutsche, O Hanlon, J Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Klima, B Kunori, S Kwan, S Leonidopoulos, C Linacre, J Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Park, M Remington, R Rinkevicius, A Sellers, P Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Vodopiyanov, I Yumiceva, F Adams, MR Apanasevich, L Bai, Y Bazterra, VE Betts, RR Bucinskaite, I Callner, J Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Lacroix, F O'Brien, C Silkworth, C Strom, D Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Duru, F Griffiths, S Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Onel, Y Ozok, F Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Swartz, M Whitbeck, A Baringer, P Bean, A Benelli, G Kenny, RP Murray, M Noonan, D Sanders, S Stringer, R Tinti, G Wood, JS Barfuss, AF Bolton, T Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kim, M Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Peterman, A Skuja, A Temple, J Tonjes, MB Tonwar, SC Apyan, A Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Ceballos, GG Goncharov, M Kim, Y Klute, M Krajczar, K Levin, A Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Stockli, F Sumorok, K Sung, K Velicanu, D Wenger, EA Wolf, R Wyslouch, B Yang, M Yilmaz, Y Yoon, AS Zanetti, M Zhukova, V Dahmes, B De Benedetti, A Franzoni, G Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Cremaldi, LM Kroeger, R Perera, L Rahmat, R Sanders, DA Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Eads, M Keller, J Kravchenko, I Lazo-Flores, J Malik, S Snow, GR Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Rappoccio, S Wan, Z Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Nash, D Orimoto, T Trocino, D Wood, D Zhang, J Anastassov, A Hahn, KA Kubik, A Lusito, L Mucia, N Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Berry, D Brinkerhoff, A Chan, KM Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Antonelli, L Bylsma, B Durkin, LS Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Vuosalo, C Williams, G Winer, BL Berry, E Elmer, P Halyo, V Hebda, P Hegeman, J Hunt, A Jindal, P Koay, SA Pegna, DL Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zenz, SC Zuranski, A Brownson, E Lopez, A Mendez, H Vargas, JER Alagoz, E Barnes, VE Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Marono, MV Yoo, HD Zablocki, J Zheng, Y Guragain, S Parashar, N Adair, A Akgun, B Boulahouache, C Ecklund, KM Geurts, FJM Li, W Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Hard, A Miner, DC Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Rose, K Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Walker, M Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Sengupta, S Suarez, I Tatarinov, A Toback, D Akchurin, N Damgov, J Dragoiu, C Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Florez, C Greene, S Gurrola, A Johns, W Kurt, P Maguire, C Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Sakharov, A Anderson, M Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Friis, E Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Loveless, R Mohapatra, A Mozer, MU Ojalvo, I Palmonari, F Pierro, GA Ross, I Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Aguilo, E. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Pernicka, M. Rabady, D. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Luyckx, S. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, M. Olbrechts, A. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hreus, T. Leonard, A. Marage, P. E. Mohammadi, A. Reis, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Cimmino, A. Costantini, S. Garcia, G. Grunewald, M. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Bruno, G. Castello, R. Ceard, L. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Correa Martins Junior, M. Martins, T. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Malek, M. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Soares Jorge, L. Sznajder, A. Vilela Pereira, A. Anjos, T. S. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vutova, M. Dimitrov, A. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Zang, J. Zhang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, W. Liu, S. Mao, Y. Qian, S. J. Teng, H. Wang, D. Zhang, L. Zou, W. Avila, C. Carrillo Montoya, C. A. Gomez, J. P. Gomez Moreno, B. Osorio Oliveros, A. F. Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Mekterovic, D. Morovic, S. Tikvica, L. Attikis, A. Galanti, M. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Elgammal, S. Kamel, A. Ellithi Awad, A. M. Kuotb Mahmoud, M. A. Radi, A. Kadastik, M. Muentel, M. Murumaa, M. Raidal, M. Rebane, L. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Korpela, A. Tuuva, T. Besancon, M. Choudhury, S. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Locci, P. Jarry E. Malcles, J. Millischer, L. Nayak, A. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Busson, P. Charlot, C. Daci, N. Dahms, T. Dalchenko, M. Dobrzynski, L. Florent, A. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Veelken, C. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Fontaine, J. -C. Gele, D. Goerlach, U. Juillot, P. Le Bihan, A. -C. Van Hove, P. Beauceron, S. Beaupere, N. Bondu, O. Boudoul, G. Brochet, S. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Sgandurra, L. Sordini, V. Tschudi, Y. Verdier, P. Viret, S. Tsamalaidze, Z. Autermann, C. Beranek, S. Calpas, B. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Padeken, K. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Thueer, S. Weber, M. Bontenackels, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Sauerland, P. Stahl, A. Martin, M. Aldaya Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Castro, E. Costanza, F. Dammann, D. Pardos, C. Diez Dorland, T. Eckerlin, G. Eckstein, D. Flucke, G. Geiser, A. Glushkov, I. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Leonard, J. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Nowak, F. Olzem, J. Perrey, H. Petrukhin, A. Pitzl, D. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Rosin, M. Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Spiridonov, A. Stein, M. Walsh, R. Wissing, C. Blobel, V. Enderle, H. Erfle, J. Gebbert, U. Goerner, M. Gosselink, M. Haller, J. Hermanns, T. Hoeing, R. S. Kaschube, K. Kaussen, G. Kirschenmann, H. Klanner, R. Lange, J. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schroeder, M. Schum, T. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbrueck, G. Thomsen, J. Vanelderen, L. Barth, C. Baus, C. Berger, J. Boeser, C. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hackstein, C. Hartmann, F. Hauth, T. Heinrich, M. Held, H. Hoffmann, K. H. Husemann, U. Katkov, I. Komaragiri, J. R. Pardo, P. Lobelle Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Oehler, A. Ott, J. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Roecker, S. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Zeise, M. Anagnostou, G. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Ntomari, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mehta, M. Z. Mittal, M. Nishu, N. Saini, L. K. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Malhotra, S. Naimuddin, M. Ranjan, K. Saxena, P. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Chatterjee, R. M. Ganguly, S. Guchait, M. Gurtu, A. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Hesari, H. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, P. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Tosi, S. Benaglia, A. De Guio, F. Di Matteo, L. Fiorendi, S. Gennai, S. Ghezzi, A. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. De Cosa, A. Dogangun, O. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellan, P. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Dosselli, U. Gasparini, F. Gasparini, U. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Nespolo, M. Pazzini, J. Ronchese, P. Simonetto, F. Torassa, E. Vanini, S. Zotto, P. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Torre, P. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Taroni, S. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Fanelli, C. Grassi, M. Longo, E. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Kim, T. Y. Nam, S. K. Chang, S. Kim, D. H. Kim, G. N. Kong, D. J. Park, H. Son, D. C. Son, T. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Kwon, E. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Juodagalvis, A. Castilla-Valdez, H. De la Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Martinez-Ortega, J. Sanchez Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Bell, A. J. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Asghar, M. I. Butt, J. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Wolszczak, W. Almeida, N. Bargassa, P. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Seixas, J. Varela, J. Vischia, P. Belotelov, I. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Malakhov, A. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Erofeeva, M. Gavrilov, V. Kossov, M. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Shreyber, I. Stolin, V. Vlasov, E. Zhokin, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Perfilov, M. Petrushanko, S. Popov, A. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Piedra Gomez, J. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Graziano, A. Jorda, C. Lopez Virto, A. Marco, J. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa D'Enterria, D. Dabrowski, A. De Roeck, A. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Frisch, B. Funk, W. Georgiou, G. Giffels, M. Gigi, D. Gill, K. Giordano, D. Girone, M. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Govoni, P. Gowdy, S. Guida, R. Hammer, J. Hansen, M. Harris, P. Hartl, C. Harvey, J. Hegner, B. Hinzmann, A. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Kousouris, K. Lecoq, P. Lee, Y. -J. Lenzi, P. Lourenco, C. Magini, N. Maeki, T. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mulders, M. Musella, P. Nesvold, E. Orsini, L. Cortezon, E. Palencia Perez, E. Perrozzi, L. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Polese, G. Quertenmont, L. Racz, A. Reece, W. Antunes, J. Rodrigues Rolandi, G. Rovelli, C. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Segoni, I. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Eugster, J. Freudenreich, K. Grab, C. Hits, D. Lecomte, P. Lustermann, W. Marini, A. C. del Arbol, P. Martinez Ruiz Mohr, N. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pape, L. Pauss, F. Peruzzi, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Wehrli, L. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Kilminster, B. Mejias, B. Millan Otiougova, P. Robmann, P. Snoek, H. Tupputi, S. Verzetti, M. Chang, Y. H. Chen, K. H. Ferro, C. Kuo, C. M. Li, S. W. Lin, W. Lu, Y. J. Singh, A. P. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wan, X. Wang, M. Asavapibhop, B. Simili, E. Srimanobhas, N. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Karaman, T. Karapinar, G. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, L. N. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Yildirim, E. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Bahtiyar, H. Barlas, E. Cankocak, K. Gunaydin, Y. O. Vardarli, F. I. Yucel, M. Levchuk, L. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Williams, T. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Ball, G. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Sparrow, A. Stoye, M. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Whyntie, T. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Hatakeyama, K. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. John, J. St. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Alimena, J. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Jabeen, S. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Breedon, R. Breto, G. Sanchez, M. Calderon De la Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Dolen, J. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Mall, O. Miceli, T. Nelson, R. Pellett, D. Ricci-Tam, F. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Yohay, R. Andreev, V. Cline, D. Cousins, R. Duris, J. Erhan, S. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Rakness, G. Schlein, P. Traczyk, P. Valuev, V. Weber, M. Babb, J. Clare, R. Dinardo, M. E. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. George, C. Golf, F. Incandela, J. Justus, C. Kalavase, P. Kovalskyi, D. Krutelyov, V. Lowette, S. Villalba, R. Magana Mccoll, N. Pavlunin, V. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Chen, Y. Di Marco, E. Duarte, J. Gataullin, M. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Spiropulu, M. Timciuc, V. Veverka, J. Wilkinson, R. Xie, S. Yang, Y. Zhu, R. Y. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Liu, Y. F. Paulini, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Heltsley, B. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Green, D. Gutsche, O. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kunori, S. Kwan, S. Leonidopoulos, C. Linacre, J. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Park, M. Remington, R. Rinkevicius, A. Sellers, P. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Vodopiyanov, I. Yumiceva, F. Adams, M. R. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Callner, J. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Lacroix, F. O'Brien, C. Silkworth, C. Strom, D. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Duru, F. Griffiths, S. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Onel, Y. Ozok, F. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Swartz, M. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Stringer, R. Tinti, G. Wood, J. S. Barfuss, A. F. Bolton, T. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kim, M. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Peterman, A. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Apyan, A. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Ceballos, G. Gomez Goncharov, M. Kim, Y. Klute, M. Krajczar, K. Levin, A. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Velicanu, D. Wenger, E. A. Wolf, R. Wyslouch, B. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Zhukova, V. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Cremaldi, L. M. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kravchenko, I. Lazo-Flores, J. Malik, S. Snow, G. R. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Rappoccio, S. Wan, Z. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Nash, D. Orimoto, T. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Hahn, K. A. Kubik, A. Lusito, L. Mucia, N. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Berry, D. Brinkerhoff, A. Chan, K. M. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Antonelli, L. Bylsma, B. Durkin, L. S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Vuosalo, C. Williams, G. Winer, B. L. Berry, E. Elmer, P. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Jindal, P. Koay, S. A. Pegna, D. Lopes Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zenz, S. C. Zuranski, A. Brownson, E. Lopez, A. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Barnes, V. E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Marono, M. Vidal Yoo, H. D. Zablocki, J. Zheng, Y. Guragain, S. Parashar, N. Adair, A. Akgun, B. Boulahouache, C. Ecklund, K. M. Geurts, F. J. M. Li, W. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Hard, A. Miner, D. C. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Rose, K. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Walker, M. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Sengupta, S. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Damgov, J. Dragoiu, C. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Florez, C. Greene, S. Gurrola, A. Johns, W. Kurt, P. Maguire, C. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sakharov, A. Anderson, M. Belknap, Donald A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Friis, E. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Loveless, R. Mohapatra, A. Mozer, M. U. Ojalvo, I. Palmonari, F. Pierro, G. A. Ross, I. Savin, A. Smith, W. H. Swanson, J. CA CMS Collaboration TI Search in leptonic channels for heavy resonances decaying to long-lived neutral particles SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE Hadron-Hadron Scattering ID DISPLACED VERTICES AB A search is performed for heavy resonances decaying to two long-lived massive neutral particles, each decaying to leptons. The experimental signature is a distinctive topology consisting of a pair of oppositely charged leptons originating at a separated secondary vertex. Events were collected by the CMS detector at the LHC during pp collisions at root s = 7 TeV, and selected from data samples corresponding to 4.1 (5.1) fb(-1) of integrated luminosity in the electron (muon) channel. No significant excess is observed above standard model expectations, and an upper limit is set with 95% confidence level on the production cross section times the branching fraction to leptons, as a function of the long-lived massive neutral particle lifetime. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Garcia, J. M. Vizan] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Lagana, C.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Inst Fis Teor CA, Sao Paulo, Brazil. [Anjos, T. S.; Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Estadual Paulista, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Tech, Beijing 100871, Peoples R China. [Avila, C.; Carrillo Montoya, C. A.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Awad, A. M. Kuotb; Mahmoud, M. A.; Radi, A.] Arab Republ Egypt, Acad Sci Res & Technol, Egyptian Network High Energy Phys, Cairo, Egypt. [Giammanco, A.; Kadastik, M.; Muentel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Choudhury, S.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Locci, P. Jarry E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, CNRS, Inst Pluridisciplinaire Hubert Curien,IN2P3, Strasbourg, France. [Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.] Univ Lyon 1, CNRS, Inst Phys Nucl Lyon, IN2P3, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Pardos, C. Diez; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Goerner, M.; Gosselink, M.; Haller, J.; Hermanns, T.; Hoeing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schroeder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Pardo, P. Lobelle; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Roecker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Ntomari, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Krajczar, K.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Saxena, P.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India. [Guchait, M.; Banerjee, S.; Dugad, S.] Tata Inst Fundamental Res HECR, Bombay, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] INFN Sez Bari, Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] INFN Sez Bologna, Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] INFN Sez Catania, Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] INFN Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Tropiano, A.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.] INFN Lab Nazl Frascati, Frascati, Italy. [Fabbricatore, P.; Musenich, R.; Tosi, S.] INFN Sez Genova, Genoa, Italy. [Tosi, S.] Univ Genoa, Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] INFN Sez Milano Bicocca, Milan, Italy. [De Guio, F.; Di Matteo, L.; Fiorendi, S.; Ghezzi, A.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] INFN Sez Napoli, Naples, Italy. [De Cosa, A.; Dogangun, O.; Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Nespolo, M.; Pazzini, J.; Ronchese, P.; Simonetto, F.; Torassa, E.; Vanini, S.; Zotto, P.; Zumerle, G.] INFN Sez Padova, Padua, Italy. [Bellan, P.; Bisello, D.; Branca, A.; Carlin, R.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Ronchese, P.; Simonetto, F.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] INFN Sez Pavia, Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Pioppi, M.] INFN Sez Perugia, Perugia, Italy. [Biasini, M.; Fano, L.; Lariccia, P.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Spiezia, A.; Taroni, S.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] INFN Sez Pisa, Pisa, Italy. [Fiori, F.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Soffi, L.] INFN Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Fanelli, C.; Grassi, M.; Longo, E.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.] INFN Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Casasso, S.; Costa, M.; Migliore, E.; Monaco, V.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.] INFN Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; Marone, M.; Montanino, D.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Son, D. C.; Son, T.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.] Vilnius State Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martinez-Ortega, J.; Sanchez Hernandez, A.; Villasenor-Cendejas, L. M.] Ctr Invest & Estudios Avanzados IPN, Mexico City, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bluj, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Tsamalaidze, Z.; Belotelov, I.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Rabady, D.; Genchev, V.; Iaydjiev, P.; Puljak, I.; Chierici, R.; Lingemann, J.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Mohanty, A. K.; Calabria, C.; De Filippis, N.; Meneghelli, M.; Di Matteo, L.; Gennai, S.; Lucchini, M. T.; De Cosa, A.; Paolucci, P.; Bacchetta, N.; Branca, A.; Nespolo, M.; D'Agnolo, R. T.; Fiori, F.; Squillacioti, P.; Meridiani, P.; Mariotti, C.; Musich, M.; Cossutti, F.; Marone, M.; Grishin, V.; Lenzi, P.; Lourenco, C.; Magini, N.; Maeki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Singh, A. P.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Simili, E.; Srimanobhas, N.; Suwonjandee, N.] Chulalongkorn Univ, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Bahtiyar, H.; Barlas, E.; Cankocak, K.; Vardarli, F. I.; Yucel, M.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Worm, S. D.; Newbold, D. M.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; John, J. St.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Nelson, R.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Felcini, M.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Villalba, R. Magana; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Tsamalaidze, Z.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.] Univ Illinois Chicago UIC, Chicago, IL USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kim, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Kim, Y.; Klute, M.; Krajczar, K.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Guragain, S.; Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Hard, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Belknap, Donald A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Anjos, T. S.; Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Santo Andre, Brazil. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Elgammal, S.] Zewail City Sci & Technol, Zewail, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Awad, A. M. Kuotb; Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Hashemi, M.] Shiraz Univ, Shiraz, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata, I-85100 Potenza, Italy. [Meola, S.] Univ Guglielmo Marconi, Rome, Italy. [Martini, L.] Univ Siena, I-53100 Siena, Italy. [Serban, A. T.] Univ Bucharest, Fac Phys, Bucharest, Romania. [Rolandi, G.] Scuola Normale Super Pisa, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Rovelli, C.] INFN Sez Roma, Rome, Italy. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Ozturk, S.] Univ Iowa, Iowa City, IA USA. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Cerci, S.; Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Bahtiyar, H.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Gunaydin, Y. O.] Kahramanmaras Sutcu Imam Univ, Kahramanmaras, Turkey. [Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Vilela Pereira, Antonio/L-4142-2016; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Yazgan, Efe/C-4521-2014; Matorras, Francisco/I-4983-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Azarkin, Maxim/N-2578-2015; Dubinin, Mikhail/I-3942-2016; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Sznajder, Andre/L-1621-2016; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Ragazzi, Stefano/D-2463-2009; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Marinho, Franciole/N-8101-2014; Ferguson, Thomas/O-3444-2014; Benussi, Luigi/O-9684-2014; Leonidov, Andrey/P-3197-2014; Dahms, Torsten/A-8453-2015; Grandi, Claudio/B-5654-2015; Raidal, Martti/F-4436-2012; VARDARLI, Fuat Ilkehan/B-6360-2013; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Bartalini, Paolo/E-2512-2014; Ligabue, Franco/F-3432-2014; Wulz, Claudia-Elisabeth/H-5657-2011; Codispoti, Giuseppe/F-6574-2014; Gunaydin, Yusuf/F-7300-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Tinti, Gemma/I-5886-2013; Hill, Christopher/B-5371-2012; Liu, Sheng/K-2815-2013; Zhukov, Valery/K-3615-2013; Venturi, Andrea/J-1877-2012; Wimpenny, Stephen/K-8848-2013; Markina, Anastasia/E-3390-2012; Dudko, Lev/D-7127-2012; Dogangun, Oktay/L-9252-2013; Wolszczak, Weronika/N-3113-2013; Marlow, Daniel/C-9132-2014; de Jesus Damiao, Dilson/G-6218-2012; Janssen, Xavier/E-1915-2013; Zalewski, Piotr/H-7335-2013; Mundim, Luiz/A-1291-2012; Kodolova, Olga/D-7158-2012; Ivanov, Andrew/A-7982-2013; Novaes, Sergio/D-3532-2012; Lokhtin, Igor/D-7004-2012; Fruhwirth, Rudolf/H-2529-2012; Tinoco Mendes, Andre David/D-4314-2011; Rolandi, Luigi (Gigi)/E-8563-2013; Montanari, Alessandro/J-2420-2012; Petrushanko, Sergey/D-6880-2012; Tomei, Thiago/E-7091-2012; Popov, Andrey/E-1052-2012; Menasce, Dario Livio/A-2168-2016; Bargassa, Pedrame/O-2417-2016; Sguazzoni, Giacomo/J-4620-2015; OI Vilela Pereira, Antonio/0000-0003-3177-4626; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Yazgan, Efe/0000-0001-5732-7950; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Tosi, Nicolo/0000-0002-0474-0247; Matorras, Francisco/0000-0003-4295-5668; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982; Dubinin, Mikhail/0000-0002-7766-7175; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Sznajder, Andre/0000-0001-6998-1108; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Ragazzi, Stefano/0000-0001-8219-2074; Rovelli, Tiziano/0000-0002-9746-4842; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Marinho, Franciole/0000-0002-7327-0349; Ferguson, Thomas/0000-0001-5822-3731; Benussi, Luigi/0000-0002-2363-8889; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Ligabue, Franco/0000-0002-1549-7107; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Codispoti, Giuseppe/0000-0003-0217-7021; Gunaydin, Yusuf/0000-0002-0514-6936; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Hill, Christopher/0000-0003-0059-0779; Wimpenny, Stephen/0000-0003-0505-4908; Dudko, Lev/0000-0002-4462-3192; Dogangun, Oktay/0000-0002-1255-2211; de Jesus Damiao, Dilson/0000-0002-3769-1680; Reis, Thomas/0000-0003-3703-6624; Luukka, Panja/0000-0003-2340-4641; Sogut, Kenan/0000-0002-9682-2855; Mundim, Luiz/0000-0001-9964-7805; Ivanov, Andrew/0000-0002-9270-5643; Novaes, Sergio/0000-0003-0471-8549; Tinoco Mendes, Andre David/0000-0001-5854-7699; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Montanari, Alessandro/0000-0003-2748-6373; Tomei, Thiago/0000-0002-1809-5226; Ulrich, Ralf/0000-0002-2535-402X; Lenzi, Piergiulio/0000-0002-6927-8807; Lucchini, Marco Toliman/0000-0002-7497-7450; Gutsche, Oliver/0000-0002-8015-9622; Raval, Amita/0000-0003-0164-4337; Torassa, Ezio/0000-0003-2321-0599; Verdier, Patrice/0000-0003-3090-2948; CHANG, PAO-TI/0000-0003-4064-388X; Faccioli, Pietro/0000-0003-1849-6692; Tuominen, Eija/0000-0002-7073-7767; Goldstein, Joel/0000-0003-1591-6014; Heath, Helen/0000-0001-6576-9740; Grassi, Marco/0000-0003-2422-6736; Gallinaro, Michele/0000-0003-1261-2277; Tabarelli de Fatis, Tommaso/0000-0001-6262-4685; Fiorendi, Sara/0000-0003-3273-9419; Toback, David/0000-0003-3457-4144; Martelli, Arabella/0000-0003-3530-2255; Abbiendi, Giovanni/0000-0003-4499-7562; Gonzi, Sandro/0000-0003-4754-645X; HSIUNG, YEE/0000-0003-4801-1238; Levchenko, Petr/0000-0003-4913-0538; Vidal Marono, Miguel/0000-0002-2590-5987; Martinez Ruiz del Arbol, Pablo/0000-0002-7737-5121; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Staiano, Amedeo/0000-0003-1803-624X; Ciulli, Vitaliano/0000-0003-1947-3396; Tonelli, Guido Emilio/0000-0003-2606-9156; Beuselinck, Raymond/0000-0003-2613-7446; Stober, Fred/0000-0003-2620-3159; Popov, Andrey/0000-0002-1207-0984; Casarsa, Massimo/0000-0002-1353-8964; Diemoz, Marcella/0000-0002-3810-8530; Landsberg, Greg/0000-0002-4184-9380; Rizzi, Andrea/0000-0002-4543-2718; Gershtein, Yuri/0000-0002-4871-5449; Tricomi, Alessia Rita/0000-0002-5071-5501; Malik, Sudhir/0000-0002-6356-2655; Leonidopoulos, Christos/0000-0002-7241-2114; Blekman, Freya/0000-0002-7366-7098; Menasce, Dario Livio/0000-0002-9918-1686; Bargassa, Pedrame/0000-0001-8612-3332; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Costa, Salvatore/0000-0001-9919-0569; Lloret Iglesias, Lara/0000-0002-0157-4765; Kasemann, Matthias/0000-0002-0429-2448; Sguazzoni, Giacomo/0000-0002-0791-3350; WANG, MIN-ZU/0000-0002-0979-8341; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299 FU BMWF; FWF (Austria); FNRS; FWO (Belgium); CNPq; CAPES; FAPERJ; FAPESP; MEYS (Bulgaria); CERN; CAS; MoST; NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER [SF0690030s09]; ERDF (Estonia); Academy of Finland; MEC; HIP (Finland); CEA; CNRS/IN2P3 (France); BMBF; DFG; HGF (Germany); GSRT (Greece); OTKA; NKTH (Hungary); DAE; DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF; WCU (Korea); LAS (Lithuania); CINVESTAV; CONACYT; SEP; UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE; NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON; RosAtom; RAS FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative sta ff s at CERN and at other CMS institutes for their contributions to the success of the CMS e ff ort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so e ff ectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEP, IPST and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). NR 19 TC 2 Z9 2 U1 4 U2 99 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB PY 2013 IS 2 AR 085 DI 10.1007/JHEP02(2013)085 PG 33 WC Physics, Particles & Fields SC Physics GA 108EE UT WOS:000316273700008 ER PT J AU Ko, BR Won, E Adachi, I Aihara, H Arinstein, K Asner, DM Aushev, T Bakich, AM Belous, K Bhardwaj, V Bhuyan, B Bondar, A Bonvicini, G Bozek, A Bracko, M Browder, TE Chekelian, V Chen, A Chen, P Cheon, BG Chilikin, K Chistov, R Cho, K Choi, SK Choi, Y Cinabro, D Dalseno, J Dolezal, Z Dutta, D Eidelman, S Esen, S Farhat, H Fast, JE Gaur, V Gabyshev, N Ganguly, S Gillard, R Goh, YM Golob, B Hayasaka, K Hayashii, H Hoshi, Y Hou, WS Hyun, HJ Iijima, T Ishikawa, A Iwasaki, Y Julius, T Kang, JH Kato, E Kiesling, C Kim, HO Kim, JB Kim, KT Kim, MJ Kim, YJ Kinoshita, K Klucar, J Korpar, S Kouzes, RT Krizan, P Krokovny, P Kuhr, T Kumita, T Kuzmin, A Kwon, YJ Li, Y Liu, C Liventsev, D Louvot, R Miyabayashi, K Miyata, H Mizuk, R Mohanty, GB Moll, A Muramatsu, N Nagasaka, Y Nakano, E Nakao, M Nedelkovska, E Ng, C Nellikunnummel, N Nishida, S Nishimura, K Nitoh, O Ogawa, S Ohshima, T Okuno, S Oswald, C Pakhlov, P Pakhlova, G Park, H Park, HK Pedlar, TK Pestotnik, R Petric, M Piilonen, LE Prothmann, K Ritter, M Rohrken, M Sahoo, H Saito, T Sakai, Y Sandilya, S Santelj, L Sanuki, T Sato, Y Schneider, O Schnell, G Schwanda, C Schwartz, AJ Senyo, K Seon, O Sevior, ME Shapkin, M Shen, CP Shibata, TA Shiu, JG Sibidanov, A Simon, F Smerkol, P Sohn, YS Solovieva, E Staric, M Sumiyoshi, T Tatishvili, G Teramoto, Y Trabelsi, K Tsuboyama, T Uchida, M Uglov, T Unno, Y Uno, S Van Hulse, C Vanhoefer, P Varner, G Wang, CH Wang, MZ Wang, P Watanabe, Y Williams, KM Yamashita, Y Zhang, CC Zhilich, V Zupanc, A AF Ko, B. R. Won, E. Adachi, I. Aihara, H. Arinstein, K. Asner, D. M. Aushev, T. Bakich, A. M. Belous, K. Bhardwaj, V. Bhuyan, B. Bondar, A. Bonvicini, G. Bozek, A. Bracko, M. Browder, T. E. Chekelian, V. Chen, A. Chen, P. Cheon, B. G. Chilikin, K. Chistov, R. Cho, K. Choi, S. -K. Choi, Y. Cinabro, D. Dalseno, J. Dolezal, Z. Dutta, D. Eidelman, S. Esen, S. Farhat, H. Fast, J. E. Gaur, V. Gabyshev, N. Ganguly, S. Gillard, R. Goh, Y. M. Golob, B. Hayasaka, K. Hayashii, H. Hoshi, Y. Hou, W. -S. Hyun, H. J. Iijima, T. Ishikawa, A. Iwasaki, Y. Julius, T. Kang, J. H. Kato, E. Kiesling, C. Kim, H. O. Kim, J. B. Kim, K. T. Kim, M. J. Kim, Y. J. Kinoshita, K. Klucar, J. Korpar, S. Kouzes, R. T. Krizan, P. Krokovny, P. Kuhr, T. Kumita, T. Kuzmin, A. Kwon, Y. -J. Li, Y. Liu, C. Liventsev, D. Louvot, R. Miyabayashi, K. Miyata, H. Mizuk, R. Mohanty, G. B. Moll, A. Muramatsu, N. Nagasaka, Y. Nakano, E. Nakao, M. Nedelkovska, E. Ng, C. Nellikunnummel, N. Nishida, S. Nishimura, K. Nitoh, O. Ogawa, S. Ohshima, T. Okuno, S. Oswald, C. Pakhlov, P. Pakhlova, G. Park, H. Park, H. K. Pedlar, T. K. Pestotnik, R. Petric, M. Piilonen, L. E. Prothmann, K. Ritter, M. Roehrken, M. Sahoo, H. Saito, T. Sakai, Y. Sandilya, S. Santelj, L. Sanuki, T. Sato, Y. Schneider, O. Schnell, G. Schwanda, C. Schwartz, A. J. Senyo, K. Seon, O. Sevior, M. E. Shapkin, M. Shen, C. P. Shibata, T. -A. Shiu, J. -G. Sibidanov, A. Simon, F. Smerkol, P. Sohn, Y. -S. Solovieva, E. Staric, M. Sumiyoshi, T. Tatishvili, G. Teramoto, Y. Trabelsi, K. Tsuboyama, T. Uchida, M. Uglov, T. Unno, Y. Uno, S. Van Hulse, C. Vanhoefer, P. Varner, G. Wang, C. H. Wang, M. -Z. Wang, P. Watanabe, Y. Williams, K. M. Yamashita, Y. Zhang, C. C. Zhilich, V. Zupanc, A. CA Belle Collaboration TI Search for CP Violation in the Decay D+ -> (KSK+)-K-0 SO JOURNAL OF HIGH ENERGY PHYSICS LA English DT Article DE CP violation; e plus -e- Experiments; Charm physics; Flavor physics ID WEAK DECAYS; ASYMMETRY AB We search for CP violation in the decay D+ -> (KSK+)-K-0 using a data sample with an integrated luminosity of 977 fb(-1) collected with the Belle detector at the KEKB e(+)e(-) asymmetric-energy collider. No CP violation has been observed and the CP asymmetry in D+ -> (KSK+)-K-0 decay is measured to be (-0.25 +/- 0.28 +/- 0.14)%, which is the most sensitive measurement to date. After subtracting CP violation due to K-0 - (K) over bar (0) mixing, the CP asymmetry in D+ -> (K) over tilde K-0(+) decay is found to be (+0.08 +/- 0.28 +/- 0.14)%. C1 [Schnell, G.; Van Hulse, C.] Univ Basque Country UPV EHU, Bilbao 48080, Spain. [Oswald, C.] Univ Bonn, D-53115 Bonn, Germany. [Arinstein, K.; Bondar, A.; Eidelman, S.; Gabyshev, N.; Krokovny, P.; Kuzmin, A.; Zhilich, V.] Budker Inst Nucl Phys SB RAS, Novosibirsk 630090, Russia. [Arinstein, K.; Bondar, A.; Eidelman, S.; Gabyshev, N.; Krokovny, P.; Kuzmin, A.; Zhilich, V.] Novosibirsk State Univ, Novosibirsk 630090, Russia. [Dolezal, Z.] Charles Univ Prague, Fac Math & Phys, CR-12116 Prague, Czech Republic. [Esen, S.; Kinoshita, K.; Schwartz, A. J.] Univ Cincinnati, Cincinnati, OH 45221 USA. [Choi, S. -K.] Gyeongsang Natl Univ, Chinju 660701, South Korea. [Cheon, B. G.; Goh, Y. M.; Unno, Y.] Hanyang Univ, Seoul 133791, South Korea. [Browder, T. E.; Nishimura, K.; Sahoo, H.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Adachi, I.; Iwasaki, Y.; Liventsev, D.; Nakao, M.; Nishida, S.; Sakai, Y.; Trabelsi, K.; Tsuboyama, T.; Uno, S.] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Nagasaka, Y.] Hiroshima Inst Technol, Hiroshima 7315193, Japan. [Schnell, G.] Ikerbasgue, Bilbao 48011, Spain. [Bhuyan, B.; Dutta, D.] Indian Inst Technol Guwahati, Gauhati 781039, Assam, India. [Wang, P.; Zhang, C. C.] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China. [Belous, K.; Shapkin, M.] Inst High Energy Phys, Protvino 142281, Russia. [Schwanda, C.] Inst High Energy Phys, A-1050 Vienna, Austria. [Aushev, T.; Chilikin, K.; Chistov, R.; Mizuk, R.; Pakhlov, P.; Pakhlova, G.; Solovieva, E.; Uglov, T.] Inst Theoret & Expt Phys, Moscow 117218, Russia. [Bracko, M.; Golob, B.; Klucar, J.; Korpar, S.; Krizan, P.; Pestotnik, R.; Petric, M.; Santelj, L.; Smerkol, P.; Staric, M.] Jozef Stefan Inst, Ljubljana 1000, Slovenia. [Okuno, S.; Watanabe, Y.] Kanagawa Univ, Yokohama, Kanagawa 2218686, Japan. [Kuhr, T.; Roehrken, M.; Zupanc, A.] Karlsruher Inst Technol, Inst Expt Kernphys, D-76131 Karlsruhe, Germany. [Cho, K.; Kim, Y. J.] Korea Inst Sci & Technol Informat, Taejon 305806, South Korea. [Ko, B. R.; Won, E.; Kim, J. B.; Kim, K. T.] Korea Univ, Seoul 136713, South Korea. [Hyun, H. J.; Kim, H. O.; Kim, M. J.; Park, H.; Park, H. K.] Kyungpook Natl Univ, Taegu 702701, South Korea. [Louvot, R.; Schneider, O.] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland. [Golob, B.; Krizan, P.] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia. [Pedlar, T. K.] Luther Coll, Decorah, IA 52101 USA. [Bracko, M.; Korpar, S.] Univ Maribor, SLO-2000 Maribor, Slovenia. [Chekelian, V.; Dalseno, J.; Kiesling, C.; Moll, A.; Nedelkovska, E.; Prothmann, K.; Ritter, M.; Simon, F.; Vanhoefer, P.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Julius, T.; Sevior, M. E.] Univ Melbourne, Sch Phys, Melbourne, Vic 3010, Australia. [Mizuk, R.; Pakhlov, P.] Moscow Phys Engn Inst, Moscow 115409, Russia. [Uglov, T.] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia. [Iijima, T.; Ohshima, T.; Seon, O.; Shen, C. P.] Nagoya Univ, Grad Sch Sci, Nagoya, Aichi 4648602, Japan. [Hayasaka, K.; Iijima, T.] Nagoya Univ, Kobayashi Maskawa Inst, Nagoya, Aichi 4648602, Japan. [Bhardwaj, V.; Hayashii, H.; Miyabayashi, K.] Nara Womens Univ, Nara 6308506, Japan. [Chen, A.] Natl Cent Univ, Chungli 32054, Taiwan. [Wang, C. H.] Natl United Univ, Miaoli 36003, Taiwan. [Chen, P.; Hou, W. -S.; Shiu, J. -G.; Wang, M. -Z.] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan. [Bozek, A.] H Niewodniczanski Inst Nucl Phys, PL-31342 Krakow, Poland. [Yamashita, Y.] Nippon Dent Univ, Niigata 9518580, Japan. [Miyata, H.] Niigata Univ, Niigata 9502181, Japan. [Nakano, E.; Teramoto, Y.] Osaka City Univ, Osaka 5588585, Japan. [Asner, D. M.; Fast, J. E.; Kouzes, R. T.; Tatishvili, G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Muramatsu, N.] Tohoku Univ, Res Ctr Electron Photon Sci, Sendai, Miyagi 9808578, Japan. [Liu, C.] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Choi, Y.] Sungkyunkwan Univ, Suwon 440746, South Korea. [Bakich, A. M.; Sibidanov, A.] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia. [Gaur, V.; Mohanty, G. B.; Nellikunnummel, N.; Sandilya, S.] Tata Inst Fundamental Res, Bombay 400005, Maharashtra, India. [Dalseno, J.; Moll, A.; Prothmann, K.; Simon, F.] Tech Univ Munich, D-85748 Garching, Germany. [Ogawa, S.] Toho Univ, Funabashi, Chiba 2748510, Japan. [Hoshi, Y.] Tohoku Gakuin Univ, Tagajo, Miyagi 9858537, Japan. [Ishikawa, A.; Kato, E.; Saito, T.; Sanuki, T.; Sato, Y.] Tohoku Univ, Sendai, Miyagi 9808578, Japan. [Aihara, H.; Ng, C.] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan. [Shibata, T. -A.; Uchida, M.] Tokyo Inst Technol, Tokyo 1528550, Japan. [Kumita, T.; Sumiyoshi, T.] Tokyo Metropolitan Univ, Tokyo 1920397, Japan. [Nitoh, O.] Tokyo Univ Agr & Technol, Tokyo 1848588, Japan. [Li, Y.; Piilonen, L. E.; Williams, K. M.] Virginia Polytech Inst & State Univ, CNP, Blacksburg, VA 24061 USA. [Bonvicini, G.; Cinabro, D.; Farhat, H.; Ganguly, S.; Gillard, R.] Wayne State Univ, Detroit, MI 48202 USA. [Senyo, K.] Yamagata Univ, Yamagata 9908560, Japan. [Kang, J. H.; Kwon, Y. -J.; Sohn, Y. -S.] Yonsei Univ, Seoul 120749, South Korea. RP Ko, BR (reprint author), Korea Univ, Seoul 136713, South Korea. EM eunil@hep.korea.ac.kr RI Solovieva, Elena/B-2449-2014; Won, Eunil/G-9657-2011; Aihara, Hiroaki/F-3854-2010; Ishikawa, Akimasa/G-6916-2012; Nitoh, Osamu/C-3522-2013; Pakhlov, Pavel/K-2158-2013; Uglov, Timofey/B-2406-2014; Mizuk, Roman/B-3751-2014; Krokovny, Pavel/G-4421-2016; Chilikin, Kirill/B-4402-2014; Chistov, Ruslan/B-4893-2014; Pakhlova, Galina/C-5378-2014 OI Solovieva, Elena/0000-0002-5735-4059; Trabelsi, Karim/0000-0001-6567-3036; Aihara, Hiroaki/0000-0002-1907-5964; Pakhlov, Pavel/0000-0001-7426-4824; Uglov, Timofey/0000-0002-4944-1830; Krokovny, Pavel/0000-0002-1236-4667; Chilikin, Kirill/0000-0001-7620-2053; Chistov, Ruslan/0000-0003-1439-8390; Pakhlova, Galina/0000-0001-7518-3022 FU Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan; Japan Society for the Promotion of Science (JSPS); Tau-Lepton Physics Research Center of Nagoya University; Australian Research Council; Australian Department of Industry, Innovation, Science and Research; National Natural Science Foundation of China [10575109, 10775142, 10875115, 10825524]; Ministry of Education, Youth and Sports of the Czech Republic [LA10033, MSM0021620859]; Department of Science and Technology of India; Istituto Nazionale di Fisica Nucleare of Italy; Ministry Education Science and Technology; National Research Foundation of Korea [2011-0029457, 2012-0008143, 2012R1MA2008330]; BRL program under NRF [KRF-2011-0020333]; GSDC of the Korea Institute of Science and Technology Information; Polish Ministry of Science and Higher Education; National Science Center; Ministry of Education and Science of the Russian Federation; Russian Federal Agency for Atomic Energy; Slovenian Research Agency; Swiss National Science Foundation; National Science Council; Ministry of Education of Taiwan; U.S. Department of Energy; National Science Foundation; MEXT; NRF [2012-0007319, 2010-0021174] FX We thank the KEKB group for the excellent operation of the accelerator; the KEK cryogenics group for the efficient operation of the solenoid; and the KEK computer group, the National Institute of Informatics, and the PNNL/EMSL computing group for valuable computing and SINET4 network support. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan, the Japan Society for the Promotion of Science (JSPS), and the Tau-Lepton Physics Research Center of Nagoya University; the Australian Research Council and the Australian Department of Industry, Innovation, Science and Research; the National Natural Science Foundation of China under contract No. 10575109, 10775142, 10875115 and 10825524; the Ministry of Education, Youth and Sports of the Czech Republic under contract No. LA10033 and MSM0021620859; the Department of Science and Technology of India; the Istituto Nazionale di Fisica Nucleare of Italy; the BK21 and WCU program of the Ministry Education Science and Technology, National Research Foundation of Korea Grant No. 2011-0029457, 2012-0008143, 2012R1MA2008330, BRL program under NRF Grant No. KRF-2011-0020333, and GSDC of the Korea Institute of Science and Technology Information; the Polish Ministry of Science and Higher Education and the National Science Center; the Ministry of Education and Science of the Russian Federation and the Russian Federal Agency for Atomic Energy; the Slovenian Research Agency; the Swiss National Science Foundation; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy and the National Science Foundation. This work is supported by a Grant-in-Aid from MEXT for Science Research in a Priority Area ("New Development of Flavor Physics"), and from JSPS for Creative Scientific Research ("Evolution of Tau-lepton Physics"). B. R. Ko acknowledges support by NRF Grant No. 2012-0007319, and E. Won by NRF Grant No. 2010-0021174. NR 41 TC 6 Z9 6 U1 1 U2 19 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1029-8479 J9 J HIGH ENERGY PHYS JI J. High Energy Phys. PD FEB PY 2013 IS 2 AR 098 DI 10.1007/JHEP02(2013)098 PG 15 WC Physics, Particles & Fields SC Physics GA 108EE UT WOS:000316273700021 ER PT J AU Drake, G Fernando, WS Stanek, RW Underwood, DG AF Drake, G. Fernando, W. S. Stanek, R. W. Underwood, D. G. TI Modulator based high bandwidth optical readout for HEP detectors SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 17-21, 2012 CL Oxford, ENGLAND SP US Dept Energy, U S Natl Sci Fdn, U K Sci & Technol Facilities Council DE Optical detector readout concepts; Radiation-hard electronics; Front-end electronics for detector readout; Data acquisition concepts AB Optical links will be an integral part of future LHC experiments at various scales from coupled sensors to off-detector communication. We are investigating CW lasers and light modulators as an alternative to VCSELs. Light modulators are small, use less power, have high bandwidth, are reliable, have low bit error rates and are very rad-hard. We present the quality of the links at 10Gbps and the results of radiation hardness measurements for the modulators built based on LiNbO3, InP, and Si. Also we present results on modulator-based free space data links, steered by MEMS mirrors and optical feedback paths for the control loop. C1 [Drake, G.; Fernando, W. S.; Stanek, R. W.; Underwood, D. G.] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. RP Underwood, DG (reprint author), Argonne Natl Lab, Div High Energy Phys, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dgu@anl.gov NR 18 TC 5 Z9 5 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2013 VL 8 AR C02023 DI 10.1088/1748-0221/8/02/C02023 PG 9 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 100CJ UT WOS:000315672700023 ER PT J AU Drake, G AF Drake, G. TI Design of a new switching power supply for the ATLAS TileCAL front-end electronics SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 17-21, 2012 CL Oxford, ENGLAND SP US Dept Energy, U S Natl Sci Fdn, U K Sci & Technol Facilities Council DE Large detector systems for particle and astroparticle physics; Front-end electronics for detector readout AB We present the design of an upgraded switching power supply for the front-end electronics of the ATLAS hadron tile calorimeter (TileCAL) at the LHC. The new design features significant improvement in noise, improved fault detection, and improved reliability, while retaining the compact size, water-cooling, output control, and monitoring features. We discuss the steps taken to improve the design. We present the results from extensive radiation testing to qualify the design, including sensitivity to Single Event Upset. We also present our reliability analysis. Production of 2400 new bricks for the detector is currently in progress, and we present preliminary results from the production checkout. C1 Argonne Natl Lab, Argonne, IL 60439 USA. RP Drake, G (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Argonne, IL 60439 USA. EM drake@anl.gov NR 8 TC 3 Z9 3 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2013 VL 8 AR C02032 DI 10.1088/1748-0221/8/02/C02032 PG 17 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 100CJ UT WOS:000315672700032 ER PT J AU Menouni, M Arutinov, D Backhaus, M Barbero, M Beccherle, R Breugnon, P Caminada, L Dube, S Darbo, G Fleury, J Fougeron, D Garcia-Sciveres, M Gensolen, F Gnani, D Gonella, L Gromov, V Hemperek, T Jensen, F Karagounis, M Kluit, R Krueger, H Kruth, A Lu, Y Mekkaoui, A Rozanov, A Schippere, JD Zivkovic, V AF Menouni, M. Arutinov, D. Backhaus, M. Barbero, M. Beccherle, R. Breugnon, P. Caminada, L. Dube, S. Darbo, G. Fleury, J. Fougeron, D. Garcia-Sciveres, M. Gensolen, F. Gnani, D. Gonella, L. Gromov, V. Hemperek, T. Jensen, F. Karagounis, M. Kluit, R. Krueger, H. Kruth, A. Lu, Y. Mekkaoui, A. Rozanov, A. Schippere, J. -D. Zivkovic, V. TI SEU tolerant memory design for the ATLAS pixel readout chip SO JOURNAL OF INSTRUMENTATION LA English DT Article; Proceedings Paper CT Topical Workshop on Electronics for Particle Physics CY SEP 17-21, 2012 CL Oxford, ENGLAND SP US Dept Energy, U S Natl Sci Fdn, U K Sci & Technol Facilities Council DE Radiation-hard electronics; Front-end electronics for detector readout; Analogue electronic circuits; Radiation damage to electronic components AB The FE-I4 chip for the B-layer upgrade is designed in a 130 nm CMOS process. For this design, configuration memories are based on the DICE latches where layout considerations are followed to improve the tolerance to SEU. Tests have shown that DICE latches for which layout approaches are adopted are 30 times more tolerant to SEU than the standard DICE latches. To prepare for the new pixel readout chip planned for the future upgrades, a prototype chip containing 512 pixels has been designed in a 65 nm CMOS process and a new approach is adopted for SEU tolerant latches. Results in terms of SEU and TID tolerance are presented. C1 [Menouni, M.; Barbero, M.; Breugnon, P.; Fougeron, D.; Gensolen, F.; Rozanov, A.] Aix Marseille Univ, CPPM, CNR, IN2P3, Marseille, France. [Arutinov, D.; Backhaus, M.; Gonella, L.; Hemperek, T.; Karagounis, M.; Krueger, H.; Kruth, A.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Beccherle, R.; Darbo, G.] INFN Genova, IT-16146 Genoa, Italy. [Caminada, L.; Dube, S.; Fleury, J.; Garcia-Sciveres, M.; Gnani, D.; Jensen, F.; Lu, Y.; Mekkaoui, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Gromov, V.; Kluit, R.; Schippere, J. -D.; Zivkovic, V.] NIKHEF H, Natl Inst Subatom Phys, NL-1098 SJ Amsterdam, Netherlands. RP Menouni, M (reprint author), Aix Marseille Univ, CPPM, CNR, IN2P3, 163 Ave Luminy,Case 902, Marseille, France. EM menouni@cppm.in2p3.fr RI Gnani, Dario/J-6426-2012; OI Gnani, Dario/0000-0003-0464-9176; Kruth, Andre/0000-0002-6273-8778 NR 7 TC 0 Z9 0 U1 0 U2 4 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1748-0221 J9 J INSTRUM JI J. Instrum. PD FEB PY 2013 VL 8 AR C02026 DI 10.1088/1748-0221/8/02/C02026 PG 13 WC Instruments & Instrumentation SC Instruments & Instrumentation GA 100CJ UT WOS:000315672700026 ER PT J AU Rossi, ML Taylor, CD AF Rossi, Matthew L. Taylor, Christopher D. TI Equations of state for crystalline zirconium iodide: The role of dispersion SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID STRESS-CORROSION-CRACKING; EFFECTIVE CORE POTENTIALS; MOLECULAR CALCULATIONS; CLADDING TUBES; ZR ALLOYS; METAL; FUEL; ENVIRONMENT; INITIATION; TITANIUM AB We present the first-principle equations of state of several zirconium iodides, ZrI2, ZrI3, and ZrI4, computed using density functional theory methods that apply various methods for introducing the dispersion correction. Iodides formed due to reaction of molecular or atomic iodine with zirconium and zircaloys are of particular interest due to their application to the cladding material used in the fabrication of nuclear fuel rods. Stress corrosion cracking (SCC), associated with fission product chemistry with the clad material, is a major concern in the life cycle of nuclear fuels, as many of the observed rod failures have occurred due to pellet-cladding chemical interactions (PCCI) [A. Atrens, G. Dannhauser, G. Baro, Stress-corrosion-cracking of zircaloy-4 cladding tubes, Journal of Nuclear Materials 126 (1984) 91-102; P. Rudling, R. Adamson, B. Cox, F. Garzarolli, A. Strasser, High burn-up fuel issues, Nuclear Engineering and Technology 40 (2008) 1-8]. A proper understanding of the physical properties of the corrosion products is, therefore, required for the development of a comprehensive SCC model. In this particular work, we emphasize that, while existing modeling techniques include methods to compute crystal structures and associated properties, it is important to capture intermolecular forces not traditionally included, such as van der Waals (dispersion) correction. Furthermore, crystal structures with stoichiometries favoring a high I:Zr ratio are found to be particularly sensitive, such that traditional density functional theory approaches that do not incorporate dispersion incorrectly predict significantly larger volumes of the lattice. This latter point is related to the diffuse nature of the iodide electron cloud. (c) 2012 Elsevier B.V. All rights reserved. C1 [Rossi, Matthew L.; Taylor, Christopher D.] Los Alamos Natl Lab, MST 6, Los Alamos, NM 87545 USA. RP Rossi, ML (reprint author), Los Alamos Natl Lab, MST 6, Los Alamos, NM 87545 USA. EM mrossi@lanl.gov FU Consortium for Advanced Simulation of Light Water Reactors; Energy Innovation Hub for Modelling and Simulation of Nuclear Reactors under US. Department of Energy [DE-AC05-000R22725]; Los Alamos National Security LLC for the National Nuclear Security Administration of the US, Department of Energy [DE-AC52-06NA25396] FX This research was supported by the Consortium for Advanced Simulation of Light Water Reactors (www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for Modelling and Simulation of Nuclear Reactors under US. Department of Energy Contract No. DE-AC05-000R22725. The Los Alamos National Security LLC for the National Nuclear Security Administration of the US, Department of Energy under contract DE-AC52-06NA25396. NR 31 TC 2 Z9 2 U1 4 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2013 VL 433 IS 1-3 BP 30 EP 36 DI 10.1016/j.jnucmat.2012.08.020 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 106OG UT WOS:000316153800006 ER PT J AU Lin, TF Palmer, TA Meinert, KC Murray, NR Majeski, R AF Lin, T. F. Palmer, T. A. Meinert, K. C. Murray, N. R. Majeski, R. TI Capillary wicking of liquid lithium on laser textured surfaces for plasma facing components SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB Liquid lithium has been proposed as a coating for plasma facing components (PFC) in fusion reactors in order to reduce recycling and protect the PFCs from high heat loads. Lithium can be introduced onto the surface of the PFCs through a passive capillary wicking mechanism. Surfaces capable of wicking molten lithium to support passive cooling are traditionally produced using a porous material which is added to the surface of a structural material. Laser micro-machining or texturing processes, on the other hand, allow functional surfaces to be applied directly onto existing structural materials. Both 316L stainless steel and titanium-zirconium-molybdenum (TZM) alloys were textured using a Nd:VO4 laser to produce a pattern of open channels with depths between 40 mu m and 260 mu m. Screening tests using an isopropanol solution were used to evaluate the ease of wicking for different texturing geometries, and molten lithium wicking experiments were then performed with the samples placed at 45 degrees and 90 degrees orientations. In order to quantitatively measure the progress of the wicking front, a time of flight (TOF) technique, which measures the progress of a temperature gradient using pre-placed thermocouples, was developed to track the progress of the lithium wicking front. The laser textured surfaces on both the 316L and TZM alloys displayed the ability to fully wick both isopropanol and liquid lithium and outperformed commercially available porous materials in the wicking of an isopropanol solution. A comparison of the different texturing geometries on 316L stainless steel samples shows that deeper grooves in the wicking direction combined with shallow grooves, of approximately half the depth, in the cross-channel direction improve the wicking rate and uniformity, and achieve full wetting of the sample surface. (c) 2012 Elsevier B.V. All rights reserved. C1 [Lin, T. F.; Palmer, T. A.; Meinert, K. C.] Penn State Univ, Appl Res Lab, University Pk, PA 16802 USA. [Murray, N. R.] Penn State Univ, Sargent & Lundy LLC, Appl Res Lab, University Pk, PA 16802 USA. [Majeski, R.] Princeton Plasma Phys Lab, Princeton, NJ USA. RP Meinert, KC (reprint author), Penn State Univ, Appl Res Lab, University Pk, PA 16802 USA. EM kcm104@arl.psu.edu FU Princeton Plasma Physics Laboratory [S010044-F] FX This research was funded by Princeton Plasma Physics Laboratory under the Contract Number S010044-F. Thanks are due to Bryan Sones, Chuck Ginter, Linn Witherite, Brian Foltz, Cliff Plank, Charlie Jones, Walter Bradley, Kevin Knepp, Roy Hurd, and Shawn Kelly for their technical support in the maintenance of the experimental setup, assistance in executing the experiments, and analysis of the laser textured materials. NR 19 TC 5 Z9 5 U1 2 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2013 VL 433 IS 1-3 BP 55 EP 65 DI 10.1016/j.jnucmat.2012.08.011 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 106OG UT WOS:000316153800010 ER PT J AU Idrees, Y Yao, Z Kirk, MA Daymond, MR AF Idrees, Y. Yao, Z. Kirk, M. A. Daymond, M. R. TI In situ study of defect accumulation in zirconium under heavy ion irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID C-COMPONENT LOOPS; DISPLACEMENT CASCADES; NEUTRON-IRRADIATION; ALPHA-ZIRCONIUM; TEMPERATURE-DEPENDENCE; MOLECULAR-DYNAMICS; DISLOCATION LOOPS; HCP METALS; ZR-ALLOYS; DAMAGE AB In this study, we report direct observations on heavy ion (Kr2+) irradiation induced changes in microstructures of pure Zr at different temperatures using intermediate voltage electron microscopy. Thin TEM foils were irradiated with 1 MeV Kr2+ ions. Materials have been irradiated to different damage levels ranging from 0.008 dpa to 1 dpa at different temperatures ranging from 300 degrees C to 500 degrees C. We particularly concentrate on yield of small defects directly occurring from cascade collapse at very low doses, and their evolution as the dose increases. In situ observation of growth and evolution of these small defects into complex defect structures at high dose has been carried out. Irradiation of materials at different temperatures provided an opportunity to investigate the temperature dependence of defect accumulation in Zr during irradiation. The differences in defect structures, defect densities, and therefore dynamic growth have been discussed in detail as a function of irradiation parameters (dose, temperature). Interaction of irradiation induced defects with existing microstructure and other defects is discussed. (c) 2012 Elsevier B.V. All rights reserved. C1 [Idrees, Y.; Yao, Z.; Daymond, M. R.] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. [Kirk, M. A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Yao, Z (reprint author), Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. EM yaoz@me.queensu.ca OI Daymond, Mark/0000-0001-6242-7489 FU NSERC; UNENE; Nu-Tech Precision Metals under the Industrial Research Chair Program in Nuclear Materials at Queen's University; US Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX This work is sponsored by NSERC, UNENE and Nu-Tech Precision Metals under the Industrial Research Chair Program in Nuclear Materials at Queen's University. Electron microscopy was accomplished at the Electron Microscopy Centre for Materials Research at Argonne National Laboratory, a US Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by U. Chicago Argonne, LLC. We thank Pete Boldo and Edward A. Ryan of Argonne National Lab for his help on the ion beam facility. The authors are thankful to M. Griffiths, Chalk River lab, for active discussion on irradiated microstructures. NR 46 TC 17 Z9 18 U1 6 U2 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2013 VL 433 IS 1-3 BP 95 EP 107 DI 10.1016/j.jnucmat.2012.09.014 PG 13 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 106OG UT WOS:000316153800015 ER PT J AU Mihaila, B Stan, M Crapps, J Yun, D AF Mihaila, Bogdan Stan, Marius Crapps, Justin Yun, Di TI Impact of thermal conductivity models on the coupling of heat transport, oxygen diffusion, and deformation in (U, Pu)O2-x nuclear fuel elements SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID URANIUM-DIOXIDE; MIXED-OXIDE; THERMOPHYSICAL PROPERTIES; FAST-REACTOR; UO2 FUELS; PU; SIMULATIONS; MOX; RECOMMENDATIONS; REDISTRIBUTION AB We study the coupled thermal transport, oxygen diffusion, and thermal expansion in a generic nuclear fuel rod consisting of a (U1-yPuy)O2-x fuel pellet separated by a helium gap from zircaloy cladding. Steady-state and time-dependent finite-element simulations with a variety of initial- and boundary-value conditions are used to study the effect of the Pu content, y, and deviation from stoichiometry, x, on the temperature and deformation profiles in this fuel element. We find that the equilibrium radial temperature and deformation profiles are most sensitive to x at small values of y. For larger values of y, the effects of oxygen and Pu content are equally important. Following a change in the heat-generation rate, the centerline temperature, the radial deformation of the fuel pellet, and the centerline deviation from stoichiometry track each other closely in (U, Pu)O2-x as the characteristic time scales of the heat transport and oxygen diffusion are similar. This result is different from the situation observed in the case of UO2+x fuels. (c) 2012 Elsevier B.V. All rights reserved. C1 [Mihaila, Bogdan; Crapps, Justin] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Stan, Marius; Yun, Di] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Mihaila, B (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM bmihaila@lanl.gov RI Mihaila, Bogdan/D-8795-2013; Yun, Di/K-6441-2013 OI Mihaila, Bogdan/0000-0002-1489-8814; Yun, Di/0000-0002-9767-3214 FU United States Department of Energy; Consortium for Advanced Simulation of Light Water Reactors; Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy [DE-AC05-00OR22725]; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX This work was performed under the auspices of the United States Department of Energy. BM gratefully acknowledges partial financial support from the Consortium for Advanced Simulation of Light Water Reactors (www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725. MS research is supported by the U.S. Department of Energy, Office of Science under Contract No. DE-AC02-06CH11357 NR 34 TC 5 Z9 5 U1 1 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2013 VL 433 IS 1-3 BP 132 EP 142 DI 10.1016/j.jnucmat.2012.09.017 PG 11 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 106OG UT WOS:000316153800019 ER PT J AU Beeler, B Deo, C Baskes, M Okuniewski, M AF Beeler, Benjamin Deo, Chaitanya Baskes, Michael Okuniewski, Maria TI First principles calculations of the structure and elastic constants of alpha, beta and gamma uranium SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID AUGMENTED-WAVE METHOD; CRYSTAL-STRUCTURES; SINGLE-CRYSTAL; ELECTRON-GAS; METALS; TEMPERATURES; PRESSURE; ENERGY AB This study analyzes structural and elastic properties of five uranium crystal structures: the face centered orthorhombic A20 (alpha phase), the tetragonal D8(b) (beta phase), body centered tetragonal (bct), body centered cubic (gamma phase) and face centered cubic structures. Calculations are performed within the density functional theory framework employing the Projector Augmented Wave method and the Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) of the exchange correlation. The elastic constants are used to compute polycrystalline elastic moduli, Poisson's ratio and the Debye temperature for all five structures. The alpha and gamma phase properties are compared with theoretical and experimental results. The complex tetragonal 30 atom beta phase is examined in detail. Representation of the beta phase by a bct structure is examined; we find that the structure of the beta phase is significantly different from the bct phase but exhibits similar elastic properties. This is the first comprehensive investigation into the elastic constants of uranium utilizing the PBE-GGA. (c) 2012 Elsevier B.V. All rights reserved. C1 [Beeler, Benjamin; Deo, Chaitanya] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Nucl & Radiol Engn Program, Atlanta, GA 30332 USA. [Baskes, Michael] Univ Calif San Diego, La Jolla, CA 92093 USA. [Baskes, Michael] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Okuniewski, Maria] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Beeler, B (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, Nucl & Radiol Engn Program, 770 State St, Atlanta, GA 30332 USA. EM benbeeler@gatech.edu OI Beeler, Benjamin/0000-0003-1964-1177 FU INL [DE-AC07-05ID14517]; NRC Faculty Development Grant [NRC-38-08-938] FX We acknowledge support from INL subcontract DE-AC07-05ID14517, NRC Faculty Development Grant NRC-38-08-938 and acknowledge computing resources provided by Idaho National Laboratory. NR 44 TC 22 Z9 22 U1 6 U2 54 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2013 VL 433 IS 1-3 BP 143 EP 151 DI 10.1016/j.jnucmat.2012.09.019 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 106OG UT WOS:000316153800020 ER PT J AU Shin, D Besmann, TM AF Shin, Dongwon Besmann, Theodore M. TI Thermodynamic modeling of the (U,La)O-2 +/- x solid solution phase SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID COMPOUND ENERGY FORMALISM; WAVE BASIS-SET; URANIUM-DIOXIDE; FISSION-PRODUCTS; LANTHANUM; OXIDE; SYSTEM; UO2; ELEMENTS; METALS AB Lanthanide (Ln) fission products have high fission yields and are known to form solid solutions with UO2 over a wide range of composition. As part of a larger effort to predict phase stability of the mixed metal oxide (U,Ln)O-2 +/- x solid solution phase, a comprehensive and self-consistent thermodynamic model for (U,La)O-2 +/- x has been developed through the use of the compound energy formalism (CEF) as implemented in the CALPHAD (CALculation of PHAse Diagram) computational thermodynamic approach. The reported experimental oxygen chemical potentials for both hyper- and hypo-stoichiometric (U,La)O-2 +/- x have been assessed and used to evaluate interaction parameters for the phase representation. The lattice stability of hypothetical "LaO2" in the CaF2 structure necessary to describe the Gibbs energy of end-members for the La-doped UO2 solution phase has been obtained from first-principles calculations based on density functional theory. With respect to LaO1.5 it is determined to equal +8739 J/mol. Good agreements between the calculated and experimental oxygen partial pressures have been obtained by introducing interaction parameters for the mixing between U and La in the metal cation sublattice. Calculated partial pressures of oxygen in equilibrium with the (U,La)O-2 +/- x solution phase at various temperatures are presented. Published by Elsevier B.V. C1 [Shin, Dongwon; Besmann, Theodore M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Shin, D (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM shind@ornl.gov RI Shin, Dongwon/C-6519-2008 OI Shin, Dongwon/0000-0002-5797-3423 FU UT-Battelle, LLC [DE-AC05-00OR22725]; U.S. Department of Energy; U.S. Department of Energy Office of Nuclear Energy, Fuel Cycle RD Program FX This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.; Research supported by the U.S. Department of Energy Office of Nuclear Energy, Fuel Cycle R&D Program. NR 31 TC 11 Z9 11 U1 0 U2 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2013 VL 433 IS 1-3 BP 227 EP 232 DI 10.1016/j.jnucmat.2012.09.009 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 106OG UT WOS:000316153800030 ER PT J AU Eason, ED Odette, GR Nanstad, RK Yamamoto, T AF Eason, E. D. Odette, G. R. Nanstad, R. K. Yamamoto, T. TI A physically-based correlation of irradiation-induced transition temperature shifts for RPV steels SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID PRESSURE-VESSEL STEELS; EMBRITTLEMENT; EVOLUTION AB This paper presents a physically-based, empirically calibrated model for estimating irradiation-induced transition temperature shifts in reactor pressure vessel steels, based on a broader database and more complete understanding of embrittlement mechanisms than was available for earlier models. Brief descriptions of the underlying radiation damage mechanisms and the database are included, but the emphasis is on the model and the quality of its fit to U.S. power reactor surveillance data. The model is compared to a random sample of surveillance data that were set aside and not used in fitting and to selected independent data from test reactor irradiations, in both cases showing good ability to predict data that were not used for calibration. The model is a good fit to the surveillance data, with no significant residual error trends for variables included in the model or additional variables that could be included. (c) 2012 Elsevier B.V. All rights reserved. C1 [Eason, E. D.] Modeling & Comp Serv LLC, Boulder, CO 80308 USA. [Odette, G. R.; Yamamoto, T.] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA. [Nanstad, R. K.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Eason, ED (reprint author), Modeling & Comp Serv LLC, POB 18583, Boulder, CO 80308 USA. EM eeason@ix.netcom.com; odette@engineering.ucsb.edu; nanstadrk@ornl.gov; yamataku@engineering.ucsb.edu FU U.S NRC; Oak Ridge National Laboratory through the DOE; U.S. Department of Energy [DE-AC05-00OR22725] FX This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-ACO5-00OR22725 with the U.S. Departmerit of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.; The extensive acknowledgments in [2] are incorporated here by reference. In addition, J.E. Wright contributed substantially to earlier versions of the surveillance database used for modeling and helped develop earlier versions of the TTS model [3,4]. Support from the U.S NRC during the modeling effort and from Oak Ridge National Laboratory through the DOE-sponsored Light Water Reactor Sustainability Program while preparing the paper is greatly appreciated. This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The results and conclusions expressed here are those of the authors, not the organizations involved. NR 42 TC 16 Z9 16 U1 3 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2013 VL 433 IS 1-3 BP 240 EP 254 DI 10.1016/j.jnucmat.2012.09.012 PG 15 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 106OG UT WOS:000316153800032 ER PT J AU Billone, MC Burtseva, TA Einziger, RE AF Billone, M. C. Burtseva, T. A. Einziger, R. E. TI Ductile-to-brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID ZIRCALOY-4; HYDROGEN; ZIRCONIUM; SOLUBILITY AB Structural analyses of dry casks containing high-burnup fuel require cladding mechanical properties and failure limits to assess fuel behavior. Pre-storage drying-transfer operations and early stage storage subject cladding to higher temperatures and much higher pressure-induced tensile hoop stresses relative to in-reactor operation and pool storage. Under these conditions, radial hydrides may precipitate during slow cooling and provide an additional embrittlement mechanism as the cladding temperature decreases below the ductile-to-brittle transition temperature (DIET). A test procedure was developed to simulate the effects of drying-storage temperature histories. Following drying-storage simulation, samples were subjected to ring-compression test (RCT) loading, which was used as a ductility screening test and to simulate pinch-type loading that may occur during cask transport. RCT samples with <2% offset strain prior to >50% wall cracking were assessed as brittle. Prior to testing high-burnup cladding, many tests were conducted with pre-hydrided Zircaloy-4 (Zry-4) and ZIRLO (TM) to determine target 400 degrees C hoop stresses for high-burnup rodlets. Zry-4 cladding segments, from a 67-GWd/MTU fuel rod, with 520-620 wppm hydrogen and ZIRLO (TM) cladding segments from a 70-GWd/MTU fuel rod, with 350-650 wppm hydrogen were defueled and tested. Following drying-storage simulation, the extent of radial-hydride precipitation Was characterized by the radial-hydride continuity factor. It was found that the DIM was dependent on: cladding material, irradiation conditions, and drying-storage histories (stress at maximum temperature). High-burnup ZIRLO (TM) exhibited higher susceptible to radial-hydride formation and embrittlement than high-burnup Zry-4. It was also observed that uniformly pre-hydrided, non-irradiated cladding was not a good surrogate for high-burnup cladding because of the high density of circumferential hydrides across the wall and the high metal-matrix ductility for pre-hydrided cladding. Published by Elsevier B.V. C1 [Billone, M. C.; Burtseva, T. A.] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Einziger, R. E.] US Nucl Regulatory Commiss, Div Spent Fuel Storage & Transportat, Rockville, MD 20852 USA. RP Einziger, RE (reprint author), US Nucl Regulatory Commiss, Div Spent Fuel Storage & Transportat, 11555 Rockville Pike, Rockville, MD 20852 USA. EM billone@anl.gov; Robert.Einziger@nrc.gov NR 23 TC 23 Z9 23 U1 1 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2013 VL 433 IS 1-3 BP 431 EP 448 DI 10.1016/j.jnucmat.2012.10.002 PG 18 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 106OG UT WOS:000316153800056 ER PT J AU Cockeram, BV Leonard, KJ Snead, LL Miller, MK AF Cockeram, B. V. Leonard, K. J. Snead, L. L. Miller, M. K. TI The use of a laser-assisted Local Electrode Atom Probe and TEM to examine the microstructure of Zircaloy and precipitate structure following low dose neutron irradiation at nominally 358 degrees C SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID FIELD-EVAPORATED IONS; ZIRCONIUM ALLOYS; POST-IONIZATION; MASS-SPECTRA; ZR-ALLOYS; DAMAGE; DEFORMATION; RADIATION; SPECIMEN; TRANSFORMATION AB Previous research has shown that the irradiation of Zircaloy at very low fluences (<= 7 x 10(22) n/m(2) (E > 1 MeV)) results in measurable irradiation hardening, but the defects or solute clusters responsible for such hardening are generally below the resolution limit of electron microscopy. Efforts to analyze Zr-based alloys using conventional atom probe have been largely unsuccessful due to the poor electrical conductivity of Zirconium at cryogenic temperatures. Laser-assisted atom probe methods were introduced in the 1980s as a means for enabling low electrical conductivity specimens to be analyzed. Some recent examples have been reported in the literature where a Local Electrode Atom Probe (LEAP)(R) was used to successfully analyze non-irradiated Zirconium based alloys, such as Zircaloy-4 and ZIRLO. In this work, the use of a LEAP to examine the microstructure of non-irradiated Zircaloy alloys is evaluated. Optimum conditions for applying the LEAP to non-irradiated Zircaloy-2 and Zircaloy-4 are investigated. Changes in the local. composition of precipitates and grain boundaries following neutron irradiation at nominally 358 degrees C to a fluence of 2.9 x 10(25) n/m(2) in the High Flux Isotope Reactor (HFIR) are determined using Transmission Electron Microscopy. These results are provided as an example of the local changes in microstructure that can influence the evolution of the defect structure. (C) 2012 Elsevier B.V. All rights reserved. C1 [Cockeram, B. V.] Bechtel Marine Prop Corp, Bettis Lab, West Mifflin, PA 15122 USA. [Leonard, K. J.; Snead, L. L.; Miller, M. K.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Cockeram, BV (reprint author), Bechtel Marine Prop Corp, Bettis Lab, West Mifflin, PA 15122 USA. EM bcockeram@verizon.net FU USDOE; ORNL's Shared Research Equipment (ShaRE) User Facility; Office of Basic Energy Sciences, U.S. Department of Energy FX This work was supported by USDOE. The authors are grateful for the review and comments provided by J.L. Hollenbeck and B.F. Kammenzind. Thanks also to the following ORNL personnel for their contributions in completing irradiations and testing (A.W. Williams, M.J. Meyers, and T.S. Byun). Irradiations were carried out in the High Flux Isotope Reactor, a Department of Energy Office of Science User Facility. Research supported in part by ORNL's Shared Research Equipment (ShaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 66 TC 6 Z9 6 U1 4 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2013 VL 433 IS 1-3 BP 460 EP 478 DI 10.1016/j.jnucmat.2012.10.006 PG 19 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 106OG UT WOS:000316153800059 ER PT J AU Holliday, K Finkeldei, S Neumeier, S Walther, C Bosbach, D Stumpf, T AF Holliday, Kiel Finkeldei, Sarah Neumeier, Stefan Walther, Clemens Bosbach, Dirk Stumpf, Thorsten TI TRLFS of Eu3+ and Cm3+ doped La2Zr2O7: A comparison of defect fluorite to pyrochlore structures SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID WASTE FORMS; LUMINESCENCE; PHOTOLUMINESCENCE; NANOCRYSTALS; LEVEL; OXIDES AB Time-resolved laser fluorescence spectroscopy (TRLFS) was used to probe the local environment of Eu3+ and Cm3+ doped into La2Zr2O7 in both the defect fluorite and pyrochlore structures. It is evident that each structure has a dominant environment for the trivalent dopant ion. This makes it possible to characterize the fluorescence emission spectrum and lifetime for each Eu3+ and Cm3+ species. This data can be used for a relative quantification of the Eu3+ or Cm3+ in each local environment. This technique has application to verifying single phase material and probing radiation damage, and has been shown to be more sensitive than the current evaluation method of X-ray diffraction. The defect fluorite structure has a poorly defined site due to random oxygen vacancies and a short fluorescence lifetime, while the pyrochlore structure has a well defined emission and long fluorescence lifetime. The Cm3+ fluorescence from the pyrochlore structure was found to have a greater bathochromic shift (red shift) and larger ground state splitting of the S-8(7/2) than previously reported in any system. Published by Elsevier B.V. C1 [Holliday, Kiel; Walther, Clemens; Stumpf, Thorsten] Karlsruhe Inst Technol, Inst Nukl Entsorgung, D-76021 Karlsruhe, Germany. [Holliday, Kiel] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Finkeldei, Sarah; Neumeier, Stefan; Bosbach, Dirk] Forschungszentrum Julich, Inst Energie & Klimaforsch Nukl Entsorgung & Reak, D-52425 Julich, Germany. [Walther, Clemens] Leibniz Univ Hannover, Inst Radiookol & Strahlenschutz, D-30419 Hannover, Germany. [Stumpf, Thorsten] Karlsruhe Inst Technol, Inst Anorgan Chem, D-76131 Karlsruhe, Germany. RP Holliday, K (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave L-350, Livermore, CA 94550 USA. EM holliday7@llnl.gov OI Neumeier, Stefan/0000-0002-3198-8408 FU Helmholtz Gemeinschaft Deutscher Forschungszentren (HGF); Ministerium fur Innovation, Wissenschaft, Forschung und Technologie (MIWFT) des Landes Nordrhein-Westfalen [AZ: 323-005-0911-0129]; U.S. DOE by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX The authors thank Sebastian Buchner for technical assistance with TRLFS measurements and Moritz Schmidt and Patric Lindqvist-Reis for fruitful discussions. This work was co-financed by the Helmholtz Gemeinschaft Deutscher Forschungszentren (HGF) by supporting the Helmholtz-Hochschul-Nachwuchsgruppe "Aufkla-rung geochemischer Reaktionsmechanismen an der Wasser/Miner-alphasen Grenzflache". This work also was supported by the Ministerium fur Innovation, Wissenschaft, Forschung und Technologie (MIWFT) des Landes Nordrhein-Westfalen; AZ: 323-005-0911-0129. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 41 TC 12 Z9 12 U1 0 U2 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2013 VL 433 IS 1-3 BP 479 EP 485 DI 10.1016/j.jnucmat.2012.10.028 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 106OG UT WOS:000316153800060 ER PT J AU Behera, RK Deo, CS Xu, HX AF Behera, Rakesh K. Deo, Chaitanya S. Xu, Haixuan TI Effect of the substitution of f-electron elements on the structure and elastic properties of UO2 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; INTERATOMIC POTENTIALS; FISSION-PRODUCTS; URANIUM-DIOXIDE; PROGRAM; OXIDES; FUELS; STATE; GULP AB The chemistry of nuclear reactor fuel initially is complex, and continuous loss of uranium and plutonium, and formation of a broad range of new species due to fission introduce a challenging time-dependence to this chemistry; Lanthanides and/or Actinides substitution on the uranium sublattice occurs (a) during fission, (b) when mixed oxide fuel is used, and (c) when minor Actinides are reprocessed in UO2 matrix fuel as part of a closed nuclear fuel cycle. These fission products and minor Actinides influence a variety of thermo-physical properties, which depend on structure and elastic properties. How these structural and elastic properties vary with Lanthanide and Actinide substitution is not well studied. In this study we use atomic level simulations to investigate the effect of 4+ and 3+ ion substitutions on the structural and elastic properties of urania matrix. Our results show that most of the 4+ ions reduce the overall lattice parameter, while all the 3+ ions considered here increased the lattice parameter of the urania matrix. This effect is guided by the interplay between the elastic and electrostatic effect of the substituted ions. We calculate the chemical expansion and chemical expansion coefficient with the change in concentration based on the ionic radii of the substituted 3+ and 4+ ions. In general, elastic properties are enhanced for 4+ ions substitution and reduced for 3+ ion substitution. (C) 2012 Elsevier B.V. All rights reserved. C1 [Behera, Rakesh K.; Deo, Chaitanya S.] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Nucl & Radiol Engn Program, Atlanta, GA 30332 USA. [Xu, Haixuan] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Behera, RK (reprint author), Georgia Inst Technol, George W Woodruff Sch Mech Engn, Nucl & Radiol Engn Program, Atlanta, GA 30332 USA. EM rakesh.behera@me.gatech.edu; chaitanya.deo@-me.gatech.edu RI Xu, Haixuan/C-9841-2009; Behera, Rakesh/G-2276-2011 FU DOE-NEUP [DE-AC07-05ID14517]; NRC Faculty Development Grant FX This work was funded by DOE-NEUP DE-AC07-05ID14517 and NRC Faculty Development Grant. NR 36 TC 2 Z9 2 U1 2 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2013 VL 433 IS 1-3 BP 504 EP 513 DI 10.1016/j.jnucmat.2012.09.031 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 106OG UT WOS:000316153800063 ER PT J AU Luscher, WG Gilbert, ER Pitman, SG Love, EF AF Luscher, Walter G. Gilbert, Edgar R. Pitman, Stan G. Love, Edward F., Jr. TI Surface modification of Zircaloy-4 substrates with nickel zirconium intermetallics SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID NI-ZR SYSTEM; OXIDATION PROCESSES; AMORPHOUS-ALLOYS; HIGH-TEMPERATURE; HYDROGEN; DIFFUSION; KINETICS; NI7ZR2 AB Surfaces of Zircaloy-4 (Zr-4) substrates were modified with nickel-zirconium (NiZr) intermetallics to tailor oxidation performance for specialized applications. Surface modification was achieved by electroplating Zr-4 substrates with nickel (Ni) and then performing thermal treatments to fully react the Ni plating with the substrates, which resulted in a coating of NiZr intermetallics on the substrate surfaces. Both plating thickness and thermal treatment were evaluated to determine the effects of these fabrication parameters on oxidation performance and to identify an optimal surface modification process. Isothermal oxidation tests were performed on surface-modified materials at 290 degrees, 330 degrees, and 370 degrees C under a constant partial pressure of oxidant (i.e., 1 kPa D2O in dry Ar at 101 kPa) for 64 days. Test results revealed an enhanced, transient oxidation rate that decreased asymptotically toward the rate of the Zr-4 substrate. Oxidation kinetics were analyzed from isothermal weight gain data, which were correlated with microstructure, hydrogen pickup, strength, and hardness. (C) 2012 Elsevier B.V. All rights reserved. C1 [Luscher, Walter G.; Gilbert, Edgar R.; Pitman, Stan G.; Love, Edward F., Jr.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Luscher, WG (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM walter.luscher@pnnl.gov; edgar.gilbert@pnnl.gov; stan.pitman@pnnl.gov; eflove@pnnl.gov NR 18 TC 0 Z9 0 U1 0 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 J9 J NUCL MATER JI J. Nucl. Mater. PD FEB PY 2013 VL 433 IS 1-3 BP 514 EP 522 DI 10.1016/j.jnucmat.2012.05.039 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 106OG UT WOS:000316153800064 ER PT J AU Kim, KH Choi, JH Bolotnikov, AE Camarda, GS Hossain, A Yang, G Cui, Y James, RB AF Kim, K. H. Choi, J. H. Bolotnikov, A. E. Camarda, G. S. Hossain, A. Yang, G. Cui, Y. James, R. B. TI New insight into the 1.1-eV trap level in CdTe-based semiconductor SO JOURNAL OF THE KOREAN PHYSICAL SOCIETY LA English DT Article DE CdTe; CdZnTe; CdMnTe; X-ray and gamma-ray detector; 1.1-eV defect; I-DLTS ID ELECTRON-MICROSCOPY; CDZNTE DETECTORS; POINT-DEFECTS; CRYSTALS; IRRADIATION; SILICON AB We investigated trap levels in detector-grade CdZnTe (CZT) material grown by using three different methods, viz, the Bridgman, traveling heater method (THM), and high-pressure Bridgman method (HPB), by current deep-level transient spectroscopy (I-DLTS). All CZT detectors contained deep trap levels located at around 1.1 eV (which we designated DE1), which has been attributed to Te vacancies induced one. However, our crystal growth and characterization results indicated that dislocations induced by Te secondary defects (inclusions/precipitates)were a more probable origin than Te vacancies. Also, a theoretical calculation of the electron de-trapping time associated with DE1 can explain well the abnormal residual current behavior at temperatures slightly above room temperature. Our results show better control of the concentrations and the sizes of Te secondary defects is critical to improving the detector's performance at room temperature by reducing lagging effects. C1 [Kim, K. H.; Choi, J. H.] Korea Univ, Dept Radiol Sci, Seoul 136703, South Korea. [Bolotnikov, A. E.; Camarda, G. S.; Hossain, A.; Yang, G.; Cui, Y.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Kim, KH (reprint author), Korea Univ, Dept Radiol Sci, Seoul 136703, South Korea. EM khkim1@korea.ac.kr; jonghak7@korea.ac.kr FU Korea university; U.S. Department of Energy, Office of Nonproliferation Research and Development [NA-22] FX This work was supported by the Korea university and the U.S. Department of Energy, Office of Nonproliferation Research and Development, NA-22. NR 14 TC 4 Z9 4 U1 2 U2 30 PU KOREAN PHYSICAL SOC PI SEOUL PA 635-4, YUKSAM-DONG, KANGNAM-KU, SEOUL 135-703, SOUTH KOREA SN 0374-4884 J9 J KOREAN PHYS SOC JI J. Korean Phys. Soc. PD FEB PY 2013 VL 62 IS 4 BP 623 EP 627 DI 10.3938/jkps.62.623 PG 5 WC Physics, Multidisciplinary SC Physics GA 104OO UT WOS:000316004100014 ER PT J AU DeYoreo, J Fleischer, M Hahn, H Volkert, CA Wu, NL AF DeYoreo, Jim Fleischer, Maximilian Hahn, Horst Volkert, Cynthia A. Wu, Nae-Lih TI 2nd International Conference on Materials for Energy May 12-16, 2013 Convention Center Karlsruhe, Germany Abstracts SO MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK LA English DT Article C1 [DeYoreo, Jim] Pacific NW Natl Lab, Richland, WA 99352 USA. [Fleischer, Maximilian] Siemens AG, Munich, Germany. [Hahn, Horst] Karlsruhe Inst Technol KIT, Karlsruhe, Germany. [Volkert, Cynthia A.] Univ Gottingen, Gottingen, Germany. [Wu, Nae-Lih] Natl Taiwan Univ, Taipei 10764, Taiwan. RP DeYoreo, J (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. RI Hahn, Horst/G-9018-2011 OI Hahn, Horst/0000-0001-9901-3861 NR 0 TC 0 Z9 0 U1 0 U2 11 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0933-5137 J9 MATERIALWISS WERKST JI Materialwiss. Werkstofftech. PD FEB-MAR PY 2013 VL 44 IS 2-3 SI SI BP 264 EP 266 DI 10.1002/mawe.201390003 PG 3 WC Materials Science, Multidisciplinary SC Materials Science GA 108GO UT WOS:000316280400031 ER PT J AU Cunsolo, A AF Cunsolo, A. TI Onset of a transverse dynamics in the THz spectrum of water SO MOLECULAR PHYSICS LA English DT Article DE X-ray scattering; neutron scattering; dynamics; density fluctuations; water ID LIQUID WATER; NEUTRON-SCATTERING; BULK VISCOSITY; MODE APPROACH; HEAVY-WATER; DISPERSION; SOUND; TRANSITION; BEHAVIOR; MOTIONS AB This paper reports on a high resolution/high contrast measurement of the spectrum of heavy water achieved by two complementary techniques, Inelastic Neutron and X-Ray Scattering. The mutual consistency between the spectral shapes measured by the two methods is subjected to thorough scrutiny and the results of their combined best fit are discussed. In particular, the presence of a low frequency mode related to shear propagation is studied in connection with the structural relaxation active in water at lower frequencies. The best fit analysis leads to the conclusion that the onset of a shear mode can only be observed at timescales approaching the solid-like regime, i.e. before internal rearrangements of the structure are fully accomplished. Finally, it is shown that the lifetime of the low frequency mode is fully consistent with the one predicted for a shear wave approaching the macroscopic limit. C1 Brookhaven Natl Lab, Photon Sci Div, Upton, NY 11973 USA. RP Cunsolo, A (reprint author), Brookhaven Natl Lab, Photon Sci Div, POB 5000, Upton, NY 11973 USA. EM acunsolo@bnl.gov RI Instrument, CNCS/B-4599-2012 NR 41 TC 1 Z9 1 U1 2 U2 15 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0026-8976 J9 MOL PHYS JI Mol. Phys. PD FEB 1 PY 2013 VL 111 IS 3 BP 455 EP 463 DI 10.1080/00268976.2012.728258 PG 9 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 105MY UT WOS:000316076400010 ER PT J AU Solbrig, CW Pope, CL AF Solbrig, Charles W. Pope, Chad L. TI Cadmium release from a reprocessing electrorefiner falling over SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB The possible biological consequences of a release of cadmium due to a design basis earthquake in the Idaho Nuclear Laboratory's nuclear fuel reprocessing cell are evaluated. The facility is designed to withstand the design basis earthquake except for some non-seismically qualified feedthroughs. The earthquake is hypothesized to breach these feedthroughs (allowing air into the argon atmosphere processing cell) and cause the MK-IV electrorefiner (ER) in the cell to tip over or split and spill its contents of fission product laden salt and cadmium. In addition, the uranium dendrite product cathode is assumed to fall on the cadmium and burn. The heat from the burning cathode results in release of cadmium vapor into the cell atmosphere. Ingestion and inhalation of a sufficient concentration of cadmium for a critical time period can cause irreversible health effects or death. The release of the small quantity of fission products, analyzed elsewhere, results in negligible doses. Analysis reported here shows there is no danger to the general public by the cadmium release or to on-site workers except in one low probability case. This one case requires a fivefold failure where the safety exhaust system fails just after the 4% oxygen concentration combustion limit in the cell is reached. Failure of the SES allows oscillatory inflow and outflow (and hence cadmium outflow) from the cell due to gravity. The dose to a worker in the basement exceeds the mortality limit in this one event if the worker does not leave the basement. (C) 2012 Elsevier B.V. All rights reserved. C1 [Solbrig, Charles W.; Pope, Chad L.] Batelle Energy Alliance, Idaho Natl Lab, Idaho Falls, ID 83404 USA. RP Solbrig, CW (reprint author), Batelle Energy Alliance, Idaho Natl Lab, POB 2528, Idaho Falls, ID 83404 USA. EM Charles.solbrig@inl.gov FU U.S. Department of Energy [DE-AC07-05ID14517] FX This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 12 TC 0 Z9 0 U1 0 U2 2 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD FEB PY 2013 VL 255 BP 226 EP 239 DI 10.1016/j.nucengdes.2012.10.015 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 102JA UT WOS:000315839700025 ER PT J AU Sen, RS Pope, MA Ougouag, AM Pasamehmetoglu, KO AF Sen, R. Sonat Pope, Michael A. Ougouag, Abderrafi M. Pasamehmetoglu, Kemal O. TI Assessment of possible cycle lengths for fully encapsulated microstructure fueled light water reactor concepts SO NUCLEAR ENGINEERING AND DESIGN LA English DT Article AB The use of TRISO-particle-based dispersion fuel within SiC matrix and cladding materials has the potential to allow the design of extremely safe LWRs with failure-proof fuel. This paper examines the feasibility of LWR-like cycle length for such fuel with the imposed constraint of strictly retaining the original geometry of the fuel pins and assemblies. The motivation for retaining the original geometry is to provide the ability to incorporate the fuel "as-is" into existing LWRs while retaining their thermal-hydraulic characteristics. Another mandatory constraint is use of low enriched uranium (at or below 20 w/o). The feasibility of using this fuel is assessed by looking at two factors: cycle lengths and fuel material failure rates. Other considerations (e.g., safety parameters such as reactivity coefficients, feedback, etc.) were not considered at this stage of the study. The study includes the examination of increases in the TRISO kernel sizes without changing the thickness of any of the coating layers. In addition, cases where the buffer layer thickness is allowed to vary are also considered. The study shows that a naive use of UO2 (even up to 20 w/o enrichment) results in cycle lengths too short to be practical for existing LWR designs and operational demands. Increasing fissile inventory within the fuel compacts shows that acceptable cycle lengths can be achieved. The increase of fissile inventory can be accomplished through multiple means, including higher particle packing fraction, higher enrichment, larger fuel kernel sizes, and the use of higher density fuels (that contain a higher number of U atoms per unit volume). In this study, starting with the recognized highest packing fraction practically achievable (44%), combinations of the other means have been evaluated. The models demonstrate cycle lengths comparable to those of ordinary LWRs. As expected, TRISO particles with extremely large kernels are shown to fail under all considered scenarios. In contrast, the designs that do not depart too drastically from those of the nominal NGNP HTR fuel TRISO particles are shown to perform satisfactorily and display a high rates of survival under all considered scenarios. (C) 2012 Elsevier B.V. All rights reserved. C1 [Sen, R. Sonat; Pope, Michael A.; Ougouag, Abderrafi M.; Pasamehmetoglu, Kemal O.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Sen, RS (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM sonat.sen@inl.gov; michael.pope@inl.gov; abderrafi.ougouag@inl.gov; kemal.pasamehmetoglu@inl.gov OI Ougouag, Abderrafi/0000-0003-4436-380X FU U.S. Department of Energy (DOE), Office of Nuclear Energy (NE), under DOE Idaho Operations Office [DE-AC07-05ID14517] FX Work supported by the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE), under DOE Idaho Operations Office Contract DE-AC07-05ID14517. NR 24 TC 6 Z9 6 U1 0 U2 5 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0029-5493 J9 NUCL ENG DES JI Nucl. Eng. Des. PD FEB PY 2013 VL 255 BP 310 EP 320 DI 10.1016/j.nucengdes.2012.11.007 PG 11 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 102JA UT WOS:000315839700033 ER PT J AU Lang, DM Zemla, AT Zhou, CLE AF Lang, Dorothy M. Zemla, A. T. Zhou, C. L. Ecale TI Highly similar structural frames link the template tunnel and NTP entry tunnel to the exterior surface in RNA-dependent RNA polymerases SO NUCLEIC ACIDS RESEARCH LA English DT Article ID HEPATITIS-C VIRUS; DOUBLE-STRANDED DNA; DE-NOVO INITIATION; CRYSTAL-STRUCTURE; ACTIVE-SITE; REVERSE-TRANSCRIPTASE; ANGSTROM RESOLUTION; POLIOVIRUS POLYMERASE; MECHANISM; SEQUENCE AB RNA-dependent RNA polymerase (RdRp) is essential to viral replication and is therefore one of the primary targets of countermeasures against these dangerous infectious agents. Development of broad-spectrum therapeutics targeting polymerases has been hampered by the extreme sequence variability of these sequences. RdRps range in length from 400-800 residues, yet contain only similar to 20 residues that are conserved in most species. In this study, we made structure-based comparisons that are independent of sequence composition using a recently developed algorithm. We identified residue-to-residue correspondences of multiple protein structures and created (two-dimensional) structure-based alignment maps of 37 polymerase structures that provide both sequence and structure details. Using these maps, we determined that similar to 75% of each polymerase species consists of seven protein segments, each of which has high structural similarity to segments in other species, though they are widely divergent in sequence composition and order. We define each of these segments as a 'homomorph', and each includes (though most are much larger than) the well-known conserved polymerase motifs. All homomorphs contact the template tunnel or nucleoside triphosphate (NTP) entry tunnel and the exterior of the protein, suggesting they constitute a structural and functional skeleton common among the polymerases. C1 [Lang, Dorothy M.] Lawrence Livermore Natl Lab, Phys & Life Sci Div, Livermore, CA 94550 USA. [Zemla, A. T.; Zhou, C. L. Ecale] Lawrence Livermore Natl Lab, Global Secur Comp Applicat Div, Livermore, CA 94550 USA. RP Lang, DM (reprint author), Lawrence Livermore Natl Lab, Phys & Life Sci Div, Livermore, CA 94550 USA. EM dorothylang@gmail.com; zemla1@llnl.gov FU Lawrence Livermore National Laboratory (DOE) [DE-AC52-07NA27344]; UC-LLNS Fees grant; University of California; Lawrence Livermore National Security Fees Grant FX Lawrence Livermore National Laboratory (DOE Contract DE-AC52-07NA27344); UC-LLNS Fees grant (PI: CEZ). Funding for open access charge: University of California and Lawrence Livermore National Security Fees Grant (PI: CEZ). NR 56 TC 10 Z9 11 U1 1 U2 12 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD FEB PY 2013 VL 41 IS 3 BP 1464 EP 1482 DI 10.1093/nar/gks1251 PG 19 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 109FM UT WOS:000316351800016 PM 23275546 ER PT J AU Hennelly, SP Novikova, IV Sanbonmatsu, KY AF Hennelly, Scott P. Novikova, Irina V. Sanbonmatsu, Karissa Y. TI The expression platform and the aptamer: cooperativity between Mg2+ and ligand in the SAM-I riboswitch SO NUCLEIC ACIDS RESEARCH LA English DT Article ID CONTROLS GENE-EXPRESSION; MESSENGER-RNA STRUCTURE; GLYCINE-DEPENDENT RIBOSWITCH; S-ADENOSYLMETHIONINE; METAL-ION; COUNTERION CONDENSATION; TETRAHYMENA RIBOZYME; TERTIARY STRUCTURES; SHAPE CHEMISTRY; FREE-ENERGIES AB Riboswitch operation involves the complex interplay between the aptamer domain and the expression platform. During transcription, these two domains compete against each other for shared sequence. In this study, we explore the cooperative effects of ligand binding and Magnesium interactions in the SAM-I riboswitch in the context of aptamer collapse and anti-terminator formation. Overall, our studies show the apo-aptamer acts as (i) a pre-organized aptamer competent to bind ligand and undergo structural collapse and (ii) a conformation that is more accessible to anti-terminator formation. We show that both Mg2+ ions and SAM are required for a collapse transition to occur. We then use competition between the aptamer and expression platform for shared sequence to characterize the stability of the collapsed aptamer. We find that SAM and Mg2+ interactions in the aptamer are highly cooperative in maintaining switch polarity (i. e. aptamer 'off-state' versus anti-terminator 'on-state'). We further show that the aptamer off-state is preferentially stabilized by Mg2+ and similar divalent ions. Furthermore, the functional switching assay was used to select for phosphorothioate interference, and identifies potential magnesium chelation sites while characterizing their coordinated role with SAM in aptamer stabilization. In addition, we find that Mg2+ interactions with the apo-aptamer are required for the full formation of the anti-terminator structure, and that higher concentrations of Mg2+ (>4mM) shift the equilibrium toward the anti-terminator on-state even in the presence of SAM. C1 [Hennelly, Scott P.; Novikova, Irina V.; Sanbonmatsu, Karissa Y.] Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. RP Sanbonmatsu, KY (reprint author), Los Alamos Natl Lab, Div Theoret, Theoret Biol & Biophys Grp, Los Alamos, NM 87545 USA. EM kys@lanl.gov FU Los Alamos National Laboratory [20090163ER] FX Funding for open access charge: Los Alamos National Laboratory, Laboratory Directed Research and Development-Exploratory Research [#20090163ER to K.Y.S.]. NR 49 TC 19 Z9 19 U1 1 U2 32 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0305-1048 J9 NUCLEIC ACIDS RES JI Nucleic Acids Res. PD FEB PY 2013 VL 41 IS 3 BP 1922 EP 1935 DI 10.1093/nar/gks978 PG 14 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 109FM UT WOS:000316351800052 PM 23258703 ER PT J AU Jaffari, GH Lin, H Rumaiz, AK Yassitepe, E Ni, C Shah, SI AF Jaffari, G. Hassnain Lin, H. Rumaiz, A. K. Yassitepe, Emre Ni, C. Shah, S. Ismat TI Comparative surface studies of oxygen passivated FeCo nanoparticles and thin films SO PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE LA English DT Article DE core/shell morphology; inert gas condensation; oxygen passivation; PLD; surface science ID INERT-GAS CONDENSATION; SHELL NANOPARTICLES; XPS; MAGNETIZATION; SUBSTRATE AB We present results on the comparative studies of the surfaces of oxygen passivated FeCo nanoparticles (NPs) and thin films prepared by inert gas condensation and pulse laser deposition, respectively. Morphology and structure of the NPs and thin films are investigated by transmission electron microscopy (TEM) and X-ray diffraction. Due to the larger surface area, thicker oxide over-layer is observed for particles in comparison with thin films. X-ray photoelectron spectroscopy (XPS) spectra strongly depended on the morphology and oxide over layer thicknesses for nanostructures. This leads to observation of clearly different background and is explained in term of different cationic distribution in the overlayer, thicknesses, and morphology (enhanced surface area) of the nanostructures. TEM analyses showed an oxide over-layer on the NP of approximately 2.6 nm, which is consistent with the theoretical model based on electron attenuation lengths. However, in the case of thin films a much thinner oxide over-layer of about 1.3 nm was observed. As expected, XPS spectra of oxygen passivated particles show oxide peaks with weak metal peaks compared to oxygen passivated thin films which show significantly high zero-valent metal peaks. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Jaffari, G. Hassnain; Shah, S. Ismat] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Jaffari, G. Hassnain] Quaid I Azam Univ, Dept Phys, Islamabad, Pakistan. [Lin, H.] Univ Delaware, Dept Civil & Environm Engn, Newark, DE 19716 USA. [Rumaiz, A. K.] Brookhaven Natl Lab, Natl Synchrotron Light Source, Upton, NY 11973 USA. [Yassitepe, Emre; Ni, C.; Shah, S. Ismat] Univ Delaware, Dept Mat Sci Engn, Newark, DE 19716 USA. RP Jaffari, GH (reprint author), Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. EM hassnain@udel.edu NR 25 TC 0 Z9 0 U1 6 U2 36 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1862-6300 J9 PHYS STATUS SOLIDI A JI Phys. Status Solidi A-Appl. Mat. PD FEB PY 2013 VL 210 IS 2 BP 306 EP 310 DI 10.1002/pssa.201228540 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Materials Science; Physics GA 094NB UT WOS:000315269800009 ER PT J AU Cha, K Son, M Matsuno, Y Fthenakis, V Hur, T AF Cha, Kyounghoon Son, Minjung Matsuno, Yasunari Fthenakis, Vasilis Hur, Tak TI Substance flow analysis of cadmium in Korea SO RESOURCES CONSERVATION AND RECYCLING LA English DT Article DE Material flow analysis; Substance flow analysis; Cadmium ID CYCLE; JAPAN; ZINC AB Substance flow analysis (SFA) of cadmium in Korea was carried out to analyze and predict cadmium flows, stocks, and future flows using both static and dynamic models. Cadmium is widely used in industry due to its strong corrosion and chemical resistance at high temperature, excellent electrical conduction, and low melting-point. Cadmium is produced as a by-product from the production processes for zinc and lead ingots. It is used for Ni-Cd batteries, polyvinylchloride (PVC) stabilizers, alloy products, pigments, and others. This examines the current cadmium flows and stocks using static SFA, and aims in predicting the future cadmium flows and stocks in Korea using dynamic SFA. From the static model, 2820 tonnes of cadmium ingots were produced, 0.04 tonnes imported and 2740 tons exported in Korea in 2009. In addition, 81 tonnes of cadmium were used in the manufacture of cadmium products: 80 tonnes for cadmium alloy products and 1 tonne for others. Finally, 175 tonnes of cadmium were imported into Korea for Ni-Cd batteries, 140 tonnes for PVC stabilizers, and 55 tonnes for pigments. Cadmium was used in various industries such as construction (221 tonnes), electrics and electronics (130 tonnes - including cadmium in imported products), transportation (30 tonnes) and others (30 tonnes). In 2009, 430 tonnes of industrial cadmium were discharged, with 10 tonnes being recycled and 420 tonnes discarded. From the dynamic model, cadmium stocks in Korea were estimated to be about 5120 tonnes in 2009. The industrial consumption in 2030 will be reduced to only 110 tonnes, only 27% of the current consumption of 410 tonnes in 2009, due to DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS). One possible solution to the Cd oversupply problem is use in cadmium telluride photovoltaic (CdTe PV) systems which have low life cycle Cd emissions (0.02 g Cd/GWh) and high end-of-life semiconductor recycling yields (95%). (C) 2012 Elsevier B.V. All rights reserved. C1 [Cha, Kyounghoon; Son, Minjung] SMaRT Eco Corp, Planning & Res Dept, Seoul, South Korea. [Hur, Tak] Konkuk Univ, Dept Mat Chem & Engn, Seoul 143701, South Korea. [Matsuno, Yasunari] Univ Tokyo, Grad Sch Engn, Dept Mat Engn, Bunkyo Ku, Tokyo 1138656, Japan. [Fthenakis, Vasilis] Brookhaven Natl Lab, Natl PV Environm Res Ctr, Upton, NY 11973 USA. RP Hur, T (reprint author), Konkuk Univ, Dept Mat Chem & Engn, 1 Hwayang Dong, Seoul 143701, South Korea. EM takhur@konkuk.ac.kr NR 19 TC 8 Z9 8 U1 4 U2 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0921-3449 EI 1879-0658 J9 RESOUR CONSERV RECY JI Resour. Conserv. Recycl. PD FEB PY 2013 VL 71 BP 31 EP 39 DI 10.1016/j.resconrec.2012.11.005 PG 9 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 107QI UT WOS:000316235400005 ER PT J AU Nakano, J AF Nakano, Jinichiro TI A thermo-mechanical correlation with driving forces for hcp martensite and twin formations in the Fe-Mn-C system exhibiting multicomposition sets SO SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS LA English DT Article DE stacking fault energy; high manganese steel; TWIP; TRIP; shape memory alloys ID STACKING-FAULT ENERGY; MANGANESE STEELS; SI ALLOYS; TRANSFORMATION; PHASE; DEFORMATION; DEPENDENCE; AUSTENITE; STABILITY; IRON AB The thermodynamic properties of the Fe-Mn-C system were investigated by using an analytical model constructed by a CALPHAD approach. The stacking fault energy (SFE) of the fcc structure with respect to the hcp phase was always constant at T-0, independent of the composition and temperature when other related parameters were assumed to be constant. Experimental limits for the thermal hcp formation and the mechanical (deformation-induced) hcp formation were separated by the SFE at T-0. The driving force for the fcc to hcp transition, defined as a dimensionless value -dG(m)/(RT), was determined in the presence of Fe-rich and Mn-rich composition sets in each phase. Carbon tended to partition to the Mn-rich phase rather than to the Fe-rich phase for the compositions studied. The results obtained revealed a thermo-mechanical correlation with empirical yield strength, maximum true stress and maximum true strain. The proportionality between thermodynamics and mechanical properties is discussed. C1 [Nakano, Jinichiro] US DOE, Natl Energy Technol Lab, Albany, OR 97321 USA. [Nakano, Jinichiro] URS Corp, Albany, OR 97321 USA. RP Nakano, J (reprint author), US DOE, Natl Energy Technol Lab, 1450 Queen Ave, Albany, OR 97321 USA. EM jinichiro@gmail.com FU National Energy Technology Laboratory's ongoing research into the development of coal gasification under RES [DE-FE0004000]; agency of the United States Government FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research into the development of coal gasification under RES contract no. DE-FE0004000. Valuable discussions with Mr James Bennett and Dr Kyei-Sing Kwong of NETL are gratefully acknowledged.; This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. NR 45 TC 6 Z9 6 U1 3 U2 32 PU NATL INST MATERIALS SCIENCE PI IBARAKI PA NATL INST MATERIALS SCIENCE, 1-2-1 SENGEN, TSUKUBA-CITY, IBARAKI, 305-0047, JAPAN SN 1468-6996 J9 SCI TECHNOL ADV MAT JI Sci. Technol. Adv. Mater. PD FEB PY 2013 VL 14 IS 1 AR 014207 DI 10.1088/1468-6996/14/1/014207 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 110RS UT WOS:000316463800009 PM 27877555 ER PT J AU Taylor, SG Park, G Farinholt, KM Todd, MD AF Taylor, Stuart G. Park, Gyuhae Farinholt, Kevin M. Todd, Michael D. TI Diagnostics for piezoelectric transducers under cyclic loads deployed for structural health monitoring applications SO SMART MATERIALS AND STRUCTURES LA English DT Article ID VALIDATION; SYSTEMS AB Accurate sensor self-diagnostics are a key component of successful structural health monitoring (SHM) systems. Transducer failure can be a significant source of failure in SHM systems, and neglecting to incorporate an adequate sensor diagnostics capability can lead to false positives in damage detection. Any permanently installed SHM system will thus require the ability to accurately monitor the health of the sensors themselves, so that when deviations in baseline measurements are observed, one can clearly distinguish between structural changes and sensor malfunction. This paper presents an overview of sensor diagnostics for active-sensing SHM systems employing piezoelectric transducers, and it reviews the sensor diagnostics results from an experimental case study in which a 9 m wind turbine rotor blade was dynamically loaded in a fatigue test until reaching catastrophic failure. The fatigue test for this rotor blade was unexpectedly long, requiring more than 8 million fatigue cycles before failure. Based on previous experiments, it was expected that the rotor blade would reach failure near 2 million fatigue cycles. Several sensors failed in the course of this much longer than expected test, although 48 out of 49 installed piezoelectric transducers survived beyond the anticipated 2 million fatigue cycles. Of the transducers that did fail in the course of the test, the sensor diagnostics methods presented here were effective in identifying them for replacement and/or data cleansing. Finally, while most sensor diagnostics studies have been performed in a controlled, static environment, some data in this study were collected as the rotor blade underwent cyclic loading, resulting in nonstationary structural impedance. This loading condition motivated the implementation of a new, additional data normalization step for sensor diagnostics with piezoelectric transducers in operational environments. C1 [Taylor, Stuart G.; Park, Gyuhae; Farinholt, Kevin M.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. [Taylor, Stuart G.; Todd, Michael D.] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA. [Park, Gyuhae] Chonnam Natl Univ, Sch Mech Syst Engn, Kwangju 500757, South Korea. [Farinholt, Kevin M.] Commonwealth Ctr Adv Mfg, Disputanta, VA 23842 USA. RP Park, G (reprint author), Los Alamos Natl Lab, Engn Inst, MS T001, Los Alamos, NM 87545 USA. EM sgtaylor@lanl.gov; gpark@jnu.ac.kr; kevin.farinholt@ccam-va.com; mdt@ucsd.edu RI Taylor, Stuart/B-1347-2013 FU Department of Energy through the Laboratory Directed Research and Development Program at Los Alamos National Laboratory; Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea; Ministry of Education, Science and Technology [2011-0030065]; 'Leaders Industry-University Cooperation' Project; Ministry of Education, Science & Technology (MEST), Korea FX This work was funded by the Department of Energy through the Laboratory Directed Research and Development Program at Los Alamos National Laboratory and has been approved for unlimited public release (LA-UR-12-24961). This research was also partially supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2011-0030065). G Park acknowledges the partial support of the 'Leaders Industry-University Cooperation' Project, supported by the Ministry of Education, Science & Technology (MEST), Korea. The authors would also like to acknowledge Scott Hughes and Mike Desmond from the National Renewable Energy Laboratory, and Mark Rumsey and Jon White from Sandia National Laboratory for their support in this research effort. NR 30 TC 5 Z9 5 U1 3 U2 26 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0964-1726 EI 1361-665X J9 SMART MATER STRUCT JI Smart Mater. Struct. PD FEB PY 2013 VL 22 IS 2 AR 025024 DI 10.1088/0964-1726/22/2/025024 PG 11 WC Instruments & Instrumentation; Materials Science, Multidisciplinary SC Instruments & Instrumentation; Materials Science GA 079OU UT WOS:000314180900025 ER PT J AU Chang, CK Kataria, S Kuo, CC Ganguly, A Wang, BY Hwang, JY Huang, KJ Yang, WH Wang, SB Chuang, CH Chen, M Huang, CI Pong, WF Song, KJ Chang, SJ Guo, JH Tai, Y Tsujimoto, M Isoda, S Chen, CW Chen, LC Chen, KH AF Chang, Cheng-Kai Kataria, Satender Kuo, Chun-Chiang Ganguly, Abhijit Wang, Bo-Yao Hwang, Jeong-Yuan Huang, Kay-Jay Yang, Wei-Hsun Wang, Sheng-Bo Chuang, Cheng-Hao Chen, Mi Huang, Ching-I Pong, Way-Faung Song, Ker-Jar Chang, Shoou-Jinn Guo, Jing-Hua Tai, Yian Tsujimoto, Masahiko Isoda, Seiji Chen, Chun-Wei Chen, Li-Chyong Chen, Kuei-Hsien TI Band Gap Engineering of Chemical Vapor Deposited Graphene by in Situ BN Doping SO ACS NANO LA English DT Article DE BN doping; graphene; chemical vapor deposition; band gap; XPS; micro-Raman; XAS-XES ID HEXAGONAL BORON-NITRIDE; NITROGEN-DOPED GRAPHENE; RAMAN-SPECTROSCOPY; GRAPHITE; DISORDER; LAYERS; FILMS AB Band gap opening and engineering is one of the high priority goals in the development of graphene electronics. Here, we report on the opening and scaling of band gap in BN doped graphene (BNG) films grown by low-pressure chemical vapor deposition method. High resolution transmission electron microscopy is employed to resolve the graphene and h-BN domain formation in great detail. X-ray photoelectron, micro-Raman, and UV vis spectroscopy studies revealed a distinct structural and phase evolution in BNG films at low BN concentration. Synchrotron radiation based XAS-XES measurements concluded a gap opening in BNG films, which is also confirmed by field effect transistor measurements. For the first time, a significant band gap as high as 600 meV is observed for low BN concentrations and is attributed to the opening of the pi-pi* band gap of graphene due to isoelectronic BN doping. As-grown films exhibit structural evolution from homogeneously dispersed small BN clusters to large sized BN domains with embedded diminutive graphene domains. The evolution is described in terms of competitive growth among h-BN and graphene domains with increasing BN concentration. The present results pave way for the development of band gap engineered BN doped graphene-based devices. C1 [Chang, Cheng-Kai; Kataria, Satender; Kuo, Chun-Chiang; Song, Ker-Jar; Chen, Kuei-Hsien] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan. [Chang, Cheng-Kai; Huang, Ching-I] Natl Taiwan Univ, Inst Polymer Sci & Engn, Taipei 10617, Taiwan. [Kataria, Satender; Chen, Chun-Wei] Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 10617, Taiwan. [Ganguly, Abhijit; Hwang, Jeong-Yuan; Chen, Li-Chyong; Chen, Kuei-Hsien] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10617, Taiwan. [Wang, Bo-Yao; Chuang, Cheng-Hao; Pong, Way-Faung] Tamkang Univ, Dept Phys, Tamsui 251, Taiwan. [Wang, Bo-Yao; Chuang, Cheng-Hao; Guo, Jing-Hua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Huang, Kay-Jay; Chen, Mi] Minghsin Univ Sci & Technol, Dept Chem & Mat Engn, Hsinchu 30401, Taiwan. [Yang, Wei-Hsun; Tai, Yian] Natl Taiwan Univ Sci & Technol, Dept Chem Engn, Taipei 10607, Taiwan. [Wang, Sheng-Bo; Chang, Shoou-Jinn] Natl Cheng Kung Univ, Inst Microelect, Tainan 70101, Taiwan. [Wang, Sheng-Bo; Chang, Shoou-Jinn] Natl Cheng Kung Univ, Dept Elect Engn, Tainan 70101, Taiwan. [Tsujimoto, Masahiko] Kyoto Univ, Inst Chem Res, Kyoto 6110011, Japan. [Isoda, Seiji] Kyoto Univ, Inst Integrated Cell Mat Sci, Kyoto 6068501, Japan. RP Chen, LC (reprint author), Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 10617, Taiwan. EM chenlc@ntu.edu.tw; chenkh@pub.iams.sinica.edu.tw RI Song, Ker-Jar/F-7913-2012; Chen, Kuei-Hsien/F-7924-2012; Chen, Chun-Wei/L-1889-2015; Chen, Li-Chyong/B-1705-2015 OI Chen, Li-Chyong/0000-0001-6373-7729 FU Ministry of Education, National Science Council, Academia Sinica (Taiwan); Asian Office of Aerospace Research and Development under AFOSR FX This research was financially supported by the Ministry of Education, National Science Council, Academia Sinica (Taiwan), and the Asian Office of Aerospace Research and Development under AFOSR. Technical support was provided by the Core Facilities for Nano Science and Technology, Academia Sinica, and National Taiwan University. NR 43 TC 85 Z9 86 U1 20 U2 282 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2013 VL 7 IS 2 BP 1333 EP 1341 DI 10.1021/nn3049158 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 099KA UT WOS:000315618700051 PM 23273110 ER PT J AU Wang, B Li, XL Zhang, XF Luo, B Jin, MH Liang, MH Dayeh, SA Picraux, ST Zhi, LJ AF Wang, Bin Li, Xianglong Zhang, Xianfeng Luo, Bin Jin, Meihua Liang, Minghui Dayeh, Shadi A. Picraux, S. T. Zhi, Linjie TI Adaptable Silicon-Carbon Nanocables Sandwiched between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes SO ACS NANO LA English DT Article DE silicon nanowire; graphene; adapting; lithium ion battery ID NANOSTRUCTURED SILICON; CRYSTALLINE SILICON; NANOWIRE ANODES; LITHIATION; CAPACITY; NANOCOMPOSITES; NANOPARTICLES; INSERTION; FRACTURE; STORAGE AB Silicon has been touted as one of the most promising anode materials for next generation lithium ion batteries. Yet, how to build energetic silicon-based electrode architectures by addressing the structural and interfacial stability issues facing silicon anodes still remains a big challenge. Here, we develop a novel kind of self-supporting binder-free silicon-based anodes via the encapsulation of silicon nanowires (SiNWs) with dual adaptable apparels (overlapped graphene (G) sheaths and reduced graphene oxide (RGO) overcoats). In the resulted architecture (namely, SiNW@G@RGO), the overlapped graphene sheets, as adaptable but sealed sheaths, prevent the direct exposure of encapsulated silicon to the electrolyte and enable the structural and interfacial stabilization of silicon nanowires. Meanwhile, the flexible and conductive RGO overcoats accommodate the volume change of embedded SiNW@G nanocables and thus maintain the structural and electrical integrity of the SiNW@G@RGO. As a result, the SiNW@G@RGO electrodes exhibit high reversible specific capacity of 1600 mAh g(-1) at 2.1 A g(-1), 80% capacity retention after 100 cycles, and superior rate capability (500 mAh g(-1) at 8.4 A g(-1)) on the basis of the total electrode weight. C1 [Wang, Bin; Li, Xianglong; Zhang, Xianfeng; Luo, Bin; Jin, Meihua; Liang, Minghui; Zhi, Linjie] Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China. [Dayeh, Shadi A.] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA. [Picraux, S. T.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Li, XL (reprint author), Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China. EM lixl@nanoctr.cn; zhilj@nanoctr.cn RI Li, Xianglong/A-9010-2010; Luo, Bin/P-7836-2015; OI Li, Xianglong/0000-0002-6200-1178; Luo, Bin/0000-0003-2088-6403; Liang, Minghui/0000-0001-6132-5042 FU National Natural Science Foundation of China [20973044, 21173057, 21273054]; Ministry of Science and Technology of China [2012CB933400, 2012CB933403]; Chinese Academy of Sciences; Beijing Municipal Science and Technology Commission; Nanostructures for Electrical Energy Storage, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160] FX Financial support from the National Natural Science Foundation of China (Grant Nos. 20973044, 21173057, 21273054), the Ministry of Science and Technology of China (No. 2012CB933400 and No. 2012CB933403), the Chinese Academy of Sciences, and Beijing Municipal Science and Technology Commission is acknowledged. S.T.P. also acknowledges support from Nanostructures for Electrical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. NR 47 TC 186 Z9 189 U1 36 U2 487 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2013 VL 7 IS 2 BP 1437 EP 1445 DI 10.1021/nn3052023 PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 099KA UT WOS:000315618700063 PM 23281801 ER PT J AU Fan, FJ Wu, L Gong, M Liu, GY Wang, YX Yu, SH Chen, SY Wang, LW Gong, XG AF Fan, Feng-Jia Wu, Liang Gong, Ming Liu, Guangyao Wang, Yi-Xiu Yu, Shu-Hong Chen, Shiyou Wang, Lin-Wang Gong, Xin-Gao TI Composition- and Band-Gap-Tunable Synthesis of Wurtzite-Derived Cu2ZnSn(S1-xSex)(4) Nanocrystals: Theoretical and Experimental Insights SO ACS NANO LA English DT Article DE wurtzite; Cu2ZnSnS4; Cu2ZnSnSe4; alloy; Cu2ZnSn(S1-xSex)(4); miscibility; band gap; nanocrystal ID CZTSSE SOLAR-CELLS; THIN-FILMS; CU2ZNSNSE4 NANOCRYSTALS; COLLOIDAL SYNTHESIS; OPTICAL-PROPERTIES; CUINSE2; ALLOYS; PERFORMANCE; INKS; PHOTOVOLTAICS AB The wurtzite-derived Cu2InSn(S1-xSex)(4) alloys are studied for the first time through combining theoretical calculations and experimental characterizations. Ab initio calculations predict that wurtzite-derived Cu2ZnSnS4 and Cu2ZnSnSe4 are highly miscible, and the band gaps of the mixed-anion alloys can be linearly tuned from 1.0 to 1.5 eV through changing the composition parameter x from 0 to 1. A synthetic procedure for the wurtzite-derived Cu2ZnSn(S1-xSex)(4) alloy nanocrystals with tunable compositions has been developed. A linear tunable band-gap range of 0.5 eV is observed in the synthesized alloy nanocrystals, which shows good agreement with the ab initio calculations. C1 [Fan, Feng-Jia; Wu, Liang; Wang, Yi-Xiu; Yu, Shu-Hong] Univ Sci & Technol China, Div Nanomat & Chem, Hefei Natl Lab Phys Sci Microscale, Dept Chem, Hefei 230026, Peoples R China. [Gong, Ming] Univ Sci & Technol China, Engn & Mat Sci Expt Ctr, Hefei 230026, Peoples R China. [Liu, Guangyao] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Chen, Shiyou] E China Normal Univ, Key Lab Polar Mat & Devices MOE, Shanghai 200241, Peoples R China. [Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Gong, Xin-Gao] Fudan Univ, Key Lab Computat Phys Sci MOE, Shanghai 200433, Peoples R China. [Gong, Xin-Gao] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China. RP Yu, SH (reprint author), Univ Sci & Technol China, Div Nanomat & Chem, Hefei Natl Lab Phys Sci Microscale, Dept Chem, Hefei 230026, Peoples R China. EM shyu@ustc.edu.cn; chensy@ee.ecnu.edu.cn RI Yu, Shu-Hong/A-1903-2010; gong, xingao/D-6532-2011 OI Yu, Shu-Hong/0000-0003-3732-1011; FU National Basic Research Program of China [2010CB934700, 2012CB921401]; National Natural Science Foundation of China [91022032, 912271032, 21061160492]; Chinese Academy of Sciences [KJZD-EW-M01-1]; International Science & Technology Cooperation Program of China [2010DFA41170]; National Synchrotron Radiation Laboratory at the University of Science and Technology of China; Fundamental Research Funds for the Central Universities; NSFC [61106087, 10934002]; U.S. DOE/SC/BES [DE-AC02-05CH11231] FX S.H.Y. acknowledges the funding support from the National Basic Research Program of China (Grant 2010CB934700), the National Natural Science Foundation of China (Grants 91022032, 912271032, 21061160492), the Chinese Academy of Sciences (Grant KJZD-EW-M01-1), the International Science & Technology Cooperation Program of China (Grant 2010DFA41170), and the Principal Investigator Award by the National Synchrotron Radiation Laboratory at the University of Science and Technology of China. F.J.F. acknowledges the funding support from the Fundamental Research Funds for the Central Universities. S.Y.C. and X.G.G. are supported by the NSFC (Grants 61106087, 10934002) and the National Basic Research Program of China (Grant 2012CB921401). L.W.W. Is supported by the U.S. DOE/SC/BES under Contract No. DE-AC02-05CH11231. NR 62 TC 43 Z9 43 U1 2 U2 177 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2013 VL 7 IS 2 BP 1454 EP 1463 DI 10.1021/nn3052296 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 099KA UT WOS:000315618700065 PM 23350525 ER PT J AU Liu, XH Fan, FF Yang, H Zhang, SL Huang, JY Zhu, T AF Liu, Xiao Hua Fan, Feifei Yang, Hui Zhang, Sulin Huang, Jian Yu Zhu, Ting TI Self-Limiting Lithiation in Silicon Nanowires SO ACS NANO LA English DT Article DE silicon nanowire; lithium-ion battery; kinetics; self-limiting lithiation; stress retardation; in situ transmission electron microscopy ID LITHIUM-ION BATTERIES; DIFFUSION-INDUCED STRESSES; ELECTROCHEMICAL LITHIATION; CRYSTALLINE SILICON; INITIAL LITHIATION; ANODES; ELECTRODES; KINETICS; FRACTURE; NANOPARTICLES AB The rates of charging and discharging in lithium-ion batteries (LIBs) are critically controlled by the kinetics of Li Insertion and extraction in solid-state electrodes. Silicon is being intensively studied as a high-capacity anode material for LIBs. However, the kinetics of Li reaction and diffusion in Si remain unclear. Here we report a combined experimental and theoretical study of the lithiation kinetics in individual Si nanowires. By using in situ transmission electron microscopy, we measure the rate of growth of a surface layer of amorphous LixSi in crystalline Si nanowires during the first lithiation. The results show the self-limiting lithiation, which is attributed to the retardation effect of the lithiation-induced stress. Our work provides a direct measurement of the nanoscale growth kinetics in lithiated Si, and has implications on nanostructures for achieving the high capacity and high rate in the development of high performance LIBs. C1 [Liu, Xiao Hua; Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, Albuquerque, NM 87185 USA. [Fan, Feifei; Zhu, Ting] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Yang, Hui; Zhang, Sulin] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA. RP Liu, XH (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, POB 5800, Albuquerque, NM 87185 USA. EM lxhua99@gmail.com; jyhuang8@yahoo.com; ting.zhu@me.gatech.edu RI Zhu, Ting/A-2206-2009; Zhang, Sulin /E-6457-2010; Liu, Xiaohua/A-8752-2011; YANG, HUI/H-6996-2012; OI Liu, Xiaohua/0000-0002-7300-7145; YANG, HUI/0000-0002-2628-4676; Fan, Feifei/0000-0003-0455-4900 FU NSF [CMMI-1100205, 1201058]; Laboratory Directed Research and Development (LDRD) project at Sandia National Laboratories (SNL); Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The support by the NSF Grants CMMI-1100205 and 1201058 is acknowledged. Portions of this work were supported by a Laboratory Directed Research and Development (LDRD) project at Sandia National Laboratories (SNL) and partly by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. The LDRD supported the development and fabrication of platforms. The NEES center supported the development of TEM techniques. CINT supported the TEM capability, in addition, this work represents the efforts of several CINT users, primarily those with affiliation external to Sandia National Laboratories. In addition, this work was performed, in part, at the Sandia-Los Alamos Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 42 TC 72 Z9 73 U1 10 U2 244 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2013 VL 7 IS 2 BP 1495 EP 1503 DI 10.1021/nn305282d PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 099KA UT WOS:000315618700070 PM 23272994 ER PT J AU Sanchez, SI Small, MW Bozin, ES Wen, JG Zuo, JM Nuzzo, RG AF Sanchez, Sergio I. Small, Matthew W. Bozin, Emil S. Wen, Jian-Guo Zuo, Jian-Min Nuzzo, Ralph G. TI Metastability and Structural Polymorphism in Noble Metals: The Role of Composition and Metal Atom Coordination in Mono- and Bimetallic Nanoclusters SO ACS NANO LA English DT Article DE nanoparticle; atomic structure; noble metals; bimetallic; core-shell; pair distribution function; aberration corrected electron microscopy ID SHAPE-CONTROLLED SYNTHESIS; SURFACE-TENSION; PALLADIUM NANOPARTICLES; PLATINUM NANOCRYSTALS; ELECTRON-MICROSCOPY; CATALYTIC-ACTIVITY; OXYGEN REDUCTION; GOLD; SIZE; DISORDER AB This study examines structural variations found in the atomic ordering of different transition metal nanoparticles synthesized via a common, kinetically controlled protocol: reduction of an aqueous solution of metal precursor salt(s) with NaBH4 at 273 K in the presence of a capping polymer ligand. These noble metal nanoparticles were characterized at the atomic scale using spherical aberration-corrected scanning transmission electron microscopy (C-s-STEM). It was found for monometallic samples that the third row, face-centered-cubic (fcc), transition metal [(3M)-Ir, Pt, and Au] particles exhibited more coherently ordered geometries than their second row, fcc, transition metal [(2M)-Rh, Pd, and Ag] analogues. The former exhibit growth habits favoring crystalline phases with specific facet structures while the latter samples are dominated by more disordered atomic arrangements that include complex systems of facets and twinning. Atomic pair distribution function (PDF) measurements further confirmed these observations, establishing that the 3M clusters exhibit longer ranged ordering than their 2M counterparts. The assembly of intracolumn bimetallic nanoparticles (Au-Ag, Pt-Pd, and Ir-Rh) using the same experimental conditions showed a strong tendency for the 3M atoms to template long-ranged, crystalline growth of 2M metal atoms extending up to over 8 nm beyond the 3M core. C1 [Sanchez, Sergio I.; Small, Matthew W.; Wen, Jian-Guo; Nuzzo, Ralph G.] Univ Illinois, Dept Chem, Urbana, IL 61801 USA. [Sanchez, Sergio I.; Small, Matthew W.; Wen, Jian-Guo; Nuzzo, Ralph G.] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA. [Zuo, Jian-Min; Nuzzo, Ralph G.] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA. [Bozin, Emil S.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Nuzzo, RG (reprint author), Univ Illinois, Dept Chem, Urbana, IL 61801 USA. EM r-nuzzo@illinois.edu FU United States Department of Energy [DE-FG02-03ER15476, DE-FG02-07ER46453, DE-FG02-07ER46471]; United States Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; [DE-AC02-98CH10886] FX This work was sponsored in part by the United States Department of Energy Grant No. DE-FG02-03ER15476. Experiments were conducted in part at the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois at Urbana-Champaign, which is partially supported by the United States Department of Energy under Grand Nos. DE-FG02-07ER46453 and DE-FG02-07ER46471. Work at Brookhaven National Laboratory, which is operated for the U.S. Department of Energy by Brookhaven Science Associates, is supported by Grant No. DE-AC02-98CH10886. Research was also carried out at the Advanced Photon Source (APS) at Argonne National Laboratory. Use of APS was supported by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences, under Grant No. DE-AC02-06CH11357 NR 73 TC 10 Z9 10 U1 5 U2 126 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2013 VL 7 IS 2 BP 1542 EP 1557 DI 10.1021/nn305314m PG 16 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 099KA UT WOS:000315618700075 PM 23273019 ER PT J AU Boreyko, JB Collier, CP AF Boreyko, Jonathan B. Collier, C. Patrick TI Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces SO ACS NANO LA English DT Article DE superhydrophobic; icephobic; dropwise condensation; jumping drops; frost ID SOLID-SURFACES; NANOSTRUCTURED SURFACES; WATER CONDENSATION; ICE NUCLEATION; WETTABILITY; REPELLENT; PERFORMANCE; FABRICATION; MECHANISM; DYNAMICS AB Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to Ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation. C1 [Boreyko, Jonathan B.; Collier, C. Patrick] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Collier, CP (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM colliercp@ornl.gov RI Collier, Charles/C-9206-2016 OI Collier, Charles/0000-0002-8198-793X FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX The authors acknowledge S. Retterer and J. Salazar for helpful discussions. This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 48 TC 99 Z9 102 U1 17 U2 216 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2013 VL 7 IS 2 BP 1618 EP 1627 DI 10.1021/nn3055048 PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 099KA UT WOS:000315618700083 PM 23286736 ER PT J AU Gu, Y Wang, GF Fang, N AF Gu, Yan Wang, Gufeng Fang, Ning TI Simultaneous Single-Particle Superlocalization and Rotational Tracking SO ACS NANO LA English DT Article DE imaging; microscopy; superlocalization; gold nanorods; rotational tracking; kinesin ID INTERFERENCE CONTRAST MICROSCOPY; PHOTOACTIVATED LOCALIZATION MICROSCOPY; OPTICAL RECONSTRUCTION MICROSCOPY; MYOSIN-V; FLUORESCENCE POLARIZATION; SECRETORY GRANULES; MOLECULAR MOTORS; CARGO TRANSPORT; GOLD NANORODS; LIVE CELLS AB Super localization of single molecules and nanoparticles has become an essential procedure to bring new insights into nanoscale structures and dynamics of biological systems. In the present study, superlocalization is combined with the newly introduced differential interference contrast (DIC) microscopy-based single-particle orientation and rotational tracking. The new technique overcomes the difficulty in localization of the antisymmetric DIC point spread function by using a dual-modality microscope configuration for simultaneous rotational tracking and localization of single gold nanorods with nanometer-scale precision. The new imaging setup has been applied to study the steric hindrance induced by relatively large cargos in the microtubule gliding assay and to track nanocargos in the crowded cellular environment. This technique has great potential in the study of biological processes where both localization and rotational information are required. C1 [Gu, Yan; Fang, Ning] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Gu, Yan; Fang, Ning] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. [Wang, Gufeng] N Carolina State Univ, Dept Chem, Raleigh, NC 27695 USA. RP Wang, GF (reprint author), N Carolina State Univ, Dept Chem, Box 8204, Raleigh, NC 27695 USA. EM gufeng_wang@ncsu.edu; nfang@iastate.edu RI Fang, Ning/A-8456-2011; Gu, Yan/B-5014-2014; Gu, Yan/P-1419-2014 OI Gu, Yan/0000-0001-6677-6432 FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, through Ames Laboratory; U.S. Department of Energy by Iowa State University [DE-AC02-07CH11358]; Plant Sciences Institute at Iowa State University FX The work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, through Ames Laboratory. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract no. DE-AC02-07CH11358. Y.G. was supported in part by a grant from the Plant Sciences Institute at Iowa State University. NR 43 TC 10 Z9 11 U1 1 U2 57 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2013 VL 7 IS 2 BP 1658 EP 1665 DI 10.1021/nn305640y PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 099KA UT WOS:000315618700088 PM 23363388 ER PT J AU Feng, XF Kwon, S Park, JY Salmeron, M AF Feng, Xiaofeng Kwon, Sangku Park, Jeong Young Salmeron, Miquel TI Superlubric Sliding of Graphene Nanoflakes on Graphene SO ACS NANO LA English DT Article DE graphene nanoflakes; sliding; superlubricity; incommensurability; scanning tunneling microscopy ID SCANNING-TUNNELING-MICROSCOPY; EPITAXIAL GRAPHENE; BILAYER GRAPHENE; CARBON NANOTUBES; LOW-FRICTION; RU(0001); DYNAMICS; SURFACE; SIMULATION; MONOLAYER AB The lubricating properties of graphite and graphene have been Intensely studied by sliding a frictional force microscope tip against them to understand the origin of the observed low friction. In contrast, the relative motion of free graphene layers remains poorly understood. Here we report a study of the sliding behavior of graphene nanoflakes (GNFs) on a graphene surface. Using scanning tunneling microscopy, we found that the GNFs show facile translational and rotational motions between commensurate initial and final states at temperatures as low as 5 K. The motion is initiated by a tip-induced transition of the flakes from a commensurate to an Incommensurate registry with the underlying graphene layer (the superlubric state), followed by rapid sliding until another commensurate position is reached. Counterintuitively, the average sliding distance of the flakes is larger at 5 K than at 77 K, indicating that thermal fluctuations are likely to trigger their transitions from superlubric back to commensurate ground states. C1 [Feng, Xiaofeng; Salmeron, Miquel] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Feng, Xiaofeng; Salmeron, Miquel] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Kwon, Sangku; Park, Jeong Young] Korea Adv Inst Sci & Technol, Grad Sch EEWS WCU, Taejon 305701, South Korea. RP Salmeron, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM mbsalmeron@lbl.gov RI Feng, Xiaofeng/D-2978-2012; Park, Jeong Young/A-2999-2008 OI Feng, Xiaofeng/0000-0002-9473-2848; FU Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. DOE [DE-AC02-05CH11231]; WCU (World Class University) program through the National Research Foundation of Korea [R-31-2008-000-10055-0]; National Research Foundation of Korea [KRF-2010-0005390] FX This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering of the U.S. DOE, under Contract No. DE-AC02-05CH11231. S.K. and J.Y.P. acknowledge support by the WCU (World Class University) program (R-31-2008-000-10055-0) and KRF-2010-0005390 through the National Research Foundation of Korea. We thank Dr. Yasushi Shibuta for his kind permission and help on the data reproduction from ref 28. NR 48 TC 84 Z9 87 U1 18 U2 190 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 J9 ACS NANO JI ACS Nano PD FEB PY 2013 VL 7 IS 2 BP 1718 EP 1724 DI 10.1021/nn305722d PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 099KA UT WOS:000315618700095 PM 23327483 ER PT J AU Yan, ZJ Shah, RA Chado, G Gray, SK Pelton, M Scherer, NF AF Yan, Zijie Shah, Raman A. Chado, Garrett Gray, Stephen K. Pelton, Matthew Scherer, Norbert F. TI Guiding Spatial Arrangements of Silver Nanoparticles by Optical Binding Interactions in Shaped Light Fields SO ACS NANO LA English DT Article DE optical binding; Ag nanoparticles; Rayleigh regime; self-assembly; light-matter interaction; optical tweezers ID ENHANCED RAMAN-SCATTERING; METAL NANOPARTICLES; PHOTONIC CRYSTALS; ARRAYS; MANIPULATION; NANOWIRES; MATTER AB We demonstrate assembly of spheroidal Ag nanoparticle clusters, chains and arrays induced by optical binding. Particles with diameters of 40 nm formed ordered clusters and chains In aqueous solution when illuminated by shaped optical fields with a wavelength of 800 nm; specifically, close-packed clusters were formed in cylindrically symmetric optical traps, and linear chains were formed in line traps. We developed a coupled-dipole model to calculate the optical forces between an arbitrary number of particles and successfully predicted the experimentally observed particle separations and arrangements as well as their dependence on the polarization of the incident light. This demonstrates that the interaction between these small Ag particles and light is well described by approximating the particles as point dipoles, showing that these experiments extend optical binding into the Rayleigh regime. For larger Ag nanoparticles, with diameters of approximately 100 nm, the optical-binding forces become comparable to the largest gradient forces in the optical trap, and the particles can arrange themselves into regular arrays or synthetic photonic lattices. Finally, we discuss the differences between our experimental observations and the point dipole theory and suggest factors that prevent the Ag nanoparticles from aggregating as expected from the theory. C1 [Yan, Zijie; Shah, Raman A.; Chado, Garrett; Scherer, Norbert F.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Yan, Zijie; Shah, Raman A.; Chado, Garrett; Scherer, Norbert F.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Gray, Stephen K.; Pelton, Matthew; Scherer, Norbert F.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Scherer, NF (reprint author), Univ Chicago, Dept Chem, 929 East 57th St, Chicago, IL 60637 USA. EM nfschere@uchicago.edu RI Yan, Zijie/C-5805-2009; Pelton, Matthew/H-7482-2013; Shah, Raman/J-5837-2013; OI Yan, Zijie/0000-0003-0726-7042; Pelton, Matthew/0000-0002-6370-8765; Shah, Raman/0000-0001-6384-9915 FU National Science Foundation [CHE-1059057]; Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357] FX This work was supported by the National Science Foundation (CHE-1059057). We acknowledge the University of Chicago NSF-MRSEC (DMR-0820054) for central facilities. R.A.S. was supported by a National Science Foundation Graduate Research Fellowship. This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility, under Contract No. DE-AC02-06CH11357. NR 39 TC 32 Z9 32 U1 2 U2 74 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD FEB PY 2013 VL 7 IS 2 BP 1790 EP 1802 DI 10.1021/nn3059407 PG 13 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 099KA UT WOS:000315618700104 PM 23363451 ER PT J AU Liu, YY Huang, YR Wang, ZR Huang, Y Li, XH Louie, A Wei, GW Mao, JH AF Liu, Yueyong Huang, Yurong Wang, Zeran Huang, Yong Li, Xiaohua Louie, Alexander Wei, Guangwei Mao, Jian-Hua TI Temporal mTOR inhibition protects Fbxw7-deficient mice from radiation-induced tumor development SO AGING-US LA English DT Article DE Fbxw7; mTOR; p53; radiation; tumorigenesis; rapamycin ID FBW7 UBIQUITIN LIGASE; F-BOX PROTEIN; CHROMOSOMAL INSTABILITY; DEPENDENT DEGRADATION; C-MYC; SUPPRESSOR; FBXW7; SENESCENCE; CANCER; DESTRUCTION AB FBXW7 acts as a tumor suppressor in numerous types of human cancers through ubiquitination of different oncoproteins including mTOR. However, how the mutation/loss of Fbxw7 results in tumor development remains largely unknown. Here we report that downregulation of mTOR by radiation is Fbxw7-dependent, and short-term mTOR inhibition by rapamycin after exposure to radiation significantly postpones tumor development in Fbxw7/p53 double heterozygous (Fbxw7+/-p53+/-) mice but not in p53 single heterozygous (p53+/-) mice. Tumor latency of rapamycin treated Fbxw7+/-p53+/- mice is remarkably similar to those of p53+/-mice while placebo treated Fbxw7+/-p53+/-mice develop tumor significantly earlier than placebo treated p53+/-mice. Furthermore, we surprisingly find that, although temporal treatment of rapamycin is given at a young age, the inhibition of mTOR activity sustainably remains in tumors. These results indicate that inhibition of mTOR signaling pathway suppresses the contribution of Fbxw7 loss toward tumor development. C1 [Liu, Yueyong; Huang, Yurong; Wang, Zeran; Wei, Guangwei; Mao, Jian-Hua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Huang, Yong; Li, Xiaohua; Louie, Alexander] Univ Calif San Francisco, Drug Studies Unit, San Francisco, CA 94080 USA. [Wei, Guangwei] Shandong Univ, Sch Med, Dept Anat, Jinan 250012, Shandong, Peoples R China. RP Mao, JH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM JHMao@lbl.gov FU National Institutes of Health, National Cancer Institute [R01 CA116481]; Low Dose Scientific Focus Area, Office of Biological & Environmental Research, US Department of Energy [DE-AC02-05CH11231]; Laboratory Directed Research & Development Program (LDRD) FX We thank Dr. K. I. Nakayama for providing Fbxw7 knockout mice and Dr. Bert Vogelstein for providing HCT116 WT and FBXW7-/- cell lines. This work was supported by the National Institutes of Health, National Cancer Institute grant R01 CA116481, the Low Dose Scientific Focus Area, Office of Biological & Environmental Research, US Department of Energy (DE-AC02-05CH11231), and Laboratory Directed Research & Development Program (LDRD) (to J.H.M.). NR 29 TC 13 Z9 13 U1 0 U2 2 PU IMPACT JOURNALS LLC PI ALBANY PA 6211 TIPTON HOUSE, STE 6, ALBANY, NY 12203 USA SN 1945-4589 J9 AGING-US JI Aging-US PD FEB PY 2013 VL 5 IS 2 BP 111 EP 119 PG 9 WC Cell Biology SC Cell Biology GA 104HL UT WOS:000315982700005 PM 23454868 ER PT J AU Shi, TJ Qian, WJ AF Shi, Tujin Qian, Wei-Jun TI Antibody-free PRISM-SRM for multiplexed protein quantification: is this the new competition for immunoassays in bioanalysis? SO BIOANALYSIS LA English DT Editorial Material DE high-resolution separations; immunoassay; intelligent selection; multiplexed assays; proteomics; sensitivity; SRM; targeted quantification ID MASS-SPECTROMETRY; PLASMA; BIOMARKERS; PROTEOMICS; ABUNDANCE; ASSAYS; VERIFICATION; ENRICHMENT; PIPELINE C1 [Shi, Tujin; Qian, Wei-Jun] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Qian, WJ (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM weijun.qian@pnnl.gov RI Shi, Tujin/O-1789-2014 NR 19 TC 11 Z9 11 U1 2 U2 9 PU FUTURE SCI LTD PI LONDON PA UNITED HOUSE, 2 ALBERT PL, LONDON, N3 1QB, ENGLAND SN 1757-6180 J9 BIOANALYSIS JI Bioanalysis PD FEB PY 2013 VL 5 IS 3 BP 267 EP 269 DI 10.4155/BIO.12.336 PG 3 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 100ZQ UT WOS:000315744900001 PM 23394691 ER PT J AU Weglarz-Tomczak, E Poreba, M Byzia, A Berlicki, L Nocek, B Mulligan, R Joachimiak, A Drag, M Mucha, A AF Weglarz-Tomczak, Ewelina Poreba, Marcin Byzia, Anna Berlicki, Lukasz Nocek, Boguslaw Mulligan, Rory Joachimiak, Andrzej Drag, Marcin Mucha, Artur TI An integrated approach to the ligand binding specificity of Neisseria meningitidis M1 alanine aminopeptidase by fluorogenic substrate profiling, inhibitory studies and molecular modeling SO BIOCHIMIE LA English DT Article DE M1 aminopeptidase; Neisseria meningitidis; Fluorogenic substrates; Organophosphorus inhibitors; S1 and S1 ' binding sites specificity ID ACUTE BACTERIAL-MENINGITIS; ESCHERICHIA-COLI; LEUCINE AMINOPEPTIDASE; ANALOG INHIBITORS; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; UNITED-STATES; S1 POCKET; CHEMISTRY; IDENTIFICATION AB Neisseria meningitides is a gram-negative diplococcus bacterium and is the main causative agent of meningitis and other meningococcal diseases. Alanine aminopeptidase from N. meningitides (NmAPN) belongs to the family of metallo-exopeptidase enzymes, which catalyze the removal of amino acids from the N-terminus of peptides and proteins, and are found among all the kingdoms of life. NmAPN is suggested to be mostly responsible for proteolysis and nutrition delivery, similar to the orthologs from other bacteria. To explore the possibility of NmAPN being a potential drug target for inhibition and development of novel therapeutic agents, the specificity of the S1 and S1' binding sites was explored using an integrated approach. Initially, an extensive library consisting of almost 100 fluorogenic substrates derived from both natural and unnatural amino acids, were used to obtain a detailed substrate fingerprint of the S1 pocket of NmAPN. A broad substrate tolerance of NmAPN was revealed, with bulky basic and hydrophobic ligands being the most favored substrates. Additionally, the potency of a set of organophosphorus inhibitors of neutral aminopeptidases, amino acid and dipeptide analogs was determined. Inhibition constants in the nanomolar range, determined for phosphinic dipeptides, proves the positive increase in inhibition impact of the P1' ligand elongation. The results were further verified via molecular modeling and docking of canonical aminopeptidase phosphinic dipeptide inhibitors in the NmAPN active site. These studies present comprehensive characterization of interactions responsible for specific ligand binding. This knowledge provides invaluable insight into understanding of the enzyme and development of novel NmAPN inhibitors. (C) 2012 Elsevier Masson SAS. All rights reserved. C1 [Weglarz-Tomczak, Ewelina; Poreba, Marcin; Byzia, Anna; Berlicki, Lukasz; Drag, Marcin; Mucha, Artur] Wroclaw Univ Technol, Dept Bioorgan Chem, Fac Chem, PL-50370 Wroclaw, Poland. [Nocek, Boguslaw; Mulligan, Rory; Joachimiak, Andrzej] Argonne Natl Lab, Midwest Ctr Struct Genom, Argonne, IL 60439 USA. RP Mucha, A (reprint author), Wroclaw Univ Technol, Dept Bioorgan Chem, Fac Chem, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland. EM artur.mucha@pwr.wroc.pl OI Berlicki, Lukasz/0000-0003-0318-4944; Weglarz-Tomczak, Ewelina/0000-0001-8080-2801 FU Polish Ministry of Science and Higher Education [N302 159937]; Foundation for Polish Science; State for Scientific Research in Poland [N401 042838]; European Union Human Capital National Cohesion Strategy; National Institutes of Health [GM094585] FX Artur Mucha is supported by the Polish Ministry of Science and Higher Education Grant No. N302 159937. The Drag laboratory is supported by the Foundation for Polish Science and the State for Scientific Research Grant No. N401 042838 in Poland. Marcin Poreba and Anna Byzia are supported by European Union Human Capital National Cohesion Strategy. Boguslaw Nocek, Rory Muligan and Andrzej Joachimiak are supported by a grant from the National Institutes of Health (GM094585). The use of software resources (including the Accelrys programs) of the Wroclaw Centre for Networking and Supercomputing, Poland, is kindly acknowledged. NR 39 TC 11 Z9 11 U1 2 U2 26 PU ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER PI PARIS PA 23 RUE LINOIS, 75724 PARIS, FRANCE SN 0300-9084 J9 BIOCHIMIE JI Biochimie PD FEB PY 2013 VL 95 IS 2 BP 419 EP 428 DI 10.1016/j.biochi.2012.10.018 PG 10 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 099IH UT WOS:000315614200034 PM 23131591 ER PT J AU Shupe, MD Turner, DD Walden, VP Bennartz, R Cadeddu, MP Castellani, BB Cox, CJ Hudak, DR Kulie, MS Miller, NB Neely, RR Neff, WD Rowe, PM AF Shupe, Matthew D. Turner, David D. Walden, Von P. Bennartz, Ralf Cadeddu, Maria P. Castellani, Benjamin B. Cox, Christopher J. Hudak, David R. Kulie, Mark S. Miller, Nathaniel B. Neely, Ryan R., III Neff, William D. Rowe, Penny M. TI HIGH AND DRY New Observations of Tropospheric and Cloud Properties above the Greenland Ice Sheet SO BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY LA English DT Article ID LIQUID WATER PATH; SEA-LEVEL RISE; PART I; BOUNDARY-LAYER; ARCTIC CLOUD; MICROWAVE RADIOMETRY; PHASE DETERMINATION; RADAR OBSERVATIONS; SNOW ACCUMULATION; ANTARCTIC PLATEAU AB HIGH AND DRY: NEW OBSERVATIONS OF TROPOSPHERIC AND CLOUD PROPERTIES ABOVE THE GREENLAND ICE SHEET Cloud and atmospheric properties strongly influence the mass and energy budgets of the Greenland Ice Sheet (GIS). To address critical gaps in the understanding of these systems, a new suite of cloud- and atmosphere-observing instruments has been installed on the central GIS as part of the Integrated Characterization of Energy, Clouds, Atmospheric State, and Precipitation at Summit (ICECAPS) project. During the first 20 months in operation, this complementary suite of active and passive ground-based sensors and radiosondes has provided new and unique perspectives on important cloud-atmosphere properties. High atop the GIS, the atmosphere is extremely dry and cold with strong near-surface static stability predominating throughout the year, particularly in winter. This low-level thermodynamic structure, coupled with frequent moisture inversions, conveys the importance of advection for local cloud and precipitation formation. Cloud liquid water is observed in all months of the year, even the particularly cold and dry winter, while annual cycle observations indicate that the largest atmospheric moisture amounts, cloud water contents, and snowfall occur in summer and under southwesterly flow. Many of the basic structural properties of clouds observed at Summit, Greenland, particularly for low-level stratiform clouds, are similar to their counterparts in Other Arctic regions. The ICECAPS observations and accompanying analyses will be used to improve the under-standing of key cloud-atmosphere processes and the manner in which they interact with the GIS. Furthermore, they will facilitate model evaluation and development in this data-sparse but environmentally unique region. (Page 169) C1 [Shupe, Matthew D.; Castellani, Benjamin B.; Neely, Ryan R., III] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Shupe, Matthew D.; Castellani, Benjamin B.; Neely, Ryan R., III; Neff, William D.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Turner, David D.] NOAA, Natl Severe Storms Lab, Norman, OK 73069 USA. [Walden, Von P.; Cox, Christopher J.; Rowe, Penny M.] Univ Idaho, Moscow, ID 83843 USA. [Bennartz, Ralf; Kulie, Mark S.; Miller, Nathaniel B.] Univ Wisconsin, Madison, WI 53706 USA. [Cadeddu, Maria P.] Argonne Natl Lab, Argonne, IL 60439 USA. [Hudak, David R.] Environm Canada, King City, ON, Canada. RP Shupe, MD (reprint author), R PSD3,325 Broadway, Boulder, CO 80305 USA. EM matthew.shupe@noaa.gov RI Neely, Ryan/F-8702-2010; Bennartz, Ralf/F-3760-2010; Kulie, Mark/C-3289-2011; Shupe, Matthew/F-8754-2011; Cox, Christopher/O-4276-2016 OI Neely, Ryan/0000-0003-4560-4812; Kulie, Mark/0000-0003-1400-1007; Shupe, Matthew/0000-0002-0973-9982; Cox, Christopher/0000-0003-2203-7173 FU U.S. National Science Foundation, Arctic Observing Network (AON) program [ARC-0856773, 0904152, 0856559]; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357] FX ICECAPS is supported by the U.S. National Science Foundation under Grants ARC-0856773, 0904152, and 0856559 as part of the Arctic Observing Network (AON) program. Argonne National Laboratory's work was supported by the U.S. Department of Energy, Office of Science, under contract DE-AC02-06CH11357. Additional instrumentation support is provided by the NOAA Earth System Research Laboratory (ESRL), U.S. Department of Energy ARM Program, and Environment Canada. Low-level wind and pressure measurements were obtained from the NOAA ESRL Global Monitoring Division. Model analyses were provided by Richard Forbes at the ECMWF. We appreciate the tremendous contributions from an extensive team who have facilitated field operations, installations, instrument maintenance, and other support, including Scott Abbott, Catherine Alvarez, Raul Alvarez, Steven Bradley, Rich Coulter, Thomas Cox, Bradley Halter, Michael Hardesty, Matthew Hayman, Duane Hazen, Richard Marchbanks, Timothy Martin, Aronne Merrelli, Ken Moran, Matthew Okrazewski, Erik Olson, Micheal O'Neill, Claire Pettersen, Peter Rodriguez, Lance Roth, Scott Sandberg, Robert Stillwell, and Jeffery Thayer. ICECAPS is made possible by excellent logistical support provided by Polar Field Services; including its team of remote and on-site personnel led by Katrine Gorham; and by the Summit Science Coordination Office led by John Burkhart and Jack Dibb. NR 76 TC 31 Z9 31 U1 1 U2 31 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0003-0007 EI 1520-0477 J9 B AM METEOROL SOC JI Bull. Amer. Meteorol. Soc. PD FEB PY 2013 VL 94 IS 2 BP 169 EP + DI 10.1175/BAMS-D-11-00249.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 103PY UT WOS:000315932500008 ER PT J AU Provis, JL Hajimohammadi, A White, CE Bernal, SA Myers, RJ Winarski, RP Rose, V Proffen, TE Llobet, A van Deventer, JSJ AF Provis, John L. Hajimohammadi, Ailar White, Claire E. Bernal, Susan A. Myers, Rupert J. Winarski, Robert P. Rose, Volker Proffen, Thomas E. Llobet, Anna van Deventer, Jannie S. J. TI Nanostructural characterization of geopolymers by advanced beamline techniques SO CEMENT & CONCRETE COMPOSITES LA English DT Article DE Geopolymer; Alkali-activated binder; Synchrotron radiation; Neutron scattering; Nanostructure; Microstructure ID PAIR DISTRIBUTION FUNCTION; X-RAY-DIFFRACTOMETRY; ACTIVATED FLY-ASH; C-S-H; LOCAL-STRUCTURE; GEL FORMATION; SYNCHROTRON; TOMOGRAPHY; EVOLUTION; BINDER AB This paper presents the outcomes of a series of beamline-based studies, the results of which are combined to provide a more detailed multiscale understanding of the structure and chemistry of geopolymer binders. The range of beamline-based characterization techniques which have been applied to the study of geopolymer binders is increasing rapidly; although no single technique can provide a holistic view of binder structure across all the length scales which are of importance in determining strength development and durability, the synergy achievable through the combination of multiple beamline techniques is leading to rapid advances in knowledge in this area. Studies based around beamline infrared and X-ray fluorescence microscopy, in situ and ex situ neutron pair distribution function analysis, and nano- and micro-tomography, are combined to provide an understanding of geopolymer gel chemistry, nano- and microstructure in two and three dimensions, and the influences of seeded nucleation and precursor chemistry in these key areas. The application of advanced characterization methods in recent years has brought the understanding of geopolymer chemistry from a point, not more than a decade ago, when the analysis of the detailed chemistry of the aluminosilicate binder gel was considered intractable due to its disordered ("X-ray amorphous") nature, to the present day where the influence of key compositional parameters on nanostructure is well understood, and both gel structure and reaction kinetics can be manipulated through methods including seeding, temperature variation, and careful mix design. This paper therefore provides a review outlining the value of nanotechnology - and particularly nanostructural characterization - in the development and optimization of a new class of environmentally beneficial cements and concretes. Key engineering parameters, in particularly strength development and permeability, are determined at a nanostructural level, and so it is essential that gel structures can be analyzed and manipulated at this level; beamline-based characterization techniques are critical in providing the ability to achieve this goal. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Provis, John L.; Hajimohammadi, Ailar; White, Claire E.; Bernal, Susan A.; Myers, Rupert J.; van Deventer, Jannie S. J.] Univ Melbourne, Dept Chem & Biomol Engn, Melbourne, Vic 3010, Australia. [White, Claire E.; Proffen, Thomas E.; Llobet, Anna] Los Alamos Natl Lab, Manuel Lujan Jr Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [White, Claire E.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Winarski, Robert P.; Rose, Volker] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Rose, Volker] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Proffen, Thomas E.] Oak Ridge Natl Lab, Powder Diffract Grp, Oak Ridge, TN USA. [van Deventer, Jannie S. J.] Zeobond Pty Ltd, Somerton, Vic 3062, Australia. RP Provis, JL (reprint author), Univ Sheffield, Dept Mat Sci & Engn, Sheffield S1 3JD, S Yorkshire, England. EM j.provis@sheffield.ac.uk RI Lujan Center, LANL/G-4896-2012; Llobet, Anna/B-1672-2010; White, Claire/A-1722-2011; Provis, John/A-7631-2008; Rose, Volker/B-1103-2008; Hajimohammadi, Ailar/H-1822-2015; Proffen, Thomas/B-3585-2009; OI Myers, Rupert/0000-0001-6097-2088; White, Claire/0000-0002-4800-7960; Provis, John/0000-0003-3372-8922; Rose, Volker/0000-0002-9027-1052; Hajimohammadi, Ailar/0000-0002-2013-0668; Proffen, Thomas/0000-0002-1408-6031; Bernal, Susan A/0000-0002-9647-3106 FU DOE Office of Basic Energy Sciences; Los Alamos National Laboratory; Los Alamos National Security LLC under DOE [DE-AC52-06NA25396]; U.S. Department of Energy through the LANL/LDRD Program; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Brian Robinson Fellowship; Australian Synchrotron International Access Program; Access to Major Research Facilities Program FX The program of work summarized in this paper has been funded through grants from the Australian Research Council, including some support via the Particulate Fluids Processing Centre, as well as through a Linkage Grant co-sponsored by Zeobond Pty Ltd. The infrared miscroscopy component of this research was undertaken on the IR beamline at the Australian Synchrotron, Victoria, Australia. This work has also benefited from the use of HIPD at the Lujan Center at Los Alamos Neutron Science Center, funded by the DOE Office of Basic Energy Sciences. The participation of CEW and AL in this work was supported by Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. CEW gratefully acknowledges the support of the U.S. Department of Energy through the LANL/LDRD Program. Use of the Advanced Photon Source and the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Travel funding for experimental work was provided by the Brian Robinson Fellowship awarded to JLP, as well as through the Australian Synchrotron International Access Program, and through the Access to Major Research Facilities Program administered by ANSTO. The authors thank Dr. Hyunjeong Kim, Dr. Mark Tobin, Dr. Ljiljana Puskar and Dr. Katherine Page for assistance with experimental work. NR 64 TC 8 Z9 9 U1 10 U2 97 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0958-9465 J9 CEMENT CONCRETE COMP JI Cem. Concr. Compos. PD FEB PY 2013 VL 36 SI SI BP 56 EP 64 DI 10.1016/j.cemconcomp.2012.07.003 PG 9 WC Construction & Building Technology; Materials Science, Composites SC Construction & Building Technology; Materials Science GA 098MG UT WOS:000315552800009 ER PT J AU Hernandez, A Bdzil, JB Stewart, DS AF Hernandez, Alberto Bdzil, John B. Stewart, D. Scott TI An MPI parallel level-set algorithm for propagating front curvature dependent detonation shock fronts in complex geometries SO COMBUSTION THEORY AND MODELLING LA English DT Article DE detonation shock dynamics; parallel computing; level sets; computational physics; reactive flow ID DYNAMICS AB We present a parallel, two-dimensional, grid-based algorithm for solving a level-set function PDE that arises in Detonation Shock Dynamics (DSD). In the DSD limit, the detonation shock propagates at a speed that is a function of the curvature of the shock surface, subject to a set of boundary conditions applied along the boundaries of the detonating explosive. Our method solves for the full level-set function field, phi(x, y, t), that locates the detonation shock with a modified level-set function PDE that continuously renormalises the level-set function to a distance function based off of the locus of the shock surface, phi(x, y, t)=0. The boundary conditions are applied with ghost nodes that are sorted according to their connectivity to the interior explosive nodes. This allows the boundary conditions to be applied via a local, direct evaluation procedure. We give an extension of this boundary condition application method to three dimensions. Our parallel algorithm is based on a domain-decomposition model which uses the Message-Passing Interface (MPI) paradigm. The computational order of the full level-set algorithm, which is O(N 4), where N is the number of grid points along a coordinate line, makes an MPI-based algorithm an attractive alternative. This parallel model partitions the overall explosive domain into smaller sub-domains which in turn get mapped onto processors that are topologically arranged into a two-dimensional rectangular grid. A comparison of our numerical solution with an exact solution to the problem of a detonation rate stick shows that our numerical solution converges at better than first-order accuracy as measured by an L1-norm. This represents an improvement over the convergence properties of narrow-band level-set function solvers, whose convergence is limited to a floor set by the width of the narrow band. The efficiency of the narrow-band method is recovered by using our parallel model. C1 [Hernandez, Alberto; Bdzil, John B.; Stewart, D. Scott] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. [Bdzil, John B.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Stewart, DS (reprint author), Univ Illinois, Dept Mech Sci & Engn, 1206 W Green St, Urbana, IL 61801 USA. EM dss@illinois.edu FU US Army Armament Research, Development and Engineering Center through UTRS [UTRS 09-292]; US Air Force Research Laboratory, Munitions Directorate, Eglin AFB [FA865-05-1-0003] FX We thank Tariq Aslam for discussions concerning the DSD boundary condition algorithm found in [6] and Michael Campbell and The University of Illinois Campus Cluster staff for their support on using Taub. The work was supported by grant and contract resources from the US Army Armament Research, Development and Engineering Center through UTRS, subcontract UTRS 09-292 and the US Air Force Research Laboratory, Munitions Directorate, Eglin AFB, FA865-05-1-0003. NR 18 TC 2 Z9 2 U1 0 U2 21 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1364-7830 J9 COMBUST THEOR MODEL JI Combust. Theory Model. PD FEB 1 PY 2013 VL 17 IS 1 BP 109 EP 141 DI 10.1080/13647830.2012.725579 PG 33 WC Thermodynamics; Energy & Fuels; Engineering, Chemical; Mathematics, Interdisciplinary Applications SC Thermodynamics; Energy & Fuels; Engineering; Mathematics GA 100DH UT WOS:000315675500006 ER PT J AU Orendt, AM Pimienta, ISO Badu, SR Solum, MS Pugmire, RJ Facelli, JC Locke, DR Chapman, KW Chupas, PJ Winans, RE AF Orendt, Anita M. Pimienta, Ian S. O. Badu, Shyam R. Solum, Mark S. Pugmire, Ronald J. Facelli, Julio C. Locke, Darren R. Chapman, Karena W. Chupas, Peter J. Winans, Randall E. TI Three-Dimensional Structure of the Siskin Green River Oil Shale Kerogen Model: A Comparison between Calculated and Observed Properties SO ENERGY & FUELS LA English DT Article ID PAIR DISTRIBUTION FUNCTION; MOLECULAR-ORBITAL METHODS; ARGONNE PREMIUM COALS; GAUSSIAN-TYPE BASIS; SOLID-STATE NMR; CHEMICAL-STRUCTURE; ORGANIC-MOLECULES; C-13; DETECTOR AB Three-dimensional (3D) structural models of the Green River kerogen based on the two-dimensional (2D) structure proposed by Siskin were generated using a combination of ab initio and molecular mechanics calculations. Several initial monomer conformations were generated using the simulated annealing procedure, followed by minimization via quantum mechanical calculations. C-13 solid state nuclear magnetic resonance (SSNMR) spectra and atomic pair distribution functions (PDFs) were calculated based on these 3D models and compared to experimental results obtained on a Green River kerogen sample. The results show reasonably good agreement between calculated and experimental results, showing that this type of 3D modeling can be of value in the evaluation of 2D models. Moreover, this paper establishes a general methodology to develop 3D models for any existing or future 2D model of kerogens. C1 [Orendt, Anita M.; Pimienta, Ian S. O.; Badu, Shyam R.; Facelli, Julio C.] Univ Utah, Ctr High Performance Comp, Salt Lake City, UT 84112 USA. [Solum, Mark S.; Pugmire, Ronald J.] Univ Utah, Dept Chem, Salt Lake City, UT 84112 USA. [Pugmire, Ronald J.] Univ Utah, Dept Chem Engn, Salt Lake City, UT 84112 USA. [Facelli, Julio C.] Univ Utah, Dept Biomed Informat, Salt Lake City, UT 84112 USA. [Pimienta, Ian S. O.] Troy Univ, Dept Chem & Phys, Troy, AL 36082 USA. [Locke, Darren R.; Chapman, Karena W.; Chupas, Peter J.; Winans, Randall E.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Lemont, IL 60439 USA. RP Orendt, AM (reprint author), Univ Utah, Ctr High Performance Comp, Salt Lake City, UT 84112 USA. EM anita.orendt@utah.edu OI facelli, julio/0000-0003-1449-477X FU U.S. Department of Energy [DE-FE0001243]; National Energy Technology Laboratory; U.S. Department of Energy, Office of Science; Office of Basic Energy Sciences [DE-AC02-06CH11357]; Advanced Photon Source at Argonne National Laboratory [11-ID-B]; Chevron Energy Technology Company through a contract with University of Utah FX This work was supported by award DE-FE0001243 from the U.S. Department of Energy, National Energy Technology Laboratory. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. An allocation of computer time from the Center for High Performance Computing at the University of Utah is acknowledged. A.M.O. acknowledges a beam time award on beam 11-ID-B at the Advanced Photon Source at Argonne National Laboratory. D.R.L. acknowledges support by the Chevron Energy Technology Company through a contract with University of Utah. NR 49 TC 13 Z9 14 U1 3 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2013 VL 27 IS 2 BP 702 EP 710 DI 10.1021/ef3017046 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 096VD UT WOS:000315431900011 ER PT J AU Mao, KM Kennedy, GJ Althaus, SM Pruski, M AF Mao, Kanmi Kennedy, Gordon J. Althaus, Stacey M. Pruski, Marek TI Determination of the Average Aromatic Cluster Size of Fossil Fuels by Solid-State NMR at High Magnetic Field SO ENERGY & FUELS LA English DT Article ID ARGONNE PREMIUM COALS; C-13 NMR; RESONANCE SPECTROMETRY; CROSS POLARIZATION; SPECTROSCOPY; H-1; ANTHRACITE; RESOLUTION; MAS AB We show that the average aromatic cluster size in complex carbonaceous materials can be accurately determined using fast magic-angle spinning (MAS) NMR at a high magnetic field. To accurately quantify the nonprotonated aromatic carbon, we edited the C-13 spectra using the recently reported MAS-synchronized spin echo, which alleviated the problem of rotational recoupling of H-1-C-13 dipolar interactions associated with traditional dipolar dephasing experiments. The dependability of this approach was demonstrated on selected Argonne Premium coal standards, for which full sets of basic structural parameters were determined with high accuracy. C1 [Mao, Kanmi; Kennedy, Gordon J.] ExxonMobil Res & Engn Co, Annandale, NJ 08801 USA. [Althaus, Stacey M.; Pruski, Marek] US DOE, Ames Lab, Ames, IA 50011 USA. [Althaus, Stacey M.; Pruski, Marek] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Mao, KM (reprint author), ExxonMobil Res & Engn Co, 1545 Route 22 East, Annandale, NJ 08801 USA. EM kanmi.mao@exxonmobil.com FU U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-07CH11358]; ExxonMobil Research and Engineering FX At the Ames Laboratory, this research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. We are grateful for the continued support of ExxonMobil Research and Engineering, in particular, Dr. S. P. Rucker and Dr. M. S. Touvelle. We also thank Dr. T. Kobayashi for helpful discussions. NR 28 TC 3 Z9 4 U1 1 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2013 VL 27 IS 2 BP 760 EP 763 DI 10.1021/ef301804p PG 4 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 096VD UT WOS:000315431900018 ER PT J AU Ruppert, LF Sakurovs, R Blach, TP He, LL Melnichenko, YB Mildner, DFR Alcantar-Lopez, L AF Ruppert, Leslie F. Sakurovs, Richard Blach, Tomasz P. He, Lilin Melnichenko, Yuri B. Mildner, David F. R. Alcantar-Lopez, Leo TI A USANS/SANS Study of the Accessibility of Pores in the Barnett Shale to Methane and Water SO ENERGY & FUELS LA English DT Article ID ANGLE NEUTRON-SCATTERING; GAS-ADSORPTION; COAL; MICROSTRUCTURE; POROSITY; SORPTION; MATURATION; RESERVOIR; WOODFORD; HELIUM AB Shale is an increasingly important source of natural gas in the United States. The gas is held in fine pores that need to be accessed by horizontal drilling and hydrofracturing techniques. Understanding the nature of the pores may provide clues to making gas extraction more efficient. We have investigated two Mississippian Barnett Shale samples, combining small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) to determine the pore size distribution of the shale over the size range 10 nm to 10 mu m. By adding deuterated methane (CD4) and, separately, deuterated water (D(2)0) to the shale, we have identified the fraction of pores that are accessible to these compounds over this size range. The total pore size distribution is essentially identical for the two samples. At pore sizes >250 nm, >85% of the pores in both samples are accessible to both CD4, and D2O. However, differences in accessibility to CD4, are observed in the smaller pore sizes (similar to 25 nm). In one sample, CD4, penetrated the smallest pores as effectively as it did the larger ones. In the other sample, less than 70% of the smallest pores (<25 nm) were accessible to CD4, but they were still largely penetrable by water, suggesting that small-scale heterogeneities in methane accessibility occur in the shale samples even though the total porosity does not differ. An additional study investigating the dependence of scattered intensity with pressure of CD4, allows for an accurate estimation of the pressure at which the scattered intensity is at a minimum. This study provides information about the composition of the material immediately surrounding the pores. Most of the accessible (open) pores in the 25 nm size range can be associated with either mineral matter or high reflectance organic material. However, a complementary scanning electron microscopy investigation shows that most of the pores in these shale samples are contained in the organic components. The neutron scattering results indicate that the pores are not equally proportioned in the different constituents within the shale. There is some indication from the SANS results that the composition of the pore-containing material varies with pore size; the pore size distribution associated with mineral matter is different from that associated with organic phases. C1 [Ruppert, Leslie F.] US Geol Survey, Eastern Energy Resource Sci Ctr, Natl Ctr, Reston, VA 20192 USA. [Sakurovs, Richard] CSIRO Riverside Life Sci Ctr, CSIRO Energy Technol, N Ryde, NSW 2113, Australia. [Blach, Tomasz P.] Queensland Univ Technol, Inst Future Environm, Brisbane, Qld Q4000, Australia. [He, Lilin; Melnichenko, Yuri B.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Neutron Scattering Directorate, Oak Ridge, TN 37831 USA. [Mildner, David F. R.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Alcantar-Lopez, Leo] Chesapeake Energy Corp, Oklahoma City, OK 73118 USA. RP Ruppert, LF (reprint author), US Geol Survey, Eastern Energy Resource Sci Ctr, Natl Ctr, MS 956, Reston, VA 20192 USA. EM lruppert@usgs.gov OI Ruppert, Leslie/0000-0002-7453-1061; He, Lilin/0000-0002-9560-8101 FU Laboratory Directed Research and Development Program; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; ORNL; National Science Foundation [DMR-0944772] FX The research at Oak Ridge National Laboratory's High Flux Isotope Reactor was sponsored by the Laboratory Directed Research and Development Program and the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. This research was supported in part by the ORNL Postdoctoral Research Associates Program, administered jointly by the ORNL and the Oak Ridge Institute for Science and Education. In addition, the research at the National Institute of Standards and Technology on the BTS Ultrasmall-Angle Neutron Scattering instrument utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-0944772. James C. Hower, Center for Applied Energy Research, University of Kentucky, and Cortland F. Eble, Kentucky Geological Survey, kindly performed vitrinite reflectance analyses. Mention of specific commercial products does not constitute endorsement by the U.S. Geological Survey or by the National Institute of Standards and Technology. NR 26 TC 31 Z9 33 U1 7 U2 110 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2013 VL 27 IS 2 BP 772 EP 779 DI 10.1021/ef301859s PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 096VD UT WOS:000315431900020 ER PT J AU Peng, JH Bi, HT Lim, CJ Sokhansanj, S AF Peng, J. H. Bi, H. T. Lim, C. J. Sokhansanj, S. TI Study on Density, Hardness, and Moisture Uptake of Torrefied Wood Pellets SO ENERGY & FUELS LA English DT Article ID BIOMASS; DENSIFICATION; TORREFACTION; DURABILITY; FUEL AB Torrefied pellets, a transportable renewable energy source, have a higher energy density than the regular wood pellets (control pellets). The quality of torrefied pellets is determined mainly by the density, hardness, and the hygroscopicity or moisture uptake. In this study, the density and the hardness of torrefied pellets were systematically examined by using torrefied samples prepared at different conditions in a press machine. The hygroscopicity of prepared torrefied pellets was evaluated in a humidity chamber by measuring the moisture uptake rate of control and torrefied pellets. The results showed that the density and the hardness of torrefied pellets mainly depended on the densification die temperature and the weight loss of torrefied samples. To make strong torrefied pellets of high density and low moisture uptake from 30 wt % weight loss torrefied samples, a die temperature of 230 C or above was needed. Preconditioning torrefied samples to a moisture content of similar to 10% can improve the quality of torrefied pellets. The moisture uptake of torrefied pellets was more sensitive to the weight loss of torrefaction and the relative humidity of the storage environment. The saturated moisture uptake of torrefied pellets made from 30 wt % weight loss torrefied samples was at least 40% lower than the control pellets. C1 [Peng, J. H.; Bi, H. T.; Lim, C. J.; Sokhansanj, S.] Univ British Columbia, Clean Energy Res Ctr, Vancouver, BC V5Z 1M9, Canada. [Peng, J. H.; Bi, H. T.; Lim, C. J.; Sokhansanj, S.] Univ British Columbia, Chem & Biol Engn Dept, Vancouver, BC V5Z 1M9, Canada. [Sokhansanj, S.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Bi, HT (reprint author), Univ British Columbia, Clean Energy Res Ctr, Vancouver, BC V5Z 1M9, Canada. EM xbi@chbe.ubc.ca FU Natural Science and Engineering Research Council (NSERC) of Canada; Wood Pellet Association of Canada; BC Innovation Council FX The authors are grateful to the financial support from Natural Science and Engineering Research Council (NSERC) of Canada, Wood Pellet Association of Canada, and BC Innovation Council. NR 31 TC 34 Z9 35 U1 1 U2 58 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 J9 ENERG FUEL JI Energy Fuels PD FEB PY 2013 VL 27 IS 2 BP 967 EP 974 DI 10.1021/ef301928q PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 096VD UT WOS:000315431900042 ER PT J AU Bussmann-Holder, A Simon, A Keller, H Bishop, AR AF Bussmann-Holder, A. Simon, A. Keller, H. Bishop, A. R. TI Polaron signatures in the phonon dispersion of high-temperature superconducting copper oxides SO EPL LA English DT Article ID LOCAL OCTAHEDRAL TILTS; T-J MODEL; CUO2 PLANE; CUPRATE SUPERCONDUCTORS; LATTICE INSTABILITY; HUBBARD-MODEL; LA2CUO4; LA1.85SR0.15CUO4; ANOMALIES; RENORMALIZATION AB High-temperature superconducting copper oxides display a variety of both long-range and local lattice anomalies which are related to the onset of the pseudogap phase and / or the onset of superconductivity. Here we show that these anomalies demonstrate polaron formation where specifically the local character of the polarons plays an important role. We predict that unconventional isotope effects will appear in both the long-wavelength and local lattice effects. Copyright (C) EPLA, 2013 C1 [Bussmann-Holder, A.; Simon, A.] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany. [Keller, H.] Univ Zurich, Inst Phys, CH-8057 Zurich, Switzerland. [Bishop, A. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Bussmann-Holder, A (reprint author), Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany. NR 75 TC 1 Z9 1 U1 3 U2 21 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 J9 EPL-EUROPHYS LETT JI EPL PD FEB PY 2013 VL 101 IS 4 AR 47004 DI 10.1209/0295-5075/101/47004 PG 6 WC Physics, Multidisciplinary SC Physics GA 104MY UT WOS:000315999100025 ER PT J AU Guerrero, C Tsinganis, A Berthoumieux, E Barbagallo, M Belloni, F Gunsing, F Weiss, C Chiaveri, E Calviani, M Vlachoudis, V Altstadt, S Andriamonje, S Andrzejewski, J Audouin, L Becares, V Becvar, F Billowes, J Boccone, V Bosnar, D Brugger, M Calvino, F Cano-Ott, D Carrapico, C Cerutti, F Chin, M Colonna, N Cortes, G Cortes-Giraldo, MA Diakaki, M Domingo-Pardo, C Duran, I Dressler, R Dzysiuk, N Eleftheriadis, C Ferrari, A Fraval, K Ganesan, S Garcia, AR Giubrone, G Gobel, K Gomez-Hornillos, MB Goncalves, IF Gonzalez-Romero, E Griesmayer, E Gurusamy, P Hernandez-Prieto, A Gurusamy, P Jenkins, DG Jericha, E Kadi, Y Kappeler, F Karadimos, D Kivel, N Koehler, P Kokkoris, M Krticka, M Kroll, J Lampoudis, C Langer, C Leal-Cidoncha, E Lederer, C Leeb, H Leong, LS Losito, R Manousos, A Marganiec, J Martinez, T Massimi, C Mastinu, PF Mastromarco, M Meaze, M Mendoza, E Mengoni, A Milazzo, PM Mingrone, F Mirea, M Mondalaers, W Papaevangelou, T Paradela, C Pavlik, A Perkowski, J Plompen, A Praena, J Quesada, M Rauscher, T Reifarth, R Riego, A Roman, F Rubbia, C Sabate-Gilarte, M Sarmento, R Saxena, A Schillebeeckx, P Schmidt, S Schumann, D Steinegger, P Tagliente, G Tain, JL Tarrio, D Tassan-Got, L Valenta, S Vannini, G Variale, V Vaz, P Ventura, A Versaci, R Vermeulen, MJ Vlastou, R Wallner, A Ware, T Weigand, M Wright, T Zugec, P AF Guerrero, C. Tsinganis, A. Berthoumieux, E. Barbagallo, M. Belloni, F. Gunsing, F. Weiss, C. Chiaveri, E. Calviani, M. Vlachoudis, V. Altstadt, S. Andriamonje, S. Andrzejewski, J. Audouin, L. Becares, V. Becvar, F. Billowes, J. Boccone, V. Bosnar, D. Brugger, M. Calvino, F. Cano-Ott, D. Carrapico, C. Cerutti, F. Chin, M. Colonna, N. Cortes, G. Cortes-Giraldo, M. A. Diakaki, M. Domingo-Pardo, C. Duran, I. Dressler, R. Dzysiuk, N. Eleftheriadis, C. Ferrari, A. Fraval, K. Ganesan, S. Garcia, A. R. Giubrone, G. Goebel, K. Gomez-Hornillos, M. B. Goncalves, I. F. Gonzalez-Romero, E. Griesmayer, E. Gurusamy, P. Hernandez-Prieto, A. Gurusamy, P. Jenkins, D. G. Jericha, E. Kadi, Y. Kaeppeler, F. Karadimos, D. Kivel, N. Koehler, P. Kokkoris, M. Krticka, M. Kroll, J. Lampoudis, C. Langer, C. Leal-Cidoncha, E. Lederer, C. Leeb, H. Leong, L. S. Losito, R. Manousos, A. Marganiec, J. Martinez, T. Massimi, C. Mastinu, P. F. Mastromarco, M. Meaze, M. Mendoza, E. Mengoni, A. Milazzo, P. M. Mingrone, F. Mirea, M. Mondalaers, W. Papaevangelou, T. Paradela, C. Pavlik, A. Perkowski, J. Plompen, A. Praena, J. Quesada, M. Rauscher, T. Reifarth, R. Riego, A. Roman, F. Rubbia, C. Sabate-Gilarte, M. Sarmento, R. Saxena, A. Schillebeeckx, P. Schmidt, S. Schumann, D. Steinegger, P. Tagliente, G. Tain, J. L. Tarrio, D. Tassan-Got, L. Valenta, S. Vannini, G. Variale, V. Vaz, P. Ventura, A. Versaci, R. Vermeulen, M. J. Vlastou, R. Wallner, A. Ware, T. Weigand, M. Wright, T. Zugec, P. TI Performance of the neutron time-of-flight facility n_TOF at CERN SO EUROPEAN PHYSICAL JOURNAL A LA English DT Article ID CROSS-SECTION MEASUREMENTS; DETECTOR; BEAM; MICROMEGAS; STANDARDS; TRANSPORT; CODE AB The neutron time-of-flight facility n_TOF features a white neutron source produced by spallation through 20 GeV/c protons impinging on a lead target. The facility, aiming primarily at the measurement of neutron-induced reaction cross sections, was operating at CERN between 2001 and 2004, and then underwent a major upgrade in 2008. This paper presents in detail all the characteristics of the new neutron beam in the currently available configurations, which correspond to two different collimation systems and two choices of neutron moderator. The characteristics discussed include the intensity and energy dependence of the neutron flux, the spatial profile of the beam, the in-beam background components and the energy resolution/broadening. The discussion of these features is based on dedicated measurements and Monte Carlo simulations, and includes estimations of the systematic uncertainties of the mentioned quantities. C1 [Guerrero, C.; Tsinganis, A.; Berthoumieux, E.; Weiss, C.; Chiaveri, E.; Calviani, M.; Vlachoudis, V.; Andriamonje, S.; Boccone, V.; Brugger, M.; Cerutti, F.; Chin, M.; Ferrari, A.; Hernandez-Prieto, A.; Kadi, Y.; Losito, R.; Roman, F.; Rubbia, C.; Versaci, R.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Tsinganis, A.; Diakaki, M.; Karadimos, D.; Kokkoris, M.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Berthoumieux, E.; Belloni, F.; Gunsing, F.; Chiaveri, E.; Fraval, K.; Lampoudis, C.; Papaevangelou, T.] CEA Saclay, Irfu, F-91191 Gif Sur Yvette, France. [Barbagallo, M.; Colonna, N.; Mastromarco, M.; Meaze, M.; Tagliente, G.; Variale, V.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Weiss, C.; Griesmayer, E.; Jericha, E.; Leeb, H.] Vienna Univ Technol, Atominst, Vienna, Austria. [Altstadt, S.; Goebel, K.; Langer, C.; Lederer, C.; Reifarth, R.; Schmidt, S.; Weigand, M.] Goethe Univ Frankfurt, D-60054 Frankfurt, Germany. [Andrzejewski, J.; Marganiec, J.; Perkowski, J.] Uniwersytet Lodzki, Lodz, Poland. [Audouin, L.; Leong, L. S.; Tassan-Got, L.] CNRS, IN2P3, IPN, F-91405 Orsay, France. [Becares, V.; Cano-Ott, D.; Garcia, A. R.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Becvar, F.; Krticka, M.; Kroll, J.; Valenta, S.] Charles Univ Prague, Prague, Czech Republic. [Billowes, J.; Ware, T.; Wright, T.] Univ Manchester, Manchester, Lancs, England. [Bosnar, D.; Zugec, P.] Univ Zagreb, Dept Phys, Fac Sci, Zagreb 41000, Croatia. [Calvino, F.; Cortes, G.; Gomez-Hornillos, M. B.; Hernandez-Prieto, A.; Riego, A.] Univ Politecn Cataluna, Barcelona, Spain. [Carrapico, C.; Goncalves, I. F.; Sarmento, R.; Vaz, P.] Univ Tecn Lisboa, Inst Super Tecn, Inst Tecnol & Nucl, P-1096 Lisbon, Portugal. [Cortes-Giraldo, M. A.; Praena, J.; Quesada, M.; Sabate-Gilarte, M.] Univ Seville, Seville, Spain. [Domingo-Pardo, C.; Giubrone, G.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain. [Duran, I.; Leal-Cidoncha, E.; Paradela, C.; Tarrio, D.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Dressler, R.; Kivel, N.; Schumann, D.; Steinegger, P.] Paul Scherrer Inst, Villigen, Switzerland. [Dzysiuk, N.; Mastinu, P. F.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy. [Eleftheriadis, C.; Manousos, A.] Aristotle Univ Thessaloniki, GR-54006 Thessaloniki, Greece. [Ganesan, S.; Gurusamy, P.; Gurusamy, P.; Saxena, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Jenkins, D. G.; Vermeulen, M. J.] Univ York, York YO10 5DD, N Yorkshire, England. [Kaeppeler, F.] Karlsruhe Inst Technol, Inst Kernphys, D-76021 Karlsruhe, Germany. [Koehler, P.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Lederer, C.; Pavlik, A.; Wallner, A.] Univ Vienna, Fac Phys, A-1010 Vienna, Austria. [Massimi, C.; Mingrone, F.; Vannini, G.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy. [Massimi, C.; Mingrone, F.; Vannini, G.] Sez INFN Bologna, Bologna, Italy. [Mengoni, A.; Ventura, A.] ENEA, Agenzia Nazl Nuove Tecnol Energia & Sviluppo Econ, Bologna, Italy. [Milazzo, P. M.] Ist Nazl Fis Nucl, Trieste, Italy. [Mirea, M.; Roman, F.] Horia Hulubei Natl Inst Phys & Nucl Engn IFIN HH, Bucharest, Romania. [Mondalaers, W.; Plompen, A.; Schillebeeckx, P.] European Commiss JRC, Inst Reference Mat & Measurements, B-2440 Geel, Belgium. [Rauscher, T.] Univ Basel, Dept Phys & Astron, Basel, Switzerland. [Rubbia, C.] Ist Nazl Fis Nucl, Lab Nazl Gran Sasso, Assergi, AQ, Italy. RP Guerrero, C (reprint author), CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. EM carlos.guerrero@cern.ch RI Langer, Christoph/L-3422-2016; Weigand, Mario/R-6517-2016; Mengoni, Alberto/I-1497-2012; Jericha, Erwin/A-4094-2011; Mendoza Cembranos, Emilio/K-5789-2014; Cortes-Giraldo, Miguel Antonio/K-6031-2014; Guerrero, Carlos/L-3251-2014; Gonzalez Romero, Enrique/L-7561-2014; Martinez, Trinitario/K-6785-2014; Massimi, Cristian/B-2401-2015; Duran, Ignacio/H-7254-2015; Massimi, Cristian/K-2008-2015; Paradela, Carlos/J-1492-2012; Papaevangelou, Thomas/G-2482-2016; Gobel, Kathrin/B-8531-2016; Calvino, Francisco/K-5743-2014; Cano Ott, Daniel/K-4945-2014; Quesada Molina, Jose Manuel/K-5267-2014; Mirea, Mihail/C-2297-2011; Rauscher, Thomas/D-2086-2009; Wallner, Anton/G-1480-2011; Lederer, Claudia/H-4677-2013; Vaz, Pedro/K-2464-2013; Langer, Christoph/D-5490-2014; Chin, Mary Pik Wai/B-6644-2012; Steinegger, Patrick/M-5531-2013; Versaci, Roberto/G-8577-2014; Tain, Jose L./K-2492-2014; Becares, Vicente/K-4514-2014 OI Garcia Rios, Aczel Regino/0000-0002-7955-1475; Paradela Dobarro, Carlos/0000-0003-0175-8334; Koehler, Paul/0000-0002-6717-0771; Domingo-Pardo, Cesar/0000-0002-2915-5466; Tarrio, Diego/0000-0002-9858-3341; Weigand, Mario/0000-0003-1406-7241; Mengoni, Alberto/0000-0002-2537-0038; Jericha, Erwin/0000-0002-8663-0526; Pavlik, Andreas/0000-0001-7526-3372; Goncalves, Isabel/0000-0002-1997-955X; Sarmento, Raul/0000-0002-5018-5467; Mendoza Cembranos, Emilio/0000-0002-2843-1801; Cortes-Giraldo, Miguel Antonio/0000-0002-3646-1015; Guerrero, Carlos/0000-0002-2111-546X; Gonzalez Romero, Enrique/0000-0003-2376-8920; Martinez, Trinitario/0000-0002-0683-5506; Massimi, Cristian/0000-0001-9792-3722; Massimi, Cristian/0000-0003-2499-5586; Papaevangelou, Thomas/0000-0003-2829-9158; Gobel, Kathrin/0000-0003-2832-8465; Calvino, Francisco/0000-0002-7198-4639; Cano Ott, Daniel/0000-0002-9568-7508; Quesada Molina, Jose Manuel/0000-0002-2038-2814; Mirea, Mihail/0000-0002-9333-6595; Rauscher, Thomas/0000-0002-1266-0642; Wallner, Anton/0000-0003-2804-3670; Vaz, Pedro/0000-0002-7186-2359; Chin, Mary Pik Wai/0000-0001-5176-9723; Steinegger, Patrick/0000-0002-5054-0924; Becares, Vicente/0000-0003-3434-9086 FU European Commission within the Fifth Framework Programme through nTOF-ND-ADS [FIKW-CT-2000-00107]; Sixth Framework Programme through EUROTRANS [FI6W-CT-2004-516520]; Seventh Framework Programme through ERINDA [FP7-269499]; ANDES [FP7-249671] FX The authors are indebted to the national and international funding agencies that have supported the n_TOF Collaboration since its inception. In particular, this work was supported by the European Commission within the Fifth Framework Programme through nTOF-ND-ADS (contract no. FIKW-CT-2000-00107), the Sixth Framework Programme through EUROTRANS (FI6W-CT-2004-516520) and the Seventh Framework Programme through ERINDA (contract no. FP7-269499) and ANDES (contract no. FP7-249671). Furthermore, many measurements would not have been possible without the support from the CERN mechanical workshops (D. Grenier), the collaboration with JRC-IRMM through which most of the samples were obtained, the help and guidance of CERN/RP for the use of the radioactive samples, and the detectors fabricated at the CERN MicroMegas lab (R. de Oliveira, S. Ferry, A. Teixeira and A. Gris). NR 46 TC 61 Z9 61 U1 2 U2 71 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1434-6001 J9 EUR PHYS J A JI Eur. Phys. J. A PD FEB PY 2013 VL 49 IS 2 AR 27 DI 10.1140/epja/i2013-13027-6 PG 15 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 099EA UT WOS:000315601600011 ER PT J AU Syal, MB Schultz, PH Sunshine, JM A'Hearn, MF Farnham, TL Dearborn, DSP AF Syal, Megan Bruck Schultz, Peter H. Sunshine, Jessica M. A'Hearn, Michael F. Farnham, Tony L. Dearborn, David S. P. TI Geologic control of jet formation on Comet 103P/Hartley 2 SO ICARUS LA English DT Article DE Comets, Nucleus; Comets, Dynamics; Comets; Ices ID DEEP-IMPACT; ROSETTA MISSION; AMORPHOUS ICE; NUCLEUS; MODEL; HALLEY; 67P/CHURYUMOV-GERASIMENKO; 9P/TEMPEL-1; MECHANISM; EVOLUTION AB The EPOXI mission flyby of Comet 103P/Hartley 2 revealed numerous discrete dust jets extending from the nucleus, thereby providing an unprecedented opportunity to visually connect these features to the nuclear surface. The observed distribution of jets yields fresh insight into the conditions under which these cometary features may form. This study examines the geomorphology associated with areas of jet activity and then applies observed topographic correlations in the construction of a 2-D hydrodynamic model of a single dust jet. Visible light images of Hartley 2 show correlations between specific surface structures with both narrow-angle and fan-shaped dust jets; associations include pits, arcuate depressions, scarps, and rimless depressions. Notably, many source regions for jets appear finer than the practical mapping resolution of the imaging instruments (similar to 12 m). This observation indicates that the processes controlling jet formation operate at significantly finer scales than the resolution of most cometary activity models and motivates a complementary numerical investigation of dust jet formation and evolution. In order to assess controlling variables, our parametric numerical study incorporates different geometries and volatile abundances for the observed source regions. Results indicate that the expression of jet activity not only depends on local topography but also contributes to the evolution and development of surface features. Heterogeneous distributions of volatiles within the nucleus also may contribute to differences in local styles of jet activity. (c) 2012 Elsevier Inc. All rights reserved. C1 [Syal, Megan Bruck; Schultz, Peter H.] Brown Univ, Dept Geol Sci, Providence, RI 02912 USA. [Sunshine, Jessica M.; A'Hearn, Michael F.; Farnham, Tony L.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Dearborn, David S. P.