FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Kuttiyiel, KA Sasaki, K Su, D Vukmirovic, MB Marinkovic, NS Adzic, RR AF Kuttiyiel, Kurian A. Sasaki, Kotaro Su, Dong Vukmirovic, Miomir B. Marinkovic, Nebojsa S. Adzic, Radoslav R. TI Pt monolayer on Au-stabilized PdNi core-shell nanoparticles for oxygen reduction reaction SO ELECTROCHIMICA ACTA LA English DT Article DE Core-shell nanoparticles; Oxygen reduction; Pt monolayer; Pd-Ni; Electrocatalysis ID CATALYTIC-ACTIVITY; ELECTROCATALYSTS; PLATINUM; ELECTRODE; REMOVAL AB Based on the unique catalytic properties of Pt by using its single layer on well-defined inexpensive nanosubstrates one can maximize its activity at the oxygen fuel cell cathode. This illustrates an efficient way of using Pt while overcoming its limited supply. We present a highly active and stable ORR catalyst, consisting of PdNi core-shell nanoparticles, which was protected against decomposition in acid by Au atoms and activated for oxygen reduction with a Pt monolayer. The roles of each component in the catalyst is investigated and in the best case the catalyst showed a Pt group metal mass activity that was approximately 3 times higher than that of the commercial Pt/C electrocatalyst. The Au protected PdNi core-shell nanoparticles were found to be stable support for Pt under high oxidizing conditions. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Kuttiyiel, Kurian A.; Sasaki, Kotaro; Vukmirovic, Miomir B.; Adzic, Radoslav R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Marinkovic, Nebojsa S.] Univ Delaware, Dept Chem Engn, Newark, DE 19716 USA. RP Adzic, RR (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM adzic@bnl.gov RI Marinkovic, Nebojsa/A-1137-2016; Su, Dong/A-8233-2013 OI Marinkovic, Nebojsa/0000-0003-3579-3453; Su, Dong/0000-0002-1921-6683 FU US Department of Energy, Division of Chemical Sciences, Geosciences and Biosciences Division [DE-AC02-98CH10886]; Synchrotron Catalysis Consortium, US Department of Energy [DE-FG02-05ER15688] FX This research was performed at Brookhaven National laboratory under contract DE-AC02-98CH10886 with the US Department of Energy, Division of Chemical Sciences, Geosciences and Biosciences Division. Beam lines X19A and X18B at the NSLS are supported in part by the Synchrotron Catalysis Consortium, US Department of Energy Grant No. DE-FG02-05ER15688. NR 33 TC 32 Z9 32 U1 12 U2 100 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD NOV 1 PY 2013 VL 110 SI SI BP 267 EP 272 DI 10.1016/j.electacta.2013.04.037 PG 6 WC Electrochemistry SC Electrochemistry GA 287GP UT WOS:000329530300037 ER PT J AU Ferrandon, M Wang, XP Kropf, AJ Myers, DJ Wu, G Johnston, CM Zelenay, P AF Ferrandon, Magali Wang, Xiaoping Kropf, A. Jeremy Myers, Deborah J. Wu, Gang Johnston, Christina M. Zelenay, Piotr TI Stability of iron species in heat-treated polyaniline-iron-carbon polymer electrolyte fuel cell cathode catalysts SO ELECTROCHIMICA ACTA LA English DT Article DE Non-precious metal catalyst; Oxygen reduction reaction (ORR); Stability; Dissolution; X-ray absorption near edge spectroscopy (XANES) ID OXYGEN REDUCTION REACTION; FE-BASED CATALYSTS; ACTIVE-SITES; AREA CARBON; K-EDGE; PHTHALOCYANINE; SURFACE; ELECTROCATALYSTS; ELECTROREDUCTION; DURABILITY AB This paper describes the stability of Fe species in a heat-treated polyaniline-iron-carbon (PANI-Fe-C) oxygen reduction reaction (ORR) catalyst in an aqueous acidic electrolyte and in a membrane-electrode assembly (MEA) at various potentials. Linear combination fitting of ex situ and in situ X-ray absorption near-edge structure (XANES) spectra to the spectra for a suite of Fe standards was used to determine the catalyst iron speciation at various potentials, after potential cycling in an aqueous electrolyte, and after 200 h potentiostatic holds in MEAs. XANES edge-step analysis and inductively-coupled mass spectrometry were used to determine the amount of Fe lost from the catalyst into the aqueous electrolyte and from the MEA cathodes. Results showed that the Fe was lost from the catalyst in the electrochemical environment and the rate and extent of this loss were dependent on potential and on the type of electrolyte. The Fe specie primarily responsible for this loss was iron sulfide. Despite the large overall loss of Fe species from the catalyst that had been subjected to potentiostatic holds in an MM at either 0.4 V or 0.6 V for 200 h, H-2-air polarization curves showed only moderate loss of cathode kinetic performance while the performance in the mass transport region improved. Correlating the performance loss to the XANES speciation, the kinetic losses may be attributed to the oxidation of active site(s) and/or loss of pyrrolic-like and pyridinic-like coordination, as well as the mass transport improvement due to removal of inactive Fe species, predominantly sulfides. Species with porphyrazin-like coordination were stable in both the aqueous and MEA environments. It is speculated that the stability of the porphyrazin is responsible for the durability of this catalyst. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Ferrandon, Magali; Wang, Xiaoping; Kropf, A. Jeremy; Myers, Deborah J.] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. [Wu, Gang; Johnston, Christina M.; Zelenay, Piotr] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. RP Ferrandon, M (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA. EM ferrandon@anl.gov; zelenay@lanl.gov RI Wu, Gang/E-8536-2010; BM, MRCAT/G-7576-2011; ID, MRCAT/G-7586-2011 OI Wu, Gang/0000-0003-4956-5208; FU U.S. Department of Energy's Fuel Cell Technologies Program; U.S. Department of Energy by University of Chicago Argonne, LLC [DE-AC-02-06CH11357]; U.S. Department of Energy; MRCAT FX Authors wish to thank Analytical Chemistry Laboratory at Argonne for the elemental analyses. This work was supported by the U.S. Department of Energy's Fuel Cell Technologies Program. Argonne National Laboratory is managed for the U.S. Department of Energy by University of Chicago Argonne, LLC, under contract DE-AC-02-06CH11357. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences. MRCAT operations are supported by the U.S. Department of Energy and the MRCAT member institutions. The authors would like to thank their Department of Energy Technology Development Manager, Nancy Garland, and the staff of sectors 10, 12, and 20 at the Advanced Photon Source, in particular Mahalingam Balasubramanian and Nadia Leyarovska. The authors would also like to thank James Gilbert for his assistance with the X-ray experiments. NR 40 TC 31 Z9 31 U1 8 U2 99 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0013-4686 EI 1873-3859 J9 ELECTROCHIM ACTA JI Electrochim. Acta PD NOV 1 PY 2013 VL 110 SI SI BP 282 EP 291 DI 10.1016/j.electacta.2013.03.183 PG 10 WC Electrochemistry SC Electrochemistry GA 287GP UT WOS:000329530300039 ER PT J AU Bowman, GR Perez, AM Ptacin, JL Ighodaro, E Folta-Stogniew, E Comolli, LR Shapiro, L AF Bowman, Grant R. Perez, Adam M. Ptacin, Jerod L. Ighodaro, Eseosa Folta-Stogniew, Ewa Comolli, Luis R. Shapiro, Lucy TI Oligomerization and higher-order assembly contribute to sub-cellular localization of a bacterial scaffold SO MOLECULAR MICROBIOLOGY LA English DT Article ID DIVISION PROTEIN DIVIVA; CELL-DIVISION; CHROMOSOME SEGREGATION; ESCHERICHIA-COLI; CAULOBACTER-CRESCENTUS; BINDING; CYCLE; POLYDISPERSITY; MECHANISMS; DYNAMICS AB In Caulobacter crescentus, the PopZ polar scaffold protein supports asymmetric cell division by recruiting distinct sets of binding partners to opposite cell poles. To understand how polar organizing centres are established by PopZ, we investigated a set of mutated PopZ proteins for defects in sub-cellular localization and recruitment activity. We identified a domain within the C-terminal 76 amino acids that is necessary and sufficient for accumulation as a single subcellular focus, a domain within the N-terminal 23 amino acids that is necessary for bipolar targeting, and a linker domain between these localization determinants that tolerates large variation. Mutations that inhibited dynamic PopZ localization inhibited the recruitment of other factors to cell poles. Mutations in the C-terminal domain also blocked discrete steps in the assembly of higher-order structures. Biophysical analysis of purified wild type and assembly defective mutant proteins indicates that PopZ self-associates into an elongated trimer, which readily forms a dimer of trimers through lateral contact. The final six amino acids of PopZ are necessary for connecting the hexamers into filaments, and these structures are important for sub-cellular localization. Thus, PopZ undergoes multiple orders of self-assembly, and the formation of an interconnected superstructure is a key feature of polar organization in Caulobacter. C1 [Bowman, Grant R.; Perez, Adam M.; Ptacin, Jerod L.; Ighodaro, Eseosa; Shapiro, Lucy] Stanford Univ, Sch Med, Dept Dev Biol, Stanford, CA 94305 USA. [Folta-Stogniew, Ewa] Yale Univ, Sch Med, WM Keck Biotechnol Resource Lab, New Haven, CT 06510 USA. [Comolli, Luis R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Bowman, GR (reprint author), Univ Wyoming, Dept Mol Biol, Laramie, WY 82071 USA. EM grant.bowman@uwyo.edu FU National Institute of Health [GM51426, GB32506]; Department of Energy [DE-FG02-05ER64136]; Office of Basic Energy Sciences, Biological and Environmental Research, of the US Department of Energy [DE-AC02-05CH11231]; NIH [1S10RR023748-01] FX We thank David Liberles for helpful advice. The work was supported by National Institute of Health Grants GM51426 and GB32506, and Department of Energy Grant DE-FG02-05ER64136 to L.S. L.R.C. was supported by Office of Basic Energy Sciences, Biological and Environmental Research, of the US Department of Energy under Contract No. DE-AC02-05CH11231. SEC-MALLS instrumentation was supported by NIH Award Number 1S10RR023748-01. NR 41 TC 10 Z9 10 U1 1 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0950-382X EI 1365-2958 J9 MOL MICROBIOL JI Mol. Microbiol. PD NOV PY 2013 VL 90 IS 4 BP 776 EP 795 DI 10.1111/mmi.12398 PG 20 WC Biochemistry & Molecular Biology; Microbiology SC Biochemistry & Molecular Biology; Microbiology GA 295HU UT WOS:000330108000008 PM 24102805 ER PT J AU Dawedeit, C Kucheyev, SO Shin, SJ Willey, TM Bagge-Hansen, M Braun, T Wang, YM El-Dasher, BS Teslich, NE Biener, MM Ye, JC Kirste, L Roehlig, CC Wolfer, M Woerner, E van Buuren, AW Hamza, AV Wild, C Biener, J AF Dawedeit, Christoph Kucheyev, Sergei O. Shin, Swanee J. Willey, Trevor M. Bagge-Hansen, Michael Braun, Tom Wang, Y. Morris El-Dasher, Bassem S. Teslich, Nick E. Biener, Monika M. Ye, Jianchao Kirste, Lutz Roehlig, Claus-C. Wolfer, Marco Woerner, Eckhard van Buuren, Anthony W. Hamza, Alex V. Wild, Christoph Biener, Juergen TI Grain size dependent physical and chemical properties of thick CVD diamond films for high energy density physics experiments SO DIAMOND AND RELATED MATERIALS LA English DT Article DE Diamond film; Plasma CVD; Morphology; Texture; Grain size; Inertial confinement fusion ID NANOCRYSTALLINE DIAMOND; AMORPHOUS-CARBON; DEPOSITION; SIMULATION; FUSION AB We report on the grain size dependent morphological, physical and chemical properties of thick microwave-plasma assisted chemical vapor deposited (MPCVD) diamond films that are used as target materials for high energy density physics experiments at the Lawrence Livermore National Laboratory. Control over the grain size, ranging from several mu m to a few nm, was achieved by adjusting the CH4 content of the CH4/H-2 feed gas. The effect of grain size on surface roughness, morphology, texture, density, hydrogen and graphitic carbon content was systematically studied by a variety of techniques. For depositions performed at 35 to 45 mbar and 3000W microwave power (power density similar to 10W cm(-3)), an abrupt transition from micro-crystalline diamond to nanocrystalline diamond was observed at 3% CH4. This transition is accompanied by a dramatic decrease in surface roughness, a six percent drop in density and an increasing content in hydrogen and graphitic carbon impurities. Guided by these results, layered nano-microhybrid diamond samples were prepared by periodically changing the growth conditions from nano- to microcrystalline. (C) 2013 Elsevier B.V. All rights reserved. C1 [Dawedeit, Christoph; Kucheyev, Sergei O.; Shin, Swanee J.; Willey, Trevor M.; Bagge-Hansen, Michael; Braun, Tom; Wang, Y. Morris; El-Dasher, Bassem S.; Teslich, Nick E.; Biener, Monika M.; Ye, Jianchao; van Buuren, Anthony W.; Hamza, Alex V.; Biener, Juergen] Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. [Kirste, Lutz; Roehlig, Claus-C.; Wolfer, Marco; Woerner, Eckhard; Wild, Christoph] Fraunhofer Inst Appl Solid State Phys, D-79108 Freiburg, Germany. [Woerner, Eckhard; Wild, Christoph] Diamond Mat GmbH, D-79108 Freiburg, Germany. RP Biener, J (reprint author), Lawrence Livermore Natl Lab, Nanoscale Synth & Characterizat Lab, Livermore, CA 94550 USA. EM biener2@llnl.gov RI Willey, Trevor/A-8778-2011; Wang, Yinmin (Morris)/F-2249-2010 OI Willey, Trevor/0000-0002-9667-8830; Wang, Yinmin (Morris)/0000-0002-7161-2034 FU U.S. Department of Energy [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. CD gratefully acknowledges the support of the TUM Faculty Graduate Center Mechanical Engineering at the Technische Universitat Munchen. NR 32 TC 7 Z9 7 U1 1 U2 39 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0925-9635 EI 1879-0062 J9 DIAM RELAT MATER JI Diam. Relat. Mat. PD NOV PY 2013 VL 40 BP 75 EP 81 DI 10.1016/j.diamond.2013.10.001 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 282DN UT WOS:000329150600013 ER PT J AU Sullivan, JL Wang, MQ AF Sullivan, J. L. Wang, M. Q. TI Life cycle greenhouse gas emissions from geothermal electricity production SO JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY LA English DT Article AB A life cycle analysis (LCA) is presented for greenhouse gas (GHG) emissions and fossil energy use associated with geothermal electricity production with a special focus on operational GHG emissions from hydrothermal flash and dry steam plants. The analysis includes results for both the plant and fuel cycle components of the total life cycle. The impact of recent changes to California's GHG reporting protocol for GHG emissions are discussed by comparing emission rate metrics derived from post and pre revision data sets. These metrics are running capacity weighted average GHG emission rates (g/kWh) and emission rate cumulative distribution functions. To complete our life cycle analysis, plant cycle results were extracted from our previous work and added to fuel cycle results. The resulting life cycle fossil energy and greenhouse gas emissions values are compared among a range of fossil, nuclear, and renewable power technologies, including geothermal. (C) 2013 AIP Publishing LLC. C1 [Sullivan, J. L.; Wang, M. Q.] Argonne Natl Lab, Ctr Transportat Res, Div Energy Syst, Argonne, IL 60439 USA. RP Sullivan, JL (reprint author), Argonne Natl Lab, Ctr Transportat Res, Div Energy Syst, 9700 S Cass Ave, Argonne, IL 60439 USA. FU U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Geothermal Technologies [DE-AC02-06CH11357]; Office of Geothermal Technologies, the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy FX Argonne National Laboratory's work was supported by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Geothermal Technologies, under contract DE-AC02-06CH11357. We thank our sponsor, Arlene Anderson, of Office of Geothermal Technologies, the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy. NR 18 TC 1 Z9 1 U1 3 U2 12 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1941-7012 J9 J RENEW SUSTAIN ENER JI J. Renew. Sustain. Energy PD NOV PY 2013 VL 5 IS 6 AR 063122 DI 10.1063/1.4841235 PG 13 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels SC Science & Technology - Other Topics; Energy & Fuels GA 282MO UT WOS:000329176100022 ER PT J AU Campione, S Sinclair, MB Capolino, F AF Campione, Salvatore Sinclair, Michael B. Capolino, Filippo TI Effective medium representation and complex modes in 3D periodic metamaterials made of cubic resonators with large permittivity at mid-infrared frequencies SO PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS LA English DT Article DE Mode analysis; Metamaterials; Effective medium theory; Artificial magnetism ID METAL-NANOPARTICLE CHAINS; LINEAR-CHAINS; MICROWAVE-FREQUENCIES; PLASMONIC NANOSPHERES; OPTICAL-PROPERTIES; REFRACTIVE-INDEX; WAVE-GUIDE; ARRAYS; PARTICLES; SPHERES AB We review some of the techniques that lead to the effective medium representation of a three-dimensional (3D) periodic metamaterial. We consider a 3D lattice of lead telluride cubic resonators at mid-infrared (MW) frequencies. Each cubic resonator is modeled with both an electric and a magnetic dipole, through a method called the dual dipole approximation. The electric and magnetic polarizabilities of a cubic resonator are computed via full-wave simulations by mapping the resonator's scattered field under electric/magnetic excitation only to the field radiated by an equivalent electric/magnetic dipole. We then analyze the allowed modes in the lattice, with transverse polarization and complex wavenumber, highlighting the attenuation that each mode experiences after one free space wavelength. We observe the presence of two modes with low attenuation constant, dominant in different frequency ranges, able to propagate inside the lattice: this allows the treatment of the metamaterial as a homogeneous material with effective parameters, evaluated by using various techniques. We then show that the metamaterial under analysis allows for the generation of artificial magnetism (i.e., relative effective permeability different than unity, including negative permeability with low losses) at MIR frequencies. (C) 2013 Elsevier BV. All rights reserved. C1 [Campione, Salvatore; Capolino, Filippo] Univ Calif Irvine, Dept Elect Engn & Comp Sci, Irvine, CA 92697 USA. [Sinclair, Michael B.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Capolino, F (reprint author), Univ Calif Irvine, Dept Elect Engn & Comp Sci, Irvine, CA 92697 USA. EM mbsincl@sandia.gov; f.capolino@uci.edu RI Campione, Salvatore/A-2349-2015 OI Campione, Salvatore/0000-0003-4655-5485 FU U.S. Department of Energy's National Nuclear Security Administration [158883]; National Science Foundation [CMMI-1101074] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic. Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000 #158883.; This material is also based upon work supported by the National Science Foundation under Grant No. CMMI-1101074. The authors also thank CST Inc. and Ansys Inc. for providing CST Microwave Studio and HFSS, respectively, which were instrumental in this work. NR 92 TC 11 Z9 11 U1 0 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1569-4410 EI 1569-4429 J9 PHOTONIC NANOSTRUCT JI Photonics Nanostruct. PD NOV PY 2013 VL 11 IS 4 BP 423 EP 435 DI 10.1016/j.photonics.2013.07.013 PG 13 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Optics; Physics GA 285US UT WOS:000329421100013 ER PT J AU Denissen, NA White, EB AF Denissen, Nicholas A. White, Edward B. TI Secondary instability of roughness-induced transient growth SO PHYSICS OF FLUIDS LA English DT Article ID PLATE BOUNDARY-LAYER; BYPASS TRANSITION; OPTIMAL PERTURBATIONS; OPTIMAL DISTURBANCES; ELEMENTS; FLOW; STREAKS; STABILITY; VORTICES; SURFACE AB Calculations are performed to analyze the stability of steady roughness-induced transient growth to unsteady fluctuations. The basic states consist of an optimal transient growth model and a previously computed direct numerical simulation that fully resolves the three-dimensional roughness element. It is shown that sub-optimal transient growth produced by surface roughness is much more susceptible to destabilization than optimal perturbation predictions. The factors contributing to this behavior are analyzed in detail. Scaling properties from experiments allow computation of stability bounds for realistic surface roughness. These results are also used to explain the critical behavior seen in transition behind three-dimensional roughness elements. (C) 2013 AIP Publishing LLC. C1 [Denissen, Nicholas A.] Los Alamos Natl Lab, X Computat Phys Div, Los Alamos, NM 87545 USA. [White, Edward B.] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA. RP Denissen, NA (reprint author), Los Alamos Natl Lab, X Computat Phys Div, POB 1663, Los Alamos, NM 87545 USA. FU NASA; AFOSR through AFOSR [FA9550-09-1-0341, FA9550-08-1-0093]; NSF GRFP; Texas A&M Dwight Look College of Engineering; Los Alamos National Laboratory FX The authors would like to thank Dr. Donald Rizzetta for access to the DNS results. The authors acknowledge the support of NASA and AFOSR through AFOSR Grant Nos. FA9550-09-1-0341 and FA9550-08-1-0093. The first author also acknowledges support from the NSF GRFP, the Texas A&M Dwight Look College of Engineering, and Los Alamos National Laboratory. NR 34 TC 8 Z9 8 U1 0 U2 18 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD NOV PY 2013 VL 25 IS 11 AR 114108 DI 10.1063/1.4829482 PG 18 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 282PK UT WOS:000329184100053 ER PT J AU Mejia-Alvarez, R Christensen, KT AF Mejia-Alvarez, R. Christensen, K. T. TI Wall-parallel stereo particle-image velocimetry measurements in the roughness sublayer of turbulent flow overlying highly irregular roughness SO PHYSICS OF FLUIDS LA English DT Article ID REAL TURBINE ROUGHNESS; BOUNDARY-LAYERS; SURFACE-ROUGHNESS; EXPERIMENTAL SUPPORT; VORTEX ORGANIZATION; PRESSURE-GRADIENT; REYNOLDS STRESS; CHANNEL FLOW; STATISTICS; HYPOTHESIS AB Stereo particle-image velocimetry measurements were conducted in a streamwise-spanwise (x - z) plane deep within the roughness sublayer (y = 0.047 delta; delta is the boundary-layer thickness) of a zero-pressure-gradient turbulent boundary layer overlying highly irregular surface roughness replicated from a turbine blade damaged by foreign-material deposition. The ensemble-averaged streamwise velocity defect revealed the tendency of the roughness to promote channeling of the flow in the form of low-momentum pathways (LMPs) and high-momentum pathways. Enhanced turbulent and vortical activity was observed both between and along the spanwise boundaries of these streamwise-elongated pathways. In particular, streamwise pathways of wall-normal vortex cores of opposing rotational sense were observed along the spanwise boundaries of the identified LMP in the rough-wall flow. Conditional averaging revealed that these counter-rotating vortical motions are associated with streamwise flow against the mean-flow direction and could perhaps be the origination mechanism of the LMPs. Two-point correlation coefficients of velocity and swirling strength reflected large-scale streamwise coherence of these quantities along and outboard of the identified LMP in the rough-wall flow, supporting the notion that the motions responsible for the LMP have large-scale, streamwise coherence. Finally, the influence of different topographical scales of the roughness on the flow in the roughness sublayer was explored using low-order models of the original, full surface as originally proposed by R. Mejia-Alvarez and K. T. Christensen [Phys. Fluids 22(1), 015106 (2010)]. While a model containing only the largest topographical scales qualitatively reproduced the features of the full-surface flow, additional intermediate topographical scales were required to quantitatively reproduce the statistical and structural nature of the full-surface flow in the roughness sublayer. (C) 2013 AIP Publishing LLC. C1 [Mejia-Alvarez, R.; Christensen, K. T.] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA. [Christensen, K. T.] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Fukuoka 812, Japan. RP Mejia-Alvarez, R (reprint author), Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. EM ktc@illinois.edu RI Christensen, Kenneth/B-1123-2009 OI Christensen, Kenneth/0000-0003-1468-2455 FU Air Force Office of Scientific Research [FA9550-07-1-0129] FX This work was supported by the Air Force Office of Scientific Research under Grant No. FA9550-07-1-0129 (Dr. John Schmisseur, Program Manager). NR 44 TC 15 Z9 15 U1 0 U2 10 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD NOV PY 2013 VL 25 IS 11 AR 115109 DI 10.1063/1.4832377 PG 24 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 282PK UT WOS:000329184100063 ER PT J AU Olson, BJ Lele, SK AF Olson, Britton J. Lele, Sanjiva K. TI A mechanism for unsteady separation in over-expanded nozzle flow SO PHYSICS OF FLUIDS LA English DT Article ID LARGE-EDDY SIMULATION; DIRECT NUMERICAL-SIMULATION; BOUNDARY-LAYER INTERACTION; DIFFUSERS; OSCILLATIONS; REGIME AB Shock wave induced separation in an over-expanded planar nozzle is studied through numerical simulation. These Large-Eddy Simulations (LES) model previous experiments which have shown unsteady motion of the shock wave in flows with similar geometries but offered little insight into the underlying mechanism. Unsteady separation in nozzle flow leads to "side loads" in the rocket engine which can adversely affect the stability of the rocket. A mechanism for the low-frequency shock motion is identified and explained using the LES data. This mechanism is analyzed for a series of over-expanded planar nozzles of various area ratios and nozzle pressure ratios. The effect of grid resolution and Reynolds number on the instability is discussed. A simple reduced order model for the unsteady shock behavior is used to further validate the proposed mechanism. This model is derived from first principles and uses data from the LES calculations to capture the effects of the turbulent boundary layer and shear layer. (C) 2013 AIP Publishing LLC. C1 [Olson, Britton J.; Lele, Sanjiva K.] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. [Olson, Britton J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Olson, BJ (reprint author), Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA. EM olson45@llnl.gov FU Stanford/CTR; Department of Energy SciDAC2 Grant [DE-FC02-06-ER25787]; DOE Computational Science Graduate Fellowship; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX S.K.L. is deeply appreciative of Professor Parviz Moin's mentoring during his early days at Stanford/CTR and his leadership in promoting scholarship. We are pleased to offer this paper as a small token of our appreciation on the occasion of his 60th birthday. This work is supported by the Department of Energy SciDAC2 Grant (Grant No. DE-FC02-06-ER25787) and the DOE Computational Science Graduate Fellowship. The authors wish to thank Dr. Andrew Cook and Dr. William Cabot for providing the Miranda code which was modified for the present study. Furthermore, we are grateful to Dr. Papamoschou and Dr. Johnson for generous sharing of their experimental data and for their valuable insight. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. NR 40 TC 4 Z9 4 U1 3 U2 21 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD NOV PY 2013 VL 25 IS 11 AR 110809 DI 10.1063/1.4819349 PG 24 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 282PK UT WOS:000329184100010 ER PT J AU Orlicz, GC Balasubramanian, S Prestridge, KP AF Orlicz, G. C. Balasubramanian, S. Prestridge, K. P. TI Incident shock Mach number effects on Richtmyer-Meshkov mixing in a heavy gas layer SO PHYSICS OF FLUIDS LA English DT Article ID RAYLEIGH-TAYLOR INSTABILITY; NUMERICAL-SIMULATION; TRANSITION; FLUIDS; FUSION; FLOW; PLIF AB Experiments were performed at the horizontal shock tube facility at Los Alamos National Laboratory to study the effect of incident shock Mach number (M) on the development of Richtmyer-Meshkov instability after a shock wave impulsively accelerates a varicose-perturbed, heavy-gas curtain. Three cases of incident shock strength were experimentally investigated: M = 1.21, 1.36, and 1.50. We discuss the state of the mixing and the mechanisms that drive the mixing at both large and small scales by examining the time evolution of 2D density fields derived from quantitative planar laser-induced fluorescence measurements. Several differences in qualitative flow features are identified as a result of Mach number variation, and differences in vortex interaction, observed using particle image velocimetry, play a critical role in the development of the flow field. Several quantities, including mixing layer width, mixing layer area, interface length, instantaneous mixing rate, the density self-correlation parameter, probability density functions of the density field, and mixing progress variables are examined as a function of time. These quantities are also examined versus time scaled with the convection velocity of the mixing layer. A higher incident Mach number yields greater mixing uniformity at a given downstream location, while a lower Mach number produces a greater amount of total mixing between the two gases, suggesting possible implications for optimization in applications with confined geometries. (C) 2013 AIP Publishing LLC. C1 [Orlicz, G. C.; Prestridge, K. P.] Los Alamos Natl Lab, Div Phys, Extreme Fluids Team, Los Alamos, NM 87545 USA. [Balasubramanian, S.] Indian Inst Technol, Dept Mech Engn, Bombay 400076, Maharashtra, India. RP Orlicz, GC (reprint author), Los Alamos Natl Lab, Div Phys, Extreme Fluids Team, P-23, Los Alamos, NM 87545 USA. EM kpp@lanl.gov RI Prestridge, Kathy/C-1137-2012 OI Prestridge, Kathy/0000-0003-2425-5086 NR 38 TC 12 Z9 13 U1 0 U2 21 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-6631 EI 1089-7666 J9 PHYS FLUIDS JI Phys. Fluids PD NOV PY 2013 VL 25 IS 11 AR 114101 DI 10.1063/1.4827435 PG 28 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 282PK UT WOS:000329184100046 ER PT J AU Blaby, IK Glaesener, AG Mettler, T Fitz-Gibbon, ST Gallaher, SD Liu, BS Boyle, NR Kropat, J Stitt, M Johnson, S Benning, C Pellegrini, M Casero, D Merchant, SS AF Blaby, Ian K. Glaesener, Anne G. Mettler, Tabea Fitz-Gibbon, Sorel T. Gallaher, Sean D. Liu, Bensheng Boyle, Nanette R. Kropat, Janette Stitt, Mark Johnson, Shannon Benning, Christoph Pellegrini, Matteo Casero, David Merchant, Sabeeha S. TI Systems-Level Analysis of Nitrogen Starvation-Induced Modifications of Carbon Metabolism in a Chlamydomonas reinhardtii Starchless Mutant SO PLANT CELL LA English DT Article ID ADP-GLUCOSE PYROPHOSPHORYLASE; DNA-SEQUENCING DATA; MATING-TYPE LOCUS; FATTY-ACID; DIACYLGLYCEROL ACYLTRANSFERASE; TRIACYLGLYCEROL ACCUMULATION; GENE-EXPRESSION; GAMETIC DIFFERENTIATION; SKELETONEMA-COSTATUM; LIPID-METABOLISM AB To understand the molecular basis underlying increased triacylglycerol (TAG) accumulation in starchless (sta) Chlamydomonas reinhardtii mutants, we undertook comparative time-course transcriptomics of strains CC-4348 (sta6 mutant), CC-4349, a cell wall-deficient (cw) strain purported to represent the parental STA6 strain, and three independent STA6 strains generated by complementation of sta6 (CC-4565/STA6-C2, CC-4566/STA6-C4, and CC-4567/STA6-C6) in the context of N deprivation. Despite N starvation-induced dramatic remodeling of the transcriptome, there were relatively few differences (5 x 10(2)) observed between sta6 and STA6, the most dramatic of which were increased abundance of transcripts encoding key regulated or rate-limiting steps in central carbon metabolism, specifically isocitrate lyase, malate synthase, transaldolase, fructose bisphosphatase and phosphoenolpyruvate carboxykinase (encoded by ICL1, MAS1, TAL1, FBP1, and PCK1 respectively), suggestive of increased carbon movement toward hexose-phosphate in sta6 by upregulation of the glyoxylate pathway and gluconeogenesis. Enzyme assays validated the increase in isocitrate lyase and malate synthase activities. Targeted metabolite analysis indicated increased succinate, malate, and Glc-6-P and decreased Fru-1,6-bisphosphate, illustrating the effect of these changes. Comparisons of independent data sets in multiple strains allowed the delineation of a sequence of events in the global N starvation response in C. reinhardtii, starting within minutes with the upregulation of alternative N assimilation routes and carbohydrate synthesis and subsequently a more gradual upregulation of genes encoding enzymes of TAG synthesis. Finally, genome resequencing analysis indicated that (1) the deletion in sta6 extends into the neighboring gene encoding respiratory burst oxidase, and (2) a commonly used STA6 strain (CC-4349) as well as the sequenced reference (CC-503) are not congenic with respect to sta6 (CC-4348), underscoring the importance of using complemented strains for more rigorous assignment of phenotype to genotype. C1 [Blaby, Ian K.; Glaesener, Anne G.; Fitz-Gibbon, Sorel T.; Gallaher, Sean D.; Boyle, Nanette R.; Kropat, Janette; Merchant, Sabeeha S.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Mettler, Tabea; Stitt, Mark] Max Planck Inst Mol Plant Physiol, D-14476 Potsdam, Germany. [Fitz-Gibbon, Sorel T.; Pellegrini, Matteo; Casero, David] Univ Calif Los Angeles, Dept Mol Cell & Dev Biol, Los Angeles, CA 90095 USA. [Liu, Bensheng; Benning, Christoph] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. [Johnson, Shannon] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Pellegrini, Matteo; Casero, David; Merchant, Sabeeha S.] Univ Calif Los Angeles, Inst Genom & Prote, Los Angeles, CA 90095 USA. RP Merchant, SS (reprint author), Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. EM merchant@chem.ucla.edu RI Blaby, Ian/C-3292-2014; OI Johnson, Shannon/0000-0002-3972-9208; Casero, David/0000-0002-7347-3330 FU Department of Energy (National Alliance for Advance Biofuels and Bioproducts Consortium) [DE-EE0003046]; National Institutes of Health [R24 GM092473, T32 ES015457]; U.S. Air Force Office of Scientific Research [FA9550-11-10264] FX This work was supported by Department of Energy Contract DE-EE0003046 (to S.S.M., M.P., and S.J. via the National Alliance for Advance Biofuels and Bioproducts Consortium) and in part by the National Institutes of Health R24 GM092473 to S.S.M. and the U.S. Air Force Office of Scientific Research (FA9550-11-10264, to C.B.). I.K.B. is supported by a training grant from the National Institutes of Health (T32 ES015457). We thank Ursula Goodenough for forwarding us strains cw15 (CC-4349), sta6 (CC-4348), STA6-C2 (CC-4565), STA6-C4 (CC-4566), and STA6-C6 (CC-4567), David Dauvillee for an independent cw15 (CC-4568), and Anthony Huang for the MLDP1 antibody. NR 88 TC 62 Z9 63 U1 8 U2 73 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 EI 1532-298X J9 PLANT CELL JI Plant Cell PD NOV PY 2013 VL 25 IS 11 BP 4305 EP 4323 DI 10.1105/tpc.113.117580 PG 19 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA 282LY UT WOS:000329174400006 PM 24280389 ER PT J AU Shen, H Mazarei, M Hisano, H Escamilla-Trevino, L Fu, CX Pu, YQ Rudis, MR Tang, YH Xiao, XR Jackson, L Li, GF Hernandez, T Chen, F Ragauskas, AJ Stewart, CN Wang, ZY Dixon, RA AF Shen, Hui Mazarei, Mitra Hisano, Hiroshi Escamilla-Trevino, Luis Fu, Chunxiang Pu, Yunqiao Rudis, Mary R. Tang, Yuhong Xiao, Xirong Jackson, Lisa Li, Guifen Hernandez, Tim Chen, Fang Ragauskas, Arthur J. Stewart, C. Neal, Jr. Wang, Zeng-Yu Dixon, Richard A. TI A Genomics Approach to Deciphering Lignin Biosynthesis in Switchgrass SO PLANT CELL LA English DT Article ID PANICUM-VIRGATUM L.; CELL-SUSPENSION CULTURES; CAFFEIC ACID 3-O-METHYLTRANSFERASE; FERMENTABLE SUGAR YIELDS; EXPRESSED SEQUENCE TAGS; FERULATE CROSS-LINKING; ARABIDOPSIS-THALIANA; BIOFUEL PRODUCTION; CINNAMATE 4-HYDROXYLASE; O-METHYLTRANSFERASE AB It is necessary to overcome recalcitrance of the biomass to saccharification (sugar release) to make switchgrass (Panicum virgatum) economically viable as a feedstock for liquid biofuels. Lignin content correlates negatively with sugar release efficiency in switchgrass, but selecting the right gene candidates for engineering lignin biosynthesis in this tetraploid outcrossing species is not straightforward. To assist this endeavor, we have used an inducible switchgrass cell suspension system for studying lignin biosynthesis in response to exogenous brassinolide. By applying a combination of protein sequence phylogeny with whole-genome microarray analyses of induced cell cultures and developing stem internode sections, we have generated a list of candidate monolignol biosynthetic genes for switchgrass. Several genes that were strongly supported through our bioinformatics analysis as involved in lignin biosynthesis were confirmed by gene silencing studies, in which lignin levels were reduced as a result of targeting a single gene. However, candidate genes encoding enzymes involved in the early steps of the currently accepted monolignol biosynthesis pathway in dicots may have functionally redundant paralogues in switchgrass and therefore require further evaluation. This work provides a blueprint and resources for the systematic genome-wide study of the monolignol pathway in switchgrass, as well as other C4 monocot species. C1 [Shen, Hui; Escamilla-Trevino, Luis; Tang, Yuhong; Jackson, Lisa; Li, Guifen; Hernandez, Tim; Chen, Fang; Dixon, Richard A.] Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. [Shen, Hui; Mazarei, Mitra; Hisano, Hiroshi; Escamilla-Trevino, Luis; Fu, Chunxiang; Pu, Yunqiao; Rudis, Mary R.; Tang, Yuhong; Xiao, Xirong; Jackson, Lisa; Li, Guifen; Hernandez, Tim; Chen, Fang; Ragauskas, Arthur J.; Stewart, C. Neal, Jr.; Wang, Zeng-Yu; Dixon, Richard A.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. [Mazarei, Mitra; Rudis, Mary R.; Stewart, C. Neal, Jr.] Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. [Hisano, Hiroshi; Fu, Chunxiang; Xiao, Xirong; Wang, Zeng-Yu] Samuel Roberts Noble Fdn Inc, Forage Improvement Div, Ardmore, OK 73401 USA. [Pu, Yunqiao; Ragauskas, Arthur J.] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA. RP Dixon, RA (reprint author), Samuel Roberts Noble Fdn Inc, Div Plant Biol, Ardmore, OK 73401 USA. EM Richard.Dixon@unt.edu OI Pu, Yunqiao/0000-0003-2554-1447 FU BioEnergy Sciences Center, a U.S. Department of Energy Bioenergy Research Center, through the Office of Biological and Environmental Research in the Department of Energy Office of Science FX This work was supported by the BioEnergy Sciences Center, a U.S. Department of Energy Bioenergy Research Center, through the Office of Biological and Environmental Research in the Department of Energy Office of Science. We thank Yanbin Yin, Jiyi Zhang, Yinbin Ge, and Nick Krom for excellent assistance with EST sequence annotation and bioinformatics; Jin Nakashima for assistance with cell imaging; Mohamed Bedair for assistance with GC-MS analysis; Tui Ray for technical support with qRT-PCR analysis; Debra Mohnen and Ivana Gelineo-Albersheim for helpful discussions concerning inducible cell cultures; and Mingyi Wang and Xiaolan Rao for critical reading of the article. NR 102 TC 30 Z9 31 U1 0 U2 45 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 1040-4651 EI 1532-298X J9 PLANT CELL JI Plant Cell PD NOV PY 2013 VL 25 IS 11 BP 4342 EP 4361 DI 10.1105/tpc.113.118828 PG 20 WC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology SC Biochemistry & Molecular Biology; Plant Sciences; Cell Biology GA 282LY UT WOS:000329174400008 PM 24285795 ER PT J AU Knowles, DW Biggin, MD AF Knowles, David W. Biggin, Mark D. TI Building quantitative, three-dimensional atlases of gene expression and morphology at cellular resolution SO WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY LA English DT Article AB Animals comprise dynamic three-dimensional arrays of cells that express gene products in intricate spatial and temporal patterns that determine cellular differentiation and morphogenesis. A rigorous understanding of these developmental processes requires automated methods that quantitatively record and analyze complex morphologies and their associated patterns of gene expression at cellular resolution. Here we summarize light microscopy-based approaches to establish permanent, quantitative datasets-atlases-that record this information. We focus on experiments that capture data for whole embryos or large areas of tissue in three dimensions, often at multiple time points. We compare and contrast the advantages and limitations of different methods and highlight some of the discoveries made. We emphasize the need for interdisciplinary collaborations and integrated experimental pipelines that link sample preparation, image acquisition, image analysis, database design, visualization, and quantitative analysis. (C) 2013 Wiley Periodicals, Inc. C1 [Knowles, David W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Knowles, DW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM DWKnowles@lbl.gov FU NIGMS NIH HHS [P01 GM099655, 1R01GM085298-01A1, R01 GM085298] NR 0 TC 2 Z9 2 U1 0 U2 0 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1759-7684 EI 1759-7692 J9 WIRES DEV BIOL JI Wiley Interdiscip. Rev.-Dev. Biol. PD NOV-DEC PY 2013 VL 2 IS 6 BP 767 EP 779 DI 10.1002/wdev.107 PG 13 WC Developmental Biology SC Developmental Biology GA 286HM UT WOS:000329458400002 PM 24123936 ER PT J AU Kim, D Croy, JR Thackeray, MM AF Kim, Donghan Croy, Jason R. Thackeray, Michael M. TI Comments on stabilizing layered manganese oxide electrodes for Li batteries SO ELECTROCHEMISTRY COMMUNICATIONS LA English DT Article DE Layered manganese oxide; Li2MnO3; Cathode; Lithium battery ID LITHIUM-ION BATTERIES; CATHODE MATERIALS; LOCAL-STRUCTURE; NMR; LI2MNO3; VOLTAGE; LIMNO2; ELECTROCHEMISTRY; LINI0.5MN0.5O2; TRANSITION AB An electrochemical study of structurally-integrated xLi(2)MnO(3)center dot(1-x)LiMn0.5Ni0.5O2 'composite' materials has been undertaken to investigate the stability of electrochemically-activated electrodes at the Li2MnO3-rich end of the Li2MnO3-LiMn0.5Ni0.5O2 tie-line, i.e., for 0.7 <= x <= 0.95. Excellent performance was observed for x = 0.7 in lithium half-cells; comparable to activated electrodes that have significantly lower values of x and are traditionally the preferred materials of choice. Electrodes with higher manganese content (x >= 0.8) showed significantly reduced performance. Implications for stabilizing low-cost manganese-rich, layered lithium-metaloxide electrode materials are discussed. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kim, Donghan; Croy, Jason R.; Thackeray, Michael M.] Argonne Natl Lab, Electrochem Energy Storage Dept, Chem Sci & Engn Div, Lemont, IL 60439 USA. RP Croy, JR (reprint author), Argonne Natl Lab, Electrochem Energy Storage Dept, Chem Sci & Engn Div, Lemont, IL 60439 USA. EM croy@anl.gov FU Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences FX This work was supported by the Office of Vehicle Technologies, Office of Energy Efficiency and Renewable Energy of the U.S. Department of Energy. Bonil Koo and Soongu Kwon (CNM, Argonne National Laboratory) are thanked for SEM data. Facilities at CNM are supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. NR 24 TC 26 Z9 26 U1 7 U2 88 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1388-2481 EI 1873-1902 J9 ELECTROCHEM COMMUN JI Electrochem. Commun. PD NOV PY 2013 VL 36 BP 103 EP 106 DI 10.1016/j.elecom.2013.08.022 PG 4 WC Electrochemistry SC Electrochemistry GA 278ZE UT WOS:000328927600026 ER PT J AU Logan, J Lopez, A Mai, T Davidson, C Bazilian, M Arent, D AF Logan, Jeffrey Lopez, Anthony Mai, Trieu Davidson, Carolyn Bazilian, Morgan Arent, Douglas TI Natural gas scenarios in the US power sector SO ENERGY ECONOMICS LA English DT Article DE Energy policy; Power sector modeling; Unconventional natural gas ID SHALE GAS; PLAYS AB The United States power sector is being transformed by the recent rise in the availability and use of unconventional natural gas, specifically shale gas. That transformation has already produced some of the most significant changes in the operation of the portfolio of electricity generation since WWII. Further implications are likely. To that end, we present results from numerical modeling of different United States (U.S.) power sector futures. These futures assess questions affecting today's natural gas and electric power markets, including the impacts of: forthcoming EPA rules on power plants, decarbonization options such as a clean energy standard (CES), potential improvements in key generation technologies, expanded use of natural gas outside of the power generation sector, and higher costs for natural gas production-assumed to arise from more robust environmental and safety practices in the field. The simulations were done using the ReEDS model looking out to the year 2050. ReEDS is a capacity expansion model that determines the least-cost combination of generation options that fulfill a variety of user-defined constraints such as projected load, capacity reserve margins, emissions limitations, and operating lifetimes. The baseline scenario shows strong growth in natural gas generation, leading to a roughly 2.5-fold increase in gas demand by 2050. Many other scenarios also see strong growth in gas-fired generation, highlighting questions about portfolio diversity, climate change, and research and development prioritization. (C) 2013 Elsevier B.V. All rights reserved. C1 [Logan, Jeffrey; Lopez, Anthony; Mai, Trieu; Davidson, Carolyn] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Bazilian, Morgan; Arent, Douglas] Natl Renewable Energy Lab, Joint Inst Strateg Energy Anal, Golden, CO 80401 USA. RP Logan, J (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM jeffrey.logan@nrel.gov NR 28 TC 18 Z9 18 U1 2 U2 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 EI 1873-6181 J9 ENERG ECON JI Energy Econ. PD NOV PY 2013 VL 40 BP 183 EP 195 DI 10.1016/j.eneco.2013.06.008 PG 13 WC Economics SC Business & Economics GA 281DX UT WOS:000329081300018 ER PT J AU Schneider, E Carlsen, B Tavrides, E van der Hoeven, C Phathanapirom, U AF Schneider, E. Carlsen, B. Tavrides, E. van der Hoeven, C. Phathanapirom, U. TI Measures of the environmental footprint of the front end of the nuclear fuel cycle SO ENERGY ECONOMICS LA English DT Article DE Nuclear fuel cycle; Environmental impacts ID URANIUM ENRICHMENT; GENERATION; SYSTEMS AB Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle (FEFC) have focused primarily on energy consumption and CO2 emissions. Results have varied widely. This work builds upon reports from operating facilities and other primary data sources to build a database of front end environmental impacts. This work also addresses land transformation and water withdrawals associated with the processes of the FEFC These processes include uranium extraction, conversion, enrichment, fuel fabrication, depleted uranium disposition, and transportation. To allow summing the impacts across processes, all impacts were normalized per tonne of natural uranium mined as well as per MWh(e) of electricity produced, a more conventional unit for measuring environmental impacts that facilitates comparison with other studies. This conversion was based on mass balances and process efficiencies associated with the current once-through LWR fuel cycle. Total energy input is calculated at 8.7 x 10(-3) GJ(e)/MWh(e) of electricity and 5.9 x 10(-3) GJ(t)/MWh(e) of thermal energy. It is dominated by the energy required for uranium extraction, conversion to fluoride compound for subsequent enrichment, and enrichment. An estimate of the carbon footprint is made from the direct energy consumption at 1.7 kg CO2/MWh(e). Water use is likewise dominated by requirements of uranium extraction, totaling 154 L/MWh(e). Land use is calculated at 8 x 10(-3) m(2)/MWh(e), over 90% of which is due to uranium extraction. Quantified impacts are limited to those resulting from activities performed within the FEFC process facilities (i.e. within the plant gates). Energy embodied in material inputs such as process chemicals and fuel cladding is identified but not explicitly quantified in this study. Inclusion of indirect energy associated with embodied energy as well as construction and decommissioning of facilities could increase the FEFC energy intensity estimate by a factor of up to 2. (C) 2013 Elsevier B.V. All rights reserved. C1 [Schneider, E.; Tavrides, E.; van der Hoeven, C.; Phathanapirom, U.] Univ Texas Austin, Nucl Engn Teaching Lab, Austin, TX 78758 USA. [Carlsen, B.] Idaho Natl Lab, Idaho Falls, ID 83402 USA. RP Schneider, E (reprint author), Univ Texas Austin, Nucl Engn Teaching Lab, 10100 Burnet Rd,Bldg 159, Austin, TX 78758 USA. EM eschneider@mail.utexas.edu NR 55 TC 8 Z9 8 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 EI 1873-6181 J9 ENERG ECON JI Energy Econ. PD NOV PY 2013 VL 40 BP 898 EP 910 DI 10.1016/j.eneco.2013.01.002 PG 13 WC Economics SC Business & Economics GA 281DX UT WOS:000329081300085 ER PT J AU Schneider, E Carlsen, B Tavrides, E van der Hoeven, C Phathanapirom, U AF Schneider, E. Carlsen, B. Tavrides, E. van der Hoeven, C. Phathanapirom, U. TI A top-down assessment of energy, water and land use in uranium mining, milling, and refining SO ENERGY ECONOMICS LA English DT Article DE Uranium; Emissions; Environmental impacts ID RESOURCES; SUSTAINABILITY AB Land, water and energy use are key measures of the sustainability of uranium production into the future. As the most attractive, accessible deposits are mined out, future discoveries may prove to be significantly, perhaps unsustainably, more intensive consumers of environmental resources. A number of previous attempts have been made to provide empirical relationships connecting these environmental impact metrics to process variables such as stripping ratio and ore grade. These earlier attempts were often constrained by a lack of real world data and perform poorly when compared against data from modern operations. This paper conditions new empirical models of energy, water and land use in uranium mining, milling, and refining on contemporary data reported by operating mines. It shows that, at present, direct energy use from uranium production represents less than 1% of the electrical energy produced by the once-through fuel cycle. Projections of future energy intensity from uranium production are also possible by coupling the empirical models with estimates of uranium crustal abundance, characteristics of new discoveries, and demand. The projections show that even for the most pessimistic of scenarios considered, by 2100, the direct energy use from uranium production represents less than 3% of the electrical energy produced by the contemporary once-through fuel cycle. (C) 2013 Elsevier B.V. All rights reserved. C1 [Schneider, E.; Tavrides, E.; van der Hoeven, C.; Phathanapirom, U.] Univ Texas Austin, Nucl Engn Teaching Lab, Austin, TX 78758 USA. [Carlsen, B.] Idaho Natl Lab, Idaho Falls, ID 83402 USA. RP Schneider, E (reprint author), Univ Texas Austin, Nucl Engn Teaching Lab, 10100 Burnet Rd,Bldg 159, Austin, TX 78758 USA. EM eschneider@mail.utexas.edu NR 38 TC 3 Z9 4 U1 2 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0140-9883 EI 1873-6181 J9 ENERG ECON JI Energy Econ. PD NOV PY 2013 VL 40 BP 911 EP 926 DI 10.1016/j.eneco.2013.08.006 PG 16 WC Economics SC Business & Economics GA 281DX UT WOS:000329081300086 ER PT J AU Kaloni, TP Balatsky, AV Schwingenschlogl, U AF Kaloni, T. P. Balatsky, A. V. Schwingenschloegl, U. TI Substrate-enhanced superconductivity in Li-decorated graphene SO EPL LA English DT Article ID HEXAGONAL BORON-NITRIDE; STRONG-COUPLED SUPERCONDUCTORS; TRANSITION-TEMPERATURE; ELECTRONIC-STRUCTURE; LAYER GRAPHENE; DENSITY; DISPERSION; STATE AB We investigate the role of the substrate for the strength of the electron-phonon coupling in Li-decorated graphene. We find that the interaction with a h-BN substrate leads to a significant enhancement from lambda(0) = 0.62 to lambda(1) = 0.67, which corresponds to a 25% increase of the transition temperature from T-c0 = 10.33K to T-c1 = 12.98 K. The superconducting gaps amount to 1.56 meV (suspended) and 1.98 meV (supported). These findings open up a new route to enhanced superconducting transition temperatures in graphene-based materials by substrate engineering. Copyright (C) EPLA, 2013 C1 [Kaloni, T. P.; Schwingenschloegl, U.] KAUST, PSE Div, Thuwal 239556900, Saudi Arabia. [Balatsky, A. V.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Balatsky, A. V.] Los Alamos Natl Lab, Ctr Nanotechnol, Los Alamos, NM 87545 USA. [Balatsky, A. V.] KTH Royal Inst Technol, NORDITA, SE-10691 Stockholm, Sweden. [Balatsky, A. V.] Stockholm Univ, SE-10691 Stockholm, Sweden. RP Kaloni, TP (reprint author), KAUST, PSE Div, Thuwal 239556900, Saudi Arabia. EM udo.schwingenschlogl@kaust.edu.sa OI Kaloni, Thaneshwor/0000-0001-9266-3482 FU US DOE; VR; [ERC-DM-321031] FX We thank G. PROFETA for fruitful discussions. This work is supported by US DOE, ERC-DM-321031, and VR. NR 40 TC 21 Z9 21 U1 2 U2 30 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD NOV PY 2013 VL 104 IS 4 AR 47013 DI 10.1209/0295-5075/104/47013 PG 6 WC Physics, Multidisciplinary SC Physics GA 278IL UT WOS:000328882700027 ER PT J AU Udalov, OG Glatz, A Beloborodov, IS AF Udalov, O. G. Glatz, A. Beloborodov, I. S. TI Electron transport properties of composite ferroelectrics SO EPL LA English DT Article ID THIN-FILMS; NANOPARTICLES; CONDUCTIVITY; SYSTEMS; PHYSICS AB We study electron transport in composite ferroelectrics -materials consisting of metallic grains embedded in a ferroelectric matrix. Due to its complex tunable morphology the thermodynamic properties of these materials can be essentially different from bulk or thin-film ferroelectrics. We calculate the conductivity of composite ferroelectrics by taking into account the interplay between charge localization, multiple grain boundaries, strong Coulomb repulsion, and ferroelectric order parameter. We show that the ferroelectricity plays a crucial role on the temperature behavior of the conductivity in the vicinity of the ferroelectric-paraelectric transition. Copyright (C) EPLA, 2013 C1 [Udalov, O. G.; Beloborodov, I. S.] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. [Udalov, O. G.] Russian Acad Sci, Inst Phys Microstruct, Nizhnii Novgorod 603950, Russia. [Glatz, A.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Glatz, A.] No Illinois Univ, Dept Phys, De Kalb, IL 60115 USA. RP Udalov, OG (reprint author), Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA. FU U.S. Department of Energy Office of Science [DE-AC02-06CH11357]; NSF under Cooperative Agreement Award [EEC-1160504]; NSF PREM Award [DMR-1234567] FX We thank NIKOLAI CHTCHELKATCHEV and NICK KIOUSSIS for useful discussions. AG was supported by the U.S. Department of Energy Office of Science under the Contract No. DE-AC02-06CH11357. IB was supported by NSF under Cooperative Agreement Award EEC-1160504 and NSF PREM Award DMR-1234567. NR 43 TC 4 Z9 4 U1 1 U2 12 PU EPL ASSOCIATION, EUROPEAN PHYSICAL SOCIETY PI MULHOUSE PA 6 RUE DES FRERES LUMIERE, MULHOUSE, 68200, FRANCE SN 0295-5075 EI 1286-4854 J9 EPL-EUROPHYS LETT JI EPL PD NOV PY 2013 VL 104 IS 4 AR 47004 DI 10.1209/0295-5075/104/47004 PG 6 WC Physics, Multidisciplinary SC Physics GA 278IL UT WOS:000328882700018 ER PT J AU Smith, DP Thrash, JC Nicora, CD Lipton, MS Burnum-Johnson, KE Carini, P Smith, RD Giovannoni, SJ AF Smith, Daniel P. Thrash, J. Cameron Nicora, Carrie D. Lipton, Mary S. Burnum-Johnson, Kristin E. Carini, Paul Smith, Richard D. Giovannoni, Stephen J. TI Proteomic and Transcriptomic Analyses of "Candidatus Pelagibacter ubique" Describe the First P-II-Independent Response to Nitrogen Limitation in a Free-Living Alphaproteobacterium SO MBIO LA English DT Article ID EQUATORIAL PACIFIC-OCEAN; TROPICAL NORTH-ATLANTIC; AMMONIUM UPTAKE SYSTEMS; ESCHERICHIA-COLI; NUTRIENT LIMITATION; GLUTAMINE-SYNTHETASE; AZOSPIRILLUM-BRASILENSE; DESULFOVIBRIO-VULGARIS; ENRICHMENT EXPERIMENTS; PHOSPHORUS LIMITATION AB Nitrogen is one of the major nutrients limiting microbial productivity in the ocean, and as a result, most marine microorganisms have evolved systems for responding to nitrogen stress. The highly abundant alphaproteobacterium "Candidatus Pelagibacter ubique," a cultured member of the order Pelagibacterales (SAR11), lacks the canonical GlnB, GlnD, GlnK, and NtrB/NtrC genes for regulating nitrogen assimilation, raising questions about how these organisms respond to nitrogen limitation. A survey of 266 Alphaproteobacteria genomes found these five regulatory genes nearly universally conserved, absent only in intracellular parasites and members of the order Pelagibacterales, including "Ca. Pelagibacter ubique." Global differences in mRNA and protein expression between nitrogen-limited and nitrogen-replete cultures were measured to identify nitrogen stress responses in "Ca. Pelagibacter ubique" strain HTCC1062. Transporters for ammonium (AmtB), taurine (TauA), amino acids (YhdW), and opines (OccT) were all elevated in nitrogen-limited cells, indicating that they devote increased resources to the assimilation of nitrogenous organic compounds. Enzymes for assimilating amine into glutamine (GlnA), glutamate (GltBD), and glycine (AspC) were similarly upregulated. Differential regulation of the transcriptional regulator NtrX in the two-component signaling system NtrY/NtrX was also observed, implicating it in control of the nitrogen starvation response. Comparisons of the transcriptome and proteome supported previous observations of uncoupling between transcription and translation in nutrient-deprived "Ca. Pelagibacter ubique" cells. Overall, these data reveal a streamlined, P-II-independent response to nitrogen stress in "Ca. Pelagibacter ubique," and likely other Pelagibacterales, and show that they respond to nitrogen stress by allocating more resources to the assimilation of nitrogen-rich organic compounds. IMPORTANCE Pelagibacterales are extraordinarily abundant and play a pivotal role in marine geochemical cycles, as one of the major recyclers of labile dissolved organic matter. They are also models for understanding how streamlining selection can reshape chemoheterotroph metabolism. Streamlining and its broad importance to environmental microbiology are emerging slowly from studies that reveal the complete genomes of uncultured organisms. Here, we report another remarkable example of streamlined metabolism in Pelagibacterales, this time in systems that control nitrogen assimilation. Pelagibacterales are major contributors to metatranscriptomes and metaproteomes from ocean systems, where patterns of gene expression are used to gain insight into ocean conditions and geochemical cycles. The data presented here supply background that is essential to interpreting data from field studies. C1 [Smith, Daniel P.; Thrash, J. Cameron; Carini, Paul; Giovannoni, Stephen J.] Oregon State Univ, Dept Microbiol, Corvallis, OR 97331 USA. [Nicora, Carrie D.; Lipton, Mary S.; Burnum-Johnson, Kristin E.; Smith, Richard D.] Pacific NW Natl Lab, Biol & Computat Sci Div, Richland, WA 99352 USA. RP Giovannoni, SJ (reprint author), Oregon State Univ, Dept Microbiol, Corvallis, OR 97331 USA. EM steve.giovannoni@oregonstate.edu RI Smith, Richard/J-3664-2012; Burnum, Kristin/B-1308-2011; Carini, Paul/H-8279-2014; Lipton, Mary/H-3913-2012; OI Smith, Richard/0000-0002-2381-2349; Burnum, Kristin/0000-0002-2722-4149; Carini, Paul/0000-0002-9653-7309; Thrash, Cameron/0000-0003-0896-9986 FU Gordon and Betty Moore Foundation; National Science Foundation [DBI-1003269]; DOE [DE-AC05-76RL01830] FX This study was supported by a Marine Microbiology Initiative investigator award (S.J.G.) from the Gordon and Betty Moore Foundation. The phylogenomics portions of this work (J.C.T.) were supported by the National Science Foundation under award no. DBI-1003269. Proteomics measurements were supported by the U.S. Department of Energy (DOE) Office of Biological and Environmental Research (OBER) Pan-omics program at Pacific Northwest National Laboratory (PNNL) and performed in the Environmental Molecular Sciences Laboratory, a DOE OBER national scientific user facility on the PNNL campus. PNNL is a multiprogram national laboratory operated by Battelle for the DOE under contract DE-AC05-76RL01830. NR 107 TC 8 Z9 9 U1 2 U2 25 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 2150-7511 J9 MBIO JI mBio PD NOV-DEC PY 2013 VL 4 IS 6 AR e00133-12 DI 10.1128/mBio.00133-12 PG 14 WC Microbiology SC Microbiology GA 282LZ UT WOS:000329174500001 PM 24281717 ER PT J AU Iacovides, DC Johnson, AB Wang, N Boddapati, S Korkola, J Gray, JW AF Iacovides, Demetris C. Johnson, Aimee B. Wang, Nick Boddapati, Shanta Korkola, Jim Gray, Joe W. TI Identification and Quantification of AKT Isoforms and Phosphoforms in Breast Cancer Using a Novel Nanofluidic Immunoassay SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Article ID PROTEIN-KINASE B; CELL LUNG-CANCER; SIGNALING PATHWAY; PI3K PATHWAY; ACTIVATION; AKT/PKB; PHOSPHORYLATION; OVEREXPRESSION; AMPLIFICATION; INHIBITION AB Breast cancer subtype-specific molecular variations can dramatically affect patient responses to existing therapies. It is thought that differentially phosphorylated protein isoforms might be a useful prognostic biomarker of drug response in the clinic. However, the accurate detection and quantitative analysis of cancer-related protein isoforms and phospho-isoforms in tumors are limited by current technologies. Using a novel, fully automated nanocapillary electrophoresis immunoassay (NanoPro(TM) 1000) designed to separate protein molecules based on their isoelectric point, we developed a reliable and highly sensitive assay for the detection and quantitation of AKT isoforms and phosphoforms in breast cancer. This assay enabled the measurement of activated AKT1/2/3 in breast cancer cells using protein produced from as few as 56 cells. Importantly, we were able to assign an identity for the phosphorylated S473 phosphoform of AKT1, the major form of activated AKT involved in multiple cancers, including breast, and a current focus in clinical trials for targeted intervention. The ability of our AKT assay to detect and measure AKT phosphorylation from very low amounts of total protein will allow the accurate evaluation of patient response to drugs targeting activated PI3K-AKT using scarce clinical specimens. Moreover, the capacity of this assay to detect and measure all three AKT isoforms using one single pan-specific antibody enables the study of the multiple and variable roles that these isoforms play in AKT tumorigenesis. Molecular & Cellular Proteomics 12: 10.1074/mcp.M112.023119, 3210-3220, 2013. C1 [Iacovides, Demetris C.; Johnson, Aimee B.; Wang, Nick; Korkola, Jim; Gray, Joe W.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Gray, JW (reprint author), 3303 SW Bond Ave,Mail Code CH13B, Portland, OR 97239 USA. EM grayjo@ohsu.edu FU Office of Science, Office of Biological & Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231]; NCI, National Institutes of Health [P50 CA 58207, U54 CA 112970, U24 CA 126477]; Susan G. Komen Foundation [SAC110012]; SmithKline Beecham Corporation FX This work was supported by the Director, Office of Science, Office of Biological & Environmental Research, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231; by the NCI, National Institutes of Health (Grant Nos. P50 CA 58207, U54 CA 112970, and U24 CA 126477 to J.W.G.); by the Susan G. Komen Foundation (SAC110012 to D. C. I. and J.W.G.); and by a SmithKline Beecham Corporation grant to J.W.G. NR 32 TC 14 Z9 14 U1 1 U2 16 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 EI 1535-9484 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD NOV PY 2013 VL 12 IS 11 BP 3210 EP 3220 DI 10.1074/mcp.M112.023119 PG 11 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 277JX UT WOS:000328816000015 PM 23929892 ER PT J AU Nakayasu, ES Tempel, R Cambronne, XA Petyuk, VA Jones, MB Gritsenko, MA Monroe, ME Yang, F Smith, RD Adkins, JN Heffron, F AF Nakayasu, Ernesto S. Tempel, Rebecca Cambronne, Xiaolu A. Petyuk, Vladislav A. Jones, Marcus B. Gritsenko, Marina A. Monroe, Matthew E. Yang, Feng Smith, Richard D. Adkins, Joshua N. Heffron, Fred TI Comparative Phosphoproteomics Reveals Components of Host Cell Invasion and Post-transcriptional Regulation During Francisella Infection SO MOLECULAR & CELLULAR PROTEOMICS LA English DT Article ID TANDEM MASS-SPECTRA; LIVE VACCINE STRAIN; TOLL-LIKE RECEPTORS; AIM2 INFLAMMASOME; MESSENGER-RNA; MURINE MACROPHAGES; IN-VITRO; TULARENSIS; TRISTETRAPROLIN; APOPTOSIS AB Francisella tularensis is a facultative intracellular bacterium that causes the deadly disease tularemia. Most evidence suggests that Francisella is not well recognized by the innate immune system that normally leads to cytokine expression and cell death. In previous work, we identified new bacterial factors that were hyper-cytotoxic to macrophages. Four of the identified hyper-cytotoxic strains (lpcC, manB, manC, and kdtA) had an impaired lipopolysaccharide (LPS) synthesis and produced an exposed lipid A lacking the O-antigen. These mutants were not only hyper-cytotoxic but also were phagocytosed at much higher rates compared with the wild type parent strain. To elucidate the cellular signaling underlying this enhanced phagocytosis and cell death, we performed a large-scale comparative phosphoproteomic analysis of cells infected with wild-type and delta-lpcC F. novicida. Our data suggest that not only actin but also intermediate filaments and microtubules are important for F. novicida entry into the host cells. In addition, we observed differential phosphorylation of tristetraprolin, a key component of the mRNA-degrading machinery that controls the expression of a variety of genes including many cytokines. Infection with the delta-lpcC mutant induced the hyper-phosphorylation and inhibition of tristetraprolin, leading to the production of cytokines such as IL-1beta and TNF-alpha that may kill the host cells by triggering apoptosis. Together, our data provide new insights for Francisella invasion and a post-transcriptional mechanism that prevents the expression of host immune response factors that control infection by this pathogen. C1 [Nakayasu, Ernesto S.; Petyuk, Vladislav A.; Gritsenko, Marina A.; Monroe, Matthew E.; Yang, Feng; Smith, Richard D.; Adkins, Joshua N.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Tempel, Rebecca; Heffron, Fred] Oregon Hlth & Sci Univ, Dept Mol Microbiol & Immunol, Portland, OR 97239 USA. [Cambronne, Xiaolu A.] Oregon Hlth & Sci Univ, Vollum Inst, Portland, OR 97239 USA. [Jones, Marcus B.] J Craig Venter Inst, Pathogen Funct Genom Resource Ctr, Rockville, MD USA. RP Tempel, R (reprint author), Oregon Hlth & Sci Univ, Dept Mol Microbiol & Immunol, L220,3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA. EM tempelr@ohsu.edu RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Cambronne, Lulu/0000-0002-3547-448X; Petyuk, Vladislav/0000-0003-4076-151X FU National Institute of Allergy and Infectious Diseases (NIH/DHHS) [Y1-AI-4894-01]; National Institute for General Medicine [GM094623]; NIH [5P41RR018522-10, NS076094]; National Institute of General Medical Sciences [8 P41 GM103493-10]; U.S. Department of Energy Office of Biological and Environmental Research (DOE/BER); DOE by Battelle [DE-AC05-76RLO1830] FX This work was supported by the National Institute of Allergy and Infectious Diseases (NIH/DHHS through interagency agreement Y1-AI-4894-01; project website www.SysBEP.org) and the National Institute for General Medicine (GM094623). This work used instrumentation and capabilities developed with support from the NIH grant 5P41RR018522-10, the National Institute of General Medical Sciences grant 8 P41 GM103493-10, and the U.S. Department of Energy Office of Biological and Environmental Research (DOE/BER). Significant portions of this work were performed in the EMSL, a DOE/BER national scientific user facility located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the DOE by Battelle under Contract DE-AC05-76RLO1830. This work was also supported by the NIH award NS076094 to X.A.C. NR 63 TC 5 Z9 5 U1 1 U2 7 PU AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC PI BETHESDA PA 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA SN 1535-9476 EI 1535-9484 J9 MOL CELL PROTEOMICS JI Mol. Cell. Proteomics PD NOV PY 2013 VL 12 IS 11 BP 3297 EP 3309 DI 10.1074/mcp.M113.029850 PG 13 WC Biochemical Research Methods SC Biochemistry & Molecular Biology GA 277JX UT WOS:000328816000021 PM 23970565 ER PT J AU Miller, MC Vega, DA AF Miller, M. C. Vega, D. A. TI US FUEL CYCLE TECHNOLOGIES R&D PROGRAM FOR NEXT GENERATION NUCLEAR MATERIALS MANAGEMENT SO NUCLEAR ENGINEERING AND TECHNOLOGY LA English DT Article DE Nuclear Safeguards; Nuclear Material Control and Accountancy; Neutron Detection; Gamma-ray Spectroscopy; Process Monitoring; Nuclear Material Management AB The U.S. Department of Energy's Fuel Cycle Technologies R&D program under the Office of Nuclear Energy is working to advance technologies to enhance both the existing and future fuel cycles. One thrust area is in developing enabling technologies for next generation nuclear materials management under the Materials Protection, Accounting and Control Technologies (MPACT) Campaign where advanced instrumentation, analysis and assessment methods, and security approaches are being developed under a framework of Safeguards and Security by Design. An overview of the MPACT campaign's activities and recent accomplishments is presented along with future plans. C1 [Miller, M. C.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Vega, D. A.] US DOE, Off Nucl Energy, Germantown, MD 20874 USA. RP Miller, MC (reprint author), Los Alamos Natl Lab, POB 1663 MS H816, Los Alamos, NM 87544 USA. EM mmiller@lanl.gov FU U.S. Department of Energy, Office of Nuclear Energy Fuel Cycle Technologies RD Program FX The U.S. Department of Energy, Office of Nuclear Energy Fuel Cycle Technologies R&D Program supports the MPACT Campaign. NR 24 TC 0 Z9 0 U1 1 U2 7 PU KOREAN NUCLEAR SOC PI DAEJEON PA NUTOPIA BLDG, 342-1 JANGDAE-DONG, DAEJEON, 305-308, SOUTH KOREA SN 1738-5733 J9 NUCL ENG TECHNOL JI Nucl. Eng. Technol. PD NOV PY 2013 VL 45 IS 6 SI SI BP 803 EP 810 DI 10.5516/NET.02.2013.527 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 278XD UT WOS:000328922300012 ER PT J AU Hughes, AM Pozzi, ECC Thorp, S Garabalino, MA Farias, RO Gonzalez, SJ Heber, EM Itoiz, ME Aromando, RF Molinari, AJ Miller, M Nigg, DW Curotto, P Trivillin, VA Schwint, AE AF Monti Hughes, A. Pozzi, E. C. C. Thorp, S. Garabalino, M. A. Farias, R. O. Gonzalez, S. J. Heber, E. M. Itoiz, M. E. Aromando, R. F. Molinari, A. J. Miller, M. Nigg, D. W. Curotto, P. Trivillin, V. A. Schwint, A. E. TI Boron neutron capture therapy for oral precancer: proof of principle in an experimental animal model SO ORAL DISEASES LA English DT Article DE boron neutron capture therapy; hamster cheek pouch oral precancer model; field cancerization; precancerous conditions; oral cancer ID HAMSTER-CHEEK POUCH; RECURRENT HEAD; NECK-CANCER; CLINICAL-IMPLICATIONS; FIELD CANCERIZATION; BNCT; MALIGNANCIES; TUMORS; BORONOPHENYLALANINE; RADIOBIOLOGY AB ObjectivesField-cancerized tissue can give rise to second primary tumours, causing therapeutic failure. Boron neutron capture therapy (BNCT) is based on biological targeting and would serve to treat undetectable foci of malignant transformation. The aim of this study was to optimize BNCT for the integral treatment for oral cancer, with particular emphasis on the inhibitory effect on tumour development originating in precancerous conditions, and radiotoxicity of different BNCT protocols in a hamster cheek pouch oral precancer model. Materials and MethodsGroups of cancerized hamsters were locally exposed to single or double (2 or 4weeks apart) applications of BNCT at different dose levels, mediated by the boron compounds boronophenylalanine (BPA) or BPA and decahydrodecaborate (GB-10) administered jointly. Cancerized, sham-irradiated hamsters served as controls. Clinical status, tumour development from field-cancerized tissue and mucositis were followed for 8months. ResultsA double application (4weeks apart) of BNCT mediated by GB-10+ BPA at a total dose of 10Gy in two 5-Gy doses rendered the best therapeutic advantage (63-100% inhibition of tumour development from field-cancerized tissue), minimizing dose-limiting mucositis. ConclusionBNCT can be optimized for the integral treatment for head and neck cancer, considering the implications for field-cancerized tissue. C1 [Monti Hughes, A.; Pozzi, E. C. C.; Garabalino, M. A.; Heber, E. M.; Itoiz, M. E.; Aromando, R. F.; Molinari, A. J.; Trivillin, V. A.; Schwint, A. E.] CNEA, Dept Radiobiol, San Martin, Argentina. [Pozzi, E. C. C.; Curotto, P.] CNEA, Dept Res & Prod Reactors, Ezeiza, Argentina. [Thorp, S.; Farias, R. O.; Gonzalez, S. J.; Miller, M.] CNEA, Dept Technol & Applicat Accelerators, Ezeiza, Argentina. [Gonzalez, S. J.; Trivillin, V. A.; Schwint, A. E.] Consejo Nacl Invest Cient & Tecn, Natl Res Council, Caba, Argentina. [Itoiz, M. E.; Aromando, R. F.] Univ Buenos Aires, Dept Oral Pathol, Fac Dent, Caba, Argentina. [Nigg, D. W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Schwint, AE (reprint author), CNEA, Radiat Pathol Div, Dept Radiobiol, Ave Gen Paz 1499,B1650KNA, Buenos Aires, DF, Argentina. EM schwint@cnea.gov.ar FU Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Argentina FX The work was partially funded by grants from Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT) and Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Argentina, and supported in-kind by Department of Energy (DOE) through Idaho National Laboratory (INL), USA. NR 46 TC 6 Z9 6 U1 0 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1354-523X EI 1601-0825 J9 ORAL DIS JI Oral Dis. PD NOV PY 2013 VL 19 IS 8 BP 789 EP 795 DI 10.1111/odi.12077 PG 7 WC Dentistry, Oral Surgery & Medicine SC Dentistry, Oral Surgery & Medicine GA 283DH UT WOS:000329224800006 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, C Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Mucibello, L Ochesanu, S Roland, B Rougny, R Staykova, Z Van Haevermaet, H Van Mechelen, R Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Kalogeropoulos, A Keaveney, J Lowette, S Maes, M Olbrechts, A Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Favart, L Gay, APR Hreus, T Leonard, A Marage, PE Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Vander Velde, C Vanlaer, P Wang, J Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Dildick, S Garcia, G Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Sigamani, M Strobbe, N Thyssen, F Tytgat, M Walsh, S Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jez, P Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Popov, A Selvaggi, M Marono, MV Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Malek, M Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, P Piperov, S Rodozov, M Sultanov, G Vutova, M Dimitrov, A Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, X Wang, Z Asawatangtrakuldee, C Ban, Y Guo, Y Li, Q Li, W Liu, S Mao, Y Qian, SJ Wang, D Zhang, L Zou, W Avila, C Montoya, CAC Sierra, LFC Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Morovic, S Tikvica, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Elgammal, S Kamel, AE Awad, AMK Mahmoud, MA Radi, A Kadastik, M Muntel, M Murumaa, M Raidal, M Rebane, L Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Tuuva, T Besancon, M Couderc, F Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Millischer, L Nayak, A Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Benhabib, L Bluj, M Busson, P Charlot, C Daci, N Dahms, T Dalchenko, M Dobrzynski, L Florent, A de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Brom, JM Chabert, EC Collard, C Conte, E Drouhin, F Fontaine, JC Gele, D Goerlach, U Goetzmann, C Juillot, P Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Brochet, S Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fan, J Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Sgandurra, L Sordini, V Vander Donckt, M Verdier, P Viret, S Xiao, H Tsamalaidze, Z Autermann, C Beranek, S Bontenackels, M Calpas, B Edelhoff, M Feld, L Heracleous, N Hindrichs, O Klein, K Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Padeken, K Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bell, AJ Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dooling, S Dorland, T Eckerlin, G Eckstein, D Flucke, G Geiser, A Glushkov, I Grebenyuk, A Gunnellini, P Habib, S Hauk, J Hellwig, G Horton, D Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Kramer, M Krucker, D Kuznetsova, E Lange, W Leonard, J Lipka, K Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Novgorodova, O Nowak, F Olzem, J Perrey, H Petrukhin, A Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Riedl, C Ron, E Sahin, MO Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Stein, M Walsh, R Wissing, C Martin, MA Blobel, V Enderle, H Erfle, J Garutti, E Gebbert, U Gorner, M Gosselink, M Haller, J Heine, K Hoing, RS Kaussen, G Kirschenmann, H Klanner, R Kogler, R Lange, J Marchesini, I Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schroder, M Schum, T Seidel, M Sibille, J Sola, V Stadie, H Steinbruck, G Thomsen, J Troendle, D Usai, E Vanelderen, L Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hartmann, F Hauth, T Held, H Hoffmann, KH Husemann, U Katkov, I Komaragiri, JR Kornmayer, A Pardo, PL Martschei, D Mozer, MU Muller, T Niegel, M Nurnberg, A Oberst, O Ott, J Quast, G Rabbertz, K Ratnikov, F Rocker, S Schilling, FR Schott, G Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Zeise, M Anagnostou, G Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Markou, A Markou, C Ntomari, E Topsis-giotis, I Gouskos, L Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Paradas, E Bencze, G Hajdu, C Hidas, R Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Swain, SK Beri, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mehta, MZ Mittal, M Nishu, N Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Kumar, A Malhotra, S Naimuddin, M Ranjan, K Saxena, P Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Singh, AP Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, R Topkar, A Aziz, T Chatterjee, RM Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Banerjee, S Dugad, S Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Jafari, A Khakzad, M Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, R Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, R Castro, A Cavallo, FR Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Giordano, E Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Gori, V Lenzi, P Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, F Piccolo, D Fabbricatore, P Ferretti, R Ferro, F Lo Vetere, M Musenich, R Robtitti, E Tosi, S Benaglia, A Dinardo, ME Fiorendi, S Gennai, S Ghezzi, A Govoni, R Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N de Fatis, TT Buontempo, S Cavallo, N De Cosa, A Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Fantinel, S Galanti, M Gasparini, F Gasparini, U Giubilato, P Gozzelino, A Gulmini, M Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Maron, G Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zucchetta, A Zumerle, G Gabusi, M Ratti, SP Riccardi, C Vitulo, P Biasini, M Bilei, GM Fano, L Lariccia, P Mantovani, G Menichelli, M Nappi, A Romeo, F Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R Ciocci, MA D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Grippo, MT Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Moon, CS Palla, F Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, R Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F Del Re, D Diemoz, M Grassi, M Longo, E Margaroli, F Meridiani, P Michell, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Montanino, D Penzo, A Schizzi, A Zanetti, A Chang, S Kim, TY Nam, SK Kim, DH Kim, GN Kim, JE Kong, DJ Lee, S Oh, YD Park, H Son, DC Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kim, MS Kwon, E Lee, B Lee, J Lee, S Seo, H Yu, I Grigelionis, I Juodagalvis, A Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Asghar, MI Butt, J Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Wolszczak, W Almeida, N Bargassa, R Silva, CBDE Faccioli, R Parracho, PGF Gallinaro, M Nguyen, F Antunes, JR Seixas, J Varela, J Vischia, R Afanasiev, S Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Lanev, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Skatchkov, N Smirnov, V Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Erofeeva, M Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Markina, A Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De La Cruz, B Penis, AD Vazquez, DD Bedoya, CF Ramos, JPF Fernando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G De Martino, EN Pelayo, JP Olmeda, AQ Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C de Troconiz, JF Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Gomez, JP Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Fernandez, M Gomez, G Sanchez, JG Graziano, A Jorda, C Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Bendavid, J Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A David, A De Guio, F De Roeck, A De Visscher, S Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Franzoni, G Funk, W Georgiou, G Giffels, M Gigi, D Gill, K Giordano, D Girone, M Giunta, M Glege, F Garrido, RGR Gowdy, S Guida, R Hammer, J Hansen, M Harris, P Hartl, C Hinzmann, A Innocente, V Janot, P Karavakis, E Kousouris, K Krajczar, K Lecoq, P Lee, YJ Lourenco, C Magini, N Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mulders, M Musella, P Nesvold, E Orsini, L Cortezon, EP Perez, E Perrozzi, L Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Plagge, M Quertenmont, L Racz, A Reece, W Rolandi, G Rovere, M Sakulin, H Santanastasio, F Schafer, C Schwick, C Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Stieger, B Stoye, M Tsirou, A Veres, GI Vlimant, JR Wohri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, F Bani, L Bianchini, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Freudenreich, K Grab, C Hits, D Lecomte, P Lustermann, W Mangano, B Marini, AC del Arbol, PMR Meister, D Mohr, N Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pape, L Pauss, F Peruzzi, M Quittnat, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Starodumov, A Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Amsler, C Chiochia, V Favaro, C Rikova, MI Kilminster, B Mejias, BM Robmann, P Snoek, H Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Li, SW Lin, W Lu, YJ Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wang, M Chen, PH Tao, CY Wang, TW Asavapibhop, B Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Karapinar, G Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Bahtiyar, H Barlas, E Cankocak, K Gunaydin, YO Vardarli, FI Yucel, M Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Lucas, C Meng, Z Metson, S Newbold, DM Nirunpong, K Paramesvaran, S Poll, A Senkin, S Smith, VJ Williams, T Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Ilic, J Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Sparrow, A Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A Lawson, P Lazic, D Rohlf, J Sperka, D John, JS Sulak, L Alimena, J Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Jabeen, S Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Miceli, T Pellett, D Pilot, J Ricci-Tam, F Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Wilbur, S Yohay, R Andreev, V Cline, D Cousins, R Erhan, S Everaerts, P Farrell, C Felcini, M Hauser, J Ignatenko, M Jarvis, C Rakness, G Schlein, P Takasugi, E Traczyk, P Valuev, V Weber, M Babb, J Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Jandir, P Liu, H Long, OR Luthra, A Malberti, M Nguyen, H Shrinivas, A Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Padhi, S Palmer, C Petrucciani, G Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Campagnari, C Danielson, T Flowers, K Geffert, P George, C Golf, F Incandela, J Justus, C Kovalskyi, D Krutelyov, V Villalba, RM Mccoll, N Pavlunin, V Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Kcira, D Ma, Y Mott, A Newman, HB Pena, C Rogan, C Spiropulu, M Timciuc, V Veverka, J Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Liu, YF Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Eggert, N Gibbons, LK Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Gutsche, O Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kaadze, K Klima, B Kunori, S Kwan, S Linacre, J Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Prokofyev, O Ratnikova, N Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Remington, R Rinkevicius, A Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Betts, RR Bucinskaite, I Callner, J Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Lacroix, F Moon, DH O'Brien, C Silkworth, C Strom, D Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Griffiths, S Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Ogul, H Onel, Y Ozok, E Sen, S Tan, R Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Giurgiu, G Gritsan, AV Hu, G Maksimovic, P Martin, C Swartz, M Whitbeck, A Baringer, P Bean, A Benelli, G Kenny, RP Murray, M Noonan, D Sanders, S Stringer, R Wood, JS Barfuss, AF Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Saini, LK Shrestha, S Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Peterman, A Skuja, A Temple, J Tonjes, MB Tonwar, SC Apyan, A Bauer, G Busza, W Cali, IA Chan, M Di Matteo, L Dutta, V Ceballos, GG Goncharov, M Gulhan, D Kim, Y Klute, M Lai, YS Levin, A Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Velicanu, D Wolf, R Wyslouch, B Yang, M Yilmaz, Y Yoon, AS Zanetti, M Zhukova, V Dahmes, B De Benedetti, A Gude, A Haupt, J Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Acosta, JG Cremaldi, LM Kroeger, R Oliveros, S Perera, L Rahmat, R Sanders, DA Summers, D Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Eads, M Suarez, RG Keller, J Kravchenko, I Lazo-Flores, J Malik, S Meier, F Snow, GR Dolen, J Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Rappoccio, S Wan, Z Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Nash, D Orimoto, T Trocino, D Wood, D Zhang, J Anastassov, A Hahn, KA Kubik, A Lusito, L Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Berry, D Brinkerhoff, A Chan, KM Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Antonelli, L Bylsma, B Durkin, LS Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Vuosalo, C Winer, BL Wolfe, H Berry, E Elmer, P Halyo, V Hebda, P Hegeman, J Hunt, A Jindal, P Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zenz, SC Zuranski, A Brownson, E Lopez, A Mendez, H Vargas, JER Alagoz, E Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jones, M Jung, K Koybasi, O Kress, M Leonardo, N Pegna, DL Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Wang, F Xie, W Xu, L Yoo, HD Zablocki, J Zheng, Y Parashar, N Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Michlin, B Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R de Barbaro, P Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Cerizza, G Hollingsworth, M Rose, K Spanier, S Yang, ZC York, A Bouhali, O Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Suarez, I Tatarinov, A Toback, D Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Kovitanggoon, K Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Sakharov, A Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Duric, S Friis, E Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Loveless, R Mohapatra, A Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Sarangi, T Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Staykova, Z. Van Haevermaet, H. Van Mechelen, R. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Kalogeropoulos, A. Keaveney, J. Lowette, S. Maes, M. Olbrechts, A. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Favart, L. Gay, A. P. R. Hreus, T. Leonard, A. Marage, P. E. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Vander Velde, C. Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Dildick, S. Garcia, G. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jez, P. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Popov, A. Selvaggi, M. Marono, M. Vidal Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Correa Martins Junior, M. Martins, T. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Malek, M. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, P. Piperov, S. Rodozov, M. Sultanov, G. Vutova, M. Dimitrov, A. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, X. Wang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, Q. Li, W. Liu, S. Mao, Y. Qian, S. J. Wang, D. Zhang, L. Zou, W. Avila, C. Carrillo Montoya, C. A. Chaparro Sierra, L. F. Gomez, J. P. Gomez Moreno, B. Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Morovic, S. Tikvica, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Elgammal, S. Kamel, A. Ellithi Awad, A. M. Kuotb Mahmoud, M. A. Radi, A. Kadastik, M. Muentel, M. Murumaa, M. Raidal, M. Rebane, L. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Tuuva, T. Besancon, M. Couderc, F. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Millischer, L. Nayak, A. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bluj, M. Busson, P. Charlot, C. Daci, N. Dahms, T. Dalchenko, M. Dobrzynski, L. Florent, A. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Veelken, C. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Juillot, P. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Brochet, S. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fan, J. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Sgandurra, L. Sordini, V. Vander Donckt, M. Verdier, P. Viret, S. Xiao, H. Tsamalaidze, Z. Autermann, C. Beranek, S. Bontenackels, M. Calpas, B. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Klein, K. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Padeken, K. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bell, A. J. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Flucke, G. Geiser, A. Glushkov, I. Grebenyuk, A. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Horton, D. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Leonard, J. Lipka, K. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Nowak, F. Olzem, J. Perrey, H. Petrukhin, A. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Sahin, M. Oe Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Stein, M. Walsh, R. Wissing, C. Martin, M. Aldaya Blobel, V. Enderle, H. Erfle, J. Garutti, E. Gebbert, U. Goerner, M. Gosselink, M. Haller, J. Heine, K. Hoeing, R. S. Kaussen, G. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Marchesini, I. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schroeder, M. Schum, T. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbrueck, G. Thomsen, J. Troendle, D. Usai, E. Vanelderen, L. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hartmann, F. Hauth, T. Held, H. Hoffmann, K. H. Husemann, U. Katkov, I. Komaragiri, J. R. Kornmayer, A. Pardo, P. Lobelle Martschei, D. Mozer, M. U. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Ott, J. Quast, G. Rabbertz, K. Ratnikov, F. Roecker, S. Schilling, F. -R Schott, G. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Zeise, M. Anagnostou, G. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Ntomari, E. Topsis-giotis, I. Gouskos, L. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Paradas, E. Bencze, G. Hajdu, C. Hidas, R. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mehta, M. Z. Mittal, M. Nishu, N. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Kumar, A. Malhotra, S. Naimuddin, M. Ranjan, K. Saxena, P. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Singh, A. P. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, R. Topkar, A. Aziz, T. Chatterjee, R. M. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, R. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, R. Castro, A. Cavallo, F. R. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Giordano, E. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Ferretti, R. Ferro, F. Lo Vetere, M. Musenich, R. Robtitti, E. Tosi, S. Benaglia, A. Dinardo, M. E. Fiorendi, S. Gennai, S. Ghezzi, A. Govoni, R. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. de Fatis, T. Tabarelli Buontempo, S. Cavallo, N. De Cosa, A. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Fantinel, S. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Gozzelino, A. Gulmini, M. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Maron, G. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zucchetta, A. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, F. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, R. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Grassi, M. Longo, E. Margaroli, F. Meridiani, P. Michell, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Zanetti, A. Chang, S. Kim, T. Y. Nam, S. K. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Son, D. C. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Kwon, E. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Grigelionis, I. Juodagalvis, A. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Ibarguen, H. A. Salazar Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Asghar, M. I. Butt, J. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Wolszczak, W. Almeida, N. Bargassa, R. Beirao Da Cruz E Silva, C. Faccioli, R. Ferreira Parracho, P. G. Gallinaro, M. Nguyen, F. Rodrigues Antunes, J. Seixas, J. Varela, J. Vischia, R. Afanasiev, S. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Lanev, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Skatchkov, N. Smirnov, V. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Erofeeva, M. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Maestre, J. Alcaraz Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De La Cruz, B. Delgado Penis, A. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Fernando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Gonzalez Lopez, O. Goy Lopez, S. Hernandez, J. M. Josa, M. I. Merino, G. Navarro De Martino, E. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. de Troconiz, J. F. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Piedra Gomez, J. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Graziano, A. Jorda, C. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Vilar Cortabitarte, R. Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Bendavid, J. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. David, A. De Guio, F. De Roeck, A. De Visscher, S. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Franzoni, G. Funk, W. Georgiou, G. Giffels, M. Gigi, D. Gill, K. Giordano, D. Girone, M. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Gowdy, S. Guida, R. Hammer, J. Hansen, M. Harris, P. Hartl, C. Hinzmann, A. Innocente, V. Janot, P. Karavakis, E. Kousouris, K. Krajczar, K. Lecoq, P. Lee, Y. -J. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mulders, M. Musella, P. Nesvold, E. Orsini, L. Cortezon, E. Palencia Perez, E. Perrozzi, L. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Plagge, M. Quertenmont, L. Racz, A. Reece, W. Rolandi, G. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Stieger, B. Stoye, M. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, F. Baeni, L. Bianchini, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Freudenreich, K. Grab, C. Hits, D. Lecomte, P. Lustermann, W. Mangano, B. Marini, A. C. del Arbol, P. Martinez Ruiz Meister, D. Mohr, N. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pape, L. Pauss, F. Peruzzi, M. Quittnat, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Starodumov, A. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Amsler, C. Chiochia, V. Favaro, C. Rikova, M. Ivova Kilminster, B. Mejias, B. Millan Robmann, P. Snoek, H. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Li, S. W. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wang, M. Chen, P. -H. Tao, C. -Y. Wang, T. -W. Asavapibhop, B. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Karapinar, G. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Bahtiyar, H. Barlas, E. Cankocak, K. Gunaydin, Y. O. Vardarli, F. I. Yucel, M. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Lucas, C. Meng, Z. Metson, S. Newbold, D. M. Nirunpong, K. Paramesvaran, S. Poll, A. Senkin, S. Smith, V. J. Williams, T. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Ilic, J. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. John, J. St. Sulak, L. Alimena, J. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Jabeen, S. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Breedon, R. Breto, G. Sanchez, M. Calderon De La Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Miceli, T. Pellett, D. Pilot, J. Ricci-Tam, F. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Wilbur, S. Yohay, R. Andreev, V. Cline, D. Cousins, R. Erhan, S. Everaerts, P. Farrell, C. Felcini, M. Hauser, J. Ignatenko, M. Jarvis, C. Rakness, G. Schlein, P. Takasugi, E. Traczyk, P. Valuev, V. Weber, M. Babb, J. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Jandir, P. Liu, H. Long, O. R. Luthra, A. Malberti, M. Nguyen, H. Shrinivas, A. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Padhi, S. Palmer, C. Petrucciani, G. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Campagnari, C. Danielson, T. Flowers, K. Geffert, P. George, C. Golf, F. Incandela, J. Justus, C. Kovalskyi, D. Krutelyov, V. Villalba, R. Magana Mccoll, N. Pavlunin, V. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Kcira, D. Ma, Y. Mott, A. Newman, H. B. Pena, C. Rogan, C. Spiropulu, M. Timciuc, V. Veverka, J. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Liu, Y. F. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gutsche, O. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kaadze, K. Klima, B. Kunori, S. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Ratnikova, N. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Remington, R. Rinkevicius, A. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Callner, J. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Lacroix, F. Moon, D. H. O'Brien, C. Silkworth, C. Strom, D. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Griffiths, S. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Ogul, H. Onel, Y. Ozok, E. Sen, S. Tan, R. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Giurgiu, G. Gritsan, A. V. Hu, G. Maksimovic, P. Martin, C. Swartz, M. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Stringer, R. Wood, J. S. Barfuss, A. F. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Peterman, A. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Apyan, A. Bauer, G. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Dutta, V. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Kim, Y. Klute, M. Lai, Y. S. Levin, A. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Velicanu, D. Wolf, R. Wyslouch, B. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Zhukova, V. Dahmes, B. De Benedetti, A. Gude, A. Haupt, J. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Cremaldi, L. M. Kroeger, R. Oliveros, S. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Eads, M. Suarez, R. Gonzalez Keller, J. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Snow, G. R. Dolen, J. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Rappoccio, S. Wan, Z. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Nash, D. Orimoto, T. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Hahn, K. A. Kubik, A. Lusito, L. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Berry, D. Brinkerhoff, A. Chan, K. M. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Antonelli, L. Bylsma, B. Durkin, L. S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Vuosalo, C. Winer, B. L. Wolfe, H. Berry, E. Elmer, P. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Jindal, P. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zenz, S. C. Zuranski, A. Brownson, E. Lopez, A. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jones, M. Jung, K. Koybasi, O. Kress, M. Leonardo, N. Pegna, D. Lopes Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Wang, F. Xie, W. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Michlin, B. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. de Barbaro, P. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Cerizza, G. Hollingsworth, M. Rose, K. Spanier, S. Yang, Z. C. York, A. Bouhali, O. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Kovitanggoon, K. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sakharov, A. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Duric, S. Friis, E. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Loveless, R. Mohapatra, A. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sarangi, T. Savin, A. Smith, W. H. Swanson, J. CA CMS Collaboration TI Search for a new bottomonium state decaying to Upsilon(1S)pi(+)pi(-) in pp collisions at root s=8 TeV SO PHYSICS LETTERS B LA English DT Article DE CMS; Physics; Exotic quarkonia ID TETRAQUARKS; MODEL AB The results of a search for the bottomonium counterpart, denoted as X-b, of the exotic charmonium state X(3872) is presented. The analysis is based on a sample of pp collisions at,root s = 8 TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 20.7 fb(-1). The search looks for the exclusive decay channel X-b -> Upsilon(1S)pi(+)pi(-) followed by Upsilon(1S) -> mu(+)mu(-). No evidence for an X-b signal is observed. Upper limits are set at the 95% confidence level on the ratio of the inclusive production cross sections times the branching fractions to Upsilon(1S)pi(+)pi(-) of the X-b and the Upsilon(2S). The upper limits on the ratio are in the range 0.9-5.4% for X-b masses between 10 and 11 GeV. These are the first upper limits on the production of a possible X-b at a hadron collider. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, R.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Kalogeropoulos, A.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Hreus, T.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alda Junior, W. L.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Lagana, C.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, X.; Wang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Carrillo Montoya, C. A.; Chaparro Sierra, L. F.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Awad, A. M. Kuotb; Mahmoud, M. A.; Radi, A.] Egyptian Network High Energy Phys, Acad Sci Res & Technol Arab Republ Egypt, Cairo, Egypt. [Giammanco, A.; Kadastik, M.; Muentel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Plestina, R.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Bernet, C.] Ecole Polytech, CNRS IN2P3, Lab Leprince Ringuet, Palaiseau, France. [Beluffi, C.; Agram, J. -L.; Andrea, J.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Strasbourg, CNRS IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Gadrat, S.] CNRS IN2P3, Inst Natl Phys Nucl & Phys Particules, Ctr Calcul, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.] Univ Lyon 1, CNRS IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informatizat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Bontenackels, M.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Inst Phys 1, Aachen, Germany. [Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Grebenyuk, A.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Sahin, M. Oe; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Stein, M.; Walsh, R.; Wissing, C.] DESY, Hamburg, Germany. [Martin, M. Aldaya; Blobel, V.; Enderle, H.; Erfle, J.; Garutti, E.; Gebbert, U.; Goerner, M.; Gosselink, M.; Haller, J.; Heine, K.; Hoeing, R. S.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Marchesini, I.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schroeder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Troendle, D.; Usai, E.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hartmann, F.; Hauth, T.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Kornmayer, A.; Pardo, P. Lobelle; Martschei, D.; Mozer, M. U.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Roecker, S.; Schilling, F. -R; Schott, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Ntomari, E.; Topsis-giotis, I.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece. [Gouskos, L.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Sphicas, P.] Univ Athens, Athens, Greece. [Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, R.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Horvath, D.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, H-4012 Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Saxena, P.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Singh, A. P.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, R.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Swain, S. K.; Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India. [Banerjee, S.; Guchait, M.; Dugad, S.] Tata Inst Fundamental Res HECR, Bombay, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, R.; Zito, G.] INFN Sez Bari, Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, R.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] INFN Sez Bologna, Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, R.; Castro, A.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, E.; Potenza, R.; Tricomi, A.; Tuve, C.] INFN Sez Catania, Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] INFN Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.] INFN Lab Nazl Frascati, Frascati, Italy. [Fabbricatore, P.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Musenich, R.; Robtitti, E.; Tosi, S.] INFN Sez Genova, Genoa, Italy. [Ferretti, R.; Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Benaglia, A.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, R.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli] INFN Sez Milano Bicocca, Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Ghezzi, A.; Govoni, R.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Paganoni, M.; Ragazzi, S.; de Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; De Cosa, A.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] INFN Sez Napoli, Naples, Italy. [De Cosa, A.; Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Fantinel, S.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Gulmini, M.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.] INFN Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trento Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] INFN Sez Pavia, Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Pioppi, M.] INFN Sez Perugia, Perugia, Italy. [Biasini, M.; Fano, L.; Lariccia, P.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Spiezia, A.; Pioppi, M.] Univ Perugia, I-06100 Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, R.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] INFN Sez Pisa, Pisa, Italy. [Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Broccolo, G.; D'Agnolo, R. T.; Fiori, F.; Foa, L.; Ligabue, F.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Longo, E.; Margaroli, F.; Meridiani, P.; Michell, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Soffi, L.] INFN Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Grassi, M.; Longo, E.; Margaroli, F.; Michell, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.] Univ Rome, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.] INFN Sez Torino, Turin, Italy. [Amapane, N.; Argiro, S.; Bellan, R.; Casasso, S.; Costa, M.; Degano, A.; Migliore, E.; Monaco, V.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Zanetti, A.] INFN Sez Trieste, Trieste, Italy. [Candelise, V.; Della Ricca, G.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Chang, S.; Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Kim, D. H.; Kim, G. N.; Kim, J. E.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Son, D. C.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Grigelionis, I.; Juodagalvis, A.] Vilnius State Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] Ctr Invest & Estudios Avanzados IPN, Mexico City, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ Iberoamer, Mexico City, DF, Mexico. [Ibarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bluj, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Almeida, N.; Bargassa, R.; Beirao Da Cruz E Silva, C.; Faccioli, R.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, R.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Tsamalaidze, Z.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Starodumov, A.; Nikitenko, A.; Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow 117924, Russia. [Popov, A.; Zhukov, V.; Katkov, I.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Federat, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Milenovic, P.] Univ Belgrade, Vinca Inst Nucl Sci, Belgrade, Serbia. [Aguilar-Benitez, M.; Maestre, J. Alcaraz; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Penis, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Fernando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Albajar, C.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.] CSIC Univ Cantabria, Inst Fis Cantabria IFCA, Santander, Spain. [Rabady, D.; Genchev, V.; Iaydjiev, P.; Lingemann, J.; Guthoff, M.; Hartmann, F.; Hauth, T.; Kornmayer, A.; Mohanty, A. K.; Giordano, E.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Meola, S.; Paolucci, P.; Galanti, M.; D'Agnolo, R. T.; Pelliccioni, M.; Cossutti, F.; Seixas, J.; Chamizo Llatas, M.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bendavid, J.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Gowdy, S.; Guida, R.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Hinzmann, A.; Innocente, V.; Janot, P.; Karavakis, E.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lee, Y. -J.; Lourenco, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Plagge, M.; Quertenmont, L.; Racz, A.; Reece, W.; Rolandi, G.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Stieger, B.; Stoye, M.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, F.; Baeni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Meister, D.; Mohr, N.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; Favaro, C.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Robmann, P.; Snoek, H.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.; Chen, P. -H.; Tao, C. -Y.; Wang, T. -W.] NTU, Taipei, Taiwan. [Asavapibhop, B.; Suwonjandee, N.] Chulalongkorn Univ, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Bahtiyar, H.; Barlas, E.; Cankocak, K.; Gunaydin, Y. O.; Vardarli, F. I.; Yucel, M.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Lucas, C.; Meng, Z.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Worm, S. D.; Newbold, D. M.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Ilic, J.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Lucas, R.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.] Univ London Imperial Coll Sci Technol & Med, London, England. [Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; John, J. St.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De La Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Takasugi, E.; Traczyk, P.; Valuev, V.; Weber, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Liu, H.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Shrinivas, A.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Campagnari, C.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kovalskyi, D.; Krutelyov, V.; Villalba, R. Magana; Mccoll, N.; Pavlunin, V.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Kcira, D.; Ma, Y.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gutsche, O.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kunori, S.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Ratnikova, N.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Lacroix, F.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.] UIC, Chicago, IL USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Griffiths, S.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Ogul, H.; Onel, Y.; Ozok, E.; Sen, S.; Tan, R.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Giurgiu, G.; Gritsan, A. V.; Hu, G.; Maksimovic, P.; Martin, C.; Swartz, M.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Sibille, J.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Kim, Y.; Klute, M.; Lai, Y. S.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Velicanu, D.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; De Benedetti, A.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Cremaldi, L. M.; Kroeger, R.; Oliveros, S.; Perera, L.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, University, MS 38677 USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Suarez, R. Gonzalez; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Dolen, J.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Savoy-Navarro, A.; Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Jung, K.; Koybasi, O.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Rose, K.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Chinellato, J.; Tonelli Manganote, E. J.] Univ Estadual Campinas, Campinas, Brazil. [Dias, F. A.; Dubinin, M.] CALTECH, Pasadena, CA 91125 USA. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Elgammal, S.] Zewail City Sci & Technol, Zewail, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Awad, A. M. Kuotb; Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Safarzadeh, B.] Islamic Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Gulmini, M.; Maron, G.] Ist Nazl Fis Nucl, Lab Nazl Legnaro, I-35020 Legnaro, Italy. [Androsov, K.; Grippo, M. T.; Martini, L.] Univ Siena, I-53100 Siena, Italy. [Moon, C. S.] CNRS, IN2P3, Paris, France. [Heredia-de La Cruz, I.] Univ Michoacana, Morelia, Michoacan, Mexico. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Ist Nazl Fis Nucl, Scuola Normale & Sez, Pisa, Italy. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Gunaydin, Y. O.] Mimar Sinan Univ, Istanbul, Turkey. [Gunaydin, Y. O.] Kahramanmaras Sutcu Imam Univ, Kahramanmaras, Turkey. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Bouhali, O.] Texas A&M Univ, Doha, Qatar. [Kamon, T.] Kyungpook Natl Univ, Taegu 702701, South Korea. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Xie, Si/O-6830-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Vilela Pereira, Antonio/L-4142-2016; Sznajder, Andre/L-1621-2016; Da Silveira, Gustavo Gil/N-7279-2014; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Codispoti, Giuseppe/F-6574-2014; Bellan, Riccardo/G-2139-2014; Petrushanko, Sergey/D-6880-2012; da Cruz e Silva, Cristovao/K-7229-2013; Marlow, Daniel/C-9132-2014; de Jesus Damiao, Dilson/G-6218-2012; Janssen, Xavier/E-1915-2013; Novaes, Sergio/D-3532-2012; Bartalini, Paolo/E-2512-2014; Santoro, Alberto/E-7932-2014; Ligabue, Franco/F-3432-2014; Wulz, Claudia-Elisabeth/H-5657-2011; Dudko, Lev/D-7127-2012; Lokhtin, Igor/D-7004-2012; Montanari, Alessandro/J-2420-2012; Moon, Chang-Seong/J-3619-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Venturi, Andrea/J-1877-2012; Calderon, Alicia/K-3658-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Josa, Isabel/K-5184-2014; Calvo Alamillo, Enrique/L-1203-2014; VARDARLI, Fuat Ilkehan/B-6360-2013; Manganote, Edmilson/K-8251-2013; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Ferguson, Thomas/O-3444-2014; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Leonidov, Andrey/P-3197-2014; vilar, rocio/P-8480-2014; Dahms, Torsten/A-8453-2015; Grandi, Claudio/B-5654-2015; Chinellato, Jose Augusto/I-7972-2012; Bernardes, Cesar Augusto/D-2408-2015; Raidal, Martti/F-4436-2012; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; ciocci, maria agnese /I-2153-2015; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Matorras, Francisco/I-4983-2015; Lo Vetere, Maurizio/J-5049-2012; Ragazzi, Stefano/D-2463-2009; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Azarkin, Maxim/N-2578-2015; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013 OI Xie, Si/0000-0003-2509-5731; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Vilela Pereira, Antonio/0000-0003-3177-4626; Sznajder, Andre/0000-0001-6998-1108; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Codispoti, Giuseppe/0000-0003-0217-7021; de Jesus Damiao, Dilson/0000-0002-3769-1680; Novaes, Sergio/0000-0003-0471-8549; Ligabue, Franco/0000-0002-1549-7107; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Dudko, Lev/0000-0002-4462-3192; Montanari, Alessandro/0000-0003-2748-6373; Moon, Chang-Seong/0000-0001-8229-7829; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Ferguson, Thomas/0000-0001-5822-3731; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Chinellato, Jose Augusto/0000-0002-3240-6270; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Matorras, Francisco/0000-0003-4295-5668; Lo Vetere, Maurizio/0000-0002-6520-4480; Ragazzi, Stefano/0000-0001-8219-2074; Rovelli, Tiziano/0000-0002-9746-4842; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982 FU BMWF; FWF (Austria); FNRS; FWO (Belgium); CNPq; CAPES; FAPERJ; FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS; MoST; NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER [SF0690030s09]; ERDF (Estonia); Academy of Finland; MEC; HIP (Finland); CEA; CNRS/IN2P3 (France); BMBF; DFG; HGF (Germany); GSRT (Greece); OTKA; NKTH (Hungary); DAE; DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF; WCU (Republic of Korea); LAS (Lithuania); CINVESTAV; CONACYT; SEP; UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE; NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON; RosAtom; RAS; RFBR (Russia); MESTD (Serbia); SEIDI; CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter; IPST; NSTDA (Thailand); TUBITAK; TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE; NSF (USA); Marie-Curie programme; European Research Council; EPLANET (European Union); Leventis Foundation; A.P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of Czech Republic; Council of Science and Industrial Research, India; Compagnia di San Paolo (Torino); HOMING PLUS programme of Foundation for Polish Science; EU, Regional Development Fund; Thalis and Aristeia programmes; EU-ESF; Greek NSRF FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, cofinanced by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF. NR 33 TC 19 Z9 21 U1 5 U2 67 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV PY 2013 VL 727 IS 1-3 BP 57 EP 76 DI 10.1016/j.physletb.2013.10.016 PG 20 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 273ES UT WOS:000328518400009 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Kuinz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Rabady, D Rahbaran, B Rohringer, C Rohringer, H Schofbeck, R Strauss, J Taurok, A Treberer-Treberspurg, W Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Alderweireldt, S Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Knutsson, A Luyckx, S Mucibello, L Ochesanu, S Roland, B Rougny, R Staykova, Z Van Haevermaet, H Van Mechelen, R Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Kalogeropoulos, A Keaveney, J Maes, M Olbrechts, A Tavernier, S Van Doninck, W Van Mulders, P Van Onsem, GP Villella, I Caillol, C Clerbaux, B De Lentdecker, G Favart, L Gay, APR Hreus, T Leonard, A Marage, PE Mohammadi, A Pernie, L Reis, T Seva, T Thomas, L Velde, CV Vanlaer, R Wang, J Adler, V Beernaert, K Benucci, L Cimmino, A Costantini, S Dildick, S Garcia, G Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Sigamani, M Strobbe, N Thyssen, E Tytgat, M Walsh, S Yazgan, E Zaganidis, N Basegmez, S Beluffi, C Bruno, G Castello, R Caudron, A Ceard, L Da Silveira, GG Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Jez, R Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Popov, A Selvaggi, M Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MCM Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Chinellato, J Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Malek, M Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santoro, A Sznajder, A Manganote, EJT Pereira, AV Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, R Piperov, S Rodozov, M Sultanov, G Vutova, M Dimitrov, A Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, R Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, X Wang, Z Xiao, H Asawatangtrakuldee, C Ban, Y Guo, Y Li, W Liu, S Mao, Y Qian, SJ Teng, H Wang, D Zhang, L Zou, W Avila, C Montoya, CAC Sierra, LFC Gomez, JP Moreno, BG Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Kadija, K Luetic, J Mekterovic, D Morovic, S Tikvica, L Attikis, A Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, E Razis, PA Finger, M Finger, M Abdelalim, AA Assran, Y Elgammal, S Kamer, AE Mahmoud, MA Radi, A Kadastik, M Muntel, M Murumaa, M Raidal, M Rebane, L Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Wendland, L Tuuva, T Besancon, M Couderc, E Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, R de Monchenault, GH Jarry, P Locci, E Malcles, J Millischer, L Nayak, A Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Benhabib, L Bluj, M Busson, R Charlot, C Daci, N Dahms, T Dalchenko, M Dobrzynski, L Florent, A de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Brom, JM Chabert, EC Collard, C Conte, E Drouhin, F Fontaine, JC Gele D Goerlach, U Goetzmann, C Juillot, R Le Bihan, AC Van Hove, P Gadrat, S Beauceron, S Beaupere, N Boudoul, G Brochet, S Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Sgandurra, L Sordini, V Donckt, MV Verdier, P Viret, S Tsamalaidze, Z Autermann, C Beranek, S Calpas, B Edelhoff, M Feld, L Heracleous, N Hindrichs, N Klein, K Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Knutzen, S Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Padeken, K Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Thuer, S Weber, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, E Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Nugent, IM Perchalla, L Pooth, O Stahl, A Asin, I Bartosik, N Behr, J Behrenhoff, W Behrens, U Bell, AJ Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Choudhury, S Costanza, F Pardos, CD Dooling, S Dorland, T Eckerlin, G Eckstein, D Flucke, G Geiser, A Glushkov, I Grebenyuk, A Gunnellini, P Habib, S Hauk, J Hellwig, G Horton, D Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Kramer, M Krucker, D Kuznetsova, E Lange, W Leonard, J Lipka, K Lohmann, W Lutz, B Mankel, R Marfin, I Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Novgorodova, O Nowak, F Olzem, J Perrey, H Petrukhin, A Pitzl, D Placakyte, R Raspereza, A Cipriano, PMR Riedl, C Ron, E Sahin, MO Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Stein, M Walsh, R Wissing, C Martin, MA Blobel, V Enderle, H Erfle, J Garutti, E Gebbert, U Gorner, M Gosselink, M Haller, J Heine, K Hoing, RS Kaussen, G Kirschenmann, H Klanner, R Kogler, R Lange, J Marchesini, I Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schroder, M Schum, T Seidel, M Sibille, J Sola, V Stadie, H Steinbruck, G Thomsen, J Troendle, D Usai, E Vanelderen, L Barth, C Baus, C Berger, J Boser, C Butz, E Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hartmann, F Hauth, T Held, H Hoffmann, KH Husemann, U Katkov, I Komaragiri, JR Kornmayer, A Pardo, PL Martschei, D Muller, T Niegel, M Nurnberg, A Oberst, O Ott, J Quast, G Rabbertz, K Ratnikov, F Rocker, S Schilling, FP Schott, G Simonis, HJ Stober, FM Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Zeise, M Anagnostou, G Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Markou, A Markou, C Ntomari, E Topsis-Giotis, I Gouskos, L Panagiotou, A Saoulidou, N Stiliaris, E Aslanoglou, X Evangelou, I Flouris, G Foudas, C Kokkas, P Manthos, N Papadopoulos, I Pafadas, E Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, R Trocsanyi, ZL Ujvari, B Swain, SK Beni, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mehta, MZ Mittal, M Nishu, N Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Malhotra, S Naimuddin, M Ranjan, K Saxena, P Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Chatterjee, K Dutta, S Gomber, B Jain, S Jain, S Khurana, R Modak, A Mukherjee, S Roy, D Sarkar, S Sharan, M Singh, AP Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Topkar, A Aziz, T Chatterjee, RM Ganguly, S Ghosh, S Guchait, M Gurtu, A Kole, G Kumar, S Maity, M Majumder, G Mazumdar, K Mohanty, GB Panda, B Sudhakar, K Wickramage, N Banerjee, S Dugad, S Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Jafari, A Khakzad, M Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Grunewald, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Laselli, G Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, R Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Campanini, R Capiluppi, P Castro, A Cavallo, E Codispoti, G Cuffiani, M Dallavalle, GM Fabbri, E Fanfani, A Fasanella, A Giacomelli, R Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanan, A Navarria, E Odorici, E Perrotta, A Primavera, E Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Chiorboli, M Costa, S Giordano, E Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Gori, V Lenzi, P Meschidi, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Fabbri, E Piccolo, D Fabbricatore, P Ferro, E Lo Vetere, M Musenich, R Tosi, S Benaglia, A Dinardo, ME Fiorendi, S Gennai, S Ghezzi, A Govoni, P Lucchini, MT Malvezzi, S Manzoni, RA Martelli, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N De Fatis, TT Buontempo, S Cavallo, N De Cosa, A Fabozzi, E Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bellato, M Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Dosselli, U Galanti, M Gasparini, F Gasparini, U Giubilato, P Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Passaseo, M Pazzini, J Pegoraro, M Pozzobon, N Ronchese, R Simonetto, E Torassa, E Tosi, M Ventura, S Zotto, P Zucchetta, A Zumerle, G Gabusi, M Ratti, SP Riccardi, C Vitulo, R Biasini, M Bilei, GM Fano, L Lariccia, P Mantovani, G Menichelli, M Nappi, A Romeo, E Saha, A Santocchia, A Spiezia, A Androsov, K Azzurri, P Bagliesi, G Boccali, T Broccolo, G Castaldi, R Ciocci, MA D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Grippo, MT Kraan, A Ligabue, E Lomtadze, T Martini, L Messineo, A Moon, CS Palla, E Rizzi, A Savoy-Navarro, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Vernieri, C Barone, L Cavallari, F Del Re, D Diemoz, M Grassi, M Longo, E Margaroli, F Meridiani, R Michell, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Rovelli, C Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Bellan, R Biino, C Cartiglia, N Casasso, S Costa, M Degano, A Demaria, N Mariotti, C Maselli, S Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Ruspa, M Sacchi, R Solano, A Staiano, A Tamponi, U Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B La Licata, C Marone, M Montanino, D Penzo, A Schizzi, A Zanetti, A Chang, S Kim, TY Nam, SK Kim, DH Kim, GN Kim, JE Kong, DJ Lee, S Oh, YD Park, H Son, DC Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Park, SK Roh, Y Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kim, MS Kwon, E Lee, B Lee, J Lee, S Seo, H Yu, I Grigelionis, I Juodagalvis, A Castilla-Valdez, H De La Cruz-Burelo, E Heredia-de La Cruz, I Lopez-Fernandez, R Martinez-Ortega, J Sanchez-Hernandez, A Moreno, SC Valencia, EV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Asghar, MI Butt, J Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, R Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Wolszczak, W Almeida, N Bargassa, R Silva, CBDE Faccioli, R Parracho, PGF Gallinaro, M Nguyen, F Antunes, JR Seixas, J Varela, J Vischia, P Afanasiev, S Bunin, R Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Konoplyanikov, V Laney, A Malakhov, A Matveev, V Moisenz, P Palichik, V Perelygin, V Shmatov, S Skatchkov, N Smirnov, V Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Kim, V Levchenko, R Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Erofeeva, M Gavrilov, V Lychkovskaya, N Popov, V Safronov, G Semenov, S Spiridonov, A Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Markina, A Obraztsov, S Petrushanko, S Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Kachanov, V Kalinin, A Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Battilana, C Calvo, E Cerrada, M Chamizo-Llatas, M Colino, N De la Cruz, B Per, AD Vazquez, DD Bedoya, CF Ramos, JPF Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G De Martino, EN Pelayo, JP Olmeda, AQ Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C de Troconiz, JF Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Gomez, P Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Fernandez, M Gomez, G Sanchez, JG Graziano, A Jorda, C Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Bendavid, J Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Bondu, O Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC Colafranceschi, S D'Alfonso, M d'Enterria, D Dabrowski, A David, A De Guio, F De Roeck, A De Visscher, S Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Eugster, J Funk, W Georgiou, G Giffels, M Gigi, D Gill, K Giordano, D Girone, M Giunta, M Glege, F Garrido, RGR Gowdy, S Guida, R Hammer, J Hansen, M Harris, P Hartl, C Hinzmann, A Innocente, V Janot, R Karavakis, E Kousouris, K Krajczar, K Lecoq, P Lee, YJ Lourenco, C Magini, N Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mulders, M Musella, P Nesvold, E Orsini, L Cortezon, EP Perez, E Perrozzi, L Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Plagge, M Quertenmont, L Racz, A Reece, W Rolandi, G Rovere, M Sakulin, H Santanastasio, E Schafer, C Schwick, C Segoni, I Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Stoye, M Tsirou, A Veres, GI Vlimant, JR Wiihri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Renker, D Rohe, T Bachmair, E Bani, L Bianchini, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Freudenreich, K Grab, C Hits, D Lecomte, P Lustermann, W Mangano, B Marini, AC Del Arbol, PMR Meister, D Mohr, N Moortgat, E Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pape, L Pauss, F Peruzzi, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Amsler, C Chiochia, V Favaro, C Rikova, MI Kilminster, B Mejias, BM Robmann, P Snoek, H Taroni, S Verzetti, M Yang, Y Cardaci, M Chen, KH Ferro, C Kuo, CM Li, SW Lin, W Lu, YJ Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wang, M Asavapibhop, B Suwonjandee, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Karapinar, G Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Bahtiyar, H Barlas, E Cankocak, K Giinaydin, YO Vardarli, FI Yucel, M Levchuk, L Sorokin, P Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Meng, Z Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Williams, T Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Buchmuller, O Burton, D Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Kenzie, M Lane, R Lucas, R Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Seez, C Sharp, P Sparrow, A Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Whyntie, T Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Dittmann, J Hatakeyama, K Kasmi, A Liu, H Scarborough, T Charaf, O Cooper, SI Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A Lawson, P Lazic, D Rohlf, J Sperka, D John, JS Sulak, L Alimena, J Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Jabeen, S Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Segala, M Sinthuprasith, T Speer, T Breedon, R Breto, G Sanchez, MCDL Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Miceli, T Pellett, D Pilot, J Ricci-Tam, F Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Wilbur, S Yohay, R Andreev, V Cline, D Cousins, R Erhan, S Everaerts, P Farrell, C Felcini, M Hauser, J Ignatenko, M Jarvis, C Rakness, G Schlein, P Takasugi, E Traczyk, P Valuev, V Weber, M Babb, J Clare, R Ellison, J Gary, JW Hanson, G Heilman, J Jandir, P Liu, H Long, OR Luthra, A Malberti, M Nguyen, H Paramesvaran, S Shrinivas, A Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Padhi, S Palmer, C Petrucciani, G Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, E Yagil, A Yoo, J Barge, D Campagnari, C Danielson, T Flowers, K Geffert, P George, C Golf, F Incandela, J Justus, C Kovalskyi, D Krutelyov, V Lowette, S Villalba, RM Mccoll, N Pavlunin, V Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Kcira, D Ma, Y Mott, A Newman, HB Pena, C Rogan, C Spiropulu, M Timciuc, V Veverka, J Wilkinson, R Xie, S Zhu, RY Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Liu, YF Paulini, M Russ, J Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Nauenberg, U Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Eggert, N Gibbons, LK Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Apollinari, G Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Gottschalk, E Gray, L Green, D Gutsche, O Hare, D Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Kaadze, K Klima, B Kunori, S Kwan, S Linacre, J Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Outschoorn, VIM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Prokofyev, O Ratnikova, N Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Remington, R Rinkevicius, A Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Yumiceva, F Adams, MR Apanasevich, L Bazterra, VE Betts, RR Bucinskaite, I Canner, J Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Kurt, P Lacroix, F Moon, DH O'Brien, C Silkworth, C Strom, D Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Dilsiz, K Duru, F Griffiths, S Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Ogul, H One, Y Ozok, F Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Giurgiu, G Gritsan, AV Hu, G Maksimovic, P Martin, C Swartz, M Whitbeck, A Baringer, P Bean, A Benelli, G Kenny, RP Murray, M Noonan, D Sanders, S Stringer, R Wood, JS Barfuss, AF Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Saini, LK Shrestha, S Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Peterman, A Skuja, A Temple, J Tonjes, MB Tonwar, SC Apyan, A Bauer, G Busza, W Cali, IA Chan, M Di Matteo, L Dutta, V Ceballos, GG Goncharov, M Gulhan, D Kim, Y Klute, M Lai, YS Levin, A Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Stephans, GSF Stockli, F Sumorok, K Velicanu, D Wolf, R Wyslouch, B Yang, M Yilmaz, Y Yoon, AS Zanetti, M Zhukova, V Dahmes, B De Benedetti, A Franzoni, G Gude, A Haupt, J Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Acosta, JG Cremaldi, LM Kroeger, R Oliveros, S Perera, L Rahmat, R Sanders, DA Summers, D Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Eads, M Suarez, RG Keller, J Kravchenko, I Lazo-Flores, J Malik, S Meier, F Snow, GR Dolen, J Godshalk, A Lashvili, I Jain, S Kharchilava, A Kumar, A Rappoccio, S Wan, Z Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Massironi, A Nash, D Orimoto, T Trocino, D Wood, D Zhang, J Anastassov, A Hahn, KA Kubik, A Lusito, L Mucia, N Odell, N Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Sung, K Velasco, M Won, S Berry, D Brinkerhoff, A Chan, KM Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Antonelli, L Bylsm, B Durkin, LS Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Smith, G Vuosalo, C Winer, BL Wolfe, H Berry, E Elmer, P Halyo, V Hebda, P Hegeman, J Hunt, A Jindal, P Koay, SA Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zenz, SC Zuranski, A Brownson, E Lopez, A Mendez, H Vargas, JER Alagoz, E Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jones, M Jung, K Koybasi, O Kress, M Leonardo, N Pegna, DL Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Marono, MV Wang, F Xie, W Xu, L Yoo, HD Zablocki, J Zheng, Y Parashar, N Adair, A Akgun, B Ecklund, KM Geurts, FJM Li, W Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Covarelli, R De Barbaro, R Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Petrillo, G Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Thomassen, P Walker, M Cerizza, G Hollingsworth, M Rose, K Spanier, S Yang, ZC York, A Bouhali, O Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Suarez, I Tatarinov, A Toback, D Akchurin, N Cowden, C Damgov, J Dragoiu, C Dudero, PR Kovitanggoon, K Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Greene, S Gurrola, A Johns, W Maguire, C Mao, Y Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Le, SB Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, R Don, CKK Lamichhane, R Sakharov, A Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Duric, S Friis, E Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Loveless, R Mohapatra, A Mozer, MU Ojalvo, I Perry, T Pierro, GA Polese, G Ross, I Sarangi, T Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Kueinz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Rabady, D. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Treberer-Treberspurg, W. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Alderweireldt, S. Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Knutsson, A. Luyckx, S. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Staykova, Z. Van Haevermaet, H. Van Mechelen, R. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Kalogeropoulos, A. Keaveney, J. Maes, M. Olbrechts, A. Tavernier, S. Van Doninck, W. Van Mulders, P. Van Onsem, G. P. Villella, I. Caillol, C. Clerbaux, B. De Lentdecker, G. Favart, L. Gay, A. P. R. Hreus, T. Leonard, A. Marage, P. E. Mohammadi, A. Pernie, L. Reis, T. Seva, T. Thomas, L. Velde, C. Vander Vanlaer, R. Wang, J. Adler, V. Beernaert, K. Benucci, L. Cimmino, A. Costantini, S. Dildick, S. Garcia, G. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Sigamani, M. Strobbe, N. Thyssen, E. Tytgat, M. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Beluffi, C. Bruno, G. Castello, R. Caudron, A. Ceard, L. Da Silveira, G. G. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Jez, R. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Popov, A. Selvaggi, M. Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Correa Martins Junior, M. Martins, T. Pol, M. E. Souza, M. H. G. Alda Junior, W. L. Carvalho, W. Chinellato, J. Custodio, A. Da Costa, E. M. De Jesus Damiao, D. De Oliveira Martins, C. Fonseca De Souza, S. Malbouisson, H. Malek, M. Matos Figueiredo, D. Mundim, L. Nogima, H. Prado Da Silva, W. L. Santoro, A. Sznajder, A. Tonelli Manganote, E. J. Vilela Pereira, A. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, R. Piperov, S. Rodozov, M. Sultanov, G. Vutova, M. Dimitrov, A. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, R. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, X. Wang, Z. Xiao, H. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, W. Liu, S. Mao, Y. Qian, S. J. Teng, H. Wang, D. Zhang, L. Zou, W. Avila, C. Montoya, C. A. Carrillo Sierra, L. F. Chaparro Gomez, J. P. Moreno, B. Gomez Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Kadija, K. Luetic, J. Mekterovic, D. Morovic, S. Tikvica, L. Attikis, A. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, E. Razis, P. A. Finger, M. Finger, M., Jr. Abdelalim, A. A. Assran, Y. Elgammal, S. Kamer, A. Ellithi Mahmoud, M. A. Radi, A. Kadastik, M. Muentel, M. Murumaa, M. Raidal, M. Rebane, L. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Wendland, L. Tuuva, T. Besancon, M. Couderc, E. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, R. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Millischer, L. Nayak, A. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bluj, M. Busson, R. Charlot, C. Daci, N. Dahms, T. Dalchenko, M. Dobrzynski, L. Florent, A. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Veelken, C. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Brom, J. -M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Fontaine, J. -C. Gele, D. Goerlach, U. Goetzmann, C. Juillot, R. Le Bihan, A. -C. Van Hove, P. Gadrat, S. Beauceron, S. Beaupere, N. Boudoul, G. Brochet, S. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Sgandurra, L. Sordini, V. Donckt, M. Vander Verdier, P. Viret, S. Tsamalaidze, Z. Autermann, C. Beranek, S. Calpas, B. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, N. Klein, K. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Knutzen, S. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Padeken, K. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Thueer, S. Weber, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, E. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Nugent, I. M. Perchalla, L. Pooth, O. Stahl, A. Asin, I. Bartosik, N. Behr, J. Behrenhoff, W. Behrens, U. Bell, A. J. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Choudhury, S. Costanza, F. Pardos, C. Diez Dooling, S. Dorland, T. Eckerlin, G. Eckstein, D. Flucke, G. Geiser, A. Glushkov, I. Grebenyuk, A. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Horton, D. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Leonard, J. Lipka, K. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Nowak, F. Olzem, J. Perrey, H. Petrukhin, A. Pitzl, D. Placakyte, R. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Sahin, M. Oe. Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Stein, M. Walsh, R. Wissing, C. Martin, M. Aldaya Blobel, V. Enderle, H. Erfle, J. Garutti, E. Gebbert, U. Goerner, M. Gosselink, M. Haller, J. Heine, K. Hoeing, R. S. Kaussen, G. Kirschenmann, H. Klanner, R. Kogler, R. Lange, J. Marchesini, I. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schroeder, M. Schum, T. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbrueck, G. Thomsen, J. Troendle, D. Usai, E. Vanelderen, L. Barth, C. Baus, C. Berger, J. Boeser, C. Butz, E. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hartmann, F. Hauth, T. Held, H. Hoffmann, K. H. Husemann, U. Katkov, I. Komaragiri, J. R. Kornmayer, A. Pardo, P. Lobelle Martschei, D. Mueller, Th. Niegel, M. Nuernberg, A. Oberst, O. Ott, J. Quast, G. Rabbertz, K. Ratnikov, F. Roecker, S. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Zeise, M. Anagnostou, G. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Markou, A. Markou, C. Ntomari, E. Topsis-Giotis, I. Gouskos, L. Panagiotou, A. Saoulidou, N. Stiliaris, E. Aslanoglou, X. Evangelou, I. Flouris, G. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Pafadas, E. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, R. Trocsanyi, Z. L. Ujvari, B. Swain, S. K. Beni, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mehta, M. Z. Mittal, M. Nishu, N. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Malhotra, S. Naimuddin, M. Ranjan, K. Saxena, P. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Chatterjee, K. Dutta, S. Gomber, B. Jain, Sa. Jain, Sh. Khurana, R. Modak, A. Mukherjee, S. Roy, D. Sarkar, S. Sharan, M. Singh, A. P. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Topkar, A. Aziz, T. Chatterjee, R. M. Ganguly, S. Ghosh, S. Guchait, M. Gurtu, A. Kole, G. Kumar, S. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Panda, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Grunewald, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Laselli, G. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, R. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Campanini, R. Capiluppi, P. Castro, A. Cavallo, Er. Codispoti, G. Cuffiani, M. Dallavalle, G. M. Fabbri, E. Fanfani, A. Fasanella, A. Giacomelli, R. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanan, A. Navarria, El. Odorici, E. Perrotta, A. Primavera, E. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Chiorboli, M. Costa, S. Giordano, E. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Gori, V. Lenzi, P. Meschidi, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Fabbri, E. Piccolo, D. Fabbricatore, P. Ferro, E. Lo Vetere, M. Musenich, R. Tosi, S. Benaglia, A. Dinardo, M. E. Fiorendi, S. Gennai, S. Ghezzi, A. Govoni, P. Lucchini, M. T. Malvezzi, S. Manzoni, R. A. Martelli, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. De Fatis, T. Tabarelli Buontempo, S. Cavallo, N. De Cosa, A. Fabozzi, E. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bellato, M. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Dosselli, U. Galanti, M. Gasparini, F. Gasparini, U. Giubilato, P. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Passaseo, M. Pazzini, J. Pegoraro, M. Pozzobon, N. Ronchese, R. Simonetto, E. Torassa, E. Tosi, M. Ventura, S. Zotto, P. Zucchetta, A. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Vitulo, R. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Nappi, A. Romeo, E. Saha, A. Santocchia, A. Spiezia, A. Androsov, K. Azzurri, P. Bagliesi, G. Boccali, T. Broccolo, G. Castaldi, R. Ciocci, M. A. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Grippo, M. T. Kraan, A. Ligabue, E. Lomtadze, T. Martini, L. Messineo, A. Moon, C. S. Palla, E. Rizzi, A. Savoy-Navarro, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Vernieri, C. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Grassi, M. Longo, E. Margaroli, F. Meridiani, R. Michell, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Rovelli, C. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Bellan, R. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Degano, A. Demaria, N. Mariotti, C. Maselli, S. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Ruspa, M. Sacchi, R. Solano, A. Staiano, A. Tamponi, U. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. La Licata, C. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Zanetti, A. Chang, S. Kim, T. Y. Nam, S. K. Kim, D. H. Kim, G. N. Kim, J. E. Kong, D. J. Lee, S. Oh, Y. D. Park, H. Son, D. C. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Kwon, E. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Grigelionis, I. Juodagalvis, A. Castilla-Valdez, H. De La Cruz-Burelo, E. Heredia-de La Cruz, I. Lopez-Fernandez, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Moreno, S. Carrillo Valencia, E. Vazquez Ibarguen, H. A. Salazar Linares, E. Casimiro Pineda, A. Morelos Reyes-Santos, M. A. Krofcheck, D. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Asghar, M. I. Butt, J. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, R. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Wolszczak, W. Almeida, N. Bargassa, R. Beirao Da Cruz E Silva, C. Faccioli, R. Parracho, P. G. Ferreira Gallinaro, M. Nguyen, F. Antunes, J. Rodrigues Seixas, J. Varela, J. Vischia, P. Afanasiev, S. Bunin, R. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Konoplyanikov, V. Laney, A. Malakhov, A. Matveev, V. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Skatchkov, N. Smirnov, V. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, R. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Erofeeva, M. Gavrilov, V. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Spiridonov, A. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Petrushanko, S. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Kachanov, V. Kalinin, A. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Maestre, J. Alcaraz Battilana, C. Calvo, E. Cerrada, M. Chamizo-Llatas, M. Colino, N. De la Cruz, B. Per, A. Delgado Vazquez, D. Dominguez Bedoya, C. Fernandez Ramos, J. P. Fernandez Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Lopez, O. Gonzalez Lopez, S. Goy Hernandez, J. M. Josa, M. I. Merino, G. De Martino, E. Navarro Pelayo, J. Puerta Olmeda, A. Quintario Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. de Troconiz, J. F. Brun, H. Cuevas, J. Menendez, J. Fernandez Folgueras, S. Caballero, I. Gonzalez Iglesias, L. Lloret Gomez, Piedra Cifuentes, J. A. Brochero Cabrillo, I. J. Calderon, A. Chuang, S. H. Campderros, J. Duarte Fernandez, M. Gomez, G. Sanchez, J. Gonzalez Graziano, A. Jorda, C. Virto, A. Lopez Marco, J. Marco, R. Rivero, C. Martinez Matorras, F. Sanchez, F. J. Munoz Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Cortabitarte, R. Vilar Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Bendavid, J. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Bondu, O. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa Colafranceschi, S. D'Alfonso, M. d'Enterria, D. Dabrowski, A. David, A. De Guio, F. De Roeck, A. De Visscher, S. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Eugster, J. Funk, W. Georgiou, G. Giffels, M. Gigi, D. Gill, K. Giordano, D. Girone, M. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Gowdy, S. Guida, R. Hammer, J. Hansen, M. Harris, P. Hartl, C. Hinzmann, A. Innocente, V. Janot, R. Karavakis, E. Kousouris, K. Krajczar, K. Lecoq, P. Lee, Y. -J. Lourenco, C. Magini, N. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mulders, M. Musella, P. Nesvold, E. Orsini, L. Cortezon, E. Palencia Perez, E. Perrozzi, L. Petrilli, A. Pfeiffer, A. Pierini, M. Pimia, M. Piparo, D. Plagge, M. Quertenmont, L. Racz, A. Reece, W. Rolandi, G. Rovere, M. Sakulin, H. Santanastasio, E. Schafer, C. Schwick, C. Segoni, I. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Stoye, M. Tsirou, A. Veres, G. I. Vlimant, J. R. Wiihri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Renker, D. Rohe, T. Bachmair, E. Bani, L. Bianchini, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Freudenreich, K. Grab, C. Hits, D. Lecomte, P. Lustermann, W. Mangano, B. Marini, A. C. Del Arbol, P. Martinez Ruiz Meister, D. Mohr, N. Moortgat, E. Nageli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pape, L. Pauss, F. Peruzzi, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Amsler, C. Chiochia, V. Favaro, C. Rikova, M. Ivova Kilminster, B. Mejias, B. Millan Robmann, P. Snoek, H. Taroni, S. Verzetti, M. Yang, Y. Cardaci, M. Chen, K. H. Ferro, C. Kuo, C. M. Li, S. W. Lin, W. Lu, Y. J. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wang, M. Asavapibhop, B. Suwonjandee, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Karapinar, G. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Zeyrek, M. Guelmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Bahtiyar, H. Barlas, E. Cankocak, K. Giinaydin, Y. O. Vardarli, F. I. Yuecel, M. Levchuk, L. Sorokin, P. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Meng, Z. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Williams, T. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Buchmuller, O. Burton, D. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Kenzie, M. Lane, R. Lucas, R. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Seez, C. Sharp, P. Sparrow, A. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Whyntie, T. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Dittmann, J. Hatakeyama, K. Kasmi, A. Liu, H. Scarborough, T. Charaf, O. Cooper, S. I. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. John, J. St. Sulak, L. Alimena, J. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Jabeen, S. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Segala, M. Sinthuprasith, T. Speer, T. Breedon, R. Breto, G. Calderon De la Barca Sanchez, M. Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Miceli, T. Pellett, D. Pilot, J. Ricci-Tam, F. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Wilbur, S. Yohay, R. Andreev, V. Cline, D. Cousins, R. Erhan, S. Everaerts, P. Farrell, C. Felcini, M. Hauser, J. Ignatenko, M. Jarvis, C. Rakness, G. Schlein, P. Takasugi, E. Traczyk, P. Valuev, V. Weber, M. Babb, J. Clare, R. Ellison, J. Gary, J. W. Hanson, G. Heilman, J. Jandir, P. Liu, H. Long, O. R. Luthra, A. Malberti, M. Nguyen, H. Paramesvaran, S. Shrinivas, A. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Padhi, S. Palmer, C. Petrucciani, G. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, E. Yagil, A. Yoo, J. Barge, D. Campagnari, C. Danielson, T. Flowers, K. Geffert, P. George, C. Golf, F. Incandela, J. Justus, C. Kovalskyi, D. Krutelyov, V. Lowette, S. Villalba, R. Magafia Mccoll, N. Pavlunin, V. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Kcira, D. Ma, Y. Mott, A. Newman, H. B. Pena, C. Rogan, C. Spiropulu, M. Timciuc, V. Veverka, J. Wilkinson, R. Xie, S. Zhu, R. Y. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Liu, Y. F. Paulini, M. Russ, J. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Nauenberg, U. Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Apollinari, G. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Gottschalk, E. Gray, L. Green, D. Gutsche, O. Hare, D. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Kaadze, K. Klima, B. Kunori, S. Kwan, S. Linacre, J. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Outschoorn, V. I. Martinez Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Ratnikova, N. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Remington, R. Rinkevicius, A. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Yumiceva, F. Adams, M. R. Apanasevich, L. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Canner, J. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Kurt, P. Lacroix, F. Moon, D. H. O'Brien, C. Silkworth, C. Strom, D. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Dilsiz, K. Duru, F. Griffiths, S. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Ogul, H. One, Y. Ozok, F. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Giurgiu, G. Gritsan, A. V. Hu, G. Maksimovic, P. Martin, C. Swartz, M. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Stringer, R. Wood, J. S. Barfuss, A. F. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Saini, L. K. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Peterman, A. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Apyan, A. Bauer, G. Busza, W. Cali, I. A. Chan, M. Di Matteo, L. Dutta, V. Ceballos, G. Gomez Goncharov, M. Gulhan, D. Kim, Y. Klute, M. Lai, Y. S. Levin, A. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Velicanu, D. Wolf, R. Wyslouch, B. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Zhukova, V. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Haupt, J. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Acosta, J. G. Cremaldi, L. M. Kroeger, R. Oliveros, S. Perera, L. Rahmat, R. Sanders, D. A. Summers, D. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Eads, M. Suarez, R. Gonzalez Keller, J. Kravchenko, I. Lazo-Flores, J. Malik, S. Meier, F. Snow, G. R. Dolen, J. Godshalk, A. Lashvili, I. Jain, S. Kharchilava, A. Kumar, A. Rappoccio, S. Wan, Z. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Massironi, A. Nash, D. Orimoto, T. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Hahn, K. A. Kubik, A. Lusito, L. Mucia, N. Odell, N. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Sung, K. Velasco, M. Won, S. Berry, D. Brinkerhoff, A. Chan, K. M. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Antonelli, L. Bylsm, B. Durkin, L. S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Smith, G. Vuosalo, C. Winer, B. L. Wolfe, H. Berry, E. Elmer, P. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Jindal, P. Koay, S. A. Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zenz, S. C. Zuranski, A. Brownson, E. Lopez, A. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jones, M. Jung, K. Koybasi, O. Kress, M. Leonardo, N. Pegna, D. Lopes Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Marono, M. Vidal Wang, F. Xie, W. Xu, L. Yoo, H. D. Zablocki, J. Zheng, Y. Parashar, N. Adair, A. Akgun, B. Ecklund, K. M. Geurts, F. J. M. Li, W. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Covarelli, R. De Barbaro, R. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Petrillo, G. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Thomassen, P. Walker, M. Cerizza, G. Hollingsworth, M. Rose, K. Spanier, S. Yang, Z. C. York, A. Bouhali, O. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Cowden, C. Damgov, J. Dragoiu, C. Dudero, P. R. Kovitanggoon, K. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Greene, S. Gurrola, A. Johns, W. Maguire, C. Mao, Y. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Le, S. Bout Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, Re. Don, C. Kottachchi Kankanamge Lamichhane, R. Sakharov, A. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Duric, S. Friis, E. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Loveless, R. Mohapatra, A. Mozer, M. U. Ojalvo, I. Perry, T. Pierro, G. A. Polese, G. Ross, I. Sarangi, T. Savin, A. Smith, W. H. Swanson, J. CA CMS Collaboration TI Angular analysis and branching fraction measurement of the decay B-0 -> K*(0)mu(+)mu(-) SO PHYSICS LETTERS B LA English DT Article DE CMS; Physics ID PHYSICS; MODEL AB The angular distributions and the differential branching fraction of the decay B-0 -> K*(892)(0)mu(+)mu(-) are studied using a data sample corresponding to an integrated luminosity of 5.2 fb(-1) collected with the CMS detector at the LHC in pp collisions at root s = 7 TeV. From more than 400 signal decays, the forward-backward asymmetry of the muons, the K*(892)(0) longitudinal polarization fraction, and the differential branching fraction are determined as a function of the square of the dimuon invariant mass. The measurements are in good agreement with standard model predictions. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; CMS Collaboration] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Kueinz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C. -E.] Inst Hochenergiephys OeAW, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, R.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, B-2020 Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Kalogeropoulos, A.; Keaveney, J.; Maes, M.; Olbrechts, A.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Chatrchyan, S.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Favart, L.; Gay, A. P. R.; Hreus, T.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Pernie, L.; Reis, T.; Seva, T.; Thomas, L.; Velde, C. Vander; Vanlaer, R.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Dildick, S.; Garcia, G.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, E.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Chatrchyan, S.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, R.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Popov, A.; Selvaggi, M.; Garcia, J. M. Vizan] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Chatrchyan, S.; Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Alderweireldt, S.; Caudron, A.; Alda Junior, W. L.; Carvalho, W.; Chinellato, J.; Custodio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Lagana, C.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, R.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.] Inst Nucl Energy Res, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, R.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, X.; Wang, Z.; Xiao, H.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Montoya, C. A. Carrillo; Sierra, L. F. Chaparro; Gomez, J. P.; Moreno, B. Gomez; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Tikvica, L.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, E.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Abdelalim, A. A.; Assran, Y.; Elgammal, S.; Kamer, A. Ellithi; Mahmoud, M. A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Kadastik, M.; Muentel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Couderc, E.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, R.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Benhabib, L.; Bluj, M.; Busson, R.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Brom, J. -M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Goetzmann, C.; Juillot, R.; Le Bihan, A. -C.; Van Hove, P.] Univ Haute Alsace Mulhouse, Univ Strasbourg, Inst Pluridisciplinaire Hubert Curien, CNRS IN2P3, Strasbourg, France. [Gadrat, S.] CNRS, IN2P3, Ctr Calcul Inst Natl Phys Nucl & Phys Particules, Villeurbanne, France. [Giammanco, A.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.] Univ Lyon 1, Univ Lyon, CNRS IN2P3, Inst Phys Nucl Lyon, F-69622 Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Inform, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, N.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] Rhein Westfal TH Aachen, Phys Inst 1, Aachen, Germany. [Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thueer, S.; Weber, M.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, E.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Gunnellini, P.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Attikis, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Grebenyuk, A.; Habib, S.; Hauk, J.; Hellwig, G.; Horton, D.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Leonard, J.; Lipka, K.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Sahin, M. Oe.; Salfeld-Nebgen, J.; Lange, J.; Schmidt, A.] Deutsch Elektronen Synchroton, Hamburg, Germany. [Attikis, A.; Martin, M. Aldaya; Blobel, V.; Enderle, H.; Erfle, J.; Garutti, E.; Gebbert, U.; Goerner, M.; Gosselink, M.; Haller, J.; Heine, K.; Hoeing, R. S.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Marchesini, I.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schroeder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Troendle, D.; Usai, E.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Baus, C.; Berger, J.; Boeser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hartmann, F.; Hauth, T.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Kornmayer, A.; Pardo, P. Lobelle; Martschei, D.; Mueller, Th.; Niegel, M.; Nuernberg, A.; Oberst, O.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.] Inst Expt Kernphys, Karlsruhe, Germany. [Attikis, A.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Loukas, D.; Markou, A.; Markou, C.; Ntomari, E.; Topsis-Giotis, I.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece. [Gouskos, L.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.] Univ Athens, Athens, Greece. [Pardos, C. Diez; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Vesztergombi, G.; Zsigmond, A. J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, R.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Swain, S. K.] Natl Inst Sci Educ & Res, Bhubaneswar, Orissa, India. [Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Mittal, M.; Nishu, N.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Saxena, P.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Sharma, A.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Singh, A. P.; Dutta, D.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Abdulsalam, A.; Aziz, T.; Chatterjee, R. M.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Sudhakar, K.; Wickramage, N.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India. [Banerjee, S.; Dugad, S.] Tata Inst Fundamental Res HECR, Bombay, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Grunewald, M.] Univ Coll Dublin, Dublin 2, Ireland. [Abbrescia, M.; Barbone, L.; Calabria, C.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Laselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, R.; Zito, G.] INFN Sez Bari, Bari, Italy. [Selvaggi, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, E.; Fanfani, A.; Fasanella, A.; Giacomelli, R.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanan, A.; Navarria, El.; Odorici, E.; Perrotta, A.; Primavera, E.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.; Cavallo, N.; Tosi, M.] INFN Sez Bologna, Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, Er.; Codispoti, G.; Cuffiani, M.; Fanfani, A.; Fasanella, A.; Guiducci, L.; Meneghelli, M.; Navarria, El.; Primavera, E.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Travaglini, R.; Tosi, M.] Univ Bologna, Bologna, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Giordano, E.; Potenza, R.; Tricomi, A.; Tuve, C.] 1NFN Sez Catania, Catania, Italy. [Albergo, S.; Chiorboli, M.; Costa, S.; Giordano, E.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschidi, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] INFN Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Gori, V.; Lenzi, P.; Tropiano, A.] Univ Florence, Florence, Italy. [Benussi, L.; Bianco, S.; Fabbri, E.; Piccolo, D.] INFN Lab Nazl Frascati, Frascati, Italy. [Fabbricatore, P.; Ferro, E.; Lo Vetere, M.; Musenich, R.; Tosi, S.] INFN Sez Genova, Genoa, Italy. [Lo Vetere, M.; Tosi, S.] Univ Genoa, Genoa, Italy. [Benaglia, A.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; De Fatis, T. Tabarelli] INFN Sez Milano Bicocca, Milan, Italy. [Dinardo, M. E.; Fiorendi, S.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Manzoni, R. A.; Martelli, A.; Paganoni, M.; Ragazzi, S.; De Fatis, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; De Cosa, A.; Fabozzi, E.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] INFN Sez Napoli, Naples, Italy. [De Cosa, A.; Iorio, A. O. M.] Univ Napoli Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, E.] Univ Basilicata Potenza, Naples, Italy. [Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bellato, M.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, R.; Simonetto, E.; Torassa, E.; Tosi, M.; Ventura, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.] INFN Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, R.; Simonetto, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trent, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, R.] INFN Sez Pavia, Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Vitulo, R.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, E.; Saha, A.; Santocchia, A.; Spiezia, A.] INFN Sez Perugia, Perugia, Italy. [Biasini, M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, E.; Santocchia, A.; Spiezia, A.] Univ Pergia, Perugia, Italy. [Androsov, K.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Grippo, M. T.; Kraan, A.; Ligabue, E.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, E.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.] 1NFN Sez Pisa, Pisa, Italy. [Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [D'Agnolo, R. T.; Foa, L.; Ligabue, E.; Vernieri, C.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Longo, E.; Margaroli, F.; Meridiani, R.; Michell, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Soffi, L.] INFN Sez Roma, Rome, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Longo, E.; Margaroli, F.; Meridiani, R.; Michell, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.] Univ Roma, Rome, Italy. [Da Costa, E. M.; Kargoll, B.; Bellato, M.; Amapane, N.; Arcidiacono, R.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Degano, A.; Demaria, N.; Mariotti, C.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Solano, A.] INFN Sez Torino, Turin, Italy. [Masetti, G.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Solano, A.; Staiano, A.; Tamponi, U.] Univ Torino, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.; Ruspa, M.] Univ Piemonte Orientate Novara, Turin, Italy. [Montanan, A.; Belforte, S.; Candelise, V.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Penzo, A.; Schizzi, A.; Zanetti, A.] INFN Sez Trieste, Trieste, Italy. [Montanan, A.; Belforte, S.; Candelise, V.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Penzo, A.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Chang, S.; Nam, S. K.; Kim, D. H.] Kangwon Natl Univ, Chunchon, South Korea. [Mohammadi, A.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Son, D. C.; Kim, H.; Park, C.; Lee, B.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, D. H.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Univ & Elementary Particles, Kwangju, South Korea. [Naranjo, I. N.; Gyun, D.; Hong, B.; Kim, T. J.; Lee, K. S.; Roh, Y.; Choi, M.; Park, C.] Korea Univ, Seoul, South Korea. [Kim, D. H.; Choi, M.; Park, C.; Park, I. C.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Grebenyuk, A.; Kim, D. H.; Lee, S.; Lee, K. S.; Choi, M.; Choi, Y.; Goh, J.; Kwon, E.; Lee, B.; Seo, H.] Sungkyunkwan Univ, Suwon, South Korea. [Grigelionis, I.; Juodagalvis, A.] Vilnius Univ, Vilnius, Lithuania. [Vilela Pereira, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.] Ctr Invest Estudios & Avanzados IPN, Mexico City, DF, Mexico. [Montoya, C. A. Carrillo; Valencia, E. Vazquez] Univ Iberoamer, Mexico City, DF, Mexico. [Ibarguen, H. A. Salazar] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Linares, E. Casimiro; Pineda, A. Morelos; Reyes-Santos, M. A.] Univ Autonoma San Luis, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid i Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Fruehwirth, R.; Bialkowska, H.; Boimska, B.; Gorski, M.; Kazana, M.; Wrochna, G.; Zalewski, R.] Natl Ctr Nucl Res, Otwock, Poland. [Fasanella, A.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Wolszczak, W.] Univ Warsaw, Inst Expt Phys, Fac Phys, Warsaw, Poland. [Almeida, N.; Bargassa, R.; Beirao Da Cruz E Silva, C.; Faccioli, R.; Gallinaro, M.; Nguyen, F.; Antunes, J. Rodrigues; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrument & Fis Expt Particulas, Lisbon, Portugal. [Fasanella, A.; Afanasiev, S.; Bunin, R.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Malakhov, A.; Matveev, V.; Palichik, V.; Zarubin, A.] Joint Inst Nucl Res, Dubna, Russia. [Kim, D. H.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Levchenko, R.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, Gatchina, Russia. [Dermenev, A.; Gninenko, S.; Golubev, N.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Kirakosyan, M.] Inst Nucl Res, Moscow, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow, Russia. [Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Petrushanko, S.; Savrin, V.; Snigirev, A.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] State Res Ctr Russian Federat, Inst High Energy Phys, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.] Univ Belgrade, Fac Phys & Vinca Inst Nucl Sci, Belgrade, Serbia. [Garcia, G.; Cavallo, Er.; Santocchia, A.; Romero, A.; Aguilar-Benitez, M.; Maestre, J. Alcaraz; Battilana, C.; Chamizo-Llatas, M.; Colino, N.; De la Cruz, B.; Per, A. Delgado; Vazquez, D. Dominguez; Bedoya, C. Fernandez; Ramos, J. P. Fernandez; Flix, J.; Fouz, M. C.; Redondo, I.] CIEMAT, Madrid, Spain. [Albajar, C.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Bruno, G.; Bedoya, C. Fernandez; Lopez, O. Gonzalez; Brun, H.; Cuevas, J.; Folgueras, S.; Gomez, Piedra] Univ Oviedo, Oviedo, Spain. [Broccolo, G.; Lopez, O. Gonzalez; Menendez, J. Fernandez; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Campderros, J. Duarte; Graziano, A.; Jorda, C.; Marco, J.; Marco, R.; Rivero, C. Martinez; Sanchez, F. J. Munoz; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Vila, I.; Cortabitarte, R. Vilar; Bondu, O.] CSIC Univ Cantabria, ICFA, Santander, Spain. [Moreno, B. Gomez; Bloch, D.; Cortabitarte, R. Vilar; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Barney, D.; Bendavid, J.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Visscher, S.; Dobson, M.; Giffels, M.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Gowdy, S.; Harris, P.; Hartl, C.; Hinzmann, A.; Janot, R.; Meschi, E.; Moser, R.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Cortezon, E. Palencia; Petrilli, A.; Pfeiffer, A.; Sakulin, H.; Santanastasio, E.; Schafer, C.; Schwick, C.; Segoni, I.; Veres, G. I.] CERN, European Org Nucl Res, Geneva, Switzerland. [Dietz-Laursonn, E.; Dhingra, N.; Konstantinov, D.; Bertl, W.; Gabathuler, K.; Horisberger, R.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Bachmair, E.; Bani, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marini, A. C.; Del Arbol, P. Martinez Ruiz; Meister, D.; Mohr, N.; Moortgat, E.; Nageli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.] Swiss Fed Inst Technol, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; Favaro, C.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Robmann, P.; Snoek, H.; Taroni, S.; Verzetti, M.; Yang, Y.] Univ Zurich, Zurich, Switzerland. [Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli, Taiwan. [Klein, B.; Chen, G. M.; Chang, S.; Lu, Y. J.; Bartalini, P.; Chang, P.; Chang, Y. W.; Chao, Y.; Grundler, U.; Hou, W. -S.; Kao, K. Y.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wang, M.] NTU, Taipei, Taiwan. [Asavapibhop, B.; Suwonjandee, N.] Chulalongkorn Univ, Bangkok, Thailand. [Fasanella, A.; Kodolova, O.; Lopez, O. Gonzalez; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Kodolova, O.; Lopez, O. Gonzalez; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Karapinar, G.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Zeyrek, M.] Middle Tech Univ, Dept Phys, Ankara, Turkey. [Guelmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Bahtiyar, H.; Barlas, E.; Cankocak, K.; Vardarli, F. I.; Yuecel, M.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.; Sorokin, P.] Kharkov Inst Phys & Technol, Natl Sci Ctr, Kharkov, Ukraine. [Brooke, J. J.; Clement, E.; Cussans, D.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Meng, Z.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Bell, A. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Abdulsalam, A.; Fasanella, A.; Kodolova, O.; Lopez, O. Gonzalez; Adiguzel, A.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Sparrow, A.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge, Middx, England. [Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; John, J. St.; Sulak, L.] Boston Univ, Boston, MA 02215 USA. [Abdulsalam, A.; Fasanella, A.; Kodolova, O.; Lopez, O. Gonzalez; Buchmuller, O.; Charaf, O.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.] Brown Univ, Providence, RI 02912 USA. [Breto, G.; Calderon De la Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Wilbur, S.; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Andreev, V.; Cline, D.; Cousins, R.; Erhan, S.; Everaerts, P.; Farrell, C.; Felcini, M.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Takasugi, E.; Traczyk, P.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Babb, J.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Liu, H.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Paramesvaran, S.; Shrinivas, A.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Simon, M.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, E.; Yagil, A.; Yoo, J.] Univ Calif San Diego, San Diego, CA 92103 USA. [Barge, D.; Campagnari, C.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Villalba, R. Magafia; Mccoll, N.; Pavlunin, V.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Giammanco, A.; Dias, F. A.; Chen, G. M.; Apresyan, A.; Bornheim, A.; Bunn, J.; Di Marco, E.; Duarte, J.; Kcira, D.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Liu, H.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Jang, D. W.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Attikis, A.; Abdulsalam, A.; Fasanella, A.; Belyaev, A.; Adiguzel, A.; Belyaev, A.; Avetisyan, A.; Apresyan, A.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Gutsche, O.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kunori, S.; Kwan, S.; Linacre, J.; Lincoln, D.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Ratnikova, N.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Abdulsalam, A.; Fasanella, A.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Martins, T.; Gaultney, V.; Hewamanage, S.; Linn, S.; Markowitz, P.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Evdokimov, O.] Florida State Univ, Tallahassee, FL 32306 USA. [Daskalakis, G.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Fasanella, A.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Betts, R. R.; Canner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Lacroix, F.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Abdulsalam, A.; Fasanella, A.; Adiguzel, A.; Apresyan, A.; Askew, A.; Evdokimov, O.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Griffiths, S.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Ogul, H.; One, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Giurgiu, G.; Hu, G.; Maksimovic, P.; Martin, C.; Swartz, M.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Marangelli, B.; Evdokimov, O.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Saini, L. K.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Fasanella, A.; Evdokimov, O.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Kim, Y.; Klute, M.; Lai, Y. S.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Velicanu, D.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Acosta, J. G.; Cremaldi, L. M.; Kroeger, R.; Oliveros, S.; Rahmat, R.; Sanders, D. A.; Summers, D.] Univ Mississippi, Oxford, OH USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Suarez, R. Gonzalez; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Dolen, J.; Godshalk, A.; Lashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Wan, Z.] SUNY Buffalo, Buffalo, NY 14260 USA. [Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Schmidt, A.; Stoye, M.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Sung, K.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [De Wolf, E. A.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Slaunwhite, J.; Valls, N.; Wayne, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Antonelli, L.; Bylsm, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.] Ohio State Univ, Columbus, OH 43210 USA. [Evdokimov, O.; Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Koybasi, O.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Abdulsalam, A.; Fasanella, A.; Savoy-Navarro, A.; Evdokimov, O.; Alagoz, E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Jung, K.; Koybasi, O.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. Purdue Univ Calumet, Hammond, LA USA. [Li, W.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Betchart, B.; Bodek, A.; Covarelli, R.; De Barbaro, R.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Petrillo, G.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Evdokimov, O.; Koybasi, O.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Bouhali, O.] Rutgers State Univ, Piscataway, NJ USA. [Rose, A.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Toback, D.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Mao, Y.; Sharan, M.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Wood, D.; Arenton, M. W.; Le, S. Bout; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, Re.; Don, C. Kottachchi Kankanamge; Lamichhane, R.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Abdulsalam, A.; Fasanella, A.; Evdokimov, O.; Koybasi, O.; Adair, A.; Bouhali, O.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Loveless, R.; Mohapatra, A.; Mozer, M. U.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Rabady, D.; Genchev, V.; Iaydjiev, R.; Lingemann, J.; Guthoff, M.; Hartmann, F.; Hauth, T.; Kornmayer, A.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Beluffi, C.] Univ Strasbourg, Univ Haute Alsace, CNRS IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Giammanco, A.] NICPB, Tallinn, Estonia. [Popov, A.; Zhukov, V.; Katkov, I.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Chinellato, J.] Univ Estadual Campinas, Campinas, SP, Brazil. [Plestina, R.] IN2P3 CNRS, Ecole Polytech, Lab Leprince Ringuet, Palaiseau, France. [Abdelalim, A. A.; Elgammal, S.] Zewail City Sci & Technol, Zewail, Egypt. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Kamer, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Radi, A.] Ain Shams Univ, Cairo, Egypt. [Bluj, M.] Natl Ctr Nucl Res, Otwock, Poland. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Tsamalaidze, Z.] Joint Inst Nucl Res, Dubna, Russia. [Bergholz, M.] Brandenburg Tech Univ Cottbus, Cottbus, Germany. [Bergholz, M.] Univ Kansas, Lawrence, KS 66045 USA. [Horvath, D.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Swain, S. K.] Tata Inst Fundamental Res EHEP, Bombay, Maharashtra, India. [Guchait, M.] Tata Inst Fundamental Res HECR, Bombay, Maharashtra, India. [Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. [Maity, M.] Univ Visva Bharati, Santini Ketan, W Bengal, India. [Wickramage, N.] Univ Ruhuna, Matara, Sri Lanka. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Safarzadeh, B.] Islam Azad Univ, Sci & Res Branch, Plasma Phys Res Ctr, Tehran, Iran. [Martelli, A.; Androsov, K.] Univ Siena, I-53100 Siena, Italy. [De La Cruz-Burelo, E.] Univ Michoacana, Morelia, Michoacan, Mexico. [Adzic, P.; Krpic, D.] Univ Belgrade, Fac Phys, YU-11001 Belgrade, Serbia. [Colafranceschi, S.] Univ Rome, Fac Ingn, Rome, Italy. [Rolandi, G.] Scuola Normale, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Worm, S. D.; Newbold, D. M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Nageli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Starodumov, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Ozturk, S.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Onengut, G.] Cag Univ, Mersin, Turkey. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Bahtiyar, H.; Albayrak, E. A.; Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Giinaydin, Y. O.] Kahramanmaras Sutcu Imam Univ, Kahramanmaras, Turkey. [Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Pioppi, M.] Univ Perugia, INFN Sez Perugia, I-06100 Perugia, Italy. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Milenovic, P.] Univ Belgrade, Fac Phys, YU-11001 Belgrade, Serbia. [Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Yetkin, T.] Yildiz Tech Univ, Istanbul, Turkey. [Bouhali, O.] Texas A&M Univ, Doha, Qatar. [Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Varela, Joao/K-4829-2016; Sguazzoni, Giacomo/J-4620-2015; Ligabue, Franco/F-3432-2014; Menasce, Dario Livio/A-2168-2016; Bargassa, Pedrame/O-2417-2016; Rolandi, Luigi (Gigi)/E-8563-2013; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; Inst. of Physics, Gleb Wataghin/A-9780-2017; Dubinin, Mikhail/I-3942-2016; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Sznajder, Andre/L-1621-2016; Vilela Pereira, Antonio/L-4142-2016; Da Silveira, Gustavo Gil/N-7279-2014; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Xie, Si/O-6830-2016; Marlow, Daniel/C-9132-2014; de Jesus Damiao, Dilson/G-6218-2012; Janssen, Xavier/E-1915-2013; Novaes, Sergio/D-3532-2012; Bartalini, Paolo/E-2512-2014; Santoro, Alberto/E-7932-2014; Wulz, Claudia-Elisabeth/H-5657-2011; Dudko, Lev/D-7127-2012; Codispoti, Giuseppe/F-6574-2014; Bellan, Riccardo/G-2139-2014; Petrushanko, Sergey/D-6880-2012; da Cruz e Silva, Cristovao/K-7229-2013; Lokhtin, Igor/D-7004-2012; Moon, Chang-Seong/J-3619-2014; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Venturi, Andrea/J-1877-2012; Calderon, Alicia/K-3658-2014; Josa, Isabel/K-5184-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Calvo Alamillo, Enrique/L-1203-2014; Manganote, Edmilson/K-8251-2013; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Ferguson, Thomas/O-3444-2014; Ragazzi, Stefano/D-2463-2009; Benussi, Luigi/O-9684-2014; Russ, James/P-3092-2014; Leonidov, Andrey/P-3197-2014; vilar, rocio/P-8480-2014; Dahms, Torsten/A-8453-2015; Grandi, Claudio/B-5654-2015; Chinellato, Jose Augusto/I-7972-2012; Bernardes, Cesar Augusto/D-2408-2015; Raidal, Martti/F-4436-2012; VARDARLI, Fuat Ilkehan/B-6360-2013; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; ciocci, maria agnese /I-2153-2015; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Matorras, Francisco/I-4983-2015; Lo Vetere, Maurizio/J-5049-2012; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Azarkin, Maxim/N-2578-2015; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Tomei, Thiago/E-7091-2012 OI Benaglia, Andrea Davide/0000-0003-1124-8450; Covarelli, Roberto/0000-0003-1216-5235; Ciulli, Vitaliano/0000-0003-1947-3396; Fiorendi, Sara/0000-0003-3273-9419; Martelli, Arabella/0000-0003-3530-2255; Gonzi, Sandro/0000-0003-4754-645X; Levchenko, Petr/0000-0003-4913-0538; Varela, Joao/0000-0003-2613-3146; Sguazzoni, Giacomo/0000-0002-0791-3350; da Cruz e silva, Cristovao/0000-0002-1231-3819; Casarsa, Massimo/0000-0002-1353-8964; Ligabue, Franco/0000-0002-1549-7107; Abdelalim, Ahmed Ali/0000-0002-2056-7894; Diemoz, Marcella/0000-0002-3810-8530; Tricomi, Alessia Rita/0000-0002-5071-5501; Heredia De La Cruz, Ivan/0000-0002-8133-6467; Ghezzi, Alessio/0000-0002-8184-7953; bianco, stefano/0000-0002-8300-4124; Demaria, Natale/0000-0003-0743-9465; Longo, Egidio/0000-0001-6238-6787; Di Matteo, Leonardo/0000-0001-6698-1735; Baarmand, Marc/0000-0002-9792-8619; Boccali, Tommaso/0000-0002-9930-9299; Menasce, Dario Livio/0000-0002-9918-1686; Bargassa, Pedrame/0000-0001-8612-3332; Attia Mahmoud, Mohammed/0000-0001-8692-5458; Bilki, Burak/0000-0001-9515-3306; Lloret Iglesias, Lara/0000-0002-0157-4765; Rolandi, Luigi (Gigi)/0000-0002-0635-274X; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Vieira de Castro Ferreira da Silva, Pedro Manuel/0000-0002-5725-041X; Bean, Alice/0000-0001-5967-8674; Dubinin, Mikhail/0000-0002-7766-7175; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Sznajder, Andre/0000-0001-6998-1108; Vilela Pereira, Antonio/0000-0003-3177-4626; Da Silveira, Gustavo Gil/0000-0003-3514-7056; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Xie, Si/0000-0003-2509-5731; de Jesus Damiao, Dilson/0000-0002-3769-1680; Novaes, Sergio/0000-0003-0471-8549; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Dudko, Lev/0000-0002-4462-3192; Codispoti, Giuseppe/0000-0003-0217-7021; Moon, Chang-Seong/0000-0001-8229-7829; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Ferguson, Thomas/0000-0001-5822-3731; Ragazzi, Stefano/0000-0001-8219-2074; Benussi, Luigi/0000-0002-2363-8889; Russ, James/0000-0001-9856-9155; Dahms, Torsten/0000-0003-4274-5476; Grandi, Claudio/0000-0001-5998-3070; Chinellato, Jose Augusto/0000-0002-3240-6270; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; ciocci, maria agnese /0000-0003-0002-5462; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Matorras, Francisco/0000-0003-4295-5668; Lo Vetere, Maurizio/0000-0002-6520-4480; Rovelli, Tiziano/0000-0002-9746-4842; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982; Tomei, Thiago/0000-0002-1809-5226 FU BMWF; FWF (Austria); FNRS; FWO (Belgium); CNPq; CAPES; FAPERJ; FAPESP (Brazil); MES (Bulgaria); CERN; CAS; MoST; NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER [SF0690030s09]; ERDF (Estonia); Academy of Finland; MEC; HIP (Finland); CEA; CNRS/IN2P3 (France); BMBF; DFG; HGF (Germany); GSRT (Greece); OTKA; NKTH (Hungary); DAE; DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF; WCU (Republic of Korea); LAS (Lithuania); CINVESTAV; CONACYT; SEP; UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE; NSC (Poland); FCT (Portugal); JINR (Dubna); MON; RAS; RFBR (Russia); MESTD (Serbia); SEIDI; CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter; IPST; STAR; NSTDA (Thailand); TUBITAK; TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE; NSF (USA); Marie-Curie programme; European Research Council; EPLANET (European Union); Leventis Foundation; A.P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of Czech Republic; Council of Science and Industrial Research, India; Compagnia di San Paolo (Torino); HOMING PLUS programme of Foundation for Polish Science; EU, Regional Development Fund; Thalis and Aristeia programmes; EU-ESF; Greek NSRF; RosAtom FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).; Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the HOMING PLUS programme of Foundation for Polish Science, cofinanced by EU, Regional Development Fund; and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF. NR 56 TC 32 Z9 32 U1 5 U2 68 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV PY 2013 VL 727 IS 1-3 BP 77 EP 100 DI 10.1016/j.physletb.2013.10.017 PG 24 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 273ES UT WOS:000328518400010 ER PT J AU Chatrchyan, S Khachatryan, V Sirunyan, AM Tumasyan, A Adam, W Aguilo, E Bergauer, T Dragicevic, M Ero, J Fabjan, C Friedl, M Fruhwirth, R Ghete, VM Hormann, N Hrubec, J Jeitler, M Kiesenhofer, W Knunz, V Krammer, M Kratschmer, I Liko, D Mikulec, I Pernicka, M Rabady, D Rahbaran, B Rohringer, C Rohringer, H Schofbeck, R Strauss, J Taurok, A Waltenberger, W Wulz, CE Mossolov, V Shumeiko, N Gonzalez, JS Bansal, M Bansal, S Cornelis, T De Wolf, EA Janssen, X Luyckx, S Mucibello, L Ochesanu, S Roland, B Rougny, R Selvaggi, M Van Haevermaet, H Van Mechelen, P Van Remortel, N Van Spilbeeck, A Blekman, F Blyweert, S D'Hondt, J Suarez, RG Kalogeropoulos, A Maes, M Olbrechts, A Van Doninck, W Van Mulders, R Van Onsem, GP Villella, I Clerbaux, B De Lentdecker, G Dero, V Gay, APR Hreus, T Leonard, A Marage, PE Mohammadi, A Reis, T Thomas, L Velde, CV Vanlaer, P Wang, J Adler, V Beernaert, K Cimmino, A Costantini, S Garcia, G Grunewald, M Klein, B Lellouch, J Marinov, A Mccartin, J Rios, AAO Ryckbosch, D Sigamani, M Strobbe, N Thyssen, F Tytgat, M Walsh, S Yazgan, E Zaganidis, N Basegmez, S Bruno, G Castello, R Ceard, L Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Garcia, JMV Basegmez, S Bruno, G Castello, R Ceard, L Delaere, C du Pree, T Favart, D Forthomme, L Giammanco, A Hollar, J Lemaitre, V Liao, J Militaru, O Nuttens, C Pagano, D Pin, A Piotrzkowski, K Garcia, JMV Beliy, N Caebergs, T Daubie, E Hammad, GH Alves, GA Martins, MC Martins, T Pol, ME Souza, MHG Alda, WL Carvalho, W Custodio, A Da Costa, EM Damiao, DD Martins, CD De Souza, SF Malbouisson, H Malek, M Figueiredo, DM Mundim, L Nogima, H Da Silva, WLP Santoro, A Jorge, LS Sznajder, A Pereira, AV Anjos, TS Bernardes, CA Dias, FA Tomei, TRFP Gregores, EM Lagana, C Marinho, F Mercadante, PG Novaes, SF Padula, SS Genchev, V Iaydjiev, R Piperov, S Rodozov, M Stoykova, S Sultanov, G Tcholakov, V Trayanov, R Vutova, M Dimitrov, A Hadjiiska, R Kozhuharov, V Litov, L Pavlov, B Petkov, P Bian, JG Chen, GM Chen, HS Jiang, CH Liang, D Liang, S Meng, X Tao, J Wang, J Wang, X Wang, Z Xiao, H Xu, M Zang, J Zhang, Z Asawatangtrakuldee, C Ban, Y Guo, Y Li, W Liu, S Mao, Y Qian, SJ Teng, H Wang, D Zhang, L Zou, W Avila, C Montoya, CAC Gomez, JP Moreno, BG Oliveros, AFO Sanabria, JC Godinovic, N Lelas, D Plestina, R Polic, D Puljak, I Antunovic, Z Kovac, M Brigljevic, V Duric, S Kadija, K Luetic, J Mekterovic, D Morovic, S Attikis, A Galanti, M Mavromanolakis, G Mousa, J Nicolaou, C Ptochos, F Razis, PA Finger, M Finger, M Assran, Y Elgammal, S Kamel, AE Mahmoud, MA Mahrous, A Radi, A Kadastik, M Muntel, M Murumaa, M Raidal, M Rebane, L Tiko, A Eerola, P Fedi, G Voutilainen, M Harkonen, J Heikkinen, A Karimaki, V Kinnunen, R Kortelainen, MJ Lampen, T Lassila-Perini, K Lehti, S Linden, T Luukka, P Maenpaa, T Peltola, T Tuominen, E Tuominiemi, J Tuovinen, E Ungaro, D Wendland, L Banzuzi, K Karjalainen, A Korpela, A Tuuva, T Besancon, M Choudhury, S Dejardin, M Denegri, D Fabbro, B Faure, JL Ferri, F Ganjour, S Givernaud, A Gras, P de Monchenault, GH Jarry, P Locci, E Malcles, J Millischer, L Nayak, A Rander, J Rosowsky, A Titov, M Baffioni, S Beaudette, F Benhabib, L Bianchini, L Bluj, M Busson, P Charlot, C Daci, N Dahms, T Dalchenko, M Dobrzynski, L Florent, A de Cassagnac, RG Haguenauer, M Mine, P Mironov, C Naranjo, IN Nguyen, M Ochando, C Paganini, P Sabes, D Salerno, R Sirois, Y Veelken, C Zabi, A Agram, JL Andrea, J Bloch, D Bodin, D Brom, JM Cardaci, M Chabert, EC Collard, C Conte, E Drouhin, F Fontaine, JC Gele, D Goerlach, U Juillot, P Le Bihan, AC Van Hove, P Fassi, F Mercier, D Beauceron, S Beaupere, N Bondu, O Boudoul, G Brochet, S Chasserat, J Chierici, R Contardo, D Depasse, P El Mamouni, H Fay, J Gascon, S Gouzevitch, M Ille, B Kurca, T Lethuillier, M Mirabito, L Perries, S Sgandurra, L Sordini, V Tschudi, Y Verdier, P Viret, S Tsamalaidze, Z Autermann, C Beranek, S Calpas, B Edelhoff, M Feld, L Heracleous, N Hindrichs, O Jussen, R Klein, K Merz, J Ostapchuk, A Perieanu, A Raupach, F Sammet, J Schael, S Sprenger, D Weber, H Wittmer, B Zhukov, V Ata, M Caudron, J Dietz-Laursonn, E Duchardt, D Erdmann, M Fischer, R Guth, A Hebbeker, T Heidemann, C Hoepfner, K Klingebiel, D Kreuzer, P Merschmeyer, M Meyer, A Olschewski, M Papacz, P Pieta, H Reithler, H Schmitz, SA Sonnenschein, L Steggemann, J Teyssier, D Thuer, S Weber, M Bontenackels, M Cherepanov, V Erdogan, Y Flugge, G Geenen, H Geisler, M Ahmad, WH Hoehle, F Kargoll, B Kress, T Kuessel, Y Lingemann, J Nowack, A Perchalla, L Pooth, O Sauerland, P Stahl, A Martin, MA Behr, J Behrenhoff, W Behrens, U Bergholz, M Bethani, A Borras, K Burgmeier, A Cakir, A Calligaris, L Campbell, A Castro, E Costanza, F Dammann, D Pardos, CD Eckerlin, G Eckstein, D Flucke, G Geiser, A Glushkov, I Gunnellini, P Habib, S Hauk, J Hellwig, G Jung, H Kasemann, M Katsas, P Kleinwort, C Kluge, H Knutsson, A Kramer, M Krucker, D Kuznetsova, E Lange, W Leonard, J Lohmann, W Lutz, B Mankel, R Marfin, I Marienfeld, M Melzer-Pellmann, IA Meyer, AB Mnich, J Mussgiller, A Naumann-Emme, S Novgorodova, O Nowak, F Olzem, J Perrey, H Petrukhin, A Pitzl, D Raspereza, A Cipriano, PMR Riedl, C Ron, E Rosin, M Salfeld-Nebgen, J Schmidt, R Schoerner-Sadenius, T Sen, N Spiridonov, A Stein, M Walsh, R Wissing, C Blobel, V Enderle, H Erfle, J Gebbert, U Gorner, M Gosselink, M Haller, J Hermanns, T Hoing, RS Kaschube, K Kaussen, G Kirschenmann, H Klanner, R Lange, J Peiffer, T Pietsch, N Rathjens, D Sander, C Schettler, H Schleper, P Schlieckau, E Schmidt, A Schroder, M Schum, T Seidel, M Sibille, J Sola, V Stadie, H Steinbruck, G Thomsen, J Vanelderen, L Barth, C Berger, J Boser, C Chwalek, T De Boer, W Descroix, A Dierlamm, A Feindt, M Guthoff, M Hackstein, C Hartmann, F Hauth, T Heinrich, M Held, H Hoffmann, KH Husemann, U Katkov, I Komaragiri, JR Pardo, PL Martschei, D Mueller, S Muller, T Niegel, M Nurnberg, A Oberst, O Oehler, A Ott, J Quast, G Rabbertz, K Ratnikov, F Ratnikova, N Rocker, S Schilling, FP Schott, G Simonis, HJ Stober, FM Troendle, D Ulrich, R Wagner-Kuhr, J Wayand, S Weiler, T Zeise, M Anagnostou, G Daskalakis, G Geralis, T Kesisoglou, S Kyriakis, A Loukas, D Manolakos, I Markou, A Markou, C Ntomari, E Gouskos, L Mertzimekis, TJ Panagiotou, A Saoulidou, N Evangelou, I Foudas, C Kokkas, P Manthos, N Papadopoulos, I Patras, V Bencze, G Hajdu, C Hidas, P Horvath, D Sikler, F Veszpremi, V Vesztergombi, G Zsigmond, AJ Beni, N Czellar, S Molnar, J Palinkas, J Szillasi, Z Karancsi, J Raics, P Trocsanyi, ZL Ujvari, B Beni, SB Bhatnagar, V Dhingra, N Gupta, R Kaur, M Mehta, MZ Nishu, N Saini, LK Sharma, A Singh, JB Kumar, A Kumar, A Ahuja, S Bhardwaj, A Choudhary, BC Malhotra, S Naimuddin, M Ranjan, K Sharma, V Shivpuri, RK Banerjee, S Bhattacharya, S Dutta, S Gomber, B Jain, S Jain, S Khurana, R Sarkar, S Sharan, M Abdulsalam, A Dutta, D Kailas, S Kumar, V Mohanty, AK Pant, LM Shukla, P Aziz, T Ganguly, S Guchait, M Gurtu, A Maity, M Majumder, G Mazumdar, K Mohanty, GB Parida, B Sudhakar, K Wickramage, N Banerjee, S Dugad, S Arfaei, H Bakhshiansohi, H Etesami, SM Fahim, A Hashemi, M Hesari, H Jafari, A Khakzad, M Najafabadi, MM Mehdiabadi, SP Safarzadeh, B Zeinali, M Abbrescia, M Barbone, L Calabria, C Chhibra, SS Colaleo, A Creanza, D De Filippis, N De Palma, M Fiore, L Iaselli, G Maggi, G Maggi, M Marangelli, B My, S Nuzzo, S Pacifico, N Pompili, A Pugliese, G Selvaggi, G Silvestris, L Singh, G Venditti, R Verwilligen, P Zito, G Abbiendi, G Benvenuti, AC Bonacorsi, D Braibant-Giacomelli, S Brigliadori, L Capiluppi, P Castro, A Cavallo, FR Cuffiani, M Dallavalle, GM Fabbri, F Fanfani, A Fasanella, D Giacomelli, P Grandi, C Guiducci, L Marcellini, S Masetti, G Meneghelli, M Montanari, A Navarria, FL Odorici, F Perrotta, A Primavera, F Rossi, AM Rovelli, T Siroli, GP Tosi, N Travaglini, R Albergo, S Cappello, G Chiorboli, M Costa, S Potenza, R Tricomi, A Tuve, C Barbagli, G Ciulli, V Civinini, C D'Alessandro, R Focardi, E Frosali, S Gallo, E Gonzi, S Meschini, M Paoletti, S Sguazzoni, G Tropiano, A Benussi, L Bianco, S Colafranceschi, S Fabbri, F Piccolo, D Fabbricatore, P Musenich, R Tosi, S Benaglia, A De Guio, F Di Matteo, L Fiorendi, S Gennai, S Ghezzi, A Malvezzi, S Manzoni, RA Martelli, A Massironi, A Menasce, D Moroni, L Paganoni, M Pedrini, D Ragazzi, S Redaelli, N Sala, S de Fats, TT Buontempo, S Cavallo, N De Cosa, A Dogangun, O Fabozzi, F Iorio, AOM Lista, L Meola, S Merola, M Paolucci, P Azzi, P Bacchetta, N Bisello, D Branca, A Carlin, R Checchia, P Dorigo, T Dosselli, U Gasparini, F Gasparini, U Gozzelino, A Kanishchev, K Lacaprara, S Lazzizzera, I Margoni, M Meneguzzo, AT Pazzini, J Pozzobon, N Ronchese, P Simonetto, F Torassa, E Tosi, M Vanini, S Zotto, P Zumerle, G Gabusi, M Ratti, SP Riccardi, C Torre, P Vitulo, P Biasini, M Bilei, GM Fanoo, L Lariccia, P Mantovani, G Menichelli, M Nappi, A Romeo, F Saha, A Santocchia, A Spiezia, A Taroni, S Azzurri, P Bagliesi, G Bernardini, J Boccali, T Broccolo, G Castaldi, R D'Agnolo, RT Dell'Orso, R Fiori, F Foa, L Giassi, A Kraan, A Ligabue, F Lomtadze, T Martini, L Messineo, A Palla, F Rizzi, A Serban, AT Spagnolo, P Squillacioti, P Tenchini, R Tonelli, G Venturi, A Verdini, PG Barone, L Cavallari, F Del Re, D Diemoz, M Fanelli, C Grassi, M Longo, E Meridiani, P Micheli, F Nourbakhsh, S Organtini, G Paramatti, R Rahatlou, S Soffi, L Amapane, N Arcidiacono, R Argiro, S Arneodo, M Biino, C Cartiglia, N Casasso, S Costa, M Demaria, N Mariotti, C Maselli, S Mazza, G Migliore, E Monaco, V Musich, M Obertino, MM Pastrone, N Pelliccioni, M Potenza, A Romero, A Sacchi, R Solano, A Staiano, A Belforte, S Candelise, V Casarsa, M Cossutti, F Della Ricca, G Gobbo, B Marone, M Montanino, D Penzo, A Schizzi, A Kim, TY Nam, SK Chang, S Kim, DH Kim, GN Kong, DJ Park, H Son, DC Son, T Kim, JY Kim, ZJ Song, S Choi, S Gyun, D Hong, B Jo, M Kim, H Kim, TJ Lee, KS Moon, DH Park, SK Roh, Y Choi, M Kim, JH Park, C Park, IC Park, S Ryu, G Choi, Y Choi, YK Goh, J Kim, MS Kwon, E Lee, B Lee, J Lee, S Seo, H Yu, I Bilinskas, MJ Grigelionis, I Janulis, M Juodagalvis, A Castilla-Valdez, H De la Cruz-Burelo, E Heredia-De La Cruz, I Lopez-Fernandez, R Martinez-Ortega, J Sanchez-Hernandez, A Villasenor-Cendejas, LM Moreno, SC Valencia, FV Ibarguen, HAS Linares, EC Pineda, AM Reyes-Santos, MA Krofcheck, D Bell, AJ Butler, PH Doesburg, R Reucroft, S Silverwood, H Ahmad, M Asghar, MI Butt, J Hoorani, HR Khalid, S Khan, WA Khurshid, T Qazi, S Shah, MA Shoaib, M Bialkowska, H Boimska, B Frueboes, T Gorski, M Kazana, M Nawrocki, K Romanowska-Rybinska, K Szleper, M Wrochna, G Zalewski, P Brona, G Bunkowski, K Cwiok, M Dominik, W Doroba, K Kalinowski, A Konecki, M Krolikowski, J Misiura, M Almeida, N Bargassa, P David, A Faccioli, P Parracho, PGF Gallinaro, M Seixas, J Varela, J Vischia, P Belotelov, I Bunin, P Gavrilenko, M Golutvin, I Gorbunov, I Kamenev, A Karjavin, V Kozlov, G Lanev, A Malakhov, A Moisenz, P Palichik, V Perelygin, V Shmatov, S Smirnov, V Volodko, A Zarubin, A Evstyukhin, S Golovtsov, V Ivanov, Y Kim, V Levchenko, P Murzin, V Oreshkin, V Smirnov, I Sulimov, V Uvarov, L Vavilov, S Vorobyev, A Vorobyev, A Andreev, Y Dermenev, A Gninenko, S Golubev, N Kirsanov, M Krasnikov, N Matveev, V Pashenkov, A Tlisov, D Toropin, A Epshteyn, V Erofeeva, M Gavrilov, V Kossov, M Lychkovskaya, N Popov, V Safronov, G Semenov, S Shreyber, I Stolin, V Vlasov, E Zhokin, A Andreev, V Azarkin, M Dremin, I Kirakosyan, M Leonidov, A Mesyats, G Rusakov, SV Vinogradov, A Belyaev, A Boos, E Dubinin, M Dudko, L Ershov, A Gribushin, A Klyukhin, V Kodolova, O Lokhtin, I Markina, A Obraztsov, S Perfilov, M Petrushanko, S Popov, A Sarycheva, L Savrin, V Snigirev, A Azhgirey, I Bayshev, I Bitioukov, S Grishin, V Kachanov, V Konstantinov, D Krychkine, V Petrov, V Ryutin, R Sobol, A Tourtchanovitch, L Troshin, S Tyurin, N Uzunian, A Volkov, A Adzic, P Djordjevic, M Ekmedzic, M Krpic, D Milosevic, J Aguilar-Benitez, M Maestre, JA Arce, P Battilana, C Calvo, E Cerrada, M Llatas, MC Colino, N De la Cruz, B Peris, AD Vazquez, DD Bedoya, CF Ramos, JP Ferrando, A Flix, J Fouz, MC Garcia-Abia, P Lopez, OG Lopez, SG Hernandez, JM Josa, MI Merino, G Pelayo, JP Olmeda, AQ Redondo, I Romero, L Santaolalla, J Soares, MS Willmott, C Albajar, C Codispoti, G de Troconiz, JF Brun, H Cuevas, J Menendez, JF Folgueras, S Caballero, IG Iglesias, LL Gomez, JP Cifuentes, JAB Cabrillo, IJ Calderon, A Chuang, SH Campderros, JD Felcini, M Fernandez, M Gomez, G Sanchez, JG Graziano, A Jorda, C Virto, AL Marco, J Marco, R Rivero, CM Matorras, F Sanchez, FJM Rodrigo, T Rodriguez-Marrero, AY Ruiz-Jimeno, A Scodellaro, L Vila, I Cortabitarte, RV Abbaneo, D Auffray, E Auzinger, G Bachtis, M Baillon, P Ball, AH Barney, D Benitez, JF Bernet, C Bianchi, G Bloch, P Bocci, A Bonato, A Botta, C Breuker, H Camporesi, T Cerminara, G Christiansen, T Perez, JAC D'Enterria, D Dabrowski, A De Roeck, A Di Guida, S Dobson, M Dupont-Sagorin, N Elliott-Peisert, A Frisch, B Funk, W Georgiou, G Giffels, M Gigi, D Gill, K Giordano, D Girone, M Giunta, M Glege, F Garrido, RGR Govoni, P Goyvdy, S Guida, R Gundacker, S Hammer, J Hansen, M Harris, P Hartl, C Harvey, J Hegner, B Hinzmann, A Innocente, V Janot, P Kaadze, K Karavakis, E Kousouris, K Lecoq, P Lee, YJ Lenzi, P Lourenco, C Magini, N Maki, T Malberti, M Malgeri, L Mannelli, M Masetti, L Meijers, F Mersi, S Meschi, E Moser, R Mozer, MU Mulders, M Musella, P Nesvold, E Orsini, L Cortezon, EP Perez, E Perrozzi, L Petrilli, A Pfeiffer, A Pierini, M Pimia, M Piparo, D Polese, G Quertenmont, L Racz, A Reece, W Antunes, JR Rolandi, G Rovelli, C Rovere, M Sakulin, H Santanastasio, F Schaefer, C Schwick, C Segoni, I Sekmen, S Sharma, A Siegrist, P Silva, P Simon, M Sphicas, P Spiga, D Tsirou, A Veres, GI Vlimant, JR Wohri, HK Worm, SD Zeuner, WD Bertl, W Deiters, K Erdmann, W Gabathuler, K Horisberger, R Ingram, Q Kaestli, HC Konig, S Kotlinski, D Langenegger, U Meier, F Renker, D Rohe, T Bani, L Bortignon, P Buchmann, MA Casal, B Chanon, N Deisher, A Dissertori, G Dittmar, M Donega, M Dunser, M Eller, P Eugster, J Freudenreich, K Grab, C Hits, D Lecomte, P Lustermann, W Marini, AC Del Arbol, PMR Mohr, N Moortgat, F Nageli, C Nef, P Nessi-Tedaldi, F Pandolfi, F Pape, L Pauss, F Peruzzi, M Ronga, FJ Rossini, M Sala, L Sanchez, AK Starodumov, A Stieger, B Takahashi, M Tauscher, L Thea, A Theofilatos, K Treille, D Urscheler, C Wallny, R Weber, HA Wehrli, L Amsler, C Chiochia, V De Visscher, S Favaro, C Rikova, MI Kilminster, B Mejias, BM Otiougova, P Robmann, P Snoek, H Tupputi, S Verzetti, M Chang, YH Chen, KH Ferro, C Kuo, CM Li, SW Lin, W Lu, YJ Singh, AP Volpe, R Yu, SS Bartalini, P Chang, P Chang, YH Chang, YW Chao, Y Chen, KF Dietz, C Grundler, U Hou, WS Hsiung, Y Kao, KY Lei, YJ Lu, RS Majumder, D Petrakou, E Shi, X Shiu, JG Tzeng, YM Wan, X Wang, M Asavapibhop, B Srimanobhas, N Adiguzel, A Bakirci, MN Cerci, S Dozen, C Dumanoglu, I Eskut, E Girgis, S Gokbulut, G Gurpinar, E Hos, I Kangal, EE Karaman, T Karapinar, G Topaksu, AK Onengut, G Ozdemir, K Ozturk, S Polatoz, A Sogut, K Cerci, DS Tali, B Topakli, H Vergili, LN Vergili, M Akin, IV Aliev, T Bilin, B Bilmis, S Deniz, M Gamsizkan, H Guler, AM Ocalan, K Ozpineci, A Serin, M Sever, R Surat, UE Yalvac, M Yildirim, E Zeyrek, M Gulmez, E Isildak, B Kaya, M Kaya, O Ozkorucuklu, S Sonmez, N Cankocak, K Levchuk, L Brooke, JJ Clement, E Cussans, D Flacher, H Frazier, R Goldstein, J Grimes, M Heath, GP Heath, HF Kreczko, L Metson, S Newbold, DM Nirunpong, K Poll, A Senkin, S Smith, VJ Williams, T Basso, L Bell, KW Belyaev, A Brew, C Brown, RM Cockerill, DJA Coughlan, JA Harder, K Harper, S Jackson, J Kennedy, BW Olaiya, E Petyt, D Radburn-Smith, BC Shepherd-Themistocleous, CH Tomalin, IR Womersley, WJ Bainbridge, R Ball, G Beuselinck, R Buchmuller, O Colling, D Cripps, N Cutajar, M Dauncey, P Davies, G Della Negra, M Ferguson, W Fulcher, J Futyan, D Gilbert, A Bryer, AG Hall, G Hatherell, Z Hays, J Iles, G Jarvis, M Karapostoli, G Lyons, L Magnan, AM Marrouche, J Mathias, B Nandi, R Nash, J Nikitenko, A Pela, J Pesaresi, M Petridis, K Pioppi, M Raymond, DM Rogerson, S Rose, A Ryan, MJ Seez, C Sharp, P Sparrow, A Stoye, M Tapper, A Acosta, MV Virdee, T Wakefield, S Wardle, N Whyntie, T Chadwick, M Cole, JE Hobson, PR Khan, A Kyberd, P Leggat, D Leslie, D Martin, W Reid, ID Symonds, P Teodorescu, L Turner, M Hatakeyama, K Liu, H Scarborough, T Charaf, O Henderson, C Rumerio, P Avetisyan, A Bose, T Fantasia, C Heister, A Lawson, P Lazic, D Rohlf, J Sperka, D John, JS Sulak, L Alimena, J Bhattacharya, S Christopher, G Cutts, D Demiragli, Z Ferapontov, A Garabedian, A Heintz, U Jabeen, S Kukartsev, G Laird, E Landsberg, G Luk, M Narain, M Nguyen, D Segala, M Sinthuprasith, T Speer, T Breedon, R Breto, G Sanchez, MCD Chauhan, S Chertok, M Conway, J Conway, R Cox, PT Dolen, J Erbacher, R Gardner, M Houtz, R Ko, W Kopecky, A Lander, R Mall, O Miceli, T Pellett, D Ricci-Tam, F Rutherford, B Searle, M Smith, J Squires, M Tripathi, M Sierra, RV Yohay, R Andreev, V Cline, D Cousins, R Duris, J Erhan, S Everaerts, P Farrell, C Hauser, J Ignatenko, M Jarvis, C Rakness, G Schlein, P Traczyk, P Valuev, V Weber, M Babb, J Clare, R Dinardo, ME Ellison, J Gary, JW Giordano, F Hanson, G Liu, H Long, OR Luthra, A Nguyen, H Paramesvaran, S Sturdy, J Sumowidagdo, S Wilken, R Wimpenny, S Andrews, W Branson, JG Cerati, GB Cittolin, S Evans, D Holzner, A Kelley, R Lebourgeois, M Letts, J Macneill, I Mangano, B Padhi, S Palmer, C Petrucciani, G Pieri, M Sani, M Sharma, V Simon, S Sudano, E Tadel, M Tu, Y Vartak, A Wasserbaech, S Wurthwein, F Yagil, A Yoo, J Barge, D Bellan, R Campagnari, C D'Alfonso, M Danielson, T Flowers, K Geffert, P George, C Golf, F Incandela, J Justus, C Kalavase, P Kovalskyi, D Krutelyov, V Lowette, S Villalba, RM Mccoll, N Pavlunin, V Ribnik, J Richman, J Rossin, R Stuart, D To, W West, C Apresyan, A Bornheim, A Bunn, J Chen, Y Di Marco, E Duarte, J Gataullin, M Kcira, D Ma, Y Mott, A Newman, HB Rogan, C Spiropulu, M Timciuc, V Veverka, J Wilkinson, R Xie, S Yang, Y Zhu, RY Azzolini, V Calamba, A Carroll, R Ferguson, T Iiyama, Y Jang, DW Liu, YF Paulini, M Vogel, H Vorobiev, I Cumalat, JP Drell, BR Ford, WT Gaz, A Lopez, EL Smith, JG Stenson, K Ulmer, KA Wagner, SR Alexander, J Chatterjee, A Eggert, N Gibbons, LK Heltsley, B Hopkins, W Khukhunaishvili, A Kreis, B Mirman, N Kaufman, GN Patterson, JR Ryd, A Salvati, E Sun, W Teo, WD Thom, J Thompson, J Tucker, J Vaughan, J Weng, Y Winstrom, L Wittich, P Winn, D Abdullin, S Albrow, M Anderson, J Bauerdick, LAT Beretvas, A Berryhill, J Bhat, PC Burkett, K Butler, JN Chetluru, V Cheung, HWK Chlebana, F Cihangir, S Elvira, VD Fisk, I Freeman, J Gao, Y Green, D Gutsche, O Hanlon, J Harris, RM Hirschauer, J Hooberman, B Jindariani, S Johnson, M Joshi, U Klima, B Kunori, S Kwan, S Leonidopoulos, C Linacre, J Lincoln, D Lipton, R Lykken, J Maeshima, K Marraffino, JM Maruyama, S Mason, D McBride, P Mishra, K Mrenna, S Musienko, Y Newman-Holmes, C O'Dell, V Prokofyev, O Sexton-Kennedy, E Sharma, S Spalding, WJ Spiegel, L Taylor, L Tkaczyk, S Tran, NV Uplegger, L Vaandering, EW Vidal, R Whitmore, J Wu, W Yang, F Yun, JC Acosta, D Avery, P Bourilkov, D Chen, M Cheng, T Das, S De Gruttola, M Di Giovanni, GP Dobur, D Drozdetskiy, A Field, RD Fisher, M Fu, Y Furic, IK Gartner, J Hugon, J Kim, B Konigsberg, J Korytov, A Kropivnitskaya, A Kypreos, T Low, JF Matchev, K Milenovic, P Mitselmakher, G Muniz, L Park, M Remington, R Rinkevicius, A Sellers, P Skhirtladze, N Snowball, M Yelton, J Zakaria, M Gaultney, V Hewamanage, S Lebolo, LM Linn, S Markowitz, P Martinez, G Rodriguez, JL Adams, T Askew, A Bochenek, J Chen, J Diamond, B Gleyzer, SV Haas, J Hagopian, S Hagopian, V Jenkins, M Johnson, KF Prosper, H Veeraraghavan, V Weinberg, M Baarmand, MM Dorney, B Hohlmann, M Kalakhety, H Vodopiyanov, I Yumiceva, F Adams, MR Anghel, IM Apanasevich, L Bai, Y Bazterra, VE Betts, RR Bucinskaite, I Callner, J Cavanaugh, R Evdokimov, O Gauthier, L Gerber, CE Hofman, DJ Khalatyan, S Lacroix, E O'Brien, C Silkworth, C Strom, D Turner, P Varelas, N Akgun, U Albayrak, EA Bilki, B Clarida, W Duru, F Griffiths, S Merlo, JP Mermerkaya, H Mestvirishvili, A Moeller, A Nachtman, J Newsom, CR Norbeck, E Onel, Y Ozok, F Sen, S Tan, P Tiras, E Wetzel, J Yetkin, T Yi, K Barnett, BA Blumenfeld, B Bolognesi, S Fehling, D Giurgiu, G Gritsan, AV Hu, G Maksimovic, P Swartz, M Whitbeck, A Baringer, P Bean, A Benelli, G Kenny, RP Murray, M Noonan, D Sanders, S Stringer, R Tinti, G Wood, JS Barfuss, AF Bolton, T Chakaberia, I Ivanov, A Khalil, S Makouski, M Maravin, Y Shrestha, S Svintradze, I Gronberg, J Lange, D Rebassoo, F Wright, D Baden, A Calvert, B Eno, SC Gomez, JA Hadley, NJ Kellogg, RG Kirn, M Kolberg, T Lu, Y Marionneau, M Mignerey, AC Pedro, K Peterman, A Skuja, A Temple, J Tonjes, MB Tonwar, SC Apyan, A Bauer, G Bendavid, J Busza, W Butz, E Cali, IA Chan, M Dutta, V Ceballos, GG Goncharov, M Kim, Y Klute, M Krajczar, K Levin, A Luckey, PD Ma, T Nahn, S Paus, C Ralph, D Roland, C Roland, G Rudolph, M Stephans, GSF Stockli, F Sumorok, K Sung, K Velicanu, D Wenger, EA Wolf, R Wyslouch, B Yang, M Yilmaz, Y Yoon, AS Zanetti, M Zhukova, V Cooper, SI Dahmes, B De Benedetti, A Franzoni, G Gude, A Haupt, J Kao, SC Klapoetke, K Kubota, Y Mans, J Pastika, N Rusack, R Sasseville, M Singovsky, A Tambe, N Turkewitz, J Cremaldi, LM Kroeger, R Perera, L Rahmat, R Sanders, DA Avdeeva, E Bloom, K Bose, S Claes, DR Dominguez, A Eads, M Keller, J Kravchenko, I Lazo-Flores, J Malik, S Snow, GR Godshalk, A Iashvili, I Jain, S Kharchilava, A Kumar, A Rappoccio, S Alverson, G Barberis, E Baumgartel, D Chasco, M Haley, J Nash, D Orimoto, T Trocino, D Wood, D Zhang, J Anastassov, A Hahn, KA Kubik, A Lusito, L Mucia, N Odell, N Ofierzynski, RA Pollack, B Pozdnyakov, A Schmitt, M Stoynev, S Velasco, M Won, S Antonelli, L Berry, D Brinkerhoff, A Chan, KM Hildreth, M Jessop, C Karmgard, DJ Kolb, J Lannon, K Luo, W Lynch, S Marinelli, N Morse, DM Pearson, T Planer, M Ruchti, R Slaunwhite, J Valls, N Wayne, M Wolf, M Bylsma, B Durkin, LS Hill, C Hughes, R Kotov, K Ling, TY Puigh, D Rodenburg, M Vuosalo, C Williams, G Winer, BL Berry, E Elmer, P Halyo, V Hebda, P Hegeman, J Hunt, A Jindal, P Koay, SA Pegna, DL Lujan, P Marlow, D Medvedeva, T Mooney, M Olsen, J Piroue, P Quan, X Raval, A Saka, H Stickland, D Tully, C Werner, JS Zenz, SC Zuranski, A Brownson, E Lopez, A Mendez, H Vargas, JER Alagoz, E Barnes, VE Benedetti, D Bolla, G Bortoletto, D De Mattia, M Everett, A Hu, Z Jones, M Koybasi, O Kress, M Laasanen, AT Leonardo, N Maroussov, V Merkel, P Miller, DH Neumeister, N Shipsey, I Silvers, D Svyatkovskiy, A Marono, MV Yoo, HD Zablocki, J Zheng, Y Guragain, S Parashar, N Adair, A Akgun, B Boulahouache, C Ecklund, KM Geurts, FJM Li, W Padley, BP Redjimi, R Roberts, J Zabel, J Betchart, B Bodek, A Chung, YS Covarelli, R de Barbaro, R Demina, R Eshaq, Y Ferbel, T Garcia-Bellido, A Goldenzweig, P Han, J Harel, A Miner, DC Vishnevskiy, D Zielinski, M Bhatti, A Ciesielski, R Demortier, L Goulianos, K Lungu, G Malik, S Mesropian, C Arora, S Barker, A Chou, JP Contreras-Campana, C Contreras-Campana, E Duggan, D Ferencek, D Gershtein, Y Gray, R Halkiadakis, E Hidas, D Lath, A Panwalkar, S Park, M Patel, R Rekovic, V Robles, J Rose, K Salur, S Schnetzer, S Seitz, C Somalwar, S Stone, R Thomas, S Walker, M Cerizza, G Hollingsworth, M Spanier, S Yang, ZC York, A Eusebi, R Flanagan, W Gilmore, J Kamon, T Khotilovich, V Montalvo, R Osipenkov, I Pakhotin, Y Perloff, A Roe, J Safonov, A Sakuma, T Sengupta, S Suarez, I Tatarinov, A Toback, D Akchurin, N Damgov, J Dragoiu, C Dudero, PR Jeong, C Kovitanggoon, K Lee, SW Libeiro, T Volobouev, I Appelt, E Delannoy, AG Florez, C Greene, S Gurrola, A Johns, W Kurt, P Maguire, C Melo, A Sharma, M Sheldon, P Snook, B Tuo, S Velkovska, J Arenton, MW Balazs, M Boutle, S Cox, B Francis, B Goodell, J Hirosky, R Ledovskoy, A Lin, C Neu, C Wood, J Gollapinni, S Harr, R Karchin, PE Don, CKK Lamichhane, P Sakharov, A Anderson, M Belknap, DA Borrello, L Carlsmith, D Cepeda, M Dasu, S Friis, E Gray, L Grogg, KS Grothe, M Hall-Wilton, R Herndon, M Herve, A Klabbers, P Klukas, J Lanaro, A Lazaridis, C Loveless, R Mohapatra, A Ojalvo, I Palmonari, F Pierro, GA Ross, I Savin, A Smith, WH Swanson, J AF Chatrchyan, S. Khachatryan, V. Sirunyan, A. M. Tumasyan, A. Adam, W. Aguilo, E. Bergauer, T. Dragicevic, M. Eroe, J. Fabjan, C. Friedl, M. Fruehwirth, R. Ghete, V. M. Hoermann, N. Hrubec, J. Jeitler, M. Kiesenhofer, W. Knuenz, V. Krammer, M. Kraetschmer, I. Liko, D. Mikulec, I. Pernicka, M. Rabady, D. Rahbaran, B. Rohringer, C. Rohringer, H. Schoefbeck, R. Strauss, J. Taurok, A. Waltenberger, W. Wulz, C. -E. Mossolov, V. Shumeiko, N. Gonzalez, J. Suarez Bansal, M. Bansal, S. Cornelis, T. De Wolf, E. A. Janssen, X. Luyckx, S. Mucibello, L. Ochesanu, S. Roland, B. Rougny, R. Selvaggi, M. Van Haevermaet, H. Van Mechelen, P. Van Remortel, N. Van Spilbeeck, A. Blekman, F. Blyweert, S. D'Hondt, J. Suarez, R. Gonzalez Kalogeropoulos, A. Maes, M. Olbrechts, A. Van Doninck, W. Van Mulders, R. Van Onsem, G. P. Villella, I. Clerbaux, B. De Lentdecker, G. Dero, V. Gay, A. P. R. Hreus, T. Leonard, A. Marage, P. E. Mohammadi, A. Reis, T. Thomas, L. Velde, C. Vander Vanlaer, P. Wang, J. Adler, V. Beernaert, K. Cimmino, A. Costantini, S. Garcia, G. Grunewald, M. Klein, B. Lellouch, J. Marinov, A. Mccartin, J. Rios, A. A. Ocampo Ryckbosch, D. Sigamani, M. Strobbe, N. Thyssen, F. Tytgat, M. Walsh, S. Yazgan, E. Zaganidis, N. Basegmez, S. Bruno, G. Castello, R. Ceard, L. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Garcia, J. M. Vizan Basegmez, S. Bruno, G. Castello, R. Ceard, L. Delaere, C. du Pree, T. Favart, D. Forthomme, L. Giammanco, A. Hollar, J. Lemaitre, V. Liao, J. Militaru, O. Nuttens, C. Pagano, D. Pin, A. Piotrzkowski, K. Garcia, J. M. Vizan Beliy, N. Caebergs, T. Daubie, E. Hammad, G. H. Alves, G. A. Martins Junior, M. Correa Martins, T. Pol, M. E. Souza, M. H. G. Aida Junior, W. L. Carvalho, W. Custodio, A. Da Costa, E. M. Damiao, D. De Jesus Martins, C. De Oliveira De Souza, S. Fonseca Malbouisson, H. Malek, M. Figueiredo, D. Matos Mundim, L. Nogima, H. Da Silva, W. L. Prado Santoro, A. Jorge, L. Soares Sznajder, A. Pereira, A. Vilela Anjos, T. S. Bernardes, C. A. Dias, F. A. Fernandez Perez Tomei, T. R. Gregores, E. M. Lagana, C. Marinho, F. Mercadante, P. G. Novaes, S. F. Padula, Sandra S. Genchev, V. Iaydjiev, R. Piperov, S. Rodozov, M. Stoykova, S. Sultanov, G. Tcholakov, V. Trayanov, R. Vutova, M. Dimitrov, A. Hadjiiska, R. Kozhuharov, V. Litov, L. Pavlov, B. Petkov, P. Bian, J. G. Chen, G. M. Chen, H. S. Jiang, C. H. Liang, D. Liang, S. Meng, X. Tao, J. Wang, J. Wang, X. Wang, Z. Xiao, H. Xu, M. Zang, J. Zhang, Z. Asawatangtrakuldee, C. Ban, Y. Guo, Y. Li, W. Liu, S. Mao, Y. Qian, S. J. Teng, H. Wang, D. Zhang, L. Zou, W. Avila, C. Montoya, C. A. Carrillo Gomez, J. P. Moreno, B. Gomez Oliveros, A. F. Osorio Sanabria, J. C. Godinovic, N. Lelas, D. Plestina, R. Polic, D. Puljak, I. Antunovic, Z. Kovac, M. Brigljevic, V. Duric, S. Kadija, K. Luetic, J. Mekterovic, D. Morovic, S. Attikis, A. Galanti, M. Mavromanolakis, G. Mousa, J. Nicolaou, C. Ptochos, F. Razis, P. A. Finger, M. Finger, M., Jr. Assran, Y. Elgammal, S. Kamel, A. Ellithi Mahmoud, M. A. Mahrous, A. Radi, A. Kadastik, M. Muentel, M. Murumaa, M. Raidal, M. Rebane, L. Tiko, A. Eerola, P. Fedi, G. Voutilainen, M. Harkonen, J. Heikkinen, A. Karimaki, V. Kinnunen, R. Kortelainen, M. J. Lampen, T. Lassila-Perini, K. Lehti, S. Linden, T. Luukka, P. Maenpaa, T. Peltola, T. Tuominen, E. Tuominiemi, J. Tuovinen, E. Ungaro, D. Wendland, L. Banzuzi, K. Karjalainen, A. Korpela, A. Tuuva, T. Besancon, M. Choudhury, S. Dejardin, M. Denegri, D. Fabbro, B. Faure, J. L. Ferri, F. Ganjour, S. Givernaud, A. Gras, P. de Monchenault, G. Hamel Jarry, P. Locci, E. Malcles, J. Millischer, L. Nayak, A. Rander, J. Rosowsky, A. Titov, M. Baffioni, S. Beaudette, F. Benhabib, L. Bianchini, L. Bluj, M. Busson, P. Charlot, C. Daci, N. Dahms, T. Dalchenko, M. Dobrzynski, L. Florent, A. de Cassagnac, R. Granier Haguenauer, M. Mine, P. Mironov, C. Naranjo, I. N. Nguyen, M. Ochando, C. Paganini, P. Sabes, D. Salerno, R. Sirois, Y. Veelken, C. Zabi, A. Agram, J. -L. Andrea, J. Bloch, D. Bodin, D. Brom, J. -M. Cardaci, M. Chabert, E. C. Collard, C. Conte, E. Drouhin, F. Fontaine, J. -C. Gele, D. Goerlach, U. Juillot, P. Le Bihan, A. -C. Van Hove, P. Fassi, F. Mercier, D. Beauceron, S. Beaupere, N. Bondu, O. Boudoul, G. Brochet, S. Chasserat, J. Chierici, R. Contardo, D. Depasse, P. El Mamouni, H. Fay, J. Gascon, S. Gouzevitch, M. Ille, B. Kurca, T. Lethuillier, M. Mirabito, L. Perries, S. Sgandurra, L. Sordini, V. Tschudi, Y. Verdier, P. Viret, S. Tsamalaidze, Z. Autermann, C. Beranek, S. Calpas, B. Edelhoff, M. Feld, L. Heracleous, N. Hindrichs, O. Jussen, R. Klein, K. Merz, J. Ostapchuk, A. Perieanu, A. Raupach, F. Sammet, J. Schael, S. Sprenger, D. Weber, H. Wittmer, B. Zhukov, V. Ata, M. Caudron, J. Dietz-Laursonn, E. Duchardt, D. Erdmann, M. Fischer, R. Gueth, A. Hebbeker, T. Heidemann, C. Hoepfner, K. Klingebiel, D. Kreuzer, P. Merschmeyer, M. Meyer, A. Olschewski, M. Papacz, P. Pieta, H. Reithler, H. Schmitz, S. A. Sonnenschein, L. Steggemann, J. Teyssier, D. Thueer, S. Weber, M. Bontenackels, M. Cherepanov, V. Erdogan, Y. Fluegge, G. Geenen, H. Geisler, M. Ahmad, W. Haj Hoehle, F. Kargoll, B. Kress, T. Kuessel, Y. Lingemann, J. Nowack, A. Perchalla, L. Pooth, O. Sauerland, P. Stahl, A. Martin, M. Aldaya Behr, J. Behrenhoff, W. Behrens, U. Bergholz, M. Bethani, A. Borras, K. Burgmeier, A. Cakir, A. Calligaris, L. Campbell, A. Castro, E. Costanza, F. Dammann, D. Pardos, C. Diez Eckerlin, G. Eckstein, D. Flucke, G. Geiser, A. Glushkov, I. Gunnellini, P. Habib, S. Hauk, J. Hellwig, G. Jung, H. Kasemann, M. Katsas, P. Kleinwort, C. Kluge, H. Knutsson, A. Kraemer, M. Kruecker, D. Kuznetsova, E. Lange, W. Leonard, J. Lohmann, W. Lutz, B. Mankel, R. Marfin, I. Marienfeld, M. Melzer-Pellmann, I. -A. Meyer, A. B. Mnich, J. Mussgiller, A. Naumann-Emme, S. Novgorodova, O. Nowak, F. Olzem, J. Perrey, H. Petrukhin, A. Pitzl, D. Raspereza, A. Cipriano, P. M. Ribeiro Riedl, C. Ron, E. Rosin, M. Salfeld-Nebgen, J. Schmidt, R. Schoerner-Sadenius, T. Sen, N. Spiridonov, A. Stein, M. Walsh, R. Wissing, C. Blobel, V. Enderle, H. Erfle, J. Gebbert, U. Goerner, M. Gosselink, M. Haller, J. Hermanns, T. Hoeing, R. S. Kaschube, K. Kaussen, G. Kirschenmann, H. Klanner, R. Lange, J. Peiffer, T. Pietsch, N. Rathjens, D. Sander, C. Schettler, H. Schleper, P. Schlieckau, E. Schmidt, A. Schroeder, M. Schum, T. Seidel, M. Sibille, J. Sola, V. Stadie, H. Steinbrueck, G. Thomsen, J. Vanelderen, L. Barth, C. Berger, J. Boeser, C. Chwalek, T. De Boer, W. Descroix, A. Dierlamm, A. Feindt, M. Guthoff, M. Hackstein, C. Hartmann, F. Hauth, T. Heinrich, M. Held, H. Hoffmann, K. H. Husemann, U. Katkov, I. Komaragiri, J. R. Pardo, P. Lobelle Martschei, D. Mueller, S. Mueller, Th Niegel, M. Nuernberg, A. Oberst, O. Oehler, A. Ott, J. Quast, G. Rabbertz, K. Ratnikov, F. Ratnikova, N. Roecker, S. Schilling, F. -P. Schott, G. Simonis, H. J. Stober, F. M. Troendle, D. Ulrich, R. Wagner-Kuhr, J. Wayand, S. Weiler, T. Zeise, M. Anagnostou, G. Daskalakis, G. Geralis, T. Kesisoglou, S. Kyriakis, A. Loukas, D. Manolakos, I. Markou, A. Markou, C. Ntomari, E. Gouskos, L. Mertzimekis, T. J. Panagiotou, A. Saoulidou, N. Evangelou, I. Foudas, C. Kokkas, P. Manthos, N. Papadopoulos, I. Patras, V. Bencze, G. Hajdu, C. Hidas, P. Horvath, D. Sikler, F. Veszpremi, V. Vesztergombi, G. Zsigmond, A. J. Beni, N. Czellar, S. Molnar, J. Palinkas, J. Szillasi, Z. Karancsi, J. Raics, P. Trocsanyi, Z. L. Ujvari, B. Beri, S. B. Bhatnagar, V. Dhingra, N. Gupta, R. Kaur, M. Mehta, M. Z. Nishu, N. Saini, L. K. Sharma, A. Singh, J. B. Kumar, Ashok Kumar, Arun Ahuja, S. Bhardwaj, A. Choudhary, B. C. Malhotra, S. Naimuddin, M. Ranjan, K. Sharma, V. Shivpuri, R. K. Banerjee, S. Bhattacharya, S. Dutta, S. Gomber, B. Jain, Sa Jain, Sh Khurana, R. Sarkar, S. Sharan, M. Abdulsalam, A. Dutta, D. Kailas, S. Kumar, V. Mohanty, A. K. Pant, L. M. Shukla, P. Aziz, T. Ganguly, S. Guchait, M. Gurtu, A. Maity, M. Majumder, G. Mazumdar, K. Mohanty, G. B. Parida, B. Sudhakar, K. Wickramage, N. Banerjee, S. Dugad, S. Arfaei, H. Bakhshiansohi, H. Etesami, S. M. Fahim, A. Hashemi, M. Hesari, H. Jafari, A. Khakzad, M. Najafabadi, M. Mohammadi Mehdiabadi, S. Paktinat Safarzadeh, B. Zeinali, M. Abbrescia, M. Barbone, L. Calabria, C. Chhibra, S. S. Colaleo, A. Creanza, D. De Filippis, N. De Palma, M. Fiore, L. Iaselli, G. Maggi, G. Maggi, M. Marangelli, B. My, S. Nuzzo, S. Pacifico, N. Pompili, A. Pugliese, G. Selvaggi, G. Silvestris, L. Singh, G. Venditti, R. Verwilligen, P. Zito, G. Abbiendi, G. Benvenuti, A. C. Bonacorsi, D. Braibant-Giacomelli, S. Brigliadori, L. Capiluppi, P. Castro, A. Cavallo, F. R. Cuffiani, M. Dallavalle, G. M. Fabbri, F. Fanfani, A. Fasanella, D. Giacomelli, P. Grandi, C. Guiducci, L. Marcellini, S. Masetti, G. Meneghelli, M. Montanari, A. Navarria, F. L. Odorici, F. Perrotta, A. Primavera, F. Rossi, A. M. Rovelli, T. Siroli, G. P. Tosi, N. Travaglini, R. Albergo, S. Cappello, G. Chiorboli, M. Costa, S. Potenza, R. Tricomi, A. Tuve, C. Barbagli, G. Ciulli, V. Civinini, C. D'Alessandro, R. Focardi, E. Frosali, S. Gallo, E. Gonzi, S. Meschini, M. Paoletti, S. Sguazzoni, G. Tropiano, A. Benussi, L. Bianco, S. Colafranceschi, S. Fabbri, F. Piccolo, D. Fabbricatore, P. Musenich, R. Tosi, S. Benaglia, A. De Guio, F. Di Matteo, L. Fiorendi, S. Gennai, S. Ghezzi, A. Malvezzi, S. Manzoni, R. A. Martelli, A. Massironi, A. Menasce, D. Moroni, L. Paganoni, M. Pedrini, D. Ragazzi, S. Redaelli, N. Sala, S. de Fats, T. Tabarelli Buontempo, S. Cavallo, N. De Cosa, A. Dogangun, O. Fabozzi, F. Iorio, A. O. M. Lista, L. Meola, S. Merola, M. Paolucci, P. Azzi, P. Bacchetta, N. Bisello, D. Branca, A. Carlin, R. Checchia, P. Dorigo, T. Dosselli, U. Gasparini, F. Gasparini, U. Gozzelino, A. Kanishchev, K. Lacaprara, S. Lazzizzera, I. Margoni, M. Meneguzzo, A. T. Pazzini, J. Pozzobon, N. Ronchese, P. Simonetto, F. Torassa, E. Tosi, M. Vanini, S. Zotto, P. Zumerle, G. Gabusi, M. Ratti, S. P. Riccardi, C. Torre, P. Vitulo, P. Biasini, M. Bilei, G. M. Fano, L. Lariccia, P. Mantovani, G. Menichelli, M. Nappi, A. Romeo, F. Saha, A. Santocchia, A. Spiezia, A. Taroni, S. Azzurri, P. Bagliesi, G. Bernardini, J. Boccali, T. Broccolo, G. Castaldi, R. D'Agnolo, R. T. Dell'Orso, R. Fiori, F. Foa, L. Giassi, A. Kraan, A. Ligabue, F. Lomtadze, T. Martini, L. Messineo, A. Palla, F. Rizzi, A. Serban, A. T. Spagnolo, P. Squillacioti, P. Tenchini, R. Tonelli, G. Venturi, A. Verdini, P. G. Barone, L. Cavallari, F. Del Re, D. Diemoz, M. Fanelli, C. Grassi, M. Longo, E. Meridiani, P. Micheli, F. Nourbakhsh, S. Organtini, G. Paramatti, R. Rahatlou, S. Soffi, L. Amapane, N. Arcidiacono, R. Argiro, S. Arneodo, M. Biino, C. Cartiglia, N. Casasso, S. Costa, M. Demaria, N. Mariotti, C. Maselli, S. Mazza, G. Migliore, E. Monaco, V. Musich, M. Obertino, M. M. Pastrone, N. Pelliccioni, M. Potenza, A. Romero, A. Sacchi, R. Solano, A. Staiano, A. Belforte, S. Candelise, V. Casarsa, M. Cossutti, F. Della Ricca, G. Gobbo, B. Marone, M. Montanino, D. Penzo, A. Schizzi, A. Kim, T. Y. Nam, S. K. Chang, S. Kim, D. H. Kim, G. N. Kong, D. J. Park, H. Son, D. C. Son, T. Kim, J. Y. Kim, Zero J. Song, S. Choi, S. Gyun, D. Hong, B. Jo, M. Kim, H. Kim, T. J. Lee, K. S. Moon, D. H. Park, S. K. Roh, Y. Choi, M. Kim, J. H. Park, C. Park, I. C. Park, S. Ryu, G. Choi, Y. Choi, Y. K. Goh, J. Kim, M. S. Kwon, E. Lee, B. Lee, J. Lee, S. Seo, H. Yu, I. Bilinskas, M. J. Grigelionis, I. Janulis, M. Juodagalvis, A. Castilla-Valdez, H. De la Cruz-Burelo, E. Heredia-de la Cruz, I. Lopez-Fernandez, R. Martinez-Ortega, J. Sanchez-Hernandez, A. Villasenor-Cendejas, L. M. Carrillo Moreno, S. Vazquez Valencia, F. Salazar Ibarguen, H. A. Casimiro Linares, E. Morelos Pineda, A. Reyes-Santos, M. A. Krofcheck, D. Bell, A. J. Butler, P. H. Doesburg, R. Reucroft, S. Silverwood, H. Ahmad, M. Asghar, M. I. Butt, J. Hoorani, H. R. Khalid, S. Khan, W. A. Khurshid, T. Qazi, S. Shah, M. A. Shoaib, M. Bialkowska, H. Boimska, B. Frueboes, T. Gorski, M. Kazana, M. Nawrocki, K. Romanowska-Rybinska, K. Szleper, M. Wrochna, G. Zalewski, P. Brona, G. Bunkowski, K. Cwiok, M. Dominik, W. Doroba, K. Kalinowski, A. Konecki, M. Krolikowski, J. Misiura, M. Almeida, N. Bargassa, P. David, A. Faccioli, P. Ferreira Parracho, P. G. Gallinaro, M. Seixas, J. Varela, J. Vischia, P. Belotelov, I. Bunin, P. Gavrilenko, M. Golutvin, I. Gorbunov, I. Kamenev, A. Karjavin, V. Kozlov, G. Lanev, A. Malakhov, A. Moisenz, P. Palichik, V. Perelygin, V. Shmatov, S. Smirnov, V. Volodko, A. Zarubin, A. Evstyukhin, S. Golovtsov, V. Ivanov, Y. Kim, V. Levchenko, P. Murzin, V. Oreshkin, V. Smirnov, I. Sulimov, V. Uvarov, L. Vavilov, S. Vorobyev, A. Vorobyev, An. Andreev, Yu. Dermenev, A. Gninenko, S. Golubev, N. Kirsanov, M. Krasnikov, N. Matveev, V. Pashenkov, A. Tlisov, D. Toropin, A. Epshteyn, V. Erofeeva, M. Gavrilov, V. Kossov, M. Lychkovskaya, N. Popov, V. Safronov, G. Semenov, S. Shreyber, I. Stolin, V. Vlasov, E. Zhokin, A. Andreev, V. Azarkin, M. Dremin, I. Kirakosyan, M. Leonidov, A. Mesyats, G. Rusakov, S. V. Vinogradov, A. Belyaev, A. Boos, E. Dubinin, M. Dudko, L. Ershov, A. Gribushin, A. Klyukhin, V. Kodolova, O. Lokhtin, I. Markina, A. Obraztsov, S. Perfilov, M. Petrushanko, S. Popov, A. Sarycheva, L. Savrin, V. Snigirev, A. Azhgirey, I. Bayshev, I. Bitioukov, S. Grishin, V. Kachanov, V. Konstantinov, D. Krychkine, V. Petrov, V. Ryutin, R. Sobol, A. Tourtchanovitch, L. Troshin, S. Tyurin, N. Uzunian, A. Volkov, A. Adzic, P. Djordjevic, M. Ekmedzic, M. Krpic, D. Milosevic, J. Aguilar-Benitez, M. Alcaraz Maestre, J. Arce, P. Battilana, C. Calvo, E. Cerrada, M. Chamizo Llatas, M. Colino, N. De la Cruz, B. Delgado Peris, A. Dominguez Vazquez, D. Fernandez Bedoya, C. Fernandez Ramos, J. P. Ferrando, A. Flix, J. Fouz, M. C. Garcia-Abia, P. Lopez, O. Gonzalez Lopez, S. Goy Hernandez, J. M. Josa, M. I. Merino, G. Puerta Pelayo, J. Quintario Olmeda, A. Redondo, I. Romero, L. Santaolalla, J. Soares, M. S. Willmott, C. Albajar, C. Codispoti, G. de Troconiz, J. F. Brun, H. Cuevas, J. Fernandez Menendez, J. Folgueras, S. Gonzalez Caballero, I. Lloret Iglesias, L. Piedra Gomez, J. Brochero Cifuentes, J. A. Cabrillo, I. J. Calderon, A. Chuang, S. H. Duarte Campderros, J. Felcini, M. Fernandez, M. Gomez, G. Gonzalez Sanchez, J. Graziano, A. Jorda, C. Lopez Virto, A. Marco, J. Marco, R. Martinez Rivero, C. Matorras, F. Munoz Sanchez, F. J. Rodrigo, T. Rodriguez-Marrero, A. Y. Ruiz-Jimeno, A. Scodellaro, L. Vila, I. Cortabitarte, R. Vilar Abbaneo, D. Auffray, E. Auzinger, G. Bachtis, M. Baillon, P. Ball, A. H. Barney, D. Benitez, J. F. Bernet, C. Bianchi, G. Bloch, P. Bocci, A. Bonato, A. Botta, C. Breuker, H. Camporesi, T. Cerminara, G. Christiansen, T. Perez, J. A. Coarasa D'Enterria, D. Dabrowski, A. De Roeck, A. Di Guida, S. Dobson, M. Dupont-Sagorin, N. Elliott-Peisert, A. Frisch, B. Funk, W. Georgiou, G. Giffels, M. Gigi, D. Gill, K. Giordano, D. Girone, M. Giunta, M. Glege, F. Garrido, R. Gomez-Reino Govoni, P. Goyvdy, S. Guida, R. Gundacker, S. Hammer, J. Hansen, M. Harris, P. Hartl, C. Harvey, J. Hegner, B. Hinzmann, A. Innocente, V. Janot, P. Kaadze, K. Karavakis, E. Kousouris, K. Lecoq, P. Lee, Y. -J. Lenzi, P. Lourenco, C. Magini, N. Maeki, T. Malberti, M. Malgeri, L. Mannelli, M. Masetti, L. Meijers, F. Mersi, S. Meschi, E. Moser, R. Mozer, M. U. Mulders, M. Musella, P. Nesvold, E. Orsini, L. Cortezon, E. Palencia Perez, E. Perrozzi, L. Petrilli, A. Pfeiffer, A. Pierini, M. Pimiae, M. Piparo, D. Polese, G. Quertenmont, L. Racz, A. Reece, W. Antunes, J. Rodrigues Rolandi, G. Rovelli, C. Rovere, M. Sakulin, H. Santanastasio, F. Schaefer, C. Schwick, C. . Segoni, I. Sekmen, S. Sharma, A. Siegrist, P. Silva, P. Simon, M. Sphicas, P. Spiga, D. Tsirou, A. Veres, G. I. Vlimant, J. R. Woehri, H. K. Worm, S. D. Zeuner, W. D. Bertl, W. Deiters, K. Erdmann, W. Gabathuler, K. Horisberger, R. Ingram, Q. Kaestli, H. C. Koenig, S. Kotlinski, D. Langenegger, U. Meier, F. Renker, D. Rohe, T. Baeni, L. Bortignon, P. Buchmann, M. A. Casal, B. Chanon, N. Deisher, A. Dissertori, G. Dittmar, M. Donega, M. Duenser, M. Eller, P. Eugster, J. Freudenreich, K. Grab, C. Hits, D. Lecomte, P. Lustermann, W. Marini, A. C. Del Arbol, P. Martinez Ruiz Mohr, N. Moortgat, F. Naegeli, C. Nef, P. Nessi-Tedaldi, F. Pandolfi, F. Pape, L. Pauss, F. Peruzzi, M. Ronga, F. J. Rossini, M. Sala, L. Sanchez, A. K. Starodumov, A. Stieger, B. Takahashi, M. Tauscher, L. Thea, A. Theofilatos, K. Treille, D. Urscheler, C. Wallny, R. Weber, H. A. Wehrli, L. Amsler, C. Chiochia, V. De Visscher, S. Favaro, C. Rikova, M. Ivova Kilminster, B. Mejias, B. Millan Otiougova, P. Robmann, P. Snoek, H. Tupputi, S. Verzetti, M. Chang, Y. H. Chen, K. H. Ferro, C. Kuo, C. M. Li, S. W. Lin, W. Lu, Y. J. Singh, A. P. Volpe, R. Yu, S. S. Bartalini, P. Chang, P. Chang, Y. H. Chang, Y. W. Chao, Y. Chen, K. F. Dietz, C. Grundler, U. Hou, W. -S. Hsiung, Y. Kao, K. Y. Lei, Y. J. Lu, R. -S. Majumder, D. Petrakou, E. Shi, X. Shiu, J. G. Tzeng, Y. M. Wan, X. Wang, M. Asavapibhop, B. Srimanobhas, N. Adiguzel, A. Bakirci, M. N. Cerci, S. Dozen, C. Dumanoglu, I. Eskut, E. Girgis, S. Gokbulut, G. Gurpinar, E. Hos, I. Kangal, E. E. Karaman, T. Karapinar, G. Topaksu, A. Kayis Onengut, G. Ozdemir, K. Ozturk, S. Polatoz, A. Sogut, K. Cerci, D. Sunar Tali, B. Topakli, H. Vergili, L. N. Vergili, M. Akin, I. V. Aliev, T. Bilin, B. Bilmis, S. Deniz, M. Gamsizkan, H. Guler, A. M. Ocalan, K. Ozpineci, A. Serin, M. Sever, R. Surat, U. E. Yalvac, M. Yildirim, E. Zeyrek, M. Gulmez, E. Isildak, B. Kaya, M. Kaya, O. Ozkorucuklu, S. Sonmez, N. Cankocak, K. Levchuk, L. Brooke, J. J. Clement, E. Cussans, D. Flacher, H. Frazier, R. Goldstein, J. Grimes, M. Heath, G. P. Heath, H. F. Kreczko, L. Metson, S. Newbold, D. M. Nirunpong, K. Poll, A. Senkin, S. Smith, V. J. Williams, T. Basso, L. Bell, K. W. Belyaev, A. Brew, C. Brown, R. M. Cockerill, D. J. A. Coughlan, J. A. Harder, K. Harper, S. Jackson, J. Kennedy, B. W. Olaiya, E. Petyt, D. Radburn-Smith, B. C. Shepherd-Themistocleous, C. H. Tomalin, I. R. Womersley, W. J. Bainbridge, R. Ball, G. Beuselinck, R. Buchmuller, O. Colling, D. Cripps, N. Cutajar, M. Dauncey, P. Davies, G. Della Negra, M. Ferguson, W. Fulcher, J. Futyan, D. Gilbert, A. Bryer, A. Guneratne Hall, G. Hatherell, Z. Hays, J. Iles, G. Jarvis, M. Karapostoli, G. Lyons, L. Magnan, A. -M. Marrouche, J. Mathias, B. Nandi, R. Nash, J. Nikitenko, A. Pela, J. Pesaresi, M. Petridis, K. Pioppi, M. Raymond, D. M. Rogerson, S. Rose, A. Ryan, M. J. Seez, C. Sharp, P. Sparrow, A. Stoye, M. Tapper, A. Acosta, M. Vazquez Virdee, T. Wakefield, S. Wardle, N. Whyntie, T. Chadwick, M. Cole, J. E. Hobson, P. R. Khan, A. Kyberd, P. Leggat, D. Leslie, D. Martin, W. Reid, I. D. Symonds, P. Teodorescu, L. Turner, M. Hatakeyama, K. Liu, H. Scarborough, T. Charaf, O. Henderson, C. Rumerio, P. Avetisyan, A. Bose, T. Fantasia, C. Heister, A. Lawson, P. Lazic, D. Rohlf, J. Sperka, D. John, J. St. Sulak, L. Alimena, J. Bhattacharya, S. Christopher, G. Cutts, D. Demiragli, Z. Ferapontov, A. Garabedian, A. Heintz, U. Jabeen, S. Kukartsev, G. Laird, E. Landsberg, G. Luk, M. Narain, M. Nguyen, D. Segala, M. Sinthuprasith, T. Speer, T. Breedon, R. Breto, G. Sanchez, M. Calderon De la Barca Chauhan, S. Chertok, M. Conway, J. Conway, R. Cox, P. T. Dolen, J. Erbacher, R. Gardner, M. Houtz, R. Ko, W. Kopecky, A. Lander, R. Mall, O. Miceli, T. Pellett, D. Ricci-Tam, F. Rutherford, B. Searle, M. Smith, J. Squires, M. Tripathi, M. Sierra, R. Vasquez Yohay, R. Andreev, V. Cline, D. Cousins, R. Duris, J. Erhan, S. Everaerts, P. Farrell, C. Hauser, J. Ignatenko, M. Jarvis, C. Rakness, G. Schlein, P. Traczyk, P. Valuev, V. Weber, M. Babb, J. Clare, R. Dinardo, M. E. Ellison, J. Gary, J. W. Giordano, F. Hanson, G. Liu, H. Long, O. R. Luthra, A. Nguyen, H. Paramesvaran, S. Sturdy, J. Sumowidagdo, S. Wilken, R. Wimpenny, S. Andrews, W. Branson, J. G. Cerati, G. B. Cittolin, S. Evans, D. Holzner, A. Kelley, R. Lebourgeois, M. Letts, J. Macneill, I. Mangano, B. Padhi, S. Palmer, C. Petrucciani, G. Pieri, M. Sani, M. Sharma, V. Simon, S. Sudano, E. Tadel, M. Tu, Y. Vartak, A. Wasserbaech, S. Wuerthwein, F. Yagil, A. Yoo, J. Barge, D. Bellan, R. Campagnari, C. D'Alfonso, M. Danielson, T. Flowers, K. Geffert, P. George, C. Golf, F. Incandela, J. Justus, C. Kalavase, P. Kovalskyi, D. Krutelyov, V. Lowette, S. Villalba, R. Magana Mccoll, N. Pavlunin, V. Ribnik, J. Richman, J. Rossin, R. Stuart, D. To, W. West, C. Apresyan, A. Bornheim, A. Bunn, J. Chen, Y. Di Marco, E. Duarte, J. Gataullin, M. Kcira, D. Ma, Y. Mott, A. Newman, H. B. Rogan, C. Spiropulu, M. Timciuc, V. Veverka, J. Wilkinson, R. Xie, S. Yang, Y. Zhu, R. Y. Azzolini, V. Calamba, A. Carroll, R. Ferguson, T. Iiyama, Y. Jang, D. W. Liu, Y. F. Paulini, M. Vogel, H. Vorobiev, I. Cumalat, J. P. Drell, B. R. Ford, W. T. Gaz, A. Lopez, E. Luiggi Smith, J. G. Stenson, K. Ulmer, K. A. Wagner, S. R. Alexander, J. Chatterjee, A. Eggert, N. Gibbons, L. K. Heltsley, B. Hopkins, W. Khukhunaishvili, A. Kreis, B. Mirman, N. Kaufman, G. Nicolas Patterson, J. R. Ryd, A. Salvati, E. Sun, W. Teo, W. D. Thom, J. Thompson, J. Tucker, J. Vaughan, J. Weng, Y. Winstrom, L. Wittich, P. Winn, D. Abdullin, S. Albrow, M. Anderson, J. Bauerdick, L. A. T. Beretvas, A. Berryhill, J. Bhat, P. C. Burkett, K. Butler, J. N. Chetluru, V. Cheung, H. W. K. Chlebana, F. Cihangir, S. Elvira, V. D. Fisk, I. Freeman, J. Gao, Y. Green, D. Gutsche, O. Hanlon, J. Harris, R. M. Hirschauer, J. Hooberman, B. Jindariani, S. Johnson, M. Joshi, U. Klima, B. Kunori, S. Kwan, S. Leonidopoulos, C. Linacre, J. Lincoln, D. Lipton, R. Lykken, J. Maeshima, K. Marraffino, J. M. Maruyama, S. Mason, D. McBride, P. Mishra, K. Mrenna, S. Musienko, Y. Newman-Holmes, C. O'Dell, V. Prokofyev, O. Sexton-Kennedy, E. Sharma, S. Spalding, W. J. Spiegel, L. Taylor, L. Tkaczyk, S. Tran, N. V. Uplegger, L. Vaandering, E. W. Vidal, R. Whitmore, J. Wu, W. Yang, F. Yun, J. C. Acosta, D. Avery, P. Bourilkov, D. Chen, M. Cheng, T. Das, S. De Gruttola, M. Di Giovanni, G. P. Dobur, D. Drozdetskiy, A. Field, R. D. Fisher, M. Fu, Y. Furic, I. K. Gartner, J. Hugon, J. Kim, B. Konigsberg, J. Korytov, A. Kropivnitskaya, A. . Kypreos, T. Low, J. F. Matchev, K. Milenovic, P. Mitselmakher, G. Muniz, L. Park, M. Remington, R. Rinkevicius, A. Sellers, P. Skhirtladze, N. Snowball, M. Yelton, J. Zakaria, M. Gaultney, V. Hewamanage, S. Lebolo, L. M. Linn, S. Markowitz, P. Martinez, G. Rodriguez, J. L. Adams, T. Askew, A. Bochenek, J. Chen, J. Diamond, B. Gleyzer, S. V. Haas, J. Hagopian, S. Hagopian, V. Jenkins, M. Johnson, K. F. Prosper, H. Veeraraghavan, V. Weinberg, M. Baarmand, M. M. Dorney, B. Hohlmann, M. Kalakhety, H. Vodopiyanov, I. Yumiceva, F. Adams, M. R. Anghel, I. M. Apanasevich, L. Bai, Y. Bazterra, V. E. Betts, R. R. Bucinskaite, I. Callner, J. Cavanaugh, R. Evdokimov, O. Gauthier, L. Gerber, C. E. Hofman, D. J. Khalatyan, S. Lacroix, E. O'Brien, C. Silkworth, C. Strom, D. Turner, P. Varelas, N. Akgun, U. Albayrak, E. A. Bilki, B. Clarida, W. Duru, F. Griffiths, S. Merlo, J. -P. Mermerkaya, H. Mestvirishvili, A. Moeller, A. Nachtman, J. Newsom, C. R. Norbeck, E. Onel, Y. Ozok, F. Sen, S. Tan, P. Tiras, E. Wetzel, J. Yetkin, T. Yi, K. Barnett, B. A. Blumenfeld, B. Bolognesi, S. Fehling, D. Giurgiu, G. Gritsan, A. V. Hu, G. Maksimovic, P. Swartz, M. Whitbeck, A. Baringer, P. Bean, A. Benelli, G. Kenny, R. P., III Murray, M. Noonan, D. Sanders, S. Stringer, R. Tinti, G. Wood, J. S. Barfuss, A. F. Bolton, T. Chakaberia, I. Ivanov, A. Khalil, S. Makouski, M. Maravin, Y. Shrestha, S. Svintradze, I. Gronberg, J. Lange, D. Rebassoo, F. Wright, D. Baden, A. Calvert, B. Eno, S. C. Gomez, J. A. Hadley, N. J. Kellogg, R. G. Kirn, M. Kolberg, T. Lu, Y. Marionneau, M. Mignerey, A. C. Pedro, K. Peterman, A. Skuja, A. Temple, J. Tonjes, M. B. Tonwar, S. C. Apyan, A. Bauer, G. Bendavid, J. Busza, W. Butz, E. Cali, I. A. Chan, M. Dutta, V. Ceballos, G. Gomez Goncharov, M. Kim, Y. Klute, M. Krajczar, K. Levin, A. Luckey, P. D. Ma, T. Nahn, S. Paus, C. Ralph, D. Roland, C. Roland, G. Rudolph, M. Stephans, G. S. F. Stoeckli, F. Sumorok, K. Sung, K. Velicanu, D. Wenger, E. A. Wolf, R. Wyslouch, B. Yang, M. Yilmaz, Y. Yoon, A. S. Zanetti, M. Zhukova, V. Cooper, S. I. Dahmes, B. De Benedetti, A. Franzoni, G. Gude, A. Haupt, J. Kao, S. C. Klapoetke, K. Kubota, Y. Mans, J. Pastika, N. Rusack, R. Sasseville, M. Singovsky, A. Tambe, N. Turkewitz, J. Cremaldi, L. M. Kroeger, R. Perera, L. Rahmat, R. Sanders, D. A. Avdeeva, E. Bloom, K. Bose, S. Claes, D. R. Dominguez, A. Eads, M. Keller, J. Kravchenko, I. Lazo-Flores, J. Malik, S. Snow, G. R. Godshalk, A. Iashvili, I. Jain, S. Kharchilava, A. Kumar, A. Rappoccio, S. Alverson, G. Barberis, E. Baumgartel, D. Chasco, M. Haley, J. Nash, D. Orimoto, T. Trocino, D. Wood, D. Zhang, J. Anastassov, A. Hahn, K. A. Kubik, A. Lusito, L. Mucia, N. Odell, N. Ofierzynski, R. A. Pollack, B. Pozdnyakov, A. Schmitt, M. Stoynev, S. Velasco, M. Won, S. Antonelli, L. Berry, D. Brinkerhoff, A. Chan, K. M. Hildreth, M. Jessop, C. Karmgard, D. J. Kolb, J. Lannon, K. Luo, W. Lynch, S. Marinelli, N. Morse, D. M. Pearson, T. Planer, M. Ruchti, R. Slaunwhite, J. Valls, N. Wayne, M. Wolf, M. Bylsma, B. Durkin, L. S. Hill, C. Hughes, R. Kotov, K. Ling, T. Y. Puigh, D. Rodenburg, M. Vuosalo, C. Williams, G. Winer, B. L. Berry, E. Elmer, P. Halyo, V. Hebda, P. Hegeman, J. Hunt, A. Jindal, P. Koay, S. A. Pegna, D. Lopes Lujan, P. Marlow, D. Medvedeva, T. Mooney, M. Olsen, J. Piroue, P. Quan, X. Raval, A. Saka, H. Stickland, D. Tully, C. Werner, J. S. Zenz, S. C. Zuranski, A. Brownson, E. Lopez, A. Mendez, H. Vargas, J. E. Ramirez Alagoz, E. Barnes, V. E. Benedetti, D. Bolla, G. Bortoletto, D. De Mattia, M. Everett, A. Hu, Z. Jones, M. Koybasi, O. Kress, M. Laasanen, A. T. Leonardo, N. Maroussov, V. Merkel, P. Miller, D. H. Neumeister, N. Shipsey, I. Silvers, D. Svyatkovskiy, A. Marono, M. Vidal Yoo, H. D. Zablocki, J. Zheng, Y. Guragain, S. Parashar, N. Adair, A. Akgun, B. Boulahouache, C. Ecklund, K. M. Geurts, F. J. M. Li, W. Padley, B. P. Redjimi, R. Roberts, J. Zabel, J. Betchart, B. Bodek, A. Chung, Y. S. Covarelli, R. de Barbaro, R. Demina, R. Eshaq, Y. Ferbel, T. Garcia-Bellido, A. Goldenzweig, P. Han, J. Harel, A. Miner, D. C. Vishnevskiy, D. Zielinski, M. Bhatti, A. Ciesielski, R. Demortier, L. Goulianos, K. Lungu, G. Malik, S. Mesropian, C. Arora, S. Barker, A. Chou, J. P. Contreras-Campana, C. Contreras-Campana, E. Duggan, D. Ferencek, D. Gershtein, Y. Gray, R. Halkiadakis, E. Hidas, D. Lath, A. Panwalkar, S. Park, M. Patel, R. Rekovic, V. Robles, J. Rose, K. Salur, S. Schnetzer, S. Seitz, C. Somalwar, S. Stone, R. Thomas, S. Walker, M. Cerizza, G. Hollingsworth, M. Spanier, S. Yang, Z. C. York, A. Eusebi, R. Flanagan, W. Gilmore, J. Kamon, T. Khotilovich, V. Montalvo, R. Osipenkov, I. Pakhotin, Y. Perloff, A. Roe, J. Safonov, A. Sakuma, T. Sengupta, S. Suarez, I. Tatarinov, A. Toback, D. Akchurin, N. Damgov, J. Dragoiu, C. Dudero, P. R. Jeong, C. Kovitanggoon, K. Lee, S. W. Libeiro, T. Volobouev, I. Appelt, E. Delannoy, A. G. Florez, C. Greene, S. Gurrola, A. Johns, W. Kurt, P. Maguire, C. Melo, A. Sharma, M. Sheldon, P. Snook, B. Tuo, S. Velkovska, J. Arenton, M. W. Balazs, M. Boutle, S. Cox, B. Francis, B. Goodell, J. Hirosky, R. Ledovskoy, A. Lin, C. Neu, C. Wood, J. Gollapinni, S. Harr, R. Karchin, P. E. Don, C. Kottachchi Kankanamge Lamichhane, P. Sakharov, A. Anderson, M. Belknap, D. A. Borrello, L. Carlsmith, D. Cepeda, M. Dasu, S. Friis, E. Gray, L. Grogg, K. S. Grothe, M. Hall-Wilton, R. Herndon, M. Herve, A. Klabbers, P. Klukas, J. Lanaro, A. Lazaridis, C. Loveless, R. Mohapatra, A. Ojalvo, I. Palmonari, F. Pierro, G. A. Ross, I. Savin, A. Smith, W. H. Swanson, J. TI Measurement of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) cross sections in pp collisions at root s=7 TeV SO PHYSICS LETTERS B LA English DT Article DE CMS; Physics; Quarkonia; Upsilon; Dimuons ID QED RADIATIVE-CORRECTIONS; UNIVERSAL MONTE-CARLO; PHOTOS AB The Upsilon(1S), Upsilon(2S), and Upsilon(3S) production cross sections are measured using a data sample corresponding to an integrated luminosity of 35.8 +/- 1.4 pb(-1) of proton-proton collisions at root s = 7 TeV, collected with the CMS detector at the LHC. The Upsilon resonances are identified through their decays to dimuons. Integrated over the Upsilon transverse momentum range p(T)(Upsilon) < 50 GeV/c and rapidity range vertical bar y(Upsilon)vertical bar < 2.4, and assuming unpolarized Upsilon production, the products of the Upsilon production cross sections and dimuon branching fractions are sigma (pp -> Upsilon(1S)X) . B(Upsilon(1S) -> mu(+)mu(-)) = (8.55 +/- 0.05(-0.50)(+0.56) +/- 0.34) nb, sigma (pp -> Upsilon(2S)X) . B(Upsilon(2S) -> mu(+)mu(-)) = (2.21 +/- 0.03(-0.14)(+0.16) +/- 0.09) nb, sigma (pp -> Upsilon(3S)X) . B(Upsilon(3S) -> mu(+)mu(-)) = (1.11 +/- 0.02(-0.08)(+0.10) +/- 0.04) nb, where the first uncertainty is statistical, the second is systematic, and the third is from the uncertainty in the integrated luminosity. The differential cross sections in bins of transverse momentum and rapidity, and the cross section ratios are presented. Cross section measurements performed within a restricted muon kinematic range and not corrected for acceptance are also provided. These latter measurements are independent of Upsilon polarization assumptions. The results are compared to theoretical predictions and previous measurements. (C) 2013 CERN. Published by Elsevier B.V. All rights reserved. C1 [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.] Yerevan Phys Inst, Yerevan 375036, Armenia. [Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Eroe, J.; Fabjan, C.; Friedl, M.; Fruehwirth, R.; Ghete, V. M.; Hoermann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knuenz, V.; Krammer, M.; Kraetschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schoefbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Wulz, C. -E.] OeAW, Inst Hochenergiephys, Vienna, Austria. [Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez] Natl Ctr Particle & High Energy Phys, Minsk, Byelarus. [Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.] Univ Antwerp, Antwerp, Belgium. [Blekman, F.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, R.; Van Onsem, G. P.; Villella, I.] Vrije Univ Brussel, Brussels, Belgium. [Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Leonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wang, J.] Univ Libre Bruxelles, Brussels, Belgium. [Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.] Univ Ghent, B-9000 Ghent, Belgium. [Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Garcia, J. M. Vizan] Catholic Univ Louvain, B-1348 Louvain, Belgium. [Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.] Univ Mons, B-7000 Mons, Belgium. [Alves, G. A.; Martins Junior, M. Correa; Martins, T.; Pol, M. E.; Souza, M. H. G.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil. [Aida Junior, W. L.; Carvalho, W.; Custodio, A.; Da Costa, E. M.; Damiao, D. De Jesus; Martins, C. De Oliveira; De Souza, S. Fonseca; Malbouisson, H.; Malek, M.; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Da Silva, W. L. Prado; Santoro, A.; Jorge, L. Soares; Sznajder, A.; Pereira, A. Vilela] Univ Estado Rio de Janeiro, BR-20550011 Rio De Janeiro, Brazil. [Dias, F. A.; Fernandez Perez Tomei, T. R.; Lagana, C.; Marinho, F.; Novaes, S. F.; Padula, Sandra S.] Univ Estadual Paulista, Sao Paulo, Brazil. [Anjos, T. S.; Bernardes, C. A.; Gregores, E. M.; Mercadante, P. G.] Univ Fed ABC, Sao Paulo, Brazil. [Genchev, V.; Iaydjiev, R.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, Sofia, Bulgaria. [Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.] Univ Sofia, BU-1126 Sofia, Bulgaria. [Wang, J.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.] Inst High Energy Phys, Beijing 100039, Peoples R China. [Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.] Peking Univ, State Key Lab Nucl Phys & Technol, Beijing 100871, Peoples R China. [Avila, C.; Montoya, C. A. Carrillo; Gomez, J. P.; Moreno, B. Gomez; Oliveros, A. F. Osorio; Sanabria, J. C.] Univ Los Andes, Bogota, Colombia. [Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.] Tech Univ Split, Split, Croatia. [Antunovic, Z.; Kovac, M.] Univ Split, Split, Croatia. [Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.] Rudjer Boskovic Inst, Zagreb, Croatia. [Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.] Univ Cyprus, Nicosia, Cyprus. [Finger, M.; Finger, M., Jr.] Charles Univ Prague, Prague, Czech Republic. [Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Mahmoud, M. A.; Mahrous, A.; Radi, A.] Acad Sci Res & Technol Arab Republ Egypt, Egyptian Network High Energy Phys, Cairo, Egypt. [Kadastik, M.; Muentel, M.; Murumaa, M.; Raidal, M.; Rebane, L.; Tiko, A.] NICPB, Tallinn, Estonia. [Eerola, P.; Fedi, G.; Voutilainen, M.] Univ Helsinki, Dept Phys, Helsinki, Finland. [Harkonen, J.; Heikkinen, A.; Karimaki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampen, T.; Lassila-Perini, K.; Lehti, S.; Linden, T.; Luukka, P.; Maenpaa, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.] Helsinki Inst Phys, Helsinki, Finland. [Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.] Lappeenranta Univ Technol, Lappeenranta, Finland. [Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.] CEA Saclay, DSM IRFU, F-91191 Gif Sur Yvette, France. [Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; de Cassagnac, R. Granier; Haguenauer, M.; Mine, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gele, D.; Goerlach, U.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.] Univ Strasbourg, CNRS, IN2P3, Inst Pluridisciplinaire Hubert Curien, Strasbourg, France. [Fassi, F.; Mercier, D.] Ctr Calcul Inst Natl Phys Nucl & Phys Particules, CNRS, IN2P3, Villeurbanne, France. [Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.] Univ Lyon 1, CNRS, IN2P3, Inst Phys Nucl Lyon, Villeurbanne, France. [Tsamalaidze, Z.] Tbilisi State Univ, Inst High Energy Phys & Informat, GE-380086 Tbilisi, Rep of Georgia. [Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.] RVVTH Aachen Univ, Inst Phys 1, Aachen, Germany. [Weber, H.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Gueth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thueer, S.] Rhein Westfal TH Aachen, Phys Inst A 3, Aachen, Germany. [Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Fluegge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.] Rhein Westfal TH Aachen, Phys Inst B 3, Aachen, Germany. [Martin, M. Aldaya; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Pardos, C. Diez; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Kraemer, M.; Kruecker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Nowak, F.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.] Deutsch Elekt Synchrotron, Hamburg, Germany. [Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Goerner, M.; Gosselink, M.; Haller, J.; Hermanns, T.; Hoeing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schroeder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrueck, G.; Thomsen, J.; Vanelderen, L.] Univ Hamburg, Hamburg, Germany. [Barth, C.; Berger, J.; Boeser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Pardo, P. Lobelle; Martschei, D.; Mueller, S.; Mueller, Th; Niegel, M.; Nuernberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Roecker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.] Univ Karlsruhe, Inst Expt Kernphys, Karlsruhe, Germany. [Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Ntomari, E.] NCSR Demokritos, INPP, Aghia Paraskevi, Greece. [Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.] Univ Athens, Athens, Greece. [Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.] Univ Ioannina, GR-45110 Ioannina, Greece. [Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.] Inst Nucl Res ATOMKI, Debrecen, Hungary. [Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.] Univ Debrecen, Debrecen, Hungary. [Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.] Panjab Univ, Chandigarh 160014, India. [Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.] Univ Delhi, Delhi 110007, India. [Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa; Jain, Sh; Khurana, R.; Sarkar, S.; Sharan, M.] Saha Inst Nucl Phys, Kolkata, India. [Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.] Bhabha Atom Res Ctr, Bombay 400085, Maharashtra, India. [Aziz, T.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.] EHEP, Tata Inst Fundamental Res, Bombay, Maharashtra, India. [Banerjee, S.; Dugad, S.] HECR, Tata Inst Fundamental Res, Bombay, Maharashtra, India. [Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.] Inst Res Fundamental Sci IPM, Tehran, Iran. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; De Palma, M.; Marangelli, B.; Nuzzo, S.; Pompili, A.; Selvaggi, G.; Singh, G.; Venditti, R.] Univ Bari, Bari, Italy. [Creanza, D.; De Filippis, N.; Iaselli, G.; Maggi, G.; My, S.; Pugliese, G.] Politecn Bari, Bari, Italy. [Abdulsalam, A.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Ist Nazl Fis Nucl, Sez Bologna, I-40126 Bologna, Italy. [Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cuffiani, M.; Fanfani, A.; Fasanella, D.; Guiducci, L.; Meneghelli, M.; Navarria, F. L.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.] Univ Bologna, Bologna, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Ist Nazl Fis Nucl, Sez Catania, I-95129 Catania, Italy. [Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.] Univ Catania, Catania, Italy. [Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.] Ist Nazl Fis Nucl, Sez Firenze, Florence, Italy. [Ciulli, V.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gonzi, S.; Tropiano, A.] Univ Florence, Florence, Italy. [Fabbri, F.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Piccolo, D.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy. [Fabbricatore, P.; Musenich, R.; Tosi, S.] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy. [Tosi, S.] Univ Genoa, Genoa, Italy. [Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fats, T. Tabarelli] Ist Nazl Fis Nucl, Sez Milano Bicocca, I-20133 Milan, Italy. [De Guio, F.; Di Matteo, L.; Fiorendi, S.; Ghezzi, A.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Paganoni, M.; Ragazzi, S.; de Fats, T. Tabarelli] Univ Milano Bicocca, Milan, Italy. [Buontempo, S.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.] Ist Nazl Fis Nucl, Sez Napoli, I-80125 Naples, Italy. [De Cosa, A.; Dogangun, O.; Iorio, A. O. M.] Univ Naples Federico II, Naples, Italy. [Cavallo, N.; Fabozzi, F.] Univ Basilicata Potenza, Naples, Italy. [Meola, S.] Univ G Marconi Roma, Naples, Italy. [Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Ist Nazl Fis Nucl, Sez Padova, Padua, Italy. [Bisello, D.; Branca, A.; Carlin, R.; Gasparini, F.; Gasparini, U.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.] Univ Padua, Padua, Italy. [Kanishchev, K.; Lazzizzera, I.] Univ Trento, Padua, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy. [Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.] Univ Pavia, I-27100 Pavia, Italy. [Biasini, M.; Bilei, G. M.; Fano, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.] Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Biasini, M.; Fano, L.; Lariccia, P.; Mantovani, G.; Nappi, A.; Romeo, F.; Santocchia, A.; Spiezia, A.; Taroni, S.] Univ Perugia, I-06100 Perugia, Italy. [Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foa, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.] Ist Nazl Fis Nucl, Sez Pisa, Pisa, Italy. [Messineo, A.; Rizzi, A.; Tonelli, G.] Univ Pisa, Pisa, Italy. [Azzurri, P.; Broccolo, G.; D'Agnolo, R. T.; Foa, L.; Ligabue, F.] Scuola Normale Super Pisa, Pisa, Italy. [Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Soffi, L.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Barone, L.; Del Re, D.; Fanelli, C.; Grassi, M.; Longo, E.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Rahatlou, S.; Soffi, L.] Univ Roma, Rome, Italy. [Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Mazza, G.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.; Staiano, A.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Amapane, N.; Argiro, S.; Casasso, S.; Costa, M.; Migliore, E.; Monaco, V.; Potenza, A.; Romero, A.; Sacchi, R.; Solano, A.] Univ Turin, Turin, Italy. [Arcidiacono, R.; Arneodo, M.; Obertino, M. M.] Univ Piemonte Orientale Novara, Turin, Italy. [Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.] Ist Nazl Fis Nucl, Sez Trieste, Trieste, Italy. [Abdulsalam, A.; Candelise, V.; Della Ricca, G.; Marone, M.; Montanino, D.; Schizzi, A.] Univ Trieste, Trieste, Italy. [Kim, T. Y.; Nam, S. K.] Kangwon Natl Univ, Chunchon, South Korea. [Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Son, D. C.; Son, T.] Kyungpook Natl Univ, Taegu, South Korea. [Kim, J. Y.; Kim, Zero J.; Song, S.] Chonnam Natl Univ, Inst Universe & Elementary Particles, Kwangju, South Korea. [Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Roh, Y.] Korea Univ, Seoul, South Korea. [Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.] Univ Seoul, Seoul, South Korea. [Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.] Sungkyunkwan Univ, Suwon, South Korea. [Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.] Vilnius Univ, Vilnius, Lithuania. [Castilla-Valdez, H.; De la Cruz-Burelo, E.; Heredia-de la Cruz, I.; Lopez-Fernandez, R.; Martinez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.] IPN, Ctr Invest & Estudios Avanzados, Mexico City 07738, DF, Mexico. [Carrillo Moreno, S.; Vazquez Valencia, F.] Univ lberoamer, Mexico City, DF, Mexico. [Salazar Ibarguen, H. A.] Benemerita Univ Autonoma Puebla, Puebla, Mexico. [Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.] Univ Autonoma San Luis Potosi, San Luis Potosi, Mexico. [Krofcheck, D.] Univ Auckland, Auckland 1, New Zealand. [Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.] Univ Canterbury, Christchurch 1, New Zealand. [Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.] Quaid I Azam Univ, Natl Ctr Phys, Islamabad, Pakistan. [Bialkowska, H.; Boimska, B.; Frueboes, T.; Gorski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.] Natl Ctr Nucl Res, Otwock, Poland. [Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.] Univ Warsaw, Fac Phys, Inst Expt Phys, Warsaw, Poland. [Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.] Lab Instrumentacao & Fis Expt Particulas, Lisbon, Portugal. [Belotelov, I.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.] Joint Inst Nucl Res Dubna, Dubna, Russia. [Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.] Petersburg Nucl Phys Inst, St Petersburg, Russia. [Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.] PN Lebedev Phys Inst, Moscow, Russia. [Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.] Inst High Energy Phys, State Res Ctr Russian Fed, Protvino, Russia. [Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De la Cruz, B.; Delgado Peris, A.; Dominguez Vazquez, D.; Fernandez Bedoya, C.; Fernandez Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain. [Albajar, C.; Codispoti, G.; de Troconiz, J. F.] Univ Autonoma Madrid, Madrid, Spain. [Bruno, G.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.] Univ Oviedo, Oviedo, Spain. [Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodriguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Cortabitarte, R. Vilar] Univ Cantabria, CSIC, Inst Fis Cantabria IFCA, E-39005 Santander, Spain. [Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Govoni, P.; Goyvdy, S.; Guida, R.; Gundacker, S.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y. -J.; Lenzi, P.; Lourenco, C.; Magini, N.; Maeki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiae, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Antunes, J. Rodrigues; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schaefer, C.; Schwick, C. .; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Woehri, H. K.; Worm, S. D.; Zeuner, W. D.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Koenig, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.] Paul Scherrer Inst, Villigen, Switzerland. [Weber, H.; Baeni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donega, M.; Duenser, M.; Eller, P.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Naegeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Wehrli, L.] ETH, Inst Particle Phys, Zurich, Switzerland. [Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Kilminster, B.; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.] Univ Zurich, Zurich, Switzerland. [Chang, Y. H.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Singh, A. P.; Volpe, R.; Yu, S. S.] Natl Cent Univ, Chungli 32054, Taiwan. [Chang, Y. H.; Bartalini, P.; Chang, P.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.] Natl Taiwan Univ, Taipei 10764, Taiwan. [Asavapibhop, B.; Srimanobhas, N.] Chulalongkorn Univ, Bangkok, Thailand. [Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.] Cukurova Univ, Adana, Turkey. [Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey. [Gulmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.] Bogazici Univ, Istanbul, Turkey. [Cankocak, K.] Istanbul Tech Univ, TR-80626 Istanbul, Turkey. [Levchuk, L.] Kharkov Phys & Technol Inst, Natl Sci Ctr, UA-310108 Kharkov, Ukraine. [Godinovic, N.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.] Univ Bristol, Bristol, Avon, England. [Belyaev, A.; Basso, L.; Bell, K. W.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.] Univ London Imperial Coll Sci Technol & Med, London, England. [Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.] Brunel Univ, Uxbridge UB8 3PH, Middx, England. [Hatakeyama, K.; Liu, H.; Scarborough, T.] Baylor Univ, Waco, TX 76798 USA. [Charaf, O.; Henderson, C.; Rumerio, P.] Univ Alabama, Tuscaloosa, AL USA. [Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; John, J. St.; Sulak, L.; Kropivnitskaya, A. .] Boston Univ, Boston, MA 02215 USA. [Bhattacharya, S.; Alimena, J.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.] Brown Univ, Providence, RI 02912 USA. [Breedon, R.; Breto, G.; Sanchez, M. Calderon De la Barca; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Yohay, R.] Univ Calif Davis, Davis, CA 95616 USA. [Weber, M.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.] Univ Calif Los Angeles, Los Angeles, CA USA. [Liu, H.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.] Univ Calif Riverside, Riverside, CA 92521 USA. [Sharma, V.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Wuerthwein, F.; Yagil, A.; Yoo, J.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; George, C.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Villalba, R. Magana; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA. [Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Kcira, D.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.] CALTECH, Pasadena, CA 91125 USA. [Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. [Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.] Univ Colorado, Boulder, CO 80309 USA. [Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.] Cornell Univ, Ithaca, NY USA. [Winn, D.] Fairfield Univ, Fairfield, CT 06430 USA. [Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A. .; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.] Univ Florida, Gainesville, FL USA. [Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.] Florida Int Univ, Miami, FL 33199 USA. [Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.] Florida State Univ, Tallahassee, FL 32306 USA. [Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Yumiceva, F.] Florida Inst Technol, Melbourne, FL 32901 USA. [Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, E.; O'Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.] Univ Illinois, Chicago, IL USA. [Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.] Univ Iowa, Iowa City, IA USA. [Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.] Johns Hopkins Univ, Baltimore, MD USA. [Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P., III; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.] Univ Kansas, Lawrence, KS 66045 USA. [Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.] Kansas State Univ, Manhattan, KS 66506 USA. [Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.] Lawrence Livermore Natl Lab, Livermore, CA USA. [Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.] Univ Maryland, College Pk, MD 20742 USA. [Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Kim, Y.; Klute, M.; Krajczar, K.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stoeckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.] MIT, Cambridge, MA 02139 USA. [Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Haupt, J.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.] Univ Minnesota, Minneapolis, MN USA. [Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.] Univ Mississippi, Oxford, MS 38677 USA. [Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Snow, G. R.] Univ Nebraska, Lincoln, NE USA. [Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.] SUNY Buffalo, Buffalo, NY 14260 USA. [Kropivnitskaya, A. .; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.] Northeastern Univ, Boston, MA 02115 USA. [Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.] Northwestern Univ, Evanston, IL USA. [Antonelli, L.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.] Univ Notre Dame, Notre Dame, IN 46556 USA. [Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.] Ohio State Univ, Columbus, OH 43210 USA. [Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroue, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.] Princeton Univ, Princeton, NJ 08544 USA. [Brownson, E.; Lopez, A.; Mendez, H.; Vargas, J. E. Ramirez] Univ Puerto Rico, Mayaguez, PR USA. [Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.] Purdue Univ, W Lafayette, IN 47907 USA. [Guragain, S.; Parashar, N.] Purdue Univ Calumet, Hammond, LA USA. [Li, W.; Adair, A.; Akgun, B.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.] Rice Univ, Houston, TX USA. [Kropivnitskaya, A. .; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, R.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.] Univ Rochester, Rochester, NY 14627 USA. [Malik, S.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.] Rockefeller Univ, New York, NY 10021 USA. [Park, M.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.; Gray, L.] Rutgers State Univ, Piscataway, NJ USA. [Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.] Univ Tennessee, Knoxville, TN USA. [Kropivnitskaya, A. .; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.] Texas A&M Univ, College Stn, TX USA. [Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.] Texas Tech Univ, Lubbock, TX 79409 USA. [Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.] Vanderbilt Univ, Nashville, TN 37235 USA. [Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.] Univ Virginia, Charlottesville, VA USA. [Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.] Wayne State Univ, Detroit, MI USA. [Anderson, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Herve, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.] Univ Wisconsin, Madison, WI 53706 USA. [Fabjan, C.; Fruehwirth, R.; Jeitler, M.; Krammer, M.; Wulz, C. -E.] Vienna Univ Technol, A-1040 Vienna, Austria. [Rabady, D.; Genchev, V.; Iaydjiev, R.; Puljak, I.; Chierici, R.; Lingemann, J.; Guthoff, M.; Hartmann, F.; Hauth, T.; Calabria, C.; De Filippis, N.; Meneghelli, M.; Di Matteo, L.; Gennai, S.; De Cosa, A.; Paolucci, P.; Bacchetta, N.; Branca, A.; D'Agnolo, R. T.; Fiori, F.; Squillacioti, P.; Grassi, M.; Meridiani, P.; Musich, M.; Marone, M.; Montanino, D.; Grishin, V.] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland. [Giammanco, A.] NICPB, Tallinn, Estonia. [Dias, F. A.; Dubinin, M.] CALTECH, Pasadena, CA 91125 USA. [Plestina, R.; Bernet, C.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Assran, Y.] Suez Canal Univ, Suez, Egypt. [Elgammal, S.] Zewail City Sci & Technol, Zewail, Egypt. [Kamel, A. Ellithi] Cairo Univ, Cairo, Egypt. [Mahmoud, M. A.] Fayoum Univ, Al Fayyum, Egypt. [Mahrous, A.] Helwan Univ, Cairo, Egypt. [Radi, A.] British Univ Egypt, Cairo, Egypt. [Radi, A.] Ain Shams Univ, Cairo, Egypt. [Bluj, M.] Natl Ctr Nucl Res, Otwock, Poland. [Agram, J. -L.; Conte, E.; Drouhin, F.; Fontaine, J. -C.] Univ Haute Alsace, Mulhouse, France. [Tsamalaidze, Z.] Joint Inst Nucl Res, Dubna, Russia. [Zhukov, V.; Katkov, I.] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow, Russia. [Bergholz, M.; Lohmann, W.; Schmidt, R.] Brandenburg Tech Univ Cottbus, D-03044 Cottbus, Germany. [Sibille, J.] Univ Kansas, Lawrence, KS 66045 USA. [Horvath, D.] ATOMKI, Inst Nucl Res, Debrecen, Hungary. [Vesztergombi, G.; Veres, G. I.] Eotvos Lorand Univ, Budapest, Hungary. [Guchait, M.] Tata Inst Fundamental Res HECR, Bombay, Maharashtra, India. [Gurtu, A.] King Abdulaziz Univ, Jeddah 21413, Saudi Arabia. [Maity, M.] Visva Bharati Univ, Santini Ketan, W Bengal, India. [Arfaei, H.; Fahim, A.] Sharif Univ Technol, Tehran, Iran. [Etesami, S. M.] Isfahan Univ Technol, Esfahan, Iran. [Hashemi, M.] Shiraz Univ, Shiraz, Iran. [Safarzadeh, B.] Islamic Azad Univ, Plasma Phys Res Ctr, Sci & Res Branch, Tehran, Iran. [Colafranceschi, S.] Univ Roma, Fac Ingn, Rome, Italy. [Meola, S.] Univ Guglielmo Marconi, Rome, Italy. [Martini, L.] Univ Siena, I-53100 Siena, Italy. [Serban, A. T.] Univ Bucharest, Fac Phys, Bucharest, Romania. [Adzic, P.; Krpic, D.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Felcini, M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Rolandi, G.] Scuola Normale, Pisa, Italy. [Rolandi, G.] Sezione Ist Nazl Fis Nucl, Pisa, Italy. [Rovelli, C.] Ist Nazl Fis Nucl, Sez Roma, Rome, Italy. [Sphicas, P.] Univ Athens, Athens, Greece. [Worm, S. D.; Newbold, D. M.] Rutherford Appleton Lab, Didcot OX11 0QX, Oxon, England. [Naegeli, C.] Paul Scherrer Inst, Villigen, Switzerland. [Starodumov, A.; Nikitenko, A.] Inst Theoret & Expt Phys, Moscow 117259, Russia. [Amsler, C.] Albert Einstein Ctr Fundamental Phys, Bern, Switzerland. [Bakirci, M. N.; Topakli, H.] Gaziosmanpasa Univ, Tokat, Turkey. [Cerci, S.; Cerci, D. Sunar; Tali, B.] Adiyaman Univ, Adiyaman, Turkey. [Karapinar, G.] Izmir Inst Technol, Izmir, Turkey. [Ozturk, S.] Univ Iowa, Iowa City, IA USA. [Sogut, K.] Mersin Univ, Mersin, Turkey. [Isildak, B.] Ozyegin Univ, Istanbul, Turkey. [Kaya, M.; Kaya, O.] Kafkas Univ, Kars, Turkey. [Ozkorucuklu, S.] Suleyman Demirel Univ, TR-32200 Isparta, Turkey. [Sonmez, N.] Ege Univ, Izmir, Turkey. [Basso, L.; Belyaev, A.] Univ Southampton, Sch Phys & Astron, Southampton, Hants, England. [Pioppi, M.] Univ Perugia, Ist Nazl Fis Nucl, Sez Perugia, I-06100 Perugia, Italy. [Wasserbaech, S.] Utah Valley Univ, Orem, UT USA. [Leonidopoulos, C.] Univ Edinburgh, Edinburgh, Midlothian, Scotland. [Musienko, Y.] Russian Acad Sci, Inst Nucl Res, Moscow 117312, Russia. [Milenovic, P.] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia. [Milenovic, P.] Vinca Inst Nucl Sci, Belgrade, Serbia. [Bilki, B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Mermerkaya, H.] Erzincan Univ, Erzincan, Turkey. [Ozok, F.] Mimar Sinan Univ, Istanbul, Turkey. [Yetkin, T.] Yildiz Tekn Univ, Istanbul, Turkey. [Krajczar, K.] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary. [Kamon, T.] Kyungpook Natl Univ, Taegu, South Korea. RP Chatrchyan, S (reprint author), Yerevan Phys Inst, Yerevan 375036, Armenia. RI Ferguson, Thomas/O-3444-2014; Benussi, Luigi/O-9684-2014; Leonidov, Andrey/P-3197-2014; vilar, rocio/P-8480-2014; da Cruz e Silva, Cristovao/K-7229-2013; Grandi, Claudio/B-5654-2015; Bernardes, Cesar Augusto/D-2408-2015; Raidal, Martti/F-4436-2012; Lazzizzera, Ignazio/E-9678-2015; Sen, Sercan/C-6473-2014; D'Alessandro, Raffaello/F-5897-2015; Belyaev, Alexander/F-6637-2015; Stahl, Achim/E-8846-2011; Trocsanyi, Zoltan/A-5598-2009; Montanari, Alessandro/J-2420-2012; Gribushin, Andrei/J-4225-2012; Cerrada, Marcos/J-6934-2014; Venturi, Andrea/J-1877-2012; Calderon, Alicia/K-3658-2014; Josa, Isabel/K-5184-2014; de la Cruz, Begona/K-7552-2014; Scodellaro, Luca/K-9091-2014; Arce, Pedro/L-1268-2014; Calvo Alamillo, Enrique/L-1203-2014; Paulini, Manfred/N-7794-2014; Vogel, Helmut/N-8882-2014; Codispoti, Giuseppe/F-6574-2014; Petrushanko, Sergey/D-6880-2012; Marlow, Daniel/C-9132-2014; Janssen, Xavier/E-1915-2013; Novaes, Sergio/D-3532-2012; Bellan, Riccardo/G-2139-2014; Lokhtin, Igor/D-7004-2012; Tinti, Gemma/I-5886-2013; Bartalini, Paolo/E-2512-2014; Santoro, Alberto/E-7932-2014; Ligabue, Franco/F-3432-2014; Wulz, Claudia-Elisabeth/H-5657-2011; Dudko, Lev/D-7127-2012; Konecki, Marcin/G-4164-2015; Hernandez Calama, Jose Maria/H-9127-2015; Bedoya, Cristina/K-8066-2014; My, Salvatore/I-5160-2015; Matorras, Francisco/I-4983-2015; Ragazzi, Stefano/D-2463-2009; Rovelli, Tiziano/K-4432-2015; Dremin, Igor/K-8053-2015; Hoorani, Hafeez/D-1791-2013; Leonidov, Andrey/M-4440-2013; Andreev, Vladimir/M-8665-2015; TUVE', Cristina/P-3933-2015; KIM, Tae Jeong/P-7848-2015; Azarkin, Maxim/N-2578-2015; de Jesus Damiao, Dilson/G-6218-2012; Flix, Josep/G-5414-2012; Della Ricca, Giuseppe/B-6826-2013; Tomei, Thiago/E-7091-2012; Dubinin, Mikhail/I-3942-2016; Paganoni, Marco/A-4235-2016; Kirakosyan, Martin/N-2701-2015; Gulmez, Erhan/P-9518-2015; Tinoco Mendes, Andre David/D-4314-2011; Sznajder, Andre/L-1621-2016; Vilela Pereira, Antonio/L-4142-2016; Mundim, Luiz/A-1291-2012; Haj Ahmad, Wael/E-6738-2016; Leonardo, Nuno/M-6940-2016; Goh, Junghwan/Q-3720-2016; Ruiz, Alberto/E-4473-2011; Govoni, Pietro/K-9619-2016; Tuominen, Eija/A-5288-2017; Yazgan, Efe/C-4521-2014; OI Ferguson, Thomas/0000-0001-5822-3731; Benussi, Luigi/0000-0002-2363-8889; Grandi, Claudio/0000-0001-5998-3070; Lazzizzera, Ignazio/0000-0001-5092-7531; Sen, Sercan/0000-0001-7325-1087; D'Alessandro, Raffaello/0000-0001-7997-0306; Belyaev, Alexander/0000-0002-1733-4408; Stahl, Achim/0000-0002-8369-7506; Trocsanyi, Zoltan/0000-0002-2129-1279; Montanari, Alessandro/0000-0003-2748-6373; Cerrada, Marcos/0000-0003-0112-1691; Scodellaro, Luca/0000-0002-4974-8330; Arce, Pedro/0000-0003-3009-0484; Calvo Alamillo, Enrique/0000-0002-1100-2963; Paulini, Manfred/0000-0002-6714-5787; Vogel, Helmut/0000-0002-6109-3023; Codispoti, Giuseppe/0000-0003-0217-7021; Novaes, Sergio/0000-0003-0471-8549; Ligabue, Franco/0000-0002-1549-7107; Wulz, Claudia-Elisabeth/0000-0001-9226-5812; Dudko, Lev/0000-0002-4462-3192; Konecki, Marcin/0000-0001-9482-4841; Hernandez Calama, Jose Maria/0000-0001-6436-7547; Bedoya, Cristina/0000-0001-8057-9152; My, Salvatore/0000-0002-9938-2680; Matorras, Francisco/0000-0003-4295-5668; Ragazzi, Stefano/0000-0001-8219-2074; Rovelli, Tiziano/0000-0002-9746-4842; TUVE', Cristina/0000-0003-0739-3153; KIM, Tae Jeong/0000-0001-8336-2434; de Jesus Damiao, Dilson/0000-0002-3769-1680; Flix, Josep/0000-0003-2688-8047; Della Ricca, Giuseppe/0000-0003-2831-6982; Tomei, Thiago/0000-0002-1809-5226; Dubinin, Mikhail/0000-0002-7766-7175; Paganoni, Marco/0000-0003-2461-275X; Gulmez, Erhan/0000-0002-6353-518X; Tinoco Mendes, Andre David/0000-0001-5854-7699; Sznajder, Andre/0000-0001-6998-1108; Vilela Pereira, Antonio/0000-0003-3177-4626; Mundim, Luiz/0000-0001-9964-7805; Haj Ahmad, Wael/0000-0003-1491-0446; Leonardo, Nuno/0000-0002-9746-4594; Goh, Junghwan/0000-0002-1129-2083; Ruiz, Alberto/0000-0002-3639-0368; Govoni, Pietro/0000-0002-0227-1301; Tuominen, Eija/0000-0002-7073-7767; Yazgan, Efe/0000-0001-5732-7950; Heath, Helen/0000-0001-6576-9740 FU BMWF; FWF (Austria); FNRS; FWO (Belgium); CNPq; CAPES; FAPERJ; FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS; MoST; NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER [SF0690030s09]; ERDF (Estonia); Academy of Finland; MEC; HIP (Finland); CEA; CNRS/IN2P3 (France); BMBF; DFG; HGF (Germany); GSRT (Greece); OTKA; NKTH (Hungary); DAE; DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF; WCU (Republic of Korea); LAS (Lithuania); CINVESTAV; CONACYT; SEP; UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE; NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON; RosAtom; RAS; RFBR (Russia); MSTD (Serbia); SEIDI; CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter; IPST; NSTDA (Thailand); TUBITAK; TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE; NSF (USA); Marie-Curie programme; European Research Council; EPLANET (European Union); Leventis Foundation; A.P. Sloan Foundation; Alexander von Humboldt Foundation; Belgian Federal Science Policy Office; Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); Ministry of Education, Youth and Sports (MEYS) of Czech Republic; Council of Science and Industrial Research, India; Compagnia di San Paolo (Torino); HOMING PLUS programme of Foundation for Polish Science; European Union, Regional Development Fund FX We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund. NR 29 TC 24 Z9 24 U1 2 U2 63 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV PY 2013 VL 727 IS 1-3 BP 101 EP 125 DI 10.1016/j.physletb.2013.10.033 PG 25 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 273ES UT WOS:000328518400011 ER PT J AU Vecchi, L AF Vecchi, Luca TI A flavor sector for the composite Higgs SO PHYSICS LETTERS B LA English DT Article ID MODEL; BOSON; BREAKING; MASSES; LHC AB We discuss flavor violation in large N Composite Higgs models. We focus on scenarios in which the masses of the Standard Model fermions are controlled by hierarchical mixing parameters, as in models of Partial Compositeness. We argue that a separation of scales between flavor and Higgs dynamics can be employed to parametrically suppress dipole and penguin operators, and thus effectively remove the experimental constraints arising from the lepton sector and the neutron EDM. The dominant source of flavor violation beyond the Standard Model is therefore controlled by 4-fermion operators, whose Wilson coefficients can be made compatible with data provided the Higgs dynamics approaches a "walking" regime in the IR. Models consistent with all flavor and electroweak data can be obtained with a new physics scale within the reach of the LHC. Explicit scenarios may be realized in a 5D framework, the new key ingredient being the introduction of flavor branes where the wave functions of the bulk fermions end. (C) 2013 Elsevier B.V. All rights reserved. C1 Los Alamos Natl Lab, Div Theory T 2, Los Alamos, NM 87545 USA. RP Vecchi, L (reprint author), Los Alamos Natl Lab, Div Theory T 2, POB 1663, Los Alamos, NM 87545 USA. EM vecchi@lanl.gov OI VECCHI, Luca/0000-0001-5254-8826 FU DOE Office of Science; LANL LDRD program FX I thank Silvia for her patience, Marco Nardecchia and Ian Shoemaker for discussions, and Kaustubh Agashe for comments, for suggesting a brief discussion of the 5D realization, and for helping me in the identification of the dual picture. This work was supported by the DOE Office of Science and the LANL LDRD program. NR 23 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV PY 2013 VL 727 IS 1-3 BP 130 EP 135 DI 10.1016/j.physletb.2013.08.006 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 273ES UT WOS:000328518400013 ER PT J AU Roberts, CD Holt, RJ Schmidt, SM AF Roberts, Craig D. Holt, Roy J. Schmidt, Sebastian M. TI Nucleon spin structure at very high x SO PHYSICS LETTERS B LA English DT Article DE Continuum strong QCD; Diquark correlations; Dynamical chiral symmetry breaking; Dyson-Schwinger equations; Nucleon longitudinal spin asymmetries; Parton distribution functions; Valence quarks at very high x ID QUARK-DIQUARK MODEL; QCD; DISTRIBUTIONS; SCATTERING; PROTON; PION AB Dyson-Schwinger equation treatments of the strong interaction show that the presence and importance of nonpointlike diquark correlations within the nucleon are a natural consequence of dynamical chiral symmetry breaking. Using this foundation, we deduce a collection of simple formulae, expressed in terms of diquark appearance and mixing probabilities, from which one may compute ratios of longitudinal-spin-dependent u- and d-quark parton distribution functions on the domain x similar or equal to 1. A comparison with predictions from other approaches plus a consideration of extant and planned experiments shows that the measurement of nucleon longitudinal spin asymmetries on x similar or equal to 1 can add considerably to our capacity for discriminating between contemporary pictures of nucleon structure. (C) 2013 Elsevier B.V. All rights reserved. C1 [Roberts, Craig D.; Holt, Roy J.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Schmidt, Sebastian M.] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany. [Schmidt, Sebastian M.] JARA, D-52425 Julich, Germany. RP Roberts, CD (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. FU Helmholtz Association International Fellow Award; Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357]; Forschungszentrum Julich GmbH FX We are grateful for insightful comments from I.C. Cloet. C.D.R. acknowledges support from an Helmholtz Association International Fellow Award. Work otherwise funded by: Department of Energy, Office of Nuclear Physics, contract No. DE-AC02-06CH11357; and Forschungszentrum Julich GmbH. NR 70 TC 19 Z9 19 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV PY 2013 VL 727 IS 1-3 BP 249 EP 254 DI 10.1016/j.physletb.2013.09.038 PG 6 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 273ES UT WOS:000328518400034 ER PT J AU Chang, L Roberts, CD Schmidt, SM AF Chang, Lei Roberts, Craig D. Schmidt, Sebastian M. TI Light front distribution of the chiral condensate SO PHYSICS LETTERS B LA English DT Article DE Quantum chromodynamics; Dynamical chiral symmetry breaking; Dyson-Schwinger equations; Light-front quantum field theory ID ENERGY-MOMENTUM-TENSOR; QUANTUM CHROMODYNAMICS; WAVE-FUNCTIONS; QCD; CONSTANT; SYMMETRY; EQUATION; TRACE AB The pseudoscalar projection of the pion's Poincare-covariant Bethe-Salpeter amplitude onto the light-front may be understood to provide the probability distribution of the chiral condensate within the pion. Unlike the parton distribution amplitudes usually considered and as befitting a collective effect, this condensate distribution receives contributions from all Fock space components of the pion's light-front wave function. We compute this condensate distribution using the Dyson-Schwinger equation (DSE) framework and show the result to be a model-independent feature of quantum chromodynamics (QCD). Our analysis establishes that this condensate is concentrated in the neighbourhood of the boundaries of the distribution's domain of support. It thereby confirms the dominant role played by many-particle Fock states within the pion's light-front wave function in generating the chiral condensate and verifies that light-front longitudinal zero modes do not play a material role in that process. (C) 2013 Elsevier B.V. All rights reserved. C1 [Chang, Lei] Forschungszentrum Julich, Inst Kernphys, D-52425 Julich, Germany. [Roberts, Craig D.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Schmidt, Sebastian M.] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany. [Schmidt, Sebastian M.] JARA, D-52425 Julich, Germany. RP Schmidt, SM (reprint author), Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany. FU Forschungszentrum Julich GmbH; Department of Energy, Office of Nuclear Physics [DE-AC02-06CH11357] FX We are grateful for insightful comments from S.J. Brodsky, I.C. Cloet and P.C. Tandy. Work supported by: Forschungszentrum Julich GmbH; and Department of Energy, Office of Nuclear Physics, contract No. DE-AC02-06CH11357. NR 59 TC 15 Z9 15 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0370-2693 EI 1873-2445 J9 PHYS LETT B JI Phys. Lett. B PD NOV PY 2013 VL 727 IS 1-3 BP 255 EP 259 DI 10.1016/j.physletb.2013.09.040 PG 5 WC Astronomy & Astrophysics; Physics, Nuclear; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 273ES UT WOS:000328518400035 ER PT J AU Brusseau, ML Carroll, KC Truex, MJ Becker, DJ AF Brusseau, Mark L. Carroll, Kenneth C. Truex, Michael J. Becker, David J. TI Characterization and Remediation of Chlorinated Volatile Organic Contaminants in the Vadose Zone SO VADOSE ZONE JOURNAL LA English DT Article ID SOIL-VAPOR EXTRACTION; UNSATURATED POROUS-MEDIA; NONAQUEOUS PHASE LIQUID; PARTITIONING TRACER TESTS; 3-DIMENSIONAL NUMERICAL-MODEL; EVAPORATIVE MASS-TRANSFER; LOW-PERMEABILITY SOILS; WATER-CONTENT; IMMISCIBLE-LIQUID; HYDRAULIC TOMOGRAPHY AB Contamination of vadose-zone systems by chlorinated solvents is widespread and poses significant potential risk to human health through impacts on groundwater quality and vapor intrusion. Soil vapor extraction (SVE) is the presumptive remedy for such contamination and has been used successfully for innumerable sites; however, SVE operations typically exhibit reduced mass-removal effectiveness at some point due to the impact of poorly accessible contaminant mass and associated mass-transfer limitations. Assessment of SVE performance and closure is currently based on characterizing contaminant mass discharge associated with the vadose-zone source and its impact on groundwater or vapor intrusion. These issues are addressed in this overview, with a focus on summarizing recent advances in our understanding of the transport, characterization, and remediation of chlorinated solvents in the vadose zone. The evolution of contaminant distribution with time and the associated impacts on remediation efficiency are discussed, as is potential impact of persistent sources on groundwater quality and vapor intrusion. In addition, alternative methods for site characterization and remediation are addressed. C1 [Brusseau, Mark L.] Univ Arizona, Sch Earth & Environm Sci, Tucson, AZ 85721 USA. [Carroll, Kenneth C.; Truex, Michael J.] Pacific NW Natl Lab, Richland, WA 99354 USA. [Becker, David J.] US Army Corps Engineers, Environm & Munit Ctr Expertise, Omaha, NE 68102 USA. RP Brusseau, ML (reprint author), Univ Arizona, Sch Earth & Environm Sci, Tucson, AZ 85721 USA. EM Brusseau@email.arizona.edu RI Carroll, Kenneth/H-5160-2011 OI Carroll, Kenneth/0000-0003-2097-9589 FU U.S. Department of Defense Environmental Security Technology Certification Program [ER-201125]; USDOE Office of Environmental Management, Office of Soil and Groundwater Remediation and Office of Richland Operations; National Institute of Environmental Health Sciences Superfund Research Program [ES04940]; USDOE [DE-AC05-76RL01830] FX This research was supported by the U.S. Department of Defense Environmental Security Technology Certification Program (ER-201125), the USDOE Office of Environmental Management, Office of Soil and Groundwater Remediation and Office of Richland Operations, and the National Institute of Environmental Health Sciences Superfund Research Program (ES04940). We thank Jim Hatton of AECOM, Inc., and Manfred Plaschke of CRA, Inc., for graciously providing the SVE data sets for the AFP44 and TAA sites, respectively. Assistance with graphics from Kyle Parker and Jeff London is appreciated. The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the USDOE under Contract DE-AC05-76RL01830. NR 145 TC 10 Z9 10 U1 3 U2 33 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2013 VL 12 IS 4 DI 10.2136/vzj2012.0137 PG 17 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 274TF UT WOS:000328628400002 ER PT J AU Dafflon, B Hubbard, SS Ulrich, C Peterson, JE AF Dafflon, Baptiste Hubbard, Susan S. Ulrich, Craig Peterson, John E. TI Electrical Conductivity Imaging of Active Layer and Permafrost in an Arctic Ecosystem, through Advanced Inversion of Electromagnetic Induction Data SO VADOSE ZONE JOURNAL LA English DT Article ID LATERALLY CONSTRAINED INVERSION; GROUND-PENETRATING RADAR; THAW LAKE BASINS; NEAR-SURFACE; RESISTIVITY TOMOGRAPHY; SOIL; ALASKA; ALGORITHM; MODEL; CALIBRATION AB Characterizing the spatial variability of active layer and permafrost properties is critical for parameterizing process-rich models that simulate feedbacks from Arctic ecosystem to a changing climate. Because of the sensitivity of electrical conductivity (EC) measurements to moisture content, salinity, and freeze state and the ease of collecting electromagnetic induction (EMI) data with portable tools (e. g., EM38, GEM2, or DUALEM) over large regions, EMI surveys hold great potential for Arctic ecosystem characterization. However, estimation of subsurface EC distribution from such data is challenging because of the insufficient amount of information such data provide towards finding a unique solution. The non-uniqueness problem is often approached by fixing inversion constraints and initial models without a clear understanding of their possible effects on the obtained results. Here we developed a direct search method, which involves a grid-based evaluation of one-dimensional layered model parameters, to estimate EC distribution from EMI data and evaluate the influence of prior constraints, data information content, and solution non-uniqueness. We applied the new method to EMI data acquired in Barrow, AK, as part of the Department of Energy Next-Generation Ecosystem Experiments (DOE NGEE-Arctic). Results demonstrate the success of the developed approach for estimating models that reproduce recorded data within a specified range of uncertainty at each measurement location, as well as the value of different types of constraints. Importantly, the method can be used to quickly investigate the need for and effects of different priors at numerous measurement locations, since the time-consuming simulation of the EMI signals from the multidimensional search grid is performed only once. C1 [Dafflon, Baptiste; Hubbard, Susan S.; Ulrich, Craig; Peterson, John E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Dafflon, B (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM bdafflon@lbl.gov RI Dafflon, Baptiste/G-2441-2015; Hubbard, Susan/E-9508-2010 FU Office of Biological and Environmental Research in the DOE Office of Science; [DE-AC02-05CH11231] FX The Next-Generation Ecosystem Experiments (NGEE Arctic) project is supported by the Office of Biological and Environmental Research in the DOE Office of Science. This NGEE-Arctic research is supported through contract number DE-AC02-05CH11231 to Lawrence Berkeley National Laboratory. Logistical support in Barrow was provided by UMIAQ, LLC. The authors thank Stan Wullschleger (NGEE-Arctic PI, ORNL) for facilitating our field campaigns, Nigel Quinn (LBNL) for lending us EM38 tools, and Jinsong Chen, Mike Commer (LBNL), and Roman Shekhtman (UBC) for providing codes and guidance for using the EM forward modeling code from LBNL and the University of British Columbia, respectively. NR 56 TC 12 Z9 12 U1 0 U2 19 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2013 VL 12 IS 4 DI 10.2136/vzj2012.0161 PG 19 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 274TF UT WOS:000328628400005 ER PT J AU Griffith, BC Holt, RM Glass, RJ AF Griffith, B. Clark Holt, Robert M. Glass, Robert J. TI Generating Reproducible Microscale Heterogeneity for Transmitted-Light Flow Visualization Experiments SO VADOSE ZONE JOURNAL LA English DT Article ID WETTING FRONT INSTABILITY; POROUS-MEDIA; LABORATORY EXPERIMENTS; GRANULAR-MATERIALS; SIZE SEGREGATION; FINGERED FLOW; 2 DIMENSIONS; SATURATION; DYNAMICS; SYSTEMS AB We developed and evaluated a new approach for constructing reproducible, "geologically realistic" heterogeneity for near-two-dimensional transmitted-light experiments. By using an apparatus with a computer-controlled arm, mixtures of sand were deposited in an experimental chamber through a tube. Mechanical segregation processes within the tube and the chamber led to stratification that mimicked that produced by sedimentary processes. By varying the arm speed, stratum thickness and angle could be controlled. By using different sand mixtures, the grain size at the top and bottom of a stratum could be varied. Through the use of carefully designed computer programs, a variety of reproducible microheterogeneous and macroheterogeneous structures could be produced. A spectral evaluation of 10 sample chambers produced with a single program showed negligible differences between sample chambers. C1 [Griffith, B. Clark] Intera Inc, Austin, TX 78754 USA. [Holt, Robert M.] Univ Mississippi, Dept Geol & Geol Engn, University, MS 38655 USA. [Glass, Robert J.] Sandia Natl Labs, Div Energy Nonproliferat & High Consequence Secur, Albuquerque, NM 87123 USA. RP Holt, RM (reprint author), Univ Mississippi, Dept Geol & Geol Engn, 118 Carrier Hall, University, MS 38655 USA. EM rmholt@olemiss.edu FU U.S. Department of Energy's Office of Basic Energy Research Geoscience Program [DE-AC04-94AL85000] FX We are grateful for the efforts of four anonymous reviewers; their comments greatly improved this manuscript. In addition, we wish to thank Michael Young for his help with our manuscript. Our work was supported by the U.S. Department of Energy's Office of Basic Energy Research Geoscience Program under contract DE-AC04-94AL85000 to Sandia National Laboratories. We also gratefully acknowledge Lee O'Rear and Will Peplinski, whose help in the laboratory was invaluable. NR 33 TC 0 Z9 0 U1 3 U2 8 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2013 VL 12 IS 4 DI 10.2136/vzj2011.0182 PG 8 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 274TF UT WOS:000328628400001 ER PT J AU Salve, R Rempe, D AF Salve, Rohit Rempe, Daniella TI Backfill Impacts on Moisture Measurements in Fractured Rock SO VADOSE ZONE JOURNAL LA English DT Article ID TIME-DOMAIN REFLECTOMETRY; SOIL-WATER CONTENT; DIELECTRIC-PROPERTIES; PROBES; PERMITTIVITY; SUBSURFACE; DISCHARGE; HILLSLOPE; MODEL AB As the scope of hillslope-hydrology investigations extend deeper, there will likely be an increase in the use of backfill to facilitate sensor installations, particularly in fractured rock. Because of the disparity in hydrologic properties of backfill and the native rock being monitored, discrepancies in measured values are imminent. In this study, we assessed the impact of different types of backfill that can be used to provide hydraulic continuity between sensors and the "measured" environment. During a period of 4 yr, the hydrologic response to seasonal wetting and drying was monitored with identical time domain reflectometry (TDR) sensors embedded in native rock, fracture infill, augured native rock, and silica powder. We found that while all backfills responded to wetting and drying events, there were differences in the response to individual rainfall events and in the amount of moisture measured. Our observations show that the use of any type of backfill for monitoring fractured rock hydrology will result in distorted measurements; however, our analysis suggests that simple calibrations between native rock and backfill measurements allow moisture content changes in the native rock to be quantified using backfill measurements. Backfill that is finer textured than native rock provides the best estimate of water content during long-term, uninterrupted drying events when the backfill measurements are calibrated to native rock conditions. Irrespective of calibration, backfill materials coarser than the native rock provide the best detection of the timing and duration of the hydrologic response to precipitation. C1 [Salve, Rohit] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Rempe, Daniella] Univ Calif Berkeley, Berkeley, CA 94720 USA. RP Salve, R (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM r_salve@lbl.gov FU W.M. Keck Foundation; Laboratory Directed Research and Development Program, USDOE; USDOE Office of Science Graduate Fellowship Program (DOE SCGF); ORISE-ORAU [DE-AC05-06OR23100] FX This study was supported by the W.M. Keck Foundation and the Laboratory Directed Research and Development Program, USDOE. Daniella Rempe is supported in part by the USDOE Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under Contract no. DE-AC05-06OR23100. We would like to thank Alessandro Uccelli for assistance in the field. NR 26 TC 0 Z9 0 U1 4 U2 10 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2013 VL 12 IS 4 DI 10.2136/vzj2013.04.0076 PG 9 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 274TF UT WOS:000328628400046 ER PT J AU Wang, W Kravchenko, AN Johnson, T Srinivasan, S Ananyeva, KA Smucker, AJM Rose, JB Rivers, ML AF Wang, W. Kravchenko, A. N. Johnson, T. Srinivasan, S. Ananyeva, K. A. Smucker, A. J. M. Rose, J. B. Rivers, M. L. TI Intra-Aggregate Pore Structures and Escherichia coli Distribution by Water Flow within and Movement Out of Soil Macroaggregates SO VADOSE ZONE JOURNAL LA English DT Article ID RAY COMPUTED MICROTOMOGRAPHY; SATURATED POROUS-MEDIA; SPATIAL-DISTRIBUTION; ORGANIC-MATTER; TRANSPORT; MANURE; ATTACHMENT; SURVIVAL; QUANTIFICATION; BACTERIA AB Soil aggregates are an important structural component of the soil matrix that could harbor Escherichia coli and provide an environment for its survival and water flow reentering. Knowledge of the exact pore locations within soil aggregates obtained using X-ray computed microtomography opens new opportunities for understanding microorganism movement within the soil matrix. The first objective of this study was to assess E. coli spatial distribution within soil macroaggregates and its potential for leaving the aggregates with the saturated water flow. The second objective was to study the relationships between the distribution and movement of E. coli within soil aggregates and the aggregates' internal pore structures. We studied aggregates from the top (A) horizon of conventionally tilled (CT) and no-till (NT) corn-soybean-wheat rotations and native succession vegetation (NS) treatments at NSF Long-Term Ecological Research site, southwest Michigan. The results confirmed that E. coli movement in soil aggregates was mainly driven by water flow via capillary forces. E. coli redistribution was most pronounced in CT aggregates, followed by NT, and was almost negligible in NS aggregates. Pore characteristics that positively contributed to E. coli redistribution through the aggregates were the maximum flow in the aggregate centers and the ratio of the maximum flow and pore tortuosity. The E. coli retention in the aggregate's centers was positively related to porosity, percent of medium and large pores, and pore tortuosity. C1 [Wang, W.] Palo Alto Med Fdn, Res Inst, Palo Alto, CA 94301 USA. [Kravchenko, A. N.; Johnson, T.; Ananyeva, K. A.; Smucker, A. J. M.; Rose, J. B.] Michigan State Univ, Dep Plant Soil & Microbial Sci, E Lansing, MI 48824 USA. [Srinivasan, S.] Millikin Univ, Dep Biol, Decatur, IL 62522 USA. [Rivers, M. L.] Univ Chicago, Argonne Natl Lab, Ctr Adv Radiat Sources, Argonne, IL 60439 USA. RP Kravchenko, AN (reprint author), Michigan State Univ, Dep Plant Soil & Microbial Sci, E Lansing, MI 48824 USA. EM kravche1@msu.edu FU National Research Initiative of the USDA Cooperative State Research, Education and Extension Service [32008-35102-04567]; NSF Long-Term Ecological Research Program at the Kellogg Biological Station; Michigan State University AgBioResearch; Michigan State University High Performance Computing Center; Institute for Cyber-Enabled Research FX The project was supported in part by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number 32008-35102-04567. Support for this research was also provided by the NSF Long-Term Ecological Research Program at the Kellogg Biological Station and by Michigan State University AgBioResearch. The authors acknowledge the support of the Michigan State University High Performance Computing Center and the Institute for Cyber-Enabled Research. NR 71 TC 2 Z9 2 U1 5 U2 35 PU SOIL SCI SOC AMER PI MADISON PA 677 SOUTH SEGOE ROAD, MADISON, WI 53711 USA SN 1539-1663 J9 VADOSE ZONE J JI Vadose Zone J. PD NOV PY 2013 VL 12 IS 4 DI 10.2136/vzj2013.01.0012 PG 14 WC Environmental Sciences; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 274TF UT WOS:000328628400025 ER PT J AU Li, HJ Gao, XD DeMartini, JD Kumar, R Wyman, CE AF Li, Hongjia Gao, Xiadi DeMartini, Jaclyn D. Kumar, Rajeev Wyman, Charles E. TI Application of High Throughput Pretreatment and Co-Hydrolysis System to Thermochemical Pretreatment. Part 2: Dilute Alkali SO BIOTECHNOLOGY AND BIOENGINEERING LA English DT Article DE high throughput pretreatment and co-hydrolysis; dilute alkali; application; biomass recalcitrance ID SODIUM-HYDROXIDE; LIGNOCELLULOSIC BIOMASS; ENZYMATIC-HYDROLYSIS; AQUEOUS AMMONIA; PERACETIC-ACID; EXPLOSION AFEX; ETHANOL; SWITCHGRASS; STOVER; SACCHARIFICATION AB High throughput pretreatment (HTPH) and enzymatic hydrolysis systems are now vital for screening large numbers of biomass samples to investigate biomass recalcitrance over various pretreatment and enzymatic hydrolysis conditions. Although hydrothermal pretreatment is currently being employed in most high throughput applications, thermochemical pretreatment at low and high pH conditions can offer additional insights to better understand the roles of hemicellulose and lignin, respectively, in defining biomass recalcitrance. Thus, after successfully applying the HTPH approach to dilute acid pretreatment [Gao et al. (2012) Biotechnol. Bioeng. 110(3): 754-762], extension to dilute alkali pretreatment was also achieved using a similar single-step neutralization and buffering concept. In the latter approach, poplar and switchgrass were pretreated with 1wt% sodium hydroxide at 120 degrees C for different reaction times. Following pretreatment, an H(2)Cit(-)/HCit(2-) buffer with a pH of 4.5 was used to condition the pretreatment slurry to a pH range of 4.69-4.89, followed by enzymatic hydrolysis for 72h of the entire mixture. Sugar yields showed different trends for poplar and switchgrass with increases in pretreatment times, demonstrating the method provided a clearly discernible screening tool at alkali conditions. This method was then applied to selected Populus tremuloides samples to follow ring-by-ring sugar release patterns. Observed variations were compared to results from hydrothermal pretreatments, providing new insights in understanding the influence of biomass structural differences on recalcitrance. Biotechnol. Bioeng. 2013;110: 2894-2901. (c) 2013 Wiley Periodicals, Inc. C1 [Li, Hongjia; Gao, Xiadi; DeMartini, Jaclyn D.; Kumar, Rajeev; Wyman, Charles E.] Univ Calif Riverside, Dept Chem & Environm Engn, Bourns Coll Engn, Riverside, CA 92521 USA. [Li, Hongjia; Gao, Xiadi; DeMartini, Jaclyn D.; Kumar, Rajeev; Wyman, Charles E.] Univ Calif Riverside, Bourns Coll Engn, Ctr Environm Res & Technol CE CERT, Riverside, CA 92521 USA. [Li, Hongjia; Gao, Xiadi; DeMartini, Jaclyn D.; Kumar, Rajeev; Wyman, Charles E.] Oak Ridge Natl Lab, BioEnergy Sci Ctr BESC, Oak Ridge, TN USA. RP Wyman, CE (reprint author), Univ Calif Riverside, Dept Chem & Environm Engn, Bourns Coll Engn, 446 Winston Chung Hall,900 Univ Ave, Riverside, CA 92521 USA. EM charles.wyman@ucr.edu OI Kumar, Rajeev/0000-0001-7523-0108 FU BioEnergy Science Center (BESC); Ford Motor Company FX Contract grant sponsor: BioEnergy Science Center (BESC); Contract grant sponsor: Ford Motor Company NR 31 TC 2 Z9 2 U1 1 U2 24 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0006-3592 EI 1097-0290 J9 BIOTECHNOL BIOENG JI Biotechnol. Bioeng. PD NOV PY 2013 VL 110 IS 11 BP 2894 EP 2901 DI 10.1002/bit.24951 PG 8 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 264FY UT WOS:000327863600010 PM 23637060 ER PT J AU Novichkov, PS Kazakov, AE Ravcheev, DA Leyn, SA Kovaleva, GY Sutormin, RA Kazanov, MD Riehl, W Arkin, AP Dubchak, I Rodionov, DA AF Novichkov, Pavel S. Kazakov, Alexey E. Ravcheev, Dmitry A. Leyn, Semen A. Kovaleva, Galina Y. Sutormin, Roman A. Kazanov, Marat D. Riehl, William Arkin, Adam P. Dubchak, Inna Rodionov, Dmitry A. TI RegPrecise 3.0-A resource for genome-scale exploration of transcriptional regulation in bacteria SO BMC GENOMICS LA English DT Article DE Regulatory network; Regulon; Transcription factor; Riboswitch; Comparative genomics; Bacteria ID BACILLUS-SUBTILIS; FAMILIES DATABASE; NAD METABOLISM; CENTRAL CARBON; RECONSTRUCTION; NETWORKS; REGULONS; INFERENCE; ACID; PROTEOBACTERIA AB Background: Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in prokaryotes is one of the critical tasks of modern genomics. Bacteria from different taxonomic groups, whose lifestyles and natural environments are substantially different, possess highly diverged transcriptional regulatory networks. The comparative genomics approaches are useful for in silico reconstruction of bacterial regulons and networks operated by both transcription factors (TFs) and RNA regulatory elements (riboswitches). Description: RegPrecise (http://regprecise.lbl.gov) is a web resource for collection, visualization and analysis of transcriptional regulons reconstructed by comparative genomics. We significantly expanded a reference collection of manually curated regulons we introduced earlier. RegPrecise 3.0 provides access to inferred regulatory interactions organized by phylogenetic, structural and functional properties. Taxonomy-specific collections include 781 TF regulogs inferred in more than 160 genomes representing 14 taxonomic groups of Bacteria. TF-specific collections include regulogs for a selected subset of 40 TFs reconstructed across more than 30 taxonomic lineages. Novel collections of regulons operated by RNA regulatory elements (riboswitches) include near 400 regulogs inferred in 24 bacterial lineages. RegPrecise 3.0 provides four classifications of the reference regulons implemented as controlled vocabularies: 55 TF protein families; 43 RNA motif families; similar to 150 biological processes or metabolic pathways; and similar to 200 effectors or environmental signals. Genome-wide visualization of regulatory networks and metabolic pathways covered by the reference regulons are available for all studied genomes. A separate section of RegPrecise 3.0 contains draft regulatory networks in 640 genomes obtained by an conservative propagation of the reference regulons to closely related genomes. Conclusions: RegPrecise 3.0 gives access to the transcriptional regulons reconstructed in bacterial genomes. Analytical capabilities include exploration of: regulon content, structure and function; TF binding site motifs; conservation and variations in genome-wide regulatory networks across all taxonomic groups of Bacteria. RegPrecise 3.0 was selected as a core resource on transcriptional regulation of the Department of Energy Systems Biology Knowledgebase, an emerging software and data environment designed to enable researchers to collaboratively generate, test and share new hypotheses about gene and protein functions, perform large-scale analyses, and model interactions in microbes, plants, and their communities. C1 [Novichkov, Pavel S.; Kazakov, Alexey E.; Kovaleva, Galina Y.; Sutormin, Roman A.; Riehl, William; Arkin, Adam P.; Dubchak, Inna] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94710 USA. [Ravcheev, Dmitry A.; Leyn, Semen A.; Kovaleva, Galina Y.; Kazanov, Marat D.; Rodionov, Dmitry A.] Russian Acad Sci, AA Kharkevich Inst Informat Transmiss Problems, Moscow 127994, Russia. [Ravcheev, Dmitry A.; Rodionov, Dmitry A.] Sanford Burnham Med Res Inst, La Jolla, CA 92037 USA. [Sutormin, Roman A.] Moscow MV Lomonosov State Univ, Dept Bioengn & Bioinformat, Moscow 119992, Russia. RP Novichkov, PS (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94710 USA. EM PSNovichkov@lbl.gov; rodionov@burnham.org RI Kazanov, Marat/D-6381-2013; Arkin, Adam/A-6751-2008; Ravcheev, Dmitry/M-6877-2015; OI Kazanov, Marat/0000-0002-2314-5507; Arkin, Adam/0000-0002-4999-2931; Ravcheev, Dmitry/0000-0002-8435-5516; Rodionov, Dmitry/0000-0002-0939-390X FU Genomic Science Program (GSP), Office of Biological and Environmental Research (OBER), U.S. Department of Energy (DOE) [DE-SC0004999]; Sanford-Burnham Medical Research Institute (SBMRI); Lawrence Berkeley National Laboratory (LBNL); ENIGMA Science Focus Area (SFA) at LBNL [DE-AC02-05CH11231]; GSP Foundational Science Focus Area (FSFA) of the Pacific Northwest National Laboratory (PNNL); Russian Foundation for Basic Research [12-04-33003, 12-04-32098, 12-04-31939]; [8135] FX This research was supported by the Genomic Science Program (GSP), Office of Biological and Environmental Research (OBER), U.S. Department of Energy (DOE) under contract DE-SC0004999 with Sanford-Burnham Medical Research Institute (SBMRI) and Lawrence Berkeley National Laboratory (LBNL), the ENIGMA Science Focus Area (SFA) at LBNL (contract DE-AC02-05CH11231), and by the GSP Foundational Science Focus Area (FSFA) of the Pacific Northwest National Laboratory (PNNL). Additional funding was provided by Russian Foundation for Basic Research (12-04-33003, 12-04-32098 and 12-04-31939). MDK was supported by State Contract#8135 (application 2012-1.2.2-12-000-1013-079). NR 41 TC 65 Z9 66 U1 4 U2 20 PU BIOMED CENTRAL LTD PI LONDON PA 236 GRAYS INN RD, FLOOR 6, LONDON WC1X 8HL, ENGLAND SN 1471-2164 J9 BMC GENOMICS JI BMC Genomics PD NOV 1 PY 2013 VL 14 AR 745 DI 10.1186/1471-2164-14-745 PG 12 WC Biotechnology & Applied Microbiology; Genetics & Heredity SC Biotechnology & Applied Microbiology; Genetics & Heredity GA 274WF UT WOS:000328636200001 PM 24175918 ER PT J AU Kramer, R Bochev, P Siefert, C Voth, T AF Kramer, Richard Bochev, Pavel Siefert, Christopher Voth, Tom TI An extended finite element method with algebraic constraints (XFEM-AC) for problems with weak discontinuities SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING LA English DT Article DE Finite element; X-FEM; Dirichlet boundary condition; Constraints; Weak discontinuity ID DIRICHLET BOUNDARY-CONDITIONS; INTERFACE PROBLEMS; PARTITION AB We present a new extended finite element method with algebraic constraints (XFEM-AC) for recovering weakly discontinuous solutions across internal element interfaces. If necessary, cut elements are further partitioned by a local secondary cut into body-fitting subelements. Each resulting subelement contributes an enrichment of the parent element. The enriched solutions are then tied using algebraic constraints, which enforce C continuity across both cuts. These constraints impose equivalence of the enriched and body-fitted finite element solutions, and are the key differentiating feature of the XFEM-AC. In so doing, a stable mixed formulation is obtained without having to explicitly construct a compatible Lagrange multiplier space and prove a formal inf-sup condition. Likewise, convergence of the XFEM-AC solution follows from its equivalence to the interface-fitted finite element solution. This relationship is further exploited to improve the numerical solution of the resulting XFEM-AC linear system. Examples are shown demonstrating the new approach for both steady-state and transient diffusion problems. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kramer, Richard; Bochev, Pavel; Siefert, Christopher; Voth, Tom] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Kramer, R (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM rmkrame@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 21 TC 5 Z9 5 U1 0 U2 7 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0045-7825 EI 1879-2138 J9 COMPUT METHOD APPL M JI Comput. Meth. Appl. Mech. Eng. PD NOV 1 PY 2013 VL 266 BP 70 EP 80 DI 10.1016/j.cma.2013.07.013 PG 11 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics SC Engineering; Mathematics; Mechanics GA 277EK UT WOS:000328801600005 ER PT J AU Seleson, P Gunzburger, M Parks, ML AF Seleson, Pablo Gunzburger, Max Parks, Michael L. TI Interface problems in nonlocal diffusion and sharp transitions between local and nonlocal domains SO COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING LA English DT Article DE Nonlocal diffusion; Interface problems; Interface conditions; Multiscale modeling ID FINITE-ELEMENT-METHOD; BOUNDARY-VALUE-PROBLEMS; PHASE-TRANSITIONS; INTEGRODIFFERENTIAL MODEL; VECTOR CALCULUS; PERIDYNAMICS; ELASTICITY; APPROXIMATION; PRINCIPLE; EQUATIONS AB We investigate interface problems in nonlocal diffusion and demonstrate how to reformulate and generalize the classical treatment of interface problems in the presence of nonlocal interactions. Through formal derivations, we show that nonlocal diffusion interface problems converge to their classical local counterparts, in the limit of vanishing nonlocality. A central focus of this paper is local/nonlocal interface problems, or interface problems with sharp transitions between local and nonlocal domains. Such problems can be cast as instances of a nonlocal interface problem, with a finite horizon in certain regions and a vanishing horizon in other regions. We derive a local/nonlocal interface problem and utilize conservation principles to obtain local/nonlocal interface conditions. Comparisons between nonlocal, local, and local/nonlocal interface problems are presented, analytically and numerically, with a focus on multiscale aspects of nonlocal models induced by their inherent length scales. (C) 2013 Elsevier B.V. All rights reserved. C1 [Seleson, Pablo] Inst Computat Engn & Sci, Austin, TX 78712 USA. [Gunzburger, Max] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA. [Parks, Michael L.] Sandia Natl Labs, Ctr Res Comp, Albuquerque, NM 87185 USA. RP Seleson, P (reprint author), Inst Computat Engn & Sci, 201 East 24th St,Stop C0200, Austin, TX 78712 USA. EM seleson@ices.utexas.edu; gunzburg@fsu.edu; mlparks@sandia.gov OI Seleson, Pablo/0000-0003-3279-4231 FU DOE at Florida State University [DE-SC0004970]; DOE at the University of Texas [DE-FG02-05ER25701]; Laboratory Directed Research and Development program at Sandia National Laboratories; United States Department of Energy [DE-AC0494-AL85000]; ICES Postdoctoral Fellowship Program FX This research was supported by DOE Grant DE-SC0004970 at Florida State University, by DOE Grant DE-FG02-05ER25701 at the University of Texas, and by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC0494-AL85000. We acknowledge helpful discussions with David Littlewood, Stewart Silling, Jakob Ostien, and Qiang Du. Pablo Seleson acknowledges support from the ICES Postdoctoral Fellowship Program and useful discussions with Serge Prudhomme and Leszek Demkowicz. NR 50 TC 13 Z9 13 U1 0 U2 9 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0045-7825 EI 1879-2138 J9 COMPUT METHOD APPL M JI Comput. Meth. Appl. Mech. Eng. PD NOV 1 PY 2013 VL 266 BP 185 EP 204 DI 10.1016/j.cma.2013.05.018 PG 20 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics SC Engineering; Mathematics; Mechanics GA 277EK UT WOS:000328801600012 ER PT J AU Kogge, P Shalf, J AF Kogge, Peter Shalf, John TI Exascale Computing Trends: Adjusting to the "New Normal" for Computer Architecture SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article C1 [Kogge, Peter] Univ Notre Dame, Notre Dame, IN 46556 USA. [Kogge, Peter] Univ Notre Dame, Coll Engn, Notre Dame, IN 46556 USA. [Shalf, John] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Kogge, P (reprint author), Univ Notre Dame, Notre Dame, IN 46556 USA. EM kogge@cse.nd.edu; jshalf@lbl.gov NR 13 TC 12 Z9 12 U1 0 U2 8 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD NOV-DEC PY 2013 VL 15 IS 6 BP 16 EP 26 PG 11 WC Computer Science, Interdisciplinary Applications SC Computer Science GA 275XA UT WOS:000328711500003 ER PT J AU Gropp, W Snir, M AF Gropp, William Snir, Marc TI Programming for Exascale Computers SO COMPUTING IN SCIENCE & ENGINEERING LA English DT Article ID HIGH-LEVEL; PARALLEL; MODEL C1 [Gropp, William] Univ Illinois, Dept Comp Sci, Urbana, IL USA. [Gropp, William] Univ Illinois, Inst Adv Comp Applicat & Technol, Urbana, IL USA. [Gropp, William] Univ Illinois, Parallel Comp Inst, Urbana, IL USA. [Snir, Marc] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. RP Gropp, W (reprint author), Univ Illinois, Dept Comp Sci, Urbana, IL USA. EM wgropp@illinois.edu; snir@illinois.edu OI Gropp, William/0000-0003-2905-3029 FU US Department of Energy, Office of Science, Advanced Scientific Computing Research [DE-AC02-06CH11357, DESC0004131] FX This work was supported by the US Department of Energy, Office of Science, Advanced Scientific Computing Research, under contract DE-AC02-06CH11357 and under award DESC0004131. We thank Gail Pieper for her careful review of this article. NR 42 TC 6 Z9 6 U1 1 U2 3 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1521-9615 EI 1558-366X J9 COMPUT SCI ENG JI Comput. Sci. Eng. PD NOV-DEC PY 2013 VL 15 IS 6 BP 27 EP 35 PG 9 WC Computer Science, Interdisciplinary Applications SC Computer Science GA 275XA UT WOS:000328711500004 ER PT J AU Cervini-Silva, J Nieto-Camacho, A Cornejo-Garrido, H del Angel, P Maya, N Palacios, E Montoya, JA Gomez-Vidales, V Ramirez-Apan, MT AF Cervini-Silva, Javiera Nieto-Camacho, Antonio Cornejo-Garrido, Hilda del Angel, Paz Maya, Noel Palacios, Eduardo Ascencion Montoya, Jose Gomez-Vidales, Virginia Teresa Ramirez-Apan, Maria TI Biological dissolution and activity of the Allende meteorite SO GEOLOGICAL SOCIETY OF AMERICA BULLETIN LA English DT Article ID EXPERIMENTAL AQUEOUS ALTERATION; LIPID-PEROXIDATION; OXIDATIVE STRESS; CARBONACEOUS CHONDRITES; EARLY EARTH; MAGNETOTACTIC BACTERIA; OXIDIZING CONDITIONS; ORGANIC-MOLECULES; HYDROGEN-PEROXIDE; PYRITE OXIDATION AB This paper reports on the effect of the Allende meteorite on the integrity of biological material and addresses the question whether it can induce cell damage via oxidative stress and cell mortality. The reaction mechanisms addressed herein are studied using electronparamagnetic resonance spectroscopy (EPR), high-resolution transmission electron microscopy, scanning electron microscopy and energy dispersive spectroscopy, high-resolution X-ray diffraction, and the assays for thiobarbituric acid reactive substances (TBARS) and cell viability using 3-(4,5)-dimethylthiazol-2-yel-2, 5-diphenyltetrazolium bromide (MTT bromide). As determined by the TBARS assay, Allende specimens induced cell damage via oxidative stress. The contents of TBARS in suspensions containing 1000 ppm of Allende and Fe 1-x S were 6.8 +/- 0.7 and 5.8 +/- 0.6 nmol/ mg protein, respectively. EPR experiments conducted on reaction mixtures containing Allende, 5,5-dimethyl-1pyrroline- N-oxide (DMPO), and H-2 O-2 showed a quartet signal, a 1:2:2: 1 intensity, and hyperfi ne coupling constants corresponding to a N = 1.49 mT and a H = 1.49 mT, a signature of the DMPO-OH adduct. The intensity of the signal depended on the concentration of the solids in suspension, while the formation of DMPO-OH was limited by H-2 O-2. Experiments were conducted to test for the production of the DMPO-OH adduct from ferric ions, and the plausible generation of HO_. The role of ethanol (CH3 CH2 OH) as scavenger of HO_ in Allende-DMPO suspensions was addressed. Results showed a six-line spectra, with hyperfi ne coupling constants a N = 15.8 G, a H =22.6 G, and g =2.0059, consistent with the formation of the DMPO-CH(OH)-CH 3 adduct, but not DMPO-OCH2 CH3. We explain these fi ndings as the result of formation of HO_ onto (or in proximity to) the mineral surface, with CH3 CH2 OH competing with DMPO for HO8, and ferric iron playing a lesser role in DMPO transformation. Our fi ndings are congruent with reported radical-scavenging experiments for pyrite under anoxic conditions, concluding the formation of HO8 at surface defect sites. Experiments conducted in Allende-desferrioxamine B(DFO-B) suspensions showed the inhibition of the formation of HO_, by means of decreases in the DMPO-OH adduct signal, accounted for by the reaction between Fe(II) and HO_ to form Fe(III) and competing reaction mechanisms at the structural Fe centers, confi rming that the production of HO8 radicals is associated with iron centers and contributes to mineral dissolution. Small-sized magnetite domains present were recognized as catalytic sites for the production of HO8 radicals. The.-Fe-3 O-4 domains present in the Allende matrix exhibited a submicron range, an elongated-hexagonal habit, and a high degree of crystallinity, supporting the presence of biogenic.