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Syal, MB (reprint author), Brown Univ, Dept Geol Sci, Box 1846, Providence, RI 02912 USA. EM Megan_Syal@brown.edu FU NASA's Discovery Program [NM071102, NAS7-03001]; National Aeronautics and Space Administration through the NASA Astrobiology Institute [NNA09DA77A] FX This material is based upon work supported by NASA's Discovery Program, which supported the EPOXI mission via Contract NM071102 to the University of Maryland and task order NAS7-03001 between NASA and CalTech, and the National Aeronautics and Space Administration through the NASA Astrobiology Institute under Cooperative Agreement No. NNA09DA77A issued through the Office of Space Science. NR 60 TC 14 Z9 14 U1 1 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 J9 ICARUS JI Icarus PD FEB PY 2013 VL 222 IS 2 SI SI BP 610 EP 624 DI 10.1016/j.icarus.2012.11.040 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 099ZZ UT WOS:000315665800018 ER PT J AU Abreu, P Aglietta, M Ahlers, M Ahn, EJ Albuquerque, IFM Allekotte, I Allen, J Allison, P Almela, A Castillo, JA Alvarez-Muniz, J Batista, RA Ambrosio, M Aminaei, A Anchordoqui, L Andringa, S Anticic, T Aramo, C Arqueros, F Asorey, H Assis, P Aublin, J Ave, M Avenier, M Avila, G Badescu, AM Barber, KB Barbosa, AF Bardenet, R Baughman, B Bauml, J Baus, C Beatty, JJ Becker, KH Belletoile, A Bellido, JA BenZvi, S Berat, C Bertou, X Biermann, PL Billoir, P Blanco, F Blanco, M Bleve, C Blumer, H Bohacova, M Boncioli, D Bonifazi, C Bonino, R Borodai, N Brack, J Brancus, I Brogueira, P Brown, WC Buchholz, P Bueno, A Buroker, L Burton, RE Buscemi, M Caballero-Mora, KS Caccianiga, B Caccianiga, L Caramete, L Caruso, R Castellina, A Cataldi, G Cazon, L Cester, R Cheng, SH Chiavassa, A Chinellato, JA Chudoba, J Cilmo, M Clay, RW Cocciolo, G Colalillo, R Collica, L Coluccia, MR Conceicao, R Contreras, F Cook, H Cooper, MJ Coppens, J Coutu, S Covault, CE Criss, A Cronin, J Curutiu, A Dallier, R Daniel, B Dasso, S Daumiller, K Dawson, BR de Almeida, RM De Domenico, M de Jong, SJ De La Vega, G de Mello, WJM de Mello, JRT De Mitri, I de Souza, V de Vries, KD del Peral, L Deligny, O Dembinski, H Dhital, N Di Giulio, C Diaz, JC Castro, MLD Diep, PN Diogo, F Dobrigkeit, C Docters, W D'Olivo, JC Dong, PN Dorofeev, A dos Anjos, JC Dova, MT D'Urso, D Ebr, J Engel, R Erdmann, M Escobar, CO Espadanal, J Etchegoyen, A San Luis, PF Falcke, H Fang, K Farrar, G Fauth, AC Fazzini, N Ferguson, AP Fick, B Figueira, JM Filevich, A Filipcic, A Fliescher, S Fox, BD Fracchiolla, CE Fraenkel, ED Fratu, O Frohlich, U Fuchs, B Gaior, R Gamarra, RF Gambetta, S Garcia, B Roca, STG Garcia-Gamez, D Garcia-Pinto, D Garilli, G Bravo, AG Gemmeke, H Ghia, PL Giller, M Gitto, J Glaser, C Glass, H Golup, G Albarracin, FG Berisso, MG Vitale, PFG Goncalves, P Gonzalez, JG Gookin, B Gorgi, A Gorham, P Gouffon, P Grebe, S Griffith, N Grillo, AF Grubb, TD Guardincerri, Y Guarino, F Guedes, GP Hansen, P Harari, D Harrison, TA Harton, JL Haungs, A Hebbeker, T Heck, D Herve, AE Hill, GC Hojvat, C Hollon, N Holmes, VC Homola, P Horandel, JR Horvath, P Hrabovsky, M Huber, D Huege, T Insolia, A Ionita, F Jansen, S Jarne, C Jiraskova, S Josebachuili, M Kadija, K Kampert, KH Karhan, P Kasper, P Katkov, I Kegl, B Keilhauer, B Keivani, A Kelley, JL Kemp, E Kieckhafer, RM Klages, HO Kleifges, M Kleinfeller, J Knapp, J Kotera, K Krause, R Krohm, N Kromer, O Kruppke-Hansen, D Kuempel, D Kulbartz, JK Kunka, N La Rosa, G LaHurd, D Latronico, L Lauer, R Lauscher, M Lautridou, P Le Coz, S Leao, MSAB Lebrun, D Lebrun, P de Oliveira, MAL Letessier-Selvon, A Lhenry-Yvon, I Link, K Lopez, R Aguera, AL Louedec, K Bahilo, JL Lu, L Lucero, A Ludwig, M Lyberis, H Maccarone, MC Macolino, C Malacari, M Maldera, S Maller, J Mandat, D Mantsch, P Mariazzi, AG Marin, J Marin, V Maris, IC Falcon, HRM Marsella, G Martello, D Martin, L Martinez, H Bravo, OM Martraire, D Meza, JJM Mathes, HJ Matthews, J Matthews, JAJ Matthiae, G Maurel, D Maurizio, D Mayotte, E Mazur, PO Medina-Tanco, G Melissas, M Melo, D Menichetti, E Menshikov, A Messina, S Meyhandan, R Micanovic, S Micheletti, MI Middendorf, L Minaya, IA Miramonti, L Mitrica, B Molina-Bueno, L Mollerach, S Monasor, M Ragaigne, DM Montanet, F Morales, B Morello, C Moreno, JC Mostafa, M Moura, CA Muller, MA Muller, G Munchmeyer, M Mussa, R Navarra, G Navarro, JL Navas, S Necesal, P Nellen, L Nelles, A Neuser, J Nhung, PT Niechciol, M Niemietz, L Nierstenhoefer, N Niggemann, T Nitz, D Nosek, D Nozka, L Oehlschlager, J Olinto, A Oliveira, M Ortiz, M Pacheco, N Selmi-Dei, DP Palatka, M Pallotta, J Palmieri, N Parente, G Parra, A Pastor, S Paul, T Pech, M Pekala, J Pelayo, R Pepe, IM Perrone, L Pesce, R Petermann, E Petrera, S Petrolini, A Petrov, Y Pfendner, C Piegaia, R Pierog, T Pieroni, P Pimenta, M Pirronello, V Platino, M Plum, M Ponce, VH Pontz, M Porcelli, A Privitera, P Prouza, M Quel, EJ Querchfeld, S Rautenberg, J Ravel, O Ravignani, D Revenu, B Ridky, J Riggi, S Risse, M Ristori, P Rivera, H Rizi, V Roberts, J de Carvalho, WR Cabo, IR Fernandez, GR Martino, JR Rojo, JR Rodriguez-Frias, MD Ros, G Rosado, J Rossler, T Roth, M Rouille-d'Orfeuil, B Roulet, E Rovero, AC Ruhle, C Saffi, SJ Saftoiu, A Salamida, F Salazar, H Greus, FS Salina, G Sanchez, F Santo, CE Santos, E Santos, EM Sarazin, F Sarkar, B Sato, R Scharf, N Scherini, V Schieler, H Schiffer, P Schmidt, A Scholten, O Schoorlemmer, H Schovancova, J Schovanek, P Schroder, F Schulz, J Schuster, D Sciutto, SJ Scuderi, M Segreto, A Settimo, M Shadkam, A Shellard, RC Sidelnik, I Sigl, G Sima, O Smialkowski, A Smida, R Snow, GR Sommers, P Sorokin, J Spinka, H Squartini, R Srivastava, YN Stanic, S Stapleton, J Stasielak, J Stephan, M Straub, M Stutz, A Suarez, F Suomijarvi, T Supanitsky, AD Susa, T Sutherland, MS Swain, J Szadkowski, Z Szuba, M Tapia, A Tartare, M Tascau, O Tcaciuc, R Thao, NT Thomas, D Tiffenberg, J Timmermans, C Tkaczyk, W Peixoto, CJT Toma, G Tomankova, L Tome, B Tonachini, A Elipe, GT Machado, DT Travnicek, P Tridapalli, DB Trovato, E Tueros, M Ulrich, R Unger, M Urban, M Galicia, JFV Valino, I Valore, L van Aar, G van den Berg, AM van Velzen, S van Vliet, A Varela, E Cardenas, BV Varner, G Vazquez, JR Vazquez, RA Veberic, D Verzi, V Vicha, J Videla, M Villasenor, L Wahlberg, H Wahrlich, P Wainberg, O Walz, D Watson, AA Weber, M Weidenhaupt, K Weindl, A Werner, F Westerhoff, S Whelan, BJ Widom, A Wieczorek, G Wiencke, L Wilczynska, B Wilczynski, H Will, M Williams, C Winchen, T Wommer, M Wundheiler, B Yamamoto, T Yapici, T Younk, P Yuan, G Yushkov, A Garcia, BZ Zas, E Zavrtanik, D Zavrtanik, M Zaw, I Zepeda, A Zhou, J Zhu, Y Silva, MZ Ziolkowski, M AF Abreu, P. Aglietta, M. Ahlers, M. Ahn, E. J. Albuquerque, I. F. M. Allekotte, I. Allen, J. Allison, P. Almela, A. Alvarez Castillo, J. Alvarez-Muniz, J. Alves Batista, R. Ambrosio, M. Aminaei, A. Anchordoqui, L. Andringa, S. Anticic, T. Aramo, C. Arqueros, F. Asorey, H. Assis, P. Aublin, J. Ave, M. Avenier, M. Avila, G. Badescu, A. M. Barber, K. B. Barbosa, A. F. Bardenet, R. Baughman, B. Baeuml, J. Baus, C. Beatty, J. J. Becker, K. H. Belletoile, A. Bellido, J. A. BenZvi, S. Berat, C. Bertou, X. Biermann, P. L. Billoir, P. Blanco, F. Blanco, M. Bleve, C. Bluemer, H. Bohacova, M. Boncioli, D. Bonifazi, C. Bonino, R. Borodai, N. Brack, J. Brancus, I. Brogueira, P. Brown, W. C. Buchholz, P. Bueno, A. Buroker, L. Burton, R. E. Buscemi, M. Caballero-Mora, K. S. Caccianiga, B. Caccianiga, L. Caramete, L. Caruso, R. Castellina, A. Cataldi, G. Cazon, L. Cester, R. Cheng, S. H. Chiavassa, A. Chinellato, J. A. Chudoba, J. Cilmo, M. Clay, R. W. Cocciolo, G. Colalillo, R. Collica, L. Coluccia, M. R. Conceicao, R. Contreras, F. Cook, H. Cooper, M. J. Coppens, J. Coutu, S. Covault, C. E. Criss, A. Cronin, J. Curutiu, A. Dallier, R. Daniel, B. Dasso, S. Daumiller, K. Dawson, B. R. de Almeida, R. M. De Domenico, M. de Jong, S. J. De La Vega, G. de Mello Junior, W. J. M. de Mello Neto, J. R. T. De Mitri, I. de Souza, V. de Vries, K. D. del Peral, L. Deligny, O. Dembinski, H. Dhital, N. Di Giulio, C. Diaz, J. C. Diaz Castro, M. L. Diep, P. N. Diogo, F. Dobrigkeit, C. Docters, W. D'Olivo, J. C. Dong, P. N. Dorofeev, A. dos Anjos, J. C. Dova, M. T. D'Urso, D. Ebr, J. Engel, R. Erdmann, M. Escobar, C. O. Espadanal, J. Etchegoyen, A. San Luis, P. Facal Falcke, H. Fang, K. Farrar, G. Fauth, A. C. Fazzini, N. Ferguson, A. P. Fick, B. Figueira, J. M. Filevich, A. Filipcic, A. Fliescher, S. Fox, B. D. Fracchiolla, C. E. Fraenkel, E. D. Fratu, O. Froehlich, U. Fuchs, B. Gaior, R. Gamarra, R. F. Gambetta, S. Garcia, B. Garcia Roca, S. T. Garcia-Gamez, D. Garcia-Pinto, D. Garilli, G. Gascon Bravo, A. Gemmeke, H. Ghia, P. L. Giller, M. Gitto, J. Glaser, C. Glass, H. Golup, G. Gomez Albarracin, F. Gomez Berisso, M. Gomez Vitale, P. F. Goncalves, P. Gonzalez, J. G. Gookin, B. Gorgi, A. Gorham, P. Gouffon, P. Grebe, S. Griffith, N. Grillo, A. F. Grubb, T. D. Guardincerri, Y. Guarino, F. Guedes, G. P. Hansen, P. Harari, D. Harrison, T. A. Harton, J. L. Haungs, A. Hebbeker, T. Heck, D. Herve, A. E. Hill, G. C. Hojvat, C. Hollon, N. Holmes, V. C. Homola, P. Horandel, J. R. Horvath, P. Hrabovsky, M. Huber, D. Huege, T. Insolia, A. Ionita, F. Jansen, S. Jarne, C. Jiraskova, S. Josebachuili, M. Kadija, K. Kampert, K. H. Karhan, P. Kasper, P. Katkov, I. Kegl, B. Keilhauer, B. Keivani, A. Kelley, J. L. Kemp, E. Kieckhafer, R. M. Klages, H. O. Kleifges, M. Kleinfeller, J. Knapp, J. Kotera, K. Krause, R. Krohm, N. Kroemer, O. Kruppke-Hansen, D. Kuempel, D. Kulbartz, J. K. Kunka, N. La Rosa, G. LaHurd, D. Latronico, L. Lauer, R. Lauscher, M. Lautridou, P. Le Coz, S. Leao, M. S. A. B. Lebrun, D. Lebrun, P. Leigui de Oliveira, M. A. Letessier-Selvon, A. Lhenry-Yvon, I. Link, K. Lopez, R. Lopez Aguera, A. Louedec, K. Lozano Bahilo, J. Lu, L. Lucero, A. Ludwig, M. Lyberis, H. Maccarone, M. C. Macolino, C. Malacari, M. Maldera, S. Maller, J. Mandat, D. Mantsch, P. Mariazzi, A. G. Marin, J. Marin, V. Maris, I. C. Marquez Falcon, H. R. Marsella, G. Martello, D. Martin, L. Martinez, H. Martinez Bravo, O. Martraire, D. Masias Meza, J. J. Mathes, H. J. Matthews, J. Matthews, J. A. J. Matthiae, G. Maurel, D. Maurizio, D. Mayotte, E. Mazur, P. O. Medina-Tanco, G. Melissas, M. Melo, D. Menichetti, E. Menshikov, A. Messina, S. Meyhandan, R. Micanovic, S. Micheletti, M. I. Middendorf, L. Minaya, I. A. Miramonti, L. Mitrica, B. Molina-Bueno, L. Mollerach, S. Monasor, M. Ragaigne, D. Monnier Montanet, F. Morales, B. Morello, C. Moreno, J. C. Mostafa, M. Moura, C. A. Muller, M. A. Mueller, G. Muenchmeyer, M. Mussa, R. Navarra, G. Navarro, J. L. Navas, S. Necesal, P. Nellen, L. Nelles, A. Neuser, J. Nhung, P. T. Niechciol, M. Niemietz, L. Nierstenhoefer, N. Niggemann, T. Nitz, D. Nosek, D. Nozka, L. Oehlschlaeger, J. Olinto, A. Oliveira, M. Ortiz, M. Pacheco, N. Pakk Selmi-Dei, D. Palatka, M. Pallotta, J. Palmieri, N. Parente, G. Parra, A. Pastor, S. Paul, T. Pech, M. Pekala, J. Pelayo, R. Pepe, I. M. Perrone, L. Pesce, R. Petermann, E. Petrera, S. Petrolini, A. Petrov, Y. Pfendner, C. Piegaia, R. Pierog, T. Pieroni, P. Pimenta, M. Pirronello, V. Platino, M. Plum, M. Ponce, V. H. Pontz, M. Porcelli, A. Privitera, P. Prouza, M. Quel, E. J. Querchfeld, S. Rautenberg, J. Ravel, O. Ravignani, D. Revenu, B. Ridky, J. Riggi, S. Risse, M. Ristori, P. Rivera, H. Rizi, V. Roberts, J. Rodrigues de Carvalho, W. Rodriguez Cabo, I. Rodriguez Fernandez, G. Rodriguez Martino, J. Rodriguez Rojo, J. Rodriguez-Frias, M. D. Ros, G. Rosado, J. Rossler, T. Roth, M. Rouille-d'Orfeuil, B. Roulet, E. Rovero, A. C. Ruehle, C. Saffi, S. J. Saftoiu, A. Salamida, F. Salazar, H. Greus, F. Salesa Salina, G. Sanchez, F. Santo, C. E. Santos, E. Santos, E. M. Sarazin, F. Sarkar, B. Sato, R. Scharf, N. Scherini, V. Schieler, H. Schiffer, P. Schmidt, A. Scholten, O. Schoorlemmer, H. Schovancova, J. Schovanek, P. Schroeder, F. Schulz, J. Schuster, D. Sciutto, S. J. Scuderi, M. Segreto, A. Settimo, M. Shadkam, A. Shellard, R. C. Sidelnik, I. Sigl, G. Sima, O. Smialkowski, A. Smida, R. Snow, G. R. Sommers, P. Sorokin, J. Spinka, H. Squartini, R. Srivastava, Y. N. Stanic, S. Stapleton, J. Stasielak, J. Stephan, M. Straub, M. Stutz, A. Suarez, F. Suomijaervi, T. Supanitsky, A. D. Susa, T. Sutherland, M. S. Swain, J. Szadkowski, Z. Szuba, M. Tapia, A. Tartare, M. Tascau, O. Tcaciuc, R. Thao, N. T. Thomas, D. Tiffenberg, J. Timmermans, C. Tkaczyk, W. Todero Peixoto, C. J. Toma, G. Tomankova, L. Tome, B. Tonachini, A. Torralba Elipe, G. Machado, D. Torres Travnicek, P. Tridapalli, D. B. Trovato, E. Tueros, M. Ulrich, R. Unger, M. Urban, M. Valdes Galicia, J. F. Valino, I. Valore, L. van Aar, G. van den Berg, A. M. van Velzen, S. van Vliet, A. Varela, E. Vargas Cardenas, B. Varner, G. Vazquez, J. R. Vazquez, R. A. Veberic, D. Verzi, V. Vicha, J. Videla, M. Villasenor, L. Wahlberg, H. Wahrlich, P. Wainberg, O. Walz, D. Watson, A. A. Weber, M. Weidenhaupt, K. Weindl, A. Werner, F. Westerhoff, S. Whelan, B. J. Widom, A. Wieczorek, G. Wiencke, L. Wilczynska, B. Wilczynski, H. Will, M. Williams, C. Winchen, T. Wommer, M. Wundheiler, B. Yamamoto, T. Yapici, T. Younk, P. Yuan, G. Yushkov, A. Zamorano Garcia, B. Zas, E. Zavrtanik, D. Zavrtanik, M. Zaw, I. Zepeda, A. Zhou, J. Zhu, Y. Zimbres Silva, M. Ziolkowski, M. CA Pierre Auger Collaboration TI Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE ultra high energy cosmic rays; cosmic ray experiments ID ENERGY COSMIC-RAYS; SIMULATION; PARTICLES; MODEL AB To interpret the mean depth of cosmic ray air shower maximum and its dispersion, we parametrize those two observables as functions of the first two moments of the ln A distribution. We examine the goodness of this simple method through simulations of test mass distributions. The application of the parameterization to Pierre Auger Observatory data allows one to study the energy dependence of the mean ln A and of its variance under the assumption of selected hadronic interaction models. We discuss possible implications of these dependences in term of interaction models and astrophysical cosmic ray sources. C1 [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.; Santo, C. E.; Sidelnik, I.] Ctr Atom Bariloche, San Carlos De Bariloche, Rio Negro, Argentina. [Allekotte, I.; Asorey, H.; Bertou, X.; Golup, G.; Gomez Berisso, M.; Harari, D.; Mollerach, S.; Ponce, V. H.; Roulet, E.; Santo, C. E.; Sidelnik, I.] CNEA UNCuyo CONICET, Inst Balseiro, San Carlos De Bariloche, Rio Negro, Argentina. [Pallotta, J.; Quel, E. J.; Ristori, P.] CITEDEF, Ctr Invest Laseres & Aplicac, Buenos Aires, DF, Argentina. [Dasso, S.; Guardincerri, Y.; Masias Meza, J. J.; Pallotta, J.; Piegaia, R.; Pieroni, P.; Quel, E. J.; Ristori, P.; Tiffenberg, J.] Consejo Nacl Invest Cient & Tecn, RA-1033 Buenos Aires, DF, Argentina. [Dasso, S.; Guardincerri, Y.; Masias Meza, J. J.; Piegaia, R.; Pieroni, P.; Tiffenberg, J.] Univ Buenos Aires, FCEyN, Dept Fis, RA-1053 Buenos Aires, DF, Argentina. [Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Jarne, C.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Wahlberg, H.] Univ Nacl La Plata, IFLP, La Plata, Buenos Aires, Argentina. [Dova, M. T.; Gomez Albarracin, F.; Hansen, P.; Jarne, C.; Mariazzi, A. G.; Moreno, J. C.; Sciutto, S. J.; Wahlberg, H.] Consejo Nacl Invest Cient & Tecn, La Plata, Buenos Aires, Argentina. [Dasso, S.; Rovero, A. C.; Supanitsky, A. D.] CONICET UBA, Inst Astron & Fis Espacio, Buenos Aires, DF, Argentina. [Micheletti, M. I.; Santo, C. E.] UNR, CONICET, Inst Fis Rosario IFIR, Rosario, Santa Fe, Argentina. [Micheletti, M. I.; Santo, C. E.] UNR, Fac Ciencias Bioquim & Farmaceut, Rosario, Argentina. [Almela, A.; Etchegoyen, A.; Figueira, J. M.; Filevich, A.; Gamarra, R. F.; Josebachuili, M.; Lucero, A.; Melo, D.; Platino, M.; Ravignani, D.; Sanchez, F.; Suarez, F.; Tapia, A.; Wainberg, O.; Wundheiler, B.] UNSAM, CONICET, CNEA, Inst Tecnol Detecc & Astroparticulas, Buenos Aires, DF, Argentina. [De La Vega, G.; Garcia, B.; Gitto, J.; Videla, M.] Natl Technol Univ, Fac Mendoza, CONICET CNEA, Mendoza, Argentina. [Avila, G.; Contreras, F.; Gomez Vitale, P. F.; Kleinfeller, J.; Marin, J.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Sato, R.; Squartini, R.] Observ Pierre Auger, Malargue, Argentina. [Avila, G.; Gomez Vitale, P. F.] Comis Nacl Energia Atom, Malargue, Argentina. [Almela, A.; Etchegoyen, A.; Wainberg, O.] Univ Tecnol Nacl, Fac Reg Buenos Aires, Buenos Aires, DF, Argentina. [Barber, K. B.; Bellido, J. A.; Clay, R. W.; Cooper, M. J.; Dawson, B. R.; Grubb, T. D.; Harrison, T. A.; Herve, A. E.; Hill, G. C.; Holmes, V. C.; Malacari, M.; Saffi, S. J.; Sorokin, J.; Wahrlich, P.] Univ Adelaide, Adelaide, SA, Australia. [Barbosa, A. F.; Diaz Castro, M. L.; dos Anjos, J. C.; Maurizio, D.; Shellard, R. C.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [de Souza, V.; Todero Peixoto, C. J.] Univ Sao Paulo, Inst Fis, Sao Carlos, SP, Brazil. [Albuquerque, I. F. M.; Gouffon, P.; Tridapalli, D. B.] Univ Sao Paulo, Inst Fis, BR-01498 Sao Paulo, Brazil. [Alves Batista, R.; Chinellato, J. A.; Daniel, B.; de Mello Junior, W. J. M.; Dobrigkeit, C.; Escobar, C. O.; Fauth, A. C.; Kemp, E.; Muller, M. A.; Pakk Selmi-Dei, D.; Zimbres Silva, M.] Univ Estadual Campinas, IFGW, Campinas, SP, Brazil. [Guedes, G. P.] Univ Estadual Feira de Santana, Fiera De Santana, BA, Brazil. [Pepe, I. M.] Univ Fed Bahia, Salvador, BA, Brazil. [Leao, M. S. A. B.; Leigui de Oliveira, M. A.; Moura, C. A.] Univ Fed ABC, Santo Andre, SP, Brazil. [Bonifazi, C.; de Mello Neto, J. R. T.; Lyberis, H.; Santos, E. M.] Univ Fed Rio de Janeiro, Inst Fis, Rio De Janeiro, RJ, Brazil. [de Almeida, R. M.] Univ Fed Fluminense, EEIMVR, Volta Redonda, RJ, Brazil. [Anticic, T.; Kadija, K.; Micanovic, S.; Susa, T.] Rudjer Boskovic Inst, Zagreb 10000, Croatia. [Karhan, P.; Nosek, D.] Charles Univ Prague, Fac Math & Phys, Inst Particle & Nucl Phys, Prague, Czech Republic. [Bohacova, M.; Chudoba, J.; Ebr, J.; Hrabovsky, M.; Mandat, D.; Necesal, P.; Nozka, L.; Palatka, M.; Pech, M.; Prouza, M.; Ridky, J.; Schovancova, J.; Schovanek, P.; Tomankova, L.; Travnicek, P.; Vicha, J.] Acad Sci Czech Republic, Inst Phys, Prague, Czech Republic. [Horvath, P.; Hrabovsky, M.; Rossler, T.] Palacky Univ, RCPTM, CR-77147 Olomouc, Czech Republic. [Deligny, O.; Dong, P. N.; Lhenry-Yvon, I.; Lyberis, H.; Martraire, D.; Salamida, F.; Suomijaervi, T.] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay, France. [Bardenet, R.; Garcia-Gamez, D.; Kegl, B.; Louedec, K.; Ragaigne, D. Monnier; Urban, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Aublin, J.; Billoir, P.; Blanco, F.; Caccianiga, L.; Gaior, R.; Ghia, P. L.; Letessier-Selvon, A.; Macolino, C.; Maris, I. C.; Muenchmeyer, M.] Univ Paris 06, CNRS, IN2P3, LPNHE, Paris, France. [Aublin, J.; Billoir, P.; Blanco, F.; Caccianiga, L.; Gaior, R.; Ghia, P. L.; Letessier-Selvon, A.; Macolino, C.; Maris, I. C.; Muenchmeyer, M.] Univ Paris 07, CNRS, IN2P3, Paris, France. [Avenier, M.; Berat, C.; Le Coz, S.; Lebrun, D.; Louedec, K.; Montanet, F.; Stutz, A.; Tartare, M.] Univ Grenoble, CNRS, IN2P3, Grenoble INP,LPSC, Grenoble, France. [Dallier, R.; Martin, L.] CNRS, INSU, Observ Paris, Stn Radioastron Nancay, F-75700 Paris, France. [Belletoile, A.; Dallier, R.; Lautridou, P.; Maller, J.; Marin, V.; Martin, L.; Ravel, O.; Revenu, B.; Machado, D. Torres] Univ Nantes, CNRS IN2P3, Ecole Mines Nantes, SUBATECH, F-44035 Nantes, France. [Becker, K. H.; Bleve, C.; Kampert, K. H.; Krohm, N.; Kruppke-Hansen, D.; Neuser, J.; Niemietz, L.; Nierstenhoefer, N.; Querchfeld, S.; Rautenberg, J.; Sarkar, B.; Tascau, O.; Zimbres Silva, M.] Berg Univ Wuppertal, Wuppertal, Germany. [Baeuml, J.; Bluemer, H.; Daumiller, K.; Dembinski, H.; Engel, R.; Haungs, A.; Heck, D.; Huege, T.; Keilhauer, B.; Klages, H. O.; Kleinfeller, J.; Mathes, H. J.; Maurel, D.; Oehlschlaeger, J.; Pierog, T.; Porcelli, A.; Roth, M.; Schieler, H.; Schroeder, F.; Smida, R.; Szuba, M.; Ulrich, R.; Unger, M.; Weindl, A.; Werner, F.; Will, M.; Wommer, M.] Karlsruhe Inst Technol, Inst Kernphys, D-76021 Karlsruhe, Germany. [Gemmeke, H.; Kleifges, M.; Kroemer, O.; Kunka, N.; Menshikov, A.; Ruehle, C.; Schmidt, A.; Weber, M.; Zhu, Y.] Karlsruhe Inst Technol, Inst Prozessdatenverarbeitung & Elekt, D-76021 Karlsruhe, Germany. [Baus, C.; Bluemer, H.; Fuchs, B.; Gonzalez, J. G.; Huber, D.; Katkov, I.; Link, K.; Ludwig, M.; Melissas, M.; Palmieri, N.] Karlsruhe Inst Technol, Inst Expt Kernphys IEKP, D-76021 Karlsruhe, Germany. [Biermann, P. L.; Caramete, L.; Curutiu, A.] Max Planck Inst Radioastron, D-53121 Bonn, Germany. [Erdmann, M.; Fliescher, S.; Glaser, C.; Hebbeker, T.; Krause, R.; Kuempel, D.; Lauscher, M.; Middendorf, L.; Mueller, G.; Niggemann, T.; Plum, M.; Scharf, N.; Stephan, M.; Straub, M.; Walz, D.; Weidenhaupt, K.; Winchen, T.] Rhein Westfal TH Aachen, Phys Inst 3A, Aachen, Germany. [Kulbartz, J. K.; Schiffer, P.; Sigl, G.; van Vliet, A.] Univ Hamburg, Hamburg, Germany. [Buchholz, P.; Froehlich, U.; Kuempel, D.; Niechciol, M.; Pontz, M.; Risse, M.; Settimo, M.; Tcaciuc, R.; Ziolkowski, M.] Univ Siegen, D-57068 Siegen, Germany. [Gambetta, S.; Pesce, R.; Petrolini, A.] Univ Genoa, Dipartimento Fis, Genoa, Italy. [Gambetta, S.; Pesce, R.; Petrolini, A.] Ist Nazl Fis Nucl, I-16146 Genoa, Italy. [Petrera, S.; Rizi, V.] Univ Aquila, I-67100 Laquila, Italy. [Petrera, S.; Rizi, V.] INFN, Laquila, Italy. [Caccianiga, B.; Collica, L.; Miramonti, L.; Rivera, H.; Scherini, V.] Univ Milan, Milan, Italy. [Caccianiga, B.; Collica, L.; Miramonti, L.; Rivera, H.; Scherini, V.] Sezione Ist Nazl Fis Nucl, Milan, Italy. [Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; D'Urso, D.; Guarino, F.; Valore, L.] Univ Naples Federico II, Naples, Italy. [Ambrosio, M.; Aramo, C.; Buscemi, M.; Cilmo, M.; Colalillo, R.; D'Urso, D.; Guarino, F.; Valore, L.] Sezione Ist Nazl Fis Nucl, Naples, Italy. [Boncioli, D.; Di Giulio, C.; Matthiae, G.; Rodriguez Fernandez, G.; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy. [Boncioli, D.; Di Giulio, C.; Matthiae, G.; Rodriguez Fernandez, G.; Salina, G.; Verzi, V.] Sezione Ist Nazl Fis Nucl, Rome, Italy. [Caruso, R.; De Domenico, M.; Garilli, G.; Insolia, A.; Pirronello, V.; Scuderi, M.; Trovato, E.] Univ Catania, Catania, Italy. [Caruso, R.; De Domenico, M.; Garilli, G.; Insolia, A.; Pirronello, V.; Scuderi, M.; Trovato, E.] Sezione Ist Nazl Fis Nucl, Catania, Italy. [Cester, R.; Maurizio, D.; Menichetti, E.; Mussa, R.; Tonachini, A.] Univ Turin, Turin, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Cester, R.; Chiavassa, A.; Gorgi, A.; Latronico, L.; Maldera, S.; Marin, J.; Maurizio, D.; Menichetti, E.; Morello, C.; Mussa, R.; Navarra, G.; Tonachini, A.] Sezione Ist Nazl Fis Nucl, Turin, Italy. [Cataldi, G.; Cocciolo, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Settimo, M.] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, Lecce, Italy. [Cataldi, G.; Cocciolo, G.; Coluccia, M. R.; De Mitri, I.; Marsella, G.; Martello, D.; Perrone, L.; Settimo, M.] Sezione Ist Nazl Fis Nucl, Lecce, Italy. [La Rosa, G.; Maccarone, M. C.; Riggi, S.; Segreto, A.] Inst Astrophys Spatiale & Fis Cosm Palermo INAF, Palermo, Italy. [Aglietta, M.; Bonino, R.; Castellina, A.; Chiavassa, A.; Gorgi, A.; Latronico, L.; Maldera, S.; Marin, J.; Morello, C.; Navarra, G.] Univ Turin, Ist Fis Spazio Interplanetario INAF, Turin, Italy. [Grillo, A. F.] INFN, Lab Nazl Gran Sasso, Assergi, Laquila, Italy. [Lopez, R.; Martinez Bravo, O.; Pelayo, R.; Salazar, H.; Varela, E.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Martinez, H.; Zepeda, A.] CINVESTAV, IPN, Ctr Invest & Estudios Avanzados, Mexico City 14000, DF, Mexico. [Marquez Falcon, H. R.; Villasenor, L.] Univ Michoacana, Morelia, Michoacan, Mexico. [Alvarez Castillo, J.; D'Olivo, J. C.; Medina-Tanco, G.; Morales, B.; Nelles, A.; Valdes Galicia, J. F.; Vargas Cardenas, B.] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [Aminaei, A.; Coppens, J.; de Jong, S. J.; Falcke, H.; Grebe, S.; Horandel, J. R.; Jansen, S.; Jiraskova, S.; Kelley, J. L.; Nelles, A.; Schoorlemmer, H.; Schulz, J.; Timmermans, C.; van Aar, G.; van Velzen, S.] Radboud Univ Nijmegen, IMAPP, Nijmegen, Netherlands. [de Vries, K. D.; Docters, W.; Fraenkel, E. D.; Messina, S.; Scholten, O.; van den Berg, A. M.] Univ Groningen, Kernfys Versneller Inst, Groningen, Netherlands. [Coppens, J.; de Jong, S. J.; Falcke, H.; Grebe, S.; Horandel, J. R.; Jansen, S.; Nelles, A.; Schoorlemmer, H.; Timmermans, C.] Nikhef, Amsterdam, Netherlands. [Falcke, H.] ASTRON, Dwingeloo, Netherlands. [Borodai, N.; Homola, P.; Pekala, J.; Stasielak, J.; Wilczynska, B.; Wilczynski, H.] Inst Nucl Phys PAN, Krakow, Poland. [Giller, M.; Smialkowski, A.; Szadkowski, Z.; Tkaczyk, W.; Wieczorek, G.] Univ Lodz, PL-90131 Lodz, Poland. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Oliveira, M.; Pimenta, M.; Santos, E.; Tome, B.] Univ Tecn Lisboa, LIP, P-1100 Lisbon, Portugal. [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Diogo, F.; Espadanal, J.; Goncalves, P.; Oliveira, M.; Pimenta, M.; Santos, E.; Tome, B.] Univ Tecn Lisboa, Inst Super Tecn, P-1100 Lisbon, Portugal. [Brancus, I.; Mitrica, B.; Saftoiu, A.; Toma, G.] Horia Hulubei Natl Inst Phys & Nucl Engn, Bucharest, Romania. [Sima, O.] Univ Bucharest, Dept Phys, Bucharest, Romania. [Badescu, A. M.; Fratu, O.] Univ Politehn Bucuresti, Bucharest, Romania. [Filipcic, A.; Veberic, D.; Zavrtanik, D.; Zavrtanik, M.] Jozef Stefan Inst, Ljubljana, Slovenia. [Filipcic, A.; Stanic, S.; Veberic, D.; Zavrtanik, D.; Zavrtanik, M.] Univ Nova Gorica, Lab Astroparticle Phys, Nova Gorica, Slovenia. [Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain. [Arqueros, F.; Blanco, F.; Garcia-Pinto, D.; Minaya, I. A.; Ortiz, M.; Rosado, J.; Vazquez, J. R.] Univ Complutense Madrid, Madrid, Spain. [del Peral, L.; Pacheco, N.; Rodriguez-Frias, M. D.; Ros, G.] Univ Alcala De Henares, Alcala De Henares, Madrid, Spain. [Bueno, A.; Gascon Bravo, A.; Lozano Bahilo, J.; Molina-Bueno, L.; Navarro, J. L.; Navas, S.; Zamorano Garcia, B.] Univ Granada, Granada, Spain. [Bueno, A.; Gascon Bravo, A.; Lozano Bahilo, J.; Molina-Bueno, L.; Navarro, J. L.; Navas, S.; Zamorano Garcia, B.] CAFPF, Granada, Spain. [Alvarez-Muniz, J.; Ave, M.; Caballero-Mora, K. S.; Garcia Roca, S. T.; Lopez Aguera, A.; Parente, G.; Parra, A.; Pelayo, R.; Riggi, S.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Torralba Elipe, G.; Tueros, M.; Valino, I.; Vazquez, R. A.; Yushkov, A.; Zas, E.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Cook, H.; Knapp, J.; Lu, L.; Watson, A. A.] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England. [Spinka, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Burton, R. E.; Covault, C. E.; Ferguson, A. P.; LaHurd, D.] Case Western Reserve Univ, Cleveland, OH 44106 USA. [Mayotte, E.; Sarazin, F.; Schuster, D.; Wiencke, L.] Colorado Sch Mines, Golden, CO 80401 USA. [Brack, J.; Dorofeev, A.; Fracchiolla, C. E.; Gookin, B.; Harton, J. L.; Mostafa, M.; Petrov, Y.; Greus, F. Salesa; Thomas, D.] Colorado State Univ, Ft Collins, CO 80523 USA. [Brown, W. C.] Colorado State Univ, Pueblo, CO USA. [Ahn, E. J.; Escobar, C. O.; Fazzini, N.; Glass, H.; Hojvat, C.; Kasper, P.; Lebrun, P.; Mantsch, P.; Mazur, P. O.; Spinka, H.] Fermilab Natl Accelerator Lab, Batavia, IL USA. [Younk, P.] Los Alamos Natl Lab, Los Alamos, NM USA. [Keivani, A.; Matthews, J.; Shadkam, A.; Sutherland, M. S.; Yuan, G.] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Dhital, N.; Diaz, J. C.; Fick, B.; Kieckhafer, R. M.; Nitz, D.; Yapici, T.] Michigan Technol Univ, Houghton, MI 49931 USA. [Allen, J.; Farrar, G.; Roberts, J.; Zaw, I.] NYU, New York, NY USA. [Paul, T.; Srivastava, Y. N.; Swain, J.; Widom, A.] Northeastern Univ, Boston, MA 02115 USA. [Allison, P.; Baughman, B.; Beatty, J. J.; Griffith, N.; Stapleton, J.] Ohio State Univ, Columbus, OH 43210 USA. [Caballero-Mora, K. S.; Cheng, S. H.; Coutu, S.; Criss, A.; Sommers, P.; Whelan, B. J.] Penn State Univ, University Pk, PA 16802 USA. [Cronin, J.; San Luis, P. Facal; Fang, K.; Hollon, N.; Ionita, F.; Kotera, K.; Monasor, M.; Olinto, A.; Privitera, P.; Rouille-d'Orfeuil, B.; Williams, C.; Yamamoto, T.; Zhou, J.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Fox, B. D.; Gorham, P.; Meyhandan, R.; Varner, G.] Univ Hawaii, Honolulu, HI 96822 USA. [Petermann, E.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Lauer, R.; Matthews, J. A. J.] Univ New Mexico, Albuquerque, NM 87131 USA. [Ahlers, M.; BenZvi, S.; Pfendner, C.; Westerhoff, S.] Univ Wisconsin, Madison, WI USA. [Anchordoqui, L.; Buroker, L.; Paul, T.] Univ Wisconsin, Milwaukee, WI 53201 USA. [Diep, P. N.; Dong, P. N.; Nhung, P. T.; Thao, N. T.] Inst Nucl Sci & Technol, Hanoi, Vietnam. [Zepeda, A.] Univ Autonoma Chiapas, Chiapas, Mexican State, Mexico. RP Abreu, P (reprint author), Univ Tecn Lisboa, LIP, P-1100 Lisbon, Portugal. RI Inst. of Physics, Gleb Wataghin/A-9780-2017; De Mitri, Ivan/C-1728-2017; Mitrica, Bogdan/D-5201-2009; Rodriguez Fernandez, Gonzalo/C-1432-2014; Falcke, Heino/H-5262-2012; Nosek, Dalibor/F-1129-2017; De Domenico, Manlio/B-5826-2014; Abreu, Pedro/L-2220-2014; Navas, Sergio/N-4649-2014; Blanco, Francisco/F-1131-2015; Sao Carlos Institute of Physics, IFSC/USP/M-2664-2016; Conceicao, Ruben/L-2971-2014; Beatty, James/D-9310-2011; Colalillo, Roberta/R-5088-2016; Buscemi, Mario/R-5071-2016; Bonino, Raffaella/S-2367-2016; Rodriguez Frias, Maria /A-7608-2015; Espadanal, Joao/I-6618-2015; Vazquez, Jose Ramon/K-2272-2015; Martello, Daniele/J-3131-2012; Insolia, Antonio/M-3447-2015; Petrolini, Alessandro/H-3782-2011; de Mello Neto, Joao/C-5822-2013; Lozano-Bahilo, Julio/F-4881-2016; scuderi, mario/O-7019-2014; zas, enrique/I-5556-2015; Guarino, Fausto/I-3166-2012; Moura Santos, Edivaldo/K-5313-2016; Gouffon, Philippe/I-4549-2012; Brogueira, Pedro/K-3868-2012; Alves Batista, Rafael/K-6642-2012; Sima, Octavian/C-3565-2011; Torralba Elipe, Guillermo/A-9524-2015; Di Giulio, Claudio/B-3319-2015; Bueno, Antonio/F-3875-2015; Albuquerque, Ivone/H-4645-2012; Parente, Gonzalo/G-8264-2015; Alvarez-Muniz, Jaime/H-1857-2015; Valino, Ines/J-8324-2012; Carvalho Jr., Washington/H-9855-2015; Smida, Radomir/G-6314-2014; Ridky, Jan/H-6184-2014; Chudoba, Jiri/G-7737-2014; Horvath, Pavel/G-6334-2014; Garcia Pinto, Diego/J-6724-2014; Pastor, Sergio/J-6902-2014; Rosado, Jaime/K-9109-2014; Arqueros, Fernando/K-9460-2014; Espirito Santo, Maria Catarina/L-2341-2014; Pimenta, Mario/M-1741-2013; Ros, German/L-4764-2014; Tome, Bernardo/J-4410-2013; dos Santos, Eva/N-6351-2013; Todero Peixoto, Carlos Jose/G-3873-2012; Prouza, Michael/F-8514-2014; Mandat, Dusan/G-5580-2014; Pech, Miroslav/G-5760-2014; Bohacova, Martina/G-5898-2014; Cazon, Lorenzo/G-6921-2014; Schovanek, Petr/G-7117-2014; Vicha, Jakub/G-8440-2014; Travnicek, Petr/G-8814-2014; Assis, Pedro/D-9062-2013; de souza, Vitor/D-1381-2012; Ebr, Jan/H-8319-2012; Anjos, Joao/C-8335-2013; Fauth, Anderson/F-9570-2012; Caramete, Laurentiu/C-2328-2011; Nierstenhofer, Nils/H-3699-2013; Pakk Selmi-Dei, Daniel/H-2675-2013; Badescu, Alina/B-6087-2012; Chinellato, Carola Dobrigkeit /F-2540-2011; Goncalves, Patricia /D-8229-2013; OI De Mitri, Ivan/0000-0002-8665-1730; Rodriguez Fernandez, Gonzalo/0000-0002-4683-230X; Falcke, Heino/0000-0002-2526-6724; Nosek, Dalibor/0000-0001-6219-200X; de Jong, Sijbrand/0000-0002-3120-3367; Sigl, Guenter/0000-0002-4396-645X; Petrera, Sergio/0000-0002-6029-1255; Cataldi, Gabriella/0000-0001-8066-7718; De Domenico, Manlio/0000-0001-5158-8594; Abreu, Pedro/0000-0002-9973-7314; Navas, Sergio/0000-0003-1688-5758; Blanco, Francisco/0000-0003-4332-434X; Conceicao, Ruben/0000-0003-4945-5340; Beatty, James/0000-0003-0481-4952; Colalillo, Roberta/0000-0002-4179-9352; Buscemi, Mario/0000-0003-2123-5434; Rodriguez Frias, Maria /0000-0002-2550-4462; Dembinski, Hans/0000-0003-3337-3850; Del Peral, Luis/0000-0003-2580-5668; Coutu, Stephane/0000-0003-2923-2246; Mussa, Roberto/0000-0002-0294-9071; Ulrich, Ralf/0000-0002-2535-402X; Garcia, Beatriz/0000-0003-0919-2734; Zamorano, Bruno/0000-0002-4286-2835; Bonino, Raffaella/0000-0002-4264-1215; Knapp, Johannes/0000-0003-1519-1383; Marsella, Giovanni/0000-0002-3152-8874; La Rosa, Giovanni/0000-0002-3931-2269; Asorey, Hernan/0000-0002-4559-8785; Rizi, Vincenzo/0000-0002-5277-6527; Andringa, Sofia/0000-0002-6397-9207; Aramo, Carla/0000-0002-8412-3846; Espadanal, Joao/0000-0002-1301-8061; Vazquez, Jose Ramon/0000-0001-9217-5219; Martello, Daniele/0000-0003-2046-3910; Insolia, Antonio/0000-0002-9040-1566; Petrolini, Alessandro/0000-0003-0222-7594; de Mello Neto, Joao/0000-0002-3234-6634; Lozano-Bahilo, Julio/0000-0003-0613-140X; scuderi, mario/0000-0001-9026-5317; zas, enrique/0000-0002-4430-8117; Guarino, Fausto/0000-0003-1427-9885; Moura Santos, Edivaldo/0000-0002-2818-8813; Gouffon, Philippe/0000-0001-7511-4115; Brogueira, Pedro/0000-0001-6069-4073; Alves Batista, Rafael/0000-0003-2656-064X; Torralba Elipe, Guillermo/0000-0001-8738-194X; Di Giulio, Claudio/0000-0002-0597-4547; Bueno, Antonio/0000-0002-7439-4247; Albuquerque, Ivone/0000-0001-7328-0136; Parente, Gonzalo/0000-0003-2847-0461; Alvarez-Muniz, Jaime/0000-0002-2367-0803; Valino, Ines/0000-0001-7823-0154; Carvalho Jr., Washington/0000-0002-2328-7628; Ridky, Jan/0000-0001-6697-1393; Horvath, Pavel/0000-0002-6710-5339; Garcia Pinto, Diego/0000-0003-1348-6735; Rosado, Jaime/0000-0001-8208-9480; Arqueros, Fernando/0000-0002-4930-9282; Espirito Santo, Maria Catarina/0000-0003-1286-7288; Pimenta, Mario/0000-0002-2590-0908; Ros, German/0000-0001-6623-1483; Tome, Bernardo/0000-0002-7564-8392; dos Santos, Eva/0000-0002-0474-8863; Todero Peixoto, Carlos Jose/0000-0003-3669-8212; Prouza, Michael/0000-0002-3238-9597; Cazon, Lorenzo/0000-0001-6748-8395; Assis, Pedro/0000-0001-7765-3606; Ebr, Jan/0000-0001-8807-6162; Fauth, Anderson/0000-0001-7239-0288; Chinellato, Carola Dobrigkeit /0000-0002-1236-0789; Goncalves, Patricia /0000-0003-2042-3759; Aglietta, Marco/0000-0001-8354-5388; Maccarone, Maria Concetta/0000-0001-8722-0361; Kothandan, Divay/0000-0001-9048-7518; Castellina, Antonella/0000-0002-0045-2467; maldera, simone/0000-0002-0698-4421; Matthews, James/0000-0002-1832-4420; Yuan, Guofeng/0000-0002-1907-8815; Navarro Quirante, Jose Luis/0000-0002-9915-1735; Mantsch, Paul/0000-0002-8382-7745; Gomez Berisso, Mariano/0000-0001-5530-0180; Salamida, Francesco/0000-0002-9306-8447; Ravignani, Diego/0000-0001-7410-8522; Segreto, Alberto/0000-0001-7341-6603 FU Comision Nacional de Energia Atoomica, Argentina; Fundacion Antorchas, Argentina; Gobierno De La Provincia de Mendoza, Argentina; Municipalidad de Malargue, Argentina; NDM Holdings, Argentina; Valle Las Lenas, Argentina; Australian Research Council; Conselho Nacional de Desenvolvimento Cientfico e Tecnologico (CNPq), Brazil; Financiadora de Estudos e Projetos (FINEP), Brazil; Fundacao de Amparoa Pesquisa do Estado de Rio de Janeiro (FAPERJ), Brazil; Fundacao de Amparoa Pesquisa do Estado de Sao Paulo (FAPESP), Brazil; Ministerio de Ciencia e Tecnologia (MCT), Brazil; AVCR, Czech Republic [AV0Z10100502, AV0Z10100522]; GAAV, Czech Republic [KJB100100904]; MSMT-CR, Czech Republic [LA08016, LG11044, MEB111003, MSM0021620859, LA08015]; TACR, Czech Republic [TA01010517]; GA U.K., Czech Republic [119810]; Centre de Calcul IN2P3/CNRS, France; Centre National de la Recherche Scientifique (CNRS), France; Conseil Regional Ile-de-France, France; Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), France; Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Germany; Finanzministerium Baden-Wurttemberg, Germany; Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Germany; Ministerium fur Wissenschaft und Forschung, Germany; Nordrhein-Westfalen, Germany; Ministerium fur Wissenschaft, Germany; Forschung und Kunst, Germany; Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnologa (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Netherlands; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Poland [N N202 200239, N N202 207238]; Portuguese national funds, Portugal; FEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, Romania [20/2012, 194/2012, 1/ASPERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17]; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, Spain; FEDER funds, Spain; Ministerio de Ciencia e Innovacion and Consolider-Ingenio (CPAN), Spain; Xunta de Galicia, Spain; Leverhulme Foundation, United Kingdom; Science and Technology Facilities Council, United Kingdom; Department of Energy [DE-AC02-07CH11359, DE-FR02-04ER41300, DE-FG02-99ER41107]; National Science Foundation [0450696]; Grainger Foundation U.S.A.; NAFOS-TED, Vietnam; Marie Curie-IRSES/EPLANET; European Particle Physics Latin American Network; European Union [PIRSES-2009-GA-246806]; UNESCO FX We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atoomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientfico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparoa Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundacao de Amparoa Pesquisa do Estado de Sao Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (MCT), Brazil; AVCR AV0Z10100502 and AV0Z10100522, GAAV KJB100100904, MSMT-CR LA08016, LG11044, MEB111003, MSM0021620859, LA08015, TACR TA01010517 and GA U.K. 119810, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnologa (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. N N202 200239 and N N202 207238, Poland; Portuguese national funds and FEDER funds within COMPETE - Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia, Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects nr. 20/2012 and nr. 194/2012, project nr. 1/ASPERA2/2012 ERA-NET and PN-II-RU-PD-2011-3-0145-17, Romania; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Ciencia e Innovacion and Consolider-Ingenio 2010 (CPAN), Xunta de Galicia, Spain; The Leverhulme Foundation, Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract Nos. DE-AC02-07CH11359, DE-FR02-04ER41300, DE-FG02-99ER41107, National Science Foundation, Grant No. 0450696, The Grainger Foundation U.S.A.; NAFOS-TED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO. NR 37 TC 20 Z9 20 U1 2 U2 104 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD FEB PY 2013 IS 2 AR 026 DI 10.1088/1475-7516/2013/02/026 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 098VE UT WOS:000315576400026 ER PT J AU Daniel, SF Linder, EV AF Daniel, Scott F. Linder, Eric V. TI Constraining cosmic expansion and gravity with galaxy redshift surveys SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE modified gravity; cosmological parameters from LSS; dark energy experiments ID SPACE DISTORTIONS AB We analyze the science reach of a next generation galaxy redshift survey such as BigBOSS to fit simultaneously for time varying dark energy equation of state and time- and scale-dependent gravity. The simultaneous fit avoids potential bias from assuming Lambda CDM expansion or general relativity and leads to only modest degradation in constraints. Galaxy bias, fit freely in redshift bins, is self calibrated by spectroscopic measurements of redshift space distortions and causes little impact. The combination of galaxy redshift, cosmic microwave background, and supernova distance data can deliver 5-10% constraints on 6 model independent modified gravity quantities. C1 [Daniel, Scott F.] Univ Washington, Dept Astron, Seattle, WA 98195 USA. [Linder, Eric V.] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Linder, Eric V.] Univ Calif Berkeley, Berkeley Lab, Berkeley, CA 94720 USA. [Linder, Eric V.] Ewha Womans Univ, Inst Early Universe WCU, Seoul, South Korea. RP Daniel, SF (reprint author), Univ Washington, Dept Astron, 3910 15th Ave NE, Seattle, WA 98195 USA. EM scott.f.daniel@gmail.com; evlinder@lbl.gov FU World Class University through the National Research Foundation [R32-2009-000-10130-0]; DOE [DE-SC-0007867, DE-SC-0002607]; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; Ministry of Education, Science and Technology of Korea FX This work has been supported by World Class University grant R32-2009-000-10130-0 through the National Research Foundation, Ministry of Education, Science and Technology of Korea and DOE grant DE-SC-0007867 and the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. SFD acknowledges support from DOE award grant number DE-SC-0002607. NR 29 TC 6 Z9 6 U1 0 U2 2 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD FEB PY 2013 IS 2 AR 007 DI 10.1088/1475-7516/2013/02/007 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 098VE UT WOS:000315576400007 ER PT J AU Fitzpatrick, AL Haxton, W Katz, E Lubbers, N Xu, YM AF Fitzpatrick, A. Liam Haxton, Wick Katz, Emanuel Lubbers, Nicholas Xu, Yiming TI The effective field theory of dark matter direct detection SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE dark matter theory; dark matter detectors ID SHELL-MODEL AB We extend and explore the general non-relativistic effective theory of dark matter (DM) direct detection. We describe the basic non-relativistic building blocks of operators and discuss their symmetry properties, writing down all Galilean-invariant operators up to quadratic order in momentum transfer arising from exchange of particles of spin 1 or less. Any DM particle theory can be translated into the coefficients of an effective operator and any effective operator can be simply related to most general description of the nuclear response. We find several operators which lead to novel nuclear responses. These responses differ significantly from the standard minimal WIMP cases in their relative coupling strengths to various elements, changing how the results from different experiments should be compared against each other. Response functions are evaluated for common DM targets - F, Na, Ge, I, and Xe - using standard shell model techniques. We point out that each of the nuclear responses is familiar from past studies of semi-leptonic electroweak interactions, and thus potentially testable in weak interaction studies. We provide tables of the full set of required matrix elements at finite momentum transfer for a range of common elements, making a careful and fully model-independent analysis possible. Finally, we discuss embedding non-relativistic effective theory operators into UV models of dark matter. C1 [Fitzpatrick, A. Liam; Katz, Emanuel] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA. [Haxton, Wick] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Haxton, Wick] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Katz, Emanuel; Lubbers, Nicholas; Xu, Yiming] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Katz, Emanuel] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA. RP Fitzpatrick, AL (reprint author), Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94305 USA. EM fitzpatr@stanford.edu; haxton@berkeley.edu; amikatz@buphy.bu.edu; nlubbers@bu.edu; ymxu@bu.edu FU ERC [228169]; US Department of Energy [DE-SC00046548]; NSF CAREER [PHY-0645456]; Alfred P. Sloan Fellowship; DOE [DE-FG02-01ER-40676] FX We would like to acknowledge useful conversations with Andrew Cohen, Jared Kaplan, and Jay Wacker. We also thank Eugenio Del Nobile and Jussi Virkajarvi for a careful reading of a previous version of the paper that led to several corrections and improvements. ALF was partially supported by ERC grant BSMOXFORD no. 228169. WH is supported by the US Department of Energy under contract DE-SC00046548. EK is supported by DOE grant DE-FG02-01ER-40676, NSF CAREER grant PHY-0645456, and also by an Alfred P. Sloan Fellowship. NL and YX are supported by DOE grant DE-FG02-01ER-40676. NR 28 TC 82 Z9 82 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD FEB PY 2013 IS 2 AR 004 DI 10.1088/1475-7516/2013/02/004 PG 51 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 098VE UT WOS:000315576400004 ER PT J AU Linder, EV Samsing, J AF Linder, Eric V. Samsing, Johan TI Power spectrum precision for redshift space distortions SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE cosmological parameters from LSS; redshift surveys; dark energy theory ID LARGE-SCALE STRUCTURE; WEAK-LENSING SURVEYS; DARK ENERGY; REAL-SPACE; GROWTH; GRAVITY; MODEL; PARAMETERS; COSMOLOGY AB Redshift space distortions in galaxy clustering offer a promising technique for probing the growth rate of structure and testing dark energy properties and gravity. We consider the issue of to what accuracy they need to be modeled in order not to unduly bias cosmological conclusions. Fitting for nonlinear and redshift space corrections to the linear theory real space density power spectrum in bins in wavemode, we analyze both the effect of marginalizing over these corrections and of the bias due to not correcting them fully. While naively subpercent accuracy is required to avoid bias in the unmarginalized case, in the fitting approach the Kwan-Lewis-Linder reconstruction function for redshift space distortions is found to be accurately selfcalibrated with little degradation in dark energy and gravity parameter estimation for a next generation galaxy redshift survey such as BigBOSS. C1 [Linder, Eric V.; Samsing, Johan] Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Linder, Eric V.; Samsing, Johan] Univ Calif Berkeley, Berkeley Lab, Berkeley, CA 94720 USA. [Linder, Eric V.] Ewha Womans Univ, Inst Early Universe WCU, Seoul, South Korea. [Samsing, Johan] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. RP Linder, EV (reprint author), Univ Calif Berkeley, Berkeley Ctr Cosmol Phys, 366 LeConte Hall MC 7300, Berkeley, CA 94720 USA. EM evlinder@lbl.gov; jsamsing@gmail.com FU DOE [DE-SC-0007867]; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231]; World Class University through the National Research Foundation, Ministry of Education, Science and Technology of Korea [R32-2009-000-10130-0]; Dark Cosmology Centre; Danish National Research Foundation; LBNL FX We thank Sudeep Das, Juliana Kwan, and Alberto Vallinotto for helpful discussions. This work has been supported by DOE grant DE-SC-0007867 and the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. EL acknowledges World Class University grant R32-2009-000-10130-0 through the National Research Foundation, Ministry of Education, Science and Technology of Korea; JS is supported by the Dark Cosmology Centre, funded by the Danish National Research Foundation, and thanks LBNL for additional support. NR 37 TC 5 Z9 5 U1 1 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD FEB PY 2013 IS 2 AR 025 DI 10.1088/1475-7516/2013/02/025 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 098VE UT WOS:000315576400025 ER PT J AU Weir, C Pantoya, ML Ramachandran, G Dallas, T Prentice, D Daniels, M AF Weir, Chelsea Pantoya, Michelle L. Ramachandran, Gautham Dallas, Tim Prentice, Daniel Daniels, Michael TI Electrostatic discharge sensitivity and electrical conductivity of composite energetic materials SO JOURNAL OF ELECTROSTATICS LA English DT Article DE Electrostatic discharge; Electrical conductivity; Energetic materials; Spark; Ignition; Sensitivity ID IGNITION; ALUMINUM; HAZARDS; POWDERS AB Composite energetic material response to electrical stimuli was investigated and a correlation between electrical conductivity and ignition sensitivity was examined. The composites consisted of micrometer particle aluminum combined with another metal, metal oxide, or fluoropolymer. Of the nine tested mixtures, aluminum (Al) with copper oxide (CuO) was the only mixture to ignite by electrostatic discharge. Under the loose powder conditions of these experiments, the Al-CuO minimum ignition energy (MIE) is 25 mJ and exhibited an electrical conductivity two orders of magnitude higher than the next composite. This study showed a similar trend in MIE. for ignition triggered by a discharged spark compared with a thermal hot wire source. (C) 2012 Elsevier B.V. All rights reserved. C1 [Weir, Chelsea; Pantoya, Michelle L.] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA. [Ramachandran, Gautham; Dallas, Tim] Texas Tech Univ, Dept Elect Engn, Lubbock, TX 79409 USA. [Prentice, Daniel; Daniels, Michael] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Pantoya, ML (reprint author), Texas Tech Univ, Dept Mech Engn, Corner 7th & Boston Ave, Lubbock, TX 79409 USA. EM michelle.pantoya@ttu.edu FU Army Research Office [W911NF-11-1-0439]; Texas Tech University's Graduate School FX The authors M. Pantoya and C. Weir are grateful for support from the Army Research Office contract number W911NF-11-1-0439 and encouragement from our program manager, Dr. Ralph Anthenien. Idaho National Laboratory is also gratefully acknowledged for supporting this collaborative work with internal funds via the LDRD program. G. Ramachandran thanks Texas Tech University's Graduate School for support. NR 36 TC 8 Z9 8 U1 3 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3886 J9 J ELECTROSTAT JI J. Electrost. PD FEB PY 2013 VL 71 IS 1 BP 77 EP 83 DI 10.1016/j.elstat.2012.10.002 PG 7 WC Engineering, Electrical & Electronic SC Engineering GA 100ND UT WOS:000315707000013 ER PT J AU Dawedeit, C Walton, CC Chernov, AA Kim, SH Worsley, MA Braun, T Gammon, SA Satcher, JH Wu, KJ Hamza, AV Biener, J AF Dawedeit, Christoph Walton, Christopher C. Chernov, Alexander A. Kim, Sung Ho Worsley, Marcus A. Braun, Tom Gammon, Stuart A. Satcher, Joe H. Wu, Kuang Jen Hamza, Alex V. Biener, Juergen TI Coating functional sol-gel films inside horizontally-rotating cylinders by rimming flow/state SO JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY LA English DT Article DE Sol-gel; Rimming flow; Aerogel; Coating; Tube; Cylinder ID OPENING METATHESIS POLYMERIZATION; PHOTOCATALYTIC ACTIVITY; GLASS TUBES; AEROGELS; SURFACE; FLOWS AB The fabrication of uniform sol-gel coatings with embedded functional nanomaterials inside cylinders requires detailed understanding of the gelation behavior. For sol-gel systems the viscosity is a function of gelation time that affects sol-gel coatings on the inside of a slowly, horizontally rotating cylinder. Therefore the angular velocity has to be adjusted to this time dependence. The higher the viscosity the more liquid is dragged along with the moving cylinder wall while the balance of gravity and drag limits the layer thickness. In addition, inertial forces and surface tension can create instabilities within the coated layer. Here, we show that it is important to suppress these instabilities by transitioning the viscous sol directly to a velocity that allows for the formation of an almost uniform layer. In this regime, which is the so-called rimming state, the recirculation of the gel precursor solution is strongly reduced which allows to fabricate coatings with shear sensitive sol-gel chemistries. Here, we tested this approach with 4 different aerogel systems, with low-density CH-based-, TiO2-, SiO2- and Fe2O3-aerogels, that represent a wide variety of different sol-gel behaviors. We show that the required rotational velocities for these aerogel systems can be predicted with a simple analytical approximation, and we performed computational fluid dynamics simulations to predict local shear and thickness uniformity. C1 [Dawedeit, Christoph; Walton, Christopher C.; Chernov, Alexander A.; Kim, Sung Ho; Worsley, Marcus A.; Braun, Tom; Gammon, Stuart A.; Satcher, Joe H.; Wu, Kuang Jen; Hamza, Alex V.; Biener, Juergen] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. [Dawedeit, Christoph] Tech Univ Munich, Ntech, D-85748 Garching, Germany. RP Dawedeit, C (reprint author), Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. EM dawedeit@gmail.com; biener2@llnl.gov RI Worsley, Marcus/G-2382-2014 OI Worsley, Marcus/0000-0002-8012-7727 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; TUM Faculty Graduate Center Mechanical Engineering at the Technische Universitat Munchen FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The author gratefully acknowledges the support of the TUM Faculty Graduate Center Mechanical Engineering at the Technische Universitat Munchen. We also thank Matthew McNenly for helpful discussions on fluid dynamics. NR 32 TC 2 Z9 2 U1 4 U2 43 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0928-0707 J9 J SOL-GEL SCI TECHN JI J. Sol-Gel Sci. Technol. PD FEB PY 2013 VL 65 IS 2 BP 170 EP 177 DI 10.1007/s10971-012-2921-5 PG 8 WC Materials Science, Ceramics SC Materials Science GA 099ND UT WOS:000315627500009 ER PT J AU Sung, W Vaknin, D Kim, D AF Sung, Woongmo Vaknin, David Kim, Doseok TI Different Adsorption Behavior of Rare Earth and Metallic Ion Complexes on Langmuir Mono layers Probed by Sum-Frequency Generation Spectroscopy SO JOURNAL OF THE OPTICAL SOCIETY OF KOREA LA English DT Article DE Langmuir monolayer; Interfacial structure; Nonlinear optical spectroscopy ID VIBRATIONAL SPECTROSCOPY; PHASE-TRANSITIONS; MOLECULAR-ORIENTATION; WATER-MOLECULES; MONOLAYERS; INTERFACES; POLARIZATION AB Adsorption behavior of counterions under a Langmuir monolayer was investigated by sum-frequency generation (SFG) spectroscopy. By comparing SFG spectra of arachidic acid (AA) Langmuir monolayer/water interface with and without added salt, it was found that the simple trivalent cation La3+ adsorbed on AA monolayer only when the carboxylic headgroups are charged (deprotonated), implying that counterion adsorption is induced by Coulomb interaction. On the other hand, metal hydroxide complex Fe(OH)(3) adsorbed even on a charge-neutral AA monolayer, indicating that the adsorption of iron hydroxide is due to chemical interaction such as covalent or hydrogen bonding to the headgroup of the molecules at the monolayer. C1 [Sung, Woongmo; Kim, Doseok] Sogang Univ, Dept Phys, Seoul 121742, South Korea. [Vaknin, David] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Vaknin, David] Iowa State Univ, Dept Phys, Ames, IA 50011 USA. RP Kim, D (reprint author), Sogang Univ, Dept Phys, Seoul 121742, South Korea. EM doseok@sogang.ac.kr RI Kim, Doseok/J-8776-2013; Vaknin, David/B-3302-2009 OI Vaknin, David/0000-0002-0899-9248 NR 28 TC 2 Z9 2 U1 2 U2 23 PU OPTICAL SOC KOREA PI SEOUL PA #1610 TAEYOUNG DESSIAN, 560 DOWHA-DONG, MAPO-GU, SEOUL, 121-815, SOUTH KOREA SN 1226-4776 J9 J OPT SOC KOREA JI J. Opt. Soc. Korea. PD FEB PY 2013 VL 17 IS 1 BP 10 EP 15 DI 10.3807/JOSK.2013.17.1.010 PG 6 WC Optics SC Optics GA 102HZ UT WOS:000315837000003 ER PT J AU Polat, O Aytug, T Lupini, AR Paranthaman, PM Ertugrul, M Bogorin, DF Meyer, HM Wang, W Pennycook, SJ Christen, DK AF Polat, Ozgur Aytug, Tolga Lupini, Andrew R. Paranthaman, Parans M. Ertugrul, Mehmet Bogorin, Daniela F. Meyer, Harry M. Wang, Wei Pennycook, Stephen J. Christen, David K. TI Nanostructured columnar heterostructures of TiO2 and Cu2O enabled by a thin-film self-assembly approach: Potential for photovoltaics SO MATERIALS RESEARCH BULLETIN LA English DT Article DE Nanostructures; Thin films; Sputtering; Epitaxial growth; Microstructure ID SOLAR-CELLS; OXIDE; NANOWIRES; CRYSTAL; ARRAYS AB Significant efforts are being devoted to the development of multifunctional thin-film heterostructures and nanostructured material architectures for components with novel applications of superconductivity, multiferroicity, solar photocatalysis and energy conversion. In particular, nanostructured assemblies with well-defined geometrical shapes have emerged as possible high efficiency and economically viable alternatives to planar photovoltaic thin-film architectures. By exploiting phase-separated self-assembly, here we present advances in a vertically oriented two-component system that offers potential for future development of nanostructured thin film solar cells. Through a single-step deposition by magnetron sputtering, we demonstrate growth of an epitaxial, composite film matrix formed as self-assembled, well ordered, phase segregated, and oriented nanopillars of n-type TiO2 and p-type Cu2O. The composite films were structurally characterized to atomic resolution by a variety of analytical tools, and evaluated for preliminary optical properties using absorption measurements. We find nearly atomically distinct TiO2-Cu2O interfaces (i.e., needed for possible active p-n junctions), and an absorption profile that captures a wide range of the solar spectrum extending from ultraviolet to visible wavelengths. This high-quality materials system could lead to photovoltaic devices that can be optimized for both incident light absorption and carrier collection. Published by Elsevier Ltd. C1 [Polat, Ozgur; Aytug, Tolga; Lupini, Andrew R.; Paranthaman, Parans M.; Bogorin, Daniela F.; Meyer, Harry M.; Wang, Wei; Pennycook, Stephen J.; Christen, David K.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Polat, Ozgur] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Ertugrul, Mehmet] Ataturk Univ, Fac Engn, Dept Elect & Elect Engn, TR-25240 Erzurum, Turkey. RP Aytug, T (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM ozgurpolat7@gmail.com; aytugt@ornl.gov RI Wang, Wei/B-5924-2012; Ertugrul, Mehmet/J-1443-2014 FU U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability, Advanced Cables and Conductors program; U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; ORISE postdoctoral fellowship; Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX T.A. and M.E. were supported by U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability, Advanced Cables and Conductors program and O.P. D.K.C., M.P.P., A.R.L., and S.J.P. were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. W.W. was supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. D.F.B. acknowledges the support of the ORISE postdoctoral fellowship. XRD and SEM research conducted at the Center for Nanophase Materials Sciences, and Microscopy (A.R.L. and S.J.P.) and XPS (H.M.M.) research conducted at Shared Research Equipment (SHaRE) User Facilities, which are sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 33 TC 8 Z9 8 U1 5 U2 113 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0025-5408 J9 MATER RES BULL JI Mater. Res. Bull. PD FEB PY 2013 VL 48 IS 2 BP 352 EP 356 DI 10.1016/j.materresbull.2012.10.044 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA 101BX UT WOS:000315751300032 ER PT J AU Kim, AR Martinez, C Ionides, J Ramos, AF Ludwig, MZ Ogawa, N Sharp, DH Reinitz, J AF Kim, Ah-Ram Martinez, Carlos Ionides, John Ramos, Alexandre F. Ludwig, Michael Z. Ogawa, Nobuo Sharp, David H. Reinitz, John TI Rearrangements of 2.5 Kilobases of Noncoding DNA from the Drosophila even-skipped Locus Define Predictive Rules of Genomic cis-Regulatory Logic SO PLOS GENETICS LA English DT Article ID LAMBDA-PHAGE REPRESSOR; GENE-EXPRESSION DATA; TRANSCRIPTION FACTORS; BINDING-SITES; SEGMENTATION GENES; IN-SITU; EMBRYO; ACTIVATION; STRIPE; ENHANCERS AB Rearrangements of about 2.5 kilobases of regulatory DNA located 59 of the transcription start site of the Drosophila even-skipped locus generate large-scale changes in the expression of even-skipped stripes 2, 3, and 7. The most radical effects are generated by juxtaposing the minimal stripe enhancers MSE2 and MSE3 for stripes 2 and 3 with and without small "spacer'' segments less than 360 bp in length. We placed these fusion constructs in a targeted transformation site and obtained quantitative expression data for these transformants together with their controlling transcription factors at cellular resolution. These data demonstrated that the rearrangements can alter expression levels in stripe 2 and the 2-3 interstripe by a factor of more than 10. We reasoned that this behavior would place tight constraints on possible rules of genomic cis-regulatory logic. To find these constraints, we confronted our new expression data together with previously obtained data on other constructs with a computational model. The model contained representations of thermodynamic protein-DNA interactions including steric interference and cooperative binding, short-range repression, direct repression, activation, and coactivation. The model was highly constrained by the training data, which it described within the limits of experimental error. The model, so constrained, was able to correctly predict expression patterns driven by enhancers for other Drosophila genes; even-skipped enhancers not included in the training set; stripe 2, 3, and 7 enhancers from various Drosophilid and Sepsid species; and long segments of even-skipped regulatory DNA that contain multiple enhancers. The model further demonstrated that elevated expression driven by a fusion of MSE2 and MSE3 was a consequence of the recruitment of a portion of MSE3 to become a functional component of MSE2, demonstrating that cis-regulatory "elements'' are not elementary objects. C1 [Kim, Ah-Ram; Martinez, Carlos; Ludwig, Michael Z.; Reinitz, John] Univ Chicago, Dept Ecol & Evolut, Chicago Ctr Syst Biol, Chicago, IL 60637 USA. [Kim, Ah-Ram] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. [Ionides, John] Univ Cambridge, Dept Biochem, Cambridge CB2 1QW, England. [Ramos, Alexandre F.] Univ Sao Paulo, Escola Artes Ciencias & Humanidades, Sao Paulo, Brazil. [Ogawa, Nobuo] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. [Sharp, David H.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. [Reinitz, John] Univ Chicago, Dept Mol Genet & Cell Biol, Dept Stat, Chicago, IL 60637 USA. [Reinitz, John] Univ Chicago, Inst Genom & Syst Biol, Chicago, IL 60637 USA. RP Kim, AR (reprint author), Univ Chicago, Dept Ecol & Evolut, Chicago Ctr Syst Biol, 940 E 57th St, Chicago, IL 60637 USA. EM reinitz@galton.uchicago.edu RI RAMOS, ALEXANDRE /F-4235-2012 OI RAMOS, ALEXANDRE /0000-0003-4681-3069 FU University of Chicago; [NIH RO1 OD010936]; [NIH P50 GM081892]; [NIH R01 GM70444] FX This work was supported by awards NIH RO1 OD010936 (formerly RR07801), NIH P50 GM081892, NIH R01 GM70444, and the University of Chicago (http://www.uchicago.edu). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 87 TC 22 Z9 24 U1 1 U2 9 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7404 J9 PLOS GENET JI PLoS Genet. PD FEB PY 2013 VL 9 IS 2 AR e1003243 DI 10.1371/journal.pgen.1003243 PG 18 WC Genetics & Heredity SC Genetics & Heredity GA 099RG UT WOS:000315638300009 PM 23468638 ER PT J AU Suvorova, ES Croken, M Kratzer, S Ting, LM de Felipe, MC Balu, B Markillie, ML Weiss, LM Kim, K White, MW AF Suvorova, Elena S. Croken, Matthew Kratzer, Stella Ting, Li-Min Conde de Felipe, Magnolia Balu, Bharath Markillie, Meng L. Weiss, Louis M. Kim, Kami White, Michael W. TI Discovery of a Splicing Regulator Required for Cell Cycle Progression SO PLOS GENETICS LA English DT Article ID PARASITE TOXOPLASMA-GONDII; GENE-EXPRESSION; FISSION YEAST; SACCHAROMYCES-CEREVISIAE; DIVISION CYCLE; PLASMODIUM; PROTEIN; IDENTIFICATION; SPLICEOSOME; PROTEOMICS AB In the G1 phase of the cell division cycle, eukaryotic cells prepare many of the resources necessary for a new round of growth including renewal of the transcriptional and protein synthetic capacities and building the machinery for chromosome replication. The function of G1 has an early evolutionary origin and is preserved in single and multicellular organisms, although the regulatory mechanisms conducting G1 specific functions are only understood in a few model eukaryotes. Here we describe a new G1 mutant from an ancient family of apicomplexan protozoans. Toxoplasma gondii temperature-sensitive mutant 12-109C6 conditionally arrests in the G1 phase due to a single point mutation in a novel protein containing a single RNA-recognition-motif (TgRRM1). The resulting tyrosine to asparagine amino acid change in TgRRM1 causes severe temperature instability that generates an effective null phenotype for this protein when the mutant is shifted to the restrictive temperature. Orthologs of TgRRM1 are widely conserved in diverse eukaryote lineages, and the human counterpart (RBM42) can functionally replace the missing Toxoplasma factor. Transcriptome studies demonstrate that gene expression is downregulated in the mutant at the restrictive temperature due to a severe defect in splicing that affects both cell cycle and constitutively expressed mRNAs. The interaction of TgRRM1 with factors of the tri-SNP complex (U4/U6 & U5 snRNPs) indicate this factor may be required to assemble an active spliceosome. Thus, the TgRRM1 family of proteins is an unrecognized and evolutionarily conserved class of splicing regulators. This study demonstrates investigations into diverse unicellular eukaryotes, like the Apicomplexa, have the potential to yield new insights into important mechanisms conserved across modern eukaryotic kingdoms. C1 [Suvorova, Elena S.; Kratzer, Stella; White, Michael W.] Univ S Florida, Dept Mol Med, Tampa, FL 33620 USA. [Suvorova, Elena S.; Kratzer, Stella; White, Michael W.] Univ S Florida, Dept Global Hlth, Tampa, FL USA. [Suvorova, Elena S.; Kratzer, Stella; White, Michael W.] Univ S Florida, Florida Ctr Drug Discovery & Innovat, Tampa, FL USA. [Croken, Matthew; Ting, Li-Min; Weiss, Louis M.; Kim, Kami] Albert Einstein Coll Med, Dept Med, Bronx, NY 10467 USA. [Croken, Matthew; Ting, Li-Min; Weiss, Louis M.; Kim, Kami] Albert Einstein Coll Med, Dept Microbiol & Immunol, Bronx, NY 10467 USA. [Conde de Felipe, Magnolia] Univ Las Palmas Gran Canaria, Dept Anim Pathol, Las Palmas Gran Canaria, Spain. [Balu, Bharath] SRI Int, Trop Dis Res Program, Ctr Infect Dis & Biodef Res, Harrisonburg, VA USA. [Markillie, Meng L.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Suvorova, ES (reprint author), Univ S Florida, Dept Mol Med, Tampa, FL 33620 USA. EM mwhite.usf@gmail.com OI Kim, Kami/0000-0003-3384-152X FU National Institutes of Health [R01-AI077662, R01-AI089885, R01 AI087625, RC4 AI092801, R01AI095094]; Training Program in Cellular and Molecular Biology and Genetics; NIH [T32 GM007491, AI93220]; Einstein-Montefiore Center for AIDS Research; Albert Einstein proteomic core facility grants [1S10RR019352, 1S10RR021056]; EMSL [EMSL 40070]; DOE's Office of Biological and Environmental Research; [P30AI051519] FX This work was supported by grants from the National Institutes of Health to MWW (R01-AI077662 and R01-AI089885), KK (R01 AI087625), KK and MWW (RC4 AI092801), and LMW (R01AI095094). MC was supported by the Training Program in Cellular and Molecular Biology and Genetics, funded by NIH T32 GM007491 awarded to the Albert Einstein College of Medicine. Some of this work will be published in a thesis submitted in partial fulfillment of the requirements for a Doctor of Philosophy conferred by the Sue Golding Graduate Division of the Albert Einstein College of Medicine (MC). This work was partially supported by the Einstein-Montefiore Center for AIDS Research, funded by P30AI051519, and Albert Einstein proteomic core facility grants 1S10RR019352 and 1S10RR021056. Part of the research was performed using NIH AI93220 (LMW) and EMSL 40070 (LMW) from EMSL (a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 51 TC 8 Z9 8 U1 0 U2 13 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1553-7404 J9 PLOS GENET JI PLoS Genet. PD FEB PY 2013 VL 9 IS 2 AR e1003305 DI 10.1371/journal.pgen.1003305 PG 18 WC Genetics & Heredity SC Genetics & Heredity GA 099RG UT WOS:000315638300055 PM 23437009 ER PT J AU Sekhar, PK Sarraf, H Mekonen, H Mukundan, R Brosha, EL Garzon, FH AF Sekhar, Praveen K. Sarraf, Hamid Mekonen, Hanna Mukundan, Rangachary Brosha, Eric. L. Garzon, Fernando H. TI Impedance spectroscopy based characterization of an electrochemical propylene sensor SO SENSORS AND ACTUATORS B-CHEMICAL LA English DT Article DE Impedance spectroscopy; Mixed potential; Propylene sensor; Activation energy; Yttria-stabilized zirconia ID GAS SENSORS; ELECTROLYTE AB In this investigation, an electrochemical mixed potential type gas sensor was characterized using impedance spectroscopy. Specifically, the effect of operating temperature (435-610 degrees C) on sensor response and response time was studied. Propylene was used as the analyte to test the 'La0.8Sr0.2CrO3/YSZ/Pt' sensor configuration. Two-electrode AC impedance measurement was performed with a frequency sweep from 13 MHz down to 10 mHz and excitation voltage of 10 mV. For a fixed propylene concentration, the bulk and interfacial resistances was seen to decrease with increase in the sensor operating temperature. An Arrhenius behavior of the bulk and interfacial resistance was observed. The activation energy for O-2 ion conduction and charge transfer was found to be 0.94 eV and 1.54 eV respectively. For a 150 degrees C rise in operating temperature from 485 to 585 degrees C, a 26-fold improvement in response rise time was observed while an 82% reduction in sensor response was recorded. It is postulated that the increase in operating temperature results in faster reaction kinetics, faster oxygen reduction and greater heterogeneous catalysis. (c) 2012 Elsevier B.V. All rights reserved. C1 [Sekhar, Praveen K.; Sarraf, Hamid; Mekonen, Hanna] Washington State Univ, Sch Engn & Comp Sci, Nanomat & Sensors Lab, Vancouver, WA 98686 USA. [Mukundan, Rangachary; Brosha, Eric. L.; Garzon, Fernando H.] Los Alamos Natl Lab, Sensors & Electrochem Devices Grp, Los Alamos, NM 87545 USA. RP Sekhar, PK (reprint author), 14202 NE Salom Creek Avennue, Vancouver, WA 98686 USA. EM praveen.sekhar@vancouver.wsu.edu OI Mukundan, Rangachary/0000-0002-5679-3930 FU DOE Office of Vehicle Technologies FX The authors wish to thank Roland Gravel of the DOE Office of Vehicle Technologies for providing the funds to pursue this investigation. NR 26 TC 5 Z9 5 U1 2 U2 23 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-4005 J9 SENSOR ACTUAT B-CHEM JI Sens. Actuator B-Chem. PD FEB PY 2013 VL 177 BP 111 EP 115 DI 10.1016/j.snb.2012.10.137 PG 5 WC Chemistry, Analytical; Electrochemistry; Instruments & Instrumentation SC Chemistry; Electrochemistry; Instruments & Instrumentation GA 101BU UT WOS:000315751000016 ER PT J AU Price, RR Singh, BP Mackinnon, RJ Sevougian, SD AF Price, Robert R. Singh, Bhupinder P. Mackinnon, Robert J. Sevougian, S. David TI The application of systems engineering principles to the prioritization of sustainable nuclear fuel cycle options SO ENERGY POLICY LA English DT Article DE Nuclear fuel cycle; Systems engineering; Decision analysis ID MULTIATTRIBUTE UTILITY ANALYSIS AB We investigate the implementation of the principles of systems engineering in the U.S. Department of Energy's Fuel Cycle Technologies (FCT) Program to provide a framework for achieving its long-term mission of demonstrating and deploying sustainable nuclear fuel cycle options. A fuel cycle "screening" methodology is introduced that provides a systematic, objective, and traceable method for evaluating and categorizing nuclear fuel cycles according to their performance in meeting sustainability objectives. The goal of the systems engineering approach is to transparently define and justilj the research and development (R&D) necessary to deploy sustainable fuel cycle technologies for a given set of national policy objectives. The approach provides a path for more efficient use of limited R&D resources and facilitates dialog among a variety of stalceholder groups interested in U.S. energy policy, Furthermore, the use of systems engineering principles will allow the FCT Program to more rapidly adapt to future policy changes, including any decisions based on recommendations of the Blue Ribbon Commission on America's Nuclear Future. Specifically, if the relative importance of policy objectives changes, the FCT Program will have a structured process to rapidly determine how this impacts potential fuel cycle performance and the prioritization of needed R&D for associated technologies. C1 [Price, Robert R.; Singh, Bhupinder P.] US DOE, Off Systems Engn Integration NE 51, Germantown, MD 20874 USA. [Mackinnon, Robert J.; Sevougian, S. David] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Price, RR (reprint author), US DOE, Off Systems Engn Integration NE 51, 19901 Germantown Rd, Germantown, MD 20874 USA. EM Robert.Price@nuclear.energy.gov FU Lockheed Martin Company [DE-ACO4-94AL85000]; agency of the United States Government FX The authors would like to acknowledge and thank the many people who contributed to the development and success of this screening methodology, both those named here and any others who have been a part of this effort. These include other members of the Systems Engineering Team, especially Ernie Hardin, Laura Price, Mike Gross, Ed Hoffman, and Cedric Sallaberry, as well as the members of the Initial Screening Evaluation Panel, including Bill Halsey, Jim Buelt, Jess Gehin, Mark Mullen, Temi Taiwo, Mark Todosow, and Roald Wigeland. yarious DOE and national laboratory staff contributed to the success of this effort, including Jack Wheeler, Mike Goff, Doug Berry, Craig Martin, Brent Dixon, and John Kelly. We thank Don Frazier, chairman, and the other members of the Peer Review Group: Todd Allen, Ann Bisconti, Phillip Finck, Sherrell Greene, and John Marra, for performing an independent assessment to help establish the credibility of the screening methodology. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-ACO4-94AL85000. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This report was prepared as an account of work prepared or sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The statements expressed in this article are those of the authors and do not necessarily reflect the views or policies of the United States Department of Energy or Sandia National Laboratories NR 40 TC 0 Z9 0 U1 2 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD FEB PY 2013 VL 53 BP 205 EP 217 DI 10.1016/j.enpol.2012.10.051 PG 13 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 079SP UT WOS:000314192800046 ER PT J AU Baboulin, M Dongarra, J Herrmann, J Tomov, S AF Baboulin, Marc Dongarra, Jack Herrmann, Julien Tomov, Stanimire TI Accelerating Linear System Solutions Using Randomization Techniques SO ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE LA English DT Article DE Algorithms; Experimentation; Performance; Dense linear algebra; linear systems; LU factorization; randomization; multiplicative preconditioning; graphics processing units ID GAUSSIAN-ELIMINATION; LEAST-SQUARES; STABILITY AB We illustrate how linear algebra calculations can be enhanced by statistical techniques in the case of a square linear system Ax = b. We study a random transformation of A that enables us to avoid pivoting and then to reduce the amount of communication. Numerical experiments show that this randomization can be performed at a very affordable computational price while providing us with a satisfying accuracy when compared to partial pivoting. This random transformation called Partial Random Butterfly Transformation (PRBT) is optimized in terms of data storage and flops count. We propose a solver where PRBT and the LU factorization with no pivoting take advantage of the current hybrid multicore/GPU machines and we compare its Gflop/s performance with a solver implemented in a current parallel library. C1 [Baboulin, Marc; Herrmann, Julien] Inria Saclay Ile de France, Paris, France. [Baboulin, Marc] Univ Paris Sud, Paris, France. [Dongarra, Jack; Tomov, Stanimire] Univ Tennessee, Knoxville, TN 37996 USA. [Dongarra, Jack] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Dongarra, Jack] Univ Manchester, Manchester M13 9PL, Lancs, England. [Herrmann, Julien] Ecole Normale Super Lyon, Lyon, France. RP Baboulin, M (reprint author), Inria Saclay Ile de France, Paris, France. EM marc.baboulin@inria.fr RI Dongarra, Jack/E-3987-2014 NR 24 TC 4 Z9 4 U1 0 U2 10 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0098-3500 J9 ACM T MATH SOFTWARE JI ACM Trans. Math. Softw. PD FEB PY 2013 VL 39 IS 2 AR 8 DI 10.1145/2427023.2427025 PG 13 WC Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 097EY UT WOS:000315458000002 ER PT J AU Gustavson, FG Wasniewski, J Dongarra, JJ Herrero, JR Langou, J AF Gustavson, Fred G. Wasniewski, Jerzy Dongarra, Jack J. Herrero, Jose R. Langou, Julien TI Level-3 Cholesky Factorization Routines Improve Performance of Many Cholesky Algorithms SO ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE LA English DT Article DE Algorithms; Performance; LAPACK; real symmetric matrices; complex Hermitian matrices; positive definite matrices; Cholesky factorization and solution; novel blocked packed matrix data structures; inplace transposition; Cache Blocking; BLAS ID LINEAR-ALGEBRA; STORAGE; RECURSION; PROCESSOR; BLOCKING; MATRIX AB Four routines called DPOTF3i, i = a, b, c, d, are presented. DPOTF3i are a novel type of level-3 BLAS for use by BPF (Blocked Packed Format) Cholesky factorization and LAPACK routine DPOTRF. Performance of routines DPOTF3i are still increasing when the performance of Level-2 routine DPOTF2 of LAPACK starts decreasing. This is our main result and it implies, due to the use of larger block size nb, that DGEMM, DSYRK, and DTRSM performance also increases! The four DPOTF3i routines use simple register blocking. Different platforms have different numbers of registers. Thus, our four routines have different register blocking sizes. BPF is introduced. LAPACK routines for POTRF and PPTRF using BPF instead of full and packed format are shown to be trivial modifications of LAPACK POTRF source codes. We call these codes BPTRF. There are two variants of BPF: lower and upper. Upper BPF is "identical" to Square Block Packed Format (SBPF). "LAPACK" implementations on multicore processors use SBPF. Lower BPF is less efficient than upper BPF. Vector inplace transposition converts lower BPF to upper BPF very efficiently. Corroborating performance results for DPOTF3i versus DPOTF2 on a variety of common platforms are given for n approximate to nb as well as results for large n comparing DBPTRF versus DPOTRF. C1 [Gustavson, Fred G.] IBM TJ Watson Res Ctr, Yorktown Hts, NY USA. [Gustavson, Fred G.] Umea Univ, S-90187 Umea, Sweden. [Wasniewski, Jerzy] Tech Univ Denmark, Dept Informat & Math Modelling, DK-2800 Lyngby, Denmark. [Dongarra, Jack J.] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA. [Dongarra, Jack J.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Dongarra, Jack J.] Univ Manchester, Manchester M13 9PL, Lancs, England. [Herrero, Jose R.] Univ Politecn Cataluna, BarcelonaTech, Comp Architecture Dept, ES-08034 Barcelona, Spain. [Langou, Julien] Univ Colorado, Denver, CO 80202 USA. RP Gustavson, FG (reprint author), 3 Welsh Court, E Brunswick, NJ 08816 USA. EM fg2935@hotmail.com; jw@imm.dtu.dk; dongarra@cs.utk.edu; josepr@ac.upc.edu; julien.langou@ucdenver.edu RI Langou, Julien/G-5788-2013; Herrero, Jose R./B-5342-2014; Dongarra, Jack/E-3987-2014 OI Herrero, Jose R./0000-0002-4060-367X; FU Ministerio de Educacion y Ciencia of Spain [TIN2007-60625] FX The authors thank the Ministerio de Educacion y Ciencia of Spain for funding project grant TIN2007-60625. NR 28 TC 0 Z9 0 U1 0 U2 5 PU ASSOC COMPUTING MACHINERY PI NEW YORK PA 2 PENN PLAZA, STE 701, NEW YORK, NY 10121-0701 USA SN 0098-3500 J9 ACM T MATH SOFTWARE JI ACM Trans. Math. Softw. PD FEB PY 2013 VL 39 IS 2 AR 9 DI 10.1145/2427023.2427026 PG 10 WC Computer Science, Software Engineering; Mathematics, Applied SC Computer Science; Mathematics GA 097EY UT WOS:000315458000003 ER PT J AU Homer, ER Foiles, SM Holm, EA Olmsted, DL AF Homer, Eric R. Foiles, Stephen M. Holm, Elizabeth A. Olmsted, David L. TI Phenomenology of shear-coupled grain boundary motion in symmetric tilt and general grain boundaries SO ACTA MATERIALIA LA English DT Article DE Grain boundary migration; Grain boundary dislocations; Molecular dynamics; Shear-coupled migration; Bicrystal ID SLIDING BEHAVIOR; MIGRATION; MOBILITY; AL; DEFORMATION; BICRYSTALS; STRESS; RANGE AB Shear-coupled grain boundary motion is examined for a large number of grain boundaries including 73 < 1 0 0 >, < 1 1 0 > and < 1 1 1 > symmetric tilt boundaries. In the present work, the grain boundary motion is induced by a synthetic driving force as opposed to prior studies of shear coupling induced by applied shear. For those boundaries that are observed to undergo shear-coupled motion, the results based on the two driving forces agree well, both for experiments and simulations. This agreement also confirms the generality of the shear coupling mechanism over numerous boundaries and boundary types. The examination of boundary structure provides insight into the different trends that are observed. Shear coupling according to modes not predicted by the Frank-Bilby equation are also demonstrated. The temperature dependence of shear coupling is examined, and is consistent with prior work for symmetric tilt boundaries. While prior studies have emphasized symmetric tilt boundaries, some general grain boundaries exhibit shear coupling as well. In these boundaries, it is found that the shear coupling is either temperature independent, decreases in magnitude with increasing temperature or, in some cases, changes direction with temperature. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Homer, Eric R.] Brigham Young Univ, Dept Mech Engn, Provo, UT 84602 USA. [Homer, Eric R.; Foiles, Stephen M.; Holm, Elizabeth A.] Sandia Natl Labs, Computat Mat Sci & Engn Dept, Albuquerque, NM 87185 USA. [Holm, Elizabeth A.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Olmsted, David L.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Homer, ER (reprint author), Brigham Young Univ, Dept Mech Engn, 435 CTB, Provo, UT 84602 USA. EM eric.homer@byu.edu RI Homer, Eric/F-2502-2010; Holm, Elizabeth/S-2612-2016; OI Homer, Eric/0000-0002-8617-7573; Holm, Elizabeth/0000-0003-3064-5769; Foiles, Stephen/0000-0002-1907-454X FU U.S. Department of Energy's Office of Basic Energy Sciences; Sandia National Laboratories Laboratory Directed Research and Development program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We acknowledge the support of the U.S. Department of Energy's Office of Basic Energy Sciences and Sandia National Laboratories Laboratory Directed Research and Development program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 40 TC 26 Z9 26 U1 1 U2 61 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2013 VL 61 IS 4 BP 1048 EP 1060 DI 10.1016/j.actamat.2012.10.005 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 096UZ UT WOS:000315431500003 ER PT J AU Chen-Wiegart, YCK Wang, S Lee, WK McNulty, I Voorhees, PW Dunand, DC AF Chen-Wiegart, Yu-chen Karen Wang, Steve Lee, Wah-Keat McNulty, Ian Voorhees, Peter W. Dunand, David C. TI In situ imaging of dealloying during nanoporous gold formation by transmission X-ray microscopy SO ACTA MATERIALIA LA English DT Article DE TXM; X-ray synchrotron radiation; Metal foam ID MORPHOLOGICAL CHARACTERIZATION; ALLOYS; CU; EVOLUTION; BEHAVIOR AB The dealloying process is directly imaged, for the first time, by using transmission X-ray microscopy for the case of an Ag-30 at.% Au wire dealloyed under free corrosion in nitric acid. The propagation of a sharp dealloying front separating the alloy from nanoporous Au was observed by two-dimensional real-time in situ imaging at 30 nm resolution and measured in detail in three dimensions by an ex situ nanotomography technique at fixed time intervals. The rate of the dealloying front propagation is independent of the dealloying time up to a 3 mu m depth, indicating that the dealloying process to this depth is dominated by interfacial effects (i.e. gold surface diffusion and/or silver dissolution) rather than long-range transport effects (i.e. diffusion of acid and corrosion product in and out of the porous layer). The constant dealloying rate corresponds to a constant silver flux and a constant current density, even though the potential might be fluctuating under free corrosion conditions and the interfacial area is shrinking as a function of time. Free corrosion in this system generates a high current density, implying it is driven by a chemical potential difference that is much higher than the critical potential. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Chen-Wiegart, Yu-chen Karen; Voorhees, Peter W.; Dunand, David C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Chen-Wiegart, Yu-chen Karen; Wang, Steve; Lee, Wah-Keat; McNulty, Ian] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Chen-Wiegart, YCK (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM ycchen@bnl.gov RI Dunand, David/B-7515-2009; Voorhees, Peter /B-6700-2009; OI Dunand, David/0000-0001-5476-7379 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank Prof. J. Erlebacher (Johns Hopkins University) for helpful discussions and Mr. B. Myers (Electron Probe Instrumentation Center, Northwestern University) for assistance with the sample preparation. We acknowledge assistance with the in situ experimental set-up from Drs. R. Harder and A. Deny (APS) and with the TXM measurements from Ms. A. Deymier and A. Singhal (Northwestern University). We also thank Drs. Q. Shen and Y. Chu (Brookhaven National Laboratory) for advising the early stage of this project, and Prof. Y. Hwu (Academic Sinica) for developing the TXM instrument and making it available at APS. Use of the APS is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 37 TC 10 Z9 10 U1 5 U2 102 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2013 VL 61 IS 4 BP 1118 EP 1125 DI 10.1016/j.actamat.2012.10.017 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 096UZ UT WOS:000315431500009 ER PT J AU Wang, H Clausen, B Tome, CN Wu, PD AF Wang, H. Clausen, B. Tome, C. N. Wu, P. D. TI Studying the effect of stress relaxation and creep on lattice strain evolution of stainless steel under tension SO ACTA MATERIALIA LA English DT Article DE Stainless steel; Neutron diffraction; Lattice strain; Relaxation; Creep ID MAGNESIUM ALLOY AZ31B; GRAIN-INTERACTION STRESSES; SITU NEUTRON-DIFFRACTION; INTERGRANULAR STRAINS; PLASTIC-DEFORMATION; MECHANICAL-BEHAVIOR; TEXTURE DEVELOPMENT; RESIDUAL-STRESSES; ZIRCONIUM ALLOYS; INTERNAL STRAIN AB Due to relatively long associated count times, in situ strain measurements using neutron diffraction requires periodic interruption of the test to collect the diffraction data by holding either the stress or the strain constant. As a consequence, stress relaxation or strain creep induced by the interrupts is inevitable, especially at loads which are close to the flow stress of the material. An in situ neutron diffraction technique, which consists in performing the diffraction measurements using continuous event-mode data collection while conducting the mechanical loading monotonically with a very slow loading rate, is proposed here to avoid the effects associated with interrupts. The lattice strains in stainless steel under uniaxial tension are measured using the three techniques, and the experimental results are compared to study the effect of stress relaxation and strain creep on the lattice strain measurements. The experimental results are simulated using both the elastic viscoplastic self-consistent (EVPSC) model and the elastic plastic self-consistent (EPSC) model. Both the EVPSC and EPSC models give reasonable predictions for all the three tests, with EVPSC having the added advantage over EPSC that it allows us to address the relaxation and creep effects in the interrupted tests. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Wang, H.; Wu, P. D.] McMaster Univ, Dept Mech Engn, Hamilton, ON L8S 4L7, Canada. [Clausen, B.] Los Alamos Natl Lab, Lujan Ctr, Los Alamos, NM 87545 USA. [Tome, C. N.] Los Alamos Natl Lab, MST 8, Los Alamos, NM 87545 USA. RP Clausen, B (reprint author), Los Alamos Natl Lab, Lujan Ctr, POB 1663, Los Alamos, NM 87545 USA. EM clausen@lanl.gov RI Wang, Huamiao/F-7693-2010; Lujan Center, LANL/G-4896-2012; Tome, Carlos/D-5058-2013; Clausen, Bjorn/B-3618-2015; Wu, Peidong/A-7009-2008 OI Wang, Huamiao/0000-0002-7167-2483; Clausen, Bjorn/0000-0003-3906-846X; FU Ontario Ministry of Research and Innovation; Natural Sciences and Engineering Research Council of Canada (NSERC); US Department of Energy, Office of Basic Energy Sciences [FWP 06SCPE401]; Department of Energy's Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396]; Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC FX H.W. and P.D.W. acknowledge the support by the Ontario Ministry of Research and Innovation and by the Natural Sciences and Engineering Research Council of Canada (NSERC). C.T. and B.C. acknowledge support by the US Department of Energy, Office of Basic Energy Sciences Project FWP 06SCPE401. This work has benefited from the use of the Lujan Neutron Scattering Center at LAN-SCE, funded by the Department of Energy's Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. This work has benefited from the use of the Spallation Neutron Source at Oak Ridge National Laboratory, which is funded by the Division of Scientific User Facilities, Office of Basic Energy Sciences, US Department of Energy under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. The authors would like to thank Dr. Ke An and Mr. Harley Skorpenske from Oak Ridge National Laboratory and Mr. Travis Skippon from Queen's University for help in performing the in situ diffraction measurements on VULCAN. NR 49 TC 30 Z9 32 U1 5 U2 60 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2013 VL 61 IS 4 BP 1179 EP 1188 DI 10.1016/j.actamat.2012.10.027 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 096UZ UT WOS:000315431500015 ER PT J AU Tong, Y Dmowski, W Witczak, Z Chuang, CP Egami, T AF Tong, Y. Dmowski, W. Witczak, Z. Chuang, C-P. Egami, T. TI Residual elastic strain induced by equal channel angular pressing on bulk metallic glasses SO ACTA MATERIALIA LA English DT Article DE X-ray diffraction; Bulk metallic glasses; Plastic deformation; Equal channel angular pressing; Shear bands ID MECHANICAL DEFORMATION; STRUCTURAL ANISOTROPY; AMORPHOUS-ALLOYS; BEHAVIOR; PLASTICITY; FLOW; STRESS; RANGE; STATE; RATIO AB We performed equal channel angular pressing (ECAP) on bulk metallic glasses with the composition of (La0.5Ce0.5)(65)Co25Al10 and Zr52.5Cu17.9Ni14.6Al10Ti5. The analysis of the high energy X-ray diffraction patterns indicates that anisotropic strain is present in the processed samples. We also determined the nature and magnitude of strain in the sample after thermo-mechanical creep, i.e. after homogenous deformation. Comparison between diffraction patterns indicates that the strain anisotropy in the ECAP processed samples is due to an elastic strain and is not induced by bond anisotropy as in creep samples. We conclude that the apparent elastic strain is brought on by a residual stress originating from the shear bands and that the deformation in ECAP experiment is inherently inhomogeneous. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Tong, Y.; Dmowski, W.; Chuang, C-P.; Egami, T.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Witczak, Z.] Polish Acad Sci, Inst High Pressure Phys, Warsaw, Poland. [Egami, T.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Egami, T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Dmowski, W (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM wdmowski@utk.edu FU NSF [DMR-0906744]; US Department of Energy (DOE), Office of Science [DE-AC02-06CH11357] FX This work was supported by NSF, DMR-0906744. We would like to thank D. Robinson (APS, 6-ID) and Y. Ren (APS, 11-ID) for help with the experimental setup. Use of the Advanced Photon Source is supported by the US Department of Energy (DOE), Office of Science, under Contract No. DE-AC02-06CH11357. NR 35 TC 10 Z9 11 U1 2 U2 59 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 J9 ACTA MATER JI Acta Mater. PD FEB PY 2013 VL 61 IS 4 BP 1204 EP 1209 DI 10.1016/j.actamat.2012.10.030 PG 6 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 096UZ UT WOS:000315431500018 ER PT J AU Tonks, MR Zhang, YF Biner, SB Millett, PC Bai, XM AF Tonks, Michael R. Zhang, Yongfeng Biner, S. B. Millett, Paul C. Bai, Xianming TI Guidance to design grain boundary mobility experiments with molecular dynamics and phase-field modeling SO ACTA MATERIALIA LA English DT Article DE Grain growth; Phase-field method; Molecular dynamics ID COMPUTER-SIMULATION; ALUMINUM BICRYSTALS; FINITE-ELEMENT; GROWTH; MIGRATION; MICROSTRUCTURE; EVOLUTION; ENERGY; MOTION AB Quantitative phase-field modeling can play an important role in designing experiments to measure the grain boundary (GB) mobility. In this work, molecular dynamics (MD) simulation is employed to determine the GB mobility using Cu bicrystals. Two grain configurations are considered: a shrinking circular grain and a half-loop grain. The results obtained from the half-loop configuration approach asymptotically to that obtained from the circular configuration with increasing half-loop width. We then verify the phase-field model by direct comparison to the MD simulation results, obtaining excellent agreement. Next, this phase-field model is used to predict the behavior in a common experimental setup that utilizes a half-loop grain configuration in a bicrystal to measure the GB mobility. With a 3-D simulation, we identify the two critical times within the experiments to reach an accurate value of the GB mobility. We use a series of 2-D simulations to investigate the impact of the notch angle on these two critical times. We also show that if the notch does not have a sharp tip, it may immobilize the GB migration indefinitely. Finally, we demonstrate that our approach for the quarter-loop configuration eliminates some disadvantages of the half-loop. Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Tonks, Michael R.; Zhang, Yongfeng; Biner, S. B.; Millett, Paul C.] Idaho Natl Lab, Fuel Modeling & Simulat, Idaho Falls, ID 83415 USA. [Bai, Xianming] Idaho Natl Lab, Ctr Adv Modeling & Simulat, Idaho Falls, ID 83415 USA. RP Tonks, MR (reprint author), Idaho Natl Lab, Fuel Modeling & Simulat, POB 1625, Idaho Falls, ID 83415 USA. EM Michael.Tonks@inl.gov RI Bai, Xianming/E-2376-2017 OI Bai, Xianming/0000-0002-4609-6576 FU Department of Energy Nuclear Energy Advanced Modeling and Simulation program; US Department of Energy [DE-AC07-05ID14517] FX This work was funded by the Department of Energy Nuclear Energy Advanced Modeling and Simulation program. This manuscript has been authored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-05ID14517 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 32 TC 8 Z9 8 U1 8 U2 51 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB PY 2013 VL 61 IS 4 BP 1373 EP 1382 DI 10.1016/j.actamat.2012.11.014 PG 10 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 096UZ UT WOS:000315431500034 ER PT J AU Scherer, JJ Paul, JB Jost, HJ Fischer, ML AF Scherer, J. J. Paul, J. B. Jost, H. J. Fischer, Marc L. TI Mid-IR difference frequency laser-based sensors for ambient CH4, CO, and N2O monitoring SO APPLIED PHYSICS B-LASERS AND OPTICS LA English DT Article ID SPECTROMETER AB A new mid-infrared sensor platform is described, which combines difference frequency generation (DFG)-based tunable laser sources with simple direct absorption spectroscopy. DFG lasers operating in the 3-5 micron window are tuned to access a variety of species in the C-H, N-O, and C-O stretch regions. The sensors are capable of sub-ppb detection of key greenhouse gas species as well as common pollutants and tracer species. Specific examples of sensor data obtained for methane, nitrous oxide, and carbon monoxide are presented, including relevant time series data and associated Allan Variances. The platform provides a cost-effective alternative to other laser-based approaches in some cases, performing at similar or superior levels. Emphasis on achieving key performance metrics driven by World Meteorological Organization guidelines for Global Air Watch program and other applications is highlighted. C1 [Scherer, J. J.; Paul, J. B.; Jost, H. J.] Thermo Fisher Sci, Redwood City, CA 94065 USA. [Fischer, Marc L.] EO Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Scherer, JJ (reprint author), Thermo Fisher Sci, 900 Isl Dr,Suite 101, Redwood City, CA 94065 USA. EM james.scherer@thermofisher.com NR 6 TC 13 Z9 16 U1 3 U2 42 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0946-2171 J9 APPL PHYS B-LASERS O JI Appl. Phys. B-Lasers Opt. PD FEB PY 2013 VL 110 IS 2 SI SI BP 271 EP 277 DI 10.1007/s00340-012-5244-x PG 7 WC Optics; Physics, Applied SC Optics; Physics GA 097PV UT WOS:000315486900016 ER PT J AU Abbasi, R Abdou, Y Ackermann, M Adams, J Aguilar, JA Ahlers, M Altmann, D Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Baum, V Bay, R Beattie, K Beatty, JJ Bechet, S Becker, JK Becker, KH Bell, M Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Bose, D Boser, S Botner, O Brayeur, L Brown, AM Bruijn, R Brunner, J Buitink, S Caballero-Mora, KS Carson, M Casey, J Casier, M Chirkin, D Christy, B Clevermann, F Cohen, S Cowen, DF Silva, AHC Danninger, M Daughhetee, J Davis, JC De Clercq, C Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Dunkman, M Eagan, R Eisch, J Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feintzeig, J Feusels, T Filimonov, WK Finley, GC Fischer-Wasels, T Flis, S Franckowiak, A Franke, R Frantzen, K Fuchs, T Gaisser, TK Gallagher, J Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Gora, D Grant, D Grogss, A Grullon, S Gurtner, M Ha, C Ismail, AH Hallgren, A Halzen, F Hanson, K Heereman, D Heimann, P Heinen, D Helbing, K Hellauer, R Hickford, S Hill, GC Hoffman, KD Hoffmann, R Homeier, A Hoshina, K Huelsnitz, W Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobi, E Jacobsen, J Japaridze, GS Jlelati, O Johansson, H Kappes, A Karg, T Karle, A Kiryluk, J Kislat, F Klas, J Klein, SR Kohne, JH Kohnen, G Kolanoski, H Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krasberg, M Kroll, G Kunnen, J Kurahashi, N Kuwabara, T Labare, M Laihem, K Landsman, H Larson, MJ Lauer, R Lesiak-Bzdak, M Lunemann, J Madsen, J Maruyama, R Mase, K Matis, HS McNally, F Meagher, K Merck, M Meszaros, P Meures, T Miarecki, S Middell, E Milke, N Miller, J Mohrmann, L Montaruli, T Morse, R Movit, SM Nahnhauer, R Naumann, U Nowicki, SC Nygren, DR Obertacke, A Odrowski, S Olivas, A Olivo, M O'Murchadha, A Panknin, S Paul, L Pepper, JA Heros, CPDL Pieloth, D Pirk, N Posselt, J Price, PB Przybylski, GT Radel, L Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Richman, M Riedel, B Rodrigues, JP Rothmaier, F Rott, C Ruhe, T Rutledge, D Ruzybayev, B Ryckbosch, D Salameh, T Sander, HG Santander, M Sarkar, S Saba, SM Schatto, K Scheel, M Scheriau, F Schmidt, T Schmitz, M Schoenen, S Schoneberg, S Schonherr, L Schonwald, A Schukraft, A Schulte, L Schulz, O Seckel, D Seo, SH Sestayo, Y Seunarine, S Smith, MWE Soiron, M Soldin, D Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stasik, A Stezelberger, T Stokstad, RG Stossl, A Strahler, EA Strom, R Sullivan, GW Taavola, H Taboada, I Tamburro, A Ter-Antonyan, S Tilav, S Toale, PA Toscano, S Usnerk, M van Eijndhoven, N van der Drift, D Van Overloop, A van Santen, J Vehring, M Voge, M Walck, C Waldenmaier, T Wallraff, M Walter, M Wasserman, R Weaver, C Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Williams, DR Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, C Xu, DL Xu, XW Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Ziemann, J Zilles, A Zoll, M AF Abbasi, R. Abdou, Y. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Altmann, D. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Baum, V. Bay, R. Beattie, K. Beatty, J. J. Bechet, S. Becker, J. K. Becker, K-H. Bell, M. Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Bose, D. Boeser, S. Botner, O. Brayeur, L. Brown, A. M. Bruijn, R. Brunner, J. Buitink, S. Caballero-Mora, K. S. Carson, M. Casey, J. Casier, M. Chirkin, D. Christy, B. Clevermann, F. Cohen, S. Cowen, D. F. Silva, A. H. Cruz Danninger, M. Daughhetee, J. Davis, J. C. De Clercq, C. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Dunkman, M. Eagan, R. Eisch, J. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feintzeig, J. Feusels, T. Filimonov, W. K. Finley, G. C. Fischer-Wasels, T. Flis, S. Franckowiak, A. Franke, R. Frantzen, K. Fuchs, T. Gaisser, T. K. Gallagher, J. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Gora, D. Grant, D. Grogss, A. Grullon, S. Gurtner, M. Ha, C. Ismail, A. Haj Hallgren, A. Halzen, F. Hanson, K. Heereman, D. Heimann, P. Heinen, D. Helbing, K. Hellauer, R. Hickford, S. Hill, G. C. Hoffman, K. D. Hoffmann, R. Homeier, A. Hoshina, K. Huelsnitz, W. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobi, E. Jacobsen, J. Japaridze, G. S. Jlelati, O. Johansson, H. Kappes, A. Karg, T. Karle, A. Kiryluk, J. Kislat, F. Klaes, J. Klein, S. R. Kohne, J-H. Kohnen, G. Kolanoski, H. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krasberg, M. Kroll, G. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Laihem, K. Landsman, H. Larson, M. J. Lauer, R. Lesiak-Bzdak, M. Luenemann, J. Madsen, J. Maruyama, R. Mase, K. Matis, H. S. McNally, F. Meagher, K. Merck, M. Meszaros, P. Meures, T. Miarecki, S. Middelll, E. Milke, N. Miller, J. Mohrmann, L. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Naumann, U. Nowicki, S. C. Nygren, D. R. Obertacke, A. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Panknin, S. Paul, L. Pepper, J. A. de los Heros, C. Perez Pieloth, D. Pirk, N. Posselt, J. Price, P. B. Przybylski, G. T. Raedel, L. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Richman, M. Riedel, B. Rodrigues, J. P. Rothmaier, F. Rott, C. Ruhe, T. Rutledge, D. Ruzybayev, B. Ryckbosch, D. Salameh, T. Sander, H-G. Santander, M. Sarkar, S. Saba, S. M. Schatto, K. Scheel, M. Scheriau, F. Schmidt, T. Schmitz, M. Schoenen, S. Schoeneberg, S. Schoenherr, L. Schoenwald, A. Schukraft, A. Schulte, L. Schulz, O. Seckel, D. Seo, S. H. Sestayo, Y. Seunarine, S. Smith, M. W. E. Soiron, M. Soldin, D. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stasik, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Strahler, E. A. Stroem, R. Sullivan, G. W. Taavola, H. Taboada, I. Tamburro, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Toscano, S. Usnerk, M. van Eijndhoven, N. van der Drift, D. Van Overloop, A. van Santen, J. Vehring, M. Voge, M. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Wasserman, R. Weaver, Ch. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, C. Xu, D. L. Xu, X. W. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Ziemann, J. Zilles, A. Zoll, M. CA IceCube Collaboration TI Cosmic ray composition and energy spectrum from 1-30 PeV using the 40-string configuration of IceTop and IceCube SO ASTROPARTICLE PHYSICS LA English DT Article DE Cosmic rays; Composition; Energy spectrum; IceCube; IceTop; Knee region ID SOUTH-POLE; KNEE AB The mass composition of high energy cosmic rays depends on their production, acceleration, and propagation. The study of cosmic ray composition can therefore reveal hints of the origin of these particles. At the South Pole, the IceCube Neutrino Observatory is capable of measuring two components of cosmic ray air showers in coincidence: the electromagnetic component at high altitude (2835 m) using the IceTop surface array, and the muonic component above similar to 1 TeV using the IceCube array. This unique detector arrangement provides an opportunity for precision measurements of the cosmic ray energy spectrum and composition in the region of the knee and beyond. We present the results of a neural network analysis technique to study the cosmic ray composition and the energy spectrum from 1 PeV to 30 PeV using data recorded using the 40-string/40-station configuration of the IceCube Neutrino Observatory. (C) 2012 Published by Elsevier B.V. C1 [Bissok, M.; Blumenthal, J.; Boersma, D. J.; Euler, S.; Heimann, P.; Heinen, D.; Laihem, K.; Paul, L.; Raedel, L.; Scheel, M.; Schoenen, S.; Schoenherr, L.; Schukraft, A.; Soiron, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.; Zilles, A.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Hill, G. C.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; Filimonov, W. K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; van der Drift, D.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Stezelberger, T.; Stokstad, R. G.; van der Drift, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Altmann, D.; Kappes, A.; Kolanoski, H.; Waldenmaier, T.] Univ Berlin, Inst Phys, D-12489 Berlin, Germany. [Becker, J. K.; Dreyer, J.; Fedynitch, A.; Olivo, M.; Saba, S. M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.; Schulte, L.; Stasik, A.; Usnerk, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Seunarine, S.] Univ W Indies, Dept Phys, BB-11000 Bridgetown, Barbados. [Bechet, S.; Bertrand, D.; Hanson, K.; Heereman, D.; Meures, T.] Univ Libre Bruxelles, Fac Sci, B-1050 Brussels, Belgium. [Bose, D.; Brayeur, L.; Buitink, S.; Casier, M.; De Clercq, C.; Kunnen, J.; Labare, M.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Ishihara, A.; Mase, K.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Brown, A. M.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Ellsworth, R. W.; Goodman, J. A.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Clevermann, F.; Frantzen, K.; Fuchs, T.; Kohne, J-H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.; Scheriau, F.; Schmitz, M.; Ziemann, J.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Grant, D.; Nowicki, S. C.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Aguilar, J. A.; Montaruli, T.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ismail, A. Haj; Jlelati, O.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bruijn, R.; Cohen, S.; Ribordy, M.] Ecole Polytech Fed Lausanne, Lab High Energy Phys, CH-1015 Lausanne, Switzerland. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Abbasi, R.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; O'Murchadha, A.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Baum, V.; Koepke, L.; Kroll, G.; Luenemann, J.; Rothmaier, F.; Sander, H-G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Grogss, A.; Odrowski, S.; Resconi, E.; Schulz, O.; Sestayo, Y.] Tech Univ Munich, D-85748 Garching, Germany. [Bai, X.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Madsen, J.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Bohm, C.; Danninger, M.; Finley, G. C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, G. C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Kiryluk, J.; Lesiak-Bzdak, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Pepper, J. A.; Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Pepper, J. A.; Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Bell, M.; Caballero-Mora, K. S.; Cowen, D. F.; DeYoung, T.; Dunkman, M.; Eagan, R.; Engdegard, O.; Koskinen, D. J.; Larson, M. J.; Meszaros, P.; Rutledge, D.; Salameh, T.; Smith, M. W. E.; Wasserman, R.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Botner, O.; Hallgren, A.; de los Heros, C. Perez; Stroem, R.; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Becker, K-H.; Bindig, D.; Fischer-Wasels, T.; Gurtner, M.; Helbing, K.; Hoffmann, R.; Karg, T.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Bernardini, E.; Brunner, J.; Silva, A. H. Cruz; Franke, R.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Kislat, F.; Lauer, R.; Middelll, E.; Mohrmann, L.; Nahnhauer, R.; Pirk, N.; Schoenwald, A.; Spiering, C.; Stoessl, A.; Walter, M.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. RP Andeen, K (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. EM karen.andeen@cern.ch RI Taavola, Henric/B-4497-2011; Sarkar, Subir/G-5978-2011; Tjus, Julia/G-8145-2012; Wiebusch, Christopher/G-6490-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Brunner, Juergen/G-3540-2015; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Beatty, James/D-9310-2011; OI Taavola, Henric/0000-0002-2604-2810; Buitink, Stijn/0000-0002-6177-497X; Carson, Michael/0000-0003-0400-7819; Perez de los Heros, Carlos/0000-0002-2084-5866; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Sarkar, Subir/0000-0002-3542-858X; Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Brunner, Juergen/0000-0002-5052-7236; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Beatty, James/0000-0003-0481-4952; Rott, Carsten/0000-0002-6958-6033; Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479 FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division; University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin - Madison; Open Science Grid (OSG); U.S. Department of Energy, and National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI); National Science and Engineering Research Council of Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut; Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute; Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin - Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland. NR 36 TC 17 Z9 17 U1 0 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD FEB PY 2013 VL 42 BP 15 EP 32 DI 10.1016/j.astropartphys.2012.11.003 PG 18 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 095YW UT WOS:000315371900003 ER PT J AU Gjergo, E Duggan, J Cunningham, JD Kuhlmann, S Biswas, R Kovacs, E Bernstein, JP Spinka, H AF Gjergo, Eda Duggan, Jefferson Cunningham, John D. Kuhlmann, Steve Biswas, Rahul Kovacs, Eve Bernstein, Joseph P. Spinka, Harold TI Type Ia supernovae selection and forecast of cosmology constraints for the Dark Energy Survey SO ASTROPARTICLE PHYSICS LA English DT Article DE Supernova; Cosmology AB We present the results of a study of selection criteria to identify Type la supernovae photometrically in a simulated mixed sample of Type la supernovae and core collapse supernovae. The simulated sample is a mockup of the expected results of the Dark Energy Survey. Fits to the MLOS2k2 and SALT2 Type la supernova models are compared and used to help separate the Type la supernovae from the core collapse sample. The Dark Energy Task Force Figure of Merit (modified to include core collapse supernovae systematics) is used to discriminate among the various selection criteria. This study of varying selection cuts for Type la supernova candidates is the first to evaluate core collapse contamination using the Figure of Merit. Different factors that contribute to the Figure of Merit are detailed. With our analysis methods, both SALT2 and mLcs2k2 Figures of Merit improve with tighter selection cuts and higher purities, peaking at 98% purity. (C) 2012 Elsevier B.V. All rights reserved. C1 [Gjergo, Eda; Cunningham, John D.; Kuhlmann, Steve; Biswas, Rahul; Kovacs, Eve; Bernstein, Joseph P.; Spinka, Harold] Argonne Natl Lab, Argonne, IL 60439 USA. [Gjergo, Eda] IIT, Appl Math Off, Chicago, IL 60616 USA. [Duggan, Jefferson; Cunningham, John D.] Loyola Univ Chicago, Dept Phys, Chicago, IL 60660 USA. RP Gjergo, E (reprint author), IIT, Appl Math Off, E1 Bldg 10 West 32nd St, Chicago, IL 60616 USA. EM egjergo@hawk.iit.edu FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. NR 14 TC 4 Z9 4 U1 1 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 EI 1873-2852 J9 ASTROPART PHYS JI Astropart Phys. PD FEB PY 2013 VL 42 BP 52 EP 61 DI 10.1016/j.astropartphys.2012.11.009 PG 10 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 095YW UT WOS:000315371900006 ER PT J AU Ave, M Bohacova, M Curry, E Di Carlo, P Di Giulio, C San Luis, PF Gonzales, D Hojvat, C Horandel, J Hrabovsky, M Iarlori, M Keilhauer, B Klages, H Kleifges, M Kuehn, F Li, S Monasor, M Nozka, L Palatka, M Petrera, S Privitera, P Ridky, J Rizi, V D'Orfeuil, BR Salamida, F Schovanek, P Smida, R Spinka, H Ulrich, A Verzi, V Williams, C AF Ave, M. Bohacova, M. Curry, E. Di Carlo, P. Di Giulio, C. San Luis, P. Facal Gonzales, D. Hojvat, C. Hoerandel, J. Hrabovsky, M. Iarlori, M. Keilhauer, B. Klages, H. Kleifges, M. Kuehn, F. Li, S. Monasor, M. Nozka, L. Palatka, M. Petrera, S. Privitera, P. Ridky, J. Rizi, V. D'Orfeuil, B. Rouille Salamida, F. Schovanek, P. Smida, R. Spinka, H. Ulrich, A. Verzi, V. Williams, C. CA AIRFLY Collaboration TI Precise measurement of the absolute fluorescence yield of the 337 nm band in atmospheric gases SO ASTROPARTICLE PHYSICS LA English DT Article DE Nitrogen fluorescence yield; Air fluorescence detection; Ultra-high energy cosmic rays ID ELECTRON-BEAM; COSMIC-RAYS; AIR; NITROGEN; DEPENDENCE; DETECTOR AB A measurement of the absolute fluorescence yield of the 337 nm nitrogen band, relevant to ultra-high energy cosmic ray (UHECR) detectors, is reported. Two independent calibrations of the fluorescence emission induced by a 120 GeV proton beam were employed: Cherenkov light from the beam particle and calibrated light from a nitrogen laser. The fluorescence yield in air at a pressure of 1013 hPa and temperature of 293 K was found to be Y-337 = 5.61 +/- 0.06(stat) +/- 0.22(syst) photons/MeV. When compared to the fluorescence yield currently used by UHECR experiments, this measurement improves the uncertainty by a factor of three, and has a significant impact on the determination of the energy scale of the cosmic ray spectrum. (c) 2012 Elsevier B.V. All rights reserved. C1 [Ave, M.] Univ Santiago de Compostela, Dept Fis Particulas, E-15782 Santiago De Compostela, Spain. [Bohacova, M.; Nozka, L.; Palatka, M.; Ridky, J.; Schovanek, P.] Acad Sci Czech Republic, Inst Phys, CZ-18221 Prague 8, Czech Republic. [Curry, E.; San Luis, P. Facal; Li, S.; Monasor, M.; Privitera, P.; D'Orfeuil, B. Rouille; Williams, C.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Curry, E.; San Luis, P. Facal; Li, S.; Monasor, M.; Privitera, P.; D'Orfeuil, B. Rouille; Williams, C.] Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Di Carlo, P.; Iarlori, M.; Petrera, S.; Rizi, V.; Salamida, F.] Univ Aquila, Dipartimento Sci Fis & Chim, I-67010 Coppito, Aquila, Italy. [Di Carlo, P.; Iarlori, M.; Petrera, S.; Rizi, V.; Salamida, F.] Ist Nazl Fis Nucl, I-67010 Coppito, Aquila, Italy. [Di Giulio, C.; Verzi, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. [Di Giulio, C.; Verzi, V.] Sezione Ist Nazl Fis Nucl, I-00133 Rome, Italy. [Gonzales, D.; Keilhauer, B.; Klages, H.; Kleifges, M.; Smida, R.] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany. [Hojvat, C.; Kuehn, F.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Hoerandel, J.] Radboud Univ Nijmegen, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Hrabovsky, M.] Palacky Univ, RCATM, Olomuc, Czech Republic. [Salamida, F.] Univ Paris 11, IPNO, CNRS IN2P3, Orsay, France. [Spinka, H.] Argonne Natl Lab, Argonne, IL 60439 USA. [Ulrich, A.] Tech Univ Munich, Phys Dept E12, D-85748 Garching, Germany. RP Privitera, P (reprint author), Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM priviter@kicp.uchicago.edu RI Di Carlo, Piero/C-1657-2016; Di Carlo, Piero/Q-4450-2016; Bohacova, Martina/G-5898-2014; Schovanek, Petr/G-7117-2014; Smida, Radomir/G-6314-2014; Ridky, Jan/H-6184-2014; Di Giulio, Claudio/B-3319-2015 OI Di Carlo, Piero/0000-0003-4971-4509; Di Carlo, Piero/0000-0003-4971-4509; Ridky, Jan/0000-0001-6697-1393; Di Giulio, Claudio/0000-0002-0597-4547 FU Kavli Institute for Cosmological Physics at the University of Chicago [NSF PHY-0114422, NSF PHY-0551142]; Kavli Foundation; University of Chicago, USA; Department of Energy under section H.44 of Department of Energy, USA [DE-AC02-07CH11359, DE-AC02-06CH11357]; MSMT CR, Czech Republic [LA08016]; BMBF, Germany [05A08VK1]; Istituto Nazionale di Fisica Nucleare (INFN), Italy FX We thank J. Appel, L. Bellantoni, D. Jensen, E. Ramberg, and A. Soha for their continuous support during the measurements at the FNAL Test Beam Facility. We acknowledge the stimulating discussions with the participants to the Air Fluorescence Workshops on theoretical and experimental aspects of the fluorescence yield measurement. We thank F. Arqueros and J. Rosado for performing independent checks of our simulations and for their careful reading of the manuscript. This work was supported in part by the Kavli Institute for Cosmological Physics at the University of Chicago through Grants NSF PHY-0114422 and NSF PHY-0551142 and an endowment from the Kavli Foundation and its founder Fred Kavli; by the University of Chicago and the Department of Energy under section H.44 of Department of Energy Contract No. DE-AC02-07CH11359 awarded to Fermi Research Alliance, LLC and Contract No. DE-AC02-06CH11357 awarded to UChicago Argonne, LLC, USA; by Grant LA08016 of MSMT CR, Czech Republic; by the BMBF with Contract No. 05A08VK1, Germany; by the Istituto Nazionale di Fisica Nucleare (INFN), Italy. NR 38 TC 13 Z9 13 U1 1 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-6505 J9 ASTROPART PHYS JI Astropart Phys. PD FEB PY 2013 VL 42 BP 90 EP 102 DI 10.1016/j.astropartphys.2012.12.006 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 095YW UT WOS:000315371900011 ER PT J AU Mahaney, BL Hammel, M Meek, K Tainer, JA Lees-Miller, SP AF Mahaney, Brandi L. Hammel, Michal Meek, Katheryn Tainer, John A. Lees-Miller, Susan P. TI XRCC4 and XLF form long helical protein filaments suitable for DNA end protection and alignment to facilitate DNA double strand break repair SO BIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELLULAIRE LA English DT Review DE nonhomologous end joining; DNA double strand break; DNA repair; XRCC4; XLF ID LIGASE-IV COMPLEX; INCREASED GENOMIC INSTABILITY; V(D)J RECOMBINATION; CRYSTAL-STRUCTURE; POLYNUCLEOTIDE KINASE; PHOSPHORYLATION SITES; DAMAGE RESPONSE; TARGETED DISRUPTION; SCATTERING SAXS; EXCISION-REPAIR AB DNA double strand breaks (DSBs), induced by ionizing radiation (IR) and endogenous stress including replication failure, are the most cytotoxic form of DNA damage. In human cells, most IR-induced DSBs are repaired by the nonhomologous end joining (NHEJ) pathway. One of the most critical steps in NHEJ is ligation of DNA ends by DNA ligase IV (LIG4), which interacts with, and is stabilized by, the scaffolding protein X-ray cross-complementing gene 4 (XRCC4). XRCC4 also interacts with XRCC4-like factor (XLF, also called Cernunnos); yet, XLF has been one of the least mechanistically understood proteins and precisely how XLF functions in NHEJ has been enigmatic. Here, we examine current combined structural and mutational findings that uncover integrated functions of XRCC4 and XLF and reveal their interactions to form long, helical protein filaments suitable to protect and align DSB ends. XLF-XRCC4 provides a global structural scaffold for ligating DSBs without requiring long DNA ends, thus ensuring accurate and efficient ligation and repair. The assembly of these XRCC4-XLF filaments, providing both DNA end protection and alignment, may commit cells to NHEJ with general biological implications for NHEJ and DSB repair processes and their links to cancer predispositions and interventions. C1 [Mahaney, Brandi L.; Lees-Miller, Susan P.] Univ Calgary, Dept Biochem & Mol Biol, Calgary, AB T2N 4N1, Canada. [Mahaney, Brandi L.; Lees-Miller, Susan P.] Univ Calgary, Dept Oncol, Calgary, AB T2N 4N1, Canada. [Mahaney, Brandi L.; Lees-Miller, Susan P.] Univ Calgary, Southern Alberta Canc Res Inst, Calgary, AB T2N 4N1, Canada. [Hammel, Michal] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys Life Sci, Berkeley, CA 94720 USA. [Meek, Katheryn] Michigan State Univ, Coll Vet Med, E Lansing, MI 48824 USA. [Meek, Katheryn] Michigan State Univ, Dept Microbiol & Mol Genet, E Lansing, MI 48824 USA. [Meek, Katheryn] Michigan State Univ, Dept Pathol & Diagnost Invest, E Lansing, MI 48824 USA. [Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Lees-Miller, SP (reprint author), Univ Calgary, Dept Biochem & Mol Biol, 3330 Hosp Dr NW, Calgary, AB T2N 4N1, Canada. EM leesmill@ucalgary.ca FU National Institutes of Health [P01 CA92584]; Canadian Institutes of Health Research; Alberta Heritage Foundation for Medical Research/Alberta Innovates-Health Solutions FX We thank members of the Lees-Miller laboratory for helpful comments and discussion and apologize to authors whose work we were unable to cite because of space limitations. Work in the authors' laboratories is supported by the National Institutes of Health program project grant P01 CA92584 (Structural Cell Biology of DNA Repair Machines to JAT and SPLM) and the Canadian Institutes of Health Research (SPLM). BLM and SPLM are supported by the Alberta Heritage Foundation for Medical Research/Alberta Innovates-Health Solutions. NR 124 TC 34 Z9 36 U1 1 U2 19 PU CANADIAN SCIENCE PUBLISHING, NRC RESEARCH PRESS PI OTTAWA PA 1200 MONTREAL ROAD, BUILDING M-55, OTTAWA, ON K1A 0R6, CANADA SN 0829-8211 J9 BIOCHEM CELL BIOL JI Biochem. Cell Biol. PD FEB PY 2013 VL 91 IS 1 BP 31 EP 41 DI 10.1139/bcb-2012-0058 PG 11 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 099AJ UT WOS:000315590600005 PM 23442139 ER PT J AU Knope, KE Soderholm, L AF Knope, Karah E. Soderholm, L. TI Solution and Solid-State Structural Chemistry of Actinide Hydrates and Their Hydrolysis and Condensation Products SO CHEMICAL REVIEWS LA English DT Review ID X-RAY-ABSORPTION; CATION-CATION INTERACTIONS; FINE-STRUCTURE SPECTROSCOPY; MOLECULAR-DYNAMICS SIMULATIONS; URANIUM-SULFILIMINE CHEMISTRY; AQUEOUS PERCHLORATE SOLUTIONS; PRINCIPAL COMPONENT ANALYSIS; URANYL-ORGANIC FRAMEWORKS; QUANTUM-CHEMICAL METHODS; BOND-VALENCE PARAMETERS C1 [Knope, Karah E.; Soderholm, L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Knope, KE (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM kknope@anl.gov; ls@anl.gov FU United States Department of Energy [DE-AC02-06CH11357]; DOE Office of Basic Energy Sciences FX We thank David A. Dixon and Monica Vasiliu for collaborations relevant to this Review and Y.-H. Hu and Gengbang Jin for carefully reviewing the manuscript. This work was performed in part at the Argonne National Laboratory, operated by UChicagoArgonne LLC for the United States Department of Energy under contract number DE-AC02-06CH11357, and was supported by a DOE Office of Basic Energy Sciences, Single-Investigator and Small-Group Research Project. NR 325 TC 106 Z9 107 U1 16 U2 138 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2665 J9 CHEM REV JI Chem. Rev. PD FEB PY 2013 VL 113 IS 2 BP 944 EP 994 DI 10.1021/cr300212f PG 51 WC Chemistry, Multidisciplinary SC Chemistry GA 091WG UT WOS:000315079900005 PM 23101477 ER PT J AU Wen, XD Martin, RL Henderson, TM Scuseria, GE AF Wen, Xiao-Dong Martin, Richard L. Henderson, Thomas M. Scuseria, Gustavo E. TI Density Functional Theory Studies of the Electronic Structure of Solid State Actinide Oxides SO CHEMICAL REVIEWS LA English DT Review ID GENERALIZED GRADIENT APPROXIMATION; FAST MULTIPOLE METHOD; NARROW ENERGY-BANDS; MEAN-FIELD THEORY; URANIUM-DIOXIDE; NUCLEAR-FUELS; POINT-DEFECTS; MAGNETIC-SUSCEPTIBILITY; NEUTRON-DIFFRACTION; COHESIVE PROPERTIES C1 [Wen, Xiao-Dong; Martin, Richard L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Henderson, Thomas M.; Scuseria, Gustavo E.] Rice Univ, Dept Chem, Houston, TX 77251 USA. [Henderson, Thomas M.; Scuseria, Gustavo E.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. RP Martin, RL (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM rlmartin@lanl.gov RI Lujan Center, LANL/G-4896-2012; Wen, Xiaodong/G-5227-2011 OI Wen, Xiaodong/0000-0001-8161-9742 FU Los Alamos National Laboratory by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy; LDRD program at Los Alamos National Laboratory; Seaborg Institute; DOE, Office of Basic Energy Sciences [DE-FG02-04ER15523]; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC5206NA25396] FX This work was supported under the Heavy Element Chemistry Program at Los Alamos National Laboratory by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. Portions of the work were also supported by the LDRD program at Los Alamos National Laboratory. Xiao-Dong Wen gratefully acknowledges a Seaborg Institute Fellowship. The work at Rice University is supported by DOE, Office of Basic Energy Sciences, Heavy Element Chemistry program, under Grant DE-FG02-04ER15523. Some of the calculations were performed on the Chinook computing systems at the Molecular Science Computing Facility in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) at PNNL. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC5206NA25396. NR 225 TC 58 Z9 59 U1 10 U2 102 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2665 J9 CHEM REV JI Chem. Rev. PD FEB PY 2013 VL 113 IS 2 BP 1063 EP 1096 DI 10.1021/cr300374y PG 34 WC Chemistry, Multidisciplinary SC Chemistry GA 091WG UT WOS:000315079900008 PM 23252457 ER PT J AU Jones, MB Gaunt, AJ AF Jones, Matthew B. Gaunt, Andrew J. TI Recent Developments in Synthesis and Structural Chemistry of Nonaqueous Actinide Complexes SO CHEMICAL REVIEWS LA English DT Review ID SCHIFF-BASE COMPLEXES; CATION-CATION INTERACTIONS; RAY CRYSTAL-STRUCTURES; PENTAVALENT URANYL COMPLEXES; PHOSPHINE OXIDE COMPLEXES; URANIUM ALKYL COMPLEXES; N-HETEROCYCLIC CARBENE; CIS-DIOXIDO URANYL; LOW-VALENT URANIUM; C-H ACTIVATION C1 [Jones, Matthew B.; Gaunt, Andrew J.] Los Alamos Natl Lab, Inorgan Isotope & Actinide Grp, Div Chem, Los Alamos, NM 87545 USA. RP Gaunt, AJ (reprint author), Los Alamos Natl Lab, Inorgan Isotope & Actinide Grp, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM gaunt@lanl.gov OI Gaunt, Andrew/0000-0001-9679-6020 FU U.S. Department of Energy, Office of Science, Early Career Research Program [DE-AC52-06NA25396]; University of California Laboratory Fees Program FX We thank the U.S. Department of Energy, Office of Science, Early Career Research Program (contract DE-AC52-06NA25396), and the University of California Laboratory Fees Program for financial support. We also gratefully acknowledge Mr. James Alexander Patton for help with proofreading. NR 308 TC 87 Z9 87 U1 7 U2 114 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0009-2665 EI 1520-6890 J9 CHEM REV JI Chem. Rev. PD FEB PY 2013 VL 113 IS 2 BP 1137 EP 1198 DI 10.1021/cr300198m PG 62 WC Chemistry, Multidisciplinary SC Chemistry GA 091WG UT WOS:000315079900011 PM 23130707 ER PT J AU Lu, CS Liu, YG Niu, SJ AF Lu ChunSong Liu YanGang Niu ShengJie TI A method for distinguishing and linking turbulent entrainment mixing and collision-coalescence in stratocumulus clouds SO CHINESE SCIENCE BULLETIN LA English DT Article DE entrainment-mixing process; collision-coalescence; stratocumulus; warm rain initiation; drizzle ID DROPLET SIZE DISTRIBUTIONS; WARM-RAIN INITIATION; CUMULUS CLOUDS; THRESHOLD BEHAVIOR; EFFECTIVE RADIUS; CONDENSATION; EVOLUTION; MODEL; PARAMETERIZATION; SPECTRA AB This paper presents a method to distinguish and link inhomogeneous mixing with subsequent ascent and collision-coalescence. Three stratocumulus clouds analyzed were collected over the U.S. Department of Energy's Atmospheric Radiation Measurement Southern Great Plains site during the March 2000 cloud Intensive Observation Period. The criteria are presented to distinguish the two processes. Inhomogeneous mixing with subsequent ascent is identified if cloud along an aircraft horizontal leg is non-drizzling and the relationship between cloud volume-mean radius and liquid water content is negative; in contrast, drizzling and positive relationship between the above two properties are the criteria for collision-coalescence. To link the two processes, threshold function, the possibility of occurrence of collision-coalescence, is employed; the big droplets generated during the inhomogeneous mixing with subsequent ascent increase the threshold function, initiates collision-coalescence and produces drizzle drops. To the authors' knowledge, this is the first study on distinguishing and linking inhomogeneous mixing with subsequent ascent and collision-coalescence based on observational data. C1 [Lu ChunSong; Niu ShengJie] Nanjing Univ Informat Sci & Technol, Key Lab Atmospher Phys & Environm, Key Lab Meteorol Disaster, China Meteorol Adm,Minist Educ, Nanjing 210044, Jiangsu, Peoples R China. [Lu ChunSong; Liu YanGang] Brookhaven Natl Lab, Div Atmospher Sci, New York, NY 11973 USA. RP Lu, CS (reprint author), Nanjing Univ Informat Sci & Technol, Key Lab Atmospher Phys & Environm, Key Lab Meteorol Disaster, China Meteorol Adm,Minist Educ, Nanjing 210044, Jiangsu, Peoples R China. EM luchunsong110@gmail.com RI Liu, Yangang/H-6154-2011; Lu, Chunsong/F-2645-2013; Lu, Chunsong/K-7124-2013 OI Lu, Chunsong/0000-0002-8967-0371 FU U.S. Department of Energy (DOE) Earth System Modeling (ESM) Program via the FASTER Project; Atmospheric System Research (ASR) Program; Qing- Lan Project for Cloud-Fog-Precipitation-Aerosol Study in Jiangsu Province, China; Priority Academic Program Development of Jiangsu Higher Education Institutions FX We are grateful to Mike Poellot, Tony Grainger, and Andrea Neumann at the University of North Dakota for providing the data. Liu and Lu were supported by the U.S. Department of Energy (DOE) Earth System Modeling (ESM) Program via the FASTER Project (www.bnl.gov/esm) and Atmospheric System Research (ASR) Program. Niu was supported by the Qing- Lan Project for Cloud-Fog-Precipitation-Aerosol Study in Jiangsu Province, China and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. NR 52 TC 5 Z9 5 U1 0 U2 15 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 1001-6538 J9 CHINESE SCI BULL JI Chin. Sci. Bull. PD FEB PY 2013 VL 58 IS 4-5 BP 545 EP 551 DI 10.1007/s11434-012-5556-6 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 097AE UT WOS:000315445500015 ER PT J AU He, XG Jiang, LJ AF He, Xinguang Jiang, Lijian TI An upscaling method using coefficient splitting and its applications to elliptic PDEs SO COMPUTERS & MATHEMATICS WITH APPLICATIONS LA English DT Article DE Upscaling method; Green's function; Stochastic elliptic equations; Parameter space dimension reduction collocation ID PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; RANDOM INPUT DATA; NUMERICAL HOMOGENIZATION; HETEROGENEOUS FORMATIONS; PERMEABILITY; FLOW AB In this paper, we develop an upscaling method using coefficient splitting techniques. Green's function is constructed using the differential operator associated with the first part of the splitting. An effective upscaling coefficient is recursively calculated by Green's function. The computation of the upscaling process involves some independent steps. Combining the proposed upscaling method with the stochastic collocation method, we present a stochastic space reduction collocation method, where the stochastic collocation method is performed on a lower dimension stochastic space than the full-dimension stochastic space. We thoroughly analyze the convergence of the proposed upscaling method for both deterministic and stochastic elliptic PDEs. Computation complexity is also addressed for the stochastic upscaling method. A number of numerical tests are presented to confirm the convergence analysis. Published by Elsevier Ltd C1 [He, Xinguang] Hunan Normal Univ, Coll Resource & Environm Sci, Changsha 410081, Hunan, Peoples R China. [Jiang, Lijian] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Jiang, LJ (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM xghe@hunnu.edu.cn; ljjiang16@hotmail.com FU National Natural Science Foundation of China [41272271]; Specialized Research Fund for the Doctoral Program of Higher Education of China [20094306120007]; Chinese NSF [10901050]; Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; DOE Office of Science Advanced Computing Research (ASCR) program in Applied Mathematical Sciences FX X. He acknowledges that the work is funded by the National Natural Science Foundation of China grant 41272271, and Specialized Research Fund for the Doctoral Program of Higher Education of China grant 20094306120007. L. Jiang thanks for the support by Chinese NSF 10901050. L. Jiang acknowledges the support by the Department of Energy at Los Alamos National Laboratory under contracts DE-AC52-06NA25396 and the DOE Office of Science Advanced Computing Research (ASCR) program in Applied Mathematical Sciences. We thank for reviewers comments to improve the paper. NR 24 TC 1 Z9 1 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0898-1221 J9 COMPUT MATH APPL JI Comput. Math. Appl. PD FEB PY 2013 VL 65 IS 4 BP 712 EP 730 DI 10.1016/j.camwa.2012.12.007 PG 19 WC Mathematics, Applied SC Mathematics GA 096SR UT WOS:000315425100014 ER PT J AU Wang, P Massoudi, M AF Wang, Ping Massoudi, Mehrdad TI Slag Behavior in Gasifiers. Part I: Influence of Coal Properties and Gasification Conditions SO ENERGIES LA English DT Review DE slag; viscosity; gasifier; integrated gasification combined cycle (IGCC); coal; operating conditions ID ASH FUSION TEMPERATURES; OXYGEN PARTIAL-PRESSURE; VISCOSITY MEASUREMENTS; PULVERIZED COAL; RESIDUAL CARBON; FLOW PROPERTIES; EMPIRICAL PREDICTIONS; INDONESIAN COAL; MINERAL MATTER; BLENDED COALS AB In the entrained-flow gasifiers used in integrated gasification combined cycle (IGCC) plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter is entrained (as fly ash) with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. To improve gasification availability through better design and operation of the gasification process, a better understanding of slag behavior and the characteristics of the slagging process is needed. Char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio) all affect slagging behavior. Because coal has varying ash content and composition, different operating conditions are required to maintain the slag flow and limit problems downstream. In Part I, we review the main types and the operating conditions of entrained-flow gasifiers and coal properties used in IGCC plants; we identify and discuss the key coal ash properties and the operating conditions impacting slag behavior; finally, we summarize the coal quality criteria and the operating conditions in entrained-flow gasifiers. In Part II, we discuss the constitutive modeling related to the rheological studies of slag flow. C1 [Wang, Ping; Massoudi, Mehrdad] US DOE, NETL, Pittsburgh, PA 15236 USA. RP Wang, P (reprint author), US DOE, NETL, 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA. EM ping.wang@netl.doe.gov; massoudi@netl.doe.gov NR 90 TC 32 Z9 32 U1 6 U2 85 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD FEB PY 2013 VL 6 IS 2 BP 784 EP 806 DI 10.3390/en6020784 PG 23 WC Energy & Fuels SC Energy & Fuels GA 096HS UT WOS:000315395400013 ER PT J AU Massoudi, M Wang, P AF Massoudi, Mehrdad Wang, Ping TI Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag SO ENERGIES LA English DT Review DE slag; gasification; viscosity; non-Newtonian fluids; rheology; constitutive relations; coal ID COAL ASH SLAGS; NON-NEWTONIAN FLUID; VISCOSITY MEASUREMENTS; HIGH-TEMPERATURE; PULVERIZED COAL; HEAT-TRANSFER; MOLTEN SLAG; AL2O3-CAO-FEO-SIO2 SYSTEM; RHEOLOGICAL PROPERTIES; DEPENDENT VISCOSITIES AB The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal present a special challenge of modeling efforts in computational fluid dynamics applications. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1,300 degrees C and 1,500 degrees C, the viscosity is approximately 25 Pa.s. As the operating temperature decreases, the slag cools and solid crystals begin to form. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied. We propose a new constitutive model, where the stress tensor not only has a yield stress part, but it also has a viscous part with a shear rate dependency of the viscosity, along with temperature and concentration dependency, while allowing for the possibility of the normal stress effects. In Part I, we reviewed, identify and discuss the key coal ash properties and the operating conditions impacting slag behavior. C1 [Massoudi, Mehrdad; Wang, Ping] US DOE, NETL, Pittsburgh, PA 15236 USA. RP Massoudi, M (reprint author), US DOE, NETL, 626 Cochrans Mill Rd,POB 10940, Pittsburgh, PA 15236 USA. EM massoudi@netl.doe.gov; ping.wang@netl.doe.gov NR 137 TC 12 Z9 12 U1 3 U2 48 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1996-1073 J9 ENERGIES JI Energies PD FEB PY 2013 VL 6 IS 2 BP 807 EP 838 DI 10.3390/en6020807 PG 32 WC Energy & Fuels SC Energy & Fuels GA 096HS UT WOS:000315395400014 ER PT J AU Xia, YL Ek, M Sheffield, J Livneh, B Huang, MY Wei, HL Feng, S Luo, LF Meng, J Wood, E AF Xia, Youlong Ek, Michael Sheffield, Justin Livneh, Ben Huang, Maoyi Wei, Helin Feng, Song Luo, Lifeng Meng, Jesse Wood, Eric TI Validation of Noah-Simulated Soil Temperature in the North American Land Data Assimilation System Phase 2 SO JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY LA English DT Article ID SURFACE MODEL; MOISTURE SIMULATIONS; OKLAHOMA MESONET; ETA-MODEL; IMPACT; PRECIPITATION; REANALYSIS; PREDICTION; PARAMETERIZATION; IMPLEMENTATION AB Soil temperature can exhibit considerable memory from weather and climate signals and is among the most important initial conditions in numerical weather and climate models. Consequently, a more accurate long-term land surface soil temperature dataset is needed to improve weather and climate simulation and prediction, and is also important for the simulation of agricultural crop yield and ecological processes. The North American Land Data Assimilation phase 2 (NLDAS-2) has generated 31 years (1979-2009) of simulated hourly soil temperature data with a spatial resolution of 1/8 degrees. This dataset has not been comprehensively evaluated to date. Thus, the purpose of this paper is to assess Noah-simulated soil temperature for different soil depths and time scales. The authors used long-term (1979-2001) observed monthly mean soil temperatures from 137 cooperative stations over the United States to evaluate simulated soil temperature for three soil layers (0-10, 10-40, and 40-100 cm) for annual and monthly time scales. Short-term (1997-99) observed soil temperatures from 72 Oklahoma Mesonet stations were used to validate simulated soil temperatures for three soil layers and for daily and hourly time scales. The results showed that the Noah land surface model generally matches observed soil temperature well for different soil layers and time scales. At greater depths, the simulation skill (anomaly correlation) decreased for all time scales. The monthly mean diurnal cycle difference between simulated and observed soil temperature revealed large midnight biases in the cold season that are due to small downward longwave radiation and issues related to model parameters. C1 [Xia, Youlong; Wei, Helin; Meng, Jesse] IM Syst Grp Inc, Camp Springs, MD USA. [Xia, Youlong; Ek, Michael; Wei, Helin; Meng, Jesse] Natl Ctr Environm Predict, Environm Modeling Ctr, Camp Springs, MD USA. [Sheffield, Justin; Wood, Eric] Princeton Univ, Dept Environm & Civil Engn, Princeton, NJ 08544 USA. [Livneh, Ben] Univ Washington, Dept Environm & Civil Engn, Seattle, WA 98195 USA. [Huang, Maoyi] Pacific NW Natl Lab, Richland, WA 99352 USA. [Feng, Song] Univ Nebraska, Sch Nat Resources, Lincoln, NE USA. [Luo, Lifeng] Michigan State Univ, Dept Geog, E Lansing, MI 48824 USA. RP Xia, YL (reprint author), NOAA, Environm Modeling Ctr, Natl Ctr Environm Predict, Camp Springs, VA 22046 USA. EM youlong.xia@noaa.gov RI Huang, Maoyi/I-8599-2012; Livneh, Ben/I-2939-2015; OI Huang, Maoyi/0000-0001-9154-9485; LIVNEH, BEN/0000-0001-5445-2473 FU Climate Program Office (CPO) Modeling, Analysis, Predictions, and Projections (MAPP) program; State of Oklahoma; DOE by Battelle Memorial Institute [DE-AC06-76RLO1830] FX Author YX is supported by Climate Program Office (CPO) Modeling, Analysis, Predictions, and Projections (MAPP) program. The authors thank the entire Oklahoma Mesonet team for their dedication to collect and measure soil temperature data. We also thank the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement and Oklahoma Mesonet programs for providing the ARM/CART and Oklahoma Mesonet meteorological, heat flux, and soil data that were provided to the project at no cost. The Oklahoma Mesonet Program is supported by the State of Oklahoma. This research would not have been possible without these measurements. The support to MH for processing the long-term soil temperature dataset from the ARM archive is provided by DOE's Atmospheric System Research (ASR) program. PNNL is operated for the DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO1830. NR 42 TC 16 Z9 18 U1 2 U2 22 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 1558-8424 J9 J APPL METEOROL CLIM JI J. Appl. Meteorol. Climatol. PD FEB PY 2013 VL 52 IS 2 BP 455 EP 471 DI 10.1175/JAMC-D-12-033.1 PG 17 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 097JO UT WOS:000315470000012 ER PT J AU Weijer, W Munoz, E Schneider, N Primeau, F AF Weijer, Wilbert Munoz, Ernesto Schneider, Niklas Primeau, Francois TI Pacific Decadal Variability: Paced by Rossby Basin Modes? SO JOURNAL OF CLIMATE LA English DT Article ID MULTIVARIATE AUTOREGRESSIVE MODELS/; STOCHASTIC CLIMATE MODELS; NORTH PACIFIC; SURFACE-TEMPERATURE; OCEAN CIRCULATION; VERSION-3 CCSM3; SYSTEM MODEL; PART II; OSCILLATION; RESONANCE AB A systematic study is presented of decadal climate variability in the North Pacific. In particular, the hypothesis is addressed that oceanic Rossby basin modes are responsible for enhanced energy at decadal and bidecadal time scales. To this end, a series of statistical analyses are performed on a 500-yr control integration of the Community Climate System Model, version 3 (CCSM3). In particular, a principal oscillation pattern (POP) analysis is performed to identify modal behavior in the subsurface pressure field. It is found that the dominant energy of sea surface temperature (SST) variability at 25 yr (the model equivalent of the Pacific decadal oscillation) cannot be explained by the resonant excitation of an oceanic basin mode. However, significant energy in the subsurface pressure field at time scales of 17 and 10 yr appears to be related to internal ocean oscillations. However, these oscillations lack the characteristics of the classical basin modes, and must either be deformed beyond recognition by the background circulation and inhomogeneous stratification or have another dynamical origin altogether. The 17-yr oscillation projects onto the Pacific decadal oscillation and, if present in the real ocean, has the potential to enhance the predictability of low-frequency climate variability in the North Pacific. C1 [Weijer, Wilbert] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Weijer, Wilbert; Munoz, Ernesto] New Mexico Consortium, Los Alamos, NM USA. [Schneider, Niklas] Univ Hawaii Manoa, Honolulu, HI 96822 USA. [Primeau, Francois] Univ Calif Irvine, Irvine, CA USA. RP Weijer, W (reprint author), Los Alamos Natl Lab, CCS 2,MS B296, Los Alamos, NM 87545 USA. EM wilbert@lanl.gov RI Weijer, Wilbert/A-7909-2010 FU NSF [928473, 928395]; Regional and Global Climate Modeling Program of the U.S. Department of Energy Office of Science; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX This research was supported by NSF through Grants 928473 and 928395, and by the Regional and Global Climate Modeling Program of the U.S. Department of Energy Office of Science. Los Alamos National Laboratory is operated by the Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396. For this study we used the Matlab routine EOF by David Kaplan (UCSC) and the ARFIT package by Schneider (Caltech) and Neumaier (University of Vienna). The CCSM 3.0 b30.009 data were obtained from the Earth System Grid. We thank three anonymous reviewers for their constructive comments. NR 50 TC 3 Z9 3 U1 0 U2 11 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD FEB PY 2013 VL 26 IS 4 BP 1445 EP 1456 DI 10.1175/JCLI-D-12-00316.1 PG 12 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 097IH UT WOS:000315466700021 ER PT J AU Sullivan, JL Burnham, A Wang, MQ AF Sullivan, John Lorenzo Burnham, Andrew Wang, Michael Q. TI Model for the Part Manufacturing and Vehicle Assembly Component of the Vehicle Life Cycle Inventory SO JOURNAL OF INDUSTRIAL ECOLOGY LA English DT Article DE automobile; industrial ecology; life cycle energy analysis; life cycle inventory (LCI); material; transformation process distribution; vehicle and parts manufacturing AB A model is presented for calculating the environmental burdens of the part manufacturing and vehicle assembly (VMA) stage of the vehicle life cycle. The model is based on a process-level approach, accounting for all significant materials by their transformation processes (aluminum castings, polyethylene blow molding; etc.) and plant operation activities (painting; heating, ventilation, and air conditioning [HVAC], etc.) germane to VMA. Using quantitative results for these material/transformation process pairings, a percent-by-weight material/transformation distribution (MTD) function was developed that permits the model to be applied to a range of vehicles, both conventional and advanced (e.g., hybrid electric, light weight, aluminum intensive). Upon consolidation of all inputs, the model reduces to two terms: one proportional to vehicle mass and a plant overhead per vehicle term. When the model is applied to a materially well-characterized conventional vehicle, reliable estimates of cumulative energy consumption (34 gigajoules/vehicle) and carbon dioxide (CO2) emissions (2 tonnes/vehicle) with coefficients of variation are computed for the VMA life cycle stage. Due to the more comprehensive coverage of manufacturing operations, our energy estimates are on the higher end of previously published values. Nonetheless, they are still somewhat underestimated due to a lack of data on overhead operations in part manufacturing facilities and transportation of parts and materials between suppliers and vehicle manufacturing operations. For advanced vehicles, the material/transformation process distribution developed above needs some adjusting for different materials and components. Overall, energy use and CO2 emissions from the VMA stage are about 3.5% to 4.5% of total life cycle values for vehicles. C1 [Sullivan, John Lorenzo; Burnham, Andrew; Wang, Michael Q.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Sullivan, JL (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 South Cass Ave,Bldg 362, Argonne, IL 60439 USA. EM jsullivan@anl.gov FU U.S. Department of Energy's Vehicle Technologies Program (Office of Energy Efficiency and Renewable Energy) [DE-AC02-06CH11357] FX This work was supported by the U.S. Department of Energy's Vehicle Technologies Program (Office of Energy Efficiency and Renewable Energy) under contract number DE-AC02-06CH11357. Special thanks are extended for extensive feedback provided by Professor Gregory Keoleian of the University of Michigan and Dr. Wulf-Peter Schmidt of Ford of Germany. The authors are responsible for the content of the article, not the U.S. Department of Energy, Argonne National Laboratory, nor our able and meticulous reviewers. NR 16 TC 4 Z9 4 U1 0 U2 20 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1088-1980 J9 J IND ECOL JI J. Ind. Ecol. PD FEB PY 2013 VL 17 IS 1 BP 143 EP 153 DI 10.1111/j.1530-9290.2012.00515.x PG 11 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Engineering, Environmental; Environmental Sciences SC Science & Technology - Other Topics; Engineering; Environmental Sciences & Ecology GA 095RL UT WOS:000315352100014 ER PT J AU Martinez, RA Glass, DR Ortiz, EG Alvarez, MA Juarez, E Lodwig, SN Unkefer, CJ AF Martinez, Rodolfo A. Glass, David R. Ortiz, Erick G. Alvarez, Marc A. Juarez, Ernesto Lodwig, Siegfried N. Unkefer, Clifford J. TI Large-scale preparation of C-13-labeled 2-(phenylthio)acetic acid and the corresponding labeled sulfoxides and sulfones SO JOURNAL OF LABELLED COMPOUNDS & RADIOPHARMACEUTICALS LA English DT Article DE stable isotope labeling; C-13-labeled synthons; 2-(phenylthio)[1,2-C-13(2)]acetic acid ID STABLE-ISOTOPES; SODIUM CYANIDE-C-13; ACETIC-ACID; EFFICIENT; REARRANGEMENT; BIOSYNTHESIS; METHANOL; QUINONE; ORIGIN AB We have developed large-scale efficient procedures for the conversion of commercially available [C-13]- or [H-2(3),C-13]methanol and (CO2)-C-13 or C-13-labeled bromoacetic acid to 2-(phenylthio)[1,2-C-13(2)]-, [1-C-13]-, and [2-C-13] acetic acid. The resulting derivatives are versatile, chemically stable, and nonvolatile two-carbon labeling precursors. We have used the C-13-isotopomers of 2-(phenylthio) acetic acid in the synthesis of C-13-labeled acrylic acid, methacrylic acid, and trans-crotonic acid. C1 [Martinez, Rodolfo A.; Alvarez, Marc A.; Lodwig, Siegfried N.; Unkefer, Clifford J.] Los Alamos Natl Lab, Natl Stable Isotope Resource, Los Alamos, NM USA. [Martinez, Rodolfo A.; Alvarez, Marc A.; Lodwig, Siegfried N.; Unkefer, Clifford J.] Los Alamos Natl Lab, Bioenergy & Environm Sci Grp, Biosci Div, Los Alamos, NM USA. [Martinez, Rodolfo A.; Glass, David R.; Ortiz, Erick G.; Juarez, Ernesto] New Mexico Highlands Univ, Dept Chem, Las Vegas, NM 87701 USA. RP Unkefer, CJ (reprint author), Los Alamos Natl Lab, Bioenergy & Environm Sci Grp, Los Alamos, NM 87545 USA. EM rudy@nmhu.edu; cju@lanl.gov FU National Stable Isotope Resource at the Los Alamos National Laboratory (NIH) [P41RR02231]; New Mexico Highlands University FX This work was funded in part by the National Stable Isotope Resource at the Los Alamos National Laboratory (NIH grant award P41RR02231) and by the New Mexico Highlands University. NR 40 TC 0 Z9 0 U1 1 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0362-4803 J9 J LABELLED COMPD RAD JI J. Label. Compd. Radiopharm. PD FEB PY 2013 VL 56 IS 2 BP 31 EP 35 DI 10.1002/jlcr.2991 PG 5 WC Biochemical Research Methods; Chemistry, Medicinal; Chemistry, Analytical SC Biochemistry & Molecular Biology; Pharmacology & Pharmacy; Chemistry GA 096XV UT WOS:000315439200001 PM 24285279 ER PT J AU Dahlborg, U Kramer, MJ Besser, M Morris, JR Calvo-Dahlborg, M AF Dahlborg, U. Kramer, M. J. Besser, M. Morris, J. R. Calvo-Dahlborg, M. TI Structure of molten Al and eutectic Al-Si alloy studied by neutron diffraction SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Structure; Al-Si; Neutron diffraction; Melt; Superheat ID MELT SUPERHEATING TREATMENT; ELECTRON-ION CORRELATION; X-RAY-DIFFRACTION; MECHANICAL-PROPERTIES; PHYSICAL-PROPERTIES; METALLIC GLASSES; LIQUID-ALUMINUM; CRYSTALLIZATION BEHAVIOR; MAGNETIC-PROPERTIES; HEAT-TREATMENT AB The structure of molten eutectic Al87.8Si12.2 alloy has been studied by neutron diffraction during a temperature cycle. For comparison measurements were performed on pure molten Al. The measurements show that the alloy after heating above the liquidus contains particles of two kinds, aluminum-rich and silicon-rich. The silicon-rich particles are partly dissolved after a further heating. Earlier published data obtained by the gamma-ray absorption technique of the density of the molten eutectic Al-Si alloy had demonstrated the existence of two temperatures above the liquidus temperature: A dissolution temperature T-d, at which the microstructure of the melt inherited from the ingot starts to dissolve and a branching temperature, T-b, at which the melt reaches a fully mixed state. The highest temperature that was possible to reach during the neutron experiments lies between T-d and T-b. The obtained results support these conclusions that molten alloys after melting are inhomogeneous up to a temperature well above the liquidus. Moreover, the difference in shape between the static structure factors measured by neutron and X-ray diffraction on molten aluminum is observed and is found to be more accentuated and to extend to larger wavevectors than in earlier works. (C) 2012 Elsevier B.V. All rights reserved. C1 [Dahlborg, U.; Calvo-Dahlborg, M.] Univ Rouen, UMR6634, GPM, F-76801 St Etienne, France. [Kramer, M. J.; Besser, M.] Iowa State Univ, Ames Lab, Ames, IA 50014 USA. [Morris, J. R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Calvo-Dahlborg, M (reprint author), Univ Rouen, UMR6634, GPM, BP12, F-76801 St Etienne, France. EM monique.calvo-dahlborg@univ-rouen.fr RI Morris, J/I-4452-2012 OI Morris, J/0000-0002-8464-9047 FU U.S. Department of Energy by Iowa State University [W-7405-Eng-82]; U. S. Department of Energy (DOE), Basic Energy Sciences, Materials Sciences and Engineering Division FX Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. W-7405-Eng-82. JRM's contribution was sponsored by the U. S. Department of Energy (DOE), Basic Energy Sciences, Materials Sciences and Engineering Division. The authors want to express their thanks to D.J. Sordelet who initiated the project and participated in the experiments. Furthermore, the authors are thankful to the Institute Laue-Langevin, Grenoble, France, for awarding beam time at the ILL reactor and to G. Cuello for his never failing willingness to assist during the measurements. NR 93 TC 5 Z9 5 U1 2 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD FEB 1 PY 2013 VL 361 BP 63 EP 69 DI 10.1016/j.jnoncrysol.2012.10.027 PG 7 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 098OA UT WOS:000315557400010 ER PT J AU Mikhelson, IV Bakhtiari, S Elmer, TW Sahakian, AV AF Mikhelson, Ilya V. Bakhtiari, Sasan Elmer, Thomas W., II Sahakian, Alan V. TI Remote sensing of patterns of cardiac activity on an ambulatory subject using millimeter-wave interferometry and statistical methods SO MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING LA English DT Article DE Remote sensing; Millimeter-wave; Heartbeat detection; Heart rate; Wavelets AB Using a 94-GHz millimeter-wave interferometer, we are able to calculate the relative displacement of an object. When aimed at the chest of a human subject, we measure the minute motions of the chest due to cardiac activity. After processing the data using a wavelet multiresolution decomposition, we are able to obtain a signal with peaks at heartbeat temporal locations. In order for these heartbeat temporal locations to be accurate, the reflected signal must not be very noisy. Since there is noise in all but the most ideal conditions, we created a statistical algorithm in order to compensate for unconfident temporal locations as computed by the wavelet transform. By analyzing the statistics of the peak locations, we fill in missing heartbeat temporal locations and eliminate superfluous ones. Along with this, we adapt the processing procedure to the current signal, as opposed to using the same method for all signals. With this method, we are able to find the heart rate of ambulatory subjects without any physical contact. C1 [Mikhelson, Ilya V.; Sahakian, Alan V.] Northwestern Univ, Evanston, IL 60208 USA. [Bakhtiari, Sasan; Elmer, Thomas W., II] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. RP Sahakian, AV (reprint author), Northwestern Univ, Evanston, IL 60208 USA. EM i-mikhelson@u.northwestern.edu; bakhtiari@anl.gov; elmer@anl.gov; sahakian@eecs.northwestern.edu RI Sahakian, Alan/B-7268-2009; OI Elmer, Thomas/0000-0003-0363-5928 NR 17 TC 2 Z9 2 U1 0 U2 3 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 0140-0118 J9 MED BIOL ENG COMPUT JI Med. Biol. Eng. Comput. PD FEB PY 2013 VL 51 IS 1-2 BP 135 EP 142 DI 10.1007/s11517-012-0977-6 PG 8 WC Computer Science, Interdisciplinary Applications; Engineering, Biomedical; Mathematical & Computational Biology; Medical Informatics SC Computer Science; Engineering; Mathematical & Computational Biology; Medical Informatics GA 097BX UT WOS:000315450100014 PM 23099554 ER PT J AU You, C Zhang, YHP AF You, Chun Zhang, Y. -H. Percival TI Self-Assembly of Synthetic Metabolons through Synthetic Protein Scaffolds: One-Step Purification, Co-immobilization, and Substrate Channeling SO ACS SYNTHETIC BIOLOGY LA English DT Article DE biocatalytic module; cascade enzymes; in vitro synthetic biology; substrate channeling; metabolon; synthetic enzyme complex ID ENZYMATIC PATHWAY; HIGH-YIELD; IN-VITRO; CLOSTRIDIUM-THERMOCELLUM; CELL; CELLULOSOME; COMPLEX; ENZYMES; FRUCTOSE-1,6-BISPHOSPHATASE; BIOTRANSFORMATIONS AB One-step purification of a multi-enzyme complex was developed based on a mixture of cell extracts containing three dockerin-containing enzymes and one family 3 cellulose-binding module (CBM3)-containing scaffoldin through high-affinity adsorption on low-cost solid regenerated amorphous cellulose (RAC). The three-enzyme complex, called synthetic metabolon, was self-assembled through the high-affinity interaction between the dockerin in each enzyme and three cohesins in the synthetic scaffoldin. The metabolons were either immobilized on the external surface of RAC or free when the scaffoldin contained an intein between the CBM3 and three cohesins. The immobilized and free metabolons containing triosephosphate isomerase, aldolase, and fructose 1,6-biphosphatase exhibited initial reaction rates 48 and 38 times, respectively, that of the non-complexed three-enzyme mixture at the same enzyme loading. Such reaction rate enhancements indicated strong substrate channeling among synthetic metabolons due to the close spatial organization among cascade enzymes. These results suggested that the construction of synthetic metabolons by using cohesins, dockerins, and cellulose-binding modules from cellulosomes not only decreased protein purification labor and cost for in vitro synthetic biology projects but also accelerated reaction rates by 1 order of magnitude compared to non-complexed enzymes. Synthetic metabolons would be an important biocatalytic module for in vitro and in vivo synthetic biology projects. C1 [You, Chun; Zhang, Y. -H. Percival] Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] Virginia Tech, ICTAS, Blacksburg, VA 24061 USA. [Zhang, Y. -H. Percival] DOE BioEnergy Sci Ctr BESC, Oak Ridge, TN 37831 USA. [Zhang, Y. -H. Percival] Gate Fuels Inc, Blacksburg, VA 24060 USA. RP Zhang, YHP (reprint author), Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu RI You, Chun/D-7656-2013 FU DOE BioEnergy Science Center (BESC); DOE ARPA-E Petro project; Shell GameChanger Program; Office of Biological and Environmental Research in the DOE Office of Science; College of Agriculture and Life Sciences Bioprocessing and Biodesign Research Center at Virginia Tech FX This work was supported partially by the DOE BioEnergy Science Center (BESC), DOE ARPA-E Petro project, and Shell GameChanger Program. BESC is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. This work was also partially supported by the College of Agriculture and Life Sciences Bioprocessing and Biodesign Research Center at Virginia Tech. NR 43 TC 37 Z9 37 U1 11 U2 120 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2161-5063 J9 ACS SYNTH BIOL JI ACS Synth. Biol. PD FEB PY 2013 VL 2 IS 2 BP 102 EP 110 DI 10.1021/sb300068g PG 9 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 094IA UT WOS:000315255000005 PM 23656373 ER PT J AU Deymier-Black, AC Singhal, A Almer, JD Dunand, DC AF Deymier-Black, Alix C. Singhal, Anjali Almer, Jonathan D. Dunand, David C. TI Effect of X-ray irradiation on the elastic strain evolution in the mineral phase of bovine bone under creep and load-free conditions SO ACTA BIOMATERIALIA LA English DT Article DE Bone; Synchrotron; X-ray diffraction; Creep; Radiation damage; Residual strain ID MECHANICAL-PROPERTIES; NANOSCALE DEFORMATION; IONIZING-RADIATION; GAMMA-IRRADIATION; COLLAGEN FIBRILS; CORTICAL BONE; TOUGHNESS; TISSUE; DENTIN; HYDROXYAPATITE AB Both the load partitioning between hydroxyapatite (HAP) and collagen during compressive creep deformation of bone and the HAP residual strain in unloaded bone have been shown in previous synchrotron X-ray diffraction studies to be affected by the X-ray irradiation dose. Here, through detailed analysis of the X-ray diffraction patterns of bovine bone, the effect of X-ray dose on (i) the rate of HAP elastic strain accumulation/shedding under creep conditions and (ii) the HAP lattice spacing and average root mean square (RMS) strain under load-free conditions are examined. These strain measurements exhibit three stages in response to increasing X-ray dose. Up to similar to 75 kGy (stage I) no effect of dose is observed, indicating a threshold behavior. Between similar to 75 and similar to 300 kGy (stage II) in unloaded bone the HAP d-spacing increases and the RMS strain decreases with dose, indicating strain relaxation of HAP. Furthermore, under constant compressive load creep conditions, the rate of compressive elastic strain accumulation in HAP decreases with increasing dose until, at similar to 115 kGy, it changes sign, indicating that the HAP phase is shedding load during creep deformation. These stage II behaviors are consistent with HAP-collagen interfacial damage, which allows the HAP elastic strain to relax within both the loaded and unloaded samples. Finally, for doses in excess of similar to 300 kGy (stage III, measured up to 7771 kGy) the HAP lattice spacing and RMS strain for load-free samples and the rate of HAP elastic strain shedding for crept samples remain independent of dose, suggesting a saturation of damage and/or stiffening of the collagen matrix due to intermolecular cross-linking. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Deymier-Black, Alix C.; Singhal, Anjali; Dunand, David C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Almer, Jonathan D.] Argonne Natl Lab, Adv Photon Source, Xray Sci Div, Argonne, IL 60439 USA. RP Deymier-Black, AC (reprint author), Washington Univ, St Louis Sch Med, Dept Othropaed Surg, St Louis, MO 63110 USA. EM a.black@wustl.edu RI Dunand, David/B-7515-2009; OI Dunand, David/0000-0001-5476-7379 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Defense; National Science Foundation FX Use of the Advanced Photon Source (APS) was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. This research was performed at station 1-ID of the XOR-APS. Partial funding was provided to A.C.D.B. by a National Defense Science and Engineering Graduate Fellowship from the Department of Defense and National Science Foundation and a National Science Foundation Graduate Fellowship from the National Science Foundation. The authors thank Dr. Dean R. Haeffner (APS) for numerous useful discussions throughout this work. They also acknowledge Dr. Yu-Chen Karen Chen (Northwestern University) for her help with the experiments at the APS. NR 42 TC 2 Z9 2 U1 0 U2 23 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1742-7061 J9 ACTA BIOMATER JI Acta Biomater. PD FEB PY 2013 VL 9 IS 2 BP 5305 EP 5312 DI 10.1016/j.actbio.2012.07.046 PG 8 WC Engineering, Biomedical; Materials Science, Biomaterials SC Engineering; Materials Science GA 093DB UT WOS:000315170800039 PM 22871638 ER PT J AU Bern, CR Breit, GN Healy, RW Zupancic, JW Hammack, R AF Bern, Carleton R. Breit, George N. Healy, Richard W. Zupancic, John W. Hammack, Richard TI Deep subsurface drip irrigation using coal-bed sodic water: Part I. Water and solute movement SO AGRICULTURAL WATER MANAGEMENT LA English DT Article DE Chloride; Drainage; Excess irrigation; Powder River Basin; Wyoming; VS2DT ID DESERT SOILS; SALINE; MANAGEMENT AB Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone. Published by Elsevier B.V. C1 [Bern, Carleton R.; Breit, George N.] US Geol Survey, Crustal Geophys & Geochem Sci Ctr, Denver Fed Ctr, Denver, CO 80225 USA. [Healy, Richard W.] US Geol Survey, Natl Res Program, Denver, CO 80225 USA. [Zupancic, John W.] BeneTerra LLC, Sheridan, WY 82801 USA. [Hammack, Richard] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Bern, CR (reprint author), US Geol Survey, Crustal Geophys & Geochem Sci Ctr, Denver Fed Ctr, Box 25046, Denver, CO 80225 USA. EM cbern@usgs.gov FU U.S. Geological Survey Mendenhall Postdoctoral Fellowship; USGS Energy Resources Program; National Energy Technology Laboratory, U.S. Department of Energy FX C.R.B. was supported by a U.S. Geological Survey Mendenhall Postdoctoral Fellowship. Additional funding was provided by the USGS Energy Resources Program and the National Energy Technology Laboratory, U.S. Department of Energy. The assistance of numerous employees of BeneTerra, LLC., NETL, and USGS is gratefully acknowledged. We thank Carleton and Jackie Perry for access to the Platmak study site and Sheridan Burgess for access to the Dutch Creek site. Mark Engle, Jim Oster, Michelle Walvoord and an anonymous reviewer provided helpful comments on earlier versions of this paper. NR 40 TC 6 Z9 6 U1 1 U2 47 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-3774 J9 AGR WATER MANAGE JI Agric. Water Manage. PD FEB PY 2013 VL 118 BP 122 EP 134 DI 10.1016/j.agwat.2012.11.014 PG 13 WC Agronomy; Water Resources SC Agriculture; Water Resources GA 095HD UT WOS:000315324400014 ER PT J AU Fingerhut, BP Richter, M Luo, JW Zunger, A Mukamel, S AF Fingerhut, Benjamin P. Richter, Marten Luo, Jun-Wei Zunger, Alex Mukamel, Shaul TI 2D optical photon echo spectroscopy of a self-assembled quantum dot SO ANNALEN DER PHYSIK LA English DT Article DE Self-assembled quantum dots; non-linear optical spectroscopy; many-body effects ID MANY-BODY; ELECTRONIC SPECTROSCOPY; CDSE NANOCRYSTALS; SOLAR-CELL; NANOSTRUCTURES; BIEXCITON; DYNAMICS; EXCITONS; STATE; WELLS AB Simulations of two dimensional coherent photon echo (2D-PE) spectra of self-assembled InAs/GaAs quantum dots (QD) in different charged states are presented revealing the coupling between the individual mono-exciton Xq transitions and contributions of bi-excitons XXq. The information about the XXq states is crucial for various application scenarios of QDs, like e.g. highly efficient solar cells. The simulations rely on a microscopic description of the electronic structure by high-level atomistic many-body pseudopotential calculations. It is shown that asymmetric diagonal peak shapes and double cross-peaks are the result of XXq state contributions to the PE signal by analyzing the contributions of the individual pathways excited state emission, ground state bleach and excited state absorption. The results show that from the detuned Xq and XXq contributions the bi-exciton binding energies of the XXq manifold are revealed in 2D-PE signals. C1 [Fingerhut, Benjamin P.; Richter, Marten; Mukamel, Shaul] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA. [Richter, Marten] Tech Univ Berlin, Inst Theoret Phys Nichtlineare Opt & Quantenelekt, D-10623 Berlin, Germany. [Luo, Jun-Wei] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Zunger, Alex] Univ Colorado, Boulder, CO 80309 USA. RP Zunger, A (reprint author), Univ Colorado, Boulder, CO 80309 USA. EM alex.zunger@gmail.com; smukamel@uci.edu RI Richter, Marten/B-7790-2008; LUO, JUNWEI/B-6545-2013; OI Richter, Marten/0000-0003-4160-1008; Fingerhut, Benjamin/0000-0002-8532-6899 FU National Science Foundation [CHE-1058791, CHE-0840513]; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy; Alexander-von-Humboldt Foundation through the Feodor-Lynen program; Deutsche Forschungsgemeinschaft [SPP1391]; U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering [DE-AC36-08GO28308] FX We gratefully acknowledge the support of the National Science Foundation through Grant No. CHE-1058791 and CHE-0840513, the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy. B. P. F. and M. R. gratefully acknowledge support from the Alexander-von-Humboldt Foundation through the Feodor-Lynen program. M. R. also acknowledges financial support from the Deutsche Forschungsgemeinschaft through the priority program "Ultrafast Nanooptics" SPP1391. The work did by J. W. L. and A. Z. was funded by the U.S. Department of Energy, Office of Science, Basic Energy Science, Materials Sciences and Engineering, under Contract No. DE-AC36-08GO28308 to NREL. NR 67 TC 7 Z9 7 U1 2 U2 46 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0003-3804 J9 ANN PHYS-BERLIN JI Ann. Phys.-Berlin PD FEB PY 2013 VL 525 IS 1-2 SI SI BP 31 EP 42 DI 10.1002/andp.201200204 PG 12 WC Physics, Multidisciplinary SC Physics GA 089NY UT WOS:000314918500010 ER PT J AU Prell, JS Borja, LJ Neumark, DM Leone, SR AF Prell, James S. Borja, Lauren J. Neumark, Daniel M. Leone, Stephen R. TI Simulation of attosecond-resolved imaging of the plasmon electric field in metallic nanoparticles SO ANNALEN DER PHYSIK LA English DT Article DE Attosecond physics; electron dynamics; plasmon; ultrafast dynamics; velocity map imaging; electron time-of-flight spectrometry ID RESONANCES; SPECTROSCOPY; DYNAMICS; PULSES AB Sub-cycle photoelectron streaking from silver plasmonic nanospheres is simulated using few-cycle laser pulses tuned both on and off the plasmon resonance (376nm vs 800nm, respectively) to initiate the plasmon. Phase-locked, isolated attosecond XUV pulses induce photoemission from the nanospheres, and two different types of streaking of the photoelectrons occur simultaneously due to the laser and plasmon electric fields. Streaking is simulated over a wide range of excitation pulse intensities, and final velocity distributions for the photoelectrons emitted at different times are calculated. The resulting velocity distributions exhibit several characteristics attributable to the plasmon electric field. The dipole moment amplitude can be reconstructed using velocity map imaging or time-of-flight photoelectron velocity measurements without separate measurement of the laser electric field or deconvolution using an assumed streaking trace shape. These results indicate that photoelectron experiments in table-top set-ups can provide unprecedented spatio-temporal information about sub-cycle plasmon dynamics in metallic nanostructures. C1 [Prell, James S.; Borja, Lauren J.; Neumark, Daniel M.; Leone, Stephen R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Neumark, Daniel M.; Leone, Stephen R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Leone, Stephen R.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. RP Leone, SR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM srl@berkeley.edu RI Neumark, Daniel/B-9551-2009 OI Neumark, Daniel/0000-0002-3762-9473 FU Department of Defense National Security Science and Engineering Faculty Fellowship; W. M. Keck Foundation; US Department of Energy through the Chemical Sciences Division of Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; U.S. Army Research Office [W911NF-12-1-0577] FX The authors thank the Department of Defense National Security Science and Engineering Faculty Fellowship for support of personnel, the W. M. Keck Foundation for financial support to construct an attosecond plasmon imaging apparatus, the US Department of Energy (contract no. DE-AC02-05CH11231) through the Chemical Sciences Division of Lawrence Berkeley National Laboratory for vacuum equipment, and the U.S. Army Research Office (grant no. W911NF-12-1-0577) for additional support for personnel, as well as the Laboratory Directed Research and Development Program at Lawrence Berkeley National Laboratory for simulation design support, the National Science Foundation Chemistry Division for conceptual design of instrumentation, and the National Science Foundation Engineering Research Center for Extreme Ultraviolet Science and Technology for solid state sample fabrication. NR 39 TC 9 Z9 9 U1 1 U2 44 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0003-3804 J9 ANN PHYS-BERLIN JI Ann. Phys.-Berlin PD FEB PY 2013 VL 525 IS 1-2 SI SI BP 151 EP 161 DI 10.1002/andp.201200201 PG 11 WC Physics, Multidisciplinary SC Physics GA 089NY UT WOS:000314918500023 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Battaner, E Battye, R Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bikmaev, I Bohringer, H Bonaldi, A Bond, JR Borrill, J Bouchet, FR Bourdin, H Brown, ML Bucher, M Burenin, R Burigana, C Butler, RC Cabella, P Carvalho, P Catalano, A Cayon, L Chamballu, A Chary, RR Chiang, LY Chon, G Clements, DL Colafrancesco, S Colombi, S Coulais, A Crill, BP Cuttaia, F Da Silva, A Dahle, H Davies, RD Davis, RJ de Bernardis, P de Gasperis, G de Rosa, A de Zotti, G Delabrouille, J Democles, J Dickinson, C Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Feroz, F Finelli, F Flores-Cacho, I Forni, O Fosalba, P Frailis, M Franceschi, E Fromenteau, S Galeotta, S Ganga, K Genova-Santos, RT Giard, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Grainge, KJB Gregorio, A Gruppuso, A Hansen, FK Harrison, D Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Huffenberger, KM Hurier, G Hurley-Walker, N Jagemann, T Juvela, M Keihanen, E Khamitov, I Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lawrence, CR Le Jeune, M Leach, S Leonardi, R Liddle, A Lilje, PB Linden-Vornle, M Lopez-Caniego, M Luzzi, G Macias-Perez, JF MacTavish, CJ Maino, D Mandolesi, N Maris, M Marleau, F Marshall, DJ Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Matthai, F Mazzotta, P Meinhold, PR Melchiorri, A Melin, JB Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Montier, L Morgante, G Munshi, D Naselsky, P Natoli, P Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Olamaie, M Osborne, S Pajot, F Paoletti, D Pasian, F Patanchon, G Pearson, TJ Perdereau, O Perrott, YC Perrotta, F Piacentini, F Pierpaoli, E Platania, P Pointecouteau, E Polenta, G Popa, L Poutanen, T Pratt, GW Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Ricciardi, S Ristorcelli, I Rocha, G Rodriuez-Gonzalvez, C Rosset, C Rossetti, M Rubino-Martin, JA Rumsey, C Rusholme, B Sandri, M Saunders, RDE Savini, G Schammel, MP Scott, D Shimwell, TW Smoot, GF Starck, JL Stivoli, F Stolyarov, V Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Valenziano, L Van Tent, B Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Battaner, E. Battye, R. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bikmaev, I. Boehringer, H. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Bourdin, H. Brown, M. L. Bucher, M. Burenin, R. Burigana, C. Butler, R. C. Cabella, P. Carvalho, P. Catalano, A. Cayon, L. Chamballu, A. Chary, R. -R. Chiang, L. -Y. Chon, G. Clements, D. L. Colafrancesco, S. Colombi, S. Coulais, A. Crill, B. P. Cuttaia, F. Da Silva, A. Dahle, H. Davies, R. D. Davis, R. J. de Bernardis, P. de Gasperis, G. de Rosa, A. de Zotti, G. Delabrouille, J. Democles, J. Dickinson, C. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Feroz, F. Finelli, F. Flores-Cacho, I. Forni, O. Fosalba, P. Frailis, M. Franceschi, E. Fromenteau, S. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Grainge, K. J. B. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Huffenberger, K. M. Hurier, G. Hurley-Walker, N. Jagemann, T. Juvela, M. Keihanen, E. Khamitov, I. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Le Jeune, M. Leach, S. Leonardi, R. Liddle, A. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Luzzi, G. Macias-Perez, J. F. MacTavish, C. J. Maino, D. Mandolesi, N. Maris, M. Marleau, F. Marshall, D. J. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Matthai, F. Mazzotta, P. Meinhold, P. R. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Montier, L. Morgante, G. Munshi, D. Naselsky, P. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Olamaie, M. Osborne, S. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Pearson, T. J. Perdereau, O. Perrott, Y. C. Perrotta, F. Piacentini, F. Pierpaoli, E. Platania, P. Pointecouteau, E. Polenta, G. Popa, L. Poutanen, T. Pratt, G. W. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Ristorcelli, I. Rocha, G. Rodriuez-Gonzalvez, C. Rosset, C. Rossetti, M. Rubino-Martin, J. A. Rumsey, C. Rusholme, B. Sandri, M. Saunders, R. D. E. Savini, G. Schammel, M. P. Scott, D. Shimwell, T. W. Smoot, G. F. Starck, J. -L. Stivoli, F. Stolyarov, V. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Valenziano, L. Van Tent, B. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Yvon, D. Zacchei, A. Zonca, A. CA Planck AMI Collaborations TI Planck intermediate results II. Comparison of Sunyaev-Zeldovich measurements from Planck and from the Arcminute Microkelvin Imager for 11 galaxy clusters SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; galaxies: clusters: general; galaxies: clusters: intracluster medium; cosmic background radiation; X-rays: galaxies: clusters ID X-RAY-PROPERTIES; SOUTH-POLE TELESCOPE; PRE-LAUNCH STATUS; DISCRETE OBJECT DETECTION; ASTRONOMICAL DATA SETS; FAST BAYESIAN-APPROACH; MHZ SKY SURVEY; RADIO-SOURCES; XMM-NEWTON; HYDRODYNAMICAL SIMULATIONS AB A comparison is presented of Sunyaev-Zeldovich measurements for 11 galaxy clusters as obtained by Planck and by the ground-based interferometer, the Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric Generalised Navarro, Frenk and White (GNFW) model for the cluster gas pressure profile, we jointly constrain the integrated Compton-Y parameter (Y-500) and the scale radius (theta(500)) of each cluster. Our resulting constraints in the Y-500 - theta(500) 2D parameter space derived from the two instruments overlap significantly for eight of the clusters, although, overall, there is a tendency for AMI to find the Sunyaev-Zeldovich signal to be smaller in angular size and fainter than Planck. Significant discrepancies exist for the three remaining clusters in the sample, namely A1413, A1914, and the newly-discovered Planck cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the Planck and AMI data is demonstrated through the use of detailed simulations, which also discount confusion from residual point (radio) sources and from diffuse astrophysical foregrounds as possible explanations for the discrepancies found. For a subset of our cluster sample, we have investigated the dependence of our results on the assumed pressure profile by repeating the analysis adopting the best-fitting GNFW profile shape which best matches X-ray observations. Adopting the best-fitting profile shape from the X-ray data does not, in general, resolve the discrepancies found in this subset of five clusters. Though based on a small sample, our results suggest that the adopted GNFW model may not be sufficiently flexible to describe clusters universally. C1 [Bucher, M.; Delabrouille, J.; Fromenteau, S.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Remazeilles, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, APC, CNRS, CEA,Irfu,Observ Paris,IN2P3, F-75205 Paris 13, France. [Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Republic Of Tat, Russia. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy. [Ashdown, M.; Carvalho, P.; Feroz, F.; Grainge, K. J. B.; Hobson, M.; Hurley-Walker, N.; Lasenby, A.; Olamaie, M.; Perrott, Y. C.; Rodriuez-Gonzalvez, C.; Rumsey, C.; Saunders, R. D. E.; Schammel, M. P.; Shimwell, T. W.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Melin, J. -B.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Bikmaev, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Liddle, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Cayon, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Burigana, C.; Natoli, P.] Univ Ferrara, Dipartmento Fis, I-44100 Ferrara, Italy. [Balbi, A.; Bourdin, H.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00173 Rome, Italy. [Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] ULL, Dpto Astrofis, Tenerife 38206, Spain. [Kneissl, R.] ESO Vitacura, European So Observ, Santiago, Chile. [Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy. [Colafrancesco, S.; Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Massardi, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; de Rosa, A.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Melchiorri, A.] Univ Roma La Sapienza, Sez Roma 1, INFN, I-00185 Rome, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Lab Rech Informat, F-91405 Orsay, France. [Mitra, S.] IUCAA, Pune 411007, Maharashtra, India. [Chamballu, A.; Clements, D. L.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Chary, R. -R.; Pearson, T. J.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Fromenteau, S.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, CNRS, UMR8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys, CNRS, UMR7095, F-75014 Paris, France. [Fosalba, P.] CSIC, IEEC, Fac Ciencias, Inst Ciencies Espai, Bellaterra 08193, Spain. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Marleau, F.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria. [Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Efstathiou, G.; Harrison, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Platania, P.] CNR ENEA EURATOM Assoc, Ist Fis Plasma, Milan, Italy. [Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Battye, R.; Bonaldi, A.; Brown, M. L.; Davies, R. D.; Davis, R. J.; Dickinson, C.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester, Lancs, England. [Ashdown, M.; Grainge, K. J. B.; Harrison, D.; Lasenby, A.; MacTavish, C. J.; Saunders, R. D. E.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Henrot-Versille, S.; Luzzi, G.; Perdereau, O.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Democles, J.; Marshall, D. J.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, Lab AIM, IRFU Serv Astrophys, CEA DSM,CNRS,CEA Saclay, F-91191 Gif Sur Yvette, France. [Catalano, A.; Hurier, G.; Macias-Perez, J. F.; Renault, C.] Univ Grenoble 1, Lab Phys Subatom & Cosmol, CNRS IN2P3, Inst Natl Polytech Grenoble, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Lab Phys Theor, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observ Cosmol, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Burenin, R.] Space Res Inst IKI, Moscow, Russia. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Nizhnii Arkhyz 369167, Zelenchukskiy R, Russia. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Khamitov, I.] Tubitak Natl Observ, TR-07058 Antalya, Turkey. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Wandelt, B. D.] UPMC Univ Paris 6, UMR 7095, F-75014 Paris, France. [Banday, A. J.; Flores-Cacho, I.; Forni, O.; Giard, M.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Dolag, K.] Univ Munich, Univ Observ, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Brown, ML (reprint author), Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Alan Turing Bldg,Oxford Rd, Manchester, Lancs, England. EM mbrown@jb.man.ac.uk RI Butler, Reginald/N-4647-2015; Remazeilles, Mathieu/N-1793-2015; Pearson, Timothy/N-2376-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Fosalba Vela, Pablo/I-5515-2016; Novikov, Igor/N-5098-2015; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Novikov, Dmitry/P-1807-2015; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Bouchet, Francois/B-5202-2014; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; de Gasperis, Giancarlo/C-8534-2012; Hurley-Walker, Natasha/B-9520-2013; Lopez-Caniego, Marcos/M-4695-2013; Da Silva, Antonio/A-2693-2010; OI Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Matarrese, Sabino/0000-0002-2573-1243; Galeotta, Samuele/0000-0002-3748-5115; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Butler, Reginald/0000-0003-4366-5996; Lopez-Caniego, Marcos/0000-0003-1016-9283; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266; Pearson, Timothy/0000-0001-5213-6231; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; De Zotti, Gianfranco/0000-0003-2868-2595; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; de Gasperis, Giancarlo/0000-0003-2899-2171; Hurley-Walker, Natasha/0000-0002-5119-4808; Da Silva, Antonio/0000-0002-6385-1609; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Hurier, Guillaume/0000-0002-1215-0706; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924 FU ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); Doe (USA); STFC (UK); UKSAR (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes, (Finland); AoF, (Finland); CSC, (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU); ESA member states FX A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.rssd.esa.int/Planck. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). The AMI telescope is supported by Cambridge University and the STFC. The AMI data analysis was carried out on the COSMOS UK National Supercomputer at DAMTP, University of Cambridge and the AMI Consortium thanks Andrey Kaliazin for computing assistance.; Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries France and Italy), with contributions form NASA (USA) and telescope reflectors provided by a collaboration between ESA and a scientific consortium led and funded by Denmark. NR 90 TC 14 Z9 14 U1 1 U2 25 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A128 DI 10.1051/0004-6361/201219361 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700128 ER PT J AU Ade, PAR Aghanim, N Argueso, F Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bethermin, M Bhatia, R Bonaldi, A Bond, JR Borrill, J Bouchet, FR Burigana, C Cabella, P Cardoso, JF Catalano, A Cayon, L Chamballu, A Chary, RR Chen, X Chiang, LY Christensen, PR Clements, DL Colafrancesco, S Colombi, S Colombo, LPL Coulais, A Crill, BP Cuttaia, F Danese, L Davis, RJ de Bernardis, P de Gasperis, G de Zotti, G Delabrouille, J Dickinson, C Diego, JM Dole, H Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Finelli, F Forni, O Fosalba, P Frailis, M Franceschi, E Galeotta, S Ganga, K Giard, M Giardino, G Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, D Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Jaffe, TR Jaffe, AH Jagemann, T Jones, WC Juvela, M Keihanen, E Kisner, TS Kneissl, R Knoche, J Knox, L Kunz, M Kurinsky, N Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lawrence, CR Leonardi, R Lilje, PB Lopez-Caniego, M Macias-Perez, JF Maino, D Mandolesi, N Maris, M Marshall, DJ Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Mazzotta, P Melchiorri, A Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Pajot, F Paladini, R Paoletti, D Partridge, B Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Popa, L Poutanen, T Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Rosset, C Rowan-Robinson, M Rubino-Martin, JA Rusholme, B Sajina, A Sandri, M Savini, G Scott, D Smoot, GF Starck, JL Sudiwala, R Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tucci, M Turler, M Valenziano, L Van Tent, B Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD White, M Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Argueeso, F. Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bethermin, M. Bhatia, R. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Burigana, C. Cabella, P. Cardoso, J. -F. Catalano, A. Cayon, L. Chamballu, A. Chary, R. -R. Chen, X. Chiang, L. -Y Christensen, P. R. Clements, D. L. Colafrancesco, S. Colombi, S. Colombo, L. P. L. Coulais, A. Crill, B. P. Cuttaia, F. Danese, L. Davis, R. J. de Bernardis, P. de Gasperis, G. de Zotti, G. Delabrouille, J. Dickinson, C. Diego, J. M. Dole, H. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Finelli, F. Forni, O. Fosalba, P. Frailis, M. Franceschi, E. Galeotta, S. Ganga, K. Giard, M. Giardino, G. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Jaffe, T. R. Jaffe, A. H. Jagemann, T. Jones, W. C. Juvela, M. Keihanen, E. Kisner, T. S. Kneissl, R. Knoche, J. Knox, L. Kunz, M. Kurinsky, N. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Leonardi, R. Lilje, P. B. Lopez-Caniego, M. Macias-Perez, J. F. Maino, D. Mandolesi, N. Maris, M. Marshall, D. J. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Mazzotta, P. Melchiorri, A. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Pajot, F. Paladini, R. Paoletti, D. Partridge, B. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Poutanen, T. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Rosset, C. Rowan-Robinson, M. Rubino-Martin, J. A. Rusholme, B. Sajina, A. Sandri, M. Savini, G. Scott, D. Smoot, G. F. Starck, J. -L. Sudiwala, R. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tucci, M. Tuerler, M. Valenziano, L. Van Tent, B. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. White, M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results VII. Statistical properties of infrared and radio extragalactic sources from the Planck Early Release Compact Source Catalogue at frequencies between 100 and 857 GHz SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; surveys; galaxies: statistics; galaxies: evolution; galaxies: star formation; galaxies: active ID PROBE WMAP OBSERVATIONS; PRE-LAUNCH STATUS; SUBMILLIMETER NUMBER COUNTS; STAR-FORMATION HISTORY; NORTH ECLIPTIC POLE; 500 MU-M; GALAXY EVOLUTION; LUMINOSITY FUNCTIONS; LOCAL UNIVERSE; HERSCHEL AB We make use of the Planck all-sky survey to derive number counts and spectral indices of extragalactic sources - infrared and radio sources - from the Planck Early Release Compact Source Catalogue (ERCSC) at 100 to 857 GHz (3mm to 350 mu m). Three zones (deep, medium and shallow) of approximately homogeneous coverage are used to permit a clean and controlled correction for incompleteness, which was explicitly not done for the ERCSC, as it was aimed at providing lists of sources to be followed up. Our sample, prior to the 80% completeness cut, contains between 217 sources at 100 GHz and 1058 sources at 857 GHz over about 12 800 to 16 550 deg(2) (31 to 40% of the sky). After the 80% completeness cut, between 122 and 452 and sources remain, with flux densities above 0.3 and 1.9 Jy at 100 and 857 GHz. The sample so defined can be used for statistical analysis. Using the multi-frequency coverage of the Planck High Frequency Instrument, all the sources have been classified as either dust-dominated (infrared galaxies) or synchrotron-dominated (radio galaxies) on the basis of their spectral energy distributions (SED). Our sample is thus complete, flux-limited and color-selected to differentiate between the two populations. We find an approximately equal number of synchrotron and dusty sources between 217 and 353 GHz; at 353 GHz or higher (or 217 GHz and lower) frequencies, the number is dominated by dusty (synchrotron) sources, as expected. For most of the sources, the spectral indices are also derived. We provide for the first time counts of bright sources from 353 to 857 GHz and the contributions from dusty and synchrotron sources at all HFI frequencies in the key spectral range where these spectra are crossing. The observed counts are in the Euclidean regime. The number counts are compared to previously published data (from earlier Planck results, Herschel, BLAST, SCUBA, LABOCA, SPT, and ACT) and models taking into account both radio or infrared galaxies, and covering a large range of flux densities. We derive the multi-frequency Euclidean level - the plateau in the normalised differential counts at high flux-density - and compare it to WMAP, Spitzer and IRAS results. The submillimetre number counts are not well reproduced by current evolution models of dusty galaxies, whereas the millimetre part appears reasonably well fitted by the most recent model for synchrotron-dominated sources. Finally we provide estimates of the local luminosity density of dusty galaxies, providing the first such measurements at 545 and 857 GHz. C1 [Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Patanchon, G.; Piat, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, APC AstroParticule & Cosmol, CEA Lrfu, Observ Paris,CNRS,IN2P3, F-75205 Paris 13, France. [Lahteenmaki, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Kunz, M.] African Inst Math Sci, Cape Town, South Africa. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy. [Ashdown, M.; Hobson, M.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Argueeso, F.] Univ Oviedo, Dept Matemat, Oviedo, Spain. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Kurinsky, N.; Sajina, A.] Tufts Univ, Dept Phys & Astron, Medford, MA 02155 USA. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Smoot, G. F.; White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Cayon, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Balbi, A.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Giardino, G.; Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy. [Colafrancesco, S.; Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Massardi, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Melchiorri, A.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Ponthieu, N.] Univ Grenoble 1, CNRS, INSU, IPAG,UMR 5274, F-38041 Grenoble, France. [Tuerler, M.] Univ Geneva, ISDC Data Ctr Astrophys, Versoix, Switzerland. [Mitra, S.] IUCAA, Pune 411007, Maharashtra, India. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.; Rowan-Robinson, M.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Chary, R. -R.; Chen, X.; Paladini, R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, F-38041 Grenoble, France. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Fosalba, P.] CSIC IEEC, Fac Ciencias, Inst Ciencies Espai, Bellaterra 08193, Spain. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Efstathiou, G.; Harrison, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bonaldi, A.; Davis, R. J.; Dickinson, C.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D.; Lasenby, A.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Henrot-Versille, S.; Perdereau, O.; Plaszczynski, S.; Tristram, M.; Tucci, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Bethermin, M.; Marshall, D. J.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, CEA Saclay, IRFU Serv Astrophys, Lab AIM,CNRS,CEA DSM, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, Lab Phys Subatom & Cosmol,IN2P3, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Balbi, A.; Doerl, U.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, F-75014 Paris, France. [Banday, A. J.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Battaner, E.] Univ Granada, Dept Fis Teor & Cosmos, Fac Ciencias, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Dole, H (reprint author), Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, Batiment 121, F-91405 Orsay, France. EM herve.dole@ias.u-psud.fr RI Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Fosalba Vela, Pablo/I-5515-2016; Novikov, Igor/N-5098-2015; Colombo, Loris/J-2415-2016; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; Novikov, Dmitry/P-1807-2015; Mazzotta, Pasquale/B-1225-2016; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; White, Martin/I-3880-2015; de Gasperis, Giancarlo/C-8534-2012; Lopez-Caniego, Marcos/M-4695-2013; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; OI Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Galeotta, Samuele/0000-0002-3748-5115; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; De Zotti, Gianfranco/0000-0003-2868-2595; Matarrese, Sabino/0000-0002-2573-1243; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Atrio-Barandela, Fernando/0000-0002-2130-2513; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070; de Gasperis, Giancarlo/0000-0003-2899-2171; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Reach, William/0000-0001-8362-4094; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Bethermin, Matthieu/0000-0002-3915-2015 FU ESA; NASA; CNES (France); CNRS/INSU-IN2P3INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); PRACE (EU); National Aeronautics and Space Administration FX Based on observations obtained with Planck (http://www.esa.int/Planck), an ESA science mission with instruments and contributions directly funded by ESA Member States, NASA, and Canada. The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. NR 101 TC 18 Z9 18 U1 1 U2 29 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A133 DI 10.1051/0004-6361/201220053 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700133 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bikmaev, I Bohringer, H Bonaldi, A Bond, JR Borrill, J Bouchet, FR Bourdin, H Burenin, R Burigana, C Cabella, P Cardoso, JF Castex, G Catalano, A Cayon, L Chamballu, A Chary, RR Chiang, LY Chon, G Christensen, PR Clements, DL Colafrancesco, S Colombo, LPL Comis, B Coulais, A Crill, BP Cuttaia, F Da Silva, A Dahle, H Danese, L Davis, RJ de Bernardis, P de Gasperis, G de Zotti, G Delabrouille, J Democles, J Desert, FX Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Finelli, F Flores-Cacho, I Forni, O Frailis, M Franceschi, E Frommert, M Galeotta, S Ganga, K Genova-Santos, RT Giard, M Gilfanov, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, D Hempel, A Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hovest, W Hurier, G Jaffe, TR Jaffe, AH Jagemann, T Jones, WC Juvela, M Khamitov, I Kisner, TS Kneissl, R Knoche, J Knox, L Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lawrence, CR Le Jeune, M Leonardi, R Lilje, PB Linden-Vornle, M Lopez-Caniego, M Lubin, PM Luzzi, G Macias-Perez, JF Maffei, B Maino, D Mandolesi, N Maris, M Marleau, F Marshall, DJ Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Matthai, F Mazzotta, P Mei, S Melchiorri, A Melin, JB Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Pajot, F Paoletti, D Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piffaretti, R Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Popa, L Poutanen, T Pratt, GW Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Roman, M Rosset, C Rossetti, M Rubino-Martin, JA Rusholme, B Sandri, M Savini, G Schaefer, BM Scott, D Smoot, GF Starck, JL Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Valenziano, L Van Tent, B Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Welikala, N White, SDM Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bikmaev, I. Boehringer, H. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Bourdin, H. Burenin, R. Burigana, C. Cabella, P. Cardoso, J. -F. Castex, G. Catalano, A. Cayon, L. Chamballu, A. Chary, R. -R. Chiang, L. -Y. Chon, G. Christensen, P. R. Clements, D. L. Colafrancesco, S. Colombo, L. P. L. Comis, B. Coulais, A. Crill, B. P. Cuttaia, F. Da Silva, A. Dahle, H. Danese, L. Davis, R. J. de Bernardis, P. de Gasperis, G. de Zotti, G. Delabrouille, J. Democles, J. Desert, F. -X. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Finelli, F. Flores-Cacho, I. Forni, O. Frailis, M. Franceschi, E. Frommert, M. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Gilfanov, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Hempel, A. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hovest, W. Hurier, G. Jaffe, T. R. Jaffe, A. H. Jagemann, T. Jones, W. C. Juvela, M. Khamitov, I. Kisner, T. S. Kneissl, R. Knoche, J. Knox, L. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Le Jeune, M. Leonardi, R. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Lubin, P. M. Luzzi, G. Macias-Perez, J. F. Maffei, B. Maino, D. Mandolesi, N. Maris, M. Marleau, F. Marshall, D. J. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Matthai, F. Mazzotta, P. Mei, S. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piffaretti, R. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Poutanen, T. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Roman, M. Rosset, C. Rossetti, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savini, G. Schaefer, B. M. Scott, D. Smoot, G. F. Starck, J. -L. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Valenziano, L. Van Tent, B. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Welikala, N. White, S. D. M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results VIII. Filaments between interacting clusters SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: clusters: general; large-scale structure of Universe ID PRE-LAUNCH STATUS; X-RAY-STRUCTURE; GALAXY CLUSTERS; INTRACLUSTER MEDIUM; OUTER REGIONS; SIMULATIONS; GAS; ABSORPTION; ENRICHMENT; RADIATION AB Context. About half of the baryons of the Universe are expected to be in the form of filaments of hot and low-density intergalactic medium. Most of these baryons remain undetected even by the most advanced X-ray observatories, which are limited in sensitivity to the diffuse low-density medium. Aims. The Planck satellite has provided hundreds of detections of the hot gas in clusters of galaxies via the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for studying extended low-density media through the tSZ effect. In this paper we use the Planck data to search for signatures of a fraction of these missing baryons between pairs of galaxy clusters. Methods. Cluster pairs are good candidates for searching for the hotter and denser phase of the intergalactic medium (which is more easily observed through the SZ effect). Using an X-ray catalogue of clusters and the Planck data, we selected physical pairs of clusters as candidates. Using the Planck data, we constructed a local map of the tSZ effect centred on each pair of galaxy clusters. ROSAT data were used to construct X-ray maps of these pairs. After modelling and subtracting the tSZ effect and X-ray emission for each cluster in the pair, we studied the residuals on both the SZ and X-ray maps. Results. For the merging cluster pair A399-A401 we observe a significant tSZ effect signal in the intercluster region beyond the virial radii of the clusters. A joint X-ray SZ analysis allows us to constrain the temperature and density of this intercluster medium. We obtain a temperature of kT = 7.1 +/- 0.9 keV (consistent with previous estimates) and a baryon density of (3.7 +/- 0.2) x 10(-4) cm(-3). Conclusions. The Planck satellite mission has provided the first SZ detection of the hot and diffuse intercluster gas. C1 [Bartlett, J. G.; Cardoso, J. -F.; Castex, G.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Piat, M.; Remazeilles, M.; Roman, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, APC AstroParticule & Cosmol, CEA Lrfu, Observ Paris,CNRS,IN2P3, F-75205 Paris 13, France. [Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Republic Of Tat, Russia. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy. [Ashdown, M.; Hobson, M.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Offices, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] IRAP, CNRS, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Mei, S.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Melin, J. -B.; Piffaretti, R.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Tech Univ Denmark, DTU Space, Natl Space Inst, DK-2800 Lyngby, Denmark. [Frommert, M.; Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Bikmaev, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Geophys & Astron, Vancouver, BC, Canada. [Colombo, L. P. L.; Pierpaoli, E.; Suur-Uski, A. -S.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Juvela, M.; Kurki-Suonio, H.; Poutanen, T.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lubin, P. M.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Cayon, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartimento Fis, Trieste, Italy. [Burigana, C.; Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Bourdin, H.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Mei, S.] Observ Paris, GEPI, Sect Meudon, F-92195 Meudon, France. [Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy. [Colafrancesco, S.; Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Massardi, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Melchiorri, A.] Univ Roma Sapienza, Sez Roma 1, Ist Nazl Fis Nucl, I-00185 Rome, Italy. [Desert, F. -X.; Ponthieu, N.] Univ Grenoble 1, CNRS, INSU, IPAG,UMR 5274, F-38041 Grenoble, France. [Mitra, S.] IUCAA, Pune 411007, Maharashtra, India. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Chary, R. -R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Welikala, N.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Marleau, F.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria. [Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Efstathiou, G.; Harrison, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Genova-Santos, R. T.; Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bonaldi, A.; Davis, R. J.; Maffei, B.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D.; Lasenby, A.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Henrot-Versille, S.; Luzzi, G.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Democles, J.; Marshall, D. J.; Piffaretti, R.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, CNRS, CEA DSM, IRFU Serv Astrophys,Lab AIM,CEA Saclay, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Comis, B.; Hurier, G.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, Lab Phys Subat & Cosmol,IN2P3, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dolag, K.; Doerl, U.; Ensslin, T. A.; Gilfanov, M.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Burenin, R.] Space Res Inst IKI, Moscow, Russia. [Gilfanov, M.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Khamitov, I.] TUBITAK Natl Observ, TR-07058 Antalya, Turkey. [Benabed, K.; Bouchet, F. R.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR 7095, F-75014 Paris, France. [Schaefer, B. M.] Heidelberg Univ, Inst Theoret Astrophys, D-69120 Heidelberg, Germany. [Mei, S.] Univ Paris 07, F-75205 Paris 13, France. [Banday, A. J.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, IRAP, UPS OMP, F-31028 Toulouse 4, France. [Dolag, K.] Univ Munich, Univ Observ, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Ade, PAR (reprint author), Cardiff Univ, Sch Phys & Astron, Queens Bldg, Cardiff CF24 3AA, S Glam, Wales. EM hurier@lpsc.in2p3.fr RI Remazeilles, Mathieu/N-1793-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Colombo, Loris/J-2415-2016; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; Novikov, Dmitry/P-1807-2015; Mazzotta, Pasquale/B-1225-2016; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; Gruppuso, Alessandro/N-5592-2015; de Gasperis, Giancarlo/C-8534-2012; Lopez-Caniego, Marcos/M-4695-2013; Da Silva, Antonio/A-2693-2010; Bouchet, Francois/B-5202-2014; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; OI Matarrese, Sabino/0000-0002-2573-1243; Galeotta, Samuele/0000-0002-3748-5115; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Atrio-Barandela, Fernando/0000-0002-2130-2513; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; De Zotti, Gianfranco/0000-0003-2868-2595; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Gruppuso, Alessandro/0000-0001-9272-5292; de Gasperis, Giancarlo/0000-0003-2899-2171; Da Silva, Antonio/0000-0002-6385-1609; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X FU ESA; NASA; CNES (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal) FX Based on observations obtained with Planck (http://www.esa.int/Planck), an ESA science mission with instruments and contributions directly funded by ESA Member States, NASA, and Canada. The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and The development of Planck has been supported by: ESA; CNES and CNRS/INSU- IN2P3- INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and PRACE (EU). We acknowledge the use of the Healpix software NR 63 TC 14 Z9 14 U1 1 U2 29 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A134 DI 10.1051/0004-6361/201220194 PG 16 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700134 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bikmaev, I Bohringer, H Bonaldi, A Bond, JR Borrill, J Bouchet, FR Bourdin, H Burenin, R Burigana, C Cabella, P Cardoso, JF Castex, G Catalano, A Cayon, L Chamballu, A Chiang, LY Chon, G Christensen, PR Clements, DL Colafrancesco, S Colombi, S Colombo, LPL Comis, B Coulais, A Crill, BP Cuttaia, F Da Silva, A Dahle, H Danese, L Davis, RJ de Bernardis, P de Gasperis, G de Zotti, G Delabrouille, J Democles, J Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Finelli, F Flores-Cacho, I Forni, O Frailis, M Franceschi, E Frommert, M Galeotta, S Ganga, K Genova-Santos, RT Giard, M Gilfanov, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, D Heinamaki, P Hempel, A Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hurier, G Jaffe, TR Jaffe, AH Jagemann, T Jones, WC Juvela, M Keihanen, E Khamitov, I Kisner, TS Kneissl, R Knoche, J Knox, L Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lawrence, CR Le Jeune, M Leonardi, R Lilje, PB Lopez-Caniego, M Luzzi, G Macias-Perez, JF Maino, D Mandolesi, N Maris, M Marleau, F Marshall, DJ Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Mazzotta, P Mei, S Melchiorri, A Melin, JB Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Pajot, F Paoletti, D Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piffaretti, R Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Popa, L Poutanen, T Pratt, GW Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Roman, M Rosset, C Rossetti, M Rubino-Martin, JA Rusholme, B Sandri, M Savini, G Scott, D Smoot, GF Starck, JL Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tuovinen, J Valenziano, L Van Tent, B Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Welikala, N Yvon, D Zacchei, A Zaroubi, S Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bikmaev, I. Boehringer, H. Bonaldi, A. Bond, J. R. Borrill, J. Bouchet, F. R. Bourdin, H. Burenin, R. Burigana, C. Cabella, P. Cardoso, J. -F. Castex, G. Catalano, A. Cayon, L. Chamballu, A. Chiang, L. -Y Chon, G. Christensen, P. R. Clements, D. L. Colafrancesco, S. Colombi, S. Colombo, L. P. L. Comis, B. Coulais, A. Crill, B. P. Cuttaia, F. Da Silva, A. Dahle, H. Danese, L. Davis, R. J. de Bernardis, P. de Gasperis, G. de Zotti, G. Delabrouille, J. Democles, J. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Finelli, F. Flores-Cacho, I. Forni, O. Frailis, M. Franceschi, E. Frommert, M. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Gilfanov, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Heinamaki, P. Hempel, A. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hurier, G. Jaffe, T. R. Jaffe, A. H. Jagemann, T. Jones, W. C. Juvela, M. Keihaenen, E. Khamitov, I. Kisner, T. S. Kneissl, R. Knoche, J. Knox, L. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Le Jeune, M. Leonardi, R. Lilje, P. B. Lopez-Caniego, M. Luzzi, G. Macias-Perez, J. F. Maino, D. Mandolesi, N. Maris, M. Marleau, F. Marshall, D. J. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Mazzotta, P. Mei, S. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piffaretti, R. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Poutanen, T. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Roman, M. Rosset, C. Rossetti, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savini, G. Scott, D. Smoot, G. F. Starck, J. -L. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tuovinen, J. Valenziano, L. Van Tent, B. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Welikala, N. Yvon, D. Zacchei, A. Zaroubi, S. Zonca, A. CA Planck Collaboration TI Planck intermediate results VI. The dynamical structure of PLCKG214.6+37.0, a Planck discovered triple system of galaxy clusters SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE galaxies: clusters: general; large-scale structure of Universe; galaxies: clusters: individual: PLCKG214.6+37.0 ID PRE-LAUNCH STATUS; XMM-NEWTON; SAMPLE; PROFILES; NEARBY; MASS; SPECTRUM; REXCESS; A3558; CORE AB The survey of galaxy clusters performed by Planck through the Sunyaev-Zeldovich effect has already discovered many interesting objects, thanks to its full sky coverage. One of the SZ candidates detected in the early months of the mission near to the signal-to-noise threshold, PLCKG214.6+37.0, was later revealed by XMM-Newton to be a triple system of galaxy clusters. We present the results from a deep XMM-Newton re-observation of PLCKG214.6+37.0, part of a multi-wavelength programme to investigate Planck discovered superclusters. The characterisation of the physical properties of the three components has allowed us to build a template model to extract the total SZ signal of this system with Planck data. We have partly reconciled the discrepancy between the expected SZ signal derived from X-rays and the observed one, which are now consistent within 1.2 sigma. We measured the redshift of the three components with the iron lines in the X-ray spectrum, and confirm that the three clumps are likely part of the same supercluster structure. The analysis of the dynamical state of the three components, as well as the absence of detectable excess X-ray emission, suggests that we are witnessing the formation of a massive cluster at an early phase of interaction. C1 [Bartlett, J. G.; Cardoso, J. -F.; Castex, G.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Piat, M.; Remazeilles, M.; Roman, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, APC AstroParticule & Cosmol, Observ Paris, CNRS,CEA Lrfu,IN2P3, F-75205 Paris 13, France. [Lahteenmaki, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Republic Of Tat, Russia. [Kunz, M.] African Inst Math Sci, Cape Town, South Africa. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy. [Ashdown, M.; Hobson, M.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago, Cent Off, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Gorski, K. M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Mei, S.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Melin, J. -B.; Piffaretti, R.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Frommert, M.; Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Bikmaev, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, Dept Astrophys IMAPP, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Coll Letter Arts & Sci, Dept Phys & Astron Dana & David Dornsife, Los Angeles, CA 90089 USA. [Juvela, M.; Keihaenen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Cayon, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Burigana, C.; Mandolesi, N.; Natoli, P.] Univ Ferrara, Dipartimento Fis & Sci Terra, I-44122 Ferrara, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Balbi, A.; Bourdin, H.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.; Lasenby, A.] European So Observ, ESO Vitacura, Santiago 19001, Chile. [Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, Planck Sci Off, ESAC, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Mei, S.] Observ Paris, GEPI, F-92195 Meudon, France. [Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy. [Colafrancesco, S.; Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Massardi, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Melchiorri, A.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Ponthieu, N.] Univ Grenoble 1, CNRS INSU, IPAG, UMR 5274, F-38041 Grenoble, France. [Mitra, S.] IUCAA, Pune 411007, Maharashtra, India. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Welikala, N.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR 7095, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Marleau, F.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Efstathiou, G.; Harrison, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Genova-Santos, R. T.; Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bonaldi, A.; Davis, R. J.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Zaroubi, S.] Univ Groningen, Kapteyn Astron Inst, NL-9747 AD Groningen, Netherlands. [Ashdown, M.; Harrison, D.; Sutton, D.] Kavli Inst Cosmol, Cambridge CB3 0HA, England. [Henrot-Versille, S.; Luzzi, G.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Democles, J.; Marshall, D. J.; Piffaretti, R.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, IRFU Serv Astrophys, CEA Saclay, CNRS,Lab AIM,CEA DSM, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Comis, B.; Hurier, G.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, Lab Phys Subatom & Cosmol,IN2P3, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dolag, K.; Doerl, U.; Ensslin, T. A.; Gilfanov, M.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Tuovinen, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Burenin, R.] Space Res Inst IKI, Moscow, Russia. [Gilfanov, M.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Khamitov, I.] TUBITAK Natl Observ, TR-07058 Antalya, Turkey. [Heinamaki, P.] Univ Turku, Dept Phys & Astron, Tuorla Observ, Piikkio 21500, Finland. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, F-75014 Paris, France. [Mei, S.] Univ Paris 07, F-75205 Paris 13, France. [Banday, A. J.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Dolag, K.] Univ Munich, Univ Observ, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Rossetti, M (reprint author), Univ Milan, Dipartimento Fis, Via Celoria 16, Milan, Italy. EM mariachiara.rossetti@unimi.it RI Remazeilles, Mathieu/N-1793-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Novikov, Igor/N-5098-2015; Colombo, Loris/J-2415-2016; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; Novikov, Dmitry/P-1807-2015; Mazzotta, Pasquale/B-1225-2016; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; de Gasperis, Giancarlo/C-8534-2012; Lopez-Caniego, Marcos/M-4695-2013; Da Silva, Antonio/A-2693-2010; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014 OI Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Matarrese, Sabino/0000-0002-2573-1243; Galeotta, Samuele/0000-0002-3748-5115; WANDELT, Benjamin/0000-0002-5854-8269; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Frailis, Marco/0000-0002-7400-2135; Lopez-Caniego, Marcos/0000-0003-1016-9283; Gregorio, Anna/0000-0003-4028-8785; Pasian, Fabio/0000-0002-4869-3227; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Atrio-Barandela, Fernando/0000-0002-2130-2513; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; De Zotti, Gianfranco/0000-0003-2868-2595; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; de Gasperis, Giancarlo/0000-0003-2899-2171; Da Silva, Antonio/0000-0002-6385-1609; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386 FU ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER /SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU); USA (NASA); Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy Office of Science FX A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.rssd.esa.int/Planck. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN, and JA (Spain); Tekes, AoF, and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER /SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). The present paper is also partly based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA), and on data retrieved from SDSS-III. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/ NR 57 TC 6 Z9 6 U1 1 U2 30 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 EI 1432-0746 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A132 DI 10.1051/0004-6361/201220039 PG 14 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700132 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Battye, R Benabed, K Bernard, JP Bersanelli, M Bhatia, R Bikmaev, I Bohringer, H Bonaldi, A Bond, JR Borgani, S Borrill, J Bouchet, FR Bourdin, H Brown, ML Bucher, M Burenin, R Burigana, C Butler, RC Cabella, P Cardoso, JF Carvalho, P Chamballu, A Chiang, LY Chon, G Clements, DL Colafrancesco, S Coulais, A Cuttaia, F Da Silva, A Dahle, H Davis, RJ de Bernardis, P de Gasperis, G Delabrouille, J Democles, J Desert, FX Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Finelli, F Flores-Cacho, I Forni, O Frailis, M Franceschi, E Frommert, M Galeotta, S Ganga, K Genova-Santos, RT Giard, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, D Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Huffenberger, KM Hurier, G Jagemann, T Juvela, M Keihanen, E Khamitov, I Kneissl, R Knoche, J Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lawrence, CR Le Jeune, M Leach, S Leonardi, R Liddle, A Lilje, PB Linden-Vornle, M Lopez-Caniego, M Luzzi, G Macias-Perez, JF Maino, D Mandolesi, N Maris, M Marleau, F Marshall, DJ Martinez-Gonzalez, E Masi, S Matarrese, S Matthai, F Mazzotta, P Meinhold, PR Melchiorri, A Melin, JB Mendes, L Mitra, S Miville-Deschenes, MA Montier, L Morgante, G Munshi, D Natoli, P Norgaard-Nielsen, HU Noviello, F Osborne, S Pajot, F Paoletti, D Partridge, B Pearson, TJ Perdereau, O Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piffaretti, R Platania, P Pointecouteau, E Polenta, G Ponthieu, N Popa, L Poutanen, T Pratt, GW Prunet, S Puget, JL Rachen, JP Rebolo, R Reinecke, M Remazeilles, M Renault, C Ricciardi, S Ristorcelli, I Rocha, G Rosset, C Rossetti, M Rubino-Martin, JA Rusholme, B Sandri, M Savini, G Scott, D Starck, JL Stivoli, F Stolyarov, V Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Valenziano, L Van Tent, B Vielva, P Villa, F Vittorio, N Wandelt, BD Weller, J White, SDM Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Battye, R. Benabed, K. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bikmaev, I. Boehringer, H. Bonaldi, A. Bond, J. R. Borgani, S. Borrill, J. Bouchet, F. R. Bourdin, H. Brown, M. L. Bucher, M. Burenin, R. Burigana, C. Butler, R. C. Cabella, P. Cardoso, J. -F. Carvalho, P. Chamballu, A. Chiang, L. -Y. Chon, G. Clements, D. L. Colafrancesco, S. Coulais, A. Cuttaia, F. Da Silva, A. Dahle, H. Davis, R. J. de Bernardis, P. de Gasperis, G. Delabrouille, J. Democles, J. Desert, F. -X. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Finelli, F. Flores-Cacho, I. Forni, O. Frailis, M. Franceschi, E. Frommert, M. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Huffenberger, K. M. Hurier, G. Jagemann, T. Juvela, M. Keihanen, E. Khamitov, I. Kneissl, R. Knoche, J. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Le Jeune, M. Leach, S. Leonardi, R. Liddle, A. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Luzzi, G. Macias-Perez, J. F. Maino, D. Mandolesi, N. Maris, M. Marleau, F. Marshall, D. J. Martinez-Gonzalez, E. Masi, S. Matarrese, S. Matthai, F. Mazzotta, P. Meinhold, P. R. Melchiorri, A. Melin, J. -B. Mendes, L. Mitra, S. Miville-Deschenes, M. -A. Montier, L. Morgante, G. Munshi, D. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Osborne, S. Pajot, F. Paoletti, D. Partridge, B. Pearson, T. J. Perdereau, O. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piffaretti, R. Platania, P. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Poutanen, T. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Ristorcelli, I. Rocha, G. Rosset, C. Rossetti, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savini, G. Scott, D. Starck, J. -L. Stivoli, F. Stolyarov, V. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Valenziano, L. Van Tent, B. Vielva, P. Villa, F. Vittorio, N. Wandelt, B. D. Weller, J. White, S. D. M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results III. The relation between galaxy cluster mass and Sunyaev-Zeldovich signal SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE X-rays: galaxies: clusters; galaxies: clusters: intracluster medium; galaxies: clusters: general; cosmology: observations ID WEAK LENSING ANALYSIS; PRE-LAUNCH STATUS; HUBBLE-SPACE-TELESCOPE; SOUTH-POLE TELESCOPE; X-RAY-PROPERTIES; SCALING RELATIONS; XMM-NEWTON; DARK-MATTER; REPRESENTATIVE SAMPLE; PARAMETER-ESTIMATION AB We examine the relation between the galaxy cluster mass M and Sunyaev-Zeldovich (SZ) effect signal D-A(2) Y-500 for a sample of 19 objects for which weak lensing (WL) mass measurements obtained from Subaru Telescope data are available in the literature. Hydrostatic X-ray masses are derived from XMM-Newton archive data, and the SZ effect signal is measured from Planck all-sky survey data. We find an M-WL-D-A(2) Y-500 relation that is consistent in slope and normalisation with previous determinations using weak lensing masses; however, there is a normalisation offset with respect to previous measures based on hydrostatic X-ray mass-proxy relations. We verify that our SZ effect measurements are in excellent agreement with previous determinations from Planck data. For the present sample, the hydrostatic X-ray masses at R-500 are on average similar to 20 percent larger than the corresponding weak lensing masses, which is contrary to expectations. We show that the mass discrepancy is driven by a difference in mass concentration as measured by the two methods and, for the present sample, that the mass discrepancy and difference in mass concentration are especially large for disturbed systems. The mass discrepancy is also linked to the offset in centres used by the X-ray and weak lensing analyses, which again is most important in disturbed systems. We outline several approaches that are needed to help achieve convergence in cluster mass measurement with X-ray and weak lensing observations. C1 [Bartlett, J. G.; Bucher, M.; Cardoso, J. -F.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Piat, M.; Remazeilles, M.; Rosset, C.] Univ Paris Diderot, APC, CNRS, CEA,Irfu,Observ Paris,IN2P3, F-75205 Paris 13, France. [Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Republic Of Tat, Russia. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy. [Ashdown, M.; Carvalho, P.; Hobson, M.; Lasenby, A.; Stolyarov, V.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Santiago, Chile. [Bond, J. R.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Pearson, T. J.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Melin, J. -B.; Piffaretti, R.; Yvon, D.] CEA Saclay, SPP, Irfu, DSM, F-91191 Gif Sur Yvette, France. [Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Frommert, M.; Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Bikmaev, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Liddle, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Rossetti, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Borgani, S.; Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Burigana, C.; Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Bourdin, H.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Rebolo, R.; Rubino-Martin, J. A.] ULL, Dpto Astrofis, Tenerife 38206, Spain. [Kneissl, R.] ESO Vitacura, European So Observ, Santiago 19001, Chile. [Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Partridge, B.] Haverford Coll, Dept Astron, Haverford, PA 19041 USA. [Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [Colafrancesco, S.; Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Borgani, S.; Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Melchiorri, A.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Rech Informat Lab, F-91405 Orsay, France. [Desert, F. -X.; Ponthieu, N.] Univ Grenoble 1, CNRS, INSU, IPAG,UMR 5274, F-38041 Grenoble, France. [Mitra, S.] IUCAA, Pune 411007, Maharashtra, India. [Chamballu, A.; Clements, D. L.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Astrophys Grp, London SW7 2AZ, England. [Pearson, T. J.; Rusholme, B.] CALTECH, Ctr Infrared Proc & Anal, Pasadena, CA 91125 USA. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR 8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Hivon, E.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] Inst Astrophys, CNRS, UMR 7095, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Marleau, F.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria. [Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Efstathiou, G.; Harrison, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Genova-Santos, R. T.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Platania, P.] CNR ENEA EURATOM Assoc, Ist Fis Plasma, Milan, Italy. [Bartlett, J. G.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Rocha, G.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Battye, R.; Bonaldi, A.; Brown, M. L.; Davis, R. J.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D.; Lasenby, A.; Stolyarov, V.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Luzzi, G.; Perdereau, O.; Tristram, M.] Univ Paris 11, CNRS, IN2P3, LAL, F-91405 Orsay, France. [Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Democles, J.; Piffaretti, R.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, Lab AIM, IRFU Serv Astrophys, CEA DSM,CNRS,CEA Saclay, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, Lab Traitement & Commun Informat, UMR 5141, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Hurier, G.; Macias-Perez, J. F.; Renault, C.] Univ Grenoble 1, Inst Natl Polytech Grenoble, Lab Phys Subat & Cosmol, CNRS,IN2P3, F-38026 St Martin Dheres, France. [Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Matthai, F.; Rachen, J. P.; Reinecke, M.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Burenin, R.] Space Res Inst IKI, Moscow, Russia. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Stolyarov, V.] Russian Acad Sci, Special Astrophys Observ, Karachai Cherkessian Rep 369167, Zelenchukskiy R, Russia. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Khamitov, I.] TUBITAK Natl Observ, TR-0708 Antalya, Turkey. [Benabed, K.; Bouchet, F. R.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC Univ Paris 06, UMR 7095, F-75014 Paris, France. [Banday, A. J.; Flores-Cacho, I.; Forni, O.; Giard, M.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Dolag, K.; Weller, J.] Univ Munich, Univ Observ, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, Warsaw, Poland. RP Pratt, GW (reprint author), Univ Paris Diderot, Lab AIM, IRFU Serv Astrophys, CEA DSM,CNRS,CEA Saclay, F-91191 Gif Sur Yvette, France. EM gabriel.pratt@cea.fr RI Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; Stolyarov, Vladislav/C-5656-2017; Mazzotta, Pasquale/B-1225-2016; Butler, Reginald/N-4647-2015; Pearson, Timothy/N-2376-2015; de Gasperis, Giancarlo/C-8534-2012; Lopez-Caniego, Marcos/M-4695-2013; Da Silva, Antonio/A-2693-2010; Bouchet, Francois/B-5202-2014; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; OI Huffenberger, Kevin/0000-0001-7109-0099; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Borgani, Stefano/0000-0001-6151-6439; TERENZI, LUCA/0000-0001-9915-6379; Hurier, Guillaume/0000-0002-1215-0706; Hivon, Eric/0000-0003-1880-2733; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Matarrese, Sabino/0000-0002-2573-1243; Finelli, Fabio/0000-0002-6694-3269; Scott, Douglas/0000-0002-6878-9840; Weller, Jochen/0000-0002-8282-2010; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Piacentini, Francesco/0000-0002-5444-9327; Atrio-Barandela, Fernando/0000-0002-2130-2513; Stolyarov, Vladislav/0000-0001-8151-828X; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Butler, Reginald/0000-0003-4366-5996; Lopez-Caniego, Marcos/0000-0003-1016-9283; Morgante, Gianluca/0000-0001-9234-7412; Pearson, Timothy/0000-0001-5213-6231; de Gasperis, Giancarlo/0000-0003-2899-2171; Da Silva, Antonio/0000-0002-6385-1609; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993 FU ESA member states; USA (NASA); ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU) FX Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries France and Italy), with contributions from NASA (USA) and telescope reflectors provided by a collaboration between ESA and a scientific consortium led and funded by Denmark.; We thank N. Okabe and D. Marrone for useful discussions. The present work is partly based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). A description of the Planck Collaboration and a list of its members, including the technical or scientific activities in which they have been involved, can be found at http://www. rssd. esa. int/Planck. NR 87 TC 28 Z9 28 U1 3 U2 28 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A129 DI 10.1051/0004-6361/201219398 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700129 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bikmaev, I Bohringer, H Bonaldi, A Bond, JR Borgani, S Borrill, J Bouchet, FR Brown, ML Burigana, C Butler, RC Cabella, P Carvalho, P Catalano, A Cayon, L Chamballu, A Chary, RR Chiang, LY Chon, G Christensen, PR Clements, DL Colafrancesco, S Colombi, S Coulais, A Crill, BP Cuttaia, F Da Silva, A Dahle, H Davis, RJ de Bernardis, P de Gasperis, G de Zotti, G Delabrouille, J Democles, J Desert, FX Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Douspis, M Dupac, X Ensslin, TA Eriksen, HK Finelli, F Flores-Cacho, I Forni, O Frailis, M Franceschi, E Frommert, M Galeotta, S Ganga, K Genova-Santos, RT Giraud-Heraud, Y Gonzalez-Nuevo, J Gonzalez-Riestra, R Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, D Hempel, A Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hornstrup, A Hovest, W Huffenberger, KM Hurier, G Jaffe, AH Jagemann, T Jones, WC Juvela, M Kneissl, R Knoche, J Knox, L Kunz, M Kurki-Suonio, H Lagache, G Lamarre, JM Lasenby, A Lawrence, CR Le Jeune, M Leach, S Leonardi, R Liddle, A Lilje, PB Linden-Vornle, M Lopez-Caniego, M Luzzi, G Macias-Perez, JF Maino, D Mandolesi, N Mann, R Maris, M Marleau, F Marshall, DJ Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Mazzotta, P Mei, S Meinhold, PR Melchiorri, A Melin, JB Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Morgante, G Mortlock, D Munshi, D Naselsky, P Nati, F Natoli, P Norgaard-Nielsen, HU Noviello, F Osborne, S Pajot, F Paoletti, D Perdereau, O Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piffaretti, R Plaszczynski, S Platania, P Pointecouteau, E Polenta, G Popa, L Poutanen, T Pratt, GW Prunet, S Puget, JL Reinecke, M Remazeilles, M Renault, C Ricciardi, S Rocha, G Rosset, C Rossetti, M Rubino-Martin, JA Rusholme, B Sandri, M Savini, G Scott, D Smoot, GF Stanford, A Stivoli, F Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Valenziano, L Van Tent, B Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Welikala, N Weller, J White, SDM Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bikmaev, I. Boehringer, H. Bonaldi, A. Bond, J. R. Borgani, S. Borrill, J. Bouchet, F. R. Brown, M. L. Burigana, C. Butler, R. C. Cabella, P. Carvalho, P. Catalano, A. Cayon, L. Chamballu, A. Chary, R. -R. Chiang, L. -Y. Chon, G. Christensen, P. R. Clements, D. L. Colafrancesco, S. Colombi, S. Coulais, A. Crill, B. P. Cuttaia, F. Da Silva, A. Dahle, H. Davis, R. J. de Bernardis, P. de Gasperis, G. de Zotti, G. Delabrouille, J. Democles, J. Desert, F. -X. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Douspis, M. Dupac, X. Ensslin, T. A. Eriksen, H. K. Finelli, F. Flores-Cacho, I. Forni, O. Frailis, M. Franceschi, E. Frommert, M. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gonzalez-Riestra, R. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Hempel, A. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hornstrup, A. Hovest, W. Huffenberger, K. M. Hurier, G. Jaffe, A. H. Jagemann, T. Jones, W. C. Juvela, M. Kneissl, R. Knoche, J. Knox, L. Kunz, M. Kurki-Suonio, H. Lagache, G. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Le Jeune, M. Leach, S. Leonardi, R. Liddle, A. Lilje, P. B. Linden-Vornle, M. Lopez-Caniego, M. Luzzi, G. Macias-Perez, J. F. Maino, D. Mandolesi, N. Mann, R. Maris, M. Marleau, F. Marshall, D. J. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Mazzotta, P. Mei, S. Meinhold, P. R. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Morgante, G. Mortlock, D. Munshi, D. Naselsky, P. Nati, F. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Osborne, S. Pajot, F. Paoletti, D. Perdereau, O. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piffaretti, R. Plaszczynski, S. Platania, P. Pointecouteau, E. Polenta, G. Popa, L. Poutanen, T. Pratt, G. W. Prunet, S. Puget, J. -L. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Rocha, G. Rosset, C. Rossetti, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savini, G. Scott, D. Smoot, G. F. Stanford, A. Stivoli, F. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Valenziano, L. Van Tent, B. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Welikala, N. Weller, J. White, S. D. M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results IV. The XMM-Newton validation programme for new Planck galaxy clusters SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; galaxies: clusters: general; galaxies: clusters: intracluster medium; cosmic background radiation; X-rays: galaxies: clusters ID DISCRETE OBJECT DETECTION; ASTRONOMICAL DATA SETS; FAST BAYESIAN-APPROACH; X-RAY-PROPERTIES; REPRESENTATIVE SAMPLE; SCALING RELATIONS; TEMPERATURE PROFILES; REXCESS; CATALOG; TELESCOPE AB We present the final results from the XMM-Newton validation follow-up of new Planck galaxy cluster candidates. We observed 15 new candidates, detected with signal-to-noise ratios between 4.0 and 6.1 in the 15.5-month nominal Planck survey. The candidates were selected using ancillary data flags derived from the ROSAT All Sky Survey (RASS) and Digitized Sky Survey all-sky maps, with the aim of pushing into the low SZ flux, high-z regime and testing RASS flags as indicators of candidate reliability. Fourteen new clusters were detected by XMM-Newton, ten single clusters and two double systems. Redshifts from X-ray spectroscopy lie in the range 0.2 to 0.9, with six clusters at z > 0.5. Estimated masses (M-500) range from 2.5 x 10(14) to 8 x 10(14) M-circle dot. We discuss our results in the context of the full XMM-Newton validation programme, in which 51 new clusters have been detected. This includes four double and two triple systems, some of which are chance projections on the sky of clusters at different redshifts. We find that association with a source from the RASS-Bright Source Catalogue is a robust indicator of the reliability of a candidate, whereas association with a source from the RASS-Faint Source Catalogue does not guarantee that the SZ candidate is a bona fide cluster. Nevertheless, most Planck clusters appear in RASS maps, with a significance greater than 2 sigma being a good indication that the candidate is a real cluster. Candidate validation from association with SDSS galaxy overdensity at z > 0.5 is also discussed. The full sample gives a Planck sensitivity threshold of Y-500 similar to 4 x 10(-4) arcmin(2), with indication for Malmquist bias in the YX-Y500 relation below this threshold. The corresponding mass threshold depends on redshift. Systems with M-500 > 5 x 10(14) M-circle dot at z > 0.5 are easily detectable with Planck. The newly-detected clusters follow the Y-X-Y-500 relation derived from X-ray selected samples. Compared to X-ray selected clusters, the new SZ clusters have a lower X-ray luminosity on average for their mass. There is no indication of departure from standard self-similar evolution in the X-ray versus SZ scaling properties. In particular, there is no significant evolution of the Y-X/Y-500 ratio. C1 [Bartlett, J. G.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Piat, M.; Remazeilles, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, APC, CNRS, CEA Irfu,Observ Paris,IN2P3, F-75205 Paris 13, France. [Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylmala 02540, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Republic Of Tat, Russia. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy. [Ashdown, M.; Carvalho, P.; Hobson, M.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Kneissl, R.] ALMA Santiago Cent Off, Atacama Large Millimeter Submillimeter Array, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Marshall, D. J.; Pointecouteau, E.] CNRS, IRAP, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Mei, S.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Melin, J. -B.; Piffaretti, R.; Yvon, D.] CEA Saclay, DSM, Irfu, SPP, F-91191 Gif Sur Yvette, France. [Hornstrup, A.; Linden-Vornle, M.; Norgaard-Nielsen, H. U.] Natl Space Inst, DTU Space, Copenhagen, Denmark. [Frommert, M.; Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva, Switzerland. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Bikmaev, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Pierpaoli, E.] Univ So Calif, Dept Phys & Astron, Dana & David Dornsife Coll Letter Arts & Sci, Los Angeles, CA 90089 USA. [Liddle, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Juvela, M.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Smoot, G. F.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.; Stanford, A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Meinhold, P. R.; Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Cayon, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.] Univ Milan, Dept Fis, Milan, Italy. [Borgani, S.; Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Burigana, C.; Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44100 Ferrara, Italy. [Balbi, A.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Hempel, A.; Rubino-Martin, J. A.] ULL, Dpto Astrofis, Tenerife 38206, Spain. [Kneissl, R.] European So Observ, ESO Vitacura, Santiago 19, Chile. [Gonzalez-Riestra, R.] European Space Agcy, ESAC, Madrid, Spain. [Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, NL-2200 AG Noordwijk, Netherlands. [Tauber, J. A.] European Space Agcy, Estec, NL-2200 AG Noordwijk, Netherlands. [Mei, S.] GEPI, Observ Paris, Sect Meudon, F-92195 Meudon, France. [Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy. [Colafrancesco, S.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Borgani, S.; Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Massardi, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Burigana, C.; Butler, R. C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Polenta, G.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF Milano, Milan, Italy. [Melchiorri, A.] Univ Roma La Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Stivoli, F.] Univ Paris 11, INRIA, Lab Rech & Informat, F-91405 Orsay, France. [Desert, F. -X.] Univ Grenoble 1, CNRS INSU, UMR 5274, IPAG, F-38041 Grenoble, France. [Mitra, S.] IUCAA, Pune 411007, Maharashtra, India. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Chary, R. -R.; Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Puget, J. -L.; Remazeilles, M.; Welikala, N.] CNRS, UMR8617, Inst Astrophys Spatiale, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Marleau, F.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria. [Chiang, L. -Y.] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Harrison, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Genova-Santos, R. T.; Hempel, A.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] CSIC Univ Cantabria, Inst Fis Cantabria, Santander, Spain. [Platania, P.] CNR ENEA EURATOM Assoc, Ist Fis Plasma, Milan, Italy. [Bartlett, J. G.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bonaldi, A.; Brown, M. L.; Davis, R. J.; Noviello, F.] Univ Manchester, Jodrell Bank Ctr Astrophys, Sch Phys & Astron, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D.; Lasenby, A.; Luzzi, G.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Henrot-Versille, S.; Luzzi, G.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Democles, J.; Piffaretti, R.; Pratt, G. W.] Univ Paris Diderot, CEA Saclay, Lab AIM, IRFU Serv Astrophys,CEA DSM,CNRS, F-91191 Gif Sur Yvette, France. [Catalano, A.; Hurier, G.; Macias-Perez, J. F.; Renault, C.] Univ Grenoble 1, CNRS, Lab Phys Subatom & Cosmol, IN2P3,Inst Natl Polytech Grenoble, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, CNRS, Lab Phys Theor, F-91405 Orsay, France. [Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Dolag, K.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Hovest, W.; Knoche, J.; Reinecke, M.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Observ Cosmol, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; de Zotti, G.; Gonzalez-Nuevo, J.; Leach, S.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Mann, R.] Univ Edinburgh, Inst Astron, Royal Observ, SUPA, Edinburgh EH9 3HJ, Midlothian, Scotland. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Prunet, S.; Wandelt, B. D.] UPMC Univ Paris 6, UMR7095, F-75014 Paris, France. [Mei, S.] Univ Denis Diderot Paris 7, F-75205 Paris 13, France. [Banday, A. J.; Flores-Cacho, I.; Forni, O.; Marshall, D. J.; Pointecouteau, E.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Dolag, K.; Weller, J.] Univ Munich, Univ Observ, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Huffenberger, K. M.] Univ Miami, Coral Gables, FL 33124 USA. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Democles, J (reprint author), Univ Paris Diderot, CEA Saclay, Lab AIM, IRFU Serv Astrophys,CEA DSM,CNRS, Bat 709, F-91191 Gif Sur Yvette, France. EM jessica.democles@cea.fr RI Butler, Reginald/N-4647-2015; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Gonzalez-Nuevo, Joaquin/I-3562-2014; Gruppuso, Alessandro/N-5592-2015; de Gasperis, Giancarlo/C-8534-2012; Lopez-Caniego, Marcos/M-4695-2013; Da Silva, Antonio/A-2693-2010; Bouchet, Francois/B-5202-2014; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Mazzotta, Pasquale/B-1225-2016; Remazeilles, Mathieu/N-1793-2015; OI Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Borgani, Stefano/0000-0001-6151-6439; TERENZI, LUCA/0000-0001-9915-6379; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Finelli, Fabio/0000-0002-6694-3269; Frailis, Marco/0000-0002-7400-2135; Gregorio, Anna/0000-0003-4028-8785; Polenta, Gianluca/0000-0003-4067-9196; Butler, Reginald/0000-0003-4366-5996; Sandri, Maura/0000-0003-4806-5375; Cuttaia, Francesco/0000-0001-6608-5017; Huffenberger, Kevin/0000-0001-7109-0099; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; Gruppuso, Alessandro/0000-0001-9272-5292; de Gasperis, Giancarlo/0000-0003-2899-2171; Da Silva, Antonio/0000-0002-6385-1609; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Barreiro, Rita Belen/0000-0002-6139-4272; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Mazzotta, Pasquale/0000-0002-5411-1748; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; De Zotti, Gianfranco/0000-0003-2868-2595; Lopez-Caniego, Marcos/0000-0003-1016-9283; Scott, Douglas/0000-0002-6878-9840; Masi, Silvia/0000-0001-5105-1439; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Morgante, Gianluca/0000-0001-9234-7412; Remazeilles, Mathieu/0000-0001-9126-6266; Maris, Michele/0000-0001-9442-2754; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Galeotta, Samuele/0000-0002-3748-5115; WANDELT, Benjamin/0000-0002-5854-8269 FU ESA member states; USA (NASA); Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias [AOT24/11-A24DDT3, 43-016]; Gemini Science [GN-2011B-Q-41]; ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU) FX Planck (http://www. esa. int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific consortium led and funded by Denmark.; The Planck Collaboration thanks Norbert Schartel for his support of the validation process and for granting discretionary time for the observation of Planck cluster candidates. The present work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). This research has made use of the following databases: SIMBAD, operated at the CDS, Strasbourg, France; the NED database, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration; BAX, which is operated by IRAP, under contract with the Centre National d'Etudes Spatiales (CNES); and the SZ repository operated by IAS Data and Operation centre (IDOC) under contract with CNES. Based on photographic data obtained using The UK Schmidt Telescope. We further used observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias (Science Program ID AOT24/11-A24DDT3), on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias (Science Program ID 43-016), observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina), Gemini Science Program ID: GN-2011B-Q-41. The authors wish to recognize and acknowledge the very significant cultural role and reverence that the summit of Mauna Kea has always had within the indigenous Hawaiian community. We are most fortunate to have the opportunity to conduct observations from this mountain. A description of the Planck Collaboration and a list of its members, indicating which technical or scientific activities they have been involved in, can be found at http://www.rssd.esa.int/Planck_Collaboration. The Planck Collaboration acknowledges the support of: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). NR 37 TC 17 Z9 17 U1 2 U2 24 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A130 DI 10.1051/0004-6361/201219519 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700130 ER PT J AU Ade, PAR Aghanim, N Arnaud, M Ashdown, M Atrio-Barandela, F Aumont, J Baccigalupi, C Balbi, A Banday, AJ Barreiro, RB Bartlett, JG Battaner, E Benabed, K Benoit, A Bernard, JP Bersanelli, M Bhatia, R Bikmaev, I Bobin, J Bohringer, H Bonaldi, A Bond, JR Borgani, S Borrill, J Bouchet, FR Bourdin, H Brown, ML Burenin, R Burigana, C Cabella, P Cardoso, JF Carvalho, P Castex, G Catalano, A Cayon, L Chamballu, A Chiang, LY Chon, G Christensen, PR Churazov, E Clements, DL Colafrancesco, S Colombi, S Colombo, LPL Comis, B Coulais, A Crill, BP Cuttaia, F Da Silva, A Dahle, H Danese, L Davis, RJ de Bernardis, P de Gasperis, G de Zotti, G Delabrouille, J Democles, J Desert, FX Diego, JM Dolag, K Dole, H Donzelli, S Dore, O Dorl, U Douspis, M Dupac, X Efstathiou, G Ensslin, TA Eriksen, HK Finelli, F Flores-Cacho, I Forni, O Fosalba, P Frailis, M Franceschi, E Frommert, M Galeotta, S Ganga, K Genova-Santos, RT Giard, M Giraud-Heraud, Y Gonzalez-Nuevo, J Gorski, KM Gregorio, A Gruppuso, A Hansen, FK Harrison, D Hempel, A Henrot-Versille, S Hernandez-Monteagudo, C Herranz, D Hildebrandt, SR Hivon, E Hobson, M Holmes, WA Hurier, G Jaffe, TR Jaffe, AH Jagemann, T Jones, WC Juvela, M Keihanen, E Khamitov, I Kisner, TS Kneissl, R Knoche, J Knox, L Kunz, M Kurki-Suonio, H Lagache, G Lahteenmaki, A Lamarre, JM Lasenby, A Lawrence, CR Le Jeune, M Leonardi, R Liddle, A Lilje, PB Lopez-Caniego, M Luzzi, G Macias-Perez, JF Maino, D Mandolesi, N Maris, M Marleau, F Marshall, DJ Martinez-Gonzalez, E Masi, S Massardi, M Matarrese, S Mazzotta, P Mei, S Melchiorri, A Melin, JB Mendes, L Mennella, A Mitra, S Miville-Deschenes, MA Moneti, A Montier, L Morgante, G Mortlock, D Munshi, D Murphy, JA Naselsky, P Nati, F Natoli, P Norgaard-Nielsen, HU Noviello, F Novikov, D Novikov, I Osborne, S Pajot, F Paoletti, D Pasian, F Patanchon, G Perdereau, O Perotto, L Perrotta, F Piacentini, F Piat, M Pierpaoli, E Piffaretti, R Plaszczynski, S Pointecouteau, E Polenta, G Ponthieu, N Popa, L Poutanen, T Pratt, GW Prunet, S Puget, JL Rachen, JP Reach, WT Rebolo, R Reinecke, M Remazeilles, M Renault, C Ricciardi, S Riller, T Ristorcelli, I Rocha, G Roman, M Rosset, C Rossetti, M Rubino-Martin, JA Rusholme, B Sandri, M Savini, G Scott, D Smoot, GF Starck, JL Sudiwala, R Sunyaev, R Sutton, D Suur-Uski, AS Sygnet, JF Tauber, JA Terenzi, L Toffolatti, L Tomasi, M Tristram, M Tuovinen, J Valenziano, L Van Tent, B Varis, J Vielva, P Villa, F Vittorio, N Wade, LA Wandelt, BD Welikala, N White, SDM White, M Yvon, D Zacchei, A Zonca, A AF Ade, P. A. R. Aghanim, N. Arnaud, M. Ashdown, M. Atrio-Barandela, F. Aumont, J. Baccigalupi, C. Balbi, A. Banday, A. J. Barreiro, R. B. Bartlett, J. G. Battaner, E. Benabed, K. Benoit, A. Bernard, J. -P. Bersanelli, M. Bhatia, R. Bikmaev, I. Bobin, J. Boehringer, H. Bonaldi, A. Bond, J. R. Borgani, S. Borrill, J. Bouchet, F. R. Bourdin, H. Brown, M. L. Burenin, R. Burigana, C. Cabella, P. Cardoso, J. -F. Carvalho, P. Castex, G. Catalano, A. Cayon, L. Chamballu, A. Chiang, L. -Y Chon, G. Christensen, P. R. Churazov, E. Clements, D. L. Colafrancesco, S. Colombi, S. Colombo, L. P. L. Comis, B. Coulais, A. Crill, B. P. Cuttaia, F. Da Silva, A. Dahle, H. Danese, L. Davis, R. J. de Bernardis, P. de Gasperis, G. de Zotti, G. Delabrouille, J. Democles, J. Desert, F. -X. Diego, J. M. Dolag, K. Dole, H. Donzelli, S. Dore, O. Doerl, U. Douspis, M. Dupac, X. Efstathiou, G. Ensslin, T. A. Eriksen, H. K. Finelli, F. Flores-Cacho, I. Forni, O. Fosalba, P. Frailis, M. Franceschi, E. Frommert, M. Galeotta, S. Ganga, K. Genova-Santos, R. T. Giard, M. Giraud-Heraud, Y. Gonzalez-Nuevo, J. Gorski, K. M. Gregorio, A. Gruppuso, A. Hansen, F. K. Harrison, D. Hempel, A. Henrot-Versille, S. Hernandez-Monteagudo, C. Herranz, D. Hildebrandt, S. R. Hivon, E. Hobson, M. Holmes, W. A. Hurier, G. Jaffe, T. R. Jaffe, A. H. Jagemann, T. Jones, W. C. Juvela, M. Keihanen, E. Khamitov, I. Kisner, T. S. Kneissl, R. Knoche, J. Knox, L. Kunz, M. Kurki-Suonio, H. Lagache, G. Lahteenmaki, A. Lamarre, J. -M. Lasenby, A. Lawrence, C. R. Le Jeune, M. Leonardi, R. Liddle, A. Lilje, P. B. Lopez-Caniego, M. Luzzi, G. Macias-Perez, J. F. Maino, D. Mandolesi, N. Maris, M. Marleau, F. Marshall, D. J. Martinez-Gonzalez, E. Masi, S. Massardi, M. Matarrese, S. Mazzotta, P. Mei, S. Melchiorri, A. Melin, J. -B. Mendes, L. Mennella, A. Mitra, S. Miville-Deschenes, M. -A. Moneti, A. Montier, L. Morgante, G. Mortlock, D. Munshi, D. Murphy, J. A. Naselsky, P. Nati, F. Natoli, P. Norgaard-Nielsen, H. U. Noviello, F. Novikov, D. Novikov, I. Osborne, S. Pajot, F. Paoletti, D. Pasian, F. Patanchon, G. Perdereau, O. Perotto, L. Perrotta, F. Piacentini, F. Piat, M. Pierpaoli, E. Piffaretti, R. Plaszczynski, S. Pointecouteau, E. Polenta, G. Ponthieu, N. Popa, L. Poutanen, T. Pratt, G. W. Prunet, S. Puget, J. -L. Rachen, J. P. Reach, W. T. Rebolo, R. Reinecke, M. Remazeilles, M. Renault, C. Ricciardi, S. Riller, T. Ristorcelli, I. Rocha, G. Roman, M. Rosset, C. Rossetti, M. Rubino-Martin, J. A. Rusholme, B. Sandri, M. Savini, G. Scott, D. Smoot, G. F. Starck, J. -L. Sudiwala, R. Sunyaev, R. Sutton, D. Suur-Uski, A. -S. Sygnet, J. -F. Tauber, J. A. Terenzi, L. Toffolatti, L. Tomasi, M. Tristram, M. Tuovinen, J. Valenziano, L. Van Tent, B. Varis, J. Vielva, P. Villa, F. Vittorio, N. Wade, L. A. Wandelt, B. D. Welikala, N. White, S. D. M. White, M. Yvon, D. Zacchei, A. Zonca, A. CA Planck Collaboration TI Planck intermediate results V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect SO ASTRONOMY & ASTROPHYSICS LA English DT Article DE cosmology: observations; galaxies: clusters: general; galaxies: clusters: intracluster medium; submillimeter: general; X-rays: general ID SOUTH-POLE TELESCOPE; INTRACLUSTER GAS TEMPERATURE; SURFACE-BRIGHTNESS PROFILES; INTERNAL LINEAR COMBINATION; STRUCTURE SURVEY REXCESS; X-RAY MEASUREMENTS; XMM-NEWTON; COSMOLOGICAL SIMULATIONS; REPRESENTATIVE SAMPLE; VIRIAL RADIUS AB Taking advantage of the all-sky coverage and broad frequency range of the Planck satellite, we study the Sunyaev-Zeldovich (SZ) and pressure profiles of 62 nearby massive clusters detected at high significance in the 14-month nominal survey. Careful reconstruction of the SZ signal indicates that most clusters are individually detected at least out to R-500. By stacking the radial profiles, we have statistically detected the radial SZ signal out to 3 x R-500, i. e., at a density contrast of about 50-100, though the dispersion about the mean profile dominates the statistical errors across the whole radial range. Our measurement is fully consistent with previous Planck results on integrated SZ fluxes, further strengthening the agreement between SZ and X-ray measurements inside R-500. Correcting for the effects of the Planck beam, we have calculated the corresponding pressure profiles. This new constraint from SZ measurements is consistent with the X-ray constraints from XMM-Newton in the region in which the profiles overlap (i. e., [0.1-1] R-500), and is in fairly good agreement with theoretical predictions within the expected dispersion. At larger radii the average pressure profile is slightly flatter than most predictions from numerical simulations. Combining the SZ and X-ray observed profiles into a joint fit to a generalised pressure profile gives best-fit parameters [P-0, c(500), gamma, alpha, beta] = [6.41, 1.81, 0.31, 1.33, 4.13]. Using a reasonable hypothesis for the gas temperature in the cluster outskirts we reconstruct from our stacked pressure profile the gas mass fraction profile out to 3 R-500. Within the temperature driven uncertainties, our Planck constraints are compatible with the cosmic baryon fraction and expected gas fraction in halos. C1 [Bartlett, J. G.; Cardoso, J. -F.; Castex, G.; Delabrouille, J.; Ganga, K.; Giraud-Heraud, Y.; Le Jeune, M.; Patanchon, G.; Piat, M.; Remazeilles, M.; Roman, M.; Rosset, C.; Smoot, G. F.] Univ Paris Diderot, CNRS IN2P3, CEA Lrfu, APC AstroParticule & Cosmol,Observ Paris, F-75205 Paris 13, France. [Lahteenmaki, A.; Poutanen, T.] Aalto Univ, Metsahovi Radio Observ, Kylamala 02540, Finland. [Bikmaev, I.] Acad Sci Tatarstan, Kazan 420111, Russia. [Natoli, P.; Polenta, G.] ESRIN, Agenzia Spaziale Italiana Sci Data Ctr, Frascati, Italy. [Mandolesi, N.] Agenzia Spaziale Italiana, Rome, Italy. [Ashdown, M.; Carvalho, P.; Hobson, M.; Lasenby, A.] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England. [Bhatia, R.; Kneissl, R.] ALMA Santiago Cent Offices, Santiago, Chile. [Bond, J. R.; Miville-Deschenes, M. -A.] Univ Toronto, CITA, Toronto, ON M5S 3H8, Canada. [Banday, A. J.; Bernard, J. -P.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] CNRS, IRAP, F-31028 Toulouse 4, France. [Dore, O.; Hildebrandt, S. R.; Mei, S.; Rocha, G.] CALTECH, Pasadena, CA 91125 USA. [Dahle, H.; Lilje, P. B.] Univ Oslo, Ctr Math Applicat, Oslo, Norway. [Da Silva, A.] Univ Porto, Ctr Astrofis, P-4150762 Oporto, Portugal. [Hernandez-Monteagudo, C.] CEFCA, Teruel 44001, Spain. [Borrill, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Rebolo, R.] CSIC, Madrid, Spain. [Melin, J. -B.; Piffaretti, R.; Yvon, D.] CEA Saclay, DSM Irfu SPP, F-91191 Gif Sur Yvette, France. [Norgaard-Nielsen, H. U.] Tech Univ Denmark, Natl Space Inst, DTU Space, DK-2800 Lyngby, Denmark. [Frommert, M.; Kunz, M.] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Atrio-Barandela, F.] Univ Salamanca, Fac Ciencias, Dept Fis Fundamental, E-37008 Salamanca, Spain. [Toffolatti, L.] Univ Oviedo, Dept Fis, E-33007 Oviedo, Spain. [Bikmaev, I.] Kazan Fed Univ, Dept Astron & Geodesy, Kazan 420008, Russia. [Rachen, J. P.] Radboud Univ Nijmegen, IMAPP, Dept Astrophys, NL-6500 GL Nijmegen, Netherlands. [Scott, D.] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V5Z 1M9, Canada. [Colombo, L. P. L.; Pierpaoli, E.] Univ So Calif, Dana & David Dornsife Coll Letter Arts & Sci, Dept Phys & Astron, Los Angeles, CA 90089 USA. [Liddle, A.] Univ Sussex, Dept Phys & Astron, Brighton BN1 9QH, E Sussex, England. [Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Jones, W. C.] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA. [Smoot, G. F.; White, M.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Zonca, A.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Wandelt, B. D.] Univ Illinois, Dept Phys, Urbana, IL USA. [Cayon, L.] Purdue Univ, Dept Stat, W Lafayette, IN 47907 USA. [Matarrese, S.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [de Bernardis, P.; Masi, S.; Melchiorri, A.; Nati, F.; Piacentini, F.] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy. [Bersanelli, M.; Maino, D.; Mennella, A.; Rossetti, M.] Univ Milan, Dipartimento Fis, Milan, Italy. [Borgani, S.; Gregorio, A.] Univ Trieste, Dipartmento Fis, I-34127 Trieste, Italy. [Burigana, C.; Natoli, P.] Univ Ferrara, Dipartimento Fis, I-44122 Ferrara, Italy. [Balbi, A.; Bourdin, H.; de Gasperis, G.; Mazzotta, P.; Vittorio, N.] Univ Roma Tor Vergata, Dipartimento Fis, I-00173 Rome, Italy. [Cabella, P.] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy. [Christensen, P. R.; Naselsky, P.] Niels Bohr Inst, Discovery Ctr, DK-2100 Copenhagen, Denmark. [Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.] Univ La Laguna, Dpto Astrofis, E-38206 Tenerife, Spain. [Kneissl, R.] ESO Vitacura, European So Observ, Santiago 19001, Chile. [Dupac, X.; Jagemann, T.; Leonardi, R.; Mendes, L.] European Space Agcy, ESAC, Planck Sci Off, Madrid, Spain. [Tauber, J. A.] European Space Agcy, Estec, NL-2201 AZ Noordwijk, Netherlands. [Mei, S.] Observ Paris, GEPI, F-92195 Meudon, France. [Kurki-Suonio, H.; Lahteenmaki, A.; Poutanen, T.; Suur-Uski, A. -S.] Univ Helsinki, Helsinki Inst Phys, Helsinki, Finland. [de Zotti, G.] INAF Osservatorio Astron Padova, Padua, Italy. [Colafrancesco, S.; Polenta, G.] INAF Osservatorio Astron Roma, Monte Porzio Catone, Italy. [Borgani, S.; Frailis, M.; Galeotta, S.; Gregorio, A.; Maris, M.; Pasian, F.; Zacchei, A.] INAF Osservatorio Astron Trieste, Trieste, Italy. [Massardi, M.] INAF Ist Radioastron, Bologna, Italy. [Burigana, C.; Cuttaia, F.; Finelli, F.; Franceschi, E.; Gruppuso, A.; Mandolesi, N.; Morgante, G.; Natoli, P.; Paoletti, D.; Ricciardi, S.; Sandri, M.; Terenzi, L.; Valenziano, L.; Villa, F.] INAF IASF Bologna, Bologna, Italy. [Bersanelli, M.; Donzelli, S.; Maino, D.; Mennella, A.; Rossetti, M.; Tomasi, M.] INAF IASF, Milan, Italy. [Melchiorri, A.] Univ Roma Sapienza, Ist Nazl Fis Nucl, Sez Roma 1, I-00185 Rome, Italy. [Desert, F. -X.; Ponthieu, N.] Univ Grenoble 1, CNRS INSU 1, IPAG, UMR 5274, F-38041 Grenoble, France. [Mitra, S.] IUCAA, Pune 411007, Maharashtra, India. [Chamballu, A.; Clements, D. L.; Jaffe, A. H.; Mortlock, D.; Novikov, D.] Univ London Imperial Coll Sci Technol & Med, Astrophys Grp, Blackett Lab, London SW7 2AZ, England. [Rusholme, B.] CALTECH, Infrared Proc & Anal Ctr, Pasadena, CA 91125 USA. [Benoit, A.] Univ Grenoble 1, CNRS, Inst Neel, Grenoble, France. [Dole, H.] Inst Univ France, F-75005 Paris, France. [Aghanim, N.; Aumont, J.; Dole, H.; Douspis, M.; Kunz, M.; Lagache, G.; Miville-Deschenes, M. -A.; Pajot, F.; Ponthieu, N.; Puget, J. -L.; Remazeilles, M.; Welikala, N.] Univ Paris 11, CNRS, Inst Astrophys Spatiale, UMR8617, F-91405 Orsay, France. [Benabed, K.; Bouchet, F. R.; Cardoso, J. -F.; Colombi, S.; Hivon, E.; Moneti, A.; Prunet, S.; Sygnet, J. -F.; Wandelt, B. D.] CNRS, Inst Astrophys Paris, UMR7095, F-75014 Paris, France. [Fosalba, P.] CSIC IEEC, Fac Ciencias, Inst Ciencies Espai, Bellaterra 08193, Spain. [Popa, L.] Inst Space Sci, Bucharest, Romania. [Marleau, F.] Univ Innsbruck, Inst Astro & Particle Phys, A-6020 Innsbruck, Austria. [Chiang, L. -Y] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Efstathiou, G.; Harrison, D.; Sutton, D.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Dahle, H.; Eriksen, H. K.; Hansen, F. K.; Lilje, P. B.] Univ Oslo, Inst Theoret Astrophys, Oslo, Norway. [Genova-Santos, R. T.; Hempel, A.; Rebolo, R.; Rubino-Martin, J. A.] Inst Astrofis Canarias, Tenerife, Spain. [Barreiro, R. B.; Diego, J. M.; Gonzalez-Nuevo, J.; Herranz, D.; Lopez-Caniego, M.; Martinez-Gonzalez, E.; Toffolatti, L.; Vielva, P.] Univ Cantabria, CSIC, Inst Fis Cantabria, E-39005 Santander, Spain. [Bartlett, J. G.; Colombo, L. P. L.; Crill, B. P.; Dore, O.; Gorski, K. M.; Holmes, W. A.; Lawrence, C. R.; Mitra, S.; Rocha, G.; Wade, L. A.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Bonaldi, A.; Brown, M. L.; Davis, R. J.; Noviello, F.] Univ Manchester, Sch Phys & Astron, Jodrell Bank Ctr Astrophys, Manchester M13 9PL, Lancs, England. [Ashdown, M.; Harrison, D.; Lasenby, A.; Sutton, D.] Kavli Inst Cosmol Cambridge, Cambridge CB3 0HA, England. [Henrot-Versille, S.; Luzzi, G.; Perdereau, O.; Plaszczynski, S.; Tristram, M.] Univ Paris 11, CNRS, LAL, IN2P3, F-91405 Orsay, France. [Catalano, A.; Coulais, A.; Lamarre, J. -M.] Observ Paris, CNRS, LERMA, F-75014 Paris, France. [Arnaud, M.; Bobin, J.; Democles, J.; Piffaretti, R.; Pratt, G. W.; Starck, J. -L.] Univ Paris Diderot, CNRS, IRFU Serv Astrophys, Lab AIM,CEA DSM,CEA Saclay, F-91191 Gif Sur Yvette, France. [Cardoso, J. -F.] CNRS, UMR 5141, Lab Traitement & Commun Informat, F-75634 Paris 13, France. [Cardoso, J. -F.] Telecom ParisTech, F-75634 Paris 13, France. [Catalano, A.; Comis, B.; Hurier, G.; Macias-Perez, J. F.; Perotto, L.; Renault, C.] Univ Grenoble 1, Inst Natl Polytech Grenoble, CNRS, Lab Phys Subatom & Cosmol,IN2P3, F-38026 Grenoble, France. [Van Tent, B.] Univ Paris 11, Phys Theor Lab, F-91405 Orsay, France. [Van Tent, B.] CNRS, F-91405 Orsay, France. [Kisner, T. S.; Smoot, G. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Churazov, E.; Dolag, K.; Doerl, U.; Ensslin, T. A.; Hernandez-Monteagudo, C.; Knoche, J.; Rachen, J. P.; Reinecke, M.; Riller, T.; Sunyaev, R.; White, S. D. M.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Boehringer, H.; Chon, G.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Tuovinen, J.; Varis, J.] VTT Tech Res Ctr Finland, MilliLab, Espoo, Finland. [Murphy, J. A.] Natl Univ Ireland, Dept Expt Phys, Maynooth, Kildare, Ireland. [Christensen, P. R.; Naselsky, P.; Novikov, I.] Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Crill, B. P.] CALTECH, Pasadena, CA 91125 USA. [Savini, G.] UCL, Opt Sci Lab, London, England. [Baccigalupi, C.; Danese, L.; de Zotti, G.; Gonzalez-Nuevo, J.; Perrotta, F.] SISSA, Astrophys Sect, I-34136 Trieste, Italy. [Ade, P. A. R.; Munshi, D.; Sudiwala, R.] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales. [Burenin, R.] Space Res Inst IKI, Moscow, Russia. [Churazov, E.; Sunyaev, R.] Russian Acad Sci, Space Res Inst IKI, Moscow 117997, Russia. [Borrill, J.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Osborne, S.] Stanford Univ, Dept Phys, Stanford, CA 94305 USA. [Khamitov, I.] Akdeniz Univ, TUBITAK Natl Observ, TR-07058 Antalya, Turkey. [Benabed, K.; Bouchet, F. R.; Colombi, S.; Hivon, E.; Prunet, S.; Wandelt, B. D.] Univ Paris 06, UMR7095, F-75014 Paris, France. [Mei, S.] Univ Paris 07, F-75205 Paris 13, France. [Banday, A. J.; Flores-Cacho, I.; Forni, O.; Giard, M.; Jaffe, T. R.; Marshall, D. J.; Montier, L.; Pointecouteau, E.; Ristorcelli, I.] Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. [Reach, W. T.] Univ Space Res Assoc, Stratospher Observ Infrared Astron, Moffett Field, CA 94035 USA. [Dolag, K.] Univ Munich, Univ Observ, D-81679 Munich, Germany. [Battaner, E.] Univ Granada, Fac Ciencias, Dept Fis Teor & Cosmos, Granada, Spain. [Gorski, K. M.] Univ Warsaw Observ, PL-00478 Warsaw, Poland. RP Pointecouteau, E (reprint author), Univ Toulouse, UPS OMP, IRAP, F-31028 Toulouse 4, France. EM etienne.pointecouteau@irap.omp.eu RI Churazov, Eugene/A-7783-2013; Gonzalez-Nuevo, Joaquin/I-3562-2014; White, Martin/I-3880-2015; Gruppuso, Alessandro/N-5592-2015; Kurki-Suonio, Hannu/B-8502-2016; Tomasi, Maurizio/I-1234-2016; Fosalba Vela, Pablo/I-5515-2016; Novikov, Igor/N-5098-2015; Colombo, Loris/J-2415-2016; Nati, Federico/I-4469-2016; popa, lucia/B-4718-2012; Piacentini, Francesco/E-7234-2010; Atrio-Barandela, Fernando/A-7379-2017; de Gasperis, Giancarlo/C-8534-2012; Lopez-Caniego, Marcos/M-4695-2013; Da Silva, Antonio/A-2693-2010; Bouchet, Francois/B-5202-2014; Lahteenmaki, Anne/L-5987-2013; Vielva, Patricio/F-6745-2014; Toffolatti, Luigi/K-5070-2014; Herranz, Diego/K-9143-2014; Bobin, Jerome/P-3729-2014; Battaner, Eduardo/P-7019-2014; Barreiro, Rita Belen/N-5442-2014; Yvon, Dominique/D-2280-2015; Martinez-Gonzalez, Enrique/E-9534-2015; Novikov, Dmitry/P-1807-2015; Mazzotta, Pasquale/B-1225-2016; Remazeilles, Mathieu/N-1793-2015; OI Gonzalez-Nuevo, Joaquin/0000-0003-1354-6822; White, Martin/0000-0001-9912-5070; Gruppuso, Alessandro/0000-0001-9272-5292; Kurki-Suonio, Hannu/0000-0002-4618-3063; Tomasi, Maurizio/0000-0002-1448-6131; Colombo, Loris/0000-0003-4572-7732; Nati, Federico/0000-0002-8307-5088; Piacentini, Francesco/0000-0002-5444-9327; Atrio-Barandela, Fernando/0000-0002-2130-2513; de Gasperis, Giancarlo/0000-0003-2899-2171; Da Silva, Antonio/0000-0002-6385-1609; Vielva, Patricio/0000-0003-0051-272X; Toffolatti, Luigi/0000-0003-2645-7386; Herranz, Diego/0000-0003-4540-1417; Bobin, Jerome/0000-0003-1457-7890; Barreiro, Rita Belen/0000-0002-6139-4272; Martinez-Gonzalez, Enrique/0000-0002-0179-8590; Mazzotta, Pasquale/0000-0002-5411-1748; Masi, Silvia/0000-0001-5105-1439; Rubino-Martin, Jose Alberto/0000-0001-5289-3021; Maris, Michele/0000-0001-9442-2754; Finelli, Fabio/0000-0002-6694-3269; Frailis, Marco/0000-0002-7400-2135; De Zotti, Gianfranco/0000-0003-2868-2595; Polenta, Gianluca/0000-0003-4067-9196; Sandri, Maura/0000-0003-4806-5375; Franceschi, Enrico/0000-0002-0585-6591; Valenziano, Luca/0000-0002-1170-0104; Morgante, Gianluca/0000-0001-9234-7412; Lopez-Caniego, Marcos/0000-0003-1016-9283; de Bernardis, Paolo/0000-0001-6547-6446; Forni, Olivier/0000-0001-6772-9689; Remazeilles, Mathieu/0000-0001-9126-6266; Matarrese, Sabino/0000-0002-2573-1243; Galeotta, Samuele/0000-0002-3748-5115; Pasian, Fabio/0000-0002-4869-3227; WANDELT, Benjamin/0000-0002-5854-8269; Scott, Douglas/0000-0002-6878-9840; Gregorio, Anna/0000-0003-4028-8785; Cuttaia, Francesco/0000-0001-6608-5017; Burigana, Carlo/0000-0002-3005-5796; Bouchet, Francois/0000-0002-8051-2924; Ricciardi, Sara/0000-0002-3807-4043; Villa, Fabrizio/0000-0003-1798-861X; Borgani, Stefano/0000-0001-6151-6439; TERENZI, LUCA/0000-0001-9915-6379; Starck, Jean-Luc/0000-0003-2177-7794; Reach, William/0000-0001-8362-4094; Hurier, Guillaume/0000-0002-1215-0706; Zacchei, Andrea/0000-0003-0396-1192; Hivon, Eric/0000-0003-1880-2733; Lilje, Per/0000-0003-4324-7794; Paoletti, Daniela/0000-0003-4761-6147; Savini, Giorgio/0000-0003-4449-9416; Pierpaoli, Elena/0000-0002-7957-8993 FU ESA member states; ESA; CNES; CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MICINN (Spain); JA (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); DEISA (EU) FX Planck (http://www.esa.int/Planck) is a project of the European Space Agency (ESA) with instruments provided by two scientific consortia funded by ESA member states (in particular the lead countries France and Italy), with contributions from NASA (USA) and telescope reflectors provided by a collaboration between ESA and a scientific consortium led and funded by Denmark.; The development of Planck has been supported by: ESA; CNES and CNRS/INSU-IN2P3-INP (France); ASI, CNR, and INAF (Italy); NASA and DoE (USA); STFC and UKSA (UK); CSIC, MICINN and JA (Spain); Tekes, AoF and CSC (Finland); DLR and MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); and DEISA (EU). We acknowledge the use of the Healpix software. NR 114 TC 66 Z9 66 U1 4 U2 34 PU EDP SCIENCES S A PI LES ULIS CEDEX A PA 17, AVE DU HOGGAR, PA COURTABOEUF, BP 112, F-91944 LES ULIS CEDEX A, FRANCE SN 0004-6361 J9 ASTRON ASTROPHYS JI Astron. Astrophys. PD FEB PY 2013 VL 550 AR A131 DI 10.1051/0004-6361/201220040 PG 24 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 089AJ UT WOS:000314879700131 ER PT J AU Fu, N Xiong, YJ Squier, TC AF Fu, Na Xiong, Yijia Squier, Thomas C. TI Optimized Design and Synthesis of a Cell-Permeable Biarsenical Cyanine Probe for Imaging Tagged Cytosolic Bacterial Proteins SO BIOCONJUGATE CHEMISTRY LA English DT Article ID MOLECULES IN-VIVO; FUSION PROTEINS; ESCHERICHIA-COLI; RNA-POLYMERASE; LIVING CELLS; AFFINITY PROBE; LIVE CELLS; CA-ATPASE; BINDING; FLUOROPHORES AB To optimize cellular delivery and specific labeling of tagged cytosolic proteins by biarsenical fluorescent probes built around a cyanine dye (Cy3) scaffold, we have systematically varied the polarity of the N-alkyl chain (i.e., 4-5 methylene groups appended by a sulfonate or methoxy ester moiety) and arsenic capping reagent (ethanedithiol versus benzenedithiol). Optimal live-cell labeling and visualization of tagged cytosolic proteins is reported using an ethanedithiol capping reagent with the uncharged methoxy ester functionalized N-alkyl chains. These measurements demonstrate the general utility of this new class of photostable and highly fluorescent biarsenical probes based on the cyanine dye scaffold for in vivo labeling of tagged cellular proteins for live cell imaging measurements of protein dynamics. C1 [Fu, Na; Xiong, Yijia; Squier, Thomas C.] Pacific NW Natl Lab, Div Biol Sci, Fundamental Sci Directorate, Richland, WA 99352 USA. RP Squier, TC (reprint author), Pacific NW Natl Lab, Div Biol Sci, Fundamental Sci Directorate, Richland, WA 99352 USA. EM thomas.squier@pnl.gov FU SBR FSFA by the Department of Energy (DOE) Office of Biological and Environmental Research (OBER) Genome Science Program; DOE [DE-AC05-76RLO 1830] FX This work was supported by an SBR FSFA by the Department of Energy (DOE) Office of Biological and Environmental Research (OBER) Genome Science Program. PNNL is a multiprogram National Laboratory operated by Battelle for the DOE under contract no. DE-AC05-76RLO 1830. The authors declare no competing financial interest. NR 49 TC 9 Z9 10 U1 1 U2 36 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1043-1802 J9 BIOCONJUGATE CHEM JI Bioconjugate Chem. PD FEB PY 2013 VL 24 IS 2 BP 251 EP 259 DI 10.1021/bc300619m PG 9 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Chemistry, Multidisciplinary; Chemistry, Organic SC Biochemistry & Molecular Biology; Chemistry GA 095HS UT WOS:000315325900012 PM 23330683 ER PT J AU Yang, SH Chung, WJ McFarland, S Lee, SW AF Yang, Sung Ho Chung, Woo-Jae McFarland, Sean Lee, Seung-Wuk TI Assembly of Bacteriophage into Functional Materials SO CHEMICAL RECORD LA English DT Article DE bacteriophage; functional materials; liquid crystals; self-assembly; template synthesis ID GENETICALLY-ENGINEERED VIRUSES; DERMAL COLLAGEN ARRAYS; UNNATURAL AMINO-ACIDS; PHAGE DISPLAY; PEPTIDE LIBRARIES; 3-DIMENSIONAL STRUCTURE; STRUCTURAL COLORATION; CONVERGENT EVOLUTION; FILAMENTOUS VIRUSES; CONTRAST AGENTS AB For the last decade, the fabrication of ordered structures of phage has been of great interest as a means of utilizing the outstanding biochemical properties of phage in developing useful materials. Combined with other organic/inorganic substances, it has been demonstrated that phage is a superior building block for fabricating various functional devices, such as the electrode in lithium-ion batteries, photovoltaic cells, sensors, and cell-culture supports. Although previous research has expanded the utility of phage when combined with genetic engineering, most improvements in device functionality have relied upon increases in efficiency owing to the compact, more densely packable unit size of phage rather than on the unique properties of the ordered nanostructures themselves. Recently, self-templating methods, which control both thermodynamic and kinetic factors during the deposition process, have opened up new routes to exploiting the ordered structural properties of hierarchically organized phage architectures. In addition, ordered phage films have exhibited unexpected functional properties, such as structural color and optical filtering. Structural colors or optical filtering from phage films can be used for optical phage-based sensors, which combine the structural properties of phage with target-specific binding motifs on the phage-coat proteins. This self-templating method may contribute not only to practical applications, but also provide insight into the fundamental study of biomacromolecule assembly in in vivo systems under complicated and dynamic conditions. DOI 10.1002/tcr.201200012 C1 [Yang, Sung Ho; Chung, Woo-Jae; McFarland, Sean; Lee, Seung-Wuk] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Yang, Sung Ho; Chung, Woo-Jae; McFarland, Sean; Lee, Seung-Wuk] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Yang, SH (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. EM leesw@berkeley.edu NR 104 TC 28 Z9 29 U1 6 U2 115 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 1527-8999 EI 1528-0691 J9 CHEM REC JI Chem. Rec. PD FEB PY 2013 VL 13 IS 1 BP 43 EP 59 DI 10.1002/tcr.201200012 PG 17 WC Chemistry, Multidisciplinary SC Chemistry GA 094RM UT WOS:000315281500004 PM 23280916 ER PT J AU Ketkar, A Zafar, MK Maddukuri, L Yamanaka, K Banerjee, S Egli, M Choi, JY Lloyd, RS Eoff, RL AF Ketkar, Amit Zafar, Maroof K. Maddukuri, Leena Yamanaka, Kinrin Banerjee, Surajit Egli, Martin Choi, Jeong-Yun Lloyd, R. Stephen Eoff, Robert L. TI Leukotriene Biosynthesis Inhibitor MK886 Impedes DNA Polymerase Activity SO CHEMICAL RESEARCH IN TOXICOLOGY LA English DT Article ID 5-LIPOXYGENASE-ACTIVATING PROTEIN; SULFOLOBUS-SOLFATARICUS; TRANSLESION SYNTHESIS; CHEMOTHERAPEUTIC-AGENTS; CONFORMATIONAL-CHANGES; PHOSPHODIESTER BOND; CRYSTAL-STRUCTURE; DAMAGE TOLERANCE; HUMAN GLIOMAS; ETA AB Specialized DNA polymerases participate in replication stress responses and in DNA repair pathways that function as barriers against cellular senescence and genomic instability. These events can be co-opted by tumor cells as a mechanism to survive chemotherapeutic and ionizing radiation treatments and as such, represent potential targets for adjuvant therapies. Previously, a high-throughput screen of similar to 16,000 compounds identified several first generation proof-of-principle inhibitors of human DNA polymerase kappa (hpol kappa). The indole-derived inhibitor of 5-lipoxygenase activating protein (FLAP), MK886, was one of the most potent inhibitors of hpol kappa discovered in that screen. However, the specificity and mechanism of inhibition remained largely undefined. In the current study, the specificity of MK886 against human Y-family DNA polymerases and a model B-family DNA polymerase was investigated. MK886 was found to inhibit the activity of all DNA polymerases tested with similar IC50 values, the exception being a 6- to 8-fold increase in the potency of inhibition against human DNA polymerase iota (hpol iota t), a highly error-prone enzyme that uses Hoogsteen base-pairing modes during catalysis. The specificity against hpol iota was partially abrogated by inclusion of the recently annotated 25 a.a. N-terminal extension. On the basis of Michaelis-Menten kinetic analyses and DNA binding assays, the mechanism of inhibition by MK886 appears to be mixed. In silico docking studies were used to produce a series of models for MK886 binding to Y-family members. The docking results indicate that two binding pockets are conserved between Y-family polymerases, while a third pocket near the thumb domain appears to be unique to hpol iota. Overall, these results provide insight into the general mechanism of DNA polymerase inhibition by MK886. C1 [Ketkar, Amit; Zafar, Maroof K.; Maddukuri, Leena; Eoff, Robert L.] Univ Arkansas Med Sci, Dept Biochem & Mol Biol, Little Rock, AR 72205 USA. [Yamanaka, Kinrin; Lloyd, R. Stephen] Oregon Hlth & Sci Univ, Ctr Res Occupat & Environm Toxicol, Portland, OR 97239 USA. [Choi, Jeong-Yun] Sungkyunkwan Univ, Sch Med, Samsung Biomed Res Inst, Dept Mol Cell Biol, Suwon 440746, Gyeonggi Do, South Korea. [Egli, Martin] Vanderbilt Univ, Dept Biochem, Nashville, TN 37232 USA. [Banerjee, Surajit] Cornell Univ, Argonne Natl Lab, NE Collaborat Access Team, Argonne, IL 60439 USA. [Banerjee, Surajit] Cornell Univ, Argonne Natl Lab, Dept Chem & Chem Biol, Argonne, IL 60439 USA. RP Eoff, RL (reprint author), Univ Arkansas Med Sci, Dept Biochem & Mol Biol, 4301 W Markham St, Little Rock, AR 72205 USA. EM RLEOFF@UAMS.EDU OI Banerjee, Surajit/0000-0002-9414-7163 FU National Institutes of Health [R00 GM084460, R01 GM055237, R03 MH094179]; NRF from MEST Korea [2012R1A1A2042391]; Arkansas Breast Cancer Research Program; University of Arkansas for Medical Sciences Translational Research Institute (CTSA) [UL1TR000039] FX This work was supported by National Institutes of Health Grants R00 GM084460 (to R.L.E.), R01 GM055237 (to M.E.), and R03 MH094179 (to R.S.L.). This work was also supported by NRF grant 2012R1A1A2042391 from MEST Korea (to J.-Y.C.) and by a grant from the Arkansas Breast Cancer Research Program (to R.L.E.), with additional support from the University of Arkansas for Medical Sciences Translational Research Institute (CTSA Grant Award UL1TR000039). NR 62 TC 7 Z9 7 U1 0 U2 11 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0893-228X J9 CHEM RES TOXICOL JI Chem. Res. Toxicol. PD FEB PY 2013 VL 26 IS 2 BP 221 EP 232 DI 10.1021/tx300392m PG 12 WC Chemistry, Medicinal; Chemistry, Multidisciplinary; Toxicology SC Pharmacology & Pharmacy; Chemistry; Toxicology GA 094IE UT WOS:000315255400004 PM 23305233 ER PT J AU Bogatko, S Cauet, E Bylaska, E Schenter, G Fulton, J Weare, J AF Bogatko, Stuart Cauet, Emilie Bylaska, Eric Schenter, Gregory Fulton, John Weare, John TI The Aqueous Ca2+ System, in Comparison with Zn2+, Fe3+, and Al3+: An Ab Initio Molecular Dynamics Study SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE ab initio calculations; calcium; cations; solvent effects; water chemistry; XAFS ID X-RAY-DIFFRACTION; ABSORPTION FINE-STRUCTURE; MULTIPLE-SCATTERING CALCULATIONS; LOCALIZED WANNIER FUNCTIONS; DENSITY-FUNCTIONAL THEORY; HYDRATED CALCIUM-ION; SOLVATION STRUCTURE; MD SIMULATIONS; WATER EXCHANGE; EXAFS SPECTRA AB Herein, we report on the structure and dynamics of the aqueous Ca2+ system studied by using abinitio molecular dynamics (AIMD) simulations. Our detailed study revealed the formation of well-formed hydration shells with characteristics that were significantly different to those of bulk water. To facilitate a robust comparison with state-of-the-art X-ray absorption fine structure (XAFS) data, we employ a 1st principles MD-XAFS procedure and directly compare simulated and experimental XAFS spectra. A comparison of the data for the aqueous Ca2+ system with those of the recently reported Zn2+, Fe3+, and Al3+ species showed that many of their structural characteristics correlated well with charge density on the cation. Some very important exceptions were found, which indicated a strong sensitivity of the solvent structure towards the cations valence electronic structure. Average dipole moments for the 2nd shell of all cations were suppressed relative to bulk water. C1 [Bogatko, Stuart; Cauet, Emilie; Weare, John] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Bylaska, Eric; Schenter, Gregory; Fulton, John] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Bogatko, S (reprint author), Vrije Univ Brussel, Fac Wetenschappen, Eenheid Algemene Chem, Pl Laan 2, B-1050 Brussels, Belgium. EM sbogatko@vub.ac.be RI Schenter, Gregory/I-7655-2014; Bogatko, Stuart/C-8394-2013 OI Schenter, Gregory/0000-0001-5444-5484; Bogatko, Stuart/0000-0001-9759-2580 FU US Department of Energy (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences [DE-FG02-10ER1 6126]; Department of Energy's Office of Biological and Environmental Research; US DOE [DE-AC02-06CH11357]; NSERC (Canada); US Department of Energy FX This work was supported by the US Department of Energy (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences (Grant No. DE-FG02-10ER1 6126). Some of the calculations were performed on the Chinook computing system at the EMSL, a national scientific user facility that is sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute. We also thank the Scientific Computing Staff at the Office of Energy Research and the US Department of Energy for a grant of computer time at the National Energy Research Scientific Computing Center Berkeley, CA. Research at PNC/XSD at the Advanced Photon Source is supported by the US DOE (Contract No. DE-AC02-06CH11357), NSERC (Canada), and its founding institutions. NR 94 TC 15 Z9 15 U1 7 U2 77 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 J9 CHEM-EUR J JI Chem.-Eur. J. PD FEB PY 2013 VL 19 IS 9 BP 3047 EP 3060 DI 10.1002/chem.201202821 PG 14 WC Chemistry, Multidisciplinary SC Chemistry GA 092SM UT WOS:000315142300017 PM 23315704 ER PT J AU Cervini-Silva, J Nieto-Camacho, A Gomez-Vidales, V Ramirez-Apan, MT AF Cervini-Silva, Javiera Nieto-Camacho, Antonio Gomez-Vidales, Virginia Teresa Ramirez-Apan, Maria TI Oxidative stress induced by arsenopyrite and the role of desferrioxamine-B as radical scavenger SO CHEMOSPHERE LA English DT Article DE Primary source of As; Sorbed or small-sized As; Rapid-LP inducer; Structural Fe dissolution and complexation; Iron redox; Fe3+/O-2(center dot-) ID LIPID-PEROXIDATION; OXIDE MINERALS; RAT-BRAIN; DISSOLUTION; CHEMISTRY; INVITRO; TISSUES; PB(II); SYSTEM; GALENA AB Arsenopyrite (FeAsS) is one of the earth's primary mineral sources of As, yet its effects on cell damage remain largely unknown. This paper addresses the question whether FeAsS induces lipid peroxidation (LP), a major indicator of oxidative stress. Screening and monitoring of LP was conducted using Thiobarbituric Acid Reactive Substances (TBARSs) assay. The lipid source was supernatant of rat brain homogenates. The formation of TBARS by FeAsS was rapid and took place just after 10 min. Maximum TBARS levels (ca. 14 nmol TBARS per mg of protein) were observed after I h and remained constant thereafter. Suspension fraction separations showed that dissolved and structural components contributed to LP. The formation of TBARS by soluble As, As(III) or As(V), compared to basal levels. The initiation of LP by FeAsS was consistent with a mechanism initiated by the Fe3+/O-2(center dot-) redox system, and differed initiated by Fe2+/O-2. The effectiveness of FeAsS and FeSO4 as inducer compared, and surpassed that of AAPH. On the other hand, the initiation of LP by FeAsS is consistent with a mechanism initiated by perferryl ion and Fe3+/O-2(center dot-), and differs from the mechanism characteristic of FeSO4 initiated by the Fe2+/O-2 redox system. Proposedly, FeAsS surfaces contain a mixture of Fe3+ and Fe2+ that, along with O-2 and O-2(center dot-), participate in multiple mechanisms of electron transfer. EPR determinations show decreases in DMPO-OH adduct signal in FeAsS suspensions after adding desferrioxamine-B (DFO-B), consistent with the idea that DFO-B serves as a radical scavenger. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Cervini-Silva, Javiera] Univ Autonoma Metropolitana, Dept Proc & Tecnol, Unidad Cuajimalpa, Mexico City 04510, DF, Mexico. [Cervini-Silva, Javiera] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Nieto-Camacho, Antonio; Gomez-Vidales, Virginia; Teresa Ramirez-Apan, Maria] Univ Nacl Autonoma Mexico, Inst Quim, Mexico City 04510, DF, Mexico. RP Cervini-Silva, J (reprint author), Univ Autonoma Metropolitana, Dept Proc & Tecnol, Artificios 40,6 Piso, Mexico City 01120, DF, Mexico. EM jcervini@correo.cua.uam.mx FU UAM-C; Oil Mexican Institute FX This work would have not been possible without the assistance of librarians M.R. Galindo Ortega and M.I. Escalante Vargas (Universidad Autonoma Metropolitana Unidad Cuajimalpa, UAM-C), and M. in Sc. Claudia Rivera Cerecedo and Hector Malagon Rivero (Bioterio, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, UNAM). This project was supported by a grant from UAM-C and the Oil Mexican Institute. NR 36 TC 4 Z9 4 U1 3 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0045-6535 J9 CHEMOSPHERE JI Chemosphere PD FEB PY 2013 VL 90 IS 6 BP 1779 EP 1784 DI 10.1016/j.chemosphere.2012.08.005 PG 6 WC Environmental Sciences SC Environmental Sciences & Ecology GA 092PB UT WOS:000315133400004 PM 22955046 ER PT J AU Muehleisen, RT Patrizi, S AF Muehleisen, Ralph T. Patrizi, Silverio TI A new parametric equation for the wind pressure coefficient for low-rise buildings SO ENERGY AND BUILDINGS LA English DT Article DE Wind pressure coefficient; Parametric equations; Wind load ID MODEL AB The building wind pressure coefficient (C-p) is an important quantity which is used in many fields of building engineering including heating and cooling load calculations, ventilation design, and structural design. C-p is a dimensionless quantity that represents the proportionality between the wind velocity and the pressure generated on the surface of the building. Values for C-p can be obtained from full-scale building tests, wind tunnel tests, or, more commonly, from parametric equations derived from tests. The purpose of this paper is to analyze a set of wind tunnel tests and to present a new set of surface-averaged wind pressure coefficient values for low-rise buildings and a new parametric equation determined from a curve fit to the surface-averaged data. The resulting equations are compared to another popular low-rise parametric equation and another popular wind pressure coefficient database. The new parametric equation is found to fit both databases better than the older parametric equation. (c) 2012 Published by Elsevier B.V. C1 [Muehleisen, Ralph T.] Argonne Natl Lab, Lemont, IL 60439 USA. [Patrizi, Silverio] Thornton Tomasetti, New York, NY 10010 USA. RP Muehleisen, RT (reprint author), Argonne Natl Lab, 9700 S Cass Ave, Lemont, IL 60439 USA. EM rmuehlesien@anl.gov; silverio.patrizi@gmail.com RI Muehleisen, Ralph/O-9890-2014 OI Muehleisen, Ralph/0000-0003-2008-5681 NR 18 TC 4 Z9 5 U1 0 U2 6 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 J9 ENERG BUILDINGS JI Energy Build. PD FEB PY 2013 VL 57 BP 245 EP 249 DI 10.1016/j.enbuild.2012.10.051 PG 5 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA 087BF UT WOS:000314735500028 ER PT J AU Hu, Z Wang, JH Byrne, J Kurdgelashvili, L AF Hu, Zheng Wang, Jianhui Byrne, John Kurdgelashvili, Lado TI Review of wind power tariff policies in China SO ENERGY POLICY LA English DT Article DE Feed-in tariff; Onshore and offshore wind power; China AB In the past 20 years, China has paid significant attention to wind power. Onshore wind power in China has experienced tremendous growth since 2005, and offshore wind power development has been ongoing since 2009. In 2010, with a total installed wind power capacity of 41.8 GW, China surpassed the U.S. as the country with the biggest wind power capacity in the world. By comparing the wind power situations of three typical countries, Germany, Spain, and Denmark, this paper provides a comprehensive evaluation and insights into the prospects of China's wind power development. The analysis is carried out in four aspects including technology, wind resources, administration and time/space frame. We conclude that both German and Spanish have been growing rapidly in onshore capacity since policy improvements were made. In Denmark, large financial subsidies flow to foreign markets with power exports, creating inverse cost-benefit ratios. Incentives are in place for German and Danish offshore wind power, while China will have to remove institutional barriers to enable a leap in wind power development. In China, cross-subsidies are provided from thermal power (coal-fired power generation) in order to limit thermal power while encouraging wind power. However, the mass installation of wind power capacity completely relies on power subsidies. Furthermore, our study illustrates that capacity growth should not be the only consideration for wind power development; It is more important to do a comprehensive evaluation of multi-sectorial efforts in order to achieve long-term development. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Hu, Zheng; Byrne, John; Kurdgelashvili, Lado] Univ Delaware, Ctr Energy & Environm Policy, Newark, DE 19711 USA. [Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Wang, Jianhui] Shanghai Univ Elect Power, Shanghai, Peoples R China. RP Hu, Z (reprint author), Univ Delaware, Ctr Energy & Environm Policy, 278 Graham Hall, Newark, DE 19711 USA. EM zhu@udel.edu NR 15 TC 22 Z9 23 U1 2 U2 59 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD FEB PY 2013 VL 53 BP 41 EP 50 DI 10.1016/j.enpol.2012.09.057 PG 10 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 079SP UT WOS:000314192800004 ER PT J AU Zhou, N Fridley, D Khanna, NZ Ke, J McNeil, M Levine, M AF Zhou, Nan Fridley, David Khanna, Nina Zheng Ke, Jing McNeil, Michael Levine, Mark TI China's energy and emissions outlook to 2050: Perspectives from bottom-up energy end-use model SO ENERGY POLICY LA English DT Article DE China; End-use modeling; Energy efficiency ID SCENARIOS AB Although China became the world's largest CO2 emitter in 2007, the country has also taken serious actions to reduce its energy and carbon intensity. This study uses the bottom-up LBNL China End-Use Energy Model to assess the role of energy efficiency policies in transitioning China to a lower emission trajectory and meeting its 2020 intensity reduction goals. Two scenarios - Continued Improvement and Accelerated Improvement - were developed to assess the impact of actions already taken by the Chinese government as well as planned and potential actions, and to evaluate the potential for China to reduce energy demand and emissions. This scenario analysis presents an important modeling approach based in the diffusion of end-use technologies and physical drivers of energy demand and thereby help illuminate China's complex and dynamic drivers of energy consumption and implications of energy efficiency policies. The findings suggest that China's CO2 emissions will not likely continue growing throughout this century because of saturation effects in appliances, residential and commercial floor area, roadways, fertilizer use; and population peak around 2030 with slowing urban population growth. The scenarios also underscore the significant role that policy-driven efficiency improvements will play in meeting 2020 carbon mitigation goals along with a decarbonized power supply. Published by Elsevier Ltd. C1 [Zhou, Nan; Fridley, David; Khanna, Nina Zheng; Ke, Jing; McNeil, Michael; Levine, Mark] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Energy Anal & Environm Impacts Dept, Berkeley, CA 94720 USA. RP Zhou, N (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Energy Anal & Environm Impacts Dept, 1 Cyclotron Rd,MS 90R4000, Berkeley, CA 94720 USA. EM nzhou@lbl.gov RI Ke, Jing/H-4816-2016 OI Ke, Jing/0000-0002-5972-8042 FU Energy Foundation through the Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Energy Foundation through the Department of Energy under Contract no. DE-AC02-05CH11231. NR 15 TC 28 Z9 32 U1 3 U2 58 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD FEB PY 2013 VL 53 BP 51 EP 62 DI 10.1016/j.enpol.2012.09.065 PG 12 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 079SP UT WOS:000314192800005 ER PT J AU Clark, TA AF Clark, Thomas A. TI Metropolitan density, energy efficiency and carbon emissions: Multi-attribute tradeoffs and their policy implications SO ENERGY POLICY LA English DT Article DE Urban energy efficiency; Carbon emissions; Metropolitan spatial form ID URBAN SPRAWL; GROWTH MANAGEMENT; UNITED-STATES; LAND-USE; CITIES; FORM; NEIGHBORHOOD; CONSUMPTION; DESIGN; TRAVEL AB Of all the potential benefits of urban containment, compaction, and densification, just two are the central focus here: attainment of greater energy efficiency and reduction in carbon emissions. In cities these are largely associated with the transport and building sectors. This paper probes the form-efficiency relation in the transport sector across 57 census-defined urbanized areas in the United States in 2000. Thirty-six of the forty largest are included. Increase in core area population density is correlated with modest gain in energy efficiency in the urban transport sector and modest decrease in its. carbon emissions. Densification's lagged effects related to travel rationalization and growth in transit receptivity may increase overall metro transport energy efficiency beyond the degree revealed here. These impacts are associated with two off-setting negative externalities: (1) diminished housing affordability, and (2) increased roadway congestion. Each may moderate over time. Such effects are non-additive, owing to a difference of metrics. Elevated CAFE standards provoking new transport technologies may reduce total energy consumption and associated emissions ceteris paribus, lessening densification's marginal efficiency payoff while magnifying the significance of densification's opportunity costs. Categories of policy interventions to promote metro-scale energy efficiencies and emissions reductions, with and without urban densification, conclude the paper. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Clark, Thomas A.] Univ Colorado, Coll Architecture & Planning, Denver, CO 80206 USA. RP Clark, TA (reprint author), Idaho Natl Lab, Fac Affiliate, Ctr Adv Energy Studies, 2930 E 7th Ave Pkwy, Denver, CO 80206 USA. EM tom.clark@ucdenver.edu NR 100 TC 6 Z9 7 U1 8 U2 69 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 J9 ENERG POLICY JI Energy Policy PD FEB PY 2013 VL 53 BP 413 EP 428 DI 10.1016/j.enpol.2012.11.006 PG 16 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 079SP UT WOS:000314192800037 ER PT J AU Edmiston, J Steigmann, DJ Johnson, GJ Barton, N AF Edmiston, J. Steigmann, D. J. Johnson, G. J. Barton, N. TI A model for elastic-viscoplastic deformations of crystalline solids based on material symmetry: Theory and plane-strain simulations SO INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE LA English DT Article DE Crystal viscoplasticity; Material symmetry; Dislocation evolution ID STRUCTURED DEFORMATIONS; SINGLE-CRYSTALS; SLIP; PLASTICITY; TENSOR AB A model for the elastic-viscoplastic response of metallic single crystals is developed on the basis of the modern finite-deformation theory of plasticity combined with considerations of material symmetry. This is proposed as an alternative to conventional crystal plasticity theory, based on a decomposition of the plastic deformation rate into a superposition of slips on active slip systems. A simple special case of the general theory, modeling evolving geometrically necessary dislocations and their effect on hardening, is developed and used as the basis of numerical experiments. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Edmiston, J.; Steigmann, D. J.; Johnson, G. J.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. [Edmiston, J.; Barton, N.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Steigmann, DJ (reprint author), Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. EM steigman@me.berkeley.edu RI Edmiston, John/D-7898-2015 FU U.S. Department of Energy; University of California, Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; University of California, Berkeley FX This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. J. Edmiston thanks the Lawrence Scholarship Program for support of his graduate studies at the University of California, Berkeley. We are grateful to an anonymous referee for suggestions leading to substantial improvements in the manuscript. NR 30 TC 2 Z9 2 U1 0 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7225 J9 INT J ENG SCI JI Int. J. Eng. Sci. PD FEB PY 2013 VL 63 BP 10 EP 22 DI 10.1016/j.ijengsci.2012.10.001 PG 13 WC Engineering, Multidisciplinary SC Engineering GA 095VL UT WOS:000315363000002 ER PT J AU Dobosy, R Dumas, EJ Senn, DL Baker, B Sayres, DS Witinski, MF Healy, C Munster, J Anderson, JG AF Dobosy, Ronald Dumas, Edward J. Senn, David L. Baker, Bruce Sayres, David S. Witinski, Mark F. Healy, Claire Munster, Jason Anderson, James G. TI Calibration and Quality Assurance of an Airborne Turbulence Probe in an Aeronautical Wind Tunnel SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article ID LIFT-INDUCED UPWASH; AIRCRAFT; FLUXES; PLATFORM; SURFACE; SYSTEM; LANDSCAPE; EXCHANGE; REGIONS; TOWER AB The Best Aircraft Turbulence (BAT) probe is used by multiple research groups worldwide. To promote an accurate interpretation of the data obtained from the probe's unusual nine-port design, a detailed understanding of the BAT probe's function along with a characterization and minimization of its systematic anomalies is necessary. This paper describes recent tests to enhance understanding of the probe's behavior. The tests completed in the Wright Brothers Wind Tunnel at the Massachusetts Institute of Technology (MIT) built on earlier findings at Purdue University. Overall the true-vertical wind relative to the probe was found to have a systematic anomaly of about 10%-15%, an acceptable value borne out by considerable field experience and further reducible by modeling and removing. However, significant departure from theoretical behavior was found, making detailed generalization to other BAT probes still inadvisable. Based on these discoveries, recommendations are made for further experiments to explain the anomalous behavior, reduce the systematic anomaly, and generalize the characterizations. C1 [Dobosy, Ronald; Dumas, Edward J.; Senn, David L.; Baker, Bruce] NOAA, Atmospher Turbulence & Diffus Div, ARL, Oak Ridge, TN 37830 USA. [Dobosy, Ronald; Dumas, Edward J.; Senn, David L.] Oak Ridge Associated Univ, Oak Ridge, TN USA. [Sayres, David S.; Witinski, Mark F.; Anderson, James G.] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA. [Healy, Claire; Munster, Jason] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA. RP Dobosy, R (reprint author), NOAA, Atmospher Turbulence & Diffus Div, ARL, Oak Ridge, TN 37830 USA. EM ron.dobosy@noaa.gov RI Dobosy, Ronald/C-3303-2016; Dumas, Edward/C-6669-2016 OI Dobosy, Ronald/0000-0001-8399-8774; Dumas, Edward/0000-0002-9154-9052 NR 37 TC 2 Z9 2 U1 1 U2 12 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD FEB PY 2013 VL 30 IS 2 BP 182 EP 196 DI 10.1175/JTECH-D-11-00206.1 PG 15 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 093NB UT WOS:000315197500002 ER PT J AU Nayyar, IH Batista, ER Tretiak, S Saxena, A Smith, DL Martin, RL AF Nayyar, Iffat H. Batista, Enrique R. Tretiak, Sergei Saxena, Avadh Smith, Darryl L. Martin, Richard L. TI Role of Geometric Distortion and Polarization in Localizing Electronic Excitations in Conjugated Polymers SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID FIELD-EFFECT TRANSISTORS; ENERGY-TRANSFER; MEH-PPV; PHENYLENEVINYLENE OLIGOMERS; PHOTOEXCITED POLYFLUORENES; EXCITON DISSOCIATION; SYMMETRY-BREAKING; POLARON FORMATION; RADICAL CATIONS; HARTREE-FOCK AB Five different Density Functional Theory (DFT) models (ranging from pure GGA to long-range-corrected hybrid functionals) were used to study computationally the nature of the self-trapped electronic states in oligophenylene vinylenes. The electronic excitations in question include the lowest singlet (S-1) and triplet (T-1(dagger)) excitons (calculated using Time Dependent DFT (TD-DFT) method), positive (P+) and negative (P-) polarons, and the lowest triplet (T-1) states (computed with the Self-Consistent Field (SCF) scheme). The polaron formation (spatial localization of excitations) is observed only with the use of range-corrected hybrid DFT models including long-range electronic exchange interactions. The extent of localization for all studied excitations is found to be invariant with respect to the size of the oligomer chain in their corresponding optimal geometries. We have analyzed the interdependence between the extent of the geometrical distortion and the localization of the orbital and spin density, and have observed that the localization of the P+ and P- charged species is quite sensitive to solvent polarization effects and the character of the DFT functional used, rather than the structural deformations. In contrast, the localization of neutral states, S-1 and T-1(dagger), is found to follow the structural distortions. Notably, T-1 excitation obtained with the mean field SCF approach is always strongly localized in range-corrected hybrid DFT models. The molecular orbital energetics of these excitations was further investigated to identify the relationship between state localization and the corresponding orbital structure. A characteristic stabilization (destabilization) of occupied (virtual) orbitals is observed in hybrid DFT models, compared to tight-binding model-like orbital filling in semilocal GGA functionals. The molecular and natural orbital representation allows visualization of the spatial extent of the underlying electronic states. In terms of stabilization energies, neutral excitons have higher binding energies compared to charged excitations. In contrast, the polaronic species exhibit the highest solvation energies among all electronic states studied. C1 [Nayyar, Iffat H.; Batista, Enrique R.; Tretiak, Sergei; Saxena, Avadh; Smith, Darryl L.; Martin, Richard L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Nayyar, Iffat H.; Batista, Enrique R.; Tretiak, Sergei; Saxena, Avadh; Smith, Darryl L.; Martin, Richard L.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Tretiak, Sergei] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Nayyar, Iffat H.] Univ Cent Florida, NanoSci Technol Ctr, Orlando, FL 32826 USA. [Nayyar, Iffat H.] Univ Cent Florida, Dept Phys, Orlando, FL 32826 USA. RP Tretiak, S (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM serg@lanl.gov RI Tretiak, Sergei/B-5556-2009; Nayyar, Iffat/B-4925-2016 OI Tretiak, Sergei/0000-0001-5547-3647; Nayyar, Iffat/0000-0002-0896-5259 FU DOE Office of Basic Energy Sciences (OBES) [085CPE973]; U.S. Department of Energy; Los Alamos National Laboratory (LANL) Directed Research and Development Funds; U.S. Department of Energy [DE-AC52-06NA25396] FX I.H.N., D.L.S, and R.L.M. acknowledge support of the DOE Office of Basic Energy Sciences (OBES) under Work Proposal Number 085CPE973. S.T., A.S., and E.R.B. acknowledge support of the U.S. Department of Energy and Los Alamos National Laboratory (LANL) Directed Research and Development Funds. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 69 TC 21 Z9 21 U1 0 U2 83 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD FEB PY 2013 VL 9 IS 2 BP 1144 EP 1154 DI 10.1021/ct300837d PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 090ZK UT WOS:000315018300032 PM 26588757 ER PT J AU Jeanne, P Guglielmi, Y Cappa, F AF Jeanne, Pierre Guglielmi, Yves Cappa, Frederic TI Dissimilar properties within a carbonate-reservoir's small fault zone, and their impact on the pressurization and leakage associated with CO2 injection SO JOURNAL OF STRUCTURAL GEOLOGY LA English DT Article DE Carbonate; Fault zone architecture; Permeability variations; Numerical simulation; Carbon dioxide (CO2) ID FLUID-FLOW; INTERNAL STRUCTURE; PETROPHYSICAL PROPERTIES; SOUTHWEST JAPAN; PERMEABILITY STRUCTURE; EOLIAN SANDSTONE; SLIP; ARCHITECTURE; PRESSURE; SYSTEM AB This paper focuses on a small fault zone (too small to be detected by geophysical imaging) affecting a carbonate reservoir composed of porous and low-porosity layers. In a gallery located at 250 m depth, the hydraulic properties of a 20 m thick section of the reservoir affected by the studied fault are characterized by structural measurements and hydraulic injection into boreholes. We conducted electrical tomographies before and after an 18 hour-long injection, to image the fluid flow through the fault zone. Our main finding is that the damage zone displays contrasting permeability values (up to two orders of magnitude) inherited from the differential alteration of the intact rock layers. To characterize the impact of these hydraulic-property variations on the fluid flow, we carried out numerical simulations of water and supercritical CO2 injections, using the TOUGH2 code. Two damage-zone models were compared, with heterogeneous (Model 1) and homogeneous (Model 2) hydraulic properties. In Model 1, injected fluids cannot escape through the fault zone; they generate a high fluid overpressure, located in the damage-zone layers having the highest permeability and storativity. In Model. 2, fluids can easily migrate; the overpressure is lower and located in the host rock along the fault zone. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Jeanne, Pierre; Guglielmi, Yves] Univ Aix Marseille, CEREGE, F-13331 Marseille, France. [Jeanne, Pierre; Cappa, Frederic] Univ Nice Sophia Antipolis, Observ Cote Azur, F-06550 Sophia Antipolis, France. [Jeanne, Pierre] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Guglielmi, Y (reprint author), Univ Aix Marseille, CEREGE, F-13331 Marseille, France. EM pierrejeanne06@yahoo.fr; yves.guglielmi@cerege.fr RI Jeanne, Pierre/I-2996-2015; Cappa, Frederic/B-4014-2017 OI Jeanne, Pierre/0000-0003-1487-8378; Cappa, Frederic/0000-0003-4859-8024 FU ANR; PACA county FX This work has been funded by the ANR "Captage de CO2" through the "HPPP-CO2" project and by the PACA county through the "MONIDER" project. We thank Rob Eco and Maxwell companies for conducting the electrical imaging during the injection experiments. NR 70 TC 6 Z9 6 U1 2 U2 15 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0191-8141 J9 J STRUCT GEOL JI J. Struct. Geol. PD FEB PY 2013 VL 47 BP 25 EP 35 DI 10.1016/j.jsg.2012.10.010 PG 11 WC Geosciences, Multidisciplinary SC Geology GA 093GB UT WOS:000315178600004 ER PT J AU Cai, S Daymond, MR Ren, Y Bailey, DM Kay, LE AF Cai, S. Daymond, M. R. Ren, Y. Bailey, D. M. Kay, L. E. TI Influence of short time anneal on recoverable strain of beta III titanium alloy SO MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING LA English DT Article DE Beta titanium; Recoverable strain; Super-elastic strain; Stress induced martensite transformation; Synchrotron X-ray ID STRESS-INDUCED TRANSFORMATIONS; DEFORMATION-INDUCED MARTENSITE; SHAPE-MEMORY; BIOMEDICAL APPLICATIONS; MECHANICAL-PROPERTIES; TENSILE PROPERTIES; MO ALLOYS; NB ALLOYS; SUPERELASTICITY; MICROSTRUCTURE AB Experiments have been carried out to study the effect of annealing parameters on the recoverable strain of the beta III titanium alloy. A heavily cold worked material was annealed at temperatures from 315 to 1080 degrees C for different times. The super-elastic property of the annealed sample was studied by cyclic tensile load testing. Optimized super-elastic property was achieved after short time annealing at temperatures around 800 degrees C. Increasing annealing temperature and time reduced the super-elastic strain and recoverable strain. It is believed that the large recoverable strain after the low temperature short time annealing benefits from the retained deformation texture and residual internal strain. (C) 2012 Elsevier B.V. All rights reserved. C1 [Cai, S.; Bailey, D. M.; Kay, L. E.] Ft Wayne Met Res Prod Corp, Ft Wayne, IN 46809 USA. [Daymond, M. R.] Queens Univ, Dept Mech & Mat Engn, Kingston, ON K7L 3N6, Canada. [Ren, Y.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Cai, S (reprint author), Ft Wayne Met Res Prod Corp, 9609 Ardmore Ave, Ft Wayne, IN 46809 USA. EM song_cai@fwmetals.com OI Daymond, Mark/0000-0001-6242-7489 NR 49 TC 8 Z9 9 U1 2 U2 16 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0921-5093 J9 MAT SCI ENG A-STRUCT JI Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. PD FEB 1 PY 2013 VL 562 BP 172 EP 179 DI 10.1016/j.msea.2012.11.005 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 091UQ UT WOS:000315075700023 ER PT J AU Zhang, SX Dayeh, SA Li, Y Crooker, SA Smith, DL Picraux, ST AF Zhang, Shixiong Dayeh, Shadi A. Li, Yan Crooker, Scott A. Smith, Darryl L. Picraux, S. T. TI Electrical Spin Injection and Detection in Silicon Nanowires through Oxide Tunnel Barriers SO NANO LETTERS LA English DT Article DE Spintronics; spin injection; silicon nanowires; tunnel barrier ID ROOM-TEMPERATURE; FIELD CONTROL; TRANSPORT; SEMICONDUCTOR; POLARIZATION; SPINTRONICS; PRECESSION; COLLECTION; CIRCUITS; CONTACTS AB We demonstrate all-electrical spin injection, transport, and detection in heavily n-type-doped Si nanowires using ferromagnetic Co/Al2O3 tunnel barrier contacts. Analysis of both local and nonlocal spin valve signals at 4 K on the same nanowire device using a standard spin-transport model suggests that high spin injection efficiency (up to similar to 30%) and long spin diffusion lengths (up to similar to 6 mu m) are achieved. These values exceed those reported for spin transport devices based on comparably doped bulk Si. The spin valve signals are found to be strongly bias and temperature dependent and can invert sign with changes in the dc bias current. The influence of the nanowire morphology on field-dependent switching of the contacts is also discussed. Owing to their nanoscale geometry, similar to 5 orders of magnitude less current is required to achieve nonlocal spin valve voltages comparable to those attained in planar microscale spin transport devices, suggesting lower power consumption and the potential for applications of Si nanowires in nanospintronics. C1 [Zhang, Shixiong; Dayeh, Shadi A.; Picraux, S. T.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Li, Yan; Crooker, Scott A.] Los Alamos Natl Lab, Natl High Magnet Field Lab, Los Alamos, NM 87545 USA. [Smith, Darryl L.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Zhang, SX (reprint author), Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. EM sxzhang@indiana.edu; picraux@lanl.gov RI Li, Yan/B-1001-2012 FU Laboratory Directed Research and Development Program at LANL; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX This work was performed, in part, at CINT, a U.S. Department of Energy, Office of Basic Energy Sciences User Facility. The research was funded in part by the Laboratory Directed Research and Development Program at LANL, an affirmative action equal opportunity employer operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396. S.X.Z. gratefully acknowledges help from Dr. Wei Tang in calibrating deposited Al2O3 layers under HR-TEM. NR 50 TC 10 Z9 11 U1 7 U2 84 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2013 VL 13 IS 2 BP 430 EP 435 DI 10.1021/nl303667v PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 091WC UT WOS:000315079500017 PM 23324028 ER PT J AU Majumdar, A Kim, J Vuckovic, J Wang, F AF Majumdar, Arka Kim, Jonghwan Vuckovic, Jelena Wang, Feng TI Electrical Control of Silicon Photonic Crystal Cavity by Graphene SO NANO LETTERS LA English DT Article DE Graphene; photonic crystal cavity; electro-optic modulation ID GEL GATE DIELECTRICS; TRANSISTORS AB The efficient conversion of an electrical signal to an optical signal in nanophotonics enables solid state integration of electronics and photonics. The combination of graphene with photonic crystals is promising for electro-optic modulation. In this paper, we demonstrate that by electrostatic gating a single layer of graphene on top of a photonic crystal cavity, the cavity resonance can be changed significantly. A similar to 2 nm change in the cavity resonance line width and almost 400% (6 dB) change in resonance reflectivity is observed. In addition, our analysis shows that a graphene photonic crystal device can potentially be useful for a high speed and low power absorptive and refractive modulator, while maintaining a small physical footprint. C1 [Majumdar, Arka; Kim, Jonghwan; Wang, Feng] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Majumdar, Arka; Vuckovic, Jelena] Stanford Univ, EL Ginzton Lab, Stanford, CA 94305 USA. [Wang, Feng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wang, F (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM fengwang76@berkeley.edu RI wang, Feng/I-5727-2015 FU Office of Basic Energy Science, Department of Energy [DE-AC02-05CH11231]; Office of Naval Research (PECASE Award) [N00014-08-1-0561]; ONR MURI award [N00014-09-1-1066]; National Science Foundation FX We thank R. Segalman and B. Boudouris for providing the iongel; Sufei Shi, Long Ju, Yaqing Bie, and Will Regan for help in preparing the sample and Gary Shambat for helpful discussion. Optical characterization of this work was mainly supported by Office of Basic Energy Science, Department of Energy under Contract No. DE-AC02-05CH11231; photonic crystal fabrication and characterization are supported by the Office of Naval Research (PECASE Award; No: N00014-08-1-0561); and graphene synthesis and graphene-photonic crystal integration is supported by ONR MURI award N00014-09-1-1066. This work was performed in part at the Stanford Nanofabrication facility supported by the National Science Foundation. Author contributions are as follows: A.M. and F.W. designed the experiment; A.M. and J.K. carried out the optical measurements, sample growth, fabrication, and characterization. A.M, J.K., J.V., and RIM. performed theoretical analysis. A.M wrote the paper with input from all of the authors. NR 24 TC 82 Z9 83 U1 14 U2 159 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2013 VL 13 IS 2 BP 515 EP 518 DI 10.1021/nl3039212 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 091WC UT WOS:000315079500031 PM 23286896 ER PT J AU Chuang, S Gao, Q Kapadia, R Ford, AC Guo, J Javey, A AF Chuang, Steven Gao, Qun Kapadia, Rehan Ford, Alexandra C. Guo, Jing Javey, Ali TI Ballistic InAs Nanowire Transistors SO NANO LETTERS LA English DT Article DE Ballistic transport; scattering; surface roughness; mean free path; quantization; subbands ID FIELD-EFFECT TRANSISTORS; ELECTRON-MOBILITY AB Ballistic transport of electrons at room temperature in top-gated InAs nanowire (NW) transistors is experimentally observed and theoretically examined. From length dependent studies, the low-field mean free path is directly extracted as similar to 150 nm. The mean free path is found to be independent of temperature due to the dominant role of surface roughness scattering. The mean free path was also theoretically assessed by a method that combines Fermi's golden rule and a numerical Schrodinger-Poisson simulation to determine the surface scattering potential with the theoretical calculations being consistent with experiments. Near ballistic transport (similar to 80% of the ballistic limit) is demonstrated experimentally for transistors with a channel length of similar to 60 nm, owing to the long mean free path of electrons in InAs NWs. C1 [Chuang, Steven; Kapadia, Rehan; Ford, Alexandra C.; Javey, Ali] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Gao, Qun; Guo, Jing] Univ Florida, Gainesville, FL 32611 USA. [Ford, Alexandra C.; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Chuang, Steven; Kapadia, Rehan; Ford, Alexandra C.; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA. RP Javey, A (reprint author), Univ Calif Berkeley, Berkeley, CA 94720 USA. EM ajavey@eecs.berkeley.edu RI Gao, Qun/C-6960-2014; Javey, Ali/B-4818-2013 FU Intel; FCRP/MSD Focus Center; NSF E3S Center; Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy [DE-AC02-05CH11231]; Sloan Research Fellowship; NSF CAREER Award; World Class University program at Sunchon National University; NSF Graduate Fellowship FX This work was funded by Intel, FCRP/MSD Focus Center and NSF E3S Center. The materials synthesis and characterization part of this work was partially supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. A.J. acknowledges a Sloan Research Fellowship, NSF CAREER Award, and support from the World Class University program at Sunchon National University. R.K. acknowledges an NSF Graduate Fellowship. NR 22 TC 65 Z9 65 U1 6 U2 83 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2013 VL 13 IS 2 BP 555 EP 558 DI 10.1021/nl3040674 PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 091WC UT WOS:000315079500038 PM 23256503 ER PT J AU Tian, H Chen, HY Gao, B Yu, SM Liang, JL Yang, Y Xie, D Kang, JF Ren, TL Zhang, YG Wong, HSP AF Tian, He Chen, Hong-Yu Gao, Bin Yu, Shimeng Liang, Jiale Yang, Yi Xie, Dan Kang, Jinfeng Ren, Tian-Ling Zhang, Yuegang Wong, H. -S. Philip TI Monitoring Oxygen Movement by Raman Spectroscopy of Resistive Random Access Memory with a Graphene-Inserted Electrode SO NANO LETTERS LA English DT Article DE Graphene; resistive random access memory; oxygen ions movement; Raman spectroscopy; filaments ID FILMS; DEVICES; OXIDE AB In this paper, we employed Ramen spectroscopy to monitor oxygen movement at the electrode/oxide interface by inserting single-layer graphene (SLG). Raman area mapping and single-point measurements show noticeable changes in the D-band, G-band, and 2D-band signals of the SLG during consecutive electrical programming repeated for nine cycles. In addition, the inserted SLG enables the reduction of RESET current by 22 times and programming power consumption by 47 times. Collectively, our results show that monitoring the oxygen movement by Raman spectroscopy for a resistive random access memory (RRAM) is made possible by inserting a single-layer graphene at electrode/oxide interface. This may open up an important analysis tool for investigation of switching mechanism of RRAM. C1 [Tian, He; Yang, Yi; Xie, Dan; Ren, Tian-Ling] Tsinghua Univ, Inst Microelect, Beijing 100084, Peoples R China. [Tian, He; Yang, Yi; Xie, Dan; Ren, Tian-Ling] Tsinghua Univ, Tsinghua Natl Lab Informat Sci & Technol TNList, Beijing 100084, Peoples R China. [Tian, He; Zhang, Yuegang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Chen, Hong-Yu; Gao, Bin; Yu, Shimeng; Liang, Jiale; Wong, H. -S. Philip] Stanford Univ, Ctr Integrated Syst, Stanford, CA 94305 USA. [Chen, Hong-Yu; Gao, Bin; Yu, Shimeng; Liang, Jiale; Wong, H. -S. Philip] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA. [Gao, Bin; Kang, Jinfeng] Peking Univ, Inst Microelect, Beijing 100871, Peoples R China. RP Ren, TL (reprint author), Tsinghua Univ, Inst Microelect, Beijing 100084, Peoples R China. EM RenTL@tsinghua.edu.cn; yzhang5@lbl.gov; hspwong@stanford.edu RI Yu, Shimeng/D-5704-2012; Liang, Jiale/I-5021-2012; Tian, He/I-1299-2014; Zhang, Y/E-6600-2011; Foundry, Molecular/G-9968-2014 OI Liang, Jiale/0000-0003-4843-7765; Tian, He/0000-0001-7328-2182; Zhang, Y/0000-0003-0344-8399; FU National Natural Science Foundation [61025021, 60936002, 51072089, 61020106006]; National Key Project of Science & Technology of China [2009ZX02023-001-3, 2011ZX02403-002]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; Stanford Non-Volatile Memory Technology Research Initiative (NMTRI); Stanford Nanofabrication Facility (SNF); NSF-supported National Nanotechnology Infrastructure Network (NNIN); Molecular Foundry at the Lawrence Berkeley National Laboratory; Ministry of Education Scholarship of China; Stanford Graduate Fellowship; Stanford School of Engineering China Research Exchange Program FX The work done at Tsinghua is supported by National Natural Science Foundation (61025021, 60936002, 51072089, 61020106006) and National Key Project of Science & Technology (2009ZX02023-001-3, 2011ZX02403-002) of China. The graphene sample preparation, electrical and Raman characterizations of the RRAM devices were performed at the Molecular Foundry of Lawrence Berkeley National Laboratory, supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. This work is supported in part by the member companies of the Stanford Non-Volatile Memory Technology Research Initiative (NMTRI). This work is done in part at the Stanford Nanofabrication Facility (SNF), a member of the NSF-supported National Nanotechnology Infrastructure Network (NNIN) and the Molecular Foundry at the Lawrence Berkeley National Laboratory. H.T. is additionally supported by the Ministry of Education Scholarship of China. S.Y. and J.L. are additionally supported by the Stanford Graduate Fellowship. B.G. is additionally supported in part by the Stanford School of Engineering China Research Exchange Program. The support of K.X. is very much appreciated. We are grateful for the discussions with Professor Zhenan Bao and Dr. Nan Liu from Stanford University. NR 39 TC 43 Z9 44 U1 12 U2 221 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2013 VL 13 IS 2 BP 651 EP 657 DI 10.1021/nl304246d PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 091WC UT WOS:000315079500054 PM 23278753 ER PT J AU Wang, JW He, Y Fan, FF Liu, XH Xia, SM Liu, Y Harris, CT Li, H Huang, JY Mao, SX Zhu, T AF Wang, Jiang Wei He, Yu Fan, Feifei Liu, Xiao Hua Xia, Shuman Liu, Yang Harris, C. Thomas Li, Hong Huang, Jian Yu Mao, Scott X. Zhu, Ting TI Two-Phase Electrochemical Lithiation in Amorphous Silicon SO NANO LETTERS LA English DT Article DE Amorphous silicon; two-phase lithiation; amorphous-amorphous interface; lithium-ion battery; in situ transmission electron microscopy ID LITHIUM-ION BATTERIES; CRYSTALLINE SILICON; ANODE MATERIAL; HIGH-CAPACITY; SITU; PERFORMANCE; ELECTRODES; NANOWIRES; INSERTION; FRACTURE AB Lithium-ion batteries have revolutionized portable electronics and will be a key to electrifying transport vehicles and delivering renewable electricity. Amorphous silicon (a-Si) is being intensively studied as a high-capacity anode material for next-generation lithium-ion batteries. Its lithiation has been widely thought to occur through a single-phase mechanism with gentle Li profiles, thus offering a significant potential for mitigating pulverization and capacity fade. Here, we discover a surprising two-phase process of electrochemical lithiation in a-Si by using in situ transmission electron microscopy. The lithiation occurs by the movement of a sharp phase boundary between the a-Si reactant and an amorphous LixSi (a-LixSi, x similar to 2.5) product. Such a striking amorphous-amorphous interface exists until the remaining a-Si is consumed. Then a second step of lithiation sets in without a visible interface, resulting in the final product of a-LixSi (x similar to 3.75). We show that the two-phase lithiation can be the fundamental mechanism underpinning the anomalous morphological change of microfabricated a-Si electrodes, i.e., from a disk shape to a dome shape. Our results represent a significant step toward the understanding of the electrochemically driven reaction and degradation in amorphous materials, which is critical to the development of microstructurally stable electrodes for high-performance lithium-ion batteries. C1 [Wang, Jiang Wei; Mao, Scott X.] Univ Pittsburgh, Dept Mech Engn & Mat Sci, Pittsburgh, PA 15261 USA. [He, Yu; Li, Hong] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Fan, Feifei; Xia, Shuman; Zhu, Ting] Georgia Inst Technol, Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Liu, Xiao Hua; Liu, Yang; Harris, C. Thomas; Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, Albuquerque, NM 87185 USA. RP Li, H (reprint author), Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. EM hli@iphy.ac.cn; sxm2@pitt.edu; ting.zhu@me.gatech.edu RI Wang, Jiangwei/F-8249-2011; Zhu, Ting/A-2206-2009; Liu, Yang/C-9576-2012; Li, Hong/C-4643-2008; Liu, Xiaohua/A-8752-2011; OI Wang, Jiangwei/0000-0003-1191-0782; Li, Hong/0000-0002-8659-086X; Liu, Xiaohua/0000-0002-7300-7145; Fan, Feifei/0000-0003-0455-4900 FU NSF grant through University of Pittsburgh [CMMI 08010934, CMMI 1100205]; Sandia National Lab support; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; CAS project [KJCX2-YW-W26]; 973 project [2012CB932900] FX We thank David Burton from Applied Sciences Inc. for providing the a-Si/CNF samples. S.X.M. acknowledges the NSF grant CMMI 08010934 through University of Pittsburgh and Sandia National Lab support. T.Z. acknowledges the support by the NSF Grant CMMI 1100205. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. The research done at the Institute of Physics, Chinese Academy of Sciences, is supported by CAS project (KJCX2-YW-W26) and 973 project (2012CB932900). NR 42 TC 143 Z9 146 U1 20 U2 355 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2013 VL 13 IS 2 BP 709 EP 715 DI 10.1021/nl304379k PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 091WC UT WOS:000315079500064 PM 23323743 ER PT J AU McDowell, MT Lee, SW Harris, JT Korgel, BA Wang, CM Nix, WD Cui, Y AF McDowell, Matthew T. Lee, Seok Woo Harris, Justin T. Korgel, Brian A. Wang, Chongmin Nix, William D. Cui, Yi TI In Situ TEM of Two-Phase Lithiation of Amorphous Silicon Nanospheres SO NANO LETTERS LA English DT Article DE Batteries; energy storage; phase transformations; silicon; in situ TEM ID LITHIUM-ION BATTERIES; SIZE-DEPENDENT FRACTURE; HIGH-CAPACITY; ELECTROCHEMICAL LITHIATION; CRYSTALLINE SILICON; STRUCTURAL-CHANGES; RECHARGEABLE BATTERIES; INITIAL LITHIATION; NANOWIRE ANODES; ELECTRODES AB To utilize high-capacity Si anodes in next-generation Li-ion batteries, the physical and chemical transformations during the Li-Si reaction must be better understood. Here, in situ transmission electron microscopy is used to observe the lithiation/delithiation of amorphous Si nanospheres; amorphous Si is an important anode material that has been less studied than crystalline Si. Unexpectedly, the experiments reveal that the first lithiation occurs via a two-phase mechanism, which is contrary to previous understanding and has important consequences for mechanical stress evolution during lithiation. On the basis of kinetics measurements, this behavior is suggested to be due to the rate-limiting effect of Si-Si bond breaking. In addition, the results show that amorphous Si has more favorable kinetics and fracture behavior when reacting with Li than does crystalline Si, making it advantageous to use in battery electrodes. Amorphous spheres up to 870 nm in diameter do not fracture upon lithiation; this is much larger than the 150 nm critical fracture diameter previously identified for crystalline Si spheres. C1 [McDowell, Matthew T.; Lee, Seok Woo; Nix, William D.; Cui, Yi] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. [Harris, Justin T.; Korgel, Brian A.] Univ Texas Austin, Ctr Nano & Mol Sci & Technol, Texas Mat Inst, Dept Chem Engn, Austin, TX 78712 USA. [Wang, Chongmin] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [Cui, Yi] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. RP Cui, Y (reprint author), Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA. EM yicui@stanford.edu RI Korgel, Brian/I-5771-2013; Cui, Yi/L-5804-2013; Lee, Seok Woo/B-9792-2015 OI Cui, Yi/0000-0002-6103-6352; Lee, Seok Woo/0000-0003-2459-7174 FU Chevron Stanford Graduate Fellowship; National Science Foundation Graduate Fellowship; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering through the SLAC National Accelerator Laboratory LDRD project [DE-AC02-76SF00515]; Assistant Secretary for Energy efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy [DE-AC02-05CH11231]; DOE's Office of Biological and Environmental Research; Battelle [DE-AC05-76RLO1830]; chemical imaging initiative of PNNL; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-FG02-04ER46163]; program "Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC: CST)", an Energy Frontier Research Center; U.S. Department of Energy Office of Science, Office of Basic Energy Sciences [DE-SC0001091]; Batteries for Advanced Transportation Technologies (BATT) Program [6951379] FX M.T.M. acknowledges support from the Chevron Stanford Graduate Fellowship and the National Science Foundation Graduate Fellowship. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-76SF00515 through the SLAC National Accelerator Laboratory LDRD project and the Assistant Secretary for Energy efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231, Subcontract No. 6951379 under the Batteries for Advanced Transportation Technologies (BATT) Program. The in situ TEM work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the DOE under Contract DE-AC05-76RLO1830. C.M.W. thanks the support of the chemical imaging initiative of PNNL. W.D.N. gratefully acknowledges support of the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-FG02-04ER46163. The synthesis of a-Si spheres by J.T.H. and B.A.K. was supported as part of the program "Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC: CST)", an Energy Frontier Research Center funded by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, under Award No. DE-SC0001091. NR 55 TC 215 Z9 216 U1 52 U2 599 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD FEB PY 2013 VL 13 IS 2 BP 758 EP 764 DI 10.1021/nl3044508 PG 7 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 091WC UT WOS:000315079500072 PM 23323680 ER PT J AU Warnick, KH Wang, B Ciffel, DE Wright, DW Haglund, RF Pantelides, ST AF Warnick, Keith H. Wang, Bin Ciffel, David E. Wright, David W. Haglund, Richard F. Pantelides, Sokrates T. TI Room-Temperature Reactions for Self-Cleaning Molecular Nanosensors SO NANO LETTERS LA English DT Article DE Molecular sensing; explosives detection; catalysis ID CYTOCHROME-C-OXIDASE; FENTON OXIDATION; OXYGEN; EXPLOSIVES; MECHANISM; HYDROXYLATION; IRON; VO2; 2,4-DINITROTOLUENE; BIODEGRADATION AB New sensing techniques for detecting molecules, especially self-cleaning sensors, are in demand. Here we describe a room-temperature process in which a nanostructured substrate catalyzes the reaction of a target molecule with atmospheric oxygen and the reaction energy is absorbed by the substrate, where it can in principle be detected. Specifically, we report first-principles calculations describing a reaction between 2,4-dinitrotoluene (DNT) and atmospheric O-2 catalyzed by Fe-porphyrin at room temperature, incorporating an oxygen into the methyl group of DNT and releasing 1.9 eV per reaction. The atomic oxygen left on the Fe site can be removed by reacting with another DNT molecule, restoring the Fe catalyst. C1 [Warnick, Keith H.; Wang, Bin; Haglund, Richard F.; Pantelides, Sokrates T.] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Ciffel, David E.; Wright, David W.] Vanderbilt Univ, Dept Chem, Nashville, TN 37235 USA. [Pantelides, Sokrates T.] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA. [Pantelides, Sokrates T.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Warnick, KH (reprint author), Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. EM keith.h.warnick@vanderbilt.edu RI Wang, Bin/E-8301-2011 OI Wang, Bin/0000-0001-8246-1422 FU DTRA [HDTRA1-10-0047]; McMinn Endowment at Vanderbilt University FX This work was supported in part by DTRA Grant HDTRA1-10-0047 and by the McMinn Endowment at Vanderbilt University. Calculations were performed on AFRL computing resources. NR 53 TC 7 Z9 7 U1 0 U2 75 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 J9 NANO LETT JI Nano Lett. PD FEB PY 2013 VL 13 IS 2 BP 798 EP 802 DI 10.1021/nl304598p PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 091WC UT WOS:000315079500079 PM 23320817 ER PT J AU Kemper, AF Moritz, B Freericks, JK Devereaux, TP AF Kemper, A. F. Moritz, B. Freericks, J. K. Devereaux, T. P. TI Theoretical description of high-order harmonic generation in solids SO NEW JOURNAL OF PHYSICS LA English DT Article ID BLOCH OSCILLATIONS; ELECTRONS; FIELDS; ATOMS; MODEL AB We consider several aspects of high-order harmonic generation in solids: the effects of elastic and inelastic scattering, varying pulse characteristics and inclusion of material-specific parameters through a realistic band structure. We reproduce many observed characteristics of high harmonic generation experiments in solids including the formation of only odd harmonics in inversion-symmetric materials, and the nonlinear formation of high harmonics with increasing field. We find that the harmonic spectra are fairly robust against elastic and inelastic scattering. Furthermore, we find that the pulse characteristics can play an important role in determining the harmonic spectra. C1 [Kemper, A. F.; Moritz, B.; Devereaux, T. P.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Kemper, A. F.; Devereaux, T. P.] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Kemper, A. F.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Moritz, B.] Univ N Dakota, Dept Phys & Astrophys, Grand Forks, ND 58202 USA. [Moritz, B.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. [Freericks, J. K.] Georgetown Univ, Dept Phys, Washington, DC 20057 USA. RP Kemper, AF (reprint author), SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. EM kemper@stanford.edu RI Moritz, Brian/D-7505-2015; Kemper, Alexander/F-8243-2016; OI Moritz, Brian/0000-0002-3747-8484; Kemper, Alexander/0000-0002-5426-5181; Freericks, James/0000-0002-6232-9165 FU US DOE, BES, MSED [DE-AC02-76SF00515, DE-FG02-08ER46542]; McDevitt bequest at Georgetown University; US DOE, BES through the CMCSN program [DE-SC0007091]; US DOE, Office of Science [DE-AC02-05CH11231] FX We gratefully acknowledge discussions with P S Kirchmann, A M Lindenberg and D A Reis. AFK, BM and TPD were supported by the US DOE, BES, MSED under contract no. DE-AC02-76SF00515. JKF was supported by the US DOE, BES, MSED under contract no. DE-FG02-08ER46542 and by the McDevitt bequest at Georgetown University. The collaboration was supported by the US DOE, BES through the CMCSN program under grant no. DE-SC0007091. This work was made possible by the resources of the National Energy Research Scientific Computing Center (via an Innovative and Novel Computational Impact on Theory and Experiment grant), which is supported by the US DOE, Office of Science, under contract no. DE-AC02-05CH11231. NR 53 TC 24 Z9 24 U1 0 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD FEB 1 PY 2013 VL 15 AR 023003 DI 10.1088/1367-2630/15/2/023003 PG 15 WC Physics, Multidisciplinary SC Physics GA 084DI UT WOS:000314516500003 ER PT J AU Groenewold, GS Cannon, WR Lessing, PA Avci, R Deliorman, M Wolfenden, M Akers, DW Jewell, JK Zuck, LD AF Groenewold, Gary S. Cannon, W. Roger Lessing, Paul A. Avci, Recep Deliorman, Muhammedin Wolfenden, Mark Akers, Doug W. Jewell, J. Keith Zuck, Larry D. TI Characterization of polymeric films subjected to lithium ion beam irradiation SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Radiation induced chain scission; ESI-MS; SIMS; XPS; Polyethylene glycol ID TRANSFORM MASS-SPECTROMETRY; POLY(ETHYLENE OXIDE); AQUEOUS-SOLUTION; POLYETHYLENE OXIDE; MOLECULAR-WEIGHT; GAMMA-RADIATION; PULSE-RADIOLYSIS; SOLID-STATE; MACRORADICALS; MICROSCOPE AB Two different polymeric materials that are candidate materials for use as binders for mixed uranium-plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H2O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C-O and C-C bonds, which furnish radical intermediates that react by radical recombination with H-center dot and OH center dot. Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp(2) carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H2O or a H2O-methanol solution, and hence the bulk of the material could not be analyzed using electrospray. However a series of oligomers was leached from the bulk material that produced ion series in the ESI-MS analyses that were identified octylphenyl ethoxylate oligomers. Upon Li ion bombardment, these shifted to a lower average molecular weight, but more importantly showed the emergence of three new ion series that are being formed as a result of radiation damage. Surface analysis of the paraffinic polymers using SIMS produced spectra that were wholly dominated by hydrocarbon ion series, and no difference was observed between unirradiated and irradiated samples. The studies demonstrate that for the PEG-based polymers, direct evidence for radiolytic scission can be observed using ESI-MS, and suggests that both radiolytic pathways and efficiencies as a function of dose should be measurable by calibrating instrument response to the small oligomeric degradation products. (c) 2012 Elsevier B.V. All rights reserved. C1 [Groenewold, Gary S.; Cannon, W. Roger; Lessing, Paul A.; Akers, Doug W.; Jewell, J. Keith; Zuck, Larry D.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Avci, Recep; Deliorman, Muhammedin; Wolfenden, Mark] Montana State Univ, Image & Chem Anal Lab, Bozeman, MT 59717 USA. RP Groenewold, GS (reprint author), Idaho Natl Lab, 2351 N Blvd, Idaho Falls, ID 83415 USA. EM gary.groenewold@inl.gov FU United States Department of Energy [DE-AC07-05ID14517] FX This research was funded by the United States Department of Energy, under contract DE-AC07-05ID14517. NR 24 TC 2 Z9 2 U1 4 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD FEB 1 PY 2013 VL 296 BP 41 EP 49 DI 10.1016/j.nimb.2012.11.017 PG 9 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 095UV UT WOS:000315361400007 ER PT J AU Baker, KL AF Baker, Kevin L. TI X-ray wavefront characterization with two-dimensional wavefront sensors: shearing interferometers and Hartmann wavefront sensors SO OPTICAL ENGINEERING LA English DT Article DE metrology; x-rays; shearing interferometer; Hartmann sensor; wavefront sensing ID ELECTRON-DENSITY CHARACTERIZATION; PLASMAS AB Phase reconstructions from a two-dimensional shearing interferometer, based on two orthogonal phase gratings in a single plane, and a Hartmann sensor are compared. Design alternatives for both wavefront sensors are given, and simulated performance of both the two-dimensional x-ray shearing interferometer and Hartmann wavefront sensor are presented for two different phase profiles. The first comparison is an evaluation of metrology on deuterium-tritium (DT) ice layers in an inertial confinement fusion capsule, and the second comparison is a high frequency "asterisk" phase profile, which tests the ability of these wavefront sensors to detect spikes of ablator material seen in DT fuel capsule implosions. Both of these sensors can measure the two-dimensional wavefront gradient of an x-ray beam, as well as the x-ray absorption. These instruments measure the two-dimensional wavefront gradient in a single measurement, and the wavefront sensor is located in a single plane, making them much less sensitive to vibrations than most other wavefront sensing techniques. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.52.2.026501] C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Baker, KL (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave,L-481, Livermore, CA 94550 USA. EM baker7@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 30 TC 1 Z9 1 U1 4 U2 12 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD FEB PY 2013 VL 52 IS 2 AR 026501 DI 10.1117/1.OE.52.2.026501 PG 9 WC Optics SC Optics GA 092WX UT WOS:000315154800058 ER PT J AU Li, CY Yu, ZH Liu, HZ Lu, TQ AF Li, C. Y. Yu, Z. H. Liu, H. Z. Lu, T. Q. TI High-pressure powder X-ray diffraction study of Cu5Si and pressure-driven isostructural phase transition SO PHILOSOPHICAL MAGAZINE LETTERS LA English DT Article DE intermetallic compounds; crystal structure; crystal symmetry; phase transitions; high-pressure studies; X-ray diffraction; CuSi ID CU-SI SYSTEM; BETA-MN; IN-SITU; STABILITY; PACKINGS; METAL AB The structural behaviour of Cu5Si under high-pressure (HP) has been studied by angular dispersive X-ray diffraction up to 49.9GPa. The experimental results suggest that a pressure-induced isostructural phase transition occurs around 13.5GPa as revealed by a discontinuity in volume as a function of pressure. The lattice parameter decreases with the pressure increasing for both low-pressure (LP) and HP phases of Cu5Si. However, a plot of the lattice parameter vs. pressure shows the existence of a plateau between 11.7 and 15.3GPa. The bulk moduli, derived from the fitting of BirchMurnaghan equation of state, are 150(2)GPa and 210(3)GPa for the LP phase and the HP phase of Cu5Si, respectively. A change in the electronic state of the copper is assumed to govern the observed structural phase transition. C1 [Li, C. Y.; Yu, Z. H.] Harbin Inst Technol, Dept Phys, Harbin 150080, Peoples R China. [Li, C. Y.] Brookhaven Natl Lab, Photon Sci Directorate, Upton, NY 11973 USA. [Yu, Z. H.] Argonne Natl Lab, Adv Photon Source, XSD, Argonne, IL 60439 USA. [Liu, H. Z.] Harbin Inst Technol, Nat Sci Res Ctr, Harbin 150080, Peoples R China. [Lu, T. Q.] Harbin Inst Technol, Condensed Matter Sci & Technol Inst, Harbin 15080, Peoples R China. RP Li, CY (reprint author), Harbin Inst Technol, Dept Phys, Harbin 150080, Peoples R China. EM chunyulihit@gmail.com RI Liu, Haozhe/E-6169-2011 FU COMPRES (the Consortium for Materials Properties Research in Earth Sciences); China Scholarship Council FX We acknowledge the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory (BNL) for provision of synchrotron radiation facilities beam line X17C. We are thankful for support from COMPRES (the Consortium for Materials Properties Research in Earth Sciences). This work was partly supported by the China Scholarship Council. We are grateful to the Editor and anonymous referees for their thorough reading of the manuscript and suggestions for improvement. NR 43 TC 0 Z9 0 U1 0 U2 12 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0950-0839 J9 PHIL MAG LETT JI Philos. Mag. Lett. PD FEB 1 PY 2013 VL 93 IS 2 BP 85 EP 92 DI 10.1080/09500839.2012.745017 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 096BF UT WOS:000315378000003 ER PT J AU Samolyuk, GD Golubov, SI Osetsky, YN Stoller, RE AF Samolyuk, G. D. Golubov, S. I. Osetsky, Y. N. Stoller, R. E. TI Self-interstitial configurations in hcp Zr: a first principles analysis SO PHILOSOPHICAL MAGAZINE LETTERS LA English DT Article DE ab initio; defects; radiation damage ID AB-INITIO; SIMULATION; ZIRCONIUM; METALS; ATOMS AB The alignment of vacancy loops and voids along basal planes observed in irradiated Zr and Zr alloys requires anisotropic point-defect transport with a dominant contribution along the basal plane. For neutron irradiation, this can be explained by one-dimensional mobility of self-interstitial atom (SIA) clusters, but experiments with electron irradiation indicate unambiguously that even single SIA should exhibit anisotropic diffusion. No experimental information is available on SIA properties in Zr and the previous ab initio calculations did not provide any evidence of anisotropic diffusion mechanisms. An extensive investigation of SIAs in Zr has been performed from first principles using two different codes. It was demonstrated that the simulation cell size, type of pseudopotential, exchange-correlation functional and the c/a ratio are crucially important for determining the properties of interstitials in hcp Zr. The most stable SIA configurations lie in the basal plane, which should lead to SIA diffusion mainly along basal planes. C1 [Samolyuk, G. D.; Golubov, S. I.; Osetsky, Y. N.; Stoller, R. E.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Samolyuk, GD (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM samolyukgd@ornl.gov OI Osetskiy, Yury/0000-0002-8109-0030 FU Office of Science of the US Department of Energy; Consortium for Advanced Simulation of Light Water Reactors, an Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors under US Department of Energy [DE-AC05-00OR22725] FX We are grateful to Dr A. Barashev for useful discussion. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy and was supported by the Consortium for Advanced Simulation of Light Water Reactors (http://www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors under US Department of Energy Contract No. DE-AC05-00OR22725. NR 19 TC 16 Z9 16 U1 4 U2 48 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 0950-0839 J9 PHIL MAG LETT JI Philos. Mag. Lett. PD FEB 1 PY 2013 VL 93 IS 2 BP 93 EP 100 DI 10.1080/09500839.2012.745653 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 096BF UT WOS:000315378000004 ER PT J AU Cooper, L Walls, RL Elser, J Gandolfo, MA Stevenson, DW Smith, B Preece, J Athreya, B Mungall, CJ Rensing, S Hiss, M Lang, D Reski, R Berardini, TZ Li, DH Huala, E Schaeffer, M Menda, N Arnaud, E Shrestha, R Yamazaki, Y Jaiswal, P AF Cooper, Laurel Walls, Ramona L. Elser, Justin Gandolfo, Maria A. Stevenson, Dennis W. Smith, Barry Preece, Justin Athreya, Balaji Mungall, Christopher J. Rensing, Stefan Hiss, Manuel Lang, Daniel Reski, Ralf Berardini, Tanya Z. Li, Donghui Huala, Eva Schaeffer, Mary Menda, Naama Arnaud, Elizabeth Shrestha, Rosemary Yamazaki, Yukiko Jaiswal, Pankaj TI The Plant Ontology as a Tool for Comparative Plant Anatomy and Genomic Analyses SO PLANT AND CELL PHYSIOLOGY LA English DT Article DE Bioinformatics; Comparative genomics; Genome annotation; Ontology; Plant anatomy; Terpene synthase ID MOSS PHYSCOMITRELLA-PATENS; ARABIDOPSIS-THALIANA; GENE-EXPRESSION; INTEGRATED INFORMATION; PHYLOGENETIC TREES; TERPENE SYNTHASES; INTERACTIVE TREE; FLOWER FORMATION; DRAFT SEQUENCE; WEB SERVICES AB The Plant Ontology (PO; ext-link-type="uri" xlink:href="http://www.plantontology.org/" xmlns:xlink="http://www.w3.org/1999/xlink">http://www.plantontology.org/) is a publicly available, collaborative effort to develop and maintain a controlled, structured vocabulary ('ontology') of terms to describe plant anatomy, morphology and the stages of plant development. The goals of the PO are to link (annotate) gene expression and phenotype data to plant structures and stages of plant development, using the data model adopted by the Gene Ontology. From its original design covering only rice, maize and Arabidopsis, the scope of the PO has been expanded to include all green plants. The PO was the first multispecies anatomy ontology developed for the annotation of genes and phenotypes. Also, to our knowledge, it was one of the first biological ontologies that provides translations (via synonyms) in non-English languages such as Japanese and Spanish. As of Release #18 (July 2012), there are about 2.2 million annotations linking PO terms to > 110,000 unique data objects representing genes or gene models, proteins, RNAs, germplasm and quantitative trait loci (QTLs) from 22 plant species. In this paper, we focus on the plant anatomical entity branch of the PO, describing the organizing principles, resources available to users and examples of how the PO is integrated into other plant genomics databases and web portals. We also provide two examples of comparative analyses, demonstrating how the ontology structure and PO-annotated data can be used to discover the patterns of expression of the LEAFY (LFY) and terpene synthase (TPS) gene homologs. C1 [Cooper, Laurel; Elser, Justin; Preece, Justin; Athreya, Balaji; Jaiswal, Pankaj] Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97331 USA. [Walls, Ramona L.; Stevenson, Dennis W.] New York Bot Garden, Bronx, NY 10458 USA. [Gandolfo, Maria A.] Cornell Univ, LH Bailey Hortorium, Dept Plant Biol, Ithaca, NY 14853 USA. [Smith, Barry] SUNY Buffalo, Dept Philosophy, Buffalo, NY 14260 USA. [Mungall, Christopher J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley Bioinformat Open Source Projects, Berkeley, CA 94720 USA. [Rensing, Stefan; Hiss, Manuel; Lang, Daniel; Reski, Ralf] Univ Freiburg, Fac Biol, D-79104 Freiburg, Germany. [Rensing, Stefan; Hiss, Manuel] Univ Freiburg, BIOSS Ctr Biol Signalling Studies, D-79104 Freiburg, Germany. [Reski, Ralf] Univ Freiburg, FRIAS Freiburg Inst Adv Studies, D-79104 Freiburg, Germany. [Berardini, Tanya Z.; Li, Donghui; Huala, Eva] Carnegie Inst Sci, Dept Plant Biol, Stanford, CA 94305 USA. [Schaeffer, Mary] ARS, USDA, Columbia, MO 65211 USA. [Schaeffer, Mary] Univ Missouri, Div Plant Sci, Dept Agron, Columbia, MO 65211 USA. [Menda, Naama] Boyce Thompson Inst Plant Res, Ithaca, NY 14853 USA. [Arnaud, Elizabeth] Biovers Int, Rome, Italy. [Shrestha, Rosemary] CIMMYT, Genet Resources Program, Mexico City 06600, DF, Mexico. [Yamazaki, Yukiko] Natl Inst Genet, Ctr Genet Resource Informat, Mishima, Shizuoka 4118540, Japan. RP Jaiswal, P (reprint author), Oregon State Univ, Dept Bot & Plant Pathol, 2082 Cordley Hall, Corvallis, OR 97331 USA. EM jaiswalp@science.oregonstate.edu RI Lang, Daniel/C-7238-2008; Jaiswal, Pankaj/H-7599-2016; OI Smith, Barry/0000-0003-1384-116X; Lang, Daniel/0000-0002-2166-0716; Jaiswal, Pankaj/0000-0002-1005-8383; Huala, Eva/0000-0003-4631-7241; Hiss, Manuel/0000-0002-7876-783X FU US National Science Foundation [IOS: 0822201] FX This work was supported by the US National Science Foundation [grant No. IOS: 0822201]. NR 104 TC 46 Z9 47 U1 2 U2 47 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0032-0781 J9 PLANT CELL PHYSIOL JI Plant Cell Physiol. PD FEB PY 2013 VL 54 IS 2 BP E1 EP + DI 10.1093/pcp/pcs163 PG 23 WC Plant Sciences; Cell Biology SC Plant Sciences; Cell Biology GA 093UR UT WOS:000315218700001 PM 23220694 ER PT J AU Lu, B Shi, YJ Wang, FD Wan, BN Bitter, M Hill, KW Lee, SG Li, YY Fu, J Zhang, JZ Xu, JC Shen, YC AF Lu Bo Shi Yuejiang Wang Fudi Wan Baonian Bitter, Manfred Hill, Kenneth W. Lee, Sang-gon Li Yingying Fu Jia Zhang Jizong Xu Jingcui Shen Yongcai TI Test of a High Throughput Detector on the X-ray Crystal Spectrometer of the EAST SO PLASMA SCIENCE & TECHNOLOGY LA English DT Article DE X-ray crystal spectrometer; high resolution; ion temperature; plasma rotation AB An attempt was made to improve the spatio-temporal resolution of the tangential X-ray crystal spectrometer (XCS) on the Experimental Advanced Superconducting Tokamak (EAST) by evaluating experimentally the applicability of a novel X-ray photon detection technology for measuring the satellite spectra of Ar XVII with a high counting rate. High-resolution experimental data on the profiles of ion temperature and plasma rotation velocity facilitate the studies of the mechanisms underlining important physical phenomena, such as plasma heating, L-H transition and momentum transport. Based on silicon diode array and single-photon counting technology, a relatively small area (83.8 x 33.5 mm(2)) two-dimensional detector was successfully installed and tested in the recent EAST campaign. X-ray photon counting rate higher than 20 MHz was observed for the first time, and high quality satellite spectra were recorded for ion temperature and plasma rotation measurement, indicating that the new technology is suitable for the next-step high-resolution XCS on EAST, and the deployment of a detector array with a much larger X-ray sensing area is planned for better plasma coverage. C1 [Lu Bo; Wang Fudi; Wan Baonian; Li Yingying; Fu Jia; Zhang Jizong; Xu Jingcui; Shen Yongcai] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Shi Yuejiang] Natl Fus Res Inst, WCI Ctr Fus Theory, Taejon 305806, South Korea. [Shi Yuejiang] Univ Sci & Technol China, Hefei 230026, Peoples R China. [Bitter, Manfred; Hill, Kenneth W.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Lee, Sang-gon] Natl Fus Res Inst, Taejon 305333, South Korea. RP Lu, B (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. EM blu@ipp.ac.cn RI Lyu, Bo/G-6627-2011 OI Lyu, Bo/0000-0002-3916-6230 FU National Magnetic Confinement Fusion Science Program of China [2011GB101000, 2011GB107000, 2012GB101000, 2013GB112004]; National Natural Science Foundation of China [10975155, 10990212, 11175208]; JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics [11261140328] FX supported by National Magnetic Confinement Fusion Science Program of China (Nos. 2011GB101000, 2011GB107000, 2012GB101000 and 2013GB112004) and National Natural Science Foundation of China (Nos. 10975155, 10990212 and 11175208) and JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (No. 11261140328) NR 13 TC 3 Z9 3 U1 2 U2 25 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1009-0630 J9 PLASMA SCI TECHNOL JI Plasma Sci. Technol. PD FEB PY 2013 VL 15 IS 2 BP 97 EP 100 DI 10.1088/1009-0630/15/2/03 PG 4 WC Physics, Fluids & Plasmas SC Physics GA 094MY UT WOS:000315269300003 ER PT J AU Lee, S Seifert, S Firestone, MA AF Lee, Sungwon Seifert, Soenke Firestone, Millicent A. TI Multi-length scale evaluation of the temperature-tunable mechanical properties of a lyotropic mesophase SO POLYMER JOURNAL LA English DT Article DE hydrogels; hydrogen-bonded network; mesophase; poly(ethylene oxide); rheology ID RHEOLOGICAL PROPERTIES; TRIBLOCK COPOLYMERS; HYDROGELS; WATER; GELS; ENTRAPMENT; LIPOSOMES; MICELLES; PROTEINS; POLYMERS AB The thermoreversible mechanical properties of a non-ionic polymer, lipid-based complex fluid were investigated by oscillatory and steady shear rheology, and analyzed in the context of mesophase architecture and polymer-water interactions. The sol phase (G ''>G') is observed at lower temperatures (5-17 degrees C) than the gel phase (G'>G ''; 20-50 degrees C) and is driven by the temperature-induced changes in water solubility of polyethylene glycol (PEG). In the sol state, water solvated, extended PEG chains cannot interact within the confines of a two-dimensional hexagonally ordered array of prolate micelles that possess sufficient lattice dimensions to accommodate the polymer chains. With increasing temperature, the less water-soluble PEG adopts a compacted conformation that shields the polymer from bulk water. The densely coiled PEG chains localized within the interstitial water layers of a multi-lamellar structure promote chain entanglement and formation of a hydrogen-bonded network with the surrounding water layer, resulting in a soft gel. The strength of the hydrogen bonds within the network and therefore gel strength can be adjusted over an order of magnitude by temperature modulation between 20 and 50 degrees C. These studies identify principles useful in the preparation of stimuli-responsive mechanical materials. Polymer Journal (2013) 45, 179-187; doi:10.1038/pj.2012.99; published online 25 July 2012 C1 [Lee, Sungwon; Firestone, Millicent A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Seifert, Soenke] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. RP Firestone, MA (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM firestone@anl.gov FU Office of Basic Energy Sciences, Division of Materials Sciences, United States Department of Energy [DE-AC02-06CH1135] FX We thank Dr Scott Brombosz for assistance in preparation of the freeze-dried hydrogels and Dr Bryan Ringstrand for editorial assistance in preparation of the manuscript. This work was performed under the auspices of the Office of Basic Energy Sciences, Division of Materials Sciences, United States Department of Energy, under contract No. DE-AC02-06CH1135. NR 44 TC 2 Z9 2 U1 0 U2 17 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0032-3896 J9 POLYM J JI Polym. J. PD FEB PY 2013 VL 45 IS 2 BP 179 EP 187 DI 10.1038/pj.2012.99 PG 9 WC Polymer Science SC Polymer Science GA 094BX UT WOS:000315239100009 ER PT J AU Matzke, MM Brown, JN Gritsenko, MA Metz, TO Pounds, JG Rodland, KD Shukla, AK Smith, RD Waters, KM McDermott, JE Webb-Robertson, BJ AF Matzke, Melissa M. Brown, Joseph N. Gritsenko, Marina A. Metz, Thomas O. Pounds, Joel G. Rodland, Karin D. Shukla, Anil K. Smith, Richard D. Waters, Katrina M. McDermott, Jason E. Webb-Robertson, Bobbie-Jo TI A comparative analysis of computational approaches to relative protein quantification using peptide peak intensities in label-free LC-MS proteomics experiments SO PROTEOMICS LA English DT Review DE Label-free; Peak intensity; Protein quantification; Relative ID SPECTROMETRY-BASED PROTEOMICS; MASS-SPECTROMETRY; QUANTITATIVE PROTEOMICS; STATISTICAL-MODEL; EXPRESSION; STRATEGY AB Liquid chromatography coupled with mass spectrometry (LC-MS) is widely used to identify and quantify peptides in complex biological samples. In particular, label-free shotgun proteomics is highly effective for the identification of peptides and subsequently obtaining a global protein profile of a sample. As a result, this approach is widely used for discovery studies. Typically, the objective of these discovery studies is to identify proteins that are affected by some condition of interest (e.g. disease, exposure). However, for complex biological samples, label-free LC-MS proteomics experiments measure peptides and do not directly yield protein quantities. Thus, protein quantification must be inferred from one or more measured peptides. In recent years, many computational approaches to relative protein quantification of label-free LC-MS data have been published. In this review, we examine the most commonly employed quantification approaches to relative protein abundance from peak intensity values, evaluate their individual merits, and discuss challenges in the use of the various computational approaches. C1 [Matzke, Melissa M.; Brown, Joseph N.; Gritsenko, Marina A.; Metz, Thomas O.; Pounds, Joel G.; Rodland, Karin D.; Shukla, Anil K.; Smith, Richard D.; Waters, Katrina M.; McDermott, Jason E.; Webb-Robertson, Bobbie-Jo] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Webb-Robertson, BJ (reprint author), POB 999,J4-33, Richland, WA 99352 USA. EM bj@pnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Pounds, Joel/0000-0002-6616-1566; McDermott, Jason/0000-0003-2961-2572; Metz, Tom/0000-0001-6049-3968 FU Laboratory Directed Research and Development at Pacific Northwest National Laboratory (PNNL) under the Signature Discovery Initiative; National Institutes of Health [DK071283, U54-016015]; National Center for Research Resources [5P41RR018522-10]; National Institute of General Medical Sciences from the National Institutes of Health [8 P41 GM103493-10]; U.S. Department of Energy Office of Biological and Environmental Research; U.S. Department of Energy [DE-AC06-76RL01830] FX Computational work was supported by Laboratory Directed Research and Development at Pacific Northwest National Laboratory (PNNL) under the Signature Discovery Initiative (KDR, JEM). The human diabetes proteomics data were generated under National Institutes of Health grant DK071283 (RDS) and the mouse lung LPS proteomics data were generated through National Institutes of Health grant U54-016015 (J.G.P.). Proteomics datasets originated from samples analyzed using capabilities developed under the support of the National Center for Research Resources (5P41RR018522-10) and the National Institute of General Medical Sciences (8 P41 GM103493-10) from the National Institutes of Health, and from the U.S. Department of Energy Office of Biological and Environmental Research (RDS). Proteomics data were collected and processed in the Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility supported by the Department of Energy. All work was performed at PNNL, which is a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy under contract DE-AC06-76RL01830. We thank D. Daly for performing the hierarchical cluster analysis in support of the selection of matched samples for the human plasma dataset. NR 27 TC 33 Z9 33 U1 3 U2 72 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1615-9853 J9 PROTEOMICS JI Proteomics PD FEB PY 2013 VL 13 IS 3-4 SI SI BP 493 EP 503 DI 10.1002/pmic.201200269 PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 092DO UT WOS:000315099400008 PM 23019139 ER PT J AU Wetie, AGN Sokolowska, I Woods, AG Roy, U Loo, JA Darie, CC AF Wetie, Armand G. Ngounou Sokolowska, Izabela Woods, Alisa G. Roy, Urmi Loo, Joseph A. Darie, Costel C. TI Investigation of stable and transient protein-protein interactions: Past, present, and future SO PROTEOMICS LA English DT Review DE Bioinformatics; Cell biology; Electrophoresis; MS; Proteinprotein interactions ID TANDEM AFFINITY PURIFICATION; IONIZATION-MASS-SPECTROMETRY; 2-DIMENSIONAL NATIVE ELECTROPHORESIS; DESORPTION ELECTROSPRAY-IONIZATION; SIZE-EXCLUSION CHROMATOGRAPHY; YEAST 2-HYBRID SYSTEM; MOBILITY SHIFT ASSAY; CROSS-LINKING; SACCHAROMYCES-CEREVISIAE; GEL-ELECTROPHORESIS AB This article presents an overview of the literature and a review of recent advances in the analysis of stable and transient proteinprotein interactions (PPIs) with a focus on their function within cells, organs, and organisms. The significance of PTMs within the PPIs is also discussed. We focus on methods to study PPIs and methods of detecting PPIs, with particular emphasis on electrophoresis-based and MS-based investigation of PPIs, including specific examples. The validation of PPIs is emphasized and the limitations of the current methods for studying stable and transient PPIs are discussed. Perspectives regarding PPIs, with focus on bioinformatics and transient PPIs are also provided. C1 [Wetie, Armand G. Ngounou; Sokolowska, Izabela; Woods, Alisa G.; Roy, Urmi; Darie, Costel C.] Clarkson Univ, Dept Chem & Biomol Sci, Biochem & Prote Grp, Potsdam, NY 13699 USA. [Loo, Joseph A.] Univ Calif Los Angeles, Dept Biol Chem, Los Angeles, CA USA. [Loo, Joseph A.] Univ Calif Los Angeles, Dept Chem & Biochem, UCLA Mol Biol Inst, Los Angeles, CA 90024 USA. [Loo, Joseph A.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA USA. RP Darie, CC (reprint author), Clarkson Univ, Dept Chem & Biomol Sci, Biochem & Prote Grp, 8 Clarkson Ave, Potsdam, NY 13699 USA. EM jloo@chem.ucla.edu; cdarie@clarkson.edu FU Clarkson University; Keep a Breast Foundation [KEABF-375-35054]; Redcay Foundation (SUNY Plattsburgh); US Army research office through the Defense University Research Instrumentation Program (DURIP) [W911NF-11-1-0304]; US National Institutes of Health [GM103479]; US Department of Energy [DE-FC03-02ER6342]; private donations FX We would like to thank Ms. Laura Mulderig, Scott Nichols, and their colleagues (Waters Corporation) for their generous support in setting up the Proteomics Center at Clarkson University. C.C.D. thanks Drs. Thomas A. Neubert (New York University, Belinda Willard (Cleveland Clinic) and Gregory Wolber and David Mclaughin (Eastman Kodak Company) for donation of a TofSpec2E MALDI-MS (each). This work was supported in part by Clarkson University (start-up grant to C.C.D.), private donations (Ms. Mary Stewart Joyce), the Keep a Breast Foundation (KEABF-375-35054), the Redcay Foundation (SUNY Plattsburgh), and by the US Army research office through the Defense University Research Instrumentation Program (DURIP grant #W911NF-11-1-0304). J.A.L. is supported by the US National Institutes of Health (GM103479) and the US Department of Energy (DE-FC03-02ER6342 for the UCLA/DOE Institute for Genomics and Proteomics). NR 190 TC 32 Z9 32 U1 5 U2 108 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1615-9853 J9 PROTEOMICS JI Proteomics PD FEB PY 2013 VL 13 IS 3-4 SI SI BP 538 EP 557 DI 10.1002/pmic.201200328 PG 20 WC Biochemical Research Methods; Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 092DO UT WOS:000315099400012 ER PT J AU Cossio, M Moridis, GJ Blasingame, TA AF Cossio, M. Moridis, G. J. Blasingame, T. A. TI A Semianalytic Solution for Flow in Finite-Conductivity Vertical Fractures by Use of Fractal Theory SO SPE JOURNAL LA English DT Article; Proceedings Paper CT SPE Latin American and Caribbean Petroleum Engineering Conference CY APR 16-18, 2012 CL Mexico City, MEXICO SP SPE ID PRESSURE-TRANSIENT; RESERVOIRS; BEHAVIOR; WELL AB The exploitation of unconventional reservoirs complements the practice of hydraulic fracturing, and with an ever-increasing demand in energy, this practice is set to experience significant growth in the coming years. Sophisticated analytic models are needed to accurately describe fluid flow in a hydraulic fracture, and the problem has been approached from different directions in the past 3 decades starting with the work of Gringarten et al. (1974) for an infinite-conductivity case, followed by contributions from Cinco-Ley et al. (1978), Lee and Brockenbrough (1986), Ozkan and Raghavan (1991), and Blasingame and Poe (1993) for a finite-conductivity case. This topic remains an active area of research and, for the more-complicated physical scenarios such as multiple transverse fractures in ultratight reservoirs, answers are currently being sought. Starting with the seminal work of Chang and Yortsos (1990), fractal theory has been successfully applied to pressure-transient testing, although with an emphasis on the effects of natural fractures in pressure/rate behavior. In this paper, we begin by performing a rigorous analytical and numerical study of the fractal diffusivity equation (FDE), and we show that it is more fundamental than the classic linear and radial diffusivity equations. Thus, we combine the FDE with the trilinear flow model (Lee and Brockenbrough 1986), culminating in a new semianalytic solution for flow in a finite-conductivity vertical fracture that we name the "fractal-fracture solution (FFS)." This new solution is instantaneous and comparable in accuracy with the Blasingame and Poe solution (1993). In addition, this is the first time that fractal theory is used in fluid flow in a porous medium to address a problem not related to reservoir heterogeneity. Ultimately, this project is a demonstration of the untapped potential of fractal theory; our approach is flexible, and we believe that the same methodology could be extended to different applications. One objective of this work is to develop a fast and accurate semianalytical solution for flow in a single vertical fracture that fully penetrates a homogeneous infinite-acting reservoir. This would be the first time that fractal theory is used to study a problem that is not related to naturally fractured reservoirs or reservoir heterogeneity. In addition, as part of the development process, we revisit the fundamentals of fractals in reservoir engineering and show that the underlying FDE possesses some interesting qualities that have not yet been comprehensively addressed in the literature. C1 [Cossio, M.] Texas A&M Univ, College Stn, TX 77843 USA. [Moridis, G. J.] Lawrence Berkeley Natl Lab, Div Earth Sci, Deputy Program Lead Energy Resources, Berkeley, CA USA. [Moridis, G. J.] Lawrence Berkeley Natl Lab, Res Program Hydrates, Berkeley, CA USA. [Moridis, G. J.] Lawrence Berkeley Natl Lab, Res Program Tight Shale Gas, Berkeley, CA USA. [Blasingame, T. A.] Texas A&M Univ, Dept Petr Engn, Grad Programs, College Stn, TX USA. RP Cossio, M (reprint author), Texas A&M Univ, College Stn, TX 77843 USA. NR 28 TC 13 Z9 13 U1 0 U2 14 PU SOC PETROLEUM ENG PI RICHARDSON PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA SN 1086-055X J9 SPE J JI SPE J. PD FEB PY 2013 VL 18 IS 1 BP 83 EP 96 PG 14 WC Engineering, Petroleum SC Engineering GA 094HH UT WOS:000315253100007 ER PT J AU Zinkle, SJ Was, GS AF Zinkle, S. J. Was, G. S. TI Materials challenges in nuclear energy SO ACTA MATERIALIA LA English DT Article DE Nuclear materials; Radiation effects; Stress corrosion cracking; Structural alloys (steels and nickel base); Nuclear fuels ID AUSTENITIC STAINLESS-STEELS; STRESS-CORROSION CRACKING; FERRITIC-MARTENSITIC STEELS; LOW-TEMPERATURE IRRADIATION; REACTOR STRUCTURAL-MATERIALS; WATER-REACTOR; LIGHT-WATER; SUPERCRITICAL WATER; ZIRCONIUM ALLOYS; MICROSTRUCTURAL EVOLUTION AB Nuclear power currently provides about 13% of electrical power worldwide, and has emerged as a reliable baseload source of electricity. A number of materials challenges must be successfully resolved for nuclear energy to continue to make further improvements in reliability, safety and economics. The operating environment for materials in current and proposed future nuclear energy systems is summarized, along with a description of materials used for the main operating components. Materials challenges associated with power uprates and extensions of the operating lifetimes of reactors are described. The three major materials challenges for the current and next generation of water-cooled fission reactors are centered on two structural materials aging degradation issues (corrosion and stress corrosion cracking of structural materials and neutron-induced embrittlement of reactor pressure vessels), along with improved fuel system reliability and accident tolerance issues. The major corrosion and stress corrosion cracking degradation mechanisms for light-water reactors are reviewed. The materials degradation issues for the Zr alloy-clad UO2 fuel system currently utilized in the majority of commercial nuclear power plants are discussed for normal and off-normal operating conditions. Looking to proposed future (Generation IV) fission and fusion energy systems, there are five key bulk radiation degradation effects (low temperature radiation hardening and embrittlement; radiation-induced and -modified solute segregation and phase stability; irradiation creep; void swelling; and high-temperature helium embrittlement) and a multitude of corrosion and stress corrosion cracking effects (including irradiation-assisted phenomena) that can have a major impact on the performance of structural materials. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Zinkle, S. J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Was, G. S.] Univ Michigan, Nucl Engn & Radiol Sci Dept, Ann Arbor, MI 48109 USA. RP Zinkle, SJ (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM zinklesj@ornl.gov OI Zinkle, Steven/0000-0003-2890-6915 NR 156 TC 230 Z9 239 U1 98 U2 614 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD FEB PY 2013 VL 61 IS 3 BP 735 EP 758 DI 10.1016/j.actamat.2012.11.004 PG 24 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 091UO UT WOS:000315075500003 ER PT J AU Wu, XH Wang, SF AF Wu, Xiaohui Wang, Shanfeng TI Biomimetic Calcium Carbonate Concentric Microgrooves with Tunable Widths for Promoting MC3T3-E1 Cell Functions SO ADVANCED HEALTHCARE MATERIALS LA English DT Article ID OSTEOBLAST-LIKE CELLS; GROWTH-BEHAVIOR; NUCLEAR SHAPE; BONE REPAIR; IN-VITRO; SURFACE; TOPOGRAPHY; MATRIX; MICRO; MINERALIZATION AB Biomimetic, self-assembled calcium carbonate (CaCO3) concentric microgrooves with groove widths of 5.0 and 10 mu m were fabricated through simply controlling incubation temperature. Mouse pre-osteoblastic MC3T3-E1 cells were cultured on flat and microgrooved substrates of CaCO3 and their adhesion, spreading, proliferation, alkaline phosphatase activity, and calcium content were remarkably enhanced by the microgrooves, in particular, the narrower ones. Furthermore, focal adhesions and actin filaments of MC3T3-E1 cells could be aligned on both 5.0-mu m and 10-mu m-wide CaCO3 grooves. Compared with the original round nuclei on the flat substrates and expanded round nuclei on the narrower microgrooves, the MC3T3-E1 cell nuclei on 10-mu m-wide CaCO3 grooves demonstrated preferred entrapment in the grooves and significant alignment with a smaller area after two-day culture. C1 [Wu, Xiaohui; Wang, Shanfeng] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Wang, Shanfeng] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. RP Wang, SF (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM swang16@utk.edu FU University of Tennessee; Center for Materials Processing in the department FX This work was supported by the start-up fund of the University of Tennessee and Center for Materials Processing in the department. NR 50 TC 18 Z9 19 U1 4 U2 48 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 2192-2640 J9 ADV HEALTHC MATER JI Adv. Healthc. Mater. PD FEB PY 2013 VL 2 IS 2 BP 326 EP 333 DI 10.1002/adhm.201200205 PG 8 WC Engineering, Biomedical; Nanoscience & Nanotechnology; Materials Science, Biomaterials SC Engineering; Science & Technology - Other Topics; Materials Science GA 092LJ UT WOS:000315122900014 PM 23184859 ER PT J AU Aryal, UK Callister, SJ Mishra, S Zhang, XH Shutthanandan, JI Angel, TE Shukla, AK Monroe, ME Moore, RJ Koppenaal, DW Smith, RD Sherman, L AF Aryal, Uma K. Callister, Stephen J. Mishra, Sujata Zhang, Xiaohui Shutthanandan, Janani I. Angel, Thomas E. Shukla, Anil K. Monroe, Matthew E. Moore, Ronald J. Koppenaal, David W. Smith, Richard D. Sherman, Louis TI Proteome Analyses of Strains ATCC 51142 and PCC 7822 of the Diazotrophic Cyanobacterium Cyanothece sp under Culture Conditions Resulting in Enhanced H-2 Production SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID NITROGEN-FIXING CYANOBACTERIUM; CONTINUOUS-LIGHT; HYDROGEN-PRODUCTION; TRANSCRIPTIONAL ANALYSIS; DIURNAL RHYTHMS; ANABAENA SP; METABOLISM; FIXATION; CARBON; CELLS AB Cultures of the cyanobacterial genus Cyanothece have been shown to produce high levels of biohydrogen. These strains are diazotrophic and undergo pronounced diurnal cycles when grown under N-2-fixing conditions in light-dark cycles. We seek to better understand the way in which proteins respond to these diurnal changes, and we performed quantitative proteome analysis of Cyanothece sp. strains ATCC 51142 and PCC 7822 grown under 8 different nutritional conditions. Nitrogenase expression was limited to N-2-fixing conditions, and in the absence of glycerol, nitrogenase gene expression was linked to the dark period. However, glycerol induced expression of nitrogenase during part of the light period, together with cytochrome c oxidase (Cox), glycogen phosphorylase (Glp), and glycolytic and pentose phosphate pathway (PPP) enzymes. This indicated that nitrogenase expression in the light was facilitated via higher levels of respiration and glycogen breakdown. Key enzymes of the Calvin cycle were inhibited in Cyanothece ATCC 51142 in the presence of glycerol under H-2-producing conditions, suggesting a competition between these sources of carbon. However, in Cyanothece PCC 7822, the Calvin cycle still played a role in cofactor recycling during H-2 production. Our data comprise the first comprehensive profiling of proteome changes in Cyanothece PCC 7822 and allow an in-depth comparative analysis of major physiological and biochemical processes that influence H-2 production in both strains. Our results revealed many previously uncharacterized proteins that may play a role in nitrogenase activity and in other metabolic pathways and may provide suitable targets for genetic manipulation that would lead to improvement of large-scale H-2 production. C1 [Aryal, Uma K.; Callister, Stephen J.; Shutthanandan, Janani I.; Angel, Thomas E.; Shukla, Anil K.; Monroe, Matthew E.; Moore, Ronald J.; Koppenaal, David W.; Smith, Richard D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Mishra, Sujata; Zhang, Xiaohui; Sherman, Louis] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. RP Sherman, L (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM lsherman@purdue.edu RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU DOE Genomics: GTL program; Department of Energy's Office of Biological and Environmental Research FX This work was supported by a grant from the DOE Genomics: GTL program, and a portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 50 TC 14 Z9 15 U1 2 U2 33 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2013 VL 79 IS 4 BP 1070 EP 1077 DI 10.1128/AEM.02864-12 PG 8 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 089EE UT WOS:000314891500001 PM 23204418 ER PT J AU Yu, R Peethambaram, HS Falta, RW Verce, MF Henderson, JK Bagwell, CE Brigmon, RL Freedman, DL AF Yu, Rong Peethambaram, Hari S. Falta, Ronald W. Verce, Matthew F. Henderson, James K. Bagwell, Christopher E. Brigmon, Robin L. Freedman, David L. TI Kinetics of 1,2-Dichloroethane and 1,2-Dibromoethane Biodegradation in Anaerobic Enrichment Cultures SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID DICHLOROELIMINANS STRAIN DCA1; VINYL-CHLORIDE; REDUCTIVE DECHLORINATION; CHLORINATED ETHENES; ETHYLENE DIBROMIDE; GROUNDWATER; GROWTH; DEHALOGENASE; BACTERIUM; DETOXIFICATION AB 1,2-Dichloroethane (1,2-DCA) and 1,2-dibromoethane (ethylene dibromide [EDB]) contaminate groundwater at many hazardous waste sites. The objectives of this study were to measure yields, maximum specific growth rates ((mu) over cap), and half-saturation coefficients (K-S) in enrichment cultures that use 1,2-DCA and EDB as terminal electron acceptors and lactate as the electron donor and to evaluate if the presence of EDB has an effect on the kinetics of 1,2-DCA dehalogenation and vice versa. Biodegradation was evaluated at the high concentrations found at some industrial sites (>10 mg/liter) and at lower concentrations found at former leaded-gasoline sites (1.9 to 3.7 mg/liter). At higher concentrations, the Dehalococcoides yield was 1 order of magnitude higher when bacteria were grown with 1,2-DCA than when they were grown with EDB, while (mu) over cap 's were similar for the two compounds, ranging from 0.19 to 0.52 day(-1) with 1,2-DCA to 0.28 to 0.36 day(-1) for EDB. K-S was larger for 1,2-DCA (15 to 25 mg/liter) than for EDB (1.8 to 3.7 mg/liter). In treatments that received both compounds, EDB was always consumed first and adversely impacted the kinetics of 1,2-DCA utilization. Furthermore, 1,2-DCA dechlorination was interrupted by the addition of EDB at a concentration 100 times lower than that of the remaining 1,2-DCA; use of 1,2-DCA did not resume until the EDB level decreased close to its maximum contaminant level (MCL). In lower-concentration experiments, the preferential consumption of EDB over 1,2-DCA was confirmed; both compounds were eventually dehalogenated to their respective MCLs (5 mu g/liter for 1,2-DCA, 0.05 mu g/liter for EDB). The enrichment culture grown with 1,2-DCA has the advantage of a more rapid transition to 1,2-DCA after EDB is consumed. C1 [Yu, Rong; Peethambaram, Hari S.; Falta, Ronald W.; Freedman, David L.] Clemson Univ, Dept Environm Engn & Earth Sci, Clemson, SC 29634 USA. [Verce, Matthew F.] Weiss Associates, Emeryville, CA USA. [Henderson, James K.] DuPont Corp, Remediat Grp, Charlotte, NC USA. [Bagwell, Christopher E.; Brigmon, Robin L.] Savannah River Natl Lab, Aiken, SC USA. RP Freedman, DL (reprint author), Clemson Univ, Dept Environm Engn & Earth Sci, Clemson, SC 29634 USA. EM dfreedm@clemson.edu FU DuPont Young Professor Grant; U.S. Department of Energy; Savannah River National Laboratory; [DE-AC09-08SR22470] FX Partial funding was received via a DuPont Young Professor Grant to Yanru Yang, who assisted with the design of the experiments. The research reported here was also accomplished under contract DE-AC09-08SR22470 with the U.S. Department of Energy and the Savannah River National Laboratory. NR 34 TC 14 Z9 14 U1 5 U2 51 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2013 VL 79 IS 4 BP 1359 EP 1367 DI 10.1128/AEM.02163-12 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 089EE UT WOS:000314891500034 PM 23263950 ER PT J AU Slater, S Setubal, JC Goodner, B Houmiel, K Sun, J Kaul, R Goldman, BS Farrand, SK Almeida, N Burr, T Nester, E Rhoads, DM Kadoi, R Ostheimer, T Pride, N Sabo, A Henry, E Telepak, E Cromes, L Harkleroad, A Oliphant, L Pratt-Szegila, P Welch, R Wood, D AF Slater, Steven Setubal, Joao C. Goodner, Brad Houmiel, Kathryn Sun, Jian Kaul, Rajinder Goldman, Barry S. Farrand, Stephen K. Almeida, Nalvo, Jr. Burr, Thomas Nester, Eugene Rhoads, David M. Kadoi, Ryosuke Ostheimer, Trucian Pride, Nicole Sabo, Allison Henry, Erin Telepak, Erin Cromes, Lindsey Harkleroad, Alana Oliphant, Louis Pratt-Szegila, Phil Welch, Roy Wood, Derek TI Reconciliation of Sequence Data and Updated Annotation of the Genome of Agrobacterium tumefaciens C58, and Distribution of a Linear Chromosome in the Genus Agrobacterium SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID ALLORHIZOBIUM-UNDICOLA; PLANT PATHOGEN; IDENTIFICATION; PROTEOBACTERIA; RADIOBACTER; RHIZOGENES; BACTERIA; AFLP AB Two groups independently sequenced the Agrobacterium tumefaciens C58 genome in 2001. We report here consolidation of these sequences, updated annotation, and additional analysis of the evolutionary history of the linear chromosome, which is apparently limited to the biovar I group of Agrobacterium. C1 [Slater, Steven] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI USA. [Slater, Steven] Univ Wisconsin, Dept Bacteriol, Madison, WI 53706 USA. [Slater, Steven; Houmiel, Kathryn] Arizona State Univ, Biodesign Inst, Tempe, AZ USA. [Setubal, Joao C.; Sun, Jian] Univ Sao Paulo, Inst Chem, Sao Paulo, Brazil. [Setubal, Joao C.] Virginia Polytech Inst & State Univ, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA. [Setubal, Joao C.] Virginia Polytech Inst & State Univ, Dept Comp Sci, Blacksburg, VA 24061 USA. [Goodner, Brad; Kadoi, Ryosuke; Ostheimer, Trucian; Pride, Nicole; Sabo, Allison; Henry, Erin; Telepak, Erin; Cromes, Lindsey; Harkleroad, Alana] Hiram Coll, Dept Biol, Hiram, OH 44234 USA. [Houmiel, Kathryn; Wood, Derek] Seattle Pacific Univ, Dept Biol, Seattle, WA 98119 USA. [Kaul, Rajinder] Univ Washington, Genome Ctr, Seattle, WA 98195 USA. [Goldman, Barry S.] Monsanto Co, St Louis, MO USA. [Farrand, Stephen K.] Univ Illinois, Dept Microbiol, Urbana, IL 61801 USA. [Almeida, Nalvo, Jr.] Univ Fed Mato Grosso do Sul, Fac Comp, Campo Grande, Brazil. [Burr, Thomas] Cornell Univ, Coll Agr & Life Sci, Geneva, NY USA. [Burr, Thomas] Cornell Univ, New York State Agr Expt Stn, Dept Plant Pathol, Geneva, NY 14456 USA. [Nester, Eugene; Wood, Derek] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Rhoads, David M.] Univ Arizona, Sch Plant Sci, Tucson, AZ USA. [Kadoi, Ryosuke] Brightcove, Tokyo, Japan. [Ostheimer, Trucian] Univ Illinois, Dept Ophthalmol & Visual Sci, Chicago, IL USA. [Pride, Nicole] Cuyahoga Metropolitan Housing Author Police Dept, Cleveland, OH USA. [Sabo, Allison] Summa Akron City Hosp, Akron, OH USA. [Henry, Erin] Cleveland Clin, Dept Cardiovasc Med, Cleveland, OH 44106 USA. [Telepak, Erin] Lake Erie Coll Osteopath Med, Erie, PA USA. [Cromes, Lindsey] Richardson Anim Hosp, Ravenna, OH USA. [Harkleroad, Alana] Univ Minnesota, Coll Vet Med, Minneapolis, MN 55455 USA. [Oliphant, Louis] Hiram Coll, Dept Comp Sci, Hiram, OH USA. [Pratt-Szegila, Phil] Syracuse Univ, Dept Comp & Informat Sci & Engn, Syracuse, NY USA. [Welch, Roy] Syracuse Univ, Dept Biol, Syracuse, NY 13244 USA. RP Goodner, B (reprint author), Hiram Coll, Dept Biol, Hiram, OH 44234 USA. EM goodnerbw@hiram.edu RI Setubal, Joao/C-7305-2012; Oncogenomica, Inct/H-9999-2013; Almeida, Nalvo/B-5856-2012; OI Setubal, Joao/0000-0001-9174-2816; Almeida, Nalvo/0000-0001-5615-1746; Welch, Roy/0000-0002-9946-108X FU National Science Foundation [0333297, 0603491, 0736671]; M.J. Murdock Charitable Trust life sciences program [2004262]; Howard Hughes Medical Institute [52005125]; Monsanto Fund FX This work was supported by National Science Foundation grants 0333297, 0603491, and 0736671, by a grant from the M.J. Murdock Charitable Trust life sciences program (2004262:JVZ), by a science education grant from the Howard Hughes Medical Institute (52005125), and by the Monsanto Fund. NR 22 TC 5 Z9 5 U1 0 U2 20 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2013 VL 79 IS 4 BP 1414 EP 1417 DI 10.1128/AEM.03192-12 PG 4 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 089EE UT WOS:000314891500044 PM 23241979 ER PT J AU Hastbacka, M Dieckmann, J Bouza, A AF Hastbacka, Mildred Dieckmann, John Bouza, Antonio TI Centrifugal Compressors SO ASHRAE JOURNAL LA English DT Editorial Material C1 [Hastbacka, Mildred] TIAX LLC, Lexington, MA USA. [Dieckmann, John] TIAX LLC, Mech Syst Grp, Lexington, MA USA. [Bouza, Antonio] US DOE, Washington, DC 20585 USA. RP Hastbacka, M (reprint author), TIAX LLC, Lexington, MA USA. NR 9 TC 0 Z9 0 U1 0 U2 6 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD FEB PY 2013 VL 55 IS 2 BP 63 EP 64 PG 2 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 087DV UT WOS:000314742400017 ER PT J AU Sherman, M AF Sherman, Max TI What We Know Can Hurt Us SO ASHRAE JOURNAL LA English DT Editorial Material C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Sherman, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 J9 ASHRAE J JI ASHRAE J. PD FEB PY 2013 VL 55 IS 2 BP 75 EP 77 PG 3 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 087DV UT WOS:000314742400021 ER PT J AU Batalha, NM Rowe, JF Bryson, ST Barclay, T Burke, CJ Caldwell, DA Christiansen, JL Mullally, F Thompson, SE Brown, TM Dupree, AK Fabrycky, DC Ford, EB Fortney, JJ Gilliland, RL Isaacson, H Latham, DW Marcy, GW Quinn, SN Ragozzine, D Shporer, A Borucki, WJ Ciardi, DR Gautier, TN Haas, MR Jenkins, JM Koch, DG Lissauer, JJ Rapin, W Basri, GS Boss, AP Buchhave, LA Carter, JA Charbonneau, D Christensen-Dalsgaard, J Clarke, BD Cochran, WD Demory, BO Desert, JM Devore, E Doyle, LR Esquerdo, GA Everett, M Fressin, F Geary, JC Girouard, FR Gould, A Hall, JR Holman, MJ Howard, AW Howell, SB Ibrahim, KA Kinemuchi, K Kjeldsen, H Klaus, TC Li, J Lucas, PW Meibom, S Morris, RL Prsa, A Quintana, E Sanderfer, DT Sasselov, D Seader, SE Smith, JC Steffen, JH Still, M Stumpe, MC Tarter, JC Tenenbaum, P Torres, G Twicken, JD Uddin, K Van Cleve, J Walkowicz, L Welsh, WF AF Batalha, Natalie M. Rowe, Jason F. Bryson, Stephen T. Barclay, Thomas Burke, Christopher J. Caldwell, Douglas A. Christiansen, Jessie L. Mullally, Fergal Thompson, Susan E. Brown, Timothy M. Dupree, Andrea K. Fabrycky, Daniel C. Ford, Eric B. Fortney, Jonathan J. Gilliland, Ronald L. Isaacson, Howard Latham, David W. Marcy, Geoffrey W. Quinn, Samuel N. Ragozzine, Darin Shporer, Avi Borucki, William J. Ciardi, David R. Gautier, Thomas N., III Haas, Michael R. Jenkins, Jon M. Koch, David G. Lissauer, Jack J. Rapin, William Basri, Gibor S. Boss, Alan P. Buchhave, Lars A. Carter, Joshua A. Charbonneau, David Christensen-Dalsgaard, Joergen Clarke, Bruce D. Cochran, William D. Demory, Brice-Olivier Desert, Jean-Michel Devore, Edna Doyle, Laurance R. Esquerdo, Gilbert A. Everett, Mark Fressin, Francois Geary, John C. Girouard, Forrest R. Gould, Alan Hall, Jennifer R. Holman, Matthew J. Howard, Andrew W. Howell, Steve B. Ibrahim, Khadeejah A. Kinemuchi, Karen Kjeldsen, Hans Klaus, Todd C. Li, Jie Lucas, Philip W. Meibom, Soren Morris, Robert L. Prsa, Andrej Quintana, Elisa Sanderfer, Dwight T. Sasselov, Dimitar Seader, Shawn E. Smith, Jeffrey C. Steffen, Jason H. Still, Martin Stumpe, Martin C. Tarter, Jill C. Tenenbaum, Peter Torres, Guillermo Twicken, Joseph D. Uddin, Kamal Van Cleve, Jeffrey Walkowicz, Lucianne Welsh, William F. TI PLANETARY CANDIDATES OBSERVED BY KEPLER. III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; eclipses; planetary systems; space vehicles; techniques: photometric ID SOLAR-TYPE STARS; SUN-LIKE STAR; TARGET STARS; ECLIPSING BINARIES; HABITABLE PLANETS; INPUT CATALOG; DATA RELEASE; LOW-MASS; SYSTEMS; METALLICITIES AB New transiting planet candidates are identified in 16 months (2009 May-2010 September) of data from the Kepler spacecraft. Nearly 5000 periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1108 viable new planet candidates, bringing the total count up to over 2300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multiquarter photo-center offsets derived from difference image analysis that identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the candidates. Ephemerides (transit epoch, T-0, and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (R-P / R-star), reduced semimajor axis (d / R-star), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (201% for candidates smaller than 2R(circle plus). compared to 53% for candidates larger than 2R.) and those at longer orbital periods (124% for candidates outside of 50 day orbits versus 86% for candidates inside of 50 day orbits). The gains are larger than expected from increasing the observing window from 13 months (Quarters 1-5) to 16 months (Quarters 1-6) even in regions of parameter space where one would have expected the previous catalogs to be complete. Analyses of planet frequencies based on previous catalogs will be affected by such incompleteness. The fraction of all planet candidate host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the habitable zone are forthcoming if, indeed, such planets are abundant. C1 [Batalha, Natalie M.] San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. [Batalha, Natalie M.; Bryson, Stephen T.; Christiansen, Jessie L.; Borucki, William J.; Haas, Michael R.; Koch, David G.; Lissauer, Jack J.; Rapin, William; Howell, Steve B.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Rowe, Jason F.; Burke, Christopher J.; Caldwell, Douglas A.; Mullally, Fergal; Thompson, Susan E.; Jenkins, Jon M.; Li, Jie; Quintana, Elisa; Seader, Shawn E.; Smith, Jeffrey C.; Stumpe, Martin C.; Tenenbaum, Peter; Twicken, Joseph D.; Van Cleve, Jeffrey] NASA, SETI Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Barclay, Thomas; Kinemuchi, Karen; Still, Martin] NASA, Bay Area Environm Res Inst, Ames Res Ctr, Moffett Field, CA 94035 USA. [Brown, Timothy M.; Shporer, Avi] Global Telescope Network, Las Cumbres Observ, Goleta, CA 93117 USA. [Dupree, Andrea K.; Latham, David W.; Quinn, Samuel N.; Ragozzine, Darin; Carter, Joshua A.; Charbonneau, David; Desert, Jean-Michel; Esquerdo, Gilbert A.; Fressin, Francois; Geary, John C.; Holman, Matthew J.; Meibom, Soren; Sasselov, Dimitar; Torres, Guillermo] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Fabrycky, Daniel C.; Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95060 USA. [Ford, Eric B.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Gilliland, Ronald L.] Penn State Univ, Ctr Exoplanets & Habitable Worlds, University Pk, PA 16802 USA. [Isaacson, Howard; Marcy, Geoffrey W.; Basri, Gibor S.; Howard, Andrew W.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Quinn, Samuel N.] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30302 USA. [Ciardi, David R.] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA. [Gautier, Thomas N., III; Clarke, Bruce D.] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA. [Boss, Alan P.] Carnegie Inst Sci, Washington, DC 20015 USA. [Buchhave, Lars A.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [Buchhave, Lars A.] Univ Copenhagen, Nat Hist Museum Denmark, Ctr Star & Planet Format, DK-1350 Copenhagen, Denmark. [Christensen-Dalsgaard, Joergen; Kjeldsen, Hans] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark. [Cochran, William D.] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA. [Demory, Brice-Olivier] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA. [Devore, Edna; Doyle, Laurance R.; Tarter, Jill C.] SETI Inst, Mountain View, CA 94043 USA. [Everett, Mark] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Girouard, Forrest R.; Hall, Jennifer R.; Ibrahim, Khadeejah A.; Klaus, Todd C.; Morris, Robert L.; Sanderfer, Dwight T.; Uddin, Kamal] NASA, Orbital Sci Corp, Ames Res Ctr, Moffett Field, CA 94035 USA. [Gould, Alan] Lawrence Hall Sci, Berkeley, CA 94720 USA. [Lucas, Philip W.] Univ Hertfordshire, Ctr Astrophys, Hatfield AL10 9AB, Herts, England. [Prsa, Andrej] Villanova Univ, Dept Astron & Astrophys, Villanova, PA 19085 USA. [Steffen, Jason H.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Walkowicz, Lucianne] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Welsh, William F.] San Diego State Univ, Dept Astron, San Diego, CA 92182 USA. RP Batalha, NM (reprint author), San Jose State Univ, Dept Phys & Astron, San Jose, CA 95192 USA. EM Natalie.Batalha@nasa.gov RI Caldwell, Douglas/L-7911-2014; Howard, Andrew/D-4148-2015; OI Caldwell, Douglas/0000-0003-1963-9616; Howard, Andrew/0000-0001-8638-0320; Ciardi, David/0000-0002-5741-3047; Demory, Brice-Olivier/0000-0002-9355-5165; /0000-0001-6545-639X; Fabrycky, Daniel/0000-0003-3750-0183; Buchhave, Lars A./0000-0003-1605-5666; Fortney, Jonathan/0000-0002-9843-4354 FU NASA's Science Mission Directorate.; National Aeronautics and Space Administration [NNX08AR04G] FX Funding for this Discovery mission is provided by NASA's Science Mission Directorate. This material is based on work supported by the National Aeronautics and Space Administration under grant NNX08AR04G issued through the Kepler Participating Scientist Program. NR 59 TC 434 Z9 434 U1 5 U2 65 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD FEB PY 2013 VL 204 IS 2 AR 24 DI 10.1088/0067-0049/204/2/24 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 088BZ UT WOS:000314810100011 ER PT J AU Frey, LH Even, W Whalen, DJ Fryer, CL Hungerford, AL Fontes, CJ Colgan, J AF Frey, Lucille H. Even, Wesley Whalen, Daniel J. Fryer, Chris L. Hungerford, Aimee L. Fontes, Christopher J. Colgan, James TI THE LOS ALAMOS SUPERNOVA LIGHT-CURVE PROJECT: COMPUTATIONAL METHODS SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE atomic data; methods: numerical; radiative transfer; supernovae: general ID CORE-COLLAPSE SUPERNOVAE; SHOCK BREAKOUT; RADIATION HYDRODYNAMICS; MASSIVE STARS; IA SUPERNOVAE; SN 1987A; EVOLUTION; SPECTRA; MODELS; GRB-060218 AB We have entered the era of explosive transient astronomy, in which current and upcoming real-time surveys such as the Large Synoptic Survey Telescope, the Palomar Transient Factory, and the Panoramic Survey Telescope and Rapid Response System will detect supernovae in unprecedented numbers. Future telescopes such as the James Webb Space Telescope may discover supernovae from the earliest stars in the universe and reveal their masses. The observational signatures of these astrophysical transients are the key to unveiling their central engines, the environments in which they occur, and to what precision they will pinpoint cosmic acceleration and the nature of dark energy. We present a new method for modeling supernova light curves and spectra with the radiation hydrodynamics code RAGE coupled with detailed monochromatic opacities in the SPECTRUM code. We include a suite of tests that demonstrate how the improved physics and opacities are indispensable to modeling shock breakout and light curves when radiation and matter are tightly coupled. C1 [Frey, Lucille H.] Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. [Frey, Lucille H.; Even, Wesley; Hungerford, Aimee L.] Los Alamos Natl Lab, XTD 6, Los Alamos, NM 87545 USA. [Whalen, Daniel J.] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Fryer, Chris L.] Los Alamos Natl Lab, CCS 2, Los Alamos, NM 87545 USA. [Fryer, Chris L.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. [Fryer, Chris L.] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA. [Fontes, Christopher J.] Los Alamos Natl Lab, XCP 5, Los Alamos, NM 87545 USA. [Colgan, James] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Frey, LH (reprint author), Univ New Mexico, Dept Comp Sci, Albuquerque, NM 87131 USA. OI Colgan, James/0000-0003-1045-3858; Frey, Lucille/0000-0002-5478-2293; Even, Wesley/0000-0002-5412-3618 FU Bruce and Astrid McWilliams Center for Cosmology at Carnegie Mellon University; National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396] FX We thank Gabriel Rockefeller of CCS-2 at LANL for the development of the code used to extract explosion profiles from RAGEAMR data. D.J.W. was supported by the Bruce and Astrid McWilliams Center for Cosmology at Carnegie Mellon University. Work at LANL was done under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. All RAGE and SPECTRUM calculations were performed on Institutional Computing (IC) and Yellow network platforms at LANL (Conejo, Mapache, Lobo, Turing, and Yellowrail). NR 60 TC 21 Z9 21 U1 1 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD FEB PY 2013 VL 204 IS 2 AR 16 DI 10.1088/0067-0049/204/2/16 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 088BZ UT WOS:000314810100003 ER PT J AU Wang, LM Wang, XD Arkin, AP Samoilov, MS AF Wang, Liming Wang, Xiaodong Arkin, Adam P. Samoilov, Michael S. TI Inference of gene regulatory networks from genome-wide knockout fitness data SO BIOINFORMATICS LA English DT Article ID SACCHAROMYCES-CEREVISIAE GENOME; GLUCOSE REPRESSION; BOOLEAN NETWORK; EXPRESSION DATA; KALMAN FILTER; YEAST; MODELS; SYSTEMS; STABILITY; ALGORITHM AB Motivation: Genome-wide fitness is an emerging type of high-throughput biological data generated for individual organisms by creating libraries of knockouts, subjecting them to broad ranges of environmental conditions, and measuring the resulting clone-specific fitnesses. Since fitness is an organism-scale measure of gene regulatory network behaviour, it may offer certain advantages when insights into such phenotypical and functional features are of primary interest over individual gene expression. Previous works have shown that genome-wide fitness data can be used to uncover novel gene regulatory interactions, when compared with results of more conventional gene expression analysis. Yet, to date, few algorithms have been proposed for systematically using genome-wide mutant fitness data for gene regulatory network inference. Results: In this article, we describe a model and propose an inference algorithm for using fitness data from knockout libraries to identify underlying gene regulatory networks. Unlike most prior methods, the presented approach captures not only structural, but also dynamical and non-linear nature of biomolecular systems involved. A state-space model with non-linear basis is used for dynamically describing gene regulatory networks. Network structure is then elucidated by estimating unknown model parameters. Unscented Kalman filter is used to cope with the non-linearities introduced in the model, which also enables the algorithm to run in on-line mode for practical use. Here, we demonstrate that the algorithm provides satisfying results for both synthetic data as well as empirical measurements of GAL network in yeast Saccharomyces cerevisiae and TyrR-LiuR network in bacteria Shewanella oneidensis. C1 [Wang, Liming] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA. [Wang, Xiaodong] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA. [Arkin, Adam P.; Samoilov, Michael S.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Wang, XD (reprint author), Columbia Univ, Dept Elect Engn, New York, NY 10027 USA. EM wangx@ee.columbia.edu; mssamoilov@lbl.gov RI Arkin, Adam/A-6751-2008; OI Arkin, Adam/0000-0002-4999-2931; Samoilov, Michael/0000-0003-3559-5326 FU Office of Science, Office of Biological and Environmental Research, of the U. S. Department of Energy [DE-AC02-05CH11231]; U.S. National Science Foundation (NSF) grant [DBI-0850030]; Columbia Open-Access Publication (COAP) Fund FX This work conducted by ENIGMA-Ecosystems and Networks Integrated with Genes and Molecular Assemblies was supported by the Office of Science, Office of Biological and Environmental Research, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231; and under U.S. National Science Foundation (NSF) grant DBI-0850030. Partial funding for open access charge by the Columbia Open-Access Publication (COAP) Fund. NR 59 TC 8 Z9 8 U1 1 U2 27 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 J9 BIOINFORMATICS JI Bioinformatics PD FEB 1 PY 2013 VL 29 IS 3 BP 338 EP 346 DI 10.1093/bioinformatics/bts634 PG 9 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 089EI UT WOS:000314892000006 PM 23271269 ER PT J AU Turner, WJN Logue, JM Wray, CP AF Turner, William J. N. Logue, Jennifer M. Wray, Craig P. TI A combined energy and IAQ assessment of the potential value of commissioning residential mechanical ventilation systems SO BUILDING AND ENVIRONMENT LA English DT Article DE Residential; Commissioning; Ventilation; Energy; Health; Indoor air quality ID AIR; FORMALDEHYDE; DEMAND AB Limited data suggest that whole-house ventilation systems in California don't always perform as code and forecasts predict. Deficiencies occur because systems are usually field assembled without design specifications, and there is no consistent process to identify and correct problems. The value of such activities in terms of reducing energy use and improving indoor air quality (IAQ) is poorly understood. Commissioning such systems, either when they are installed or during subsequent building retrofits, is a step towards eliminating deficiencies and optimizing the trade-off between energy use and IAQ. The goal of this study was to determine the potential value of commissioning residential whole-house ventilation systems that are intended to comply with California's Title 24 residential ventilation requirements. A computer modeling approach was used to assess the impact on occupant health and building energy use of malfunctioning whole-house ventilation systems. Energy and IAQ impacts were quantified and then compared by using the Time Dependent Valuation (TDV) approach for energy and a Disability Adjusted Life Year (DALY) approach for IAQ. Results showed that health benefits dominated energy benefits independently of house size and climate. The metric for commissioning whole-house ventilation systems should be net present value of the combined energy and IAQ benefits to the consumer. Commissioning cost decisions should be made relative to that value even if that means ventilating to exceed the ASHRAE 62.2 minimum. As a consequence of combining IAQ and energy costs, the beginning of an approach to optimize the ventilation rates of homes was established. Published by Elsevier Ltd. C1 [Turner, William J. N.; Logue, Jennifer M.; Wray, Craig P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Residential Bldg Syst Grp, Berkeley, CA 94720 USA. RP Turner, WJN (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Residential Bldg Syst Grp, Berkeley, CA 94720 USA. EM wjnturner@lbl.gov; jmlogue@lbl.gov; cpwray@lbl.gov FU California Energy Commission [500-08-061]; U.S. Dept. of Energy [DE-AC02-05CH11231] FX Funding for this work was provided by the California Energy Commission through Contract No. 500-08-061 and the U.S. Dept. of Energy under Contract No. DE-AC02-05CH11231. The authors would like to thank lain Walker and Max Sherman for their help with this article. NR 42 TC 7 Z9 7 U1 1 U2 28 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0360-1323 J9 BUILD ENVIRON JI Build. Environ. PD FEB PY 2013 VL 60 BP 194 EP 201 DI 10.1016/j.buildenv.2012.10.016 PG 8 WC Construction & Building Technology; Engineering, Environmental; Engineering, Civil SC Construction & Building Technology; Engineering GA 087AY UT WOS:000314734800018 ER PT J AU Yang, CC Eggenhuisen, TM Wolters, M Agiral, A Frei, H de Jongh, PE de Jong, KP Mul, G AF Yang, Chieh-Chao Eggenhuisen, Tamara M. Wolters, Mariska Agiral, Anil Frei, Heinz de Jongh, Petra E. de Jong, Krijn P. Mul, Guido TI Effects of Support, Particle Size, and Process Parameters on Co3O4 Catalyzed H2O Oxidation Mediated by the [Ru(bpy)(3)](2+) Persulfate System SO CHEMCATCHEM LA English DT Article DE cobalt oxide; photocatalysis; stability; water oxidation ID MESOPOROUS MOLECULAR-SIEVE; OXYGEN EVOLUTION; SILICA; WATER AB Water oxidation over highly dispersed cobalt oxide particles in porous silica was studied, applying photo-activation of the Ru(bpy)32+ photosensitizer complex and the sacrificial electron acceptor (S2O82). Under identical process conditions, 4nm crystalline Co3O4 particles dispersed in SBA-15, obtained by calcination of impregnated Co(NO3)2 in an NO/N2 atmosphere, showed higher O2 evolution rates than 7nm Co3O4 particles, obtained by air calcination of the same catalyst precursor. A similar trend was observed for Co3O4 dispersed in MCM-41, although MCM-41 catalysts showed lower O2 production rates than SBA-15 catalysts of comparable Co3O4 sizes. The positive effect of a small Co3O4-particle size is related to the higher amount of surface sites of Co3O4 interacting with the Ru complex, which subsequently leads to water oxidation. The effect of the silica scaffold was demonstrated to be the result of the higher surface area of MCM-41 versus SBA-15 (approximate to 1000m2g1 versus 600m2g1). Consequently a larger fraction of the [Ru(bpy)3]2+ photosensitizer complex immobilizes on the silica walls, and thus becomes ineffective to stimulate water oxidation. The nanosized Co3O4 particles in general were more effective than previously reported micron-sized crystals, even though nanostructuring leads to less favorable optical properties of Co3O4. The stability of the used Ru(bpy)32+ sensitizer, which is a function of mode of irradiation (wavelength) and buffer capacity, was found to be a major factor in controlling the evolved oxygen quantity. C1 [Yang, Chieh-Chao; Mul, Guido] Univ Twente, MESA Inst, PhotoCatalyt Synth Grp, NL-7500 AE Enschede, Netherlands. [Eggenhuisen, Tamara M.; Wolters, Mariska; de Jongh, Petra E.; de Jong, Krijn P.] Univ Utrecht, Debye Inst Nanomat Sci, NL-3584 CG Utrecht, Netherlands. [Agiral, Anil; Frei, Heinz] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Mul, G (reprint author), Univ Twente, MESA Inst, PhotoCatalyt Synth Grp, POB 217, NL-7500 AE Enschede, Netherlands. RI de Jongh, Petra/A-4761-2009; de Jong, Krijn/C-5319-2009; Institute (DINS), Debye/G-7730-2014 OI de Jongh, Petra/0000-0002-2216-2620; FU ACTS (NWO, the Netherlands), in the framework of an NSC-NWO project [NSC-97-2911-I-002-002] FX This work was supported by ACTS (NWO, the Netherlands), in the framework of an NSC-NWO project (Project Number NSC-97-2911-I-002-002). Chieh-Chao Yang thanks Bart van der Linden at Delft University of Technology for his major contribution regarding the custom-built catalytic evaluation system. The authors thank Hans Meeldijk and Cor van der Spek (UU) for the STEM and TEM analysis. NR 20 TC 14 Z9 14 U1 9 U2 115 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1867-3880 J9 CHEMCATCHEM JI ChemCatChem PD FEB PY 2013 VL 5 IS 2 SI SI BP 550 EP 556 DI 10.1002/cctc.201200696 PG 7 WC Chemistry, Physical SC Chemistry GA 080JV UT WOS:000314239000020 ER PT J AU Ellis, RJ Meridiano, Y Chiarizia, R Berthon, L Muller, J Couston, L Antonio, MR AF Ellis, Ross J. Meridiano, Yannick Chiarizia, Renato Berthon, Laurence Muller, Julie Couston, Laurent Antonio, Mark R. TI Periodic Behavior of Lanthanide Coordination within Reverse Micelles SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Review DE coordination chemistry; fluoresence spectroscopy; lanthanides; malonamides; micelles; solvent extraction; X-ray diffraction ID SMALL-ANGLE SCATTERING; 3RD PHASE-FORMATION; X-RAY-ABSORPTION; AQUEOUS CHLORIDE SOLUTIONS; HIGH ACTIVE CONCENTRATE; ADVANCED PHOTON SOURCE; N-DODECANE SYSTEM; RARE-EARTH IONS; SOLVENT-EXTRACTION; TRIVALENT LANTHANIDE AB Trends in lanthanide(III) (LnIII) coordination were investigated within nanoconfined solvation environments. LnIII ions were incorporated into the cores of reverse micelles (RMs) formed with malonamide amphiphiles in n-heptane by contact with aqueous phases containing nitrate and LnIII; both insert into pre-organized RM units built up of DMDOHEMA (N,N-dimethyl-N,N-dioctylhexylethoxymalonamide) that are either relatively large and hydrated or small and dry, depending on whether the organic phase is acidic or neutral, respectively. Structural aspects of the LnIII complex formation and the RM morphology were obtained by use of XAS (X-ray absorption spectroscopy) and SAXS (small-angle X-ray scattering). The LnIII coordination environments were determined through use of L3-edge XANES (X-ray absorption near edge structure) and EXAFS (extended X-ray absorption fine structure), which provide metrical insights into the chemistry across the period. Hydration numbers for the Eu species were measured using TRLIFS (time-resolved laser-induced fluorescence spectroscopy). The picture that emerges from a system-wide perspective of the LnO interatomic distances and number of coordinating oxygen atoms for the extracted complexes of LnIII in the first half of the series (i.e., Nd, Eu) is that they are different from those in the second half of the series (i.e., Tb, Yb): the number of coordinating oxygen atoms decrease from 9O for early lanthanides to 8O for the late onesa trend that is consistent with the effect of the lanthanide contraction. The environment within the RM, altered by either the presence or absence of acid, also had a pronounced influence on the nitrate coordination mode; for example, the larger, more hydrated, acidic RM core favors monodentate coordination, whereas the small, dry, neutral core favors bidentate coordination to LnIII. These findings show that the coordination chemistry of lanthanides within nanoconfined environments is neither equivalent to the solid nor bulk solution behaviors. Herein we address atomic- and mesoscale phenomena in the under-explored field of lanthanide coordination and periodic behavior within RMs, providing a consilience of fundamental insights into the chemistry of growing importance in technologies as diverse as nanosynthesis and separations science. C1 [Ellis, Ross J.; Chiarizia, Renato; Antonio, Mark R.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Meridiano, Yannick; Berthon, Laurence; Muller, Julie; Couston, Laurent] CEA, Nucl Energy Div, Radiochem & Proc Dept, F-30207 Bagnols Sur Ceze, France. RP Ellis, RJ (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM rellis@anl.gov; laurence.berthon@cea.fr RI BERTHON, Laurence/B-1374-2016; ellis, ross/J-1981-2016; OI BERTHON, Laurence/0000-0003-3474-8474; ellis, ross/0000-0001-7691-5205; Antonio, Mark/0000-0002-1208-4534 FU U.S. Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences, Biosciences and Geosciences [DE-AC02-06CH11357]; Direction de l'Innovation et du Soutien Nucleaire/aval du cycle futur/SEPOU FX We thank Dr. Sonke Seifert for assistance at the APS (Sector 12) and for useful discussions. This work is supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Chemical Sciences, Biosciences and Geosciences, under contract No DE-AC02-06CH11357 (for the parts performed at Argonne National Laboratory). The work at the CEA is supported by the Direction de l'Innovation et du Soutien Nucleaire/aval du cycle futur/SEPOU. NR 114 TC 22 Z9 22 U1 4 U2 114 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD FEB PY 2013 VL 19 IS 8 BP 2663 EP 2675 DI 10.1002/chem.201202880 PG 13 WC Chemistry, Multidisciplinary SC Chemistry GA 089QY UT WOS:000314926300015 PM 23296409 ER PT J AU Luo, QT Li, LY Wang, W Nie, ZM Wei, XL Li, B Chen, BW Yang, ZG Sprenkle, V AF Luo, Qingtao Li, Liyu Wang, Wei Nie, Zimin Wei, Xiaoliang Li, Bin Chen, Baowei Yang, Zhenguo Sprenkle, Vincent TI Capacity Decay and Remediation of Nafion-based All-Vanadium Redox Flow Batteries SO CHEMSUSCHEM LA English DT Article DE batteries; ion exchange; membranes; uv/vis spectroscopy; vanadium ID ENERGY-STORAGE; ION DIFFUSION; MEMBRANE AB The relationship between electrochemical performance of vanadium redox flow batteries (VRBs) and electrolyte composition is investigated, and the reasons for capacity decay over charge-discharge cycling are analyzed and discussed herein. The results show that the reasons for capacity fading over real charge-discharge cycling include not only the imbalanced vanadium active species, but also the asymmetrical valence of vanadium ions in positive and negative electrolytes. The asymmetrical valence of vanadium ions leads to a state-of-charge (SOC)-range decrease in positive electrolytes and a SOC-range increase in negative electrolytes. As a result, the higher SOC range in negative half-cells further aggravates capacity fading by creating a higher overpotential and possible hydrogen evolution. Based on this finding, we developed two methods for restoring lost capacity, thereby enabling long-term operation of VRBs to be achieved without the substantial loss of energy resulting from periodic total remixing of electrolytes. C1 [Luo, Qingtao; Wang, Wei; Nie, Zimin; Wei, Xiaoliang; Li, Bin; Chen, Baowei; Sprenkle, Vincent] Pacific NW Natl Lab, Richland, WA 99352 USA. [Li, Liyu; Yang, Zhenguo] UniEnergy Technol LLC, Unit A, Mukilteo, WA 98275 USA. RP Luo, QT (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM wei.wang@pnnl.gov RI Wang, Wei/F-4196-2010 OI Wang, Wei/0000-0002-5453-4695 FU U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) [57558]; The Pacific Northwest National Laboratory [DE-AC05-76L01830] FX The authors acknowledge financial support from the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) (under Contract 57558). We are also grateful for beneficial discussions with Dr. Imre Gyuk of the DOE-OE Grid Storage Program. The Pacific Northwest National Laboratory is a multi-program national laboratory operated by Battelle for DOE under Contract DE-AC05-76L01830. NR 18 TC 46 Z9 46 U1 9 U2 142 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 J9 CHEMSUSCHEM JI ChemSusChem PD FEB PY 2013 VL 6 IS 2 BP 268 EP 274 DI 10.1002/cssc.201200730 PG 7 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA 086BX UT WOS:000314659100007 PM 23208862 ER PT J AU Vautard, F Ozcan, S Poland, L Nardin, M Meyer, H AF Vautard, F. Ozcan, S. Poland, L. Nardin, M. Meyer, H. TI Influence of thermal history on the mechanical properties of carbon fiber-acrylate composites cured by electron beam and thermal processes SO COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING LA English DT Article DE Carbon fibers; Polymer-matrix composites (PMCs); Interface; Fiber/matrix bond ID INDUCED CATIONIC-POLYMERIZATION; PULL-OUT TESTS; HIGH-TEMPERATURE THERMOPLASTICS; CROSS-LINKING POLYMERIZATION; LOCAL BOND STRENGTH; REINFORCED COMPOSITES; INTERFACIAL ADHESION; AROMATIC DIACRYLATES; PREPREG COMPOSITES; SURFACE-PROPERTIES AB The mechanical properties of an acrylate resin and its carbon fiber composite, as well as the adhesion strength between them, were characterized in the case of thermal and electron beam curing (with and without thermal post-cure). It was shown that the properties of the matrix were similar but that the thermal history during the curing had a direct influence on the type of interactions that were generated at the interface, leading to different level of adhesion strength and level of performance for the associated composites. In the case of a thermal cure, the thermal profile allowed the generation of covalent bonding at the interface by thermal degradation of carboxylic acid functionalities and simultaneous production of radicals at the surface of the fiber. A high level of adhesion strength was obtained, which was not the case for electron beam curing without a thermal post-cure at the appropriate temperature. (c) 2012 Elsevier Ltd. All rights reserved. C1 [Vautard, F.; Ozcan, S.; Poland, L.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Polymer Matrix Composites Grp, Oak Ridge, TN 37831 USA. [Meyer, H.] Oak Ridge Natl Lab, Mat Sci & Technol Div, High Temp Mat Lab, Microscopy Grp, Oak Ridge, TN 37831 USA. [Nardin, M.] Univ Haute Alsace, LRC CNRS 7228, Inst Sci Mat Mulhouse, F-68057 Mulhouse, France. RP Vautard, F (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Polymer Matrix Composites Grp, Oak Ridge, TN 37831 USA. EM vautardf@oml.gov OI Ozcan, Soydan/0000-0002-3825-4589 FU U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, as part of the Lightweighting Materials FX This research was partially sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, as part of the Lightweighting Materials. A part of this research was done through the SHared Research Equipment (SHaRE) User Facility operated for the U.S. Department of Energy Office of Science by the Oak Ridge National Laboratory. Cytec Industries Inc. is sincerely acknowledged for the providing of Ebecryl 600 (R). Jamie Messman (Center for Nanophase Materials Sciences, Oak Ridge National Laboratory) is gratefully thanked for his assistance with the use of the FTIR spectrometer. NR 76 TC 15 Z9 17 U1 0 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1359-835X J9 COMPOS PART A-APPL S JI Compos. Pt. A-Appl. Sci. Manuf. PD FEB PY 2013 VL 45 BP 162 EP 172 DI 10.1016/j.compositesa.2012.08.025 PG 11 WC Engineering, Manufacturing; Materials Science, Composites SC Engineering; Materials Science GA 082ZQ UT WOS:000314432900020 ER PT J AU Wright, SA Hammond, SD Pennycook, SJ Bird, RF Herdman, JA Miller, I Vadgama, A Bhalerao, A Jarvis, SA AF Wright, S. A. Hammond, S. D. Pennycook, S. J. Bird, R. F. Herdman, J. A. Miller, I. Vadgama, A. Bhalerao, A. Jarvis, S. A. TI Parallel File System Analysis Through Application I/O Tracing SO COMPUTER JOURNAL LA English DT Article DE high performance computing; input/output; MPI; checkpointing; file systems ID ASTROPHYSICAL THERMONUCLEAR FLASHES; CODE; MPI AB Input/Output (I/O) operations can represent a significant proportion of the run-time of parallel scientific computing applications. Although there have been several advances in file format libraries, file system design and I/O hardware, a growing divergence exists between the performance of parallel file systems and the compute clusters that they support. In this paper, we document the design and application of the RIOT I/O toolkit (RIOT) being developed at the University of Warwick with our industrial partners at the Atomic Weapons Establishment and Sandia National Laboratories. We use the toolkit to assess the performance of three industry-standard I/O benchmarks on three contrasting supercomputers, ranging from a mid-sized commodity cluster to a large-scale proprietary IBM BlueGene/P system. RIOT provides a powerful framework in which to analyse I/O and parallel file system behaviour-we demonstrate, for example, the large file locking overhead of IBM's General Parallel File System, which can consume nearly 30% of the total write time in the FLASH-IO benchmark. Through I/O trace analysis, we also assess the performance of HDF-5 in its default configuration, identifying a bottleneck created by the use of suboptimal Message Passing Interface hints. Furthermore, we investigate the performance gains attributed to the Parallel Log-structured File System (PLFS) being developed by EMC Corporation and the Los Alamos National Laboratory. Our evaluation of PLFS involves two high-performance computing systems with contrasting I/O backplanes and illustrates the varied improvements to I/O that result from the deployment of PLFS (ranging from up to 25x speed-up in I/O performance on a large I/O installation to 2x speed-up on the much smaller installation at the University of Warwick). C1 [Wright, S. A.; Pennycook, S. J.; Bird, R. F.; Bhalerao, A.; Jarvis, S. A.] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England. [Hammond, S. D.] Sandia Natl Labs, Ctr Res Comp, Albuquerque, NM 87185 USA. [Herdman, J. A.; Miller, I.; Vadgama, A.] UK Atom Weap Estab, Supercomp Solut Ctr, Reading, Berks, England. RP Wright, SA (reprint author), Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England. EM steven.wright@warwick.ac.uk FU Royal Society [IF090020/AM]; AWE [KTP006740]; TSB Knowledge Transfer Partnership [KTP006740]; UK Atomic Weapons Establishment [CDK0660, CDK0724]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work is supported in part by The Royal Society through their Industry Fellowship Scheme (IF090020/AM). The performance modelling research is also supported jointly by AWE and the TSB Knowledge Transfer Partnership grant number KTP006740. Access to the LLNL OCF is made possible through collaboration with the UK Atomic Weapons Establishment under grants CDK0660 (The Production of Predictive Models for Future Computing Requirements) and CDK0724 (AWE Technical Outreach Programme). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 35 TC 5 Z9 5 U1 0 U2 8 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0010-4620 EI 1460-2067 J9 COMPUT J JI Comput. J. PD FEB PY 2013 VL 56 IS 2 BP 141 EP 155 DI 10.1093/comjnl/bxs044 PG 15 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 089EM UT WOS:000314892500002 ER PT J AU Perks, OFJ Beckingsale, DA Hammond, SD Miller, I Herdman, JA Vadgama, A Bhalerao, AH He, L Jarvis, SA AF Perks, O. F. J. Beckingsale, D. A. Hammond, S. D. Miller, I. Herdman, J. A. Vadgama, A. Bhalerao, A. H. He, L. Jarvis, S. A. TI Towards Automated Memory Model Generation Via Event Tracing SO COMPUTER JOURNAL LA English DT Article DE high performance computing; memory; multi-core; tracing; modelling ID COMPRESSION AB The importance of memory performance and capacity is a growing concern for high performance computing laboratories around the world. It has long been recognized that improvements in processor speed exceed the rate of improvement in dynamic random access memory speed and, as a result, memory access times can be the limiting factor in high performance scientific codes. The use of multi-core processors exacerbates this problem with the rapid growth in the number of cores not being matched by similar improvements in memory capacity, increasing the likelihood of memory contention. In this paper, we present , a lightweight memory tracing tool and analysis framework for parallel codes, which is able to identify peak memory usage and also analyse per-function memory use over time. An evaluation of , in terms of its effectiveness and also its overheads, is performed using nine established scientific applications/benchmark codes representing a variety of programming languages and scientific domains. We also show how can be used to automatically generate a parameterized memory model for one of these applications, a two-dimensional non-linear magnetohydrodynamics application, . Through the memory model we are able to identify an unexpected growth term which becomes dominant at scale. With a refined model we are able to predict memory consumption with under 7% error. C1 [Perks, O. F. J.; Beckingsale, D. A.; Bhalerao, A. H.; He, L.; Jarvis, S. A.] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England. [Hammond, S. D.] Sandia Natl Labs, Ctr Res Comp, Albuquerque, NM 87185 USA. [Miller, I.; Herdman, J. A.; Vadgama, A.] UK Atom Weap Estab, Supercomp Solut Ctr, Reading, Berks, England. RP Perks, OFJ (reprint author), Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England. EM o.perks@warwick.ac.uk FU Royal Society [IF090020/AM]; UK Atomic Weapons Establishment [CDK0660, CDK0724]; AWE [KTP006740]; TSB Knowledge Transfer Partnership [KTP006740]; EPSRC [EP/I029117/1]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported in part by The Royal Society through their Industry Fellowship Scheme (IF090020/AM) and by the UK Atomic Weapons Establishment under grants CDK0660 (The Production of Predictive Models for Future Computing Requirements) and CDK0724 (AWE Technical Outreach Programme). The performance modelling research was also supported jointly by AWE and the TSB Knowledge Transfer Partnership grant number KTP006740. The analysis of the Lare codes was supported through the EPSRC project EP/I029117/1 (A Radiation-hydrodynamic ALE Code for Laser Fusion Energy). Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 31 TC 0 Z9 0 U1 1 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0010-4620 J9 COMPUT J JI Comput. J. PD FEB PY 2013 VL 56 IS 2 BP 156 EP 174 DI 10.1093/comjnl/bxs051 PG 19 WC Computer Science, Hardware & Architecture; Computer Science, Information Systems; Computer Science, Software Engineering; Computer Science, Theory & Methods SC Computer Science GA 089EM UT WOS:000314892500003 ER PT J AU Li, DS Soberanis, F Fu, J Hou, WT Wu, JZ Kisailus, D AF Li, Dongsheng Soberanis, Frank Fu, Jia Hou, Wenting Wu, Jianzhong Kisailus, David TI Growth Mechanism of Highly Branched Titanium Dioxide Nanowires via Oriented Attachment SO CRYSTAL GROWTH & DESIGN LA English DT Article ID SENSITIZED SOLAR-CELLS; BUILDING-BLOCKS; CRYSTAL-GROWTH; TIO2; ANATASE; PERFORMANCE; RUTILE; NANOCRYSTALS; MORPHOLOGY; ELECTRODE AB Understanding fundamental crystal nucleation and growth mechanisms is critical for producing materials with controlled size and morphological features and uncovering structure-function relationships in these semiconducting oxides. Under hydro-solvothermal conditions, uniform branched and spherulitic TiO2 rutile nanostructures were formed via (101) twins. On the basis of detailed, high-resolution scanning electron microscopy and transmission electron microscopy analyses, we propose a mechanism of branched growth and the (101) twin formation via oriented attachment and subsequent transformation from anatase to rutile. C1 [Li, Dongsheng; Soberanis, Frank; Fu, Jia; Hou, Wenting; Wu, Jianzhong; Kisailus, David] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA. [Li, Dongsheng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Kisailus, D (reprint author), Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA. EM david@engr.ucr.edu RI Wu, Jianzhong/I-5164-2013; OI Wu, Jianzhong/0000-0002-4582-5941 NR 34 TC 13 Z9 13 U1 2 U2 99 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD FEB PY 2013 VL 13 IS 2 BP 422 EP 428 DI 10.1021/cg301388e PG 7 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 087WO UT WOS:000314795300003 ER PT J AU Espinoza-Montero, PJ Moreno-Narvaez, ME Frontana-Uribe, BA Stojanoff, V Moreno, A AF Espinoza-Montero, Patricio J. Esther Moreno-Narvaez, Maria Frontana-Uribe, Bernardo A. Stojanoff, Vivian Moreno, Abel TI Investigations on the Use of Graphite Electrodes Using a Hull-Type Growth Cell for Electrochemically Assisted Protein Crystallization SO CRYSTAL GROWTH & DESIGN LA English DT Article ID CARBON-PASTE; AGAROSE-GEL; FIELD; NUCLEATION; LYSOZYME; CRYSTALS; TRANSPARENT; VOLTAMMETRY; PRESSURE AB This paper describes the use of an electrochemical Hull-type cell adapted for protein crystallization evaluating three inclination angles (45 degrees, 60 degrees, and 90 degrees). For optimization experiments, classical platinum wire electrodes were used, and once the best geometry was known, they were replaced with 0.5 mm diameter low-cost graphite automatic pencil leads. Using Pt and graphite, the cell with electrodes fitted at 90 degrees showed the most favorable geometry for promoting the growth of lysozyme crystals with enough size for protein crystallography (between 200 and 250 mu m in solution, and between 500 and 650 mu m in gel). The crystalline quality (mosaicity and I/sigma(I) ratio) of crystals obtained at different current values was studied using these graphite electrodes and was compared with those protein crystals grown using platinum wire electrodes in solution as well as in gel experiments. These studies showed that it is possible to efficiently substitute the platinum electrodes by the low-cost graphite electrodes. This cell could be a first approach to a disposable cell for a large-scale use of an electrochemically assisted crystal growth method. C1 [Espinoza-Montero, Patricio J.; Esther Moreno-Narvaez, Maria; Frontana-Uribe, Bernardo A.] UNAM, Ctr Conjunto Invest Quim Sustentable UAEM, Toluca 50200, Estado De Mexic, Mexico. [Stojanoff, Vivian] Brookhaven Natl Lab, NSLS, Upton, NY 11973 USA. [Frontana-Uribe, Bernardo A.; Moreno, Abel] Univ Nacl Autonoma Mexico, Inst Quim, Mexico City 04510, DF, Mexico. RP Frontana-Uribe, BA (reprint author), UNAM, Ctr Conjunto Invest Quim Sustentable UAEM, Carretera Toluca Ixtlahuaca Km 14-5, Toluca 50200, Estado De Mexic, Mexico. EM bafrontu@unam.mx RI Uribe, Bernardo/B-4660-2011; OI Uribe, Bernardo/0000-0003-3796-5933; Espinoza-Montero, Patricio Javier/0000-0003-0592-8652 FU PAPIIT-UNAM [IN202011]; CONACYT [175924, 179356]; National Institute of General Medical Sciences, National Institute of Health [GM-0080]; U.S. Department of Energy [DE-AC02-98CH10886] FX This work has been supported through projects PAPIIT-UNAM IN202011 (BA.F.-U.) and CONACYT Projects No. 175924 (AM.) and No 179356 (BA.F.-U.). One of the authors (A.M.) acknowledges the Brookhaven National Laboratory for synchrotron radiation studies and crystal quality analysis. The technical assistance of M. C. Alejandra Nunez Pineda is also acknowledged. The X6A beamline is funded by the National Institute of General Medical Sciences, National Institute of Health under agreement GM-0080. The National Synchrotron Light Source, Brookhaven National Laboratory is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. NR 44 TC 4 Z9 4 U1 0 U2 15 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD FEB PY 2013 VL 13 IS 2 BP 590 EP 598 DI 10.1021/c9301250c PG 9 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 087WO UT WOS:000314795300025 PM 24659923 ER PT J AU Karimi-Aghcheh, R Bok, JW Phatale, PA Smith, KM Baker, SE Lichius, A Omann, M Zeilinger, S Seiboth, B Rhee, C Keller, NP Freitag, M Kubicek, CP AF Karimi-Aghcheh, Razieh Bok, Jin Woo Phatale, Pallavi A. Smith, Kristina M. Baker, Scott E. Lichius, Alexander Omann, Markus Zeilinger, Susanne Seiboth, Bernhard Rhee, Catherine Keller, Nancy P. Freitag, Michael Kubicek, Christian P. TI Functional Analyses of Trichoderma reesei LAE1 Reveal Conserved and Contrasting Roles of This Regulator SO G3-GENES GENOMES GENETICS LA English DT Article DE cellulase; secondary metabolites; LaeA; Trichoderma reesei; Aspergillus nidulans; ChIP-seq; transcriptome ID ASPERGILLUS-NIDULANS; SECONDARY METABOLISM; NEUROSPORA-CRASSA; HISTONE H3; PENICILLIN BIOSYNTHESIS; HYPOCREA-JECORINA; DNA METHYLATION; GENE-EXPRESSION; PROTEIN-KINASE; FLAVUS AB The putative methyltransferase LaeA is a global regulator that affects the expression of multiple secondary metabolite gene clusters in several fungi, and it can modify heterochromatin structure in Aspergillus nidulans. We have recently shown that the LaeA ortholog of Trichoderma reesei (LAE1), a fungus that is an industrial producer of cellulase and hemicellulase enzymes, regulates the expression of cellulases and polysaccharide hydrolases. To learn more about the function of LAE1 in T. reesei, we assessed the effect of deletion and overexpression of lae1 on genome-wide gene expression. We found that in addition to positively regulating 7 of 17 polyketide or nonribosomal peptide synthases, genes encoding ankyrin-proteins, iron uptake, heterokaryon incompatibility proteins, PTH11-receptors, and oxidases/monoxygenases are major gene categories also regulated by LAE1. chromatin immunoprecipitation sequencing with antibodies against histone modifications known to be associated with transcriptionally active (H3K4me2 and -me3) or silent (H3K9me3) chromatin detected 4089 genes bearing one or more of these methylation marks, of which 75 exhibited a correlation between either H3K4me2 or H3K4me3 and regulation by LAE1. Transformation of a laeA-null mutant of A. nidulans with the T. reesei lae1 gene did not rescue sterigmatocystin formation and further impaired sexual development. LAE1 did not interact with A. nidulans VeA in yeast two-hybrid assays, whereas it interacted with the T. reesei VeA ortholog, VEL1. LAE1 was shown to be required for the expression of vel1, whereas the orthologs of velB and VosA are unaffected by lae1 deletion. Our data show that the biological roles of A. nidulans LaeA and T. reesei LAE1 are much less conserved than hitherto thought. In T. reesei, LAE1 appears predominantly to regulate genes increasing relative fitness in its environment. C1 [Karimi-Aghcheh, Razieh; Lichius, Alexander; Omann, Markus; Zeilinger, Susanne; Seiboth, Bernhard; Kubicek, Christian P.] Univ Technol, Inst Chem Engn, Res Div Biotechnol & Microbiol, A-1060 Vienna, Austria. [Seiboth, Bernhard; Kubicek, Christian P.] Univ Technol, Inst Chem Engn, Austrian Ctr Ind Biotechnol, A-1060 Vienna, Austria. [Bok, Jin Woo; Rhee, Catherine; Keller, Nancy P.] Univ Wisconsin, Dept Med Microbiol & Immunol, Madison, WI 53706 USA. [Phatale, Pallavi A.; Smith, Kristina M.] Oregon State Univ, Dept Biochem & Biophys, Corvallis, OR 97331 USA. [Baker, Scott E.; Freitag, Michael] Pacific NW Natl Lab, Fungal Biotechnol Team, Chem & Biol Proc Dev Grp, Richland, WA 99352 USA. RP Kubicek, CP (reprint author), TU Vienna, Getreidemarkt 9-1665, A-1060 Vienna, Austria. EM ckubicek@mail.zserv.tuwien.ac.at RI Bok, Jin Woo/F-7140-2010; OI Zeilinger, susanne/0000-0003-3112-0948 FU Austrian Science Foundation [FWF P-21266]; Pacific Northwest National Lab; National Institutes of Health (NIH) from the National Institute of General Medical Sciences [PO1GM084077]; NIH [P01 GM068087] FX This work was supported by grants from the Austrian Science Foundation (FWF P-21266) to C. P. K., from the Pacific Northwest National Lab to M. F., and National Institutes of Health (NIH) grant PO1GM084077 from the National Institute of General Medical Sciences to N.P.K. K.M.S. was supported by a grant from the NIH (P01 GM068087). NR 59 TC 42 Z9 47 U1 1 U2 37 PU GENETICS SOCIETY AMERICA PI BETHESDA PA 9650 ROCKVILLE AVE, BETHESDA, MD 20814 USA SN 2160-1836 J9 G3-GENES GENOM GENET JI G3-Genes Genomes Genet. PD FEB 1 PY 2013 VL 3 IS 2 BP 369 EP 378 DI 10.1534/g3.112.005140 PG 10 WC Genetics & Heredity SC Genetics & Heredity GA 089AY UT WOS:000314881600022 PM 23390613 ER PT J AU Lau, DTY Negash, A Chen, J Crochet, N Sinha, M Zhang, YH Guedj, J Holder, S Saito, T Lemon, SM Luxon, BA Perelson, AS Gale, M AF Lau, Daryl T. -Y. Negash, Amina Chen, Jie Crochet, Nanette Sinha, Mala Zhang, Yuhong Guedj, Jeremie Holder, Sharon Saito, Takeshi Lemon, Stanley M. Luxon, Bruce A. Perelson, Alan S. Gale, Michael, Jr. TI Innate Immune Tolerance and the Role of Kupffer Cells in Differential Responses to Interferon Therapy Among Patients With HCV Genotype 1 Infection SO GASTROENTEROLOGY LA English DT Article DE PBMC; Microarray Analysis; Therapeutic Efficacy; Drug ID HEPATITIS-C VIRUS; GENE-EXPRESSION; RNA REPLICATION; ALPHA; EVASION AB BACKGROUND & AIMS: In patients with hepatitis C virus (HCV) infection, interferon alfa (IFN-alpha) alters expression of IFN-stimulated genes (ISGs), but little is understood about factors that determine outcomes of therapy. We used a systems biology approach to evaluate the acute response of patients with chronic hepatitis C to IFN-alpha therapy. METHODS: We collected liver biopsy samples from 8 treatment-naive patients with chronic HCV genotype 1 infection at baseline and 24 hours after treatment with IFN-alpha-2a (10 MU subcutaneously). Blood samples were collected before and up to 48 hours after administration of IFN-alpha-2a to measure HCV RNA levels and for gene expression analysis. Patients then received pegylated IFN-alpha-2a and ribavirin on day 5 of the study; therapy continued for up to 48 weeks. RESULTS: Based on the kinetics of HCV RNA during the first 12 weeks of therapy, 2 patients were rapid virologic responders, 4 were early virologic responders, and 2 did not respond to therapy (nonresponders). Nonresponders had high pretreatment levels of ISG expression in the liver but not in peripheral blood mononuclear cells. In responders, after administration of IFN-alpha, intrahepatic ISG expression increased significantly from baseline and was associated with a rapid phase 1 decrease in HCV. We identified distinct hepatic expression and tissue distribution patterns of ISGs that segregated with treatment outcome. Importantly, Kupffer cells were a local source of IFN that promoted basal expression of ISG in hepatocytes of nonresponders. This finding was validated in cultured THP1 human macrophages that expressed IFN-beta after exposure to viable HCV 2a. When Huh7 K2040 and Huh7 L2198S hepatoma cells were incubated with IFN-alpha-2a, expression of ISGs peaked by 4 hours and decreased by 72 hours, associated with an increase in level of HCV RNA. This indicates that constitutive exposure to IFN causes hepatoma cells to become tolerant of ISG function. CONCLUSIONS: In patients with chronic HCV infection, IFN production by Kupffer cells might promote innate immune tolerance, characterized by a lack of response to IFN therapy. Strategies to disrupt the virus-host interactions that induce innate immune tolerance should improve therapy. C1 [Lau, Daryl T. -Y.; Chen, Jie; Zhang, Yuhong; Holder, Sharon] Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Liver Ctr,Div Gastroenterol,Dept Med, Boston, MA 02215 USA. [Negash, Amina; Crochet, Nanette; Saito, Takeshi; Gale, Michael, Jr.] Univ Washington, Dept Immunol, Ctr Study Hepatitis C Virus Infect & Immun, Seattle, WA 98195 USA. [Sinha, Mala; Luxon, Bruce A.] Univ Texas Med Branch, Galveston, TX 77555 USA. [Sinha, Mala; Luxon, Bruce A.] Univ Texas Med Branch, Inst Translat Sci, Galveston, TX 77555 USA. [Guedj, Jeremie; Perelson, Alan S.] Los Alamos Natl Lab, Los Alamos, NM USA. [Lemon, Stanley M.] Univ N Carolina, Dept Med, Div Infect Dis, Chapel Hill, NC USA. RP Lau, DTY (reprint author), Harvard Univ, Beth Israel Deaconess Med Ctr, Sch Med, Liver Ctr,Div Gastroenterol,Dept Med, 110 Francis St,Suite 4A, Boston, MA 02215 USA. EM dlau@bidmc.harvard.edu RI Luxon, Bruce/C-9140-2012; Saito, Takeshi/N-2788-2014; Guedj, Jeremie/A-6842-2017 OI Gale, Michael/0000-0002-6332-7436; Saito, Takeshi/0000-0002-6165-664X; Guedj, Jeremie/0000-0002-5534-5482 FU National Institutes of Health [R01 DK068598-01, AI028433, RR006555, AI060389, DA024563, AI88778, P30DA015625, AI40035, M01-RR-01032]; Burroughs Wellcome Fund FX Supported by National Institutes of Health grants R01 DK068598-01 (to D.T.-Y.L.), AI028433, RR006555 (to A.S.P.), AI060389, DA024563, AI88778, P30DA015625 (to M.G.), AI40035 (to S.M.L.), M01-RR-01032, and M01-RR-01032 (General Clinical Research Center) and The Burroughs Wellcome Fund (to M.G.). NR 25 TC 31 Z9 31 U1 0 U2 8 PU W B SAUNDERS CO-ELSEVIER INC PI PHILADELPHIA PA 1600 JOHN F KENNEDY BOULEVARD, STE 1800, PHILADELPHIA, PA 19103-2899 USA SN 0016-5085 J9 GASTROENTEROLOGY JI Gastroenterology PD FEB PY 2013 VL 144 IS 2 BP 402 EP + DI 10.1053/j.gastro.2012.10.044 PG 24 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 086VL UT WOS:000314716300034 PM 23123437 ER PT J AU Oldenburg, CM AF Oldenburg, Curtis M. TI Selected papers from the 11th US annual conference on Carbon Capture, Utilization, and Sequestration SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Editorial Material C1 Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. RP Oldenburg, CM (reprint author), Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. EM cmoldenburg@lbl.gov RI Oldenburg, Curtis/L-6219-2013 OI Oldenburg, Curtis/0000-0002-0132-6016 NR 9 TC 2 Z9 2 U1 0 U2 14 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD FEB PY 2013 VL 3 IS 1 SI SI BP 1 EP 2 DI 10.1002/ghg.1333 PG 2 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 090LQ UT WOS:000314981000001 ER PT J AU Elliot, TR Buscheck, TA Celia, M AF Elliot, Thomas R. Buscheck, Thomas A. Celia, Michael TI Active CO2 reservoir management for sustainable geothermal energy extraction and reduced leakage SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Article DE carbon sequestration; geothermal; CCUS; subsurface hydrology; carbon capture and utilization ID CARBON-DIOXIDE CAPTURE; SYSTEMS EGS; STORAGE; SEQUESTRATION; FLUID AB Subsurface storage space is gaining recognition as a commodity for industrial and energy recovery operations. Geologic carbon dioxide (CO2) sequestration (GCS), wherein supercritical CO2 is injected into subsurface storage space, is under broad development in sedimentary reservoirs particularly for hydrocarbon production, which uses supercritical CO2 as part of a carbon capture utilization and sequestration (CCUS) scheme. A novel CCUS operation is presented whereby we investigate the staged deployment of a coupled geothermal energy extraction (GEE)-GCS operation in geothermal sedimentary reservoirs that re-circulates extracted fluids. We identify sedimentary resources of the continental USA that have significant temperature at depths suitable for GCS. To predict the impact of a GEE-GCS operation, a reservoir-scale semi-analytical model is used to simulate brine and CO2 migration through existing leakage pathways. With the goal of integrating GEE and GCS, a well-site design exercise is undertaken, where we develop an idealized configuration for CO2 and brine production/reinjection wells. Results show potential geothermal sedimentary reservoirs suitable for GEE deployment exist in the continental USA; however the characteristics of each site should be investigated through a first stage GEE-operation to determine GCS capacity. Our active CO2 reservoir management simulations demonstrate a decrease in injection and reservoir overpressures, a reduced migration of CO2 within the reservoir during active injection/extraction, and a reduced risk of brine and CO2 migration. With the use of the developed concentric-ring well pattern, we demonstrate the longevity of thermal productivity from an ideal GEE site, while providing sufficient CO2 storage volume and trapping to act as a sequestration operation. (c) 2013 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Elliot, Thomas R.; Celia, Michael] Princeton Univ, Princeton, NJ 08544 USA. [Buscheck, Thomas A.] Lawrence Livermore Natl Lab, Geochemcial Hydrol & Environm Sci Grp, Livermore, CA USA. [Buscheck, Thomas A.] Lawrence Livermore Natl Lab, Geochem Hydrol & Environm Sci Grp, Livermore, CA USA. RP Elliot, TR (reprint author), Princeton Univ, 59 Olden St, Princeton, NJ 08544 USA. EM elliot.thomas.r@gmail.com FU US Department of Energy [DE-FE0000749]; Natural Science and Engineering Research Council of Canada; Carbon Mitigation Initiative of Princeton University; USDOE Geothermal Technologies Program; USDOE Fossil Energy; National Energy Technology Laboratory; Carbon Mitigation Initiative at Princeton University; Environmental Protection Agency [RD-83438501]; U.S. Department of Energy by LLNL [DE-AC52-07NA27344] FX The authors would like to acknowledge funding support of the: US Department of Energy Grant DE-FE0000749, Natural Science and Engineering Research Council of Canada, and the Carbon Mitigation Initiative of Princeton University. This work was sponsored by USDOE Geothermal Technologies Program, by USDOE Fossil Energy, National Energy Technology Laboratory, by the Carbon Mitigation Initiative at Princeton University, and by the Environmental Protection Agency under Cooperative Agreement RD-83438501. This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract DE-AC52-07NA27344. NR 38 TC 10 Z9 10 U1 0 U2 50 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD FEB PY 2013 VL 3 IS 1 SI SI BP 50 EP 65 DI 10.1002/ghg.1328 PG 16 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 090LQ UT WOS:000314981000008 ER PT J AU Mazzoldi, A Picard, D Sriram, PG Oldenburg, CM AF Mazzoldi, Alberto Picard, David Sriram, Papagudi G. Oldenburg, Curtis M. TI Simulation-based estimates of safety distances for pipeline transportation of carbon dioxide SO GREENHOUSE GASES-SCIENCE AND TECHNOLOGY LA English DT Article DE geologic carbon sequestration; CO2 transportation; pipeline leakage risk; pipeline decompression; atmospheric dispersion; safety ID GAS-PIPELINES; EQUATION; STATE AB Pipeline transportation of fluids is a proven technology for moving large quantities of liquids and gases (e.g. hydrocarbons, hazardous liquids, hydrogen). The anticipated introduction of large-scale geologic carbon sequestration (GCS) as a means of reducing greenhouse gas (GHG) emissions will require the ability to transport massive amounts of carbon dioxide (CO2) safely and economically. To accommodate GCS demands, the existing US and European CO2 pipeline infrastructure may eventually have to be expanded to be comparable in size to natural gas and oil pipeline systems. Furthermore, the new pipeline infrastructure will inevitably intersect with population centers as it connects sources with sink areas. There are important unanswered questions about pipeline network requirements, regulations, utility cost recovery, economics, regulatory classification of CO2 itself, and pipeline safety. The focus of this research is on this last aspect, i.e. safety of the general public, workers, and property related to the transportation of CO2. We carried out simulations that coupled two computational fluid dynamics (CFD) codes to determine: (i) leakage rates from fully ruptured above-ground CO2 pipelines for a typical pipeline fluid composition, and (ii) the resulting atmospheric dispersion of the gas near the broken pipe. Using threshold values for atmospheric CO2 concentration, our work shows that concentrations dangerous to human health can extend on the order of hundreds of meters from the ruptured pipeline. This work contributes to the knowledge base needed to establish safety distances for routing CO2 pipelines through inhabited and other sensitive areas. (c) 2012 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Mazzoldi, Alberto; Oldenburg, Curtis M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Picard, David; Sriram, Papagudi G.] Clearstone Engn Ltd, Calgary, AB, Canada. [Oldenburg, Curtis M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Geol Carbon Sequestrat Program, Berkeley, CA 94720 USA. RP Mazzoldi, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, 1 Cyclotron, Berkeley, CA 94720 USA. EM amazzoldi@lbl.gov RI Oldenburg, Curtis/L-6219-2013 OI Oldenburg, Curtis/0000-0002-0132-6016 FU Lawrence Berkeley National Laboratory through the U.S. Department of Energy [DE-AC02-05CH11231]; Assistant Secretary for Fossil Energy; Office of Sequestration, Hydrogen; Clean Coal Fuels, National Energy Technology Laboratory FX We thank two anonymous reviewers for their comments and suggestions. We thank Andrea Borgia (LBNL) for internal review and helpful suggestions of an earlier draft. We are also grateful to Fluidyn for providing guidance in the use of PANACHE. This work was funded by the Assistant Secretary for Fossil Energy, Office of Sequestration, Hydrogen, and Clean Coal Fuels, National Energy Technology Laboratory. Additional support came from Lawrence Berkeley National Laboratory through the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 50 TC 10 Z9 11 U1 3 U2 46 PU WILEY PERIODICALS, INC PI SAN FRANCISCO PA ONE MONTGOMERY ST, SUITE 1200, SAN FRANCISCO, CA 94104 USA SN 2152-3878 J9 GREENH GASES JI Greenh. Gases PD FEB PY 2013 VL 3 IS 1 SI SI BP 66 EP 83 DI 10.1002/ghg.1318 PG 18 WC Energy & Fuels; Engineering, Environmental; Environmental Sciences SC Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 090LQ UT WOS:000314981000009 ER PT J AU Bielejec, E Vizkelethy, G Fleming, RM Serkland, DK McDonald, JK Patrizi, GA King, DB AF Bielejec, E. Vizkelethy, G. Fleming, R. M. Serkland, D. K. McDonald, J. K. Patrizi, G. A. King, D. B. TI Experimental Study of Defect Formations in GaAs Devices Using Gain, Photoluminescence and Deep Level Transient Spectroscopy SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Ion radiation effects; radiation effects; semiconductor devices ID BIPOLAR JUNCTION TRANSISTORS; DISPLACEMENT DAMAGE; NEUTRON-IRRADIATION; ION-BEAM; SILICON; SIMULATION AB We present an experimental methodology developed to probe the clustered defect formation in GaAs devices under both neutron and ion irradiations. The strengths, limitations, and path forward to gather structural defect information will be addressed. C1 [Bielejec, E.; Vizkelethy, G.; Fleming, R. M.; Serkland, D. K.; McDonald, J. K.; Patrizi, G. A.; King, D. B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bielejec, E (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM esbiele@sandia.gov RI Fleming, Robert/B-1248-2008 FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 18 TC 0 Z9 0 U1 2 U2 25 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2013 VL 60 IS 1 BP 219 EP 223 DI 10.1109/TNS.2012.2230646 PN 2 PG 5 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 090IR UT WOS:000314973200004 ER PT J AU Grace, CR Walder, JP Denes, P von der Lippe, H AF Grace, Carl R. Walder, Jean-Pierre Denes, Peter von der Lippe, Henrik TI Multiplexed Oversampling Digitizer in 65 nm CMOS for Column-Parallel CCD Readout SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE Analog-to-digital conversion; charge-coupled devices; CMOS analog integrated circuits; pipelined ADC ID TO-DIGITAL CONVERTER; CIRCUITS AB A digitizer designed to read out column-parallel charge-coupled devices used for high-speed X-ray imaging is presented. The digitizer is included as part of the High-Speed Image Preprocessor with Oversampling integrated circuit. The digitizer module comprises a multiplexed, oversampling, 12-bit, 80 MS/s pipelined analog-to-digital converter and a bank of four fast-settling sample-and-hold amplifiers to instrument four analog channels. The analog-to-digital converter multiplexes and oversamples to reduce its area to allow integration that is pitch-matched to the columns of the imager. Novel design techniques are used to enable oversampling and multiplexing with a reduced power penalty. The analog-to-digital converter exhibits 188 mu V-rms noise which is less than 1 LSB at a 12-bit level. The prototype is implemented in a commercially available 65-nm CMOS process. The digitizer will be applied to the development of a proof-of-principle 2D, 10 Gigapixel/s X-ray detector. C1 [Grace, Carl R.; Walder, Jean-Pierre; Denes, Peter; von der Lippe, Henrik] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Grace, CR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM crgrace@lbl.gov FU Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, of the U.S. Department of Energy under Contract DE-AC02-05CH11231. NR 9 TC 4 Z9 4 U1 1 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2013 VL 60 IS 1 BP 246 EP 250 DI 10.1109/TNS.2012.2226604 PN 2 PG 5 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 090IR UT WOS:000314973200008 ER PT J AU Miller, EA White, TA McDonald, BS Seifert, A AF Miller, Erin A. White, Timothy A. McDonald, Benjamin S. Seifert, Allen TI Phase Contrast X-Ray Imaging Signatures for Security Applications SO IEEE TRANSACTIONS ON NUCLEAR SCIENCE LA English DT Article DE National security; radiography; Talbot effect; X-ray applications; X-ray scattering; X-rays ID COMPUTED-TOMOGRAPHY; GRATING INTERFEROMETER; TALBOT INTERFEROMETRY; CT AB Differential phase contrast imaging with a grating interferometer is a promising new radiographic technique providing three distinct contrast mechanisms-absorption, phase, and scatter (or dark field)-using a conventional X-ray tube source. We examine the signatures available in these three contrast mechanisms with attention towards potential security applications. We find that the scatter mode is uniquely sensitive to textured materials, potentially leading to enhanced material discrimination through the use of multiple contrast modes. We find that scatter signal in our imaging system increases as texture size is reduced from 800 mu m to 7 mu m. This range spans the transition from features that are resolved in the image to those residing below the system resolution, and corresponds to length scales of known texture or density variations in several common explosives. C1 [Miller, Erin A.; White, Timothy A.; McDonald, Benjamin S.; Seifert, Allen] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Miller, EA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM erin.miller@pnnl.gov; timothy.white@pnnl.gov; benjamin.mcdonald@pnnl.gov; allen.seifert@pnnl.gov OI McDonald, Benjamin/0000-0002-4596-9670 FU Initiative for Explosives Detection at Pacific Northwest National Laboratory (PNNL) FX This work was supported by the Initiative for Explosives Detection at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy. NR 30 TC 0 Z9 0 U1 1 U2 39 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9499 J9 IEEE T NUCL SCI JI IEEE Trans. Nucl. Sci. PD FEB PY 2013 VL 60 IS 1 BP 416 EP 422 DI 10.1109/TNS.2012.2227803 PN 2 PG 7 WC Engineering, Electrical & Electronic; Nuclear Science & Technology SC Engineering; Nuclear Science & Technology GA 090IR UT WOS:000314973200029 ER PT J AU Rowe, D McCourt, RS Morse, S Haas, P AF Rowe, Daniel McCourt, Ransford S. Morse, Stephanie Haas, Peter TI Do Land Use, Transit, and Walk Access Affect Residential Parking Demand? SO ITE JOURNAL-INSTITUTE OF TRANSPORTATION ENGINEERS LA English DT Article AB Detailed research into numerous factors correlated to parking utilization reveal clear relationships useful in site planning and parking policy development. C1 [McCourt, Ransford S.] DKS Associates, Portland, OR USA. [Haas, Peter] Cornell Univ, Nucl Studies Lab, Ithaca, NY 14853 USA. [Haas, Peter] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. NR 6 TC 4 Z9 4 U1 0 U2 2 PU INST TRANSPORTATION ENGINEERS PI WASHINGTON PA 1627 EYE STREET, NW, STE 600, WASHINGTON, DC 20006 USA SN 0162-8178 J9 ITE J JI ITE J.-Inst. Transp. Eng. PD FEB PY 2013 VL 83 IS 2 BP 24 EP 28 PG 5 WC Engineering, Civil; Transportation Science & Technology SC Engineering; Transportation GA 088UB UT WOS:000314861500003 ER PT J AU Pillai, MRA Dash, A Knapp, FF AF Pillai, Maroor Raghavan Ambikalmajan Dash, Ashutosh Knapp, F. F. (Russ), Jr. TI Sustained Availability of Tc-99m: Possible Paths Forward SO JOURNAL OF NUCLEAR MEDICINE LA English DT Article DE Tc-99m; Mo-99 production; reactor production; accelerator production; aqueous homogeneous reactor (AHR) ID CYCLOTRON PRODUCTION; ALUMINA COLUMN; N,GAMMA MO-99; NITRIC-ACID; GENERATOR; SEPARATION; RADIOPHARMACEUTICALS; DISSOLUTION; TECHNOLOGY; EXTRACTION AB The availability of Tc-99m for single-photon imaging in diagnostic nuclear medicine is crucial, and current availability is based on the Mo-99/Tc-99m generator fabricated from fission-based molybdenum (F Mo-99) produced using high enriched uranium (HEU) targets. Because of risks related to nuclear material proliferation, the use of HEU targets is being phased out and alternative strategies for production of both Mo-99 and Tc-99m are being evaluated intensely. There are evidently no plans for replacement of the limited number of reactors that have primarily provided most of the Mo-99. The uninterrupted, dependable availability of Tc-99m is a crucial issue. For these reasons, new options being pursued include both reactor-and accelerator-based strategies to sustain the continued availability of Tc-99m without the use of HEU. In this paper, the scientific and economic issues for transitioning from HEU to non-HEU are also discussed. In addition, the comparative advantages, disadvantages, technical challenges, present status, future prospects, security concerns, economic viability, and regulatory obstacles are reviewed. The international actions in progress toward evolving possible alternative strategies to produce Mo-99 or Tc-99m are analyzed as well. The breadth of technologies and new strategies under development to provide Mo-99 and Tc-99m reflects both the broad interest in and the importance of the pivotal role of Tc-99m in diagnostic nuclear medicine. C1 [Pillai, Maroor Raghavan Ambikalmajan; Dash, Ashutosh] BARC, Radiopharmaceut Div, Bombay, Maharashtra, India. [Knapp, F. F. (Russ), Jr.] ORNL, Nucl Med Program, Isotope Dev Grp, Oak Ridge, TN 37831 USA. RP Knapp, FF (reprint author), ORNL, Nucl Med Program, Bldg 4501,MS 6229,POB 2008,1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM knappffjr@ornl.gov OI Dash, Ashutosh/0000-0001-7541-7298 FU U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC FX The costs of publication of this article were defrayed in part by the payment of page charges. Therefore, and solely to indicate this fact, this article is hereby marked "advertisement" in accordance with 18 USC section 1734. Research at the Oak Ridge National Laboratory is supported by the U.S. Department of Energy under contract DE-AC05-00OR22725 with UT-Battelle, LLC. This article has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. The publisher, by accepting the article for publication, acknowledges that the U.S. government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U.S. government purposes. No other potential conflict of interest relevant to this article was reported. NR 77 TC 36 Z9 37 U1 1 U2 24 PU SOC NUCLEAR MEDICINE INC PI RESTON PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA SN 0161-5505 J9 J NUCL MED JI J. Nucl. Med. PD FEB 1 PY 2013 VL 54 IS 2 BP 313 EP 323 DI 10.2967/jnumed.112.110338 PG 11 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 086NI UT WOS:000314691200034 PM 23255729 ER PT J AU Woodside, CR King, PE Nordlund, C AF Woodside, C. Rigel King, Paul E. Nordlund, Chris TI Arc Distribution During the Vacuum Arc Remelting of Ti-6Al-4V SO METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE LA English DT Article AB Currently, the temporal distribution of electric arcs across the ingot during vacuum arc remelting (VAR) is not a known or monitored process parameter. Previous studies indicate that the distribution of arcs can be neither diffuse nor axisymmetric about the center of the furnace. Correct accounting for the heat flux, electric current flux, and mass flux into the ingot is critical to achieving realistic solidification models of the VAR process. The National Energy Technology Laboratory has developed an arc position measurement system capable of locating arcs and determining the arc distribution within an industrial VAR furnace. The system is based on noninvasive magnetic field measurements and a VAR specific form of the Biot-Savart law. The system was installed on a coaxial industrial VAR furnace at ATI Albany Operations in Albany, OR. This article reports on the different arc distributions observed during production of Ti-6Al-4V. It is shown that several characteristic arc distribution modes can develop. This behavior is not apparent in the existing signals used to control the furnace, indicating the measurement system is providing new information. It is also shown that the different arc distribution modes observed may impact local solidification times, particularly at the side wall. C1 [Woodside, C. Rigel; King, Paul E.] Natl Energy Technol Lab, Albany, OR 97321 USA. [Nordlund, Chris] ATI Albany Operat, Albany, OR 97322 USA. RP Woodside, CR (reprint author), Natl Energy Technol Lab, Albany, OR 97321 USA. EM Rigel.Woodside@netl.doe.gov FU Specialty Metals Processing Consortium; United States Department of Energy's National Energy Technology Laboratory FX A portion of this work was supported through a cooperated research and development agreement between the Specialty Metals Processing Consortium and the United States Department of Energy's National Energy Technology Laboratory. The authors acknowledge the help from the personnel at ATI Albany Operations. Thanks to Steve Henrickson for assistance in interfacing with the existing instrumentation, and Mike Whaley for providing and reducing internally acquired data. NR 22 TC 1 Z9 2 U1 2 U2 18 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5615 J9 METALL MATER TRANS B JI Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. PD FEB PY 2013 VL 44 IS 1 BP 154 EP 165 DI 10.1007/s11663-012-9760-1 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 089KI UT WOS:000314909000019 ER PT J AU Liu, G Liu, YG Endo, S AF Liu, Gang Liu, Yangang Endo, Satoshi TI Evaluation of Surface Flux Parameterizations with Long-Term ARM Observations SO MONTHLY WEATHER REVIEW LA English DT Article ID SENSIBLE HEAT-FLUX; ATMOSPHERIC BOUNDARY-LAYERS; SPARSELY VEGETATED SURFACES; DUAL ANGLE OBSERVATIONS; LAND-SURFACE; PROFILE RELATIONSHIPS; ETA-MODEL; TEMPERATURE; SIMULATIONS; CONVECTION AB Surface momentum, sensible heat, and latent heat fluxes are critical for atmospheric processes such as clouds and precipitation, and are parameterized in a variety of models ranging from cloud-resolving models to large-scale weather and climate models. However, direct evaluation of the parameterization schemes for these surface fluxes is rare due to limited observations. This study takes advantage of the long-term observations of surface fluxes collected at the Southern Great Plains site by the Department of Energy Atmospheric Radiation Measurement program to evaluate the six surface flux parameterization schemes commonly used in the Weather Research and Forecasting (WRF) model and three U.S. general circulation models (GCMs). The unprecedented 7-yr-long measurements by the eddy correlation (EC) and energy balance Bowen ratio (EBBR) methods permit statistical evaluation of all six parameterizations under a variety of stability conditions, diurnal cycles, and seasonal variations. The statistical analyses show that the momentum flux parameterization agrees best with the EC observations, followed by latent heat flux, sensible heat flux, and evaporation ratio/Bowen ratio. The overall performance of the parameterizations depends on atmospheric stability, being best under neutral stratification and deteriorating toward both more stable and more unstable conditions. Further diagnostic analysis reveals that in addition to the parameterization schemes themselves, the discrepancies between observed and parameterized sensible and latent heat fluxes may stem from inadequate use of input variables such as surface temperature, moisture availability, and roughness length. The results demonstrate the need for improving the land surface models and measurements of surface properties, which would permit the evaluation of full land surface models. C1 [Liu, Gang; Liu, Yangang; Endo, Satoshi] Brookhaven Natl Lab, Upton, NY 11973 USA. [Liu, Gang] Nanjing Univ, Sch Atmospher Sci, Nanjing 210093, Jiangsu, Peoples R China. RP Liu, G (reprint author), Nanjing Univ, Sch Atmospher Sci, Nanjing 210093, Jiangsu, Peoples R China. EM gangliu@nju.edu.cn RI Liu, Yangang/H-6154-2011 FU DOE Earth System Modeling (ESM) program; National Basic Research Program of China (973 Program) [2010CB428501] FX This work is part of the FASTER project (www.bnl.gov/esm) supported by the DOE Earth System Modeling (ESM) program. The first author is partly funded by National Basic Research Program of China (973 Program) under Grant 2010CB428501 for the work. Discussions with Drs. Alan Betts and David Cook are appreciated. NR 64 TC 9 Z9 9 U1 1 U2 25 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0027-0644 EI 1520-0493 J9 MON WEATHER REV JI Mon. Weather Rev. PD FEB PY 2013 VL 141 IS 2 BP 773 EP 797 DI 10.1175/MWR-D-12-00095.1 PG 25 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 088LD UT WOS:000314835000021 ER PT J AU Baker, NA Klemm, JD Harper, SL Gaheen, S Heiskanen, M Rocca-Serra, P Sansone, SA AF Baker, Nathan A. Klemm, Juli D. Harper, Stacey L. Gaheen, Sharon Heiskanen, Mervi Rocca-Serra, Philippe Sansone, Susanna-Assunta TI Standardizing data SO NATURE NANOTECHNOLOGY LA English DT Letter C1 [Baker, Nathan A.] Pacific NW Natl Lab, Computat & Stat Analyt Div, Richland, WA 99352 USA. [Klemm, Juli D.; Heiskanen, Mervi] NCI, Ctr Biomed Informat & Informat Technol, Rockville, MD 20852 USA. [Harper, Stacey L.] Oregon State Univ, Sch Chem Biol & Environm Engn, Dept Environm & Mol Toxicol, Corvallis, OR 97331 USA. [Gaheen, Sharon] SAIC Frederick, Frederick Natl Lab Canc Res, Informat Syst Program, Rockville, MD 20852 USA. [Rocca-Serra, Philippe; Sansone, Susanna-Assunta] Univ Oxford, E Res Ctr, Oxford OX1 3QG, England. RP Baker, NA (reprint author), Pacific NW Natl Lab, Computat & Stat Analyt Div, MSID K7-28,POB 999, Richland, WA 99352 USA. EM nathan.baker@pnnl.gov RI Baker, Nathan/A-8605-2010 OI Baker, Nathan/0000-0002-5892-6506 FU Biotechnology and Biological Sciences Research Council [BB/E025080/1, BB/I000771/1]; NIEHS NIH HHS [R01 ES017552]; NINDS NIH HHS [U01 NS073457] NR 5 TC 6 Z9 6 U1 0 U2 15 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD FEB PY 2013 VL 8 IS 2 BP 73 EP 74 PG 2 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 093GD UT WOS:000315178800008 PM 23380926 ER PT J AU Liu, Z Ma, LL Shi, G Zhou, W Gong, YJ Lei, SD Yang, XB Zhang, JN Yu, JJ Hackenberg, KP Babakhani, A Idrobo, JC Vajtai, R Lou, J Ajayan, PM AF Liu, Zheng Ma, Lulu Shi, Gang Zhou, Wu Gong, Yongji Lei, Sidong Yang, Xuebei Zhang, Jiangnan Yu, Jingjiang Hackenberg, Ken P. Babakhani, Aydin Idrobo, Juan-Carlos Vajtai, Robert Lou, Jun Ajayan, Pulickel M. TI In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes SO NATURE NANOTECHNOLOGY LA English DT Article ID HIGH-QUALITY; FILMS; DISPERSION; NANOMESH; NI(111); LAYERS; BN AB Graphene and hexagonal boron nitride (h-BN) have similar crystal structures with a lattice constant difference of only 2%. However, graphene is a zero-bandgap semiconductor with remarkably high carrier mobility at room temperature(1-3), whereas an atomically thin layer of h-BN4-9 is a dielectric with a wide bandgap of similar to 5.9 eV. Accordingly, if precise two-dimensional domains of graphene and h-BN can be seamlessly stitched together, hybrid atomic layers with interesting electronic applications could be created(10). Here, we show that planar graphene/h-BN heterostructures can be formed by growing graphene in lithographically patterned h-BN atomic layers. Our approach can create periodic arrangements of domains with size ranging from tens of nanometres to millimetres. The resulting graphene/h-BN atomic layers can be peeled off the growth substrate and transferred to various platforms including flexible substrates. We also show that the technique can be used to fabricate two-dimensional devices, such as a split closed-loop resonator that works as a bandpass filter. C1 [Liu, Zheng; Ma, Lulu; Shi, Gang; Gong, Yongji; Lei, Sidong; Zhang, Jiangnan; Hackenberg, Ken P.; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M.] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA. [Zhou, Wu] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA. [Zhou, Wu; Idrobo, Juan-Carlos] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Yang, Xuebei; Babakhani, Aydin] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA. [Yu, Jingjiang] Agilent Technol, Nanotechnol Measurements Div, Chandler, AZ 85226 USA. RP Liu, Z (reprint author), Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA. EM jlou@rice.edu; ajayan@rice.edu RI Zhou, Wu/D-8526-2011; Zhang, Jiangnan/J-8765-2013; Liu, Zheng/C-1813-2014; SHI, GANG/E-7878-2014; Idrobo, Juan/H-4896-2015; Lei, Sidong/A-8600-2016; Gong, Yongji/L-7628-2016 OI Zhou, Wu/0000-0002-6803-1095; Zhang, Jiangnan/0000-0001-5779-7055; Liu, Zheng/0000-0002-8825-7198; SHI, GANG/0000-0002-3180-105X; Idrobo, Juan/0000-0001-7483-9034; Lei, Sidong/0000-0001-9129-2202; FU US Army Research Office (MURI) [W911NF-11-1-0362]; US Office of Naval Research (MURI) [N000014-09-1-1066]; Nanoelectronics Research Corporation [S201006]; US-Japan Cooperative Research & Education in Terahertz [OISE-0968405]; Welch Foundation [C-1716]; National Science Foundation (NSF) [DMR-0928297, DMR-0938330]; Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Program; Office of Basic Energy Sciences, US Department of Energy FX This work was supported by the US Army Research Office (MURI grant W911NF-11-1-0362), the US Office of Naval Research (MURI grant N000014-09-1-1066), the Nanoelectronics Research Corporation (contract S201006), US-Japan Cooperative Research & Education in Terahertz (grant OISE-0968405), the Welch Foundation (grant C-1716), the National Science Foundation (NSF, grant DMR-0928297, NSF grant DMR-0938330 to W.Z.), and Oak Ridge National Laboratory's Shared Research Equipment (ShaRE) User Program (J.C.I.), which is sponsored by the Office of Basic Energy Sciences, US Department of Energy. The authors would like to thank G. You for help with sample preparation and AFM measurements. NR 27 TC 281 Z9 282 U1 32 U2 489 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD FEB PY 2013 VL 8 IS 2 BP 119 EP 124 DI 10.1038/NNANO.2012.256 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 093GD UT WOS:000315178800020 PM 23353677 ER PT J AU Nishida, Y Kato, Y Batista, CD AF Nishida, Yusuke Kato, Yasuyuki Batista, Cristian D. TI Efimov effect in quantum magnets SO NATURE PHYSICS LA English DT Article ID SPIN-CLUSTER-RESONANCE; LARGE SCATTERING LENGTH; MAGNON BOUND STATES; FERROMAGNET; SYSTEM; EXCITATIONS; CHAINS; RBFECL3.2H2O; COCL2.2H2O; SPECTRUM AB Physics is said to be universal when it emerges regardless of the underlying microscopic details. A prominent example is the Efimov effect, which predicts the emergence of an infinite tower of three-body bound states obeying discrete scale invariance when the particles interact resonantly. Because of its universality and peculiarity, the Efimov effect has been the subject of extensive research in chemical, atomic, nuclear and particle physics for decades. Here we employ an anisotropic Heisenberg model to show that collective excitations in quantum magnets (magnons) also exhibit the Efimov effect. We locate anisotropy-induced two-magnon resonances, compute binding energies of three magnons and find that they fit into the universal scaling law. We propose several approaches to experimentally realize the Efimov effect in quantum magnets, where the emergent Efimov states of magnons can be observed with commonly used spectroscopic measurements. Our study thus opens up new avenues for universal few-body physics in condensed matter systems. C1 [Nishida, Yusuke; Kato, Yasuyuki; Batista, Cristian D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Nishida, Y (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM nishida@yukawa.kyoto-u.ac.jp RI Nishida, Yusuke/B-9334-2015; Batista, Cristian/J-8008-2016 OI Nishida, Yusuke/0000-0003-4350-3161; FU LANL Oppenheimer Fellowship; US DOE through the LDRD program [DE-AC52-06NA25396] FX This work was supported by a LANL Oppenheimer Fellowship and the US DOE contract No. DE-AC52-06NA25396 through the LDRD program. NR 50 TC 21 Z9 21 U1 4 U2 34 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 J9 NAT PHYS JI Nat. Phys. PD FEB PY 2013 VL 9 IS 2 BP 93 EP 97 PG 5 WC Physics, Multidisciplinary SC Physics GA 093FL UT WOS:000315177000014 ER PT J AU Whalen, S Peisert, S Bishop, M AF Whalen, Sean Peisert, Sean Bishop, Matt TI Multiclass classification of distributed memory parallel computations SO PATTERN RECOGNITION LETTERS LA English DT Article DE Multiclass classification; Bayesian networks; Random forests; Self-organizing maps; High performance computing; Communication patterns ID NETWORK MOTIFS AB High Performance Computing (HPC) is a field concerned with solving large-scale problems in science and engineering. However, the computational infrastructure of HPC systems can also be misused as demonstrated by the recent commoditization of cloud computing resources on the black market As a first step towards addressing this, we introduce a machine learning approach for classifying distributed parallel computations based on communication patterns between compute nodes. We first provide relevant background on message passing and computational equivalence classes called dwarfs and describe our exploratory data analysis using self organizing maps. We then present our classification results across 29 scientific codes using Bayesian networks and compare their performance against Random Forest classifiers. These models, trained with hundreds of gigabytes of communication logs collected at Lawrence Berkeley National Laboratory, perform well without any a priori information and address several shortcomings of previous approaches. (C) 2012 Elsevier B.V. All rights reserved. C1 [Whalen, Sean] Columbia Univ, Dept Comp Sci, New York, NY 10027 USA. [Peisert, Sean] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Peisert, Sean; Bishop, Matt] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA. RP Whalen, S (reprint author), Columbia Univ, Dept Comp Sci, New York, NY 10027 USA. EM swhalen@cs.columbia.edu; sppeisert@lbl.gov; bishop@cs.ucdavis.edu FU Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; U.S. Department of Homeland Security [2006-CS-001-000001]; Institute for Information Infrastructure Protection (I3P) research program; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX Thanks to Scott Campbell and David Skinner for capturing IPM data at NERSC and to members of the high performance computing security project at LBNL for helpful discussions. This research was supported in part by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231, and also by the U.S. Department of Homeland Security under grant award number 2006-CS-001-000001 under the auspices of the Institute for Information Infrastructure Protection (I3P) research program. The I3P is managed by Dartmouth College. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under contract number DE-AC02-05CH11231. The views and conclusions contained in this document are those of the authors and not necessarily those of its sponsors. NR 34 TC 2 Z9 2 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8655 EI 1872-7344 J9 PATTERN RECOGN LETT JI Pattern Recognit. Lett. PD FEB 1 PY 2013 VL 34 IS 3 BP 322 EP 329 DI 10.1016/j.patrec.2012.10.007 PG 8 WC Computer Science, Artificial Intelligence SC Computer Science GA 090XJ UT WOS:000315013000011 ER PT J AU Li, Q Williams, RT Aberg, D AF Li, Qi Williams, R. T. Aberg, Daniel TI First principles calculations and experiment predictions for iodine vacancy centers in SrI2 SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE anion vacancy; electronic structure; F center; scintillator; strontium iodide ID SCINTILLATION PROPERTIES; DISPLACEMENT FIELD; POINT-DEFECTS; CRYSTALS; CE3+; PROPORTIONALITY; LUMINESCENCE; PERFORMANCE; EXCITATION; DENSITY AB We present the electronic structure, lattice relaxation, and formation energies of iodine vacancy defects in SrI2 for the one-electron, two-electron, and ionized charge states. We use a local generalized gradient approximation as well as non-local hybrid functionals within the framework of density functional theory, as it is commonly accepted that the latter can improve accuracy of the band gap and hence relevant energy levels. Comparison is made to published results on chlorine vacancy defects in NaCl calculated with similar methods and functionals, and also to a recent first-principles study of one- and two-electron occupancy in MgO vacancy centers. Using the parameters that are calculable from first principles in SrI2 as a starting point, we incorporate available experimental data and adaptations of simple models to predict a range of results that can help guide or interpret future experiments such as absorption energy, configuration coordinate curves, vibrational lineshape, thermal trap depth, and MollwoIvey comparison to alkaline-earth fluorides. Charge density contour in the F center in SrI2. C1 [Li, Qi; Williams, R. T.] Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA. [Aberg, Daniel] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Li, Q (reprint author), Wake Forest Univ, Dept Phys, Winston Salem, NC 27109 USA. EM liq9@wfu.edu; williams@wfu.edu RI Li, Qi/D-3188-2014 OI Li, Qi/0000-0001-5699-9843 NR 52 TC 9 Z9 9 U1 2 U2 22 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0370-1972 EI 1521-3951 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD FEB PY 2013 VL 250 IS 2 BP 233 EP 243 DI 10.1002/pssb.201200503 PG 11 WC Physics, Condensed Matter SC Physics GA 089SE UT WOS:000314929500002 ER PT J AU Stanek, CR Jiang, C Yadav, SK McClellan, KJ Uberuaga, BP Andersson, DA Nikl, M AF Stanek, C. R. Jiang, C. Yadav, S. K. McClellan, K. J. Uberuaga, B. P. Andersson, D. A. Nikl, M. TI The effect of Ga-doping on the defect chemistry of RE3Al5O12 garnets SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE aluminate garnets; antisite defects; Ga doping ID GALLIUM GARNETS; CATION DISTRIBUTION; SOLID-SOLUTIONS; X-RAY; YTTRIUM; CRYSTALS; DISORDER; STOICHIOMETRY; SCINTILLATOR AB It has been recently shown that the addition of Ga to Lu3Al5O12 garnet (LuAG) removes the electron trapping associated with cation antisite defects. In this paper, we show via atomic scale simulations that the replacement of Al with Ga in LuAG actually lowers the energy of the antisite disorder process. Thus, we predict that Ga additions will lead to an increase of the antisite defect concentration and, in the absence of the electronic structure changes, would actually degrade the performance of the material. Since there are two crystallographically distinct Al sites in the garnet structure, we not only present results for complete replacement of Al with Ga, but also partial replacement for 40% (on 16a) and 60% (on 24d) of the Al with Ga. Our results support the explanation for Ga-doping leading to improvement in garnet scintillator performance that relies on variations of the electronic structure rather than reduction of the antisite defect concentration. Cation antisite defects in RE3Al5O12 garnet, where small light gray atoms and large dark gray atoms are lattice Al and RE atoms, respectively. The constituents of the antisite defect pairs are labeled, and it should be noted that the Ga atom (blue) is similar in size to RE (green). Oxygen atoms are not shown for clarity. C1 [Stanek, C. R.; Yadav, S. K.; McClellan, K. J.; Uberuaga, B. P.; Andersson, D. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Jiang, C.] Univ Wisconsin, Madison, WI 53706 USA. [Yadav, S. K.] Univ Connecticut, Storrs, CT 06269 USA. [Nikl, M.] Inst Phys AS CR, Prague 16253, Czech Republic. RP Stanek, CR (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM stanek@lanl.gov RI yadav, satyesh/C-5811-2013; Yadav, Satyesh/M-6588-2014 OI yadav, satyesh/0000-0002-6308-6070; FU Czech GACR [P204/12/0805]; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX We gratefully acknowledge partial support of Czech GACR P204/12/0805 project. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396. NR 31 TC 13 Z9 13 U1 2 U2 32 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD FEB PY 2013 VL 250 IS 2 BP 244 EP 248 DI 10.1002/pssb.201200524 PG 5 WC Physics, Condensed Matter SC Physics GA 089SE UT WOS:000314929500003 ER PT J AU Smith, DY Karstens, W Shiles, E Inokuti, M AF Smith, D. Y. Karstens, W. Shiles, E. Inokuti, Mitio TI Defect and analysis effects in the infrared optical properties of silicon SO PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS LA English DT Article DE channel spectra; defects; dispersion theory; optical constants; silicon ID TIME-DOMAIN SPECTROSCOPY; REFRACTIVE-INDEX; LATTICE ABSORPTION; TEMPERATURE-DEPENDENCE; INTERSTITIAL OXYGEN; GERMANIUM-SILICON; DOPED SILICON; CONSTANTS; CRYSTALS; SEMICONDUCTORS AB The infrared optical properties of silicon reported by different workers disagree by far more than the precision of the measurements. Further, their extrapolations conflict with THz measurements. These inconsistencies are commonly attributed to crystal defects or impurities, but lack of reliable intrinsic silicon values hampers separation of host and defect effects. We have developed tests based on linear-response theory to address this. Tests include requiring that the refractive index is an even function of photon energy, and comparing the coefficients of a Taylor expansion of the IR index with the moments of the electronic absorption above the band gap. The latter is sufficiently well known for silicon that predictions for the intercept, slope, and curvature, of the index may be used to test infrared measurements for consistency. Thus, we identified the sources of conflict as: (i) A physically inconsistent assumption for index parity commonly made in analysis of channel-spectra. (ii) Defect and free-carrier absorption. Eliminating data sets with these shortcomings resolved the conflict between measurements and allowed us to develop a composite set of IR optical constants for silicon that is a best fit to reliable measurements from microwaves to the visible. C1 [Smith, D. Y.] Univ Vermont, Dept Phys, Burlington, VT 05405 USA. [Smith, D. Y.; Inokuti, Mitio] Argonne Natl Lab, Argonne, IL 60439 USA. [Karstens, W.] St Michaels Coll, Dept Phys, Colchester, VT 05439 USA. RP Smith, DY (reprint author), Univ Vermont, Dept Phys, 82 Univ Pl, Burlington, VT 05405 USA. EM dysmith@uvm.edu; wkarstens@smcvt.edu FU US Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX These studies were supported in part by the US Department of Energy, Office of Nuclear Physics under contract DE-AC02-06CH11357. We acknowledge contributions of Dr. Carrie Black for data analysis, Dr. Robert C. Birtcher for retrieving data from the files of the AIP data depository, and Mr. Gary Davidoff for help in locating several obscure references. NR 52 TC 5 Z9 5 U1 2 U2 19 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0370-1972 J9 PHYS STATUS SOLIDI B JI Phys. Status Solidi B-Basic Solid State Phys. PD FEB PY 2013 VL 250 IS 2 BP 271 EP 277 DI 10.1002/pssb.201200495 PG 7 WC Physics, Condensed Matter SC Physics GA 089SE UT WOS:000314929500007 ER PT J AU Binotti, M Zhu, GD Gray, A Manzolini, G Silva, P AF Binotti, Marco Zhu, Guangdong Gray, Allison Manzolini, Giampaolo Silva, Paolo TI Geometric analysis of three-dimensional effects of parabolic trough collectors SO SOLAR ENERGY LA English DT Article DE Concentrating solar power; Parabolic trough; Intercept factor; Optical analysis; Incidence angle modifier; Three-dimensional effects AB An analytical approach, as an extension of one newly developed method - First-principle OPTical Intercept Calculation (FirstOPTIC)-is proposed to evaluate the geometrical impact of three-dimensional (3-D) effects on the optical performance of parabolic trough collectors. The mathematical steps of this analytical approach are presented and implemented numerically as part of the suite of FirstOPTIC code. The new code has been carefully validated against numerical solutions and ray-tracing simulation results. The FirstOPTIC code is then applied to a series of case studies to examine the impact of some important 3-D effects on the intercept factor. A significant result of this work is the correction of the approach generally accepted for the specularity mirror errors for non-zero incidence angles. The new correlation has been validated using the FirstOPTIC approach and ray tracing. (c) 2012 Published by Elsevier Ltd. C1 [Binotti, Marco; Zhu, Guangdong; Gray, Allison] Natl Renewable Energy Lab, Concentrating Solar Power Program, Golden, CO 80401 USA. [Binotti, Marco; Manzolini, Giampaolo; Silva, Paolo] Politecn Milan, Dipartimento Energia, I-20156 Milan, Italy. RP Zhu, GD (reprint author), Natl Renewable Energy Lab, Concentrating Solar Power Program, 15013 Denve W Pkwy, Golden, CO 80401 USA. EM guangdong.zhu@nrel.gov RI Manzolini, Giampaolo/O-5387-2015; OI Manzolini, Giampaolo/0000-0001-6271-6942; Silva, Paolo/0000-0002-6970-2081; Binotti, Marco/0000-0002-2535-7589 FU National Renewable Energy Laboratory (NREL) in the US; Department of Energy at the Politecnico di Milano University in Italy FX The authors wish to thank the National Renewable Energy Laboratory (NREL) in the US and the Department of Energy at the Politecnico di Milano University in Italy for supporting this work. Special thanks to Al Lewandowski and Tim Wendelin at NREL for their technical support on SolTrace. The authors also highly appreciate support from Prof. Ennio Macchi at Politecnico di Milano. NR 7 TC 10 Z9 10 U1 1 U2 22 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD FEB PY 2013 VL 88 BP 88 EP 96 DI 10.1016/j.solener.2012.10.025 PG 9 WC Energy & Fuels SC Energy & Fuels GA 090XC UT WOS:000315012300009 ER PT J AU Diz-Munoz, A Fletcher, DA Weiner, OD AF Diz-Munoz, Alba Fletcher, Daniel A. Weiner, Orion D. TI Use the force: membrane tension as an organizer of cell shape and motility SO TRENDS IN CELL BIOLOGY LA English DT Review DE membrane tension; motility; cell shape ID RED-BLOOD-CELLS; TETHER FORMATION; ERYTHROCYTE-MEMBRANE; CORTICAL TENSION; CYTOSKELETON ADHESION; MECHANICAL-PROPERTIES; BENDING STIFFNESS; PLASMA-MEMBRANES; OPTICAL TWEEZERS; LEADING-EDGE AB Many cell phenomena that involve shape changes are affected by the intrinsic deformability of the plasma membrane (PM). Far from being a passive participant, the PM is now known to physically, as well as biochemically, influence cell processes ranging from vesicle trafficking to actin assembly. Here we review current understanding of how changes in PM tension regulate cell shape and movement, as well as how cells sense PM tension. C1 [Diz-Munoz, Alba; Fletcher, Daniel A.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. [Diz-Munoz, Alba; Fletcher, Daniel A.] Univ Calif Berkeley, Biophys Program, Berkeley, CA 94720 USA. [Diz-Munoz, Alba; Weiner, Orion D.] Univ Calif San Francisco, Cardiovasc Res Inst, San Francisco, CA 94143 USA. [Diz-Munoz, Alba; Weiner, Orion D.] Univ Calif San Francisco, Dept Biochem, San Francisco, CA 94143 USA. [Fletcher, Daniel A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Fletcher, DA (reprint author), Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. EM fletch@berkeley.edu; orion.weiner@ucsf.edu RI Weiner, Orion/F-2576-2011 OI Weiner, Orion/0000-0002-1778-6543 FU NIH [GM084040, GM074751] FX We apologize for not being able to cite all contributions because of space restrictions and acknowledge the many scientists who have contributed to the field of PM tension. We thank Ewa Paluch, Christer S. Ejsing, Martin Bergert, and Patricia Bassereau for critical reading of the manuscript. We would like to also thank Oliver Hoeller for the beautiful cover. This work was supported by NIH GM084040 and NIH GM074751. NR 80 TC 93 Z9 93 U1 7 U2 115 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0962-8924 J9 TRENDS CELL BIOL JI Trends Cell Biol. PD FEB PY 2013 VL 23 IS 2 BP 47 EP 53 DI 10.1016/j.tcb.2012.09.006 PG 7 WC Cell Biology SC Cell Biology GA 087WC UT WOS:000314794100001 PM 23122885 ER PT J AU Kandel, K Althaus, SM Peeraphatdit, C Kobayashi, T Trewyn, BG Pruski, M Slowing, II AF Kandel, Kapil Althaus, Stacey M. Peeraphatdit, Chorthip Kobayashi, Takeshi Trewyn, Brian G. Pruski, Marek Slowing, Igor I. TI Solvent-Induced Reversal of Activities between Two Closely Related Heterogeneous Catalysts in the Aldol Reaction SO ACS CATALYSIS LA English DT Article DE mesoporous silica nanoparticles; aldol condensation; enamine catalysis; solvent effects; solid-state NMR ID PRIMARY AMINE CATALYSTS; MESOPOROUS SILICA; CONDENSATION-REACTIONS; IMINIUM CATALYSIS; ASYMMETRIC ALDOL; SOLID-STATE; C-13 NMR; PROLINE; WATER; ACID AB The relative rates of the aldol reaction catalyzed by supported primary and secondary amines can be inverted by 2 orders of magnitude, depending on the use of hexane or water as a solvent. Our analyses suggest that this dramatic shift in the catalytic behavior of the supported amines does not involve differences in reaction mechanism, but is caused by activation of imine to enamine equilibria and stabilization of iminium species. The effects of solvent polarity and acidity were found to be important to the performance of the catalytic reaction. This study highlights the critical role of solvent in multicomponent heterogeneous catalytic processes. C1 [Althaus, Stacey M.; Peeraphatdit, Chorthip; Kobayashi, Takeshi; Pruski, Marek; Slowing, Igor I.] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. [Kandel, Kapil; Althaus, Stacey M.; Peeraphatdit, Chorthip; Trewyn, Brian G.; Pruski, Marek] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Slowing, II (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA. EM islowing@iastate.edu OI Slowing, Igor/0000-0002-9319-8639 FU U.S. Department of Energy, Office of Basic Energy Sciences; Iowa State University [DE-AC02-07CH11358] FX This research was supported at the Ames Laboratory by the U.S. Department of Energy, Office of Basic Energy Sciences. Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 46 TC 16 Z9 16 U1 1 U2 78 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD FEB PY 2013 VL 3 IS 2 BP 265 EP 271 DI 10.1021/cs300748g PG 7 WC Chemistry, Physical SC Chemistry GA 084RX UT WOS:000314557900022 ER PT J AU Dauter, Z Weiss, MS Einspahr, H Baker, EN AF Dauter, Zbigniew Weiss, Manfred S. Einspahr, Howard Baker, Edward N. TI Expectation bias and information content SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Editorial Material ID RE-REFINEMENT; PDB; MODELS C1 [Dauter, Zbigniew] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Weiss, Manfred S.] Helmholtz Zentrum Berlin Mat & Energie Macromol C, D-12489 Berlin, Germany. [Baker, Edward N.] Univ Auckland, Sch Biol Sci, Auckland, New Zealand. RP Dauter, Z (reprint author), Argonne Natl Lab, Biosci Div, Bldg 202,Room Q142, Argonne, IL 60439 USA. RI Weiss, Manfred/B-6857-2013 NR 6 TC 1 Z9 1 U1 0 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD FEB PY 2013 VL 69 BP 141 EP 141 DI 10.1107/S0907444913000255 PN 2 PG 1 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 085WM UT WOS:000314645000001 PM 23385450 ER PT J AU Read, RJ Adams, PD McCoy, AJ AF Read, Randy J. Adams, Paul D. McCoy, Airlie J. TI Intensity statistics in the presence of translational noncrystallographic symmetry SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article ID CRYSTAL-STRUCTURE; EXAMPLES AB In the case of translational noncrystallographic symmetry (tNCS), two or more copies of a component in the asymmetric unit of the crystal are present in a similar orientation. This causes systematic modulations of the reflection intensities in the diffraction pattern, leading to problems with structure determination and refinement methods that assume, either implicitly or explicitly, that the distribution of intensities is a function only of resolution. To characterize the statistical effects of tNCS accurately, it is necessary to determine the translation relating the copies, any small rotational differences in their orientations, and the size of random coordinate differences caused by conformational differences. An algorithm to estimate these parameters and refine their values against a likelihood function is presented, and it is shown that by accounting for the statistical effects of tNCS it is possible to unmask the competing statistical effects of twinning and tNCS and to more robustly assess the crystal for the presence of twinning. C1 [Read, Randy J.; McCoy, Airlie J.] Wellcome Trust Res Labs, Dept Haematol, Cambridge Inst Med Res, Cambridge CB2 0XY, England. [Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Read, RJ (reprint author), Wellcome Trust Res Labs, Dept Haematol, Cambridge Inst Med Res, MRC Bldg,Hills Rd, Cambridge CB2 0XY, England. EM rjr27@cam.ac.uk RI Read, Randy/L-1418-2013; Adams, Paul/A-1977-2013 OI Read, Randy/0000-0001-8273-0047; Adams, Paul/0000-0001-9333-8219 FU Wellcome Trust [082961]; NIH/NIGMS [P01GM063210]; US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Wellcome Trust (Principal Research Fellowship award 082961 to RJR) and by the NIH/NIGMS (P01GM063210 to PDA and RJR). This work was supported in part by the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 20 TC 14 Z9 14 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD FEB PY 2013 VL 69 BP 176 EP 183 DI 10.1107/S0907444912045374 PN 2 PG 8 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 085WM UT WOS:000314645000005 PM 23385454 ER PT J AU Jung, YS Lu, P Cavanagh, AS Ban, C Kim, GH Lee, SH George, SM Harris, SJ Dillon, AC AF Jung, Yoon Seok Lu, Peng Cavanagh, Andrew S. Ban, Chunmei Kim, Gi-Heon Lee, Se-Hee George, Steven M. Harris, Stephen J. Dillon, Anne C. TI Unexpected Improved Performance of ALD Coated LiCoO2/Graphite Li-Ion Batteries SO ADVANCED ENERGY MATERIALS LA English DT Article DE batteries; electrodes; surface modification; thin films; functional coatings ID ATOMIC LAYER DEPOSITION; CAPACITY LOSSES; ANODE MATERIALS; LITHIUM; ELECTRODES; CATHODE; NANOPARTICLES; INTERPHASE; STABILITY; LICOO2 AB The performance of Al2O3 atomic layer deposition (ALD) coatings for LiCoO2/natural graphite (LCO/NG) batteries is investigated, where various permutations of the electrodes are coated in a full battery. Coating both electrodes with approximate to 1 nm of alumina as well as coating only the LCO (positive electrode) enables improved performance when cycling at high voltage, where the LCO is known to degrade. However, we found that coating only the NG (negative electrode) also improves the performance of the whole battery when cycling at high voltage. Under these conditions, the uncoated LCO (positive electrode) should degrade quickly, and the NG should be unaffected. A variety of characterization techniques show the surface reactions that occur on the negative electrode and positive electrode are related, resulting in the enhanced performance of the uncoated LCO. C1 [Jung, Yoon Seok; Ban, Chunmei; Kim, Gi-Heon; Dillon, Anne C.] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Jung, Yoon Seok] UNIST, Interdisciplinary Sch Green Energy, Ulsan 689798, South Korea. [Lu, Peng; Harris, Stephen J.] Gen Motors Res & Dev Ctr, Warren, MI 48090 USA. [Cavanagh, Andrew S.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Lee, Se-Hee] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA. [George, Steven M.] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [George, Steven M.] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA. RP Jung, YS (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM ysjung@unist.ac.kr; Anne.Dillon@nrel.gov RI Lee, Sehee/A-5989-2011; Lu, Peng/B-3012-2010; George, Steven/O-2163-2013; Jung, Yoon Seok/B-8512-2011 OI Lu, Peng/0000-0003-3297-8583; George, Steven/0000-0003-0253-9184; Jung, Yoon Seok/0000-0003-0357-9508 FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory; DOE EERE VT BATT program; Energy Efficiency and Resources RD program [20112010100150]; ITRC (Information Technology Research Center) [NIPA-2012-H0301-12-1009]; Creativity and Innovation Project; UNIST (Ulsan National Institute of Science and Technology) [1.120027.01] FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 through: the NREL Director's Research and Development Program within the National Renewable Energy Laboratory as well as through the DOE EERE VT BATT program. This research was also supported by Energy Efficiency and Resources R&D program (20112010100150) and by the ITRC (Information Technology Research Center) support program (NIPA-2012-H0301-12-1009) supervised by the NIPA (National IT Industry Promotion Agency) under the MKE (The Ministry of Knowledge Economy), Korea, and by a grant from Creativity and Innovation Project funded by the UNIST (Ulsan National Institute of Science and Technology) (1.120027.01). We thank A. Pesaran and T. Penny for NREL program/project guidance, G. Teeter for experimental assistance and valuable discussions and K. J. Lee for assisting in the schematic diagram. NR 29 TC 62 Z9 63 U1 26 U2 333 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1614-6832 J9 ADV ENERGY MATER JI Adv. Energy Mater. PD FEB PY 2013 VL 3 IS 2 BP 213 EP 219 DI 10.1002/aenm.201200370 PG 7 WC Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Energy & Fuels; Materials Science; Physics GA 086AD UT WOS:000314654500012 ER PT J AU Davies, EGR Kyle, P Edmonds, JA AF Davies, Evan G. R. Kyle, Page Edmonds, James A. TI An integrated assessment of global and regional water demands for electricity generation to 2095 SO ADVANCES IN WATER RESOURCES LA English DT Article DE Electric power; Integrated assessment; Water use; Water withdrawal; Water consumption ID GREENHOUSE-GAS EMISSIONS; CLIMATE-CHANGE; FRESH-WATER; CO2 CONCENTRATIONS; RESOURCES; ENERGY; MODEL; GROWTH; CYCLE; PART AB Electric power plants account for approximately half the global industrial water withdrawal. Although continued electric-sector expansion is probable, significant variations in water intensity by electricity technology and cooling system type make its effects on water demands uncertain. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we establish lower-, median-, and upper-bound estimates for current electric-sector water withdrawals and consumption in 14 geopolitical regions, and compare them with available estimates. We then explore water use for electricity to 2095, focusing on uncertainties in water withdrawal and consumption intensities, power plant cooling system changes, and adoption rates of water-saving technologies. Results reveal a probable decrease in the water withdrawal intensity with capital stock turnover, but a corresponding increase in consumptive use, for which technologies under development may compensate. At a regional scale, water use varies significantly based on the existing capital stock and its evolution over the century. (c) 2012 Elsevier Ltd. All rights reserved. C1 [Davies, Evan G. R.] Univ Alberta, Markin CNRL Nat Resources Engn Facil 3 133, Dept Civil & Environm Engn, Edmonton, AB T6G 2W2, Canada. [Kyle, Page; Edmonds, James A.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. RP Davies, EGR (reprint author), Univ Alberta, Markin CNRL Nat Resources Engn Facil 3 133, Dept Civil & Environm Engn, Edmonton, AB T6G 2W2, Canada. EM evan.davies@ualberta.ca; pkyle@pnnl.gov; jae@pnnl.gov RI Davies, Evan/A-3379-2008 OI Davies, Evan/0000-0003-0536-333X FU Integrated Assessment Research Program of the US Department of Energy's Office of Science; Pacific Northwest National Laboratory's Global Energy Technology Strategy Program FX The authors would like to acknowledge funding support from the Integrated Assessment Research Program of the US Department of Energy's Office of Science, and the sponsors of the Pacific Northwest National Laboratory's Global Energy Technology Strategy Program. NR 104 TC 41 Z9 41 U1 5 U2 42 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0309-1708 J9 ADV WATER RESOUR JI Adv. Water Resour. PD FEB PY 2013 VL 52 BP 296 EP 313 DI 10.1016/j.advwatres.2012.11.020 PG 18 WC Water Resources SC Water Resources GA 086ME UT WOS:000314687500022 ER PT J AU Barnett, RM AF Barnett, R. Michael TI Fireworks on the 4th of July SO AMERICAN JOURNAL OF PHYSICS LA English DT Editorial Material DE Higgs bosons; physics education; teaching C1 Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Barnett, RM (reprint author), Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 1 TC 0 Z9 0 U1 1 U2 18 PU AMER ASSOC PHYSICS TEACHERS AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0002-9505 J9 AM J PHYS JI Am. J. Phys. PD FEB PY 2013 VL 81 IS 2 BP 85 EP 87 DI 10.1119/1.4773295 PG 3 WC Education, Scientific Disciplines; Physics, Multidisciplinary SC Education & Educational Research; Physics GA 076LV UT WOS:000313958900001 ER PT J AU Priddy, CMOK Kajimoto, M Ledee, DR Bouchard, B Isern, N Olson, AK Des Rosiers, C Portman, MA AF Priddy, Colleen M. O. Kelly Kajimoto, Masaki Ledee, Dolena R. Bouchard, Bertrand Isern, Nancy Olson, Aaron K. Des Rosiers, Christine Portman, Michael A. TI Myocardial oxidative metabolism and protein synthesis during mechanical circulatory support by extracorporeal membrane oxygenation SO AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY LA English DT Article DE extracorporeal membrane oxygenation; leucine; pyruvate; branch chain amino acids ID CHAIN AMINO-ACIDS; INFANT CARDIOPULMONARY BYPASS; PERFUSED RAT-HEART; SKELETAL-MUSCLE; LIFE-SUPPORT; LEUCINE; EXPRESSION; PYRUVATE; REPERFUSION; DEGRADATION AB Priddy CM, Kajimoto M, Ledee DR, Bouchard B, Isern N, Olson AK, Rosiers CD, Portman MA. Myocardial oxidative metabolism and protein synthesis during mechanical circulatory support by extracorporeal membrane oxygenation. Am J Physiol Heart Circ Physiol 304: H406-H414, 2013. First published November 30, 2012; doi: 10.1152/ajpheart.00672.2012.-Extracorporeal membrane oxygenation (ECMO) provides essential mechanical circulatory support necessary for survival in infants and children with acute cardiac decompensation. However, ECMO also causes metabolic disturbances, which contribute to total body wasting and protein loss. Cardiac stunning can also occur, which prevents ECMO weaning, and contributes to high mortality. The heart may specifically undergo metabolic impairments, which influence functional recovery. We tested the hypothesis that ECMO alters oxidative metabolism and protein synthesis. We focused on the amino acid leucine and integration with myocardial protein synthesis. We used a translational immature swine model in which we assessed in heart 1) the fractional contribution of leucine (FcLeucine) and pyruvate to mitochondrial acetyl-CoA formation by nuclear magnetic resonance and 2) global protein fractional synthesis (FSR) by gas chromatography-mass spectrometry. Immature mixed breed Yorkshire male piglets (n = 22) were divided into four groups based on loading status (8 h of normal circulation or ECMO) and intracoronary infusion [C-13(6),N-15]-L-leucine (3.7 mM) alone or with [2-C-13]-pyruvate (7.4 mM). ECMO decreased pulse pressure and correspondingly lowered myocardial oxygen consumption (similar to 40%, n = 5), indicating decreased overall mitochondrial oxidative metabolism. However, FcLeucine was maintained and myocardial protein FSR was marginally increased. Pyruvate addition decreased tissue leucine enrichment, FcLeucine, and Fc for endogenous substrates as well as protein FSR. The heart under ECMO shows reduced oxidative metabolism of substrates, including amino acids, while maintaining 1) metabolic flexibility indicated by ability to respond to pyruvate and 2) a normal or increased capacity for global protein synthesis. C1 [Priddy, Colleen M. O. Kelly] Univ Washington, Dept Surg, Seattle, WA 98195 USA. [Priddy, Colleen M. O. Kelly; Kajimoto, Masaki; Ledee, Dolena R.; Olson, Aaron K.; Portman, Michael A.] Seattle Childrens Res Inst, Ctr Dev Therapeut, Seattle, WA 98101 USA. [Bouchard, Bertrand; Des Rosiers, Christine] Univ Montreal, Dept Nutr, Montreal, PQ H3C 3J7, Canada. [Bouchard, Bertrand; Des Rosiers, Christine] Montreal Heart Inst, Montreal, PQ H1T 1C8, Canada. [Isern, Nancy] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA USA. [Olson, Aaron K.; Portman, Michael A.] Univ Washington, Dept Pediat, Div Cardiol, Seattle, WA 98195 USA. RP Portman, MA (reprint author), Seattle Childrens Res Inst, 1900 9th Ave, Seattle, WA 98101 USA. EM michael.portman@seattlechildrens.org RI Isern, Nancy/J-8016-2013; Des Rosiers, Christine/O-6285-2014; OI Isern, Nancy/0000-0001-9571-8864 FU Department of Energy's Office of Biological and Environmental Research; National Heart, Lung, and Blood Institute [NIH R01-HL-60666] FX A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. We thank Chun Xu for assistance with perfusion.; This work was supported by National Heart, Lung, and Blood Institute Grant No. NIH R01-HL-60666 (to M. A. Portman). NR 40 TC 10 Z9 10 U1 0 U2 7 PU AMER PHYSIOLOGICAL SOC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814 USA SN 0363-6135 J9 AM J PHYSIOL-HEART C JI Am. J. Physiol.-Heart Circul. Physiol. PD FEB PY 2013 VL 304 IS 3 BP H406 EP H414 DI 10.1152/ajpheart.00672.2012 PG 9 WC Cardiac & Cardiovascular Systems; Physiology; Peripheral Vascular Disease SC Cardiovascular System & Cardiology; Physiology GA 085UZ UT WOS:000314641100008 PM 23203964 ER PT J AU Vogt, S Ralle, M AF Vogt, Stefan Ralle, Martina TI Opportunities in multidimensional trace metal imaging: taking copper-associated disease research to the next level SO ANALYTICAL AND BIOANALYTICAL CHEMISTRY LA English DT Review DE Imaging; X-ray; Fluorescence; Copper; Neurological disease ID X-RAY-FLUORESCENCE; RESONANCE CONTRAST AGENTS; N-TERMINAL DOMAIN; WILSON-DISEASE; ALZHEIMERS-DISEASE; MENKES-DISEASE; MOUSE MODEL; INTRACELLULAR RETENTION; ABSORPTION SPECTROSCOPY; BIOLOGICAL APPLICATIONS AB Copper plays an important role in numerous biological processes across all living systems predominantly because of its versatile redox behavior. Cellular copper homeostasis is tightly regulated and disturbances lead to severe disorders such as Wilson disease and Menkes disease. Age-related changes of copper metabolism have been implicated in other neurodegenerative disorders such as Alzheimer disease. The role of copper in these diseases has been a topic of mostly bioinorganic research efforts for more than a decade, metal-protein interactions have been characterized, and cellular copper pathways have been described. Despite these efforts, crucial aspects of how copper is associated with Alzheimer disease, for example, are still only poorly understood. To take metal-related disease research to the next level, emerging multidimensional imaging techniques are now revealing the copper metallome as the basis to better understand disease mechanisms. This review describes how recent advances in X-ray fluorescence microscopy and fluorescent copper probes have started to contribute to this field, specifically in Wilson disease and Alzheimer disease. It furthermore provides an overview of current developments and future applications in X-ray microscopic methods. C1 [Vogt, Stefan] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA. [Ralle, Martina] Oregon Hlth & Sci Univ, Dept Biochem & Mol Biol, Portland, OR 97239 USA. RP Ralle, M (reprint author), Oregon Hlth & Sci Univ, Dept Biochem & Mol Biol, 3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA. EM rallem@ohsu.edu RI Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013 OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513 FU National Institutes of Health [GM090016]; US Department of Energy, Office of Science [DE-AC-02-6CH11357] FX The authors gratefully acknowledge the use of the facilities at the Advanced Photon Source. This work was supported by the National Institutes of Health grant GM090016 to M. R. The use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science contract DE-AC-02-6CH11357. NR 110 TC 14 Z9 14 U1 3 U2 54 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1618-2642 J9 ANAL BIOANAL CHEM JI Anal. Bioanal. Chem. PD FEB PY 2013 VL 405 IS 6 BP 1809 EP 1820 DI 10.1007/s00216-012-6437-1 PG 12 WC Biochemical Research Methods; Chemistry, Analytical SC Biochemistry & Molecular Biology; Chemistry GA 086JX UT WOS:000314681000003 PM 23079951 ER PT J AU Yun, KT Cho, H Luck, R Mago, PJ AF Yun, Kyung Tae Cho, Heejin Luck, Rogelio Mago, Pedro J. TI Modeling of reciprocating internal combustion engines for power generation and heat recovery SO APPLIED ENERGY LA English DT Article DE Combined heat and power; Internal combustion engine; Power generation; Heat recovery ID OPERATIONAL STRATEGY; CHP SYSTEM; OPTIMIZATION; EMISSION; ENERGY AB This paper presents a power generation and heat recovery model for reciprocating internal combustion engines (ICES). The purpose of the proposed model is to provide realistic estimates of performance/efficiency maps for both electrical power output and useful thermal output for various capacities of engines for use in a preliminary CHP design/simulation process. The proposed model will serve as an alternative to constant engine efficiencies or empirical efficiency curves commonly used in the current literature for simulations of CHP systems. The engine performance/efficiency calculation algorithm has been coded to a publicly distributed FORTRAN Dynamic Link Library (DLL), and a user friendly tool has been developed using Visual Basic programming. Simulation results using the proposed model are validated against manufacturer's technical data. (c) 2012 Elsevier Ltd. All rights reserved. C1 [Yun, Kyung Tae; Luck, Rogelio; Mago, Pedro J.] Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA. [Cho, Heejin] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Cho, H (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN K5-16, Richland, WA 99352 USA. EM heejin.cho@pnnl.gov OI Cho, Heejin/0000-0003-2789-510X NR 25 TC 24 Z9 26 U1 1 U2 27 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 J9 APPL ENERG JI Appl. Energy PD FEB PY 2013 VL 102 SI SI BP 327 EP 335 DI 10.1016/j.apenergy.2012.07.020 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 079RV UT WOS:000314190800038 ER PT J AU Muth, DJ Bryden, KM Nelson, RG AF Muth, D. J., Jr. Bryden, K. M. Nelson, R. G. TI Sustainable agricultural residue removal for bioenergy: A spatially comprehensive US national assessment SO APPLIED ENERGY LA English DT Article DE Biomass; Biofuels; Bioenergy; Agricultural residues; Sustainable agricultural residue removal ID CORN STOVER; SOIL QUALITY; WOODY BIOMASS; EROSION; SYSTEM; MODEL; METHODOLOGY; POTENTIALS; BIOFUEL; ETHANOL AB This study provides a spatially comprehensive assessment of sustainable agricultural residue removal potential across the United States for bioenergy production. Earlier assessments determining the quantity of agricultural residue that could be sustainably removed for bioenergy production at the regional and national scale faced a number of computational limitations. These limitations included the number of environmental factors, the number of land management scenarios, and the spatial fidelity and spatial extent of the assessment. This study utilizes integrated multi-factor environmental process modeling and high fidelity land use datasets to perform the sustainable agricultural residue removal assessment. Soil type represents the base spatial unit for this study and is modeled using a national soil survey database at the 10-100 m scale. Current crop rotation practices are identified by processing land cover data available from the USDA National Agricultural Statistics Service Cropland Data Layer database. Land management and residue removal scenarios are identified for each unique crop rotation and crop management zone. Estimates of county averages and state totals of sustainably available agricultural residues are provided. The results of the assessment show that in 2011 over 150 million metric tons of agricultural residues could have been sustainably removed across the United States. Projecting crop yields and land management practices to 2030, the assessment determines that over 207 million metric tons of agricultural residues will be able to be sustainably removed for bioenergy production at that time. This biomass resource has the potential for producing over 68 billion liters of cellulosic biofuels. (c) 2012 Elsevier Ltd. All rights reserved. C1 [Muth, D. J., Jr.] Idaho Natl Lab, Biofuels & Renewable Energy Technol Div, Idaho Falls, ID 83415 USA. [Bryden, K. M.] Ames Lab, Simulat Modeling & Decis Sci Program, Ames, IA 50011 USA. [Nelson, R. G.] Kansas State Univ, Ctr Sustainable Energy, Manhattan, KS 66506 USA. RP Muth, DJ (reprint author), Idaho Natl Lab, Biofuels & Renewable Energy Technol Div, POB 1625,MS 2025, Idaho Falls, ID 83415 USA. EM David.Muth@inl.gov RI Bryden, Kenneth/G-6918-2012 FU US Department of Energy's Office of Biomass Programs; Sun Grant Initiative through the Biomass Regional Feedstock Partnership FX This work was funded by the US Department of Energy's Office of Biomass Programs. The authors gratefully acknowledge significant support from all partners in the DOE Biomass Regional Feedstock Partnership Program. The help of Laurence Eaton and Matt Langholtz at Oak Ridge National Laboratory with the assembly of the Billion Ton Update scenario data and the assistance of Dave Lightle of the Natural Resources Conservation Service (retired) in developing the land management scenarios are thankfully acknowledged. In addition, Professor Bryden gratefully acknowledges the funding support of the Sun Grant Initiative through the Biomass Regional Feedstock Partnership. NR 60 TC 28 Z9 28 U1 5 U2 44 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 J9 APPL ENERG JI Appl. Energy PD FEB PY 2013 VL 102 SI SI BP 403 EP 417 DI 10.1016/j.apenergy.2012.07.028 PG 15 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 079RV UT WOS:000314190800046 ER PT J AU Ebadian, M Sowlati, T Sokhansanj, S Townley-Smith, L Stumborg, M AF Ebadian, Mahmood Sowlati, Taraneh Sokhansanj, Shahab Townley-Smith, Lawrence Stumborg, Mark TI Modeling and analysing storage systems in agricultural biomass supply chain for cellulosic ethanol production SO APPLIED ENERGY LA English DT Article DE Agricultural biomass supply chain; Cellulosic ethanol; Satellite storage; Simulation; Optimization ID LOGISTICS SYSTEM; BIOENERGY INDUSTRY; HERBACEOUS BIOMASS; DESIGN AB In this paper, a combined simulation/optimization model is developed to better understand and evaluate the impact of the storage systems on the costs incurred by each actor in the agricultural biomass supply chain including farmers, hauling contractors and the cellulosic ethanol plant. The optimization model prescribes the optimum number and location of farms and storages. It also determines the supply radius, the number of farms required to secure the annual supply of biomass and also the assignment of farms to storage locations. Given the specific design of the supply chain determined by the optimization model, the simulation model determines the number of required machines for each operation, their daily working schedule and utilization rates, along with the capacities of storages. To evaluate the impact of the storage systems on the delivered costs, three storage systems are molded and compared: roadside storage (RS) system and two satellite storage (SS) systems including SS with fixed hauling distance (SF) and SS with variable hauling distance (SV). In all storage systems, it is assumed the loading equipment is dedicated to storage locations. The obtained results from a real case study provide detailed cost figures for each storage system since the developed model analyses the supply chain on an hourly basis and considers time-dependence and stochasticity of the supply chain. Comparison of the storage systems shows SV would outperform SF and RS by reducing the total delivered cost by 8% and 6%, respectively. However, RS results in 10% and 8% decline in consumed energy and produced CO2 in logistics operations compared to SV and SF, respectively. Another finding is that the dedication of loading equipment to storage locations is an expensive option for agricultural biomass supply chain as loading operation is utilized 3%, 6% and 11% of its annual working hours in RS, SF and SV, respectively. (c) 2012 Elsevier Ltd. All rights reserved. C1 [Ebadian, Mahmood; Sowlati, Taraneh] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada. [Sokhansanj, Shahab] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Townley-Smith, Lawrence] Agr & Agri Food Canada, Natl Agroclimate Informat Serv, Regina, SK S4P 4L2, Canada. [Stumborg, Mark] Agr & Agri Food Canada, Semiarid Prairie Agr Res Ctr, Swift Current, SK S9H 3X2, Canada. RP Sowlati, T (reprint author), Univ British Columbia, Dept Wood Sci, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. EM taraneh.sowlati@ubc.ca FU University of British Columbia's Graduate Fellowship; Natural Sciences and Engineering Research Council of Canada; BC Ministry of Forest, Lands and Natural Resource Operations; Office of Biomass Program of the US DOE FX This research is funded in parts through the University of British Columbia's Graduate Fellowship to the senior author, by the Natural Sciences and Engineering Research Council of Canada, and by the BC Ministry of Forest, Lands and Natural Resource Operations. The Office of Biomass Program of the US DOE is acknowledged for supporting the development of IBSAL model at the Oak Ridge National laboratory and at the University of British Columbia. NR 26 TC 21 Z9 21 U1 3 U2 53 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 J9 APPL ENERG JI Appl. Energy PD FEB PY 2013 VL 102 SI SI BP 840 EP 849 DI 10.1016/j.apenergy.2012.08.049 PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 079RV UT WOS:000314190800089 ER PT J AU Hu, P Borglin, S Kamennaya, NA Chen, L Park, H Mahoney, L Kijac, A Shan, G Chavarria, KL Zhang, CM Quinn, NWT Wemmer, D Holman, HY Jansson, C AF Hu, Ping Borglin, Sharon Kamennaya, Nina A. Chen, Liang Park, Hanwool Mahoney, Laura Kijac, Aleksandra Shan, George Chavarria, Krystle L. Zhang, Chunmin Quinn, Nigel W. T. Wemmer, David Holman, Hoi-Ying Jansson, Christer TI Metabolic phenotyping of the cyanobacterium Synechocystis 6803 engineered for production of alkanes and free fatty acids SO APPLIED ENERGY LA English DT Article DE Alkanes; Cyanobacteria; Fatty acids; FTIR; Metabolic engineering; Metabolic phenotyping; Synechocystis 6803 ID PSBA GENE FAMILY; COMMUNITY STRUCTURE; SPECTROSCOPY; CELLS; BIOSYNTHESIS; PLASMIDS; LIPIDS AB We demonstrate a simple high-throughput single-cell approach that exploits the ultrahigh brightness and non-invasive nature of synchrotron infrared beam to characterize strains of the cyanobacterium Synechocystis 6803 (S. 6803) constructed with altered metabolic traits affecting the acyl-CoA pool. Their metabolic responses to the modified traits were phenotyped by single-cell synchrotron radiation Fourier transform infrared (SR-FTIR) spectromicroscopy and multivariate analysis. SR-FTIR difference spectra and cluster vector plots segregated the strains as phenotypic populations based on signals in the hydrocarbon and biomolecular fingerprint regions, although each population incorporated a stochastic distribution of cells with different metabolic properties. All engineered strains exhibited an increase in FTIR features attributed to functional groups in hydrocarbon, fatty acid (FA), and/or FA ester chains, and a decrease in polysaccharide features. The metabolic signatures obtained by SR-FTIR were consistent with detailed qualitative and quantitative metabolic information provided in GC/MS/NMR data. A strain with extra copies of the FAR and FAD genes, encoding, respectively, the fatty acyl-ACP reductase and fatty aldehyde decarbonylase enzymes in the alkane biosynthesis pathway, showed up to a fivefold increase in the intracellular levels of heptadecane, a threefold increase in 9-heptadecene, and a significant increase in secreted 16:0 and 18:0 free FM (FFAs). Inactivation of the AAS gene, encoding acyl-ACP synthetase, prevented re-thioesterification of FFAs generated from membrane lipid recycling and led to elevated levels and of intracellular FFAs of an altered composition, and a decrease in heptadecane and secreted FFAs. Introduction of a FatB gene, encoding a thioesterase (TE), which catalyzes the liberation of FFAs from acyl-ACP, yielded little effect in itself. However, the activity of the TE enzyme was clearly manifested in combination with AAS inactivation; A TE-containing train lacking AAS showed a dramatic (30-fold) increase in intracellular FFAs (with the majority being 16:0) and increases in heptadecane and secreted FFAs. (c) 2012 Published by Elsevier Ltd. C1 [Hu, Ping; Borglin, Sharon; Kamennaya, Nina A.; Chen, Liang; Park, Hanwool; Mahoney, Laura; Chavarria, Krystle L.; Zhang, Chunmin; Quinn, Nigel W. T.; Holman, Hoi-Ying; Jansson, Christer] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chen, Liang; Holman, Hoi-Ying] Adv Light Source, Berkeley, CA USA. [Kijac, Aleksandra; Shan, George; Wemmer, David] Univ Calif Berkeley, Dept Chem, Berkeley, CA USA. [Zhang, Chunmin] Tongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China. RP Jansson, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM cgjansson@lbl.gov RI Holman, Hoi-Ying/N-8451-2014; Chen, Liang/F-3496-2011; Hu, Ping/G-2384-2015; Borglin, Sharon/I-1013-2016; Quinn, Nigel/G-2407-2015 OI Holman, Hoi-Ying/0000-0002-7534-2625; Quinn, Nigel/0000-0003-3333-4763 FU US Department of Energy Office of Biological and Environmental Research's Structural Biology (BSISB) Program [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory; Office of Science, Office of Basic Energy Sciences, of the US Department of Energy; Laboratory Directed Research and Development (LDRD) grant (CyanoAlkanes) FX This work was supported by the US Department of Energy Office of Biological and Environmental Research's Structural Biology (BSISB) Program through contract DE-AC02-05CH11231 with Lawrence Berkeley National Laboratory. The SR-FTIR spectromicroscopy work was conducted at the infrared beamline at the Advanced Light Source, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy. Funding from a Laboratory Directed Research and Development (LDRD) grant (CyanoAlkanes) to C.J. is acknowledged. NR 38 TC 18 Z9 19 U1 5 U2 68 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD FEB PY 2013 VL 102 SI SI BP 850 EP 859 DI 10.1016/j.apenergy.2012.08.047 PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 079RV UT WOS:000314190800090 ER PT J AU Kong, LB Price, L Hasanbeigi, A Liu, HB Li, JG AF Kong, Lingbo Price, Lynn Hasanbeigi, Ali Liu, Huanbin Li, Jigeng TI Potential for reducing paper mill energy use and carbon dioxide emissions through plant-wide energy audits: A case study in China SO APPLIED ENERGY LA English DT Article DE Energy audit; Paper mill; Energy efficiency; CO2 mitigation ID HEAT-RECOVERY; INDUSTRIAL SECTOR; EFFICIENCY; PULP; MACHINES AB The pulp and paper industry is one of the most energy-intensive industries worldwide. In 2007, it accounted for 5% of total global industrial energy consumption and 2% of direct industrial carbon dioxide (CO2) emissions. An energy audit is a primary step toward improving energy efficiency at the facility level. This paper describes a plant-wide energy audit aimed at identifying energy conservation and CO2 mitigation opportunities at a paper mill in Guangdong province, China. We describe the energy audit methods, relevant Chinese standards, methods of calculating energy and carbon indicators, baseline energy consumption and CO2 emissions of the audited paper mill, and nine energy-efficiency improvement opportunities identified by the audit. For each of the nine options, we evaluate the energy conservation and associated CO2 mitigation potential. The total technical energy conservation potential for these nine opportunities is 967.8 terajoules (TJ), and the total CO2 mitigation potential is equal to 93,453 tonnes CO2 annually, representing 14.4% and 14.7%, respectively, of the mill's total energy consumption and CO2 emissions during the audit period. (c) 2012 Elsevier Ltd. All rights reserved. C1 [Kong, Lingbo; Price, Lynn; Hasanbeigi, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Kong, Lingbo; Liu, Huanbin; Li, Jigeng] S China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou 510640, Guangdong, Peoples R China. RP Kong, LB (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Anal & Environm Impacts Dept, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM lbkong@lbl.gov RI Kong, Lingbo/E-1209-2013 OI Kong, Lingbo/0000-0002-6067-3763 FU China Scholarship Council FX The authors would like to thank the personnel at the paper mill where the energy audit was performed. Without their cooperation and support, this study would not been possible. The authors wish to thank the China Scholarship Council for supporting one research team member's study in the US (Berkeley Lab). The authors thank the anonymous reviewers for their valuable comments and suggestions. We are also grateful to Nan Wishner for editing this paper. NR 40 TC 15 Z9 15 U1 3 U2 32 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 J9 APPL ENERG JI Appl. Energy PD FEB PY 2013 VL 102 SI SI BP 1334 EP 1342 DI 10.1016/j.apenergy.2012.07.013 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 079RV UT WOS:000314190800138 ER PT J AU Wang, LP Greenberg, S Fiegel, J Rubalcava, A Earni, S Pang, XF Yin, RX Woodworth, S Hernandez-Maldonado, J AF Wang, Liping Greenberg, Steve Fiegel, John Rubalcava, Alma Earni, Shankar Pang, Xiufeng Yin, Rongxin Woodworth, Spencer Hernandez-Maldonado, Jorge TI Monitoring-based HVAC commissioning of an existing office building for energy efficiency SO APPLIED ENERGY LA English DT Article DE Commissioning; Benchmarking; Fault detection and diagnostics; Functional testing; EnergyPlus; Trend data ID AIR-HANDLING UNITS; FAULT-DETECTION; DIAGNOSIS STRATEGY; SYSTEMS AB The performance of Heating, Ventilation and Air Conditioning (HVAC) systems may fail to satisfy design expectations due to improper equipment installation, equipment degradation, sensor failures, or incorrect control sequences. Commissioning identifies and implements cost-effective operational and maintenance measures in buildings to bring them up to the design intent or optimum operation. An existing office building is used as a case study to demonstrate the process of commissioning. Building energy benchmarking tools are applied to evaluate the energy performance for screening opportunities at the whole building level. A large natural gas saving potential was indicated by the building benchmarking results. Faulty operations in the HVAC systems, such as improper operations of air-side economizers, simultaneous heating and cooling, and ineffective optimal start, were identified through trend data analyses and functional testing. The energy saving potential for each commissioning measure is quantified with a calibrated building simulation model. An actual energy saving of 10% was realized after the implementations of cost-effective measures. Published by Elsevier Ltd. C1 [Wang, Liping; Greenberg, Steve; Fiegel, John; Earni, Shankar; Pang, Xiufeng; Yin, Rongxin] LBNL, Berkeley, CA 94720 USA. [Rubalcava, Alma; Woodworth, Spencer; Hernandez-Maldonado, Jorge] Calif Polytech State Univ San Luis Obispo, San Luis Obispo, CA 93407 USA. RP Wang, LP (reprint author), LBNL, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM lwang@lbl.gov RI Yin, Rongxin/N-5323-2015 OI Yin, Rongxin/0000-0001-7782-1294 FU U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) FX Portions of this work were funded by the U.S. Department of Energy (DOE) Sustainability Performance Office (SPO). Great thanks to Philip Haves, Mary Ann Piette, Paul Mathew, Dale Sartor and Dave Watson for providing their insights and support for this project. A debt of gratitude must also be paid to instructors of the Existing Building Commissioning Workshop Series at Pacific Gas & Electric Company (PG&E)'s Pacific Energy Center: David Sellers, Ryan Stroupe, Larry Luskay, and Gary Kawabuchi and others who generously shared their knowledge and invaluable commissioning experiences. NR 29 TC 16 Z9 16 U1 1 U2 44 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 J9 APPL ENERG JI Appl. Energy PD FEB PY 2013 VL 102 SI SI BP 1382 EP 1390 DI 10.1016/j.apenergy.2012.09.005 PG 9 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 079RV UT WOS:000314190800142 ER PT J AU Sharma, S Sack, A Adams, JP Vesper, DJ Capo, RC Hartsock, A Edenborn, HM AF Sharma, Shikha Sack, Andrea Adams, James P. Vesper, Dorothy J. Capo, Rosemary C. Hartsock, Angela Edenborn, Harry M. TI Isotopic evidence of enhanced carbonate dissolution at a coal mine drainage site in Allegheny County, Pennsylvania, USA SO APPLIED GEOCHEMISTRY LA English DT Article ID DISSOLVED INORGANIC CARBON; BACTERIAL REDUCTION; STRONTIUM ISOTOPE; SULFIDE OXIDATION; AMAZONIAN RIVERS; ATMOSPHERIC CO2; GROUND-WATER; BASIN; DIOXIDE; SULFATE AB Stable isotopes were used to determine the sources and fate of dissolved inorganic C (DIC) in the circum-neutral pH drainage from an abandoned bituminous coal mine in western Pennsylvania. The C isotope signatures of DIC (delta C-13(DIC)) were intermediate between local carbonate and organic C sources, but were higher than those of contemporaneous Pennsylvanian age groundwaters in the region. This suggests a significant contribution of C enriched in C-13 due to enhanced carbonate dissolution associated with the release of H2SO4 from pyrite oxidation. The Sr isotopic signature of the drainage was similar to other regional mine waters associated with the same coal seam and reflected contributions from limestone dissolution and cation exchange with clay minerals. The relatively high delta S-34(SO4) and delta O-18(SO4) isotopic signatures of the mine drainage and the presence of presumptive SO4-reducing bacteria suggest that SO4 reduction activity also contributes C depleted in C-13 isotope to the total DIC pool. With distance downstream from the mine portal, C isotope signatures in the drainage increased, accompanied by decreased total DIC concentrations and increased pH. These data are consistent with H2SO4 dissolution of carbonate rocks, enhanced by cation exchange, and C release to the atmosphere via CO2 outgassing. (c) 2012 Elsevier Ltd. All rights reserved. C1 [Sharma, Shikha; Sack, Andrea; Adams, James P.; Vesper, Dorothy J.] W Virginia Univ, Dept Geol & Geog, Morgantown, WV 26506 USA. [Capo, Rosemary C.] Univ Pittsburgh, Dept Geol & Planetary Sci, Pittsburgh, PA 15260 USA. [Hartsock, Angela; Edenborn, Harry M.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Sharma, S (reprint author), W Virginia Univ, Dept Geol & Geog, Morgantown, WV 26506 USA. EM shikha.sharma@mail.wvu.edu FU RES Contract [DE-FE0004000]; USGS [104b]; National Science Foundation's ADVANCE IT Program [HRD-1007978]; DOE-Oak Ridge Institute for Science and Education Faculty Research Program FX As part of the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, this technical effort was performed under the RES Contract DE-FE0004000. The groundwater sampling was supported by USGS 104b Grant to S. Sharma. Partial support for this work was provided by the National Science Foundation's ADVANCE IT Program under Award HRD-1007978. This work was also partially supported by the DOE-Oak Ridge Institute for Science and Education Faculty Research Program to R. Capo. R. Capo thanks B. Stewart for comments and discussion. J. Moore, M. Mulder, M. Maley, K. Flannery and M. Achille are thanked for help in sample processing and field work. The authors would like to thank Drs Charles Cravotta and Kinga Revesz for providing insightful comments that helped improve the manuscript. NR 74 TC 14 Z9 14 U1 1 U2 33 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0883-2927 J9 APPL GEOCHEM JI Appl. Geochem. PD FEB PY 2013 VL 29 BP 32 EP 42 DI 10.1016/j.apgeochem.2012.11.002 PG 11 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 086MB UT WOS:000314687100003 ER PT J AU Weatherall, JC Barber, J Brauer, CS Johnson, TJ Su, YF Ball, CD Smith, BT Cox, R Steinke, R McDaniel, P Wasserzug, L AF Weatherall, James C. Barber, Jeffrey Brauer, Carolyn S. Johnson, Timothy J. Su, Yin-Fong Ball, Christopher D. Smith, Barry T. Cox, Rick Steinke, Robert McDaniel, Patricia Wasserzug, Louis TI Adapting Raman Spectra from Laboratory Spectrometers to Portable Detection Libraries SO APPLIED SPECTROSCOPY LA English DT Article DE Raman spectroscopy; Raman libraries; Portable; Spectral Database; Wavenumber calibration; Intensity correction; Fluorescence; Explosives Detection ID RELATIVE INTENSITY CORRECTION; EXPLOSIVES; SPECTROSCOPY; EXCITATION; CALIBRATION AB Raman spectral data collected with high-resolution laboratory spectrometers are processed into a format suitable for importing as a user library on a 1064 nm DeltaNu first generation, field-deployable spectrometer prototype. The two laboratory systems used are a 1064 nm Bruker Fourier transform (FT)-Raman spectrometer and a 785 nm Kaiser dispersive spectrometer. The steps taken to adapt for device-dependent spectral resolution, wavenumber shifts between instruments, and relative intensity response are described. Effects due to the differing excitation laser wavelengths were found to be minimal, indicating at least for the near-infrared (NIR) that data can be ported between different systems, so long as certain measures are taken with regard to the reference and field spectra. C1 [Weatherall, James C.; Barber, Jeffrey] Battelle Mem Inst, Egg Harbor Township, NJ 08234 USA. [Brauer, Carolyn S.] Oak Ridge Inst Sci & Educ, Oak Ridge, TN 37831 USA. [Johnson, Timothy J.; Su, Yin-Fong] Pacific NW Natl Lab, Richland, WA 99354 USA. [Ball, Christopher D.] Battelle Mem Inst, Columbus, OH 43201 USA. [Smith, Barry T.] US Dept Homeland Secur, Sci & Technol Directorate, Transportat Secur Lab, Atlantic City, NJ 08405 USA. [Cox, Rick; Steinke, Robert] DeltaNu Inc, Laramie, WY 82070 USA. [McDaniel, Patricia; Wasserzug, Louis] Combating Terrorism Tech Support Off, Tech Support Working Grp, Alexandria, VA 22350 USA. RP Weatherall, JC (reprint author), Battelle Mem Inst, 2900 Fire Rd, Egg Harbor Township, NJ 08234 USA. EM weatherallj@battelle.org FU Technical Support Working Group [N41756-04-D-4245]; DOE [DE-AC05-06OR23100] FX This work was supported by Technical Support Working Group contract N41756-04-D-4245. Carolyn S. Brauer is supported in part by an appointment to the Transportation Security Laboratory Visiting Science Program administered by the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Homeland Security (DHS). ORISE is managed by Oak Ridge Associated Universities (ORAU) under DOE contract DE-AC05-06OR23100. All opinions expressed in this paper are the authors' opinions and do not necessarily reflect the policies and views of DHS, Transportation Security Laboratory, DOE, or ORAU/ORISE. NR 32 TC 7 Z9 7 U1 6 U2 41 PU SOC APPLIED SPECTROSCOPY PI FREDERICK PA 5320 SPECTRUM DRIVE SUITE C, FREDERICK, MD 21703 USA SN 0003-7028 J9 APPL SPECTROSC JI Appl. Spectrosc. PD FEB PY 2013 VL 67 IS 2 BP 149 EP 157 DI 10.1366/12-06759 PG 9 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA 084RY UT WOS:000314558000006 PM 23622433 ER PT J AU Mawad, R Gooley, T Rajendran, JG Fisher, DR Shields, A Orozco, JJ Hamlin, DK Wilbur, DS Hylarides, MD Gopal, AK Green, DJ Maloney, DG Sandmaier, BM Storb, RE Appelbaum, FR Press, OW Pagel, JM AF Mawad, Raya Gooley, Ted Rajendran, Joseph G. Fisher, Darrell R. Shields, Andrew Orozco, Johnnie J. Hamlin, Donald K. Wilbur, D. Scott Hylarides, Mark D. Gopal, Ajay K. Green, Damian J. Maloney, David G. Sandmaier, Brenda M. Storb, Rainer E. Appelbaum, Frederick R. Press, Oliver W. Pagel, John M. TI Pretargeted Radioimmunotherapy Using an Anti-CD45 Antibody-Streptavidin Conjugate and Radiolabeled DOTA-Biotin in Patients with High-Risk Acute Leukemia or Myelodysplastic Syndrome Undergoing Allogeneic Hematopoietic Cell Transplantation SO BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION LA English DT Meeting Abstract CT BMT Tandem Meetings CY FEB 13-17, 2013 CL Salt Lake City, UT C1 [Mawad, Raya; Gooley, Ted; Orozco, Johnnie J.; Hylarides, Mark D.; Gopal, Ajay K.; Green, Damian J.; Maloney, David G.; Sandmaier, Brenda M.; Storb, Rainer E.; Appelbaum, Frederick R.; Press, Oliver W.; Pagel, John M.] Fred Hutchinson Canc Res Ctr, Div Clin Res, Seattle, WA 98104 USA. [Mawad, Raya; Orozco, Johnnie J.; Gopal, Ajay K.; Green, Damian J.; Maloney, David G.; Sandmaier, Brenda M.; Appelbaum, Frederick R.; Press, Oliver W.; Pagel, John M.] Univ Washington, Dept Med, Seattle, WA USA. [Rajendran, Joseph G.; Shields, Andrew] Univ Washington, Dept Radiol, Seattle, WA 98195 USA. [Fisher, Darrell R.] Pacific NW Natl Lab, Richland, WA 99352 USA. NR 0 TC 1 Z9 1 U1 1 U2 9 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1083-8791 J9 BIOL BLOOD MARROW TR JI Biol. Blood Marrow Transplant. PD FEB PY 2013 VL 19 IS 2 SU 2 MA 28 BP S123 EP S124 PG 2 WC Hematology; Immunology; Transplantation SC Hematology; Immunology; Transplantation GA 083DC UT WOS:000314441900029 ER PT J AU Orozco, JJ Kenoyer, A Balkin, E Hamlin, DK Wilbur, S Fisher, DR Mawad, R Frayo, SL Hylarides, MD Green, DJ Gopal, AK O'Donnell, PV Sandmaier, BM Press, OW Pagel, JM AF Orozco, Johnnie J. Kenoyer, Aimee Balkin, Ethan Hamlin, Donald K. Wilbur, Scott Fisher, Darrell R. Mawad, Raya Frayo, Shani L. Hylarides, Mark D. Green, Damian J. Gopal, Ajay K. O'Donnell, Paul V. Sandmaier, Brenda M. Press, Oliver W. Pagel, John M. TI Anti-CD45 Pretargeted Radioimmunotherapy Prior to Bone Marrow Transplantation without Total Body Irradiation Facilitates Engraftment From Haploidentical Donors and Prolongs Survival in a Disseminated Murine Leukemia Model SO BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION LA English DT Meeting Abstract CT BMT Tandem Meetings CY FEB 13-17, 2013 CL Salt Lake City, UT C1 [Orozco, Johnnie J.; Kenoyer, Aimee; Mawad, Raya; Frayo, Shani L.; Hylarides, Mark D.; Green, Damian J.; Gopal, Ajay K.; Sandmaier, Brenda M.; Press, Oliver W.; Pagel, John M.] Fred Hutchinson Canc Res Ctr, Div Clin Res, Seattle, WA 98104 USA. [Orozco, Johnnie J.; Mawad, Raya; Green, Damian J.; Gopal, Ajay K.; Sandmaier, Brenda M.; Press, Oliver W.; Pagel, John M.] Univ Washington, Dept Med, Seattle, WA USA. [Balkin, Ethan; Hamlin, Donald K.; Wilbur, Scott] Univ Washington, Seattle, WA 98195 USA. [Fisher, Darrell R.] Pacific NW Natl Lab, Richland, WA 99352 USA. [O'Donnell, Paul V.] Fred Hutchinson Canc Res Ctr, Data Abstract Dept Clin Res, Seattle, WA 98104 USA. NR 0 TC 0 Z9 0 U1 0 U2 5 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1083-8791 J9 BIOL BLOOD MARROW TR JI Biol. Blood Marrow Transplant. PD FEB PY 2013 VL 19 IS 2 SU 2 MA 232 BP S228 EP S228 PG 1 WC Hematology; Immunology; Transplantation SC Hematology; Immunology; Transplantation GA 083DC UT WOS:000314441900230 ER PT J AU Reback, ML Ginovska-Pangovska, B Ho, MH Jain, A Squier, TC Raugei, S Roberts, JAS Shaw, WJ AF Reback, Matthew L. Ginovska-Pangovska, Bojana Ho, Ming-Hsun Jain, Avijita Squier, Thomas C. Raugei, Simone Roberts, John A. S. Shaw, Wendy J. TI The Role of a Dipeptide Outer-Coordination Sphere on H2-Production Catalysts: Influence on Catalytic Rates and Electron Transfer SO CHEMISTRY-A EUROPEAN JOURNAL LA English DT Article DE electrochemistry; homogeneous catalysis; hydrogen production; outer coordination sphere; peptide catalysts ID H-2 PRODUCTION; HYDROGENASE MIMICS; COUPLING REAGENTS; ELECTROCATALYSTS; MODEL; ACETONITRILE; ENVIRONMENT; SIMULATIONS; COMPLEXES; OXIDATION AB The outer-coordination sphere of enzymes acts to fine-tune the active site reactivity and control catalytic rates, suggesting that incorporation of analogous structural elements into molecular catalysts may be necessary to achieve rates comparable to those observed in enzyme systems at low overpotentials. In this work, we evaluate the effect of an amino acid and dipeptide outer-coordination sphere on [Ni(PPh2NPh-R2)2]2+ hydrogen production catalysts. A series of 12 new complexes containing non-natural amino acids or dipeptides was prepared to test the effects of positioning, size, polarity and aromaticity on catalytic activity. The non-natural amino acid was either 3-(meta- or para-aminophenyl)propionic acid terminated as an acid, an ester or an amide. Dipeptides consisted of one of the non-natural amino acids coupled to one of four amino acid esters: alanine, serine, phenylalanine or tyrosine. All of the catalysts are active for hydrogen production, with rates averaging approximate to 1000s1, 40% faster than the unmodified catalyst. Structure and polarity of the aliphatic or aromatic side chains of the C-terminal peptide do not strongly influence rates. However, the presence of an amide bond increases rates, suggesting a role for the amide in assisting catalysis. Overpotentials were lower with substituents at the N-phenyl meta position. This is consistent with slower electron transfer in the less compact, para-substituted complexes, as shown in digital simulations of catalyst cyclic voltammograms and computational modeling of the complexes. Combining the current results with insights from previous results, we propose a mechanism for the role of the amino acid and dipeptide based outer-coordination sphere in molecular hydrogen production catalysts. C1 [Reback, Matthew L.; Ginovska-Pangovska, Bojana; Ho, Ming-Hsun; Squier, Thomas C.; Raugei, Simone; Roberts, John A. S.; Shaw, Wendy J.] Pacific NW Natl Lab, Richland, WA 99354 USA. RP Raugei, S (reprint author), Pacific NW Natl Lab, Richland, WA 99354 USA. EM wendy.shaw@pnnl.gov FU US DOE Basic Energy Sciences; Physical Bioscience program; US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division; Office of Science Early Career Research Program through the Office of Basic Energy Sciences; Center for Molecular Electrocatalysis, an Energy Frontier Research Center; US Department of Energy; Office of Science, Office of Basic Energy Sciences; US Department of Energy's Office of Biological and Environmental Research (BER); Pacific Northwest National Laboratory FX The authors would like to thank Dr. Daniel L. Dubois for helpful discussions. This work was funded by the US DOE Basic Energy Sciences, Physical Bioscience program (M.L.R., T.C.S., W.J.S.), the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (A.J., W.J.S.), the Office of Science Early Career Research Program through the Office of Basic Energy Sciences (W.J.S., B.G.P., M.H., S.R.), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (J.A.S.R., S.R.).Part of the research was conducted at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by US Department of Energy's Office of Biological and Environmental Research (BER) program located at Pacific Northwest National Laboratory (PNNL).Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. NR 51 TC 21 Z9 21 U1 2 U2 58 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA POSTFACH 101161, 69451 WEINHEIM, GERMANY SN 0947-6539 EI 1521-3765 J9 CHEM-EUR J JI Chem.-Eur. J. PD FEB PY 2013 VL 19 IS 6 BP 1928 EP 1941 DI 10.1002/chem.201202849 PG 14 WC Chemistry, Multidisciplinary SC Chemistry GA 080BV UT WOS:000314217100012 PM 23233438 ER PT J AU Mei, F Noyan, IC Brugger, A Betti, R Clausen, B Brown, D Sisneros, T AF Mei, F. Noyan, I. C. Bruegger, A. Betti, R. Clausen, B. Brown, D. Sisneros, T. TI Neutron Diffraction Measurement of Stress Redistribution in Parallel Seven-Wire Strands after Local Fracture SO EXPERIMENTAL MECHANICS LA English DT Article DE Stress partitioning; Parallel wire strands; Suspension bridge cables; Fracture; Parallel wire cable; Neutron diffraction ID RIETVELD REFINEMENT; STEEL; STRAINS AB We report results from neutron diffraction experiments where partitioning of applied tensile load between the inner and outer wires of seven-wire parallel and quasi-parallel wire strands were measured while 1-all wires were undergoing elastic deformation, 2-where one wire within the bundle was undergoing plastic flow and, 3-when one or more wires fractured under load. The results indicate that mechanical interference and friction mechanisms have similar contributions to the load transferred to fractured wires, and both mechanisms should be included in analytical or numerical formulations of strain partitioning in quasi-parallel wire cables. C1 [Mei, F.; Noyan, I. C.] Columbia Univ, Fu Fdn Sch Eng & Appl Sci, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Bruegger, A.; Betti, R.] Columbia Univ, Fu Fdn Sch Eng & Appl Sci, Dept Civil Engn & Engn Mech, New York, NY 10027 USA. [Clausen, B.; Brown, D.; Sisneros, T.] Los Alamos Natl Lab, Lujan Ctr, Los Alamos, NM 87545 USA. RP Noyan, IC (reprint author), Columbia Univ, Fu Fdn Sch Eng & Appl Sci, Dept Appl Phys & Appl Math, 500 W 120th St, New York, NY 10027 USA. EM icn2@columbia.edu RI Lujan Center, LANL/G-4896-2012; Clausen, Bjorn/B-3618-2015 OI Clausen, Bjorn/0000-0003-3906-846X FU Department of Energy's Office of Basic Energy Sciences; DOE [DE-AC52-06NA25396] FX This work is part of the work for the Master of Science degree for Mr. Fang Mei. We thank Mr. Eric J. Larson of Lujan Center, Los Alamos National Laboratory, for Figs. 1 and 4; Mr. Travis Simmons, Senior Lab Technician, Carleton Laboratory, for machining the necessary specimen fixtures; Dr. Liming Li for help with sample manufacture and testing; Prof. Chris Marianetti for the welding process and helpful discussions and Mr. Tzu-Cheng Hsu and Mr. Yu-Min Peng for metallographic analysis. The samples were developed and manufactured in the facilities of the Carleton Laboratory of Civil Engineering and Engineering Mechanics Department, Fu School of Engineering and Applied Science at Columbia University. This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, funded by the Department of Energy's Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396. NR 20 TC 0 Z9 0 U1 1 U2 21 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 J9 EXP MECH JI Exp. Mech. PD FEB PY 2013 VL 53 IS 2 BP 183 EP 193 DI 10.1007/s11340-012-9621-5 PG 11 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 081CO UT WOS:000314294000006 ER PT J AU Culp, T AF Culp, Todd TI Methodology for a Bounding Estimate of Activation Source-Term SO HEALTH PHYSICS LA English DT Article DE operational topics; contamination; electrons; protons AB Sandia National Laboratories' Z-Machine is the world's most powerful electrical device, and experiments have been conducted that make it the world's most powerful radiation source. Because Z-Machine is used for research, an assortment of materials can be placed into the machine; these materials can be subjected to a range of nuclear reactions, producing an assortment of activation products. A methodology was developed to provide a systematic approach to evaluate different materials to be introduced into the machine as wire arrays. This methodology is based on experiment specific characteristics, physical characteristics of specific radionuclides, and experience with Z-Machine. This provides a starting point for bounding calculations of radionuclide source-term that can be used for work planning, development of work controls, and evaluating materials for introduction into the machine. Health Phys. 104(Supplement 1):S5-S10; 2013 C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Culp, T (reprint author), Sandia Natl Labs, POB 5800,MS1198, Albuquerque, NM 87185 USA. EM taculp@sandia.gov FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 5 TC 0 Z9 0 U1 0 U2 0 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2013 VL 104 IS 2 SU 1 BP S5 EP S10 PG 6 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 076YK UT WOS:000313994900002 PM 23287520 ER PT J AU Hubbard, SS Gangodagamage, C Dafflon, B Wainwright, H Peterson, J Gusmeroli, A Ulrich, C Wu, Y Wilson, C Rowland, J Tweedie, C Wullschleger, SD AF Hubbard, S. S. Gangodagamage, C. Dafflon, B. Wainwright, H. Peterson, J. Gusmeroli, A. Ulrich, C. Wu, Y. Wilson, C. Rowland, J. Tweedie, C. Wullschleger, S. D. TI Quantifying and relating land-surface and subsurface variability in permafrost environments using LiDAR and surface geophysical datasets SO HYDROGEOLOGY JOURNAL LA English DT Article DE Geomorphology; Geophysical characterization; Alaska; Active layer; Permafrost ID GROUND-PENETRATING RADAR; ARCTIC COASTAL-PLAIN; SOIL-MOISTURE; ACTIVE LAYER; ELECTRICAL-CONDUCTIVITY; SPATIAL-DISTRIBUTION; BOREAL ECOSYSTEMS; THAW DEPTH; ALASKA; TUNDRA AB The value of remote sensing and surface geophysical data for characterizing the spatial variability and relationships between land-surface and subsurface properties was explored in an Alaska (USA) coastal plain ecosystem. At this site, a nested suite of measurements was collected within a region where the land surface was dominated by polygons, including: LiDAR data; ground-penetrating radar, electromagnetic, and electrical-resistance tomography data; active-layer depth, soil temperature, soil-moisture content, soil texture, soil carbon and nitrogen content; and pore-fluid cations. LiDAR data were used to extract geomorphic metrics, which potentially indicate drainage potential. Geophysical data were used to characterize active-layer depth, soil-moisture content, and permafrost variability. Cluster analysis of the LiDAR and geophysical attributes revealed the presence of three spatial zones, which had unique distributions of geomorphic, hydrological, thermal, and geochemical properties. The correspondence between the LiDAR-based geomorphic zonation and the geophysics-based active-layer and permafrost zonation highlights the significant linkage between these ecosystem compartments. This study suggests the potential of combining LiDAR and surface geophysical measurements for providing high-resolution information about land-surface and subsurface properties as well as their spatial variations and linkages, all of which are important for quantifying terrestrial-ecosystem evolution and feedbacks to climate. C1 [Hubbard, S. S.; Dafflon, B.; Wainwright, H.; Peterson, J.; Ulrich, C.; Wu, Y.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Gangodagamage, C.; Wilson, C.; Rowland, J.] Los Alamos Natl Lab, Los Alamos, NM USA. [Gusmeroli, A.] Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA. [Tweedie, C.] Univ Texas El Paso, El Paso, TX 79968 USA. [Wullschleger, S. D.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Hubbard, SS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM sshubbard@lbl.gov RI Wainwright, Haruko/A-5670-2015; Wu, Yuxin/G-1630-2012; Dafflon, Baptiste/G-2441-2015; Hubbard, Susan/E-9508-2010; Wullschleger, Stan/B-8297-2012; OI Wainwright, Haruko/0000-0002-2140-6072; Wu, Yuxin/0000-0002-6953-0179; Wullschleger, Stan/0000-0002-9869-0446; Gangodagamage, Chandana/0000-0001-6511-1711 FU Office of Biological and Environmental Research in the DOE Office of Science; Alaska Climate Science Center; United States Geological Survey [G10AC00588]; [DE-AC0205CH11231]; [DE-AC05-00OR22725] FX The Next-Generation Ecosystem Experiments (NGEE Arctic) project is supported by the Office of Biological and Environmental Research in the DOE Office of Science. This NGEE-Arctic research is supported through contract number DE-AC0205CH11231 to Lawrence Berkeley National Laboratory and through contract DE-AC05-00OR22725 to Oak Ridge National Laboratory. Funding for Alessio Gusmeroli was provided by the Alaska Climate Science Center, funded by Cooperative Agreement Number G10AC00588 from the United States Geological Survey. The authors thank Margaret Torn and Christina Chastanha (both LBNL) for providing guidance on the core sample carbon analysis; Bob Busey (University of Alaska at Fairbanks) for the graduated tile probe design; Drs. A. Kemna and M. Weigand at University of Bonn for providing the 2D complex resistivity imaging code; and Roman Shekhtman of UBC for providing the EM inversion code EM1DFM. Logistical support in Barrow was provided by UMIAQ, LLC. The contents of the study are solely the responsibility of the authors and do not necessarily represent the official views of the author's institutions. NR 85 TC 46 Z9 46 U1 5 U2 84 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1431-2174 EI 1435-0157 J9 HYDROGEOL J JI Hydrogeol. J. PD FEB PY 2013 VL 21 IS 1 BP 149 EP 169 DI 10.1007/s10040-012-0939-y PG 21 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 081PH UT WOS:000314333600012 ER PT J AU Painter, SL Moulton, JD Wilson, CJ AF Painter, S. L. Moulton, J. D. Wilson, C. J. TI Modeling challenges for predicting hydrologic response to degrading permafrost SO HYDROGEOLOGY JOURNAL LA English DT Article DE Permafrost; Subsidence; Groundwater/surface-water relations; Multiphase flow; Numerical modeling ID NUMERICAL-MODEL; SOIL C1 [Painter, S. L.] Los Alamos Natl Lab, Div Earth & Environm Sci, Computat Earth Sci Grp, Los Alamos, NM 87545 USA. [Moulton, J. D.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Wilson, C. J.] Los Alamos Natl Lab, Div Earth & Environm Sci, Earth Syst Observat Grp, Los Alamos, NM 87545 USA. RP Painter, SL (reprint author), Los Alamos Natl Lab, Div Earth & Environm Sci, Computat Earth Sci Grp, Mail Stop T0003, Los Alamos, NM 87545 USA. EM spainter@lanl.gov RI Painter, Scott/C-2586-2016 OI Painter, Scott/0000-0002-0901-6987 FU Los Alamos National Laboratory Directed Project [LDRD201200068DR]; NGEE Arctic project; Office of Biological and Environmental Research in the DOE Office of Science FX This work was funded by Los Alamos National Laboratory Directed Project LDRD201200068DR and by the NGEE Arctic project. The Next-Generation Ecosystem Experiments (NGEE Arctic) project is supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 18 TC 18 Z9 18 U1 2 U2 38 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1431-2174 J9 HYDROGEOL J JI Hydrogeol. J. PD FEB PY 2013 VL 21 IS 1 BP 221 EP 224 DI 10.1007/s10040-012-0917-4 PG 4 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 081PH UT WOS:000314333600016 ER PT J AU Frampton, A Painter, SL Destouni, G AF Frampton, Andrew Painter, Scott L. Destouni, Georgia TI Permafrost degradation and subsurface-flow changes caused by surface warming trends SO HYDROGEOLOGY JOURNAL LA English DT Article DE Permafrost hydrogeology; Climate change; Multiphase flow; Heat transport; Numerical modelling ID SUB-ARCTIC CATCHMENT; CLIMATE-CHANGE; BIOGEOCHEMISTRY; VARIABILITY; HYDROLOGY; ALASKA; RIVER; MODEL AB Change dynamics of permafrost thaw, and associated changes in subsurface flow and seepage into surface water, are analysed for different warming trends in soil temperature at the ground surface with a three-phase two-component flow system coupled to heat transport. Changes in annual, seasonal and extreme flows are analysed for three warming-temperature trends, representing simplified climate-change scenarios. The results support previous studies of reduced temporal variability of groundwater flow across all investigated trends. Decreased intra-annual flow variability may thus serve as an early indicator of permafrost degradation before longer-term changes in mean flows are notable. This is advantageous since hydrological data are considerably easier to obtain, may be available in longer time series, and generally reflect larger-scale conditions than direct permafrost observations. The results further show that permafrost degradation first leads to increasing water discharge, which then decreases as the permafrost degradation progresses further to total thaw. The most pronounced changes occur for minimum annual flows. The configuration considered represents subsurface discharge from a generic heterogeneous soil-type domain. C1 [Frampton, Andrew; Destouni, Georgia] Stockholm Univ, Dept Quaternary Geol & Phys Geog, S-10691 Stockholm, Sweden. [Frampton, Andrew; Destouni, Georgia] Stockholm Univ, Bert Bolin Ctr Climate Res, S-10691 Stockholm, Sweden. [Painter, Scott L.] Los Alamos Natl Lab, Div Earth & Environm Sci, Computat Earth Sci Grp, Los Alamos, NM 87545 USA. RP Frampton, A (reprint author), Stockholm Univ, Dept Quaternary Geol & Phys Geog, S-10691 Stockholm, Sweden. EM andrew.frampton@natgeo.su.se RI Painter, Scott/C-2586-2016; Destouni, Georgia/M-9662-2016; OI Painter, Scott/0000-0002-0901-6987; Destouni, Georgia/0000-0001-9408-4425; Frampton, Andrew/0000-0002-4587-6706 FU Swedish Research Council (VR) [2007-8393] FX This study was funded by the Swedish Research Council (VR; project number 2007-8393), and is part of the research within the Climate Community of the Swedish e-Science Research Centre (SeRC). NR 24 TC 22 Z9 23 U1 2 U2 74 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1431-2174 J9 HYDROGEOL J JI Hydrogeol. J. PD FEB PY 2013 VL 21 IS 1 BP 271 EP 280 DI 10.1007/s10040-012-0938-z PG 10 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 081PH UT WOS:000314333600020 ER PT J AU Lee, J Kim, Y Shipman, GM Oral, S Kim, J AF Lee, Junghee Kim, Youngjae Shipman, Galen M. Oral, Sarp Kim, Jongman TI Preemptible I/O Scheduling of Garbage Collection for Solid State Drives SO IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS LA English DT Article DE Flash memory; garbage collection (GC); I/O scheduling; preemptive I/O; solid-state drives (SSDs); storage systems ID FLASH-MEMORY; DESIGN AB Unlike hard disks, flash devices use out-of-place updates operations and require a garbage collection (GC) process to reclaim invalid pages to create free blocks. This GC process is a major cause of performance degradation when running concurrently with other I/O operations as internal bandwidth is consumed to reclaim these invalid pages. The invocation of the GC process is generally governed by a low watermark on free blocks and other internal device metrics that different workloads meet at different intervals. This results in an I/O performance that is highly dependent on workload characteristics. In this paper, we examine the GC process and propose a semipreemptible GC (PGC) scheme that allows GC processing to be preempted while pending I/O requests in the queue are serviced. Moreover, we further enhance flash performance by pipelining internal GC operations and merge them with pending I/O requests whenever possible. Our experimental evaluation of this semi-PGC scheme with realistic workloads demonstrates both improved performance and reduced performance variability. Write-dominant workloads show up to a 66.56% improvement in average response time with a 83.30% reduced variance in response time compared to the non-PGC scheme. In addition, we explore opportunities of a new NAND flash device that supports suspend/resume commands for read, write, and erase operations for fully PGC (F-PGC). Our experiments with an F-PGC enabled flash device show that request response time can be improved by up to 14.57% compared to semi-PGC. C1 [Lee, Junghee; Kim, Jongman] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. [Kim, Youngjae; Shipman, Galen M.; Oral, Sarp] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Lee, J (reprint author), Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA. EM jlee36@ece.gatech.edu; kimy1@ornl.gov; gshipman@ornl.gov; oralhs@ornl.gov; jkim@ece.gatech.edu FU Office of Science of the Department of Energy [DE-AC05-00OR22725]; Korean Ministry of Knowledge Economy [10037244] FX This work used resources of the Oak Ridge Leadership Computing Facility, National Center for Computational Sciences, Oak Ridge National Laboratory, which was supported by the Office of Science of the Department of Energy under Contract DE-AC05-00OR22725. This work was supported in part by the Korean Ministry of Knowledge Economy under Grant 10037244. This paper was recommended by Associate Editor J. Henkel. (Corresponding author: Y. Kim). NR 39 TC 5 Z9 5 U1 0 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0278-0070 EI 1937-4151 J9 IEEE T COMPUT AID D JI IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. PD FEB PY 2013 VL 32 IS 2 BP 247 EP 260 DI 10.1109/TCAD.2012.2227479 PG 14 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 086IN UT WOS:000314677400008 ER PT J AU Cowart, JS Fischer, WP Hamilton, LJ Caton, PA Sarathy, SM Pitz, WJ AF Cowart, Jim S. Fischer, Warren P. Hamilton, Leonard J. Caton, Patrick A. Sarathy, S. Mani Pitz, William J. TI An experimental and modeling study investigating the ignition delay in a military diesel engine running hexadecane (cetane) fuel SO INTERNATIONAL JOURNAL OF ENGINE RESEARCH LA English DT Article DE Diesel; engine; fuel; ignition delay; hexadecane; cetane; combustion kinetics ID HYDROCARBONS AB In an effort aimed at predicting the combustion behavior of a new fuel in a conventional diesel engine, cetane (n-hexadecane) fuel was used in a military engine across the entire speed-load operating range. The ignition delay was characterized for this fuel at each operating condition. A chemical ignition delay was also predicted across the speed-load range using a detailed chemical kinetic mechanism with a constant pressure reactor model. At each operating condition, the measured in-cylinder pressure and predicted temperature at the start of injection were applied to the detailed n-hexadecane kinetic mechanism, and the chemical ignition delay was predicted without any kinetic mechanism calibration. The modeling results show that fuel-air parcels developed from the diesel spray with an equivalence ratio of 4 are the first to ignite. The chemical ignition delay results also showed decreasing igntion delays with increasing engine load and speed, just as the experimental data revealed. At lower engine speeds and loads, the kinetic modeling results show the characteristic two-stage negative temperature coefficient behavior of hydrocarbon fuels. However, at high engine speeds and loads, the reactions do not display negative temperature coefficient behavior, as the reactions proceed directly into high-temperature pathways due to higher temperatures and pressure at injection. A moderate difference between the total and chemical ignition delays was then characterized as a phyical delay period that scales inversely with engine speed. This physical delay time is representative of the diesel spray development time and is seen to become a minority fraction of the total igntion delay at higher engine speeds. The approach used in this study suggests that the ignition delay and thus start of combustion may be predicted with reasonable accuracy using kinetic modeling to determine the chemical igntion delay. Then, in conjunction with the physical delay time (experimental or modeling based), a new fuel's acceptability in a conventional engine could be assessed by determining that the total ignition delay is not too short or too long. C1 [Cowart, Jim S.; Fischer, Warren P.; Hamilton, Leonard J.; Caton, Patrick A.] USN Acad, Annapolis, MD 21402 USA. [Sarathy, S. Mani; Pitz, William J.] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Cowart, JS (reprint author), USN Acad, 121 Blake Rd, Annapolis, MD 21402 USA. EM cowart@usna.edu RI Sarathy, S. Mani/M-5639-2015 OI Sarathy, S. Mani/0000-0002-3975-6206 FU Office of Naval Research FX This research was funded by the Office of Naval Research. NR 18 TC 6 Z9 6 U1 0 U2 8 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1468-0874 J9 INT J ENGINE RES JI Int. J. Engine Res. PD FEB PY 2013 VL 14 IS 1 BP 57 EP 67 DI 10.1177/1468087412446884 PG 11 WC Thermodynamics; Engineering, Mechanical; Transportation Science & Technology SC Thermodynamics; Engineering; Transportation GA 088LQ UT WOS:000314836400006 ER PT J AU Skoog, SA Elam, JW Narayan, RJ AF Skoog, S. A. Elam, J. W. Narayan, R. J. TI Atomic layer deposition: medical and biological applications SO INTERNATIONAL MATERIALS REVIEWS LA English DT Review DE Surface modification; Metal surface treatment; Ceramic structure ID POLYELECTROLYTE MULTILAYER FILMS; NANOPOROUS ALUMINA TEMPLATES; OPTICAL WAVE-GUIDES; THIN-FILMS; ATMOSPHERIC-PRESSURE; PACKAGING MATERIALS; DNA TRANSLOCATION; BARRIER COATINGS; TIO2; NANOFABRICATION AB Atomic layer deposition (ALD) is being used for deposition of conformal thin films on a variety of materials, including medical device materials and biologically derived materials. This review describes thin film deposition on materials using ALD for bioelectronic device, implantable device, biosensor, drug delivery device, tissue engineering scaffold and bioassay device applications. Recent advances in ALD technology, including low temperature ALD of thin films on temperature sensitive substrates, are considered. Finally, translation of ALD to commercial use, including use of ALD by the medical device industry, is described. C1 [Skoog, S. A.; Narayan, R. J.] Univ N Carolina, Joint Dept Biomed Engn, Raleigh, NC 27695 USA. [Skoog, S. A.; Narayan, R. J.] N Carolina State Univ, Raleigh, NC 27695 USA. [Elam, J. W.] Argonne Natl Lab, Energy Sci Div, Argonne, IL 60439 USA. [Narayan, R. J.] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA. RP Narayan, RJ (reprint author), Univ N Carolina, Joint Dept Biomed Engn, Box 7115, Raleigh, NC 27695 USA. EM roger_narayan@msn.com RI Narayan, Roger/J-2789-2013 OI Narayan, Roger/0000-0002-4876-9869 FU US Department of Energy [DE-AC09-08SR22470] FX This document was prepared in conjunction with work accomplished under contract no. DE-AC09-08SR22470 with the US Department of Energy. NR 78 TC 11 Z9 11 U1 11 U2 155 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 0950-6608 J9 INT MATER REV JI Int. Mater. Rev. PD FEB PY 2013 VL 58 IS 2 BP 113 EP 129 DI 10.1179/1743280412Y.0000000009 PG 17 WC Materials Science, Multidisciplinary SC Materials Science GA 087QO UT WOS:000314777300002 ER PT J AU Evans, KJ Lauritzen, PH Mishra, SK Neale, RB Taylor, MA Tribbia, JJ AF Evans, K. J. Lauritzen, P. H. Mishra, S. K. Neale, R. B. Taylor, M. A. Tribbia, J. J. TI AMIP Simulation with the CAM4 Spectral Element Dynamical Core SO JOURNAL OF CLIMATE LA English DT Article ID SCATTEROMETER DATA INTERPRETATION; COMMUNITY-ATMOSPHERIC-MODEL; AQUA-PLANET SIMULATIONS; SHALLOW-WATER EQUATIONS; FINITE-VOLUME; EQUATORIAL WAVES; STANDARD TEST; RESOLUTION; CONVERGENCE; GRIDS AB The authors evaluate the climate produced by the Community Climate System Model, version 4, running with the new spectral element atmospheric dynamical core option. The spectral element method is configured to use a cubed-sphere grid, providing quasi-uniform resolution over the sphere and increased parallel scalability and removing the need for polar filters. It uses a fourth-order accurate spatial discretization that locally conserves mass and total energy. Using the Atmosphere Model Intercomparison Project protocol, the results from the spectral element dynamical core are compared with those produced by the default finite-volume dynamical core and with observations. Even though the two dynamical cores are quite different, their simulated climates are remarkably similar. When compared with observations, both models have strengths and weaknesses but have nearly identical root-mean-square errors and the largest biases show little sensitivity to the dynamical core. The spectral element core does an excellent job reproducing the atmospheric kinetic energy spectra, including fully capturing the observed Nastrom-Gage transition when running at 0.125 degrees resolution. C1 [Evans, K. J.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Lauritzen, P. H.; Mishra, S. K.; Neale, R. B.; Tribbia, J. J.] Natl Ctr Atmospher Res, Boulder, CO 80307 USA. [Taylor, M. A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Taylor, MA (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM mataylo@sandia.gov FU National Science Foundation; Office of Science (BER) of the U.S. Department of Energy (DOE); DOE BER SciDAC Grant [06-13194]; Office of Science of the U.S. DOE [DE-AC05-00OR22725, DE-AC02-06CH11357]; Argonne Leadership Computing Facility at Argonne National Laboratory; Sandia National Laboratories facilities; U.S. DOE National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors are grateful to Jim Hack for his assistance in tuning CAM-SE for energy balance and Nigel Wood for many constructive comments. We also acknowledge the CAM4 developers, including but not limited to members of the Atmospheric Model Working Group. Members of the Software Engineering Working Group were instrumental in the integration of HOMME into the CAM. The CCSM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy (DOE). K.E. and M.T. were supported by the DOE BER SciDAC Grant 06-13194. This research used the Oak Ridge Leadership Computing Facilities at the Oak Ridge National Laboratory, supported by the Office of Science of the U.S. DOE under Contract DE-AC05-00OR22725, the Argonne Leadership Computing Facility at Argonne National Laboratory, supported by the Office of Science of the U.S. DOE under Contract DE-AC02-06CH11357, and Sandia National Laboratories facilities, managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 75 TC 29 Z9 30 U1 1 U2 31 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD FEB PY 2013 VL 26 IS 3 BP 689 EP 709 DI 10.1175/JCLI-D-11-00448.1 PG 21 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 086OR UT WOS:000314695500001 ER PT J AU Li, YF Leung, LR AF Li, Yuefeng Leung, L. Ruby TI Potential Impacts of the Arctic on Interannual and Interdecadal Summer Precipitation over China SO JOURNAL OF CLIMATE LA English DT Article ID SEA-SURFACE TEMPERATURE; ASIAN-AUSTRALIAN MONSOON; TROPICAL PACIFIC SSTS; NORTH PACIFIC; TIBETAN PLATEAU; LATE 1970S; EL-NINO; WINTER MONSOON; SPRING SNOW; RAINFALL AB After the end of the 1970s, there has been a tendency for enhanced summer precipitation over south China and the Yangtze River valley and drought over north China and northeastern China. Coincidentally, Arctic ice concentration has decreased since the late 1970s, with a larger reduction in summer than spring. However, the Arctic warming is more significant in spring than summer, suggesting that spring Arctic conditions could be more important in their remote impacts. This study investigates the potential impacts of the Arctic on summer precipitation in China. The leading spatial patterns and time coefficients of the unfiltered, interannual, and interdecadal precipitation (1960-2008) modes were analyzed and compared using empirical orthogonal function (EOF) analysis, which shows that the first three EOFs can capture the principal precipitation patterns (northern, central, and southern patterns) over eastern China. Regression of the Arctic spring and summer temperature onto the time coefficients of the leading interannual and interdecadal precipitation modes shows that interdecadal summer precipitation in China is related to the Arctic spring warming but that the relationship with Arctic summer temperature is weak. Moreover, no notable relationships were found between the first three modes of interannual precipitation and Arctic spring or summer temperatures. Finally, correlations between summer precipitation and the Arctic Oscillation (AO) index from January to August were investigated, which indicate that summer precipitation in China correlates with AO only to some extent. Overall, this study suggests important relationships between the Arctic spring temperature and summer precipitation over China at the interdecadal time scale. C1 [Li, Yuefeng; Leung, L. Ruby] Pacific NW Natl Lab, Richland, WA 99352 USA. [Li, Yuefeng] China Meteorol Adm, Natl Climate Ctr, Beijing, Peoples R China. RP Leung, LR (reprint author), Pacific NW Natl Lab, Atmospher Sci & Global Change Div, 902 Battelle Blvd, Richland, WA 99352 USA. EM ruby.leung@pnnl.gov FU U.S. Department of Energy; U.S. Department of Energy by Battelle Memorial Institute [DE-AC06-76RLO1830]; Special Fund for Meteorological Scientific Research in the Public Interest of China Meteorological Administration [GYHY201006022]; China Ministry of Science and Technology [2007BAC03A01, 2007BAC29B02]; U.S. Department of Energy Regional and Global Climate Modeling Program FX This study was supported by the U.S. Department of Energy Regional and Global Climate Modeling Program through the bilateral agreement between U.S. Department of Energy and China Ministry of Science and Technology on regional climate research. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO1830. This work is also supported by the Special Fund for Meteorological Scientific Research in the Public Interest of China Meteorological Administration (Grant GYHY201006022) and the China Ministry of Science and Technology Projects 2007BAC03A01 and 2007BAC29B02. The authors are grateful for the comments and suggestions provided by three anonymous reviewers, who helped improve the paper. NR 63 TC 7 Z9 9 U1 3 U2 35 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 J9 J CLIMATE JI J. Clim. PD FEB PY 2013 VL 26 IS 3 BP 899 EP 917 DI 10.1175/JCLI-D-12-00075.1 PG 19 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 086OR UT WOS:000314695500015 ER PT J AU Kim, SB Park, H Kim, SH Wikle, HC Park, JH Kim, DJ AF Kim, Seon-Bae Park, Hyejin Kim, Seung-Hyun Wikle, H. Clyde, III Park, Jung-Hyun Kim, Dong-Joo TI Comparison of MEMS PZT Cantilevers Based on d(31) and d(33) Modes for Vibration Energy Harvesting SO JOURNAL OF MICROELECTROMECHANICAL SYSTEMS LA English DT Article DE Energy harvesting; lead zirconate titanate (PZT); piezoelectric cantilevers; piezoelectric mode; piezoelectric transducers; vibration energy harvesters ID THIN-FILM PZT; ACTUATORS; OPTIMIZATION; ELECTRODES; MEMBRANE; DEVICES AB d(31) and d(33) mode microelectromechanical systems piezoelectric energy harvesters (PEHs) were fabricated and compared to investigate their output powers converted from vibration. Both types of devices have the same dimensions in a cantilever structure and aim to effectively couple vibration from ambient conditions. The resonant frequencies of the cantilevers are 243 Hz. Two types of devices were compared using mathematical equations based on an equivalent circuit model. The output power of the d(31) mode PEH was 2.15 mu W and 2.33 mu W in experiment and modeling, respectively. The d(33) mode PEHs generated output power ranging between 0.62 and 1.71 mu W when the width of the interdigital electrode (IDE) is ranging from 8 to 16 mu m and finger spacing is varied from 4 to 16 mu m. The output power of the d(33) mode device strongly depends on the dimensions of IDE. The analysis of material constant and electrode design was conducted in conjunction with developing a mathematical equation. The result predicts that the output power of d(33) mode PEH can be higher than that of d(31) mode PEH when the finger width is reduced to 2 mu m and finger spacing is between 8 and 20 mu m. C1 [Kim, Seon-Bae; Park, Hyejin; Wikle, H. Clyde, III; Kim, Dong-Joo] Auburn Univ, Mat Res & Educ Ctr, Auburn, AL 36849 USA. [Kim, Seung-Hyun] Brown Univ, Sch Engn, Providence, RI 02919 USA. [Park, Jung-Hyun] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Kim, SB (reprint author), Auburn Univ, Mat Res & Educ Ctr, Auburn, AL 36849 USA. EM hzp0015@tigermail.auburn.edu; hzp0015@tigermail.auburn.edu; Seunghyun_Kim@brown.edu; hcw0022@auburn.edu; jungpark@anl.gov; dkim@eng.auburn.edu RI KIM, DONG-JOO/C-2277-2008; OI Wikle, Howard/0000-0001-9432-3887 NR 37 TC 30 Z9 33 U1 1 U2 94 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1057-7157 J9 J MICROELECTROMECH S JI J. Microelectromech. Syst. PD FEB PY 2013 VL 22 IS 1 BP 26 EP 33 DI 10.1109/JMEMS.2012.2213069 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 086YT UT WOS:000314726900007 ER PT J AU Wright, SA Harvey, HZ Gianchandani, YB AF Wright, Scott A. Harvey, Heidi Z. Gianchandani, Yogesh B. TI A Microdischarge-Based Deflecting-Cathode Pressure Sensor in a Ceramic Package SO JOURNAL OF MICROELECTROMECHANICAL SYSTEMS LA English DT Article DE Plasma applications; plasma confinement; plasma measurements; plasma properties; pressure effects; sensitivity ID OF-THE-ART; ATMOSPHERIC-PRESSURE; CIRCUIT MODEL; TEMPERATURE; MICROPLASMAS; PLASMA; MICROSTRUCTURES; DISCHARGE; DEVICES AB This paper describes a microdischarge-based pressure sensor for harsh liquid environments that utilizes a ceramic package sealed with a deflecting diaphragm that also serves as a cathode. Located within the package is a reference cathode and an anode. The microdischarges are created between the two cathodes and the anode. The external pressure deflects the diaphragm, varying the interelectrode spacing and changing the differential current between the two competing cathodes. The electrodes are fabricated from a Ni foil and separated by dielectric spacers within a micromachined glass cavity. The structures are enclosed within a 1.6-mm(3) ceramic surface mount package. Device sensitivity is approximately 4900 ppm/lbf/in(2) (72 000 ppm/atm), and diaphragm displacement is approximately 0.15 mu m/atm. C1 [Wright, Scott A.] Exponent Failure Anal Associates Inc, Menlo Pk, CA 94025 USA. [Harvey, Heidi Z.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Gianchandani, Yogesh B.] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA. RP Wright, SA (reprint author), Exponent Failure Anal Associates Inc, Menlo Pk, CA 94025 USA. EM scottwri@umich.edu FU Advanced Energy Consortium FX This work was supported by the Advanced Energy Consortium. Subject Editor H. Fujita. NR 26 TC 3 Z9 3 U1 1 U2 25 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1057-7157 J9 J MICROELECTROMECH S JI J. Microelectromech. Syst. PD FEB PY 2013 VL 22 IS 1 BP 80 EP 86 DI 10.1109/JMEMS.2012.2215009 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 086YT UT WOS:000314726900013 ER PT J AU Scott, S Sadeghi, F Peroulis, D AF Scott, Sean Sadeghi, Farshid Peroulis, Dimitrios TI Highly Reliable MEMS Temperature Sensors for 275 degrees C Applications-Part 1: Design and Technology SO JOURNAL OF MICROELECTROMECHANICAL SYSTEMS LA English DT Article DE Analytical; cantilever; capacitor; microelectromechanical systems (MEMS); model; multimorph ID THIN-FILMS; CANTILEVERS; MODEL AB This paper presents the design, fabrication, packaging, and experimental characterization of the first temperature-sensitive MEMS capacitors for health monitoring applications up to 275 degrees C. The capacitive sensor chip is 2 x 2 mm(2) fabricated on a 500-mu m-thick Si wafer and comprises an array of 220 individual 10 x 250 mu m(2) inherently robust bimorphs. This first part focuses on the fabrication and packaging, thermomechanical design, electromagnetic modeling, and technology of the unpackaged and packaged bimorph beams. On the thermomechanical part, the measured profiles match theoretically predicted profiles from 20 degrees C to 250 degrees C within 4% and 3% at the beam midpoints and tips, respectively. Similarly, experimentally obtained capacitance changes for five separate packaged devices show a mean error of less than 3% and a maximum error of less than 5% from the theoretical model up to 165 degrees C. The packaged sensors simultaneously achieve for the first time: 1) high temperature operation; 2) monotonic capacitance-temperature response from 20 degrees C to 300 degrees C; 3) hermetic sealing; 4) miniature size of 5.4 x 5.4 x 3.6 mm(3); and 5) capacitance quality factor of over 5000 at 20 degrees C and 1000 at 160 degrees C. Experimental results underline the tradeoffs between beam arrangement, attachment method to the package, and package to the quality factor of the device. [2011-0316] C1 [Scott, Sean; Peroulis, Dimitrios] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. [Sadeghi, Farshid] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. RP Scott, S (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM scottsm@purdue.edu NR 25 TC 1 Z9 1 U1 1 U2 28 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1057-7157 J9 J MICROELECTROMECH S JI J. Microelectromech. Syst. PD FEB PY 2013 VL 22 IS 1 BP 225 EP 235 DI 10.1109/JMEMS.2012.2227947 PG 11 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 086YT UT WOS:000314726900030 ER PT J AU Scott, S Katz, J Sadeghi, F Peroulis, D AF Scott, Sean Katz, Joseph Sadeghi, Farshid Peroulis, Dimitrios TI Highly Reliable MEMS Temperature Sensors for 275 degrees C Applications-Part 2: Creep and Cycling Performance SO JOURNAL OF MICROELECTROMECHANICAL SYSTEMS LA English DT Article DE Capacitance; reliability; temperature ID FILMS AB The second part of this paper presents an experimental reliability assessment of microelectromechanical-system bimorph cantilever beams for high-temperature sensing applications. The sensor, presented in Part I, is shown to operate up to 275 degrees C and to have a quality factor of over 5000 at room temperature, a response time of under 600 mu s, and an inherent capacitance uncertainty of under 0.13 fF. In this part, the reliability of the bimorph component of the sensor is tested at sustained high temperatures (up to 275 degrees C), as well as throughout thermal cycling. The cantilevers are initially thermally annealed to relax the film stresses. During the anneal of the device, there is a decrease in room-temperature tip displacement from 120 to 70 mu m and a decrease in the high-temperature tip displacement from 40 to 10 mu m. After the thermal anneal, the devices show less than 3 mu m of further creep after three months (over 2000 h) at 200 degrees C and over 120 h at 275 degrees C. Over 20 samples have been successfully tested up to 100 million cycles without failure. Record results are demonstrated to over 1.2 billion thermal cycles from fully relaxed to fully deflected states. Consisting of over 1000 beam profile measurements and dozens of individual fabricated chips, this represents one of the largest reliability studies of bimorphs to date. [2011-0317] C1 [Scott, Sean; Katz, Joseph; Peroulis, Dimitrios] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA. [Sadeghi, Farshid] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47907 USA. RP Scott, S (reprint author), Sandia Natl Labs, Albuquerque, NM 87123 USA. EM scottsm@purdue.edu NR 10 TC 3 Z9 3 U1 0 U2 19 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1057-7157 J9 J MICROELECTROMECH S JI J. Microelectromech. Syst. PD FEB PY 2013 VL 22 IS 1 BP 236 EP 243 DI 10.1109/JMEMS.2012.2227948 PG 8 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Instruments & Instrumentation; Physics, Applied SC Engineering; Science & Technology - Other Topics; Instruments & Instrumentation; Physics GA 086YT UT WOS:000314726900031 ER PT J AU Olson, AK Ledee, D Iwamoto, K Kajimoto, M Priddy, CO Isern, N Portman, MA AF Olson, Aaron K. Ledee, Dolena Iwamoto, Kate Kajimoto, Masaki Priddy, Colleen O'Kelly Isern, Nancy Portman, Michael A. TI C-Myc induced compensated cardiac hypertrophy increases free fatty acid utilization for the citric acid cycle SO JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY LA English DT Article DE Cardiac hypertrophy; Compensated hypertrophy; Substrate metabolism; Fatty acid oxidation ID C-13 ISOTOPOMER ANALYSIS; HEART-FAILURE; MYOCYTE HYPERTROPHY; GENE-EXPRESSION; RAT-HEART; METABOLISM; OXIDATION; ALPHA; CARDIOMYOPATHY; TRIMETAZIDINE AB The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam) injections. Isolated working hearts and (13)Carbon (C-13)-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing C-13-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (Cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect Hypertrophy was assessed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contributions in NTG. Substrate utilization was not significantly altered in 3dMyc versus Cont The free fatty acid FC was significantly greater in 7dMyc versus Cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to Cont Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes for the citric acid cycle did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained compensated function could provide useful information for developing metabolic therapies to treat heart failure. The molecular signaling for this metabolic change may occur through O-GlcNAcylation. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism". (C) 2012 Elsevier Ltd. All rights reserved. C1 [Olson, Aaron K.; Portman, Michael A.] Univ Washington, Div Cardiol, Dept Pediat, Seattle Childrens Hosp, Seattle, WA 98105 USA. [Olson, Aaron K.; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; Priddy, Colleen O'Kelly; Portman, Michael A.] Seattle Childrens Res Inst, Seattle, WA 98101 USA. [Isern, Nancy] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Olson, AK (reprint author), Seattle Childrens Res Inst, 1900 9th Ave, Seattle, WA 98101 USA. EM aaron.olson@seattlechildrens.org RI Isern, Nancy/J-8016-2013; OI Isern, Nancy/0000-0001-9571-8864 FU National Heart, Lung, and Blood Institute [K08-HL-092333]; Department of Energy's Office of Biological and Environmental Research at Pacific Northwest National Laboratory FX This work was supported by the National Heart, Lung, and Blood Institute Grant K08-HL-092333 to A. K. Olson. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. NR 31 TC 11 Z9 13 U1 1 U2 10 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0022-2828 EI 1095-8584 J9 J MOL CELL CARDIOL JI J. Mol. Cell. Cardiol. PD FEB PY 2013 VL 55 BP 156 EP 164 DI 10.1016/j.yjmcc.2012.07.005 PG 9 WC Cardiac & Cardiovascular Systems; Cell Biology SC Cardiovascular System & Cardiology; Cell Biology GA 085PH UT WOS:000314626200020 PM 22828478 ER PT J AU Cekanova, M Bilheux, HZ Rathore, K Bilheux, JC Walker, L Donnell, R Legendre, AM AF Cekanova, M. Bilheux, H. Z. Rathore, K. Bilheux, J. C. Walker, L. Donnell, R. Legendre, A. M. TI Neutron radiography combined with neutron-computed tomography: a novel tool for cancer diagnosis and imaging SO JOURNAL OF NUCLEAR MEDICINE LA English DT Meeting Abstract CT AACR/SNMMI Conference on State-of-the-Art Molecular Imaging in Cancer Biology and Therapy CY FEB 27-MAR 02, 2013 CL San Diego, CA SP Amer Assoc Canc Res (AACR), Soc Nucl Med & Mol Imaging (SNMMI) C1 [Cekanova, M.; Rathore, K.; Donnell, R.; Legendre, A. M.] Univ Tennessee, Coll Vet Med, Knoxville, TN USA. [Bilheux, H. Z.; Bilheux, J. C.; Walker, L.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RI Bilheux, Hassina/H-4289-2012; Bilheux, Jean/A-2823-2016 OI Bilheux, Hassina/0000-0001-8574-2449; Bilheux, Jean/0000-0003-2172-6487 NR 0 TC 0 Z9 0 U1 3 U2 17 PU SOC NUCLEAR MEDICINE INC PI RESTON PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA SN 0161-5505 J9 J NUCL MED JI J. Nucl. Med. PD FEB 1 PY 2013 VL 54 SU 1 BP 5 EP 6 PG 2 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 086NK UT WOS:000314691400016 ER PT J AU Klymyshyn, NA Adkins, HE Bajwa, CS Piotter, JM AF Klymyshyn, Nicholas A. Adkins, Harold E., Jr. Bajwa, Christopher S. Piotter, Jason M. TI Package Impact Models as a Precursor to Cladding Analysis SO JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME LA English DT Article AB The evaluation of spent nuclear fuel storage casks and transportation packages under impact loading is an important part of cask and package certification by the United States Nuclear Regulatory Commission. Finite element models are increasingly used for evaluating cask and package structural integrity during hypothetical drop accidents. Full cask and package model results are also used as the loading basis for single fuel pin impact models, which evaluate the response of fuel cladding under drop conditions. In this paper, a simplified package system is evaluated to illustrate the difference between local and bulk impact responses, the effect of simplified basket and fuel assembly representations, and the effect of gaps between components. This paper focuses on the package impact analysis and how loading conditions for a subsequent fuel assembly or fuel cladding analysis can be extracted. The results of this study suggest that detailed package system models are needed to determine cladding deceleration load histories. [DOI: 10.1115/1.4007469] C1 [Klymyshyn, Nicholas A.; Adkins, Harold E., Jr.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Bajwa, Christopher S.; Piotter, Jason M.] US Nucl Regulatory Commiss, Rockville, MD 20852 USA. RP Klymyshyn, NA (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM Nicholas.Klymyshyn@pnnl.gov; Harold.Adkins@pnnl.gov; Chris.Bajwa@nrc.gov; Jason.Piotter@nrc.gov NR 2 TC 0 Z9 0 U1 0 U2 0 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0094-9930 J9 J PRESS VESS-T ASME JI J. Press. Vessel Technol.-Trans. ASME PD FEB PY 2013 VL 135 IS 1 AR 011601 DI 10.1115/1.4007469 PG 7 WC Engineering, Mechanical SC Engineering GA 078KH UT WOS:000314096900018 ER PT J AU Kim, JS Monroe, ME Camp, DG Smith, RD Qian, WJ AF Kim, Jong-Seo Monroe, Matthew E. Camp, David G., II Smith, Richard D. Qian, Wei-Jun TI In-Source Fragmentation and the Sources of Partially Tryptic Peptides in Shotgun Proteomics SO JOURNAL OF PROTEOME RESEARCH LA English DT Article DE in-source fragmentation; partially tryptic; trypsin specificity; predicted elution time ID COLLISION-INDUCED DISSOCIATION; TANDEM MASS-SPECTROMETRY; ELECTROSPRAY-IONIZATION; SEQUENCE INFORMATION; BOVINE TRYPSIN; PROTEINS; MS; PSEUDOTRYPSIN; SPECIFICITY; PREDICTION AB Partially tryptic peptides are often identified in shotgun proteomics using trypsin as the proteolytic enzyme; however, their sources have been controversial. Herein, we investigate the impact of in-source fragmentation on shotgun proteomics profiling of three biological samples: a standard protein mixture, a mouse brain tissue homogenate, and mouse plasma. Because the in-source fragments of peptide ions have the same LC elution time as their parental peptides, partially tryptic peptide ions from in-source fragmentation can be distinguished from other partially tryptic peptides based on their elution time differences from those computationally predicted data. The percentage of partially tryptic peptide identifications resulting from in-source fragmentation in a standard protein digest was observed to be similar to 60%. In more complex mouse brain or plasma samples, in-source fragmentation contributed to a lesser degree of 1-3% of all identified peptides due to the limited dynamic range of LC-MS/MS measurements. The other major source of partially tryptic peptides in complex biological samples is presumably proteolytic cleavage by endogenous proteases in the samples. Our work also provides a method to identify such proteolytic-derived partially tryptic peptides due to endogenous proteases in the samples by removing in-source fragmentation artifacts from the identified peptides. C1 [Qian, Wei-Jun] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Qian, WJ (reprint author), Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. EM weijun.qian@pnnl.gov RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 FU NIH [DP2OD006668, 8P41 GM103493, 5P41 RR018522]; DOE [DE-AC05-76RL0 1830] FX Portions of this work were supported by the NIH Director's New Innovator Award Program DP2OD006668 and NIH Grants 8P41 GM103493 and 5P41 RR018522. The experimental work described herein was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE and located at Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute for the DOE under Contract DE-AC05-76RL0 1830. NR 27 TC 11 Z9 11 U1 1 U2 19 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1535-3893 J9 J PROTEOME RES JI J. Proteome Res. PD FEB PY 2013 VL 12 IS 2 BP 910 EP 916 DI 10.1021/pr300955f PG 7 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 084SG UT WOS:000314558800032 PM 23268687 ER PT J AU Barton, NR Arsenlis, A Marian, J AF Barton, Nathan R. Arsenlis, Athanasios Marian, Jaime TI A polycrystal plasticity model of strain localization in irradiated iron SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Flow localization; Crystal plasticity; Irradiated materials; Finite elements ID DISLOCATION DYNAMICS SIMULATIONS; LOW-TEMPERATURE IRRADIATION; DEFORMATION; METALS; MICROSTRUCTURE; ENVIRONMENTS; INSTABILITY; CHALLENGES; CRYSTALS; PROTON AB At low to intermediate homologous temperatures, the degradation of structural materials performance in nuclear environments is associated with high number densities of nanometric defects produced in irradiation cascades. In polycrystalline ferritic materials, self-interstitial dislocations loops are a principal signature of irradiation damage, leading to a mechanical response characterized by increased yield strengths, decreased total strain to failure, and decreased work hardening as compared to the unirradiated behavior. Above a critical defect concentration, the material deforms by plastic flow localization, giving rise to strain softening in terms of the engineering stress-strain response. Flow localization manifests itself in the form of defect-depleted crystallographic channels, through which all dislocation activity is concentrated. In this paper, we describe the formulation of a crystal plasticity model for pure Fe embedded in a finite element polycrystal simulator and present results of uniaxial tensile deformation tests up to 10% strain. We use a tensorial damage descriptor variable to capture the evolution of the irradiation damage loop subpopulation during deformation. The model is parameterized with detailed dislocation dynamics simulations of tensile tests up to 1.5% deformation of systems containing various initial densities of irradiation defects. The coarse-grained simulations are shown to capture the essential details of the experimental stress response observed in ferritic alloys and steels. Our methodology provides an effective linkage between the defect scale, of the order of one nanometer, and the continuum scale involving multiple grain orientations. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Barton, Nathan R.; Arsenlis, Athanasios; Marian, Jaime] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Marian, J (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. EM marian1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [W-7405-Eng-48, DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. NR 34 TC 18 Z9 20 U1 14 U2 93 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD FEB PY 2013 VL 61 IS 2 BP 341 EP 351 DI 10.1016/j.jmps.2012.10.009 PG 11 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 084RJ UT WOS:000314556500004 ER PT J AU Su, CJ Herbert, EG Sohn, S LaManna, JA Oliver, WC Pharr, GM AF Su, Caijun Herbert, Erik G. Sohn, Sangjoon LaManna, James A. Oliver, Warren C. Pharr, George M. TI Measurement of power-law creep parameters by instrumented indentation methods SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Instrumented indentation; Creep; Finite elements; Contact mechanics; Elastic-viscoplastic material ID AMORPHOUS SELENIUM; NANOINDENTATION CREEP; IMPRESSION CREEP; HARDNESS; SOLIDS; GLASS AB New experimental methods are developed to measure the uniaxial power-law creep parameters alpha and n in the relation (epsilon) over dot = alpha sigma(n) ((epsilon) over dot is the creep strain rate and sigma is the creep stress) from indentation data obtained with a conical or pyramidal indenter. The methods are based on an analysis of Bower et al., which relates the indentation creep rate to the uniaxial creep parameters based on simple assumptions about the constitutive behavior (Bower et al., 1993). Using finite element simulations to establish the influences of finite indenter geometry and transients caused by elasticity, the proposed methods are explored experimentally using amorphous selenium as a model material. This material is well suited for the study because it creeps at temperatures slightly above ambient in a load-history independent fashion with a stress exponent close to unity. Indentation creep tests were conducted with a Berkovich indenter using three different loading methods. With a few notable exceptions, the values of both CC and n derived from the indentation data are generally in good agreement with those measured in uniaxial compression tests, thus demonstrating the validity of the approach. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Su, Caijun; Herbert, Erik G.; Sohn, Sangjoon; LaManna, James A.; Pharr, George M.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Oliver, Warren C.] Nanomechanics Inc, Oak Ridge, TN 37830 USA. [Pharr, George M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Pharr, GM (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM pharr@utk.edu FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX This research was sponsored in part by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (EGH and GMP). NR 26 TC 21 Z9 21 U1 2 U2 73 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD FEB PY 2013 VL 61 IS 2 BP 517 EP 536 DI 10.1016/j.jmps.2012.09.009 PG 20 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 084RJ UT WOS:000314556500014 ER PT J AU Kawamoto, T Mori, T Terashima, T Uji, S Schlueter, JA AF Kawamoto, Tadashi Mori, Takehiko Terashima, Taichi Uji, Shinya Schlueter, John A. TI Fermi Surface of the Dual-Layered Organic Superconductor kappa alpha '(2)-(BEDT-TTF)(2)Ag(CF3)(4)(TCE) with Acentric Charge-Ordered Layers SO JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN LA English DT Article DE organic superconductor; de Haas-van Alphen effect; Fermi surface; band filling; magnetic torque ID ELECTRONIC-STRUCTURE; CRITICAL-TEMPERATURE; SALTS; PRESSURE AB The band filling and Fermi surface in the dual-layered organic superconductor kappa alpha'(2)-(BEDT-TTF)(2)Ag(CF3)(4)(TCE) with a charge-ordered alpha'-layer have been investigated, where BEDT-TTF stands for bis(ethylenedithio)tetrathiaful-valene and TCE stands for 1,1,2-trichloroethane. The de Haas-van Alphen (dHvA) oscillation indicates that the conducting layer is the kappa-layer with a half-filled band; this is in agreement with the charge-ordered alpha'-layer due to the quarter-filled band. The effective cyclotron mass observed in the dHvA oscillation is larger than the calculated bare cyclotron mass. The BEDT-TTF superconductors including a kappa-layer show the following trend: the higher the superconducting transition temperature of the material, the larger the mass enhancement. C1 [Kawamoto, Tadashi; Mori, Takehiko] Tokyo Inst Technol, Dept Organ & Polymer Mat, Grad Sch Sci & Engn, Meguro Ku, Tokyo 1528552, Japan. [Terashima, Taichi; Uji, Shinya] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050003, Japan. [Schlueter, John A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Kawamoto, T (reprint author), Tokyo Inst Technol, Dept Organ & Polymer Mat, Grad Sch Sci & Engn, Meguro Ku, Tokyo 1528552, Japan. EM kawamoto@o.cc.titech.ac.jp RI Kawamoto, Tadashi/C-1398-2015 OI Kawamoto, Tadashi/0000-0002-5676-4013 FU MEXT KAKENHI [23110709]; JSPS KAKENHI [24540364]; UChicago Argonne LLC; U.S. Department of Energy, Office of Science Laboratory [DE-AC02-06CH11357] FX This work was partially supported by MEXT KAKENHI Grant Number 23110709, by JSPS KAKENHI Grant Number 24540364, and by UChicago Argonne LLC, the U.S. Department of Energy, Office of Science Laboratory, operated under Contact No. DE-AC02-06CH11357. NR 23 TC 2 Z9 2 U1 0 U2 16 PU PHYSICAL SOC JAPAN PI TOKYO PA YUSHIMA URBAN BUILDING 5F, 2-31-22 YUSHIMA, BUNKYO-KU, TOKYO, 113-0034, JAPAN SN 0031-9015 J9 J PHYS SOC JPN JI J. Phys. Soc. Jpn. PD FEB PY 2013 VL 82 IS 2 AR 024704 DI 10.7566/JPSJ.82.024704 PG 4 WC Physics, Multidisciplinary SC Physics GA 082AL UT WOS:000314364000047 ER PT J AU Vaziri, ND Wong, J Pahl, M Piceno, YM Yuan, J DeSantis, TZ Ni, ZM Nguyen, TH Andersen, GL AF Vaziri, Nosratola D. Wong, Jakk Pahl, Madeleine Piceno, Yvette M. Yuan, Jun DeSantis, Todd Z. Ni, Zhenmin Nguyen, Tien-Hung Andersen, Gary L. TI Chronic kidney disease alters intestinal microbial flora SO KIDNEY INTERNATIONAL LA English DT Article DE diet; ESRD; gut microbiome; inflammation; uremia ID CHRONIC-RENAL-FAILURE; SIZED POLYETHYLENE-GLYCOLS; GASTROINTESTINAL-TRACT; FECAL MICROBIOTA; HOST; GUT; BACTERIA; UREMIA; RATS; INFLAMMATION AB The population of microbes (microbiome) in the intestine. is a symbiotic ecosystem conferring trophic and protective functions. Since the biochemical environment shapes the structure and function of the microbiome, we tested whether uremia and/or dietary and pharmacologic interventions in chronic kidney disease alters the microbiome. To identify different microbial populations, microbial DNA was isolated from the stools of 24 patients with end-stage renal disease (ESRD) and 12 healthy persons, and analyzed by phylogenetic microarray. There were marked differences in the abundance of 190 bacterial operational taxonomic units (OTUs) between the ESRD and control groups. OTUs from Brachybacterium, Catenibacterium, Enterobacteriaceae, Halomonadaceae, Moraxellaceae, Nesterenkonia, Polyangiaceae, Pseudomonadaceae, and Thiothrix families were markedly increased in patients with ESRD. To isolate the effect of uremia from inter-individual variations, comorbid conditions, and dietary and medicinal interventions, rats were studied 8 weeks post 5/6 nephrectomy or sham operation. This showed a significant difference in the abundance of 175 bacterial OTUs between the uremic and control animals, most notably as decreases in the Lactobacillaceae and Prevotellaceae families. Thus, uremia profoundly alters the composition of the gut microbiome. The biological impact of this phenomenon is unknown and awaits further investigation. Kidney International (2013) 83, 308-315; doi:10.1038/ki.2012.345; published online 19 September 2012 C1 [Vaziri, Nosratola D.; Pahl, Madeleine; Yuan, Jun; Ni, Zhenmin] UC Irvine Med Ctr, Div Nephrol & Hypertens, Orange, CA 92868 USA. [Wong, Jakk; Piceno, Yvette M.; Nguyen, Tien-Hung; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Environm Biotechnol, Berkeley, CA 94720 USA. [DeSantis, Todd Z.] Second Genome, San Bruno, CA USA. RP Vaziri, ND (reprint author), UC Irvine Med Ctr, Div Nephrol & Hypertens, Suite 400,City Tower,101 City Dr, Orange, CA 92868 USA. EM ndvaziri@uci.edu RI Andersen, Gary/G-2792-2015; Piceno, Yvette/I-6738-2016 OI Andersen, Gary/0000-0002-1618-9827; Piceno, Yvette/0000-0002-7915-4699 NR 46 TC 131 Z9 135 U1 8 U2 63 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0085-2538 J9 KIDNEY INT JI Kidney Int. PD FEB PY 2013 VL 83 IS 2 BP 308 EP 315 DI 10.1038/ki.2012.345 PG 8 WC Urology & Nephrology SC Urology & Nephrology GA 085NM UT WOS:000314621500020 PM 22992469 ER PT J AU Schad, JN AF Schad, Jahan N. TI Stress caused adverse entanglement of the nervous and autoimmune systems: A case for MS SO MEDICAL HYPOTHESES LA English DT Article AB The adverse role of stress in daily life, on human health has long been recognized and is being firmly substantiated by scientific investigation. Though many comforts of the modern life are owed to progress in the post-industrial age, increased levels of stress, in daily life, are also attributed to it, as well. Comparing life in the agrarian era with that of post industrial one, the change of the background sustained stress levels, among humans (not to mention Nature), is very dramatic. Variations in overall living conditions and psyche can further aggravate the state of stress. Living with such levels of stress - outside of the realm of evolutionary learned survival preparedness of human beings - is bound to wreak havoc with our mental and biological construct, rendering various levels of unease and diseases. Multiple Sclerosis can be of such origin. Medical Sciences has little to offer in the way understanding of the cause(s) of deterioration of brain cells, other than noting it as a kind of likely attack of the autoimmune system on the nervous system. Following some observations made in the paper, a hypothesis for the onset and prevention of MS is put forward. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Schad, Jahan N.] UCB, Lawrence Berkeley Natl Lab, Moraga, CA 94556 USA. EM Jaschadn@gmail.com NR 1 TC 2 Z9 3 U1 0 U2 5 PU CHURCHILL LIVINGSTONE PI EDINBURGH PA JOURNAL PRODUCTION DEPT, ROBERT STEVENSON HOUSE, 1-3 BAXTERS PLACE, LEITH WALK, EDINBURGH EH1 3AF, MIDLOTHIAN, SCOTLAND SN 0306-9877 J9 MED HYPOTHESES JI Med. Hypotheses PD FEB PY 2013 VL 80 IS 2 BP 156 EP 157 DI 10.1016/j.mehy.2012.11.016 PG 2 WC Medicine, Research & Experimental SC Research & Experimental Medicine GA 083SO UT WOS:000314485700014 PM 23207182 ER PT J AU Markovic, NM AF Markovic, Nenad M. TI ELECTROCATALYSIS Interfacing electrochemistry SO NATURE MATERIALS LA English DT News Item C1 Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Markovic, NM (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM nmmarkovic@anl.gov NR 0 TC 32 Z9 32 U1 11 U2 193 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD FEB PY 2013 VL 12 IS 2 BP 101 EP 102 PG 2 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 085PP UT WOS:000314627000013 PM 23340473 ER PT J AU Morley, GW Lueders, P Mohammady, MH Balian, SJ Aeppli, G Kay, CWM Witzel, WM Jeschke, G Monteiro, TS AF Morley, Gavin W. Lueders, Petra Mohammady, M. Hamed Balian, Setrak J. Aeppli, Gabriel Kay, Christopher W. M. Witzel, Wayne M. Jeschke, Gunnar Monteiro, Tania S. TI Quantum control of hybrid nuclear-electronic qubits SO NATURE MATERIALS LA English DT Article ID SPIN COHERENCE; SILICON; DOPANTS; DONORS; DOT AB Pulsed magnetic resonance allows the quantum state of electronic and nuclear spins to be controlled on the timescale of nanoseconds and microseconds respectively(1). The time required to flip dilute spins is orders of magnitude shorter than their coherence times(2-9), leading to several schemes for quantum information processing with spin qubits(10-13). Instead, we investigate 'hybrid nuclear-electronic' qubits(14,15) consisting of near 50:50 superpositions of the electronic and nuclear spin states. Using bismuth-doped silicon, we demonstrate quantum control over these states in 32 ns, which is orders of magnitude faster than previous experiments using pure nuclear states(2,3). The coherence times of up to 4 ms are five orders of magnitude longer than the manipulation times, and are limited only by naturally occurring Si-29 nuclear spin impurities. We find a quantitative agreement between our experiments and an analytical theory for the resonance positions, as well as their relative intensities and Rabi oscillation frequencies. These results bring spins in a solid material a step closer to research on ion-trap qubits(10). C1 [Morley, Gavin W.; Mohammady, M. Hamed; Balian, Setrak J.; Aeppli, Gabriel; Monteiro, Tania S.] UCL, Dept Phys & Astron, London WC1E 6BT, England. [Morley, Gavin W.; Aeppli, Gabriel; Kay, Christopher W. M.] UCL, London Ctr Nanotechnol, London WC1H 0AH, England. [Lueders, Petra; Jeschke, Gunnar] Swiss Fed Inst Technol, Chem Phys Lab, CH-8093 Zurich, Switzerland. [Kay, Christopher W. M.] UCL, Inst Struct & Mol Biol, London WC1E 6BT, England. [Witzel, Wayne M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Morley, GW (reprint author), Univ Warwick, Dept Phys, Gibbet Hill Rd, Coventry CV4 7AL, W Midlands, England. EM gavin.morley@warwick.ac.uk RI Morley, Gavin/C-1658-2008; Balian, Setrak/I-3648-2012; Kay, Christopher/C-2467-2008 OI Morley, Gavin/0000-0002-8760-6907; Kay, Christopher/0000-0002-5200-6004 FU US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Royal Commission for the Exhibition [1851]; Royal Society FX We acknowledge Bernard Pajot for the Si:Bi crystal used here, R. Tschaggelar for technical assistance, the National EPR Facility and Service at the University of Manchester, UK, for initial continuous-wave experiments at 4 GHz and the EPSRC COMPASSS grant. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. G.W.M. is supported by the Royal Commission for the Exhibition of 1851 and the Royal Society. NR 30 TC 28 Z9 28 U1 5 U2 82 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD FEB PY 2013 VL 12 IS 2 BP 103 EP 107 DI 10.1038/NMAT3499 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 085PP UT WOS:000314627000014 PM 23202370 ER PT J AU Singh, S Ediger, MD de Pablo, JJ AF Singh, Sadanand Ediger, M. D. de Pablo, Juan J. TI Ultrastable glasses from in silico vapour deposition SO NATURE MATERIALS LA English DT Article ID SUPERCOOLED LIQUIDS; METALLIC GLASSES; LOCAL ORDER; TRANSITION; DYNAMICS; TEMPERATURE AB Glasses are generally prepared by cooling from the liquid phase, and their properties depend on their thermal history. Recent experiments indicate that glasses prepared by vapour deposition onto a substrate can exhibit remarkable stability, and might correspond to equilibrium states that could hitherto be reached only by glasses aged for thousands of years. Here we create ultrastable glasses by means of a computer-simulation process that mimics physical vapour deposition. These stable glasses have, far below the conventional glass-transition temperature, the properties expected for the equilibrium supercooled liquid state, and optimal stability is attained when deposition occurs at the Kauzmann temperature. We also show that the glasses' extraordinary stability is associated with distinct structural motifs, in particular the abundance of regular Voronoi polyhedra and the relative lack of irregular polyhedra. C1 [Singh, Sadanand; de Pablo, Juan J.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Ediger, M. D.] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [de Pablo, Juan J.] Univ Chicago, Inst Mol Engn, Chicago, IL 60637 USA. [de Pablo, Juan J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP de Pablo, JJ (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. EM depablo@uchicago.edu FU National Science Foundation [DMR-1234320, DMR-1121288]; US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0002161] FX This work was supported by the National Science Foundation under awards DMR-1234320 and DMR-1121288 (S.S. and J.J.d.P.) and by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award DE-SC0002161 (M.D.E.). The authors are grateful to T. Yu for helpful discussions. NR 33 TC 82 Z9 84 U1 10 U2 192 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 J9 NAT MATER JI Nat. Mater. PD FEB PY 2013 VL 12 IS 2 BP 139 EP 144 DI 10.1038/NMAT3521 PG 6 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 085PP UT WOS:000314627000021 PM 23291708 ER PT J AU Dash, A Knapp, FF Pillai, MRA AF Dash, Ashutosh Knapp, F. F. (Russ), Jr. Pillai, M. R. A. TI Mo-99/Tc-99m separation: An assessment of technology options SO NUCLEAR MEDICINE AND BIOLOGY LA English DT Article DE Mo-99/Tc-99m generator; (n,gamma)Mo-99; Chromatography; Electrochemical separation; Nanomaterial; Post elution concentration; Solvent extraction; Supported liquid membrane (SLM); Zirconium molybdate gel generator (ZMG) ID AQUEOUS BIPHASIC SYSTEMS; RADIONUCLIDE GENERATOR SYSTEMS; LIQUID-LIQUID-EXTRACTION; ZIRCONIUM MOLYBDATE GEL; LARGE-SCALE PRODUCTION; METAL-ION SEPARATIONS; TC-99M GENERATOR; NUCLEAR-MEDICINE; TECHNETIUM-99M GENERATOR; CYCLOTRON PRODUCTION AB Several strategies for the effective separation of Tc-99m from Mo-99 have been developed and validated. Due to the success of column chromatographic separation using acidic alumina coupled with high specific activity fission Mo-99 (F Mo-99) for production of Mo-99/Tc-99m generators, however, most technologies until recently have generated little interest. The reduced availability of F Mo-99 and consequently the shortage of Mo-99/Tc-99m column generators in the recent past have resurrected interest in the production of Mo-99 as well as Tc-99m by alternate routes. Most of these alternative production processes require separation techniques capable of providing clinical grade Tc-99m from low specific activity Mo-99 or irradiated Mo targets. For this reason there has been renewed interest in alternate separation routes. This paper reviews the reported separation technologies which include column chromatography, solvent extraction, sublimation and gel systems that have been traditionally used for the fabrication of Mo-99/Tc-99m generator systems. The comparative advantage, disadvantage, and technical challenges toward adapting the emerging requirements are discussed. New developments such as solid-phase column extraction, electrochemical separation, extraction chromatography, supported liquid membrane (SLM) and thermochromatographic techniques are also being evaluated for their potential application in the changed scenario of providing Tc-99m from alternate routes. Based on the analysis provided in this review, it appears that some proven separation technologies can be quickly resurrected for the separation of clinical grade Tc-99m from macroscopic levels of reactor or cyclotron irradiated molybdenum targets. Furthermore, emerging technologies can be developed further to respond to the expected changing modes of Tc-99m production. (C) 2013 Elsevier Inc. All rights reserved. C1 [Dash, Ashutosh; Pillai, M. R. A.] Bhabha Atom Res Ctr, Radiopharmaceut Div, Bombay 400085, Maharashtra, India. [Knapp, F. F. (Russ), Jr.] Oak Ridge Natl Lab, Med Isotopes Program, Isotope Dev Grp, Oak Ridge, TN 37831 USA. RP Pillai, MRA (reprint author), Bhabha Atom Res Ctr, Radiopharmaceut Div, Bombay 400085, Maharashtra, India. EM mrap@barc.gov.in OI Dash, Ashutosh/0000-0001-7541-7298 FU US Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC. FX Research at the Bhabha Atomic Research Centre is part of the ongoing activities of the Department of Atomic Energy, India and fully supported by government funding. Research at the Oak Ridge National Laboratory is supported by the US Department of Energy under contract DE-AC05-00OR22725 with UT-Battelle, LLC.; Disclaimer; This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 153 TC 28 Z9 28 U1 6 U2 50 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0969-8051 J9 NUCL MED BIOL JI Nucl. Med. Biol. PD FEB PY 2013 VL 40 IS 2 BP 167 EP 176 DI 10.1016/j.nucmedbio.2012.10.005 PG 10 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 085OY UT WOS:000314625300003 PM 23142410 ER PT J AU Martin, RM Bergman, RG Ellman, JA AF Martin, Rhia M. Bergman, Robert G. Ellman, Jonathan A. TI Synthesis of Isoquinuclidines from Highly Substituted Dihydropyridines via the Diels-Alder Reaction SO ORGANIC LETTERS LA English DT Article ID H BOND ACTIVATION; STEREOSELECTIVE-SYNTHESIS; IBOGA-ANALOGS; HYDROISOQUINOLINE SYNTHESIS; REGIOSELECTIVE SYNTHESIS; CHIRAL ISOQUINUCLIDINES; CYCLOADDITION REACTIONS; LYCOPODIUM ALKALOIDS; GROB FRAGMENTATION; MANNICH APPROACH AB A stereo- and regioselective Diels-Alder reaction for the synthesis of highly substituted isoquinuclidines from dihydropyridines and electron-deficient alkenes has been developed. While reactions with activated dienophiles proceed readily under thermal conditions, the use of Lewis acid additives is necessary to facilitate cycloadditions for less reactive alkenes. This procedure affords the target compounds in high yields and diastereoselectivities. C1 [Martin, Rhia M.; Ellman, Jonathan A.] Yale Univ, Dept Chem, New Haven, CT 06520 USA. [Bergman, Robert G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Bergman, Robert G.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Bergman, RG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM rbergman@berkeley.edu; jonathan.ellman@yale.edu RI Ellman, Jonathan/C-7732-2013 FU NIH [GM069559]; Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, DOE [DE-AC02-05CH11231]; NSF; UC, Berkeley Chancellor's Fellowship FX This work was supported by the NIH Grant GM069559 (to J.A.E.). R.G.B. acknowledges funding from The Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, DOE, under Contract DE-AC02-05CH11231. R.M. M. is grateful for a NSF Predoctoral Fellowship and a UC, Berkeley Chancellor's Fellowship. The authors are grateful to the Keck Center of Yale University for collecting the high resolution mass spectrometry (HRMS) data and to Dr. Michael Takase at the Chemical and Biophysical Instrumentation Center at Yale University for solving the structure of 3g. NR 76 TC 19 Z9 19 U1 2 U2 48 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1523-7060 J9 ORG LETT JI Org. Lett. PD FEB 1 PY 2013 VL 15 IS 3 BP 444 EP 447 DI 10.1021/ol303040r PG 4 WC Chemistry, Organic SC Chemistry GA 084SI UT WOS:000314559000005 PM 23320852 ER PT J AU Zhang, GQ Hanson, SK AF Zhang, Guoqi Hanson, Susan K. TI Cobalt-Catalyzed Acceptorless Alcohol Dehydrogenation: Synthesis of Imines from Alcohols and Amines SO ORGANIC LETTERS LA English DT Article ID OXIDANT-FREE OXIDATION; HOMOGENEOUS RUTHENIUM; HYDROGEN-PRODUCTION; BORROWING HYDROGEN; SECONDARY ALCOHOLS; COMPLEXES; LIGAND; LIBERATION; ACTIVATION; GENERATION AB A cobalt catalyst has been developed for the acceptorless dehydrogenation of alcohols and applied to synthesize Imines from alcohols and amines. Deuterium labeling studies suggest that the reaction proceeds by an initial reversible alcohol dehydrogenation step involving a cobalt hydride intermediate. C1 [Zhang, Guoqi; Hanson, Susan K.] Los Alamos Natl Lab, Div Chem, Los Alamos, NM 87545 USA. RP Hanson, SK (reprint author), Los Alamos Natl Lab, Div Chem, POB 1663, Los Alamos, NM 87545 USA. EM skhanson@lanl.gov RI Zhang, Guoqi/K-7617-2012 OI Zhang, Guoqi/0000-0001-6071-8469 FU Los Alamos National Laboratory LDRD Early Career Award [2011-0537ER]; Post-Doctoral Fellowship FX This work was funded by Los Alamos National Laboratory LDRD Early Career Award (2011-0537ER) and Director's Post-Doctoral Fellowship (G.Z.). NR 34 TC 78 Z9 78 U1 13 U2 134 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1523-7060 J9 ORG LETT JI Org. Lett. PD FEB 1 PY 2013 VL 15 IS 3 BP 650 EP 653 DI 10.1021/ol303479f PG 4 WC Chemistry, Organic SC Chemistry GA 084SI UT WOS:000314559000058 PM 23311959 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Aguilo, E Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hammer, J Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Pernicka, M Rahbaran, B Rohringer, C Rohringer, H Schofbeck, R Strauss, J Taurok, A Waltenberger, W Walzel, G Widl, E Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Luyckx, S Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Staykova, Z Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Suarez, RG Kalogeropoulos, A Maes, M Olbrechts, A Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hreus, T Leonard, A Marage, PE Mohammadi, A Reis, T Thomas, L Vander Marcken, G Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Cimmino, A Costantini, S Garcia, G Grunewald, M Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Strobbe, N Thyssen, F Tytgat, M Verwilligen, P Walsh, S Yazgan, E Zaganidis, N Basegmez, S Bruno, G Castello, R Ceard, L Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Schul, N Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Damiao, DD Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Custodio, A Da Costa, EM Martins, CD De Souza, SF Figueiredo, DM Mundim, L Nogima, H Oguri, V Da Silva, WLP Santoro, A Jorge, LS Sznajder, A Anjos, TS Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vutova, M Dimitrov, A Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Zang, J Zhang, Z Asawatangtrakuldee, C Ban, Y Guo, S Guo, Y Li, W Liu, S Mao, Y Qian, SJ Teng, H Wang, D Zhang, L Zhu, B Zou, W Avila, C Gomez, JP Moreno, BG Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Duric, S Kadija, K Luetic, J Morovic, S Attikis, A Galanti, M Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Elgammal, S Kamel, AE Mahmoud, MA Radi, A Kadastik, M Muntel, M Raidal, M Rebane, L Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Karjalainen, A Korpela, A Tuuva, T Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Millischer, L Nayak, A Rander, J Rosowsky, A Shreyber, I Titov, M Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Broutin, C Busson, P Charlot, C Daci, N Dahms, T Dobrzynski, L de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Ferro, C Fontaine, JC Gele, D Goerlach, U Juillot, P Le Bihan, AC Van Hove, P Fassi, F Mercier, D Beauceron, S Beaupere, N Bondu, O Boudoul, G Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Sordini, V Tschudi, Y Verdier, P Viret, S Tsamalaidze, Z Anagnostou, G Beranek, S Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Kreuzer, P Magass, C Merschmeyer, M Meyer, A Olschewski, M Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Weber, M Bontenackels, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Nowack, A Perchalla, L Pooth, O Sauerland, P Stahl, A Martin, MA Behr, J Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Castro, E Costanza, F Dammann, D Pardos, CD Eckerlin, G Eckstein, D Flucke, G Geiser, A Glushkov, I Gunnellini, P Habib, S Hauk, J Hellwig, G Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Knutsson, A Kramer, M Krucker, D Kuznetsova, E Lange, W Lohmann, W Lutz, B Mankel, R Marfin, I Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Olzem, J Perrey, H Petrukhin, A Pitzl, D Raspereza, A Cipriano, PMR Riedl, C Ron, E Rosin, M Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Spiridonov, A Stein, M Walsh, R Wissing, C Autermann, C Blobel, V Draeger, J Enderle, H Erfle, J Gebbert, U Gorner, M Hermanns, T Hoing, RS Kaschube, K Kaussen, G Kirschenmann, H Klanner, R Lange, J Mura, B Nowak, F Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schroder, M Schum, T Seidel, M Sola, V Stadie, H Steinbruck, G Thomsen, J Vanelderen, L Barth, C Berger, J Boser, C Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hackstein, C Hartmann, F Hauth, T Heinrich, M Held, H Hoffmann, KH Honc, S Katkov, I Komaragiri, JR Pardo, PL Martschei, D Mueller, S Muller, T Niegel, M Nurnberg, A Oberst, O Oehler, A Ott, J Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Rocker, S Scheurer, A Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Zeise, M Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Mavrommatis, C Ntomari, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Malhotra, S Naimuddin, M Ranjan, K Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Dutta, S Gomber, B Jain, S Jain, S Khurana, R Sarkar, S Sharan, M Abdulsalam, A Choudhury, RK Dutta, D Kailas, S Kumar, V Mehta, P Mohanty, AK Pant, LM Shukla, P Aziz, T Ganguly, S Guchait, M Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Banerjee, S Dugad, S Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Hesari, H Jafari, A Khakzad, M Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Lusito, L Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Selvaggi, G Silvestris, L Singh, G Venditti, R Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Tosi, S Benaglia, A De Guio, F Di Matteo, L Fiorendi, S Gennai, S Ghezzi, A Malvezzi, S Manzoni, RA Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fatis, TT Buontempo, S Montoya, CAC Cavallo, N De Cosa, A Dogangun, O Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R Checchia, P Gasparini, F Gasparini, U Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Triossi, A Vanini, S Ventura, S Zotto, P Gabusi, M Ratti, SP Riccardi, C Torre, P Vitulo, P Biasini, M Bilei, GM Fano, L Lariccia, P Lucaroni, A Mantovani, G Menichelli, M Nappi, A Romeo, F Saha, A Santocchia, A Spiezia, A Taroni, S Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Diemoz, M Fanelli, C Grassi, M Longo, E Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Sigamani, M Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Cartiglia, N Costa, M Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Pereira, AV Belforte, S Candelise, V Cossutti, F Della Ricca, G Gobbo, B Marone, M Montanino, D Penzo, A Schizzi, A Heo, SG Kim, TY Nam, SK Chang, S Kim, DH Kim, GN Kong, DJ Park, H Ro, SR Son, DC Son, T Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Moon, DH Park, SK Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Cho, Y Choi, Y Choi, YK Goh, J Kim, MS Kwon, E Lee, B Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Juodagalvis, A Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Villalba, RM Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Bell, AJ Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Ansari, MH Asghar, MI Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Boimska, B Frueboes, T Gokieli, R Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Almeida, N Bargassa, P David, A Faccioli, P Parracho, PGF Gallinaro, M Seixas, J Varela, J Vischia, P Belotelov, I Bunin, P Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Malakhov, A Moisenz, P Palichik, V Perelygin, V Savina, M Shmatov, S Smirnov, V Volodko, A Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Erofeeva, M Gavrilov, V Kossov, M Lychkovskaya, N Popov, V Safronov, G Semenov, S Stolin, V Vlasov, E Zhokin, A Belyaev, A Boos, E Bunichev, V Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Markina, A Obraztsov, S Perfilov, M Popov, A Sarycheva, L Savrin, V Snigirev, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Azhgirey, I Bayshev, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Korablev, A Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Peris, AD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Olmeda, AQ Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C Codispoti, G de Troconiz, JF Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Gomez, JP Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Graziano, A Jorda, C Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Sanudo, MS Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Baillon, P Ball, AH Barney, D Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC D'Enterria, D Dabrowski, A De Roeck, A Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Frisch, B Funk, W Georgiou, G Giffels, M Gigi, D Gill, K Giordano, D Giunta, M Glege, F Garrido, RGR Govoni, P Gowdy, S Guida, R Hansen, M Harris, P Hartl, C Harvey, J Hegner, B Hinzmann, A Innocente, V Janot, P Kaadze, K Karavakis, E Kousouris, K Lecoq, P Lee, YJ Lenzi, P Lourenco, C Maki, T Malberti, M Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Musella, P Nesvold, E Orimoto, T Orsini, L Cortezon, EP Perez, E Perrozzi, L Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Polese, G Quertenmont, L Racz, A Reece, W Antunes, JR Rolandi, G Rovelli, C Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Segoni, I Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Tsirou, A Veres, GI Vlimant, JR Wohri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Sibille, J Bani, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eugster, J Freudenreich, K Grab, C Hits, D Lecomte, P Lustermann, W Marini, AC del Arbol, PMR Mohr, N Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pape, L Pauss, F Peruzzi, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Wehrli, L Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Mejias, BM Otiougova, P Robmann, P Snoek, H Tupputi, S Verzetti, M Chang, YH Chen, KH Kuo, CM Li, SW Lin, W Liu, ZK Lu, YJ Mekterovic, D Singh, AP Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wan, X Wang, M Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Karaman, T Karapinar, G Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, LN Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Yildirim, E Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Cankocak, K Levchuk, L Bostock, F Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Williams, T Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Ball, G Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Papageorgiou, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Stoye, M Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Whyntie, T Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Hatakeyama, K Liu, H Scarborough, T Charaf, O Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A St John, J Lawson, P Lazic, D Rohlf, J Sperka, D Sulak, L Alimena, J Bhattacharya, S Cutts, D Ferapontov, A Heintz, U Jabeen, S Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Nguyen, D Segala, M Sinthuprasith, T Speer, T Tsang, KV Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Dolen, J Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Miceli, T Pellett, D Ricci-Tam, F Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Andreev, V Cline, D Cousins, R Duris, J Erhan, S Everaerts, P Farrell, C Hauser, J Ignatenko, M Jarvis, C Plager, C Rakness, G Schlein, P Traczyk, P Valuev, V Weber, M Babb, J Clare, R Dinardo, ME Ellison, J Gary, JW Giordano, F Hanson, G Jeng, GY Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Golf, F Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Mangano, B Padhi, S Palmer, C Petrucciani, G Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P Incandela, J Justus, C Kalavase, P Koay, SA Kovalskyi, D Krutelyov, V Lowette, S Mccoll, N Pavlunin, V Rebassoo, F Ribnik, J Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Chen, Y Di Marco, E Duarte, J Gataullin, M Ma, Y Mott, A Newman, HB Rogan, C Spiropulu, M Timciuc, V Veverka, J Wilkinson, R Xie, S Yang, Y Zhu, RY Akgun, B Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Liu, YF Paulini, M Vogel, H Vorobiev, I Cumalat, JP Drell, BR Edelmaier, CJ Ford, WT Gaz, A Heyburn, B Lopez, EL Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Eggert, N Gibbons, LK Heltsley, B Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Vaughan, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Bloch, I Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Elvira, VD Fisk, I Freeman, J Gao, Y Green, D Gutsche, O Hanlon, J Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kilminster, B Klima, B Kunori, S Kwan, S Leonidopoulos, C Linacre, J Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Tan, P Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yumiceva, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Remington, R Rinkevicius, A Sellers, P Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Vodopiyanov, I Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Bucinskaite, I Callner, J Cavanaugh, R Dragoiu, C Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Lacroix, F Malek, M O'Brien, C Silkworth, C Strom, D Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Duru, F Griffiths, S Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Onel, Y Ozok, F Sen, S Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Giurgiu, G Gritsan, AV Guo, ZJ Hu, G Maksimovic, P Rappoccio, S Swartz, M Whitbeck, A Baringer, P Bean, A Benelli, G Grachov, O Kenny, RP Murray, M Noonan, D Sanders, S Stringer, R Tinti, G Wood, JS Zhukova, V Barfuss, AF Bolton, T Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Gronberg, J Lange, D Wright, D Baden, A Boutemeur, M Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Peterman, A Skuja, A Temple, J Tonjes, MB Tonwar, SC Twedt, E Apyan, A Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Ceballos, GG Goncharov, M Hahn, KA Kim, Y Klute, M Krajczar, K Li, W Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Stockli, F Sumorok, K Sung, K Velicanu, D Wenger, EA Wolf, R Wyslouch, B Yang, M Yilmaz, Y Yoon, AS Zanetti, M Cooper, SI Dahmes, B De Benedetti, A Franzoni, G Gude, A Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Cremaldi, LM Kroeger, R Perera, L Rahmat, R Sanders, DA Avdeeva, E Bloom, K Bose, S Butt, J Claes, DR Dominguez, A Eads, M Keller, J Kravchenko, I Lazo-Flores, J Malbouisson, H Malik, S Snow, GR Baur, U Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Shipkowski, SP Smith, K Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Nash, D Trocino, D Wood, D Zhang, J Anastassov, A Kubik, A Mucia, N Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Brinkerhoff, A Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Bylsma, B Durkin, LS Hill, C Hughes, R Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Vuosalo, C Williams, G Winer, BL Adam, N Berry, E Elmer, P Gerbaudo, D Halyo, V Hebda, P Hegeman, J Hunt, A Jindal, P Pegna, DL Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Safdi, B Saka, H Stickland, D Tully, C Werner, JS Zuranski, A Acosta, JG Brownson, E Huang, XT Lopez, A Mendez, H Oliveros, S Vargas, JER Zatserklyaniy, A Alagoz, E Barnes, VE Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Marono, MV Yoo, HD Zablocki, J Zheng, Y Guragain, S Parashar, N Adair, A Boulahouache, C Ecklund, KM Geurts, FJM Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R de Barbaro, P Demina, R Eshaq, Y Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalker, S Park, M Patel, R Rekovic, V Robles, J Rose, K Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Sengupta, S Suarez, I Tatarinov, A Toback, D Akchurin, N Damgov, J Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Roh, Y Volobouev, I Appelt, E Delannoy, AG Florez, C Greene, S Gurrola, A Johns, W Johnston, C Kurt, P Maguire, C Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Yohay, R Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Milstene, C Sakharov, A Anderson, M Bachtis, M Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Friis, E Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Leonard, J Loveless, R Mohapatra, A Ojalvo, I Palmonari, F Pierro, GA Ross, I Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Aguilo, E. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hammer, J. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Pernicka, M. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Waltenberger, W. Walzel, G. Widl, E. Wulz, C-E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Luyckx, S. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Staykova, Z. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, M. Olbrechts, A. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hreus, T. Leonard, A. Marage, P. E. Mohammadi, A. Reis, T. Thomas, L. Vander Marcken, G. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Cimmino, A. Costantini, S. Garcia, G. Grunewald, M. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Strobbe, N. Thyssen, F. Tytgat, M. Verwilligen, P. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Bruno, G. Castello, R. Ceard, L. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Schul, N. Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Correa Martins Junior, M. De Jesus Damiao, D. Martins, T. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Custodio, A. Da Costa, E. M. De Oliveira Martins, C. Fonseca De Souza, S. Matos Figueiredo, D. Mundim, L. Nogima, H. Oguri, V. Prado Da Silva, W. L. Santoro, A. Soares Jorge, L. Sznajder, A. Anjos, T. S. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vutova, M. Dimitrov, A. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Zang, J. Zhang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, S. Guo, Y. Li, W. Liu, S. Mao, Y. Qian, S. J. Teng, H. Wang, D. Zhang, L. Zhu, B. Zou, W. Avila, C. Gomez, J. P. Gomez Moreno, B. Osorio Oliveros, A. F. Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Morovic, S. Attikis, A. Galanti, M. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Elgammal, S. Kamel, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Muentel, M. Raidal, M. Rebane, L. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Karjalainen, A. Korpela, A. Tuuva, T. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Millischer, L. Nayak, A. Rander, J. Rosowsky, A. Shreyber, I. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Broutin, C. Busson, P. Charlot, C. Daci, N. Dahms, T. Dobrzynski, L. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Veelken, C. Zabi, A. Agram, J-L. Andrea, J. Bloch, D. Bodin, D. Brom, J-M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Ferro, C. Fontaine, J-C. Gele, D. Goerlach, U. Juillot, P. Le Bihan, A-C. Van Hove, P. Fassi, F. Mercier, D. Beauceron, S. Beaupere, N. Bondu, O. Boudoul, G. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Sordini, V. Tschudi, Y. Verdier, P. Viret, S. Tsamalaidze, Z. Anagnostou, G. Beranek, S. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Kreuzer, P. Magass, C. Merschmeyer, M. Meyer, A. Olschewski, M. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Weber, M. Bontenackels, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Nowack, A. Perchalla, L. Pooth, O. Sauerland, P. Stahl, A. Martin, M. Aldaya Behr, J. Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Castro, E. Costanza, F. Dammann, D. Pardos, C. Diez Eckerlin, G. Eckstein, D. Flucke, G. Geiser, A. Glushkov, I. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Marienfeld, M. Melzer-Pellmann, I-A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Olzem, J. Perrey, H. Petrukhin, A. Pitzl, D. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Rosin, M. Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Spiridonov, A. Stein, M. Walsh, R. Wissing, C. Autermann, C. Blobel, V. Draeger, J. Enderle, H. Erfle, J. Gebbert, U. Goerner, M. Hermanns, T. Hoeing, R. S. Kaschube, K. Kaussen, G. Kirschenmann, H. Klanner, R. Lange, J. Mura, B. Nowak, F. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schroeder, M. Schum, T. Seidel, M. Sola, V. Stadie, H. Steinbrueck, G. Thomsen, J. Vanelderen, L. Barth, C. Berger, J. Boeser, C. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hackstein, C. Hartmann, F. Hauth, T. Heinrich, M. Held, H. Hoffmann, K. H. Honc, S. Katkov, I. Komaragiri, J. R. Pardo, P. Lobelle Martschei, D. Mueller, S. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Oehler, A. Ott, J. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Roecker, S. Scheurer, A. Schilling, F-P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Zeise, M. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Mavrommatis, C. Ntomari, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Sarkar, S. Sharan, M. Abdulsalam, A. Choudhury, R. K. Dutta, D. Kailas, S. Kumar, V. Mehta, P. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Ganguly, S. Guchait, M. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Hesari, H. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Lusito, L. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Tosi, S. Benaglia, A. De Guio, F. Di Matteo, L. Fiorendi, S. Gennai, S. Ghezzi, A. Malvezzi, S. Manzoni, R. A. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fatis, T. Tabarelli Buontempo, S. Montoya, C. A. Carrillo Cavallo, N. De Cosa, A. Dogangun, O. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. Checchia, P. Gasparini, F. Gasparini, U. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Triossi, A. Vanini, S. Ventura, S. Zotto, P. Gabusi, M. Ratti, S. P. Riccardi, C. Torre, P. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Lucaroni, A. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Taroni, S. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Fanelli, C. Grassi, M. Longo, E. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Sigamani, M. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Cartiglia, N. Costa, M. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Pereira, A. Vilela Belforte, S. Candelise, V. Cossutti, F. Della Ricca, G. Gobbo, B. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Heo, S. G. Kim, T. Y. Nam, S. K. Chang, S. Kim, D. H. Kim, G. N. Kong, D. J. Park, H. Ro, S. R. Son, D. C. Son, T. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Cho, Y. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Kwon, E. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Juodagalvis, A. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Magana Villalba, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Bell, A. J. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Ansari, M. H. Asghar, M. I. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Boimska, B. Frueboes, T. Gokieli, R. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Almeida, N. Bargassa, P. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Seixas, J. Varela, J. Vischia, P. Belotelov, I. Bunin, P. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Malakhov, A. Moisenz, P. Palichik, V. Perelygin, V. Savina, M. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Erofeeva, M. Gavrilov, V. Kossov, M. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Stolin, V. Vlasov, E. Zhokin, A. Belyaev, A. Boos, E. Bunichev, V. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Perfilov, M. Popov, A. Sarycheva, L. Savrin, V. Snigirev, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Korablev, A. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Piedra Gomez, J. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Graziano, A. Jorda, C. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Sobron Sanudo, M. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Baillon, P. Ball, A. H. Barney, D. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa D'Enterria, D. Dabrowski, A. De Roeck, A. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Frisch, B. Funk, W. Georgiou, G. Giffels, M. Gigi, D. Gill, K. Giordano, D. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Govoni, P. Gowdy, S. Guida, R. Hansen, M. Harris, P. Hartl, C. Harvey, J. Hegner, B. Hinzmann, A. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Kousouris, K. Lecoq, P. Lee, Y-J. Lenzi, P. Lourenco, C. Maeki, T. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Musella, P. Nesvold, E. Orimoto, T. Orsini, L. Cortezon, E. Palencia Perez, E. Perrozzi, L. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Polese, G. Quertenmont, L. Racz, A. Reece, W. Antunes, J. Rodrigues Rolandi, G. Rovelli, C. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Segoni, I. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Sibille, J. Baeni, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eugster, J. Freudenreich, K. Grab, C. Hits, D. Lecomte, P. Lustermann, W. Marini, A. C. del Arbol, P. Martinez Ruiz Mohr, N. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pape, L. Pauss, F. Peruzzi, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Wehrli, L. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Mejias, B. Millan Otiougova, P. Robmann, P. Snoek, H. Tupputi, S. Verzetti, M. Chang, Y. H. Chen, K. H. Kuo, C. M. Li, S. W. Lin, W. Liu, Z. K. Lu, Y. J. Mekterovic, D. Singh, A. P. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W-S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R-S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wan, X. Wang, M. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Karaman, T. Karapinar, G. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, L. N. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Yildirim, E. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Cankocak, K. Levchuk, L. Bostock, F. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Williams, T. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Ball, G. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Lyons, L. Magnan, A-M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Papageorgiou, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Stoye, M. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Whyntie, T. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Hatakeyama, K. Liu, H. Scarborough, T. Charaf, O. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. St John, J. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. Sulak, L. Alimena, J. Bhattacharya, S. Cutts, D. Ferapontov, A. Heintz, U. Jabeen, S. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Nguyen, D. Segala, M. Sinthuprasith, T. Speer, T. Tsang, K. V. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Dolen, J. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Miceli, T. Pellett, D. Ricci-Tam, F. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Andreev, V. Cline, D. Cousins, R. Duris, J. Erhan, S. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Plager, C. Rakness, G. Schlein, P. Traczyk, P. Valuev, V. Weber, M. Babb, J. Clare, R. Dinardo, M. E. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Jeng, G. Y. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Golf, F. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. Incandela, J. Justus, C. Kalavase, P. Koay, S. A. Kovalskyi, D. Krutelyov, V. Lowette, S. Mccoll, N. Pavlunin, V. Rebassoo, F. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Chen, Y. Di Marco, E. Duarte, J. Gataullin, M. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Spiropulu, M. Timciuc, V. Veverka, J. Wilkinson, R. Xie, S. Yang, Y. Zhu, R. Y. Akgun, B. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Liu, Y. F. Paulini, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Edelmaier, C. J. Ford, W. T. Gaz, A. Heyburn, B. Lopez, E. Luiggi Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Heltsley, B. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Bloch, I. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Green, D. Gutsche, O. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kilminster, B. Klima, B. Kunori, S. Kwan, S. Leonidopoulos, C. Linacre, J. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Tan, P. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yumiceva, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Remington, R. Rinkevicius, A. Sellers, P. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Vodopiyanov, I. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Callner, J. Cavanaugh, R. Dragoiu, C. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Lacroix, F. Malek, M. O'Brien, C. Silkworth, C. Strom, D. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Duru, F. Griffiths, S. Merlo, J-P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Onel, Y. Ozok, F. Sen, S. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Giurgiu, G. Gritsan, A. V. Guo, Z. J. Hu, G. Maksimovic, P. Rappoccio, S. Swartz, M. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Grachov, O. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Stringer, R. Tinti, G. Wood, J. S. Zhukova, V. Barfuss, A. F. Bolton, T. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Wright, D. Baden, A. Boutemeur, M. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Peterman, A. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Twedt, E. Apyan, A. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Ceballos, G. Gomez Goncharov, M. Hahn, K. A. Kim, Y. Klute, M. Krajczar, K. Li, W. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Velicanu, D. Wenger, E. A. Wolf, R. Wyslouch, B. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Cooper, S. I. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Cremaldi, L. M. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Avdeeva, E. Bloom, K. Bose, S. Butt, J. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kravchenko, I. Lazo-Flores, J. Malbouisson, H. Malik, S. Snow, G. R. Baur, U. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Shipkowski, S. P. Smith, K. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Nash, D. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Kubik, A. Mucia, N. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Brinkerhoff, A. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Bylsma, B. Durkin, L. S. Hill, C. Hughes, R. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Vuosalo, C. Williams, G. Winer, B. L. Adam, N. Berry, E. Elmer, P. Gerbaudo, D. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Jindal, P. Pegna, D. Lopes Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Safdi, B. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zuranski, A. Acosta, J. G. Brownson, E. Huang, X. T. Lopez, A. Mendez, H. Oliveros, S. Vargas, J. E. Ramirez Zatserklyaniy, A. Alagoz, E. Barnes, V. E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Marono, M. Vidal Yoo, H. D. Zablocki, J. Zheng, Y. Guragain, S. Parashar, N. Adair, A. Boulahouache, C. Ecklund, K. M. Geurts, F. J. M. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalker, S. Park, M. Patel, R. Rekovic, V. Robles, J. Rose, K. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Sengupta, S. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Damgov, J. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Roh, Y. Volobouev, I. Appelt, E. Delannoy, A. G. Florez, C. Greene, S. Gurrola, A. Johns, W. Johnston, C. Kurt, P. Maguire, C. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Yohay, R. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Milstene, C. Sakharov, A. Anderson, M. Bachtis, M. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Friis, E. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Leonard, J. Loveless, R. Mohapatra, A. Ojalvo, I. Palmonari, F. Pierro, G. A. Ross, I. Savin, A. Smith, W. H. Swanson, J. CA CMS Collaboration TI Search for contact interactions in mu(+)mu(-) events in pp collisions at root s = 7 TeV SO PHYSICAL REVIEW D LA English DT Article ID FERMION-PAIR PRODUCTION; COMPOSITENESS SCALES; E(+)E(-) COLLISIONS; STANDARD MODEL; QUARK; PHYSICS; LEP; COLLABORATION; CONSTRAINTS; ENERGIES AB Results are reported from a search for the effects of contact interactions using events with a high-mass, oppositely charged muon pair. The events are collected in proton-proton collisions at root s = 7 TeV using the Compact Muon Solenoid detector at the Large Hadron Collider. The data sample corresponds to an integrated luminosity of 5: 3 fb(-1). The observed dimuon mass spectrum is consistent with that expected from the standard model. The data are interpreted in the context of a quark-and muon-compositeness model with a left-handed isoscalar current and an energy scale parameter Lambda. The 95% confidence level lower limit on Lambda is 9.5 TeV under the assumption of destructive interference between the standard model and contact-interaction amplitudes. For constructive interference, the limit is 13.1 TeV. These limits are comparable to the most stringent ones reported to date. DOI: 10.1103/PhysRevD.87.032001 C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hammer, J.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C-E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Garcia, J. M. Vizan] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Custodio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Lagana, C.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Anjos, T. S.; Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zhu, B.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Giammanco, A.; Kadastik, M.; Muentel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Squillacioti, P.; Tonelli, G.] NICPB, Tallinn, Estonia. [Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS, Lab Leprince Ringuet, IN2P3, F-91128 Palaiseau, France. [Agram, J-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J-C.; Gele, D.; Goerlach, U.; Juillot, P.; Le Bihan, A-C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS,IN2P3, Strasbourg, France. [Fassi, F.; Mercier, D.] CNRS, Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, IN2P3, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Phys Inst 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Magass, C.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Pardos, C. Diez; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Autermann, C.; Blobel, V.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Goerner, M.; Hermanns, T.; Hoeing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schroeder, M.; Schum, T.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Berger, J.; Boeser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Katkov, I.; Komaragiri, J. R.; Pardo, P. Lobelle; Martschei, D.; Mueller, S.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Roecker, S.; Scheurer, A.; Schilling, F-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.] Inst Nucl Phys Demokritos, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Sphicas, P.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Krajczar, K.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Mumbai 400085, Maharashtra, India. [Aziz, T.; Ganguly, S.; Guchait, M.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Mumbai, Maharashtra, India. [Guchait, M.; Banerjee, S.; Dugad, S.] Tata Inst Fundamental Res HECR, Mumbai, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Lusito, L.; Marangelli, B.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Selvaggi, G.; Singh, G.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, I-50125 Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Ghezzi, A.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [De Cosa, A.; Dogangun, O.; Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Vanini, S.; Ventura, S.; Zotto, P.] Ist Nazl Fis Nucl, Sez Padova, I-35100 Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trento, Trento, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Fano, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Spiezia, A.; Taroni, S.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Fiori, F.; Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.; Rolandi, G.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Pereira, A. Vilela] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Costa, M.; Migliore, E.; Monaco, V.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; Marone, M.; Montanino, D.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Heo, S. G.; Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.; Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.] Vilnius Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magana Villalba, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Ansari, M. H.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bluj, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Tsamalaidze, Z.; Belotelov, I.; Bunin, P.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Hartl, C.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Matchev, K.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Matchev, K.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.] Univ Cantabria, Inst Fis Cantabria IFCA, CSIC, E-39005 Santander, Spain. [Genchev, V.; Iaydjiev, P.; Puljak, I.; Chierici, R.; Guthoff, M.; Hauth, T.; Mohanty, A. K.; Calabria, C.; De Filippis, N.; Fasanella, D.; Meneghelli, M.; Benaglia, A.; Di Matteo, L.; Gennai, S.; Massironi, A.; De Cosa, A.; Paolucci, P.; Bacchetta, N.; Branca, A.; Tosi, M.; Lucaroni, A.; Fiori, F.; Grassi, M.; Meridiani, P.; Mariotti, C.; Musich, M.; Marone, M.; Montanino, D.; Grishin, V.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Govoni, P.; Gowdy, S.; Guida, R.; Hansen, M.; Harris, P.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y-J.; Lenzi, P.; Lourenco, C.; Maeki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.; Pela, J.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Baeni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Singh, A. P.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Bostock, F.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Worm, S. D.; Newbold, D. M.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Alimena, J.; Bhattacharya, S.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez] Univ Calif Davis, Davis, CA 95616 USA. [Felcini, M.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Dias, F. A.; Dubinin, M.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Akgun, B.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Lopez, E. Luiggi; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kilminster, B.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Strom, D.; Varelas, N.] UIC, Chicago, IL USA. [Ozturk, S.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Krajczar, K.; Li, W.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.] MIT, Cambridge, MA 02139 USA. [Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.] Univ Mississippi, Oxford, MS USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Acosta, J. G.; Brownson, E.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Guragain, S.; Parashar, N.] Purdue Univ Calumet, Hammond, IN USA. [Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalker, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Damgov, J.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Johnston, C.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Yohay, R.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Milstene, C.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Bachtis, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C-E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Elgammal, S.] Zewail City Sci & Technol, Zewail, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ, Cairo, Egypt. [Radi, A.] Ain Shams Univ, Cairo, Egypt. [Agram, J-L.; Conte, E.; Drouhin, F.; Fontaine, J-C.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Bakhshiansohi, H.; Fahim, A.; Jafari, A.] Sharif Univ Technol, Tehran, Iran. [Etesami, S. M.; Zeinali, M.] Isfahan Univ Technol, Esfahan, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Meola, S.] Univ Guglielmo Marconi, Rome, Italy. [Martini, L.; Bilki, B.] Univ Siena, I-53100 Siena, Italy. [Serban, A. T.] Univ Bucharest, Fac Phys, Bucharest, Romania. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Rovelli, C.] Univ Rome, Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Jeng, G. Y.] Univ Sydney, Sydney, NSW 2006, Australia. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Sguazzoni, Giacomo/J-4620-2015; Fassi, Farida/F-3571-2016; Menasce, Dario Livio/A-2168-2016; Bargassa, Pedrame/O-2417-2016; Vilela Pereira, Antonio/L-4142-2016; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Yazgan, Efe/C-4521-2014; Gerbaudo, Davide/J-4536-2012; Matorras, Francisco/I-4983-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Arce, Pedro/L-1268-2014; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Azarkin, Maxim/N-2578-2015; Dubinin, Mikhail/I-3942-2016; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Sznajder, Andre/L-1621-2016; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; My, Salvatore/I-5160-2015; Ragazzi, Stefano/D-2463-2009; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Marinho, Franciole/N-8101-2014; Ferguson, Thomas/O-3444-2014; Benussi, Luigi/O-9684-2014; Leonidov, Andrey/P-3197-2014; Dahms, Torsten/A-8453-2015; Grandi, Claudio/B-5654-2015; Calderon, Alicia/K-3658-2014; Bernardes, Cesar Augusto/D-2408-2015; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; Oguri, Vitor/B-5403-2013; Janssen, Xavier/E-1915-2013; Bartalini, Paolo/E-2512-2014; Santoro, Alberto/E-7932-2014; Ligabue, Franco/F-3432-2014; Codispoti, Giuseppe/F-6574-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; Mundim, Luiz/A-1291-2012; Kodolova, Olga/D-7158-2012; Ivanov, Andrew/A-7982-2013; Tinti, Gemma/I-5886-2013; Liu, Sheng/K-2815-2013; Zhukov, Valery/K-3615-2013; Venturi, Andrea/J-1877-2012; Wimpenny, Stephen/K-8848-2013; Markina, Anastasia/E-3390-2012; Dudko, Lev/D-7127-2012; Dogangun, Oktay/L-9252-2013; Marlow, Daniel/C-9132-2014; de Jesus Damiao, Dilson/G-6218-2012; Santaolalla, Javier/C-3094-2013; Lokhtin, Igor/D-7004-2012; Tinoco Mendes, Andre David/D-4314-2011; Novaes, Sergio/D-3532-2012; Wulz, Claudia-Elisabeth/H-5657-2011; Fruhwirth, Rudolf/H-2529-2012; Rolandi, Luigi (Gigi)/E-8563-2013; Montanari, Alessandro/J-2420-2012; Raidal, Martti/F-4436-2012; Tomei, Thiago/E-7091-2012; Zalewski, Piotr/H-7335-2013; Bagliesi, Giuseppe/C-2230-2013 OI Martelli, Arabella/0000-0003-3530-2255; Sguazzoni, Giacomo/0000-0002-0791-3350; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Fassi, Farida/0000-0002-6423-7213; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Fiorendi, Sara/0000-0003-3273-9419; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bean, Alice/0000-0001-5967-8674; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Bargassa, Pedrame/0000-0001-8612-3332; Bilki, Burak/0000-0001-9515-3306; Safdi, Benjamin R./0000-0001-9531-1319; Lloret Iglesias, Lara/0000-0002-0157-4765; Vilela Pereira, Antonio/0000-0003-3177-4626; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Yazgan, Efe/0000-0001-5732-7950; Gerbaudo, Davide/0000-0002-4463-0878; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Levchenko, Petr/0000-0003-4913-0538; Baarmand, Marc/0000-0002-9792-8619; Gonzi, Sandro/0000-0003-4754-645X; Matorras, Francisco/0000-0003-4295-5668; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Arce, Pedro/0000-0003-3009-0484; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982; Dubinin, Mikhail/0000-0002-7766-7175; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Sznajder, Andre/0000-0001-6998-1108; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; My, Salvatore/0000-0002-9938-2680; Ragazzi, Stefano/0000-0001-8219-2074; Rovelli, Tiziano/0000-0002-9746-4842; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Marinho, Franciole/0000-0002-7327-0349; Ferguson, Thomas/0000-0001-5822-3731; Benussi, Luigi/0000-0002-2363-8889; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; Ligabue, Franco/0000-0002-1549-7107; Codispoti, Giuseppe/0000-0003-0217-7021; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Mundim, Luiz/0000-0001-9964-7805; Ivanov, Andrew/0000-0002-9270-5643; Wimpenny, Stephen/0000-0003-0505-4908; Dudko, Lev/0000-0002-4462-3192; Dogangun, Oktay/0000-0002-1255-2211; de Jesus Damiao, Dilson/0000-0002-3769-1680; Tinoco Mendes, Andre David/0000-0001-5854-7699; Novaes, Sergio/0000-0003-0471-8549; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Montanari, Alessandro/0000-0003-2748-6373; Tomei, Thiago/0000-0002-1809-5226; FU BMWF (Austria); FWF (Austria); FNRS (Belgium); FWO (Belgium); CNPq (Brazil); CAPES (Brazil); FAPERJ (Brazil); FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS (China); MoST (China); NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER (Estonia) [SF0690030s09]; ERDF (Estonia); Academy of Finland (Finland); MEC (Finland); HIP (Finland); CEA (France); CNRS/IN2P3 (France); BMBF (Germany); DFG (Germany); HGF (Germany); GSRT (Greece); OTKA (Hungary); NKTH (Hungary); DAE (India); DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); WCU (Korea); LAS (Lithuania); CINVESTAV (Mexico); CONACYT (Mexico); SEP (Mexico); UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE (Poland); NSC (Poland); FCT (Portugal); JINR (Armenia); JINR (Belarus); JINR (Georgia); JINR (Ukraine); JINR (Uzbekistan); MON (Russia); RosAtom (Russia); RAS (Russia); RFBR (Russia); MSTD (Serbia); SEIDI (Spain); CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEP (Thailand); IPST (Thailand); NECTEC (Thailand); TUBITAK (Turkey); TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE (USA); NSF (USA); Marie-Curie programme (European Union); European Research Council (European Union); the Leventis Foundation; A.P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of Czech Republic; Council of Science and Industrial Research, India; Compagnia di San Paolo (Torino); HOMING PLUS programme of Foundation for Polish Science; European Union; Regional Development Fund FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEP, IPST and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS programme of Foundation for Polish Science, cofinanced by European Union, Regional Development Fund. NR 43 TC 2 Z9 2 U1 0 U2 103 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 EI 1550-2368 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2013 VL 87 IS 3 AR 032001 DI 10.1103/PhysRevD.87.032001 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 081ZN UT WOS:000314361500001 ER PT J AU Ma, YQ AF Ma, Yan-Qing TI General form of s, t, and u symmetric polynomials and heavy quarkonium physics SO PHYSICAL REVIEW D LA English DT Article ID HADRONIC PRODUCTION; J-PSI; FACTORIZATION; SCATTERING; GLUON AB Induced by three gluons symmetry, Mandelstam variables s, t, u symmetric expressions are widely involved in collider physics, especially in heavy quarkonium physics. In this work we study the general form of s, t, u symmetric polynomials, and find that they can be expressed as polynomials where the symmetry is manifest. The general form is then used to simplify expressions which asymptotically reduces the length of original expression to one-sixth. Based on the general form, we reproduce the exact differential cross section of J/psi hadron production at leading order in upsilon(2) up to four unknown constant numbers by simple analysis. Furthermore, we prove that differential cross section at higher order in upsilon(2) is proportional to that at leading order. This proof explains the proportion relation at next-to-leading order in upsilon(2) found in previous work and generalizes it to all order. DOI: 10.1103/PhysRevD.87.034001 C1 Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Ma, YQ (reprint author), Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. EM yqma@bnl.gov FU U.S. Department of Energy [DE-AC02-98CH10886] FX We would like to thank J.W. Qiu and Y.J. Zhang for useful discussions. This work was supported by the U.S. Department of Energy, under Contract No. DE-AC02-98CH10886. The Feynman diagrams were drawn using Jaxodraw [30]. NR 30 TC 2 Z9 2 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1550-7998 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2013 VL 87 IS 3 AR 034001 DI 10.1103/PhysRevD.87.034001 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 081ZN UT WOS:000314361500002 ER PT J AU Rezaeian, AH Siddikov, M Van de Klundert, M Venugopalan, R AF Rezaeian, Amir H. Siddikov, Marat Van de Klundert, Merijn Venugopalan, Raju TI Analysis of combined HERA data in the impact-parameter dependent saturation model SO PHYSICAL REVIEW D LA English DT Article ID COLOR GLASS CONDENSATE; DEUTERON STRUCTURE FUNCTIONS; NONLINEAR GLUON EVOLUTION; PROTON STRUCTURE-FUNCTION; SMALL-X; EXCLUSIVE ELECTROPRODUCTION; PARTON SATURATION; HEAVY QUARKS; J/PSI MESONS; QCD ANALYSIS AB The impact-parameter dependent saturation model (IP-Sat) is a simple dipole model that incorporates key features of the physics of gluon saturation and matches smoothly to the perturbative QCD dipole expression at large Q(2) for a given x. It was previously shown that the model gives a good description of HERA data suggesting evidence for gluon saturation effects at small x. The model has also been applied to proton-proton and proton-nucleus collisions and provides the basis for the IP-Glasma model of initial conditions in heavy ion collisions. Here we present a reanalysis of available data in electron-proton collisions at small Bjorken x, including the recently released combined data from the ZEUS and H1 collaborations. We first confront the model to the high precision combined data for the reduced cross section and obtain its parameters. With these parameters fixed, we compare model results to the data for the structure function F-2, the longitudinal structure function F-L, the charm structure function F-2(c (c) over bar), exclusive vector meson (J/psi, phi and rho) production, and deeply virtual Compton scattering. Excellent agreement is obtained for the processes considered at small x in a wide range of Q(2). Our results strongly hint at universality of the IP-Sat dipole amplitude and the extracted impact-parameter distribution of the proton. They also provide a benchmark for further refinements in studies of QCD saturation at colliders. DOI: 10.1103/PhysRevD.87.034002 C1 [Rezaeian, Amir H.; Siddikov, Marat] Univ Tecn Federico Santa Maria, Dept Fis, Valparaiso, Chile. [Rezaeian, Amir H.] Univ Tecn Federico Santa Maria, Ctr Cient Tecnol Valparaiso CCTVal, Valparaiso, Chile. [Van de Klundert, Merijn; Venugopalan, Raju] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. [Van de Klundert, Merijn] Univ Amsterdam, Dept Phys, NL-1098 XH Amsterdam, Netherlands. RP Rezaeian, AH (reprint author), Univ Tecn Federico Santa Maria, Dept Fis, Ave Espana 1680,Casilla 110-V, Valparaiso, Chile. RI Siddikov, Marat/H-6629-2013 OI Siddikov, Marat/0000-0002-9290-3236 FU Fondecyt [1110781, 1120920]; LDRD grant from Brookhaven Science Associates; VSB Foundation; DOE [DE-AC02-98CH10886] FX A.R. and M.S. thank Yuri Ivanov for technical support of the USM HPC cluster. This work is supported in part by Fondecyt Grants No. 1110781 and No. 1120920. M. van de K. and R. V. acknowledge partial support from a LDRD grant from Brookhaven Science Associates. M. van de K.'s work was supported by scholarships of the VSB Foundation. R.V.'s work is supported by DOE Award No. DE-AC02-98CH10886. NR 64 TC 52 Z9 52 U1 0 U2 2 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD FEB 1 PY 2013 VL 87 IS 3 AR 034002 DI 10.1103/PhysRevD.87.034002 PG 13 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 081ZN UT WOS:000314361500003 ER PT J AU Seidl, PA Barnard, JJ Faltens, A Friedman, A AF Seidl, Peter A. Barnard, John J. Faltens, Andris Friedman, Alex TI Research and development toward heavy ion driven inertial fusion energy SO PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS LA English DT Article ID SPACE-CHARGE; INDUCTION LINACS; POINT DESIGN; BEAM; TARGET; TRANSPORT; SIMULATION; PROGRESS AB We describe near-term heavy ion fusion (HIF) research objectives associated with developing an inertial fusion energy demonstration power plant. The goal of this near-term research is to lay the essential groundwork for an intermediate research experiment (IRE), designed to demonstrate all the key driver beam manipulations at a meaningful scale, and to enable HIF relevant target physics experiments. This is a very large step in size and complexity compared to HIF experiments to date, and if successful, it would justify proceeding to a demonstration fusion power plant. With an emphasis on accelerator research, this paper is focused on the most important near-term research objectives to justify and to reduce the risks associated with the IRE. The chosen time scale for this research is 5-10 years, to answer key questions associated with the HIF accelerator drivers, in turn enabling a key decision on whether to pursue a much more ambitious and focused inertial fusion energy research and development program. This is consistent with the National Academies of Sciences Review of Inertial Fusion Energy Systems Interim Report, which concludes that "it would be premature at the present time to choose a particular driver approach..." and encouraged the continued development of community consensus on critical issues, and to develop "options for a community-based roadmap for the development of inertial fusion as a practical energy source." DOI: 10.1103/PhysRevSTAB.16.024701 C1 [Seidl, Peter A.; Faltens, Andris] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Barnard, John J.; Friedman, Alex] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Seidl, PA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. FU U.S. Department of Energy [DE-AC02-05CH1123, DE-AC52-07NA27344] FX The authors would like to thank Grant Logan for his support and encouragement to write this paper. This work was supported by the U.S. Department of Energy under Contracts No. DE-AC02-05CH1123 and No. DE-AC52-07NA27344. NR 85 TC 4 Z9 4 U1 0 U2 22 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-4402 J9 PHYS REV SPEC TOP-AC JI Phys. Rev. Spec. Top.-Accel. Beams PD FEB 1 PY 2013 VL 16 IS 2 AR 024701 DI 10.1103/PhysRevSTAB.16.024701 PG 18 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 086MJ UT WOS:000314688100003 ER PT J AU Sacuto, A Gallais, Y Cazayous, M Measson, MA Gu, GD Colson, D AF Sacuto, A. Gallais, Y. Cazayous, M. Measson, M-A Gu, G. D. Colson, D. TI New insights into the phase diagram of the copper oxide superconductors from electronic Raman scattering SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review ID T-C SUPERCONDUCTORS; HIGH-TEMPERATURE SUPERCONDUCTOR; CUPRATE SUPERCONDUCTORS; MOTT INSULATOR; FERMI-SURFACE; NORMAL-STATE; PSEUDOGAP; BI2SR2CACU2O8+DELTA; DENSITY; GAP AB The mechanism of unconventional superconductivity is still unknown despite over 25 years passing since the discovery of high-T-c cuprate superconductors by Bednorz and Muller (1986 Z. Phys. B 64 189). Here, we explore the cuprate phase diagram by electronic Raman spectroscopy and shed light on the superconducting state in hole-doped curates, namely, how superconductivity and the critical temperature T-c are affected by the pseudogap. C1 [Sacuto, A.; Gallais, Y.; Cazayous, M.; Measson, M-A] Univ Paris Diderot Paris, Lab Mat & Phenomenes Quant, CNRS, UMR 7162, F-75205 Paris 13, France. [Gu, G. D.] BNL, Upton, NY 11973 USA. [Colson, D.] CEA Saclay, Serv Phys Etat Condense, F-91191 Gif Sur Yvette, France. RP Sacuto, A (reprint author), Univ Paris Diderot Paris, Lab Mat & Phenomenes Quant, CNRS, UMR 7162, 7 Bat Condorcet, F-75205 Paris 13, France. EM alain.sacuto@univ-paris-diderot.fr RI Gu, Genda/D-5410-2013; Gallais, Yann/E-5240-2011; Measson, Marie-aude/E-6388-2015; Sacuto, Alain/L-2620-2016 OI Gu, Genda/0000-0002-9886-3255; Gallais, Yann/0000-0002-0589-1522; Measson, Marie-aude/0000-0002-6495-7376; Sacuto, Alain/0000-0002-8351-6154 NR 70 TC 14 Z9 14 U1 3 U2 46 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 J9 REP PROG PHYS JI Rep. Prog. Phys. PD FEB PY 2013 VL 76 IS 2 AR 022502 DI 10.1088/0034-4885/76/2/022502 PG 8 WC Physics, Multidisciplinary SC Physics GA 086PI UT WOS:000314697600002 PM 23377173 ER PT J AU Mishra, AK Ines, AVM Singh, VP Hansen, JW AF Mishra, Ashok K. Ines, Amor V. M. Singh, Vijay P. Hansen, James W. TI Extraction of information content from stochastic disaggregation and bias corrected downscaled precipitation variables for crop simulation SO STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT LA English DT Article DE Downscaling; GCM; Mutual information; Crop model; Food security ID MUTUAL INFORMATION; RAINFALL; YIELD; FORECASTS; SCALE; MODEL AB We applied a simple statistical downscaling procedure for transforming daily global climate model (GCM) rainfall to the scale of an agricultural experimental station in Katumani, Kenya. The transformation made was two-fold. First, we corrected the rainfall frequency bias of the climate model by truncating its daily rainfall cumulative distribution into the station's distribution based on a prescribed observed wet-day threshold. Then, we corrected the climate model rainfall intensity bias by mapping its truncated rainfall distribution into the station's truncated distribution. Further improvements were made to the bias corrected GCM rainfall by linking it with a stochastic disaggregation scheme to correct the time structure problem inherent with daily GCM rainfall. Results of the simple and hybridized GCM downscaled precipitation variables (total, probability of occurrence, intensity and dry spell length) were linked with a crop model for a more objective evaluation of their performance using a non-linear measure based on mutual information based on entropy. This study is useful for the identification of both suitable downscaling technique as well as the effective precipitation variables for forecasting crop yields using GCM's outputs which can be useful for addressing food security problems beforehand in critical basins around the world. C1 [Mishra, Ashok K.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ines, Amor V. M.; Hansen, James W.] Columbia Univ, Int Res Inst Climate & Soc, Earth Inst, Palisades, NY 10964 USA. [Singh, Vijay P.] Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77843 USA. [Singh, Vijay P.] Texas A&M Univ, Dept Civil & Environm Engn, College Stn, TX 77843 USA. RP Mishra, AK (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM akm.pce@gmail.com; ines@iri.columbia.edu; vsingh@tamu.edu; jhansen@iri.columbia.edu RI Hansen, James/M-1449-2015 OI Hansen, James/0000-0002-8599-7895 FU USGS [2009TX334G]; NOAA [NA05OAR4311004]; multi-agency Climate Simulation Laboratory (CSL) program FX The authors wish to thank the Associate Editor and the Reviewers for their useful comments and suggestions that helped to improve the quality of the manuscript. AKM and VPS acknowledge the support from USGS Grant 2009TX334G. AVMI and JWH acknowledge the support from NOAA Grant No. #NA05OAR4311004. The model outputs from IRI have been funded by a computing grant from the multi-agency Climate Simulation Laboratory (CSL) program. NR 28 TC 8 Z9 8 U1 2 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1436-3240 J9 STOCH ENV RES RISK A JI Stoch. Environ. Res. Risk Assess. PD FEB PY 2013 VL 27 IS 2 BP 449 EP 457 DI 10.1007/s00477-012-0667-9 PG 9 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences; Statistics & Probability; Water Resources SC Engineering; Environmental Sciences & Ecology; Mathematics; Water Resources GA 072GH UT WOS:000313657100012 ER PT J AU Stewart, BJ Navid, A Kulp, KS Knaack, JLS Bench, G AF Stewart, Benjamin J. Navid, Ali Kulp, Kristen S. Knaack, Jennifer L. S. Bench, Graham TI D-Lactate production as a function of glucose metabolism in Saccharomyces cerevisiae SO YEAST LA English DT Article DE methylglyoxal; d-lactate; glycation; glycolysis; NAD ID BIOLOGY MARKUP LANGUAGE; GLYOXALASE-I; METHYLGLYOXAL METABOLISM; DIABETIC COMPLICATIONS; ALDOSE REDUCTASE; END-PRODUCTS; GLYCATION; PROTEIN; YEAST; AGES AB Methylglyoxal, a reactive, toxic dicarbonyl, is generated by the spontaneous degradation of glycolytic intermediates. Methylglyoxal can form covalent adducts with cellular macromolecules, potentially disrupting cellular function. We performed experiments using the model organism Saccharomyces cerevisiae, grown in media containing low, moderate and high glucose concentrations, to determine the relationship between glucose consumption and methylglyoxal metabolism. Normal growth experiments and glutathione depletion experiments showed that metabolism of methylglyoxal by log-phase yeast cultured aerobically occurred primarily through the glyoxalase pathway. Growth in high-glucose media resulted in increased generation of the methylglyoxal metabolite d-lactate and overall lower efficiency of glucose utilization as measured by growth rates. Cells grown in high-glucose media maintained higher glucose uptake flux than cells grown in moderate-glucose or low-glucose media. Computational modelling showed that increased glucose consumption may impair catabolism of triose phosphates as a result of an altered NAD+:NADH ratio. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Stewart, Benjamin J.; Navid, Ali; Kulp, Kristen S.] Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, Livermore, CA 94550 USA. [Bench, Graham] Lawrence Livermore Natl Lab, Ctr Accelerator Mass Spectrometry, Livermore, CA 94550 USA. [Knaack, Jennifer L. S.] Mercer Univ, Coll Pharm & Hlth Sci, Dept Pharmaceut Sci, Atlanta, GA USA. RP Stewart, BJ (reprint author), Lawrence Livermore Natl Lab, Biosci & Biotechnol Div, 7000 East Ave, Livermore, CA 94550 USA. EM stewart66@llnl.gov FU US Department of Energy by the Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Institutes of Health; National Center for Research Resources [P41 RR13461, LLNL LDRD 09-ERI-002, LLNL-JRNL-528472] FX This study was performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory (under Contract No. DE-AC52-07NA27344), with funding from the National Institutes of Health and the National Center for Research Resources, Biomedical Technology Program (Grant Nos P41 RR13461 and LLNL LDRD 09-ERI-002; LLNL Release No. LLNL-JRNL-528472). NR 37 TC 5 Z9 5 U1 1 U2 26 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0749-503X J9 YEAST JI Yeast PD FEB PY 2013 VL 30 IS 2 BP 81 EP 91 DI 10.1002/yea.2942 PG 11 WC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Microbiology; Mycology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Microbiology; Mycology GA 086UU UT WOS:000314714000004 PM 23361949 ER PT J AU Dauter, Z Weiss, MS Einspahr, H Baker, EN AF Dauter, Zbigniew Weiss, Manfred S. Einspahr, Howard Baker, Edward N. TI Expectation bias and information content SO ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS LA English DT Editorial Material ID RE-REFINEMENT; PDB; MODELS C1 [Dauter, Zbigniew] Argonne Natl Lab, Biosci Div, Argonne, IL 60439 USA. [Weiss, Manfred S.] Macromol Crystallog HZB MX, Helmholtz Zentrum Berlin Mat & Energie, D-12489 Berlin, Germany. [Baker, Edward N.] Univ Auckland, Sch Biol Sci, Auckland 1, New Zealand. RP Dauter, Z (reprint author), Argonne Natl Lab, Biosci Div, Bldg 202,Room Q142, Argonne, IL 60439 USA. NR 6 TC 2 Z9 2 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1744-3091 J9 ACTA CRYSTALLOGR F JI Acta Crystallogr. F-Struct. Biol. Cryst. Commun. PD FEB PY 2013 VL 69 BP 83 EP 83 DI 10.1107/S1744309113001486 PN 2 PG 1 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 083MB UT WOS:000314467200001 PM 23385742 ER PT J AU Chandler, DP Knickerbocker, C Bryant, L Golova, J Wiles, C Williams, KH Peacock, AD Long, PE AF Chandler, Darrell P. Knickerbocker, Christopher Bryant, Lexi Golova, Julia Wiles, Cory Williams, Kenneth H. Peacock, Aaron D. Long, Philip E. TI Profiling In Situ Microbial Community Structure with an Amplification Microarray SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID 16S RIBOSOMAL-RNA; URANIUM-CONTAMINATED AQUIFER; ON-CHIP PCR; OLIGONUCLEOTIDE MICROARRAYS; SOLID-PHASE; DNA ANALYSIS; GENOMIC DNA; BIOREMEDIATION; HYBRIDIZATION; ARRAY AB The objectives of this study were to unify amplification, labeling, and microarray hybridization chemistries within a single, closed microfluidic chamber (an amplification microarray) and verify technology performance on a series of groundwater samples from an in situ field experiment designed to compare U(VI) mobility under conditions of various alkalinities (as HCO3-) during stimulated microbial activity accompanying acetate amendment. Analytical limits of detection were between 2 and 200 cell equivalents of purified DNA. Amplification microarray signatures were well correlated with 16S rRNA-targeted quantitative PCR results and hybridization microarray signatures. The succession of the microbial community was evident with and consistent between the two microarray platforms. Amplification microarray analysis of acetate-treated groundwater showed elevated levels of iron-reducing bacteria (Flexibacter, Geobacter, Rhodoferax, and Shewanella) relative to the average background profile, as expected. Identical molecular signatures were evident in the transect treated with acetate plus NaHCO3, but at much lower signal intensities and with a much more rapid decline (to nondetection). Azoarcus, Thaurea, and Methylobacterium were responsive in the acetate-only transect but not in the presence of bicarbonate. Observed differences in microbial community composition or response to bicarbonate amendment likely had an effect on measured rates of U reduction, with higher rates probable in the part of the field experiment that was amended with bicarbonate. The simplification in microarray-based work flow is a significant technological advance toward entirely closed-amplicon microarray-based tests and is generally extensible to any number of environmental monitoring applications. C1 [Chandler, Darrell P.; Knickerbocker, Christopher; Bryant, Lexi; Golova, Julia; Wiles, Cory] Akonni Biosyst Inc, Frederick, MD USA. [Williams, Kenneth H.; Long, Philip E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Peacock, Aaron D.] Haley & Aldrich, Oak Ridge, TN USA. RP Chandler, DP (reprint author), Akonni Biosyst Inc, Frederick, MD USA. EM dchandler@akonni.com RI Long, Philip/F-5728-2013; Williams, Kenneth/O-5181-2014 OI Long, Philip/0000-0003-4152-5682; Williams, Kenneth/0000-0002-3568-1155 FU Subsurface Biogeochemical Research Program, Biological and Environmental Research, Office of Science, U.S. Department of Energy, via Pacific Northwest National Laboratory FX This work was supported in part by the Subsurface Biogeochemical Research Program, Biological and Environmental Research, Office of Science, U.S. Department of Energy, via a subcontract from Pacific Northwest National Laboratory. The Rifle IFRC is managed for the U.S. Department of Energy by Lawrence Berkeley National Laboratory. NR 45 TC 2 Z9 2 U1 1 U2 47 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2013 VL 79 IS 3 BP 799 EP 807 DI 10.1128/AEM.02664-12 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 076WL UT WOS:000313989700006 PM 23160129 ER PT J AU Lamendella, R Li, KC Oerther, D Domingo, JWS AF Lamendella, Regina Li, Kent C. Oerther, Daniel Domingo, Jorge W. Santo TI Molecular Diversity of Bacteroidales in Fecal and Environmental Samples and Swine-Associated Subpopulations SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID 16S RIBOSOMAL-RNA; GENETIC-MARKERS; SOURCE TRACKING; FRESH-WATER; PCR; CONTAMINATION; PERSISTENCE; ASSAYS; FECES; GUT AB Several swine-specific microbial source tracking methods are based on PCR assays targeting Bacteroidales 16S rRNA gene sequences. The limited application of these assays can be explained by the poor understanding of their molecular diversity in fecal sources and environmental waters. In order to address this, we studied the diversity of 9,340 partial (>600 bp in length) Bacteroidales 16S rRNA gene sequences from 13 fecal sources and nine feces-contaminated watersheds. The compositions of major Bacteroidales populations were analyzed to determine which host and environmental sequences were contributing to each group. This information allowed us to identify populations which were both exclusive to swine fecal sources and detected in swine-contaminated waters. Phylogenetic and diversity analyses revealed that some markers previously believed to be highly specific to swine populations are shared by multiple hosts, potentially explaining the cross-amplification signals obtained with nontargeted hosts. These data suggest that while many Bacteroidales populations are cosmopolitan, others exhibit a preferential host distribution and may be able to survive different environmental conditions. This study further demonstrates the importance of elucidating the diversity patterns of targeted bacterial groups to develop more inclusive fecal source tracking applications. C1 [Lamendella, Regina; Oerther, Daniel] Univ Cincinnati, Dept Civil & Environm Engn, Cincinnati, OH 45221 USA. [Lamendella, Regina; Li, Kent C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. [Domingo, Jorge W. Santo] US EPA, Natl Risk Management Res Lab, Cincinnati, OH 45268 USA. RP Domingo, JWS (reprint author), US EPA, Natl Risk Management Res Lab, Cincinnati, OH 45268 USA. EM santodomingo.jorge@epa.gov RI Oerther, Daniel/H-6543-2014 OI Oerther, Daniel/0000-0002-6724-3205 FU USEPA-UC; USEPA National Center for Computational Toxicology; U.S. Environmental Protection Agency, through its Office of Research and Development FX R.L. was the recipient of a USEPA-UC research fellowship. This research was funded in part by a New Start Award from the USEPA National Center for Computational Toxicology to J. W. S. D. The U.S. Environmental Protection Agency, through its Office of Research and Development, funded and managed or partially funded and collaborated in the research described herein. NR 47 TC 6 Z9 6 U1 3 U2 23 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2013 VL 79 IS 3 BP 816 EP 824 DI 10.1128/AEM.02535-12 PG 9 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 076WL UT WOS:000313989700008 PM 23160126 ER PT J AU Anderson, TD Miller, JI Fierobe, HP Clubb, RT AF Anderson, Timothy D. Miller, J. Izaak Fierobe, Henri-Pierre Clubb, Robert T. TI Recombinant Bacillus subtilis That Grows on Untreated Plant Biomass (Retracted article. See vol. 81, pg. 7957, 2015) SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article; Retracted Publication ID LIGNOCELLULOSIC BIOMASS; ENZYMATIC-HYDROLYSIS; ETHANOL-PRODUCTION; CELL-WALL; SACCHAROMYCES-CEREVISIAE; SUGAR YIELDS; CLOSTRIDIUM-CELLULOLYTICUM; CELLULOSE HYDROLYSIS; ACID PRETREATMENT; ENZYMES AB Lignocellulosic biomass is a promising feedstock to produce biofuels and other valuable biocommodities. A major obstacle to its commercialization is the high cost of degrading biomass into fermentable sugars, which is typically achieved using cellulolytic enzymes from Trichoderma reesei. Here, we explore the use of microbes to break down biomass. Bacillus subtilis was engineered to display a multicellulase-containing minicellulosome. The complex contains a miniscaffoldin protein that is covalently attached to the cell wall and three noncovalently associated cellulase enzymes derived from Clostridium cellulolyticum (Cel48F, Cel9E, and Cel5A). The minicellulosome spontaneously assembles, thus increasing the practicality of the cells. The recombinant bacteria are highly cellulolytic and grew in minimal medium containing industrially relevant forms of biomass as the primary nutrient source (corn stover, hatched straw, and switch grass). Notably, growth did not require dilute acid pretreatment of the biomass and the cells achieved densities approaching those of cells cultured with glucose. An analysis of the sugars released from acid-pretreated corn stover indicates that the cells have stable cellulolytic activity that enables them to break down 62.3% +/- 2.6% of the biomass. When supplemented with beta-glucosidase, the cells liberated 21% and 33% of the total available glucose and xylose in the biomass, respectively. As the cells display only three types of enzymes, increasing the number of displayed enzymes should lead to even more potent cellulolytic microbes. This work has important implications for the efficient conversion of lignocellulose to value-added biocommodities. C1 [Anderson, Timothy D.; Miller, J. Izaak; Clubb, Robert T.] Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90024 USA. [Anderson, Timothy D.; Miller, J. Izaak; Clubb, Robert T.] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90024 USA. [Anderson, Timothy D.; Miller, J. Izaak; Clubb, Robert T.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90024 USA. [Fierobe, Henri-Pierre] IFR88 CNRS, Chim Bacterienne Lab, Marseille, France. RP Clubb, RT (reprint author), Univ Calif Los Angeles, UCLA DOE Inst Genom & Prote, Los Angeles, CA 90024 USA. EM rclubb@mbi.ucla.edu FU Department of Energy [DE-FC-03-87ER60615] FX This work was supported by Department of Energy grant DE-FC-03-87ER60615. NR 59 TC 15 Z9 15 U1 1 U2 60 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2013 VL 79 IS 3 BP 867 EP 876 DI 10.1128/AEM.02433-12 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 076WL UT WOS:000313989700014 PM 23183968 ER PT J AU Tang, SQ Chan, WWM Fletcher, KE Seifert, J Liang, XM Loffler, FE Edwards, EA Adrian, L AF Tang, Shuiquan Chan, Winnie W. M. Fletcher, Kelly E. Seifert, Jana Liang, Xiaoming Loeffler, Frank E. Edwards, Elizabeth A. Adrian, Lorenz TI Functional Characterization of Reductive Dehalogenases by Using Blue Native Polyacrylamide Gel Electrophoresis SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID DEHALOCOCCOIDES SP STRAIN; VINYL-CHLORIDE REDUCTASE; CHLORINATED ETHENES; DECHLORINATION; IDENTIFICATION; ETHENOGENES; DEGRADATION; GROWTH; 1,2-DICHLOROETHANE; TETRACHLOROETHENE AB Dehalococcoides mccartyi strains are obligate organohalide-respiring bacteria harboring multiple distinct reductive dehalogenase (RDase) genes within their genomes. A major challenge is to identify substrates for the enzymes encoded by these RDase genes. We demonstrate an approach that involves blue native polyacrylamide gel electrophoresis (BN-PAGE) followed by enzyme activity assays with gel slices and subsequent identification of proteins in gel slices using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). RDase expression was investigated in cultures of Dehalococcoides mccartyi strain BAV1 and in the KB-1 consortium growing on chlorinated ethenes and 1,2-dichloroethane. In cultures of strain BAV1, BvcA was the only RDase detected, revealing that this enzyme catalyzes the dechlorination not only of vinyl chloride, but also of all dichloroethene isomers and 1,2-dichloroethane. In cultures of consortium KB-1, five distinct Dehalococcoides RDases and one Geobacter RDase were expressed under the conditions tested. Three of the five RDases included orthologs to the previously identified chlorinated ethene-dechlorinating enzymes VcrA, BvcA, and TceA. This study revealed substrate promiscuity for these three enzymes and provides a path forward to further explore the largely unknown RDase protein family. C1 [Tang, Shuiquan; Chan, Winnie W. M.; Liang, Xiaoming; Edwards, Elizabeth A.] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON, Canada. [Fletcher, Kelly E.] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Seifert, Jana] UFZ Helmholtz Ctr Environm Res, Dept Prote, Leipzig, Germany. [Loeffler, Frank E.] Univ Tennessee, Dept Microbiol, Knoxville, TN 37996 USA. [Loeffler, Frank E.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN USA. [Loeffler, Frank E.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Adrian, Lorenz] UFZ Helmholtz Ctr Environm Res, Dept Isotope Biogeochem, Leipzig, Germany. RP Edwards, EA (reprint author), Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON, Canada. EM elizabeth.edwards@utoronto.ca RI Liang, Xiaoming/B-6561-2013; Loeffler, Frank/M-8216-2013; OI Edwards, Elizabeth/0000-0002-8071-338X; Adrian, Lorenz/0000-0001-8205-0842 FU Saxon State Ministry for Science and Art; NSF; Government of Ontario through the Ontario Graduate Scholarships in Science and Technology (OGSST); Natural Sciences and Engineering Research Council of Canada (NSERC PGS B); European Research Council; DFG [FOR1530]; Government of Canada through Genome Canada; Ontario Genomics Institute [2009-OGI-ABC-1405]; Government of Ontario through the ORF-GL2 program; U.S. Department of Defense through the Strategic Environmental Research and Development Program (SERDP) [W912HQ-07-C-0036, ER-1586] FX Support for this research was provided by the Saxon State Ministry for Science and Art fellowships awarded to both K. E. F. and W. W. M. C. through L. A. K. E. F. acknowledges support through an NSF graduate research fellowship. S. T. received awards from the Government of Ontario through the Ontario Graduate Scholarships in Science and Technology (OGSST) and the Natural Sciences and Engineering Research Council of Canada (NSERC PGS B). L. A. was supported by the European Research Council and the DFG (FOR1530). Support was provided by the Government of Canada through Genome Canada and the Ontario Genomics Institute (2009-OGI-ABC-1405), by the Government of Ontario through the ORF-GL2 program, and by the U.S. Department of Defense through the Strategic Environmental Research and Development Program (SERDP) under contract W912HQ-07-C-0036 (project ER-1586). Metagenome sequencing was provided by the U.S. Department of Energy Joint Genome Institute's Community Sequencing Program (CSP 2010). NR 38 TC 27 Z9 27 U1 3 U2 59 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD FEB PY 2013 VL 79 IS 3 BP 974 EP 981 DI 10.1128/AEM.01873-12 PG 8 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 076WL UT WOS:000313989700027 PM 23204411 ER PT J AU Moss, CE Favalli, A Goda, JM Ianakiev, KD Lombardi, M McCluskey, CW Paffett, MT Swinhoe, MT AF Moss, C. E. Favalli, A. Goda, J. M. Ianakiev, K. D. Lombardi, M. McCluskey, C. W. Paffett, M. T. Swinhoe, M. T. TI New technology for transmission measurements in process pipes SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Transmission source; Transmission measurements; Process pipes; Enrichment monitor; X-ray tube; Radioisotope source AB Transmission measurements of radiation through process pipes provide a non-intrusive method of determining the amount of product present in the pipes. The product could be a liquid, a slurry, or a gas, which is the most challenging because of the low density. Traditionally, these techniques have used a radioactive source that has to be replaced periodically. We have developed a transmission technique based on an X-ray tube instead of a decaying source. A notch filter is used to provide a narrow transmission line, and a thin silicon transmission detector is used to monitor the X-ray tube output. The transmitted X-rays are measured with a high-throughput gamma spectrometer that consists of a NaI(Tl) detector and an MCA with precise dead time correction. This spectrometer provides stable transmission measurements with an accuracy of a fraction of a percent. The shielding and collimator are made of machinable tungsten for thermal mechanical stability, as well low-cost low-weight tungsten powder in polymer castings. We describe two methods of measuring the pipe wall thickness without evacuating the pipe. Our particular application was for enrichment monitors for UF6 in process pipes. Enrichment monitors that are independent of the plant data require two measurements: a transmission measurement to determine the total amount of uranium in the pipe and a measurement of the 186-key gamma-ray line to determine the amount of U-235 present. The ratio of these values gives the enrichment. Previous designs used a decaying radioactive source such as Co-57 (122 key, T-1/2=272 days) or Cd-109 (22 keV, T-1/2= 1.2 years). A major effort was required to access and periodically replace these sources in operating plants. In this report, we describe the use of an X-ray tube, which eliminated the source problem, and other innovations. Then we present data from an enrichment monitor that incorporates these innovations. Published by Elsevier Ltd. C1 [Moss, C. E.; Favalli, A.; Goda, J. M.; Ianakiev, K. D.; Lombardi, M.; McCluskey, C. W.; Paffett, M. T.; Swinhoe, M. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Moss, CE (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM cmoss@lanl.gov OI Ianakiev, Kiril/0000-0002-5074-0715 FU Next Generation Safeguards Initiative (NGSI); Office of Nonproliferation and International Security (NIS); National Nuclear Security Administration (NNSA) FX This work was supported by the Next Generation Safeguards Initiative (NGSI) and the Highly Enriched Uranium Transparency Program, both of the Office of Nonproliferation and International Security (NIS), National Nuclear Security Administration (NNSA). B. Boyer, T. Hill, C. Keller, D.W. MacArthur, and M.K. Smith provided support and encouragement. NR 14 TC 1 Z9 1 U1 0 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD FEB PY 2013 VL 72 BP 89 EP 95 DI 10.1016/j.apradiso.2012.10.005 PG 7 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 080SD UT WOS:000314262700014 PM 23208237 ER PT J AU Delis, F Thanos, PK Rombola, C Rosko, L Grandy, D Wang, GJ Volkow, ND AF Delis, Foteini Thanos, Panayotis K. Rombola, Christina Rosko, Lauren Grandy, David Wang, Gene-Jack Volkow, Nora D. TI Chronic Mild Stress Increases Alcohol Intake in Mice With Low Dopamine D2 Receptor Levels SO BEHAVIORAL NEUROSCIENCE LA English DT Article DE ethanol; dopamine D2 receptors; chronic mild stress ID VOLUNTARY ETHANOL-CONSUMPTION; CONDITIONED PLACE PREFERENCE; IN-VIVO MICRODIALYSIS; NUCLEUS-ACCUMBENS; DEFICIENT MICE; KNOCKOUT MICE; DRD2 GENE; BINDING CHARACTERISTICS; ALLELIC ASSOCIATION; D-2 RECEPTORS AB Alcohol use disorders emerge from a complex interaction between environmental and genetic factors. Stress and dopamine D2 receptor levels (DRD2) have been shown to play a central role in alcoholism. To better understand the interactions between DRD2 and stress in ethanol intake behavior, we subjected Drd2 wild-type (+/+), heterozygous (+/-), and knockout (-/-) mice to 4 weeks of chronic mild stress (CMS) and to an ethanol two-bottle choice during CMS weeks 2-4. Prior to and at the end of the experiment, the animals were tested in the forced swim and open field tests. We measured ethanol intake and preference, immobility in the force swim test, and activity in the open field. We show that under no CMS, Drd2+/- and Drd2-/- mice had lower ethanol intake and preference compared with Drd2+/+. Exposure to CMS decreased ethanol intake and preference in Drd2+/+ and increased them in Drd2+/- and Drd2-/- mice. At baseline, Drd2+/- and Drd2-/- mice had significantly lower activity in the open field than Drd2+/+, whereas no genotype differences were observed in the forced swim test. Exposure to CMS increased immobility during the forced swim test in Drd2+/- mice, but not in Drd2+/+ or Drd2-/- mice, and ethanol intake reversed this behavior. No changes were observed in open field test measures. These findings suggest that in the presence of a stressful environment, low DRD2 levels are associated with increased ethanol intake and preference and that under this condition, increased ethanol consumption could be used as a strategy to alleviate negative mood. C1 [Delis, Foteini; Thanos, Panayotis K.; Rombola, Christina; Rosko, Lauren; Wang, Gene-Jack] Brookhaven Natl Lab, Dept Med, Behav Neuropharmacol & Neuroimaging Lab, Upton, NY 11973 USA. [Thanos, Panayotis K.; Volkow, Nora D.] NIAAA, Lab Neuroimaging, NIH, Bethesda, MD USA. [Grandy, David] Oregon Hlth & Sci Univ, Dept Physiol & Pharmacol, Portland, OR 97201 USA. RP Thanos, PK (reprint author), 2 Ctr St, Upton, NY 11973 USA. EM thanos@bnl.gov FU National Institute on Alcohol Abuse and Alcoholism [AA 11034, AA07574, AA07611] FX This work was supported by National Institute on Alcohol Abuse and Alcoholism Grants AA 11034, AA07574, and AA07611. We thank Shreya Subramani for her technical support in the initial stages of the experiment. NR 85 TC 12 Z9 12 U1 1 U2 18 PU AMER PSYCHOLOGICAL ASSOC PI WASHINGTON PA 750 FIRST ST NE, WASHINGTON, DC 20002-4242 USA SN 0735-7044 J9 BEHAV NEUROSCI JI Behav. Neurosci. PD FEB PY 2013 VL 127 IS 1 BP 95 EP 105 DI 10.1037/a0030750 PG 11 WC Behavioral Sciences; Neurosciences SC Behavioral Sciences; Neurosciences & Neurology GA 082GY UT WOS:000314381500009 PM 23148856 ER PT J AU Foston, M Nunnery, GA Meng, XZ Sun, QN Baker, FS Ragauskas, A AF Foston, Marcus Nunnery, Grady A. Meng, Xianzhi Sun, Qining Baker, Frederick S. Ragauskas, Arthur TI NMR a critical tool to study the production of carbon fiber from lignin SO CARBON LA English DT Article ID NUCLEAR-MAGNETIC-RESONANCE; SPECTROSCOPY; BIOFUELS AB The structural changes occurring to hardwood Alcell (TM) lignin as a result of fiber devolatilization/extrusion, oxidative thermo-stabilization and carbonization are investigated in this study by solid-state and solution nuclear magnetic resonance (NMR) spectroscopy techniques. Solution based H-1-C-13 correlation NMR of the un-spun Alcel (TM) lignin powder and extruded lignin fiber detected modest changes occurring due to fiber devolatilization/extrusion in the type and proportion of aliphatic side-chain carbons or monolignol inter-unit linkages. Molecular weight analysis by gel permeation chromatography (GPC), along with an additional P-31 NMR method used to indicate changes in terminal hydroxyl functionality, suggest fiber devolatilization/extrusion causes both chain scission and condensation reactions. H-1 CRAMPS (combined rotation and multiple-pulse spectroscopy) and C-13 cross-polarization/magic angle spinning (CP/MAS) spectra of extruded and stabilized lignin fibers indicate stabilization severely reduces the proportion of methoxy groups present, while also increasing the relative proportion of carbonyl and carboxyl-related structures, typically associated with cross-linking chemistries. C-13 direct-polarization/magic angle spinning (DP/MAS) analysis of stabilized and carbonized fibers shows an increased relative amount of carbon-carbon bonds on aryl structures and a relative decrease of aryl ethers. DP/MAS dipolar dephasing experiments suggest that a majority of non-protonated carbons convert from carbonyl to aryl and condensed aryl structures during carbonization. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Foston, Marcus; Meng, Xianzhi; Sun, Qining; Ragauskas, Arthur] Georgia Inst Technol, Sch Chem & Biochem, Inst Paper Sci & Technol, BioEnergy Sci Ctr, Atlanta, GA 30332 USA. [Nunnery, Grady A.; Baker, Frederick S.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Ragauskas, A (reprint author), Georgia Inst Technol, Sch Chem & Biochem, Inst Paper Sci & Technol, BioEnergy Sci Ctr, 500 10th St, Atlanta, GA 30332 USA. EM art.ragauskas@chemistry.gatech.edu RI Sun, Qining/B-7592-2016; OI Sun, Qining/0000-0002-9678-7834; Ragauskas, Arthur/0000-0002-3536-554X FU U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office [DE-AC05-00OR22725]; UT-Battelle, LLC; BioEnergy Science Center; Office of Biological and Environmental Research in the DOE Office of Science; US Department of Energy [DE-AC05-00OR22725] FX This work was supported and performed as part of research sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, under contract DE-AC05-00OR22725 with UT-Battelle, LLC and the BioEnergy Science Center. The BioEnergy Science Center is a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the US Department of Energy. NR 38 TC 25 Z9 26 U1 6 U2 133 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD FEB PY 2013 VL 52 BP 65 EP 73 DI 10.1016/j.carbon.2012.09.006 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 079SO UT WOS:000314192700008 ER PT J AU Liu, J Meng, XB Hu, YH Geng, DS Banis, MN Cai, M Li, RY Sun, XL AF Liu, Jian Meng, Xiangbo Hu, Yuhai Geng, Dongsheng Banis, Mohammad Norouzi Cai, Mei Li, Ruying Sun, Xueliang TI Controlled synthesis of Zirconium Oxide on graphene nanosheets by atomic layer deposition and its growth mechanism SO CARBON LA English DT Article ID LITHIUM ION BATTERIES; THIN-FILMS; FACILE SYNTHESIS; CARBON-FILMS; METHANOL; NANOSTRUCTURES; PERFORMANCE; ELECTRODES; STORAGE; ELECTROOXIDATION AB Zirconium Oxide (ZrO2) was deposited on graphene nanosheets (GNS) by atomic layer deposition (ALD) using tetrakis(dimethylamido)zirconium(IV) and water as precursors. The results indicated that both morphology and crystallinity of the deposited ZrO2 were controllable in a temperature range of 150-250 degrees C. At all the temperatures studied, ZrO2 nanoparticles were formed with lower number of ALD cycles (<10 cycles at 150 degrees C and <30 cycles at 200 and 250 degrees C), while ZrO2 thin films were achieved uniformly with higher number of ALD cycles (>10 cycles at 150 degrees C and >30 cycles at 200 and 250 degrees C). The crystallinity of the deposited ZrO2 was highly dependent on the deposition temperature. The ZrO2 deposited at 150 degrees C exhibited mainly amorphous nature, whereas that prepared at 250 degrees C consisted of crystalline phase. At 200 degrees C, a mixture of amorphous and crystalline ZrO2 appeared in the ZrO2-GNS nanocomposite. In all cases, the growth of ZrO2 on GNS showed a transformation from an "island growth" mode to a "layer-by-layer growth" mode with increasing ALD cycle. Cyclic voltammetry measurement demonstrated that 10-cycle ZrO2-GNS nanocomposite exhibited evident electrochemical capacitance characteristics. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Liu, Jian; Hu, Yuhai; Geng, Dongsheng; Banis, Mohammad Norouzi; Li, Ruying; Sun, Xueliang] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada. [Meng, Xiangbo] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Cai, Mei] Gen Motors R&D Ctr, Warren, MI 48090 USA. RP Sun, XL (reprint author), Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada. EM xsun@eng.uwo.ca RI Sun, Andy (Xueliang)/I-4535-2013; Meng, Xiangbo/H-3264-2012; Liu, Jian/I-5571-2014; Sun, Xueliang/C-7257-2012; Geng, Dongsheng/G-7124-2011 OI Meng, Xiangbo/0000-0002-4631-7260; Liu, Jian/0000-0003-0756-2260; Geng, Dongsheng/0000-0003-0910-8985 FU General Motors of Canada; Natural Sciences and Engineering Research Council of Canada (NSERC); Canada Foundation for Innovation (CFI); Ontario Research Fund (ORF); Ontario Early Researcher Award (ERA); University of Western Ontario FX This research was supported by General Motors of Canada, Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundation for Innovation (CFI), Ontario Research Fund (ORF), Ontario Early Researcher Award (ERA) and University of Western Ontario. The authors also would like to thank Fred Pearson at McMaster University for his help on HRTEM. NR 63 TC 16 Z9 16 U1 11 U2 127 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD FEB PY 2013 VL 52 BP 74 EP 82 DI 10.1016/j.carbon.2012.09.007 PG 9 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 079SO UT WOS:000314192700009 ER PT J AU Anjos, DM Kolesnikov, AI Wu, ZL Cai, Y Neurock, M Brown, GM Overbury, SH AF Anjos, Daniela M. Kolesnikov, Alexander I. Wu, Zili Cai, Yu Neurock, Matthew Brown, Gilbert M. Overbury, Steven H. TI Inelastic neutron scattering, Raman and DFT investigations of the adsorption of phenanthrenequinone on onion-like carbon SO CARBON LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; ELECTROCHEMICAL PERFORMANCE; GRAPHITE; SURFACE; DISPERSION; NANOTUBES; 9,10-PHENANTHRENEQUINONE; SPECTROSCOPY; ELECTRODES AB The orientation and bonding of adsorbed 9,10-phenanthrenequinone (PQ) on onion-like carbon (OLC) were determined by combining spectroscopy and density functional theory (DFT) calculations. Electrochemical measurements demonstrated relatively strong bonding of PQ to the OLC as indicated by persistent and reversible features in the cyclic voltammetry. Spectra of bulk solid and adsorbed PQ were obtained by inelastic neutron scattering (INS) and Raman spectroscopy, and the bands were compared with vibrational energies calculated from DFT. At energy losses (frequencies) above 400 cm(-1), no band shifts in INS or Raman spectra were observed between bulk solid and adsorbed PQ. However, adsorption of PQ resulted in shifts in the lowest frequency modes (<400 cm(-1)), compared to crystalline PQ, which could only be identified by INS. DFT calculations also provided adsorption energies and from these and comparison of computed and experimental spectra it is determined that the molecule adsorbs parallel to the onion-like carbon surface through pi-pi stacking interaction. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Anjos, Daniela M.; Kolesnikov, Alexander I.; Wu, Zili; Brown, Gilbert M.; Overbury, Steven H.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Cai, Yu; Neurock, Matthew] Univ Virginia, Dept Chem Engn, Charlottesville, VA 22904 USA. RP Overbury, SH (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM overburysh@ornl.gov RI Wu, Zili/F-5905-2012; Kolesnikov, Alexander/I-9015-2012; Overbury, Steven/C-5108-2016 OI Wu, Zili/0000-0002-4468-3240; Kolesnikov, Alexander/0000-0003-1940-4649; Overbury, Steven/0000-0002-5137-3961 FU FIRST Center, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Scientific User Facility Division, Office of Basic Energy Sciences, US Department of Energy FX This work was supported as part of the FIRST Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. INS experiments at the Spallation Neutron Source and Raman measurements at Center for Nanophase Materials Sciences were supported by the Scientific User Facility Division, Office of Basic Energy Sciences, US Department of Energy. The authors wish to thank John McDonough and Yury Gogotsi for providing the OLC and for useful discussions. NR 33 TC 8 Z9 8 U1 4 U2 45 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD FEB PY 2013 VL 52 BP 150 EP 157 DI 10.1016/j.carbon.2012.09.016 PG 8 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 079SO UT WOS:000314192700018 ER PT J AU Song, L Khoerunnisa, F Gao, W Dou, WH Hayashi, T Kaneko, K Endo, M Ajayan, PM AF Song, Li Khoerunnisa, Fitri Gao, Wei Dou, Weihong Hayashi, Takuya Kaneko, Katsumi Endo, Morinobu Ajayan, Pulickel M. TI Effect of high-temperature thermal treatment on the structure and adsorption properties of reduced graphene oxide SO CARBON LA English DT Article ID GRAPHITE OXIDE; REDUCTION AB We present the study on the structure and adsorption properties of reduced graphene oxide subjected to thermal treatment in temperature range of 1100-2000 degrees C under flowing argon. The morphology and composition analyses reveal that the defective carbon materials remaining after volatilization of oxygen and hydrogen rearrange into highly ordered hexagonal carbon layers during thermal treatment at 2000 degrees C. The surface area of the resulting carbon layers increases to a value more than fourfold over that of the starting precursor materials. These results offer useful insights to understand the thermal behavior of the carbonaceous decomposition materials. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Song, Li; Khoerunnisa, Fitri; Dou, Weihong; Kaneko, Katsumi; Endo, Morinobu; Ajayan, Pulickel M.] Shinshu Univ, Res Ctr Exot Nanocarbons, Nagano 3808553, Japan. [Song, Li] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230026, Peoples R China. [Gao, Wei] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hayashi, Takuya] Shinshu Univ, Fac Engn, Nagano 3808553, Japan. [Ajayan, Pulickel M.] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77005 USA. [Khoerunnisa, Fitri] Indonesia Univ Educ, Dept Chem, Bandung 40154, Indonesia. RP Song, L (reprint author), Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230026, Peoples R China. EM song2012@ustc.edu.cn RI Song, Li/B-1950-2010 OI Song, Li/0000-0003-0585-8519 FU Exotic Nanocarbons, Japan Regional Innovation Strategy Program by Excellence JST; Green Innovation Project at Shinshu University; University of Science and Technology of China; Recruitment Program of Global Experts; CAS in China FX This work was supported by the Exotic Nanocarbons, Japan Regional Innovation Strategy Program by Excellence JST and Green Innovation Project at Shinshu University. L. Song acknowledges the start-up fund from University of Science and Technology of China, the Recruitment Program of Global Experts and the CAS Hundred Talent Program in China. NR 10 TC 26 Z9 27 U1 7 U2 93 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD FEB PY 2013 VL 52 BP 608 EP 612 DI 10.1016/j.carbon.2012.09.060 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 079SO UT WOS:000314192700069 ER PT J AU Yusim, K Dilan, R Borducchi, E Stanley, K Giorgi, E Fischer, W Theiler, J Marcotrigiano, J Korber, B Barouch, DH AF Yusim, Karina Dilan, Rebecca Borducchi, Erica Stanley, Kelly Giorgi, Elena Fischer, William Theiler, James Marcotrigiano, Joseph Korber, Bette Barouch, Dan H. TI Hepatitis C Genotype 1 Mosaic Vaccines Are Immunogenic in Mice and Induce Stronger T-Cell Responses than Natural Strains SO CLINICAL AND VACCINE IMMUNOLOGY LA English DT Article ID HUMAN-IMMUNODEFICIENCY-VIRUS; IMMUNE-RESPONSES; RHESUS-MONKEYS; LYMPHOCYTE RESPONSES; ANTI-AD5 IMMUNITY; INFECTION; COVERAGE; BREADTH; IMMUNIZATION; EPITOPES AB Despite improved hepatitis C virus (HCV) treatments, vaccines remain an effective and economic option for curtailing the epidemic. Mosaic protein HCV genotype 1 vaccine candidates designed to address HCV diversity were immunogenic in mice. They elicited stronger T-cell responses to NS3-NS4a and E1-E2 proteins than did natural strains, as assessed with vaccine-matched peptides. C1 [Yusim, Karina; Giorgi, Elena; Fischer, William; Theiler, James; Korber, Bette] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Dilan, Rebecca; Borducchi, Erica; Stanley, Kelly; Barouch, Dan H.] Beth Israel Deaconess Med Ctr, Ctr Virol & Vaccine Res, Boston, MA 02215 USA. [Barouch, Dan H.] Ragon Inst MGH MIT & Harvard, Boston, MA USA. [Marcotrigiano, Joseph] Rutgers State Univ, Ctr Adv Biotechnol & Med, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA. RP Yusim, K (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM kyusim@lanl.gov RI Marcotrigiano, Joseph /K-6697-2016; OI Marcotrigiano, Joseph /0000-0003-0346-3353; Fischer, Will/0000-0003-4579-4062; Korber, Bette/0000-0002-2026-5757 FU Los Alamos National Laboratory internal LDRD; NIH [AI066924, AI078526, AI096040, AI080659]; Ragon Institute of MGH; Ragon Institute of MIT; Ragon Institute of Harvard FX This research was funded through Los Alamos National Laboratory internal LDRD funding; NIH grants AI066924, AI078526, AI096040, and AI080659; and the Ragon Institute of MGH, MIT, and Harvard. NR 28 TC 8 Z9 8 U1 1 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 1556-6811 J9 CLIN VACCINE IMMUNOL JI Clin. Vaccine Immunol. PD FEB PY 2013 VL 20 IS 2 BP 302 EP 305 DI 10.1128/CVI.00605-12 PG 4 WC Immunology; Infectious Diseases; Microbiology SC Immunology; Infectious Diseases; Microbiology GA 079JI UT WOS:000314166000024 PM 23221002 ER PT J AU Kim, H Moon, Y Jain, R Khurana, M Lee, J Vaidyanathan, J Sahajwalla, C Chung, S AF Kim, H. Moon, Y. Jain, R. Khurana, M. Lee, J. Vaidyanathan, J. Sahajwalla, C. Chung, S. TI INSULIN PHARMACOKINETICS (PK) AND PHARMACODYNAMICS (PD) IN GESTATIONAL DIABETES (GD) COMPARED TO THOSE OF HEALTHY SUBJECTS (HS). SO CLINICAL PHARMACOLOGY & THERAPEUTICS LA English DT Meeting Abstract CT Annual Meeting of the American-Society-for-Clinical-Pharmacology-and-Therapeutics (ASCPT) / Quantitative Systems Pharmacology - An Integrating Framework for Translational Medicine Pre-Conference CY MAR 05-09, 2013 CL Indianapolis, IN SP Amer Soc Clin Pharmacol & Therapeut (ASCPT) C1 [Kim, H.; Moon, Y.] ORISE, Silver Spring, MD USA. [Jain, R.; Khurana, M.; Lee, J.; Vaidyanathan, J.; Sahajwalla, C.; Chung, S.] US FDA, CDER, OTS, OCP, Silver Spring, MD USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0009-9236 J9 CLIN PHARMACOL THER JI Clin. Pharmacol. Ther. PD FEB PY 2013 VL 93 SU 1 BP S71 EP S71 PG 1 WC Pharmacology & Pharmacy SC Pharmacology & Pharmacy GA 078ZD UT WOS:000314138700191 ER PT J AU Benson, MT Harrup, MK Gering, KL AF Benson, Michael T. Harrup, Mason K. Gering, Kevin L. TI Lithium binding in fluorinated phosphazene trimers SO COMPUTATIONAL AND THEORETICAL CHEMISTRY LA English DT Article DE Density functional theory; Lithium binding energy; Lithium ion battery; Phosphazene; Electrolyte additive ID DENSITY-FUNCTIONAL THEORY; AB-INITIO CALCULATIONS; ION BATTERY; POLYMER ELECTROLYTES; PROPYLENE CARBONATE; MOLECULAR-DYNAMICS; VINYLENE CARBONATE; ETHYLENE CARBONATE; X-RAY; LI+ AB Density functional theory is used to model a series of cyclic phosphazenes, with and without coordinated Li+. Two pendant groups are used, ethoxy and 2,2,2-trifluoroethoxy, in varying combinations to generate phosphazenes with 0, 1, 2, 3, or 6 trifluoro groups. In all cases, Li+ sits in a pocket on the ring, always bonding to a ring nitrogen, and can be three- or four-coordinate, depending on the local environment. Three-coordinate occurs when no fluorines are close enough to interact, with the lithium bonding to a ring nitrogen and the two adjacent oxygens. When Li+ is four-coordinate, the bonding varies between the ring nitrogen, two adjacent oxygens, and one fluorine, or the ring nitrogen, one adjacent oxygen, and two fluorines. All of the possible symmetry unique structures have been calculated. The binding strength of Li+ steadily decreases, from 74.93 kcal/mol with no trifluoro groups, to 58.01 kcal/mol when 6 trifluoro groups are present. The decrease is attributed to the electron withdrawing effect of the trifluoro groups, and also to distortions in the geometry to accommodate Li-F interactions. (C) 2012 Elsevier B.V. All rights reserved. C1 [Benson, Michael T.; Harrup, Mason K.; Gering, Kevin L.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Benson, MT (reprint author), Idaho Natl Lab, POB 1625,MS 6188, Idaho Falls, ID 83415 USA. EM michael.benson@inl.gov RI Benson, Michael/B-8855-2017 OI Benson, Michael/0000-0003-4927-614X FU Office of Energy Efficiency and Renewable Energy within the United States Department of Energy [DE-AC07-05ID14517] FX The authors gratefully acknowledge the Office of Energy Efficiency and Renewable Energy within the United States Department of Energy, per Contract DE-AC07-05ID14517, David Howell, and Peter Faguy for providing support for this work. NR 41 TC 2 Z9 2 U1 5 U2 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2210-271X J9 COMPUT THEOR CHEM JI Comput. Theor. Chem. PD FEB 1 PY 2013 VL 1005 BP 25 EP 34 DI 10.1016/j.comptc.2012.11.001 PG 10 WC Chemistry, Physical SC Chemistry GA 081NR UT WOS:000314329400004 ER PT J AU Sullivan, EJ Chu, SP Stauffer, PH Pawar, RJ AF Sullivan, Enid J. Chu, Shaoping Stauffer, Philip H. Pawar, Rajesh J. TI A CO2-PENS model of methods and costs for treatment of water extracted during geologic carbon sequestration SO DESALINATION AND WATER TREATMENT LA English DT Article; Proceedings Paper CT International Conference of the European-Desalination-Society (EDS) on Desalination for the Environment, Clean Water and Energy CY APR 23-26, 2012 CL Barcelona, SPAIN SP European Desalinat Soc (EDS) DE Carbon sequestration; Reverse osmosis; Nanofiltration; Multiple-effect distillation; Multistage flash distillation; Thermal distillation; Brine concentrate disposal ID CAPTURE; DIOXIDE AB Extraction of water during subsurface carbon sequestration may be useful for the control of CO2 placement, reducing pressure risks, and mitigating environmental risks. Desalination of this water may be possible if costs are kept low, in order to minimize the quantity that must be reinjected or otherwise disposed. Added value may be recovered in the form of treated water that can be reused by carbon capture, sequestration, and other industrial processes. Total dissolved solids will range from 10,000 mg/L up to over 100,000 mg/L, and temperatures may range up to 120 degrees C, once the water is brought to the surface. We have developed a system-level, mesoscale analysis module for the CO2-Predicting engineered natural system model to analyze the feasibility of treatment, the costs of treatment, the value of energy recovery, and the costs of concentrate disposal. Costs are derived from a database of reported literature values. The model allows the user to select the most economic options for treatment, to compare costs, and to understand the trade-off of risks and costs. Results of preliminary modeling indicate that while reverse osmosis is feasible within certain temperature and salinity ranges, nanofiltration and thermal methods may be more cost-effective or otherwise feasible. C1 [Sullivan, Enid J.] Los Alamos Natl Lab, Chem Diagnost & Engn Grp, Los Alamos, NM 87544 USA. [Chu, Shaoping; Stauffer, Philip H.; Pawar, Rajesh J.] Los Alamos Natl Lab, Computat Earth Sci Grp, Los Alamos, NM 87544 USA. RP Sullivan, EJ (reprint author), Los Alamos Natl Lab, Chem Diagnost & Engn Grp, MS J964, Los Alamos, NM 87544 USA. EM ejs@lanl.gov OI Stauffer, Philip/0000-0002-6976-221X NR 19 TC 2 Z9 2 U1 0 U2 13 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 1944-3994 J9 DESALIN WATER TREAT JI Desalin. Water Treat. PD FEB PY 2013 VL 51 IS 7-9 BP 1487 EP 1493 DI 10.1080/19443994.2012.714727 PG 7 WC Engineering, Chemical; Water Resources SC Engineering; Water Resources GA 074EL UT WOS:000313795500016 ER PT J AU Dale, VH Kline, KL Perla, D Lucier, A AF Dale, Virginia H. Kline, Keith L. Perla, Donna Lucier, Al TI Communicating About Bioenergy Sustainability SO ENVIRONMENTAL MANAGEMENT LA English DT Article DE Biofuels; Benefits; Communication; Costs; Decisions; Landscape design; Risk; Scale ID RESIDUE REMOVAL; LAND-USE; BIOFUELS; BIOMASS; IMPACT; SWITCHGRASS; INFORMATION; HARVEST; SYSTEMS; SCALE AB Defining and measuring sustainability of bioenergy systems are difficult because the systems are complex, the science is in early stages of development, and there is a need to generalize what are inherently context-specific enterprises. These challenges, and the fact that decisions are being made now, create a need for improved communications among scientists as well as between scientists and decision makers. In order for scientists to provide information that is useful to decision makers, they need to come to an agreement on how to measure and report potential risks and benefits of diverse energy alternatives in a way that allows decision makers to compare options. Scientists also need to develop approaches that contribute information about problems and opportunities relevant to policy and decision making. The need for clear communication is especially important at this time when there is a plethora of scientific papers and reports and it is difficult for the public or decision makers to assess the merits of each analysis. We propose three communication guidelines for scientists whose work can contribute to decision making: (1) relationships between the question and the analytical approach should be clearly defined and make common sense; (2) the information should be presented in a manner that non-scientists can understand; and (3) the implications of methods, assumptions, and limitations should be clear. The scientists' job is to analyze information to build a better understanding of environmental, cultural, and socioeconomic aspects of the sustainability of energy alternatives. The scientific process requires transparency, debate, review, and collaboration across disciplines and time. This paper serves as an introduction to the papers in the special issue on "Sustainability of Bioenergy Systems: Cradle to Grave" because scientific communication is essential to developing more sustainable energy systems. Together these four papers provide a framework under which the effects of bioenergy can be assessed and compared to other energy alternatives to foster sustainability. C1 [Dale, Virginia H.; Kline, Keith L.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Perla, Donna] US EPA, Washington, DC 20460 USA. [Lucier, Al] Natl Council Air & Stream Improvement Inc, Res Triangle Pk, NC USA. RP Dale, VH (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Bethel Valley Rd,POB 2008, Oak Ridge, TN 37831 USA. EM dalevh@ornl.gov OI Kline, Keith/0000-0003-2294-1170 FU US Department of Energy (DOE) under the Biomass Technologies Office; DOE [DE-AC05-00OR22725] FX This research was partially supported by the US Department of Energy (DOE) under the Biomass Technologies Office. Oak Ridge National Laboratory is managed by the UT-Battelle, LLC, for DOE under Contract DE-AC05-00OR22725. Comments from Rebecca Efroymson, Matt Langholtz, and three anonymous reviewers were very helpful. Dr. Frederick O'Hara edited an earlier version of this manuscript. NR 62 TC 7 Z9 7 U1 2 U2 72 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0364-152X EI 1432-1009 J9 ENVIRON MANAGE JI Environ. Manage. PD FEB PY 2013 VL 51 IS 2 BP 279 EP 290 DI 10.1007/s00267-012-0014-4 PG 12 WC Environmental Sciences SC Environmental Sciences & Ecology GA 081ID UT WOS:000314311300001 PM 23322126 ER PT J AU Efroymson, RA Dale, VH Kline, KL McBride, AC Bielicki, JM Smith, RL Parish, ES Schweizer, PE Shaw, DM AF Efroymson, Rebecca A. Dale, Virginia H. Kline, Keith L. McBride, Allen C. Bielicki, Jeffrey M. Smith, Raymond L. Parish, Esther S. Schweizer, Peter E. Shaw, Denice M. TI Environmental Indicators of Biofuel Sustainability: What About Context? SO ENVIRONMENTAL MANAGEMENT LA English DT Article DE Baseline conditions; Bioenergy; Natural variability; Spatial and temporal scales; Supply chain; Systems ID INDIRECT LAND-USE; IMPROVING ANALYTICAL METHODOLOGIES; GULF-OF-MEXICO; UNITED-STATES; TESTING PREDICTIONS; CROP PRODUCTION; CLIMATE-CHANGE; ENERGY CROPS; HABITAT USE; BIOENERGY AB Indicators of the environmental sustainability of biofuel production, distribution, and use should be selected, measured, and interpreted with respect to the context in which they are used. The context of a sustainability assessment includes the purpose, the particular biofuel production and distribution system, policy conditions, stakeholder values, location, temporal influences, spatial scale, baselines, and reference scenarios. We recommend that biofuel sustainability questions be formulated with respect to the context, that appropriate indicators of environmental sustainability be developed or selected from more generic suites, and that decision makers consider context in ascribing meaning to indicators. In addition, considerations such as technical objectives, varying values and perspectives of stakeholder groups, indicator cost, and availability and reliability of data need to be understood and considered. Sustainability indicators for biofuels are most useful if adequate historical data are available, information can be collected at appropriate spatial and temporal scales, organizations are committed to use indicator information in the decision-making process, and indicators can effectively guide behavior toward more sustainable practices. C1 [Efroymson, Rebecca A.; Dale, Virginia H.; Kline, Keith L.; McBride, Allen C.; Parish, Esther S.; Schweizer, Peter E.] Oak Ridge Natl Lab, Ctr BioEnergy Sustainabil, Div Environm Sci, Oak Ridge, TN 37831 USA. [Bielicki, Jeffrey M.] Univ Minnesota, Hubert H Humphrey Sch Publ Affairs, Minneapolis, MN 55455 USA. [Smith, Raymond L.] US EPA, Natl Risk Management Res Lab, Off Res & Dev, Cincinnati, OH 45268 USA. [Shaw, Denice M.] US EPA, Natl Ctr Environm Assessment, Off Res & Dev, Washington, DC 20460 USA. RP Efroymson, RA (reprint author), Oak Ridge Natl Lab, Ctr BioEnergy Sustainabil, Div Environm Sci, Oak Ridge, TN 37831 USA. EM efroymsonra@ornl.gov RI Bielicki, Jeffrey/D-4239-2016; OI Bielicki, Jeffrey/0000-0001-8449-9328; Kline, Keith/0000-0003-2294-1170; Efroymson, Rebecca/0000-0002-3190-880X; Parish, Esther/0000-0001-9264-6295 FU Oak Ridge National Laboratory's (ORNL's) Center for BioEnergy Sustainability; U.S. Environmental Protection Agency (USEPA); U.S. Department of Energy (DOE) under the Office of the Biomass Program; DOE [DE-AC05-00OR22725] FX This paper is a collaboration among researchers who attended the workshop "Sustainability of Bioenergy Systems: Cradle to Grave," sponsored by the Oak Ridge National Laboratory's (ORNL's) Center for BioEnergy Sustainability and the U.S. Environmental Protection Agency (USEPA). Researchers at ORNL were supported by the U.S. Department of Energy (DOE) under the Office of the Biomass Program. Jeffrey Bielicki's contribution resulted from being a Weinberg Fellow at ORNL. We thank Mark Downing of ORNL and anonymous reviewers for comments on earlier drafts of this manuscript. We thank Charles Garten for conversations about relative feasibility of measurement of different indicators and Gangsheng Wang for discussions related to greenhouse-gas emissions from soil. Fred O'Hara provided technical editing of an earlier draft. ORNL is managed by the UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725. The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the USEPA or DOE. NR 124 TC 34 Z9 35 U1 7 U2 105 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0364-152X J9 ENVIRON MANAGE JI Environ. Manage. PD FEB PY 2013 VL 51 IS 2 BP 291 EP 306 DI 10.1007/s00267-012-9907-5 PG 16 WC Environmental Sciences SC Environmental Sciences & Ecology GA 081ID UT WOS:000314311300002 PM 22824960 ER PT J AU Parish, ES Kline, KL Dale, VH Efroymson, RA McBride, AC Johnson, TL Hilliard, MR Bielicki, JM AF Parish, Esther S. Kline, Keith L. Dale, Virginia H. Efroymson, Rebecca A. McBride, Allen C. Johnson, Timothy L. Hilliard, Michael R. Bielicki, Jeffrey M. TI Comparing Scales of Environmental Effects from Gasoline and Ethanol Production SO ENVIRONMENTAL MANAGEMENT LA English DT Article DE Biofuel; Transportation; Supply chain; Sustainability; Time; Space ID VALDEZ OIL-SPILL; GULF-OF-MEXICO; NEXT-GENERATION BIOFUELS; GREENHOUSE-GAS EMISSIONS; LAND-USE CHANGE; UNITED-STATES; BIOENERGY PRODUCTION; CLIMATE-CHANGE; BOREAL FOREST; WATER-QUALITY AB Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the spatial extent and temporal duration of ethanol and gasoline production processes and environmental effects based on a literature review and then synthesize the scale differences on space-time diagrams. Comprehensive assessment of any fuel-production system is a moving target, and our analysis shows that decisions regarding the selection of spatial and temporal boundaries of analysis have tremendous influences on the comparisons. Effects that strongly differentiate gasoline and ethanol-supply chains in terms of scale are associated with when and where energy resources are formed and how they are extracted. Although both gasoline and ethanol production may result in negative environmental effects, this study indicates that ethanol production traced through a supply chain may impact less area and result in more easily reversed effects of a shorter duration than gasoline production. C1 [Parish, Esther S.; Kline, Keith L.; Dale, Virginia H.; Efroymson, Rebecca A.; McBride, Allen C.] Oak Ridge Natl Lab, Div Environm Sci, Ctr BioEnergy Sustainabil, Climate Change Sci Inst, Oak Ridge, TN 37831 USA. [Johnson, Timothy L.] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. [Hilliard, Michael R.] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. [Bielicki, Jeffrey M.] Univ Minnesota, Hubert H Humphrey Sch Publ Affairs, Minneapolis, MN USA. RP Parish, ES (reprint author), Oak Ridge Natl Lab, Div Environm Sci, Ctr BioEnergy Sustainabil, Climate Change Sci Inst, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM parishes@ornl.gov RI Hilliard, Michael/C-3270-2016; Bielicki, Jeffrey/D-4239-2016; OI Hilliard, Michael/0000-0002-4450-9250; Bielicki, Jeffrey/0000-0001-8449-9328; Kline, Keith/0000-0003-2294-1170; Efroymson, Rebecca/0000-0002-3190-880X; Parish, Esther/0000-0001-9264-6295 FU US Department of Energy (DOE) under the Office of the Biomass Program; DOE [DE-AC05-00OR22725]; Oak Ridge National Laboratory (ORNL) Center for BioEnergy Sustainability; US Environmental Protection Agency (USEPA) FX This article is a collaboration among researchers who attended the workshop "Sustainability of Bioenergy Systems: Cradle to Grave," sponsored by the Oak Ridge National Laboratory (ORNL) Center for BioEnergy Sustainability and by the US Environmental Protection Agency (USEPA). Researchers at ORNL were supported by the US Department of Energy (DOE) under the Office of the Biomass Program. Tim Johnson contributed to this work while he was with the USEPA's Office of Research and Development. Jeffrey Bielicki's contribution resulted from being a Weinberg Fellow at ORNL. We would like to thank Rebecca Dodder of USEPA and Henriette I. Jager of ORNL for their contributions to initial discussions; Fred O'Hara for his technical editing; Mark Downing, Tim Theiss and Paul Leiby for clarification of three points; Jennifer Smith for formatting tables; Melissa Allen and Beau Wesh for their internal reviews; and three anonymous reviewers for their comments and suggestions. ORNL is managed by UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725. The views expressed in this article are those of the authors and do not necessarily reflect the views or policies of the USEPA or DOE. NR 224 TC 8 Z9 8 U1 6 U2 106 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0364-152X EI 1432-1009 J9 ENVIRON MANAGE JI Environ. Manage. PD FEB PY 2013 VL 51 IS 2 BP 307 EP 338 DI 10.1007/s00267-012-9983-6 PG 32 WC Environmental Sciences SC Environmental Sciences & Ecology GA 081ID UT WOS:000314311300003 PM 23212751 ER PT J AU Johnson, TL Bielicki, JM Dodder, RS Hilliard, MR Kaplan, PO Miller, CA AF Johnson, Timothy Lawrence Bielicki, Jeffrey M. Dodder, Rebecca S. Hilliard, Michael R. Kaplan, P. Ozge Miller, C. Andrew TI Advancing Sustainable Bioenergy: Evolving Stakeholder Interests and the Relevance of Research SO ENVIRONMENTAL MANAGEMENT LA English DT Article DE Bioenergy; Biofuels; Decision making; Participatory processes; Research; Stakeholder engagement; Sustainability ID BIOFUELS; SCIENCE; SYSTEMS; IMPLEMENTATION; BARRIERS; BIOMASS; POLICY; ENERGY; US; PARTICIPATION AB The sustainability of future bioenergy production rests on more than continual improvements in its environmental, economic, and social impacts. The emergence of new biomass feedstocks, an expanding array of conversion pathways, and expected increases in overall bioenergy production are connecting diverse technical, social, and policy communities. These stakeholder groups have different-and potentially conflicting-values and cultures, and therefore different goals and decision making processes. Our aim is to discuss the implications of this diversity for bioenergy researchers. The paper begins with a discussion of bioenergy stakeholder groups and their varied interests, and illustrates how this diversity complicates efforts to define and promote "sustainable" bioenergy production. We then discuss what this diversity means for research practice. Researchers, we note, should be aware of stakeholder values, information needs, and the factors affecting stakeholder decision making if the knowledge they generate is to reach its widest potential use. We point out how stakeholder participation in research can increase the relevance of its products, and argue that stakeholder values should inform research questions and the choice of analytical assumptions. Finally, we make the case that additional natural science and technical research alone will not advance sustainable bioenergy production, and that important research gaps relate to understanding stakeholder decision making and the need, from a broader social science perspective, to develop processes to identify and accommodate different value systems. While sustainability requires more than improved scientific and technical understanding, the need to understand stakeholder values and manage diversity presents important research opportunities. C1 [Johnson, Timothy Lawrence] Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. [Bielicki, Jeffrey M.] Univ Minnesota, Hubert H Humphrey Inst Publ Affairs, Minneapolis, MN 55455 USA. [Dodder, Rebecca S.; Kaplan, P. Ozge; Miller, C. Andrew] Off Res & Dev, Res Triangle Pk, NC 27711 USA. [Hilliard, Michael R.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Johnson, TL (reprint author), Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA. EM timothy.l.johnson@duke.edu RI Hilliard, Michael/C-3270-2016; Bielicki, Jeffrey/D-4239-2016; OI Hilliard, Michael/0000-0002-4450-9250; Bielicki, Jeffrey/0000-0001-8449-9328; Dodder, Rebecca/0000-0002-5252-3466 FU U.S. Department of Energy [DE-AC05-00OR22725] FX The authors would like to thank four anonymous reviewers for their thorough comments on an earlier draft of this paper. This paper is an outgrowth of discussions that took place during the Sustainability of Bioenergy Systems: Cradle to Grave workshop, held Sept. 10-11, 2009 at Oak Ridge National Laboratory in Oak Ridge, TN. The authors wish to thank the workshop organizers for a stimulating exchange of information and ideas. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges that the United States Government retains, a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States government purposes. NR 58 TC 6 Z9 6 U1 2 U2 47 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0364-152X J9 ENVIRON MANAGE JI Environ. Manage. PD FEB PY 2013 VL 51 IS 2 BP 339 EP 353 DI 10.1007/s00267-012-9884-8 PG 15 WC Environmental Sciences SC Environmental Sciences & Ecology GA 081ID UT WOS:000314311300004 PM 22718428 ER PT J AU Berleman, J Auer, M AF Berleman, James Auer, Manfred TI The role of bacterial outer membrane vesicles for intra- and interspecies delivery SO ENVIRONMENTAL MICROBIOLOGY LA English DT Review ID PSEUDOMONAS-AERUGINOSA; MYXOCOCCUS-XANTHUS; NEISSERIA-MENINGITIDIS; GLIDING MOTILITY; CELL-SURFACE; QUORUM; BIOFILMS; IDENTIFICATION; VACCINES; NETWORK AB An increasing number of Gram-negative bacteria have been observed to secrete outer membrane vesicles (OMVs). Many mysteries remain with respect to OMV formation, the regulation of OMV content and mode of targeting and fusion. Bacterial OMVs appear to serve a variety of purposes in intra- and interspecies microbial extracellular activities. OMVs have been shown to mediate cell-to-cell exchange of DNA, protein and small signalling molecules. The impact of such material exchanges on microbial communities and pathogenic processes, including the delivery of toxins at high concentration through OMVs, is discussed. This rather recent aspect of microbial ecology is likely to remain an important area of research as an in-depth understanding of OMVs may allow new approaches for combating bacterial infections and provide new routes for selective drug delivery. C1 [Berleman, James; Auer, Manfred] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Berleman, James] St Marys Coll, Dept Biol, Moraga, CA 94556 USA. RP Auer, M (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM jeberleman@lbl.gov; mauer@lbl.gov RI Chiang, Vincent, Ming-Hsien/D-4312-2016 OI Chiang, Vincent, Ming-Hsien/0000-0002-2029-7863 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics: GTL Foundational Science [DE-AC02-05CH11231]; Office of Science, of the US Department of Energy [DE-AC03-76SF00098] FX This work is part of ENIGMA, a Scientific Focus Area Program supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics: GTL Foundational Science through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy, and LDRD support by the Director, Office of Science, of the US Department of Energy under contract DE-AC03-76SF00098 to M. A. and J.B. NR 51 TC 37 Z9 37 U1 5 U2 60 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD FEB PY 2013 VL 15 IS 2 SI SI BP 347 EP 354 DI 10.1111/1462-2920.12048 PG 8 WC Microbiology SC Microbiology GA 079ZP UT WOS:000314211100005 PM 23227894 ER PT J AU Okolowicz, J Nazarewicz, W Ploszajczak, M AF Okolowicz, J. Nazarewicz, W. Ploszajczak, M. TI Toward understanding the microscopic origin of nuclear clustering SO FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS LA English DT Article DE Clustering; open quantum system; shell model; threshold effect; exceptional points ID CONTINUUM SHELL-MODEL; OPEN QUANTUM-SYSTEMS; EXCEPTIONAL POINTS; ENERGY DEPENDENCE; UNIFIED THEORY; RESONANCES; SCATTERING; THRESHOLD; STATES; CAPTURE AB Open Quantum System (OQS) description of a many-body system involves interaction of Shell Model (SM) states through the particle continuum. In realistic nuclear applications, this interaction may lead to collective phenomena in the ensemble of SM states. We claim that the nuclear clustering is an emergent, near-threshold phenomenon, which cannot be elucidated within the Closed Quantum System (CQS) framework. We approach this problem by investigating the near-threshold behavior of Exceptional Points (EPs) in the realistic Continuum Shell Model (CSM). The consequences for the alpha-clustering phenomenon are discussed. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Okolowicz, J.] Inst Nucl Phys, PL-31342 Krakow, Poland. [Nazarewicz, W.] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA. [Nazarewicz, W.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Nazarewicz, W.] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland. [Ploszajczak, M.] GANIL, CNRS, IN2P3, CEA,DSM, F-14076 Caen, France. RP Ploszajczak, M (reprint author), GANIL, CNRS, IN2P3, CEA,DSM, BP 55027, F-14076 Caen, France. EM Jacek.Okolowicz@ifj.edu.pl; witek@utk.edu; ploszajczak@ganil.fr FU MNiSW [N N202 033837]; Collaboration COPIN-GANIL on physics of exotic nuclei; Project SARFEN (Structure And Reactions For Exotic Nuclei) within the framework of the ERANET NuPNET; FUSTIPEN (French-U.S. Theory Institute for Physics with Exotic Nuclei) under DOE [DE-FG02-10ER41700]; DOE [DE-FG02-96ER40963]; University of Tennessee FX This work has been supported in part by the MNiSW grant No. N N202 033837, the Collaboration COPIN-GANIL on physics of exotic nuclei, the Project SARFEN (Structure And Reactions For Exotic Nuclei) within the framework of the ERANET NuPNET, FUSTIPEN (French-U.S. Theory Institute for Physics with Exotic Nuclei) under DOE grant number DE-FG02-10ER41700, and by the DOE grant DE-FG02-96ER40963 with the University of Tennessee. NR 77 TC 15 Z9 15 U1 0 U2 12 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0015-8208 J9 FORTSCHR PHYS JI Fortschritte Phys.-Prog. Phys. PD FEB PY 2013 VL 61 IS 2-3 SI SI BP 66 EP 79 DI 10.1002/prop.201200127 PG 14 WC Physics, Multidisciplinary SC Physics GA 083NX UT WOS:000314472400006 ER PT J AU Koehler, PE Becvar, F Krticka, M Guber, KH Ullmann, JL AF Koehler, P. E. Becvar, F. Krticka, M. Guber, K. H. Ullmann, J. L. TI Neutron resonance data exclude random matrix theory SO FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS LA English DT Article DE Porter-Thomas distribution; random matrix theory ID NUCLEAR-ENERGY LEVELS; PARITY NONCONSERVATION; FOURIER-TRANSFORM; TH-232; CHAOS; FLUCTUATIONS; STATES AB Almost since the time it was formulated, the overwhelming consensus has been that random matrix theory (RMT) is in excellent agreement with neutron resonance data. However, over the past few years, we have obtained new neutron-width data at Oak Ridge and Los Alamos National Laboratories that are in stark disagreement with this theory. We also have reanalyzed neutron widths in the most famous data set, the nuclear data ensemble (NDE), and found that it is seriously flawed, and, when analyzed carefully, excludes RMT with high confidence. More recently, we carefully examined energy spacings for these same resonances in the NDE using the 3 statistic. We conclude that the data can be found to either confirm or refute the theory depending on which nuclides and whether known or suspected p-wave resonances are included in the analysis, in essence confirming results of our neutron-width analysis of the NDE. We also have examined radiation widths resulting from our Oak Ridge and Los Alamos measurements, and find that in some cases they do not agree with RMT. Although these disagreements presently are not understood, they could have broad impact on basic and applied nuclear physics, from nuclear astrophysics to nuclear criticality safety. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Koehler, P. E.] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. [Becvar, F.; Krticka, M.] Charles Univ Prague, Fac Math & Phys, CR-18000 Prague 8, Czech Republic. [Guber, K. H.] Oak Ridge Natl Lab, Reactor & Nucl Syst Div, Oak Ridge, TN 37831 USA. [Ullmann, J. L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Koehler, PE (reprint author), Oak Ridge Natl Lab, Div Phys, Mail Stop 6356, Oak Ridge, TN 37831 USA. EM koehlerpe@ornl.gov OI Koehler, Paul/0000-0002-6717-0771 FU Office of Nuclear Physics of the U.S. Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC; Czech Research Plans [MSM-021620859, INGO-LA08015]; U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by the Office of Nuclear Physics of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC, and by Czech Research Plans MSM-021620859 and INGO-LA08015. This work has benefited from the use of the LANSCE facility at Los Alamos National Laboratory which was funded by the U.S. Department of Energy and currently is operated by Los Alamos National Security, LLC, under contract DE-AC52-06NA25396. NR 41 TC 4 Z9 4 U1 0 U2 20 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0015-8208 J9 FORTSCHR PHYS JI Fortschritte Phys.-Prog. Phys. PD FEB PY 2013 VL 61 IS 2-3 SI SI BP 80 EP 94 DI 10.1002/prop.201200067 PG 15 WC Physics, Multidisciplinary SC Physics GA 083NX UT WOS:000314472400007 ER PT J AU Nesterov, AI Berman, GP Bishop, AR AF Nesterov, Alexander I. Berman, Gennady P. Bishop, Alan R. TI Non-Hermitian approach for modeling of noise-assisted quantum electron transfer in photosynthetic complexes SO FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS LA English DT Article DE Non-Hermitian Hamiltonian; reaction center; electron transfer; noise ID PHYSIOLOGICAL TEMPERATURE; CHARGE SEPARATION; PHOTOSYSTEM-II; LIGHT; COHERENCE; CHLOROPHYLL; ENERGY; SYSTEM AB We model the quantum electron transfer (ET) in the photosynthetic reaction center (RC), using a non-Hermitian Hamiltonian approach. Our model includes (i) two protein cofactors, donor and acceptor, with discrete energy levels and (ii) a third protein pigment (sink) which has a continuous energy spectrum. Interactions are introduced between the donor and acceptor, and between the acceptor and the sink, with noise acting between the donor and acceptor. The noise is considered classically (as an external random force), and it is described by an ensemble of two-level systems (random fluctuators). Each fluctuator has two independent parameters, an amplitude and a switching rate. We represent the noise by a set of fluctuators with fitting parameters (boundaries of switching rates), which allows us to build a desired spectral density of noise in a wide range of frequencies. We analyze the quantum dynamics and the efficiency of the ET as a function of (i) the energy gap between the donor and acceptor, (ii) the strength of the interaction with the continuum, and (iii) noise parameters. As an example, numerical results are presented for the ET through the active pathway in a quinone-type photosystem II RC. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Nesterov, Alexander I.] Univ Guadalajara, CUCEI, Dept Fis, Guadalajara 44420, Jalisco, Mexico. [Berman, Gennady P.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87544 USA. [Bishop, Alan R.] Los Alamos Natl Lab, STE, Los Alamos, NM 87544 USA. RP Nesterov, AI (reprint author), Univ Guadalajara, CUCEI, Dept Fis, Av Revoluc 1500, Guadalajara 44420, Jalisco, Mexico. EM nesterov@cencar.udg.mx; gpb@lanl.gov; arb@lanl.gov OI Nesterov, Alexander/0000-0002-4801-4570 FU National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; CONACyT [118930] FX We are thankful to B. H. McMahon for useful discussions. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. A. I. Nesterov acknowledges the support from the CONACyT, Grant No. 118930. NR 41 TC 7 Z9 7 U1 0 U2 10 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0015-8208 J9 FORTSCHR PHYS JI Fortschritte Phys.-Prog. Phys. PD FEB PY 2013 VL 61 IS 2-3 SI SI BP 95 EP 110 DI 10.1002/prop.201200069 PG 16 WC Physics, Multidisciplinary SC Physics GA 083NX UT WOS:000314472400008 ER PT J AU Xiao, S Xiang, S Yoon, Y Kang, MG Kida, M Aoki, N Reno, JL Ochiai, Y Mourokh, L Fransson, J Bird, JP AF Xiao, S. Xiang, S. Yoon, Y. Kang, M. -G. Kida, M. Aoki, N. Reno, J. L. Ochiai, Y. Mourokh, L. Fransson, J. Bird, J. P. TI Talking through the continuum: New manifestations of Fano-resonance phenomenology realized with mesoscopic nanostructures SO FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS LA English DT Article DE Fano resonance; mesoscopic physics; quantum point contact AB The focus of this review is recent work in which we have demonstrated a highly-flexible approach to the study of Fano-resonance phenomena, by making use of the mesoscopic devices known as quantum point contacts (QPCs). Utilizing the ability of these structures to function as an on-demand quantum state, we demonstrate a highly-flexible system for the investigation of Fano resonances. Our approach involves making measurements of non-locally coupled pairs of QPCs, one of which is used to form the discrete state needed for the Fano resonance, while the other serves as a detector whose conductance is sensitive to the energy of this state. As a demonstration of the flexibility of this approach, we show how it can be used to implement a multi-state Fano resonance, in which two discrete states undergo a robust interaction that is achieved by coupling them to each other through a common continuum. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim C1 [Xiao, S.; Yoon, Y.; Kang, M. -G.; Bird, J. P.] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA. [Xiang, S.; Kida, M.; Aoki, N.; Ochiai, Y.] Chiba Univ, Grad Sch Adv Integrat Sci, Inage Ku, Chiba 2638522, Japan. [Reno, J. L.; Bird, J. P.] Sandia Natl Labs, CINT Sci Dept, Albuquerque, NM 87185 USA. [Mourokh, L.] CUNY Queens Coll, Dept Phys, Flushing, NY 11367 USA. [Fransson, J.] Uppsala Univ, Dept Phys & Astron, S-75121 Uppsala, Sweden. RP Bird, JP (reprint author), SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA. EM jbird@buffalo.edu RI Fransson, Jonas/A-9238-2009; Bird, Jonathan/G-4068-2010 OI Bird, Jonathan/0000-0002-6966-9007 FU Department of Energy [DE-FG03-01ER45920]; US Department of Energy [DE-AC04-94AL85000] FX This work was supported by the Department of Energy (DE-FG03-01ER45920) and was performed, in part, at the Center for Integrated Nanotechnologies, a US DOE, Office of Basic Energy Sciences nanoscale science research center. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the US Department of Energy under Contract No. DE-AC04-94AL85000. NR 38 TC 2 Z9 2 U1 0 U2 8 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0015-8208 J9 FORTSCHR PHYS JI Fortschritte Phys.-Prog. Phys. PD FEB PY 2013 VL 61 IS 2-3 SI SI BP 348 EP 359 DI 10.1002/prop.201200075 PG 12 WC Physics, Multidisciplinary SC Physics GA 083NX UT WOS:000314472400020 ER PT J AU Rowan, AV Plummer, MA Brocklehurst, SH Jones, MA Schultz, DM AF Rowan, Ann V. Plummer, Mitchell A. Brocklehurst, Simon H. Jones, Merren A. Schultz, David M. TI Drainage capture and discharge variations driven by glaciation in the Southern Alps, New Zealand SO GEOLOGY LA English DT Article ID QUATERNARY GLACIATIONS; CANTERBURY PLAINS; CLIMATE; GLACIERS; MAXIMUM; BALANCE AB Sediment flux in proglacial fluvial settings is primarily controlled by discharge, which usually varies predictably over a glacial-interglacial cycle. However, glaciers can flow against the topographic gradient to cross drainage divides, reshaping fluvial drainage networks and dramatically altering discharge. In turn, these variations in discharge will be recorded by proglacial stratigraphy. Glacial-drainage capture often occurs in alpine environments where ice caps straddle range divides, and more subtly where shallow drainage divides cross valley floors. We investigate discharge variations resulting from glacial-drainage capture over the past 40 k.y. for the adjacent Ashburton, Rangitata, and Rakaia basins in the Southern Alps, New Zealand. Although glacial-drainage capture has previously been inferred in the range, our numerical glacier model provides the first quantitative demonstration that this process drives larger variations in discharge for a longer duration than those that occur due to climate change alone. During the Last Glacial Maximum, the effective drainage area of the Ashburton catchment increased to 160% of the interglacial value with drainage capture, driving an increase in discharge exceeding that resulting from glacier recession. Glacial-drainage capture is distinct from traditional (base level-driven) drainage capture and is often unrecognized in proglacial deposits, complicating interpretation of the sedimentary record of climate change. C1 [Rowan, Ann V.; Brocklehurst, Simon H.; Jones, Merren A.; Schultz, David M.] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester M13 9PL, Lancs, England. [Plummer, Mitchell A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Rowan, AV (reprint author), Aberystwyth Univ, Inst Geog & Earth Sci, Aberystwyth SY23 3DB, Dyfed, Wales. RI Schultz, David M./A-3091-2010; Brocklehurst, Simon/G-4127-2014 OI Rowan, Ann/0000-0002-3715-5554; Schultz, David M./0000-0003-1558-6975; FU Natural Environment Research Council [NE/F008295/1]; Dudley Stamp Memorial Fund; Quaternary Research Association New Research Workers Grant; British Sedimentological Research Group Harwood Fund FX This work was undertaken while Rowan was in receipt of Natural Environment Research Council studentship NE/F008295/1. Additional funding was gratefully received from the Dudley Stamp Memorial Fund, the Quaternary Research Association New Research Workers Grant, and the British Sedimentological Research Group Harwood Fund. The National Institute of Water and Atmospheric Research Ltd. (NIWA) provided the gridded rainfall data, and Land Information New Zealand provided the 50-m digital elevation model. Three anonymous reviewers provided constructive comments. NR 26 TC 5 Z9 5 U1 0 U2 14 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0091-7613 J9 GEOLOGY JI Geology PD FEB PY 2013 VL 41 IS 2 BP 199 EP 202 DI 10.1130/G33829.1 PG 4 WC Geology SC Geology GA 081MV UT WOS:000314327200026 ER PT J AU Carbone, MS Williams, AP Ambrose, AR Boot, CM Bradley, ES Dawson, TE Schaeffer, SM Schimel, JP Still, CJ AF Carbone, Mariah S. Williams, A. Park Ambrose, Anthony R. Boot, Claudia M. Bradley, Eliza S. Dawson, Todd E. Schaeffer, Sean M. Schimel, Joshua P. Still, Christopher J. TI Cloud shading and fog drip influence the metabolism of a coastal pine ecosystem SO GLOBAL CHANGE BIOLOGY LA English DT Article DE C-13; Bishop pine; cloud shading; decomposition; fog drip; Santa Cruz Island; soil respiration; stratus clouds ID CARBON-ISOTOPE DISCRIMINATION; DRYING-REWETTING FREQUENCY; CLIMATE-CHANGE; SOIL-CARBON; SUMMER FOG; SEQUOIA-SEMPERVIRENS; WATER RELATIONS; CALIFORNIA; FOREST; RESPIRATION AB Assessing the ecological importance of clouds has substantial implications for our basic understanding of ecosystems and for predicting how they will respond to a changing climate. This study was conducted in a coastal Bishop pine forest ecosystem that experiences regular cycles of stratus cloud cover and inundation in summer. Our objective was to understand how these clouds impact ecosystem metabolism by contrasting two sites along a gradient of summer stratus cover. The site that was under cloud cover similar to 15% more of the summer daytime hours had lower air temperatures and evaporation rates, higher soil moisture content, and received more frequent fog drip inputs than the site with less cloud cover. These cloud-driven differences in environmental conditions translated into large differences in plant and microbial activity. Pine trees at the site with greater cloud cover exhibited less water stress in summer, larger basal area growth, and greater rates of sap velocity. The difference in basal area growth between the two sites was largely due to summer growth. Microbial metabolism was highly responsive to fog drip, illustrated by an observed similar to 3-fold increase in microbial biomass C with increasing summer fog drip. In addition, the site with more cloud cover had greater total soil respiration and a larger fractional contribution from heterotrophic sources. We conclude that clouds are important to the ecological functioning of these coastal forests, providing summer shading and cooling that relieve pine and microbial drought stress as well as regular moisture inputs that elevate plant and microbial metabolism. These findings are important for understanding how these and other seasonally dry coastal ecosystems will respond to predicted changes in stratus cover, rainfall, and temperature. C1 [Carbone, Mariah S.] Natl Ctr Ecol Anal & Synth, Santa Barbara, CA 93101 USA. [Carbone, Mariah S.; Bradley, Eliza S.; Still, Christopher J.] Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA. [Williams, A. Park] Los Alamos Natl Lab, Div Earth & Environm Sci, Los Alamos, NM 87545 USA. [Ambrose, Anthony R.; Dawson, Todd E.] Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA. [Boot, Claudia M.] Colorado State Univ, Nat Resource Ecol Lab, Ft Collins, CO 80523 USA. [Schaeffer, Sean M.] Univ Tennessee, Biosyst Engn & Soil Sci Dept, Knoxville, TN 37996 USA. [Schimel, Joshua P.] Univ Calif Santa Barbara, Dept Ecol Evolut & Marine Biol, Santa Barbara, CA 93106 USA. [Still, Christopher J.] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR 97331 USA. RP Carbone, MS (reprint author), Natl Ctr Ecol Anal & Synth, Santa Barbara, CA 93101 USA. EM mcarbone@nceas.ucsb.edu RI Boot, Claudia/C-8622-2013; Schaeffer, Sean/G-5071-2012; Carbone, Mariah/H-7389-2012; Williams, Park/B-8214-2016; OI Carbone, Mariah/0000-0002-7832-7009; Williams, Park/0000-0001-8176-8166; Schaeffer, Sean/0000-0002-9684-2952 FU Kearney Foundation of Soil Science; Andrew W. Mellon Foundation; NSF [DEB: 0640666, EF-0 553 768]; NOAA Climate & Global Change Postdoctoral Fellowship Program; LANL-LDRD; NCEAS FX This work was funded by the Kearney Foundation of Soil Science, the Andrew W. Mellon Foundation, and NSF grant DEB: 0640666. MSC was supported by the NOAA Climate & Global Change Postdoctoral Fellowship Program administered by UCAR; and NCEAS, funded by NSF (grant #EF-0 553 768). APW acknowledges funding from LANL-LDRD. We thank L. Laughrin, B. Guerrero, S. Trumbore, X. Xu, S. Baguskas, C. Ebert, D. Fischer, M. Lawler, A. Richardson, and the University of California Santa Cruz Island Natural Reserve, and The Nature Conservancy for help during this work. NR 72 TC 15 Z9 15 U1 8 U2 98 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD FEB PY 2013 VL 19 IS 2 BP 484 EP 497 DI 10.1111/gcb.12054 PG 14 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 080CQ UT WOS:000314219200014 PM 23504786 ER PT J AU Yang, YF Wu, LW Lin, QY Yuan, MT Xu, DP Yu, H Hu, YG Duan, JC Li, XZ He, ZL Xue, K van Nostrand, J Wang, SP Zhou, JZ AF Yang, Yunfeng Wu, Linwei Lin, Qiaoyan Yuan, Mengting Xu, Depeng Yu, Hao Hu, Yigang Duan, Jichuang Li, Xiangzhen He, Zhili Xue, Kai van Nostrand, Joy Wang, Shiping Zhou, Jizhong TI Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland SO GLOBAL CHANGE BIOLOGY LA English DT Article DE climate change; gene diversity; microbial community; summer grazing; Tibetan alpine grassland ID 16S RIBOSOMAL-RNA; SEA OIL PLUME; NITROUS-OXIDE; LAND-USE; VEGETATION DYNAMICS; ECOSYSTEM FUNCTION; INNER-MONGOLIA; DIVERSITY; BIODIVERSITY; PLATEAU AB Microbes play key roles in various biogeochemical processes, including carbon (C) and nitrogen (N) cycling. However, changes of microbial community at the functional gene level by livestock grazing, which is a global land-use activity, remain unclear. Here we use a functional gene array, GeoChip 4.0, to examine the effects of free livestock grazing on the microbial community at an experimental site of Tibet, a region known to be very sensitive to anthropogenic perturbation and global warming. Our results showed that grazing changed microbial community functional structure, in addition to aboveground vegetation and soil geochemical properties. Further statistical tests showed that microbial community functional structures were closely correlated with environmental variables, and variations in microbial community functional structures were mainly controlled by aboveground vegetation, soil C/N ratio, and NH4+-N. In-depth examination of N cycling genes showed that abundances of N mineralization and nitrification genes were increased at grazed sites, but denitrification and N-reduction genes were decreased, suggesting that functional potentials of relevant bioprocesses were changed. Meanwhile, abundances of genes involved in methane cycling, C fixation, and degradation were decreased, which might be caused by vegetation removal and hence decrease in litter accumulation at grazed sites. In contrast, abundances of virulence, stress, and antibiotics resistance genes were increased because of the presence of livestock. In conclusion, these results indicated that soil microbial community functional structure was very sensitive to the impact of livestock grazing and revealed microbial functional potentials in regulating soil N and C cycling, supporting the necessity to include microbial components in evaluating the consequence of land-use and/or climate changes. C1 [Yang, Yunfeng; Wu, Linwei; Yuan, Mengting; Xu, Depeng; Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Lin, Qiaoyan; Wang, Shiping] Chinese Acad Sci, Inst Tibetan Plateau Res, Lab Alpine Ecol & Biodivers, Beijing 100101, Peoples R China. [Lin, Qiaoyan; Hu, Yigang; Duan, Jichuang; Wang, Shiping] Chinese Acad Sci, NW Inst Plateau Biol, Key Lab Adapt & Evolut Plateau Biota, Xining 810008, Peoples R China. [Yu, Hao; He, Zhili; Xue, Kai; van Nostrand, Joy; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Yu, Hao; He, Zhili; Xue, Kai; van Nostrand, Joy; Zhou, Jizhong] Univ Oklahoma, Dept Bot & Microbiol, Norman, OK 73019 USA. [Yu, Hao] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, Harbin 150090, Peoples R China. [Yu, Hao] Liaoning Tech Univ, Coll Resource & Environm Engn, Buxin 123000, Liaoning, Peoples R China. [Hu, Yigang] Chinese Acad Sci Lanzhou, Shapotou Desert Expt & Res Stn, Cold & Arid Reg & Environm & Engn Res Inst, Lanzhou 730000, Peoples R China. [Li, Xiangzhen] Chinese Acad Sci, Chengdu Inst Biol, Chengdu 610041, Peoples R China. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Yang, YF (reprint author), Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. EM yangyf@tsinghua.edu.cn RI He, Zhili/C-2879-2012; Yang, Yunfeng/H-9853-2013; Van Nostrand, Joy/F-1740-2016 OI Yang, Yunfeng/0000-0001-8274-6196; Van Nostrand, Joy/0000-0001-9548-6450 FU National Science Foundation of China [41171201]; State Key Joint Laboratory of Environment Simulation and Pollution Control [11Z03ESPCT]; National Basic Research Program [2010CB833502]; United States Department of Energy, Biological Systems Research on the Role of Microbial Communities in C Cycling Program [DE-SC0004601]; Oklahoma Bioenergy Center (OBC); ENIGMA-Ecosystems; Networks Integrated; Genes and Molecular Assemblies through the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231]; United States Department of Agriculture through NSF-USDA Microbial Observatories Program [2007-35319-18305] FX The authors wish to thank Haibei Research Station staff for sampling assistance, and the anonymous reviewers for constructive comments. This research was supported by grants to Yunfeng Yang from National Science Foundation of China (41171201) and State Key Joint Laboratory of Environment Simulation and Pollution Control (11Z03ESPCT), to Shiping Wang from the National Basic Research Program (2010CB833502), to Jizhong Zhou from United States Department of Energy, Biological Systems Research on the Role of Microbial Communities in C Cycling Program (DE-SC0004601), and Oklahoma Bioenergy Center (OBC). The GeoChips and associated computational pipelines used in this study were supported by ENIGMA-Ecosystems and Networks Integrated with Genes and Molecular Assemblies through the Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and by the United States Department of Agriculture (Project 2007-35319-18305) through NSF-USDA Microbial Observatories Program. NR 86 TC 47 Z9 57 U1 35 U2 332 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-1013 J9 GLOBAL CHANGE BIOL JI Glob. Change Biol. PD FEB PY 2013 VL 19 IS 2 BP 637 EP 648 DI 10.1111/gcb.12065 PG 12 WC Biodiversity Conservation; Ecology; Environmental Sciences SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 080CQ UT WOS:000314219200026 PM 23504798 ER PT J AU Perotti, LE Deiterding, R Inaba, K Shepherd, J Ortiz, M AF Perotti, L. E. Deiterding, R. Inaba, K. Shepherd, J. Ortiz, M. TI Elastic response of water-filled fiber composite tubes under shock wave loading SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE Fiber reinforced; Composite materials; Fluid structure interaction; Shock wave loading; Flexural waves ID REINFORCED COMPOSITES; DYNAMIC-RESPONSE; DAMAGE EVOLUTION; FLUID; DEFORMATION; MODEL; CAVITATION; SIMULATION; ALGORITHM; ELEMENTS AB We experimentally and numerically investigate the response of fluid-filled filament-wound composite tubes subjected to axial shock wave loading in water. Our study focuses on the fluid-structure interaction occurring when the shock wave in the fluid propagates parallel to the axis of the tube, creating pressure waves in the fluid coupled to flexural waves in the shell. The in-house-developed computational scheme couples an Eulerian fluid solver with a Lagrangian shell solver, which includes a new and simple material model to capture the response of fiber composites in finite kinematics. In the experiments and simulations we examine tubes with fiber winding angles equal to 45 degrees and 60 degrees, and we measure the precursor and primary wave speeds, hoop and longitudinal strains, and pressure. The experimental and computational results are in agreement, showing the validity of the computational scheme in complex fluid-structure interaction problems involving fiber composite materials subjected to shock waves. The analyses of the measured quantities show the strong coupling of axial and hoop deformations and the significant effect of fiber winding angle on the composite tube response, which differs substantially from that of a metal tube in the same configuration. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Perotti, L. E.; Shepherd, J.; Ortiz, M.] CALTECH, Pasadena, CA 91125 USA. [Deiterding, R.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Inaba, K.] Tokyo Inst Technol, Meguro Ku, Tokyo 1528550, Japan. RP Ortiz, M (reprint author), CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA. EM luigiemp@caltech.edu; deiterdingr@ornl.gov; inaba@mech.titech.ac.jp; joseph.e.shepherd@caltech.edu; ortiz@aero.caltech.edu RI Deiterding, Ralf/A-3394-2009; Shepherd, Joseph/B-5997-2014 OI Deiterding, Ralf/0000-0003-4776-8183; Shepherd, Joseph/0000-0003-3181-9310 FU Office of Naval Research as part of the DOD MURI (ONR) [N00014-06-1-0730] FX The authors want to thank the Office of Naval Research for sponsoring this research as part of the DOD MURI program on Mechanics and Mechanisms of Impulse Loading, Damage and Failure of Marine Structures and Materials. (ONR Grant No. N00014-06-1-0730, program manager Dr. Y. D. S. Rajapakse). NR 50 TC 4 Z9 5 U1 0 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 EI 1879-2146 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD FEB PY 2013 VL 50 IS 3-4 BP 473 EP 486 DI 10.1016/j.ijsolstr.2012.10.015 PG 14 WC Mechanics SC Mechanics GA 077DU UT WOS:000314008900001 ER PT J AU Williams, A Whitehead, CD Lutz, J AF Williams, Alison Whitehead, Camilla Dunham Lutz, James TI A crosscutting review of plumbing products-related water efficiency and conservation SO JOURNAL AMERICAN WATER WORKS ASSOCIATION LA English DT Article AB Reducing the water use of plumbing products-toilets, urinals, faucets, and showerheads-has become a popular conservation measure, and improved technologies have created opportunities for further progress. Plumbing products do not operate in a vacuum, however. This article reviews the literature related to plumbing products and organizes it into a framework comprising the following categories: water use efficiency, product components, product performance, source water, energy, and plumbing and sewer infrastructure. This framework provides a starting point for professionals considering water efficiency. and conservation measures to identify relevant technologies and trends as well as crosscutting issues that should be considered. C1 [Williams, Alison] Lawrence Berkeley Natl Lab, Berkeley, CA 94270 USA. RP Williams, A (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS90-4000, Berkeley, CA 94270 USA. EM aawilliams@lbl.gov NR 1 TC 0 Z9 0 U1 1 U2 10 PU AMER WATER WORKS ASSOC PI DENVER PA 6666 W QUINCY AVE, DENVER, CO 80235 USA SN 2164-4535 J9 J AM WATER WORKS ASS JI J. Am. Water Work Assoc. PD FEB PY 2013 VL 105 IS 2 BP 39 EP 40 DI 10.5942/jawwa.2013.105.0004 PG 2 WC Engineering, Civil; Water Resources SC Engineering; Water Resources GA 081MC UT WOS:000314325300007 ER PT J AU Liberton, M Page, LE O'Dell, WB O'Neill, H Mamontov, E Urban, VS Pakrasi, HB AF Liberton, Michelle Page, Lawrence E. O'Dell, William B. O'Neill, Hugh Mamontov, Eugene Urban, Volker S. Pakrasi, Himadri B. TI Organization and Flexibility of Cyanobacterial Thylakoid Membranes Examined by Neutron Scattering SO JOURNAL OF BIOLOGICAL CHEMISTRY LA English DT Article ID PHYCOBILISOME MUTANTS; PCC 6803; IN-VIVO; SYNECHOCYSTIS; PCC-6803 AB Cyanobacteria are prokaryotes that can use photosynthesis to convert sunlight into cellular fuel. Knowledge of the organization of the membrane systems in cyanobacteria is critical to understanding the metabolic processes in these organisms. We examined the wild-type strain of Synechocystis sp. PCC6803 and a series of mutants with altered light-harvesting phycobilisome antenna systems for changes in thylakoid membrane architecture under different conditions. Using small-angle neutron scattering, it was possible to resolve correlation distances of subcellular structures in live cells on the nanometer scale and capture dynamic light-induced changes to these distances. Measurements made from samples with varied scattering contrasts confirmed that these distances could be attributed to the thylakoid lamellar system. We found that the changes to the thylakoid system were reversible between light-and dark-adapted states, demonstrating a robust structural flexibility in the architecture of cyanobacterial cells. Chemical disruption of photosynthetic electron transfer diminished these changes, confirming the involvement of the photosynthetic apparatus. We have correlated these findings with electron microscopy data to understand the origin of the changes in the membranes and found that light induces an expansion in the center-to-center distances between the thylakoid membrane layers. These combined data lend a dynamic dimension to the intracellular organization in cyanobacterial cells. C1 [Liberton, Michelle; Page, Lawrence E.; Pakrasi, Himadri B.] Washington Univ, Dept Biol, St Louis, MO 63130 USA. [O'Dell, William B.; O'Neill, Hugh; Urban, Volker S.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. [Mamontov, Eugene] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Pakrasi, HB (reprint author), Washington Univ, Dept Biol, 1 Brookings Dr, St Louis, MO 63130 USA. EM pakrasi@wustl.edu RI Urban, Volker/N-5361-2015; Mamontov, Eugene/Q-1003-2015; OI Urban, Volker/0000-0002-7962-3408; Mamontov, Eugene/0000-0002-5684-2675; O'Dell, William/0000-0002-8063-5190; O'Neill, Hugh/0000-0003-2966-5527 FU Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center; United States Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC 0001035]; United States Department of Energy, Office of Science, Office of Biological and Environmental Research Project [ERKP291]; United States Department of Energy, Scientific User Facilities Division, Office of Basic Energy Sciences FX We thank Ghada Ajlani for the kind gift of the phycobilisome mutant strains used in this study. We thank all members of the Pakrasi laboratory for helpful discussions and Howard Berg (Donald Danforth Plant Science Center Integrated Microscopy Facility) for TEM assistance. We thank Sai Venkatesh Pingali for implementing software used for SANS data analysis. This material is based upon work supported as part of the Photosynthetic Antenna Research Center (PARC), an Energy Frontier Research Center funded by the United States Department of Energy, Office of Science, Office of Basic Energy Sciences under Award DE-SC 0001035. The Bio-SANS instrument used in these studies is a resource of the Center for Structural Molecular Biology at Oak Ridge National Laboratory, which is supported by United States Department of Energy, Office of Science, Office of Biological and Environmental Research Project ERKP291. Bio-SANS is located at the Oak Ridge National Laboratory High Flux Isotope Reactor, and the BASIS instrument is located at the Spallation Neutron Source. Both neutron sources are sponsored by the United States Department of Energy, Scientific User Facilities Division, Office of Basic Energy Sciences. NR 24 TC 23 Z9 24 U1 7 U2 53 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 0021-9258 J9 J BIOL CHEM JI J. Biol. Chem. PD FEB 1 PY 2013 VL 288 IS 5 BP 3632 EP 3640 DI 10.1074/jbc.M112.416933 PG 9 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 082NE UT WOS:000314397900067 PM 23255600 ER PT J AU Shingledecker, JP Pharr, GM AF Shingledecker, J. P. Pharr, G. M. TI Testing and Analysis of Full-Scale Creep-Rupture Experiments on Inconel Alloy 740 Cold-Formed Tubing SO JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE LA English DT Article DE cold-work; creep ductility; nickel-based alloys; pre-strain ID BEHAVIOR; CAVITATION; PRESTRAIN; DUCTILITY; DESIGN AB Full-scale pressurized creep-rupture tests were conducted on Inconel (R) alloy 740 cold-formed tube bends to evaluate the effect of cold-work on the performance of tube bends for high-temperature creep applications. A new method of analysis is developed that can be used to simplify the complexities of structural (geometric) effects and material degradation due to cold-work. Results show that Inconel (R) alloy 740 behaves similarly to other age-hardenable nickel-based alloys subjected to cold-work prior to creep testing with large reductions in rupture life and ductility and a corresponding moderate increase in minimum creep rate. The results also demonstrate that the full-size test method can be a beneficial to understanding the performance of large components in service. C1 [Shingledecker, J. P.] Elect Power Res Inst, Charlotte, NC USA. [Shingledecker, J. P.; Pharr, G. M.] Univ Tennessee, Knoxville, TN USA. [Shingledecker, J. P.; Pharr, G. M.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Shingledecker, JP (reprint author), Elect Power Res Inst, Charlotte, NC USA. EM jshingledecker@epri.com FU U.S. Department of Energy (DOE), Office of Fossil Energy, Advanced Research Materials Program; DOE/OCDO USC Steam Boiler Consortium; ORNL SHaRE User Center, Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. DOE [DE-AC05-00OR22725]; UT-Battelle, LLC.; U.S. Department of Energy [DE-FG26-01NT41175]; Ohio Coal Development Office of the Ohio Department of Development [CDO/D-0020, D-05-02A] FX Research at Oak Ridge National Laboratory (Oak Ridge, TN USA) was supported by the U.S. Department of Energy (DOE), Office of Fossil Energy, Advanced Research Materials Program, the DOE/OCDO USC Steam Boiler Consortium, and the ORNL SHaRE User Center, Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. DOE, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. Special thanks to B. Sparks and T. Geer (ORNL) for their assistance with the experimental work and G. Stanko (Foster Wheeler Development Corp.) for supplying the material and components for this study. The support of consortium sponsors R. Romanosky and P. Rawls (NETL) is appreciated. This publication was prepared with partial support of the U.S. Department of Energy, under Award No. DE-FG26-01NT41175 and the Ohio Coal Development Office of the Ohio Department of Development under Grant Agreement Number CDO/D-0020 (now D-05-02A). However, any opinions, findings, conclusions, or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the DOE and/or the Ohio Coal Development Office of the Ohio Department of Development. NR 25 TC 9 Z9 10 U1 1 U2 34 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1059-9495 J9 J MATER ENG PERFORM JI J. Mater. Eng. Perform. PD FEB PY 2013 VL 22 IS 2 BP 454 EP 462 DI 10.1007/s11665-012-0274-4 PG 9 WC Materials Science, Multidisciplinary SC Materials Science GA 080YR UT WOS:000314281000018 ER PT J AU Chen, XB Li, C Rajh, T Kimmel, G AF Chen, Xiaobo Li, Can Rajh, Tijana Kimmel, Gregory TI TITANIUM DIOXIDE NANOMATERIALS Introduction SO JOURNAL OF MATERIALS RESEARCH LA English DT Editorial Material C1 [Chen, Xiaobo] Univ Missouri, Kansas City, MO 64110 USA. [Li, Can] Chinese Acad Sci, Dalian Inst Chem Phys, Liaoning 116023, Peoples R China. [Rajh, Tijana] Argonne Natl Lab, Argonne, IL 60439 USA. [Kimmel, Gregory] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Chen, XB (reprint author), Univ Missouri, Kansas City, MO 64110 USA. NR 3 TC 1 Z9 1 U1 1 U2 33 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD FEB PY 2013 VL 28 IS 3 BP 269 EP 269 DI 10.1557/jmr.2013.8 PG 1 WC Materials Science, Multidisciplinary SC Materials Science GA 082VX UT WOS:000314421700001 ER PT J AU Monson, TC Rodriguez, MA Leger, JL Stevens, TE Huber, DL AF Monson, Todd C. Rodriguez, Mark A. Leger, Jean L. Stevens, Tyler E. Huber, Dale L. TI A simple low-cost synthesis of brookite TiO2 nanoparticles SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID SOL-GEL SYNTHESIS; NANOCRYSTALLINE TITANIA; SELECTIVE SYNTHESIS; HYDROTHERMAL METHOD; SIZE QUANTIZATION; NANOSIZE RUTILE; ANATASE; PARTICLES; DIOXIDE; PHOTOREACTIVITY AB A new low-cost synthesis of brookite TiO2 nanoparticles using isopropanol as both the solvent and ligand is described here. Other ligands can be bound to the titania surface during or postsynthesis to tailor the particles' functionality. The often extremely rapid hydrolysis of titanium isopropoxide has been successfully controlled so that nanoparticle growth is achieved. The resulting 4-nm particles are nonagglomerated, stable in solution, and have a low polydispersity. The synthesis is scalable and enables the simple fabrication of large amounts of titania nanoparticles that do not scatter visible light and are highly suited for incorporation into optical composites. C1 [Monson, Todd C.; Rodriguez, Mark A.; Leger, Jean L.; Stevens, Tyler E.; Huber, Dale L.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Monson, TC (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM tmonson@sandia.gov RI Huber, Dale/A-6006-2008; OI Huber, Dale/0000-0001-6872-8469; Monson, Todd/0000-0002-9782-7084 FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We thank P. Provencio for the HRTEM images, D. Overmeyer for the XRD data, and A. Boal for the NMR spectra. We also thank A.F. Emery, J.L. Crandall, and D.E. Fish for assistance in sample preparation. Funding was provided by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 42 TC 4 Z9 4 U1 1 U2 89 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD FEB PY 2013 VL 28 IS 3 BP 348 EP 353 DI 10.1557/jmr.2012.358 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 082VX UT WOS:000314421700010 ER PT J AU Liu, J Nichols, EJ Howe, J Misture, ST AF Liu, Jian Nichols, Eric J. Howe, Jane Misture, Scott T. TI Enhanced photocatalytic activity of TiO2-niobate nanosheet composites SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID METHYLENE-BLUE; TIO2 ANATASE; RARE-EARTH; WATER; SURFACE; AURIVILLIUS; PEROVSKITE; OXIDES; NANOCOMPOSITES; DEGRADATION AB Protonated niobate nanosheets, H1.8Bi0.2CaNaNb3O10 (BCNN), were synthesized using a new organic-free simultaneous ion exchange and exfoliation process from the Aurivillius phase Bi2CaNaNb3O12. Nanosheet/TiO2 composites were prepared by thermal treatment of physical mixtures of commercially available anatase TiO2 and the nanosheet suspension. Methylene blue (MB) dye degradation studies for the composite show a clear correlation between the MB surface adsorption and the degradation rate. The composite exhibits strongly enhanced photocatalytic activity as the calcination temperature increases, suggesting the possibility of charge transfer at the BCNN-TiO2 interface and the existence of Nb5+ and O2- acid-base pairs. Both phenomena are attributed to the processing approach, which includes topochemical dehydration of the BCNN nanosheets during heat treatment. C1 [Liu, Jian; Nichols, Eric J.; Misture, Scott T.] Alfred Univ, Kazuo Inamori Sch Engn, Dept Mat Sci & Engn, Alfred, NY 14802 USA. [Howe, Jane] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Misture, ST (reprint author), Alfred Univ, Kazuo Inamori Sch Engn, Dept Mat Sci & Engn, Alfred, NY 14802 USA. EM misture@alfred.edu FU National Science Foundation [DMR 0606246]; Alfred University; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program FX This material is based upon work supported by the National Science Foundation under Grant No. DMR 0606246. J.L. was supported separately by Alfred University. The TEM study performed at the Oak Ridge National Laboratory's High Temperature Materials Laboratory was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. NR 37 TC 3 Z9 3 U1 2 U2 63 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 J9 J MATER RES JI J. Mater. Res. PD FEB PY 2013 VL 28 IS 3 BP 424 EP 430 DI 10.1557/jmr.2012.357 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 082VX UT WOS:000314421700021 ER PT J AU Bihari, BL AF Bihari, Barna L. TI Transactional Memory for Unstructured Mesh Simulations SO JOURNAL OF SCIENTIFIC COMPUTING LA English DT Article DE Transactional memory; Unstructured mesh; Finite volume; Monte Carlo transport; Threaded algorithms AB In this paper we study transactional memory (TM) as a new tool for threading codes in this new era of multi- and many-core computers. In particular, we investigate the features and study the applicability of transactional memory as an efficient and easy-to-use alternative for handling memory conflicts in unstructured mesh simulations that use shared memory. The software tool used for our preliminary analysis of this novel construct is IBM's freely available Software Transactional Memory (STM) system. For our studies, we developed the BUSTM benchmark which is a test code with state-of-the-art unstructured-mesh bookkeeping. The numerical algorithms are simplified yet still exhibit most of the salient features of modern unstructured mesh methods. We apply STM to two frequently used algorithm types used in multi-physics codes with realistic 3-D meshes. Our computational experiments indicate a good fit between these application scenarios and the TM features. C1 Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Bihari, BL (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM bihari1@llnl.gov FU Rockwell International; Hypercomp, Inc.; Boeing FX The author wishes to thank John Gyllenhaal and Scott Futral of Livermore Computing (LC) for numerous fruitful discussions on this subject and for support of this work, as well as to David Fox, also of LC, for facilitating all the runs on the (now retired) IBM Power5 system. The author also acknowledges past financial support from Rockwell International, Boeing, and Hypercomp, Inc. in developing the unstructured mesh bookkeeping used in the experiments, and from Icon Consulting and IBM in writing the BUSTM code. NR 13 TC 1 Z9 1 U1 0 U2 2 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0885-7474 J9 J SCI COMPUT JI J. Sci. Comput. PD FEB PY 2013 VL 54 IS 2-3 BP 311 EP 332 DI 10.1007/s10915-012-9643-2 PG 22 WC Mathematics, Applied SC Mathematics GA 077WW UT WOS:000314061100004 ER PT J AU Jemison, M Loch, E Sussman, M Shashkov, M Arienti, M Ohta, M Wang, YH AF Jemison, Matthew Loch, Eva Sussman, Mark Shashkov, Mikhail Arienti, Marco Ohta, Mitsuhiro Wang, Yaohong TI A Coupled Level Set-Moment of Fluid Method for Incompressible Two-Phase Flows SO JOURNAL OF SCIENTIFIC COMPUTING LA English DT Article DE Moment of fluid; Volume of fluid; Level set; Two-phase flow; Deforming boundaries ID NAVIER-STOKES EQUATIONS; SHARP INTERFACE METHOD; PROJECTION METHOD; ALGORITHMS; RECONSTRUCTION; CURVATURE; BUBBLES; SCHEME AB A coupled level set and moment of fluid method (CLSMOF) is described for computing solutions to incompressible two-phase flows. The local piecewise linear interface reconstruction (the CLSMOF reconstruction) uses information from the level set function, volume of fluid function, and reference centroid, in order to produce a slope and an intercept for the local reconstruction. The level set function is coupled to the volume-of-fluid function and reference centroid by being maintained as the signed distance to the CLSMOF piecewise linear reconstructed interface. The nonlinear terms in the momentum equations are solved using the sharp interface approach recently developed by Raessi and Pitsch (Annual Research Brief, 2009). We have modified the algorithm of Raessi and Pitsch from a staggered grid method to a collocated grid method and we combine their treatment for the nonlinear terms with the variable density, collocated, pressure projection algorithm developed by Kwatra et al. (J. Comput. Phys. 228:4146-4161, 2009). A collocated grid method makes it convenient for using block structured adaptive mesh refinement (AMR) grids. Many 2D and 3D numerical simulations of bubbles, jets, drops, and waves on a block structured adaptive grid are presented in order to demonstrate the capabilities of our new method. C1 [Jemison, Matthew; Sussman, Mark] Florida State Univ, Dept Appl & Computat Math, Tallahassee, FL 32306 USA. [Loch, Eva] Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math, Aachen, Germany. [Shashkov, Mikhail] Los Alamos Natl Lab, X Computat Phys Div, Los Alamos, NM USA. [Arienti, Marco] Sandia Natl Labs, Livermore, CA USA. [Ohta, Mitsuhiro] Univ Tokushima, Fac Engn, Dept Energy Syst, Inst Sci & Technol,Dept Mech Engn, Tokushima 770, Japan. [Wang, Yaohong] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA. RP Sussman, M (reprint author), Florida State Univ, Dept Appl & Computat Math, Tallahassee, FL 32306 USA. EM mjemison@math.fsu.edu; eloch@igpm.rwth-aachen.de; sussman@math.fsu.edu; shashkov@lanl.gov; marient@sandia.gov; m-ohta@me.tokushima-u.ac.jp; ywang@math.ucsb.edu FU National Science Foundation [DMS 0713256, DMS 1016381]; United Technologies Research Center; Sandia National Labs; Sandia National Laboratories via the Early Career LDRD program; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]; DOE Advanced Simulation and Computing (ASC) program; DOE Office of Science ASCR Program FX Work supported in part by the National Science Foundation under contracts DMS 0713256, DMS 1016381. M. Sussman also acknowledges the support by United Technologies Research Center and Sandia National Labs. M. Arienti acknowledges the support by Sandia National Laboratories via the Early Career LDRD program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The work of M. Shashkov was performed under the auspices of the National Nuclear Security Administration of the US Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 and partially supported by the DOE Advanced Simulation and Computing (ASC) program and the DOE Office of Science ASCR Program. NR 43 TC 18 Z9 18 U1 2 U2 41 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0885-7474 EI 1573-7691 J9 J SCI COMPUT JI J. Sci. Comput. PD FEB PY 2013 VL 54 IS 2-3 BP 454 EP 491 DI 10.1007/s10915-012-9614-7 PG 38 WC Mathematics, Applied SC Mathematics GA 077WW UT WOS:000314061100010 ER PT J AU Xing, YL Shu, CW AF Xing, Yulong Shu, Chi-Wang TI High Order Well-Balanced WENO Scheme for the Gas Dynamics Equations Under Gravitational Fields SO JOURNAL OF SCIENTIFIC COMPUTING LA English DT Article DE Euler equations; Well-balanced; WENO scheme; Finite difference method; Gravitational field ID ESSENTIALLY NONOSCILLATORY SCHEMES; SHALLOW-WATER EQUATIONS; KINETIC SCHEME; SOURCE TERMS; CONSERVATION-LAWS; FLOWS AB The gas dynamics equations, coupled with a static gravitational field, admit the hydrostatic balance where the flux produced by the pressure is exactly canceled by the gravitational source term. Many astrophysical problems involve the hydrodynamical evolution in a gravitational field, therefore it is essential to correctly capture the effect of gravitational force in the simulations. Improper treatment of the gravitational force can lead to a solution which either oscillates around the equilibrium, or deviates from the equilibrium after a long time run. In this paper we design high order well-balanced finite difference WENO schemes to this system, which can preserve the hydrostatic balance state exactly and at the same time can maintain genuine high order accuracy. Numerical tests are performed to verify high order accuracy, well-balanced property, and good resolution for smooth and discontinuous solutions. The main purpose of the well-balanced schemes designed in this paper is to well resolve small perturbations of the hydrostatic balance state on coarse meshes. The more difficult issue of convergence towards such hydrostatic balance state from an arbitrary initial condition is not addressed in this paper. C1 [Xing, Yulong] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Xing, Yulong] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA. [Shu, Chi-Wang] Brown Univ, Div Appl Math, Providence, RI 02912 USA. RP Xing, YL (reprint author), Univ Tennessee, Dept Math, Knoxville, TN 37996 USA. EM xingy@math.utk.edu; shu@dam.brown.edu FU Office of Advanced Scientific Computing Research; U.S. Department of Energy; ORNL [DE-AC05-00OR22725]; ARO [W911NF-11-1-0091]; NSF [DMS-1112700] FX Y. Xing research was sponsored by the Office of Advanced Scientific Computing Research; U.S. Department of Energy. The work was partially performed at the ORNL, which was managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725.; C.-W. Shu research was supported by ARO grant W911NF-11-1-0091 and NSF grant DMS-1112700. NR 23 TC 13 Z9 14 U1 1 U2 6 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0885-7474 J9 J SCI COMPUT JI J. Sci. Comput. PD FEB PY 2013 VL 54 IS 2-3 BP 645 EP 662 DI 10.1007/s10915-012-9585-8 PG 18 WC Mathematics, Applied SC Mathematics GA 077WW UT WOS:000314061100018 ER PT J AU Macal, CM North, MJ AF Macal, C. M. North, M. J. TI Successful approaches for teaching agent-based simulation SO JOURNAL OF SIMULATION LA English DT Article DE agent-based modelling and simulation; teaching; complex adaptive systems; simulation education AB Agent-based simulation is a relatively new modelling technique that is being widely used by many disciplines to model complex adaptive systems. Few full-length courses exist on agent-based modelling, and a standard curriculum has not yet been established. But there is considerable demand to include agent-based modelling into simulation courses. Modelers often come to agent-based simulation (ABS) by way of self-study or attendance at tutorials and short courses. Although there is substantial overlap, there are many aspects of agent-based modelling that differ from discrete-event simulation and System Dynamics, including the applicable problem domains, the disciplines and backgrounds of students, and the underpinnings of its computational implementation. These factors make agent-based modelling difficult to include as an incremental add-on to existing simulation courses. This paper's contribution is to report on some approaches to teaching ABS that the authors have successfully used in a range of classes and workshops. Journal of Simulation (2013) 7, 1-11. doi:10.1057/jos.2012.1; published online 4 May 2012 C1 [Macal, C. M.] Argonne Natl Lab, Decis & Informat Sci Div, Ctr Complex Adapt Agent Syst Simulat, Argonne, IL 60439 USA. [Macal, C. M.; North, M. J.] Univ Chicago, Chicago, IL 60637 USA. RP Macal, CM (reprint author), Argonne Natl Lab, Decis & Informat Sci Div, Ctr Complex Adapt Agent Syst Simulat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM macal@anl.gov FU US Department of Energy [DE-AC02-06CH11357] FX This work was supported by the US Department of Energy under contract number DE-AC02-06CH11357. NR 38 TC 5 Z9 5 U1 1 U2 23 PU PALGRAVE MACMILLAN LTD PI BASINGSTOKE PA BRUNEL RD BLDG, HOUNDMILLS, BASINGSTOKE RG21 6XS, HANTS, ENGLAND SN 1747-7778 J9 J SIMUL JI J. Simul. PD FEB PY 2013 VL 7 IS 1 BP 1 EP 11 DI 10.1057/jos.2012.1 PG 11 WC Computer Science, Interdisciplinary Applications; Operations Research & Management Science SC Computer Science; Operations Research & Management Science GA 076BQ UT WOS:000313931900001 ER PT J AU Brandao, P Reis, MS Gai, Z dos Santos, AM AF Brandao, Paula Reis, Mario S. Gai, Zheng dos Santos, Antonio M. TI Novel alkaline earth copper germanates with ferro and antiferromagnetic S=1/2 chains SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Hydrothermal synthesis; Crystal structure; Copper germanates; Magnetic chains ID FRAMEWORK; BEHAVIOR AB Two new alkaline earth copper(II) germanates were hydrothermally synthesized: CaCuGeO4 center dot H2O (1) and BaCu2Ge3O9 center dot H2O (2), and their structures determined by single crystal X-ray diffraction. Compound (1) crystallizes in space group P2(1)/c with a=5.1320(2) angstrom, b=16.1637(5) angstrom, c=5.4818(2) angstrom, beta=102.609(2)degrees, V=443.76(3) angstrom(3) and Z=4. This copper germanate contains layers of composition [CuGeO4](infinity)(2-) comprising CuO4 square planes and GeO4 tetrahedra with calcium and water molecules in the inter-layer space. Compound (2) crystallizes in the Cmcm space group with a=5.5593(3) angstrom, b=10.8606(9) angstrom, c=13.5409(8) angstrom, V=817.56(9) angstrom(3) and Z=4. This structure contains GeO6 and CuO6 octahedra as well as GeO4 tetrahedra, forming a three-dimensional network of interconnecting six-membered ring channels. The magnetic susceptibility for both samples can be interpreted as S=1/2 chains, in agreement with the copper topology observed in the crystal structure. The susceptibility of (1) exhibits a Bonner-Fisher type behavior, resulting from antiferromagnetic intra-chain interactions without three-dimensional ordering down to 5 K-the lowest measured temperature. This observation, together with the absence of super-exchange paths between the copper chains, make this system particularly promising for the study of low dimensional magnetism. The magnetic properties of (2) show a very weak ferromagnetic near-neighbor interaction along the chain. In this compound a peak the chi T plot seems to indicate the onset of interchain antiferromagentic correlations. However, no ordering temperature is detected in the susceptibility data. Published by Elsevier Inc. C1 [Brandao, Paula] Univ Aveiro, CICECO, P-3810193 Aveiro, Portugal. [Reis, Mario S.] Univ Fed Fluminense, Inst Fis, BR-24210346 Niteroi, RJ, Brazil. [Gai, Zheng] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [dos Santos, Antonio M.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. RP dos Santos, AM (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. EM dossantosam@ornl.gov RI Gai, Zheng/B-5327-2012; Brandao, Paula/J-3759-2013; dos Santos, Antonio/A-5602-2016 OI Gai, Zheng/0000-0002-6099-4559; Brandao, Paula/0000-0002-4746-6073; dos Santos, Antonio/0000-0001-6900-0816 FU FCT; FEDER [QREN-COMPETE-FCOMP 01-0124 FEDER-007461]; ORNL by the Office of Basic Energy Sciences, U.S. DOE; U.S. DOE [DE-AC05-00OR22725] FX P.B. thanks FCT and FEDER (QREN-COMPETE-FCOMP 01-0124 FEDER-007461) for funding the Project PTDC/QUI/72584/2006 and collaboration project between Portugal and Brazil FCT/CAPES/2011/2012. Research at ORNL was conducted at the Quantum Condensed Matter Division and the CNMS, which are sponsored at ORNL by the Office of Basic Energy Sciences, U.S. DOE. The ORNL is managed by UT-Battelle, LLC for the U.S. DOE under Contract no. DE-AC05-00OR22725. M.S.R. acknowledge Brazilian agencies: CAPES, CNPq, FAPERJ and PROPPi-UFF. NR 26 TC 6 Z9 6 U1 0 U2 24 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD FEB PY 2013 VL 198 BP 39 EP 44 DI 10.1016/j.jssc.2012.09.006 PG 6 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 081KJ UT WOS:000314320800006 ER PT J AU Retuerto, M Li, MR Go, YB Ignatov, A Croft, M Ramanujachary, KV Herber, RH Nowik, I Hodges, JP Dachraoui, W Hadermann, J Greenblatt, M AF Retuerto, M. Li, M. -R. Go, Y. B. Ignatov, A. Croft, M. Ramanujachary, K. V. Herber, R. H. Nowik, I. Hodges, J. P. Dachraoui, W. Hadermann, J. Greenblatt, M. TI High magnetic ordering temperature in the perovskites Sr4-xLaxFe3ReO12 (x=0.0, 1.0, 2.0) (vol 194, pg 48, 2012) SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Correction C1 [Retuerto, M.; Li, M. -R.; Go, Y. B.; Greenblatt, M.] Rutgers State Univ, Dept Chem & Chem Biol, Piscataway, NJ 08854 USA. [Ignatov, A.; Croft, M.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Ramanujachary, K. V.] Rowan Univ, Dept Chem & Phys, Glassboro, NJ 08028 USA. [Herber, R. H.; Nowik, I.] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel. [Hodges, J. P.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37831 USA. [Dachraoui, W.; Hadermann, J.] Univ Antwerp, EMAT, B-2020 Antwerp, Belgium. RP Greenblatt, M (reprint author), Rutgers State Univ, Dept Chem & Chem Biol, 610 Taylor Rd, Piscataway, NJ 08854 USA. EM martha@rutchem.rutgers.edu RI Hodges, Jason/K-1421-2013; Retuerto, Maria/D-6425-2014; Hadermann, Joke/F-4644-2011 OI Retuerto, Maria/0000-0001-7564-3500; NR 1 TC 0 Z9 0 U1 0 U2 12 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD FEB PY 2013 VL 198 BP 246 EP 246 DI 10.1016/j.jssc.2012.09.038 PG 1 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 081KJ UT WOS:000314320800037 ER PT J AU Malingowski, AC Kim, M Liu, J Wu, LS Aronson, MC Khalifah, PG AF Malingowski, Andrew C. Kim, Moosung Liu, Jue Wu, Liusuo Aronson, Meigan C. Khalifah, Peter G. TI Factors governing Yb magnetism in Yb0.95PtIn2 and other MgCuAl2-type structures SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Intermetallic; Single crystal diffraction; Electronic and magnetic properties; DFT calculations; COHP ID QUANTUM CRITICAL-POINT; HEAVY-FERMION BEHAVIOR; INTERMETALLIC COMPOUNDS; CRYSTAL-STRUCTURE; KONDO RESONANCE; CATIN2 T; LATTICE; CAIN2; YBAL3; LAPDIN2 AB The ternary compound "YbPtIn2" has been synthesized and its crystal structure determined using single crystal X-ray diffraction techniques. The compound crystallizes in the MgCuAl2 structure, a ternary structure type often formed when rare earth metals, Group 10 transition metals, and indium are present in a 1:1:2 ratio. The unit cell is C-centered orthorhombic, space group Cmcm (#63) with lattice parameters of a=4.3410(1) angstrom, b=10.3230(2) angstrom, and c=7.8510(2) angstrom. Evidence is found for a substantial non-stoichiometry on the Yb site, in contrast to the Pt and In sites which behave as expected, and it is believed that the stoichiometry of this compound is more properly described as Yb0.95PtIn2. Magnetic and resistivity measurements reveal that "YbPtIn2" is a weakly interacting, non-magnetic metal exclusively containing Yb2+, and with a resistivity (rho) varying from 34 mu Omega cm at room temperature to a residual resistivity rho(0) of 23 mu Omega cm at 1.8 K. Density functional theory calculations suggest that the observed diamagnetic Yb behavior is expected for this compound, but that certain substitutions on the Pt or In site could help stabilize magnetic Yb3+ and potentially induce heavy fermion behavior. (C) 2012 Elsevier Inc. All rights reserved. C1 [Malingowski, Andrew C.; Liu, Jue; Khalifah, Peter G.] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA. [Aronson, Meigan C.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Kim, Moosung; Wu, Liusuo; Aronson, Meigan C.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Khalifah, Peter G.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Khalifah, PG (reprint author), Brookhaven Natl Lab, Dept Chem, MS 555A,POB 5000, Upton, NY 11973 USA. EM kpete@bnl.gov RI LIU, JUE/J-6463-2014; LIU, JUE/I-8631-2016 OI LIU, JUE/0000-0003-1834-0356; LIU, JUE/0000-0002-4453-910X FU National Science Foundation [CHE-0840483, DMR-0907457]; US DOE [DE-AC02-98CH10886]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX The Stony Brook University single crystal diffractometer was obtained through the support of the National Science Foundation grant CHE-0840483. Work at Brookhaven is supported by the US DOE under Contract no. DE-AC02-98CH10886. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract no. DE-AC02-98CH10886. Particular thanks go to Dr. Jonathan Hanson for sharing his general expertise with synchrotron single crystal diffraction experiments and his specific experience with beamline X7B. Work at the Department of Physics and Astronomy, Stony Brook University (MSK, LSW, and MCA) was supported by the National Science Foundation under grant DMR-0907457. We would like to thank the group of Prof. John Parise for the use of and training on their single crystal diffractometer, with particular thanks to Dr. Paul Forster. Additional thanks go to Dr. Yuri Janssen for helping facilitate bridging interactions between the chemistry and physics groups that carried out this work. NR 45 TC 1 Z9 1 U1 1 U2 21 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD FEB PY 2013 VL 198 BP 308 EP 315 DI 10.1016/j.jssc.2012.04.007 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 081KJ UT WOS:000314320800046 ER PT J AU King, G Ramezanipour, F Llobet, A Greedan, JE AF King, Graham Ramezanipour, Farshid Llobet, Anna Greedan, John E. TI Local structures of Sr2FeMnO5+y (y=0, 0.5) and Sr2Fe1.5Cr0.5O5 from reverse Monte Carlo modeling of pair distribution function data and implications for magnetic order SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Perovskite; Brownmillerite; Oxygen deficient; Pair distribution function; Local structure; Reverse Monte Carlo ID OXYGEN-DEFICIENT PEROVSKITES; AVERAGE STRUCTURES; CRYSTAL-STRUCTURES; SITE CATION; VACANCY; BROWNMILLERITE; SR2FE2O5 AB The local structures of the oxygen deficient perovskites Sr2FeMnO5, Sr2FeMnO5.5, and Sr2Fe1.5Cr0.5O5 have been analyzed using neutron pair distribution function data. The results show that locally all three structures are more complex than implied by their average cubic structures and that the distributions of oxygen vacancies are not completely random on a local level. For both Sr2FeMnO5+y compounds it is found that there is no short range ordering of the Fe and Mn cations. For Sr2Fe1.5Cr0.5O5 there is evidence to suggest that the Fe/Cr distribution is not completely random and is locally ordered such that there are fewer Fe-Fe nearest neighbor pairs than in a random distribution. Reverse Monte Carlo modeling of the pair distribution function data has provided the Fe-O, Mn-O, and Cr-O bond length distributions and information on the coordination numbers of the Fe, Mn, and Cr cations. In Sr2FeMnO5 it is found that the Fe3+ cations are most often in 4-fold coordination but there is also a large amount of Fe3+ in 5-fold coordination and a small amount in 6-fold coordination. The Mn3+ is split between 5-fold and 6-fold coordination. The Mn-O bond length distributions indicate that the Mn3+O6 octahedra and Mn3+O5 square pyramids are locally Jahn-Teller distorted. In Sr2FeMnO5.5 the Fe3+ is almost entirely 5 coordinate while the Mn4+ is almost entirely 6 coordinate. The Cr3+ in Sr2Fe1.5Cr0.5O5 is almost entirely 6-fold coordinated, giving the Fe3+ an average coordination number of 4.67. In Sr2FeMnO5 and Sr2Fe1.5Cr0.5O5 the Fe3+ and Sr2+ cations undergo local displacements which are driven by the oxygen vacancies, while the Mn3+ and Cr3+ cations remain near their positions in the average structures. In Sr2FeMnO5.5 these cations are not significantly displaced. The local coordination geometries are used to explain previously observed but yet poorly understood magnetic properties of these materials. (C) 2012 Elsevier Inc. All rights reserved. C1 [King, Graham; Llobet, Anna] Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, Los Alamos, NM 87545 USA. [Ramezanipour, Farshid; Greedan, John E.] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada. [Ramezanipour, Farshid; Greedan, John E.] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada. RP King, G (reprint author), Los Alamos Natl Lab, Lujan Neutron Scattering Ctr, MS H805, Los Alamos, NM 87545 USA. EM gking@lanl.gov RI King, Graham/E-3632-2010; Llobet, Anna/B-1672-2010; Lujan Center, LANL/G-4896-2012 OI King, Graham/0000-0003-1886-7254; FU DOE Office of Basic Energy Sciences; DOE [DE-AC52 06NA25396]; Natural Sciences and Engineering Council of Canada FX This work has benefited from the use of NPDF and HIPD at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract no. DE-AC52 06NA25396. JEG acknowledges support from the Natural Sciences and Engineering Council of Canada through the Discovery Grant program. NR 26 TC 1 Z9 1 U1 3 U2 30 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 J9 J SOLID STATE CHEM JI J. Solid State Chem. PD FEB PY 2013 VL 198 BP 407 EP 415 DI 10.1016/j.jssc.2012.11.005 PG 9 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 081KJ UT WOS:000314320800059 ER PT J AU Carlson, DB Gelb, J Palshin, V Evans, JE AF Carlson, David B. Gelb, Jeff Palshin, Vadim Evans, James E. TI Laboratory-Based Cryogenic Soft X-Ray Tomography with Correlative Cryo-Light and Electron Microscopy SO MICROSCOPY AND MICROANALYSIS LA English DT Article DE compact light source; laboratory light source; X-ray tomography; correlative microscopy; cryogenic soft X-ray microscope ID CRYOELECTRON MICROSCOPY; RADIATION-DAMAGE; RESOLUTION; CELLS; FLUORESCENCE; ULTRASTRUCTURE; YEAST AB Here we present a novel laboratory-based cryogenic soft X-ray microscope for whole cell tomography of frozen hydrated samples. We demonstrate the capabilities of this compact cryogenic microscope by visualizing internal subcellular structures of Saccharomyces cerevisiae cells. The microscope is shown to achieve better than 50 nm half-pitch spatial resolution with a Siemens star test sample. For whole biological cells, the microscope can image specimens up to 5 mu m thick. Structures as small as 90 nm can be detected in tomographic reconstructions following a low cumulative radiation dose of only 7.2 MGy. Furthermore, the design of the specimen chamber utilizes a standard sample support that permits multimodal correlative imaging of the exact same unstained yeast cell via cryo-fluorescence light microscopy, cryo-soft X-ray microscopy, and cryo-transmission electron microscopy. This completely laboratory-based cryogenic soft X-ray microscope will enable greater access to three-dimensional ultrastructure determination of biological whole cells without chemical fixation or physical sectioning. C1 [Carlson, David B.; Evans, James E.] Univ Calif Davis, Dept Mol & Cellular Biol, Davis, CA 95616 USA. [Gelb, Jeff; Palshin, Vadim] Xradia Inc, Pleasanton, CA 94588 USA. RP Evans, JE (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, 3335 Q Ave, Richland, WA 99354 USA. EM James.Evans@PNNL.Gov FU National Institutes of Health [5RC1GM091755]; U.S. Department of Energy [DE-AC05-76RL01830]; [2R44RR022488-04] FX J.E.E. and D. B. C. wish to thank Brandon J. Zipp and Ken B. Kaplan for providing access to the yeast strain used in this study for validation purposes. The authors would also like to thank Pierre Lefebvre for his technical assistance; Energetiq Technology, Inc. for providing the light source with support from grant number 2R44RR022488-04; and Kevin Fahey, Michael Feser, and Christian Holzner at Xradia, Inc. for helpful discussions. J. E. E. acknowledges major funding support for this research from National Institutes of Health grant number 5RC1GM091755. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract No. DE-AC05-76RL01830. The authors declare no competing financial interests. D. B. C performed all sample preparation and cryo-FM and cryo-EM experiments; J. G. performed cryo-sXM experiments; V. P. developed the X-ray analytical system; and J. E. E. designed all experiments, analyzed data, and wrote the article. NR 37 TC 11 Z9 12 U1 3 U2 43 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD FEB PY 2013 VL 19 IS 1 BP 22 EP 29 DI 10.1017/S1431927612013827 PG 8 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 082XG UT WOS:000314426400003 PM 23332214 ER PT J AU Rathi, M Ahrenkiel, SP Carapella, JJ Wanlass, MW AF Rathi, Monika Ahrenkiel, S. P. Carapella, J. J. Wanlass, M. W. TI A Standards-Based Method for Compositional Analysis by Energy Dispersive X-Ray Spectrometry Using Multivariate Statistical Analysis: Application to Multicomponent Alloys SO MICROSCOPY AND MICROANALYSIS LA English DT Article DE semiconductor; EDX; MOCVD; factor analysis; zeta factors; multijunction solar cells ID V COMPOUND SEMICONDUCTORS; MICROANALYSIS; PERFORMANCE AB Given an unknown multicomponent alloy, and a set of standard compounds or alloys of known composition, can one improve upon popular standards-based methods for energy dispersive X-ray (EDX) spectrometry to quantify the elemental composition of the unknown specimen? A method is presented here for determining elemental composition of alloys using transmission electron microscopy-based EDX with appropriate standards. The method begins with a discrete set of related reference standards of known composition, applies multivariate statistical analysis to those spectra, and evaluates the compositions with a linear matrix algebra method to relate the spectra to elemental composition. By using associated standards, only limited assumptions about the physical origins of the EDX spectra are needed. Spectral absorption corrections can be performed by providing an estimate of the foil thickness of one or more reference standards. The technique was applied to III-V multicomponent alloy thin films: composition and foil thickness were determined for various III-V alloys. The results were then validated by comparing with X-ray diffraction and photoluminescence analysis, demonstrating accuracy of approximately 1% in atomic fraction. C1 [Rathi, Monika; Ahrenkiel, S. P.] S Dakota Sch Mines & Technol, Rapid City, SD USA. [Carapella, J. J.; Wanlass, M. W.] Natl Renewable Energy Lab, Golden, CO USA. RP Rathi, M (reprint author), S Dakota Sch Mines & Technol, Rapid City, SD USA. EM rathimona@gmail.com FU NASA [NNX09AP67A]; U.S. Department of Energy [DE-FG02-08ER46503]; State of South Dakota through the SDSM&T, Nanoscience and Nanoengineering Program FX This work is supported by NASA award #NNX09AP67A, the U.S. Department of Energy under Award Number DE-FG02-08ER46503 and the State of South Dakota through the SDSM&T, Nanoscience and Nanoengineering Program. We would like to thank L. M. Gedvilas (NREL) for PL data. We would also like to thank Pavel Dutta for helpful suggestions. NR 20 TC 0 Z9 0 U1 4 U2 23 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1431-9276 J9 MICROSC MICROANAL JI Microsc. microanal. PD FEB PY 2013 VL 19 IS 1 BP 66 EP 72 DI 10.1017/S1431927612013761 PG 7 WC Materials Science, Multidisciplinary; Microscopy SC Materials Science; Microscopy GA 082XG UT WOS:000314426400007 PM 23298470 ER PT J AU Gerhardt, SP AF Gerhardt, S. P. TI Dynamics of the disruption halo current toroidal asymmetry in NSTX SO NUCLEAR FUSION LA English DT Article ID RUNAWAY CURRENT TERMINATION; MOMENTUM DISSIPATION; MAJOR DISRUPTIONS; JET; PLASMAS; ELECTRONS; TOKAMAKS; JT-60U; WALL; EXPLORATION AB This paper describes the dynamics of disruption halo current non-axisymmetries in the lower divertor of the National Spherical Torus Experiment (Ono et al 2000 Nucl. Fusion 40 557). The halo currents typically have a strongly asymmetric structure where they enter the divertor floor, and this asymmetry has been observed to complete up to eight toroidal revolutions over the duration of the halo current pulse. However, the rotation speed and toroidal extent of the asymmetry can vary significantly during the pulse. The rotation speed, halo current pulse duration, and total number of revolutions tend to be smaller in cases with large halo currents. The halo current pattern is observed to become toroidally symmetric at the end of the halo current pulse. It is proposed that this symmeterization is due to the loss of most or all of the closed field line geometry in the final phase of the vertical displacement event. C1 Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Gerhardt, SP (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. FU United States Department of Energy [DE-AC02-09CH11466] FX The author would like to thank Allen Boozer for encouragement and helpful discussion. This research was funded by the United States Department of Energy under contract DE-AC02-09CH11466. NR 67 TC 14 Z9 14 U1 2 U2 11 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD FEB PY 2013 VL 53 IS 2 AR 023005 DI 10.1088/0029-5515/53/2/023005 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 081WY UT WOS:000314354300009 ER PT J AU Tillack, MS Turnbull, AD Kessel, CE Asakura, N Garofalo, AM Holland, C Koch, F Linsmeier, C Lisgo, S Maingi, R Majeski, R Menard, J Najmabadi, F Nygren, R Rognlien, TD Ryutov, DD Stambaugh, RD Stangeby, PC Stotler, DP AF Tillack, M. S. Turnbull, A. D. Kessel, C. E. Asakura, N. Garofalo, A. M. Holland, C. Koch, F. Linsmeier, Ch. Lisgo, S. Maingi, R. Majeski, R. Menard, J. Najmabadi, F. Nygren, R. Rognlien, T. D. Ryutov, D. D. Stambaugh, R. D. Stangeby, P. C. Stotler, D. P. TI Summary of the ARIES Town Meeting: 'Edge Plasma Physics and Plasma Material Interactions in the Fusion Power Plant Regime' SO NUCLEAR FUSION LA English DT Article ID SCRAPE-OFF LAYER; ALCATOR C-MOD; COLLISIONAL-RADIATIVE MODEL; W-BASED ALLOYS; H-MODE; DIII-D; ISONUCLEAR SEQUENCE; FACING COMPONENTS; DIVERTED TOKAMAK; ATOMIC PROCESSES AB This review summarizes the presentations and discussions by experts in the fields of edge plasma physics and plasma-material interactions at a workshop organized for the purpose of evaluating current status and extrapolating forward to the post-ITER power plant regime. The topics included physics, modelling, experimental results, benchmarking and programme planning. C1 [Tillack, M. S.; Holland, C.; Najmabadi, F.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Turnbull, A. D.; Garofalo, A. M.; Stambaugh, R. D.] Gen Atom Inc, La Jolla, CA USA. [Kessel, C. E.; Majeski, R.; Menard, J.; Stotler, D. P.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Asakura, N.] Japan Atom Energy Agcy, Naka, Ibaraki 3110193, Japan. [Koch, F.; Linsmeier, Ch.] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany. [Lisgo, S.] ITER Org, F-13067 St Paul Les Durance, France. [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Nygren, R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Rognlien, T. D.; Ryutov, D. D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Stangeby, P. C.] Univ Toronto, Inst Aerosp Studies, Toronto, ON M3H 5T6, Canada. RP Tillack, MS (reprint author), Univ Calif San Diego, La Jolla, CA 92093 USA. RI Linsmeier, Christian/H-7653-2013; Stotler, Daren/J-9494-2015; OI Linsmeier, Christian/0000-0003-0404-7191; Stotler, Daren/0000-0001-5521-8718; Menard, Jonathan/0000-0003-1292-3286 FU US Department of Energy [DE-FC02-04ER54698, DE-AC02-09CH11466, DE-FG02-04ER54757] FX The authors would like to thank all of the participants in the Town Meeting, with special thanks to colleagues C. P. Wong, T. E. Evans and A. Leonard for providing comments and significant input to table 1. This work was supported in part by the US Department of Energy under Cooperative Agreement No DE-FC02-04ER54698, DE-AC02-09CH11466, and grant number DE-FG02-04ER54757. NR 132 TC 3 Z9 3 U1 0 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD FEB PY 2013 VL 53 IS 2 AR 027003 DI 10.1088/0029-5515/53/2/027003 PG 23 WC Physics, Fluids & Plasmas SC Physics GA 081WY UT WOS:000314354300015 ER PT J AU Zhang, XJ Zhao, YP Wan, BN Gong, XZ Li, JG Lin, Y Qin, CM Taylor, G Xu, GS Sun, YW Gao, BX Qian, JP Wang, FD Lu, B Luo, C Zhang, L Hu, LQ Song, YT Yu, CX Liu, WD Wukitch, S Wilson, JR Hosea, JC AF Zhang, X. J. Zhao, Y. P. Wan, B. N. Gong, X. Z. Li, J. G. Lin, Y. Qin, C. M. Taylor, G. Xu, G. S. Sun, Y. W. Gao, B. X. Qian, J. P. Wang, F. D. Lu, B. Luo, C. Zhang, L. Hu, L. Q. Song, Y. T. Yu, C. X. Liu, W. D. Wukitch, S. Wilson, J. R. Hosea, J. C. TI First results from H-mode plasmas generated by ICRF heating in the EAST SO NUCLEAR FUSION LA English DT Article ID ALCATOR C-MOD; BEAM-HEATED DIVERTOR; ION-CYCLOTRON; CONFINEMENT; DISCHARGES; THRESHOLD; TOKAMAK; REGIME; POWER; JET AB Deuterium high-confinement (H-mode) plasmas, lasting up to 3.45 s, have been generated in the EAST by ion cyclotron range of frequency (ICRF) heating. H-mode access was achieved by coating the molybdenum-tiled first wall with lithium to reduce the hydrogen recycling from the wall. H-mode plasmas with plasma currents between 0.4 and 0.6 MA and axial toroidal magnetic fields between 1.85 and 1.95 T were generated by 27 MHz ICRF heating of deuterium plasma with hydrogen minority. The ICRF input power required to access the H-mode was 1.6-1.8 MW. The line-averaged density was in the range (1.83-2.3) x 10(19) m(-3). 200-500 Hz type-III edge localized mode activity was observed during the H-mode phase. The H-mode confinement factor, H-98IPB(y, 2), was similar to 0.7. C1 [Zhang, X. J.; Zhao, Y. P.; Wan, B. N.; Gong, X. Z.; Li, J. G.; Qin, C. M.; Xu, G. S.; Sun, Y. W.; Qian, J. P.; Wang, F. D.; Lu, B.; Zhang, L.; Hu, L. Q.; Song, Y. T.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Lin, Y.; Wukitch, S.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Taylor, G.; Wilson, J. R.; Hosea, J. C.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Gao, B. X.; Luo, C.; Yu, C. X.; Liu, W. D.] Univ Sci & Technol China, Dept Modern Phys, CAS Key Lab Basic Plasma Phys, Hefei 230026, Anhui, Peoples R China. RP Zhang, XJ (reprint author), Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. EM xjzhang@ipp.ac.cn RI Liu, Wandong/K-6119-2012; Xu, Guosheng/B-4857-2013; Sun, Youwen/B-3553-2012 OI Sun, Youwen/0000-0002-9934-1328 FU EAST operation and diagnostics group; National Magnetic confinement Fusion Science Programme [2010GB110000, 2009GB107001, 2011GB107001, 2011GB101001, 2011GB107003, 2012GB101001]; National Natural Science Foundation of China [10725523, 10721505, 11105179, 10928509, 10990212, 11075182, 10975155, 11175208]; Chinese Academy of Sciences [Y05FCQ0126]; JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC) [11261140328]; US DoE [DE-AC02-09CH11466, DE-FC02-99ER54512] FX The authors would like to acknowledge the support of the EAST operation and diagnostics group. This work was supported partly by National Magnetic confinement Fusion Science Programme (grant nos 2010GB110000, 2009GB107001, 2011GB107001, 2011GB101001, 2011GB107003 and 2012GB101001). This work was also supported partly by the National Natural Science Foundation of China under grant nos 10725523, 10721505, 11105179, 10928509, 10990212, 11075182, 10975155 and 11175208. This work was supported partly by the Knowledge Innovation Programme of the Chinese Academy of Sciences no Y05FCQ0126 and JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (NSFC no. 11261140328). Gary Taylor, Joel Hosea and Randy Wilson are supported at PPPL by US DoE contract no DE-AC02-09CH11466. Y. Lin and S. Wukitch are supported at MIT by US DoE contract no DE-FC02-99ER54512. NR 22 TC 24 Z9 26 U1 10 U2 73 PU INT ATOMIC ENERGY AGENCY PI VIENNA PA WAGRAMERSTRASSE 5, PO BOX 100, A-1400 VIENNA, AUSTRIA SN 0029-5515 J9 NUCL FUSION JI Nucl. Fusion PD FEB PY 2013 VL 53 IS 2 AR 023004 DI 10.1088/0029-5515/53/2/023004 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 081WY UT WOS:000314354300008 ER PT J AU Ramsey, SD Hutchens, GJ AF Ramsey, Scott D. Hutchens, Gregory J. TI High-Fidelity Approximations for Extinction Probability Calculations SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article ID SOURCE REACTOR STARTUPS; SOLVABLE QUINTICS; NEUTRON; KINETICS; ASSEMBLIES; EQUATION AB A quantity that is frequently of interest in stochastic neutronics calculations is the probability of extinction (POE), or its complement, the survival probability. Even within the simplest stochastic point kinetics formulations, the POE is typically extracted from numerical calculations or approximated. An example of the latter strategy involves the truncation of the fission multiplicity distribution at two, resulting in the "quadratic approximation." While this methodology yields closed-form results for the POE, it is valid only for supercritical multiplication near unity. In this technical note, we attempt to obviate fission multiplicity truncation in the construction of transient and infinite time limit closed-form POE solutions. In the infinite time limit, we arrive at the necessity of solving a quintic algebraic equation; we provide a brief discussion of the mature formalism available for solving quintic equations and generate a variety of simple representations using hypergeometric series. We evaluate and discuss both the new and existing approximations in the context of an example U-235 system and compare their validity over a range of supercritical multiplication factors. C1 [Ramsey, Scott D.; Hutchens, Gregory J.] Los Alamos Natl Lab, X Computat Phys Div, Los Alamos, NM 87545 USA. RP Ramsey, SD (reprint author), Los Alamos Natl Lab, X Computat Phys Div, MS F644, Los Alamos, NM 87545 USA. EM ramsey@lanl.gov FU United States Department of Energy by Los Alamos National Security at Los Alamos National Laboratory [DE-AC52-06NA25396] FX This work was performed under the auspices of the United States Department of Energy by Los Alamos National Security at Los Alamos National Laboratory under contract DE-AC52-06NA25396. NR 35 TC 0 Z9 0 U1 0 U2 0 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD FEB PY 2013 VL 173 IS 2 BP 197 EP 205 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 081KZ UT WOS:000314322400008 ER PT J AU Kornreich, DE AF Kornreich, Drew E. TI CRITICAL MASS ESTIMATES FOR HOMOGENEOUS METAL-WATER MIXTURES OF KEY FISSIONABLE NUCLIDES SO NUCLEAR TECHNOLOGY LA English DT Article DE criticality safety; critical mass; metal-water mixtures ID ACTINIDES AB This work involved estimating the homogeneous metal-water mixture critical mass curves of 34 fissionable nuclides from thorium to einsteinium. Calculations were performed using the discrete ordinates code PARTISN with ENDF/B-VII.069-group cross sections. Sample MCNP5 test cases indicate reasonable agreement between the two transport codes. In general, the results confirmed that there are three "forms" of the critical mass curves: (a) the traditional curve most well known as characterizing the "big 3" nuclides (U-233, U-235, Pu-239), where the minimum critical mass is found in a dilute solution; (b) a simple monotonic curve characterized by a monotonically increasing critical mass as water is added to the metal, where the minimum critical mass is a metal system; and (c) a hybrid curve where the shape is similar to the traditional curve but the minimum critical mass is the pure metal. In general, the traditional and monotonic curves follow the "odd-even" rule of thumb that a nuclide with an even Z and an odd A or vice versa will have a traditionally shaped curve and that the other nuclides will have a monotonically shaped curve. The violations of this rule of thumb, i.e., the hybrid curves, in the set of nuclides analyzed are comprised of U-232 and Cf-252. Plutonium-236 is especially interesting because it is a traditionally shaped curve with the minimum critical mass in a relatively dilute solution, but it violates the "odd-even" rule of thumb. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Kornreich, DE (reprint author), Los Alamos Natl Lab, POB 1663,MS E548, Los Alamos, NM 87545 USA. EM drewek@lanl.gov NR 19 TC 0 Z9 0 U1 1 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD FEB PY 2013 VL 181 IS 2 BP 282 EP 302 PG 21 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 081KP UT WOS:000314321400004 ER PT J AU Allensworth, JR Simpson, MF Yim, MS Phongikaroon, S AF Allensworth, James R. Simpson, Michael F. Yim, Man-Sung Phongikaroon, Supathorn TI INVESTIGATION OF FISSION PRODUCT TRANSPORT INTO ZEOLITE-A FOR PYROPROCESSING WASTE MINIMIZATION SO NUCLEAR TECHNOLOGY LA English DT Article DE molten salt; zeolite; pyroprocessing AB Methods to improve fission product salt sorption into zeolite-A have been investigated in an effort to reduce waste associated with the electrochemical treatment of spent nuclear fuel. It was demonstrated that individual fission product chloride salts were absorbed by zeolite-A in a solid-state process. As a result, recycling of LiCl-KCl appears feasible via adding a zone-freezing technique to the current treatment process. Ternary salt molten-state experiments showed the limiting kinetics of CsCl and SrCl2 sorption into the zeolite. CsCl sorption occurred rapidly relative to SrCl2 with no observed dependence on zeolite particle size, while SrCl2 sorption was highly dependent on particle size. The application of experimental data to a developed reaction-diffusion-based sorption model yielded diffusivities of 8.04 X 10(-6) and 4.04 X 10(-7) cm(2)/s for CsCl and SrCl2, respectively. Additionally, the chemical reaction term in the developed model was found to be insignificant compared to the diffusion term. C1 [Allensworth, James R.] N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. [Simpson, Michael F.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Yim, Man-Sung] Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, Taejon 305701, South Korea. [Phongikaroon, Supathorn] Univ Idaho, Dept Chem Engn, Nucl Engn Program, Idaho Falls, ID 83402 USA. RP Allensworth, JR (reprint author), N Carolina State Univ, Dept Nucl Engn, CBox 7909, Raleigh, NC 27695 USA. EM michael.simpson@inl.gov RI Yim, Man-Sung/G-2720-2011 NR 14 TC 0 Z9 0 U1 0 U2 7 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD FEB PY 2013 VL 181 IS 2 BP 337 EP 348 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 081KP UT WOS:000314321400008 ER PT J AU LaFleur, AM Charlton, WS Menlove, HO Swinhoe, MT Lebrun, AR AF LaFleur, Adrienne M. Charlton, William S. Menlove, Howard O. Swinhoe, Martyn T. Lebrun, Alain R. TI DEVELOPMENT OF SELF-INTERROGATION NEUTRON RESONANCE DENSITOMETRY TO IMPROVE DETECTION OF POSSIBLE DIVERSIONS FOR PWR SPENT FUEL ASSEMBLIES SO NUCLEAR TECHNOLOGY LA English DT Article DE spent fuel; nuclear safeguards; partial defects AB A new nondestructive assay technique called self-interrogation neutron resonance densitometry (SINRD) is currently being developed at Los Alamos National Laboratory to improve existing nuclear safeguards and material accountability measurements for light water reactor fuel assemblies. The viability of using SINRD to improve the detection of possible diversion scenarios for pressurized water reactor 17 X 17 spent low-enriched uranium (LEU) and mixed oxide (MOX) fuel assemblies was investigated via Monte Carlo N-Particle eXtended transport code (MCNPX) simulations. The following capabilities were assessed: (a) verification of the burnup of a spent fuel assembly, (b) ability to distinguish fresh and one-cycle spent MOX fuel from three- and four-cycle spent LEU fuel, and (c) sensitivity and penetrability to the removal of fuel pins. SINRD utilizes Cm-244 spontaneous-fission neutrons to self-interrogate the spent fuel pins. The amount of resonance absorption of these neutrons in the fuel can be quantified using a set of fission chambers (FCs) placed adjacent to the assembly. The sensitivity of SINRD is based on using the same fissile materials in the FCs as are present in the fuel because the effect of resonance absorption lines in the transmitted flux is amplified by the corresponding (n,f) reaction peaks in the FC. SINRD requires calibration with a reference assembly of similar geometry in a similar measurement configuration with the same surrounding moderator as the spent fuel assemblies. However, this densitometry method uses ratios of different detectors so that several systematic errors related to calibration and positioning cancel in the ratios. C1 [LaFleur, Adrienne M.; Menlove, Howard O.; Swinhoe, Martyn T.] Los Alamos Natl Lab, Nucl Nonproliferat Div, Los Alamos, NM 87545 USA. [Charlton, William S.] Texas A&M Univ, Nucl Secur Sci & Policy Inst, College Stn, TX 77843 USA. [Lebrun, Alain R.] IAEA, Div Safeguards Tech Support SGTS, A-1400 Vienna, Austria. RP LaFleur, AM (reprint author), Los Alamos Natl Lab, Nucl Nonproliferat Div, POB 1663,MS E540, Los Alamos, NM 87545 USA. EM alafleur@lanl.gov FU NNSA Next Generation Safeguards Initiative FX We would like to acknowledge the Department of Energy National Nuclear Security Administration (NNSA) Office of Nonproliferation and International Security and the Program of Technical Assistance to the IAEA for their support in the development of the SINRD method. The IAEA has provided useful guidance and support for this research. This work was funded under the NNSA Next Generation Safeguards Initiative. NR 29 TC 3 Z9 3 U1 2 U2 7 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 J9 NUCL TECHNOL JI Nucl. Technol. PD FEB PY 2013 VL 181 IS 2 BP 354 EP 370 PG 17 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 081KP UT WOS:000314321400010 ER PT J AU Chevalier, S Pint, B Monceau, D AF Chevalier, Sebastien Pint, Bruce Monceau, Daniel TI Fundamentals and Numerical Simulations in High Temperature Corrosion and Protection SO OXIDATION OF METALS LA English DT Editorial Material C1 [Chevalier, Sebastien] Univ Bourgogne, CNRS, ICB Lab, F-21078 Dijon, France. [Pint, Bruce] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Monceau, Daniel] CIRIMAT, CNRS, INP Toulouse, F-31030 Toulouse, France. RP Chevalier, S (reprint author), Univ Bourgogne, CNRS, ICB Lab, 9 Ave Savary, F-21078 Dijon, France. EM Sebastien.Chevalier@u-bourgogne.fr; pintba@ornl.gov; daniel.monceau@ensiacet.fr RI Pint, Bruce/A-8435-2008 OI Pint, Bruce/0000-0002-9165-3335 NR 0 TC 0 Z9 0 U1 2 U2 20 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0030-770X J9 OXID MET JI Oxid. Met. PD FEB PY 2013 VL 79 IS 1-2 SI SI BP 1 EP 1 DI 10.1007/s11085-012-9321-7 PG 1 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 077YO UT WOS:000314065500001 ER PT J AU Wang, J Li, N Misra, A AF Wang, J. Li, N. Misra, A. TI Structure and stability of Sigma 3 grain boundaries in face centered cubic metals SO PHILOSOPHICAL MAGAZINE LA English DT Article DE grain boundary; dislocation; fcc metal; atomistic simulation ID INCOHERENT TWIN BOUNDARIES; NANOSCALE GROWTH TWINS; STEEL THIN-FILMS; TEMPERATURE INFLUENCE; COPPER; CU; STRENGTH; ALUMINUM; MISORIENTATION; TRANSFORMATION AB S3 grain boundaries form as a result of either growth twinning or deformation twinning in face centered cubic (fcc) metals and play a crucial role in determining the mechanical and electrical properties and microstructural stability. We studied the structure and stability of S3 grain boundaries (GBs) in fcc metals by using topological analysis and atomistic simulations. Atomistic simulations were performed for Cu and Al with empirical interatomic potentials to reveal the influence of stacking fault energy on the morphology of the twinned grains. Three sets of tilt S3 GBs were studied with respect to the tilt axis parallel to ?111?, ?112?, and ?110?, respectively. We showed that S3{111} and S3{112} GBs are thermodynamically stable and the others will dissociate into terraced interfaces regardless of the stacking fault energy. The morphology of the nano-twinned grains in Cu is predicted from the above analysis and found to match with experiments. C1 [Wang, J.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Li, N.; Misra, A.] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Wang, J (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM wangj6@lanl.gov RI Misra, Amit/H-1087-2012; Wang, Jian/F-2669-2012; Li, Nan /F-8459-2010 OI Wang, Jian/0000-0001-5130-300X; Li, Nan /0000-0002-8248-9027 FU US Department of Energy, Office of Science, Office of Basic Energy Sciences; Los Alamos National Laboratory Directed Research and Development project [ER20110573] FX This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. JW acknowledges the support provided by Los Alamos National Laboratory Directed Research and Development project ER20110573. We sincerely appreciate Prof. J. P. Hirth for his valuable comments. NR 49 TC 19 Z9 19 U1 5 U2 86 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PD FEB 1 PY 2013 VL 93 IS 4 BP 315 EP 327 DI 10.1080/14786435.2012.716908 PG 13 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 073ZH UT WOS:000313781100001 ER PT J AU Guedes, S Moreira, PAFP Devanathan, R Weber, WJ Hadler, JC AF Guedes, S. Moreira, P. A. F. P. Devanathan, R. Weber, W. J. Hadler, J. C. TI Improved zircon fission-track annealing model based on reevaluation of annealing data SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE Fission tracks; Annealing models; Critical temperature; Zircon ID RANDOMLY ORIENTED GRAINS; RADIATION-DAMAGE; KINETIC-MODEL; QUALITATIVE DESCRIPTION; INDUCED AMORPHIZATION; ION-TRACK; APATITE; MECHANISMS; FLUORAPATITE; TEMPERATURE AB The thermal recovery (annealing) of mineral structure modified by the passage of fission fragments has long been studied by the etching technique. In minerals like apatite and zircon, the annealing kinetics are fairly well constrained from the hour to the million-year timescale and have been described by empirical and semi-empirical equations. On the other hand, laboratory experiments, in which ion beams interact with minerals and synthetic ceramics, have shown that there is a threshold temperature beyond which thermal recovery impedes ion-induced amorphization. In this work, it is assumed that this behavior can be extended to the annealing of fission tracks in minerals. It is proposed that there is a threshold temperature, T (0), beyond which fission tracks are erased within a time t (0), which is independent of the current state of lattice deformation. This implies that iso-annealing curves should converge to a fanning point in the Arrhenius pseudo-space (ln t vs. 1/T). Based on the proposed hypothesis, and laboratory and geological data, annealing equations are reevaluated. The geological timescale estimations of a model arising from this study are discussed through the calculation of partial annealing zone and closure temperature, and comparison with geological sample constraints found in literature. It is shown that the predictions given by this model are closer to field data on closure temperature and partial annealing zone than predictions given by previous models. C1 [Guedes, S.; Moreira, P. A. F. P.; Hadler, J. C.] Univ Estadual Campinas, Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil. [Devanathan, R.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99352 USA. [Weber, W. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Weber, W. J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Guedes, S (reprint author), Univ Estadual Campinas, Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP, Brazil. EM sguedes@ifi.unicamp.br RI Weber, William/A-4177-2008; Guedes, Sandro/D-4875-2012; Moreira, Pedro /D-1750-2013; Moreira, Pedro/E-1086-2012; Devanathan, Ram/C-7247-2008; Inst. of Physics, Gleb Wataghin/A-9780-2017 OI Weber, William/0000-0002-9017-7365; Guedes, Sandro/0000-0002-7753-8584; Moreira, Pedro /0000-0003-0975-6034; Moreira, Pedro/0000-0003-2843-775X; Devanathan, Ram/0000-0001-8125-4237; FU Conselho Nacional de Desenvolvimento Cientifico e Tecnologico [473888/2007-6, 200016/2008-3]; Fundacao de Amparo a Pesquisa de Sao Paulo [2007/08393-0]; Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy (DOE) [DE-AC05-76RL01830]; UT-OR NL Governor's Chair program; Department of Energy's Office of Biological and Environmental Research FX S. G. has been financed by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico(process number 473888/2007-6). P. A. F. P. M. acknowledges Fundacao de Amparo a Pesquisa de Sao Paulo (process number 2007/08393-0) and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (process number 200016/2008-3) for financial support. R. D. was supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy (DOE) under Contract DE-AC05-76RL01830. W.J.W was supported by the UT-OR NL Governor's Chair program. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Authors are indebted to Dr Weixing Li and one anonymous reviewer, whose comments and criticisms helped to improve the quality of this paper. We also wish to thank the editor, Dr Masanori Matsui, for carefully handling this paper. NR 71 TC 3 Z9 3 U1 2 U2 38 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0342-1791 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD FEB PY 2013 VL 40 IS 2 BP 93 EP 106 DI 10.1007/s00269-012-0550-8 PG 14 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA 080WG UT WOS:000314274200001 ER PT J AU Dera, P Nisar, J Ahuja, R Tkachev, S Prakapenka, VB AF Dera, Przemyslaw Nisar, Jawad Ahuja, Rajeev Tkachev, Sergey Prakapenka, Vitali B. TI New type of possible high-pressure polymorphism in NiAs minerals in planetary cores SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE Planetary cores; Nickel arsenide structure; NiP; High pressure; Phase transitions; Polymorphism; Bonding ID GENERALIZED GRADIENT APPROXIMATION; AUGMENTED-WAVE METHOD; IRON-SILICON ALLOYS; CRYSTAL-STRUCTURE; AB-INITIO; POWDER DIFFRACTION; PHASE; SYSTEM; STATE; TRANSITION AB The nickel arsenide (B8(1)) and related crystal structures are among the most important crystallographic arrangements assumed by Fe and Ni compounds with light elements such as Si, O, S, and P, expected to be present in planetary cores. Despite the simple structure, some of these materials like troilite (FeS) exhibit complex phase diagrams and rich polymorphism, involving significant changes in interatomic bonding and physical properties. NiP (oP16) represents one of the two principal structure distortions found in the nickel arsenide family and is characterized by P-P bonding interactions that lead to the formation of P-2 dimers. In the current study, the single-crystal synchrotron X-ray diffraction technique, aided by first principles density functional theory (DFT) calculations, has been applied to examine the compression behavior of NiP up to 30 GPa. Two new reversible displacive phase transitions leading to orthorhombic high-pressure phases with Pearson symbols oP40 and oC24 were found to occur at approximately 8.5 and 25.0 GPa, respectively. The oP40 phase has the primitive Pnma space group with unit cell a = 4.7729(5) , b = 16.6619(12) , and c = 5.8071(8) at 16.3(1) GPa and is a superstructure of the ambient oP16 phase with multiplicity of 2.5. The oC24 phase has the acentric Cmc2(1) space group with unit cell a = 9.695(6) , b = 5.7101(9) , and c = 4.7438(6) at 28.5(1) GPa and is a superstructure of the oP16 phase with multiplicity of 1.5. DFT calculations fully support the observed sequence of phase transitions. The two new phases constitute logical next stages of P sublattice polymerization, in which the dilution of the P-3 units, introduced in the first high-pressure phase, decreases, leading to compositions of Ni-20(P-3)(4)(P-2)(4) and Ni-12(P-3)(4), and provide important clues to understanding of phase relations and transformation pathways in the NiAs family. C1 [Dera, Przemyslaw; Tkachev, Sergey; Prakapenka, Vitali B.] Univ Chicago, Argonne Natl Lab, Ctr Adv Radiat Sources, Argonne, IL 60439 USA. [Nisar, Jawad; Ahuja, Rajeev] Uppsala Univ, Dept Phys & Astron, Condensed Matter Theory Grp, S-75120 Uppsala, Sweden. [Ahuja, Rajeev] Royal Inst Technol KTH, Dept Mat & Engn, S-10044 Stockholm, Sweden. RP Dera, P (reprint author), Univ Chicago, Argonne Natl Lab, Ctr Adv Radiat Sources, Bldg 434A,9700 S Cass Ave, Argonne, IL 60439 USA. EM dera@cars.uchicago.edu RI Dera, Przemyslaw/F-6483-2013 FU Swedish Research Council (VR); Higher Education Commission (HEC) of Pakistan; NSF [EAR-0622171]; DOE Geosciences [DE-FG02-94ER14466]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors would like to thank Dr. Nabil Z. Boctor from the Geophysical Laboratory, Carnegie Institution of Washington for kindly providing synthetic NiP material and Dr. Joanne Stubbs from the University of Chicago for critical reading of the manuscript. We would like to acknowledge the Swedish Research Council (VR) for financial support. J. Nisar is thankful to the Higher Education Commission (HEC) of Pakistan for financial support. SNIC and UPPMAX are acknowledged for providing computing time. The experimental work was performed at GSECARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GSECARS is supported by the NSF grant EAR-0622171 and DOE Geosciences grant DE-FG02-94ER14466. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 55 TC 2 Z9 2 U1 8 U2 32 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0342-1791 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD FEB PY 2013 VL 40 IS 2 BP 183 EP 193 DI 10.1007/s00269-012-0560-6 PG 11 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA 080WG UT WOS:000314274200009 ER PT J AU Caliandro, R Nagel, KA Kastenholz, B Bassi, R Li, ZR Niyogi, KK Pogson, BJ Schurr, U Matsubara, S AF Caliandro, Rosanna Nagel, Kerstin A. Kastenholz, Bernd Bassi, Roberto Li, Zhirong Niyogi, Krishna K. Pogson, Barry J. Schurr, Ulrich Matsubara, Shizue TI Effects of altered alpha- and beta-branch carotenoid biosynthesis on photoprotection and whole-plant acclimation of Arabidopsis to photo-oxidative stress SO PLANT CELL AND ENVIRONMENT LA English DT Article DE Arabidopsis thaliana; carotene; leaf growth; lutein; non-photochemical quenching; root growth; sunflecks; xanthophyll cycle ID LUTEIN-EPOXIDE CYCLE; DEPENDENT ENERGY-DISSIPATION; ABSCISIC-ACID BIOSYNTHESIS; PHOTOSYSTEM-II ANTENNA; CHLOROPHYLL FLUORESCENCE; XANTHOPHYLL CYCLE; ROOT-GROWTH; PHOTOSYNTHETIC ACCLIMATION; SHADE AVOIDANCE; SINGLET OXYGEN AB Functions of a- and beta-branch carotenoids in whole-plant acclimation to photo-oxidative stress were studied in Arabidopsis thaliana wild-type (wt) and carotenoid mutants, lutein deficient (lut2, lut5), non-photochemical quenching1 (npq1) and suppressor of zeaxanthin-less1 (szl1) npq1 double mutant. Photo-oxidative stress was applied by exposing plants to sunflecks. The sunflecks caused reduction of chlorophyll content in all plants, but more severely in those having high a- to beta-branch carotenoid composition (a/beta-ratio) (lut5, szl1npq1). While this did not alter carotenoid composition in wt or lut2, which accumulates only beta-branch carotenoids, increased xanthophyll levels were found in the mutants with high a/beta-ratios (lut5, szl1npq1) or without xanthophyll-cycle operation (npq1, szl1npq1). The PsbS protein content increased in all sunfleck plants but lut2. These changes were accompanied by no change (npq1, szl1npq1) or enhanced capacity (wt, lut5) of NPQ. Leaf mass per area increased in lut2, but decreased in wt and lut5 that showed increased NPQ. The sunflecks decelerated primary root growth in wt and npq1 having normal a/beta-ratios, but suppressed lateral root formation in lut5 and szl1npq1 having high a/beta-ratios. The results highlight the importance of proper regulation of the a- and beta-branch carotenoid pathways for whole-plant acclimation, not only leaf photoprotection, under photo-oxidative stress. C1 [Caliandro, Rosanna; Nagel, Kerstin A.; Kastenholz, Bernd; Bassi, Roberto; Schurr, Ulrich; Matsubara, Shizue] Forschungszentrum Julich, IBG Pflanzenwissensch 2, D-52425 Julich, Germany. [Bassi, Roberto] Univ Verona, Dipartimento Biotecnol, I-37134 Verona, Italy. [Li, Zhirong; Niyogi, Krishna K.] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Li, Zhirong; Niyogi, Krishna K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Pogson, Barry J.] Australian Natl Univ, Res Sch Biol, Australian Res Council Ctr Excellence Plant Energ, Canberra, ACT 0200, Australia. RP Matsubara, S (reprint author), Forschungszentrum Julich, IBG Pflanzenwissensch 2, D-52425 Julich, Germany. EM s.matsubara@fz-juelich.de RI Matsubara, Shizue/A-5673-2011; Pogson, Barry/C-9953-2009; OI Matsubara, Shizue/0000-0002-1440-6496; Pogson, Barry/0000-0003-1869-2423; Kastenholz, Bernd/0000-0001-7954-9474; bassi, roberto/0000-0002-4140-8446 FU Heinrich-Heine-Universitat Dusseldorf; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (FWP) [449B] FX We thank Beate Uhlig and Marcel Schneider for seed harvesting; Thomas Hombach for maintenance of the 'sunfleck machine'; and Sebastian Samer for helping the root growth analysis. R. C. acknowledges the support of her PhD thesis at the Heinrich-Heine-Universitat Dusseldorf. Z. L. and K. K. N. were supported by a grant from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (FWP number 449B). NR 76 TC 6 Z9 6 U1 3 U2 101 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0140-7791 J9 PLANT CELL ENVIRON JI Plant Cell Environ. PD FEB PY 2013 VL 36 IS 2 BP 438 EP 453 DI 10.1111/j.1365-3040.2012.02586.x PG 16 WC Plant Sciences SC Plant Sciences GA 063KR UT WOS:000312997700016 PM 22860767 ER PT J AU Ferrieri, AP Agtuca, B Appel, HM Ferrieri, RA Schultz, JC AF Ferrieri, Abigail P. Agtuca, Beverly Appel, Heidi M. Ferrieri, Richard A. Schultz, Jack C. TI Temporal Changes in Allocation and Partitioning of New Carbon as C-11 Elicited by Simulated Herbivory Suggest that Roots Shape Aboveground Responses in Arabidopsis SO PLANT PHYSIOLOGY LA English DT Article ID CELL-WALL INVERTASE; JASMONATE-INDUCED RESPONSES; METHYL JASMONATE; PLANT DEFENSE; RAPID CHANGES; LYCOPERSICON-ESCULENTUM; PHLOEM TRANSPORT; GENE-EXPRESSION; COMPANION CELLS; COLD STRESS AB Using the short-lived isotope C-11 (t(1/2) = 20.4 min) as (CO2)-C-11, we captured temporal changes in whole-plant carbon movement and partitioning of recently fixed carbon into primary and secondary metabolites in a time course (2, 6, and 24 h) following simulated herbivory with the well-known defense elicitor methyl jasmonate (MeJA) to young leaves of Arabidopsis (Arabidopsis thaliana). Both (CO2)-C-11 fixation and C-11-photosynthate export from the labeled source leaf increased rapidly (2 h) following MeJA treatment relative to controls, with preferential allocation of radiolabeled resources belowground. At the same time, C-11-photosynthate remaining in the aboveground sink tissues showed preferential allocation to MeJA-treated, young leaves, where it was incorporated into C-11-cinnamic acid. By 24 h, resource allocation toward roots returned to control levels, while allocation to the young leaves increased. This corresponded to an increase in invertase activity and the accumulation of phenolic compounds, particularly anthocyanins, in young leaves. Induction of phenolics was suppressed in sucrose transporter mutant plants (suc2-1), indicating that this phenomenon may be controlled, in part, by phloem loading at source leaves. However, when plant roots were chilled to 5 degrees C to disrupt carbon flow between above-and belowground tissues, source leaves failed to allocate resources belowground or toward damaged leaves following wounding and MeJA treatment to young leaves, suggesting that roots may play an integral role in controlling how plants respond defensively aboveground. C1 [Ferrieri, Abigail P.; Appel, Heidi M.; Schultz, Jack C.] Univ Missouri, Div Plant Sci, Bond Life Sci Ctr, Columbia, MO 65211 USA. [Agtuca, Beverly] SUNY Coll Environm Sci & Forestry, Syracuse, NY 13210 USA. [Ferrieri, Richard A.] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. RP Ferrieri, AP (reprint author), Max Planck Inst Chem Ecol, Dept Mol Ecol, Hans Knoll Str 8, D-07745 Jena, Germany. EM aferrieri@ice.mpg.de OI Schultz, Jack/0000-0001-9870-3537 FU Department of Energy's Office of Biological and Environmental Research [DE-AC02-98CH10886]; Department of Energy through the University of Missouri [DE-SC0002040]; University of Missouri; Department of Energy Summer Undergraduate Laboratory Internships Program; [NSF-IOS-0805272] FX This work was supported by grant no. NSF-IOS-0805272 (to H. M. A. and J. C. S.), the Department of Energy's Office of Biological and Environmental Research under contract DE-AC02-98CH10886 (to R. A. F.), a Department of Energy training grant through the University of Missouri (no. DE-SC0002040 to R. A. F. and A. P. F.), a University of Missouri Life Science Fellowship (to A. P. F.), and the Department of Energy Summer Undergraduate Laboratory Internships Program (B.A.). NR 78 TC 26 Z9 28 U1 4 U2 68 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 J9 PLANT PHYSIOL JI Plant Physiol. PD FEB PY 2013 VL 161 IS 2 BP 692 EP 704 DI 10.1104/pp.112.208868 PG 13 WC Plant Sciences SC Plant Sciences GA 081ZA UT WOS:000314360100010 PM 23370716 ER PT J AU Stanley, DN Raines, CA Kerfeld, CA AF Stanley, Desiree N. Raines, Christine A. Kerfeld, Cheryl A. TI Comparative Analysis of 126 Cyanobacterial Genomes Reveals Evidence of Functional Diversity Among Homologs of the Redox-Regulated CP12 Protein SO PLANT PHYSIOLOGY LA English DT Article ID PHOTOSYNTHETIC GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE; INTRINSICALLY UNSTRUCTURED PROTEINS; CYSTATHIONINE BETA-SYNTHASE; MULTIPLE SEQUENCE ALIGNMENT; DOMAIN-CONTAINING PROTEINS; CALVIN CYCLE ACTIVITY; CHLAMYDOMONAS-REINHARDTII; CBS-DOMAIN; DISORDERED PROTEIN; GENE-EXPRESSION AB CP12 is found almost universally among photosynthetic organisms, where it plays a key role in regulation of the Calvin cycle by forming a ternary complex with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase. Newly available genomic sequence data for the phylum Cyanobacteria reveals a heretofore unobserved diversity in cyanobacterial CP12 proteins. Cyanobacterial CP12 proteins can be classified into eight different types based on primary structure features. Among these are CP12-CBS (for cystathionine-beta-synthase) domain fusions. CBS domains are regulatory modules for a wide range of cellular activities; many of these bind adenine nucleotides through a conserved motif that is also present in the CBS domains fused to CP12. In addition, a survey of expression data sets shows that the CP12 paralogs are differentially regulated. Furthermore, modeling of the cyanobacterial CP12 protein variants based on the recently available three-dimensional structure of the canonical cyanobacterial CP12 in complex with GAPDH suggests that some of the newly identified cyanobacterial CP12 types are unlikely to bind to GAPDH. Collectively these data show that, as is becoming increasingly apparent for plant CP12 proteins, the role of CP12 in cyanobacteria is likely more complex than previously appreciated, possibly involving other signals in addition to light. Moreover, our findings substantiate the proposal that this small protein may have multiple roles in photosynthetic organisms. C1 [Stanley, Desiree N.; Kerfeld, Cheryl A.] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Stanley, Desiree N.; Kerfeld, Cheryl A.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Raines, Christine A.] Univ Essex, Sch Biol Sci, Colchester CO3 4JE, Essex, England. [Kerfeld, Cheryl A.] Berkeley Synthet Biol Inst, Berkeley, CA 94720 USA. RP Kerfeld, CA (reprint author), Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. EM ckerfeld@lbl.gov FU National Science Foundation [MCB 0851094, EF1105897]; Biotechnology and Biological Sciences Research Council [P19403]; University of Essex Research Promotion Fund FX This work was supported by the National Science Foundation (grant nos. MCB 0851094 and EF1105897 to C. A. K. and D. N. S.), the Biotechnology and Biological Sciences Research Council (grant no. P19403 to C. A. R.), and the University of Essex Research Promotion Fund (to C.A.R.). NR 83 TC 14 Z9 14 U1 2 U2 30 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 EI 1532-2548 J9 PLANT PHYSIOL JI Plant Physiol. PD FEB PY 2013 VL 161 IS 2 BP 824 EP 835 DI 10.1104/pp.112.210542 PG 12 WC Plant Sciences SC Plant Sciences GA 081ZA UT WOS:000314360100019 PM 23184231 ER PT J AU Lan, SY Kuan, PC Estey, B English, D Brown, JM Hohensee, MA Muller, H AF Lan, Shau-Yu Kuan, Pei-Chen Estey, Brian English, Damon Brown, Justin M. Hohensee, Michael A. Mueller, Holger TI A Clock Directly Linking Time to a Particle's Mass SO SCIENCE LA English DT Article ID UNCERTAINTY; OPTICS AB Historically, time measurements have been based on oscillation frequencies in systems of particles, from the motion of celestial bodies to atomic transitions. Relativity and quantum mechanics show that even a single particle of mass m determines a Compton frequency omega(0) = mc(2)/(h) over bar, where c is the speed of light and h is Planck's constant h divided by 2 pi. A clock referenced to omega(0) would enable high-precision mass measurements and a fundamental definition of the second. We demonstrate such a clock using an optical frequency comb to self-reference a Ramsey-Borde atom interferometer and synchronize an oscillator at a subharmonic of omega(0). This directly demonstrates the connection between time and mass. It allows measurement of microscopic masses with 4 x 10(-9) accuracy in the proposed revision to SI units. Together with the Avogadro project, it yields calibrated kilograms. C1 [Lan, Shau-Yu; Kuan, Pei-Chen; Estey, Brian; English, Damon; Brown, Justin M.; Hohensee, Michael A.; Mueller, Holger] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Mueller, Holger] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Muller, H (reprint author), Univ Calif Berkeley, Dept Phys, 366 Le Conte Hall,MS7300, Berkeley, CA 94720 USA. EM hm@berkeley.edu RI Lan, Shau-Yu/B-5567-2014; Mueller, Holger/E-3194-2015; OI Lan, Shau-Yu/0000-0003-2608-9472; Hohensee, Michael/0000-0002-8106-4502 FU Miller Institute for Basic Research in Science; Alfred P. Sloan Foundation; David and Lucile Packard Foundation; National Institute of Standards and Technology; National Science Foundation; National Aeronautics and Space Administration FX We thank S. Chu, P. Hamilton, and M. Kasevich for stimulating discussions; D. Budker, P. Kehaiyas, G. Kim, M. Xu, E. Ronayne Sohr, and D. Schlippert for experimental assistance; and A. Brachmann, R. Falcone, and W. E. White for providing a laser. J.M.B. acknowledges support by the Miller Institute for Basic Research in Science. This work was supported by the Alfred P. Sloan Foundation, the David and Lucile Packard Foundation, the National Institute of Standards and Technology, the National Science Foundation, and the National Aeronautics and Space Administration. NR 26 TC 45 Z9 46 U1 3 U2 59 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 1 PY 2013 VL 339 IS 6119 BP 554 EP 557 DI 10.1126/science.1230767 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 080UR UT WOS:000314270000052 PM 23306441 ER PT J AU Neuert, G Munsky, B Tan, RZ Teytelman, L Khammash, M van Oudenaarden, A AF Neuert, Gregor Munsky, Brian Tan, Rui Zhen Teytelman, Leonid Khammash, Mustafa van Oudenaarden, Alexander TI Systematic Identification of Signal-Activated Stochastic Gene Regulation SO SCIENCE LA English DT Article ID SACCHAROMYCES-CEREVISIAE; EXPRESSION; TRANSCRIPTION; FLUCTUATIONS; ADAPTATION; RECRUITMENT; DEPENDENCE; PATHWAY; NOISE AB Although much has been done to elucidate the biochemistry of signal transduction and gene regulatory pathways, it remains difficult to understand or predict quantitative responses. We integrate single-cell experiments with stochastic analyses, to identify predictive models of transcriptional dynamics for the osmotic stress response pathway in Saccharomyces cerevisiae. We generate models with varying complexity and use parameter estimation and cross-validation analyses to select the most predictive model. This model yields insight into several dynamical features, including multistep regulation and switchlike activation for several osmosensitive genes. Furthermore, the model correctly predicts the transcriptional dynamics of cells in response to different environmental and genetic perturbations. Because our approach is general, it should facilitate a predictive understanding for signal-activated transcription of other genes in other pathways or organisms. C1 [Neuert, Gregor; Tan, Rui Zhen; Teytelman, Leonid; van Oudenaarden, Alexander] MIT, Dept Phys, Cambridge, MA 02139 USA. [Neuert, Gregor; Tan, Rui Zhen; Teytelman, Leonid; van Oudenaarden, Alexander] MIT, Dept Biol, Cambridge, MA 02139 USA. [Neuert, Gregor; Tan, Rui Zhen; Teytelman, Leonid; van Oudenaarden, Alexander] MIT, Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA. [Neuert, Gregor] Vanderbilt Univ, Sch Med, Dept Mol Physiol & Biophys, Nashville, TN 37232 USA. [Munsky, Brian] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Munsky, Brian] Los Alamos Natl Lab, Informat Sci Grp, Los Alamos, NM 87545 USA. [Khammash, Mustafa] ETH Zuerich, Dept Biosyst Sci & Engn, CH-4058 Basel, Switzerland. [Tan, Rui Zhen] ASTAR, Bioinformat Inst, Singapore 138671, Singapore. [Tan, Rui Zhen] Harvard Univ, Sch Med, Harvard Univ Grad Biophys Program, Boston, MA 02115 USA. [Khammash, Mustafa] Univ Calif Santa Barbara, Ctr Control Dynam Syst & Computat, Santa Barbara, CA 93106 USA. [Khammash, Mustafa] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA. [van Oudenaarden, Alexander] Royal Netherlands Acad Arts & Sci, Hubrecht Inst, NL-3584 CT Utrecht, Netherlands. [van Oudenaarden, Alexander] Univ Med Ctr Utrecht, NL-3584 CT Utrecht, Netherlands. RP van Oudenaarden, A (reprint author), MIT, Dept Phys, Cambridge, MA 02139 USA. EM a.vanoudenaarden@hubrecht.eu RI Munsky, Brian/A-1947-2016; OI Munsky, Brian/0000-0001-6147-7329; Teytelman, Lenny/0000-0001-8573-8351 FU NSF [ECCS-0835847, ECCS-0835623]; Human Frontier Science Program [RGP0061/2011]; National Institutes of Health-National Cancer Institute Physical Sciences Oncology Center at Massachusetts Institute of Technology [U54CA143874]; NIH [1DP1OD003936]; Los Alamos National Laboratory-Laboratory Directed Research and Development; Deutsche Forschungsgemeinschaft (Forschungs Stipendium); A*STAR program, Singapore FX This work was funded by the NSF (ECCS-0835847) and Human Frontier Science Program (RGP0061/2011) to M. K.; the NSF (ECCS-0835623), National Institutes of Health-National Cancer Institute Physical Sciences Oncology Center at Massachusetts Institute of Technology (U54CA143874), and an NIH Pioneer award (1DP1OD003936) to A.v.O.; Los Alamos National Laboratory-Laboratory Directed Research and Development to B. M.; the Deutsche Forschungsgemeinschaft (Forschungs Stipendium) to G.N.; and the A*STAR program, Singapore, to R.Z.T. We thank F. van Werven for the yeast crosses and N. Hengartner, B. Pando, S. Klemm, J. van Zon, and M. Wall for discussions on the model. We also thank M. Bienko, N. Crosetto, C. Engert, S. Itzkovitz, J. P. Junker, S. Klemm, S. Semrau, J. van Zon, and H. Youk for comments on the manuscript. NR 26 TC 77 Z9 77 U1 2 U2 58 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 J9 SCIENCE JI Science PD FEB 1 PY 2013 VL 339 IS 6119 BP 584 EP 587 DI 10.1126/science.1231456 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 080UR UT WOS:000314270000060 PM 23372015 ER PT J AU Wu, YKR Hollowell, AE Zhang, C Guo, LJ AF Wu, Yi-Kuei Ryan Hollowell, Andrew E. Zhang, Cheng Guo, L. Jay TI Angle-Insensitive Structural Colours based on Metallic Nanocavities and Coloured Pixels beyond the Diffraction Limit SO SCIENTIFIC REPORTS LA English DT Article ID PHOTONIC CRYSTAL; RESOLUTION; ARRAYS; FILMS AB To move beyond colorant-based pigmentation display technologies, a variety of photonic and plasmonic crystal based structures have been designed and applied as colour filters. Nanostructure based colour filtering offers increased efficiencies, low power consumption, slim dimensions, and enhanced resolution. However, incident angle tolerance still needs to be improved. In this work, we propose a new scheme through localized resonance in metallic nanoslits by light funneling. Angle insensitive colour filters up to +/- 80 degrees have been achieved, capable of wide colour tunability across the entire visible band with pixel size beyond the diffraction limit (similar to lambda/2). This work opens the door to angle insensitive manipulation of light with structural filtering. C1 [Wu, Yi-Kuei Ryan; Hollowell, Andrew E.; Zhang, Cheng; Guo, L. Jay] Univ Michigan, Dept Elect Engn & Comp Sci, C PHOM, Ann Arbor, MI 48109 USA. [Hollowell, Andrew E.] Sandia Natl Labs, Albuquerque, NM 87123 USA. RP Guo, LJ (reprint author), Univ Michigan, Dept Elect Engn & Comp Sci, C PHOM, Ann Arbor, MI 48109 USA. EM guo@umich.edu FU AFOSR; NSF FX We acknowledge the financial support from AFOSR (Dr. H. Weinstock) and NSF. The device fabrications were performed at the Lurie Nanofabrication Facility (LNF) and SEM images taken at Electron MicroAnalysis Lab at the University of Michigan. NR 34 TC 80 Z9 80 U1 5 U2 96 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD FEB 1 PY 2013 VL 3 AR 1194 DI 10.1038/srep01194 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 082NY UT WOS:000314400000008 PM 23378925 ER PT J AU Wiley, HS AF Wiley, H. Steven TI Variety Is the Spice of Life SO SCIENTIST LA English DT Article C1 Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Wiley, HS (reprint author), Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU SCIENTIST INC PI PHILADELPHIA PA 400 MARKET ST, STE 1250, PHILADELPHIA, PA 19106 USA SN 0890-3670 J9 SCIENTIST JI Scientist PD FEB PY 2013 VL 27 IS 2 BP 24 EP 25 PG 2 WC Information Science & Library Science; Multidisciplinary Sciences SC Information Science & Library Science; Science & Technology - Other Topics GA 080PZ UT WOS:000314256900006 ER PT J AU Tierney, R Hermina, W Walsh, S AF Tierney, Robert Hermina, Wahid Walsh, Steven TI The pharmaceutical technology landscape: A new form of technology roadmapping SO TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE LA English DT Article DE Constrained innovations; Creative enterprise; Nanotechnology; Microtechnology; Technology entrepreneurship; National laboratories; MEMS; Technology roadmaps; Technology landscape; Convergence ID DISRUPTIVE TECHNOLOGIES; OPPORTUNITIES; INNOVATION; NANOTECHNOLOGY; FRAMEWORK; CHALLENGES; REVOLUTION; INDUSTRY; SCIENCE; SYSTEMS AB Practitioners are finding it increasingly difficult to develop effective roadmapping efforts for many new products and innovations. We argue that this difficulty stems from the fundamental differences between many of today's innovations and earlier ones. Many current innovations are: using technology differently; more heavily constrained; forcing new business models and increasingly being shaped by drivers. Current roadmapping techniques do not translate well to this new reality. Roadmapping efforts for these innovations are increasingly failing to meet their primary goal of including technology into the strategic process of firms, regions or industries. We seek to address this concern by creating a new roadmapping technique, one we name Technology Landscaping. We build this technique by basing it upon the relevant sections and structures found in first and second generation roadmapping theories and practices. We then apply new theory and processes that are in alignment with the nature of these new products and innovations. We test our model through a case study of new pharmaceutical industry innovations. Finally, we present our new roadmapping technique. (C) 2012 Elsevier Inc. All rights reserved. C1 [Tierney, Robert] Univ Twente, NIKOS, NL-7500 AE Enschede, Netherlands. [Hermina, Wahid] Sandia Natl Labs, Microsyst RD&A Integrat, Livermore, CA 94550 USA. [Hermina, Wahid] Sandia Natl Labs, US DOE, Livermore, CA 94550 USA. [Walsh, Steven] Univ New Mexico, Anderson Sch Management, Albuquerque, NM 87131 USA. [Walsh, Steven] Univ New Mexico, Anderson Sch Management, Technol Entrepreneurship Program, Albuquerque, NM 87131 USA. [Walsh, Steven] Univ New Mexico, Anderson Sch Management, Technol Management Ctr, Albuquerque, NM 87131 USA. RP Tierney, R (reprint author), Univ Twente, NIKOS, POB 217, NL-7500 AE Enschede, Netherlands. EM tierneyr@live.com; wlhermi@sandia.gov; walsh@unm.edu NR 129 TC 28 Z9 29 U1 8 U2 93 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0040-1625 EI 1873-5509 J9 TECHNOL FORECAST SOC JI Technol. Forecast. Soc. Chang. PD FEB PY 2013 VL 80 IS 2 BP 194 EP 211 DI 10.1016/j.techfore.2012.05.002 PG 18 WC Business; Planning & Development SC Business & Economics; Public Administration GA 082IS UT WOS:000314386100003 ER PT J AU M'ndange-Pfupfu, A Ciston, J Eryilmaz, O Erdemir, A Marks, LD AF M'ndange-Pfupfu, A. Ciston, J. Eryilmaz, O. Erdemir, A. Marks, L. D. TI Direct Observation of Tribochemically Assisted Wear on Diamond-Like Carbon Thin Films SO TRIBOLOGY LETTERS LA English DT Article DE Nanotribology; Friction mechanisms; Wear mechanisms; Corrosive wear; Solid lubrication mechanisms; TEM; EELS ID TRIBOLOGICAL PROPERTIES; NANOMETER-SCALE; FRICTION; GAS; HYDROGEN; STEEL; DLC; SPECTROSCOPY; PERFORMANCE; COATINGS AB Friction represents a major energy wastage, with typical estimates in the range of 2-5 % of the GDP of developed countries; 15 % of the energy losses in a new automobile engine are due to friction (Uchida et al. J. Cryst. Growth 114:565-568, 1991). While the macroscopic laws of friction have been known for centuries, the exact nanoscale processes taking place are less clear. It is established that friction involves small asperities sliding on a locally flat surface, but the exact mechanisms of slip as well as energy dissipation are still unclear and sometimes controversial. In many ways even less is known about chemical reactions occurring during sliding, what is called tribochemistry. We report here direct in situ observation at the nanoscale of tribochemically assisted wear for a tungsten tip sliding on diamond-like carbon films in wet hydrogen, nitrogen and compare these to similar experiments in vacuum. Differences in the wear directly indicate passivation of the films in hydrogen and accelerated wear in wet nitrogen. The results are surprisingly similar to what one would expect at the macroscale, indicating that in many respects there is little difference between the processes taking place across many length scales. C1 [M'ndange-Pfupfu, A.; Marks, L. D.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Ciston, J.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Eryilmaz, O.; Erdemir, A.] Argonne Natl Lab, Div Energy Syst, Tribol Sect, Argonne, IL 60439 USA. RP Marks, LD (reprint author), Northwestern Univ, Dept Mat Sci & Engn, 2220 N Campus Dr,Cook Hall,Room 2036, Evanston, IL 60208 USA. EM l-marks@northwestern.edu RI Marks, Laurence/B-7527-2009 FU National Science Foundation [CMMI-1030703]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This study was supported by the National Science Foundation on grant number CMMI-1030703. Additional support was provided by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, under Contract No. DE-AC02-06CH11357. Research carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 42 TC 11 Z9 11 U1 3 U2 82 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1023-8883 J9 TRIBOL LETT JI Tribol. Lett. PD FEB PY 2013 VL 49 IS 2 BP 351 EP 356 DI 10.1007/s11249-012-0074-x PG 6 WC Engineering, Chemical; Engineering, Mechanical SC Engineering GA 077XF UT WOS:000314062000005 ER PT J AU Li, LC Tang, CA Wang, SY Yu, J AF Li, L. C. Tang, C. A. Wang, S. Y. Yu, J. TI A coupled thermo-hydrologic-mechanical damage model and associated application in a stability analysis on a rock pillar SO TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY LA English DT Article DE Brittle rock; Numerical simulation; THM; Failure process; Heterogeneity; Aspo Pillar ID NUCLEAR-WASTE REPOSITORIES; LOCAL DEGRADATION APPROACH; NUMERICAL-SIMULATION; PERMEABILITY CHANGES; YUCCA MOUNTAIN; THM PROCESSES; HETEROGENEOUS ROCKS; EMPLACEMENT DRIFT; PART I; CONDUCTIVITY AB A numerical model of coupled thermo-hydrologic-mechanical damage (THMD) in the failure process of rock is proposed using elastic damage mechanics, thermal-elastic theory and seepage mechanics. In the proposed model, the mechanical deformation of rock subjected to thermo-hydrologic-mechanical loading is considered. The model includes the accumulation of damage applied to individual elements, which modifies the modulus, strength, permeability and thermal properties with the severity of the damage. This concept is introduced as a practical method to simulate progressive failure in heterogeneous and brittle rocks, obviating the need to explicitly identify crack tips and their interactions. The model is validated through comparisons of the simulated results with known analytical solutions. The proposed THMD model is implemented in the Rock Failure Process Analysis code (RFPA), and RFPA-THM is developed. Using RFPA-THM, numerical simulation is performed to investigate the stability of a hard rock pillar in the Aspo Pillar Stability Experiment (APSE). The numerically obtained stress field, failure pattern of the rock pillar and the associated Acoustic Emission (AE) events are all in agreement with the in situ experiment conducted at the Aspo Hard Rock Laboratory (HRL) and the phenomenological observations reported in previous studies. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Li, L. C.; Tang, C. A.] Dalian Univ Technol, Sch Civil Engn, Dalian 116024, Peoples R China. [Li, L. C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Wang, S. Y.] Univ Newcastle, Ctr Geotech & Mat Modelling Civil Surveying & Env, Callaghan, NSW 2308, Australia. [Yu, J.] Huaqiao Univ, Inst Geotech Engn, Xiamen 361021, Peoples R China. RP Li, LC (reprint author), Dalian Univ Technol, Sch Civil Engn, Dalian 116024, Peoples R China. EM li_lianchong@163.com FU National Natural Science Foundation of China [51121005, 50909013, 50820125405]; ARC Australian Laureate Fellowship [FL0992039] FX The study presented in this paper was jointly supported by grants from the National Natural Science Foundation of China (Grant Nos. 51121005, 50909013 and 50820125405). The work was also partially supported by ARC Australian Laureate Fellowship Grant FL0992039. The authors are grateful for these supports. NR 67 TC 15 Z9 17 U1 4 U2 58 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0886-7798 J9 TUNN UNDERGR SP TECH JI Tunn. Undergr. Space Technol. PD FEB PY 2013 VL 34 BP 38 EP 53 DI 10.1016/j.tust.2012.10.003 PG 16 WC Construction & Building Technology; Engineering, Civil SC Construction & Building Technology; Engineering GA 083FJ UT WOS:000314447800004 ER PT J AU Golosker, I Florando, J AF Golosker, Ilya Florando, Jeffrey TI Reflow of AuSn Solder Creates Strong Joints SO WELDING JOURNAL LA English DT Editorial Material C1 [Golosker, Ilya; Florando, Jeffrey] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Golosker, I (reprint author), Lawrence Livermore Natl Lab, Livermore, CA USA. EM golosker1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 9 TC 0 Z9 0 U1 0 U2 3 PU AMER WELDING SOC PI MIAMI PA 550 N W LEJEUNE RD, MIAMI, FL 33126 USA SN 0043-2296 J9 WELD J JI Weld. J. PD FEB PY 2013 VL 92 IS 2 BP 48 EP 53 PG 6 WC Metallurgy & Metallurgical Engineering SC Metallurgy & Metallurgical Engineering GA 081NT UT WOS:000314329600007 ER PT J AU Fields, DE Kennedy, RG Roy, KI Vacaliuc, B AF Fields, David E. Kennedy, Robert G. Roy, Kenneth I. Vacaliuc, Bogdan TI Interplanetary radio transmission through serial ionospheric and material barriers SO ACTA ASTRONAUTICA LA English DT Article; Proceedings Paper CT 7th IAA Symposium on Realistic Near-Term Advanced Scientific Space Missions - Missions to the Outer Solar System and Beyond CY JUL 11-14, 2011 CL Aosta, ITALY SP Int Acad Astronaut (IAA) DE SETI; Ionospheric transmission; Jovian radiation; Radio astronomy; Nikola Tesla; Very low frequency AB A usual first principle in planning radio astronomy observations from the earth is that monitoring must be carried out well above the ionospheric plasma cutoff frequency (similar to 5 MHz). Before space probes existed, radio astronomy was almost entirely done above 6 MHz, and this value is considered a practical lower limit by most radio astronomers. Furthermore, daytime ionization (especially D-layer formation) places additional constraints on wave propagation, and waves of frequency below 10-20 MHz suffer significant attenuation. More careful calculations of wave propagation through the Earth's ionosphere suggest that for certain conditions (primarily the presence of a magnetic field) there may be a transmission window well below this assumed limit. Indeed, for receiving extraterrestrial radiation below the ionospheric plasma cutoff frequency, a choice of VLF frequency appears optimal to minimize loss. The calculation, experimental validation, and conclusions are presented here. This work demonstrates the possibility of VLF transmission through the ionosphere and various subsequent material barriers. Implications include development of a new robust communications channel, communications with submerged or subterranean receivers/instruments on or offworld, and a new approach to SETI. (c) 2012 Elsevier Ltd. All rights reserved. C1 [Fields, David E.] Tamke Allan Observ, Roane State Community Coll, Harriman, TN 37748 USA. [Kennedy, Robert G.; Roy, Kenneth I.] Ultimax Grp Inc, Oak Ridge, TN 37830 USA. [Vacaliuc, Bogdan] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Kennedy, RG (reprint author), Ultimax Grp Inc, 112 Mason Lane, Oak Ridge, TN 37830 USA. EM fieldsde@aol.com; robot@ultimax.com; kiroy@att.net; vacaliucb@ornl.gov NR 15 TC 0 Z9 0 U1 1 U2 6 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0094-5765 J9 ACTA ASTRONAUT JI Acta Astronaut. PD FEB PY 2013 VL 82 IS 2 SI SI BP 251 EP 256 DI 10.1016/j.actaastro.2012.05.021 PG 6 WC Engineering, Aerospace SC Engineering GA 073UZ UT WOS:000313769900016 ER PT J AU Palmiotti, G Salvatores, M AF Palmiotti, Giuseppe Salvatores, Massimo TI The role of experiments and of sensitivity analysis in simulation validation strategies with emphasis on reactor physics SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Reactor design; Simulation validation strategies; Sensitivity analysis ID ESTIMATE MODEL CALIBRATION; FUTURE NUCLEAR SYSTEMS; PREDICTION; UNCERTAINTY; ADJUSTMENT; PARAMETERS; DESIGN AB The complementary role of experiments and of sensitivity analysis has been and still is a key feature of validation strategies used in the field of simulation tools for nuclear reactor design. The present paper gives a summary of the development of more and more sophisticated validation strategies up to the present trend for science-based validation approaches. Most examples and some very recent original developments are given, mostly in the field of neutronics that has traditionally provided cutting edge advances for simulation tools validation. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Palmiotti, Giuseppe; Salvatores, Massimo] Idaho Natl Lab, NSE Div, Idaho Falls, ID 83415 USA. [Salvatores, Massimo] CEN Cadarache, F-13108 St Paul Les Durance, France. RP Palmiotti, G (reprint author), Idaho Natl Lab, NSE Div, POB 1625, Idaho Falls, ID 83415 USA. EM Giuseppe.Palmiotti@inl.gov FU US Government under DOE [DE-AC07-05ID14517] FX This submitted manuscript was authored by a contractor of the US Government under DOE Contract No. DE-AC07-05ID14517. Accordingly, the US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purposes. NR 39 TC 5 Z9 5 U1 1 U2 8 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD FEB PY 2013 VL 52 SI SI BP 10 EP 21 DI 10.1016/j.anucene.2012.06.002 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 076ZM UT WOS:000313997700003 ER PT J AU Stripling, HF Anitescu, M Adams, ML AF Stripling, H. F. Anitescu, M. Adams, M. L. TI A generalized adjoint framework for sensitivity and global error estimation in time-dependent nuclear reactor simulations SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Uncertainty quantification; Error estimation; Sensitivity analysis; Adjoint method; Differential algebraic equation ID DEPLETION PERTURBATION-THEORY; EQUATIONS AB We develop a general framework for computing the adjoint variable to nuclear engineering problems governed by a set of differential-algebraic equations (DAEs). The nuclear engineering community has a rich history of developing and applying adjoints for sensitivity calculations; many such formulations, however, are specific to a certain set of equations, variables, or solution techniques. Any change or addition to the physics model would require a reformulation of the adjoint problem and substantial difficulties in its software implementation. In this work we propose an abstract framework that allows for the modification and expansion of the governing equations, leverages the existing theory of adjoint formulation for DAEs, and results in adjoint equations that can be used to efficiently compute sensitivities for parametric uncertainty quantification. Moreover, as we justify theoretically and demonstrate numerically, the same framework can be used to estimate global time discretization error. We first motivate the framework and show that the coupled Bateman and transport equations, which govern the time-dependent neutronic behavior of a nuclear reactor, may be formulated as a DAE system with a power constraint. We then use a variational approach to develop the parameter-dependent adjoint framework and apply existing theory to give formulations for sensitivity and global time discretization error estimates using the adjoint variable. We apply the framework to two problems: a simple pendulum problem with known solution, which serves to verify our global error estimation procedure, and a 1D model of a traveling wave reactor. We then emphasize the utility of the framework by adding heat transfer physics to the reactor problem and showing that no reformulation of the adjoint framework is required for application to the new physics. We conclude that the abstraction of the adjoint approach into a general framework will facilitate multiphysics reactor modeling in large-scale software projects. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Stripling, H. F.; Adams, M. L.] Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. [Anitescu, M.] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA. RP Stripling, HF (reprint author), Texas A&M Univ, Dept Nucl Engn, College Stn, TX 77843 USA. EM h.stripling@tamu.edu; anitescu@mcs.anl.gov; mladams@tamu.edu FU Department of Energy Computational Science Graduate Fellowship program [DE-FD02-97ER25308]; US Department of Energy [DE-AC02-06CH11357]; DOE Office of Nuclear Energy's Nuclear Energy University Programs FX H.F. Stripling is supported by the Department of Energy Computational Science Graduate Fellowship program under Grant No. DE-FD02-97ER25308. M. Anitescu is supported by the US Department of Energy under Contract No. DE-AC02-06CH11357. This research is being performed using funding received from the DOE Office of Nuclear Energy's Nuclear Energy University Programs. NR 22 TC 3 Z9 4 U1 1 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD FEB PY 2013 VL 52 SI SI BP 47 EP 58 DI 10.1016/j.anucene.2012.08.019 PG 12 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 076ZM UT WOS:000313997700006 ER PT J AU Higdon, D Geelhood, K Williams, B Unal, C AF Higdon, Dave Geelhood, Ken Williams, Brian Unal, Cetin TI Calibration of tuning parameters in the FRAPCON model SO ANNALS OF NUCLEAR ENERGY LA English DT Article DE Parameter estimation; Computer experiments; Prediction; Uncertainty quantification; Gaussian process ID COMPUTER-MODELS AB This paper uses methodology developed for Bayesian computer model calibration to constrain uncertainties in four tuning parameters in FRAPCON-3 (Geelhood et al., 2011a), a computational model that calculates steady-state fuel behavior at high burnup in light water reactors. The statistical methodology, described in Higdon et al. (2008), combines fission gas release measurements from 42 different experiments to constrain the uncertainties in four tuning parameters, as well as in additional statistical parameters describing measurement uncertainty, as well as discrepancy between model and reality. This demonstration provides a proof of principle for this methodology, suggesting its utility for more difficult parameter estimation problems, involving larger numbers of experiments and tuning parameters. Published by Elsevier Ltd. C1 [Higdon, Dave; Williams, Brian; Unal, Cetin] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Geelhood, Ken] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Higdon, D (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM dhigdon@lanl.gov OI Williams, Brian/0000-0002-3465-4972 NR 18 TC 1 Z9 1 U1 0 U2 9 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0306-4549 J9 ANN NUCL ENERGY JI Ann. Nucl. Energy PD FEB PY 2013 VL 52 SI SI BP 95 EP 102 DI 10.1016/j.anucene.2012.06.018 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 076ZM UT WOS:000313997700011 ER PT J AU Musaev, OR Sutter, E Wrobel, JM Kruger, MB AF Musaev, O. R. Sutter, E. Wrobel, J. M. Kruger, M. B. TI Structures of BiInSn nanoparticles formed through laser ablation SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID LIQUID-SOLID GROWTH; SEMICONDUCTOR NANOWIRES; PHASE-DIAGRAM; ALLOY; CATALYSTS; SN; AU AB The eutectic alloy of BiInSn was ablated in water by UV pulsed radiation. Electron microscopy of the ablated material shows spherical particles that fall into three size regimes: those with diameters of similar to 0.5 mu m, crystalline and amorphous particles with dimensions of similar to 30 nm, and amorphous particles that are approximately 1 nm across. The 30-nm amorphous particles are homogeneous, while there are two types of 30-nm crystalline particles, those that separate into three phases and those that are homogeneous. The existence of different characteristic sizes is explained by two mechanisms: phase explosion and Rayleigh instability of the ejected melt. C1 [Musaev, O. R.; Wrobel, J. M.; Kruger, M. B.] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Sutter, E.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Musaev, OR (reprint author), Univ Missouri, Dept Phys & Astron, 5100 Rockhill Rd, Kansas City, MO 64110 USA. EM musaevo@umkc.edu FU NSF [DMR-0605493, DMR-0923166]; US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was partially supported by NSF Contract Nos. DMR-0605493 and DMR-0923166. Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 25 TC 3 Z9 4 U1 0 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD FEB PY 2013 VL 110 IS 2 BP 329 EP 333 DI 10.1007/s00339-012-7244-4 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 076MK UT WOS:000313960400010 ER PT J AU Ackermann, M Ajello, M Asano, K Baldini, L Barbiellini, G Baring, MG Bastieri, D Bellazzini, R Blandford, RD Bonamente, E Borgland, AW Bottacini, E Bregeon, J Brigida, M Bruel, P Buehler, R Buson, S Caliandro, GA Cameron, RA Caraveo, PA Cecchi, C Charles, E Chaves, RCG Chekhtman, A Chiang, J Ciprini, S Claus, R Cohen-Tanugi, J Conrad, J Cutini, S D'Ammando, F de Angelis, A de Palma, F Dermer, CD Silva, EDE Drell, PS Drlica-Wagner, A Favuzzi, C Fegan, SJ Focke, WB Franckowiak, A Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Gehrels, N Giglietto, N Giordano, F Giroletti, M Glanzman, T Godfrey, G Granot, J Greiner, J Grenier, IA Grove, JE Guiriec, S Hadasch, D Hanabata, Y Hayashida, M Hays, E Hughes, RE Jackson, MS Jogler, T Johannesson, G Johnson, AS Knodlseder, J Kocevski, D Kuss, M Lande, J Larsson, S Latronico, L Longo, F Loparco, F Lovellette, MN Lubrano, P Mazziotta, MN McEnery, JE Mehault, J Meszaros, P Michelson, PF Mitthumsiri, W Mizuno, T Monte, C Monzani, ME Moretti, E Morselli, A Moskalenko, IV Murgia, S Naumann-Godo, M Norris, JP Nuss, E Nymark, T Ohno, M Ohsugi, T Omodei, N Orienti, M Orlando, E Paneque, D Perkins, JS Pesce-Rollins, M Piron, F Pivato, G Racusin, JL Raino, S Rando, R Razzano, M Razzaque, S Reimer, A Reimer, O Romoli, C Roth, M Ryde, F Sanchez, DA Sgro, C Siskind, EJ Sonbas, E Spinelli, P Stamatikos, M Takahashi, H Tanaka, T Thayer, JG Thayer, JB Tibaldo, L Tinivella, M Tosti, G Troja, E Usher, TL Vandenbroucke, J Vasileiou, V Vianello, G Vitale, V Waite, AP Winer, BL Wood, KS Yang, Z Gruber, D Bhat, PN Bissaldi, E Briggs, MS Burgess, JM Connaughton, V Foley, S Kippen, RM Kouveliotou, C McBreen, S McGlynn, S Paciesas, WS Pelassa, V Preece, R Rau, A van der Horst, AJ von Kienlin, A Kann, DA Filgas, R Klose, S Kruhler, T Fukui, A Sako, T Tristram, PJ Oates, SR Ukwatta, TN Littlejohns, O AF Ackermann, M. Ajello, M. Asano, K. Baldini, L. Barbiellini, G. Baring, M. G. Bastieri, D. Bellazzini, R. Blandford, R. D. Bonamente, E. Borgland, A. W. Bottacini, E. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Buson, S. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Cecchi, C. Charles, E. Chaves, R. C. G. Chekhtman, A. Chiang, J. Ciprini, S. Claus, R. Cohen-Tanugi, J. Conrad, J. Cutini, S. D'Ammando, F. de Angelis, A. de Palma, F. Dermer, C. D. do Couto e Silva, E. Drell, P. S. Drlica-Wagner, A. Favuzzi, C. Fegan, S. J. Focke, W. B. Franckowiak, A. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Giglietto, N. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Granot, J. Greiner, J. Grenier, I. A. Grove, J. E. Guiriec, S. Hadasch, D. Hanabata, Y. Hayashida, M. Hays, E. Hughes, R. E. Jackson, M. S. Jogler, T. Johannesson, G. Johnson, A. S. Knoedlseder, J. Kocevski, D. Kuss, M. Lande, J. Larsson, S. Latronico, L. Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Mazziotta, M. N. McEnery, J. E. Mehault, J. Meszaros, P. Michelson, P. F. Mitthumsiri, W. Mizuno, T. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Moskalenko, I. V. Murgia, S. Naumann-Godo, M. Norris, J. P. Nuss, E. Nymark, T. Ohno, M. Ohsugi, T. Omodei, N. Orienti, M. Orlando, E. Paneque, D. Perkins, J. S. Pesce-Rollins, M. Piron, F. Pivato, G. Racusin, J. L. Raino, S. Rando, R. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Romoli, C. Roth, M. Ryde, F. Sanchez, D. A. Sgro, C. Siskind, E. J. Sonbas, E. Spinelli, P. Stamatikos, M. Takahashi, H. Tanaka, T. Thayer, J. G. Thayer, J. B. Tibaldo, L. Tinivella, M. Tosti, G. Troja, E. Usher, T. L. Vandenbroucke, J. Vasileiou, V. Vianello, G. Vitale, V. Waite, A. P. Winer, B. L. Wood, K. S. Yang, Z. Gruber, D. Bhat, P. N. Bissaldi, E. Briggs, M. S. Burgess, J. M. Connaughton, V. Foley, S. Kippen, R. M. Kouveliotou, C. McBreen, S. McGlynn, S. Paciesas, W. S. Pelassa, V. Preece, R. Rau, A. van der Horst, A. J. von Kienlin, A. Kann, D. A. Filgas, R. Klose, S. Kruhler, T. Fukui, A. Sako, T. Tristram, P. J. Oates, S. R. Ukwatta, T. N. Littlejohns, O. TI MULTIWAVELENGTH OBSERVATIONS OF GRB 110731A: GeV EMISSION FROM ONSET TO AFTERGLOW SO ASTROPHYSICAL JOURNAL LA English DT Article DE gamma-ray burst: individual (GRB110731A) ID GAMMA-RAY BURST; HIGH-ENERGY EMISSION; LARGE-AREA TELESCOPE; SWIFT ULTRAVIOLET/OPTICAL TELESCOPE; INTERNAL SHOCK MODEL; LIGHT CURVES; OPTICAL AFTERGLOWS; FERMI OBSERVATIONS; SPECTRAL CATALOG; PEAK LUMINOSITY AB We report on the multiwavelength observations of the bright, long gamma-ray burst GRB 110731A, by the Fermi and Swift observatories, and by the MOA and GROND optical telescopes. The analysis of the prompt phase reveals that GRB 110731A shares many features with bright Large Area Telescope bursts observed by Fermi during the first three years on-orbit: a light curve with short time variability across the whole energy range during the prompt phase, delayed onset of the emission above 100 MeV, extra power-law component and temporally extended high-energy emission. In addition, this is the first GRB for which simultaneous GeV, X-ray, and optical data are available over multiple epochs beginning just after the trigger time and extending for more than 800 s, allowing temporal and spectral analysis in different epochs that favor emission from the forward shock in a wind-type medium. The observed temporally extended GeV emission is most likely part of the high-energy end of the afterglow emission. Both the single-zone pair transparency constraint for the prompt signal and the spectral and temporal analysis of the forward-shock afterglow emission independently lead to an estimate of the bulk Lorentz factor of the jet Gamma similar to 500-550. C1 [Ackermann, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Ajello, M.; Blandford, R. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Focke, W. B.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Jogler, T.; Johnson, A. S.; Kocevski, D.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Omodei, N.; Orlando, E.; Paneque, D.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Ajello, M.; Blandford, R. D.; Borgland, A. W.; Bottacini, E.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Focke, W. B.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Jogler, T.; Johnson, A. S.; Kocevski, D.; Lande, J.; Michelson, P. F.; Mitthumsiri, W.; Monzani, M. E.; Moskalenko, I. V.; Murgia, S.; Omodei, N.; Orlando, E.; Paneque, D.; Reimer, A.; Reimer, O.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Waite, A. P.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Asano, K.] Tokyo Inst Technol, Interact Res Ctr Sci, Meguro, Tokyo 1528551, Japan. [Baldini, L.; Bellazzini, R.; Bregeon, J.; Kuss, M.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Tinivella, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Barbiellini, G.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Baring, M. G.] Rice Univ, Dept Phys & Astron, Houston, TX 77251 USA. [Bastieri, D.; Buson, S.; Rando, R.; Tibaldo, L.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Pivato, G.; Rando, R.; Romoli, C.; Tibaldo, L.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bonamente, E.; Cecchi, C.; D'Ammando, F.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Ciprini, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Politecn Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Fegan, S. J.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Caliandro, G. A.; Hadasch, D.] IEEE CSIC, Inst Ciencies Espai, E-08193 Barcelona, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Chaves, R. C. G.; Grenier, I. A.; Naumann-Godo, M.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM,CEA IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Chekhtman, A.; Razzaque, S.] George Mason Univ, Coll Sci, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. [Ciprini, S.] ASI Sci Data Ctr, I-00044 Rome, Italy. [Cohen-Tanugi, J.; Mehault, J.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, CNRS, IN2P3, Lab Univers & Particules Montpellier, Montpellier, France. [Conrad, J.; Larsson, S.; Yang, Z.] Stockholm Univ, AlbaNova, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.; Jackson, M. S.; Larsson, S.; Moretti, E.; Nymark, T.; Ryde, F.; Yang, Z.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Cutini, S.; Gasparrini, D.] Agenzia Spaziale Italiana ASI Sci Data Ctr, I-00044 Rome, Italy. [D'Ammando, F.] IASF Palermo, I-90146 Palermo, Italy. [D'Ammando, F.] INAF Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dermer, C. D.; Grove, J. E.; Lovellette, M. N.; Wood, K. S.] USN, Res Lab, Div Space Sci, Washington, DC 20375 USA. [Fukazawa, Y.; Hanabata, Y.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Gehrels, N.; Hays, E.; McEnery, J. E.; Perkins, J. S.; Racusin, J. L.; Sonbas, E.; Stamatikos, M.; Troja, E.; Ukwatta, T. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [Granot, J.] Univ Hertfordshire, Sci & Technol Res Inst, Ctr Astrophys Res, Hatfield AL10 9AB, Herts, England. [Greiner, J.; Gruber, D.; Foley, S.; McBreen, S.; Rau, A.; von Kienlin, A.; Kann, D. A.; Filgas, R.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Guiriec, S.; Bhat, P. N.; Briggs, M. S.; Burgess, J. M.; Connaughton, V.; Paciesas, W. S.; Pelassa, V.; Preece, R.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Hayashida, M.] Kyoto Univ, Grad Sch Sci, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Hughes, R. E.; Stamatikos, M.; Winer, B. L.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Dept Phys, Columbus, OH 43210 USA. [Jackson, M. S.; Moretti, E.; Nymark, T.; Ryde, F.] AlbaNova, Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Knoedlseder, J.] IRAP, CNRS, F-31028 Toulouse 4, France. [Knoedlseder, J.] Univ Toulouse, UPS OMP, IRAP, GAHEC, Toulouse, France. [Larsson, S.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Latronico, L.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [McEnery, J. E.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [McEnery, J. E.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Meszaros, P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Norris, J. P.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Norris, J. P.] Boise State Univ, Dept Phys, Boise, ID 83725 USA. [Ohno, M.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Perkins, J. S.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Perkins, J. S.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Perkins, J. S.] CRESST, Greenbelt, MD 20771 USA. [Perkins, J. S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Razzano, M.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Razzano, M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Reimer, A.; Reimer, O.; Bissaldi, E.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Reimer, A.; Reimer, O.; Bissaldi, E.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Sanchez, D. A.] Max Planck Inst Kernphys, D-69029 Heidelberg, Germany. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Sonbas, E.] Adiyaman Univ, Dept Phys, TR-02040 Adiyaman, Turkey. [Sonbas, E.] USRA, Columbia, MD 21044 USA. [Vianello, G.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-10133 Turin, Italy. [Foley, S.; McBreen, S.] Univ Coll Dublin, Sch Phys, Dublin 4, Ireland. [Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Kouveliotou, C.; van der Horst, A. J.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [McGlynn, S.; Kann, D. A.] Tech Univ Munich, Exzellenzcluster Universe, D-85748 Garching, Germany. [Kann, D. A.; Klose, S.] Thuringer Landessternwarte Tautenburg, D-07778 Tautenburg, Germany. [Filgas, R.] Czech Tech Univ, Inst Expt & Appl Phys, Prague 12800, Czech Republic. [Kruhler, T.] Niels Bohr Inst, DK-2100 Copenhagen O, Denmark. [Fukui, A.] Natl Astron Observ Japan, Mitaka, Tokyo 1818588, Japan. [Sako, T.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Tristram, P. J.] Victoria Univ Wellington, SCPS, Wellington Nz, New Zealand. [Oates, S. R.] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England. [Ukwatta, T. N.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Littlejohns, O.] Univ Leicester, Dept Phys & Astron, Leicester LE1 7RH, Leics, England. RP Ackermann, M (reprint author), Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. EM johan.bregeon@pi.infn.it; kocevski@slac.stanford.edu; srazzaque@ssd5.nrl.navy.mil; eleonora.troja@nasa.gov; dgruber@mpe.mpg.de RI Orlando, E/R-5594-2016; Tosti, Gino/E-9976-2013; Rando, Riccardo/M-7179-2013; Hays, Elizabeth/D-3257-2012; Reimer, Olaf/A-3117-2013; Morselli, Aldo/G-6769-2011; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Gargano, Fabio/O-8934-2015; giglietto, nicola/I-8951-2012; Moskalenko, Igor/A-1301-2007; Mazziotta, Mario /O-8867-2015; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016 OI Moretti, Elena/0000-0001-5477-9097; Gasparrini, Dario/0000-0002-5064-9495; Kruehler, Thomas/0000-0002-8682-2384; Baldini, Luca/0000-0002-9785-7726; Larsson, Stefan/0000-0003-0716-107X; Giordano, Francesco/0000-0002-8651-2394; Preece, Robert/0000-0003-1626-7335; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Burgess, James/0000-0003-3345-9515; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; orienti, monica/0000-0003-4470-7094; Giroletti, Marcello/0000-0002-8657-8852; McBreen, Sheila/0000-0002-1477-618X; Reimer, Olaf/0000-0001-6953-1385; Morselli, Aldo/0000-0002-7704-9553; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Gargano, Fabio/0000-0002-5055-6395; giglietto, nicola/0000-0002-9021-2888; Moskalenko, Igor/0000-0001-6141-458X; Mazziotta, Mario /0000-0001-9325-4672; Bissaldi, Elisabetta/0000-0001-9935-8106 FU K. A. Wallenberg Foundation; UK Space Agency; DFG [HA 1850/28-1, Kl 766/16-1]; European Commission under the Marie Curie Intra-European Fellowship Programme; MPE; Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan FX Royal Swedish Academy of Sciences Research Fellow, funded by a grant from the K. A. Wallenberg Foundation.; We gratefully acknowledge the contributions of dozens of members of the Swift team at OAB, PSU, UL, GSFC, ASDC, and MSSL and our subcontractors, who helped make these instruments possible. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. S.R.O. acknowledges support from the UK Space Agency.; Part of the funding for GROND (both hardware and personnel) was generously granted from the Leibniz-Prize to Professor G. Hasinger (DFG grant HA 1850/28-1). T. K. acknowledges support by the European Commission under the Marie Curie Intra-European Fellowship Programme. D. A. K. and S. K. acknowledge support by grant DFG Kl 766/16-1. D. A. K. is grateful for travel funding support through the MPE.; We acknowledge the MOA collaboration to permit target of opportunity observations for GRB afterglow. We also acknowledge the University of Canterbury for allowing MOA to use the B&C telescope. This work was partially supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. NR 99 TC 28 Z9 28 U1 0 U2 30 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 71 DI 10.1088/0004-637X/763/2/71 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800002 ER PT J AU Benson, BA de Haan, T Dudley, JP Reichardt, CL Aird, KA Andersson, K Armstrong, R Ashby, MLN Bautz, M Bayliss, M Bazin, G Bleem, LE Brodwin, M Carlstrom, JE Chang, CL Cho, HM Clocchiatti, A Crawford, TM Crites, AT Desai, S Dobbs, MA Foley, RJ Forman, WR George, EM Gladders, MD Gonzalez, AH Halverson, NW Harrington, N High, FW Holder, GP Holzapfel, WL Hoover, S Hrubes, JD Jones, C Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Liu, J Lueker, M Luong-Van, D Mantz, A Marrone, DP McDonald, M McMahon, JJ Mehl, J Meyer, SS Mocanu, L Mohr, JJ Montroy, TE Murray, SS Natoli, T Padin, S Plagge, T Pryke, C Rest, A Ruel, J Ruhl, JE Saliwanchik, BR Saro, A Sayre, JT Schaffer, KK Shaw, L Shirokoff, E Song, J Spieler, HG Stalder, B Staniszewski, Z Stark, AA Story, K Stubbs, CW Suhada, R van Engelen, A Vanderlinde, K Vieira, JD Vikhlinin, A Williamson, R Zahn, O Zenteno, A AF Benson, B. A. de Haan, T. Dudley, J. P. Reichardt, C. L. Aird, K. A. Andersson, K. Armstrong, R. Ashby, M. L. N. Bautz, M. Bayliss, M. Bazin, G. Bleem, L. E. Brodwin, M. Carlstrom, J. E. Chang, C. L. Cho, H. M. Clocchiatti, A. Crawford, T. M. Crites, A. T. Desai, S. Dobbs, M. A. Foley, R. J. Forman, W. R. George, E. M. Gladders, M. D. Gonzalez, A. H. Halverson, N. W. Harrington, N. High, F. W. Holder, G. P. Holzapfel, W. L. Hoover, S. Hrubes, J. D. Jones, C. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Liu, J. Lueker, M. Luong-Van, D. Mantz, A. Marrone, D. P. McDonald, M. McMahon, J. J. Mehl, J. Meyer, S. S. Mocanu, L. Mohr, J. J. Montroy, T. E. Murray, S. S. Natoli, T. Padin, S. Plagge, T. Pryke, C. Rest, A. Ruel, J. Ruhl, J. E. Saliwanchik, B. R. Saro, A. Sayre, J. T. Schaffer, K. K. Shaw, L. Shirokoff, E. Song, J. Spieler, H. G. Stalder, B. Staniszewski, Z. Stark, A. A. Story, K. Stubbs, C. W. Suhada, R. van Engelen, A. Vanderlinde, K. Vieira, J. D. Vikhlinin, A. Williamson, R. Zahn, O. Zenteno, A. TI COSMOLOGICAL CONSTRAINTS FROM SUNYAEV-ZEL'DOVICH-SELECTED CLUSTERS WITH X-RAY OBSERVATIONS IN THE FIRST 178 deg(2) OF THE SOUTH POLE TELESCOPE SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: clusters: general; large-scale structure of universe ID MASSIVE GALAXY CLUSTERS; MICROWAVE BACKGROUND ANISOTROPIES; HUBBLE-SPACE-TELESCOPE; WEAK-LENSING MASSES; GREATER-THAN 1; SCALING RELATIONS; OBSERVED GROWTH; POWER SPECTRUM; STAR-FORMATION; DARK ENERGY AB We usemeasurements from the South Pole Telescope (SPT) Sunyaev-Zel'dovich (SZ) cluster survey in combination with X-ray measurements to constrain cosmological parameters. We present a statistical method that fits for the scaling relations of the SZ and X-ray cluster observables with mass while jointly fitting for cosmology. The method is generalizable to multiple cluster observables, and self-consistently accounts for the effects of the cluster selection and uncertainties in cluster mass calibration on the derived cosmological constraints. We apply this method to a data set consisting of an SZ-selected catalog of 18 galaxy clusters at z > 0.3 from the first 178 deg(2) of the 2500 deg(2) SPT-SZ survey, with 14 clusters having X-ray observations from either Chandra or XMM-Newton. Assuming a spatially flat Lambda CDM cosmological model, we find the SPT cluster sample constrains sigma(8)(Omega(m)/0.25)(0.30) = 0.785 +/- 0.037. In combination with measurements of the cosmic microwave background (CMB) power spectrum from the SPT and the seven-year Wilkinson Microwave Anisotropy Probe data, the SPT cluster sample constrains sigma(8) = 0.795 +/- 0.016 and Omega(m) = 0.255 +/- 0.016, a factor of 1.5 improvement on each parameter over the CMB data alone. We consider several extensions beyond the Lambda CDM model by including the following as free parameters: the dark energy equation of state (w), the sum of the neutrino masses (Sigma m(nu)), the effective number of relativistic species (N-eff), and a primordial non-Gaussianity (f(NL)). We find that adding the SPT cluster data significantly improves the constraints on w and Sigma m(nu) beyond those found when using measurements of the CMB, supernovae, baryon acoustic oscillations, and the Hubble constant. Considering each extension independently, we best constrain w = -0.973 +/- 0.063 and the sum of neutrino masses Sigma m(nu) < 0.28 eV at 95% confidence, a factor of 1.25 and 1.4 improvement, respectively, over the constraints without clusters. Assuming a Lambda CDM model with a free N-eff and Sigma m(nu), we measure N-eff = 3.91 +/- 0.42 and constrain Sigma m(nu) < 0.63 eV at 95% confidence. We also use the SPT cluster sample to constrain f(NL) = -220 +/- 317, consistent with zero primordial non-Gaussianity. Finally, we discuss the current systematic limitations due to the cluster mass calibration, and future improvements for the recently completed 2500 deg(2) SPT-SZ survey. The survey has detected similar to 500 clusters with a median redshift of similar to 0.5 and a median mass of similar to 2.3 x 10(14) M-circle dot h(-1) and, when combined with an improved cluster mass calibration and existing external cosmological data sets will significantly improve constraints on w. C1 [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Hoover, S.; Keisler, R.; Leitch, E. M.; Mantz, A.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Natoli, T.; Padin, S.; Plagge, T.; Schaffer, K. K.; Story, K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Hoover, S.; McMahon, J. J.; Meyer, S. S.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [de Haan, T.; Dudley, J. P.; Dobbs, M. A.; Holder, G. P.; Shaw, L.; van Engelen, A.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Reichardt, C. L.; George, E. M.; Harrington, N.; Holzapfel, W. L.; Lee, A. T.; Lueker, M.; Shirokoff, E.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Andersson, K.; Bazin, G.; Desai, S.; Liu, J.; Mohr, J. J.; Saro, A.; Suhada, R.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Andersson, K.; Bautz, M.; McDonald, M.] MIT, MIT Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Armstrong, R.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Ashby, M. L. N.; Foley, R. J.; Forman, W. R.; Jones, C.; Murray, S. S.; Stalder, B.; Stark, A. A.; Stubbs, C. W.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bayliss, M.; Ruel, J.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Bazin, G.; Desai, S.; Liu, J.; Mohr, J. J.; Suhada, R.; Zenteno, A.] Excellence Cluster Universe, D-85748 Garching, Germany. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Natoli, T.; Story, K.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Brodwin, M.] Univ Missouri, Dept Phys, Kansas City, MO 64110 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Leitch, E. M.; Marrone, D. P.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Padin, S.; Plagge, T.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cho, H. M.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA. [Clocchiatti, A.] PUC, Dept Astron & Astrofs, Santiago 22, Chile. [Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA, Dept Space Sci, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Lueker, M.; Padin, S.; Shirokoff, E.; Vieira, J. D.] CALTECH, Pasadena, CA 91125 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Leitch, E. M.; Marrone, D. P.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Padin, S.; Plagge, T.; Williamson, R.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [McMahon, J. J.; Song, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA. [Montroy, T. E.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Staniszewski, Z.] Case Western Reserve Univ, CERCA, Cleveland, OH 44106 USA. [Pryke, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Rest, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. RP Benson, BA (reprint author), Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. EM bbenson@kicp.uchicago.edu RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; Stubbs, Christopher/C-2829-2012; OI Williamson, Ross/0000-0002-6945-2975; Stubbs, Christopher/0000-0003-0347-1724; Marrone, Daniel/0000-0002-2367-1080; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996 FU National Science Foundation [ANT-0638937]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; NASA [12800071, 12800088, 13800883, NAS8-03060, NAS 8-03060]; Chandra X-ray Observatory Center; Blanco 4 m at Cerro Tololo Interamerican Observatories [2005B-0043, 2009B-0400, 2010A-0441, 2010B-0598]; VLT programs [086.A-0741, 286.A-5021]; Gemini program [GS-2009B-Q-16]; NASA Office of Space Science; NSF [AST-1009012, AST-1009649, MRI-0723073]; National Sciences and Engineering Research Council of Canada; Canada Research Chairs program; Canadian Institute for Advanced Research; NASA; Excellence Cluster Universe; DFG [TR33]; Clay Fellowship; KICP Fellowship; Pennsylvania State University [2834-MIT-SAO-4018]; Alfred P. Sloan Research Fellowship; Smithsonian Institution; Brinson Foundation; JPL/Caltech FX The South Pole Telescope program is supported by the National Science Foundation through grant ANT-0638937. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation. Additional data were obtained with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile. Support for X-ray analysis was provided by NASA through Chandra Award Numbers 12800071, 12800088, and 13800883 issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. Optical imaging data from the Blanco 4 m at Cerro Tololo Interamerican Observatories (programs 2005B-0043, 2009B-0400, 2010A-0441, 2010B-0598) and spectroscopic observations from VLT programs 086.A-0741 and 286.A-5021 and Gemini program GS-2009B-Q-16 were included in this work. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. Galaxy cluster research at Harvard is supported by NSF grant AST-1009012. Galaxy cluster research at SAO is supported in part by NSF grants AST-1009649 and MRI-0723073. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, Canada Research Chairs program, and the Canadian Institute for Advanced Research. X-ray research at the CfA is supported through NASA Contract NAS 8-03060. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. The Munich group acknowledges support from the Excellence Cluster Universe and the DFG research program TR33. R.J.F. is supported by a Clay Fellowship. B.A.B. is supported by a KICP Fellowship, M.B. acknowledges support from contract 2834-MIT-SAO-4018 from the Pennsylvania State University to the Massachusetts Institute of Technology. M.D. acknowledges support from an Alfred P. Sloan Research Fellowship, W.F. and C.J. acknowledge support from the Smithsonian Institution, and B.S. acknowledges support from the Brinson Foundation. NR 98 TC 132 Z9 132 U1 2 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 147 DI 10.1088/0004-637X/763/2/147 PG 21 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800078 ER PT J AU Campbell, H D'Andrea, CB Nichol, RC Sako, M Smith, M Lampeitl, H Olmstead, MD Bassett, B Biswas, R Brown, P Cinabro, D Dawson, KS Dilday, B Foley, RJ Frieman, JA Garnavich, P Hlozek, R Jha, SW Kuhlmann, S Kunz, M Marriner, J Miquel, R Richmond, M Riess, A Schneider, DP Sollerman, J Taylor, M Zhao, GB AF Campbell, Heather D'Andrea, Chris B. Nichol, Robert C. Sako, Masao Smith, Mathew Lampeitl, Hubert Olmstead, Matthew D. Bassett, Bruce Biswas, Rahul Brown, Peter Cinabro, David Dawson, Kyle S. Dilday, Ben Foley, Ryan J. Frieman, Joshua A. Garnavich, Peter Hlozek, Renee Jha, Saurabh W. Kuhlmann, Steve Kunz, Martin Marriner, John Miquel, Ramon Richmond, Michael Riess, Adam Schneider, Donald P. Sollerman, Jesper Taylor, Matt Zhao, Gong-Bo TI COSMOLOGY WITH PHOTOMETRICALLY CLASSIFIED TYPE Ia SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmology: observations; distance scale; supernovae: general; surveys ID DIGITAL SKY SURVEY; HUBBLE-SPACE-TELESCOPE; OSCILLATION SPECTROSCOPIC SURVEY; HIGH-REDSHIFT SUPERNOVAE; BVRI LIGHT CURVES; DARK-ENERGY CONSTRAINTS; HOST GALAXIES; LEGACY SURVEY; ULTRAVIOLET-SPECTRA; DATA RELEASE AB We present the cosmological analysis of 752 photometrically classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host-galaxy spectroscopy from the SDSS-III Baryon Oscillation Spectroscopic Survey. Our photometric-classification method is based on the SN classification technique of Sako et al., aided by host-galaxy redshifts (0.05 < z < 0.55). SuperNova ANAlysis simulations of our methodology estimate that we have an SN Ia classification efficiency of 70.8%, with only 3.9% contamination from core-collapse (non-Ia) SNe. We demonstrate that this level of contamination has no effect on our cosmological constraints. We quantify and correct for our selection effects (e. g., Malmquist bias) using simulations. When fitting to a flat.CDM cosmological model, we find that our photometric sample alone gives Omega(m) = 0.24(-0.05)(+0.07) (statistical errors only). If we relax the constraint on flatness, then our sample provides competitive joint statistical constraints on Omega(m) and Omega(Lambda), comparable to those derived from the spectroscopically confirmed Three-year Supernova Legacy Survey (SNLS3). Using only our data, the statistics-only result favors an accelerating universe at 99.96% confidence. Assuming a constant wCDM cosmological model, and combining with H-0, cosmic microwave background, and luminous red galaxy data, we obtain w = -0.96(-0.10)(+0.10), Omega(m) = 0.29(-0.02)(+0.02), and Omega(k) = 0.00(-0.02)(+0.03)(statistical errors only), which is competitive with similar spectroscopically confirmed SNe Ia analyses. Overall this comparison is reassuring, considering the lower redshift leverage of the SDSS-II SN sample (z < 0.55) and the lack of spectroscopic confirmation used herein. These results demonstrate the potential of photometrically classified SN Ia samples in improving cosmological constraints. C1 [Campbell, Heather; D'Andrea, Chris B.; Nichol, Robert C.; Smith, Mathew; Lampeitl, Hubert; Zhao, Gong-Bo] Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. [Sako, Masao] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Smith, Mathew] Univ Western Cape, Dept Phys, ZA-7530 Cape Town, South Africa. [Olmstead, Matthew D.; Brown, Peter; Dawson, Kyle S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [Bassett, Bruce] Univ Cape Town, Dept Math, ZA-7925 Cape Town, South Africa. [Bassett, Bruce] S African Astron Observ, ZA-7935 Cape Town, South Africa. [Bassett, Bruce; Kunz, Martin] African Inst Math Sci, ZA-7945 Cape Town, South Africa. [Biswas, Rahul; Kuhlmann, Steve] Argonne Natl Lab, Argonne, IL 60439 USA. [Brown, Peter] Texas A&M Univ, Dept Phys & Astron, George P & Cynthia Woods Mitchell Inst Fundamenta, College Stn, TX 77843 USA. [Cinabro, David; Taylor, Matt] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48126 USA. [Dilday, Ben] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Dilday, Ben] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Foley, Ryan J.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Frieman, Joshua A.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Frieman, Joshua A.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Frieman, Joshua A.; Marriner, John] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. [Garnavich, Peter] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA. [Hlozek, Renee] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Jha, Saurabh W.] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Kunz, Martin] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland. [Kunz, Martin] Univ Geneva, Ctr Astroparticle Phys, CH-1211 Geneva 4, Switzerland. [Miquel, Ramon] Univ Autonoma Barcelona, Inst Fis Altes Energies, E-08193 Bellaterra, Barcelona, Spain. [Miquel, Ramon] Inst Catalana Recerca & Estudis Avancats, E-08010 Barcelona, Spain. [Richmond, Michael] Rochester Inst Technol, Dept Phys, Rochester, NY 14623 USA. [Riess, Adam] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Riess, Adam] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Sollerman, Jesper] Stockholm Univ, AlbaNova, Dept Astron, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Zhao, Gong-Bo] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China. RP Campbell, H (reprint author), Univ Portsmouth, Inst Cosmol & Gravitat, Portsmouth PO1 3FX, Hants, England. EM Heather.Campbell@port.ac.uk OI Bassett, Bruce/0000-0001-7700-1069; Sollerman, Jesper/0000-0003-1546-6615 FU ICG; SEPNet; University of Portsmouth; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; Cambridge University; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; Princeton University; United States Naval Observatory; University of Washington; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; University of Cambridge; University of Florida; French Participation Group; German Participation Group; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; New York University; Pennsylvania State University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; Yale University FX We thank the referee, whose diligent but friendly review greatly improved the quality of this paper. We thank Mark Sullivan for many helpful discussions during the lifetime of this project and analysis. We thank Julien Guy for sending us the data plotted in Figure 24, and Alex Conley for his advice with the simple_cosfitter. We thank Michael Wood-Vasey and Raffaele Flaminio for helpful discussions on earlier drafts of the paper. Additionally, we thank Alex Kim and Rick Kessler for their useful inputs on advanced draft of the paper. We thank Marisa March for her comments on grid versus MCMC search methods. We thank Emma Beynon for her advice with ComsoMC, Rob Crittenden, and David Bacon for useful discussions on statistics. Numerical computations were done on the Sciama High Performance Computer (HPC) cluster, which is supported by the ICG, SEPNet and the University of Portsmouth. We thank Gary Burton for his help in using Sciama HPC; Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, Cambridge University, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington; Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy. The SDSS-III Web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, University of Florida, the French Participation Group, the German Participation Group, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington, and Yale University. NR 147 TC 39 Z9 39 U1 1 U2 7 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 88 DI 10.1088/0004-637X/763/2/88 PG 28 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800019 ER PT J AU Leggett, SK Morley, CV Marley, MS Saumon, D Fortney, JJ Visscher, C AF Leggett, S. K. Morley, Caroline V. Marley, M. S. Saumon, D. Fortney, Jonathan J. Visscher, Channon TI A COMPARISON OF NEAR-INFRARED PHOTOMETRY AND SPECTRA FOR Y DWARFS WITH A NEW GENERATION OF COOL CLOUDY MODELS SO ASTROPHYSICAL JOURNAL LA English DT Article DE brown dwarfs; stars: atmospheres ID LARGE-AREA SURVEY; SURVEY-EXPLORER WISE; DIGITAL SKY SURVEY; COLD BROWN DWARFS; T-DWARFS; SPACE-TELESCOPE; L/T TRANSITION; BINARY-SYSTEM; ULTRACOOL DWARFS; CARBON-MONOXIDE AB We present YJHK photometry, or a subset, for the six Y dwarfs discovered in Wide-field Infrared Survey Explorer (WISE) data by Cushing et al. The data were obtained using the Near-Infrared Imager on the Gemini North telescope; YJHK were obtained for WISEP J041022.71+150248.5, WISEP J173835.52+273258.9, and WISEPC J205628.90+145953.3; YJH for WISEPC J140518.40+553421.5 and WISEP J154151.65225025.2; and YJK for WISEP J182831.08+265037.8. We also present a far-red spectrum obtained using GMOS-North for WISEPC J205628.90+145953.3. We compare the data to Morley et al. models, which include cloud decks of sulfide and chloride condensates. We find that the models with these previously neglected clouds can reproduce the energy distributions of T9 to Y0 dwarfs quite well, other than near 5 mu m where the models are too bright. This is thought to be because the models do not include departures from chemical equilibrium caused by vertical mixing, which would enhance the abundance of CO and CO2, decreasing the flux at 5 mu m. Vertical mixing also decreases the abundance of NH3, which would otherwise have strong absorption features at 1.03 mu m and 1.52 mu m that are not seen in the Y0 WISEPC J205628.90+145953.3. We find that the five Y0 to Y0.5 dwarfs have 300 less than or similar to T-eff K less than or similar to 450, 4.0 less than or similar to log g less than or similar to 4.5, and f(sed) approximate to 3. These temperatures and gravities imply a mass range of 5-15 M-Jupiter and ages around 5 Gyr. We suggest that WISEP J182831.08+265037.8 is a binary system, as this better explains its luminosity and color. We find that the data can be made consistent with observed trends, and generally consistent with the models, if the system is composed of a T-eff approximate to 325 K and log g less than or similar to 4.5 primary, and a T-eff approximate to 300 K and log g greater than or similar to 4.0 secondary, corresponding to masses of 10 and 7 M-Jupiter and an age around 2 Gyr. If our deconvolution is correct, then the T-eff approximate to 300 K cloud-free model fluxes at K and W 2 are too faint by 0.5-1.0 mag. We will address this discrepancy in our next generation of models, which will incorporate water clouds and mixing. C1 [Leggett, S. K.] No Operat Ctr, Gemini Observ, Hilo, HI 96720 USA. [Morley, Caroline V.; Fortney, Jonathan J.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Marley, M. S.] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA. [Saumon, D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Visscher, Channon] SW Res Inst, Boulder, CO 80302 USA. RP Leggett, SK (reprint author), No Operat Ctr, Gemini Observ, 670 N Aohoku Pl, Hilo, HI 96720 USA. EM sleggett@gemini.edu RI Marley, Mark/I-4704-2013; OI Fortney, Jonathan/0000-0002-9843-4354; Marley, Mark/0000-0002-5251-2943; Leggett, Sandy/0000-0002-3681-2989 FU NASA [NNH11AQ54I]; Gemini Observatory; National Aeronautics and Space Administration FX D.S. is supported by NASA Astrophysics Theory grant NNH11AQ54I. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia, Tecnologia e Inovacao (Brazil), and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). S.K.L.'s research is supported by Gemini Observatory. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 86 TC 38 Z9 38 U1 0 U2 6 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 130 DI 10.1088/0004-637X/763/2/130 PG 15 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800061 ER PT J AU Reichardt, CL Stalder, B Bleem, LE Montroy, TE Aird, KA Andersson, K Armstrong, R Ashby, MLN Bautz, M Bayliss, M Bazin, G Benson, BA Brodwin, M Carlstrom, JE Chang, CL Cho, HM Clocchiatti, A Crawford, TM Crites, AT de Haan, T Desai, S Dobbs, MA Dudley, JP Foley, RJ Forman, WR George, EM Gladders, MD Gonzalez, AH Halverson, NW Harrington, NL High, FW Holder, GP Holzapfel, WL Hoover, S Hrubes, JD Jones, C Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Liu, J Lueker, M Luong-Van, D Mantz, A Marrone, DP McDonald, M McMahon, JJ Mehl, J Meyer, SS Mocanu, L Mohr, JJ Murray, SS Natoli, T Padin, S Plagge, T Pryke, C Rest, A Ruel, J Ruhl, JE Saliwanchik, BR Saro, A Sayre, JT Schaffer, KK Shaw, L Shirokoff, E Song, J Spieler, HG Staniszewski, Z Stark, AA Story, K Stubbs, CW Suhada, R van Engelen, A Vanderlinde, K Vieira, JD Vikhlinin, A Williamson, R Zahn, O Zenteno, A AF Reichardt, C. L. Stalder, B. Bleem, L. E. Montroy, T. E. Aird, K. A. Andersson, K. Armstrong, R. Ashby, M. L. N. Bautz, M. Bayliss, M. Bazin, G. Benson, B. A. Brodwin, M. Carlstrom, J. E. Chang, C. L. Cho, H. M. Clocchiatti, A. Crawford, T. M. Crites, A. T. de Haan, T. Desai, S. Dobbs, M. A. Dudley, J. P. Foley, R. J. Forman, W. R. George, E. M. Gladders, M. D. Gonzalez, A. H. Halverson, N. W. Harrington, N. L. High, F. W. Holder, G. P. Holzapfel, W. L. Hoover, S. Hrubes, J. D. Jones, C. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Liu, J. Lueker, M. Luong-Van, D. Mantz, A. Marrone, D. P. McDonald, M. McMahon, J. J. Mehl, J. Meyer, S. S. Mocanu, L. Mohr, J. J. Murray, S. S. Natoli, T. Padin, S. Plagge, T. Pryke, C. Rest, A. Ruel, J. Ruhl, J. E. Saliwanchik, B. R. Saro, A. Sayre, J. T. Schaffer, K. K. Shaw, L. Shirokoff, E. Song, J. Spieler, H. G. Staniszewski, Z. Stark, A. A. Story, K. Stubbs, C. W. Suhada, R. van Engelen, A. Vanderlinde, K. Vieira, J. D. Vikhlinin, A. Williamson, R. Zahn, O. Zenteno, A. TI GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE cosmic background radiation; cosmology: observations; galaxies: clusters: individual; large-scale structure of universe ID MICROWAVE BACKGROUND ANISOTROPIES; ALL-SKY SURVEY; BLANCO COSMOLOGY SURVEY; HUBBLE-SPACE-TELESCOPE; GREATER-THAN 1; DATA RELEASE; POWER SPECTRUM; SOURCE CATALOG; RICH CLUSTERS; SAMPLE AB We present a catalog of galaxy cluster candidates, selected through their Sunyaev-Zel'dovich (SZ) effect signature in the first 720 deg(2) of the South Pole Telescope (SPT) survey. This area was mapped with the SPT in the 2008 and 2009 austral winters to a depth of similar to 18 mu K-CMB-arcmin at 150 GHz; 550 deg(2) of it was also mapped to similar to 44 mu K-CMB-arcmin at 95 GHz. Based on optical imaging of all 224 candidates and near-infrared imaging of the majority of candidates, we have found optical and/or infrared counterparts for 158, which we then classify as confirmed galaxy clusters. Of these 158 clusters, 135 were first identified as clusters in SPT data, including 117 new discoveries reported in this work. This catalog triples the number of confirmed galaxy clusters discovered through the SZ effect. We report photometrically derived (and in some cases spectroscopic) redshifts for confirmed clusters and redshift lower limits for the remaining candidates. The catalog extends to high redshift with a median redshift of z = 0.55 and maximum confirmed redshift of z = 1.37. Forty-five of the clusters have counterparts in the ROSAT bright or faint source catalogs from which we estimate X-ray fluxes. Based on simulations, we expect the catalog to be nearly 100% complete above M-500 approximate to 5 x 10(14) M-circle dot h(70)(-1) at z greater than or similar to 0.6. There are 121 candidates detected at signal-to-noise ratio greater than five, at which the catalog purity is measured to be 95%. From this high-purity subsample, we exclude the z < 0.3 clusters and use the remaining 100 candidates to improve cosmological constraints following the method presented by Benson et al. Adding the cluster data to CMB + BAO + H-0 data leads to a preference for non-zero neutrino masses while only slightly reducing the upper limit on the sum of neutrino masses to Sigma m(nu) < 0.38 eV (95% CL). For a spatially flat wCDM cosmological model, the addition of this catalog to the CMB + BAO + H-0 + SNe results yields sigma(8) = 0.807 +/- 0.027 and w = -1.010 +/- 0.058, improving the constraints on these parameters by a factor of 1.4 and 1.3, respectively. The larger cluster catalog presented in this work leads to slight improvements in cosmological constraints from those presented by Benson et al. These cosmological constraints are currently limited by uncertainty in the cluster mass calibration, not the size or quality of the cluster catalog. A multi-wavelength observation program to improve the cluster mass calibration will make it possible to realize the full potential of the final 2500 deg(2) SPT cluster catalog to constrain cosmology. C1 [Stalder, B.; Ashby, M. L. N.; Foley, R. J.; Forman, W. R.; Jones, C.; Murray, S. S.; Stark, A. A.; Stubbs, C. W.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Bleem, L. E.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Hoover, S.; Keisler, R.; Leitch, E. M.; Mantz, A.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Natoli, T.; Padin, S.; Plagge, T.; Schaffer, K. K.; Story, K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Natoli, T.; Story, K.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Montroy, T. E.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. [Andersson, K.; Bazin, G.; Desai, S.; Liu, J.; Mohr, J. J.; Saro, A.; Suhada, R.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Andersson, K.; Bautz, M.; McDonald, M.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Armstrong, R.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Bayliss, M.; Ruel, J.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Bazin, G.; Desai, S.; Liu, J.; Mohr, J. J.; Zenteno, A.] Excellence Cluster Universe, D-85748 Garching, Germany. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Hoover, S.; McMahon, J. J.; Meyer, S. S.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Brodwin, M.] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Padin, S.; Plagge, T.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cho, H. M.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA. [Clocchiatti, A.] PUC, Dept Astron & Astrofis, Santiago 22, Chile. [de Haan, T.; Dobbs, M. A.; Dudley, J. P.; Holder, G. P.; Shaw, L.; van Engelen, A.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA, Dept Space Sci, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Knox, L.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Lueker, M.; Padin, S.; Shirokoff, E.; Vieira, J. D.] CALTECH, Dept Astron, Pasadena, CA 91125 USA. [Marrone, D. P.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [McMahon, J. J.; Song, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Pryke, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Rest, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Schaffer, K. K.] Sch Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Zahn, O.] Lawrence Berkeley Natl Labs, Berkeley, CA 94720 USA. [Reichardt, C. L.; Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. RP Reichardt, CL (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. EM cr@bolo.berkeley.edu RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; Stubbs, Christopher/C-2829-2012; OI Stark, Antony/0000-0002-2718-9996; Williamson, Ross/0000-0002-6945-2975; Stubbs, Christopher/0000-0003-0347-1724; Marrone, Daniel/0000-0002-2367-1080; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169 FU National Science Foundation [ANT-0638937]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; NSF [AST-1009012, AST-1009649, MRI-0723073]; National Sciences and Engineering Research Council of Canada; Canada Research Chairs program; Canadian Institute for Advanced Research; NASA [NAS 8-03060, NAS8-03060]; NASA through JPL/Caltech; Excellence Cluster Universe; DFG [TR33]; Clay Fellowship; KICP Fellowship; Pennsylvania State University [2834-MIT-SAO-4018]; Alfred P. Sloan Research Fellowship; Smithsonian Institution; Brinson Foundation; NASA through Chandra Award [12800071, 12800088, G02-13006A]; Chandra X-ray Observatory Center; Blanco 4 m at Cerro Tololo Inter-American Observatories [2005B-0043, 2009B-0400, 2010A-0441, 2010B-0598]; VLT programs [086.A-0741, 286.A-5021]; Gemini program [GS-2009B-Q-16]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX The South Pole Telescope program is supported by the National Science Foundation through grant ANT-0638937. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation. Galaxy cluster research at Harvard is supported by NSF grant AST-1009012. Galaxy cluster research at SAO is supported in part by NSF grants AST-1009649 and MRI-0723073. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, Canada Research Chairs program, and the Canadian Institute for Advanced Research. X-ray research at the CfA is supported through NASA Contract NAS 8-03060. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. The Munich group acknowledges support from the Excellence Cluster Universe and the DFG research program TR33. R.J.F. is supported by a Clay Fellowship. B. A. B is supported by a KICP Fellowship, M. Bautz acknowledges support from contract 2834-MIT-SAO-4018 from the Pennsylvania State University to the Massachusetts Institute of Technology. M. D. acknowledges support from an Alfred P. Sloan Research Fellowship, W. F. and C.J. acknowledge support from the Smithsonian Institution, and B. S. acknowledges support from the Brinson Foundation.; Support for X-ray analysis was provided by NASA through Chandra Award Numbers 12800071, 12800088, and G02-13006A issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of NASA under contract NAS8-03060. Optical imaging data from the Blanco 4 m at Cerro Tololo Inter-American Observatories (programs 2005B-0043, 2009B-0400, 2010A-0441, and 2010B-0598) and spectroscopic observations from VLT programs 086.A-0741 and 286.A-5021 and Gemini program GS-2009B-Q-16 were included in this work. Additional data were obtained with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile.; We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Support for LAMBDA is provided by the NASA Office of Space Science. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France, and the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. NR 93 TC 150 Z9 150 U1 2 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X EI 1538-4357 J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 127 DI 10.1088/0004-637X/763/2/127 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800058 ER PT J AU Stalder, B Ruel, J Suhada, R Brodwin, M Aird, KA Andersson, K Armstrong, R Ashby, MLN Bautz, M Bayliss, M Bazin, G Benson, BA Bleem, LE Carlstrom, JE Chang, CL Cho, HM Clocchiatti, A Crawford, TM Crites, AT de Haan, T Desai, S Dobbs, MA Dudley, JP Foley, RJ Forman, WR George, EM Gettings, D Gladders, MD Gonzalez, AH Halverson, NW Harrington, NL High, FW Holder, GP Holzapfel, WL Hoover, S Hrubes, JD Jones, C Joy, M Keisler, R Knox, L Lee, AT Leitch, EM Liu, J Lueker, M Luong-Van, D Mantz, A Marrone, DP McDonald, M McMahon, JJ Mehl, J Meyer, SS Mocanu, L Mohr, JJ Montroy, TE Murray, SS Natoli, T Nurgaliev, D Padin, S Plagge, T Pryke, C Reichardt, CL Rest, A Ruhl, JE Saliwanchik, BR Saro, A Sayre, JT Schaffer, KK Shaw, L Shirokoff, E Song, J Spieler, HG Stanford, SA Staniszewski, Z Stark, AA Story, K Stubbs, CW van Engelen, A Vanderlinde, K Vieira, JD Vikhlinin, A Williamson, R Zahn, O Zenteno, A AF Stalder, B. Ruel, J. Suhada, R. Brodwin, M. Aird, K. A. Andersson, K. Armstrong, R. Ashby, M. L. N. Bautz, M. Bayliss, M. Bazin, G. Benson, B. A. Bleem, L. E. Carlstrom, J. E. Chang, C. L. Cho, H. M. Clocchiatti, A. Crawford, T. M. Crites, A. T. de Haan, T. Desai, S. Dobbs, M. A. Dudley, J. P. Foley, R. J. Forman, W. R. George, E. M. Gettings, D. Gladders, M. D. Gonzalez, A. H. Halverson, N. W. Harrington, N. L. High, F. W. Holder, G. P. Holzapfel, W. L. Hoover, S. Hrubes, J. D. Jones, C. Joy, M. Keisler, R. Knox, L. Lee, A. T. Leitch, E. M. Liu, J. Lueker, M. Luong-Van, D. Mantz, A. Marrone, D. P. McDonald, M. McMahon, J. J. Mehl, J. Meyer, S. S. Mocanu, L. Mohr, J. J. Montroy, T. E. Murray, S. S. Natoli, T. Nurgaliev, D. Padin, S. Plagge, T. Pryke, C. Reichardt, C. L. Rest, A. Ruhl, J. E. Saliwanchik, B. R. Saro, A. Sayre, J. T. Schaffer, K. K. Shaw, L. Shirokoff, E. Song, J. Spieler, H. G. Stanford, S. A. Staniszewski, Z. Stark, A. A. Story, K. Stubbs, C. W. van Engelen, A. Vanderlinde, K. Vieira, J. D. Vikhlinin, A. Williamson, R. Zahn, O. Zenteno, A. TI SPT-CL J0205-5829: A z=1.32 EVOLVED MASSIVE GALAXY CLUSTER IN THE SOUTH POLE TELESCOPE SUNYAEV-ZEL'DOVICH EFFECT SURVEY SO ASTROPHYSICAL JOURNAL LA English DT Article DE early universe; galaxies: clusters: individual (SPT-CL J0205-5829); galaxies: evolution; galaxies: formation; large-scale structure of universe ID IRAC SHALLOW SURVEY; GREATER-THAN 1; HIGH-REDSHIFT; RED-SEQUENCE; XMM-NEWTON; SPECTROSCOPIC CONFIRMATION; COOLING FLOWS; COSMOLOGY; EVOLUTION; SAMPLE AB The galaxy cluster SPT-CL J0205-5829 currently has the highest spectroscopically confirmed redshift, z = 1.322, in the South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. XMM-Newton observations measure a core-excluded temperature of T-X = 8.7(-0.8)(+1.0) keV producing a mass estimate that is consistent with the Sunyaev-Zel'dovich-derived mass. The combined SZ and X-ray mass estimate of M-500 = (4.8+/-0.8) x 10(14)h(70)(-1) M-circle dot makes it the most massive known SZ-selected galaxy cluster at z > 1.2 and the second most massive at z > 1. Using optical and infrared observations, we find that the brightest galaxies in SPT-CL J0205-5829 are already well evolved by the time the universe was < 5 Gyr old, with stellar population ages greater than or similar to 3 Gyr, and low rates of star formation (< 0.5 M-circle dot yr(-1)). We find that, despite the high redshift and mass, the existence of SPT-CL J0205-5829 is not surprising given a flat Lambda CDM cosmology with Gaussian initial perturbations. The a priori chance of finding a cluster of similar rarity (or rarer) in a survey the size of the 2500 deg(2) SPT-SZ survey is 69%. C1 [Stalder, B.; Ashby, M. L. N.; Foley, R. J.; Forman, W. R.; Jones, C.; Murray, S. S.; Stark, A. A.; Stubbs, C. W.; Vikhlinin, A.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Ruel, J.; Bayliss, M.; Nurgaliev, D.; Stubbs, C. W.] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA. [Suhada, R.; Andersson, K.; Bazin, G.; Desai, S.; Liu, J.; Mohr, J. J.; Saro, A.; Zenteno, A.] Univ Munich, Dept Phys, D-81679 Munich, Germany. [Brodwin, M.] Univ Missouri, Dept Phys, Kansas City, MO 64110 USA. [Andersson, K.; Bautz, M.; McDonald, M.] MIT, Kavli Inst Astrophys & Space Res, Cambridge, MA 02139 USA. [Armstrong, R.] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Bazin, G.; Desai, S.; Liu, J.; Mohr, J. J.; Zenteno, A.] Excellence Cluster Universe, D-85748 Garching, Germany. [Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Hoover, S.; Keisler, R.; Leitch, E. M.; Mantz, A.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Natoli, T.; Padin, S.; Plagge, T.; Schaffer, K. K.; Story, K.; Vieira, J. D.; Williamson, R.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Hoover, S.; McMahon, J. J.; Meyer, S. S.; Schaffer, K. K.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Bleem, L. E.; Carlstrom, J. E.; Keisler, R.; Meyer, S. S.; Natoli, T.; Story, K.; Vieira, J. D.] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Crawford, T. M.; Crites, A. T.; Gladders, M. D.; High, F. W.; Leitch, E. M.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Padin, S.; Plagge, T.; Williamson, R.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Carlstrom, J. E.; Chang, C. L.] Argonne Natl Lab, Argonne, IL 60439 USA. [Cho, H. M.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Clocchiatti, A.] Pontificia Univ Catolica Chile, Dept Astron & Astrosif, Santiago, Chile. [de Haan, T.; Dobbs, M. A.; Dudley, J. P.; Holder, G. P.; Shaw, L.; van Engelen, A.; Vanderlinde, K.] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada. [Gettings, D.; Gonzalez, A. H.] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Halverson, N. W.] Univ Colorado, Dept Astrophys & Planetary Sci, Boulder, CO 80309 USA. [Halverson, N. W.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Joy, M.] NASA, George C Marshall Space Flight Ctr, Dept Space Sci, Huntsville, AL 35812 USA. [Knox, L.; Stanford, S. A.] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA. [Lee, A. T.; Spieler, H. G.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA. [Lueker, M.; Padin, S.; Shirokoff, E.; Vieira, J. D.] CALTECH, Pasadena, CA 91125 USA. [Marrone, D. P.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [McMahon, J. J.; Song, J.] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA. [Mohr, J. J.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Montroy, T. E.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Staniszewski, Z.] Case Western Reserve Univ, Dept Phys, Ctr Educ & Res Cosmol & Astrophys, Cleveland, OH 44106 USA. [Pryke, C.] Univ Minnesota, Dept Phys, Minneapolis, MN 55455 USA. [Rest, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Schaffer, K. K.] Art Inst Chicago, Liberal Arts Dept, Chicago, IL 60603 USA. [Shaw, L.] Yale Univ, Dept Phys, New Haven, CT 06520 USA. [Stanford, S. A.] Lawrence Livermore Natl Lab, Inst Geophys & Planetary Phys, Livermore, CA 94551 USA. [Zahn, O.] Univ Calif Berkeley, Dept Phys, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. RP Stalder, B (reprint author), Harvard Smithsonian Ctr Astrophys, 60 Garden St, Cambridge, MA 02138 USA. EM bstalder@cfa.harvard.edu RI Williamson, Ross/H-1734-2015; Holzapfel, William/I-4836-2015; Stubbs, Christopher/C-2829-2012; OI Williamson, Ross/0000-0002-6945-2975; Stubbs, Christopher/0000-0003-0347-1724; Marrone, Daniel/0000-0002-2367-1080; Aird, Kenneth/0000-0003-1441-9518; Reichardt, Christian/0000-0003-2226-9169; Stark, Antony/0000-0002-2718-9996 FU National Science Foundation [ANT-0638937]; NSF Physics Frontier Center [PHY-0114422]; Kavli Foundation; Gordon and Betty Moore Foundation; NSF [AST-1009012, AST-1009649, MRI-0723073]; National Sciences and Engineering Research Council of Canada; Canada Research Chairs program; Canadian Institute for Advanced Research; NASA [NAS 8-03060]; Excellence Cluster Universe; DFG [TR33]; NASA by JPL/Caltech; Clay Fellowship; KICP Fellowship; Pennsylvania State University [2834-MIT-SAO-4018]; Alfred P. Sloan Research Fellowship; Smithsonian Institution FX The South Pole Telescope program is supported by the National Science Foundation through grant ANT-0638937. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation. Galaxy cluster research at Harvard is supported by NSF grant AST-1009012. Galaxy cluster research at SAO is supported in part by NSF grants AST-1009649 and MRI-0723073. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, Canada Research Chairs program, and the Canadian Institute for Advanced Research. X-ray research at the CfA is supported through NASA Contract NAS 8-03060. The Munich group acknowledges support from the Excellence Cluster Universe and the DFG research program TR33. This work is based in part on observations obtained with the Spitzer Space Telescope (PID 60099), which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech. Additional data were obtained with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile and the Blanco 4 m Telescope at Cerro Tololo Inter-American Observatories in Chile. R.J.F. is supported by a Clay Fellowship. B. A. B is supported by a KICP Fellowship, M. Bautz acknowledges support from contract 2834-MIT-SAO-4018 from the Pennsylvania State University to the Massachusetts Institute of Technology. M. D. acknowledges support from an Alfred P. Sloan Research Fellowship, W. F. and C.J. acknowledge support from the Smithsonian Institution. NR 86 TC 23 Z9 23 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-637X J9 ASTROPHYS J JI Astrophys. J. PD FEB 1 PY 2013 VL 763 IS 2 AR 93 DI 10.1088/0004-637X/763/2/93 PG 10 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 075FR UT WOS:000313869800024 ER PT J AU Backus, GA Lowry, TS Warren, DE AF Backus, George A. Lowry, Thomas S. Warren, Drake E. TI The near-term risk of climate uncertainty among the U.S. states SO CLIMATIC CHANGE LA English DT Article ID EQUILIBRIUM; MULTIMODEL; MIGRATION; DYNAMICS; IMPACTS; POLICY AB This article describes a study employing a risk-assessment methodology for evaluating uncertain future climatic conditions. To understand the implications of uncertainty on risk and to provide a near-term rationale for policy interventions, the study estimated the impacts from responses to climate change on U.S. state- and national-level economic activity. The study used results of the climate-model CMIP3 dataset developed for the Intergovernmental Panel on Climate Change's (IPCC) Fourth Assessment Report to 1) estimate a proxy for representing climate uncertainty over the next 40 years, 2) map the simulated weather from the climate models hydrologically to the county level to determine the physical consequences on economic activity at the state level, and 3) perform a detailed, economy-wide, 70-industry analysis of economic impacts among the interdependent lower-48 states for the years 2010 through 2050. The analysis determined the interacting industry-level effects, employment impacts at the state level, interstate population migration, consequences to personal income, and ramifications for the U.S. trade balance. When compared to a baseline economic forecast, the calculations produced an average risk of damage of $1 trillion to the U.S. economy from climate change over the next 40 years, with losses in employment equivalent to nearly 7 million full-time jobs. Added uncertainty would increase the estimated risk. C1 [Backus, George A.] Sandia Natl Labs, Discrete Math & Complex Syst Dept, Albuquerque, NM 87185 USA. [Lowry, Thomas S.] Sandia Natl Labs, Earth Syst Dept, Albuquerque, NM 87185 USA. [Warren, Drake E.] Sandia Natl Labs, Strateg Studies Dept, Albuquerque, NM 87185 USA. RP Backus, GA (reprint author), Sandia Natl Labs, Discrete Math & Complex Syst Dept, POB 5800, Albuquerque, NM 87185 USA. EM gabacku@sandia.gov FU Laboratory-Directed Research and Development (LDRD) program at Sandia National Laboratories [138735]; Office of Science, U.S. Department of Energy; Sandia LDRD program FX We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP'sWorking Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. This study was performed under the Laboratory-Directed Research and Development (LDRD) program at Sandia National Laboratories (Project 138735), and we gratefully thank the Sandia LDRD program for its financial support of this study. We acknowledge the additional expert contributions of the following colleagues at Sandia: Tim Trucano, Vince Tidwell, Mark Ehlen, Geoffrey Klise, Verne Loose, Len Malczynski, Rhonda Reinert, Kevin Stamber, Vanessa Vargas, and Aldo Zagonel, David Robinson, Arnie Baker, Brian Adams, Elizabeth Richards, John Siirola, Mark Boslough, Mark Taylor, Ray Finely, Lillian Snyder, Dan Horschel, Andjelka Kelic, Jesse Roach, Marissa Reno, William Stubblefield, Laura Swiler, Laura Cutler, Anna Weddington, William Fogelman, Jim Strickland, John Mitchiner, Howard Hirano, and James Peery. Contributions by Dr. James P. Smith with the Computer and Computational Sciences Group at Los Alamos National Laboratory (LANL), by Dr. David Higdon with the Statistical Sciences Group at LANL, and by Dr. Joe Galewsky from the Department of Earth & Planetary Sciences at the University of New Mexico are also greatly appreciated. In addition, we are grateful to the following study-reviewers for their insightful comments and suggestions: Dr. Terry Barker, Director, Cambridge Centre for Climate Change Mitigation Research, Department of Land Economy, Cambridge University; Dr. Chris Hope, Energy and Environment Research Group, Judge Business School, Cambridge University; Dr. Robert Harriss, President and CEO of the Houston Advanced Research Center and former Director of the Institute for the Study of Society and the Environment at the National Center for Atmospheric Research; Dr. Michael Mastrandrea in the Center for Environmental Science and Policy at Stanford University; Dr. Elizabeth Stanton at the Global Development and Environment Institute at Tufts University and the Stockholm Environment Institute; and Dr. Jonathan Overpeck, Co-Director in the Institute of the Environment and professor in the Geosciences and Atmospheric Sciences departments at the University of Arizona. Lastly, we thank the anonymous publication-reviewers for their thoughtful comments and suggestions to improve the content of this article. NR 51 TC 5 Z9 7 U1 1 U2 34 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 J9 CLIMATIC CHANGE JI Clim. Change PD FEB PY 2013 VL 116 IS 3-4 BP 495 EP 522 DI 10.1007/s10584-012-0511-8 PG 28 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 073IQ UT WOS:000313737100004 ER PT J AU Sarshar, MA Swarctz, C Hunter, S Simpson, J Choi, CH AF Sarshar, Mohammad Amin Swarctz, Christopher Hunter, Scott Simpson, John Choi, Chang-Hwan TI Effects of contact angle hysteresis on ice adhesion and growth on superhydrophobic surfaces under dynamic flow conditions SO COLLOID AND POLYMER SCIENCE LA English DT Article DE Superhydrophobic; Icephobic; Icing wind tunnel; Contact angle hysteresis ID DROPLET; WATER AB In this paper, the icephobic properties of superhydrophobic surfaces are investigated under dynamic flow conditions using a closed-loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared by coating aluminum and steel substrate plates with nano-structured hydrophobic particles. The superhydrophobic plates, along with uncoated controls, were exposed to a wind tunnel air flow of 12 m/s and -7 A degrees C with deviations of +/- 1 m/s and +/- 2.5 A degrees C, respectively, containing micrometer-sized (similar to 50 mu m in diameter) water droplets. The ice formation and accretion were observed by CCD cameras. Results show that the superhydrophobic coatings significantly delay ice formation and accretion even under the dynamic flow condition of highly energetic impingement of accelerated supercooled water droplets. It is found that there is a time scale for this phenomenon (delay in ice formation) which has a clear correlation with contact angle hysteresis and the length scale of the surface roughness of the superhydrophobic surface samples, being the highest for the plate with the lowest contact angle hysteresis and finest surface roughness. The results suggest that the key for designing icephobic surfaces under the hydrodynamic pressure of impinging droplets is to retain a non-wetting superhydrophobic state with low contact angle hysteresis, rather than to only have a high apparent contact angle (conventionally referred to as a "static" contact angle). C1 [Sarshar, Mohammad Amin; Swarctz, Christopher; Choi, Chang-Hwan] Stevens Inst Technol, Dept Mech Engn, Hoboken, NJ 07050 USA. [Hunter, Scott; Simpson, John] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Choi, CH (reprint author), Stevens Inst Technol, Dept Mech Engn, Hoboken, NJ 07050 USA. EM cchoi@stevens.edu RI Choi, Chang-Hwan/D-4842-2014 FU U.S. Department of Energy (DOE), Office of Electricity Delivery and Energy Reliability, Advanced Cables and Conductors Program [DE-AC05-00OR22725]; DOE [NFE-08-01911] FX This research was sponsored by the U.S. Department of Energy (DOE), Office of Electricity Delivery and Energy Reliability, Advanced Cables and Conductors Program, Contract DE-AC05-00OR22725 and DOE Award No. NFE-08-01911. NR 20 TC 35 Z9 38 U1 0 U2 112 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0303-402X J9 COLLOID POLYM SCI JI Colloid Polym. Sci. PD FEB PY 2013 VL 291 IS 2 BP 427 EP 435 DI 10.1007/s00396-012-2753-4 PG 9 WC Chemistry, Physical; Polymer Science SC Chemistry; Polymer Science GA 073IW UT WOS:000313737700023 ER PT J AU Valiev, DM Zhu, MQ Bansal, G Kolla, H Law, CK Chen, JH AF Valiev, Damir M. Zhu, Manqi Bansal, Gaurav Kolla, Hemanth Law, Chung K. Chen, Jacqueline H. TI Pulsating instability of externally forced premixed counterflow flame SO COMBUSTION AND FLAME LA English DT Article DE Premixed counterflow flame; Diffusive-thermal pulsating instability; Rich hydrogen/air ID RICH HYDROGEN/AIR FLAMES; JET DIFFUSION FLAMES; NON-ADIABATIC FLAMES; TRANSIENT IGNITION; COMBUSTION; AIR; EXTINCTION; NUMBER; MODEL AB The diffusive-thermal pulsating instability of Le > 1 flames can considerably alter global quantities such as the flammability limit and mass burning rate, making its study practically relevant. In the present study we investigate the behavior of pulsating flames in unsteady flow fields using one-dimensional and two-dimensional flame simulations of laminar premixed rich hydrogen/air flame in a counterflow configuration, focusing on the response of the flame to imposed fluctuations in strain rate and equivalence ratio. These effects become important when the flame propagates in an unsteady flow field, for example, in turbulent flows. In the case of strain rate forcing, the flame is found to undergo oscillatory extinction if the forcing frequency is less than the pulsation frequency. For strain rate forcing frequencies higher than the pulsation frequency, the flame is found to be largely unresponsive to the upstream flow velocity fluctuations. The parametric study for equivalence ratio forcing shows that the pulsating instability is promoted with increasing inlet velocity, increasing amplitude and mean value of the imposed composition fluctuation. At the same time, it is observed that increasing the frequency of the imposed oscillations may attenuate the pulsating instability. Moreover, it is found that a flame subjected to pulsating extinction may be able to sustain pulsating combustion if forced with high-frequency inlet composition variation. Based on the insights gained from one-dimensional simulations, two-dimensional simulations of these pulsating flames are performed to provide additional insights on the shape and location of cells and cusp formation in these flames. (C) 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Valiev, Damir M.; Bansal, Gaurav; Kolla, Hemanth; Chen, Jacqueline H.] Sandia Natl Labs, Combust Res Facil, Livermore, CA 94550 USA. [Valiev, Damir M.; Law, Chung K.] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. [Zhu, Manqi] Beihang Univ, Ecole Cent Pekin, Beijing 100191, Peoples R China. [Zhu, Manqi] CERFACS, Computat Fluid Dynam Team, F-31057 Toulouse, France. [Bansal, Gaurav] Intel Corp, Hillsboro, OR 97124 USA. [Law, Chung K.] Tsinghua Univ, Ctr Combust Energy, Beijing 100084, Peoples R China. RP Valiev, DM (reprint author), Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA. EM dvaliev@princeton.edu; manqi.zhu@cerfacs.fr; gubs84@gmail.com; hnkolla@sandia.gov; cklaw@prince-ton.edu; jhchen@sandia.gov RI Valiev, Damir/H-7930-2012; Law, Chung /E-1206-2013; Kolla, Hemanth/L-2142-2013; OI Kolla, Hemanth/0000-0003-4969-5870; Valiev, Damir/0000-0003-4271-4717 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences; Combustion Energy Frontier Research Center, an Energy Frontier Research Center; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001198]; US Department of Energy [DE-AC04-94AL85000]; Department of Energy Advanced Scientific Computing Research Office FX The work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences and the Combustion Energy Frontier Research Center, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001198. SNL is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US Department of Energy under contract DE-AC04-94AL85000. Part of the work at Sandia was also supported by the Department of Energy Advanced Scientific Computing Research Office. NR 40 TC 1 Z9 2 U1 1 U2 52 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD FEB PY 2013 VL 160 IS 2 BP 285 EP 294 DI 10.1016/j.combustflame.2012.10.014 PG 10 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 068ZU UT WOS:000313405500007 ER PT J AU Therkelsen, PL Portillo, JE Littlejohn, D Martin, SM Cheng, RK AF Therkelsen, P. L. Portillo, J. Enrique Littlejohn, D. Martin, S. M. Cheng, R. K. TI Self-induced unstable behaviors of CH4 and H-2/CH4 flames in a model combustor with a low-swirl injector SO COMBUSTION AND FLAME LA English DT Article DE Combustion instability; Gas turbines; Hydrogen enriched flames ID PREMIXED GAS-TURBINES; STABILIZED COMBUSTOR; DYNAMICS; OSCILLATIONS; INSTABILITY; MECHANISMS; VORTEX AB Laboratory experiments and modeling analysis have been conducted to gain insight on the self-excited unstable flame behaviors of a model gas turbine combustor that utilizes a low-swirl injector (LSI). The combustor consists of a 5.7 cm I.D. LSI firing into 18 cm diameter by 32 cm or 20.3 cm long cylindrical enclosures at atmospheric condition. The experiments involved lean premixed turbulent CH4 (0.6 < phi < 0.7) and 0.9 H-2/0.1 CH4 (0.3 < phi < 0.4) flames at bulk flow velocities of 12 and 18 m/s. Acoustic spectral information was obtained from pressure transducers. A laser-based flame motion detection method was used to determine the locations and frequencies of flame oscillations. Phase-resolved 2D velocity statistics of the reacting flow fields was measured by particle image velocimetry (Ply). Self-excited unstable flame behaviors were found for the richer flames burning in the 32 cm long chamber at 18 m/s. The incited acoustic frequencies correspond to the first longitudinal mode of the combustor computed by the General Instability Model (GIM) program. Flame oscillations are found primarily in the region along the outer shear layer (OSL) of the LSI rim and the oscillation frequencies are consistent with the acoustic frequencies. Phase-resolved PIV show the OSL convects ring vortices shed from the rim. The trajectories of the vortex centers enable a linear instability analysis by GIM. For the CH4 flame, analysis shows that the roll up vortices from the dump plane are responsible for generating self-excited acoustically coupled flame instability. For the 0.9 H-2/0.1 CH4 flame, the GIM analysis suggests a dominance of shedding vortices but is less.conclusive due to flame attachment to the LSI rim resulting from the highly reactive H-2 fuel and possible unsteady heat release contributions from bulk flow oscillations. (C) 2012 Siemens Energy Inc. and Lawrence Berkeley National Laboratory. Published by Elsevier Inc. [on behalf of The Combustion Institute]. All rights reserved. C1 [Therkelsen, P. L.; Littlejohn, D.; Cheng, R. K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Portillo, J. Enrique; Martin, S. M.] Siemens Energy Inc, Orlando, FL USA. RP Therkelsen, PL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM ptherkelsen@lbl.gov FU Advanced Turbines Program, of the US Department of Energy [DE-AC02-05CH11231]; Siemens Energy Inc. FX This work was supported by the Assistant Secretary for Fossil Energy, Advanced Turbines Program, of the US Department of Energy under Contract No. DE-AC02-05CH11231, and by Siemens Energy Inc. NR 38 TC 8 Z9 11 U1 5 U2 38 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 EI 1556-2921 J9 COMBUST FLAME JI Combust. Flame PD FEB PY 2013 VL 160 IS 2 BP 307 EP 321 DI 10.1016/j.combustflame.2011.11.008 PG 15 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 068ZU UT WOS:000313405500009 ER PT J AU Sweeney, MS Hochgreb, S Dunn, MJ Barlow, RS AF Sweeney, Mark S. Hochgreb, Simone Dunn, Matthew J. Barlow, Robert S. TI Multiply conditioned analyses of stratification in highly swirling methane/air flames SO COMBUSTION AND FLAME LA English DT Article DE Turbulent combustion; Lean stratified combustion; Laser diagnostics; Wavelet filtering; Co-annular jet burner ID LEAN LIMIT; WAVELET SHRINKAGE; TURBULENT FLAMES; PROPAGATION; TRANSFORM; ENGINES; MIXTURE; FLOWS; TUBE AB The effects of stratification on a series of highly swirling turbulent flames under globally lean conditions (phi(g) = 0.75) are investigated using a new high-spatial resolution multi-scalar dataset. This dataset features two key properties: high spatial resolution which approaches the 60 micron optical limit of the measurement system, and a wavelet oversampling methodology which significantly reduces the influence of noise. Furthermore, the very large number of realizations (30,000) acquired in the stratified cases permits statistically significant results to be obtained even after aggressive conditioning is applied. Data are doubly conditioned on equivalence ratio and the degree of stratification across the flame in each instantaneous realization. The influence of stoichiometry is limited by conditioning on the equivalence ratio at the location of peak CO mass fraction, which is shown to be a good surrogate for the location of peak heat release rate, while the stratification is quantified using a linear gradient in equivalence ratio across the instantaneous flame front. This advanced conditioning enables robust comparisons with the baseline lean premixed flame. Species mass fractions of both carbon monoxide and hydrogen are increased in temperature space under stratified conditions. Stratification is also shown to significantly increase thermal gradients, yet the derived three-dimensional flame surface density is shown to be relatively insensitive to stratification. Whilst the presence of instantaneous stratification broadens the curvature distribution relative to the premixed case, the degree of broadening is not significantly influenced by the range of global stratification ratios examined in this study. (C) 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved. C1 [Sweeney, Mark S.; Hochgreb, Simone] Univ Cambridge, Dept Engn, Cambridge CB2 1TN, England. [Dunn, Matthew J.] Univ Sydney, Sch Aeronaut Mech & Mechatron Engn, Sydney, NSW, Australia. [Barlow, Robert S.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Sweeney, MS (reprint author), Univ Cambridge, Dept Engn, Cambridge CB2 1TN, England. EM marksweeney@cantab.net RI Barlow, Robert/C-2364-2013 FU EPSRC; Leverhulme Trust; Rolls Royce; United States Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences; United States Department of Energy [DE-AC04-94-AL85000] FX The authors thank the EPSRC, the Leverhulme Trust, and Rolls Royce for their financial contributions to this work. Work at Sandia was supported by the United States Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94-AL85000. The authors also thank Bob Harmon for his contributions to the experiments. NR 47 TC 14 Z9 14 U1 0 U2 26 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0010-2180 J9 COMBUST FLAME JI Combust. Flame PD FEB PY 2013 VL 160 IS 2 BP 322 EP 334 DI 10.1016/j.combustflame.2012.10.017 PG 13 WC Thermodynamics; Energy & Fuels; Engineering, Multidisciplinary; Engineering, Chemical; Engineering, Mechanical SC Thermodynamics; Energy & Fuels; Engineering GA 068ZU UT WOS:000313405500010 ER PT J AU Day, R Joo, H Chavan, AC Lennox, KP Chen, YA Dahl, DB Vannucci, M Tsai, JW AF Day, Ryan Joo, Hyun Chavan, Archana C. Lennox, Kristin P. Chen, Y. Ann Dahl, David B. Vannucci, Marina Tsai, Jerry W. TI Understanding the general packing rearrangements required for successful template based modeling of protein structure from a CASP experiment SO COMPUTATIONAL BIOLOGY AND CHEMISTRY LA English DT Article DE Protein packing; Loop modeling; Template-based protein structure prediction; Protein statistical function ID STRUCTURE PREDICTION; HIGH-ACCURACY; CLASSIFICATION; ALIGNMENT; DATABASE; TASSER; SPACE AB As an alternative to the common template based protein structure prediction methods based on main-chain position, a novel side-chain centric approach has been developed. Together with a Bayesian loop modeling procedure and a combination scoring function, the Stone Soup algorithm was applied to the CASP9 set of template based modeling targets. Although the method did not generate as large of perturbations to the template structures as necessary, the analysis of the results gives unique insights into the differences in packing between the target structures and their templates. Considerable variation in packing is found between target and template structures even when the structures are close, and this variation is found due to 2 and 3 body packing interactions. Outside the inherent restrictions in packing representation of the PDB, the first steps in correctly defining those regions of variable packing have been mapped primarily to local interactions, as the packing at the secondary and tertiary structure are largely conserved. Of the scoring functions used, a loop scoring function based on water structure exhibited some promise for discrimination. These results present a clear structural path for further development of a side-chain centered approach to template based modeling. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Day, Ryan; Lennox, Kristin P.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Joo, Hyun; Chavan, Archana C.; Tsai, Jerry W.] Univ Pacific, Dept Chem, Stockton, CA 95211 USA. [Chen, Y. Ann] H Lee Moffitt Canc Ctr & Res Inst, Dept Biostat, Tampa, FL 33612 USA. [Dahl, David B.] Brigham Young Univ, Dept Stat, Provo, UT 84602 USA. [Vannucci, Marina] Rice Univ, Dept Stat, Houston, TX 77251 USA. RP Tsai, JW (reprint author), Univ Pacific, Dept Chem, Stockton, CA 95211 USA. EM jtsai@pacific.edu FU National Institutes of Health [R01GM81631, R01GM104972] FX c This work is funded by the National Institutes of Health grants R01GM81631 and R01GM104972. NR 34 TC 0 Z9 0 U1 0 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1476-9271 J9 COMPUT BIOL CHEM JI Comput. Biol. Chem. PD FEB PY 2013 VL 42 BP 40 EP 48 DI 10.1016/j.compbiolchem.2012.10.008 PG 9 WC Biology; Computer Science, Interdisciplinary Applications SC Life Sciences & Biomedicine - Other Topics; Computer Science GA 077GU UT WOS:000314016700006 PM 23266765 ER PT J AU Xu, W Sun, X Li, DS Ryu, S Khaleel, MA AF Xu, Wei Sun, Xin Li, Dongsheng Ryu, Seun Khaleel, Mohammad A. TI Mechanism-based representative volume elements (RVEs) for predicting property degradations in multiphase materials SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Statistically representative volume element; Microstructure; Finite element method; Degradation mechanisms ID OXIDE FUEL-CELLS; ANODE; PHOSPHORUS; MICROSTRUCTURES; SIMULATION; ELECTRODES; BEHAVIOR; CATHODE; MODEL AB Quantitative understanding of the evolving thermal-mechanical properties of a multi-phase material relies on the availability of statistically representative microstructure descriptions. Questions then arise as to whether a two-dimensional (2D) or a three-dimensional (3D) representative volume element (RVE) should be considered as the statistically representative microstructure. Although 3D models are more physically representative than 2D models in general, they are usually computationally expensive and difficult to be retrieved and/or reconstructed. In this paper, we evaluate the accuracy of a 2D RVE in predicting the property degradations induced by different degradation mechanisms with the multiphase solid oxide fuel cell (SOFC) anode material as an example. Both 2D and 3D microstructure RVEs of the anodes are adopted to quantify the effects of two different degradation mechanisms: humidity-induced electrochemical degradation and phosphorus poisoning induced structural degradation. The predictions of the 2D model are then compared with the available experimental measurements and the results from the 3D model. It is found that the 2D model, limited by its inability to reproduce the realistic electrical percolation, is unable to accurately predict the degradation of thermo-electrical properties. On the other hand, for the phosphorus poisoning induced structural degradation, both the 2D and 3D microstructures yield similar results, indicating that the 2D model is capable of providing computationally efficient yet accurate results for studying the structural degradation within the anodes. (C) 2012 Elsevier B.V. All rights reserved. C1 [Xu, Wei; Sun, Xin; Li, Dongsheng; Ryu, Seun; Khaleel, Mohammad A.] Pacific NW Natl Lab, Computat Sci & Math Div, Richland, WA 99352 USA. RP Xu, W (reprint author), Pacific NW Natl Lab, Computat Sci & Math Div, POB 999, Richland, WA 99352 USA. EM wei.xu@pnnl.gov RI Xu, Wei/M-2742-2013; OI khaleel, mohammad/0000-0001-7048-0749 FU Solid-State Energy Conversion Alliance Core Technology Program by the U.S. Department of Energy's National Energy Technology Laboratory; Chemical Imaging Initiative in PNNL; U.S. Department of Energy by Battelle [DE-AC06-76RL01830] FX The work presented in this paper was funded as part of the Solid-State Energy Conversion Alliance Core Technology Program by the U.S. Department of Energy's National Energy Technology Laboratory. Microstructure reconstruction part in this study was funded by Chemical Imaging Initiative in PNNL. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC06-76RL01830. NR 34 TC 4 Z9 4 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 J9 COMP MATER SCI JI Comput. Mater. Sci. PD FEB PY 2013 VL 68 BP 152 EP 159 DI 10.1016/j.commatsci.2012.10.026 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 071BV UT WOS:000313561600022 ER PT J AU Ong, SP Richards, WD Jain, A Hautier, G Kocher, M Cholia, S Gunter, D Chevrier, VL Persson, KA Ceder, G AF Ong, Shyue Ping Richards, William Davidson Jain, Anubhav Hautier, Geoffroy Kocher, Michael Cholia, Shreyas Gunter, Dan Chevrier, Vincent L. Persson, Kristin A. Ceder, Gerbrand TI Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Materials; Project; Design; Thermodynamics; High-throughput ID 1ST PRINCIPLES CALCULATIONS; DENSITY-FUNCTIONAL THEORY; ELECTRONIC-STRUCTURE; INSULATORS; CRYSTAL; CATHODES; ION AB We present the Python Materials Genomics (pymatgen) library, a robust, open-source Python library for materials analysis. A key enabler in high-throughput computational materials science efforts is a robust set of software tools to perform initial setup for the calculations (e. g., generation of structures and necessary input files) and post-calculation analysis to derive useful material properties from raw calculated data. The pymatgen library aims to meet these needs by (1) defining core Python objects for materials data representation, (2) providing a well-tested set of structure and thermodynamic analyses relevant to many applications, and (3) establishing an open platform for researchers to collaboratively develop sophisticated analyses of materials data obtained both from first principles calculations and experiments. The pymatgen library also provides convenient tools to obtain useful materials data via the Materials Project's REpresentational State Transfer (REST) Application Programming Interface (API). As an example, using pymatgen's interface to the Materials Project's RESTful API and phasediagram package, we demonstrate how the phase and electrochemical stability of a recently synthesized material, Li4SnS4, can be analyzed using a minimum of computing resources. We find that Li4SnS4 is a stable phase in the Li-Sn-S phase diagram (consistent with the fact that it can be synthesized), but the narrow range of lithium chemical potentials for which it is predicted to be stable would suggest that it is not intrinsically stable against typical electrodes used in lithium-ion batteries. (C) 2012 Elsevier B. V. All rights reserved. C1 [Ong, Shyue Ping; Richards, William Davidson; Ceder, Gerbrand] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Jain, Anubhav; Kocher, Michael; Cholia, Shreyas; Gunter, Dan; Persson, Kristin A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Hautier, Geoffroy] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Chevrier, Vincent L.] 3M Co, Elect Markets Mat Div, St Paul, MN 55144 USA. RP Ong, SP (reprint author), MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM shyue@mit.edu; wrichard@mit.edu; ajain@lbl.gov; geoffroy.hautier@uclouvain.be; mpkocher@lbl.gov; scholia@lbl.gov; dkgunter@lbl.gov; vincentchevrier@gmail.com; kapersson@lbl.gov; gceder@mit.edu RI Ong, Shyue Ping/B-4137-2008; Hautier, Geoffroy/A-8357-2011; Ong, Shyue Ping/D-7573-2014 OI Ong, Shyue Ping/0000-0001-5726-2587; Ong, Shyue Ping/0000-0001-5726-2587 FU Department of Energy's Basic Energy Sciences program [DE-FG02-96ER45571]; Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under US Department of Energy [DE-AC02-05CH1123] FX This work was supported in part by the Department of Energy's Basic Energy Sciences program under Grant No. DE-FG02-96ER45571. We also thank the National Energy Research Scientific Computing Center (NERSC) for providing invaluable computing resources and IT support for this project. A. Jain acknowledges funding from the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under US Department of Energy Contract No. DE-AC02-05CH1123. NR 35 TC 183 Z9 183 U1 13 U2 147 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD FEB PY 2013 VL 68 BP 314 EP 319 DI 10.1016/j.commatsci.2012.10.028 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 071BV UT WOS:000313561600045 ER PT J AU Bochev, P Peterson, K Gao, XJ AF Bochev, Pavel Peterson, Kara Gao, Xujiao TI A new Control Volume Finite Element Method for the stable and accurate solution of the drift-diffusion equations on general unstructured grids SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING LA English DT Article DE Control Volume Finite Element method; Edge elements; Exact sequence property; Drift-diffusion equations; Scharfetter-Gummel method; Semiconductor devices ID SEMICONDUCTOR-DEVICES; CONTINUITY EQUATIONS; SIMULATION; MODELS AB We present a new Control Volume Finite Element Method with multi-dimensional Scharfetter-Gummel upwinding (CVFEM-SG) for the drift-diffusion equations. The method combines a conservative formulation of the carrier density continuity equations with an edge element lifting of the one-dimensional Scharfetter-Gummel edge currents into curl-conforming elemental currents. These elemental currents combine the upwind effect from all element edges and enable accurate computation of the flux on arbitrary surfaces inside the elements. In so doing, we obtain a formulation that is stable and accurate on general unstructured finite element grids. This approach sets our formulation apart from other methods, which require the control volumes to be topologically dual to the primal grid. Numerical studies of the CVFEM-SG for a suite of scalar advection-diffusion test problems confirm the accuracy and the robustness of the new formulation. Simulations of a PN diode and an n-channel MOSFET device demonstrate the performance of the method for the fully coupled drift-diffusion system. (C) 2012 Elsevier B.V. All rights reserved. C1 [Bochev, Pavel; Peterson, Kara; Gao, Xujiao] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Bochev, P (reprint author), Sandia Natl Labs, MS1320,POB 5800, Albuquerque, NM 87185 USA. EM pbboche@sandia.gov; kjpeter@sandia.gov; xngao@sandia.gov FU DOE's Office of Science Advanced Scientific Computing Research Program (ASCR); U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge funding by the DOE's Office of Science Advanced Scientific Computing Research Program (ASCR). The Advanced Simulation & Computing (ASC) program of the National Nuclear Security Administration (NNSA) supported implementation and testing of the CVFEM-SG in Charon. Conversations with our colleagues G. Hennigan, L Musson and T. Smith greatly improved our understanding of device modeling and simulation. J. Aidun lent his support and encouraged us to complete this work despite the many challenges. We owe special thanks to Eric Cyr for his help with Panzer and for developing the capabilities required to implement the CVFEM-SG in Charon. Finally, we thank the anonymous referees for their comments, which helped to improve the paper, and for pointing out the similarities with the MFEM.; Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 37 TC 7 Z9 7 U1 1 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0045-7825 J9 COMPUT METHOD APPL M JI Comput. Meth. Appl. Mech. Eng. PD FEB PY 2013 VL 254 BP 126 EP 145 DI 10.1016/j.cma.2012.10.009 PG 20 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics SC Engineering; Mathematics; Mechanics GA 079WO UT WOS:000314203100010 ER PT J AU Bora, DK Braun, A Constable, EC AF Bora, Debajeet K. Braun, Artur Constable, Edwin C. TI "In rust we trust". Hematite - the prospective inorganic backbone for artificial photosynthesis SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID X-RAY-ABSORPTION; PHOTOELECTROCHEMICAL WATER OXIDATION; IRON-OXIDE NANOPARTICLES; ALPHA-FE2O3 THIN-FILMS; TRANSITION-METAL OXIDES; SOLAR FUEL PRODUCTION; MAGNETIC NANOPARTICLES; ELECTRONIC-STRUCTURES; MORIN TRANSITION; IN-SITU AB The search for affordable high performance electrode materials in photoelectrochemical hydrogen production by solar water splitting is an ongoing quest. Hematite is a photoanode material with an electronic band gap suitable for efficient absorption of visible light in a photoelectrochemical cell (PEC). Although its poor electronic structure makes hematite a controversial candidate for PEC, it remains promising because it is an earth abundant, chemically stable and low cost material - necessary prerequisites for PEC to become a competitive cost-efficient solar fuel economy. In addition to reviewing some recent PEC research on hematite and its relevant physical and chemical characteristics, we show how hematite obtained by a low cost synthesis can be refined by hydrothermal treatment and further functionalized by coating with phycocyanin, a light harvesting protein known for photosynthesis in blue-green algae. C1 [Bora, Debajeet K.; Braun, Artur] Empa Swiss Fed Labs Mat Sci & Technol, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland. [Bora, Debajeet K.; Constable, Edwin C.] Univ Basel, Dept Chem, CH-4056 Basel, Switzerland. [Bora, Debajeet K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Braun, A (reprint author), Empa Swiss Fed Labs Mat Sci & Technol, Lab High Performance Ceram, CH-8600 Dubendorf, Switzerland. EM dkbora@lbl.gov; artur.braun@alumni.ethz.ch; edwin.constable@unibas.ch RI Bora, Debajeet/C-1951-2009; BRAUN, Artur/A-1154-2009; Bora, Debajeet/C-6511-2017; OI Bora, Debajeet/0000-0001-6466-7734; BRAUN, Artur/0000-0002-6992-7774; Bora, Debajeet/0000-0001-6466-7734; Constable, Edwin/0000-0003-4916-4041 FU Swiss Federal Office of Energy [153613-102809]; Swiss National Science Foundation [121306]; Swiss-Hungarian Sciex project [10.013]; Hirschmann Foundation FX This research was fully funded by the Swiss Federal Office of Energy project no. 153613-102809 and partially funded by the Swiss National Science Foundation project R'Equip # 121306. Electron micrographs were provided by Empa Electron Microscopy Center (Dr Rolf Erni) and the Argonne National Laboratory Center for Nanoscale Materials (Dr Elena Rozhkova and Dr E. Vitol). X-ray and electron spectroscopy data were obtained at the Advanced Light Source in Berkeley and at BESSY-II Berlin and at ESRF Grenoble. We are grateful to Dr Krisztina Schrantz (funded by the Swiss-Hungarian Sciex project 10.013) for assistance with the bio conjugation, and to M.Sc. student Pradeep Wyss (funded by the Hirschmann Foundation) and Prof. H. Piles, FHNW Basel. Graphic enhancement of the SEM images was carried out by A. Koster (Empa). NR 182 TC 110 Z9 110 U1 26 U2 365 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD FEB PY 2013 VL 6 IS 2 BP 407 EP 425 DI 10.1039/c2ee23668k PG 19 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 075NA UT WOS:000313892400004 ER PT J AU Qin, Y Lu, J Du, P Chen, ZH Ren, Y Wu, TP Miller, JT Wen, JG Miller, DJ Zhang, ZC Amine, K AF Qin, Yan Lu, Jun Du, Peng Chen, Zonghai Ren, Yang Wu, Tianpin Miller, Jeffrey T. Wen, Jianguo Miller, Dean J. Zhang, Zhengcheng Amine, Khalil TI In situ fabrication of porous-carbon-supported alpha-MnO2 nanorods at room temperature: application for rechargeable Li-O-2 batteries SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID LITHIUM-AIR BATTERIES; CATALYTIC-ACTIVITY; OXYGEN BATTERIES; ELECTRODES; ELECTROLYTES; PERFORMANCE; NANOWIRES; STABILITY; OXIDATION; DISCHARGE AB Lithium-O-2 cells can be considered the "holy grail" of lithium batteries because they offer much superior theoretical energy density to conventional lithium-ion systems. In this study, porous carbon-supported MnO2 nanorods synthesized at room temperature were explored as an electrocatalyst for rechargeable Li-O-2 cells. Both high-energy X-ray diffraction and X-ray absorption fine-structure analyses showed that the prepared MnO2 exhibited a tetragonal crystal structure (alpha-MnO2), which has proved to be one of the most efficient catalysts to facilitate the charging of the Li-O-2 cell. Under the current synthetic approach, alpha-MnO2 was uniformly distributed onto the surface of a carbon support, without disrupting the porous structure at the surface of the carbon cathode. As a result, the as-prepared catalysts demonstrated good electrochemical behavior, with a capacity of similar to 1400 mA h g(-1) (carbon + electrocatalyst) under a current density of 100 mA g(-1) (carbon + electrocatalyst) during the initial discharge. The charge potential was significantly reduced, to 3.5-3.7 V, compared with most of the reported data, which are above 4.0 V. The mechanism of the capacity fade with cycling was also investigated by analyzing the cathode at different states of discharge-charge by X-ray photoelectron spectroscopy. C1 [Qin, Yan; Lu, Jun; Du, Peng; Chen, Zonghai; Wu, Tianpin; Miller, Jeffrey T.; Zhang, Zhengcheng; Amine, Khalil] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Ren, Yang] Argonne Natl Lab, Xray Sci Div, Adv Photon Sources, Lemont, IL 60439 USA. [Wen, Jianguo; Miller, Dean J.] Argonne Natl Lab, Ctr Electron Microscopy, Div Mat Sci, Lemont, IL 60439 USA. RP Qin, Y (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA. EM amine@anl.gov RI Du, Peng/F-8336-2013; Chen, Zonghai/K-8745-2013; Amine, Khalil/K-9344-2013 FU U.S. Department of Energy; FreedomCAR; Vehicle Technologies Office; Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Award under the EERE Vehicles Technology Program; DOE [DE-AC05-06OR23100]; DOE Office of Science - Basic Energy Sciences [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Department of Energy; MRCAT FX Research at Argonne National Laboratory was funded by U.S. Department of Energy, FreedomCAR and Vehicle Technologies Office. J. Lu was supported by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Award under the EERE Vehicles Technology Program administered by the Oak Ridge Institute for Science and Education (ORISE) for the DOE under DOE contract number DE-AC05-06OR23100. The SEM and TEM analysis was performed at the Electron Microscopy Center (EMC), which is supported by the DOE Office of Science - Basic Energy Sciences under contract DE-AC02-06CH11357. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. NR 56 TC 107 Z9 107 U1 19 U2 277 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD FEB PY 2013 VL 6 IS 2 BP 519 EP 531 DI 10.1039/c2ee23621d PG 13 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 075NA UT WOS:000313892400014 ER PT J AU Renslow, RS Babauta, JT Majors, PD Beyenal, H AF Renslow, R. S. Babauta, J. T. Majors, P. D. Beyenal, H. TI Diffusion in biofilms respiring on electrodes SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID SHEWANELLA-ONEIDENSIS MR-1; MICROBIAL FUEL-CELLS; GEOBACTER-SULFURREDUCENS BIOFILMS; WASTE-WATER TREATMENT; ELECTRICAL-CONDUCTIVITY; ELECTROACTIVE BIOFILMS; CONFOCAL MICROSCOPY; BACTERIAL NANOWIRES; MAGNETIC-RESONANCE; DESALINATION CELL AB The goal of this study was to measure spatially and temporally resolved effective diffusion coefficients (D-e) in biofilms respiring on electrodes. Two model electrochemically active biofilms, Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1, were investigated. A novel nuclear magnetic resonance microimaging perfusion probe capable of simultaneous electrochemical and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) techniques was used. PFG-NMR allowed for noninvasive, nondestructive, high spatial resolution in situ D-e measurements in living biofilms respiring on electrodes. The electrodes were polarized so that they would act as the sole terminal electron acceptor for microbial metabolism. We present our results as both two-dimensional D-e heat maps and surface-averaged relative effective diffusion coefficient (D-rs) depth profiles. We found that (1) D-rs decreases with depth in G. sulfurreducens biofilms, following a sigmoid shape; (2) D-rs at a given location decreases with G. sulfurreducens biofilm age; (3) average D-e and D-rs profiles in G. sulfurreducens biofilms are lower than those in S. oneidensis biofilms-the G. sulfurreducens biofilms studied here were on average 10 times denser than the S. oneidensis biofilms; and (4) halting the respiration of a G. sulfurreducens biofilm decreases the D-e values. Density, reflected by D-e, plays a major role in the extracellular electron transfer strategies of electrochemically active biofilms. C1 [Renslow, R. S.; Babauta, J. T.; Beyenal, H.] Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, Pullman, WA 99164 USA. [Majors, P. D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. RP Renslow, RS (reprint author), Washington State Univ, Gene & Linda Voiland Sch Chem Engn & Bioengn, 118 Dana Hall Spokane St,POB 642710, Pullman, WA 99164 USA. EM beyenal@wsu.edu RI Renslow, Ryan/E-5851-2010 OI Renslow, Ryan/0000-0002-3969-5570 FU U.S. Office of Naval Research (ONR) [N00014-09-1-0090]; Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory; NIH [T32-GM008336] FX This research was supported by the U.S. Office of Naval Research (ONR), grant #N00014-09-1-0090. All NMR experiments were performed at EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. We thank Hardeep Mehta (EMSL Instrument Development Lab) for developing a compatible resonator and Kenneth Swanson and James Follansbee (EMSL Instrument Development Lab) for developing the networked pump controller. Ryan Renslow and Jerome Babauta acknowledge NIH Training Grant (T32-GM008336). NR 91 TC 33 Z9 35 U1 8 U2 130 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD FEB PY 2013 VL 6 IS 2 BP 595 EP 607 DI 10.1039/c2ee23394k PG 13 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 075NA UT WOS:000313892400022 PM 23420623 ER PT J AU Spier, C Stringfellow, WT Hazen, TC Conrad, M AF Spier, Chelsea Stringfellow, William T. Hazen, Terry C. Conrad, Mark TI Distribution of hydrocarbons released during the 2010 MC252 oil spill in deep offshore waters SO ENVIRONMENTAL POLLUTION LA English DT Article DE Deepwater Horizon; Hydrocarbon; Dispersant; Plume; Distribution ID BIODEGRADATION AB The explosion of the Deepwater Horizon oil platform on April 20th, 2010 resulted in the second largest oil spill in history. The distribution and chemical composition of hydrocarbons within a 45 km radius of the blowout was investigated. All available certified hydrocarbon data were acquired from NOAA and BP. The distribution of hydrocarbons was found to be dispersed over a wider area in subsurface waters than previously predicted or reported. A deepwater hydrocarbon plume predicted by models was verified and additional plumes were identified. Because the samples were not collected systematically, there is still some question about the presence and persistence of an 865 m depth plume predicted by models. Water soluble compounds were extracted from the rising oil in deepwater, and were found at potentially toxic levels outside of areas previously reported to contain hydrocarbons. Application of subsurface dispersants was found to increase hydrocarbon concentration in subsurface waters. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Spier, Chelsea; Stringfellow, William T.] Univ Pacific, Ecol Engn Res Program, Sch Engn & Comp Sci, Stockton, CA 95211 USA. [Stringfellow, William T.; Hazen, Terry C.; Conrad, Mark] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Spier, C (reprint author), Univ Pacific, Ecol Engn Res Program, Sch Engn & Comp Sci, Stockton, CA 95211 USA. EM cspier@pacific.edu; wstringfellow@lbl.gov; tchazen@utk.edu; msconrad@lbl.gov RI Conrad, Mark/G-2767-2010; Stringfellow, William/O-4389-2015; Hazen, Terry/C-1076-2012 OI Stringfellow, William/0000-0003-3189-5604; Hazen, Terry/0000-0002-2536-9993 FU Ecological Engineering Research Program at University of the Pacific, CA; University of California at Berkeley, Energy Biosciences Institute under U.S. Department of Energy [DE-AC02-05CH11231]; British Petroleum through the Energy Biosciences Institute of Berkeley, CA FX We thank Eric Sonnethal for assistance with distance and direction calculations and Craig Matthiessen for daily dispersant application data. Chelsea Spier was funded by the Ecological Engineering Research Program at University of the Pacific, CA. This work was supported by a subcontract from the University of California at Berkeley, Energy Biosciences Institute, to Lawrence Berkeley National Laboratory under U.S. Department of Energy contract DE-AC02-05CH11231. The Energy Biosciences Institute is funded by British Petroleum through the Energy Biosciences Institute of Berkeley, CA. NR 36 TC 39 Z9 40 U1 2 U2 148 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 J9 ENVIRON POLLUT JI Environ. Pollut. PD FEB PY 2013 VL 173 BP 224 EP 230 DI 10.1016/j.envpol.2012.10.019 PG 7 WC Environmental Sciences SC Environmental Sciences & Ecology GA 074WK UT WOS:000313845500030 PM 23202654 ER PT J AU Wang, QF Wang, JH Guan, YP AF Wang, Qianfan Wang, Jianhui Guan, Yongpei TI Stochastic Unit Commitment With Uncertain Demand Response SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Chance constraint; contingency analysis; demand response; stochastic programming; unit commitment AB Although demand response (DR) encourages customers to voluntarily schedule electricity consumption based on price signals, the response from the consumer side could be uncertain due to a variety of reasons. In this letter, we study the stochastic unit commitment problem with uncertain demand response to enhance the reliability unit commitment process for independent system operators (ISOs). We use a stochastic representation of DR by scenario, and each scenario corresponds to a price-elastic demand curve. Contingency constraints are considered and in addition, a chance constraint is applied to ensure the loss of load probability (LOLP) lower than a pre-defined risk level. Finally, a sample average approximation (SAA) method is applied to solve the problem. C1 [Wang, Qianfan; Guan, Yongpei] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA. [Wang, Jianhui] Argonne Natl Lab, Argonne, IL 60439 USA. RP Wang, QF (reprint author), Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA. EM qfwang@ise.ufl.edu; jianhui.wang@anl.gov; guan@ise.ufl.edu NR 6 TC 38 Z9 45 U1 1 U2 28 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD FEB PY 2013 VL 28 IS 1 BP 562 EP 563 DI 10.1109/TPWRS.2012.2202201 PG 2 WC Engineering, Electrical & Electronic SC Engineering GA 076OK UT WOS:000313965700060 ER PT J AU Carroll, LJ Cabet, C Carroll, MC Wright, RN AF Carroll, L. J. Cabet, C. Carroll, M. C. Wright, R. N. TI The development of microstructural damage during high temperature creep-fatigue of a nickel alloy SO INTERNATIONAL JOURNAL OF FATIGUE LA English DT Article DE Creep-fatigue; Microstructures; Intergranular fracture; High temperature fatigue; Crack paths ID LOW-CYCLE-FATIGUE; TYPE-316 STAINLESS-STEEL; ELEVATED-TEMPERATURE; CRACK-PROPAGATION; REACTOR HELIUM; NUCLEATION; SUBSTRUCTURE; CAVITIES; TIME; DEFORMATION AB Alloy 617 is the leading candidate material for an Intermediate Heat Exchanger (IHX) of the Very High Temperature Reactor (VHTR). To evaluate the behavior of this material in the expected service conditions, strain-controlled cyclic tests that include hold times up to 9000 s at maximum tensile strain were conducted at 950 degrees C. The fatigue resistance decreased when a hold time was added at peak tensile strain, owing to the mechanisms resulting in a change in fracture mode from transgranular in pure fatigue to intergranular in creep-fatigue. Increases in the tensile hold duration beyond an initial value were not detrimental to the creep-fatigue resistance. An analysis of the evolving failure modes was facilitated by interrupting tests during cycling for ex situ microstructural investigation. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Carroll, L. J.; Carroll, M. C.; Wright, R. N.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Cabet, C.] CEA, DEN, Lab Etud Corros, DPC,SCCME, F-91191 Gif Sur Yvette, France. RP Carroll, LJ (reprint author), Idaho Natl Lab, 1955 Fremont,POB 1625, Idaho Falls, ID 83415 USA. EM laura.carroll@inl.gov; celine.cabet@cea.fr; mark.carroll@inl.gov; richard.wright@inl.gov FU NSF MRI Grant [DMR-0521315]; US Department of Energy - Nuclear Energy FX The authors would like to acknowledge Joel Simpson and Randy Lloyd for conducting the creep-fatigue testing and Tammy Trowbridge and Todd Morris for the metallurgical work. The authors would also like to thank Mary O'Brien for quantifying the interior grain boundary cracking and determining a method to effectively semi-automate this tedious process. Transmission electron microscopy work performed in the Boise State Center for Materials Characterization has been supported by NSF MRI Grant DMR-0521315. This work was supported through the US Department of Energy - Nuclear Energy. NR 32 TC 15 Z9 16 U1 0 U2 48 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0142-1123 J9 INT J FATIGUE JI Int. J. Fatigue PD FEB PY 2013 VL 47 BP 115 EP 125 DI 10.1016/j.ijfatigue.2012.07.016 PG 11 WC Engineering, Mechanical; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 069WH UT WOS:000313467300012 ER PT J AU Chu, HJ Wang, J Beyerlein, IJ Pan, E AF Chu, H. J. Wang, J. Beyerlein, I. J. Pan, E. TI Dislocation models of interfacial shearing induced by an approaching lattice glide dislocation SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Dislocations; Numerical algorithms; Anisotropic material; Layered material ID MECHANICAL-PROPERTIES; SCREW DISLOCATION; ANISOTROPIC BIMATERIALS; PLASTICITY ANALYSIS; SLIPPING INTERFACE; GRAIN-BOUNDARIES; WEAK INTERFACES; TRANSMISSION; DEFORMATION; FIELD AB When a lattice glide dislocation approaches a bi-metal interface with relatively low shear strength, it causes the interface to shear. Interfacial shearing is accommodated by the nucleation and growth of interfacial dislocations, which have an attractive interaction with the incoming dislocation. Thus a critical length scale exists at which the net force on the incoming lattice glide dislocation can transition from being initially repulsive to attractive. In this paper, we develop dislocation-based interface shear models in order to represent this mechanism of interface/dislocation interaction at the continuum scale. Three versions are devised with different degrees of complexity and hence computational cost: the continuous shear model (CSM), simplified-CSM model (SCSM), and single dislocation shear model (SDSM). We simulate the interaction processes with these three models by means of a Green's function method for an anisotropic bimaterial. All three models find that the critical length scale at which the dislocation becomes attracted to the interface increases as the interfacial shear resistance decreases. While the most complex model of the three, the CSM, performs the best, the SCSM and SDSM are more advantageous for implementation into higher-length scale dislocation dynamics models. Published by Elsevier Ltd. C1 [Chu, H. J.; Wang, J.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Chu, H. J.] Yanzhou Univ, Coll Hydraul Sci & Engn, Yangzhou 225009, Peoples R China. [Beyerlein, I. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Pan, E.] Univ Akron, Dept Civil Engn, Akron, OH 44325 USA. RP Wang, J (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM wangj6@lanl.gov RI Beyerlein, Irene/A-4676-2011; Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X FU Los Alamos National Laboratory Directed Research and Development (LDRD) [DR20110029, ER20110573]; US Department of Energy, Office of Science, Office of Basic Energy Sciences; National Natural Science Foundation [10602050]; Jiangsu Government FX H.J. Chu, J. Wang and I.J. Beyerlein acknowledge support provided by a Los Alamos National Laboratory Directed Research and Development (LDRD) project DR20110029. J. Wang also acknowledges support provided by the US Department of Energy, Office of Science, Office of Basic Energy Sciences and a Los Alamos National Laboratory Directed Research and Development (LDRD) project ER20110573. Chu acknowledgements the financial support provided by the National Natural Science Foundation (10602050) and a Jiangsu Government Scholarship for overseas studies. Authors also thank Drs. N. Li, R.F. Zhang, C.Z. Zhou, K. Kang for their helpful discussions and suggestions in our regular group meetings. NR 52 TC 30 Z9 30 U1 4 U2 52 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 J9 INT J PLASTICITY JI Int. J. Plast. PD FEB PY 2013 VL 41 BP 1 EP 13 DI 10.1016/j.ijplas.2012.08.005 PG 13 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 075CX UT WOS:000313862500001 ER PT J AU Choi, IC Kim, YJ Seok, MY Yoo, BG Kim, JY Wang, YM Jang, JI AF Choi, In-Chul Kim, Yong-Jae Seok, Moo-Young Yoo, Byung-Gil Kim, Ju-Young Wang, Yinmin Jang, Jae-il TI Nanoscale room temperature creep of nanocrystalline nickel pillars at low stresses SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE Nanocrystalline nickel; Time-dependent plasticity; Nanomechanical properties; Size effect; Creep ID STRAIN-RATE SENSITIVITY; MOLECULAR-DYNAMICS SIMULATION; DEFORMATION MECHANISM MAPS; SEVERE PLASTIC-DEFORMATION; GRAIN-SIZE DISTRIBUTION; NANOSTRUCTURED MATERIALS; INDENTATION CREEP; METALLIC-GLASS; BEHAVIOR; NI AB Nanoscale time-dependent plastic deformation (creep) behavior of nanocrystalline (nc) Ni, at low stresses and at room temperature, was systematically explored through uniaxial creep experiments performed on nano-/micro-pillars (with diameters of 600, 1000, and 2000 nm). It was revealed that the creep indeed occurs at ambient temperature, and exhibits a creep strain of similar to 2 x 10(-4)-9 x 10(-3) (for 200 s load-holding) at stresses below the nominal yield strengths of the pillars. At a given stress, much higher total creep strains and strain rates accrue in the smaller pillars, which is likely due to the increased contributions of free surfaces. Estimation of the stress exponent and the activation volume suggests that the nanoscale creep event under low stresses may be dominated by diffusion-controlled mechanisms such as free surface assisted grain-boundary diffusion and grain-boundary sliding. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Choi, In-Chul; Kim, Yong-Jae; Seok, Moo-Young; Yoo, Byung-Gil; Jang, Jae-il] Hanyang Univ, Div Engn & Mat Sci, Seoul 133791, South Korea. [Kim, Ju-Young] UNIST, Sch Mech & Adv Mat Engn, Ulsan 689798, South Korea. [Wang, Yinmin] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. RP Jang, JI (reprint author), Hanyang Univ, Div Engn & Mat Sci, Seoul 133791, South Korea. EM jijang@hanyang.ac.kr RI Wang, Yinmin (Morris)/F-2249-2010; Jang, Jae-il/A-3486-2011; Choi, In-Chul/E-1499-2014; Seok, Moo-Young/M-5846-2016 OI Wang, Yinmin (Morris)/0000-0002-7161-2034; Jang, Jae-il/0000-0003-4526-5355; FU Basic Science Research Program through the National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology [2010-0025526]; Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP); Korea government Ministry of Knowledge Economy [20114010203020]; US Department of Energy [DE-AC52-07NA27344] FX This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010-0025526), and in part by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 20114010203020). The work at Lawrence Livermore National Laboratory was performed under the auspices of the US Department of Energy under Contract DE-AC52-07NA27344. NR 90 TC 28 Z9 28 U1 5 U2 71 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 EI 1879-2154 J9 INT J PLASTICITY JI Int. J. Plast. PD FEB PY 2013 VL 41 BP 53 EP 64 DI 10.1016/j.ijplas.2012.08.008 PG 12 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 075CX UT WOS:000313862500004 ER PT J AU Pandey, A Khan, AS Kim, EY Choi, SH Gnaupel-Herold, T AF Pandey, Amit Khan, Akhtar S. Kim, Eun-Young Choi, Shi-Hoon Gnaeupel-Herold, Thomas TI Experimental and numerical investigations of yield surface, texture, and deformation mechanisms in AA5754 over low to high temperatures and strain rates SO INTERNATIONAL JOURNAL OF PLASTICITY LA English DT Article DE AA5754; Texture; Neutron diffraction; Simple shear; Dynamic loading; Strain rate sensitivity; Polycrystal model ID ALUMINUM-ALLOY; SIMPLE SHEAR; AUTOMOTIVE APPLICATIONS; TENSILE DEFORMATION; PLASTIC-DEFORMATION; ROLLED SHEETS; MG ALLOY; PART-I; EVOLUTION; ANISOTROPY AB The effects of strain rate and temperature on the yield and flow stress of AA5754 sheets are presented under uniaxial (tension and compression), dynamic (tension), and simple shear loading conditions. The present study investigates the anisotropic behavior of AA5754 sheets through experiments performed in the rolling (RD), 45 degrees to rolling (DD), and transverse to rolling (TD) directions at room and elevated temperatures. The experimental results show that the strain rate sensitivity varied from negative at room temperature to positive at elevated temperatures (>150 degrees C), and the anisotropy was inversely proportional to the strain rate. Texture analysis was conducted on the specimens after uniaxial tension and simple shear deformation, using the neutron diffraction and electron back-scattered diffraction (EBSD) techniques. Rotation rate maps and orientation stability parameters, determined by the rate-sensitive model, were used to explain the kinematic stability of the initial texture components in AA5754 sheets during uniaxial tension and simple shear deformation. A visco-plastic self-consistent (VPSC) polycrystal model was used to simulate the evolution of the initial texture components in AA5754 sheets during uniaxial tension and simple shear deformation. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Pandey, Amit; Khan, Akhtar S.] Univ Maryland Baltimore Cty, Dept Mech Engn, Baltimore, MD 21250 USA. [Pandey, Amit] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Kim, Eun-Young; Choi, Shi-Hoon] Sunchon Natl Univ, Dept Met Engn & Mat Sci, Sunchon 540742, Jeonnam, South Korea. [Gnaeupel-Herold, Thomas] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. RP Pandey, A (reprint author), Univ Maryland Baltimore Cty, Dept Mech Engn, Baltimore, MD 21250 USA. EM dramitpandey@gmail.com; shihoon@sunchon.ac.kr OI Gnaupel-Herold, Thomas/0000-0002-8287-5091 FU GMC FX The financial support for this research from GMC through Dr. Raj Mishra is sincerely appreciated. Certain commercial firms and trade names are identified in this report in order to adequately specify aspects of the experimental procedure. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose. NR 45 TC 18 Z9 19 U1 4 U2 44 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0749-6419 J9 INT J PLASTICITY JI Int. J. Plast. PD FEB PY 2013 VL 41 BP 165 EP 188 DI 10.1016/j.ijplas.2012.09.006 PG 24 WC Engineering, Mechanical; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 075CX UT WOS:000313862500010 ER PT J AU Sathitsuksanoh, N George, A Zhang, YHP AF Sathitsuksanoh, Noppadon George, Anthe Zhang, Y-H Percival TI New lignocellulose pretreatments using cellulose solvents: a review SO JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY LA English DT Review DE biofuels; biomass pretreatment and fractionation; cellulose solvent; enzymatic cellulose hydrolysis; substrate accessibility ID IONIC LIQUID PRETREATMENT; EFFICIENT SUGAR RELEASE; N-OXIDE NMMO; ENZYMATIC-HYDROLYSIS; CORN STOVER; CLOSTRIDIUM-THERMOCELLUM; AQUEOUS AMMONIA; PHOSPHORIC-ACID; SIMULTANEOUS SACCHARIFICATION; SUPRAMOLECULAR STRUCTURE AB Non-food lignocellulosic biomass is the most abundant renewable bioresource as a collectable, transportable, and storable chemical energy that is far from fully utilized. The goal of biomass pretreatment is to improve the enzymatic digestibility of pretreated lignocellulosic biomass. Many substrate factors, such as substrate accessibility, lignin content, particle size and so on, contribute to its recalcitrance. Cellulose accessibility to hydrolytic enzymes is believed to be the most important substrate characteristic limiting enzymatic hydrolysis. Cellulose solvents effectively break linkages among cellulose, hemicellulose and lignin, and also dissolve highly-ordered hydrogen bonds in cellulose fibers accompanied with great increases in substrate accessibility. Here the history and recent advances in cellulose solvent-based biomass pretreatment are reviewed and perspectives provided for addressing remaining challenges. The use of cellulose solvents, new and existing, provides opportunities for emerging biorefineries to produce a few precursors (e.g. monosaccharides, oligosaccharides, and lignin) for the production of low-value biofuels and value-added biochemicals. (c) 2012 Society of Chemical Industry C1 [Sathitsuksanoh, Noppadon; Zhang, Y-H Percival] Virginia Tech, Dept Biol Syst Engn, Blacksburg, VA 24061 USA. [George, Anthe] Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA 94608 USA. [George, Anthe] Sandia Natl Labs, Livermore, CA USA. [Zhang, Y-H Percival] Virginia Tech, ICTAS, Blacksburg, VA 24061 USA. [Zhang, Y-H Percival] Gate Fuels Inc, Blacksburg, VA 24060 USA. RP Zhang, YHP (reprint author), Virginia Tech, Dept Biol Syst Engn, 210-A Seitz Hall, Blacksburg, VA 24061 USA. EM ypzhang@vt.edu RI sathitsuksanoh, noppadon/O-6305-2014 OI sathitsuksanoh, noppadon/0000-0003-1521-9155 FU DOE BioEnergy Science Center (BESC); Office of Biological and Environmental Research in the DOE Office of Science; USDA Bioprocessing and Biodesign Center FX This work was supported mainly by the DOE BioEnergy Science Center (BESC) to YPZ. BESC is the US Department of Energy Bioenergy Research Centers supported by the Office of Biological and Environmental Research in the DOE Office of Science. This work (YPZ) is also partially supported by the USDA Bioprocessing and Biodesign Center. NR 130 TC 44 Z9 44 U1 17 U2 418 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0268-2575 EI 1097-4660 J9 J CHEM TECHNOL BIOT JI J. Chem. Technol. Biotechnol. PD FEB PY 2013 VL 88 IS 2 BP 169 EP 180 DI 10.1002/jctb.3959 PG 12 WC Biotechnology & Applied Microbiology; Chemistry, Multidisciplinary; Engineering, Environmental; Engineering, Chemical SC Biotechnology & Applied Microbiology; Chemistry; Engineering GA 076GZ UT WOS:000313945800002 ER PT J AU Lawton, JS Aaron, DS Tang, ZJ Zawodzinski, TA AF Lawton, Jamie S. Aaron, Douglas S. Tang, Zhijiang Zawodzinski, Thomas A. TI Qualitative behavior of vanadium ions in Nafion membranes using electron spin resonance SO JOURNAL OF MEMBRANE SCIENCE LA English DT Article DE Vanadium redox flow batteries; Electron spin resonance; Nitroxide spin probe; Rotational diffusion; Proton exchange membranes ID REDOX FLOW BATTERY; EXCHANGE MEMBRANES; PARAMAGNETIC-RES; X-RAY; WATER; METHANOL; POLARITY; TRANSPORT; CATION; SPECTROSCOPY AB Nation 117 membranes for applications in Vanadium Redox Flow Batteries (VRFBs) are characterized using electron paramagnetic resonance (EPR). EPR can directly detect the V(II) and VO2+ ions, but in the battery environment the membrane is directly exposed to V(II-V). The use of nitroxide spin probes such as 2,2,6,6-tetramethyl-4-piperidone N-oxide (TEMPONE) allows observations of changes in the fluid channels of the membrane as it is exposed to all possible ionic species. These observations can give a clearer picture of the effect of the ions on the ion exchange membrane and serve as a basis of comparison in developing membranes with lower vanadium crossover. (C) 2012 Elsevier B.V. All rights reserved. C1 [Lawton, Jamie S.; Aaron, Douglas S.; Tang, Zhijiang; Zawodzinski, Thomas A.] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. [Zawodzinski, Thomas A.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Zawodzinski, TA (reprint author), Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA. EM tzawodzi@utk.edu FU NSF under Thrust 2 [NSF EPS-1004083] FX We gratefully acknowledge the support of this work by the NSF-funded TN-SCORE program, NSF EPS-1004083, under Thrust 2. We would also like to acknowledge the Bioanalytical Resources Facility at the University of Tennessee for use of the EPR instrument. NR 43 TC 14 Z9 14 U1 3 U2 77 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0376-7388 J9 J MEMBRANE SCI JI J. Membr. Sci. PD FEB 1 PY 2013 VL 428 BP 38 EP 45 DI 10.1016/j.memsci.2012.11.003 PG 8 WC Engineering, Chemical; Polymer Science SC Engineering; Polymer Science GA 072FD UT WOS:000313653700005 ER PT J AU Plantenga, T AF Plantenga, Todd TI Inexact subgraph isomorphism in MapReduce SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Article DE Subgraph isomorphism; MapReduce; Pattern match; Graph mining ID GRAPH; ALGORITHM AB Inexact subgraph matching based on type-isomorphism was introduced by Berry et al. [J. Berry, B. Hendrickson, S. Kahan, P. Konecny, Software and algorithms for graph queries on multithreaded architectures, in: Proc. IEEE International Parallel and Distributed Computing Symposium, IEEE, 2007, pp. 1-14] as a generalization of the exact subgraph matching problem. Enumerating small subgraph patterns in very large graphs is a core problem in the analysis of social networks, bioinformatics data sets, and other applications. This paper describes a MapReduce algorithm for subgraph type-isomorphism matching. The MapReduce computing framework is designed for distributed computing on massive data sets, and the new algorithm leverages MapReduce techniques to enable processing of graphs with billions of vertices. The paper also introduces a new class of walk-level constraints for narrowing the set of matches. Constraints meeting criteria defined in the paper are useful for specifying more precise patterns and for improving algorithm performance. Results are provided on a variety of graphs, with size ranging up to billions of vertices and edges, including graphs that follow a power law degree distribution. (C) 2012 Elsevier Inc. All rights reserved. C1 Sandia Natl Labs, Livermore, CA 94551 USA. RP Plantenga, T (reprint author), Sandia Natl Labs, MS 9159, Livermore, CA 94551 USA. EM tplante@sandia.gov FU Laboratory Directed Research & Development (LDRD) program at Sandia National Laboratories; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The author thanks Jon Berry, Steve Plimpton, and the anonymous journal reviewers for helpful feedback and constructive criticism. This work was partially funded by the Laboratory Directed Research & Development (LDRD) program at Sandia National Laboratories. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 31 TC 7 Z9 7 U1 1 U2 17 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 EI 1096-0848 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD FEB PY 2013 VL 73 IS 2 BP 164 EP 175 DI 10.1016/j.jpdc.2012.10.005 PG 12 WC Computer Science, Theory & Methods SC Computer Science GA 078ZO UT WOS:000314139800005 ER PT J AU Seal, SK Perumalla, KS Hirshman, SP AF Seal, Sudip K. Perumalla, Kalyan S. Hirshman, Steven P. TI Revisiting parallel cyclic reduction and parallel prefix-based. algorithms for block tridiagonal systems of equations SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Article DE Block tridiagonal matrix; Cyclic reduction; Prefix computation; Parallel solver ID LINEAR-SYSTEMS; SOLVERS AB Direct solvers based on prefix computation and cyclic reduction algorithms exploit the special structure of tridiagonal systems of equations to deliver better parallel performance compared to those designed for more general systems of equations. This performance advantage is even more pronounced for block tridiagonal systems. In this paper, we re-examine the performances of these two algorithms taking the effects of block size into account. Depending on the block size, the parameter space spanned by the number of block rows, size of the blocks and the processor count is shown to favor one or the other of the two algorithms. A critical block size that separates these two regions is shown to emerge and its dependence both on problem dependent parameters and on machine-specific constants is established. Empirical verification of these analytical findings is carried out on up to 2048 cores of a Cray XT4 system. (C) 2012 Elsevier Inc. All rights reserved. C1 [Seal, Sudip K.; Perumalla, Kalyan S.] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. [Hirshman, Steven P.] Oak Ridge Natl Lab, Div Fus Energy, Oak Ridge, TN 37831 USA. RP Seal, SK (reprint author), Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA. EM sealsk@ornl.gov; perumallaks@ornl.gov; hirshmansp@ornl.gov OI Perumalla, Kalyan/0000-0002-7458-0832 FU UT-Battelle, LLC [DE-AC05-000R22725]; Laboratory Directed Research and Development Program of Oak Ridge National Laboratory; UT-Battelle, LLC, for the US Department of Energy [DE-AC05-000R22725] FX This paper has been authored by UT-Battelle, LLC, under contract DE-AC05-000R22725 with the US Department of Energy. Accordingly, the United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.; This effort has been supported by research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the US Department of Energy under Contract No. DE-AC05-000R22725. NR 27 TC 6 Z9 6 U1 0 U2 16 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD FEB PY 2013 VL 73 IS 2 BP 273 EP 280 DI 10.1016/j.jpdc.2012.10.003 PG 8 WC Computer Science, Theory & Methods SC Computer Science GA 078ZO UT WOS:000314139800014 ER PT J AU Makrlik, E Selucky, P Vanura, P Moyer, BA AF Makrlik, E. Selucky, P. Vanura, P. Moyer, B. A. TI Synergistic extraction of some univalent cations into nitrobenzene by using cesium dicarbollylcobaltate and calix[4]arene-bis(t-octylbenzo-18-crown-6) SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Univalent cations; Calix[4]arene-bis(t-octylbenzo-18-crown-6); Complexation; Water-nitrobenzene system; Extraction and stability constants ID ACIDIC RADIOACTIVE-WASTE; ALKALI-METAL CATIONS; WATER-NITROBENZENE; SOLVENT-EXTRACTION; UNEX PROCESS; SYSTEM; 1,2-DICHLOROETHANE; 1,3-ALTERNATE; VALINOMYCIN; STRONTIUM AB From extraction experiments and gamma-activity measurements, the exchange extraction constants corresponding to the general equilibrium M+ (aq) + CsL+ (nb) a double dagger" ML+ (nb) + Cs+ (aq) taking place in the two-phase water-nitrobenzene system (M+ = K+, Rb+, , Ag+, Tl+; L = calix[4]arene-bis(t-octylbenzo-18-crown-6); aq = aqueous phase, nb = nitrobenzene phase) were evaluated. Furthermore, the stability constants of the ML+ complexes in nitrobenzene saturated with water were calculated; they were found to increase in the following cation order: < K+ < Ag+ < Rb+ < Tl+. C1 [Makrlik, E.] Czech Univ Life Sci, Fac Environm Sci, Prague 16521 6, Czech Republic. [Selucky, P.] Nucl Res Inst, CZ-25068 Rez, Czech Republic. [Vanura, P.] Inst Chem Technol, Dept Analyt Chem, CR-16628 Prague 6, Czech Republic. [Moyer, B. A.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Makrlik, E (reprint author), Czech Univ Life Sci, Fac Environm Sci, Kamycka 129, Prague 16521 6, Czech Republic. EM makrlik@centrum.cz RI Moyer, Bruce/L-2744-2016 OI Moyer, Bruce/0000-0001-7484-6277 FU Grant Agency of Faculty of Environmental Sciences, Czech University of Life Sciences, Prague [42900/1312/3114]; Czech Ministry of Education, Youth, and Sports [MSM 6046137307]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basis Energy Sciences, US Department of Energy FX This work was supported by the Grant Agency of Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Project No.: 42900/1312/3114 "Environmental Aspects of Sustainable Development of Society'' and by the Czech Ministry of Education, Youth, and Sports (Project MSM 6046137307). The participation of BAM was sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basis Energy Sciences, US Department of Energy. NR 35 TC 1 Z9 1 U1 0 U2 15 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD FEB PY 2013 VL 295 IS 2 BP 1015 EP 1018 DI 10.1007/s10967-012-1897-5 PG 4 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 072ZP UT WOS:000313713300030 ER PT J AU Hayward, JP Hobbs, CL Bell, ZW Boatner, LA Johnson, RE Ramey, JO Jellison, GE Lillard, CR AF Hayward, J. P. Hobbs, C. L. Bell, Z. W. Boatner, L. A. Johnson, R. E. Ramey, J. O. Jellison, G. E. Lillard, C. R. TI Characterizing the radiation response of Cherenkov glass detectors with isotopic sources SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Radiation detection; Cherenkov detectors; Gamma ray detectors; Photomultipliers AB Cherenkov detectors are widely used for particle identification and threshold detectors in high-energy physics. Glass Cherenkov detectors that are sensitive to beta emissions originating from neutron activation have been demonstrated recently as a potential replacement for activation foils. In this work, we set the groundwork to evaluate large Cherenkov glass detectors for sensitivity to MeV photons through first understanding the measured response of small Cherenkov glass detectors to isotopic gamma-ray sources. Counting and pulse height measurements are acquired with reflected glass Cherenkov detectors read out with a photomultiplier tube. Simulation was used to inform our understanding of the measured results. This simulation included radioactive source decay, radiation interaction, Cherenkov light generation, optical ray tracing, and photoelectron production. Implications for the use of Cherenkov glass detectors to measure low energy gamma-ray response are discussed. C1 [Hayward, J. P.; Hobbs, C. L.; Johnson, R. E.; Lillard, C. R.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Bell, Z. W.; Boatner, L. A.; Ramey, J. O.; Jellison, G. E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Hayward, JP (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. EM jhayward@utk.edu RI Boatner, Lynn/I-6428-2013; OI Boatner, Lynn/0000-0002-0235-7594; Bell, Zane/0000-0003-1115-8674 NR 20 TC 6 Z9 6 U1 0 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD FEB PY 2013 VL 295 IS 2 BP 1143 EP 1151 DI 10.1007/s10967-012-1898-4 PG 9 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 072ZP UT WOS:000313713300049 ER PT J AU Hayward, JP Bell, ZW Boatner, LA Hobbs, CL Johnson, RE Ramey, JO Jellison, GE AF Hayward, J. P. Bell, Z. W. Boatner, L. A. Hobbs, C. L. Johnson, R. E. Ramey, J. O. Jellison, G. E. TI Simulated response of Cherenkov glass detectors to MeV photons SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Radiation detection; Cherenkov detectors; Gamma ray detectors; Glass detectors AB Cherenkov detectors are widely used for particle identification in high-energy physics and for track imaging in astrophysics. Glass Cherenkov detectors that are sensitive to beta emissions originating from neutron activation have been demonstrated recently as a potential replacement for activation foils. In this work, we evaluate Cherenkov glass detectors for sensitivity and specificity to MeV photons through simulations using Geant4. The model has been previously compared with measurements of isotopic gamma sources. It includes Cherenkov generation, light transport, light collection, photoelectron production and time response in photomultiplier tubes. The model incorporates measured, wavelength-dependent absorption and refractive index data. Simulations are conducted for glasses the size of fabricated samples and also for the same glasses in monolithic, square-meter-size. Implications for selective detection of MeV photons are discussed. C1 [Hayward, J. P.; Hobbs, C. L.; Johnson, R. E.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Bell, Z. W.; Boatner, L. A.; Ramey, J. O.; Jellison, G. E.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Hayward, JP (reprint author), Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. EM jhayward@utk.edu RI Boatner, Lynn/I-6428-2013; OI Boatner, Lynn/0000-0002-0235-7594; Bell, Zane/0000-0003-1115-8674 NR 13 TC 5 Z9 5 U1 1 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD FEB PY 2013 VL 295 IS 2 BP 1321 EP 1329 DI 10.1007/s10967-012-1909-5 PG 9 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 072ZP UT WOS:000313713300072 ER PT J AU Stanley, FE Stalcup, AM Spitz, HB AF Stanley, Floyd E. Stalcup, A. M. Spitz, H. B. TI A brief introduction to analytical methods in nuclear forensics SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Chronometry; Counting spectrometry; Ion exchange separations; Mass spectrometry; Microscopy; Nuclear forensics; Standard reference materials ID IONIZATION MASS-SPECTROMETRY; EXTRACTION CHROMATOGRAPHY; ISOTOPIC COMPOSITION; AGE-DETERMINATION; URANIUM; PLUTONIUM; SEPARATION; SAMPLES; OXYGEN; ELEMENTS AB Nuclear forensic (NF) techniques are critical in responding to both environmental releases of nuclear materials and illicit trafficking activities involving both nuclear and counterfeit materials. Despite rising need, however, significant barriers exist to the future success of such research. This subset of analytical chemistry contains unique concerns (e.g. chronometry and impurity signatures), a wide variety of preparatory/instrumental approaches, and is in need of innovative solutions to current problems both in and out of the lab. The present work introduces existing NF research, development challenges and notes potential areas for advancement by highlighting several key analytical approaches. Examples of concerns and techniques discussed in this review include: chronometry, reference materials, separations, counting spectrometry, mass spectrometry and more. C1 [Stanley, Floyd E.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Stalcup, A. M.; Spitz, H. B.] Univ Cincinnati, Cincinnati, OH 45221 USA. RP Stanley, FE (reprint author), Los Alamos Natl Lab, TA 3,Bldg 1400 Casa Grande Dr,Floyd Stanley Mail, Los Alamos, NM 87545 USA. EM floyd@lanl.gov RI Stalcup, A. M./E-9386-2013 OI Stalcup, A. M./0000-0003-1537-0437 FU [LA-UR-12-20816] FX This work is LA-UR-12-20816. NR 55 TC 17 Z9 17 U1 4 U2 94 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD FEB PY 2013 VL 295 IS 2 BP 1385 EP 1393 DI 10.1007/s10967-012-1927-3 PG 9 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 072ZP UT WOS:000313713300081 ER PT J AU Zhang, WH Tsang, DCW Chen, H Huang, L AF Zhang, Weihua Tsang, Daniel C. W. Chen, Hao Huang, Long TI Remediation of an electroplating contaminated soil by EDTA flushing: chromium release and soil dissolution SO JOURNAL OF SOILS AND SEDIMENTS LA English DT Article DE Chromium release; EDTA flushing; Metal exchange; Soil dissolution ID ORGANIC-ACIDS; HEAVY-METALS; KINETIC INTERACTIONS; CHEMICAL-EXTRACTION; COPPER-EXTRACTION; CITRIC-ACID; EDDS; PB; BIOAVAILABILITY; REMOVAL AB Remediation of soils contaminated with Cr (as Cr(III) complexes/precipitates and/or Cr(VI) oxyanion) and cationic metals (Cu, Ni, Zn, and Pb) by ethylenediaminetetraacetate (EDTA) flushing has been challenging and rarely investigated. This study aimed to evaluate the efficiency of EDTA flushing for metal extraction of soil from an electroplating site, with a specific focus on chromium release and soil dissolution. Column flushing tests were performed on a sandy soil contaminated by electroplating activities in the field. Three EDTA concentrations (5, 10, and 20 mM) and flow interruptions were employed to investigate the operation of EDTA flushing. Results demonstrated that Cr, Cu, and Ni were continuously released along with dissolution of Fe, Al, Mg, and Mn throughout the entire flushing process (up to 600 pore volumes), whereas Zn and Pb removal primarily occurred in the first 50-200 pore volumes. By comparing the Cr and Fe release patterns, the observed Cr release by EDTA flushing possibly resulted from a combination of dissolution of Fe oxides, dissolution of metal-chromate precipitates, and ligand competition for the surface sites (substitution reaction). The latter two mechanisms appeared to be more influential at the early stage. It was also revealed that soil dissolution was predominant, and metal extraction became inefficient at the later stage of flushing, especially with the concentrated EDTA solution. On the other hand, when the flushing process was temporarily paused (i.e., flow interruptions), Cr, Cu, Ni, and Zn concentrations elevated, whereas Pb levels in the effluent decreased, indicating the significance of rate-limited metal exchange of newly formed metal-EDTA complexes. In consideration of EDTA utilization efficiency and potential ecological risks, diluted EDTA solution is recommended for field applications. C1 [Zhang, Weihua; Chen, Hao; Huang, Long] Sun Yat Sen Univ, Sch Environm Sci & Engn, Guangzhou 510006, Guangdong, Peoples R China. [Zhang, Weihua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Zhang, Weihua] Guangdong Prov Key Lab Environm Pollut Control &, Guangzhou 510275, Guangdong, Peoples R China. [Tsang, Daniel C. W.] Univ Canterbury, Dept Civil & Nat Resources Engn, Christchurch 8140, New Zealand. [Tsang, Daniel C. W.] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Kowloon, Hong Kong, Peoples R China. RP Tsang, DCW (reprint author), Univ Canterbury, Dept Civil & Nat Resources Engn, Christchurch 8140, New Zealand. EM dan.tsang@polyu.edu.hk RI Tsang, Daniel/E-5442-2012 OI Tsang, Daniel/0000-0002-6850-733X FU National Natural Science Foundation of China [40802088]; research fund program of Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology; Fundamental Research Funds for the Central Universities from Chinese Ministry of Education; State Scholarship Fund from China Scholarship Council FX The authors wish to thank the National Natural Science Foundation of China (project no. 40802088), the research fund program of Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, the Fundamental Research Funds for the Central Universities from Chinese Ministry of Education, and the State Scholarship Fund from China Scholarship Council for the financial support of this study. NR 40 TC 12 Z9 15 U1 6 U2 75 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1439-0108 J9 J SOIL SEDIMENT JI J. Soils Sediments PD FEB PY 2013 VL 13 IS 2 BP 354 EP 363 DI 10.1007/s11368-012-0616-8 PG 10 WC Environmental Sciences; Soil Science SC Environmental Sciences & Ecology; Agriculture GA 077QY UT WOS:000314043700010 ER PT J AU Vishnu, A Balaji, P Chen, Y AF Vishnu, Abhinav Balaji, Pavan Chen, Yong TI Guest Editors' introduction SO JOURNAL OF SUPERCOMPUTING LA English DT Editorial Material C1 [Vishnu, Abhinav] Pacific NW Natl Lab, Richland, WA 99352 USA. [Balaji, Pavan] Argonne Natl Lab, Argonne, IL 60439 USA. [Chen, Yong] Texas Tech Univ, Lubbock, TX 79409 USA. RP Vishnu, A (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM abhinav.vishnu@pnnl.gov; balaji@mcs.anl.gov; yong.chen@ttu.edu NR 0 TC 0 Z9 0 U1 0 U2 1 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0920-8542 J9 J SUPERCOMPUT JI J. Supercomput. PD FEB PY 2013 VL 63 IS 2 BP 323 EP 325 DI 10.1007/s11227-012-0743-4 PG 3 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 077XZ UT WOS:000314064000001 ER PT J AU Tang, W Desai, N Vishwanath, V Buettner, D Lan, ZL AF Tang, Wei Desai, Narayan Vishwanath, Venkatram Buettner, Daniel Lan, Zhiling TI Multi-domain job coscheduling for leadership computing systems SO JOURNAL OF SUPERCOMPUTING LA English DT Article DE Coscheduling; Coupled system; Heterogeneous computing; Resource management AB Current supercomputing centers usually deploy a large-scale compute system together with an associated data analysis or visualization system. Multiple scenarios have driven the demand that some associated jobs co-execute on different machines. We propose a multi-domain coscheduling mechanism, providing the ability to coordinate execution between jobs on multiple resource management domains without manual intervention. We have evaluated our mechanism based on real job traces from Intrepid and Eureka, the production Blue Gene/P system and a cluster with the largest GPU installation, deployed at Argonne National Laboratory. The experimental results show that coscheduling can be achieved with limited impact on system performance under varying workloads. C1 [Tang, Wei; Lan, Zhiling] IIT, Chicago, IL 60616 USA. [Desai, Narayan; Vishwanath, Venkatram; Buettner, Daniel] Argonne Natl Lab, Argonne, IL 60439 USA. RP Tang, W (reprint author), IIT, Chicago, IL 60616 USA. EM wtang6@iit.edu; desai@mcs.anl.gov; venkatv@mcs.anl.gov; buettner@alcf.anl.gov; lan@iit.edu FU U.S. NSF [CNS-0834514, CNS-0720549, CCF-0702737]; Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy [DE-AC02-06CH11357]; Argonne National Laboratory FX The work at IIT is supported in part by U.S. NSF Grants CNS-0834514, CNS-0720549, and CCF-0702737. The work at Argonne was supported by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357 and an Argonne National Laboratory Director's Postdoctoral Fellowship. NR 27 TC 1 Z9 1 U1 0 U2 5 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0920-8542 J9 J SUPERCOMPUT JI J. Supercomput. PD FEB PY 2013 VL 63 IS 2 BP 367 EP 384 DI 10.1007/s11227-012-0741-6 PG 18 WC Computer Science, Hardware & Architecture; Computer Science, Theory & Methods; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 077XZ UT WOS:000314064000004 ER PT J AU Ren, H Wu, Y Huang, PG AF Ren, H. Wu, Y. Huang, P. G. TI Visualization and characterization of near-wake flow fields of a flapping-wing micro air vehicle using PIV SO JOURNAL OF VISUALIZATION LA English DT Article DE Micro air vehicle; PIV; Flapping wing ID DESIGN; INSECT; MECHANISM; VORTICES; SPEED AB Two-dimensional velocity fields are measured using particle image velocimetry (PIV) at four planes in the near-wake region of a pair of the side wings of a flapping-wing micro air vehicle (MAV) designed at Wright State University. A high-speed camera is used to identify the phases of the flapping motion of the wings. The results emphasize the importance of the coupling between the flexible wings and the flow in future CFD efforts. The results also show that a large-scale vortex ring is shed into the near-wake region during the fling motion of the side wings of the current MAV. The three-dimensional features of this vortex ring are visualized and characterized from the velocity and vorticity fields measured in the four particle image velocimetry planes. C1 [Ren, H.] Pacific NW Natl Lab, Hydrol Tech Grp, Richland, WA 99352 USA. [Wu, Y.] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639805, Singapore. [Huang, P. G.] Wright State Univ, Dept Mech & Mat Engn, Dayton, OH 45435 USA. RP Wu, Y (reprint author), Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639805, Singapore. EM yanhuawu@ntu.edu.sg RI Wu, Yanhua/A-3839-2011 FU Wright State University FX This study is supported by Wright State University. The authors thank Mr. James Evans for helping set up the MAV in the wind tunnel. NR 12 TC 6 Z9 6 U1 0 U2 27 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1343-8875 J9 J VISUAL-JAPAN JI J. Vis. PD FEB PY 2013 VL 16 IS 1 BP 75 EP 83 DI 10.1007/s12650-012-0152-z PG 9 WC Computer Science, Interdisciplinary Applications; Imaging Science & Photographic Technology SC Computer Science; Imaging Science & Photographic Technology GA 072ZD UT WOS:000313711900011 ER PT J AU Campanelli, M Kacker, R Kessel, R AF Campanelli, Mark Kacker, Raghu Kessel, Ruediger TI Variance gradients and uncertainty budgets for nonlinear measurement functions with independent inputs SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE variance gradient; global sensitivity analysis; variance-based sensitivity measure; sensitivity index; importance measure; uncertainty budget; nonlinear measurement function; GUM; Monte Carlo method; Ishigami function ID MONTE-CARLO METHOD; EVALUATING UNCERTAINTY; SUPPLEMENT 1; GUM; METROLOGY; GUIDE AB A novel variance-based measure for global sensitivity analysis, termed a variance gradient (VG), is presented for constructing uncertainty budgets under the Guide to the Expression of Uncertainty in Measurement (GUM) framework for nonlinear measurement functions with independent inputs. The motivation behind VGs is the desire of metrologists to understand which inputs' variance reductions would most effectively reduce the variance of the measurand. VGs are particularly useful when the application of the first supplement to the GUM is indicated because of the inadequacy of measurement function linearization. However, VGs reduce to a commonly understood variance decomposition in the case of a linear(ized) measurement function with independent inputs for which the original GUM readily applies. The usefulness of VGs is illustrated by application to an example from the first supplement to the GUM, as well as to the benchmark Ishigami function. A comparison of VGs to other available sensitivity measures is made. C1 [Campanelli, Mark; Kacker, Raghu; Kessel, Ruediger] NIST, Gaithersburg, MD 20899 USA. RP Campanelli, M (reprint author), Natl Renewable Energy Lab, Natl Ctr Photovolta, Measurements & Characterizat Grp, 15013 Denver W Pkwy, Golden, CO 80401 USA. EM mark.campanelli@nrel.gov NR 42 TC 1 Z9 1 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD FEB PY 2013 VL 24 IS 2 AR 025002 DI 10.1088/0957-0233/24/2/025002 PG 16 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 073NS UT WOS:000313750300016 ER PT J AU Mejia-Alvarez, R Christensen, KT AF Mejia-Alvarez, R. Christensen, K. T. TI Robust suppression of background reflections in PIV images SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE velocimetry; PIV image processing; turbulence measurements ID PULSED SYSTEMS; 2-PHASE FLOWS; VELOCIMETRY; OPTIMIZATION AB Strong background reflections in PIV images are known to bias velocity estimates and their concomitant statistical ensembles. Many methods have been developed to eliminate background reflections, with the common premise of generating a reference background intensity map that is then subtracted from each individual PIV image prior to interrogation. This reference background intensity map can be generated in several ways, including acquiring a background image without particles, calculating the average or minimum intensity map based on an ensemble of PIV images, generating a reference intensity map for each individual PIV realization by means of various local sliding filters or considering the second frame of any PIV realization as its reference intensity map. Motivated by the need to suppress background reflections in a PIV study of flow over highly irregular surface roughness that generated significant diffuse background reflections from the complex topography, the efficacy of these methods was studied. It was found that all failed to adequately suppress such reflections, rendering the resulting velocity fields biased. A local-median normalization algorithm was developed to further suppress background reflections and this note reports the performance of this modified algorithm compared to those previously reported in the literature. C1 [Mejia-Alvarez, R.; Christensen, K. T.] Univ Illinois, Mech Sci & Engn Dept, Urbana, IL 61801 USA. RP Mejia-Alvarez, R (reprint author), Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. EM ktc@illinois.edu RI Christensen, Kenneth/B-1123-2009 OI Christensen, Kenneth/0000-0003-1468-2455 FU Air Force Office of Scientific Research [FA9550-07-1-0129] FX This work was supported by the Air Force Office of Scientific Research under grant no. FA9550-07-1-0129 (Dr John Schmisseur, Program Manager). NR 19 TC 5 Z9 5 U1 0 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD FEB PY 2013 VL 24 IS 2 AR 027003 DI 10.1088/0957-0233/24/2/027003 PG 6 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 073NS UT WOS:000313750300050 ER PT J AU Pol, SU Balakumar, BJ AF Pol, S. U. Balakumar, B. J. TI Design considerations for large field particle image velocimetery (LF-PIV) SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE particle image velocimetery (PIV); large field measurements; wind energy ID LARGE-SCALE MOTIONS; TURBULENT PIPE; FLOWS; VELOCITY; CHANNEL; ERRORS; LAYER AB We discuss the challenges and limitations associated with the development of a large field of view particle image velocimetry (LF-PIV) diagnostic, capable of resolving large-scale motions (> 1 m per camera) in gas phase laboratory and field experiments. While this diagnostic is developed for the measurement of wakes and local inflow conditions around research wind turbines, the design considerations provided here are also relevant for the application of LF-PIV to atmospheric boundary layer, rotorcraft dynamics and large-scale wind tunnel flows. Measurements over an area of 0.75 m x 1.0 m on a confined vortex were obtained using a standard 2MP camera, with the potential for increasing this area significantly using 11MP cameras. The cameras in this case were oriented orthogonal to the measurement plane receiving only the side-scattered component of light from the particles. Scaling laws associated with LF-PIV systems are also presented along with the performance analysis of low-density, large diameter Expancel particles, that appear to be promising candidates for LF-PIV seeding. C1 [Pol, S. U.; Balakumar, B. J.] Los Alamos Natl Lab, Phys Div P23, Los Alamos, NM 87545 USA. RP Pol, SU (reprint author), Los Alamos Natl Lab, Phys Div P23, MS H803, Los Alamos, NM 87545 USA. EM suhas@lanl.gov FU Department of Energy's Energy Efficiency and Renewable Energy office [EB2501030]; LANL's Laboratory Directed Research and Development Office [20100040DR] FX The support of Department of Energy's Energy Efficiency and Renewable Energy office through Grant EB2501030 and LANL's Laboratory Directed Research and Development Office through Grant 20100040DR are gratefully acknowledged. The authors thank Professor Ronald J Adrian for his advice and encouragement during the conduct of this research. The authors acknowledge constant support and co-operation of Dr William T Buttler and Dr Curtt Ammerman. NR 23 TC 1 Z9 1 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD FEB PY 2013 VL 24 IS 2 AR 025302 DI 10.1088/0957-0233/24/2/025302 PG 11 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 073NS UT WOS:000313750300035 ER PT J AU Foito, A Byrne, SL Hackett, CA Hancock, RD Stewart, D Barth, S AF Foito, Alexandre Byrne, Stephen L. Hackett, Christine A. Hancock, Robert D. Stewart, Derek Barth, Susanne TI Short-term response in leaf metabolism of perennial ryegrass (Lolium perenne) to alterations in nitrogen supply SO METABOLOMICS LA English DT Article DE Nitrogen; Metabolite profiling; GC-MS; Lolium perenne; Perennial ryegrass; Plant ID PROGRAMMED CELL-DEATH; ASPARAGINE SYNTHETASE; GENE-EXPRESSION; ARABIDOPSIS-THALIANA; CARBOHYDRATE CONTENT; ASCORBIC-ACID; PLANTS; GROWTH; STRESS; DEFICIENCY AB Nitrogen is a macronutrient present in a wide range of cellular compounds including proteins, nucleic acids, amino acids and lipids. The levels of nitrogen often regulate many aspects of plant metabolism, growth and development. Extensive research has been conducted into the effects of N nutrition in model plants, however relatively little is known about the metabolic response of perennial ryegrass (Lolium perenne) grown under different N-supply conditions. This study aimed to identify key metabolic responses activated rapidly after challenging plants with different levels of N-supply. The metabolic response of the leaves of seven different L. perenne genotypes to three N treatments (low, medium and high levels of N) was characterized using a GC-MS approach. After 24 h it was observed that the levels of amino acids correlated with the levels of N-supply. Furthermore the results indicated that plants experiencing N-limitation accumulated very-long chain fatty acids and precursors of secondary aromatic metabolites while sugar levels were not significantly affected indicating a remobilization of carbon. Plants grown under high levels of N were found to have enhanced levels of inositol and threonic acid which could reflect an alteration of the redox potential under stress. Further analysis of Pearson's correlation coefficient provided evidence that the chlorophyll metabolism may also be regulated in plants grown at high N concentrations. C1 [Foito, Alexandre; Byrne, Stephen L.; Barth, Susanne] Oak Pk Res Ctr, Teagasc Crops Environm & Land Use Programme, Carlow, Ireland. [Foito, Alexandre; Hancock, Robert D.; Stewart, Derek] James Hutton Inst, Dundee DD2 5DA, Scotland. [Hackett, Christine A.] Biomath & Stat Scotland, Dundee DD2 5DA, Scotland. RP Barth, S (reprint author), Oak Pk Res Ctr, Teagasc Crops Environm & Land Use Programme, Carlow, Ireland. EM susanne.barth@teagasc.ie RI Barth, Susanne/P-3366-2014; OI Barth, Susanne/0000-0002-4104-5964; Hancock, Robert/0000-0001-5465-3814; Byrne, Stephen/0000-0002-1179-2272 FU Irish Department of Agriculture, Food and the Marine [RSF 06-346]; Scottish Government Rural and Environmental Research and Analysis Directorate FX We thank Dr. Tom Shepherd (The James Hutton Institute) for expert technical assistance and Susan Verrall and Colin Alexander (BioSS) for statistical analysis assistance. We also thank Judith Wright and Ian Williamson (The James Hutton Institute) for their expert aid in preparing figures for this manuscript. This study was financed by the Irish Department of Agriculture, Food and the Marine under the Research Stimulus Fund programme (RSF 06-346; S. L. B., A. F and S. B.). D. S., R. D. H. and C. H. acknowledge support from the Scottish Government Rural and Environmental Research and Analysis Directorate. NR 45 TC 9 Z9 9 U1 0 U2 69 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1573-3882 J9 METABOLOMICS JI Metabolomics PD FEB PY 2013 VL 9 IS 1 BP 145 EP 156 DI 10.1007/s11306-012-0435-3 PG 12 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA 073IM UT WOS:000313736700013 ER PT J AU Huang, K Keiser, DD Sohn, YH AF Huang, Ke Keiser, Dennis D., Jr. Sohn, Yongho TI Interdiffusion, Intrinsic Diffusion, Atomic Mobility, and Vacancy Wind Effect in gamma(bcc) Uranium-Molybdenum Alloy SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID MO DISPERSION FUEL; EN PHASE-GAMMA; U-MO; DES COEFFICIENTS; HIGH-DENSITY; ETUDE; LAUTODIFFUSION; AL; MATRIX AB U-Mo alloys are being developed as low enrichment uranium fuels under the Reduced Enrichment for Research and Test Reactor (RERTR) Program. In order to understand the fundamental diffusion behavior of this system, solid-to-solid pure U vs Mo diffusion couples were assembled and annealed at 923 K, 973 K, 1073 K, 1173 K, and 1273 K (650 A degrees C, 700 A degrees C, 800 A degrees C, 900 A degrees C, and 1000 A degrees C) for various times. The interdiffusion microstructures and concentration profiles were examined via scanning electron microscopy and electron probe microanalysis, respectively. As the Mo concentration increased from 2 to 26 at. pct, the interdiffusion coefficient decreased, while the activation energy increased. A Kirkendall marker plane was clearly identified in each diffusion couple and utilized to determine intrinsic diffusion coefficients. Uranium intrinsically diffused 5-10 times faster than Mo. Molar excess Gibbs free energy of U-Mo alloy was applied to calculate the thermodynamic factor using ideal, regular, and subregular solution models. Based on the intrinsic diffusion coefficients and thermodynamic factors, Manning's formalism was used to calculate the tracer diffusion coefficients, atomic mobilities, and vacancy wind parameters of U and Mo at the marker composition. The tracer diffusion coefficients and atomic mobilities of U were about five times larger than those of Mo, and the vacancy wind effect increased the intrinsic flux of U by approximately 30 pct. C1 [Huang, Ke; Sohn, Yongho] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. [Keiser, Dennis D., Jr.] Idaho Natl Lab, Nucl Fuels & Mat Div, Idaho Falls, ID 83415 USA. RP Huang, K (reprint author), Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA. EM Yongho.Sohn@ucf.edu RI Sohn, Yongho/A-8517-2010 OI Sohn, Yongho/0000-0003-3723-4743 FU U.S. Department of Energy, Office of Nuclear Materials Threat Reduction [NA-212]; National Nuclear Security Administration, under DOE-NE Idaho Operations Office [DE-AC07-05ID14517] FX This study was supported by the U.S. Department of Energy, Office of Nuclear Materials Threat Reduction (NA-212), the National Nuclear Security Administration, under DOE-NE Idaho Operations Office Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for the purpose of the U.S. Government. NR 37 TC 14 Z9 14 U1 6 U2 25 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD FEB PY 2013 VL 44A IS 2 BP 738 EP 746 DI 10.1007/s11661-012-1425-9 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 073BR UT WOS:000313718800016 ER PT J AU Chen, Z Shyam, A Huang, J Decker, RF Lebeau, SE Boehlert, CJ AF Chen, Zhe Shyam, Amit Huang, Jack Decker, Ray F. Lebeau, Steve E. Boehlert, Carl J. TI The Small Fatigue Crack Growth Behavior of an AM60 Magnesium Alloy SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID CAST-ALUMINUM; PROPAGATION; MICROSTRUCTURE; MODEL AB The effects of thermomechanical processing and subsequent heat treatment on the small fatigue crack growth (FCG) behavior of an AM60 (Mg-6.29Al-0.28Mn wt pct) alloy were evaluated. The effects of mechanical loading parameters, such as maximum stress and load-ratio, on the small FCG behavior were also determined. Maximum stress did not appear to affect the crack propagation rate of small cracks in the stress and crack size ranges considered. Materials with different microstructures and yield stresses, introduced by different processing conditions, showed similar crack growth rates at equivalent stress intensity factor ranges. The effect of load ratio on small crack growth rates was recorded. Fracture surface characterization suggested that the fatigue crack propagation mechanism was a mixture of transgranular and intergranular cracking. Porosity and other material defects played respective important roles in determining the fatigue crack initiation and propagation behavior. C1 [Chen, Zhe; Boehlert, Carl J.] Michigan State Univ, Dept Chem Engn & Mat Sci, E Lansing, MI 48824 USA. [Shyam, Amit] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Huang, Jack; Decker, Ray F.; Lebeau, Steve E.] NanoMAG LLC, Ann Arbor, MI 48108 USA. RP Chen, Z (reprint author), Michigan State Univ, Dept Chem Engn & Mat Sci, 2527 Engn Bldg, E Lansing, MI 48824 USA. EM chenzhezju@gmail.com OI Shyam, Amit/0000-0002-6722-4709 FU National Science Foundation Division of Material Research [DMR1107117]; U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy FX This study was partially supported by the National Science Foundation Division of Material Research (Grant No. DMR1107117). Research through the Oak Ridge National Laboratory's High Temperature Materials Laboratory User Program was sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. NR 29 TC 3 Z9 3 U1 1 U2 30 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD FEB PY 2013 VL 44A IS 2 BP 1045 EP 1058 DI 10.1007/s11661-012-1449-1 PG 14 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 073BR UT WOS:000313718800043 ER PT J AU Gong, HM Wang, MQ Wang, HW AF Gong, Huiming Wang, Michael Q. Wang, Hewu TI New energy vehicles in China: policies, demonstration, and progress SO MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE LA English DT Article DE New energy vehicle; Hybrid electric vehicle; Fuel cell vehicle; Battery electric vehicle; Chinese electric vehicles AB Since 2009, China has become the largest new vehicle market in the world. To address the energy security and urban air-pollution concerns that emerge from rapid vehicle population growth, China has initiated the Thousands of Vehicles, Tens of Cities (TVTC) Program to accelerate the new energy vehicle (NEV) commercialization. In this paper, we summarize the efforts made by the Chinese government since 1995 in the areas of research and development, demonstration, and communalization of NEVs; evaluate the progress of NEV demonstration; and provide some recommendations for future development. Our analysis has determined that the deployment of NEVs for the TVTC Program is lagging behind the original plan and, on average, only 26-36% of the goals have been attained by October 2011. Although China has approved many NEV models for sale, significantly more than 50% of them are not in production. On the other hand, stimulated by the policy shift, electric vehicle production has increased considerably, thereby contributing 23% and 44% of the total NEV production in 2010 and 2011, respectively. Additionally, because of the constraints imposed by price and technology maturity, lead-acid battery technology is a substantial factor in the high-volume sales of top NEV car models. C1 [Gong, Huiming] Energy Fdn, China Sustainable Energy Program, Beijing 100004, Peoples R China. [Gong, Huiming; Wang, Michael Q.; Wang, Hewu] Argonne Natl Lab, Ctr Transportat Res, Argonne, IL 60439 USA. [Wang, Hewu] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China. RP Gong, HM (reprint author), Energy Fdn, China Sustainable Energy Program, Rm 2403,CITIC Bldg,Jianguomenwai Dajie 19, Beijing 100004, Peoples R China. EM gonghuiming@efchina.org; mqwang@anl.gov; wanghw@tsinghua.edu.cn FU Office of Energy Efficiency and Renewable Energy of the United States Department of Energy [DE-AC02-06CH11357] FX This work was supported by the Office of Energy Efficiency and Renewable Energy of the United States Department of Energy, under contract DE-AC02-06CH11357. The authors thank Dr. Hao Cai of Argonne National Laboratory for providing assistance for this paper. NR 52 TC 27 Z9 29 U1 3 U2 97 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1381-2386 J9 MITIG ADAPT STRAT GL JI Mitig. Adapt. Strateg. Glob. Chang. PD FEB PY 2013 VL 18 IS 2 BP 207 EP 228 DI 10.1007/s11027-012-9358-6 PG 22 WC Environmental Sciences SC Environmental Sciences & Ecology GA 065RB UT WOS:000313165200003 ER PT J AU Tiwari, S Tucker, GJ McDowell, DL AF Tiwari, Shreevant Tucker, Garritt J. McDowell, David L. TI Simulated defect growth avalanches during deformation of nanocrystalline copper SO PHILOSOPHICAL MAGAZINE LA English DT Article DE molecular dynamics; nanocrystalline; dissipation; grain boundaries ID GRAIN-BOUNDARY DIFFUSION; MOLECULAR-DYNAMICS SIMULATIONS; THIN METAL-FILMS; DISLOCATION NUCLEATION; ATOMISTIC SIMULATIONS; MECHANICAL-PROPERTIES; BICRYSTAL INTERFACES; ALUMINUM; TEMPERATURE; STRENGTH AB In this work we introduce a method to capture the proliferation of material defects that carry inelastic deformation, in microstructures simulated through isobaricisothermal molecular dynamics. Based on the premise that inelastic dissipation is accompanied by a local temperature rise, our method involves analyzing the response of a chain of NoseHoover thermostats that are coupled to the atomic velocities, while the microstructure deforms under the influence of a ramped external stress. We report results obtained from the uniaxial deformation of two nanocrystalline copper microstructures and show that our analysis allows the dissipative signal of a variety of inelastic events to be effectively unified via an avalanche of dissipation. Based on this avalanche, we quantitatively compare dissipation for inelastic deformation under tension vs. compression, observing a significant tensioncompression asymmetry in this regard. It is concluded that the present method is useful for discerning critical points that correspond to collective yield and inelastic flow. C1 [Tiwari, Shreevant; McDowell, David L.] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA. [Tucker, Garritt J.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [McDowell, David L.] Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. RP Tiwari, S (reprint author), Georgia Inst Technol, Sch Mat Sci & Engn, 771 Ferst Dr, Atlanta, GA 30332 USA. EM stiwari3@gatech.edu RI Tucker, Garritt/A-1954-2016 OI Tucker, Garritt/0000-0002-4011-450X FU NSF [CMMI-1030103]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX DLM and ST are grateful for the support of NSF CMMI-1030103 ( Methods for Atomistic Input into Initial Yield and Plastic Flow Criteria for Nanocrystalline Metals). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 64 TC 4 Z9 4 U1 1 U2 35 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 J9 PHILOS MAG JI Philos. Mag. PD FEB 1 PY 2013 VL 93 IS 5 BP 478 EP 498 DI 10.1080/14786435.2012.722236 PG 21 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 079JO UT WOS:000314166600004 ER PT J AU Lyska, D Meierhoff, K Westhoff, P AF Lyska, Dagmar Meierhoff, Karin Westhoff, Peter TI How to build functional thylakoid membranes: from plastid transcription to protein complex assembly SO PLANTA LA English DT Review DE Chloroplast; Complex assembly; Endosymbiosis; Gene expression; Photosynthesis; Thylakoid membrane ID PENTATRICOPEPTIDE REPEAT PROTEIN; CYTOCHROME B(6)F COMPLEX; C-TYPE CYTOCHROMES; CHLAMYDOMONAS-REINHARDTII CHLOROPLAST; II REACTION-CENTER; 5' UNTRANSLATED REGION; TERMINAL PROCESSING PROTEASE; SYNECHOCYSTIS SP PCC-6803; IN-VITRO RECONSTITUTION; DALGARNO-LIKE SEQUENCES AB Chloroplasts are the endosymbiotic descendants of cyanobacterium-like prokaryotes. Present genomes of plant and green algae chloroplasts (plastomes) contain similar to 100 genes mainly encoding for their transcription-/translation-machinery, subunits of the thylakoid membrane complexes (photosystems II and I, cytochrome b (6) f, ATP synthase), and the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Nevertheless, proteomic studies have identified several thousand proteins in chloroplasts indicating that the majority of the plastid proteome is not encoded by the plastome. Indeed, plastid and host cell genomes have been massively rearranged in the course of their co-evolution, mainly through gene loss, horizontal gene transfer from the cyanobacterium/chloroplast to the nucleus of the host cell, and the emergence of new nuclear genes. Besides structural components of thylakoid membrane complexes and other (enzymatic) complexes, the nucleus provides essential factors that are involved in a variety of processes inside the chloroplast, like gene expression (transcription, RNA-maturation and translation), complex assembly, and protein import. Here, we provide an overview on regulatory factors that have been described and characterized in the past years, putting emphasis on mechanisms regulating the expression and assembly of the photosynthetic thylakoid membrane complexes. C1 [Lyska, Dagmar; Meierhoff, Karin; Westhoff, Peter] Univ Dusseldorf, D-40225 Dusseldorf, Germany. RP Lyska, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM dalyska@lbl.gov FU German Science Foundation (DFG) [SFB-TR1] FX The authors acknowledge support from the German Science Foundation (DFG) through SFB-TR1. NR 238 TC 19 Z9 20 U1 2 U2 65 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0032-0935 J9 PLANTA JI Planta PD FEB PY 2013 VL 237 IS 2 SI SI BP 413 EP 428 DI 10.1007/s00425-012-1752-5 PG 16 WC Plant Sciences SC Plant Sciences GA 077XK UT WOS:000314062500005 PM 22976450 ER PT J AU Stoppel, R Meurer, J AF Stoppel, Rhea Meurer, Joerg TI Complex RNA metabolism in the chloroplast: an update on the psbB operon SO PLANTA LA English DT Review DE Arabidopsis; Editing; Processing; Splicing; Stability ID PENTATRICOPEPTIDE REPEAT PROTEIN; COMPLETE NUCLEOTIDE-SEQUENCES; PHOTOSYSTEM-II PREPARATION; SYNECHOCYSTIS SP PCC-6803; DISTINCT PLASTID GENOMES; CHLAMYDOMONAS-REINHARDTII; ARABIDOPSIS-THALIANA; MESSENGER-RNAS; GENE-EXPRESSION; BINDING DOMAIN AB Expression of most plastid genes involves multiple post-transcriptional processing events, such as splicing, editing, and intercistronic processing. The latter involves the formation of mono-, di-, and multicistronic transcripts, which can further be regulated by differential stability and expression. The plastid pentacistronic psbB transcription unit has been well characterized in vascular plants. It encodes the subunits CP47 (psbB), T (psbT), and H (psbH) of photosystem II as well as cytochrome b (6) (petB) and subunit IV (petD) of the cytochrome b (6) f complex. Each of the petB and petD genes contains a group II intron, which is spliced during post-transcriptional modification. The small subunit of photosystem II, PsbN, is encoded in the intercistronic region between psbH and psbT but is transcribed in the opposite direction. Expression of the psbB gene cluster necessitates different processing events along with numerous newly evolved specificity factors conferring stability to many of the processed RNA transcripts, and thus exemplarily shows the complexity of RNA metabolism in the chloroplast. C1 [Stoppel, Rhea; Meurer, Joerg] Univ Munich, Dept Biol 1, D-82152 Planegg Martinsried, Germany. RP Stoppel, R (reprint author), Lawrence Berkeley Natl Lab, Feedstocks Div, Joint BioEnergy Inst, 5885 Hollis St, Emeryville, CA 94608 USA. EM rstoppel@lbl.gov RI Meurer, Jorg/F-8479-2010 OI Meurer, Jorg/0000-0003-2973-9514 FU Deutsche Forschungsgemeinschaft [SFB TR1] FX The authors wish to thank the Deutsche Forschungsgemeinschaft for funding (SFB TR1 project B2). NR 62 TC 11 Z9 12 U1 1 U2 33 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0032-0935 J9 PLANTA JI Planta PD FEB PY 2013 VL 237 IS 2 SI SI BP 441 EP 449 DI 10.1007/s00425-012-1782-z PG 9 WC Plant Sciences SC Plant Sciences GA 077XK UT WOS:000314062500007 PM 23065055 ER PT J AU Kramer, GJ Budny, RV Bortolon, A Fredrickson, ED Fu, GY Heidbrink, WW Nazikian, R Valeo, E Van Zeeland, MA AF Kramer, G. J. Budny, R. V. Bortolon, A. Fredrickson, E. D. Fu, G. Y. Heidbrink, W. W. Nazikian, R. Valeo, E. Van Zeeland, M. A. TI A description of the full-particle-orbit-following SPIRAL code for simulating fast-ion experiments in tokamaks SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID GUIDING CENTER MOTION; AXISYMMETRICAL TOROIDAL PLASMAS; ALPHA; FREQUENCY; ITER AB The numerical methods used in the full particle-orbit following SPIRAL code are described and a number of physics studies performed with the code are presented to illustrate its capabilities. The SPIRAL code is a test-particle code and is a powerful numerical tool to interpret and plan fast-ion experiments in tokamaks. Gyro-orbit effects are important for fast ions in low-field machines such as NSTX and to a lesser extent in DIII-D. A number of physics studies are interlaced between the description of the code to illustrate its capabilities. Results on heat loads generated by a localized error-field on the DIII-D wall are compared with measurements. The enhanced Triton losses caused by the same localized error-field are calculated and compared with measured neutron signals. Magnetohydrodynamic (MHD) activity such as tearing modes and toroidicity-induced Alfven eigenmodes (TAEs) have a profound effect on the fast-ion content of tokamak plasmas and SPIRAL can calculate the effects of MHD activity on the confined and lost fast-ion population as illustrated for a burst of TAE activity in NSTX. The interaction between ion cyclotron range of frequency (ICRF) heating and fast ions depends solely on the gyro-motion of the fast ions and is captured exactly in the SPIRAL code. A calculation of ICRF absorption on beam ions in ITER is presented. The effects of high harmonic fast wave heating on the beam-ion slowing-down distribution in NSTX is also studied. C1 [Kramer, G. J.; Budny, R. V.; Fredrickson, E. D.; Fu, G. Y.; Nazikian, R.; Valeo, E.] Princeton Plasma Phys Labs, Princeton, NJ 08543 USA. [Bortolon, A.; Heidbrink, W. W.] Univ Calif Irvine, Irvine, CA USA. [Van Zeeland, M. A.] Gen Atom Co, San Diego, CA 92186 USA. RP Kramer, GJ (reprint author), Princeton Plasma Phys Labs, POB 451, Princeton, NJ 08543 USA. RI Bortolon, Alessandro/H-5764-2015 OI Bortolon, Alessandro/0000-0002-0094-0209 FU US Department of Energy [DE-AC02-09CH11466, SC-G903402, DE-FC02-04-ER54698] FX This work was supported by the US Department of Energy under DE-AC02-09CH11466, SC-G903402 and DE-FC02-04-ER54698. NR 41 TC 24 Z9 24 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD FEB PY 2013 VL 55 IS 2 AR 025013 DI 10.1088/0741-3335/55/2/025013 PG 23 WC Physics, Fluids & Plasmas SC Physics GA 073LJ UT WOS:000313744200013 ER PT J AU Lau, C Hanson, GR Labombard, B Lin, Y Meneghini, O Ochoukov, R Parker, R Shiraiwa, S Terry, J Wallace, G Wilgen, J Wukitch, SJ AF Lau, C. Hanson, G. R. Labombard, B. Lin, Y. Meneghini, O. Ochoukov, R. Parker, R. Shiraiwa, S. Terry, J. Wallace, G. Wilgen, J. Wukitch, S. J. TI Effects of LH power on SOL density profiles and LH coupling on Alcator C-Mod SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID HYBRID; ELECTRONS; PLASMAS; ARRAY; EDGE; ICRF; JET AB A swept-frequency X-mode reflectometer has been used to measure the scrape-off-layer (SOL) density profiles with and without lower hybrid (LH) power at three poloidal locations adjacent to the LH launcher for various plasma parameters in order to understand the coupling of LH waves on Alcator C-Mod. LH power has been observed to create significant poloidal SOL density profile asymmetries that are correlated with visible video camera images of emissivity patterns in front of the LH launcher. The observed density profile asymmetries depend on LH power, (n) over bar (e), magnetic geometry and magnetic field direction. A 2D diffusive-convective model has been used to show that these density profile modifications are consistent with a LH vortex, where LH power drives E x B drifts that then modify the SOL density profile. In particular, the simulations show that the density profile can possibly create a net poloidally averaged density depletion in front of the waveguide rows. A LH slab coupling model is then used to show that the simulated reflection coefficients strongly depend on the poloidal density profile asymmetries. The simulated LH power reflection coefficients agree with the experimental reflection coefficients only after the observed density depletion is included in the model. C1 [Lau, C.; Labombard, B.; Lin, Y.; Ochoukov, R.; Parker, R.; Shiraiwa, S.; Terry, J.; Wallace, G.; Wukitch, S. J.] MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Hanson, G. R.; Wilgen, J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Meneghini, O.] Gen Atom Co, San Diego, CA 92186 USA. RP Lau, C (reprint author), MIT Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. EM cornwall@psfc.mit.edu OI , Cornwall/0000-0002-8576-5867 FU US DoE [DE-AC05-00OR22725, DE-FC02-99ER54512] FX This work was supported by the US DoE under award DE-AC05-00OR22725 and DE-FC02-99ER54512. NR 20 TC 12 Z9 12 U1 3 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD FEB PY 2013 VL 55 IS 2 AR 025008 DI 10.1088/0741-3335/55/2/025008 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 073LJ UT WOS:000313744200008 ER PT J AU Lazerson, SA Sakakibara, S Suzuki, Y AF Lazerson, S. A. Sakakibara, S. Suzuki, Y. TI A magnetic diagnostic code for 3D fusion equilibria SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID 3-DIMENSIONAL MAGNETOHYDRODYNAMIC EQUILIBRIA; PLASMA; SYSTEMS; FIELD AB A synthetic magnetic diagnostics code for fusion equilibria is presented. This code calculates the response of various magnetic diagnostics to the equilibria produced by the VMEC and PIES codes. This allows for treatment of equilibria with both good nested flux surfaces and those with stochastic regions. DIAGNO v2.0 builds upon previous codes through the implementation of a virtual casing principle. The code is validated against a vacuum shot on the Large Helical Device (LHD) where the vertical field was ramped. As an exercise of the code, the diagnostic response for various equilibria are calculated on the LHD. C1 [Lazerson, S. A.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Sakakibara, S.; Suzuki, Y.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. RP Lazerson, SA (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM lazerson@pppl.gov RI Sakakibara, Satoru/E-7542-2013; Lazerson, Samuel/E-4816-2014 OI Sakakibara, Satoru/0000-0002-3306-0531; Lazerson, Samuel/0000-0001-8002-0121 FU Princeton University [DE-AC02-09CH11466]; US Department of Energy; National Institute for Fusion Science grant administrative budgets [NIFS07KLPH004] FX This manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The publisher, by accepting the paper for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The authors would like to thank the LHD experiment group and the technical staff in LHD for their support of this work. This work is partly supported by the National Institute for Fusion Science grant administrative budgets (NIFS07KLPH004). NR 18 TC 7 Z9 7 U1 1 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD FEB PY 2013 VL 55 IS 2 AR 025014 DI 10.1088/0741-3335/55/2/025014 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 073LJ UT WOS:000313744200014 ER PT J AU Jorda, J Lopez, D Wheatley, NM Yeates, TO AF Jorda, Julien Lopez, David Wheatley, Nicole M. Yeates, Todd O. TI Using comparative genomics to uncover new kinds of protein-based metabolic organelles in bacteria SO PROTEIN SCIENCE LA English DT Article DE microcompartment; carboxysome; bacterial organelle; metabolic pathways; glycyl radical enzymes ID B-12-DEPENDENT 1,2-PROPANEDIOL DEGRADATION; PYRUVATE FORMATE-LYASE; SEROVAR TYPHIMURIUM LT2; SALMONELLA-TYPHIMURIUM; CARBOXYSOME SHELL; THIOBACILLUS-NEAPOLITANUS; ETHANOLAMINE UTILIZATION; STRUCTURAL BASIS; PDU MICROCOMPARTMENT; CARBONIC-ANHYDRASE AB Bacterial microcompartment (MCP) organelles are cytosolic, polyhedral structures consisting of a thin protein shell and a series of encapsulated, sequentially acting enzymes. To date, different microcompartments carrying out three distinct types of metabolic processes have been characterized experimentally in various bacteria. In the present work, we use comparative genomics to explore the existence of yet uncharacterized microcompartments encapsulating a broader set of metabolic pathways. A clustering approach was used to group together enzymes that show a strong tendency to be encoded in chromosomal proximity to each other while also being near genes for microcompartment shell proteins. The results uncover new types of putative microcompartments, including one that appears to encapsulate B12-independent, glycyl radical-based degradation of 1,2-propanediol, and another potentially involved in amino alcohol metabolism in mycobacteria. Preliminary experiments show that an unusual shell protein encoded within the glycyl radical-based microcompartment binds an iron-sulfur cluster, hinting at complex mechanisms in this uncharacterized system. In addition, an examination of the computed microcompartment clusters suggests the existence of specific functional variations within certain types of MCPs, including the alpha carboxysome and the glycyl radical-based microcompartment. The findings lead to a deeper understanding of bacterial microcompartments and the pathways they sequester. C1 [Jorda, Julien; Lopez, David; Yeates, Todd O.] UCLA DOE Inst Genom & Prote, Los Angeles, CA 90095 USA. [Wheatley, Nicole M.; Yeates, Todd O.] UCLA Mol Biol Inst, Los Angeles, CA 90095 USA. [Yeates, Todd O.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. RP Yeates, TO (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, 611 Charles Young Dr E, Los Angeles, CA 90095 USA. EM yeates@mbi.ulca.edu OI Yeates, Todd/0000-0001-5709-9839 FU NIH [R01AI081146]; Ruth L. Kirschstein National Research Service [GM007185] FX Grant sponsor: NIH; Grant number: R01AI081146; Grant sponsor: Ruth L. Kirschstein National Research Service; Grant number: GM007185. NR 96 TC 38 Z9 38 U1 2 U2 31 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0961-8368 J9 PROTEIN SCI JI Protein Sci. PD FEB PY 2013 VL 22 IS 2 BP 179 EP 195 DI 10.1002/pro.2196 PG 63 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 080BL UT WOS:000314216100001 PM 23188745 ER PT J AU Bhangar, S Singer, BC Nazaroff, WW AF Bhangar, Seema Singer, Brett C. Nazaroff, William W. TI Calibration of the Ogawa passive ozone sampler for aircraft cabins SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Passive sampling; Transportation; Ozone; Effective collection rate ID AMBIENT OZONE AB Elevated ozone levels in aircraft cabins would pose a health hazard to exposed passengers and crew. The Ogawa passive sampler is a potentially useful tool for measuring in-cabin ozone levels. Accurate interpretation of measured values requires knowing the effective collection rate of the sampler. To calibrate the passive sampler for the aircraft-cabin environment, ozone was measured simultaneously with an Ogawa sampler and an active ozone analyzer that served as a transfer standard, on 11 commercial passenger flights, during Feb-Apr 2007. An empirical pressure-independent effective collection rate that can be used to convert nitrate mass to ozone mixing ratio was determined to be 14.3 +/- 0.9 atm cm(3) min(-1) (mean +/- standard error). This value is similar to estimates from other applications where airflow rates are low, such as in personal monitoring and in chamber studies. This study represents the first field calibration of any passive sampler for the aircraft cabin environment. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Bhangar, Seema; Nazaroff, William W.] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Singer, Brett C.; Nazaroff, William W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Bhangar, S (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, 609 Davis Hall, Berkeley, CA 94720 USA. EM bhangar@gmail.com RI Nazaroff, William/C-4106-2008 OI Nazaroff, William/0000-0001-5645-3357 FU US Federal Aviation Administration (FAA) Office of Aerospace Medicine through the Air Transportation Center of Excellence for Airliner Cabin Environment Research (ACER) [04-C-ACE-UCB]; FAA FX Sampling containers, vials, and pads were provided courtesy of Ogawa & Co., Inc. The authors thank Donald Schaeffer (Ogawa & Co.) for his advice on sampling protocols. Dr. Eva Hardison (RTI, NC, USA) conducted the ion chromatography. We thank Shannon Cowlin who was instrumental in initiating the active monitoring campaign. The US Federal Aviation Administration (FAA) Office of Aerospace Medicine funded this work through the Air Transportation Center of Excellence for Airliner Cabin Environment Research (ACER), Cooperative Agreement 04-C-ACE-UCB. Although the FAA sponsored this project, it neither endorses nor rejects the findings of this research. NR 13 TC 4 Z9 4 U1 2 U2 20 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 J9 ATMOS ENVIRON JI Atmos. Environ. PD FEB PY 2013 VL 65 BP 21 EP 24 DI 10.1016/j.atmosenv.2012.10.012 PG 4 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 074UV UT WOS:000313840500003 ER PT J AU Tumuluru, JS Sokhansanj, S Bandyopadhyay, S Bawa, AS AF Tumuluru, Jaya Shankar Sokhansanj, Shahab Bandyopadhyay, Sukumar Bawa, A. S. TI Changes in Moisture, Protein, and Fat Content of Fish and Rice Flour Coextrudates during Single-Screw Extrusion Cooking SO FOOD AND BIOPROCESS TECHNOLOGY LA English DT Article DE Extrusion cooking; Fish and rice flour coextrudates; Proximate composition; Response surface models; Optimization; Genetic algorithm ID SNACK-LIKE PRODUCTS; CORN STARCH; GENETIC ALGORITHM; PROCESS VARIABLES; FEED COMPOSITION; WHEAT-STARCH; TEMPERATURE; EXTRUDER; BLENDS; GELATINIZATION AB Changes in proximate composition of fish and rice flour coextrudates like moisture, protein, and fat content were studied with respect to extrusion process variables like barrel temperature, x (1) (100-200 A degrees C); screw speed, x (2) (70-110 rpm); fish content of the feed, x (3) (5-45%); and feed moisture content, x (4) (20-60%). Experiments were conducted at five levels of the process variables based on rotatable experimental design. Response surface models (RSM) were developed that adequately described the changes in moisture, protein, and fat content of the extrudates based on the coefficient of determination (R (2)) values of 0.95, 0.99, and 0.94. ANOVA analysis indicated that extrudate moisture content was influenced by x (4), protein content by x (1) and x (3), and fat content by x (3) and x (4) at P < 0.001. Trends based on response surface plots indicated that the x (1) of about 200 A degrees C, x (2) of about 90 rpm, x (3) of about 25%, and x (4) of about 20% minimized the moisture in the extrudates. Protein content was maximized at x (1) of 100 A degrees C, x (2) > 80 rpm, x (3) of about 45%, and x (4) > 50%, and fat content was minimized at x (1) of about 200 A degrees C, x (2) of about 85-95 rpm, x (3) < 15%, and x (4) of about > 50%. Optimized process variables based on a genetic algorithm (GA) for minimum moisture and fat content and maximum protein content were x (1) = 199.86, x (2) = 109.86, x (3) = 32.45, x (4) = 20.03; x (1) = 199.71, x (2) = 90.09, x (3) = 15.27, x (4) = 58.47; and x (1) = 102.97, x (2) = 107.67, x (3) = 44.56, x (4) = 59.54. The predicted values were 17.52%, 0.57%, and 46.65%. Based on the RSM and GA analysis, extrudate moisture and protein content was influenced by x (1), x (3), and x (4) and fat content by x (2), x (3), and x (4). C1 [Tumuluru, Jaya Shankar] Idaho Natl Lab, Dept Biofuels & Renewable Energies Technol, Idaho Falls, ID 83415 USA. [Tumuluru, Jaya Shankar; Sokhansanj, Shahab] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Tumuluru, Jaya Shankar; Bandyopadhyay, Sukumar] Indian Inst Technol, Agr & Food Engn Dept, Kharagpur 721302, W Bengal, India. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Bandyopadhyay, Sukumar] WBUFAS, Fac Fishery Sci, Kolkata, India. [Bawa, A. S.] Def Food Res Lab, Mysore 570011, Karnataka, India. RP Tumuluru, JS (reprint author), Indian Inst Technol, Agr & Food Engn Dept, Kharagpur 721302, W Bengal, India. EM JayaShankar.Tumuluru@inl.gov OI Maity, Tanushree/0000-0002-3208-8655 NR 68 TC 8 Z9 8 U1 2 U2 49 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1935-5130 EI 1935-5149 J9 FOOD BIOPROCESS TECH JI Food Bioprocess Technol. PD FEB PY 2013 VL 6 IS 2 BP 403 EP 415 DI 10.1007/s11947-011-0764-7 PG 13 WC Food Science & Technology SC Food Science & Technology GA 072GD UT WOS:000313656600007 ER PT J AU Korves, TM Piceno, YM Tom, LM DeSantis, TZ Jones, BW Andersen, GL Hwang, GM AF Korves, T. M. Piceno, Y. M. Tom, L. M. DeSantis, T. Z. Jones, B. W. Andersen, G. L. Hwang, G. M. TI Bacterial communities in commercial aircraft high-efficiency particulate air (HEPA) filters assessed by PhyloChip analysis SO INDOOR AIR LA English DT Article DE Aircraft biosensor; Probe design; 16S; Microbial diversity; Infectious diseases; High-efficiency particulate air filter ID DRUG-RESISTANT TUBERCULOSIS; LARGE PUBLIC BUILDINGS; HVAC FILTERS; CABIN AIR; CULTURABLE BACTERIA; DIVERSITY; ENVIRONMENT; AIRPLANE; MICROORGANISMS; POPULATIONS AB Air travel can rapidly transport infectious diseases globally. To facilitate the design of biosensors for infectious organisms in commercial aircraft, we characterized bacterial diversity in aircraft air. Samples from 61 aircraft high-efficiency particulate air (HEPA) filters were analyzed with a custom microarray of 16S rRNA gene sequences (PhyloChip), representing bacterial lineages. A total of 606 subfamilies from 41 phyla were detected. The most abundant bacterial subfamilies included bacteria associated with humans, especially skin, gastrointestinal and respiratory tracts, and with water and soil habitats. Operational taxonomic units that contain important human pathogens as well as their close, more benign relatives were detected. When compared to 43 samples of urban outdoor air, aircraft samples differed in composition, with higher relative abundance of Firmicutes and Gammaproteobacteria lineages in aircraft samples, and higher relative abundance of Actinobacteria and Betaproteobacteria lineages in outdoor air samples. In addition, aircraft and outdoor air samples differed in the incidence of taxa containing human pathogens. Overall, these results demonstrate that HEPA filter samples can be used to deeply characterize bacterial diversity in aircraft air and suggest that the presence of close relatives of certain pathogens must be taken into account in probe design for aircraft biosensors. Practical Implications A biosensor that could be deployed in commercial aircraft would be required to function at an extremely low false alarm rate, making an understanding of microbial background important. This study reveals a diverse bacterial background present on aircraft, including bacteria closely related to pathogens of public health concern. Furthermore, this aircraft background is different from outdoor air, suggesting different probes may be needed to detect airborne contaminants to achieve minimal false alarm rates. This study also indicates that aircraft HEPA filters could be used with other molecular techniques to further characterize background bacteria and in investigations in the wake of a disease outbreak. C1 [Korves, T. M.] Mitre Corp, Cognit Tools & Data Management Dept, Bedford, MA 01730 USA. [Piceno, Y. M.; Tom, L. M.; Andersen, G. L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Ecol, Berkeley, CA 94720 USA. [DeSantis, T. Z.] Second Genome, Dept Bioinformat, San Bruno, CA USA. [Jones, B. W.] Kansas State Univ, Dept Mech & Nucl Engn, Manhattan, KS 66506 USA. [Hwang, G. M.] Mitre Corp, Off Chief Engineer, Woodlawn, MD 21244 USA. RP Hwang, GM (reprint author), Mitre Corp, Off Chief Engineer, 2275 Rolling Run Dr, Woodlawn, MD 21244 USA. EM gmhwang@mitre.org RI Tom, Lauren/E-9739-2015; Andersen, Gary/G-2792-2015; Piceno, Yvette/I-6738-2016; OI Andersen, Gary/0000-0002-1618-9827; Piceno, Yvette/0000-0002-7915-4699; Hwang, Grace/0000-0002-3335-8688 FU The MITRE Corporation; U. S. Department of Energy [DE-AC02-05CH11231]; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]; U. S. Federal Aviation Administration (FAA) [07-C-RITE-KSU] FX We thank anonymous airlines for the contribution of used aircraft air filters, Michael Harkin for managing filter acquisition and transfer, Songeeta Palchaudhuri for initial HEPA filter extraction coordination, and Paul Magoha for recovering filter samples from the HEPA filter supports. We also thank Glenn Roberts and Richard Sciambi for discussions, which led to the initial set up this project, Marc Colosimo for 16S and PhyloChip advice, Jakk Wong for data analysis assistance, Joe Lundquist for useful discussions and Jean Watson for critical review of this manuscript. The authors also thank the anonymous reviewers for their comments and suggestions, which improved the quality of the data presented.; This research was funded, in part, by The MITRE Corporation. Work with the PhyloChip was supported, in part, by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231 with the Lawrence Berkeley National Laboratory. Work performed at Kansas State University (KSU) was funded, in part, by the U. S. Federal Aviation Administration (FAA) Office of Aerospace Medicine through the National Air Transportation Center of Excellence for Research in the Intermodal Transport Environment ( Cooperative Agreement 07-C-RITE-KSU). The contents of this document reflect the views of the authors and The MITRE Corporation and do not necessarily reflect the views of the FAA or the U. S. Department of Transportation ( DOT). Neither the United States Government, the FAA, nor the DOT makes any warranty or guarantee, expressed or implied, concerning the content or accuracy of these views. NR 50 TC 11 Z9 11 U1 5 U2 50 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0905-6947 J9 INDOOR AIR JI Indoor Air PD FEB PY 2013 VL 23 IS 1 BP 50 EP 61 DI 10.1111/j.1600-0668.2012.00787.x PG 12 WC Construction & Building Technology; Engineering, Environmental; Public, Environmental & Occupational Health SC Construction & Building Technology; Engineering; Public, Environmental & Occupational Health GA 071LK UT WOS:000313594000007 PM 22563927 ER PT J AU Classen, S Hura, GL Holton, JM Rambo, RP Rodic, I McGuire, PJ Dyer, K Hammel, M Meigs, G Frankel, KA Tainer, JA AF Classen, Scott Hura, Greg L. Holton, James M. Rambo, Robert P. Rodic, Ivan McGuire, Patrick J. Dyer, Kevin Hammel, Michal Meigs, George Frankel, Kenneth A. Tainer, John A. TI Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID STRAND-BREAK REPAIR; SUPEROXIDE-DISMUTASE; DNA-REPAIR; PROTEIN CRYSTALLOGRAPHY; BIOLOGICAL CRYSTALLOGRAPHY; STRUCTURAL CHEMISTRY; FLUORESCENT PROTEIN; GENOME INTEGRITY; DIFFRACTION DATA; ENDONUCLEASE-IV AB The SIBYLS beamline (12.3.1) of the Advanced Light Source at Lawrence Berkeley National Laboratory, supported by the US Department of Energy and the National Institutes of Health, is optimized for both small-angle X-ray scattering (SAXS) and macromolecular crystallography (MX), making it unique among the world's mostly SAXS or MX dedicated beamlines. Since SIBYLS was commissioned, assessments of the limitations and advantages of a combined SAXS and MX beamline have suggested new strategies for integration and optimal data collection methods and have led to additional hardware and software enhancements. Features described include a dual mode monochromator [containing both Si(111) crystals and Mo/B4C multilayer elements], rapid beamline optics conversion between SAXS and MX modes, active beam stabilization, sample-loading robotics, and mail-in and remote data collection. These features allow users to gain valuable insights from both dynamic solution scattering and high-resolution atomic diffraction experiments performed at a single synchrotron beamline. Key practical issues considered for data collection and analysis include radiation damage, structural ensembles, alternative conformers and flexibility. SIBYLS develops and applies efficient combined MX and SAXS methods that deliver high-impact results by providing robust cost-effective routes to connect structures to biology and by performing experiments that aid beamline designs for next generation light sources. C1 [Classen, Scott; Hura, Greg L.; Holton, James M.; Rambo, Robert P.; McGuire, Patrick J.; Dyer, Kevin; Hammel, Michal; Meigs, George] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Rodic, Ivan; Tainer, John A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Holton, James M.] Univ Calif San Francisco, Dept Biochem, San Francisco, CA 94158 USA. [Frankel, Kenneth A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Engn, Berkeley, CA 94720 USA. RP Classen, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. EM sclassen@lbl.gov FU Integrated Diffraction Analysis Technologies (IDAT) program; DOE Office of Biological and Environmental Research; National Institutes of Health [GM105404, CA092584, GM073210, GM082250, GM094625]; Berkeley Laboratory by Office of Science, US Department of Energy [DE-AC02-05CH11231] FX Work on X-ray scattering and diffraction technologies and their applications to the determination of macromolecular shapes and conformations at the SIBYLS beamline (BL12.3.1) is funded by the Integrated Diffraction Analysis Technologies (IDAT) program, supported by DOE Office of Biological and Environmental Research plus the National Institutes of Health grants MINOS (Macromolecular Insights on Nucleic Acids Optimized by Scattering) GM105404 and SBDR (Structural Biology of DNA Repair) CA092584. SIBYLS is a part of the Advanced Light Source (ALS), a national user facility operated by the Department of Energy, Office of Basic Energy Sciences. GLH's efforts on SAXS experiments relevant to the design of NGLS for biological scattering experiments are supported by Laboratory Directed Research and Development (LDRD) funding from Berkeley Laboratory, provided by the Director, Office of Science, US Department of Energy under contract No. DE-AC02-05CH11231. JMH is also supported by the National Institutes of Health (GM073210, GM082250 and GM094625). We are grateful to Susan Tsutakawa and Jill Fuss for helpful suggestions on manuscript preparation. We thank and acknowledge the staff of beamlines at the ALS, SSRL, CHESS, NSLS and APS and especially Hiro Tsuruta (deceased) for providing synchrotron access, insight and inspiration. NR 77 TC 58 Z9 58 U1 0 U2 40 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 EI 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2013 VL 46 BP 1 EP 13 DI 10.1107/S0021889812048698 PN 1 PG 13 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 072GV UT WOS:000313658700001 PM 23396808 ER PT J AU Perret, E Park, C Fong, DD Chang, KC Ingram, BJ Eastman, JA Baldo, PM Fuoss, PH AF Perret, Edith Park, Changyong Fong, Dillon D. Chang, Kee-Chul Ingram, Brian J. Eastman, Jeffrey A. Baldo, Peter M. Fuoss, Paul H. TI Resonant X-ray scattering studies of epitaxial complex oxide thin films SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID SURFACE-STRUCTURE DETERMINATION; CRYSTAL TRUNCATION RODS; FULVIC-ACID; INTERFACE; REFLECTIVITY; ADSORPTION; NDGAO3; (001)-WATER; DISPERSION; EXPANSION AB Resonant anomalous X-ray reflectivity (RAXR) is a powerful technique for measuring element-specific distribution profiles across surfaces and buried interfaces. Here, the RAXR technique is applied to characterize a complex oxide heterostructure, La0.6Sr0.4Co0.2Fe0.8O3-delta, on NdGaO3, and the effects of data sampling and model-dependent fitting procedures on the extracted elemental distribution profile are evaluated. The strontium profile through a 3.5 nm-thick film at 973 K and at an oxygen partial pressure of 150 Torr (1 Torr = 133.32 Pa) was determined from the measured RAXR spectra. The results demonstrate that in situ RAXR measurements can provide key insights into temperature-and environment-dependent elemental segregation processes, relevant, for example, in assessing the cathode performance of solid oxide fuel cells. C1 [Perret, Edith; Fong, Dillon D.; Chang, Kee-Chul; Eastman, Jeffrey A.; Baldo, Peter M.; Fuoss, Paul H.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Park, Changyong] Carnegie Inst Sci, HPCAT, Geophys Lab, Argonne, IL 60439 USA. [Ingram, Brian J.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Perret, E (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM eperret@anl.gov RI Chang, Kee-Chul/O-9938-2014; Eastman, Jeffrey/E-4380-2011; Park, Changyong/A-8544-2008; OI Chang, Kee-Chul/0000-0003-1775-2148; Park, Changyong/0000-0002-3363-5788; Eastman, Jeff/0000-0002-0847-4265 FU DOE Office of Fossil Energy [DE-AC02-06CH11357]; DOE Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division; HPCAT; CIW; CDAC; UNLV; LLNL through DOE-NNSA; DOE Office of Fossil Energy through the DOE; DOE-BES; NSF FX Assistance by the beamline staff of Sector 12 at the Advanced Photon Source is gratefully acknowledged. EP, KCC and BJI were supported by the DOE Office of Fossil Energy under contract No. DE-AC02-06CH11357 and through the DOE Strategic Energy Conversion Alliance program. DDF, JAE, PMB and PHF were supported by the DOE Office of Basic Energy Sciences (BES), Materials Sciences and Engineering Division. We thank Lu Yan and Professor Paul A. Salvador from Carnegie Mellon University, Pittsburgh, Pennsylvania, for providing pulsed-laser-deposited samples. CP acknowledges support from HPCAT. HPCAT is supported by CIW, CDAC, UNLV and LLNL through funding from DOE-NNSA and DOE-BES, with partial instrumentation funding by the NSF. NR 52 TC 1 Z9 1 U1 0 U2 35 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 EI 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2013 VL 46 BP 76 EP 87 DI 10.1107/S0021889812047620 PN 1 PG 12 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 072GV UT WOS:000313658700010 ER PT J AU Larson, BC Levine, LE AF Larson, B. C. Levine, L. E. TI Submicrometre-resolution polychromatic three-dimensional X-ray microscopy SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID RANGE INTERNAL-STRESSES; COPPER SINGLE-CRYSTALS; STRUCTURAL MICROSCOPY; PLASTIC-DEFORMATION; MICROBEAM DIFFRACTION; CELL STRUCTURES; STRAIN; MICRODIFFRACTION; ELECTROMIGRATION; MICROSTRUCTURE AB The ability to study the structure, microstructure and evolution of materials with increasing spatial resolution is fundamental to achieving a full understanding of the underlying science of materials. Polychromatic three-dimensional X-ray microscopy (3DXM) is a recently developed nondestructive diffraction technique that enables crystallographic phase identification, determination of local crystal orientations, grain morphologies, grain interface types and orientations, and in favorable cases direct determination of the deviatoric elastic strain tensor with submicrometre spatial resolution in all three dimensions. With the added capability of an energy-scanning incident beam monochromator, the determination of absolute lattice parameters is enabled, allowing specification of the complete elastic strain tensor with three-dimensional spatial resolution. The methods associated with 3DXM are described and key applications of 3DXM are discussed, including studies of deformation in single-crystal and polycrystalline metals and semiconductors, indentation deformation, thermal grain growth in polycrystalline aluminium, the metal-insulator transition in nanoplatelet VO2, interface strengths in metal-matrix composites, high-pressure science, Sn whisker growth, and electromigration processes. Finally, the outlook for future developments associated with this technique is described. C1 [Larson, B. C.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Levine, L. E.] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA. RP Larson, BC (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. EM larsonbc@ornl.gov FU US Department of Energy (DOE), Office of Basic Energy Sciences, as part of the Center for Defect Physics in Structural Materials Energy Frontier Research Center; US Department of Commerce FX This review was supported at Oak Ridge National Laboratory (BCL) by the US Department of Energy (DOE), Office of Basic Energy Sciences, as part of the Center for Defect Physics in Structural Materials Energy Frontier Research Center and at the National Institute for Standards and Technology (LEL) by the US Department of Commerce. NR 66 TC 13 Z9 14 U1 3 U2 46 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 EI 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2013 VL 46 BP 153 EP 164 DI 10.1107/S0021889812043737 PN 1 PG 12 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 072GV UT WOS:000313658700019 ER PT J AU Lu, XH Yager, KG Johnston, D Black, CT Ocko, BM AF Lu, Xinhui Yager, Kevin G. Johnston, Danvers Black, Charles T. Ocko, Benjamin M. TI Grazing-incidence transmission X-ray scattering: surface scattering in the Born approximation SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID COPOLYMER THIN-FILMS; CROSS-SECTION; BLOCK-COPOLYMERS; ROUGH SURFACES; ANGLE; DIFFRACTION; INTERFACES; DEPOSITION; METROLOGY; GRATINGS AB Determination of the three-dimensional order in thin nanostructured films remains challenging. Real-space imaging methods, including electron microscopies and scanning-probe methods, have difficulty reconstructing the depth of a film and suffer from limited statistical sampling. X-ray and neutron scattering have emerged as powerful complementary techniques but have substantial data collection and analysis challenges. This article describes a new method, grazing-incidence transmission small-angle X-ray scattering, which allows for fast scattering measurements that are not burdened by the refraction and reflection effects that have to date plagued grazing-incidence X-ray scattering. In particular, by arranging a sample/beam geometry wherein the scattering exits through the edge of the substrate, it is possible to record scattering images that are well described by straightforward (Born approximation) scattering models. C1 [Lu, Xinhui; Ocko, Benjamin M.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. [Yager, Kevin G.; Johnston, Danvers; Black, Charles T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Yager, KG (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM kyager@bnl.gov; ocko@bnl.gov RI Yager, Kevin/F-9804-2011 OI Yager, Kevin/0000-0001-7745-2513 FU US Department of Energy, Basic Energy Sciences, by the Materials Sciences and Engineering Division [DE-AC02-98CH10886]; Center for Functional Nanomaterials [DE-AC02-98CH10886]; Energy Laboratory Research and Development Initiative at Brookhaven National Laboratories FX This research was supported by the US Department of Energy, Basic Energy Sciences, by the Materials Sciences and Engineering Division (XL and BMO), which is supported under contract No. DE-AC02-98CH10886, and through the Center for Functional Nanomaterials (KGY, DJ and CTB), which is supported under contract No. DE-AC02-98CH10886. We thank Detlef Smilgies and Stephan Roth for productive discussions. This work was partially supported by the Energy Laboratory Research and Development Initiative at Brookhaven National Laboratories. NR 43 TC 10 Z9 10 U1 3 U2 47 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 EI 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2013 VL 46 BP 165 EP 172 DI 10.1107/S0021889812047887 PN 1 PG 8 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 072GV UT WOS:000313658700020 ER PT J AU Manceau, A Marcus, MA Grangeon, S Lanson, M Lanson, B Gaillot, AC Skanthakumar, S Soderholm, L AF Manceau, Alain Marcus, Matthew A. Grangeon, S. Lanson, M. Lanson, B. Gaillot, A. -C. Skanthakumar, S. Soderholm, L. TI Short-range and long-range order of phyllomanganate nanoparticles determined using high-energy X-ray scattering SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID PAIR-DISTRIBUTION FUNCTION; HIGH-TEMPERATURE DECOMPOSITION; METAL SORBED BIRNESSITE; POWDER DIFFRACTION DATA; ATOMIC-SCALE STRUCTURE; NA-RICH BIRNESSITE; MANGANESE OXIDE; HEXAGONAL BIRNESSITE; ELECTRON-DIFFRACTION; PSEUDOMONAS-PUTIDA AB High-energy X-ray scattering (HEXS) is used to explore the pH-dependent structure of randomly stacked manganese oxide nanosheets of nominal formula delta-MnO2. Data are simulated in real space by pair distribution function (PDF) analysis and in reciprocal space by both the Bragg-rod method and the Debye equation in order to maximize the information gained from the total scattering measurements. The essential new features of this triple-analysis approach are (1) the use of a two-dimensional supercell in PDF modeling to describe local distortions around Mn layer vacancies, (2) the implementation in Bragg-rod calculations of a lognormal crystal size distribution in the layer plane and an empirical function for the effect of strain, and (3) the incorporation into the model used with the Debye equation of an explicit elastic deformation of the two-dimensional nanocrystals. The PDF analysis reveals steady migration at acidic pH of the Mn atoms from layer to interlayer sites, either above or below the Mn layer vacancies, and important displacement of the remaining in-layer Mn atoms toward vacancies. The increased density of the vacancy-interlayer Mn pairs at low pH causes their mutual repulsion and results in short-range ordering. The layer microstructure, responsible for the long-range lateral disorder, is modeled with spherically and cylindrically bent crystallites having volume-averaged radii of 20-40 angstrom. The b unit-cell parameter from the hexagonal layer has different values in PDF, Bragg-rod and Debye equation modeling, because of the use of different weighting contributions from long-range and short-range distances in each method. The PDF b parameter is in effect a measure of the average inlayer Mn center dot center dot center dot Mn distance and consistently deviates from the average structure value determined by the Bragg-rod method by 0.02 angstrom at low pH, as a result of the local relaxation induced by vacancies. The layer curvature increases the Bragg-rod value by 0.01-0.02 angstrom with the cylindrical model and as much as 0.04-0.05 angstrom with the spherical model. Therefore, in principle, the diffraction alone can unambiguously determine with good accuracy only a volume-averaged apparent layer dimension of the manganese oxide nanosheets. The b parameter is model dependent and has no single straightforward interpretation, so comparison of b between different samples only makes sense if done in the context of a single specified model. C1 [Manceau, Alain; Grangeon, S.; Lanson, M.; Lanson, B.] CNRS, ISTerre, F-38041 Grenoble 9, France. [Manceau, Alain; Grangeon, S.; Lanson, M.; Lanson, B.] Univ Grenoble 1, F-38041 Grenoble 9, France. [Marcus, Matthew A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Gaillot, A. -C.] Univ Nantes, Inst Mat Jean Rouxel IMN, CNRS, F-44322 Nantes 3, France. [Skanthakumar, S.; Soderholm, L.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Manceau, A (reprint author), CNRS, ISTerre, F-38041 Grenoble 9, France. EM manceau@ujf-grenoble.fr RI lanson, bruno/A-4207-2009 OI lanson, bruno/0000-0003-1187-3221 FU US Department of Energy, OBES [DE-AC02-06CH11357] FX We would like to acknowledge the assistance of E. Domning and B. Smith with the finer points of LabVIEW programming. Dr M. Zhu is thanked for sharing his PDF data for AcidBir. The work at Argonne National Laboratory was supported by the US Department of Energy, OBES, under contract No. DE-AC02-06CH11357. NR 99 TC 27 Z9 27 U1 5 U2 81 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 EI 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2013 VL 46 BP 193 EP 209 DI 10.1107/S0021889812047917 PN 1 PG 17 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 072GV UT WOS:000313658700023 ER PT J AU Kim, CU Wierman, JL Gillilan, R Lima, E Gruner, SM AF Kim, Chae Un Wierman, Jennifer L. Gillilan, Richard Lima, Enju Gruner, Sol M. TI A high-pressure cryocooling method for protein crystals and biological samples with reduced background X-ray scatter SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Article ID DENSITY AMORPHOUS ICE; MACROMOLECULAR CRYSTALLOGRAPHY; RADIATION-DAMAGE; CRYSTALLIZATION SOLUTIONS; MOUNTING TECHNIQUE; CRYOCRYSTALLOGRAPHY; CRYOPROTECTION; DIFFRACTION; TEMPERATURES; OPTIMIZATION AB High-pressure cryocooling has been developed as an alternative method for cryopreservation of macromolecular crystals and successfully applied for various technical and scientific studies. The method requires the preservation of crystal hydration as the crystal is pressurized with dry helium gas. Previously, crystal hydration was maintained either by coating crystals with a mineral oil or by enclosing crystals in a capillary which was filled with crystallization mother liquor. These methods are not well suited to weakly diffracting crystals because of the relatively high background scattering from the hydrating materials. Here, an alternative method of crystal hydration, called capillary shielding, is described. The specimen is kept hydrated via vapor diffusion in a shielding capillary while it is being pressure cryocooled. After cryocooling, the shielding capillary is removed to reduce background X-ray scattering. It is shown that, compared to previous crystal-hydration methods, the new hydration method produces superior crystal diffraction with little sign of crystal damage. Using the new method, a weakly diffracting protein crystal may be properly pressure cryocooled with little or no addition of external cryoprotectants, and significantly reduced background scattering can be observed from the resulting sample. Beyond the applications for macromolecular crystallography, it is shown that the method has great potential for the preparation of noncrystalline hydrated biological samples for coherent diffraction imaging with future X-ray sources. C1 [Kim, Chae Un; Gillilan, Richard; Gruner, Sol M.] Cornell Univ, CHESS, Ithaca, NY 14853 USA. [Kim, Chae Un; Gillilan, Richard; Gruner, Sol M.] Cornell Univ, Macromol Diffract Facil CHESS MacCHESS, Ithaca, NY 14853 USA. [Wierman, Jennifer L.; Gruner, Sol M.] Cornell Univ, Field Biophys, Ithaca, NY 14853 USA. [Lima, Enju] Brookhaven Natl Lab, Upton, NY 11973 USA. [Gruner, Sol M.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. RP Kim, CU (reprint author), Cornell Univ, CHESS, Ithaca, NY 14853 USA. EM ck243@cornell.edu RI Gruner, Sol/G-2924-2010; Kim, Chae Un/D-2956-2014 OI Gruner, Sol/0000-0002-1171-4426; FU National Science Foundation; National Institutes of Health/National Institute of General Medical Sciences under NSF [DMR-0936384]; National Institutes of Health, through the National Institute of General Medical Sciences [GM103485] FX We thank Marian Szebenyi and David Schuller for useful comments, Irina Kriksunov, Bill Miller, Mike Cook and Scott Smith for support in data collection, and Ji-Won Park for assistance in manuscript preparation. This work is based upon research conducted at the Cornell High Energy Synchrotron Source (CHESS), which is supported by the National Science Foundation and the National Institutes of Health/National Institute of General Medical Sciences under NSF award DMR-0936384, using the Macromolecular Diffraction at CHESS (MacCHESS) facility, which is supported by award GM103485 from the National Institutes of Health, through the National Institute of General Medical Sciences. NR 53 TC 9 Z9 9 U1 0 U2 27 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0021-8898 EI 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2013 VL 46 BP 234 EP 241 DI 10.1107/S0021889812045013 PN 1 PG 8 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 072GV UT WOS:000313658700027 PM 23396891 ER PT J AU Tian, P Zhou, W Liu, J Shang, Y Farrow, CL Juhas, P Billinge, SJL AF Tian, P. Zhou, W. Liu, J. Shang, Y. Farrow, C. L. Juhas, P. Billinge, S. J. L. TI SrRietveld: a program for automating Rietveld refinements for high-throughput powder diffraction studies SO JOURNAL OF APPLIED CRYSTALLOGRAPHY LA English DT Software Review AB SrRietveld is a highly automated software toolkit for Rietveld refinement. Compared to traditional refinement programs, it is more efficient to use and easier to learn. It is designed for modern high-throughput diffractometers and is capable of processing large numbers of data sets with minimal effort. The software currently uses conventional Rietveld refinement engines, automating GSAS and FullProf refinements. However, as well as automating and extending many tasks associated with these programs, it is designed in a flexible and extensible way so that in the future these engines can be replaced with new refinement engines as they become available. SrRietveld is an open-source software package developed in Python. C1 [Tian, P.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. [Tian, P.; Zhou, W.; Liu, J.; Shang, Y.; Farrow, C. L.; Juhas, P.; Billinge, S. J. L.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Billinge, S. J. L.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Billinge, SJL (reprint author), Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. EM sb2896@columbia.edu OI Juhas, Pavol/0000-0001-8751-4458 FU National Science Foundation [DMR-0520547]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38] FX The refinement engines used in the current release of SrRietveld are FullProf and GSAS. Along with many others in the community, we would like to thank Juan Rodriguez-Carvajal and the other FullProf developers, and Robert B. Von Dreele, Brian H. Toby and the other GSAS developers, for their enormous efforts in developing FullProf and GSAS. We would also like to thank the other developers in the DANSE project for useful advice and help. We appreciate the cooperation of and valuable suggestions from Emil Bozin, Jason Hodges, Ashfia Huq, Ke An, Paolo Radaelli and Laurent Chapon. We thank Timur Dykhne for help with the documentation. In addition to their suggestions, Aziz Daoud-Aladine, Jon Hanson, Vanessa Peterson and Andrew Studer shared data for testing, for which we are grateful. The authors also thank Christos Malliakas for providing the NaCl sample and assistance on the measurements on this sample. SrRietveld was developed as part of the DANSE (distributed data analysis of neutron scattering experiments) project, which is funded by the National Science Foundation under grant DMR-0520547. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. W-31-109-Eng-38. NR 20 TC 2 Z9 2 U1 1 U2 26 PU INT UNION CRYSTALLOGRAPHY PI CHESTER PA 2 ABBEY SQ, CHESTER, CH1 2HU, ENGLAND SN 1600-5767 J9 J APPL CRYSTALLOGR JI J. Appl. Crystallogr. PD FEB PY 2013 VL 46 BP 255 EP 258 DI 10.1107/S0021889812045967 PN 1 PG 4 WC Chemistry, Multidisciplinary; Crystallography SC Chemistry; Crystallography GA 072GV UT WOS:000313658700031 ER PT J AU Muralidharan, G Kurumaddali, K Kercher, AK Walker, L Leslie, SG AF Muralidharan, Govindarajan Kurumaddali, Kanth Kercher, Andrew K. Walker, Larry Leslie, Scott G. TI An X-ray Radiography Study of the Effect of Thermal Cycling on Damage Evolution in Large-Area Sn-3.5Ag Solder Joints SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE High-temperature packaging; power electronics; X-ray imaging; creep; fatigue; intermetallic compounds ID NI-P THICKNESS; METALLIZATION; GROWTH AB There is a need for next-generation, high-performance power electronic packages and systems utilizing wide-band-gap devices to operate at high temperatures in automotive and electricity transmission applications. Sn-3.5Ag solder is a candidate for use in such packages with potential maximum operating temperatures of about 200A degrees C. However, there is a need to understand the thermal cycling reliability of Sn-3.5Ag solders subject to such high-temperature operating conditions. The results of a study on the damage evolution occurring in large-area Sn-3.5Ag solder joints between silicon dies and direct bonded copper substrates with Au/Ni-P metallization subject to thermal cycling between 200A degrees C and 5A degrees C are presented in this paper. Interface structure evolution and damage accumulation were followed using high-resolution X-ray radiography, cross-sectional optical and scanning electron microscopies, and X-ray microanalysis in these joints for up to 3000 thermal cycles. Optical and scanning electron microscopy results showed that the stresses introduced by the thermal cycling result in cracking and delamination at the copper-intermetallic compound interface. X-ray microanalysis showed that stresses due to thermal cycling resulted in physical cracking and breakdown of the Ni-P barrier layer, facilitating Cu-Sn interdiffusion. This interdiffusion resulted in the formation of Cu-Sn intermetallic compounds underneath the Ni-P layer, subsequently leading to delamination between the Ni-rich layer and Cu-Sn intermetallic compounds. C1 [Muralidharan, Govindarajan; Kurumaddali, Kanth; Kercher, Andrew K.; Walker, Larry] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Leslie, Scott G.] Powerex Inc, Youngwood, PA 15697 USA. RP Muralidharan, G (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Bldg 4508,MS 6083,Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM muralidhargn@ornl.gov RI Muralidharan, Govindarajan/J-6155-2015; Kercher, Andrew/K-1147-2016 OI Kercher, Andrew/0000-0003-1784-5686 FU U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability-Power Electronics Program [DE-AC05-00OR22725]; UT-Battelle, LLC; Office of Vehicle Technologies; ORNL's High Temperature Materials Laboratory User Program; Office of Vehicle Technologies, U.S. Department of Energy FX The authors wish to acknowledge Jackie Mayotte for metallography, and Dr. Dane Wilson and Dr. Glenn Romanoski for review of the manuscript. This research was sponsored by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability-Power Electronics Program under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. Partial funding for the thermal cycling study was provided by the Propulsion Materials Program, Office of Vehicle Technologies. Partial funding for the SEM characterization of the joints was provided by ORNL's High Temperature Materials Laboratory User Program sponsored by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies, U.S. Department of Energy. NR 16 TC 1 Z9 1 U1 2 U2 23 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD FEB PY 2013 VL 42 IS 2 BP 240 EP 248 DI 10.1007/s11664-012-2341-x PG 9 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 072ZH UT WOS:000313712300005 ER PT J AU Zhou, BT Bieler, TR Lee, TK Liu, WJ AF Zhou, Bite Bieler, Thomas R. Lee, Tae-Kyu Liu, Wenjun TI Characterization of Recrystallization and Microstructure Evolution in Lead-Free Solder Joints Using EBSD and 3D-XRD SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE Lead-free solder; Sn crystal orientation; recrystallization; EBSD; synchrotron 3D-XRD; strain ID X-RAY MICROBEAM; SYNCHROTRON-RADIATION; THERMOMECHANICAL FATIGUE; SN; MICROSCOPY; DIFFRACTION; ANISOTROPY; CU6SN5; ALLOY AB Development of vulnerable high-angle grain boundaries (and cracks) from low-angle boundaries during thermal cycling by means of continuous recrystallization was examined in fine-pitch ball grid array (BGA) packages with Sn-3.0Ag-0.5Cu (wt.%) (SAC305) lead-free solder joints. Electron backscatter diffraction (EBSD) and differential-aperture x-ray microscopy (DAXM or 3D-XRD) were used for surface and subsurface characterization. A large number of subgrain boundaries were observed in the parent orientation using both techniques. However, unlike studies of anisotropic deformation in noncubic metals at much lower homologous temperatures, no streaked diffraction peaks were observed in DAXM Laue patterns within each 1 mu m(3) voxel after thermal cycling, suggesting that geometrically necessary dislocations (GNDs) are effectively absorbed by the preexisting subgrain boundaries. Storage at room temperature (0.6T (m)) prior to DAXM measurement may also facilitate recovery processes to reduce local GND contents. Heterogeneous residual elastic strains were found near the interface between a precipitated Cu6Sn5 particle and the Sn grain, as well as near particular subgrain boundaries in the parent orientation. Grain boundary migration associated with recrystallization resulted in regions without internal strains, subgrain boundaries, or orientation gradients. Development of new grain orientations by continuous recrystallization and subsequent primary recrystallization and grain growth occurred in the regions where the cracks developed. Orientation gradients and subgrain structure were observed within newly formed recrystallized grains that could be correlated with slip systems having high Schmid factors. C1 [Zhou, Bite; Bieler, Thomas R.] Michigan State Univ, E Lansing, MI 48824 USA. [Lee, Tae-Kyu] Cisco Syst Inc, San Jose, CA 96134 USA. [Liu, Wenjun] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Zhou, BT (reprint author), Michigan State Univ, E Lansing, MI 48824 USA. EM zhoubite@egr.msu.edu RI Zhou, Bite/G-1176-2012 OI Zhou, Bite/0000-0002-4970-7635 FU NSF-GOALI [1006656]; Cisco Systems Inc., San Jose, CA; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work is supported by NSF-GOALI Contract 1006656 and Cisco Systems Inc., San Jose, CA. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 28 TC 9 Z9 9 U1 5 U2 99 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 J9 J ELECTRON MATER JI J. Electron. Mater. PD FEB PY 2013 VL 42 IS 2 BP 319 EP 331 DI 10.1007/s11664-012-2307-z PG 13 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 072ZH UT WOS:000313712300015 ER PT J AU Derenzo, SE Bourret-Courchesne, E Yan, ZW Bizarri, G Canning, A Zhang, GG AF Derenzo, Stephen E. Bourret-Courchesne, Edith Yan, Zewu Bizarri, Gregory Canning, Andrew Zhang, Gaigong TI Experimental and theoretical studies of donor-acceptor scintillation from PbI2 SO JOURNAL OF LUMINESCENCE LA English DT Article DE Donor-acceptor; Scintillation; Ultra-fast; Bound exciton; Lead iodide; Native defect ID FLUORESCENT LIFETIME MEASUREMENTS; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; LEAD IODIDE; F-CENTER; OPTICAL ABSORPTION; SINGLE-CRYSTALS; ELECTRIC-FIELD; BOUND-EXCITON; ZNO AB We report on the scintillation properties of undoped PbI2, and PbI2 doped with La, Cu, Ag, and Te. X-ray luminescence spectra were recorded at 7 K and the time responses for 80 ps pulses of X-rays were recorded from 14 K to 150 K. Samples were irregularly shaped crystal pieces that ranged from 300 to 1000 mu m in size. We found that at 14 K the undoped samples had a fast emission at 520 nm (0.18 eV below the band edge) and a total light output of about 40,000 photons/MeV. 10% of this light appears in the first ns, which is 5 times greater than LSO and 1.5 times greater than LaBr3:Ce. 50% of the light appears in the first 100 ns. The luminosity decreased dramatically as the temperature was increased above 40 K, consistent with a non-radiative path that has an activation energy of 3.8 meV. Doping with the donor La3+ only slightly changed these scintillation properties. Doping with the donor La3+ and the deep acceptors Cu+, Ag+, and Te2- produced primarily slow donor-acceptor emissions at peak wavelengths of 605, 653, and 800 nm, respectively. The luminosity of the samples doped with La3+ and Cu+ depended strongly on the La3+ concentration, demonstrating its role as an electron donor. First-principles band structure calculations showed (1) that the donor level depth of an isolated iodine vacancy is about 0.8 eV, too deep to explain the 520 nm emission wavelength, and (2) that a donor-acceptor pair consisting of a spatially associated iodine vacancy donor and a lead vacancy acceptor has shallower donor and acceptor depths that are consistent with the 520 nm emission wavelength. (c) 2012 Elsevier B.V. All rights reserved. C1 [Derenzo, Stephen E.; Bourret-Courchesne, Edith; Yan, Zewu; Bizarri, Gregory; Canning, Andrew] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Zhang, Gaigong] Univ Calif Davis, Davis, CA 95616 USA. RP Derenzo, SE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,Mailstop 55R0121, Berkeley, CA 94720 USA. EM sederenzo@lbl.gov; edbourret@lbl.gov; zyan@lbl.gov; gabizarri@lbl.gov; acanning@lbl.gov; ggzhang@lbl.gov FU US Department of Energy, Office of Science, Biological and Environmental Research Department; US Department of Homeland Security/DNDO; Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX We thank H. Fang for sample preparation, S. Hanrahan and K. Brennan for performing the cryogenic measurements of the decay and emission spectra, M. Weber and L.-W. Wang for helpful discussions, N. Gronbech-Jensen for computational advice and resources, and B. Smith for proofreading the manuscript. This work was supported in part by the US Department of Energy, Office of Science, Biological and Environmental Research Department, in part by US Department of Homeland Security/DNDO, and carried out at the Lawrence Berkeley National Laboratory under Contract no. DE-AC02-05CH11231. NR 47 TC 9 Z9 10 U1 2 U2 66 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-2313 J9 J LUMIN JI J. Lumines. PD FEB PY 2013 VL 134 BP 28 EP 34 DI 10.1016/j.jlumin.2012.09.022 PG 7 WC Optics SC Optics GA 068VC UT WOS:000313393300005 ER PT J AU Young, M Bolduc, B Shaughnessy, DP Roberto, FF Wolf, YI Koonin, EV AF Young, Mark Bolduc, Benjamin Shaughnessy, Daniel P. Roberto, Francisco F. Wolf, Yuri I. Koonin, Eugene V. TI Reply to "Codon Usage Frequency of RNA Virus Genomes from High-Temperature Acidic-Environment Metagenomes" SO JOURNAL OF VIROLOGY LA English DT Editorial Material ID SYNONYMOUS CODON; HOST; BIAS; PROKARYOTES; PREFERENCES; SELECTION C1 [Young, Mark; Bolduc, Benjamin; Shaughnessy, Daniel P.] Montana State Univ, Thermal Biol Inst, Bozeman, MT 59717 USA. [Young, Mark] Montana State Univ, Dept Microbiol, Bozeman, MT 59717 USA. [Young, Mark; Shaughnessy, Daniel P.] Montana State Univ, Dept Plant Sci & Plant Pathol, Bozeman, MT 59717 USA. [Bolduc, Benjamin] Montana State Univ, Dept Chem & Biochem, Bozeman, MT 59717 USA. [Wolf, Yuri I.; Koonin, Eugene V.] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20892 USA. [Roberto, Francisco F.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Young, M (reprint author), Montana State Univ, Thermal Biol Inst, Bozeman, MT 59717 USA. EM myoung@montana.edu NR 19 TC 2 Z9 2 U1 0 U2 8 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X J9 J VIROL JI J. Virol. PD FEB PY 2013 VL 87 IS 3 BP 1920 EP 1921 DI 10.1128/JVI.02883-12 PG 2 WC Virology SC Virology GA 071AR UT WOS:000313558100061 PM 23308028 ER PT J AU Teeguarden, JG Housand, CJ Smith, JN Hinderliter, PM Gunawan, R Timchalk, CA AF Teeguarden, Justin G. Housand, Conrad J. Smith, Jordan N. Hinderliter, Paul M. Gunawan, Rudy Timchalk, Charles A. TI A multi-route model of nicotine-cotinine pharmacokinetics, pharmacodynamics and brain nicotinic acetylcholine receptor binding in humans SO REGULATORY TOXICOLOGY AND PHARMACOLOGY LA English DT Article DE Nicotine; PBPK; Bayesian optimization; Receptor binding ID PLASMA PARTITION-COEFFICIENTS; CIGARETTE-SMOKING; DRUG PHARMACOKINETICS; CANCER-RISK; DISPOSITION KINETICS; REVISED ASSESSMENT; RENAL EXCRETION; LUNG-CANCER; VARIABILITY; METABOLISM AB The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the development and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents. (C) 2012 Elsevier Inc. All rights reserved. C1 [Teeguarden, Justin G.; Smith, Jordan N.; Hinderliter, Paul M.; Timchalk, Charles A.] Battelle Mem Inst, Pacific NW Div, Richland, WA 99352 USA. [Housand, Conrad J.] AEGIS Technol, Orlando, FL 32826 USA. [Gunawan, Rudy] Pharsight Corp, Cary, NC 27518 USA. RP Teeguarden, JG (reprint author), Battelle Mem Inst, Pacific NW Div, 902 Battelle Blvd, Richland, WA 99352 USA. EM justin.teeguarden@pnl.gov OI Teeguarden, Justin/0000-0003-3817-4391 FU R.J. Reynolds Tobacco Company (R.J.R) FX Funding for the work was provided by R.J. Reynolds Tobacco Company (R.J.R.). R.J.R. was not involved the development of the model, analysis or interpretation of the data, the writing of the report or the decision to submit the article for publication. No author is employed by, or receives personal remuneration from R.J.R. and all views expressed are those of the authors themselves and do not reflect views, policies or control by any funding entity. NR 64 TC 4 Z9 4 U1 0 U2 18 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0273-2300 EI 1096-0295 J9 REGUL TOXICOL PHARM JI Regul. Toxicol. Pharmacol. PD FEB PY 2013 VL 65 IS 1 BP 12 EP 28 DI 10.1016/j.yrtph.2012.10.007 PG 17 WC Medicine, Legal; Pharmacology & Pharmacy; Toxicology SC Legal Medicine; Pharmacology & Pharmacy; Toxicology GA 071RC UT WOS:000313610900003 PM 23099439 ER PT J AU Blum, H Atkinson, B Lekov, AB AF Blum, Helcio Atkinson, Barbara Lekov, Alex B. TI A methodological framework for comparative assessments of equipment energy efficiency policy measures SO ENERGY EFFICIENCY LA English DT Article DE Energy efficiency policy; Methodology; Comparative assessment; Energy efficiency standards; Energy efficiency incentives ID APPLIANCES; STANDARDS AB When government policy-makers propose new policies, they need to assess the costs and benefits of the proposed policy measures to compare them to existing and alternative policies and to rank them according to their effectiveness. In the case of equipment energy efficiency regulations, comparing the effects of a range of alternative policy measures requires evaluating their effects on consumers' budgets, on national energy consumption and economics, and on the environment. A useful methodology to perform such policy analysis should represent in a single framework the characteristics of each policy measure and provide comparable results. This paper presents an integrated methodological framework for the prospective assessment of the energy, economic, and environmental impacts of a variety of equipment energy efficiency policy measures. The framework is a comparative assessment tool for energy efficiency policy measures that (a) relies on a common set of primary data and parameters; (b) follows a single functional approach to estimate the energy, economic, and emissions savings resulting from each assessed measure; and (c) summarizes results in a set of metrics to facilitate comparative assessments. It provides a general methodology useful for evaluating a broad range of policies to promote greater equipment energy efficiency and the capability to further compare the impacts of such market interventions. The paper concludes with a demonstration of the use of the framework to compare the estimated impacts of 12 policy measures focusing on increasing the energy efficiency of gas furnaces in the USA. C1 [Blum, Helcio; Atkinson, Barbara; Lekov, Alex B.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Efficiency Stand Grp, Energy Anal & Environm Impacts Dept,Environm Ener, Berkeley, CA 94720 USA. RP Blum, H (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Efficiency Stand Grp, Energy Anal & Environm Impacts Dept,Environm Ener, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM HBlum@lbl.gov FU Office of Building Technology, State, and Community Programs, of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State, and Community Programs, of the US Department of Energy under contract no. DE-AC02-05CH11231. We acknowledge Margaret Taylor, LBNL, and three other anonymous reviewers for their valuable comments on a draft version of this paper. NR 69 TC 7 Z9 7 U1 0 U2 18 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X J9 ENERG EFFIC JI Energy Effic. PD FEB PY 2013 VL 6 IS 1 BP 65 EP 90 DI 10.1007/s12053-012-9162-x PG 26 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA 070BS UT WOS:000313481500005 ER PT J AU Greenblatt, J Hopkins, A Letschert, V Blasnik, M AF Greenblatt, Jeffery Hopkins, Asa Letschert, Virginie Blasnik, Michael TI Energy use of US residential refrigerators and freezers: function derivation based on household and climate characteristics SO ENERGY EFFICIENCY LA English DT Article DE Refrigerator; Field metering; Usage adjustment factor (UAF) AB Field-metered energy use data for 1,467 refrigerators and 185 freezers from seven studies conducted between 1992 and 2010 were used to calculate usage adjustment factors (UAFs), defined as the ratio of measured to tested annual energy use. Multiple regressions of UAFs against several household and climate variables were then performed to obtain separate predictive functions for primary (most-used) refrigerators, secondary (second most-used) refrigerators, and freezers, and residual differences between observed and modeled UAFs were fit to log normal distributions. These UAF functions were used to project energy use in the more than 4,000 households in the 2005 Residential Energy Consumption Survey, a statistical representation of US homes. These energy use projections formed the basis of calculating lifecycle energy savings for more efficient refrigerators and freezers, as well as national energy and cost savings. Results were compared with previous published work by the Department of Energy, demonstrating how UAFs impact energy and cost savings. Such an approach could be further improved with additional data and adapted for other appliances in future analyses. C1 [Greenblatt, Jeffery; Hopkins, Asa; Letschert, Virginie] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Blasnik, Michael] Blasnik Consulting, Boston, MA USA. RP Greenblatt, J (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM jbgreenblatt@lbl.gov FU Lawrence Berkeley National Laboratory FX The authors wish to thank Robert Van Buskirk (Department of Energy) and Gregory Rosenquist (Lawrence Berkeley National Laboratory) for encouraging Dr. Greenblatt to initially pursue this analysis, to Peter Chan (Lawrence Berkeley National Laboratory) for performing additional NIA runs to produce the results for this paper, and to Andrew Berrisford (BC Hydro), Gregory Dahlhoff (Dahlhoff & Associates), Scott Pigg (Energy Center of Wisconsin), and John Proctor (Proctor Engineering Group) for sharing their field-metered data. We also wish to thank John Cymbalsky (Department of Energy) for sponsoring this analysis under an Appliance Standards contract with Lawrence Berkeley National Laboratory. NR 29 TC 1 Z9 1 U1 1 U2 11 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X J9 ENERG EFFIC JI Energy Effic. PD FEB PY 2013 VL 6 IS 1 BP 135 EP 162 DI 10.1007/s12053-012-9158-6 PG 28 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA 070BS UT WOS:000313481500009 ER PT J AU Mayali, X Weber, PK Pett-Ridge, J AF Mayali, Xavier Weber, Peter K. Pett-Ridge, Jennifer TI Taxon-specific C/N relative use efficiency for amino acids in an estuarine community SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE nanosims; microarrays; microbial diversity; amino acid; biogeochemistry ID RIBOSOMAL-RNA; MARINE-BACTERIA; DISSOLVED FREE; COASTAL WATERS; ORGANIC-MATTER; CARBON; NITROGEN; BACTERIOPLANKTON; ASSEMBLAGES; ECOLOGY AB Microbial activity plays a critical role in determining the nutrient status of an ecosystem (i.e. N or C limitation). While the balance of C/N assimilation has been measured at the whole community scale, quantitative detection of N and C assimilation from a single substrate at the scale of individual taxa has not been carried out. We recently developed Chip-SIP, a microarray and NanoSIMS-based method for linking microbial phylogeny and function that allows simultaneous measurement of 15N and 13C incorporation. Here, we measured the relative incorporation of C and N from dual-labeled substrates by individual microbial taxa in bottle incubations of samples collected from an estuary. Incubation times < 24 h were sufficient to successfully detect active microbes incorporating 15N ammonium. In subsequent experiments, we used the incorporation of labeled amino acids (AAs) as a proxy for heterotrophic activity and showed different levels of incorporation among different taxonomic groups. Taxon-specific differences in the net incorporation of AA-derived C and N indicate that the C/N relative use efficiency ranged from 0.8 to 1.4, where 1 reflects stoichiometric incorporation of C and N. Our results revealed that microbial organic matter processing is affected by taxon-specific physiological diversity, both in terms of general activity levels and in the ratio of assimilated C/N. C1 [Mayali, Xavier; Weber, Peter K.; Pett-Ridge, Jennifer] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA USA. RP Mayali, X (reprint author), Lawrence Livermore Natl Lab, Div Chem Sci, 7000 East Ave, Livermore, CA USA. EM mayali1@llnl.gov FU DOE Genomic Sciences Program [SCW1039]; LLNL Laboratory Directed Research Development (LDRD) [11-ERD-066]; U.S. Department of Energy at Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX We thank S. Mabery for technical support and L. Nittler for software development. The DOE Genomic Sciences Program (grant # SCW1039) and LLNL Laboratory Directed Research Development (LDRD) funding (grant # 11-ERD-066) supported this research. Work was performed under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 52 TC 5 Z9 5 U1 3 U2 74 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0168-6496 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD FEB PY 2013 VL 83 IS 2 BP 402 EP 412 DI 10.1111/j.1574-6941.12000.x PG 11 WC Microbiology SC Microbiology GA 066WP UT WOS:000313252600012 PM 22994392 ER PT J AU Stegen, JC Freestone, AL Crist, TO Anderson, MJ Chase, JM Comita, LS Cornell, HV Davies, KF Harrison, SP Hurlbert, AH Inouye, BD Kraft, NJB Myers, JA Sanders, NJ Swenson, NG Vellend, M AF Stegen, James C. Freestone, Amy L. Crist, Thomas O. Anderson, Marti J. Chase, Jonathan M. Comita, Liza S. Cornell, Howard V. Davies, Kendi F. Harrison, Susan P. Hurlbert, Allen H. Inouye, Brian D. Kraft, Nathan J. B. Myers, Jonathan A. Sanders, Nathan J. Swenson, Nathan G. Vellend, Mark TI Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities SO GLOBAL ECOLOGY AND BIOGEOGRAPHY LA English DT Article DE Alpha diversity; avian; beta diversity; community assembly; competition; environmental filtering; neutral; niche; null model ID SPECIES-ENERGY RELATIONSHIPS; BETA-DIVERSITY; LATITUDINAL GRADIENT; GAMMA-DIVERSITY; SCALE; TIME; PRODUCTIVITY; RICHNESS; AREA; ECOSYSTEMS AB Aim A long-standing challenge in ecology is to identify the suite of factors that lead to turnover in species composition in both space and time. These factors might be stochastic (e.g. sampling and priority effects) or deterministic (e.g. competition and environmental filtering). While numerous studies have examined the relationship between turnover and individual drivers of interest (e.g. primary productivity, habitat heterogeneity, or regional gamma diversity), few studies have disentangled the simultaneous influences of multiple stochastic and deterministic processes on both temporal and spatial turnover. If turnover is governed primarily by stochastic sampling processes, removing the sampling effects of gamma diversity should result in non-significant relationships between turnover and environmental variables. Conversely, if deterministic processes govern turnover patterns, removing sampling effects will have little influence on turnover gradients. Here, we test these predictions. Location The United States. Methods Continental-scale, multidecadal data were used to quantify spatial and temporal turnover in avian community composition within 295 survey routes. A series of regression and structural equation models were coupled with a null model to construct statistical models describing turnover patterns. Results Examining explanatory variables alone or in combination showed that spatial and temporal turnover increased together, decreased with primary productivity and increased with habitat heterogeneity. The relationships between turnover and all variables became weaker when sampling effects were removed, but relationships with primary productivity and habitat heterogeneity remained relatively strong. In addition, spatial turnover increased strongly with spatial gamma diversity after sampling effects were removed. Main conclusions Our results show that spatial and temporal turnover are related to each other through a stochastic sampling process, but that each type of turnover is further influenced by deterministic processes. The relative influence of deterministic processes appears, however, to decrease with primary productivity and increase with habitat heterogeneity across an eastwest longitudinal gradient in North America. C1 [Stegen, James C.; Hurlbert, Allen H.] Univ N Carolina, Dept Biol, Chapel Hill, NC USA. [Stegen, James C.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Biol Sci, Richland, WA 99352 USA. [Freestone, Amy L.] Temple Univ, Dept Biol, Philadelphia, PA 19122 USA. [Crist, Thomas O.] Miami Univ, Inst Environm & Sustainabil, Oxford, OH 45056 USA. [Crist, Thomas O.] Miami Univ, Dept Zool, Oxford, OH 45056 USA. [Anderson, Marti J.] Massey Univ, New Zealand Inst Adv Study, Palmerston North, New Zealand. [Chase, Jonathan M.; Myers, Jonathan A.] Washington Univ, Dept Biol, St Louis, MO 63130 USA. [Comita, Liza S.] Ohio State Univ, Dept Evolut Ecol & Organismal Biol, Columbus, OH 43210 USA. [Cornell, Howard V.; Harrison, Susan P.] Univ Calif Davis, Dept Environm Sci & Policy, Davis, CA 95616 USA. [Davies, Kendi F.] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA. [Inouye, Brian D.] Florida State Univ, Tallahassee, FL 32306 USA. [Kraft, Nathan J. B.] Univ British Columbia, Biodivers Res Ctr, Vancouver, BC V5Z 1M9, Canada. [Sanders, Nathan J.] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN USA. [Sanders, Nathan J.] Univ Copenhagen, Ctr Macroecol Evolut & Climate, DK-1168 Copenhagen, Denmark. [Swenson, Nathan G.] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. [Vellend, Mark] Univ British Columbia, Dept Bot, Vancouver, BC, Canada. [Vellend, Mark] Univ British Columbia, Dept Zool, Vancouver, BC, Canada. RP Stegen, JC (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Div Biol Sci, Richland, WA 99352 USA. EM james.stegen@pnnl.gov RI Swenson, Nathan/A-3514-2012; Kraft, Nathan/A-2817-2012; Sanders, Nathan/A-6945-2009; Stegen, James/Q-3078-2016; publist, CMEC/C-3010-2012; publicationpage, cmec/B-4405-2017; OI Swenson, Nathan/0000-0003-3819-9767; Kraft, Nathan/0000-0001-8867-7806; Sanders, Nathan/0000-0001-6220-6731; Stegen, James/0000-0001-9135-7424; Hurlbert, Allen/0000-0002-5678-9907 FU National Center for Ecological Analysis and Synthesis; NSF [EF-0553768, DBI-0906005]; University of California, Santa Barbara; State of California FX This work was part of the 'Gradients of beta-diversity' working group supported by the National Center for Ecological Analysis and Synthesis, a centre funded by NSF (grant no. EF-0553768), the University of California, Santa Barbara, and the State of California. J.C.S. was supported by an NSF Postdoctoral Fellowship (DBI-0906005). NR 50 TC 32 Z9 34 U1 3 U2 183 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1466-822X J9 GLOBAL ECOL BIOGEOGR JI Glob. Ecol. Biogeogr. PD FEB PY 2013 VL 22 IS 2 BP 202 EP 212 DI 10.1111/j.1466-8238.2012.00780.x PG 11 WC Ecology; Geography, Physical SC Environmental Sciences & Ecology; Physical Geography GA 067BK UT WOS:000313267000006 ER PT J AU Berman, GP Chumak, AA Tsifrinovich, VI AF Berman, G. P. Chumak, A. A. Tsifrinovich, V. I. TI Dynamics of a Phase Qubit-Resonator System: Requirements for Fast Nondemolition Readout of a Phase Qubit SO JOURNAL OF LOW TEMPERATURE PHYSICS LA English DT Article DE Superconducting phase qubit; Resonator; Nondemolition readout ID SUPERCONDUCTING QUBIT; CIRCUIT; PHOTON AB We examine the time-dependent evolution of a coupled qubit-transmission line-resonator system coupled to an external drive and a resonator environment. By solving the equation for a non-stationary resonator field, we determine the requirements for a single-shot nondestructive dispersive measurement of the phase qubit state. Reliable isolation of the qubit from the "electromagnetic environment" is necessary for a dispersive readout and can be achieved if the whole system interacts with the external fields only through a resonator that is weakly coupled to the qubit. A set of inequalities involving the resonator-qubit detuning and a coupling parameter, the resonator leakage and the measurement time, together with the requirement of multi-photon outgoing flux is derived. In particular, it is shown that to decrease the measurement time one must increase the resonator leakage. This leakage increase reduces the quality factor and decreases the resolution of the resonator eigenfrequencies corresponding to different qubit states. The consistency of our inequalities for two sets of experimental parameters is discussed. Our results can be used for optimizing experimental setups, parameters, and measurement protocols. C1 [Berman, G. P.; Chumak, A. A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Chumak, A. A.] Natl Acad Sci, Inst Phys, UA-03028 Kiev 28, Msp, Ukraine. [Tsifrinovich, V. I.] NYU, Polytech Inst, Dept Appl Phys, MetroTech Ctr 6, Brooklyn, NY 11201 USA. RP Berman, GP (reprint author), Los Alamos Natl Lab, Div Theoret, MS-B213, Los Alamos, NM 87545 USA. EM gpb@lanl.gov FU National Nuclear Security Administration of the U.S. Department of Energy at the Los Alamos National Laboratory [DE-AC52-06NA25396]; Office of the Director of National Intelligence (ODNI); Intelligence Advanced Research Projects Activity (IARPA) FX We thank D. Kinion for useful discussions. This work was carried out under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy at the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396, and was funded by the Office of the Director of National Intelligence (ODNI), and Intelligence Advanced Research Projects Activity (IARPA). All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of IARPA, the ODNI, or the U.S. Government. NR 27 TC 1 Z9 1 U1 1 U2 8 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2291 J9 J LOW TEMP PHYS JI J. Low Temp. Phys. PD FEB PY 2013 VL 170 IS 3-4 BP 172 EP 184 DI 10.1007/s10909-012-0726-0 PG 13 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 065QT UT WOS:000313164300006 ER PT J AU Blaschko, SD Miller, J Chi, T Flechner, L Fakra, S Kahn, A Kapahi, P Stoller, ML AF Blaschko, Sarah D. Miller, Joe Chi, Thomas Flechner, Lawrence Fakra, Sirine Kahn, Arnold Kapahi, Pankaj Stoller, Marshall L. TI Microcomposition of Human Urinary Calculi Using Advanced Imaging Techniques SO JOURNAL OF UROLOGY LA English DT Article DE kidney; diagnostic imaging; nephrolithiasis; urolithiasis; radiography ID KIDNEY-STONES; CALCIUM-OXALATE; MICROANALYSIS; SPECTROSCOPY; ZN AB Purpose: Common methods of commercial urolithiasis analysis, such as light microscopy and Fourier transform infrared spectroscopy, provide limited or no information on the molecular composition of stones, which is vital when studying early stone pathogenesis. We used synchrotron radiation based microfocused x-ray fluorescence, x-ray absorption and x-ray diffraction advanced imaging techniques to identify and map the elemental composition, including trace elements, of urinary calculi on a mu m (0.0001 cm) scale. Materials and Methods: Human stone samples were obtained during serial percutaneous nephrolithotomy and ureteroscopy procedures. A portion of each sample was sent for commercial stone analysis and a portion was retained for synchrotron radiation based advanced imaging analysis. Results: Synchrotron radiation based methods of stone analysis correctly identified stone composition and provided additional molecular detail on elemental components and spatial distribution in uroliths. Resolution was on the order of a few mu m. Conclusions: Knowledge of all elements present in lithogenesis at this detail allows for better understanding of early stone formation events, which may provide additional insight to prevent and treat stone formation. C1 [Blaschko, Sarah D.; Miller, Joe; Chi, Thomas; Flechner, Lawrence; Stoller, Marshall L.] Univ Calif San Francisco, Dept Urol, San Francisco, CA 94143 USA. [Fakra, Sirine] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Kahn, Arnold; Kapahi, Pankaj] Buck Inst Res Aging, Novato, CA USA. RP Stoller, ML (reprint author), Univ Calif San Francisco, Dept Urol, 400 Parnassus Ave,A610, San Francisco, CA 94143 USA. EM mstoller@urology.ucsf.edu FU American Federation for Aging Research; California Urology Foundation; National Institutes of Health [R01 AG031337-01A1, RO1 AG038688, RL1 AAG032113, P01 AG025901-S1]; Multidisciplinary K12 Urologic Research Career Development Program [K12-DK-07-006]; AUA Foundation Research Scholars Program; Boston Scientific Corp.; Endourological Society; Friends of Joe; Office of Science, Office of Basic Energy Sciences of the United States Department of Energy [DE-AC02-05CH11231] FX Supported by grants from the American Federation for Aging Research and California Urology Foundation, National Institutes of Health Grants R01 AG031337-01A1, RO1 AG038688, RL1 AAG032113 and P01 AG025901-S1 (PK), Multidisciplinary K12 Urologic Research Career Development Program Grant K12-DK-07-006 (TC), and a grant from the AUA Foundation Research Scholars Program and Boston Scientific Corp., The Endourological Society and the "Friends of Joe." The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the United States Department of Energy under Contract DE-AC02-05CH11231. NR 16 TC 10 Z9 10 U1 1 U2 21 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0022-5347 J9 J UROLOGY JI J. Urol. PD FEB PY 2013 VL 189 IS 2 BP 726 EP 734 DI 10.1016/j.juro.2012.09.098 PG 9 WC Urology & Nephrology SC Urology & Nephrology GA 069VI UT WOS:000313464800111 PM 23021997 ER PT J AU Blaschko, SD Chi, T Miller, J Flechner, L Fakra, S Kapahi, P Kahn, A Stoller, ML AF Blaschko, Sarah D. Chi, Thomas Miller, Joe Flechner, Lawrence Fakra, Sirine Kapahi, Pankaj Kahn, Arnold Stoller, Marshall L. TI Strontium Substitution for Calcium in Lithogenesis SO JOURNAL OF UROLOGY LA English DT Article DE kidney; urolithiasis; strontium; calcium; spectrometry; x-ray emission ID KIDNEY-STONES; STABLE STRONTIUM; POSTMENOPAUSAL OSTEOPOROSIS; ABSORPTION; RANELATE; BONE; WOMEN; METABOLISM; MASS AB Purpose: Strontium has chemical similarity to calcium, which enables the replacement of calcium by strontium in biomineralization processes. Incorporating strontium into human bone and teeth has been studied extensively but little research has been performed of the incorporation of strontium into urinary calculi. We used synchrotron based x-ray fluorescence and x-ray absorption techniques to examine the presence of strontium in different types of human kidney stones. Materials and Methods: Multiple unique human stone samples were obtained via consecutive percutaneous nephrolithotomies/ureteroscopies. A portion of each stone was sent for standard laboratory analysis and a portion was retained for x-ray fluorescence and x-ray absorption measurements. X-ray fluorescence and x-ray absorption measurements determined the presence, spatial distribution and speciation of strontium in each stone sample. Results: Traditional kidney stone analyses identified calcium oxalate, calcium phosphate, uric acid and cystine stones. X-ray fluorescence measurements identified strontium in all stone types except pure cystine. X-ray fluorescence elemental mapping of the samples revealed co-localization of calcium and strontium. X-ray absorption measurements of the calcium phosphate stone showed strontium predominately present as strontium apatite. Conclusions: Advanced x-ray fluorescence imaging identified strontium in all calcium based stones, present as strontium apatite. This finding may be critical since apatite is thought to be the initial nidus for calcium stone formation. Strontium is not identified by standard laboratory stone analyses. Its substitution for calcium can be reliably identified in stones from multiple calcium based stone formers, which may offer opportunities to gain insight into early events in lithogenesis. C1 [Blaschko, Sarah D.; Chi, Thomas; Miller, Joe; Flechner, Lawrence; Stoller, Marshall L.] Univ Calif San Francisco, Dept Urol, San Francisco, CA 94143 USA. [Fakra, Sirine] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Kapahi, Pankaj; Kahn, Arnold] Buck Inst Res Aging, Novato, CA USA. RP Stoller, ML (reprint author), Univ Calif San Francisco, Dept Urol, 400 Parnassus Ave,A610, San Francisco, CA 94143 USA. EM mstoller@urology.ucsf.edu FU American Federation for Aging Research; California Urology Foundation; National Institutes of Health from the Multidisciplinary K12 Urologic Research Career Development Program [R01 AG031337-01A1, R01 AG038688, RL1 AAG032113, P01 AG025901-S1, K12-DK-07-006]; American Urological Association Foundation Research Scholars Program; Boston Scientific Corp.; Endourological Society; Friends of Joe; Office of Science, Office of Basic Energy Sciences of the United States Department of Energy [DE-AC02-05CH11231] FX Supported by American Federation for Aging Research, California Urology Foundation and National Institutes of Health Grants R01 AG031337-01A1, R01 AG038688, RL1 AAG032113 and P01 AG025901-S1 (PK), and K12-DK-07-006 from the Multidisciplinary K12 Urologic Research Career Development Program (TC), a grant from the American Urological Association Foundation Research Scholars Program and Boston Scientific Corp., The Endourological Society and "Friends of Joe." The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences of the United States Department of Energy under Contract DE-AC02-05CH11231. NR 30 TC 8 Z9 8 U1 2 U2 55 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0022-5347 J9 J UROLOGY JI J. Urol. PD FEB PY 2013 VL 189 IS 2 BP 735 EP 739 DI 10.1016/j.juro.2012.08.199 PG 5 WC Urology & Nephrology SC Urology & Nephrology GA 069VI UT WOS:000313464800112 PM 23260568 ER PT J AU Porth, I Klapste, J Skyba, O Lai, BSK Geraldes, A Muchero, W Tuskan, GA Douglas, CJ El-Kassaby, YA Mansfield, SD AF Porth, Ilga Klapste, Jaroslav Skyba, Oleksandr Lai, Ben S. K. Geraldes, Armando Muchero, Wellington Tuskan, Gerald A. Douglas, Carl J. El-Kassaby, Yousry A. Mansfield, Shawn D. TI Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations SO NEW PHYTOLOGIST LA English DT Article DE biofuel traits; genetic correlation; narrow-sense heritability; Populus trichocarpa; wood chemistry; wood composition; wood physical properties ID WOOD QUALITY TRAITS; BLACK COTTONWOOD; LIGNOCELLULOSIC BIOMASS; PHENOTYPIC CORRELATIONS; PAIRWISE RELATEDNESS; EUCALYPTUS-GLOBULUS; NATURAL-POPULATIONS; PULPING EFFICIENCY; GELATINOUS FIBERS; BREEDING VALUES AB The increasing ecological and economical importance of Populus species and hybrids has stimulated research into the investigation of the natural variation of the species and the estimation of the extent of genetic control over its wood quality traits for traditional forestry activities as well as the emerging bioenergy sector. A realized kinship matrix based on informative, high-density, biallelic single nucleotide polymorphism (SNP) genetic markers was constructed to estimate trait variance components, heritabilities, and genetic and phenotypic correlations. Seventeen traits related to wood chemistry and ultrastructure were examined in 334 9-yr-old Populus trichocarpa grown in a common-garden plot representing populations spanning the latitudinal range 44 degrees to 58.6 degrees. In these individuals, 9342 SNPs that conformed to HardyWeinberg expectations were employed to assess the genomic pair-wise kinship to estimate narrow-sense heritabilities and genetic correlations among traits. The range-wide phenotypic variation in all traits was substantial and several trait heritabilities were > 0.6. In total, 61 significant genetic and phenotypic correlations and a network of highly interrelated traits were identified. The high trait variation, the evidence for moderate to high heritabilities and the identification of advantageous trait combinations of industrially important characteristics should aid in providing the foundation for the enhancement of poplar tree breeding strategies for modern industrial use. C1 [Porth, Ilga; Skyba, Oleksandr; Lai, Ben S. K.; Mansfield, Shawn D.] Univ British Columbia, Fac Forestry, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada. [Klapste, Jaroslav; El-Kassaby, Yousry A.] Univ British Columbia, Dept Forest Sci, Fac Forestry, Vancouver, BC V6T 1Z4, Canada. [Geraldes, Armando; Douglas, Carl J.] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada. [Muchero, Wellington; Tuskan, Gerald A.] Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA. RP Mansfield, SD (reprint author), Univ British Columbia, Fac Forestry, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada. EM y.el-kassaby@ubc.ca; shawn.mansfield@ubc.ca RI Porth, Ilga/N-4862-2015; Klapste, Jaroslav/B-6668-2016; El-Kassaby, Yousry/K-9856-2016; Tuskan, Gerald/A-6225-2011 OI Porth, Ilga/0000-0002-9344-6348; Klapste, Jaroslav/0000-0001-5504-3735; El-Kassaby, Yousry/0000-0002-4887-8977; Tuskan, Gerald/0000-0003-0106-1289 FU Genome British Columbia Applied Genomics Innovation Program [103BIO]; BioEnergy Science Center, a US Department of Energy (DOE) Bioenergy Research Center (Office of Biological and Environmental Research in the DOE Office of Science) [DE-AC02-05CH11231] FX This work was supported by the Genome British Columbia Applied Genomics Innovation Program (Project 103BIO). The authors acknowledge Shofiul Azam and Limin Lao for sample collection, and Eryang Li, Miki Fujita and Teaghan Mayers for technical support. We also acknowledge Lee Gunter and Ann Wymore, Oak Ridge National Laboratory (Oak Ridge TN, USA), for collaboration on the development of the SNP genotyping array and for performing hybridizations to the SNP genotyping array. The SNP array data were generated with support from the BioEnergy Science Center, a US Department of Energy (DOE) Bioenergy Research Center (Office of Biological and Environmental Research in the DOE Office of Science) under Contract No. DE-AC02-05CH11231. NR 79 TC 31 Z9 32 U1 3 U2 78 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0028-646X J9 NEW PHYTOL JI New Phytol. PD FEB PY 2013 VL 197 IS 3 BP 777 EP 790 DI 10.1111/nph.12014 PG 14 WC Plant Sciences SC Plant Sciences GA 067BC UT WOS:000313266000012 PM 23278123 ER PT J AU Jakubowski, AR Casler, MD Jackson, RD AF Jakubowski, Andrew R. Casler, Michael D. Jackson, Randall D. TI Genetic evidence suggests a widespread distribution of native North American populations of reed canarygrass SO BIOLOGICAL INVASIONS LA English DT Article DE Population genetics; Native range; Phalaris arundinacea; Herbarium specimens; Invasive species; Chloroplast DNA ID GRASS PHALARIS-ARUNDINACEA; PHRAGMITES-AUSTRALIS; COMMON REED; INVASION; GENOTYPE AB Reed canarygrass is an important agricultural crop thought to be native to Europe, Asia, and North America. However, it is one of the worst wetland invaders in North American wetlands. The native North American status has been supported by the circumstantial evidence of early botanical records and the dating and location of herbarium specimens. The lack of empirical evidence has left the North American native status of the species in doubt and prevented comparisons between native North American and Eurasian populations of the species. We utilized genetic markers to compare a wide range of European and Asian collections to DNA extracted from 38 early North American herbarium specimens. The genetic data confirm the presence of a distinct population present throughout North America in the early twentieth century, but not present in Europe or Asia, ranging from Alaska, USA to New Brunswick, Canada. These native North American populations of reed canarygrass are likely present throughout Alaska today, as one specimen was collected as recently as 1996, and may still be present in other regions of North America. Future research can utilize this dataset to determine the origin of present-day invasive populations in North American wetlands. C1 [Jakubowski, Andrew R.; Jackson, Randall D.] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA. [Casler, Michael D.] ARS, USDA, US Dairy Forage Res Ctr, Madison, WI 53706 USA. [Casler, Michael D.; Jackson, Randall D.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP Jakubowski, AR (reprint author), Univ Wisconsin, Dept Agron, 1575 Linden Dr, Madison, WI 53706 USA. EM jakubowski@wisc.edu FU Grazing Lands Conservation Initiative grant [941-3]; USDA-ARS funds FX This work was funded in part by Grazing Lands Conservation Initiative grant 941-3 and by USDA-ARS funds. We are grateful to the University of Alaska Museum of the North (ALA; in particular, Matt Carlson of the University of Alaska-Anchorage), the Bell Museum of Natural History at the University of Minnesota (MIN), The University of Wisconsin Herbarium (WIS), Agriculture and Agri-Food Canada DAO Herbarium, the Universite Laval Herbarium (QFA), and the Iowa State University Herbarium (ISC) for allowing us to sample tissue from specimens. We also wish to thank Dr. Hasan Khatib for the use of his lab for herbarium specimen DNA extractions and PCR setup. NR 25 TC 15 Z9 15 U1 2 U2 71 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1387-3547 J9 BIOL INVASIONS JI Biol. Invasions PD FEB PY 2013 VL 15 IS 2 BP 261 EP 268 DI 10.1007/s10530-012-0300-3 PG 8 WC Biodiversity Conservation; Ecology SC Biodiversity & Conservation; Environmental Sciences & Ecology GA 063VQ UT WOS:000313030500004 ER PT J AU Chatterjee, A Smith, PF Perelson, AS AF Chatterjee, Anushree Smith, Patrick F. Perelson, Alan S. TI Hepatitis C Viral Kinetics The Past, Present, and Future SO CLINICS IN LIVER DISEASE LA English DT Article DE Mathematical modeling; Viral kinetics; Direct-acting antiviral agents; Protease inhibitors; Hepatitis C virus ID GENOTYPE 1 INFECTION; DYNAMICS IN-VIVO; POLYMERASE INHIBITOR; PROTEASE INHIBITORS; ANTIVIRAL ACTIVITY; VIRUS-INFECTION; TREATMENT-NAIVE; NONNUCLEOSIDE POLYMERASE; RESISTANCE MUTATIONS; COMBINATION THERAPY AB Mathematical modeling of hepatitis C viral kinetics has been an important tool in understanding hepatitis C virus (HCV) infection dynamics and in estimating crucial in vivo parameters characterizing the effectiveness of HCV therapy. Because of the introduction of direct-acting antiviral agents, there is a need to extend previous models so as to understand, characterize, and compare various new HCV treatment regimens. Here we review recent modeling efforts in this direction. C1 [Chatterjee, Anushree; Perelson, Alan S.] Los Alamos Natl Lab, Theoret Biol & Biophys, Los Alamos, NM 87545 USA. [Chatterjee, Anushree] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Smith, Patrick F.] Roche, Clin Pharmacol Pharma Res & Early Dev, Nutley, NJ USA. RP Perelson, AS (reprint author), Los Alamos Natl Lab, Theoret Biol & Biophys, POB 1663, Los Alamos, NM 87545 USA. EM asp@lanl.gov FU US Department of Energy [DE-AC52-06NA25396]; NIH [AI028433, P20-RR018754, R34-HL109334, AI078881]; National Center for Research Resources; Office of Research Infrastructure Programs [8R01-OD011095-21]; Roche Inc.; Los Alamos National Laboratory LDRD (Laboratory Directed Research and Development) Program FX This work was performed under the auspices of the US Department of Energy under contract DE-AC52-06NA25396, and supported by NIH grants AI028433, P20-RR018754, R34-HL109334, AI078881, the National Center for Research Resources and the Office of Research Infrastructure Programs through grant 8R01-OD011095-21 (ASP), and Roche Inc. We also acknowledge the Los Alamos National Laboratory LDRD (Laboratory Directed Research and Development) Program for providing partial funding for A.C. NR 70 TC 12 Z9 12 U1 1 U2 13 PU W B SAUNDERS CO-ELSEVIER INC PI PHILADELPHIA PA 1600 JOHN F KENNEDY BOULEVARD, STE 1800, PHILADELPHIA, PA 19103-2899 USA SN 1089-3261 J9 CLIN LIVER DIS JI Clin. Liver Dis. PD FEB PY 2013 VL 17 IS 1 BP 13 EP + DI 10.1016/j.cld.2012.09.003 PG 15 WC Gastroenterology & Hepatology SC Gastroenterology & Hepatology GA 065FW UT WOS:000313134900003 PM 23177280 ER PT J AU Bi, YQ Hyun, SP Kukkadapu, RK Hayes, KF AF Bi, Yuqiang Hyun, Sung Pil Kukkadapu, Ravi K. Hayes, Kim F. TI Oxidative dissolution of UO2 in a simulated groundwater containing synthetic nanocrystalline mackinawite SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID URANIUM(VI) REDUCTION; OXIDIZING CONDITIONS; REDUCING CONDITIONS; BIOGENIC URANINITE; IRON(III) (HYDR)OXIDES; SPECTROSCOPIC EVIDENCE; TERNARY COMPLEXES; NATURAL SEDIMENTS; UNIRRADIATED UO2; DISSOLVED-OXYGEN AB The long-term success of in situ reductive immobilization of uranium (U) depends on the stability of U(IV) precipitates (e. g., uraninite) in the presence of natural oxidants, such as oxygen, Fe(III) hydroxides, and nitrite. Field and laboratory studies have implicated iron sulfide minerals as redox buffers or oxidant scavengers that may slow oxidation of reduced U(IV) solid phases. Yet, the inhibition mechanism(s) and reaction rates of uraninite (UO2) oxidative dissolution by oxic species such as oxygen in FeS-bearing systems remain largely unresolved. To address this knowledge gap, abiotic batch experiments were conducted with synthetic UO2 in the presence and absence of synthetic mackinawite (FeS) under simulated groundwater conditions of pH = 7, P-O2 = 0.02 atm, and P-CO2 = 0.05 atm. The kinetic profiles of dissolved uranium indicate that FeS inhibited UO2 dissolution for about 51 h by effectively scavenging oxygen and keeping dissolved oxygen (DO) low. During this time period, oxidation of structural Fe(II) and S(-II) of FeS were found to control the DO levels, leading to the formation of iron oxyhydroxides and elemental sulfur, respectively, as verified by X-ray diffraction (XRD), Mossbauer, and X-ray absorption spectroscopy (XAS). After FeS was depleted due to oxidation, DO levels increased and UO2 oxidative dissolution occurred at an initial rate of r(m) = 1.2 +/- 0.4 x 10(-8) mol g(-1) s(-1), higher than r(m) = 5.4 +/- 0.3 x 10(-9) mol g(-1) s(-1) in the control experiment where FeS was absent. XAS analysis confirmed that soluble U(VI)-carbonato complexes were adsorbed by iron oxyhydroxides (i.e., nanogoethite and lepidocrocite) formed from FeS oxidation, which provided a sink for U(VI) retention. This work reveals that both the oxygen scavenging by FeS and the adsorption of U(VI) to FeS oxidation products may be important in U reductive immobilization systems subject to redox cycling events. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Bi, Yuqiang; Hyun, Sung Pil; Hayes, Kim F.] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA. [Kukkadapu, Ravi K.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hayes, KF (reprint author), Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA. EM ford@umich.edu RI Bi, Yuqiang/J-7114-2013 OI Bi, Yuqiang/0000-0001-6672-0439 FU U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (BER), Subsurface Biogeochemical Research (SBR) program [DE-FG02-09ER64803]; Department of Energy's Office of Biological and Environmental Research FX We thank Tom Yavaraski for his technical assistance in the laboratory. We are also grateful to Dr. Edward Burton for helpful discussion in our analysis. We thank Drs. Juan S. Lezama Pacheco and John Bargar for assistance with XAS collection at Stanford Synchrotron Radiation Lightsource (SSRL). Y.B. thanks Julian Carpenter and Tara Clancy for their help in XAS data collection and numerous discussions throughout the study. This research was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research (BER), Subsurface Biogeochemical Research (SBR) program (DE-FG02-09ER64803). Part of this research was carried out at SSRL, a Directorate of SLAC National Accelerator Laboratory and an Office of Science User Facility operated for the U.S. DOE by Stanford University. A portion of the research was performed using Environmental and Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory, Richland, WA. NR 88 TC 20 Z9 22 U1 7 U2 103 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD FEB 1 PY 2013 VL 102 BP 175 EP 190 DI 10.1016/j.gca.2012.10.032 PG 16 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 066EE UT WOS:000313202300011 ER PT J AU Anovitz, LM Cole, DR Rother, G Allard, LF Jackson, AJ Littrell, KC AF Anovitz, L. M. Cole, D. R. Rother, G. Allard, L. F. Jackson, A. J. Littrell, K. C. TI Diagenetic changes in macro- to nano-scale porosity in the St. Peter Sandstone: An (ultra) small angle neutron scattering and backscattered electron imaging analysis SO GEOCHIMICA ET COSMOCHIMICA ACTA LA English DT Article ID PARTICLE-SIZE DISTRIBUTIONS; 2-POINT CORRELATION-FUNCTIONS; MULTIFRACTAL ANALYSIS; SEDIMENTARY-ROCKS; FRACTAL GEOMETRY; ILLINOIS BASIN; MICHIGAN BASIN; ION MICROPROBE; NORTH-AMERICA; FLUID-FLOW AB Small- and ultra-small angle neutron scattering (SANS and USANS) provide powerful tools for quantitative analysis of porous rocks, yielding bulk statistical information over a wide range of length scales. This study utilized (U) SANS to characterize shallowly buried quartz arenites from the St. Peter Sandstone. Backscattered electron imaging was also used to extend the data to larger scales. These samples contain significant volumes of large-scale porosity, modified by quartz overgrowths, and neutron scattering results show significant sub-micron porosity. While previous scattering data from sandstones suggest scattering is dominated by surface fractal behavior over many orders of magnitude, careful analysis of our data shows both fractal and pseudo-fractal behavior. The scattering curves are composed of subtle steps, modeled as polydispersed assemblages of pores with log-normal distributions. However, in some samples an additional surface-fractal overprint is present, while in others there is no such structure, and scattering can be explained by summation of non-fractal structures. Combined with our work on other rock-types, these data suggest that nanoporosity is more prevalent, and may play a much more important role than previously thought in fluid/rock interactions. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Anovitz, L. M.; Rother, G.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Cole, D. R.] Ohio State Univ, Sch Earth Sci, Mendenhall Lab 275, Columbus, OH 43210 USA. [Allard, L. F.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Jackson, A. J.] NIST, Ctr Neutron Res, Gaithersburg, MD 20899 USA. [Jackson, A. J.] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. [Littrell, K. C.] Oak Ridge Natl Lab, Chem & Engn Mat Div, Oak Ridge, TN 37831 USA. RP Anovitz, LM (reprint author), Oak Ridge Natl Lab, Div Chem Sci, MS 6110,POB 2008, Oak Ridge, TN 37831 USA. EM anovitzlm@ornl.gov RI Jackson, Andrew/B-9793-2008; Littrell, Kenneth/D-2106-2013; Rother, Gernot/B-7281-2008; Anovitz, Lawrence/P-3144-2016 OI Jackson, Andrew/0000-0002-6296-0336; Littrell, Kenneth/0000-0003-2308-8618; Rother, Gernot/0000-0003-4921-6294; Anovitz, Lawrence/0000-0002-2609-8750 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U. S. Department of Energy; Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences through the Energy Frontier Research Center - Nanoscale Control of Geologic CO2; National Institute of Standards and Technology, Center for Neutron Research, U. S. Department of Commerce; National Science Foundation [DMR-0944772]; Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U. S. Department of Energy at the University of Wisconsin - Madison [93ER14389] FX Effort by L. M. A., G. R. and L. F. A. was supported by research sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U. S. Department of Energy. D. R. C. was funded by the Department of Energy Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences through the Energy Frontier Research Center - Nanoscale Control of Geologic CO2. We acknowledge the support of the National Institute of Standards and Technology, Center for Neutron Research, U. S. Department of Commerce, and the High-Flux Isotope Reactor at the Oak Ridge National Laboratory in providing the research neutron facilities used in this work. This work utilized facilities supported in part by the National Science Foundation under agreement No. DMR-0944772. Certain commercial equipment, instruments, materials and software are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, the Department of Energy, or the Oak Ridge National Laboratory, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose. John Valley, Mike Spicuzza, Anthony Pollington, and Brian Hess at the University of Wisconsin - Madison provided samples and aided in sample preparation as part of research sponsored by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U. S. Department of Energy under contract 93ER14389 at the University of Wisconsin - Madison. Help and comments from Dr. Hsiu-Wen Wang were greatly appreciated. We would also like to thank Dr. Michael Schmid, Institut fur Angewandte Physik, Technische Universitat Wien, for his help with the ImageJ plugins for calculating the autocorrelation functions and scattering curves from the BSE images. NR 110 TC 28 Z9 29 U1 3 U2 99 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0016-7037 J9 GEOCHIM COSMOCHIM AC JI Geochim. Cosmochim. Acta PD FEB 1 PY 2013 VL 102 BP 280 EP 305 DI 10.1016/j.gca.2012.07.035 PG 26 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 066EE UT WOS:000313202300017 ER PT J AU Musolino, SV AF Musolino, Stephen V. TI Health Physics and Radiological Health, 4th Edition SO HEALTH PHYSICS LA English DT Book Review C1 [Musolino, Stephen V.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Musolino, SV (reprint author), Brookhaven Natl Lab, POB 5000, Upton, NY 11973 USA. EM musolino@bnl.gov NR 4 TC 0 Z9 0 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2013 VL 104 IS 2 BP 232 EP 232 DI 10.1097/HP.0b013e3182751a86 PG 1 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 064VV UT WOS:000313104400015 ER PT J AU Palmer, C AF Palmer, Camille TI Interaction of Radiation with Matter SO HEALTH PHYSICS LA English DT Book Review C1 [Palmer, Camille] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. RP Palmer, C (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87544 USA. EM cpalmer@lanl.gov NR 1 TC 0 Z9 0 U1 0 U2 4 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0017-9078 EI 1538-5159 J9 HEALTH PHYS JI Health Phys. PD FEB PY 2013 VL 104 IS 2 BP 234 EP 234 DI 10.1097/HP.0b013e318275b1a2 PG 1 WC Environmental Sciences; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 064VV UT WOS:000313104400018 ER PT J AU Schulz, D Smith, D Yu, M Lee, H Henn, FA AF Schulz, Daniela Smith, David Yu, Mei Lee, Hedok Henn, Fritz A. TI Selective breeding for helplessness in rats alters the metabolic profile of the hippocampus and frontal cortex: a H-1-MRS study at 9.4 T SO INTERNATIONAL JOURNAL OF NEUROPSYCHOPHARMACOLOGY LA English DT Article DE Depression; energy metabolism; learned helplessness; proton spectroscopy ID MAGNETIC-RESONANCE-SPECTROSCOPY; EXCITATORY AMINO-ACIDS; GAMMA-AMINOBUTYRIC-ACID; MAJOR DEPRESSIVE DISORDER; CHOLINE SIGNAL INTENSITY; CENTRAL NERVOUS-SYSTEM; LEARNED HELPLESSNESS; ELECTROCONVULSIVE-THERAPY; PREFRONTAL CORTEX; MOOD DISORDERS AB In humans metabolic changes, particularly in frontal areas of the brain, accompany depressive disorders, but few studies were conducted in animal models of depression. We used hydrogen-1 magnetic resonance spectroscopy at 9.4 T to measure the metabolic profiles of the hippocampus and frontal cortex in congenital learned helpless (cLH) and wild-type (WT) rats. The learned helplessness model of depression exposes animals to uncontrollable stress to induce changes in emotion, cognition and behaviour, but cLH rats were selectively bred to show changes in behaviour even without exposure to uncontrollable stress. Experimentally naive male 8-to 10-wk-old cLH (n-10) and WT rats (n-22) underwent spectroscopy and were exposed to uncontrollable stress 1 wk after the scan. We found that cLH compared to WT rats had lower levels of glutamate in the hippocampus and lower levels of choline-containing compounds in the hippocampus and frontal cortex, but higher levels of taurine and phosphocreatine in these regions, pointing to compensatory efforts of the brain to reduce excitotoxic potential and to increase neuroprotection and energy, possibly as a result of cellular stress and damage. The reduction in choline-containing phospholipids might represent a source or correlate of such stress. Overall, the results indicate that metabolic abnormalities are present in animals with a predisposition to helplessness even without exposure to explicit stress and may help identify non-invasive biomarkers in individuals who are prone to depression. C1 [Schulz, Daniela; Smith, David; Yu, Mei; Henn, Fritz A.] Brookhaven Natl Lab, Dept Med, Upton, NY 11973 USA. [Smith, David; Yu, Mei; Lee, Hedok] SUNY Stony Brook, Dept Anesthesiol, Stony Brook, NY 11794 USA. [Henn, Fritz A.] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA. RP Schulz, D (reprint author), Brookhaven Natl Lab, Dept Med, Bldg 490,30 Bell Ave, Upton, NY 11973 USA. EM dschulz@bnl.gov RI Schulz, Daniela/H-5625-2011 FU Brookhaven National Laboratory; US Department of Energy [LDRD-07-096]; NYSTAR FX The research was carried out at Brookhaven National Laboratory and was supported by Brookhaven National Laboratory Directed Research and Development Program, funded by the US Department of Energy (LDRD-07-096 to FAH), and by NYSTAR. NR 84 TC 7 Z9 7 U1 2 U2 9 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 1461-1457 J9 INT J NEUROPSYCHOPH JI Int. J. Neuropsychopharmacol. PD FEB PY 2013 VL 16 IS 1 BP 199 EP 212 DI 10.1017/S1461145711001994 PG 14 WC Clinical Neurology; Neurosciences; Pharmacology & Pharmacy; Psychiatry SC Neurosciences & Neurology; Pharmacology & Pharmacy; Psychiatry GA 058TX UT WOS:000312658300017 PM 22272798 ER PT J AU Dingreville, R Robbins, J Voth, TE AF Dingreville, Remi Robbins, Joshua Voth, Thomas E. TI Multiresolution Modeling of the Dynamic Loading of Metal Matrix Composites SO JOM LA English DT Article ID MICRO-STRUCTURE; MECHANICAL RESPONSE; CERAMIC COMPOSITES; HIGH-RATES; DEFORMATION; STRAIN; BEHAVIOR; MICROSTRUCTURE; PROPAGATION; SIMULATION AB The mechanical behavior of metal matrix composites (MMCs) varies significantly under rapid straining as compared to quasi-static loading and is often dominated by underlying microstructural features (grain structure, porosity, inclusions, and defects). Analysis of the behavior of MMCs under dynamic loading requires theoretical and experimental approaches that integrate the strain rate and microstructural effects. In this article, we introduce a multiresolution modeling capability for studying nonlinear planar wave propagation in heterogeneous materials with an application to MMCs. This framework is based on direct numerical simulation (DNS) and compared to an upscaled microcontinuum model. The DNS explicitly accounts for microstructural features characterizing the materials and is based on a combination of a crystal plasticity formulation for the behavior of the host matrix and the Johnson-Holmquist model for the particulate reinforcements. The nonuniformity of the wave propagating through MMCs is spatially resolved. The results from the mesoscale DNS are used to inform a microcontinuum model that introduces richer kinematics to account for microstructural features without explicitly modeling them and with far fewer total degrees of freedom. A quantitative comparison of the reduced degrees of freedom model against DNS is performed and enables us to draw conclusions on the predictive capability of the microcontinuum model to study the dynamic response of heterogeneous materials. C1 [Dingreville, Remi; Robbins, Joshua; Voth, Thomas E.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Dingreville, R (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rdingre@sandia.gov OI Dingreville, Remi/0000-0003-1613-695X FU United States Department of Energy [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy, under Contract No. DE-AC04-94AL85000. NR 50 TC 2 Z9 2 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD FEB PY 2013 VL 65 IS 2 BP 203 EP 214 DI 10.1007/s11837-012-0508-9 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 064HM UT WOS:000313064800010 ER PT J AU Williams, JJ Walters, JL Wang, MY Chawla, N Rohatgi, A AF Williams, J. J. Walters, J. L. Wang, M. Y. Chawla, N. Rohatgi, A. TI Extracting Constitutive Stress-Strain Behavior of Microscopic Phases by Micropillar Compression SO JOM LA English DT Article ID DUAL-PHASE; MECHANICAL-PROPERTIES; SIZE DEPENDENCE; SCALE; NANOINDENTATION; PLASTICITY; STEELS; MICROSTRUCTURE; GRADIENTS; STRENGTH AB The macroscopic behavior of metallic materials is a complex function of microstructure. The size, morphology, volume fraction, crystallography, and distribution of a 2nd phase within a surrounding matrix all control the mechanical properties. Understanding the contributions of the individual microconstituents to the mechanical behavior of multiphase materials has proven difficult due to the inability to obtain accurate constitutive relationships of each individual constituent. In dual-phase steels, for example, the properties of martensite or ferrite in bulk form are not representative of their behavior at the microscale. In this study, micropillar compression was employed to determine the mechanical properties of individual microconstituents in metallic materials with "composite" microstructures, consisting of two distinct microconstituents: (I) a Mg-Al alloy with pure Mg dendrites and eutectic regions and (II) a powder metallurgy steel with ferrite and martensite constituents. The approach is first demonstrated in a Mg-Al directionally solidified alloy where the representative stress-strain behavior of the matrix and eutectic phases was obtained. The work is then extended to a dual-phase steel where the constitutive behavior of the ferrite and martensite were obtained. Here, the results were also incorporated into a modified rule-of-mixtures approach to predict the composite behavior of the steel. The constitutive behavior of the ferrite and martensite phases developed from micropillar compression was coupled with existing strength-porosity models from the literature to predict the ultimate tensile strength of the steel. Direct comparisons of the predictions with tensile tests of the bulk dual-phase steel were conducted and the correlations were quite good. C1 [Williams, J. J.; Walters, J. L.; Wang, M. Y.; Chawla, N.] Arizona State Univ, Tempe, AZ 85287 USA. [Rohatgi, A.] Pacific NW Natl Lab, Energy Mat Grp, Richland, WA 99354 USA. RP Williams, JJ (reprint author), Arizona State Univ, Tempe, AZ 85287 USA. EM nchawla@asu.edu RI Chawla, Nikhilesh/A-3433-2008 OI Chawla, Nikhilesh/0000-0002-4478-8552 FU Pacific Northwest National Laboratory; Hoeganaes Corporation; Department of Energy's Office of Biological and Environmental Research FX The authors acknowledge Pacific Northwest National Laboratory and Hoeganaes Corporation for providing the materials and financial support for this research. A portion of the research was performed using Environmental and Molecular Science Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at PNNL. The assistance of Bruce Arey (EMSL, PNNL) for fabricating the micropillars in the Mg alloy is gratefully acknowledged. NR 24 TC 8 Z9 8 U1 3 U2 29 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 J9 JOM-US JI JOM PD FEB PY 2013 VL 65 IS 2 BP 226 EP 233 DI 10.1007/s11837-012-0516-9 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 064HM UT WOS:000313064800012 ER PT J AU Ma, BH Chao, S Narayanan, M Liu, SS Tong, S Koritala, RE Balachandran, U AF Ma, Beihai Chao, Sheng Narayanan, Manoj Liu, Shanshan Tong, Sheng Koritala, Rachel E. Balachandran, Uthamalingam TI Dense PLZT films grown on nickel substrates by PVP-modified sol-gel method SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID PB(ZR,TI)O-3 THIN-FILMS; ELECTRICAL-PROPERTIES; CRITICAL THICKNESS; RESIDUAL-STRESS; METAL FOILS; DEPOSITION; PZT AB We have successfully grown ferroelectric Pb-0.92 La0.08Zr0.52Ti0.48O3 (PLZT) films on base metal foils by chemical solution deposition using sol-gel solutions containing polyvinylpyrrolidone. Under zero-bias field, we measured a dielectric constant of approximate to 820 and dielectric loss of approximate to 0.06 at room temperature, and a dielectric constant of approximate to 1250 and dielectric loss of approximate to 0.03 at 150 degrees C. In addition, leakage current density of approximate to 1.5 x 10(-8) A/cm(2), remanent polarization of approximate to 11.2 mu C/cm(2), and coercive field of approximate to 40.6 kV/cm were measured at room temperature on a approximate to 3-mu m-thick PLZT film grown on LaNiO3-buffered nickel substrate. Finally, energy density approximate to 25 J/cm(3) was measured from the P-E hysteresis loop at an applied field of 2 x 10(6) V/cm. C1 [Ma, Beihai; Chao, Sheng; Narayanan, Manoj; Liu, Shanshan; Tong, Sheng; Balachandran, Uthamalingam] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. [Koritala, Rachel E.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Ma, BH (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. EM bma@anl.gov RI Liu, Shanshan/A-6143-2012; Tong, Sheng/A-2129-2011; Ma, Beihai/I-1674-2013 OI Tong, Sheng/0000-0003-0355-7368; Ma, Beihai/0000-0003-3557-2773 FU U.S. Department of Energy, Vehicle Technologies Program [DE-AC02-06CH11357] FX This work was funded by the U.S. Department of Energy, Vehicle Technologies Program, under Contract DE-AC02-06CH11357. This study benefited from the use of the Electron Microscopy Center (EMC) at the Argonne National Laboratory. NR 23 TC 9 Z9 10 U1 0 U2 55 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD FEB PY 2013 VL 48 IS 3 BP 1180 EP 1185 DI 10.1007/s10853-012-6857-5 PG 6 WC Materials Science, Multidisciplinary SC Materials Science GA 062FO UT WOS:000312904900024 ER PT J AU Hibbs, MR Cornelius, CJ AF Hibbs, Michael R. Cornelius, Chris J. TI Ion transport within random-sulfonated and block-sulfonated copolyimides SO JOURNAL OF MATERIALS SCIENCE LA English DT Article ID POLYMER ELECTROLYTE MEMBRANES; FUEL-CELL; POLYIMIDE MEMBRANES; EXCHANGE MEMBRANES; CONDUCTIVITY; OPERATION; NAFION AB A series of sulfonated copolyimides was prepared from 4,4-oxydianiline, sulfonated 4,4'-oxydianiline, and 4,4'-(4,4'-isopropylidenediphenoxy) bis(phthalic anhydride). Both random- and block structures were prepared by varying the timing of monomer addition to the polymerization reaction. The polymers were converted to their acid forms and then cast into films. H-1 NMR, FTIR, and non-aqueous titration verified the degree of polymer sulfonation. The block copolymers showed higher water uptake and proton conductivities than random copolymers with similar ion exchange capacity (IEC) values. These differences became pronounced as the IEC value was increased. C1 [Hibbs, Michael R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Cornelius, Chris J.] Univ Connecticut, Dept Chem Engn, Storrs, CT 06269 USA. RP Cornelius, CJ (reprint author), Univ Connecticut, Dept Chem Engn, Storrs, CT 06269 USA. EM ccornelius@engr.uconn.edu NR 28 TC 3 Z9 3 U1 3 U2 38 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0022-2461 J9 J MATER SCI JI J. Mater. Sci. PD FEB PY 2013 VL 48 IS 3 BP 1303 EP 1309 DI 10.1007/s10853-012-6873-5 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 062FO UT WOS:000312904900039 ER PT J AU Klinkby, E Lauritzen, B Nonbol, E Willendrup, PK Filges, U Wohlmuther, M Gallmeier, FX AF Klinkby, Esben Lauritzen, Bent Nonbol, Erik Willendrup, Peter Kjaer Filges, Uwe Wohlmuther, Michael Gallmeier, Franz X. TI Interfacing MCNPX and McStas for simulation of neutron transport SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Neutron; Transport; Simulation; MCNPX; McStas; Interface ID CODE AB Simulations of target-moderator-reflector system at spallation sources are conventionally carried out using Monte Carlo codes such as MCNPX (Waters et al., 2007 [1]) or FLUKA (Battistoni et al., 2007; Ferrari et al., 2005 [2,3]) whereas simulations of neutron transport from the moderator and the instrument response are performed by neutron ray tracing codes such as McStas (Lefmann and Nielsen, 1999; Willendrup et al., 2004, 2011a,b [4-7]). The coupling between the two simulation suites typically consists of providing analytical fits of MCNPX neutron spectra to McStas. This method is generally successful but has limitations, as it e.g. does not allow for re-entry of neutrons into the MCNPX regime. Previous work to resolve such shortcomings includes the introduction of McStas inspired supermirrors in MCNPX. In the present paper different approaches to interface MCNPX and McStas are presented and applied to a simple test case. The direct coupling between MCNPX and McStas allows for more accurate simulations of e.g. complex moderator geometries, backgrounds, interference between beam-lines as well as shielding requirements along the neutron guides. (C) 2012 Elsevier B.V. All rights reserved. C1 [Klinkby, Esben; Lauritzen, Bent; Nonbol, Erik] Tech Univ Denmark, DTU Nutech, DK-4000 Roskilde, Denmark. [Willendrup, Peter Kjaer] Tech Univ Denmark, DTU Phys, DK-2800 Lyngby, Denmark. [Filges, Uwe; Wohlmuther, Michael] Paul Scherrer Inst, CH-5232 Villigen, Switzerland. [Gallmeier, Franz X.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Klinkby, E (reprint author), Tech Univ Denmark, DTU Nutech, DTU Riso Campus,Frederiksborgvej 399, DK-4000 Roskilde, Denmark. EM esbe@dtu.dk RI Willendrup, Peter/E-3667-2014; OI Willendrup, Peter/0000-0002-4238-9478; Klinkby, Esben Bryndt/0000-0002-1908-5644 NR 11 TC 6 Z9 6 U1 0 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 1 PY 2013 VL 700 BP 106 EP 110 DI 10.1016/j.nima.2012.10.052 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 060XJ UT WOS:000312811400015 ER PT J AU Antipov, S Poluektov, O Schoessow, P Kanareykin, A Jing, CG AF Antipov, Sergey Poluektov, Oleg Schoessow, Paul Kanareykin, Alexei Jing, Chunguang TI Photoinduced spin polarization and microwave technology SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE Electron paramagnetic resonance; Active media; Low noise amplifier; Maser; Tunable absorption; Fullerenes; Related materials ID SOLID-STATE MASER; ROOM-TEMPERATURE AB We report here on studies of optically pumped active microwave media based on various fullerene derivatives, with an emphasis on the use of these materials in microwave electronics. We have investigated a class of optically excited paramagnetic materials that demonstrate activity in the X-band as candidate materials. We found that a particular fullerene derivative, Phenyl-C-61-butyric acid methyl ester (PCBM), produced the largest electron paramagnetic resonance (EPR) emission signal compared to other organic compounds that have been suggested for use as microwave active materials. We also studied the effects of concentration, temperature, solvent etc. on the activity of the material. In these experiments, EPR studies using a commercial spectrometer were followed up by measurements of an RF signal reflected from a resonator loaded with the PCBM-based material. The activity was directly demonstrated through the change in the quality factor and RF coupling between the resonator and waveguide feed. At the inception of these experiments the primary interest was the development of a microwave PASER. The PASER (particle acceleration by stimulated emission of radiation [1]) is a novel acceleration concept that is based on the direct energy transfer from an active medium to a charged particle beam. While the previous work on the PASER has emphasized operations at infrared or visible wavelengths, operating in the microwave regime has significant advantages in terms of the less stringent quality requirements placed on the electron beam provided an appropriate microwave active medium can be found. This paper is focused on our investigation of the possibility of a PASER operating in the microwave frequency regime [2] using active paramagnetic materials. While a high level of gain for PCBM was demonstrated compared to other candidate materials, dielectric losses and quenching effects were found to negatively impact its performance for PASER applications. We present results on development and bench testing for these new fullerene-based materials along with some conceptual designs for microwave PASERs. Other possible applications for active paramagnetic materials are suggested including low noise microwave amplifiers and tunable RF absorbers. (C) 2012 Elsevier B.V. All rights reserved. C1 [Antipov, Sergey] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Poluektov, Oleg] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Antipov, Sergey; Schoessow, Paul; Kanareykin, Alexei; Jing, Chunguang] Argonne Natl Lab, Div High Energy Phys, Argonne, IL USA. RP Antipov, S (reprint author), Argonne Natl Lab, Div High Energy Phys, Argonne, IL USA. EM s.antipov@euclidtechlabs.com FU US Department of Energy [DE-AC02-06CH11357]; SBIR [DE-FG02-05ER84355]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-06CH11357]; Argonne Director's Postdoctoral Fellowship FX The authors would like to thank Levi Schachter (Technion), Wei Gai (ANL), Kwangje Kim (ANL) and Sergey Kazakov (FNAL) for fruitful discussions. The comments of the anonymous referee were also most helpful. This work is supported by the US Department of Energy Contract no. DE-AC02-06CH11357 and SBIR grant #DE-FG02-05ER84355 (Euclid Techlabs LLC). O.P. gratefully acknowledges the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the U.S. Department of Energy through Grant DE-AC02-06CH11357 for funding the EPR research on electron transfer processes. S.A. gratefully acknowledges the support from Argonne Director's Postdoctoral Fellowship. NR 19 TC 0 Z9 0 U1 3 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 1 PY 2013 VL 700 BP 171 EP 178 DI 10.1016/j.nima.2012.10.016 PG 8 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 060XJ UT WOS:000312811400024 ER PT J AU Abbasi, R Abdou, Y Ackermann, M Adams, J Aguilar, JA Ahlers, M Altmann, D Andeen, K Auffenberg, J Bai, X Baker, M Barwick, SW Baum, V Bay, R Beattie, K Beatty, JJ Bechet, S Tjus, JB Becker, KH Bell, M Benabderrahmane, ML BenZvi, S Berdermann, J Berghaus, P Berley, D Bernardini, E Bertrand, D Besson, DZ Bindig, D Bissok, M Blaufuss, E Blumenthal, J Boersma, DJ Bohm, C Bose, D Boser, S Botner, O Brayeur, L Brown, AM Bruijn, R Brunner, J Buitink, S Caballero-Mora, KS Carson, M Casey, J Casier, M Chirkin, D Christy, B Clevermann, F Cohen, S Cowen, DF Silva, AHC Danninger, M Daughhetee, J Davis, JC De Clercq, C Descamps, F Desiati, P de Vries-Uiterweerd, G DeYoung, T Diaz-Velez, JC Dreyer, J Dumm, JP Dunkman, M Eagan, R Eisch, J Elliott, C Ellsworth, RW Engdegard, O Euler, S Evenson, PA Fadiran, O Fazely, AR Fedynitch, A Feintzeig, J Feusels, T Filimonov, K Finley, C Fischer-Wasels, T Flis, S Franckowiak, A Franke, R Frantzen, K Fuchs, T Gaisser, TK Gallagher, J Gerhardt, L Gladstone, L Glusenkamp, T Goldschmidt, A Goodman, JA Gora, D Grant, D Gross, A Grullon, S Gurtner, M Ha, C Ismail, AH Hallgren, A Halzen, F Hanson, K Heereman, D Heimann, P Heinen, D Helbing, K Hellauer, R Hickford, S Hill, GC Hoffman, KD Hoffmann, R Homeier, A Hoshina, K Huelsnitz, W Hulth, PO Hultqvist, K Hussain, S Ishihara, A Jacobi, E Jacobsen, J Japaridze, GS Jlelati, O Johansson, H Kappes, A Karg, T Karle, A Kiryluk, J Kislat, F Klas, J Klein, SR Klepser, S Kohne, JH Kohnen, G Kolanoski, H Kopke, L Kopper, C Kopper, S Koskinen, DJ Kowalski, M Krasberg, M Kroll, G Kunnen, J Kurahashi, N Kuwabara, T Labare, M Laihem, K Landsman, H Larson, MJ Lauer, R Lesiak-Bzdak, M Luenemann, J Madsen, J Maruyama, R Mase, K Matis, HS McDermott, A McNally, F Meagher, K Merck, M Meszaros, P Meures, T Miarecki, S Middell, E Milke, N Miller, J Mohrmann, L Montaruli, T Morse, R Movit, SM Nahnhauer, R Naumann, U Niessen, P Nowicki, SC Nygren, DR Obertackeo, A Odrowski, S Olivas, A Olivo, M O'Murchadha, A Panknin, S Paul, L Pepper, JA de los Heros, CP Pieloth, D Pirk, N Posselt, J Price, PB Przybylski, GT Radel, L Rawlins, K Redl, P Resconi, E Rhode, W Ribordy, M Richman, M Riedel, B Rodrigues, JP Roth, J Rothmaier, F Rott, C Roucelle, C Ruhe, T Rutledge, D Ruzybayev, B Ryckbosch, D Saba, SM Salameh, T Sander, HG Santander, M Sarkar, S Schatto, K Scheel, M Scheriau, F Schmidt, T Schmitz, M Schoenen, S Schoneberg, S Schonherr, L Schonwald, A Schukraft, A Schulte, L Schulz, O Seckel, D Seo, SH Sestayo, Y Seunarine, S Shulman, L Smith, MWE Soiron, M Soldin, D Spiczak, GM Spiering, C Stamatikos, M Stanev, T Stasik, A Stezelberger, T Stokstad, RG Stossl, A Stoyanov, S Strahler, EA Strom, R Sulanke, KH Sullivan, GW Taavola, H Taboada, I Tamburro, A Ter-Antonyan, S Tilav, S Toale, PA Toscano, S Usner, M van der Drift, D van Eijndhoven, N Van Overloop, A van Santen, J Vehring, M Voge, M Walck, C Waldenmaier, T Wallraff, M Walter, M Wasserman, R Weaver, C Wendt, C Westerhoff, S Whitehorn, N Wiebe, K Wiebusch, CH Williams, DR Wissing, H Wolf, M Wood, TR Woschnagg, K Xu, C Xu, DL Xu, XW Yanez, JP Yodh, G Yoshida, S Zarzhitsky, P Ziemann, J Zilles, A Zoll, M AF Abbasi, R. Abdou, Y. Ackermann, M. Adams, J. Aguilar, J. A. Ahlers, M. Altmann, D. Andeen, K. Auffenberg, J. Bai, X. Baker, M. Barwick, S. W. Baum, V. Bay, R. Beattie, K. Beatty, J. J. Bechet, S. Tjus, J. Becker Becker, K. -H. Bell, M. Benabderrahmane, M. L. BenZvi, S. Berdermann, J. Berghaus, P. Berley, D. Bernardini, E. Bertrand, D. Besson, D. Z. Bindig, D. Bissok, M. Blaufuss, E. Blumenthal, J. Boersma, D. J. Bohm, C. Bose, D. Boeser, S. Botner, O. Brayeur, L. Brown, A. M. Bruijn, R. Brunner, J. Buitink, S. Caballero-Mora, K. S. Carson, M. Casey, J. Casier, M. Chirkin, D. Christy, B. Clevermann, F. Cohen, S. Cowen, D. F. Silva, A. H. Cruz Danninger, M. Daughhetee, J. Davis, J. C. De Clercq, C. Descamps, F. Desiati, P. de Vries-Uiterweerd, G. DeYoung, T. Diaz-Velez, J. C. Dreyer, J. Dumm, J. P. Dunkman, M. Eagan, R. Eisch, J. Elliott, C. Ellsworth, R. W. Engdegard, O. Euler, S. Evenson, P. A. Fadiran, O. Fazely, A. R. Fedynitch, A. Feintzeig, J. Feusels, T. Filimonov, K. Finley, C. Fischer-Wasels, T. Flis, S. Franckowiak, A. Franke, R. Frantzen, K. Fuchs, T. Gaisser, T. K. Gallagher, J. Gerhardt, L. Gladstone, L. Gluesenkamp, T. Goldschmidt, A. Goodman, J. A. Gora, D. Grant, D. Gross, A. Grullon, S. Gurtner, M. Ha, C. Ismail, A. Haj Hallgren, A. Halzen, F. Hanson, K. Heereman, D. Heimann, P. Heinen, D. Helbing, K. Hellauer, R. Hickford, S. Hill, G. C. Hoffman, K. D. Hoffmann, R. Homeier, A. Hoshina, K. Huelsnitz, W. Hulth, P. O. Hultqvist, K. Hussain, S. Ishihara, A. Jacobi, E. Jacobsen, J. Japaridze, G. S. Jlelati, O. Johansson, H. Kappes, A. Karg, T. Karle, A. Kiryluk, J. Kislat, F. Klaes, J. Klein, S. R. Klepser, S. Koehne, J. -H. Kohnen, G. Kolanoski, H. Koepke, L. Kopper, C. Kopper, S. Koskinen, D. J. Kowalski, M. Krasberg, M. Kroll, G. Kunnen, J. Kurahashi, N. Kuwabara, T. Labare, M. Laihem, K. Landsman, H. Larson, M. J. Lauer, R. Lesiak-Bzdak, M. Luenemann, J. Madsen, J. Maruyama, R. Mase, K. Matis, H. S. McDermott, A. McNally, F. Meagher, K. Merck, M. Meszaros, P. Meures, T. Miarecki, S. Middell, E. Milke, N. Miller, J. Mohrmann, L. Montaruli, T. Morse, R. Movit, S. M. Nahnhauer, R. Naumann, U. Niessen, P. Nowicki, S. C. Nygren, D. R. Obertackeo, A. Odrowski, S. Olivas, A. Olivo, M. O'Murchadha, A. Panknin, S. Paul, L. Pepper, J. A. de los Heros, C. Perez Pieloth, D. Pirk, N. Posselt, J. Price, P. B. Przybylski, G. T. Raedel, L. Rawlins, K. Redl, P. Resconi, E. Rhode, W. Ribordy, M. Richman, M. Riedel, B. Rodrigues, J. P. Roth, J. Rothmaier, F. Rott, C. Roucelle, C. Ruhe, T. Rutledge, D. Ruzybayev, B. Ryckbosch, D. Saba, S. M. Salameh, T. Sander, H. -G. Santander, M. Sarkar, S. Schatto, K. Scheel, M. Scheriau, F. Schmidt, T. Schmitz, M. Schoenen, S. Schoeneberg, S. Schoenherr, L. Schoenwald, A. Schukraft, A. Schulte, L. Schulz, O. Seckel, D. Seo, S. H. Sestayo, Y. Seunarine, S. Shulman, L. Smith, M. W. E. Soiron, M. Soldin, D. Spiczak, G. M. Spiering, C. Stamatikos, M. Stanev, T. Stasik, A. Stezelberger, T. Stokstad, R. G. Stoessl, A. Stoyanov, S. Strahler, E. A. Strom, R. Sulanke, K-H. Sullivan, G. W. Taavola, H. Taboada, I. Tamburro, A. Ter-Antonyan, S. Tilav, S. Toale, P. A. Toscano, S. Usner, M. van der Drift, D. van Eijndhoven, N. Van Overloop, A. van Santen, J. Vehring, M. Voge, M. Walck, C. Waldenmaier, T. Wallraff, M. Walter, M. Wasserman, R. Weaver, Ch. Wendt, C. Westerhoff, S. Whitehorn, N. Wiebe, K. Wiebusch, C. H. Williams, D. R. Wissing, H. Wolf, M. Wood, T. R. Woschnagg, K. Xu, C. Xu, D. L. Xu, X. W. Yanez, J. P. Yodh, G. Yoshida, S. Zarzhitsky, P. Ziemann, J. Zilles, A. Zoll, M. CA IceCube Collaboration TI IceTop: The surface component of IceCube SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT LA English DT Article DE IceCube; IceTop; Cosmic rays; Air shower; Detector ID RAY ARRIVAL DIRECTIONS; ENERGY-SPECTRUM; DIGITIZATION; PERFORMANCE; SIMULATION; ANISOTROPY; SHOWERS; FLUX AB IceTop, the surface component of the IceCube Neutrino Observatory at the South Pole, is an air shower array with an area of 1 km(2). The detector allows a detailed exploration of the mass composition of primary cosmic rays in the energy range from about 100 TeV to 1 EeV by exploiting the correlation between the shower energy measured in IceTop and the energy deposited by muons in the deep ice. In this paper we report on the technical design, construction and installation, the trigger and data acquisition systems as well as the software framework for calibration, reconstruction and simulation. Finally the first experience from commissioning and operating the detector and the performance as an air shower detector will be discussed. (C) 2012 Elsevier B.V. All rights reserved. C1 [Altmann, D.; Kappes, A.; Kolanoski, H.; Waldenmaier, T.] Univ W Indies, Inst Phys, BB-11000 Bridgetown, Barbados. [Bissok, M.; Blumenthal, J.; Boersma, D. J.; Euler, S.; Heimann, P.; Heinen, D.; Laihem, K.; Paul, L.; Raedel, L.; Scheel, M.; Schoenen, S.; Schoenherr, L.; Schukraft, A.; Soiron, M.; Vehring, M.; Wallraff, M.; Wiebusch, C. H.; Zilles, A.] Rhein Westfal TH Aachen, Inst Phys 3, D-52056 Aachen, Germany. [Hill, G. C.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA 5005, Australia. [Rawlins, K.] Univ Alaska Anchorage, Dept Phys & Astron, Anchorage, AK 99508 USA. [Japaridze, G. S.] Clark Atlanta Univ, CTSPS, Atlanta, GA 30314 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA. [Casey, J.; Daughhetee, J.; Taboada, I.] Georgia Inst Technol, Ctr Relativist Astrophys, Atlanta, GA 30332 USA. [Fazely, A. R.; Ter-Antonyan, S.; Xu, X. W.] Southern Univ, Dept Phys, Baton Rouge, LA 70813 USA. [Bay, R.; Filimonov, K.; Gerhardt, L.; Ha, C.; Klein, S. R.; Miarecki, S.; Price, P. B.; van der Drift, D.; Woschnagg, K.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Beattie, K.; Gerhardt, L.; Goldschmidt, A.; Ha, C.; Klein, S. R.; Matis, H. S.; Miarecki, S.; Nygren, D. R.; Przybylski, G. T.; Roucelle, C.; Stezelberger, T.; Stokstad, R. G.; van der Drift, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Tjus, J. Becker; Dreyer, J.; Fedynitch, A.; Olivo, M.; Saba, S. M.; Schoeneberg, S.] Ruhr Univ Bochum, Fak Phys & Astron, D-44780 Bochum, Germany. [Boeser, S.; Franckowiak, A.; Homeier, A.; Kowalski, M.; Panknin, S.; Schulte, L.; Stasik, A.; Usner, M.; Voge, M.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Seunarine, S.] Univ W Indies, Dept Phys, BB-11000 Bridgetown, Barbados. [Bechet, S.; Bertrand, D.; Hanson, K.; Heereman, D.; Meures, T.; O'Murchadha, A.] Univ Libre Bruxelles, Sci Fac CP230, B-1050 Brussels, Belgium. [Bose, D.; Brayeur, L.; Buitink, S.; Casier, M.; De Clercq, C.; Kunnen, J.; Labare, M.; Miller, J.; Strahler, E. A.; van Eijndhoven, N.] Vrije Univ Brussel, Dienst ELEM, B-1050 Brussels, Belgium. [Ishihara, A.; Mase, K.; Yoshida, S.] Chiba Univ, Dept Phys, Chiba 2638522, Japan. [Adams, J.; Brown, A. M.; Hickford, S.] Univ Canterbury, Dept Phys & Astron, Christchurch 1, New Zealand. [Berley, D.; Blaufuss, E.; Christy, B.; Ellsworth, R. W.; Goodman, J. A.; Hellauer, R.; Hoffman, K. D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G. W.; Wissing, H.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Beatty, J. J.; Davis, J. C.; Rott, C.; Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Beatty, J. J.] Ohio State Univ, Dept Astron, Columbus, OH 43210 USA. [Clevermann, F.; Frantzen, K.; Fuchs, T.; Koehne, J. -H.; Milke, N.; Pieloth, D.; Rhode, W.; Ruhe, T.; Scheriau, F.; Schmitz, M.; Ziemann, J.] TU Dortmund Univ, Dept Phys, D-44221 Dortmund, Germany. [Grant, D.; Nowicki, S. C.; Wood, T. R.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7, Canada. [Aguilar, J. A.; Montaruli, T.] Univ Geneva, Dept Phys Nucl & Corpusculaire, CH-1211 Geneva, Switzerland. [Abdou, Y.; Carson, M.; Descamps, F.; de Vries-Uiterweerd, G.; Feusels, T.; Ismail, A. Haj; Jlelati, O.; Ryckbosch, D.; Van Overloop, A.] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Barwick, S. W.; Yodh, G.] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA. [Bruijn, R.; Cohen, S.; Ribordy, M.] Ecole Polytech Fed Lausanne, Lab High Energy Phys, CH-1015 Lausanne, Switzerland. [Besson, D. Z.] Univ Kansas, Dept Phys & Astron, Lawrence, KS 66045 USA. [Gallagher, J.] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA. [Abbasi, R.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Abbasi, R.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Baker, M.; BenZvi, S.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J. P.; Santander, M.; Toscano, S.; van Santen, J.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.] Univ Wisconsin, Wisconsin IceCube Particle Astrophys Ctr, Madison, WI 53706 USA. [Baum, V.; Koepke, L.; Luenemann, J.; Rothmaier, F.; Sander, H. -G.; Schatto, K.; Wiebe, K.] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany. [Kohnen, G.] Univ Mons, B-7000 Mons, Belgium. [Gross, A.; Odrowski, S.; Resconi, E.; Schulz, O.; Sestayo, Y.] Tech Univ Munich, D-85748 Garching, Germany. [Bai, X.; Elliott, C.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; McDermott, A.; Niessen, P.; Roth, J.; Ruzybayev, B.; Seckel, D.; Shulman, L.; Stanev, T.; Stoyanov, S.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Bartol Res Inst, Newark, DE 19716 USA. [Bai, X.; Elliott, C.; Evenson, P. A.; Gaisser, T. K.; Hussain, S.; Kuwabara, T.; McDermott, A.; Niessen, P.; Roth, J.; Ruzybayev, B.; Seckel, D.; Shulman, L.; Stanev, T.; Stoyanov, S.; Tamburro, A.; Tilav, S.; Xu, C.] Univ Delaware, Dept Phys & Astron, Newark, DE 19716 USA. [Sarkar, S.] Univ Oxford, Dept Phys, Oxford OX1 3NP, England. [Madsen, J.; Spiczak, G. M.] Univ Wisconsin, Dept Phys, River Falls, WI 54022 USA. [Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Dept Phys, SE-10691 Stockholm, Sweden. [Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P. O.; Hultqvist, K.; Johansson, H.; Seo, S. H.; Walck, C.; Wolf, M.; Zoll, M.] Stockholm Univ, Oskar Klein Ctr, SE-10691 Stockholm, Sweden. [Lesiak-Bzdak, M.] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA. [Larson, M. J.; Pepper, J. A.; Toale, P. A.; Williams, D. R.; Xu, D. L.; Zarzhitsky, P.] Univ Alabama, Dept Phys & Astron, Tuscaloosa, AL 35487 USA. [Cowen, D. F.; Kiryluk, J.; Meszaros, P.; Movit, S. M.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Bell, M.; Caballero-Mora, K. S.; Cowen, D. F.; DeYoung, T.; Dunkman, M.; Eagan, R.; Koskinen, D. J.; Kroll, G.; Meszaros, P.; Rutledge, D.; Salameh, T.; Smith, M. W. E.; Wasserman, R.] Penn State Univ, Dept Phys, University Pk, PA 16802 USA. [Botner, O.; Engdegard, O.; Hallgren, A.; de los Heros, C. Perez; Strom, R.; Taavola, H.] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden. [Becker, K. -H.; Bindig, D.; Fischer-Wasels, T.; Gurtner, M.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertackeo, A.; Posselt, J.; Soldin, D.] Univ Wuppertal, Dept Phys, D-42119 Wuppertal, Germany. [Ackermann, M.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Bernardini, E.; Brunner, J.; Silva, A. H. Cruz; Franke, R.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Kislat, F.; Klepser, S.; Lauer, R.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Pirk, N.; Schoenwald, A.; Spiering, C.; Stoessl, A.; Sulanke, K-H.; Walter, M.; Yanez, J. P.] DESY, D-15735 Zeuthen, Germany. RP Kolanoski, H (reprint author), Univ W Indies, Inst Phys, Cave Hill Campus, BB-11000 Bridgetown, Barbados. EM Hermann.Kolanoski@desy.de RI Wiebusch, Christopher/G-6490-2012; Auffenberg, Jan/D-3954-2014; Koskinen, David/G-3236-2014; Brunner, Juergen/G-3540-2015; Aguilar Sanchez, Juan Antonio/H-4467-2015; Maruyama, Reina/A-1064-2013; Beatty, James/D-9310-2011; Taavola, Henric/B-4497-2011; Botner, Olga/A-9110-2013; Hallgren, Allan/A-8963-2013; Sarkar, Subir/G-5978-2011; Tjus, Julia/G-8145-2012 OI Ter-Antonyan, Samvel/0000-0002-5788-1369; Schukraft, Anne/0000-0002-9112-5479; Carson, Michael/0000-0003-0400-7819; Perez de los Heros, Carlos/0000-0002-2084-5866; Benabderrahmane, Mohamed Lotfi/0000-0003-4410-5886; Lauer, Robert/0000-0003-1933-7861; Wiebusch, Christopher/0000-0002-6418-3008; Auffenberg, Jan/0000-0002-1185-9094; Koskinen, David/0000-0002-0514-5917; Brunner, Juergen/0000-0002-5052-7236; Aguilar Sanchez, Juan Antonio/0000-0003-2252-9514; Maruyama, Reina/0000-0003-2794-512X; Beatty, James/0000-0003-0481-4952; Rott, Carsten/0000-0002-6958-6033; Taavola, Henric/0000-0002-2604-2810; Sarkar, Subir/0000-0002-3542-858X; FU U.S. National Science Foundation-Office of Polar Programs; U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation; Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin - Madison; Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy; National Energy Research Scientific Computing Center; Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council; Swedish Polar Research Secretariat; Swedish National Infrastructure for Computing (SNIC); Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF); Deutsche Forschungsgemeinschaft (DFG); Research Department of Plasmas with Complex Interactions (Bochum), Germany; und for Scientific Research (FNRS-FWO); FWO Odysseus programme; Flanders Institute to encourage scientific and technological research in industry (IWT); Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); Swiss National Science Foundation (SNSF), Switzerland FX We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin - Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; National Science and Engineering Research Council of Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland. NR 64 TC 44 Z9 44 U1 2 U2 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-9002 EI 1872-9576 J9 NUCL INSTRUM METH A JI Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. PD FEB 1 PY 2013 VL 700 BP 188 EP 220 DI 10.1016/j.nima.2012.10.067 PG 33 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Nuclear; Physics, Particles & Fields SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 060XJ UT WOS:000312811400027 ER PT J AU Hearon, K Smith, SE Maher, CA Wilson, TS Maitland, DJ AF Hearon, Keith Smith, Sarah E. Maher, Cameron A. Wilson, Thomas S. Maitland, Duncan J. TI The effect of free radical inhibitor on the sensitized radiation crosslinking and thermal processing stabilization of polyurethane shape memory polymers SO RADIATION PHYSICS AND CHEMISTRY LA English DT Article DE Shape memory polymer; Electron beam crosslinking; Inhibitor stabilization ID ELECTRON-BEAM; POLYFUNCTIONAL MONOMERS; IRRADIATION; NETWORKS; POLYMERIZATION; POLYETHYLENE; ELASTOMER; BEHAVIOR; PROGRESS; RUBBER AB The effects of free radical inhibitor on the electron beam crosslinking and thermal processing stabilization of novel radiation crosslinkable polyurethane shape memory polymers (SMPs) blended with acrylic radiation sensitizers have been determined. The SMPs in this study possess novel processing capabilities-that is, the ability to be melt processed into complex geometries as thermoplastics and crosslinked in a secondary step using electron beam irradiation. To increase susceptibility to radiation crosslinking, the radiation sensitizer pentaerythritol triacrylate (PETA) was solution blended with thermoplastic polyurethane SMPs made from 2-butene-1,4-diol and trimethylhexamethylene diisocyanate (TMHDI). Because the thermoplastic melt processing methods such as injection molding are often carried out at elevated temperatures, sensitizer thermal instability is a major processing concern. Free radical inhibitor can be added to provide thermal stabilization: however, inhibitor can also undesirably inhibit radiation crosslinking. In this study, we quantified both the thermal stabilization and radiation crosslinking inhibition effects of the inhibitor 1,4-benzoquinone (BQ) on polyurethane SMPs blended with PETA. Sol/gel analysis of irradiated samples showed that the inhibitor had little to no inverse effects on gel fraction at concentrations of 0-10,000 ppm, and dynamic mechanical analysis showed only a slight negative correlation between BQ composition and rubbery modulus. The 1,4-benzoquinone was also highly effective in thermally stabilizing the acrylic sensitizers. The polymer blends could be heated to 150 degrees C for up to 5 h or to 125 degrees C for up to 24 h if stabilized with 10,000 ppm BQ and could also be heated to 125 degrees C for up to 5 h if stabilized with 1000 ppm BQ without sensitizer reaction occurring. We believe this study provides significant insight into methods for manipulation of the competing mechanisms of radiation crosslinking and thermal stabilization of radiation sensitizers, thereby facilitating further development of radiation crosslinkable thermoplastic SMPs. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Hearon, Keith; Smith, Sarah E.; Maher, Cameron A.; Maitland, Duncan J.] Texas A&M Univ, Dept Biomed Engn, College Stn, TX 77843 USA. [Wilson, Thomas S.] Lawrence Livermore Natl Lab, Div Chem Sci, Livermore, CA 94551 USA. RP Maitland, DJ (reprint author), Texas A&M Univ, Dept Biomed Engn, 5045 Emerging Technol Bldg,Mailstop 3120, College Stn, TX 77843 USA. EM hearon.keith@tamu.edu; ssphf@mail.missouri.edu; wilson97@llnl.gov; djmaitland@tamu.edu FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering [R01EB000462]; National Science Foundation (NSF) FX The authors thank Dr. Karen L Wooley for kindly providing the GPC system used in this study and Alexander T. Lonnecker for performing the GPC experiment. This work was partially performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and supported by the National Institutes of Health/National Institute of Biomedical Imaging and Bioengineering Grant R01EB000462. Funding for the work of K. Hearon was provided by the National Science Foundation (NSF) Graduate Research Fellowship Program (GRFP) fellowship. NR 43 TC 12 Z9 15 U1 2 U2 75 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-806X J9 RADIAT PHYS CHEM JI Radiat. Phys. Chem. PD FEB PY 2013 VL 83 BP 111 EP 121 DI 10.1016/j.radphyschem.2012.10.007 PG 11 WC Chemistry, Physical; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical SC Chemistry; Nuclear Science & Technology; Physics GA 062NL UT WOS:000312926500018 PM 23226930 ER PT J AU Yang, ZQ Wang, TP Copping, AE AF Yang, Zhaoqing Wang, Taiping Copping, Andrea E. TI Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model SO RENEWABLE ENERGY LA English DT Article DE Tidal energy; Tidal circulation; Numerical model; Flushing time ID MINAS PASSAGE; ESTUARIES; POWER; CURRENTS; FIELD; EUTROPHICATION; CONSEQUENCES; ECOSYSTEM; TURBINES; BLOOMS AB This paper presents a numerical modeling study for simulating in-stream tidal energy extraction and assessing its effects on the hydrodynamics and transport processes in a tidal channel and bay system connecting to coastal ocean. A marine and hydrokinetic (MHK) module was implemented in a three-dimensional (3-D) coastal ocean model using the momentum sink approach. The MHK model was validated with the analytical solutions for tidal channels under one-dimensional (1-D) conditions. Model simulations were further carried out to compare the momentum sink approach with the quadratic bottom friction approach. The effects of 3-D simulations on the vertical velocity profile, maximum extractable energy, and volume flux reduction across the channel were investigated through a series of numerical experiments. 3-D model results indicate that the volume flux reduction at the maximum extractable power predicted by the 1-D analytical model or two-dimensional (2-D) depth-averaged numerical model may be overestimated. Maximum extractable energy strongly depends on the turbine hub height in the water column, which reaches a maximum when turbine hub height is located at mid-water depth. Far-field effects of tidal turbines on the flushing time of the tidal bay were also investigated. Model results demonstrate that tidal energy extraction has a greater effect on the flushing time than volume flux reduction, which could negatively affect the biogeochemical processes in estuarine and coastal waters that support primary productivity and higher forms of marine life. Published by Elsevier Ltd. C1 [Yang, Zhaoqing; Wang, Taiping; Copping, Andrea E.] Pacific NW Natl Lab, Seattle, WA 98109 USA. RP Yang, ZQ (reprint author), Pacific NW Natl Lab, 1100 Dexter Ave N,Ste 400, Seattle, WA 98109 USA. EM zhaoqing.yang@pnnl.gov FU Wind and Water Power Program under the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy FX This study is funded by the Wind and Water Power Program under the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy. We thank Chris Garrett for discussion during this study. NR 42 TC 30 Z9 31 U1 1 U2 41 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-1481 J9 RENEW ENERG JI Renew. Energy PD FEB PY 2013 VL 50 BP 605 EP 613 DI 10.1016/j.renene.2012.07.024 PG 9 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 047UB UT WOS:000311865900075 ER PT J AU Tafen, DN Miller, JB Dogan, ON Baltrus, JP Kondratyuk, P AF Tafen, D. N. Miller, J. B. Dogan, Oe. N. Baltrus, J. P. Kondratyuk, P. TI Oxygen-induced Y surface segregation in a CuPdY ternary alloy SO SURFACE SCIENCE LA English DT Article DE Surface composition; Surface segregation; CuPd alloys; Hydrogen purification alloys; First-principles calculations; Palladium yttrium alloys; Adsorbate-induced segregation ID TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; HYDROGEN PERMEANCE; BASIS-SET; MEMBRANES; TEMPERATURES AB We present a comprehensive theoretical and experimental study of the segregation behavior of the ternary alloy CuPdY in vacuum (i.e., the clean surface) and in the presence of oxygen. Theoretical prediction shows that for clean surface, yttrium will substitute first for Cu and then for Pd at the subsurface lattice site before segregating to the surface where it substitutes for Cu. XRD characterization of the surface of CuPdY indicates the presence of two major phases, B2 CuPd and Pd3Y. In the presence of adsorbed oxygen, theory predicts that Y preferentially occupies surface sites due to its stronger oxygen affinity compared to Cu and Pd. XPS experiments confirm the computational results in the adsorbed oxygen case, showing that surface segregation of yttrium is induced by the formation of Y-oxides at the top-surface of the alloy. (C) 2012 Elsevier B.V. All rights reserved. C1 [Tafen, D. N.; Dogan, Oe. N.] Natl Energy Technol Lab, Albany, OR 97321 USA. [Miller, J. B.; Baltrus, J. P.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Tafen, D. N.] URS Corp, Albany, OR 97321 USA. [Miller, J. B.; Kondratyuk, P.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. RP Tafen, DN (reprint author), Natl Energy Technol Lab, 1450 Queen Ave SW, Albany, OR 97321 USA. EM denyago.tafen@contr.netl.doe.gov OI Tafen, De Nyago/0000-0002-4360-9508 FU National Energy Technology Laboratory's (NETL) ongoing research on Hydrogen and Clean Fuels under the RES [DE-FE-0004000]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This technical effort was performed in support of the National Energy Technology Laboratory's (NETL) ongoing research on Hydrogen and Clean Fuels under the RES contract DE-FE-0004000. The computational effort in this research used the resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 17 TC 5 Z9 6 U1 1 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD FEB PY 2013 VL 608 BP 61 EP 66 DI 10.1016/j.susc.2012.09.013 PG 6 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 058DY UT WOS:000312615500008 ER PT J AU de Alwis, A Holsclaw, B Pushkarev, VV Reinicker, A Lawton, TJ Blecher, ME Sykes, ECH Gellman, AJ AF de Alwis, A. Holsclaw, B. Pushkarev, V. V. Reinicker, A. Lawton, T. J. Blecher, M. E. Sykes, E. C. H. Gellman, A. J. TI Surface Structure Spread Single Crystals ((SC)-C-4): Preparation and characterization SO SURFACE SCIENCE LA English DT Article DE Surface structure; Structure sensitivity; STM; Single crystal; High Miller index ID INITIAL OXIDATION-KINETICS; CHIRAL PLATINUM SURFACES; COPPER SURFACES; ADSORPTION; OXYGEN; SPECIFICITY; DEHYDROGENATION; HYDROGENOLYSIS; CYCLOHEXANE AB A set of six spherically curved Cu single crystals referred to as Surface Structure Spread Single Crystals ((SCs)-Cs-4) has been prepared in such a way that their exposed surfaces collectively span all possible crystallographic surface orientations that can be cleaved from the face centered cubic Cu lattice. The method for preparing these (SCs)-Cs-4 and for finding the high symmetry pole point is described. Optical profilometry has been used to determine the true shapes of the (SCs)-Cs-4 and show that over the majority of the surface, the shape is extremely close to that of a perfect sphere. The local orientations of the surfaces lie within +/- 1 degrees of the orientation expected on the basis of the spherical shape; their orientation is as good as that of many commercially prepared single crystals. STM imaging has been used to characterize the atomic level structure of the Cu(111) +/- 11 degrees-(SC)-C-4. This has shown that the average step densities and the average step orientations match those expected based on the spherical shape. In other words, although there is some distribution of step-step spacing and step orientations, there is no evidence of large scale reconstruction or faceting. The Cu (SCs)-Cs-4 have local structures based on the ideal termination of the face centered cubic Cu lattice in the direction of termination. The set of Cu (SCs)-Cs-4 will serve as the basis for high throughput investigations of structure sensitive surface chemistry on Cu. (C) 2012 Elsevier B.V. All rights reserved. C1 [de Alwis, A.; Holsclaw, B.; Pushkarev, V. V.; Reinicker, A.; Gellman, A. J.] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. [Reinicker, A.; Gellman, A. J.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Lawton, T. J.; Blecher, M. E.; Sykes, E. C. H.] Tufts Univ, Dept Chem, Medford, MA 02155 USA. RP Gellman, AJ (reprint author), Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA. EM gellman@cmu.edu RI Gellman, Andrew/M-2487-2014; OI Gellman, Andrew/0000-0001-6618-7427; Holsclaw, Brian/0000-0002-7501-8411 FU RES contract [DE-FE0004000]; NSF [CHE-1012307] FX As part of the National Energy Technology laboratory's Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, this technical effort was performed under the RES contract DE-FE0004000. This support was used to prepare the S4C samples. The STM imaging potion of this work and the analysis of S4C shape were supported by the NSF through grant CHE-1012307. NR 30 TC 5 Z9 5 U1 0 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD FEB PY 2013 VL 608 BP 80 EP 87 DI 10.1016/j.susc.2012.09.015 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 058DY UT WOS:000312615500011 ER PT J AU Starr, DE Bluhm, H AF Starr, David E. Bluhm, Hendrik TI CO adsorption and dissociation on Ru(0001) at elevated pressures SO SURFACE SCIENCE LA English DT Article DE X-ray photoelectron spectroscopy; Carbon monoxide; Ruthenium; Adsorption; Dissociation ID FISCHER-TROPSCH SYNTHESIS; SCANNING-TUNNELING-MICROSCOPY; PHOTOELECTRON-SPECTROSCOPY; CARBON-MONOXIDE; VIBRATIONAL SPECTROSCOPY; HETEROGENEOUS CATALYSIS; ADSORBATE INTERACTIONS; PT/RU(0001) INTERFACE; DESORPTION-KINETICS; AMBIENT-PRESSURE AB We have investigated the adsorption and dissociation of CO on Ru(0001) surfaces at pressures from ultra-high vacuum up to 1 Torr and temperatures from 293 to 575 K using Ambient Pressure X-ray Photoelectron Spectroscopy (AP-XPS). At CO pressures above similar to 10(-6) Torr additional CO is adsorbed on the surface, leading to a CO coverage greater than the saturation coverage (0.66 ML) observed under UHV conditions. Binding energy shifts of the O 15 core level indicate that most of the additional adsorbed CO is located in bridge sites between two Ru atoms. At pressures above 10(-2) Torr the coverage of CO saturates at similar to 0.88 ML Isobaric measurements at 0.04 Torr CO indicate that the bridge bonded CO is stable up to a temperature of similar to 350 K and desorbs entirely by similar to 400 K. Additional CO desorbs over the temperature range of similar to 450 K to similar to 485 K. decreasing the CO coverage to similar to 0.58 ML. Above 520 K we observe the build-up of carbon on the surface which we attribute to the dissociation of CO. At 575 K and 0.04 Tort CO the equivalent of similar to 3.8 ML of carbon is present on the Ru(0001) surface. Potential mechanisms for the formation of this large amount of carbon on the surface will be discussed. (C) 2012 Elsevier B.V. All rights reserved. C1 [Starr, David E.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Bluhm, Hendrik] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Starr, DE (reprint author), Helmholtz Zentrum Berlin Mat & Energie GmbH, Inst Silicon Photovolta, Kekulestr 5, D-12489 Berlin, Germany. EM david.starr@helmholtz-berlin.de; hbluhm@lbl.gov FU U.S. Department of Energy [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences and Materials Sciences Division of the US Department of Energy at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This manuscript has been co-authored by employees of Brookhaven Science Associates, LLC under contract no. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.; This work was made possible through the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. The ALS and the MES beamline 11.0.2 are supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences and Materials Sciences Division of the US Department of Energy at the Lawrence Berkeley National Laboratory under contract no. DE-AC02-05CH11231. NR 50 TC 27 Z9 27 U1 2 U2 93 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 J9 SURF SCI JI Surf. Sci. PD FEB PY 2013 VL 608 BP 241 EP 248 DI 10.1016/j.susc.2012.10.014 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 058DY UT WOS:000312615500032 ER PT J AU Bouchet, L Amestoy, P Buttari, A Rouet, FH Chauvin, M AF Bouchet, L. Amestoy, P. Buttari, A. Rouet, F. -H. Chauvin, M. TI Simultaneous analysis of large INTEGRAL/SPI datasets: Optimizing the computation of the solution and its variance using sparse matrix algorithms SO ASTRONOMY AND COMPUTING LA English DT Article DE Methods: data analysis; Methods: numerical; Techniques: imaging spectroscopy; Techniques: miscellaneous; Gamma-rays: general AB Nowadays, analyzing and reducing the ever larger astronomical datasets is becoming a crucial challenge, especially for long cumulated observation times. The INTEGRAL/SPI X/gamma-ray spectrometer is an instrument for which it is essential to process many exposures at the same time in order to increase the low signal-to-noise ratio of the weakest sources. In this context, the conventional methods for data reduction are inefficient and sometimes not feasible at all. Processing several years of data simultaneously requires computing not only the solution of a large system of equations, but also the associated uncertainties. We aim at reducing the computation time and the memory usage. Since the SPI transfer function is sparse, we have used some popular methods for the solution of large sparse linear systems; we briefly review these methods. We use the Multifrontal Massively Parallel Solver (MUMPS) to compute the solution of the system of equations. We also need to compute the variance of the solution, which amounts to computing selected entries of the inverse of the sparse matrix corresponding to our linear system. This can be achieved through one of the latest features of the MUMPS software that has been partly motivated by this work. In this paper we provide a brief presentation of this feature and evaluate its effectiveness on astrophysical problems requiring the processing of large datasets simultaneously, such as the study of the entire emission of the Galaxy. We used these algorithms to solve the large sparse systems arising from SPI data processing and to obtain both their solutions and the associated variances. In conclusion, thanks to these newly developed tools, processing large datasets arising from SPI is now feasible with both a reasonable execution time and a low memory usage. (c) 2013 Elsevier B.V. All rights reserved. C1 [Bouchet, L.; Chauvin, M.] Univ Toulouse, UPS OMP, IRAP, Toulouse, France. [Bouchet, L.; Chauvin, M.] CNRS, IRAP, F-31028 Toulouse 4, France. [Amestoy, P.; Rouet, F. -H.] Univ Toulouse, INPT ENSEEIHT IRIT, Toulouse, France. [Buttari, A.] CNRS IRIT, Paris, France. [Rouet, F. -H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Bouchet, L (reprint author), Univ Toulouse, UPS OMP, IRAP, Toulouse, France. EM lbouchet@irap.omp.eu NR 38 TC 2 Z9 2 U1 1 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-1337 EI 2213-1345 J9 ASTRON COMPUT JI Astron. Comput. PD FEB PY 2013 VL 1 BP 59 EP 69 DI 10.1016/j.ascom.2013.03.002 PG 11 WC Astronomy & Astrophysics; Computer Science, Interdisciplinary Applications SC Astronomy & Astrophysics; Computer Science GA V39BC UT WOS:000209385500009 ER PT J AU Tiron, C Pellesler, F Wnuk-Lipinska, K Stefansson, I Virtakolvu, R Miyano, M Sandal, T Micklem, D Garbe, J Stampfer, M Ivaska, J Akslen, L LaBarga, M Lorens, J AF Tiron, Crina Pellesler, Fanny Wnuk-Lipinska, Katarzyna Stefansson, Ingunn Virtakolvu, Reeta Miyano, Masaru Sandal, Tone Micklem, David Garbe, James Stampfer, Martha Ivaska, Johanna Akslen, Lars LaBarga, Mark Lorens, James TI Axl signaling is required for stem cell traits and metastasis in breast cancer SO CANCER RESEARCH LA English DT Meeting Abstract C1 [Tiron, Crina; Pellesler, Fanny; Wnuk-Lipinska, Katarzyna; Stefansson, Ingunn; Akslen, Lars; Lorens, James] Univ Bergen, Bergen, Norway. [Virtakolvu, Reeta; Ivaska, Johanna] Univ Turku, Turku, Finland. [Miyano, Masaru; Garbe, James; Stampfer, Martha; LaBarga, Mark] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sandal, Tone; Micklem, David] BerGenBio AS, Bergen, Norway. RI Akslen, Lars /C-1202-2017; Lorens, James/B-9737-2017 OI Akslen, Lars /0000-0003-2710-9543; Lorens, James/0000-0002-6782-3349 NR 0 TC 0 Z9 0 U1 0 U2 0 PU AMER ASSOC CANCER RESEARCH PI PHILADELPHIA PA 615 CHESTNUT ST, 17TH FLOOR, PHILADELPHIA, PA 19106-4404 USA SN 0008-5472 EI 1538-7445 J9 CANCER RES JI Cancer Res. PD FEB 1 PY 2013 VL 73 SU 3 MA C76 DI 10.1158/1538-7445.TIM2013-C76 PG 2 WC Oncology SC Oncology GA V40RT UT WOS:000209496400226 ER PT J AU Chang, JC Christiansen, BA Thomas, CB Collette, NM Blanchette, C Loots, G AF Chang, Jiun Chiun Christiansen, Blaine A. Thomas, Cynthia B. Collette, Nicole M. Blanchette, Craig Loots, Gabriela TI Modulating Sost Expression Influences the Progression and Severity of Post Traumatic Osteoarthritis in Mice SO JOURNAL OF BONE AND MINERAL RESEARCH LA English DT Meeting Abstract CT Annual Meeting of the American-Society-for-Bone-and-Mineral-Research CY OCT 04-07, 2013 CL Baltimore, MD SP Amer Soc Bone & Mineral Res C1 [Chang, Jiun Chiun] Univ Calif, Merced, CA USA. [Christiansen, Blaine A.] Univ Calif Davis, Med Ctr, Dept Orthopaed Surg, Davis, CA USA. [Thomas, Cynthia B.; Collette, Nicole M.] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA USA. [Blanchette, Craig] Lawrence Livermore Natl Lab, Livermore, CA USA. [Loots, Gabriela] Univ Calif Merced, Lawrence Livermore Natl Lab, Merced, CA USA. RI Christiansen, Blaine/F-9021-2010 NR 0 TC 0 Z9 0 U1 0 U2 1 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0884-0431 EI 1523-4681 J9 J BONE MINER RES JI J. Bone Miner. Res. PD FEB PY 2013 VL 28 SU 1 MA SA0089 PG 3 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA AB8JI UT WOS:000332035803022 ER PT J AU Collette, N Yee, C Urbin, S Xie, LQ Economides, A Loots, G AF Collette, Nicole Yee, Cristal Urbin, Salustra Xie, Liqin Economides, Aris Loots, Gabriela TI Sostdc1, a paralog of Sost, is Involved in Bone Maintenance and Fracture Repair SO JOURNAL OF BONE AND MINERAL RESEARCH LA English DT Meeting Abstract CT Annual Meeting of the American-Society-for-Bone-and-Mineral-Research CY OCT 04-07, 2013 CL Baltimore, MD SP Amer Soc Bone & Mineral Res C1 [Collette, Nicole; Urbin, Salustra] Lawrence Livermore Natl Lab, Livermore, CA USA. [Yee, Cristal] Univ Calif, Merced, CA USA. [Xie, Liqin] Regeneron Pharmaceut Co, Tarrytown, NY USA. [Economides, Aris] Regeneron Pharmaceut Inc, Tarrytown, NY USA. [Loots, Gabriela] Univ Calif, Lawrence Livermore Natl Lab, Merced, CA USA. NR 0 TC 0 Z9 0 U1 0 U2 4 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0884-0431 EI 1523-4681 J9 J BONE MINER RES JI J. Bone Miner. Res. PD FEB PY 2013 VL 28 SU 1 MA MO0097 PG 3 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA AB8JI UT WOS:000332035801133 ER PT J AU Jameson, J Proctor, A Albert, C Harris, G AF Jameson, John Proctor, Alexander Albert, Carolyne Harris, Gerald TI 3D Visualization of Reference-Point Indentation in Human and Murine Bone SO JOURNAL OF BONE AND MINERAL RESEARCH LA English DT Meeting Abstract CT Annual Meeting of the American-Society-for-Bone-and-Mineral-Research CY OCT 04-07, 2013 CL Baltimore, MD SP Amer Soc Bone & Mineral Res C1 [Jameson, John] Lawrence Berkeley Natl Lab, Berkeley, CA USA. [Albert, Carolyne; Harris, Gerald] Marquette Univ, Dept Biomed Engn, Orthopaed & Rehabil Engn Ctr, Milwaukee, WI 53233 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0884-0431 EI 1523-4681 J9 J BONE MINER RES JI J. Bone Miner. Res. PD FEB PY 2013 VL 28 SU 1 MA SU0039 PG 6 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA AB8JI UT WOS:000332035804106 ER PT J AU Komatsu, D Fealey, D Filippi, A Schwab, L Fakhoury, J Thanos, P Ferguson, SA AF Komatsu, David Fealey, David Filippi, Alexandra Schwab, Lacey Fakhoury, Jordan Thanos, Panayotis Ferguson, Sherry A. TI Pre- and Early Post-Natal Methylphenidate Exposure and Rat Skeletal Development SO JOURNAL OF BONE AND MINERAL RESEARCH LA English DT Meeting Abstract CT Annual Meeting of the American-Society-for-Bone-and-Mineral-Research CY OCT 04-07, 2013 CL Baltimore, MD SP Amer Soc Bone & Mineral Res C1 [Komatsu, David] SUNY Stony Brook, Dept Orthopaed, Stony Brook, NY USA. [Fealey, David; Filippi, Alexandra] SUNY Stony Brook, Sch Med, Stony Brook, NY USA. [Schwab, Lacey] SUNY Stony Brook, Dept Mat Sci & Engn, Stony Brook, NY USA. [Fakhoury, Jordan] SUNY Stony Brook, Dept Biol, Stony Brook, NY USA. [Thanos, Panayotis] Brookhaven Natl Lab, Behav Neuropharmacol & Neuroimaging Lab, Dept Med, Upton, NY 11973 USA. [Ferguson, Sherry A.] US FDA, Div Neurotoxicol, Natl Ctr Toxicol Res, Rockville, MD 20857 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0884-0431 EI 1523-4681 J9 J BONE MINER RES JI J. Bone Miner. Res. PD FEB PY 2013 VL 28 SU 1 MA SU0032 PG 2 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA AB8JI UT WOS:000332035804099 ER PT J AU Ross, R Ominsky, M Acerbo, A Miller, L Sumner, DR AF Ross, Ryan Ominsky, Michael Acerbo, Alvin Miller, Lisa Sumner, D. Rick TI Trabecular Bone Matrix Composition in Cynomolgus Monkeys Treated with Sclerostin Antibody SO JOURNAL OF BONE AND MINERAL RESEARCH LA English DT Meeting Abstract CT Annual Meeting of the American-Society-for-Bone-and-Mineral-Research CY OCT 04-07, 2013 CL Baltimore, MD SP Amer Soc Bone & Mineral Res C1 [Ross, Ryan; Sumner, D. Rick] Rush Univ, Med Ctr, Chicago, IL USA. [Ominsky, Michael] Amgen Inc, Thousand Oaks, CA USA. [Acerbo, Alvin; Miller, Lisa] Brookhaven Natl Lab, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0884-0431 EI 1523-4681 J9 J BONE MINER RES JI J. Bone Miner. Res. PD FEB PY 2013 VL 28 SU 1 MA SU0060 PG 2 WC Endocrinology & Metabolism SC Endocrinology & Metabolism GA AB8JI UT WOS:000332035804127 ER PT J AU O'Brien, B Zeng, H Polyzos, AA Lemke, KH Weier, JF Wang, M Zitzelsberger, HF Weier, HUG AF O'Brien, Benjamin Zeng, Hui Polyzos, Aris A. Lemke, Kalistyn H. Weier, Jingly F. Wang, Mei Zitzelsberger, Horst F. Weier, Heinz-Ulrich G. TI Bioinformatics Tools Allow Targeted Selection of Chromosome Enumeration Probes and Aneuploidy Detection SO JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY LA English DT Article DE molecular cytogenetics; fluorescence in situ hybridization; DNA probes; bioinformatics; data mining; interphase cells; aneuploidy; regenerating tissues ID IN-SITU HYBRIDIZATION; PREIMPLANTATION GENETIC DIAGNOSIS; ALPHA-SATELLITE PROBE; HUMAN X-CHROMOSOME; HUMAN Y-CHROMOSOME; CANCER CELL-LINE; DNA PROBES; INSITU HYBRIDIZATION; INTERPHASE CELLS; THYROID-CANCER AB Accurate determination of cellular chromosome complements is a highly relevant issue beyond prenatal/pre-implantation genetic analyses or stem cell research, because aneusomy may be an important mechanism by which organisms control the rate of fetal cellular proliferation and the fate of regenerating tissues. Typically, small amounts of individual cells or nuclei are assayed by in situ hybridization using chromosome-specific DNA probes. Careful probe selection is fundamental to successful hybridization experiments. Numerous DNA probes for chromosome enumeration studies are commercially available, but their use in multiplexed hybridization assays is hampered due to differing probe-specific hybridization conditions or a lack of a sufficiently large number of different reporter molecules. Progress in the International Human Genome Project has equipped the scientific community with a wealth of unique resources, among them recombinant DNA libraries, physical maps, and data-mining tools. Here, we demonstrate how bioinformatics tools can become an integral part of simple, yet powerful approaches to devise diagnostic strategies for detection of aneuploidy in interphase cells. Our strategy involving initial in silico optimization steps offers remarkable savings in time and costs during probe generation, while at the same time significantly increasing the assay's specificity, sensitivity, and reproducibility. (J Histochem Cytochem 61: 134-147, 2013) C1 [O'Brien, Benjamin] Queen Mary Univ London, William Harvey Res Inst, London, England. [O'Brien, Benjamin] German Heart Inst, Dept Anesthesiol, Berlin, Germany. [Zeng, Hui; Polyzos, Aris A.; Lemke, Kalistyn H.; Weier, Jingly F.; Weier, Heinz-Ulrich G.] EO Lawrence Berkeley Natl Lab, Div Life Sci, Dept Canc & DNA Damage Response, Berkeley, CA USA. [Weier, Jingly F.] Univ Calif San Francisco, Sch Med, Dept Dermapathol, San Francisco, CA USA. [Wang, Mei] City Hope Natl Med Ctr, Dept Diabet, Duarte, CA USA. [Zitzelsberger, Horst F.] Helmholtz Zentrum Munchen, Res Unit Radiat Cytogenet, Munich, Germany. RP O'Brien, B (reprint author), Barts Hosp, Intens Care Unit, 2nd Floor QE II Wing, London EC1A 7BE, England. EM benobrien@doctors.org.uk FU Office of Energy Research, Office of Health and Environmental Research, U.S. Department of Energy [DE-AC02-05CH11231]; Leonard Rosenman Fund; NIH [HD45736, CA123370, CA132815, CA132815-02S1, CA136685]; United States Government FX The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported in part by a grant from the Director, Office of Energy Research, Office of Health and Environmental Research, U.S. Department of Energy, under contract DE-AC02-05CH11231, the Leonard Rosenman Fund, and NIH grants HD45736, CA123370, CA132815, CA132815-02S1, and CA136685 (to HUG). This work was facilitated by the Barts and The London NIHR Cardiovascular Biomedical Research Unit.; This document was prepared as an account of work sponsored by the United States Government. Although this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California. NR 74 TC 4 Z9 4 U1 0 U2 12 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0022-1554 EI 1551-5044 J9 J HISTOCHEM CYTOCHEM JI J. Histochem. Cytochem. PD FEB PY 2013 VL 61 IS 2 BP 134 EP 147 DI 10.1369/0022155412470955 PG 14 WC Cell Biology SC Cell Biology GA 094RZ UT WOS:000315282800004 PM 23204113 ER PT J AU Leishear, RA AF Leishear, Robert A. TI CFD & SAFETY FACTORS SO MECHANICAL ENGINEERING LA English DT Article C1 Savannah River Natl Lab, Aiken, SC 29803 USA. RP Leishear, RA (reprint author), Savannah River Natl Lab, Aiken, SC 29803 USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0025-6501 EI 1943-5649 J9 MECH ENG JI Mech. Eng. PD FEB PY 2013 VL 135 IS 2 BP 46 EP 49 PG 4 WC Engineering, Mechanical SC Engineering GA AQ0PD UT WOS:000342484300018 ER PT J AU Dwyer, DA AF Dwyer, D. A. CA Daya Bay Collaboration TI Improved Measurement of Electron-antineutrino Disappearance at Daya Bay SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 25th International Conference on Neutrino Physics and Astrophysics (NEUTRINO) CY JUN 03-09, 2012 CL Sci Council Japan, Kyoto, JAPAN SP Phys Soc Japan, Kyoto Univ, Global COE Program (Phys), Univ Tokyo, ICRR, Kamioka Observ, High Energy Accelerator Res Org (KEK) HO Sci Council Japan DE neutrino oscillation; neutrino mixing; reactor; Daya Bay ID NEUTRINO OSCILLATIONS AB With 2.5x the previously reported exposure, the Daya Bay experiment has improved the measurement of the neutrino mixing parameter sin(2) 2 theta(13) = 0.089 +/- 0.010(stat) +/- 0.005(syst). Reactor anti-neutrinos were produced by six 2.9 GW(th) commercial power reactors, and measured by six 20-ton target-mass detectors of identical design. A total of 234,217 anti-neutrino candidates were detected in 127 days of exposure. An anti-neutrino rate of 0.944 +/- 0.007(stat) +/- 0.003(syst) was measured by three detectors at a flux-weighted average distance of 1648 m from the reactors, relative to two detectors at 470 m and one detector at 576 m. Detector design and depth underground limited the background to 5 +/- 0.3% (far detectors) and 2 +/- 0.2% (near detectors) of the candidate signals. The improved precision confirms the initial measurement of reactor anti-neutrino disappearance, and continues to be the most precise measurement of theta(13). C1 [Dwyer, D. A.] CALTECH, Kellogg Radiat Lab, Pasadena, CA 91125 USA. [Dwyer, D. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Dwyer, DA (reprint author), CALTECH, Kellogg Radiat Lab, Pasadena, CA 91125 USA. NR 15 TC 8 Z9 8 U1 0 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 EI 1873-3832 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD FEB-MAR PY 2013 VL 235 BP 30 EP 32 DI 10.1016/j.nuclphysbps.2013.03.007 PG 3 WC Physics, Particles & Fields SC Physics GA 175JP UT WOS:000321227300007 ER PT J AU Zisman, MS AF Zisman, Michael S. TI Neutrino factory and beta beam: accelerator options for future neutrino experiments SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 25th International Conference on Neutrino Physics and Astrophysics (NEUTRINO) CY JUN 03-09, 2012 CL Sci Council Japan, Kyoto, JAPAN SP Phys Soc Japan, Kyoto Univ, Global COE Program (Phys), Univ Tokyo, ICRR, Kamioka Observ, High Energy Accelerator Res Org (KEK) HO Sci Council Japan DE Neutrino Factory; Beta Beam; intense neutrino source AB Two accelerator options for producing intense neutrino beams are described-a Neutrino Factory based on stored muon beams and a Beta Beam facility based on stored beams of beta unstable ions. Technical challenges for each are described and current R&D efforts aimed at mitigating these challenges are indicated. Progress is being made in the design of both types of facility, each of which would extend the state-of-the-art in accelerator science. C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Zisman, MS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM mszisman@lbl.gov NR 10 TC 0 Z9 0 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 EI 1873-3832 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD FEB-MAR PY 2013 VL 235 BP 164 EP 170 DI 10.1016/j.nuclphysbps.2013.04.007 PG 7 WC Physics, Particles & Fields SC Physics GA 175JP UT WOS:000321227300025 ER PT J AU Pedretti, M AF Pedretti, M. CA CUORE Collaboration TI CUORE and CUORE-0 status: toward a next-generation neutrinoless double beta decay experiment SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 25th International Conference on Neutrino Physics and Astrophysics (NEUTRINO) CY JUN 03-09, 2012 CL Sci Council Japan, Kyoto, JAPAN SP Phys Soc Japan, Kyoto Univ, Global COE Program (Phys), Univ Tokyo, ICRR, Kamioka Observ, High Energy Accelerator Res Org (KEK) HO Sci Council Japan DE Neutrinoless double beta decay; neutrino mass; Majorana particle; bolometer AB The Cryogenic Underground Observatory for Rare Events (CUORE) experiment will search for the neutrinoless double beta decay of Te-130 Cryogenic and other rare events. The first step towards the experiment is CUORE-0, a single CUORE-like tower that will operate in the former CUORICINO cryostat. CUORE-0 will validate the assembly procedure and serve as a sensitive experiment in its own right. The status of CUORE and CUORE-0 and their sensitivities are reported. C1 [Pedretti, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Pedretti, M (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. NR 12 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 EI 1873-3832 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD FEB-MAR PY 2013 VL 235 BP 261 EP 266 DI 10.1016/j.nuclphysbps.2013.04.020 PG 6 WC Physics, Particles & Fields SC Physics GA 175JP UT WOS:000321227300038 ER PT J AU Adamson, P AF Adamson, P. TI Neutrino Velocity: Results and prospects of experiments at beamlines other than CNGS SO NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS LA English DT Proceedings Paper CT 25th International Conference on Neutrino Physics and Astrophysics (NEUTRINO) CY JUN 03-09, 2012 CL Sci Council Japan, Kyoto, JAPAN SP Phys Soc Japan, Kyoto Univ, Global COE Program (Phys), Univ Tokyo, ICRR, Kamioka Observ, High Energy Accelerator Res Org (KEK) HO Sci Council Japan DE neutrino; velocity; time-of-flight; MINOS; T2K ID SN1987A; BURST AB In response to the 2011 report of superluminal neutrinos made by the OPERA collaboration, both MINOS and T2K developed plans to upgrade their timing systems to be able to measure neutrino time-of-flight with increased accuracy. In addition, MINOS has undertaken an analysis of the data taken with their old timing system, substantially improving the accuracy of their 2007 measurement, and deriving a result fully consistent with neutrinos travelling at the speed of light. C1 Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. RP Adamson, P (reprint author), Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA. NR 13 TC 3 Z9 3 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5632 EI 1873-3832 J9 NUCL PHYS B-PROC SUP JI Nucl. Phys. B-Proc. Suppl. PD FEB-MAR PY 2013 VL 235 BP 296 EP 300 DI 10.1016/j.nuclphysbps.2013.04.025 PG 5 WC Physics, Particles & Fields SC Physics GA 175JP UT WOS:000321227300043 ER PT J AU Hodovanets, H Thaler, A Mun, E Ni, N Bud'ko, SL Canfield, PC AF Hodovanets, Halyna Thaler, Alex Mun, Eundeok Ni, Ni Bud'ko, Sergey L. Canfield, Paul C. TI Thermoelectric power of Ba(Fe1-x Co (x) )(2)As-2 (0x0.05) and Ba(Fe1-x Rh (x) )(2)As-2 (0x0.171) SO PHILOSOPHICAL MAGAZINE LA English DT Article DE thermoelectric power; TEP ID ELECTRONIC TOPOLOGICAL TRANSITIONS AB Temperature-dependent, in-plane, thermoelectric power data are presented for single crystals of Ba(Fe1-xCox)(2)As-2 (0x0.05) and Ba(Fe1-xRhx)(2)As-2 (0x0.171). Given that previous thermoelectric power and angle resolved photoemission spectroscopy studies of Ba(Fe1-xCox)(2)As-2 delineated a rather large Co-concentration range for Lifshitz transitions to occur, and the underdoped side of the phase diagram is poorly explored, new measurements of thermoelectric power on tightly spaced concentrations of Co, 0x0.05, were carried out. The data suggest evidence of a Lifshitz transition, but instead of a discontinuous jump in thermoelectric power in the range 0x0.05, a more gradual evolution in the S(T) plots as x is increased was observed. The thermoelectric power data of Ba(Fe1-xRhx)(2)As-2 show very similar behavior to that of Co substituted BaFe2As2. The previously outlined T-x phase diagrams for both systems are further confirmed by these thermoelectric power data. C1 [Canfield, Paul C.] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Canfield, PC (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM canfield@ameslab.gov RI Thaler, Alexander/J-5741-2014; Canfield, Paul/H-2698-2014 OI Thaler, Alexander/0000-0001-5066-8904; FU Ames Laboratory, US DOE [DE-AC02-07CH111358]; US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; State of Iowa through the Iowa State University FX The authors would like to thank: W. E. Straszheim for the elemental analysis of the single crystals; M. A. Tanatar for soldering Sn to the ends of the sample; and A. Jesche, X. Lin, and V. Taufour as well as the five Kims: H, M, R, S and -chi for valuable discussions. German D. Samolyuk is thanked as well for suggestions for refinement of measurement procedures. This work was done at Ames Laboratory, US DOE, under contract #DE-AC02-07CH111358. This work was supported by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. S. L. B. and P. C. C. were supported in part by the State of Iowa through the Iowa State University. NR 20 TC 5 Z9 5 U1 0 U2 6 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PD FEB 1 PY 2013 VL 93 IS 6 BP 661 EP 672 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 189YZ UT WOS:000322305500010 ER PT J AU Hodovanets, H Thaler, A Mun, E Ni, N Bud'ko, SL Canfield, PC AF Hodovanets, Halyna Thaler, Alex Mun, Eundeok Ni, Ni Bud'ko, Sergey L. Canfield, Paul C. TI Thermoelectric power of Ba(Fe1-x Co (x) )(2)As-2 (0x0.05) and Ba(Fe1-x Rh (x) )(2)As-2 (0x0.171) SO PHILOSOPHICAL MAGAZINE LA English DT Article DE thermoelectric power; TEP AB Temperature-dependent, in-plane, thermoelectric power data are presented for single crystals of Ba(Fe1-xCox)(2)As-2 (0x0.05) and Ba(Fe1-xRhx)(2)As-2 (0x0.171). Given that previous thermoelectric power and angle resolved photoemission spectroscopy studies of Ba(Fe1-xCox)(2)As-2 delineated a rather large Co-concentration range for Lifshitz transitions to occur, and the underdoped side of the phase diagram is poorly explored, new measurements of thermoelectric power on tightly spaced concentrations of Co, 0x0.05, were carried out. The data suggest evidence of a Lifshitz transition, but instead of a discontinuous jump in thermoelectric power in the range 0x0.05, a more gradual evolution in the S(T) plots as x is increased was observed. The thermoelectric power data of Ba(Fe1-xRhx)(2)As-2 show very similar behavior to that of Co substituted BaFe2As2. The previously outlined T-x phase diagrams for both systems are further confirmed by these thermoelectric power data. C1 [Canfield, Paul C.] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Canfield, PC (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM canfield@ameslab.gov RI Thaler, Alexander/J-5741-2014; Canfield, Paul/H-2698-2014 OI Thaler, Alexander/0000-0001-5066-8904; FU Ames Laboratory, US DOE [DE-AC02-07CH111358]; US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering; State of Iowa through the Iowa State University FX The authors would like to thank: W. E. Straszheim for the elemental analysis of the single crystals; M. A. Tanatar for soldering Sn to the ends of the sample; and A. Jesche, X. Lin, and V. Taufour as well as the five Kims: H, M, R, S and -chi for valuable discussions. German D. Samolyuk is thanked as well for suggestions for refinement of measurement procedures. This work was done at Ames Laboratory, US DOE, under contract #DE-AC02-07CH111358. This work was supported by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering. S. L. B. and P. C. C. were supported in part by the State of Iowa through the Iowa State University. NR 0 TC 5 Z9 5 U1 0 U2 6 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1478-6435 EI 1478-6443 J9 PHILOS MAG JI Philos. Mag. PD FEB 1 PY 2013 VL 93 IS 6 BP 661 EP 672 DI 10.1080/14786435.2012.729866 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Physics, Applied; Physics, Condensed Matter SC Materials Science; Metallurgy & Metallurgical Engineering; Physics GA 189YZ UT WOS:000322305500009 ER PT J AU Barnett, RM AF Barnett, R. Michael TI Fireworks on the 4th of July SO PHYSICS TEACHER LA English DT Editorial Material C1 [Barnett, R. Michael] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Barnett, RM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU AMER ASSN PHYSICS TEACHERS PI COLLEGE PK PA 5110 ROANOKE PLACE SUITE 101, COLLEGE PK, MD 20740 USA SN 0031-921X J9 PHYS TEACH JI Phys. Teach. PD FEB PY 2013 VL 51 IS 2 BP 75 EP 77 DI 10.1119/1.4775521 PG 3 WC Physics, Multidisciplinary SC Physics GA V41FL UT WOS:000209532000006 ER PT J AU Bunin, DI Chang, PY Doppalapudi, RS Riccio, ES An, D Jarvis, EE Kullgren, B Abergel, RJ AF Bunin, Deborah I. Chang, Polly Y. Doppalapudi, Rupa S. Riccio, Edward S. An, Dahlia Jarvis, Erin E. Kullgren, Birgitta Abergel, Rebecca J. TI Dose-Dependent Efficacy and Safety Toxicology of Hydroxypyridinonate Actinide Decorporation Agents in Rodents: Towards a Safe and Effective Human Dosing Regimen SO RADIATION RESEARCH LA English DT Article ID IN-VIVO CHELATION; LIGANDS; PU(IV); ASSAY AB Two hydroxypyridinone-containing actinide decorporation agents, 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO), are being developed for the treatment of internal actinide contamination by chelation therapy. Dose-response efficacy profiles in mice were established for the removal of intravenously injected Pu-238 and Am-241 after parenteral and oral treatment with these chelators. In both cases, presumed efficacious doses promoted substantially greater actinide elimination rates than the currently approved agent, diethylenetriamine-pentaacetic acid, considering two different interspecies scaling methods for the conversion of human doses to equivalent rodent dose levels. In addition, genotoxicity of both ligands was assessed using the Salmonella/Escherichia coli/microsome plate incorporation test and the Chinese hamster ovary cell chromosome aberration assay, showing that neither ligand is genotoxic, in the presence and absence of metabolic activation. Finally, maximum tolerated dose studies were performed in rats for seven consecutive daily oral administrations with the chelators, confirming the safety of the presumed efficacious doses for 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO). The results of these studies add to the growing body of evidence that both decorporation agents have remarkable decorporation efficacy properties and promising safety toxicology profiles. These results are necessary components of the regulatory approval process and will help determine the optimal human dosing regimens for the treatment of internal radionuclide contamination. (C) 2013 by Radiation Research Society C1 [Bunin, Deborah I.; Chang, Polly Y.; Doppalapudi, Rupa S.; Riccio, Edward S.] SRI Int, Biosci Div, Menlo Pk, CA 94025 USA. [An, Dahlia; Jarvis, Erin E.; Kullgren, Birgitta; Abergel, Rebecca J.] Lawrence Berkeley Natl Lab, Glenn T Seaborg Ctr, Div Chem Sci, Berkeley, CA 94720 USA. RP Abergel, RJ (reprint author), Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS 70A-1150, Berkeley, CA 94720 USA. EM rjabergel@lbl.gov FU National Institutes of Health from the National Institute of Allergy and Infectious Diseases [1RC2AI087604-01, 5RC2AI087604-02]; U.S. Department of Energy Laboratory [DE-AC02-05CH11231] FX The authors are grateful to Prof. Kenneth N. Raymond and Dr. David K. Shuh for their support of the actinide decorporation program at the Lawrence Berkeley National Laboratory. We also thank SRI's toxicology services personnel for their assistance with the rat MTD studies and Nicholas Du, Najib Magee, Michael Hwang and Abraham Wang for assistance with the genotoxicity assays. This research was supported by National Institutes of Health grants 1RC2AI087604-01 and 5RC2AI087604-02 from the National Institute of Allergy and Infectious Diseases. Part of the work was performed at the E. O. Lawrence Berkeley National Laboratory, a U.S. Department of Energy Laboratory under Contract No. DE-AC02-05CH11231. NR 28 TC 15 Z9 15 U1 0 U2 10 PU RADIATION RESEARCH SOC PI LAWRENCE PA 810 E TENTH STREET, LAWRENCE, KS 66044 USA SN 0033-7587 EI 1938-5404 J9 RADIAT RES JI Radiat. Res. PD FEB PY 2013 VL 179 IS 2 BP 171 EP 182 DI 10.1667/RR3115.1 PG 12 WC Biology; Biophysics; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Radiology, Nuclear Medicine & Medical Imaging GA AA3HD UT WOS:000330982600007 PM 23289385 ER PT J AU Vartanian, KB Conrad, VK Stevens, SL McDermott, JE Liu, MY Stenzel-Poore, MP AF Vartanian, Keri B. Conrad, Valerie K. Stevens, Susan L. McDermott, Jason E. Liu, Mingyue Stenzel-Poore, Mary P. TI Interferon-Induced Peptide With Tetratricopeptide Repeats 1 Is a Key Mediator of Neuroprotection Induced by Preconditioning SO STROKE LA English DT Meeting Abstract CT American-Heart-Association/American-Stroke-Association International Stroke Conference / Nursing Symposium CY FEB 06-08, 2013 CL Honolulu, HI SP Amer Heart Assoc, Amer Stroke Assoc DE Preconditioning; Genomics; Stroke C1 [Vartanian, Keri B.; Conrad, Valerie K.; Stevens, Susan L.; Liu, Mingyue; Stenzel-Poore, Mary P.] Oregon Hlth & Sci Univ, Portland, OR 97201 USA. [McDermott, Jason E.] Pacific NW Natl Lab, Richland, WA USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU LIPPINCOTT WILLIAMS & WILKINS PI PHILADELPHIA PA 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA SN 0039-2499 EI 1524-4628 J9 STROKE JI Stroke PD FEB PY 2013 VL 44 IS 2 SU S PG 1 WC Clinical Neurology; Peripheral Vascular Disease SC Neurosciences & Neurology; Cardiovascular System & Cardiology GA 301NY UT WOS:000330540200579 ER PT J AU Gurung, T Luffel, M Lindstrom, P Rossignac, J AF Gurung, Topraj Luffel, Mark Lindstrom, Peter Rossignac, Jarek TI Zipper: A compact connectivity data structure for triangle meshes SO COMPUTER-AIDED DESIGN LA English DT Article DE Triangle meshes; Mesh connectivity; Hamiltonian cycle; Differential coding ID TRIANGULATIONS; REPRESENTATION AB We propose Zipper, a compact representation of incidence and adjacency for manifold triangle meshes with fixed connectivity. Zipper uses on average only 6 bits per triangle, can be constructed in linear space and time, and supports all standard random-access and mesh traversal operators in constant time. Similarly to the previously proposed LR (Laced Ring) approach, the Zipper construction reorders vertices and triangles along a nearly Hamiltonian cycle called the ring. The 4.4x storage reduction of Zipper over LR results from three contributions. (1) For most triangles, Zipper stores a 2-bit delta (plus three additional bits) rather than a full 32-bit reference. (2) Zipper modifies the ring to reduce the number of exceptional triangles. (3) Zipper encodes the remaining exceptional triangles using 2.5x less storage. In spite of these large savings in storage, we show that Zipper offers comparable performance to LR and other data structures in mesh processing applications. Zipper may also serve as a compact indexed format for rendering meshes, and hence is valuable even in applications that do not require adjacency information. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Gurung, Topraj; Luffel, Mark; Rossignac, Jarek] Georgia Inst Technol, Atlanta, GA 30332 USA. [Lindstrom, Peter] Lawrence Livermore Natl Lab, Livermore, CA USA. RP Gurung, T (reprint author), Georgia Inst Technol, Atlanta, GA 30332 USA. EM topraj@gmail.com OI Lindstrom, Peter/0000-0003-3817-4199 NR 19 TC 5 Z9 7 U1 2 U2 6 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0010-4485 J9 COMPUT AIDED DESIGN JI Comput.-Aided Des. PD FEB PY 2013 VL 45 IS 2 BP 262 EP 269 DI 10.1016/j.cad.2012.10.009 PG 8 WC Computer Science, Software Engineering SC Computer Science GA 049HF UT WOS:000311972700017 ER PT J AU Hirani, AN Kalyanaraman, K VanderZee, EB AF Hirani, Anil N. Kalyanaraman, Kaushik VanderZee, Evan B. TI Delaunay Hodge star SO COMPUTER-AIDED DESIGN LA English DT Article DE Discrete exterior calculus; Primal mesh; Circumcentric dual AB We define signed dual volumes at all dimensions for circumcentric dual meshes. We show that for pairwise Delaunay triangulations with mild boundary assumptions these signed dual volumes are positive. This allows the use of such Delaunay meshes for Discrete Exterior Calculus (DEC) because the discrete Hodge star operator can now be correctly defined for such meshes. This operator is crucial for DEC and is a diagonal matrix with the ratio of primal and dual volumes along the diagonal. A correct definition requires that all entries be positive. DEC is a framework for numerically solving differential equations on meshes and for geometry processing tasks and has had considerable impact in computer graphics and scientific computing. Our result allows the use of DEC with a much larger class of meshes than was previously considered possible. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Hirani, Anil N.; Kalyanaraman, Kaushik] Univ Illinois, Dept Comp Sci, Urbana, IL USA. [VanderZee, Evan B.] Argonne Natl Lab, Lemont, IL USA. RP Hirani, AN (reprint author), Univ Illinois, Dept Comp Sci, 201 N Goodwin Ave, Urbana, IL USA. EM hirani@illinois.edu FU NSF [DMS-0645604] FX ANH and KK were supported by NSF Grant DMS-0645604. We thank the anonymous referees for pointing out some important references and for their other suggestions. NR 10 TC 6 Z9 6 U1 0 U2 4 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0010-4485 J9 COMPUT AIDED DESIGN JI Comput.-Aided Des. PD FEB PY 2013 VL 45 IS 2 BP 540 EP 544 DI 10.1016/j.cad.2012.10.038 PG 5 WC Computer Science, Software Engineering SC Computer Science GA 049HF UT WOS:000311972700047 ER PT J AU Sparks, CM Fittschen, UEA Havrilla, GJ AF Sparks, Chris M. Fittschen, Ursula E. A. Havrilla, George J. TI Investigation of total reflection X-ray fluorescence calibration with picoliter deposition arrays SO MICROELECTRONIC ENGINEERING LA English DT Article; Proceedings Paper CT International Conference on Materials for Advanced Technologies (ICMAT) / Symposium on Microwave in Science and Engineering Applications CY JUN 26-JUL 01, 2011 CL Suntec, SINGAPORE SP Mat Res Soc, Raith, US AF Sci Res, Asian off Aerosp Res & Dev DE TXRF; Calibration; Picoliter deposition ID SAMPLES; SPECTROMETRY; ELEMENTS AB Picoliter quantities of metal contaminated solutions were deposited on silicon wafers in uniform arrays of residues. Characterization of the residues indicates that they are thin films (<2 nm). With NIST traceable metal standard solutions and knowing the exact volume deposited in an array, a standard calibration wafer for quantifiable contamination control by TXRF can be made. A calibration curve can be generated with arrays of increasing concentration all deposited on a single wafer. We also deposited picoliter arrays of phosphorus solution to explore the feasibility of analyzing for trace phosphorus contamination by TXRF. The best result for the phosphorus analysis (signal to background) was on an Al2O3 surface as compared to silicon or photoresist coated surfaces. (C) 2012 Elsevier B.V. All rights reserved. C1 [Sparks, Chris M.] SVTC Technol, Austin, TX 78741 USA. [Fittschen, Ursula E. A.; Havrilla, George J.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Fittschen, Ursula E. A.] Univ Hamburg, D-20146 Homburg, Germany. RP Sparks, CM (reprint author), SVTC Technol, Austin, TX 78741 USA. EM chris.sparks@svtc.com RI fittschen, ursula/Q-1049-2015; OI Havrilla, George/0000-0003-2052-7152 NR 13 TC 3 Z9 3 U1 3 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-9317 J9 MICROELECTRON ENG JI Microelectron. Eng. PD FEB PY 2013 VL 102 SI SI BP 98 EP 102 DI 10.1016/j.mee.2012.04.005 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Optics; Physics, Applied SC Engineering; Science & Technology - Other Topics; Optics; Physics GA 052WZ UT WOS:000312232300024 ER PT J AU Liu, W Holladay, J AF Liu, Wei Holladay, John TI Catalytic conversion of sugar into hydroxymethylfurfural in ionic liquids SO CATALYSIS TODAY LA English DT Article DE Ionic liquid; Sugar; Hydroxymethylfurfural (HMF); Catalysis; Reaction ID EFFICIENT CONVERSION; FRUCTOSE; DEHYDRATION; DERIVATIVES; SUCROSE; BIOMASS AB Triisobutyl(methyl) phosphonium tosylate is discovered as a highly active and selective ionic liquid solvent for conversion of fructose into HMF without any catalyst addition under moderate reaction conditions (80-110 degrees C). This ionic liquid provides high solubility for sugar and hydroxymethylfurfural (HMF), does not produce heavy or insoluble by-products, is available at a reasonable cost in large quantities, and thus, is promising for development of a practical HMF production process. This ionic liquid is also effective for conversion of glucose into HMF in presence of CrCl2 catalyst. Formation of some unknown compounds during the sugar conversion is reported first time in the field. In this work, a number of ionic liquid + catalyst combinations are screened using a combinatorial experimental technique with fructose, high fructose corn syrup, and glucose as a feed. Reaction kinetics of sugars in the new ionic liquid is tested in a batch reactor under various reaction conditions, in comparison to [EMIM]Cl - an ionic liquid extensively studied in the previous work. It is found that the catalytic activity of an ionic liquid is determined by choice of both cation and anion, and can also be affected by its production source significantly. Reaction pathways are proposed based on the experimental results. (C) 2012 Elsevier B.V. All rights reserved. C1 [Liu, Wei; Holladay, John] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Liu, W (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM wei.liu@pnnl.gov FU USDA [68-3A75-7-613] FX We would like to thank our colleagues at PNNL, Alan Cooper and Heather Brown for conducting the experimental work, Drs. James White, Michael Lilga, and John Lee, for helpful discussions and consulting, Dr. Abhi Karkamkar for conducting TGA measurements, Dr. Al Robertson at Cytec for providing the ionic liquid samples, and student interns, Joanne Li and Joshua Croshaw, for their assistance to some experimental work. We also would like to thank our industrial partner - UOP, Timothy Brandvold, Joseph Kocal, Sharry Lynch, for starting this project. This project was funded by USDA under Grant Agreement # 68-3A75-7-613. NR 18 TC 25 Z9 25 U1 3 U2 116 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 J9 CATAL TODAY JI Catal. Today PD FEB 1 PY 2013 VL 200 BP 106 EP 116 DI 10.1016/j.cattod.2012.07.008 PG 11 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 048UH UT WOS:000311938100017 ER PT J AU Chatman, S Zarzycki, P Preoanin, T Rosso, KM AF Chatman, Shawn Zarzycki, P. Preoanin, T. Rosso, K. M. TI Effect of surface site interactions on potentiometric titration of hematite (alpha-Fe2O3) crystal faces SO JOURNAL OF COLLOID AND INTERFACE SCIENCE LA English DT Article DE Hematite; Single crystal; Titration; Protonation; Hysteresis; Site complexation ID SCANNING-TUNNELING-MICROSCOPY; POTENTIAL MEASUREMENTS; SOLUTION INTERFACE; AQUEOUS INTERFACE; WATER INTERFACE; ZERO CHARGE; ELECTROLYTE-SOLUTION; PROTON ADSORPTION; MONTE-CARLO; REACTIVITY AB Time dependent potentiometric pH titrations were used to study the effect of atomic scale surface structure on the protonation behavior of the structurally well-defined hematite/electrolyte interfaces. Our recently proposed thermodynamic model [1,25] was applied to measured acidimetric and alkalimetric titration hysteresis loops, collected from highly organized (001), (012), and (113) crystal face terminations using pH equilibration times ranging from 15 to 30 min. Hysteresis loop areas indicate that (001) faces equilibrate faster than the (012) and (113) faces, consistent with the different expected ensembles of singly-, doubly-, and triply-coordinated surface sites on each face. Strongly non-linear hysteretic pH-potential relationships were found, with slopes exceeding Nernstian, collectively indicating that protonation and deprotonation is much more complex than embodied in present day surface complexation models. The asymmetrical shape of the acidimetric and alkalimetric titration branches were used to illustrate a proposed steric "leaky screen" repulsion/trapping interaction mechanism that stems from high affinity singly-coordinated sites electrostatically and sterically screening lower affinity doubly- and triply-coordinated sites. Our data indicate that site interaction is the dominant phenomenon defining surface potential accumulation behavior on single crystal faces of metal oxide minerals. (C) 2012 Elsevier Inc. All rights reserved. C1 [Chatman, Shawn; Zarzycki, P.; Rosso, K. M.] Pacific NW Natl Lab, Div Chem & Mat Sci, Richland, WA 99354 USA. [Zarzycki, P.] Polish Acad Sci, Inst Phys Chem, Warsaw, Poland. [Preoanin, T.] Univ Zagreb, Zagreb 10000, Croatia. RP Chatman, S (reprint author), Pacific NW Natl Lab, POB 999,MSIN K8-96, Richland, WA 99352 USA. EM shawnm.chatman@pnnl.gov RI Chatman, Shawn/J-9892-2012 OI Chatman, Shawn/0000-0002-7951-5968 FU US Department of Energy (DOE), Office of Basic Energy Sciences, Geosciences Program; DOE Office of Biological and Environmental Research at Pacific Northwest National Laboratory; Ministry of Science, Education and Sports of the Republic of Croatia [119-1191342-2961] FX This research was supported by a Grant from the US Department of Energy (DOE), Office of Basic Energy Sciences, Geosciences Program. This work was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility, sponsored by the DOE Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. T. Preocanin was also supported by the Ministry of Science, Education and Sports of the Republic of Croatia (Project No. 119-1191342-2961). NR 60 TC 22 Z9 23 U1 6 U2 93 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9797 EI 1095-7103 J9 J COLLOID INTERF SCI JI J. Colloid Interface Sci. PD FEB 1 PY 2013 VL 391 BP 125 EP 134 DI 10.1016/j.jcis.2012.09.081 PG 10 WC Chemistry, Physical SC Chemistry GA 050FR UT WOS:000312039000017 PM 23116850 ER PT J AU Sudheer, CD Krishnan, S Srinivasan, A Kent, PRC AF Sudheer, C. D. Krishnan, S. Srinivasan, A. Kent, P. R. C. TI Dynamic load balancing for petascale quantum Monte Carlo applications: The Alias method SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE Quantum Monte Carlo; Parallel computing; Load balancing ID IRREGULAR GRAPHS; ALGORITHM; SYSTEMS; SCHEME AB Diffusion Monte Carlo is a highly accurate Quantum Monte Carlo method for electronic structure calculations of materials, but it requires frequent load balancing or population redistribution steps to maintain efficiency on parallel machines. This step can be a significant factor affecting performance, and will become more important as the number of processing elements increases. We propose a new dynamic load balancing algorithm, the Alias Method, and evaluate it theoretically and empirically. An important feature of the new algorithm is that the load can be perfectly balanced with each process receiving at most one message. It is also optimal in the maximum size of messages received by any process. We also optimize its implementation to reduce network contention, a process facilitated by the low messaging requirement of the algorithm: a simple renumbering of the MPI ranks based on proximity and a space filling curve significantly improves the MPI Allgather performance. Empirical results on the petaflop Cray XT Jaguar supercomputer at ORNL show up to 30% improvement in performance on 120,000 cores. The load balancing algorithm may be straightforwardly implemented in existing codes. The algorithm may also be employed by any method with many near identical computational tasks that require load balancing. (C) 2012 Elsevier B.V. All rights reserved. C1 [Krishnan, S.; Srinivasan, A.] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA. [Sudheer, C. D.] Sri Sathya Sai Inst Higher Learning, Dept Math & Comp Sci, Prasanthinilayam, India. [Kent, P. R. C.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Kent, P. R. C.] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA. RP Srinivasan, A (reprint author), Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA. EM cdsudheerkumar@sssihl.edu.in; krishnan@cs.fsu.edu; asriniva@cs.fsu.edu; kentpr@ornl.gov RI Kent, Paul/A-6756-2008 OI Kent, Paul/0000-0001-5539-4017 FU ORAU/ORNL HPC program; Scientific User Facilities Division, U.S. Department of Energy FX We acknowledge the ORAU/ORNL HPC program for partial funding, and the INCITE and XSEDE programs for computing time. Research by PRCK was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, U.S. Department of Energy. NR 34 TC 4 Z9 4 U1 0 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 EI 1879-2944 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD FEB PY 2013 VL 184 IS 2 BP 284 EP 292 DI 10.1016/j.cpc.2012.09.008 PG 9 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 044YM UT WOS:000311661100003 ER PT J AU Liu, J AF Liu, Jun TI Least square based method for obtaining one-particle spectral functions from temperature Green functions SO COMPUTER PHYSICS COMMUNICATIONS LA English DT Article DE One-particle spectral function; Temperature Green function; Non-negative least square fit (NNLS); Tikhonov regularization; Pade analytic continuation; Global minimization ID QUANTUM MONTE-CARLO; FERMION SYSTEMS; CONTINUATION; MODEL AB A least square based fitting scheme is proposed to extract an optimal one-particle spectral function from any one-particle temperature Green function. It uses the existing non-negative least square (NNLS) fit algorithm to do the fit, and Tikhonov regularization to help with possible numerical singular behaviors. By flexibly adding delta peaks to represent very sharp features of the target spectrum, this scheme guarantees a global minimization of the fitted residue. The performance of this scheme is manifested with diverse physical examples. The proposed scheme is shown to be comparable in performance to the standard Pade analytic continuation scheme. (C) 2012 Elsevier B.V. All rights reserved. C1 [Liu, Jun] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50010 USA. [Liu, Jun] Iowa State Univ, Dept Phys & Astron, Ames, IA 50010 USA. RP Liu, J (reprint author), Iowa State Univ, US DOE, Ames Lab, Ames, IA 50010 USA. EM jun.physics@gmail.com RI Liu, Jun/F-1240-2014 FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; US Department of Energy by Iowa State University [DE-AC02-07CH11358] FX The author would like to acknowledge Junyu Guo, Yi Xue, and Shina Tan for many useful discussions. He would also like to thank Prof. Kai-Ming Ho and Dr. Cai-Zhuang Wang for insightful discussions and kind help. Research supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 23 TC 1 Z9 1 U1 0 U2 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0010-4655 J9 COMPUT PHYS COMMUN JI Comput. Phys. Commun. PD FEB PY 2013 VL 184 IS 2 BP 367 EP 373 DI 10.1016/j.cpc.2012.09.019 PG 7 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 044YM UT WOS:000311661100011 ER PT J AU Yoo, B Afzal, W Prausnitz, JM AF Yoo, Brian Afzal, Waheed Prausnitz, John M. TI Henry's constants and activity coefficients of some organic solutes in 1-butyl,3-methylimidazolium hydrogen sulfate and in 1-methyl,3-trimethylsilylmethylimidazolium chloride SO JOURNAL OF CHEMICAL THERMODYNAMICS LA English DT Article DE Gas-liquid capillary chromatography; Henry's constant; Thermogravimetric analysis (TGA); 1-Butyl,3-methylimidazolium hydrogen sulfate; 1-Methyl,3-trimethylsilylmethylimidazolium chloride ID IONIC LIQUID AB Using a customized capillary gas-liquid chromatography column, Henry's constants and activity coefficients at infinite dilution are reported for benzene, toluene, ethyl acetate, 1,4-dioxane, 1,2-dimethoxyethane, acetonitrile, nitromethane, tetrahydrofuran, chloroform, methanol, ethanol, and 1-propanol in ionic liquids 1-butyl, 3-methylimidazolium hydrogen sulfate [BMIM][HSO4] and 1-methyl, 3-trimethylsilylmethylimidazolium [SiMIM][Cl] chloride from 313 to 413 K. These acidic ionic liquids may provide suitable media for acid-catalyzed chemical reactions. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Prausnitz, John M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Biosci Inst, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Prausnitz, JM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Energy Biosci Inst, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. EM prausnit@cchem.berkeley.edu OI Afzal, Waheed/0000-0002-2927-0114 FU Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory FX The authors are grateful to the Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, for financial support. We thank Dr. Maria Francisco for providing a sample of [SiMIM][Cl], Dr. Hong Xue Xie and Dr. Oz Gazit for performing TGA measurements, Dr. Sasisanker Padmanabhan for fruitful discussions, and Prof. Michael Manga for providing the density meter. NR 7 TC 3 Z9 3 U1 1 U2 42 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0021-9614 EI 1096-3626 J9 J CHEM THERMODYN JI J. Chem. Thermodyn. PD FEB PY 2013 VL 57 BP 178 EP 181 DI 10.1016/j.jct.2012.08.022 PG 4 WC Thermodynamics; Chemistry, Physical SC Thermodynamics; Chemistry GA 041VQ UT WOS:000311429700024 ER PT J AU Backman, M Toulemonde, M Pakarinen, OH Juslin, N Djurabekova, F Nordlund, K Debelle, A Weber, WJ AF Backman, M. Toulemonde, M. Pakarinen, O. H. Juslin, N. Djurabekova, F. Nordlund, K. Debelle, A. Weber, W. J. TI Molecular dynamics simulations of swift heavy ion induced defect recovery in SiC SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Radiation damage; Molecular dynamics; Inelastic thermal spike; Swift heavy ion; Silicon carbide ID THERMAL SPIKE MODEL; AMORPHOUS REGIONS; SEMICONDUCTORS; ACCUMULATION; RADIATION; SILICON AB Swift heavy ions induce a high density of electronic excitations that can cause the formation of amorphous ion tracks in insulators. No ion tracks have been observed in the semiconductor SiC, but recent experimental work suggests that irradiation damaged SiC can undergo defect recovery under swift heavy ion irradiation. It is believed that local heating of the lattice due to the electronic energy deposition can anneal, and thereby recover, some of the disordered structure. We simulate the local heating due to the ions by the inelastic thermal spike model and perform molecular dynamics simulations of different model damage states to study the defect recovery on an atomistic level. We find significant recovery of point defects and a disordered layer, as well as recrystallization at the amorphous-to-crystalline interface of an amorphous layer. The simulation results support the swift heavy ion annealing hypothesis. (c) 2012 Elsevier B.V. All rights reserved. C1 [Backman, M.; Weber, W. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Backman, M.; Pakarinen, O. H.; Djurabekova, F.; Nordlund, K.] Univ Helsinki, Helsinki Inst Phys, FI-00014 Helsinki, Finland. [Backman, M.; Pakarinen, O. H.; Djurabekova, F.; Nordlund, K.] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland. [Toulemonde, M.] Univ Caen, CIMAP CEA CNRS ENSICAEN, F-14070 Caen 5, France. [Juslin, N.] Univ Tennessee, Dept Nucl Engn, Knoxville, TN 37996 USA. [Debelle, A.] Univ Paris 11, CNRS, IN2P3, CSNSM, F-91405 Orsay, France. [Weber, W. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Backman, M (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. EM marie.backman@helsinki.fi RI Weber, William/A-4177-2008; Nordlund, Kai/L-8275-2014; Pakarinen, Olli/G-8028-2016; OI Weber, William/0000-0002-9017-7365; Nordlund, Kai/0000-0001-6244-1942; Pakarinen, Olli/0000-0002-5535-3941; Djurabekova, Flyura/0000-0002-5828-200X FU U.S. Department of Energy, Basic Energy Sciences, Materials Science and Engineering Division FX W.J. Weber was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Science and Engineering Division. The theoretical calculations were performed using the supercomputer resources at the National Energy Research Scientific Computing Center located at Lawrence Berkeley National Laboratory, USA. NR 33 TC 27 Z9 27 U1 5 U2 91 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 J9 COMP MATER SCI JI Comput. Mater. Sci. PD FEB PY 2013 VL 67 BP 261 EP 265 DI 10.1016/j.commatsci.2012.09.010 PG 5 WC Materials Science, Multidisciplinary SC Materials Science GA 041WE UT WOS:000311431600034 ER PT J AU Piro, MHA Simunovic, S Besmann, TM Lewis, BJ Thompson, WT AF Piro, M. H. A. Simunovic, S. Besmann, T. M. Lewis, B. J. Thompson, W. T. TI The thermochemistry library Thermochimica SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Thermodynamic equilibria; Thermochimica; Partitioning of Gibbs Energy; Gibbs energy minimization; Nuclear materials ID MULTICOMPONENT SYSTEMS; CHEMICAL-EQUILIBRIUM; MULTIPHASE SYSTEMS; FREE-ENERGY; SOFTWARE AB Progress in numerical methods in computing thermodynamic equilibria is presented that is particularly well suited to large multicomponent multiphase systems and is incorporated in the thermochemistry library Thermochimica. The method described in this paper exploits fundamental principles of equilibrium thermodynamics that results in simplifying the numerical approach. The chemical potentials of all species and phases are defined by the chemical potentials of the component elements and the objective is to systematically partition the Gibbs energy of the system in a manner that diminishes the residuals of the mass balance equations. Several numerical advantages are obtained through this simplification that improve the rate of convergence while simultaneously promoting numerical stability. The resulting software library Thermochimica is described with an overview of the numerical methods that it employs. (c) 2012 Elsevier B.V. All rights reserved. C1 [Piro, M. H. A.; Besmann, T. M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Piro, M. H. A.; Lewis, B. J.; Thompson, W. T.] Royal Mil Coll Canada, Dept Chem & Chem Engn, Kingston, ON K7K 7B4, Canada. [Simunovic, S.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Piro, MHA (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM piromh@ornl.gov FU Natural Sciences and Engineering Research Council (NSERC) of Canada; University Network of Excellence in Nuclear Engineering (UNENE); CANDU Owner's Group (COG); NSERC; Fuels Integrated Performance and Safety Code (IPSC) element of the Nuclear Energy Advanced Modeling and Simulations (NEAMS) program of the US Department of Energy Office of Nuclear Energy (DOE/NE), Advanced Modeling and Simulation Office (AMSO); U.S. Department of Energy [DE-AC05-00OR22725] FX This work was funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada, the University Network of Excellence in Nuclear Engineering (UNENE) and the CANDU Owner's Group (COG). Financial support from a Post Graduate Scholarship from NSERC is gratefully acknowledged by the primary author. The development of the Advanced Multi-Physics (AMP) nuclear fuel performance code was funded by the Fuels Integrated Performance and Safety Code (IPSC) element of the Nuclear Energy Advanced Modeling and Simulations (NEAMS) program of the US Department of Energy Office of Nuclear Energy (DOE/NE), Advanced Modeling and Simulation Office (AMSO).; This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form purposes. NR 31 TC 4 Z9 4 U1 0 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 EI 1879-0801 J9 COMP MATER SCI JI Comput. Mater. Sci. PD FEB PY 2013 VL 67 BP 266 EP 272 DI 10.1016/j.commatsci.2012.09.011 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 041WE UT WOS:000311431600035 ER PT J AU Cohen, BI Dimits, AM Strozzi, DJ AF Cohen, Bruce I. Dimits, Andris M. Strozzi, David J. TI A grid-based binary model for coulomb collisions in plasmas SO JOURNAL OF COMPUTATIONAL PHYSICS LA English DT Article DE Collision processes; Plasmas; Collisions; Particle-in-cell simulation algorithms; Computer applications ID PARTICLE SIMULATION; FOKKER-PLANCK; CODES AB Both binary and grid-based Langevin equations models for Coulomb collisions are used in particle simulation of plasmas. We introduce a variant of the conventional binary collision algorithm for performing Coulomb collisions. In this algorithm particles in a configuration space cell are not paired for collisions. Instead, for every test particle in the cell, a unique field particle is defined by randomly sampling a velocity distribution defined on the grid by accumulating moments of the particle distribution function(s). The test and field particle pair then undergoes a collision using the standard methodology for binary collisions. The performance of the new algorithm is illustrated in example computations and compared to a drag-diffusion Langevin equations algorithm. The grid-based algorithms do not conserve momentum and energy, although with good particle statistics the non-conservation is relatively small. Conservation can be restored after collisions using a shift and scaling of the momenta. The comparative merits of the new algorithm are discussed. (C) 2012 Elsevier Inc. All rights reserved. C1 [Cohen, Bruce I.; Dimits, Andris M.; Strozzi, David J.] Lawrence Livermore Natl Lab, Livermore, CA 94511 USA. RP Cohen, BI (reprint author), Lawrence Livermore Natl Lab, L-637,POB 808, Livermore, CA 94511 USA. EM cohen1@llnl.gov OI Strozzi, David/0000-0001-8814-3791 FU US Department of Energy by the Lawrence Livermore National Laboratory at University of California at Los Angeles [DE-AC52-07NA27344, DE-FG02-05ER-25710]; DOE Office of Scientific Computing Research FX We are grateful to Alex Friedman, Dave Grote, Andreas Kemp, David Larson, Peter Rambo, Mark Rosin, and Russ Caflisch for useful discussions, suggestions, and encouragement. We also thank the referee for a careful reading of the manuscript and thoughtful suggestions that have improved the paper. This work was performed under the auspices of the US Department of Energy by the Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and under Grant DE-FG02-05ER-25710 at University of California at Los Angeles under the Multiscale Initiative program supported by the DOE Office of Scientific Computing Research. NR 28 TC 5 Z9 5 U1 0 U2 10 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9991 EI 1090-2716 J9 J COMPUT PHYS JI J. Comput. Phys. PD FEB 1 PY 2013 VL 234 BP 33 EP 43 DI 10.1016/j.jcp.2012.08.046 PG 11 WC Computer Science, Interdisciplinary Applications; Physics, Mathematical SC Computer Science; Physics GA 044SW UT WOS:000311644900003 ER PT J AU Hamdi, M Subramanian, A Dong, LX Ferreira, A Nelson, BJ AF Hamdi, Mustapha Subramanian, Arunkumar Dong, Lixin Ferreira, Antoine Nelson, Bradley J. TI Simulation of Rotary Motion Generated by Head-to-Head Carbon Nanotube Shuttles SO IEEE-ASME TRANSACTIONS ON MECHATRONICS LA English DT Article DE Molecular dynamics (MD) simulation; nanoelectromechanical systems (NEMS); nanorobotic system; nanotube; rotary nanomotor ID WALL NANOTUBES; BEARING AB A novel rotary nanomotor is described using two axially aligned, opposing chirality nanotube shuttles. Based on inter-shell screw-like motion of nanotubes, rotary motion is generated by electrostatically pulling the two cores together. Simulations using molecular dynamics show the generation of rotation from armchair nanotube pairs and their actuation properties. The simulation results point toward the use of these motors as building blocks in nanoelectromechanical systems and nanorobotic systems for sensing, actuation, and computation applications. C1 [Hamdi, Mustapha; Ferreira, Antoine] Ecole Natl Super Ingenieurs Bourges, Lab PRISME, F-18000 Bourges, France. [Subramanian, Arunkumar; Dong, Lixin; Nelson, Bradley J.] Swiss Fed Inst Technol Zurich, Inst Robot & Intelligent Syst, CH-8092 Zurich, Switzerland. [Subramanian, Arunkumar] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. RP Hamdi, M (reprint author), Ecole Natl Super Ingenieurs Bourges, Lab PRISME, F-18000 Bourges, France. EM mfhamdi@gmail.com; asubram@sandia.gov; ldong@egr.msu.edu; antoine.ferreira@ensi-bourges.fr; bnelson@ethz.ch RI Nelson, Bradley/B-7761-2013; Dong, Lixin/B-3115-2008 OI Nelson, Bradley/0000-0001-9070-6987; Dong, Lixin/0000-0002-8816-4944 NR 28 TC 10 Z9 10 U1 0 U2 32 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1083-4435 J9 IEEE-ASME T MECH JI IEEE-ASME Trans. Mechatron. PD FEB PY 2013 VL 18 IS 1 BP 130 EP 137 DI 10.1109/TMECH.2011.2165078 PG 8 WC Automation & Control Systems; Engineering, Manufacturing; Engineering, Electrical & Electronic; Engineering, Mechanical SC Automation & Control Systems; Engineering GA 008NU UT WOS:000308964500014 ER PT J AU Baugh, L Gallagher, LA Patrapuvich, R Clifton, MC Gardberg, AS Edwards, TE Armour, B Begley, DW Dieterich, SH Dranow, DM Abendroth, J Fairman, JW Fox, D Staker, BL Phan, I Gillespie, A Choi, R Nakazawa-Hewitt, S Nguyen, MT Napuli, A Barrett, L Buchko, GW Stacy, R Myler, PJ Stewart, LJ Manoil, C Van Voorhis, WC AF Baugh, Loren Gallagher, Larry A. Patrapuvich, Rapatbhorn Clifton, Matthew C. Gardberg, Anna S. Edwards, Thomas E. Armour, Brianna Begley, Darren W. Dieterich, Shellie H. Dranow, David M. Abendroth, Jan Fairman, James W. Fox, David, III Staker, Bart L. Phan, Isabelle Gillespie, Angela Choi, Ryan Nakazawa-Hewitt, Steve Mary Trang Nguyen Napuli, Alberto Barrett, Lynn Buchko, Garry W. Stacy, Robin Myler, Peter J. Stewart, Lance J. Manoil, Colin Van Voorhis, Wesley C. TI Combining Functional and Structural Genomics to Sample the Essential Burkholderia Structome SO PLOS ONE LA English DT Article ID TRANSFER-RNA HYDROLASE; PEPTIDYL-TRANSFER-RNA; SYNTHASE-III FABH; THYMIDYLATE SYNTHASE; ESSENTIAL GENES; PSEUDOMONAS-AERUGINOSA; ESCHERICHIA-COLI; FLUORINATED PYRIMIDINES; PLASMODIUM-FALCIPARUM; BIOSYNTHETIC-PATHWAY AB Background: The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite. Methodology/Principal Findings: We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq). We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID) structure determination pipeline. To maximize structural coverage of these targets, we applied an "ortholog rescue'' strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs) from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail. Conclusions/Significance: This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against infections and diseases caused by Burkholderia. All expression clones and proteins created in this study are freely available by request. C1 [Gillespie, Angela; Choi, Ryan; Nakazawa-Hewitt, Steve; Mary Trang Nguyen; Napuli, Alberto; Barrett, Lynn; Van Voorhis, Wesley C.] Univ Washington, Dept Med, Div Allergy & Infect Dis, Seattle, WA USA. [Gallagher, Larry A.; Patrapuvich, Rapatbhorn; Manoil, Colin] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA. [Clifton, Matthew C.; Gardberg, Anna S.; Edwards, Thomas E.; Armour, Brianna; Begley, Darren W.; Dieterich, Shellie H.; Dranow, David M.; Abendroth, Jan; Fairman, James W.; Fox, David, III; Staker, Bart L.; Stewart, Lance J.] Emerald BioStruct, Bainbridge Isl, WA USA. [Baugh, Loren; Phan, Isabelle; Stacy, Robin; Myler, Peter J.] Seattle Biomed Res Inst, Seattle, WA 98109 USA. [Buchko, Garry W.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Myler, Peter J.; Van Voorhis, Wesley C.] Univ Washington, Dept Global Hlth, Seattle, WA 98195 USA. [Van Voorhis, Wesley C.] Univ Washington, Dept Microbiol, Seattle, WA 98195 USA. [Myler, Peter J.] Univ Washington, Dept Med Educ & Biomed Informat, Seattle, WA 98195 USA. EM wesley@uw.edu RI Buchko, Garry/G-6173-2015; OI Buchko, Garry/0000-0002-3639-1061; Myler, Peter/0000-0002-0056-0513 FU National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272200700057C] FX This project has been funded in whole or in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No.: HHSN272200700057C. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 53 TC 41 Z9 5673 U1 30 U2 375 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JAN 31 PY 2013 VL 8 IS 1 AR e53851 DI 10.1371/journal.pone.0053851 PG 10 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 085JH UT WOS:000314610600020 PM 23382856 ER PT J AU Izaurralde, RC Rice, CW Wielopolski, L Ebinger, MH Reeves, JB Thomson, AM Harris, R Francis, B Mitra, S Rappaport, AG Etchevers, JD Sayre, KD Govaerts, B McCarty, GW AF Izaurralde, Roberto C. Rice, Charles W. Wielopolski, Lucian Ebinger, Michael H. Reeves, James B., III Thomson, Allison M. Harris, Ronny Francis, Barry Mitra, Sudeep Rappaport, Aaron G. Etchevers, Jorge D. Sayre, Kenneth D. Govaerts, Bram McCarty, Gregory W. TI Evaluation of Three Field-Based Methods for Quantifying Soil Carbon SO PLOS ONE LA English DT Article ID DIFFUSE-REFLECTANCE SPECTROSCOPY; INDUCED BREAKDOWN SPECTROSCOPY; MITIGATION; AGRICULTURE; STORAGE; LIBS AB Three advanced technologies to measure soil carbon (C) density (g C m(-2)) are deployed in the field and the results compared against those obtained by the dry combustion (DC) method. The advanced methods are: a) Laser Induced Breakdown Spectroscopy (LIBS), b) Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS), and c) Inelastic Neutron Scattering (INS). The measurements and soil samples were acquired at Beltsville, MD, USA and at Centro International para el Mejoramiento del Maiz y el Trigo (CIMMYT) at El Batan, Mexico. At Beltsville, soil samples were extracted at three depth intervals (0-5, 5-15, and 15-30 cm) and processed for analysis in the field with the LIBS and DRIFTS instruments. The INS instrument determined soil C density to a depth of 30 cm via scanning and stationary measurements. Subsequently, soil core samples were analyzed in the laboratory for soil bulk density (kg m(-3)), C concentration (g kg(-1)) by DC, and results reported as soil C density (kg m(-2)). Results from each technique were derived independently and contributed to a blind test against results from the reference (DC) method. A similar procedure was employed at CIMMYT in Mexico employing but only with the LIBS and DRIFTS instruments. Following conversion to common units, we found that the LIBS, DRIFTS, and INS results can be compared directly with those obtained by the DC method. The first two methods and the standard DC require soil sampling and need soil bulk density information to convert soil C concentrations to soil C densities while the INS method does not require soil sampling. We conclude that, in comparison with the DC method, the three instruments (a) showed acceptable performances although further work is needed to improve calibration techniques and (b) demonstrated their portability and their capacity to perform under field conditions. C1 [Izaurralde, Roberto C.; Thomson, Allison M.; Rappaport, Aaron G.] Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. [Izaurralde, Roberto C.; Thomson, Allison M.; Rappaport, Aaron G.] Univ Maryland, College Pk, MD 20742 USA. [Rice, Charles W.] Kansas State Univ, Dept Agron, Manhattan, KS 66506 USA. [Wielopolski, Lucian; Mitra, Sudeep] Brookhaven Natl Lab, Dept Environm Sci, Upton, NY 11973 USA. [Ebinger, Michael H.; Harris, Ronny] Los Alamos Natl Lab, Los Alamos, NM USA. [Reeves, James B., III; Francis, Barry] ARS, EMBUL, USDA, Beltsville, MD USA. [Etchevers, Jorge D.] Rappaport & Associates, Joint Global Change Res Inst, College Pk, MD USA. [Sayre, Kenneth D.] Colegio Postgrad, Nat Resources Inst, Soil Fertil Lab, Texcoco, State Of Mexico, Mexico. [Govaerts, Bram] CIMMYT, Mexico City, DF, Mexico. [McCarty, Gregory W.] ARS, HRSL, USDA, BARC W, Beltsville, MD USA. RP Izaurralde, RC (reprint author), Pacific NW Natl Lab, Joint Global Change Res Inst, College Pk, MD 20740 USA. EM cesar.izaurralde@pnnl.gov RI Thomson, Allison/B-1254-2010; OI ETCHEVERS, J. D./0000-0003-4663-6306 FU United States Agency for International Development, Global Climate Change Office; United States Department of Energy's Office of Science, Biological and Environmental Research (BER); Consortium of Agricultural Soils Mitigation of Greenhouse Gases (CASMGS); Robertson Foundation FX The authors acknowledge the financial support of the United States Agency for International Development, Global Climate Change Office, the United States Department of Energy's Office of Science, Biological and Environmental Research (BER) funding to the Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE), the USDA CSREES through its support of the Consortium of Agricultural Soils Mitigation of Greenhouse Gases (CASMGS), and the Robertson Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 37 TC 6 Z9 6 U1 0 U2 48 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JAN 31 PY 2013 VL 8 IS 1 AR e55560 DI 10.1371/journal.pone.0055560 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 085JH UT WOS:000314610600126 PM 23383225 ER PT J AU Liu, ZG Chai, SH Binder, A Li, YY Ji, LT Dai, S AF Liu, Zhi-Gang Chai, Song-Hai Binder, Andrew Li, Yuan-Yuan Ji, Lin-Tao Dai, Sheng TI Influence of calcination temperature on the structure and catalytic performance of CuOx-CoOy-CeO2 ternary mixed oxide for CO oxidation SO APPLIED CATALYSIS A-GENERAL LA English DT Article DE Calcination temperature; CuO-Co3O4-CeO2; Mechanism; Mutual interaction, CO oxidation ID CARBON-MONOXIDE OXIDATION; SELECTIVE OXIDATION; PREFERENTIAL OXIDATION; COMPOSITE CATALYSTS; CUO-CEO2 CATALYSTS; EXCESS HYDROGEN; SURFACE-AREA; CUO; ATMOSPHERE; REDUCTION AB Influence of calcination temperature (400-800 degrees C) on the structure and catalytic activity of CuOx-CoOy-CeO2 ternary mixed oxide (atomic Cu:Co:Ce ratio of 1:5:5) prepared by co-precipitation method is investigated by N-2 physisorption, XRD, TPR, TEM, TG-DTA, XPS, and CO oxidation reaction. The assynthesized CuOx-CoOy-CeO2 undergoes successive structural changes with the calcination temperature, involving the hydroxide dehydration below 400 degrees C, enhanced interaction between Co3O4 and CeO2 at ca. 600 degrees C, and CO3O4 decomposition to CoO at 700 degrees C. The catalyst calcined at 600 degrees C shows a relative enrichment of Cu+ on the surface of CuOx-CoO5-CeO2 and an enhanced interaction between Co3O4 and CeO2 along with the appearance of oxygen vacancies in CeO2, which seems to be responsible for its highest catalytic activity for CO oxidation among all the tested catalysts. The complete conversion of CO is obtained at 70 degrees C and about 50% of CO conversion is reached at 55 degrees C. (C) 2012 Elsevier B.V. All rights reserved. C1 [Liu, Zhi-Gang; Li, Yuan-Yuan; Ji, Lin-Tao] Hunan Univ, Sch Chem & Chem Engn, Changsha 410082, Hunan, Peoples R China. [Chai, Song-Hai; Dai, Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Binder, Andrew; Dai, Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Liu, ZG (reprint author), Hunan Univ, Sch Chem & Chem Engn, Changsha 410082, Hunan, Peoples R China. EM liuzhigang@hnu.edu.cn; dais@ornl.org RI Chai, Song-Hai/A-9299-2012; Dai, Sheng/K-8411-2015; OI Chai, Song-Hai/0000-0002-4152-2513; Dai, Sheng/0000-0002-8046-3931; Binder, Andrew/0000-0003-3221-2887 FU Division of Chemical Science, Office of Basic Energy Sciences, U.S. Department of Energy; Heavy Oil State Key Laboratory in China FX This research is sponsored by the Division of Chemical Science, Office of Basic Energy Sciences, U.S. Department of Energy. The research (ZL, YL, LJ) is also supported partly by the Heavy Oil State Key Laboratory in China. NR 42 TC 13 Z9 13 U1 5 U2 93 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0926-860X J9 APPL CATAL A-GEN JI Appl. Catal. A-Gen. PD JAN 31 PY 2013 VL 451 BP 282 EP 288 DI 10.1016/j.apcata.2012.10.023 PG 7 WC Chemistry, Physical; Environmental Sciences SC Chemistry; Environmental Sciences & Ecology GA 091SD UT WOS:000315069200034 ER PT J AU Stoliker, DL Kaviani, N Kent, DB Davis, JA AF Stoliker, Deborah L. Kaviani, Nazila Kent, Douglas B. Davis, James A. TI Evaluating ion exchange resin efficiency and oxidative capacity for the separation of uranium(IV) and uranium(VI) SO GEOCHEMICAL TRANSACTIONS LA English DT Article DE Anion exchange; Resin separation; Uranium(IV); Uranium(VI); Uranium speciation ID SHEWANELLA-ONEIDENSIS MR-1; U(VI) REDUCTION; CONTAMINATED AQUIFER; GROUNDWATER; U(IV); SPECIATION; STABILITY; TRANSPORT; SEDIMENTS; PRODUCTS AB Background: Previously described methods to separate dissolved U(IV) from dissolved U(VI) under acidic anoxic conditions prior to laboratory analysis were ineffective with materials currently available commercially. Three strong anion exchange resins were examined for their efficiency in separating, recovering, and preserving both redox states during separation. Results: Under oxic conditions, recovery of U(VI) from three exchange resins (Bio-Rad AG (R) 1x8 Poly-Prep (R) prefilled columns, Bio-Rad AG (R) 1x8 powder, and Dowex (R) 1x8 powder) ranged from 72% to 100% depending on the dosed mass, eluent volume, and resin selected. Dowex (R) 1x8 resin was the only resin found to provide 100% recovery of U (VI) with fewer than 5 bed volumes of eluent. Under anoxic conditions, all three resins oxidized U(IV) in aqueous solutions with relatively low U(IV) concentrations (<3x10(-6) M). Resin-induced oxidation was observed visually using a leuco dye, safranin-o. Oxidants associated with the resin were irreversibly reduced by the addition of Ti(III). After anoxic resin pre-treatment, a series of U(IV)/U(VI) mixtures at micro-molar levels were prepared and separated using the Dowex (R) 1x8 resin with 100% recovery of both U(IV) and U(VI) with no resin-induced changes in oxidation state. Conclusions: Currently available anion exchange resins with apparently identical physical properties were found to have significantly different recoveries for hexavalent uranium at micro-molar concentrations. A novel qualitative technique was developed to visually assess oxidative capacities of anion exchange resins under acidic anoxic conditions. A protocol was developed for pre-treatment and use of currently available anion exchange resins to achieve quantitative separation of U(IV) and U(VI) in aqueous solutions with low U(IV) concentrations. This method can be applied to future work to quantitatively assess dissolved U(IV) and U(VI) concentrations in both laboratory and field samples. C1 [Stoliker, Deborah L.; Kaviani, Nazila; Kent, Douglas B.] US Geol Survey, Menlo Pk, CA 94025 USA. [Davis, James A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Stoliker, DL (reprint author), US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA. EM dlstoliker@usgs.gov RI Davis, James/G-2788-2015 FU U.S. Department of Energy (DOE), Office of Science, Subsurface Biogeochemical Research through the Rifle Integrated Field Research Challenge; U.S. Geological Survey National Water Quality Assessment, Toxic Substances Hydrology, and Hydraulic Research and Development Programs FX Funding for this work was provided by the U.S. Department of Energy (DOE), Office of Science, Subsurface Biogeochemical Research through the Rifle Integrated Field Research Challenge. Additional funding was provided by the U.S. Geological Survey National Water Quality Assessment, Toxic Substances Hydrology, and Hydraulic Research and Development Programs. The authors thank Patricia Fox, Chris Fuller, and Matthias Kohler for profitable discussions and laboratory assistance. These contributions, along with reviews by Matthias Kohler and two anonymous reviewers, greatly improved this manuscript. Use of trade names is for identification purposes only and does not constitute endorsement by the USGS, DOE, or other U.S. Government entities. NR 33 TC 2 Z9 2 U1 5 U2 40 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1467-4866 J9 GEOCHEM T JI Geochem. Trans. PD JAN 31 PY 2013 VL 14 AR 1 DI 10.1186/1467-4866-14-1 PG 9 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 090NZ UT WOS:000314987300001 PM 23363052 ER PT J AU Poutsma, ML AF Poutsma, Marvin L. TI Evolution of Structure-Reactivity Correlations for the Hydrogen Abstraction Reaction by Chlorine Atom SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID GAS-PHASE REACTIONS; RADICAL-INITIATED OXIDATION; GLOBAL WARMING POTENTIALS; SELF-REACTION KINETICS; ATMOSPHERIC DEGRADATION MECHANISM; ABSOLUTE RATE CONSTANTS; UV ABSORPTION-SPECTRA; CL-ATOMS; 298 K; OH RADICALS AB Empirical structure-reactivity correlations are developed for log k(298), the gas-phase rate constants for the reaction (Cl-center dot + HCR3 -> ClH + CR3 center dot). It has long been recognized that correlation with Delta H-r is weak. The poor performance of the linear Evans-Polanyi formulation is illustrated and was little improved by adding a quadratic term, for example, by making its slope smoothly dependent on Delta H-r [eta (Delta H-r - Delta H-r(min))/(Delta H-r(max) - Delta H-r(min))]. The "polar effect" (Cl delta----H---CR3 delta+)(double dagger) has also been long discussed, but there is no formalization of this dependence based on widely available independent variable(s). Using the sum of Hammett constants for the R substituents also gave at best modest correlations, either for sigma(para) or for its dissection into F (field/inductive) and R (resonance) effects. Much greater success was achieved by combining these approaches with the preferred independent variable set being either [(Delta H-r)(2), Delta H-r, Sigma F, and Sigma R] or [eta, Delta H-r, Sigma F and Sigma R]. For 64 rate constants that span 7 orders of magnitude, these correlation formulations give r(2) > 0.87 and a mean unsigned deviation of <0.5 log k units, with even better performance if primary, secondary, and tertiary reaction centers are treated separately. C1 Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. RP Poutsma, ML (reprint author), Oak Ridge Natl Lab, Div Chem Sci, POB 2008, Oak Ridge, TN 37831 USA. EM poutsmaml@ornl.gov FU Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy FX This research was sponsored by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy. NR 176 TC 11 Z9 11 U1 5 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 31 PY 2013 VL 117 IS 4 BP 687 EP 703 DI 10.1021/jp310970t PG 17 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 083VI UT WOS:000314492900001 PM 23294253 ER PT J AU Lemke, HT Bressler, C Chen, LX Fritz, DM Gaffney, KJ Galler, A Gawelda, W Haldrup, K Hartsock, RW Ihee, H Kim, J Kim, KH Lee, JH Nielsen, MM Stickrath, AB Zhang, WK Zhu, DL Cammarata, M AF Lemke, Henrik T. Bressler, Christian Chen, Lin X. Fritz, David M. Gaffney, Kelly J. Galler, Andreas Gawelda, Wojciech Haldrup, Kristoffer Hartsock, Robert W. Ihee, Hyotcherl Kim, Jeongho Kim, Kyung Hwan Lee, Jae Hyuk Nielsen, Martin M. Stickrath, Andrew B. Zhang, Wenkai Zhu, Diling Cammarata, Marco TI Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser: Application to Spin Crossover Dynamics SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID STRUCTURAL DYNAMICS; EXCITED-STATES; COMPLEXES; DIFFRACTION; RELAXATION; IRON(II); SYSTEMS; SOLIDS; BOND AB X-ray free electron lasers (XFELs) deliver short (<100 fs) and intense (similar to 10(12) photons) pulses of hard X-rays, making them excellent sources for time-resolved studies. Here we show that, despite the inherent instabilities of current (SASE based) XFELs, they can be used for measuring high-quality X-ray absorption data and we report femtosecond time-resolved X-ray absorption near-edge spectroscopy (XANES) measurements of a spin-crossover system, iron(II) tris(2,2'-bipyridine) in water. The data indicate that the low-spin to high-spin transition can be modeled by single-exponential kinetics convoluted with the overall time resolution. The resulting time constant is similar to 160 fs. C1 [Lemke, Henrik T.; Fritz, David M.; Zhu, Diling; Cammarata, Marco] LCLS, SLAC Natl Lab, Menlo Pk, CA 94025 USA. [Bressler, Christian; Galler, Andreas; Gawelda, Wojciech] European XFEL, D-22761 Hamburg, Germany. [Chen, Lin X.; Stickrath, Andrew B.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Gaffney, Kelly J.; Hartsock, Robert W.; Zhang, Wenkai] Pulse Inst, SLAC Natl Lab, Menlo Pk, CA 94025 USA. [Haldrup, Kristoffer; Nielsen, Martin M.] Tech Univ Denmark, NEXMAP Sect, Dept Phys, Ctr Mol Movies, DK-2800 Lyngby, Denmark. [Ihee, Hyotcherl; Kim, Kyung Hwan] Inst for Basic Sci Korea, Ctr Nanomat & Chem React, Taejon 305701, South Korea. [Kim, Jeongho] Inha Univ, Dept Chem, Inchon 402751, South Korea. [Ihee, Hyotcherl; Kim, Kyung Hwan; Lee, Jae Hyuk] Korea Adv Inst Sci & Technol, Dept Chem, Ctr Time Resolved Diffract, Taejon 305701, South Korea. [Cammarata, Marco] Univ Rennes 1, Inst Phys Rennes, UMR UR1 CNRS 6251, F-35042 Rennes, France. RP Cammarata, M (reprint author), LCLS, SLAC Natl Lab, Menlo Pk, CA 94025 USA. EM marco.cammarata@univ-rennes1.fr RI Cammarata, Marco/C-2322-2008; Zhang, Wenkai/H-1301-2012; Ihee, Hyotcherl/C-1614-2011; Haldrup, Kristoffer/J-6875-2013; Zhu, Diling/D-1302-2013; Gawelda, Wojciech/B-7878-2014; Bressler, Christian/G-1864-2010; Nielsen, Martin/A-5133-2009; Lemke, Henrik Till/N-7419-2016; OI Cammarata, Marco/0000-0003-3013-1186; Haldrup, Kristoffer/0000-0002-0565-6397; Gawelda, Wojciech/0000-0001-7824-9197; Nielsen, Martin/0000-0002-8135-434X; Lemke, Henrik Till/0000-0003-1577-8643; Kim, Jeongho/0000-0003-4085-293X FU Danish National Research Foundation's Centre for Molecular Movies; DANSCATT; IBS (Institute for Basic Science) [CA1201]; Creative Research Initiatives (Center for Time-Resolved Diffraction) of MEST/NRF in Korea; Inha University Research Grant [INHA-46438]; AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy; European XFEL; U.S. Department of Energy, Office of Science, Basic Energy Sciences [DE-AC02-06CH11357] FX This research was carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University. K.H. and M.M.N. acknowledge funding from Danish National Research Foundation's Centre for Molecular Movies and DANSCATT. H.I. and K.H.K. were supported by the Research Center Program (CA1201) of IBS (Institute for Basic Science) and Creative Research Initiatives (Center for Time-Resolved Diffraction) of MEST/NRF in Korea. J.K. was supported by Inha University Research Grant (INHA-46438). K.J.G., R.W.H., and W.Z. acknowledge support from the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy. C.B., W.G., and A.G. were funded by the European XFEL. L.X.C. and A.B.S. acknowledge the support by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Contracts DE-AC02-06CH11357. NR 29 TC 75 Z9 75 U1 8 U2 139 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 31 PY 2013 VL 117 IS 4 BP 735 EP 740 DI 10.1021/jp312559h PG 6 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 083VI UT WOS:000314492900005 PM 23281652 ER PT J AU Gong, Y Gibson, JK AF Gong, Yu Gibson, John K. TI Formation and Characterization of the Uranyl-SO2 Complex, UO2(CH3SO2)(SO2)(-) SO JOURNAL OF PHYSICAL CHEMISTRY A LA English DT Article ID QUADRUPOLE ION-TRAP; GAS-PHASE; PHOTOELECTRON-SPECTROSCOPY; SO2; CHEMISTRY; DENSITY; DISSOCIATION; ADSORPTION; SURFACES; SETS AB The uranyl-SO2 adduct, UO2(CH3SO2)(SO2)(-), was prepared and characterized by mass spectrometric studies as well as by density functional theory. Collision induced dissociation of UO2(CH3SO2)(2)(-) in an ion trap resulted in the formation of UO2(CH3SO2)(SO2)(-), which spontaneously reacted with O-2 to give UO2(CH3SO2)(O-2)(-), with SO2 released. The UO2(CH3SO2)(SO2)(-) complex is computed to have a triplet ground state at the B3LYP level, and the SO2 ligand is coordinated to uranium through two oxygen atoms, similar to the coordination mode of SO2 in its complexes with hard metals. On the basis of the calculated geometric parameters and vibrational frequencies of the SO2 ligand, the UO2(CH3SO2)(SO2)- complex can be considered as a (UO2+)-O-v cation coordinated by SO2- and CH3SO2- anions. The UO2(CH3SO2)(O-2)(-) complex is computed to have a peroxo ligand, suggesting that U-v in UO2(CH3SO2)(SO2)(-) is oxidized to the U-vi state upon O-2 substitution for SO2. C1 [Gong, Yu; Gibson, John K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. RP Gibson, JK (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM jkgibson@lbl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Heavy Element Chemistry at LBNL [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was fully supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Heavy Element Chemistry at LBNL, under Contract No. DE-AC02-05CH11231. Computations were done using resources of the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 41 TC 12 Z9 12 U1 0 U2 42 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1089-5639 J9 J PHYS CHEM A JI J. Phys. Chem. A PD JAN 31 PY 2013 VL 117 IS 4 BP 783 EP 787 DI 10.1021/jp311034x PG 5 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 083VI UT WOS:000314492900010 PM 23311292 ER PT J AU Wang, Z Bertrand, CE Chiang, WS Fratini, E Baglioni, P Alatas, A Alp, EE Chen, SH AF Wang, Zhe Bertrand, Christopher E. Chiang, Wei-Shan Fratini, Emiliano Baglioni, Piero Alatas, Ahmet Alp, E. Ercan Chen, Sow-Hsin TI Inelastic X-ray Scattering Studies of the Short-Time Collective Vibrational Motions in Hydrated Lysozyme Powders and Their Possible Relation to Enzymatic Function SO JOURNAL OF PHYSICAL CHEMISTRY B LA English DT Article ID LIQUID-CRYSTALLINE DNA; EGG-WHITE LYSOZYME; PROTEIN DYNAMICS; GLOBULAR-PROTEINS; NEUTRON-SCATTERING; FREQUENCY DYNAMICS; AXIAL DIRECTION; WATER; RESOLUTION; MYOGLOBIN AB High-resolution inelastic X-ray scattering was used to investigate the collective vibrational excitations in hydrated lysozyme powders as a function of hydration level and temperature. It is found that the samples with strong enzymatic function are "soft", in the sense that they exhibit low frequency and large amplitude intraprotein collective vibrational motions on certain length scales. This is not the case for samples with weak or no enzymatic activity. Thus, we identify a possible correlation between the short-time intraprotein collective vibrational motions and the establishment of enzymatic function in hydrated lysozyme powders, and bring new insight to notions of protein "conformational flexibility" and "softness" in terms of these motions. C1 [Wang, Zhe; Bertrand, Christopher E.; Chiang, Wei-Shan; Chen, Sow-Hsin] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. [Fratini, Emiliano; Baglioni, Piero] Univ Florence, Dept Chem, I-50019 Florence, Italy. [Fratini, Emiliano; Baglioni, Piero] Univ Florence, CSGI, I-50019 Florence, Italy. [Alatas, Ahmet; Alp, E. Ercan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Chen, SH (reprint author), MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM sowhsin@mit.edu RI Fratini, Emiliano/C-9983-2010; Baglioni, Piero/B-1208-2011; OI Fratini, Emiliano/0000-0001-7104-6530; Baglioni, Piero/0000-0003-1312-8700; Wang, Zhe/0000-0003-4103-0751 FU Basic Energy Sciences Division of US DOE [DE-FG02-90ER45429]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Ministero dell'Istruzione, dell'Universita e della Ricerca Scientifica (MiUR) [PRIN-2008, prot. 20087K9A2J, FIRB-RBPR05JH2P007]; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI) FX The research at MIT was supported by a grant from Basic Energy Sciences Division of US DOE DE-FG02-90ER45429. The work at the Advanced Photon Source is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. E.F. and P.B. acknowledge financial support from Ministero dell'Istruzione, dell'Universita e della Ricerca Scientifica (MiUR, grant PRIN-2008, prot. 20087K9A2J, and FIRB-RBPR05JH2P007 Italnanonet), and Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI). NR 60 TC 10 Z9 10 U1 1 U2 30 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1520-6106 J9 J PHYS CHEM B JI J. Phys. Chem. B PD JAN 31 PY 2013 VL 117 IS 4 BP 1186 EP 1195 DI 10.1021/jp312842m PG 10 WC Chemistry, Physical SC Chemistry GA 083VC UT WOS:000314492300024 PM 23301848 ER PT J AU Leung, K AF Leung, Kevin TI Electronic Structure Modeling of Electrochemical Reactions at Electrode/Electrolyte Interfaces in Lithium Ion Batteries SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID DENSITY-FUNCTIONAL THEORY; INITIO MOLECULAR-DYNAMICS; ATOMIC LAYER DEPOSITION; ETHYLENE CARBONATE; SEI FORMATION; 1ST PRINCIPLES; 1ST-PRINCIPLES SIMULATIONS; REDUCTION-MECHANISMS; PROPYLENE CARBONATE; DIMETHYL CARBONATE AB We review recent ab initio molecular dynamics studies of electrode/electrolyte interfaces in lithium ion batteries. Our goals are to introduce experimentalists to simulation techniques applicable to models which are arguably most faithful to experimental conditions so far, and to emphasize to theorists that the inherently interdisciplinary nature of this subject requires bridging the gap between solid and liquid state perspectives. We consider liquid ethylene carbonate (EC) decomposition on lithium intercalated graphite, lithium metal, oxide-coated graphite, and spinel manganese oxide surfaces. These calculations are put in the context of more widely studied water solid interfaces. Our main themes include kinetically controlled two-electron-induced reactions, the breaking of a previously much neglected chemical bond in EC, and electron tunneling. Future work on modeling batteries at atomic length scales requires capabilities beyond state-of-the-art, which emphasizes that applied battery research can and should drive fundamental science development. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Leung, K (reprint author), Sandia Natl Labs, MS 1415, Albuquerque, NM 87185 USA. EM kleung@sandia.gov FU Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160]; U.S. Deparment of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work is funded by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. We thank Dr. Ashley Predith and NEES PIs and affiliates for discussions. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Deparment of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 108 TC 49 Z9 49 U1 12 U2 261 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 31 PY 2013 VL 117 IS 4 BP 1539 EP 1547 DI 10.1021/jp308929a PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 083VD UT WOS:000314492400001 ER PT J AU Comstock, DJ Elam, JW AF Comstock, David J. Elam, Jeffrey W. TI Mechanistic Study of Lithium Aluminum Oxide Atomic Layer Deposition SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID THIN-FILM; HYDROXIDE MONOHYDRATE; LICOO2 CATHODES; ION BATTERIES; FT-IR; SPECTROSCOPY; STABILITY; LIPON AB There is significant interest in developing lithium conductive thin films that have potential applications as lithium-permeable electrode barrier coatings and as solid electrolytes in thin film batteries. In this work, we demonstrate the atomic layer deposition (ALD) of lithium aluminum oxide (LiAlOx) thin films and provide a thorough characterization of the growth mechanism. LiAlOx thin films were deposited by combining the ALD processes for Al2O3 (trimethylaluminum and water) and LiOH (lithium tert-butoxide and water). The composition of the films was controlled by adjusting the percentage of LiOH cycles. Both the pure LiOH process and the combined LiAlOx process were characterized by a combination of quartz crystal microbalance, Fourier transform infrared spectroscopy, and film deposition studies. These studies revealed a complex growth mechanism that is strongly affected by the hygroscopic and reactive LiOH component. Stable ALD with a constant growth rate as a function of ALD cycles was only achieved at <= 50% LiOH cycles. Within this stable regime, a maximum Li cation percentage of 55% and a growth rate of 1.5 angstrom/cycle were observed. LiAlOx films with >50% LiOH cycles exhibited greater Li cation percentages and stable growth only for the initial 20-30 cycles. This narrow window of stable LiAlOx ALD may restrict the deployment of this process in battery applications. C1 [Comstock, David J.; Elam, Jeffrey W.] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA. RP Comstock, DJ (reprint author), Argonne Natl Lab, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. FU Center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported as part of the Center for Electrical Energy Storage: Tailored Interfaces, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Electron microscopy was performed at the Electron Microscopy Center for Materials Research (EMCMR) at Argonne National Laboratory. Use of the EMCMR was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 operated by UChicago Argonne, LLC. NR 32 TC 16 Z9 16 U1 5 U2 116 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 31 PY 2013 VL 117 IS 4 BP 1677 EP 1683 DI 10.1021/jp308828p PG 7 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 083VD UT WOS:000314492400018 ER PT J AU Yang, LJ Vukmirovic, MB Su, D Sasaki, K Herron, JA Mavrikakis, M Liao, SJ Adzic, RR AF Yang, Lijun Vukmirovic, Miomir B. Su, Dong Sasaki, Kotaro Herron, Jeffrey A. Mavrikakis, Manos Liao, Shijun Adzic, Radoslav R. TI Tuning the Catalytic Activity of Ru@Pt Core-Shell Nanoparticles for the Oxygen Reduction Reaction by Varying the Shell Thickness SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID PLATINUM-MONOLAYER ELECTROCATALYSTS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; O-2 REDUCTION; HETEROGENEOUS CATALYSIS; METAL-SURFACES; BASIS-SET; ALLOY; LIGAND; ELECTROCHEMISTRY AB The kinetics of the oxygen reduction reaction (ORR) was investigated in acid solutions on Pt monolayers that were deposited on carbon-supported Ru nanoparticles using the rotating disk electrode technique. The Pt mass and specific ORR activities greatly depend on the number of Pt monolayers, and the optimum activity occurs with two Pt monolayers. Density functional theory calculations showed that Pt overlayers destabilize O* and OH* with respect to pure Pt, leading to more favorable hydrogenation kinetics. However, with only a single Pt overlayer, the destabilization is too much, and O-O bond breaking becomes rate limiting. Two to three Pt monolayers supported on the Ru core of our nanoparticles lead to increased activity. This work demonstrates that one can modulate the ORR activity of Pt monolayers supported on other metals by eliminating a part of the ligand effect by increasing the thickness of the Pt shell on top of the supporting metal surface. C1 [Yang, Lijun; Liao, Shijun] S China Univ Technol, Sch Chem & Chem Engn, Guangzhou 510641, Guangdong, Peoples R China. [Vukmirovic, Miomir B.; Sasaki, Kotaro; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Herron, Jeffrey A.; Mavrikakis, Manos] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. RP Vukmirovic, MB (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM miomir@bnl.gov RI Mavrikakis, Manos/D-5702-2012; Liao, Shijun/C-1745-2012; Su, Dong/A-8233-2013 OI Mavrikakis, Manos/0000-0002-5293-5356; Su, Dong/0000-0002-1921-6683 FU U.S. Department of Energy, Division of Chemical Sciences, Geosciences and Biosciences Division [DE-AC02-98CH10886]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886]; National Scientific Foundation of China (NSFC) [20876062, 21076089]; China Scholarship Council; South China University of Technology for the Study Abroad Scholarship; DOE-BES; Division of Chemical Sciences; NSF Partnership for International Research and Education [OISE 0730277]; Air Products & Chemicals, Inc.; Department of Energy's Office of Biological and Environmental Research located at PNNL; CNM; NCCS; ORNL; U.S. Department of Energy, Office of Science [DE-AC02-06CH11357, DEAC05-00OR22725, DE-AC02-05CH11231] FX Work at Brookhaven National Laboratory (BNL) is supported by the U.S. Department of Energy, Division of Chemical Sciences, Geosciences and Biosciences Division, under Contract No. DE-AC02-98CH10886. TEM work was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. S.L. and L.Y. are thankful for the support from the National Scientific Foundation of China (NSFC Project No. 20876062 and No. 21076089). L.Y. greatly appreciates the China Scholarship Council and South China University of Technology for the Study Abroad Scholarship. Work at UW-Madison was supported by DOE-BES, Division of Chemical Sciences, and the NSF Partnership for International Research and Education Grant OISE 0730277. J.A.H. thanks Air Products & Chemicals, Inc., for a graduate fellowship. The computational work was performed in part using supercomputing resources from the following institutions: EMSL, a National scientific user facility at Pacific Northwest National Laboratory (PNNL); the Center for Nanoscale Materials at Argonne National Laboratory (ANL); the National Center for Computational Sciences at Oak Ridge National Laboratory (ORNL); and the National Energy Research Scientific Computing Center (NERSC). EMSL is sponsored by the Department of Energy's Office of Biological and Environmental Research located at PNNL. CNM, NCCS, and ORNL are supported by the U.S. Department of Energy, Office of Science, under Contracts DE-AC02-06CH11357, DEAC05-00OR22725, and DE-AC02-05CH11231, respectively. NR 42 TC 59 Z9 59 U1 10 U2 219 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 31 PY 2013 VL 117 IS 4 BP 1748 EP 1753 DI 10.1021/jp309990e PG 6 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 083VD UT WOS:000314492400026 ER PT J AU Michalak, WD Krier, JM Komvopoulos, K Somorjai, GA AF Michalak, William D. Krier, James M. Komvopoulos, Kyriakos Somorjai, Gabor A. TI Structure Sensitivity in Pt Nanoparticle Catalysts for Hydrogenation of 1,3-Butadiene: In Situ Study of Reaction Intermediates Using SFG Vibrational Spectroscopy SO JOURNAL OF PHYSICAL CHEMISTRY C LA English DT Article ID SUM-FREQUENCY GENERATION; ETHYLENE HYDROGENATION; SURFACE-CHEMISTRY; C-6 HYDROCARBONS; SINGLE-CRYSTALS; HIGH-PRESSURES; N-ALKANES; PT(111); PLATINUM; SELECTIVITY AB The product selectivity during 1,3-butadiene hydrogenation on monodisperse, colloidally synthesized, Pt nanoparticles was studied under reaction conditions with kinetic measurements and in situ sum frequency generation (SFG) vibrational spectroscopy. SFG was performed with the capping ligands intact in order to maintain nanoparticle size by reduced sintering. Four products are formed at 75 degrees C: 1-butene, cis-2-butene, trans-2-butene, and n-butane. Ensembles of Pt nanoparticles with average diameters of 0.9 and 1.8 nm exhibit a similar to 30% and similar to 20% increase in the full hydrogenation products, respectively, as compared to Pt nanoparticles with average diameters of 4.6 and 6.7 nm. Methyl and methylene vibrational stretches of reaction intermediates observed under working conditions using SFG were used to correlate the stable reaction intermediates with the product distribution. Kinetic and SFG results correlate with previous DFT predictions for two parallel reaction pathways of 1,3-butadiene hydrogenation. Hydrogenation of 1,3-butadiene can initiate with H-addition at internal or terminal carbons leading to the formation of 1-buten-4-yl radical (metallocycle) and 2-buten-1-yl radical intermediates, respectively. Small (0.9 and 1.8 nm) nanoparticles exhibited vibrational resonances originating from both intermediates, while the large (4.6 and 6.7 nm) particles exhibited vibrational resonances originating predominately from the 2-buten-1-yl radical. This suggests each reaction pathway competes for partial and full hydrogenation and the nanoparticle size affects the kinetic preference for the two pathways. The reaction pathway through the metallocycle intermediate on the small nanoparticles is likely due to the presence of low-coordinated sites. C1 [Michalak, William D.; Krier, James M.; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. [Michalak, William D.; Krier, James M.; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Michalak, William D.; Krier, James M.; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Komvopoulos, Kyriakos] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Chem Sci, Berkeley, CA 94720 USA. EM wmichalak@gmail.com; somorjai@berkeley.edu FU U.S. Department of Energy [DE-AC02-05CH11231]; UCB-KAUST Academic Excellence Alliance (AEA) Program FX This research was funded by the U.S. Department of Energy under Contract DE-AC02-05CH11231. K.K. also acknowledges partial funding for J.M.K. provided by the UCB-KAUST Academic Excellence Alliance (AEA) Program. W.D.M. and J.M.K. thank Xiaojun Cai for helpful discussions regarding modeling of the SFG spectra and Kwangjin An for making the 0.9 nm Pt nanoparticles. NR 44 TC 13 Z9 13 U1 6 U2 103 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1932-7447 J9 J PHYS CHEM C JI J. Phys. Chem. C PD JAN 31 PY 2013 VL 117 IS 4 BP 1809 EP 1817 DI 10.1021/jp311772p PG 9 WC Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 083VD UT WOS:000314492400034 ER PT J AU Endres, NF Das, R Smith, AW Arkhipov, A Kovacs, E Huang, YJ Pelton, JG Shan, YB Shaw, DE Wemmer, DE Groves, JT Kuriyan, J AF Endres, Nicholas F. Das, Rahul Smith, Adam W. Arkhipov, Anton Kovacs, Erika Huang, Yongjian Pelton, Jeffrey G. Shan, Yibing Shaw, David E. Wemmer, David E. Groves, Jay T. Kuriyan, John TI Conformational Coupling across the Plasma Membrane in Activation of the EGF Receptor SO CELL LA English DT Article ID EPIDERMAL-GROWTH-FACTOR; TRANSMEMBRANE DOMAIN; KINASE ACTIVATION; NEGATIVE COOPERATIVITY; CRYSTAL-STRUCTURE; TYROSINE KINASES; LIVING CELLS; LIGAND; DIMERIZATION; BINDING AB How the epidermal growth factor receptor (EGFR) activates is incompletely understood. The intracellular portion of the receptor is intrinsically active in solution, and to study its regulation, we measured autophosphorylation as a function of EGFR surface density in cells. Without EGF, intact EGFR escapes inhibition only at high surface densities. Although the transmembrane helix and the intracellular module together suffice for constitutive activity even at low densities, the intracellular module is inactivated when tethered on its own to the plasma membrane, and fluorescence cross-correlation shows that it fails to dimerize. NMR and functional data indicate that activation requires an N-terminal interaction between the transmembrane helices, which promotes an antiparallel interaction between juxtamembrane segments and release of inhibition by the membrane. We conclude that EGF binding removes steric constraints in the extracellular module, promoting activation through N-terminal association of the transmembrane helices. C1 [Endres, Nicholas F.; Das, Rahul; Kovacs, Erika; Huang, Yongjian; Kuriyan, John] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Smith, Adam W.; Wemmer, David E.; Groves, Jay T.; Kuriyan, John] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Endres, Nicholas F.; Das, Rahul; Kovacs, Erika; Huang, Yongjian; Pelton, Jeffrey G.; Wemmer, David E.; Groves, Jay T.; Kuriyan, John] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Groves, Jay T.; Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Huang, Yongjian; Groves, Jay T.; Kuriyan, John] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA. [Smith, Adam W.; Wemmer, David E.; Groves, Jay T.; Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Arkhipov, Anton; Shan, Yibing; Shaw, David E.] DE Shaw Res, New York, NY 10036 USA. [Shaw, David E.] Columbia Univ, Ctr Computat Biol & Bioinformat, New York, NY 10032 USA. RP Groves, JT (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA. EM jtgroves@lbl.gov; kuriyan@berkeley.edu RI Smith, Adam/B-7156-2016 OI Smith, Adam/0000-0001-5216-9017 FU Natural Sciences and Engineering Research Council of Canada; Canadian Institutes of Health Research; National Cancer Institute (NCI) [2-R01-CA096504- 06, U54 CA143836]; Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy [DE-AC02-05CH11231]; National Science Foundation [BBS 87-20134l]; National Institutes of Health [GM68933] FX We thank Jeff Iwig, Brian Kelch, Meg Stratton, and Julie Zorn for feedback on the manuscript, Eliza Zhang for initial work on the immunofluorescence assay, and David King for mass spectrometry. N.F.E. was a Leukemia and Lymphoma Society Fellow. R.D. was supported by postdoctoral fellowships from the Natural Sciences and Engineering Research Council of Canada (2009-2011) and the Canadian Institutes of Health Research (2011-2012). Y.H. is a Howard Hughes Medical Institute International Student Research fellow. This work was supported by a grant from the National Cancer Institute (NCI) to J.K. (2-R01-CA096504- 06) and by award U54 CA143836 from NCI to J.T.G. Additional support for the fluorescence spectroscopy system was provided by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. Grants from the National Science Foundation (BBS 87-20134l; 600 MHz NMR) and the National Institutes of Health (GM68933; 900 MHz) supported the NMR instrumentation. N.F.E., Y.H., E. K., and J.K. developed the cell-based assays for EGFR activity. A.W.S. and J.T.G. developed the live-cell spectroscopy and built the PIE-FCCS microscope. R.D. conducted the NMR experiments, with guidance from D.E.W. and J.G.P., A.A., Y.S., and D.E.S. helped couple the interpretation of experimental data and the molecular dynamics simulations. All authors were responsible for editing and writing the paper. NR 51 TC 177 Z9 177 U1 11 U2 126 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 EI 1097-4172 J9 CELL JI Cell PD JAN 31 PY 2013 VL 152 IS 3 BP 543 EP 556 DI 10.1016/j.cell.2012.12.032 PG 14 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 081ZZ UT WOS:000314362800023 PM 23374349 ER PT J AU Arkhipov, A Shan, YB Das, R Endres, NF Eastwood, MP Wemmer, DE Kuriyan, J Shaw, DE AF Arkhipov, Anton Shan, Yibing Das, Rahul Endres, Nicholas F. Eastwood, Michael P. Wemmer, David E. Kuriyan, John Shaw, David E. TI Architecture and Membrane Interactions of the EGF Receptor SO CELL LA English DT Article ID EPIDERMAL-GROWTH-FACTOR; EXTRACELLULAR DOMAIN; CRYSTAL-STRUCTURE; LIGAND-BINDING; ERBB RECEPTORS; TRANSMEMBRANE DOMAIN; ONCOGENIC MUTATIONS; MOLECULAR-DYNAMICS; KINASE ACTIVATION; LIVING CELLS AB Dimerization-driven activation of the intracellular kinase domains of the epidermal growth factor receptor (EGFR) upon extracellular ligand binding is crucial to cellular pathways regulating proliferation, migration, and differentiation. Inactive EGFR can exist as both monomers and dimers, suggesting that the mechanism regulating EGFR activity may be subtle. The membrane itself may play a role but creates substantial difficulties for structural studies. Our molecular dynamics simulations of membrane-embedded EGFR suggest that, in ligand-bound dimers, the extracellular domains assume conformations favoring dimerization of the transmembrane helices near their N termini, dimerization of the juxtamembrane segments, and formation of asymmetric (active) kinase dimers. In ligand-free dimers, by holding apart the N termini of the transmembrane helices, the extracellular domains instead favor C-terminal dimerization of the transmembrane helices, juxtamembrane segment dissociation and membrane burial, and formation of symmetric (inactive) kinase dimers. Electrostatic interactions of EGFR's intracellular module with the membrane are critical in maintaining this coupling. C1 [Arkhipov, Anton; Shan, Yibing; Eastwood, Michael P.; Shaw, David E.] DE Shaw Res, New York, NY 10036 USA. [Das, Rahul; Endres, Nicholas F.; Kuriyan, John] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Das, Rahul; Endres, Nicholas F.; Wemmer, David E.; Kuriyan, John] Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA. [Wemmer, David E.; Kuriyan, John] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Kuriyan, John] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Wemmer, David E.; Kuriyan, John] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Shaw, David E.] Columbia Univ, Ctr Computat Biol & Bioinformat, New York, NY 10032 USA. RP Shan, YB (reprint author), DE Shaw Res, New York, NY 10036 USA. EM yibing.shan@deshawresearch.com; david.shaw@deshawresearch.com FU Natural Sciences and Engineering Research Council of Canada; Canadian Institutes of Health Research; National Cancer Institute (NCI) [2-R01-CA096504-06] FX We thank Morten Jensen, Stefano Piana, and Kresten Lindorff-Larsen for helpful discussions, Ansgar Philipsen for assistance with graphics, and Mollie Kirk and Berkman Frank for editorial assistance. N.F.E. was a Leukemia and Lymphoma Society Fellow. R.D. was supported by postdoctoral fellowships from the Natural Sciences and Engineering Research Council of Canada (2009-2011) and the Canadian Institutes of Health Research (2011-2012). This work was supported by a grant from the National Cancer Institute (NCI) to J.K. (2-R01-CA096504-06). NR 45 TC 179 Z9 180 U1 15 U2 127 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0092-8674 EI 1097-4172 J9 CELL JI Cell PD JAN 31 PY 2013 VL 152 IS 3 BP 557 EP 569 DI 10.1016/j.cell.2012.12.030 PG 13 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 081ZZ UT WOS:000314362800024 PM 23374350 ER PT J AU Dromey, B Cousens, S Rykovanov, S Yeung, M Jung, D Gautier, DC Dzelzainis, T Kiefer, D Palaniyppan, S Shah, R Schreiber, J Fernandez, JC Lewis, CLS Zepf, M Hegelich, BM AF Dromey, B. Cousens, S. Rykovanov, S. Yeung, M. Jung, D. Gautier, D. C. Dzelzainis, T. Kiefer, D. Palaniyppan, S. Shah, R. Schreiber, J. Fernandez, J. C. Lewis, C. L. S. Zepf, M. Hegelich, B. M. TI Coherent synchrotron emission in transmission from ultrathin relativistic laser plasmas SO NEW JOURNAL OF PHYSICS LA English DT Article ID HARMONIC-GENERATION; ABSORPTION AB Relativistic laser plasmas have been shown to provide a robust platform for the generation of bright attosecond pulses via the relativistically oscillating mirror and coherent wake emission mechanisms. Theoretical work, however, has shown an alternative method for achieving this goal: dense nanobunch formation and acceleration on timescales of less than an optical laser cycle (similar to 10(-15) s) during relativistic laser-plasma interactions. This opens up the exciting potential for developing a new bright ultrafast extreme ultraviolet XUV/x-ray source. Here we demonstrate, using a previously unexplored geometry, coherent synchrotron emission generated during relativistically intense laser-ultrathin foil interactions which extends to similar to 1 keV photon energies. Particle-in-cell code simulations reveal how periodic sub-laser cycle acceleration of dense nanobunches of electrons formed during normal incidence interactions result in bursts of bright attosecond radiation in transmission and how these pulses relate to plasma density scalelength. This work shows clear potential for a novel, intense source of attosecond XUV (similar to 10(-18) s) radiation. Experimentally, high order (n) harmonic spectra (I(n)) are characterized by a slow decay (n(-1.62)) before a rapid efficiency rollover. Such a microscopic coherent synchrotron source (<5x10(-6) m) has the potential to significantly increase XUV pulse brightness significantly over current sources. C1 [Dromey, B.; Cousens, S.; Yeung, M.; Dzelzainis, T.; Lewis, C. L. S.; Zepf, M.] Queens Univ Belfast, Ctr Plasma Phys, Dept Phys & Astron, Belfast BT7 1NN, Antrim, North Ireland. [Rykovanov, S.; Kiefer, D.; Schreiber, J.] Univ Munich, Dept Phys, D-85748 Garching, Germany. [Jung, D.; Kiefer, D.; Schreiber, J.; Hegelich, B. M.] Max Planck Inst Quantum Opt, D-85748 Garching, Germany. [Jung, D.; Gautier, D. C.; Palaniyppan, S.; Shah, R.; Fernandez, J. C.; Hegelich, B. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Dromey, B (reprint author), Queens Univ Belfast, Ctr Plasma Phys, Dept Phys & Astron, Belfast BT7 1NN, Antrim, North Ireland. EM b.dromey@qub.ac.uk RI Hegelich, Bjorn/J-2689-2013; Fernandez, Juan/H-3268-2011; Zepf, Matt/M-1232-2014 OI Palaniyappan, sasi/0000-0001-6377-1206; Fernandez, Juan/0000-0002-1438-1815; NR 21 TC 9 Z9 9 U1 2 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1367-2630 J9 NEW J PHYS JI New J. Phys. PD JAN 31 PY 2013 VL 15 AR 015025 DI 10.1088/1367-2630/15/1/015025 PG 14 WC Physics, Multidisciplinary SC Physics GA 081RS UT WOS:000314340600003 ER PT J AU Aczel, AA Bugaris, DE Li, L Yan, JQ de la Cruz, C zur Loye, HC Nagler, SE AF Aczel, A. A. Bugaris, D. E. Li, L. Yan, J-Q de la Cruz, C. zur Loye, H-C Nagler, S. E. TI Frustration by competing interactions in the highly distorted double perovskites La2NaB ' O-6 (B ' = Ru, Os) SO PHYSICAL REVIEW B LA English DT Article ID MAGNETIC-PROPERTIES; NEUTRON-DIFFRACTION; CRYSTAL-GROWTH; PR; LA; ND; LN AB The usual classical behavior of S = 3/2, B-site ordered double perovskites generally results in simple, commensurate magnetic ground states. In contrast, combined magnetic susceptibility, heat capacity, and neutron powder diffraction measurements for the S = 3/2 systems La2NaB'O-6 (B' = Ru, Os) reveal an incommensurate magnetic ground state for La2NaRuO6 and a drastically suppressed ordered moment for La2NaOsO6. This behavior is attributed to the large monoclinic structural distortions of these double perovskites. The distortions have the effects of creating inequivalent nearest neighbor (NN) superexchange interactions and weakening them on average, possibly to an energy scale that is comparable with the average next nearest neighbor (NNN) superexchange. The exotic ground states in these materials can then arise from a competition between some combination of inequivalent NN and NNN exchange interactions, providing an unusual mechanism for achieving frustration in the double perovskite family. DOI: 10.1103/PhysRevB.87.014435 C1 [Aczel, A. A.; de la Cruz, C.; Nagler, S. E.] Oak Ridge Natl Lab, Quantum Condensed Matter Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. [Bugaris, D. E.; zur Loye, H-C] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA. [Li, L.; Yan, J-Q] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Yan, J-Q] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Nagler, S. E.] Univ Tennessee, CIRE, Knoxville, TN 37996 USA. RP Aczel, AA (reprint author), Oak Ridge Natl Lab, Quantum Condensed Matter Div, Neutron Sci Directorate, Oak Ridge, TN 37831 USA. EM aczelaa@ornl.gov RI dela Cruz, Clarina/C-2747-2013; Nagler, Stephen/E-4908-2010; Aczel, Adam/A-6247-2016; Li , Ling /J-3322-2016; OI dela Cruz, Clarina/0000-0003-4233-2145; Nagler, Stephen/0000-0002-7234-2339; Aczel, Adam/0000-0003-1964-1943; Li , Ling /0000-0002-2866-8323; zur Loye, Hans-Conrad/0000-0001-7351-9098 FU US Department of Energy, Office of Basic Energy Sciences; Scientific User Facilities Division; Materials Science and Engineering Division; Heterogeneous Functional Materials for Energy Systems (HeteroFoaM) Energy Frontiers Research Center (EFRC); US Department of Energy, Office of Basic Energy Sciences [DE-SC0001061] FX We acknowledge V. O. Garlea and J. E. Greedan for useful discussions. This research was supported by the US Department of Energy, Office of Basic Energy Sciences. A. A. A., C.d.l.C., and S.E.N. were supported by the Scientific User Facilities Division, and J.-Q.Y. was supported by the Materials Science and Engineering Division. The neutron experiments were performed at the High Flux Isotope Reactor, which is sponsored by the Scientific User Facilities Division. D. E. B. and H.z.L. would like to acknowledge financial support through the Heterogeneous Functional Materials for Energy Systems (HeteroFoaM) Energy Frontiers Research Center (EFRC), funded by the US Department of Energy, Office of Basic Energy Sciences under Grant No. DE-SC0001061. NR 30 TC 26 Z9 26 U1 1 U2 36 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN 31 PY 2013 VL 87 IS 1 AR 014435 DI 10.1103/PhysRevB.87.014435 PG 7 WC Physics, Condensed Matter SC Physics GA 081PI UT WOS:000314333700001 ER PT J AU Tagliente, G Milazzo, PM Fujii, K Abbondanno, U Aerts, G Alvarez, H Alvarez-Velarde, F Andriamonje, S Andrzejewski, J Audouin, L Badurek, G Baumann, P Becvar, F Belloni, F Berthoumieux, E Calvino, F Calviani, M Cano-Ott, D Capote, R Carrapico, C Cennini, P Chepel, V Chiaveri, E Colonna, N Cortes, G Couture, A Dahlfors, M David, S Dillmann, I Domingo-Pardo, C Dridi, W Duran, I Eleftheriadis, C Embid-Segura, M Ferrari, A Ferreira-Marques, R Furman, W Goncalves, I Gonzalez-Romero, E Gramegna, F Guerrero, C Gunsing, F Haas, B Haight, R Heil, M Herrera-Martinez, A Jericha, E Kappeler, F Kadi, Y Karadimos, D Karamanis, D Kerveno, M Kossionides, E Krticka, M Lamboudis, C Leeb, H Lindote, A Lopes, I Lukic, S Marganiec, J Marrone, S Martinez, T Massimi, C Mastinu, P Mengoni, A Moreau, C Mosconi, M Neves, F Oberhummer, H O'Brien, S Papachristodoulou, C Papadopoulos, C Paradela, C Patronis, N Pavlik, A Pavlopoulos, P Perrot, L Pigni, MT Plag, R Plompen, A Plukis, A Poch, A Praena, J Pretel, C Quesada, J Reifarth, R Rosetti, M Rubbia, C Rudolf, G Rullhusen, P Salgado, J Santos, C Sarchiapone, L Savvidis, I Stephan, C Tain, JL Tassan-Got, L Tavora, L Terlizzi, R Vannini, G Vaz, P Ventura, A Villamarin, D Vincente, MC Vlachoudis, V Vlastou, R Voss, F Walter, S Wiescher, M Wisshak, K AF Tagliente, G. Milazzo, P. M. Fujii, K. Abbondanno, U. Aerts, G. Alvarez, H. Alvarez-Velarde, F. Andriamonje, S. Andrzejewski, J. Audouin, L. Badurek, G. Baumann, P. Becvar, F. Belloni, F. Berthoumieux, E. Calvino, F. Calviani, M. Cano-Ott, D. Capote, R. Carrapico, C. Cennini, P. Chepel, V. Chiaveri, E. Colonna, N. Cortes, G. Couture, A. Dahlfors, M. David, S. Dillmann, I. Domingo-Pardo, C. Dridi, W. Duran, I. Eleftheriadis, C. Embid-Segura, M. Ferrari, A. Ferreira-Marques, R. Furman, W. Goncalves, I. Gonzalez-Romero, E. Gramegna, F. Guerrero, C. Gunsing, F. Haas, B. Haight, R. Heil, M. Herrera-Martinez, A. Jericha, E. Kaeppeler, F. Kadi, Y. Karadimos, D. Karamanis, D. Kerveno, M. Kossionides, E. Krticka, M. Lamboudis, C. Leeb, H. Lindote, A. Lopes, I. Lukic, S. Marganiec, J. Marrone, S. Martinez, T. Massimi, C. Mastinu, P. Mengoni, A. Moreau, C. Mosconi, M. Neves, F. Oberhummer, H. O'Brien, S. Papachristodoulou, C. Papadopoulos, C. Paradela, C. Patronis, N. Pavlik, A. Pavlopoulos, P. Perrot, L. Pigni, M. T. Plag, R. Plompen, A. Plukis, A. Poch, A. Praena, J. Pretel, C. Quesada, J. Reifarth, R. Rosetti, M. Rubbia, C. Rudolf, G. Rullhusen, P. Salgado, J. Santos, C. Sarchiapone, L. Savvidis, I. Stephan, C. Tain, J. L. Tassan-Got, L. Tavora, L. Terlizzi, R. Vannini, G. Vaz, P. Ventura, A. Villamarin, D. Vincente, M. C. Vlachoudis, V. Vlastou, R. Voss, F. Walter, S. Wiescher, M. Wisshak, K. CA N TOF Collaboration TI The Zr-93(n, gamma) reaction up to 8 keV neutron energy SO PHYSICAL REVIEW C LA English DT Article ID GIANT BRANCH STARS; CAPTURE CROSS-SECTIONS; PRESOLAR SIC GRAINS; S-PROCESS; NUCLEAR-SCIENCE; NUCLEOSYNTHESIS; ZIRCONIUM-93; FACILITY; ELEMENTS; LIBRARY AB The (n, gamma) reaction of the radioactive isotope Zr-93 has been measured at the n_TOF high-resolution time-of-flight facility at CERN. Resonance parameters have been extracted in the neutron energy range up to 8 keV, yielding capture widths smaller (14%) than reported in an earlier experiment. These results are important for detailed nucleosynthesis calculations and for refined studies of waste transmutation concepts. DOI: 10.1103/PhysRevC.87.014622 C1 [Tagliente, G.; Colonna, N.; Marrone, S.; Terlizzi, R.] Ist Nazl Fis Nucl, I-70126 Bari, Italy. [Milazzo, P. M.; Fujii, K.; Abbondanno, U.; Belloni, F.; Moreau, C.] Ist Nazl Fis Nucl, Trieste, Italy. [Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Perrot, L.; Plukis, A.] CEA, Irfu, Gif Sur Yvette, France. [Alvarez, H.; Duran, I.; Paradela, C.] Univ Santiago de Compostela, Santiago De Compostela, Spain. [Alvarez-Velarde, F.; Cano-Ott, D.; Embid-Segura, M.; Gonzalez-Romero, E.; Guerrero, C.; Martinez, T.; Villamarin, D.; Vincente, M. C.] Ctr Invest Energet Medioambientales & Technol, Madrid, Spain. [Andrzejewski, J.; Marganiec, J.] Univ Lodz, PL-90131 Lodz, Poland. [Audouin, L.; Dillmann, I.; Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K.] Karlsruhe Inst Technol, Inst Kernphys, D-76021 Karlsruhe, Germany. [Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H.; Pigni, M. T.] Vienna Univ Technol, Atominst Osterreich Univ, Vienna, Austria. [Baumann, P.; David, S.; Kerveno, M.; Lukic, S.; Rudolf, G.] CNRS, IN2P3, IReS, Strasbourg, France. [Becvar, F.; Krticka, M.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Calvino, F.; Cortes, G.; Poch, A.; Pretel, C.] Univ Politecn Cataluna, Barcelona, Spain. [Calviani, M.; Gramegna, F.; Mastinu, P.; Praena, J.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, Legnaro, Italy. [Capote, R.; Mengoni, A.] IAEA, NAPC, Nucl Data Sect, A-1400 Vienna, Austria. [Capote, R.; Quesada, J.] Univ Seville, Seville, Spain. [Carrapico, C.; Goncalves, I.; Salgado, J.; Santos, C.; Tavora, L.; Vaz, P.] ITN, Lisbon, Portugal. [Cennini, P.; Chiaveri, E.; Dahlfors, M.; Ferrari, A.; Herrera-Martinez, A.; Kadi, Y.; Sarchiapone, L.; Vlachoudis, V.] CERN, Geneva, Switzerland. [Chepel, V.; Ferreira-Marques, R.; Lindote, A.; Lopes, I.; Neves, F.] LIP Coimbra, Coimbra, Portugal. [Chepel, V.; Ferreira-Marques, R.; Lindote, A.; Lopes, I.; Neves, F.] Univ Coimbra, Dept Fis, P-3000 Coimbra, Portugal. [Couture, A.; O'Brien, S.; Wiescher, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Dillmann, I.; Domingo-Pardo, C.; Heil, M.; Marganiec, J.; Plag, R.; Reifarth, R.] GSI Darmstadt, Darmstadt, Germany. [Domingo-Pardo, C.; Tain, J. L.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain. [Eleftheriadis, C.; Lamboudis, C.; Savvidis, I.] Aristotle Univ Thessaloniki, Thessaloniki, Greece. [Furman, W.] Joint Inst Nucl Res, Frank Lab Neutron Phys, Dubna, Russia. [Haas, B.] CNRS, IN2P3, CENBG, Bordeaux, France. [Haight, R.; Reifarth, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Karadimos, D.; Karamanis, D.; Papachristodoulou, C.; Patronis, N.] Univ Ioannina, GR-45110 Ioannina, Greece. [Kossionides, E.] NCSR, Athens, Greece. [Massimi, C.; Vannini, G.] Univ Bologna, Dipartimento Fis, I-40126 Bologna, Italy. [Massimi, C.; Vannini, G.] Sez INFN Bologna, Bologna, Italy. [Mosconi, M.] PTB Braunschweig, Braunschweig, Germany. [Papadopoulos, C.; Vlastou, R.] Natl Tech Univ Athens, GR-10682 Athens, Greece. [Pavlik, A.] Univ Vienna, Fac Phys, Vienna, Austria. [Pavlopoulos, P.] Pole Univ Leonard de Vinci, Paris, France. [Plompen, A.; Rullhusen, P.] CEC JRC IRMM, Geel, Belgium. [Rosetti, M.; Ventura, A.] ENEA, Bologna, Italy. [Rubbia, C.] Univ Pavia, I-27100 Pavia, Italy. [Stephan, C.; Tassan-Got, L.] CNRS, IN2P3, IPN, F-91405 Orsay, France. RP Tagliente, G (reprint author), Ist Nazl Fis Nucl, I-70126 Bari, Italy. EM giuseppe.tagliente@ba.infn.it RI Guerrero, Carlos/L-3251-2014; Ventura, Alberto/B-3293-2013; Lindote, Alexandre/H-4437-2013; Gonzalez Romero, Enrique/L-7561-2014; Neves, Francisco/H-4744-2013; Vaz, Pedro/K-2464-2013; Lopes, Isabel/A-1806-2014; Cortes, Guillem/B-6869-2014; Tain, Jose L./K-2492-2014; Cano Ott, Daniel/K-4945-2014; Quesada Molina, Jose Manuel/K-5267-2014; Pretel Sanchez, Carme/L-8287-2014; Martinez, Trinitario/K-6785-2014; Capote Noy, Roberto/M-1245-2014; Massimi, Cristian/B-2401-2015; Duran, Ignacio/H-7254-2015; Alvarez Pol, Hector/F-1930-2011; Massimi, Cristian/K-2008-2015; Paradela, Carlos/J-1492-2012; Gramegna, Fabiana/B-1377-2012; Calvino, Francisco/K-5743-2014; Mengoni, Alberto/I-1497-2012; Jericha, Erwin/A-4094-2011 OI Guerrero, Carlos/0000-0002-2111-546X; Lindote, Alexandre/0000-0002-7965-807X; Gonzalez Romero, Enrique/0000-0003-2376-8920; Neves, Francisco/0000-0003-3635-1083; Vaz, Pedro/0000-0002-7186-2359; Lopes, Isabel/0000-0003-0419-903X; Cano Ott, Daniel/0000-0002-9568-7508; Quesada Molina, Jose Manuel/0000-0002-2038-2814; Pavlik, Andreas/0000-0001-7526-3372; Goncalves, Isabel/0000-0002-1997-955X; Chepel, Vitaly/0000-0003-0675-4586; Paradela Dobarro, Carlos/0000-0003-0175-8334; Martinez, Trinitario/0000-0002-0683-5506; Capote Noy, Roberto/0000-0002-1799-3438; Massimi, Cristian/0000-0001-9792-3722; Alvarez Pol, Hector/0000-0001-9643-6252; Massimi, Cristian/0000-0003-2499-5586; Gramegna, Fabiana/0000-0001-6112-0602; Calvino, Francisco/0000-0002-7198-4639; Mengoni, Alberto/0000-0002-2537-0038; Jericha, Erwin/0000-0002-8663-0526 FU EC [FIKW-CT-2000-00107] FX This work was supported by the EC under contract FIKW-CT-2000-00107 and by the funding agencies of the participating institutes. NR 35 TC 8 Z9 9 U1 2 U2 39 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0556-2813 J9 PHYS REV C JI Phys. Rev. C PD JAN 31 PY 2013 VL 87 IS 1 AR 014622 DI 10.1103/PhysRevC.87.014622 PG 7 WC Physics, Nuclear SC Physics GA 081QA UT WOS:000314335800003 ER PT J AU Appleby, SA Linder, EV AF Appleby, Stephen A. Linder, Eric V. TI Probing dark energy anisotropy SO PHYSICAL REVIEW D LA English DT Article ID WMAP DATA; REIONIZATION; UNIVERSE; ROTATION; SPECTRA; MODELS AB Wide area cosmological surveys enable investigation of whether dark energy properties are the same in different directions on the sky. Cosmic microwave background observations strongly restrict any dynamical effects from anisotropy, in an integrated sense. For more local constraints we compute limits from simulated distance measurements for various distributions of survey fields in a Bianchi I anisotropic universe. We then consider the effects of fitting for line of sight properties where isotropic dynamics is assumed (testing the accuracy through simulations) and compare sensitivities of observational probes for anisotropies, from astrophysical systematics as well as dark energy. We also point out some interesting features of anisotropic expansion in Bianchi I cosmology. DOI: 10.1103/PhysRevD.87.023532 C1 [Appleby, Stephen A.; Linder, Eric V.] Ewha Womans Univ, Inst Early Universe WCU, Seoul 120750, South Korea. [Linder, Eric V.] Berkeley Lab, Berkeley, CA 94720 USA. [Linder, Eric V.] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Appleby, SA (reprint author), Ewha Womans Univ, Inst Early Universe WCU, Seoul 120750, South Korea. FU World Class University through the National Research Foundation, Ministry of Education, Science and Technology of Korea [R32-2009-000-10130-0]; Office of Science, Office of High Energy Physics, of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Richard Battye, David Rubin, David Schlegel, Tristan Smith, and Hu Zhan for useful discussions. This work has been supported by World Class University Grant No. R32-2009-000-10130-0 through the National Research Foundation, Ministry of Education, Science and Technology of Korea, and in part by the Director, Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 46 TC 26 Z9 26 U1 0 U2 0 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 31 PY 2013 VL 87 IS 2 AR 023532 DI 10.1103/PhysRevD.87.023532 PG 9 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 081QN UT WOS:000314337200003 ER PT J AU Lo, CC Weis, CD van Tol, J Bokor, J Schenkel, T AF Lo, C. C. Weis, C. D. van Tol, J. Bokor, J. Schenkel, T. TI All-Electrical Nuclear Spin Polarization of Donors in Silicon SO PHYSICAL REVIEW LETTERS LA English DT Article ID GAAS-ALXGA1-XAS HETEROSTRUCTURES; 2-DIMENSIONAL SYSTEMS; RESONANCE; RELAXATION; STATE; GAS; STORAGE AB We demonstrate an all-electrical donor nuclear spin polarization method in silicon by exploiting the tunable interaction of donor bound electrons with a two-dimensional electron gas, and achieve over two orders of magnitude nuclear hyperpolarization at T = 5 K and B = 12 T with an in-plane magnetic field. We also show an intricate dependence of nuclear polarization effects on the orientation of the magnetic field, and both hyperpolarization and antipolarization can be controllably achieved in the quantum Hall regime. Our results demonstrate that donor nuclear spin qubits can be initialized through local gate control of electrical currents without the need for optical excitation, enabling the implementation of nuclear spin qubit initialization in dense multiqubit arrays. DOI: 10.1103/PhysRevLett.110.057601 C1 [Lo, C. C.; Weis, C. D.; Schenkel, T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Accelerator & Fus Res, Berkeley, CA 94720 USA. [Lo, C. C.; Bokor, J.] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. [van Tol, J.] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA. [Bokor, J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Lo, CC (reprint author), UCL, London Ctr Nanotechnol, 17-19 Gordon St, London WC1H 0AH, England. EM cheuk.lo@ucl.ac.uk RI van Tol, Johan/G-4190-2011; Foundry, Molecular/G-9968-2014; Bokor, Jeffrey/A-2683-2011 OI van Tol, Johan/0000-0001-6972-2149; FU U.S. National Security Agency [100000080295]; U.S. Department of Energy (LBNL) [DE-AC02-05CH11231]; National Science Foundation [DMR-0654118]; State of Florida FX This work was supported by the U.S. National Security Agency (100000080295) and by the U.S. Department of Energy (DE-AC02-05CH11231, LBNL). The High Magnetic Field Laboratory is supported by the National Science Foundation Cooperative Agreement DMR-0654118 and by the State of Florida. Technical support by the UC Berkeley Microlab staff during device fabrication is gratefully acknowledged. NR 43 TC 11 Z9 11 U1 1 U2 25 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 31 PY 2013 VL 110 IS 5 AR 057601 DI 10.1103/PhysRevLett.110.057601 PG 5 WC Physics, Multidisciplinary SC Physics GA 081QQ UT WOS:000314337600005 PM 23414045 ER PT J AU Alexandrov, BS Phipps, ML Alexandrov, LB Booshehri, LG Erat, A Zabolotny, J Mielke, CH Chen, HT Rodriguez, G Rasmussen, KO Martinez, JS Bishop, AR Usheva, A AF Alexandrov, Boian S. Phipps, M. Lisa Alexandrov, Ludmil B. Booshehri, Layla G. Erat, Anna Zabolotny, Janice Mielke, Charles H. Chen, Hou-Tong Rodriguez, George Rasmussen, Kim O. Martinez, Jennifer S. Bishop, Alan R. Usheva, Anny TI Specificity and Heterogeneity of Terahertz Radiation Effect on Gene Expression in Mouse Mesenchymal Stem Cells SO SCIENTIFIC REPORTS LA English DT Article ID DNA BREATHING DYNAMICS; TRANSCRIPTION FACTOR; SPINDLE DISTURBANCES; DIFFERENTIATION; TECHNOLOGY; MODEL; SPECTROSCOPY; IRRADIATION; GENERATION; INITIATION AB We report that terahertz (THz) irradiation of mouse mesenchymal stem cells (mMSCs) with a single-frequency (SF) 2.52 THz laser or pulsed broadband (centered at 10 THz) source results in irradiation specific heterogenic changes in gene expression. The THz effect depends on irradiation parameters such as the duration and type of THz source, and on the degree of stem cell differentiation. Our microarray survey and RT-PCR experiments demonstrate that prolonged broadband THz irradiation drives mMSCs toward differentiation, while 2-hour irradiation (regardless of THz sources) affects genes transcriptionally active in pluripotent stem cells. The strictly controlled experimental environment indicates minimal temperature changes and the absence of any discernable response to heat shock and cellular stress genes imply a non-thermal response. Computer simulations of the core promoters of two pluripotency markers reveal association between gene upregulation and propensity for DNA breathing. We propose that THz radiation has potential for non-contact control of cellular gene expression. C1 [Alexandrov, Boian S.; Rasmussen, Kim O.; Bishop, Alan R.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Alexandrov, Boian S.; Erat, Anna; Zabolotny, Janice; Usheva, Anny] Harvard Univ, Sch Med, Beth Israel Deaconess Med Ctr, Dept Med, Boston, MA 02215 USA. [Phipps, M. Lisa; Chen, Hou-Tong; Rodriguez, George; Martinez, Jennifer S.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. [Alexandrov, Ludmil B.] Wellcome Trust Sanger Inst, Canc Genome Project, Cambridge CB10 1SA, England. [Booshehri, Layla G.; Mielke, Charles H.] Los Alamos Natl Lab, Mat Phys & Applicat Div NHMFL, Los Alamos, NM 87545 USA. [Erat, Anna] Univ Zurich Hosp, Res Unit, Div Internal Med, Zurich, Switzerland. RP Alexandrov, BS (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM boian@lanl.gov; arb@lanl.gov; ausheva@bidmc.harvard.edu RI Rodriguez, George/G-7571-2012; Chen, Hou-Tong/C-6860-2009; Rasmussen, Kim/B-5464-2009; Alexandrov, Boian/D-2488-2010; Alexandrov, Ludmil/B-6582-2014 OI Rodriguez, George/0000-0002-6044-9462; Chen, Hou-Tong/0000-0003-2014-7571; Rasmussen, Kim/0000-0002-4029-4723; Alexandrov, Boian/0000-0001-8636-4603; Alexandrov, Ludmil/0000-0003-3596-4515 FU Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory [DE-AC52-06NA25396]; Sandia National Laboratories [DE-AC04-94AL85000]; LANL, LDRD [20110516ECR] FX We are grateful for the support and acknowledge that this work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility at Los Alamos National Laboratory (Contract DE-AC52-06NA25396) and Sandia National Laboratories (Contract DE-AC04-94AL85000) and supported by the LANL, LDRD, 20110516ECR to B.S.A. NR 58 TC 19 Z9 20 U1 1 U2 38 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2045-2322 J9 SCI REP-UK JI Sci Rep PD JAN 31 PY 2013 VL 3 AR 1184 DI 10.1038/srep01184 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 082MW UT WOS:000314397100003 PM 23378916 ER PT J AU French, S Fakra, SC Trevors, JT Glasauer, S AF French, Shawn Fakra, Sirine C. Trevors, Jack T. Glasauer, Susan TI Changes in Shewanella putrefaciens CN32 Membrane Stability upon Growth in the Presence of Soluble Mn(II), V(IV), and U(VI) SO GEOMICROBIOLOGY JOURNAL LA English DT Article DE Shewanella; metals; membrane biochemistry; STXM; NEXAFS ID RAY-ABSORPTION-SPECTROSCOPY; HYDROUS FERRIC-OXIDE; BACILLUS-SUBTILIS; PSEUDOMONAS-AERUGINOSA; FLUORESCENCE POLARIZATION; ANAEROBIC RESPIRATION; VANADIUM-OXIDES; MANGANESE OXIDE; HUMAN EXPOSURE; REDUCTION AB In natural reducing environments, such as anoxic sediments and soils, bacteria may be exposed to high concentrations of soluble transition metals. The aim of this study was to identify physiological and biochemical adaptations of Shewanella putrefaciens CN32 membranes to soluble Mn(II), V(IV), and U(VI). We assessed responses of CN32 to these metals, in aerobic and anaerobic cultures, by means of membrane fluidity and fatty acid composition assays. During aerobic growth, all metals had a stabilizing effect on fluidity, while under anoxic conditions this was only observed for bacteria treated with U(VI). Membrane gel-to-fluid phase transition temperatures were higher under anaerobic conditions and were not affected by the metal treatments. Fatty acid desaturation demonstrated linear correlation with significant increases in membrane fluidity, despite metal treatments that did not significantly alter fatty acid chemistry. Scanning transmission X-ray microscopy (STXM) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS) at Mn 2p- and V 2p-edges revealed that both Mn(II) and V(IV) were associated with CN32 membranes, with V(IV) associating as VO2+ under anoxic conditions only. The results of this study indicate that the bacterial growth environment greatly impacts membrane chemistry and stability, with overall implications for in vitro as well as in situ studies. Supplemental materials are available for this article. Please go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file. C1 [French, Shawn; Trevors, Jack T.; Glasauer, Susan] Univ Guelph, Sch Environm Sci, Guelph, ON N1G 2W1, Canada. [Fakra, Sirine C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Glasauer, S (reprint author), Univ Guelph, Sch Environm Sci, Guelph, ON N1G 2W1, Canada. EM glasauer@uoguelph.ca FU Advanced Food and Materials Network; National Sciences and Engineering Research Council; Office of Basic Energy Sciences, Division of Materials Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the DOE at Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX We thank Dianne Moyles for TEM advice and support, and Professors Susan Koval and John Dutcher for their insight. We also thank Brandy Toner for providing the Mn standard materials, and Tolek Tyliszczak and David Kilcoyne for support at ALS beamlines 11.0.2 and 5.3.2. We offer special thanks to the late Professor Terry Beveridge for CN32 cultures and advice. This work was supported by the Advanced Food and Materials Network, as well as the National Sciences and Engineering Research Council. The Advanced Light Source and work at BL11.0.2 and 5.3.2 is supported by the Office of Basic Energy Sciences, Division of Materials Sciences, Division of Chemical Sciences, Geosciences, and Biosciences of the DOE at Lawrence Berkeley National Laboratory under contract DE-AC02-05CH11231. NR 83 TC 2 Z9 2 U1 2 U2 32 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 325 CHESTNUT ST, SUITE 800, PHILADELPHIA, PA 19106 USA SN 0149-0451 J9 GEOMICROBIOL J JI Geomicrobiol. J. PD JAN 30 PY 2013 VL 30 IS 3 BP 245 EP 254 DI 10.1080/01490451.2012.665569 PG 10 WC Environmental Sciences; Geosciences, Multidisciplinary SC Environmental Sciences & Ecology; Geology GA 105EU UT WOS:000316049500007 ER PT J AU Hejl, AM Ottmar, RD Jannik, GT Eddy, TP Rathbun, SL Commodore, AA Pearce, JL Naeher, LP AF Hejl, Anna M. Ottmar, Roger D. Jannik, G. Timothy Eddy, Teresa P. Rathbun, Stephen L. Commodore, Adwoa A. Pearce, John L. Naeher, Luke P. TI Radionuclide activity concentrations in forest surface fuels at the Savannah River Site SO JOURNAL OF ENVIRONMENTAL MANAGEMENT LA English DT Article DE Litter; Duff; Surface fuels; Radionuclides; Kriging ID CHERNOBYL EXCLUSION ZONE; FIRES; REDISTRIBUTION; RESUSPENSION; ENVIRONMENT; CESIUM-137; PLUTONIUM; DECOMPOSITION; BERYLLIUM-7; RADIOCESIUM AB Background/objective: A study was undertaken at the United States Department of Energy's Savannah River Site (SRS), Aiken, South Carolina to investigate radionuclide activity concentrations in litter and duff from select areas at SRS. Litter (i.e. vegetative debris) and duff (i.e. highly decomposed vegetative debris) can often be the major fuels consumed during prescribed burns and have potential to release radiological contaminants into the environment. Methods: Repeated samples from 97 locations were collected systematically across SRS and analyzed for radionuclide activity. Radionuclide activity concentrations found in litter and duff were compared. As spatial trends were of interest, spatial distributions of radionuclide activity concentrations found in litter and duff and spatial dependency amongst the data were explored. Results: Be-7, K-40, and Cs-137 showed statistically significant proportional differences between litter and duff samples. Duff sample concentrations for Cs-137 (p < 0.0001) and K-40 (p = 0.0015) were statistically higher compared to litter samples. Be-7 activity concentrations were statistically higher in litter as compared to duff (p < 0.0001). For K-40 litter and duff samples, spatial correlation tests were not significant at p = 0.05 and the maps did not indicate any apparent high concentrations centered near possible radionuclide sources (i.e. SRS facilities). For Be-7 litter samples, significant spatial correlation was calculated (p = 0.0085). No spatial correlation was evident in the Be-7 duff samples (p = 1.0000) probably due to small sample size (n = 7). Cs-137 litter and duff samples showed significant spatial correlations (p < 0.0001 and p < 0.0001, respectively). Conclusions: To date, few studies characterize radionuclide activity concentrations in litter and duff, and to our knowledge none present spatial analysis. Key findings show that across SRS, Cs-137 is the primary radionuclide of concern, with the highest number of samples reported above MDC in litter (51.4%) and duff samples (83.2%). However, Cs-137 litter and duff spatial trends in the maps generated from the kriging parameters do not appear to directly link the areas with higher activity concentrations with SRS facilities. The results found herein provide valuable baseline monitoring data for future studies of forest surface fuels and can be used to evaluate changes in radioactivity in surface fuels in the southeast region of the U.S. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Hejl, Anna M.; Commodore, Adwoa A.; Pearce, John L.; Naeher, Luke P.] Univ Georgia, Coll Publ Hlth, Dept Environm Hlth Sci, Athens, GA 30602 USA. [Jannik, G. Timothy; Eddy, Teresa P.] US DOE, Aiken, SC USA. [Rathbun, Stephen L.] Univ Georgia, Franklin Coll Arts & Sci, Dept Stat, Athens, GA 30602 USA. [Ottmar, Roger D.] US Forest Serv, Pacific Wildland Fire Sci Lab, USDA, Pacific Northwest Res, Seattle, WA USA. RP Naeher, LP (reprint author), Univ Georgia, Coll Publ Hlth, Dept Environm Hlth Sci, 206 Environm Hlth Sci Bldg, Athens, GA 30602 USA. EM LNaeher@uga.edu FU Department of Energy-Savannah River Operations Office through the U.S. Forest Service Savannah River [DE-AI09-00SR22188] FX Funding and support was provided by the Department of Energy-Savannah River Operations Office through the U.S. Forest Service Savannah River under Interagency Agreement DE-AI09-00SR22188. Sincere appreciation goes to John Blake, Pete Fledderman, Don Faison, Jay Hutchison, Sherrod Maxwell, Dan Shea, Brian Maier, Clint Wright and crew. NR 57 TC 4 Z9 4 U1 2 U2 21 PU ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD PI LONDON PA 24-28 OVAL RD, LONDON NW1 7DX, ENGLAND SN 0301-4797 EI 1095-8630 J9 J ENVIRON MANAGE JI J. Environ. Manage. PD JAN 30 PY 2013 VL 115 BP 217 EP 226 DI 10.1016/j.jenvman.2012.10.058 PG 10 WC Environmental Sciences SC Environmental Sciences & Ecology GA 098JW UT WOS:000315546600025 PM 23262410 ER PT J AU Wu, MY Piccini, M Koh, CY Lam, KS Singh, AK AF Wu, Meiye Piccini, Matthew Koh, Chung-Yan Lam, Kit S. Singh, Anup K. TI Single Cell MicroRNA Analysis Using Microfluidic Flow Cytometry SO PLOS ONE LA English DT Article ID IN-SITU HYBRIDIZATION; PROXIMITY LIGATION; T-CELLS; EXPRESSION; PROTEIN; ASSAY; CD69; RNAS; LNA AB MicroRNAs (miRNAs) are non-coding small RNAs that have cell type and cell context-dependent expression and function. To study miRNAs at single-cell resolution, we have developed a novel microfluidic approach, where flow fluorescent in situ hybridization (flow-FISH) using locked-nucleic acid probes is combined with rolling circle amplification to detect the presence and localization of miRNA. Furthermore, our flow cytometry approach allows analysis of gene-products potentially targeted by miRNA together with the miRNA in the same cells. We demonstrate simultaneous measurement of miR155 and CD69 in 12-O-tetradecanoylphorbol 13-acetate (PMA) and Ionomycin stimulated Jurkat cells. The flow-FISH method can be completed in similar to 10 h, utilizes only 170 nL of reagent per experimental condition, and is the first to directly detect miRNA in single cells using flow cytometry. C1 [Wu, Meiye; Piccini, Matthew; Koh, Chung-Yan; Singh, Anup K.] Sandia Natl Labs, Dept Biotechnol & Bioengn, Livermore, CA USA. [Wu, Meiye; Lam, Kit S.] Univ Calif Davis, Biochem & Mol Biol Grad Grp, Davis, CA 95616 USA. [Lam, Kit S.] Univ Calif Davis, Med Ctr, Dept Hematol & Oncol, Sacramento, CA 95817 USA. RP Singh, AK (reprint author), Sandia Natl Labs, Dept Biotechnol & Bioengn, Livermore, CA USA. EM aksingh@sandia.gov OI Wu, Meiye/0000-0003-3712-1554 FU NIDCR [R01 DE020891]; MISL Grand Challenge Laboratory Directed Research and Development program at Sandia National Laboratories; New Mexico Spatiotemporal Modeling Center [P50GM085273]; NIGMS; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; Sandia's Special Degree program FX Financial support for preparation and some of the work included was provided by the grants: R01 DE020891, funded by the NIDCR; The MISL Grand Challenge Laboratory Directed Research and Development program at Sandia National Laboratories. Part of this research was paid by P50GM085273 (the New Mexico Spatiotemporal Modeling Center) funded by the NIGMS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.; The authors have read the journal's policy and have the following conflicts: Meiye Wu, Matthew Piccini, Chung-yan Koh, and Anup K. Singh are employees of Sandia National Laboratory. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Meiye Wu was also a graduate student at UC Davis, under Kit Lam, and financially supported by Sandia's Special Degree program. There are no patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors. NR 31 TC 22 Z9 22 U1 7 U2 74 PU PUBLIC LIBRARY SCIENCE PI SAN FRANCISCO PA 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA SN 1932-6203 J9 PLOS ONE JI PLoS One PD JAN 30 PY 2013 VL 8 IS 1 AR e55044 DI 10.1371/journal.pone.0055044 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 098QM UT WOS:000315563800107 PM 23383050 ER PT J AU Cotten, C Reed, JL AF Cotten, Cameron Reed, Jennifer L. TI Mechanistic analysis of multi-omics datasets to generate kinetic parameters for constraint-based metabolic models SO BMC BIOINFORMATICS LA English DT Article DE Metabolic engineering; Kinetics; Central metabolism; Constraint-based; FBA ID FLUX BALANCE ANALYSIS; ENZYME-CATALYZED REACTIONS; GENOME-SCALE MODELS; ESCHERICHIA-COLI; THERMODYNAMIC ANALYSIS; HIGH-THROUGHPUT; NETWORKS; GROWTH AB Background: Constraint-based modeling uses mass balances, flux capacity, and reaction directionality constraints to predict fluxes through metabolism. Although transcriptional regulation and thermodynamic constraints have been integrated into constraint-based modeling, kinetic rate laws have not been extensively used. Results: In this study, an in vivo kinetic parameter estimation problem was formulated and solved using multi-omic data sets for Escherichia coli. To narrow the confidence intervals for kinetic parameters, a series of kinetic model simplifications were made, resulting in fewer kinetic parameters than the full kinetic model. These new parameter values are able to account for flux and concentration data from 20 different experimental conditions used in our training dataset. Concentration estimates from the simplified kinetic model were within one standard deviation for 92.7% of the 790 experimental measurements in the training set. Gibbs free energy changes of reaction were calculated to identify reactions that were often operating close to or far from equilibrium. In addition, enzymes whose activities were positively or negatively influenced by metabolite concentrations were also identified. The kinetic model was then used to calculate the maximum and minimum possible flux values for individual reactions from independent metabolite and enzyme concentration data that were not used to estimate parameter values. Incorporating these kinetically-derived flux limits into the constraint-based metabolic model improved predictions for uptake and secretion rates and intracellular fluxes in constraint-based models of central metabolism. Conclusions: This study has produced a method for in vivo kinetic parameter estimation and identified strategies and outcomes of kinetic model simplification. We also have illustrated how kinetic constraints can be used to improve constraint-based model predictions for intracellular fluxes and biomass yield and identify potential metabolic limitations through the integrated analysis of multi-omics datasets. C1 [Cotten, Cameron; Reed, Jennifer L.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Cotten, Cameron; Reed, Jennifer L.] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP Reed, JL (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, 1415 Engn Dr, Madison, WI 53706 USA. EM reed@engr.wisc.edu RI Reed, Jennifer/E-5137-2011 FU United States Department of Energy Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; 3M Foundation FX This work was funded by the United States Department of Energy Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494). CC is also supported by a fellowship from the 3M Foundation. The authors also wish to acknowledge James B. Rawlings for helpful discussions. NR 30 TC 14 Z9 14 U1 2 U2 31 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2105 J9 BMC BIOINFORMATICS JI BMC Bioinformatics PD JAN 30 PY 2013 VL 14 AR 32 DI 10.1186/1471-2105-14-32 PG 13 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Mathematical & Computational Biology SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Mathematical & Computational Biology GA 088AK UT WOS:000314806000001 PM 23360254 ER PT J AU Groenewold, GS Avci, R Fox, RV Deliorman, M Suo, ZY Kellerman, L AF Groenewold, Gary S. Avci, Recep Fox, Robert V. Deliorman, Muhammedin Suo, Zhiyong Kellerman, Laura TI Characterization of Arsenic Contamination on Rust from Ton Containers SO INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH LA English DT Article ID CHROMATE RETENTION MECHANISMS; ION MASS-SPECTROMETRY; ZERO-VALENT IRON; SURFACE-STRUCTURE; REMOVAL; WATER; GOETHITE; REMEDIATION; GROUNDWATER; MICROSCOPE AB The speciation and spatial distribution of arsenic on rusted steel surfaces affect both measurement and removal approaches. The chemistry of arsenic residing in the rust of ton containers that held the chemical warfare agents bis(2-chloroethyl)sulfide (sulfur mustard) and 2-chlorovinyldichloroarsine (Lewisite) is of particular interest, because while the agents have been decontaminated, residual arsenic could pose a health or environmental risk. The chemistry and distribution of arsenic in rust samples were probed using imaging secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX). Arsenic in the III and or V oxidation state is homogeneously distributed at the very topmost layer of the rust samples and is intimately associated with iron. Sputter depth profiling followed by SIMS and XPS shows As at a depth of several nanometers, in some cases in a reduced form. The SEM/EDX experiments show that As is present at a depth of several micrometers but is inhomogeneously distributed; most locations contained oxidized As at concentrations of a few percent; however, several locations showed very high concentrations of As in the zerovalent form. These results indicate that the rust material must be removed if the steel containers are to be cleared of arsenic. C1 [Groenewold, Gary S.; Fox, Robert V.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Avci, Recep; Deliorman, Muhammedin; Suo, Zhiyong; Kellerman, Laura] Montana State Univ, Image & Chem Anal Lab, Bozeman, MT 59717 USA. RP Groenewold, GS (reprint author), Idaho Natl Lab, 2351 North Blvd, Idaho Falls, ID 83415 USA. EM gary.groenewold@inl.gov FU United States Army FX This research was funded by the United States Army, Program Manager for Non-Stockpile Chemical Materiel. NR 27 TC 3 Z9 3 U1 2 U2 28 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0888-5885 J9 IND ENG CHEM RES JI Ind. Eng. Chem. Res. PD JAN 30 PY 2013 VL 52 IS 4 BP 1396 EP 1404 DI 10.1021/ie301937j PG 9 WC Engineering, Chemical SC Engineering GA 083VB UT WOS:000314492200003 ER PT J AU Gagnon, KJ Beavers, CM Clearfield, A AF Gagnon, Kevin J. Beavers, Christine M. Clearfield, Abraham TI MOFs Under Pressure: The Reversible Compression of a Single Crystal SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID METAL-ORGANIC FRAMEWORK; NEGATIVE LINEAR COMPRESSIBILITY AB The structural change and resilience of a single crystal of a metal organic framework (MOP), Zn(HO3PC4H8PO3H).2H(2)O (ZAG-4), was investigated under high pressures (0-9.9 GPa) using in situ single crystal X-ray diffraction. Although the unit cell volume decreases over 27%, the quality of the single crystal is retained and the unit cell parameters revert to their original values after pressure has been removed. This framework is considerably compressible with a bulk modulus calculated at similar to 11.7 GPa. The b-axis also exhibits both positive and negative linear compressibility. Within the applied pressures investigated, there was no discernible failure or amorphization point for this compound. The alkyl chains in the structure provide a spring-like cushion to stabilize the compression of the system allowing for large distortions in the metal coordination environment, without destruction of the material. This intriguing observation only adds to the current speculation as to whether or not MOFs may find a role as a new class of piezofunctional solid-state materials for application as highly sensitive pressure sensors, shock absorbing materials, pressure switches, or smart body armor. C1 [Gagnon, Kevin J.; Clearfield, Abraham] Texas A&M Univ, Dept Chem, College Stn, TX 77840 USA. [Beavers, Christine M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Gagnon, KJ (reprint author), Texas A&M Univ, Dept Chem, College Stn, TX 77840 USA. EM kgagnon@mail.chem.tamu.edu RI Beavers, Christine/C-3539-2009; Clearfield, Abraham/D-4184-2015 OI Beavers, Christine/0000-0001-8653-5513; Clearfield, Abraham/0000-0001-8318-8122 FU National Science Foundation [DMR-0652166]; Robert A. Welch Foundation [10673]; National Science Foundation for support through the NSF GRFP [DGE-0750732]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231] FX The authors thankfully acknowledge the National Science Foundation (Grant DMR-0652166) as well as the Robert A. Welch Foundation (Grant 10673). K.J.G. thanks the National Science Foundation for support through the NSF GRFP grant no. DGE-0750732. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 23 TC 56 Z9 56 U1 6 U2 143 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 30 PY 2013 VL 135 IS 4 BP 1252 EP 1255 DI 10.1021/ja311613p PG 4 WC Chemistry, Multidisciplinary SC Chemistry GA 083VE UT WOS:000314492500021 PM 23320490 ER PT J AU Liu, WY Lee, JS Talapin, DV AF Liu, Wenyong Lee, Jong-Soo Talapin, Dmitri V. TI III-V Nanocrystals Capped with Molecular Metal Chalcogenide Ligands: High Electron Mobility and Ambipolar Photoresponse SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID QUANTUM-DOT SOLIDS; COLLOIDAL NANOCRYSTALS; SURFACE LIGANDS; INAS SURFACES; LOW-VOLTAGE; FILMS; PHOTODETECTORS; SEMICONDUCTOR; TRANSISTORS; PBSE AB In this work, we synthesized InP and InAs nanocrystals (NCs) capped with different inorganic ligands, including various molecular metal chalcogenide complexes (MCCs) and chalcogenide ions. We found that MCCs and chalcogenide ions can quantitatively displace organic ligands from the surface of III-V NCs and serve as the inorganic capping groups for III-V NC surfaces. These inorganic ligands stabilize colloidal solutions of InP and InAs NCs in polar solvents and greatly facilitate charge transport between individual NCs. Charge transport studies revealed high electron mobility in the films of MCC-capped InP and InAs NCs. For example, we found that bridging InAs NCs with Cu7S4- MCC ligands can lead to very high electron mobility exceeding 15 cm(2)/(Vs). In addition, we observed unprecedented ambipolar (positive/negative) photoresponse of MCC-capped InAs NC solids that changed sign depending on the ligand chemistry, illumination wavelength, and doping of the NC solid. For example, the sign of photoconductance of InAs NCs capped with Cu7S4- or Sn2S64- ions converted from positive at 0.80 and 0.95 eV to negative at 1.27 and 1.91 eV. We propose an explanation of this unusually complex photoconductivity of InAs NC solids. C1 [Liu, Wenyong; Lee, Jong-Soo; Talapin, Dmitri V.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Liu, Wenyong; Lee, Jong-Soo; Talapin, Dmitri V.] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA. [Talapin, Dmitri V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Talapin, DV (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. EM dvtalapin@uchicago.edu RI Lee, Jong-Soo /F-7461-2010; liu, wenyong/J-3208-2015 OI Lee, Jong-Soo /0000-0002-3045-2206; liu, wenyong/0000-0001-9143-9139 FU NSF [DMR-0847535, DMR-0213745]; DOE SunShot program [DE-EE0005312]; U.S. Department of Energy [DE-AC02-06CH11357] FX The work on synthesis and characterization of MCC-capped NCs was supported by NSF CAREER under award no. DMR-0847535; the work on charge transport and photoconductivity in NC solids was supported by the DOE SunShot program under award no. DE-EE0005312. D.V.T. also thanks the David and Lucile Packard Foundation and the Keck Foundation for their generous support. This work used facilities supported by the NSF MRSEC program under award no. DMR-0213745. Inductively coupled plasma/optical emission spectroscopy elemental analysis was carried out at the Analytical Chemistry Laboratory at Argonne National Lab (ANL). The work at the Center for Nanoscale Materials (ANL) was supported by the U.S. Department of Energy under contract no. DE-AC02-06CH11357. NR 60 TC 52 Z9 52 U1 8 U2 224 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 30 PY 2013 VL 135 IS 4 BP 1349 EP 1357 DI 10.1021/ja308200f PG 9 WC Chemistry, Multidisciplinary SC Chemistry GA 083VE UT WOS:000314492500036 PM 23267673 ER PT J AU Kang, YJ Ye, XC Chen, J Qi, L Diaz, RE Doan-Nguyen, V Xing, GZ Kagan, CR Li, J Gorte, RJ Stach, EA Murray, CB AF Kang, Yijin Ye, Xingchen Chen, Jun Qi, Liang Diaz, Rosa E. Doan-Nguyen, Vicky Xing, Guozhong Kagan, Cherie R. Li, Ju Gorte, Raymond J. Stach, Eric A. Murray, Christopher B. TI Engineering Catalytic Contacts and Thermal Stability: Gold/Iron Oxide Binary Nanocrystal Superlattices for CO Oxidation SO JOURNAL OF THE AMERICAN CHEMICAL SOCIETY LA English DT Article ID ELECTRON-BEAM LITHOGRAPHY; SUPPORTED GOLD CATALYSTS; GAS SHIFT REACTION; LOW-TEMPERATURE; MODEL CATALYSTS; NANOPARTICLE SUPERLATTICES; MELTING TEMPERATURE; METAL NANOCRYSTALS; AU NANOPARTICLES; SURFACE SCIENCE AB Well-defined surface, such as surface of a single crystal, is being used to provide precise interpretation of catalytic processes, while the nanoparticulate model catalyst more closely represents the real catalysts that are used in industrial processes. Nanocrystal superlattice, which combines the chemical and physical properties of different materials in a single crystalline structure, is an ideal model catalyst, that bridge between conventional models and real catalysts. We identify the active sites for carbon monoxide (CO) oxidation on Au-FeOx catalysts by using Au-FeOx binary superlattices correlating the activity to the number density of catalytic contacts between Au and FeOx. Moreover, using nanocrystal superlattices, we propose a general strategy of keeping active metals spatially confined to enhance the stability of metal catalysts. With a great range of nanocrystal superlattice structures and compositions, we establish that nanocrystal superlattices are useful model materials through which to explore, understand, and improve catalytic processes bridging the gap between traditional single crystal and supported catalyst studies. C1 [Kang, Yijin; Ye, Xingchen; Kagan, Cherie R.; Murray, Christopher B.] Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. [Chen, Jun; Doan-Nguyen, Vicky; Xing, Guozhong; Kagan, Cherie R.; Gorte, Raymond J.; Murray, Christopher B.] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. [Qi, Liang; Li, Ju] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. [Li, Ju] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Diaz, Rosa E.; Stach, Eric A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Kagan, Cherie R.] Univ Penn, Dept Elect & Syst Engn, Philadelphia, PA 19104 USA. [Gorte, Raymond J.] Univ Penn, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA. RP Murray, CB (reprint author), Univ Penn, Dept Chem, Philadelphia, PA 19104 USA. EM cbmurray@sas.upenn.edu RI Chen, Jun/F-7103-2014; Li, Ju/A-2993-2008; Qi, Liang/A-3851-2010; Ye, Xingchen/D-3202-2017; Stach, Eric/D-8545-2011; Kang, Yijin/E-7767-2012; XING, Guozhong/F-8773-2010 OI Li, Ju/0000-0002-7841-8058; Qi, Liang/0000-0002-0201-9333; Ye, Xingchen/0000-0001-6851-2721; Stach, Eric/0000-0002-3366-2153; FU National Science Foundation MRSEC [DMR11-20901]; U.S. Army Research Office (ARO) under Award MURI [W911NF-08-1-0364]; Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) on Optical Metamaterials [N00014-10-1-0942]; DOE Office of ARPA-E [DE-AR0000123]; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering [DE-SC0002158]; NSF [DMR-1120901]; AFOSR [FA9550-08-1-0325]; Center for Functional Nanomaterials (CFN); Brookhaven National Laboratory (BNL); U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX C.B.M. and Y.K. acknowledge the partial support from the National Science Foundation MRSEC DMR11-20901, and the U.S. Army Research Office (ARO) under Award MURI W911NF-08-1-0364. X.Y. acknowledges the support from the Office of Naval Research (ONR) Multidisciplinary University Research Initiative (MURI) on Optical Metamaterials through award N00014-10-1-0942. J.C. and V.D.-N. acknowledge the DOE Office of ARPA-E for support under Award DE-AR0000123. G.X. and C.RK acknowledge support from the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Award No. DE-SC0002158. L.Q and J.L. acknowledge support by NSF DMR-1120901 and AFOSR FA9550-08-1-0325. C.B.M. thanks the Richard Perry University Professorship for the support of his supervisor role. Research carried out in part at the Center for Functional Nanomaterials (CFN), Brookhaven National Laboratory (BNL), which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. We thank Naoki Kikuchi from JEOL for the extraordinary SEM image (Figure la), Charles Black and Fernando Camino (CFN, BNL) for the support at CFN, and David Vann at Department of Earth and Environmental Science (University of Pennsylvania) for assistance in ICP-OES. NR 61 TC 55 Z9 55 U1 15 U2 263 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0002-7863 J9 J AM CHEM SOC JI J. Am. Chem. Soc. PD JAN 30 PY 2013 VL 135 IS 4 BP 1499 EP 1505 DI 10.1021/ja310427u PG 7 WC Chemistry, Multidisciplinary SC Chemistry GA 083VE UT WOS:000314492500053 PM 23294105 ER PT J AU Piarulli, M Girlanda, L Marcucci, LE Pastore, S Schiavilla, R Viviani, M AF Piarulli, M. Girlanda, L. Marcucci, L. E. Pastore, S. Schiavilla, R. Viviani, M. TI Electromagnetic structure of A=2 and 3 nuclei in chiral effective field theory SO PHYSICAL REVIEW C LA English DT Article ID ELECTRON-DEUTERON SCATTERING; STRUCTURE-FUNCTION A(Q(2)); MAGNETIC FORM-FACTORS; TENSOR POLARIZATION; ELASTIC-SCATTERING; MOMENTUM-TRANSFER; Q2 LESS; TRANSFERS; TARGET; TRINUCLEONS AB Background: The A = 2 and 3 form factors are among the observables of choice for testing models of nuclear interactions and associated electromagnetic charge and current operators. Here we investigate the validity of the chiral-effective-field-theory (chi EFT) approach to describe the strong-interaction dynamics in these few-nucleon systems and their response to electromagnetic probes. Purpose: The objectives of the presentwork are twofold. The first is to address and resolve some of the differences present in independent, chi EFT derivations up to one loop, recently appearing in the literature, of the nuclear charge and current operators. The second objective is to provide a complete set of chi EFT and hybrid predictions for the structure functions and tensor polarization of the deuteron, for the charge and magnetic form factors of He-3 and H-3, and for the charge and magnetic radii of these few-nucleon systems. Methods: The calculations use wave functions derived from either chiral or conventional two-and three-nucleon potentials and Monte Carlo methods to evaluate the relevant matrix elements. Results: In reference to the two objectives mentioned earlier, we find that (i) there are no differences between the chi EFT magnetic dipole operator at one loop derived in our formalism and that obtained by Kolling et al. [Phys. Rev. C 80, 045502 (2009)] with the unitary transformation method and (ii) there is excellent agreement between theory and experiment for the static properties and elastic form factors of these A = 2 and 3 nuclei up to momentum transfers q less than or similar to 2.0-2.5 fm(-1). A complete analysis of the results is provided. Conclusions: Nuclear chi EFT provides a very satisfactory description of the isoscalar and isovector charge and magnetic structure of the A = 2 and 3 nuclei at low momentum transfers q less than or similar to 3m(pi). In particular, contributions from two-body charge and current operators are crucial for bringing theory into close agreement with experiment. At higher q values the present chi EFT predictions are similar to those obtained in the hybrid approach, as well as in older studies based on the conventional meson-exchange picture, and fail to reproduce the measured A = 2 and 3 form factors in the diffraction region. DOI: 10.1103/PhysRevC.87.014006 C1 [Piarulli, M.; Schiavilla, R.] Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. [Girlanda, L.] Univ Salento, Dept Math & Phys, I-73100 Lecce, Italy. [Girlanda, L.] INFN Lecce, I-73100 Lecce, Italy. [Marcucci, L. E.] Univ Pisa, Dept Phys, I-56127 Pisa, Italy. [Marcucci, L. E.; Viviani, M.] INFN Pisa, I-56127 Pisa, Italy. [Pastore, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Schiavilla, R.] Jefferson Lab, Newport News, VA 23606 USA. RP Piarulli, M (reprint author), Old Dominion Univ, Dept Phys, Norfolk, VA 23529 USA. OI Girlanda, Luca/0000-0002-5560-005X FU US Department of Energy, Office of Nuclear Physics [DE-AC05-06OR23177] FX R.S. would like to thank the T-2 group in the Theoretical Division at Los Alamos National Laboratory, and especially J. Carlson and S. Gandolfi, for the support and warm hospitality extended to him during a sabbatical visit in the Fall 2012, during which part of this work was completed. The work of R.S. is supported by the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC05-06OR23177. The calculations were made possible by grants of computing time from the National Energy Research Scientific Computing Center. NR 73 TC 45 Z9 45 U1 0 U2 6 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2469-9985 EI 2469-9993 J9 PHYS REV C JI Phys. Rev. C PD JAN 30 PY 2013 VL 87 IS 1 AR 014006 DI 10.1103/PhysRevC.87.014006 PG 24 WC Physics, Nuclear SC Physics GA 080GB UT WOS:000314228500001 ER PT J AU Cordon, AC Goity, JL AF Cordon, A. Calle Goity, J. L. TI Baryon masses and axial couplings in the combined 1/N-c and chiral expansions SO PHYSICAL REVIEW D LA English DT Article ID PION-NUCLEON SCATTERING; LIGHT HADRON MASSES; PERTURBATION-THEORY; PHENOMENOLOGICAL LAGRANGIANS; QUANTUM CHROMODYNAMICS; SPIN-3/2 FIELDS; FINITE-VOLUME; QCD; DYNAMICS; CURRENTS AB The effective theory for baryons with combined 1/N-c and chiral expansions is analyzed for nonstrange baryons. Results for baryon masses and axial couplings are obtained in the small scale expansion, to be coined as the xi expansion, in which the 1/N-c and the low energy power countings are linked according to 1/N-c = O(xi) = O(p). Masses and axial couplings are analyzed to O(xi(3)) and O(xi(2)), respectively, which correspond to next-to-next to leading order evaluations, and require one-loop contributions in the effective theory. The spin-flavor approximate symmetry, a consequence of the large N-c limit in baryons, plays a very important role in the real world with N-c = 3 as shown by the analysis of its breaking in the masses and the axial couplings. Applications to the recent lattice QCD results on baryon masses and the nucleon's axial coupling are presented. It is shown that those results are naturally described within the effective theory at the order considered in the xi expansion. DOI: 10.1103/PhysRevD.87.016019 C1 [Cordon, A. Calle; Goity, J. L.] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. [Goity, J. L.] Hampton Univ, Dept Phys, Hampton, VA 23668 USA. RP Cordon, AC (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM cordon@jlab.org; goity@jlab.org FU DOE [DE-AC05-06OR23177]; National Science Foundation (USA) [PHY-0855789] FX The authors thank C. Alexandrou, K. Kanaya, and D. Renner for useful discussions on several aspects of the LQCD results. This work was supported by DOE Contract No. DE-AC05-06OR23177 under which JSA operates the Thomas Jefferson National Accelerator Facility, and by the National Science Foundation (USA) through Grant No. PHY-0855789 (J.L.G.). NR 75 TC 11 Z9 11 U1 0 U2 1 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 2470-0010 EI 2470-0029 J9 PHYS REV D JI Phys. Rev. D PD JAN 30 PY 2013 VL 87 IS 1 AR 016019 DI 10.1103/PhysRevD.87.016019 PG 16 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 080GT UT WOS:000314230300002 ER PT J AU del Campo, A Egusquiza, IL Plenio, MB Huelga, SF AF del Campo, A. Egusquiza, I. L. Plenio, M. B. Huelga, S. F. TI Quantum Speed Limits in Open System Dynamics SO PHYSICAL REVIEW LETTERS LA English DT Article ID ENHANCED METROLOGY; EVOLUTION; STATES; TIME; SEMIGROUPS; TRANSITION; GEOMETRY; NEED AB Bounds to the speed of evolution of a quantum system are of fundamental interest in quantum metrology, quantum chemical dynamics, and quantum computation. We derive a time-energy uncertainty relation for open quantum systems undergoing a general, completely positive, and trace preserving evolution which provides a bound to the quantum speed limit. When the evolution is of the Lindblad form, the bound is analogous to the Mandelstam-Tamm relation which applies in the unitary case, with the role of the Hamiltonian being played by the adjoint of the generator of the dynamical semigroup. The utility of the new bound is exemplified in different scenarios, ranging from the estimation of the passage time to the determination of precision limits for quantum metrology in the presence of dephasing noise. DOI: 10.1103/PhysRevLett.110.050403 C1 [del Campo, A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [del Campo, A.] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Egusquiza, I. L.] Univ Basque Country, Dept Theoret Phys & Hist Sci, Bilbao 48080, Spain. [Plenio, M. B.; Huelga, S. F.] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany. [Plenio, M. B.; Huelga, S. F.] Univ Ulm, Inst Integrated Quantum Sci & Technol, D-89069 Ulm, Germany. RP del Campo, A (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RI Plenio, Martin/I-7895-2013; del Campo, Adolfo/B-8439-2009; Egusquiza Egusquiza, Inigo Luis/C-8952-2014 OI del Campo, Adolfo/0000-0003-2219-2851; Egusquiza Egusquiza, Inigo Luis/0000-0002-5827-8027 FU U.S. Department of Energy; Basque Government [IT-559-10]; UPV/EHU UFI [11/55]; STREP PICC; Alexander von Humboldt Foundation; Integrated project QEssence; LANL J. Robert Oppenheimer fellowship FX It is a pleasure to thank D. Alonso, D. J. Brody, B. Damski, M. Meister, A. Rivas, and A. Ruschhaupt for fruitful discussions and comments on the manuscript. This work was supported by the U.S. Department of Energy through the LANL/LDRD Program, the Basque Government (IT-559-10), the UPV/EHU UFI 11/55, the STREP PICC, the Alexander von Humboldt Foundation, the Integrated project QEssence, and a LANL J. Robert Oppenheimer fellowship. NR 47 TC 84 Z9 84 U1 1 U2 32 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 30 PY 2013 VL 110 IS 5 AR 050403 DI 10.1103/PhysRevLett.110.050403 PG 5 WC Physics, Multidisciplinary SC Physics GA 080HH UT WOS:000314231800003 PM 23414008 ER PT J AU Hoinka, S Lingham, M Fenech, K Hu, H Vale, CJ Drut, JE Gandolfi, S AF Hoinka, Sascha Lingham, Marcus Fenech, Kristian Hu, Hui Vale, Chris J. Drut, Joaquin E. Gandolfi, Stefano TI Precise Determination of the Structure Factor and Contact in a Unitary Fermi Gas SO PHYSICAL REVIEW LETTERS LA English DT Article ID SYSTEMS; THERMODYNAMICS AB We present a high-precision determination of the universal contact parameter in a strongly interacting Fermi gas. In a trapped gas at unitarity, we find the contact to be 3.06 +/- 0.08 at a temperature of 0.08 of the Fermi temperature in a harmonic trap. The contact governs the high-momentum ( short-range) properties of these systems, and this low-temperature measurement provides a new benchmark for the zero-temperature homogeneous contact. The experimental measurement utilizes Bragg spectroscopy to obtain the dynamic and static structure factors of ultracold Fermi gases at high momentum in the unitarity and molecular Bose-Einstein condensate regimes. We have also performed quantum Monte Carlo calculations of the static properties, extending from the weakly coupled BCS regime to the strongly coupled Bose-Einstein condensate case, that show agreement with experiment at the level of a few percent. DOI: 10.1103/PhysRevLett.110.055305 C1 [Hoinka, Sascha; Lingham, Marcus; Fenech, Kristian; Hu, Hui; Vale, Chris J.] Swinburne Univ Technol, Ctr Atom Opt & Ultrafast Spect, Melbourne, Vic 3122, Australia. [Drut, Joaquin E.] Univ N Carolina, Dept Phys & Astron, Chapel Hill, NC 27599 USA. [Drut, Joaquin E.; Gandolfi, Stefano] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Hoinka, S (reprint author), Swinburne Univ Technol, Ctr Atom Opt & Ultrafast Spect, Melbourne, Vic 3122, Australia. RI HU, Hui/C-6878-2009; Vale, Chris/G-5524-2011; Hoinka, Sascha/A-5802-2013; OI HU, Hui/0000-0002-1541-1756; Vale, Chris/0000-0002-4059-0178; Gandolfi, Stefano/0000-0002-0430-9035 FU Department of Energy (DOE) [DE-FC02- 07ER41457 (UNEDF SciDAC), DE-AC52-06NA25396 (LANL)] FX We would like to thank F. Werner for providing bold diagrammatic Monte Carlo data for the pressure equation of state and J. Carlson for useful discussions. The work of J. E. D. and S. G. was supported by a grant from the Department of Energy (DOE) under Contracts No. DE-FC02- 07ER41457 (UNEDF SciDAC) and No. DE-AC52-06NA25396 (LANL). Computer time was made available by Los Alamos Open Supercomputing and by the National Energy Research Scientific Computing Center (NERSC). NR 45 TC 39 Z9 39 U1 2 U2 16 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 0031-9007 J9 PHYS REV LETT JI Phys. Rev. Lett. PD JAN 30 PY 2013 VL 110 IS 5 AR 055305 DI 10.1103/PhysRevLett.110.055305 PG 5 WC Physics, Multidisciplinary SC Physics GA 080HH UT WOS:000314231800012 PM 23414031 ER PT J AU Chen, X Parker, D Singh, DJ AF Chen, Xin Parker, David Singh, David J. TI Acoustic impedance and interface phonon scattering in Bi2Te3 and other semiconducting materials SO PHYSICAL REVIEW B LA English DT Article ID HIGH-THERMOELECTRIC PERFORMANCE; THERMAL-BOUNDARY RESISTANCE; HALF-HEUSLER COMPOUNDS; ELASTIC-MODULI; RADIATION TEMPERATURE; FILLED SKUTTERUDITES; LATTICE-DYNAMICS; CONDUCTIVITY; PRESSURE; DIAMOND AB We present first-principles calculations of the phonon dispersions of Bi2Te3 along with calculations of the sound speed anisotropy for a number of materials, and we discuss these in relation to acoustic phonon interface scattering in ceramics. The Bi2Te3 phonon dispersions show agreement with what is known from neutron scattering for the optic modes, while we find a difference between the generalized gradient approximation and local density results for the acoustic branches. This is a consequence of an artificial compression of the van der Waals bonded gaps in the Bi2Te3 structure when using the generalized gradient approximation. As a result, local density approximation calculations provide a better description of the phonon dispersions in Bi2Te3. A key characteristic of the acoustic dispersions in several materials studied is the existence of a strong anisotropy in the velocities. Such an anisotropy may be a significant consideration in the reduction of lattice thermal conductivity by nanograin boundary scattering. This is a well-known technique commonly employed to improve thermoelectric performance. We develop a model to quantify the effect of this anisotropy for this interface scattering in ceramics, and we apply this to Bi2Te3 and compare with PbTe and several other semiconductors. DOI: 10.1103/PhysRevB.87.045317 C1 [Chen, Xin; Parker, David; Singh, David J.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Chen, X (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. FU US Department of Energy; EERE; Vehicle Technologies; Propulsion Materials Program; Solid State Solar-Thermal Energy Conversion Center (S3 TEC), an Energy Frontier Research Center; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001299/DE-FG02-09ER46577] FX This research was supported by the US Department of Energy, EERE, Vehicle Technologies, Propulsion Materials Program (D.P.) and the Solid State Solar-Thermal Energy Conversion Center (S3 TEC), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001299/DE-FG02-09ER46577 (D.J.S.). NR 48 TC 10 Z9 10 U1 2 U2 102 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 J9 PHYS REV B JI Phys. Rev. B PD JAN 30 PY 2013 VL 87 IS 4 AR 045317 DI 10.1103/PhysRevB.87.045317 PG 8 WC Physics, Condensed Matter SC Physics GA 080FG UT WOS:000314226100003 ER PT J AU Rong, CB Wang, DP Nguyen, VV Daniil, M Willard, MA Zhang, Y Kramer, MJ Liu, JP AF Rong, C. Bing Wang, Dapeng Vuong Van Nguyen Daniil, Maria Willard, Matthew A. Zhang, Ying Kramer, M. J. Liu, J. Ping TI Effect of selective Co addition on magnetic properties of Nd-2(FeCo)(14)B/alpha-Fe nanocomposite magnets SO JOURNAL OF PHYSICS D-APPLIED PHYSICS LA English DT Article ID PERMANENT-MAGNETS; INTERFACE STRUCTURE; ENERGY PRODUCT; SUBSTITUTION; ENHANCEMENT; SYSTEMS; ALLOYS; FE AB Nd2Fe14B/alpha-Fe-based hard/soft nanocomposite magnets with Co addition have been prepared by ball-milling and warm compaction. It was found that Co addition into the magnetically hard phase improves magnetic properties significantly, especially the remanence ratio and coercivity. The effect on the magnetic properties of the selective Co addition may be attributed to enhanced interdiffusion across the hard/soft interface that improves the interface conditions for effective interphase exchange coupling. By optimizing the Co content in the Nd15Fe79-xCoxB6 hard phase, an energy product value about 21 MG Oe can be obtained in the isotropic Nd-2(FeCo)(14)B/alpha-(FeCo) nanocomposite magnets compared with 15 MG Oe of Nd2Fe14B/alpha-Fe nanocomposite magnets prepared under the same conditions with the same grain size and microstructure, owing to the strengthened intergranular exchange interactions. C1 [Rong, C. Bing; Wang, Dapeng; Vuong Van Nguyen; Liu, J. Ping] Univ Texas Arlington, Dept Phys, Arlington, TX 76019 USA. [Daniil, Maria] George Washington Univ, Dept Phys, Washington, DC 20052 USA. [Willard, Matthew A.] USN, Res Lab, Washington, DC 20375 USA. [Zhang, Ying; Kramer, M. J.] Iowa State Univ, USDOE, Ames Lab, Ames, IA 50011 USA. RP Rong, CB (reprint author), Univ Texas Arlington, Dept Phys, POB 19059, Arlington, TX 76019 USA. EM pliu@uta.edu RI Willard, Matthew/A-8492-2009 OI Willard, Matthew/0000-0001-5052-8012 FU DARPA/ARO [W911NF-08-1-0249]; ARO [W911NF-11-1-0507.]; US Department of Energy, Office of Basic Energy Science [DE-AC02-07CH11358] FX This work has been supported in part by the DARPA/ARO under grant W911NF-08-1-0249 and ARO under grant W911NF-11-1-0507. The microscopy was performed at the Ames Laboratory, which is supported in part by the US Department of Energy, Office of Basic Energy Science, under contract DE-AC02-07CH11358. NR 29 TC 5 Z9 7 U1 3 U2 44 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0022-3727 J9 J PHYS D APPL PHYS JI J. Phys. D-Appl. Phys. PD JAN 30 PY 2013 VL 46 IS 4 AR 045001 DI 10.1088/0022-3727/46/4/045001 PG 5 WC Physics, Applied SC Physics GA 071KL UT WOS:000313591300003 ER PT J AU Jinek, M East, A Cheng, A Lin, S Ma, EB Doudna, J AF Jinek, Martin East, Alexandra Cheng, Aaron Lin, Steven Ma, Enbo Doudna, Jennifer TI RNA-programmed genome editing in human cells SO ELIFE LA English DT Article ID BACTERIA; IMMUNITY; SYSTEMS; NUCLEASE; ARCHAEA AB Type II CRISPR immune systems in bacteria use a dual RNA-guided DNA endonuclease, Cas9, to cleave foreign DNA at specific sites. We show here that Cas9 assembles with hybrid guide RNAs in human cells and can induce the formation of double-strand DNA breaks ( DSBs) at a site complementary to the guide RNA sequence in genomic DNA. This cleavage activity requires both Cas9 and the complementary binding of the guide RNA. Experiments using extracts from transfected cells show that RNA expression and/or assembly into Cas9 is the limiting factor for Cas9-mediated DNA cleavage. In addition, we find that extension of the RNA sequence at the 3' end enhances DNA targeting activity in vivo. These results show that RNA-programmed genome editing is a facile strategy for introducing site-specific genetic changes in human cells. C1 [Jinek, Martin; Lin, Steven; Doudna, Jennifer] Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. [Jinek, Martin; East, Alexandra; Cheng, Aaron; Lin, Steven; Ma, Enbo; Doudna, Jennifer] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Doudna, Jennifer] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Doudna, Jennifer] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Doudna, J (reprint author), Univ Calif Berkeley, Howard Hughes Med Inst, Berkeley, CA 94720 USA. EM doudna@berkeley.edu OI Jinek, Martin/0000-0002-7601-210X FU Howard Hughes Medical Institute; National Institutes of Health [R01 GM65462] FX We thank David Drubin, Barbara Meyer and Te-Wen Lo for helpful discussions and expert advice; Jamie Cate, Andy May and Rachel Haurwitz for comments on the manuscript; George Church for sharing unpublished data; and Kaihong Zhou and Alison Smith for excellent technical support. This work was funded by the Howard Hughes Medical Institute and by National Institutes of Health Grant R01 GM65462 to David Drubin. J.A.D. is a Howard Hughes Medical Institute investigator. NR 14 TC 532 Z9 576 U1 36 U2 192 PU ELIFE SCIENCES PUBLICATIONS LTD PI CAMBRIDGE PA SHERATON HOUSE, CASTLE PARK, CAMBRIDGE, CB3 0AX, ENGLAND SN 2050-084X J9 ELIFE JI eLife PD JAN 29 PY 2013 VL 2 AR e00471 DI 10.7554/eLife.00471 PG 9 WC Biology SC Life Sciences & Biomedicine - Other Topics GA 274DO UT WOS:000328585600001 PM 23386978 ER PT J AU Biswas, M Voltz, K Smith, JC Langowski, J AF Biswas, Mithun Voltz, Karine Smith, Jeremy C. Langowski, Joerg TI Dynamics of Nucleosome Tails Studied by All-Atom and Coarse-Grained MD Simulations SO BIOPHYSICAL JOURNAL LA English DT Meeting Abstract CT 57th Annual Meeting of the Biophysical-Society CY FEB 02-06, 2013 CL Philadelphia, PA SP Biophys Soc C1 [Biswas, Mithun; Voltz, Karine; Langowski, Joerg] German Canc Res Ctr, Heidelberg, Germany. [Smith, Jeremy C.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RI smith, jeremy/B-7287-2012; Langowski, Jorg/A-1843-2011 OI smith, jeremy/0000-0002-2978-3227; Langowski, Jorg/0000-0001-8600-0666 NR 0 TC 0 Z9 0 U1 0 U2 13 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JAN 29 PY 2013 VL 104 IS 2 SU 1 BP 6A EP 6A PG 1 WC Biophysics SC Biophysics GA 105MI UT WOS:000316074300037 ER PT J AU Baird, CL Beech, BM Boschek, CB Xiong, YJ Smith, DM Squier, TC AF Baird, Cheryl L. Beech, Brenda M. Boschek, Curt B. Xiong, Yijia Smith, Dayle M. Squier, Thomas C. TI Identification of Noninterfacial Amino Acids Important for Molecular Recognition in Calmodulin SO BIOPHYSICAL JOURNAL LA English DT Meeting Abstract CT 57th Annual Meeting of the Biophysical-Society CY FEB 02-06, 2013 CL Philadelphia, PA SP Biophys Soc C1 [Baird, Cheryl L.; Beech, Brenda M.; Boschek, Curt B.; Xiong, Yijia; Smith, Dayle M.; Squier, Thomas C.] Pacific NW Natl Lab, Rchland, WA USA. NR 0 TC 1 Z9 1 U1 0 U2 1 PU CELL PRESS PI CAMBRIDGE PA 600 TECHNOLOGY SQUARE, 5TH FLOOR, CAMBRIDGE, MA 02139 USA SN 0006-3495 J9 BIOPHYS J JI Biophys. J. PD JAN 29 PY 2013 VL 104 IS 2 SU 1 BP 18A EP 18A PG 1 WC Biophysics SC Biophysics GA 105MI UT WOS:000316074300098 ER EF