-Fe-3 O-4. Cell viability was found to be susceptible to the distribution and atomic environment of structural Fe. C1 [Cervini-Silva, Javiera] Univ Autonoma Metropolitana, Unidad Cuajimalpa, Dept Proc & Tecnol, Mexico City, DF, Mexico. [Cervini-Silva, Javiera] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Nieto-Camacho, Antonio; Teresa Ramirez-Apan, Maria] Univ Nacl Autonoma Mexico, Inst Quim, Lab Pruebas Biol, Mexico City 04510, DF, Mexico. [Cornejo-Garrido, Hilda] Univ Nacl Autonoma Mexico, Mexico City 04510, DF, Mexico. [del Angel, Paz; Maya, Noel; Palacios, Eduardo; Ascencion Montoya, Jose] Inst Mexicano Petr, Direcc Invest & Posgrad, Mexico City 07730, DF, Mexico. [Gomez-Vidales, Virginia] Univ Nacl Autonoma Mexico, Inst Quim, Lab Resonancia Magnet Nucl, Mexico City 04510, DF, Mexico. RP Cervini-Silva, J (reprint author), Univ Autonoma Metropolitana, Unidad Cuajimalpa, Dept Proc & Tecnol, Artificios 40, Mexico City, DF, Mexico. EM jcervini@correo.cua.uam.mx FU UAM-C; Instituto Mexicano del Petroleo FX This work would have not been possible without the assistance of librarians M. R. Galindo Ortega and M. I. Escalante Vargas (Universidad Autonoma Metropolitana Unidad Cuajimalpa, UAM-C), and M. Sc. Claudia Rivera Cerecedo and Hactor Malagon Rivero (Bioterio, Instituto de Fisiolog a Celular, Universidad Nacional Autonoma de Mexico, UNAM). This project was supported by a grant from UAM-C and the Instituto Mexicano del Petroleo. NR 82 TC 3 Z9 3 U1 2 U2 13 PU GEOLOGICAL SOC AMER, INC PI BOULDER PA PO BOX 9140, BOULDER, CO 80301-9140 USA SN 0016-7606 EI 1943-2674 J9 GEOL SOC AM BULL JI Geol. Soc. Am. Bull. PD NOV-DEC PY 2013 VL 125 IS 11-12 BP 1865 EP 1873 DI 10.1130/B30791.1 PG 9 WC Geosciences, Multidisciplinary SC Geology GA 273BI UT WOS:000328507400011 ER PT J AU Hames, MC McFeeters, H Holloway, WB Stanley, CB Urban, VS McFeeters, RL AF Hames, Mary C. McFeeters, Hana Holloway, W. Blake Stanley, Christopher B. Urban, Volker S. McFeeters, Robert L. TI Small Molecule Binding, Docking, and Characterization of the Interaction between Pth1 and Peptidyl-tRNA SO INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES LA English DT Article DE peptidyl-tRNA hydrolase; small angle neutron scattering; enzyme-substrate complex; docking; inhibition ID ESCHERICHIA-COLI; MINIGENE EXPRESSION; ANGSTROM RESOLUTION; CRYSTAL-STRUCTURE; STRUCTURAL BASIS; HYDROLASE; SITE; INHIBITION; CRYSTALLIZATION; ACCUMULATION AB Bacterial Pth1 is essential for viability. Pth1 cleaves the ester bond between the peptide and nucleotide of peptidyl-tRNA generated from aborted translation, expression of mini-genes, and short ORFs. We have determined the shape of the Pth1:peptidyl-tRNA complex using small angle neutron scattering. Binding of piperonylpiperazine, a small molecule constituent of a combinatorial synthetic library common to most compounds with inhibitory activity, was mapped to Pth1 via NMR spectroscopy. We also report computational docking results, modeling piperonylpiperazine binding based on chemical shift perturbation mapping. Overall these studies promote Pth1 as a novel antibiotic target, contribute to understanding how Pth1 interacts with its substrate, advance the current model for cleavage, and demonstrate feasibility of small molecule inhibition. C1 [Hames, Mary C.; McFeeters, Hana; Holloway, W. Blake; McFeeters, Robert L.] Univ Alabama, Dept Chem, Huntsville, AL 35899 USA. [Stanley, Christopher B.; Urban, Volker S.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. RP McFeeters, RL (reprint author), Univ Alabama, Dept Chem, 301 Sparkman Dr, Huntsville, AL 35899 USA. EM mcg0001@uah.edu; hk0003@uah.edu; beb0004@uah.edu; stanleycb@ornl.gov; urbanvs@ornl.gov; robert.mcfeeters@uah.edu RI Urban, Volker/N-5361-2015; OI Urban, Volker/0000-0002-7962-3408; Hames, Mary/0000-0002-7727-6238; Stanley, Christopher/0000-0002-4226-7710 FU U.S. Department of Energy for neutron scattering research at Oak Ridge National Laboratory FX Support from the U.S. Department of Energy for neutron scattering research at Oak Ridge National Laboratory was provided to the Center for Structural Molecular Biology (Office of Biological and Environmental Research) and the High Flux Isotope Reactor (Scientific User Facilities Division, Office of Basic Energy Sciences). NR 43 TC 7 Z9 7 U1 0 U2 13 PU MDPI AG PI BASEL PA POSTFACH, CH-4005 BASEL, SWITZERLAND SN 1422-0067 J9 INT J MOL SCI JI Int. J. Mol. Sci. PD NOV PY 2013 VL 14 IS 11 BP 22741 EP 22752 DI 10.3390/ijms141122741 PG 12 WC Biochemistry & Molecular Biology; Chemistry, Multidisciplinary SC Biochemistry & Molecular Biology; Chemistry GA 274RR UT WOS:000328624400090 PM 24256814 ER PT J AU Creminelli, P Perko, A Senatore, L Simonovic, M Trevisan, G AF Creminelli, Paolo Perko, Ashley Senatore, Leonardo Simonovic, Marko Trevisan, Gabriele TI The physical squeezed limit: consistency relations at order q(2) SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE inflation; non-gaussianity; cosmological perturbation theory ID NON-GAUSSIANITY; INFLATION; MODEL AB In single-field models of inflation the effect of a long mode with momentum q reduces to a diffeomorphism at zeroth and first order in q. This gives the well-known consistency relations for the n-point functions. At order q(2) the long mode has a physical effect on the short ones, since it induces curvature, and we expect that this effect is the same as being in a curved FRW universe. In this paper we verify this intuition in various examples of the three-point function, whose behaviour at order q(2) can be written in terms of the power spectrum in a curved universe. This gives a simple alternative understanding of the level of non-Gaussianity in single-field models. Non-Gaussianity is always parametrically enhanced when modes freeze at a physical scale k(ph), (f) shorter than H: f(NL) similar to (k(ph), (f)/H)(2). C1 [Creminelli, Paolo] Abdus Salam Int Ctr Theoret Phys, I-34151 Trieste, Italy. [Perko, Ashley; Senatore, Leonardo] Stanford Univ, Stanford Inst Theoret Phys, Stanford, CA 94306 USA. [Senatore, Leonardo] Stanford Univ, Kavli Inst Particle Astrophys & Cosmol, Menlo Pk, CA 94025 USA. [Senatore, Leonardo] SLAC, Menlo Pk, CA 94025 USA. [Senatore, Leonardo] CERN, Div Theory, CH-1211 Geneva 23, Switzerland. [Simonovic, Marko; Trevisan, Gabriele] SISSA, I-34136 Trieste, Italy. [Simonovic, Marko; Trevisan, Gabriele] Ist Nazl Fis Nucl, Sez Trieste, I-34136 Trieste, Italy. RP Creminelli, P (reprint author), Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy. EM creminel@ictp.it; perko@stanford.edu; senatore@stanford.edu; msimonov@sissa.it; gtrevi@sissa.it OI Simonovic, Marko/0000-0003-1627-4842 FU Gabilan Stanford Graduate Fellowship; DOE Early Career Award [DE-FG02-12ER41854]; NSF [PHY-1068380] FX It is a pleasure to thank D. Lopez Nacir and Matias Zaldarriaga for useful comments. Ashley Perko is supported by a Gabilan Stanford Graduate Fellowship. Leonardo Senatore is supported by DOE Early Career Award DE-FG02-12ER41854 and by NSF grant PHY-1068380. NR 19 TC 15 Z9 15 U1 0 U2 1 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD NOV PY 2013 IS 11 AR 015 DI 10.1088/1475-7516/2013/11/015 PG 20 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 263YM UT WOS:000327843900016 ER PT J AU Morrison, CB Schneider, MD AF Morrison, Christopher B. Schneider, Michael D. TI On estimating cosmology-dependent covariance matrices SO JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS LA English DT Article DE redshift surveys; cosmological simulations; cosmological parameters from LSS; weak gravitational lensing ID POWER SPECTRUM COVARIANCE; GALAXY FORMATION; MODEL; SIMULATIONS; STATISTICS; IMPACT; SPACE AB We describe a statistical model to estimate the covariance matrix of matter tracer two-point correlation functions with cosmological simulations. Assuming a fixed number of cosmological simulation runs, we describe how to build a 'statistical emulator' of the two-point function covariance over a specified range of input cosmological parameters. Because the simulation runs with different cosmological models help to constrain the form of the covariance, we predict that the cosmology-dependent covariance may be estimated with a comparable number of simulations as would be needed to estimate the covariance for fixed cosmology. Our framework is a necessary first step in planning a simulations campaign for analyzing the next generation of cosmological surveys. C1 [Morrison, Christopher B.; Schneider, Michael D.] Univ Calif Davis, Davis, CA 95616 USA. [Schneider, Michael D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Morrison, CB (reprint author), Univ Calif Davis, 1 Shields Ave, Davis, CA 95616 USA. EM cbmorrison@ucdavis.edu; schneider42@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NSF [AST-1009514] FX Part of this work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Christopher Morrison acknowledges the support of NSF Grant AST-1009514. NR 32 TC 0 Z9 0 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 1475-7516 J9 J COSMOL ASTROPART P JI J. Cosmol. Astropart. Phys. PD NOV PY 2013 IS 11 DI 10.1088/1475-7516/2013/11/009 PG 19 WC Astronomy & Astrophysics; Physics, Particles & Fields SC Astronomy & Astrophysics; Physics GA 263YM UT WOS:000327843900010 ER PT J AU Beyerlein, IJ Caro, A Demkowicz, MJ Mara, NA Misra, A Uberuaga, BP AF Beyerlein, I. J. Caro, A. Demkowicz, M. J. Mara, N. A. Misra, A. Uberuaga, B. P. TI Radiation damage tolerant nanomaterials SO MATERIALS TODAY LA English DT Article ID NANOSTRUCTURED FERRITIC ALLOYS; AUSTENITIC STAINLESS-STEEL; ION-IRRADIATION; NANOCRYSTALLINE ALLOYS; NANOLAYERED COMPOSITES; PLASTIC-DEFORMATION; BIMETAL INTERFACES; THERMAL-STABILITY; GRAIN-BOUNDARIES; NANOPOROUS GOLD AB Designing a material from the atomic level to achieve a tailored response in extreme conditions is a grand challenge in materials research. Nanostructured metals and composites provide a path to this goal because they contain interfaces that attract, absorb and annihilate point and line defects. These interfaces recover and control defects produced in materials subjected to extremes of displacement damage, impurity implantation, stress and temperature. Controlling radiation-induced-defects via interfaces is shown to be the key factor in reducing the damage and imparting stability in certain nanomaterials under conditions where bulk materials exhibit void swelling and/or embrittlement. We review the recovery of radiation-induced point defects at free surfaces and grain boundaries and stabilization of helium bubbles at interphase boundaries and present an approach for processing bulk nanocomposites containing interfaces that are stable under irradiation. C1 [Beyerlein, I. J.; Mara, N. A.; Misra, A.; Uberuaga, B. P.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Demkowicz, M. J.] MIT, Cambridge, MA 02139 USA. RP Mara, NA (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM amisra@lanl.gov RI Mara, Nathan/J-4509-2014; Beyerlein, Irene/A-4676-2011; Misra, Amit/H-1087-2012 OI Mara, Nathan/0000-0002-9135-4693; FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DOE/BES) [2008LANL1026]; Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DOE/BES) under Award No. 2008LANL1026 through the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center. Access to the Center for Integrated Nanotechnologies, a DOE/BES sponsored user facility is acknowledged. Work on nanoporous metal synthesis was supported by LANL-LDRD program. Authors acknowledge discussions with R.G. Hoagland, J.P. Hirth, W.D. Nix, G.R. Odette, M. Nastasi, M.I. Baskes, A. Sutton, F. Williame, A.D. Rollett, R.S. Averback, P. Bellon, and T.M. Pollock. NR 81 TC 84 Z9 86 U1 24 U2 170 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1369-7021 EI 1873-4103 J9 MATER TODAY JI Mater. Today PD NOV PY 2013 VL 16 IS 11 BP 443 EP 449 DI 10.1016/j.mattod.2013.10.019 PG 7 WC Materials Science, Multidisciplinary SC Materials Science GA 274XO UT WOS:000328639700018 ER PT J AU Ellern, I Venkatasubramanian, A Lee, JH Hesketh, P Stavila, V Robinson, A Allendorf, M AF Ellern, Ilya Venkatasubramanian, Anandram Lee, Jin-Hwan Hesketh, Peter Stavila, Vitalie Robinson, Alex Allendorf, Mark TI HKUST-1 coated piezoresistive microcantilever array for volatile organic compound sensing SO MICRO & NANO LETTERS LA English DT Article DE adsorption; cantilevers; chemical sensors; copper compounds; microsensors; organic compounds; piezoresistive devices; thin films; transducers; microfabrication; temperature 293 K to 298 K; microporous MOF coatings; low power operation; single chip sensing system; reversible response; response time constants; characteristic response features; methanol; water vapour; stress-induced piezoresistive microcantilever array sensors; carrier gas; dry nitrogen; layer-by-layer techniques; thin films; N-doped piezoresistive cantilever arrays; electrical signals; surface strain; transduction mechanism; analyte adsorption; mechanical strain; internal surface area; HKUST-1 metal-organic framework; volatile organic compound sensing; HKUST-1 coated piezoresistive microcantilever array ID FRAMEWORK MATERIALS; CHEMICAL-DETECTION; SENSORS AB The HKUST-1 metal-organic framework (MOF) was selected because of the large internal surface area, excellent stability and known properties. Mechanical strain is generated upon the adsorption of analytes into the MOF; it is proportional to concentration and is a function of adsorbed species. Piezoresistive microcantilevers serve as a transduction mechanism to convert surface strain into electrical signals. N-doped piezoresistive cantilever arrays were fabricated with ten structures per die. Thin films of HKUST-1 were grown at room temperature using layer-by-layer techniques. Dry nitrogen was used as a carrier gas to expose devices to varying concentrations of 12 different volatile organic compounds (VOCs). Results show that stress-induced piezoresistive microcantilever array sensors with MOF coatings can provide a highly sensitive and reversible sensing mechanism for water vapour and methanol. Characteristic response features allow discrimination based on shape, response time constants and magnitude of response for other VOCs. Devices provided reliable data and proved durable over 18 months of testing. The key advantages of this type of sensor are higher sensitivity with a microporous MOFs, reversible response, single chip sensing system and low power operation. C1 [Ellern, Ilya; Venkatasubramanian, Anandram; Lee, Jin-Hwan; Hesketh, Peter] Georgia Inst Technol, Dept Mech Engn, Atlanta, GA 30332 USA. [Lee, Jin-Hwan] Intel Corp, Rio Rancho, NM 87124 USA. [Stavila, Vitalie; Allendorf, Mark] Sandia Natl Labs, Livermore, CA 94551 USA. [Robinson, Alex] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Ellern, I (reprint author), Georgia Inst Technol, Dept Mech Engn, Atlanta, GA 30332 USA. EM peter.hesketh@me.gatech.edu FU Sandia Laboratory Directed Research and Development (LDRD) Program FX This work was supported by the Sandia Laboratory Directed Research and Development (LDRD) Program. The technical assistance of G. Spinner and K. Martin at the Nanotechnology Research Centre is gratefully acknowledged. NR 21 TC 7 Z9 8 U1 7 U2 89 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 1750-0443 J9 MICRO NANO LETT JI Micro Nano Lett. PD NOV PY 2013 VL 8 IS 11 BP 766 EP 769 DI 10.1049/mnl.2013.0390 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 257ZC UT WOS:000327425500004 ER PT J AU Martin, MJ AF Martin, M. J. TI Nuclear Data Sheets for A=152 SO NUCLEAR DATA SHEETS LA English DT Article ID RARE-EARTH NUCLEI; HIGH-SPIN STATES; CONTINUUM GAMMA-RAYS; INELASTIC DEUTERON SCATTERING; EVEN SAMARIUM ISOTOPES; ELECTRON PARTICLE PARAMETERS; THERMAL-NEUTRON CAPTURE; NEGATIVE-PARITY STATES; HIGH ANGULAR-MOMENTUM; LOW-LYING STATES AB Detailed level schemes, decay schemes, and the experimental data on which they are based are presented for all nuclei with mass number A=152. The experimental data are evaluated; inconsistencies and discrepancies are noted; and adopted values for level and gamma-ray energies, gamma intensities, as well as for other nuclear properties are given. This evaluation replaces the A=152 evaluation published by Agda Artna-Cohen in Nuclear Data Sheets 79, 1 (1996) and the evaluation for Dy-152 prepared by Balraj Singh and published in Nuclear Data Sheets 95, 995 (2002). C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Martin, MJ (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. FU Oak Ridge National Laboratory [DE-AC05-00OR22725] FX Research sponsored by the Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the US Department of Energy under contract number DE-AC05-00OR22725. NR 622 TC 17 Z9 17 U1 0 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0090-3752 EI 1095-9904 J9 NUCL DATA SHEETS JI Nucl. Data Sheets PD NOV PY 2013 VL 114 IS 11 BP 1497 EP 1847 DI 10.1016/j.nds.2013.11.001 PG 351 WC Physics, Nuclear SC Physics GA 257VY UT WOS:000327417100001 ER PT J AU Mullen, JC Buric, MP Chorpening, BT Woodruff, SD AF Mullen, Jessica C. Buric, Michael P. Chorpening, Benjamin T. Woodruff, Steven D. TI Azimuthal polarization for Raman enhancement in capillary waveguides SO OPTICAL ENGINEERING LA English DT Article DE hollow waveguide; Raman spectroscopy; azimuthal polarization; radial polarization; gas sensing; spiral phase plate ID GENERATION; LIGHT; LASER; BEAMS; MODE AB Hollow, metal-lined capillary waveguides have recently been utilized in spontaneous gas-Raman spectroscopy to improve signal strength and response time. The hollow waveguide is used to contain the sample gases, efficiently propagate a pump beam, and efficiently collect Raman scattering from those gases. Transmission losses in the waveguide may be reduced by using an azimuthally polarized pump beam instead of a linearly or radially polarized pump. This will lead to improved Raman signal strength, accuracy, and response time in waveguide-based Raman gas-composition sensors. A linearly polarized laser beam is azimuthally polarized using passive components including a spiral phase plate and an azimuthal-type linear analyzer element. Half-wave plates are then used to switch between the azimuthally polarized beam and the radially polarized beam with no change in input pump power. The collected Raman signal strength and laser throughput are improved when the azimuthally polarized pump is used. Optimization of the hollow waveguide Raman gas sensor is discussed with respect to incident pump polarization. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) C1 [Mullen, Jessica C.; Buric, Michael P.; Chorpening, Benjamin T.; Woodruff, Steven D.] US DOE, Natl Energy Technol Lab, Morgantown, WV 26507 USA. RP Mullen, JC (reprint author), US DOE, Natl Energy Technol Lab, 3610 Collins Ferry Rd, Morgantown, WV 26507 USA. EM Michael.Buric@netl.doe.gov FU NETL-Strategic Center for Coal's Cross Cutting Research Program FX This research was performed at the National Energy Technology Laboratory (NETL) through the Innovative Process Technology Field Work Proposal and supported by NETL-Strategic Center for Coal's Cross Cutting Research Program with Patricia Rawls as Technical Program Monitor and Robert Romanosky as Technology Manager. Author J. Mullen gratefully acknowledges her appointment to NETL through the US Department of Energy Oak Ridge Institute for Science and Education (ORISE) program. NR 21 TC 2 Z9 2 U1 1 U2 14 PU SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS PI BELLINGHAM PA 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98225 USA SN 0091-3286 EI 1560-2303 J9 OPT ENG JI Opt. Eng. PD NOV PY 2013 VL 52 IS 11 AR 117103 DI 10.1117/1.OE.52.11.117103 PG 7 WC Optics SC Optics GA 278NY UT WOS:000328898200044 ER PT J AU Hussain, H Malik, SUR Hameed, A Khan, SU Bickler, G Min-Allah, N Qureshi, MB Zhang, LM Wang, YJ Ghani, N Kolodziej, J Zomaya, AY Xu, CZ Balaji, P Vishnu, A Pinel, F Pecero, JE Kliazovich, D Bouvry, P Li, HX Wang, LZ Chen, D Rayes, A AF Hussain, Hameed Malik, Saif Ur Rehman Hameed, Abdul Khan, Samee Ullah Bickler, Gage Min-Allah, Nasro Qureshi, Muhammad Bilal Zhang, Limin Wang Yongji Ghani, Nasir Kolodziej, Joanna Zomaya, Albert Y. Xu, Cheng-Zhong Balaji, Pavan Vishnu, Abhinav Pinel, Fredric Pecero, Johnatan E. Kliazovich, Dzmitry Bouvry, Pascal Li, Hongxiang Wang, Lizhe Chen, Dan Rayes, Ammar TI A survey on resource allocation in high performance distributed computing systems SO PARALLEL COMPUTING LA English DT Review DE Scheduling; Resource allocation; Resource management ID MANAGEMENT SYSTEMS; GRID ENVIRONMENT; OPERATING SYSTEM; CLUSTER; TAXONOMY; SERVICES; INFRASTRUCTURE; OPTIMIZATION; ARCHITECTURE; DISCOVERY AB An efficient resource allocation is a fundamental requirement in high performance computing (HPC) systems. Many projects are dedicated to large-scale distributed computing systems that have designed and developed resource allocation mechanisms with a variety of architectures and services. In our study, through analysis, a comprehensive survey for describing resource allocation in various HPCs is reported. The aim of the work is to aggregate under a joint framework, the existing solutions for HPC to provide a thorough analysis and characteristics of the resource management and allocation strategies. Resource allocation mechanisms and strategies play a vital role towards the performance improvement of all the HPCs classifications. Therefore, a comprehensive discussion of widely used resource allocation strategies deployed in HPC environment is required, which is one of the motivations of this survey. Moreover, we have classified the HPC systems into three broad categories, namely: (a) cluster, (b) grid, and (c) cloud systems and define the characteristics of each class by extracting sets of common attributes. All of the aforementioned systems are cataloged into pure software and hybrid/hardware solutions. The system classification is used to identify approaches followed by the implementation of existing resource allocation strategies that are widely presented in the literature. (C) 2013 Elsevier B.V. All rights reserved. C1 [Hussain, Hameed; Min-Allah, Nasro; Qureshi, Muhammad Bilal] COMSATS Inst Informat Technol, Islamabad 44000, Pakistan. [Malik, Saif Ur Rehman; Hameed, Abdul; Khan, Samee Ullah; Bickler, Gage; Zhang, Limin] N Dakota State Univ, Fargo, ND 58108 USA. [Wang Yongji] Chinese Acad Sci, Inst Software, Beijing, Peoples R China. [Ghani, Nasir] Univ S Florida, Tampa, FL 33620 USA. [Kolodziej, Joanna] Krakow Tech Univ, PL-31155 Krakow, Poland. [Zomaya, Albert Y.] Univ Sydney, Sydney, NSW 2006, Australia. [Xu, Cheng-Zhong] Wayne State Univ, Detroit, MI USA. [Balaji, Pavan] Argonne Natl Lab, Argonne, IL 60439 USA. [Vishnu, Abhinav] Pacific NW Natl Lab, Richland, WA 99352 USA. [Pinel, Fredric; Pecero, Johnatan E.; Kliazovich, Dzmitry; Bouvry, Pascal] Univ Luxembourg, L-1359 Luxembourg, Luxembourg. [Li, Hongxiang] Univ Louisville, Louisville, KY 40292 USA. [Wang, Lizhe] Chinese Acad Sci, Ctr Earth Observat & Digital Earth, Beijing, Peoples R China. [Chen, Dan] China Univ Geosci, Wuhan 430074, Peoples R China. [Rayes, Ammar] CISCO Syst, San Jose, CA USA. RP Khan, SU (reprint author), N Dakota State Univ, Dept Elect & Comp Engn, Fargo, ND 58108 USA. EM ham.hamdard@gmail.com; saif.rehmanmalik@ndsu.edu; abdul.hameed@ndsu.edu; samee.khan@ndsu.edu; gage.n.bickler@ndsu.edu; nasar@comsats.edu.pk; muhdbilal.qureshi@gmail.com; limin.zhang@ndsu.edu; ywang@itechs.iscas.ac.cn; nghani@usf.edu; jkolodziej@uck.pk.edu.pl; albert.zomaya@sydney.edu.au; czxu@wayne.edu; balaji@mcs.anl.gov; abhinav.vishnu@pnl.gov; fredric.pinel@uni.lu; johnatan.pecero@uni.lu; dzmitry.kliazovich@uni.lu; pascal.bouvry@uni.lu; h.li@louisville.edu; lzwang@ceode.ac.cn; chendan@pmail.ntu.edu.sg; rayes@cisco.com RI min-allah, nasro /A-3717-2015; OI min-allah, nasro /0000-0002-3961-5956; Kolodziej, Joanna/0000-0002-5181-8713; Bouvry, Pascal/0000-0001-9338-2834; Malik, Saif Ur Rehman/0000-0001-8195-1630; Wang, Lizhe/0000-0003-2766-0845 NR 122 TC 25 Z9 26 U1 4 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-8191 EI 1872-7336 J9 PARALLEL COMPUT JI Parallel Comput. PD NOV PY 2013 VL 39 IS 11 BP 709 EP 736 DI 10.1016/j.parco.2013.09.009 PG 28 WC Computer Science, Theory & Methods SC Computer Science GA 275GB UT WOS:000328663200004 ER PT J AU Nikiforov, MP Darling, SB AF Nikiforov, Maxim P. Darling, Seth B. TI Improved conductive atomic force microscopy measurements on organic photovoltaic materials via mitigation of contact area uncertainty SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE organic photovoltaics; conductive AFM; charge transport; contact mechanics ID NANOSCALE CHARGE-TRANSPORT; NORMAL RANDOM-VARIABLES; SOLAR-CELLS; BULK-HETEROJUNCTION; ACOUSTIC MICROSCOPY; CLAY NANOCOMPOSITES; FILMS; MORPHOLOGY; POLYMERS; RATIO AB Physical processes that lead to conversion of light into electrical energy inside photovoltaic devices happen at the nanoscale. Therefore, understanding of electrical properties of photovoltaic materials at this length scale is of paramount importance for improvement of device performance. In this paper, we describe and validate a new framework for high-resolution quantitative measurements of electrical and mechanical properties of compliant materials with sub-100-nm resolution. Previous approaches have generally suffered from uncertainty in the quantitative level of contact between the probe and the material being measured; the methodology presented here overcomes this obstacle. We use the broadly studied ITO/PEDOT:PSS/P3HT:PC61BM system as an example to illustrate variability of chemical composition and electrical properties of the active layer at hundred-nanometers and micrometer length scales. Copyright (c) 2012 John Wiley & Sons, Ltd. C1 [Nikiforov, Maxim P.; Darling, Seth B.] Argonne Natl Lab, Ctr Nanoscale Mat, Chicago, IL USA. RP Nikiforov, MP (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, Chicago, IL USA. EM maximnik@anl.gov FU Director's Fellowship Program; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX MPN is grateful to the Director's Fellowship Program for financial support. MPN wants to thank Dr Yu-Chih Tseng for help with development of the protocol for solar cell processing. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357. NR 59 TC 9 Z9 9 U1 1 U2 30 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD NOV PY 2013 VL 21 IS 7 BP 1433 EP 1443 DI 10.1002/pip.2217 PG 11 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 270PH UT WOS:000328330300001 ER PT J AU Hoff, TE Perez, R Kleissl, J Renne, D Stein, J AF Hoff, Thomas E. Perez, Richard Kleissl, Jan Renne, David Stein, Joshua TI Reporting of irradiance modeling relative prediction errors SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE irradiance; model; accuracy; percent error AB Metrics used in assessing irradiance model accuracy, such as root mean square error and mean absolute error, are precisely defined. Their relative (%) counterpart, however, can be subject to interpretation and may cover a wide range of values for a given set of data depending on reporting practice. This note evaluates different approaches for the reporting of relative metrics quantifying the dispersion accuracy of a model and formulates recommendations for the most appropriate approach. Copyright (c) 2012 John Wiley & Sons, Ltd. C1 [Hoff, Thomas E.] Clean Power Res, Napa, CA USA. [Perez, Richard] SUNY Albany, ASRC, Albany, NY 12222 USA. [Kleissl, Jan] Univ Calif San Diego, Jacob Sch Engn, San Diego, CA 92103 USA. [Renne, David] NREL, Golden, CO USA. [Stein, Joshua] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Perez, R (reprint author), SUNY Albany, ASRC, Albany, NY 12222 USA. EM perez@asrc.cestm.albany.edu NR 9 TC 13 Z9 13 U1 2 U2 9 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD NOV PY 2013 VL 21 IS 7 BP 1514 EP 1519 DI 10.1002/pip.2225 PG 6 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 270PH UT WOS:000328330300008 ER PT J AU Hummon, M Denholm, P Margolis, R AF Hummon, Marissa Denholm, Paul Margolis, Robert TI Impact of photovoltaic orientation on its relative economic value in wholesale energy markets SO PROGRESS IN PHOTOVOLTAICS LA English DT Article DE photovoltaic; wholesale electricity market; photovoltaic performance; azimuth; PV economic value; PV orientation ID SOLAR-RADIATION; SYSTEMS; PV; OPTIMIZATION; AZIMUTH; TILT AB Most calculations of optimum photovoltaic (PV) performance focus on maximizing annual energy production. However, given the seasonally and daily time varying electricity demand and resulting variation in price, the PV orientation resulting in maximum energy yield may not yield the maximum economic benefit. With the use of historical solar irradiance and wholesale market prices for several locations in the USA, we evaluate the benefits of a variety of orientations for fixed and tracking PV arrays. We find that orienting fixed arrays slightly to the west of due south generally increases their economic value in the simulated systems because the reduced generation on an annual basis is more than offset by increased generation in high-value hours in late summer afternoons. However, this effect is small, typically providing an increase in value from 1% to 5%. The economic value of adjusting the orientation semi-annually (May 1st and September 1st) and monthly shows a modest increase in value from 3% to 5%. Several other implications of this analysis are also discussed. Copyright (c) 2012 John Wiley & Sons, Ltd. C1 [Hummon, Marissa; Denholm, Paul; Margolis, Robert] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO USA. RP Hummon, M (reprint author), Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO USA. EM marissa.hummon@nrel.gov NR 15 TC 13 Z9 13 U1 1 U2 13 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1062-7995 EI 1099-159X J9 PROG PHOTOVOLTAICS JI Prog. Photovoltaics PD NOV PY 2013 VL 21 IS 7 BP 1531 EP 1540 DI 10.1002/pip.2198 PG 10 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 270PH UT WOS:000328330300010 ER PT J AU Geng, J Navon, IM Chen, X AF Geng, Jian Navon, I. Michael Chen, Xiao TI Non-parametric calibration of the local volatility surface for European options using a second-order Tikhonov regularization (vol 14, pg 73, 2014) SO QUANTITATIVE FINANCE LA English DT Correction C1 [Geng, Jian] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA. [Navon, I. Michael] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA. [Chen, Xiao] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA USA. RP Geng, J (reprint author), Florida State Univ, Dept Math, Tallahassee, FL 32306 USA. RI Navon, Ionel/A-5173-2008 OI Navon, Ionel/0000-0001-7830-7094 NR 1 TC 0 Z9 0 U1 0 U2 0 PU ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXFORDSHIRE, ENGLAND SN 1469-7688 EI 1469-7696 J9 QUANT FINANC JI Quant. Financ. PD NOV 1 PY 2013 VL 13 IS 11 DI 10.1080/14697688.2013.844894 PG 1 WC Business, Finance; Economics; Mathematics, Interdisciplinary Applications; Social Sciences, Mathematical Methods SC Business & Economics; Mathematics; Mathematical Methods In Social Sciences GA 268XN UT WOS:000328204100013 ER PT J AU Ginn, TR Nassar, MK Kamai, T Klise, K Tidwell, V McKenna, S AF Ginn, Timothy R. Nassar, Mohamed K. Kamai, Tamir Klise, Katherine Tidwell, Vince McKenna, Sean TI On a recent solute transport laboratory experiment involving sandstone and its modeling SO WATER RESOURCES RESEARCH LA English DT Article DE solute transport; anomalous dispersion; modeling ID SCALES; SLAB AB We analyze and simulate laboratory data on flow and solute transport in a submeter scale sample of Massillon sandstone and we re-evaluate studies that have stated that these data indicate a failure of the advection-dispersion, and that nonlocal modeling approaches are necessary. Our examination reveals experimental issues including artificial edge effects in the data, as well as inconsistency in the measured solute injection rates. When the edge effects are removed the data no longer exhibit power-law tailing. Our simulations show that failure of the advection-dispersion equation has not been demonstrated and that nonlocal approaches are not necessary. C1 [Ginn, Timothy R.; Nassar, Mohamed K.; Kamai, Tamir] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA. [Nassar, Mohamed K.] Univ Sadat City, Environm Studies & Res Inst, Sadat, Minufiya, Egypt. [Klise, Katherine; Tidwell, Vince; McKenna, Sean] Sandia Natl Labs, Albuquerque, NM USA. [McKenna, Sean] IBM Res, Smarter Cities Technol Ctr, Dublin, Ireland. RP Ginn, TR (reprint author), Univ Calif Davis, Dept Civil & Environm Engn, 1 Shields Ave, Davis, CA 95616 USA. EM trginn@ucdavis.edu RI Kamai, Tamir/G-6591-2015 FU National Science Foundation [1114257, 1234367, 1215756]; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The assistance in data preparation and graphics by Andrew Benjamin and Diego de la Torre is much appreciated. This material is based in part upon work supported by the National Science Foundation under grant 1114257, 1234367, and 1215756. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 15 TC 2 Z9 2 U1 0 U2 5 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD NOV PY 2013 VL 49 IS 11 BP 7327 EP 7338 DI 10.1002/2013WR013729 PG 12 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 275NJ UT WOS:000328683800011 ER PT J AU Visser, A Broers, HP Purtschert, R Sultenfuss, J de Jonge, M AF Visser, Ate Broers, Hans Peter Purtschert, Roland Sueltenfuss, Juergen de Jonge, Martin TI Groundwater age distributions at a public drinking water supply well field derived from multiple age tracers (Kr-85, H-3/He-3, and Ar-39) SO WATER RESOURCES RESEARCH LA English DT Article DE public supply wells; groundwater age; transit times; noble gases; tritium-helium; krypton-85; argon-39 ID HETEROGENEOUS UNCONFINED AQUIFERS; DATING YOUNG GROUNDWATER; ENVIRONMENTAL TRACERS; CAPTURE ZONES; TRAVEL-TIME; HYDROLOGIC TRACERS; PARTICLE-TRACKING; SCALE DISPERSION; MODELING FLOW; NOBLE-GASES AB Groundwater age is a key aspect of production well vulnerability. Public drinking water supply wells typically have long screens and are expected to produce a mixture of groundwater ages. The groundwater age distributions of seven production wells of the Holten well field (Netherlands) were estimated from tritium-helium (H-3/He-3), krypton-85 (Kr-85), and argon-39 (Ar-39), using a new application of a discrete age distribution model and existing mathematical models, by minimizing the uncertainty-weighted squared differences of modeled and measured tracer concentrations. The observed tracer concentrations fitted well to a 4-bin discrete age distribution model or a dispersion model with a fraction of old groundwater. Our results show that more than 75% of the water pumped by four shallow production wells has a groundwater age of less than 20 years and these wells are very vulnerable to recent surface contamination. More than 50% of the water pumped by three deep production wells is older than 60 years. H-3/He-3 samples from short screened monitoring wells surrounding the well field constrained the age stratification in the aquifer. The discrepancy between the age stratification with depth and the groundwater age distribution of the production wells showed that the well field preferentially pumps from the shallow part of the aquifer. The discrete groundwater age distribution model appears to be a suitable approach in settings where the shape of the age distribution cannot be assumed to follow a simple mathematical model, such as a production well field where wells compete for capture area. C1 [Visser, Ate] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Broers, Hans Peter] Deltares, Unit Soil & Groundwater Syst, Utrecht, Netherlands. [Broers, Hans Peter] Geol Survey Netherlands, TNO, Utrecht, Netherlands. [Broers, Hans Peter; de Jonge, Martin] Vrije Univ Amsterdam, Crit Zone Hydrol Grp, Amsterdam, Netherlands. [Purtschert, Roland] Univ Bern, Bern, Switzerland. [Sueltenfuss, Juergen] Univ Bremen, Inst Environm Phys, Dept Oceanog, D-28359 Bremen, Germany. [de Jonge, Martin] Vitens Water, Zwolle, Netherlands. RP Visser, A (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM visser3@llnl.gov RI Visser, Ate/G-8826-2012; Purtschert, Roland/N-7108-2016 OI Purtschert, Roland/0000-0002-4734-7664 FU Department of Economic Affairs of the Netherlands; U. S. Department of Energy; Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-635812] FX The authors are grateful for the permission, support, and funding (25%) from Vitens Water, owner and operator of the Holten well field. This study was cofunded by the Department of Economic Affairs of the Netherlands. We appreciate the support of "Bundesamt fur Strahlenschutz (Germany)'' that provided the measurements of the atmospheric 85Kr input activities. We thank Kip Solomon and Alan Rigby for providing thoughtful discussion on the interpretation of the diffusion sampler data. Elaborate comments from W. Aeschbach-Hertig, two anonymous reviewers, and the Associate Editor enabled us to improve the quality of the manuscript. Part of this work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-JRNL-635812. NR 94 TC 19 Z9 20 U1 6 U2 32 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 0043-1397 EI 1944-7973 J9 WATER RESOUR RES JI Water Resour. Res. PD NOV PY 2013 VL 49 IS 11 BP 7778 EP 7796 AR 7778-7796 DI 10.1002/2013WR014012 PG 19 WC Environmental Sciences; Limnology; Water Resources SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Water Resources GA 275NJ UT WOS:000328683800044 ER PT J AU Du, P Luszczek, P Tomov, S Dongarra, J AF Du, Peng Luszczek, Piotr Tomov, Stan Dongarra, Jack TI Soft error resilient QR factorization for hybrid system with GPGPU SO JOURNAL OF COMPUTATIONAL SCIENCE LA English DT Article DE Fault tolerance; Soft error; QR factorization; High performance computing; Hybrid algorithm ID MATRIX TRIANGULARIZATIONS; FAULT TOLERANCE; LINEAR ALGEBRA AB The general purpose graphics processing units (GPGPUs) are increasingly deployed for scientific computing due to their performance advantages over CPUs. What followed is the fact that fault tolerance has become a more serious concern compared to the period when GPGPUs were used exclusively for graphics applications. Using CPUs and CPUs together in a hybrid computing system increases flexibility and performance but also increases the possibility of the computations being affected by soft errors, for example, in the form of bit flips. In this work, we propose a soft error resilient algorithm for QR factorization on such hybrid systems. Our contributions include: (1) a checkpointing and recovery mechanism for the left-factor Q whose performance is scalable on hybrid systems; (2) optimized Givens rotation utilities on GPGPUs to efficiently reduce an upper Hessenberg matrix to an upper triangular form for the protection of the right factor R; and (3) a recovery algorithm based on QR update on GPGPUs. Experimental results show that our fault tolerant QR factorization can successfully detect and recover from soft errors in the entire matrix with little overhead on hybrid systems with GPGPUs. (C) 2013 Elsevier B.V. All rights reserved. C1 [Du, Peng; Luszczek, Piotr; Tomov, Stan; Dongarra, Jack] Univ Tennessee, EECS, Knoxville, TN 37996 USA. [Dongarra, Jack] Oak Ridge Natl Lab, Oak Ridge, TN USA. [Dongarra, Jack] Univ Manchester, Manchester, Lancs, England. RP Du, P (reprint author), Univ Tennessee, EECS, 1122 Volunteer Blvd, Knoxville, TN 37996 USA. EM du@eecs.utk.edu; luszczek@eecs.utk.edu; tomov@eecs.utk.edu RI Dongarra, Jack/E-3987-2014 NR 37 TC 4 Z9 4 U1 1 U2 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1877-7503 J9 J COMPUT SCI-NETH JI J. Comput. Sci. PD NOV PY 2013 VL 4 IS 6 SI SI BP 457 EP 464 DI 10.1016/j.jocs.2013.01.004 PG 8 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 268PZ UT WOS:000328184300005 ER PT J AU He, J Kowalkowski, J Paterno, M Holmgren, D Simone, J Sun, XH AF He, Jun Kowalkowski, Jim Paterno, Marc Holmgren, Don Simone, James Sun, Xian-He TI Layout-aware scientific computing: A case study using the MILC code SO JOURNAL OF COMPUTATIONAL SCIENCE LA English DT Article DE Performance model; MILC; Communication ID ALLOCATION; ALGORITHM AB Nowadays, high performance computers have more cores and nodes than ever before. Computation is spread out among them, leading to more communication cost than before. For this reason, communication can easily become the bottleneck of a system and limit its scalability. The layout of an application on a computer is the key factor to preserve communication locality and reduce its cost. In this paper, we propose a straightforward model to optimize the layout for scientific applications by minimizing internode communication cost. The model takes into account the latency and bandwidth of the network and associates them with the dominant layout variables of the application. We take the MILC code as an example and analyze its communication patterns. According to our experimental results, the model developed for the MILC code achieved a satisfactory accuracy for predicting the performance, leading to up to 31% performance improvement. (C) 2013 Elsevier B.V. All rights reserved. C1 [He, Jun; Sun, Xian-He] IIT, Dept Comp Sci, Chicago, IL 60616 USA. [Kowalkowski, Jim; Paterno, Marc; Holmgren, Don; Simone, James] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [He, Jun] Univ Wisconsin Madison, Dept Comp Sci, Madison, WI USA. [He, Jun] IIT, Chicago, IL 60616 USA. RP He, J (reprint author), IIT, Dept Comp Sci, Chicago, IL 60616 USA. EM jhe@cs.wisc.edu; jbk@fnal.gov; paterno@fnal.gov; djholm@fnal.gov; simone@fnal.gov; sun@iit.edu NR 16 TC 1 Z9 1 U1 0 U2 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1877-7503 J9 J COMPUT SCI-NETH JI J. Comput. Sci. PD NOV PY 2013 VL 4 IS 6 SI SI BP 496 EP 506 DI 10.1016/j.jocs.2013.05.007 PG 11 WC Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 268PZ UT WOS:000328184300010 ER PT J AU Yingst, RA Kah, LC Palucis, M Williams, RME Garvin, J Bridges, JC Bridges, N Deen, RG Farmer, J Gasnault, O Goetz, W Hamilton, VE Hipkin, V Jensen, JK King, PL Koefoed, A Le Mouelic, SP Madsen, MB Mangold, N Martinez-Frias, J Maurice, S McCartney, EM Newsom, H Pariser, O Sautter, VH Wiens, RC AF Yingst, R. A. Kah, L. C. Palucis, M. Williams, R. M. E. Garvin, J. Bridges, J. C. Bridges, N. Deen, R. G. Farmer, J. Gasnault, O. Goetz, W. Hamilton, V. E. Hipkin, V. Jensen, J. K. King, P. L. Koefoed, A. Le Mouelic, S. P. Madsen, M. B. Mangold, N. Martinez-Frias, J. Maurice, S. McCartney, E. M. Newsom, H. Pariser, O. Sautter, V. H. Wiens, R. C. TI Characteristics of pebble- and cobble-sized clasts along the Curiosity rover traverse from Bradbury Landing to Rocknest SO JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS LA English DT Article DE Mars; transport properties; fluvial processes; surface materials ID GALE-CRATER; EARLY MARS; SITE; SURFACE; VENTIFACTS; ROCKS; VENUS; SHAPE AB We have assessed the characteristics of clasts along Curiosity's traverse to shed light on the processes important in the genesis, modification, and transportation of surface materials. Pebble- to cobble-sized clasts at Bradbury Landing, and subsequently along Curiosity's traverse to Yellowknife Bay, reflect a mixing of two end-member transport mechanisms. The general clast population likely represents material deposited via impact processes, including meteorite fragments, ejecta from distant craters, and impactites consisting of shocked and shock-melted materials from within Gale Crater, which resulted predominantly in larger, angular clasts. A subset of rounded pebble-sized clasts has likely been modified by intermittent alluvial or fluvial processes. The morphology of this rounded clast population indicates that water was a more important transporting agent here than at other Mars sites that have been studied in situ. Finally, we identified populations of basalt clasts and porphyritic clasts of undetermined composition by their morphologic and textural characteristics; basalts are confirmed by geochemical data provided by ChemCam. C1 [Yingst, R. A.; Williams, R. M. E.] Planetary Sci Inst, Tucson, AZ 85719 USA. [Kah, L. C.] Univ Tennessee, Knoxville, TN USA. [Palucis, M.] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA. [Garvin, J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bridges, J. C.] Univ Leicester, Dept Phys & Astron, Space Res Ctr, Leicester LE1 7RH, Leics, England. [Bridges, N.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Deen, R. G.; Pariser, O.] CALTECH, Jet Prop Lab, Pasadena, CA USA. [Farmer, J.] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA. [Gasnault, O.; Le Mouelic, S. P.; Mangold, N.; Maurice, S.] CNRS, UMR 6112, Lab Planetol & Geodynam Nantes, Nantes, France. [Gasnault, O.; Le Mouelic, S. P.; Mangold, N.; Maurice, S.] Univ Nantes, Nantes, France. [Goetz, W.] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany. [Hamilton, V. E.] SW Res Inst, Dept Space Studies, Boulder, CO USA. [Hipkin, V.] Canadian Space Agcy, St Hubert, PQ, Canada. [Jensen, J. K.; Koefoed, A.; Madsen, M. B.] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark. [King, P. L.] Australian Natl Univ, Res Sch Earth Sci, Coll Phys & Math Sci, Canberra, ACT, Australia. [Martinez-Frias, J.] CSIC UCM, Inst Geosci, Fac Ciencias Geol, Madrid, Spain. [McCartney, E. M.] Malin Space Sci Syst, San Diego, CA USA. [Newsom, H.] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA. [Sautter, V. H.] MNHN, LMCM, Paris, France. [Wiens, R. C.] Los Alamos Natl Lab, Los Alamos, NM USA. RP Yingst, RA (reprint author), Planetary Sci Inst, 1700 E Ft Lowell,Ste 106, Tucson, AZ 85719 USA. EM yingst@psi.edu RI King, Penelope/A-1791-2011; OI King, Penelope/0000-0002-8364-9168; Gasnault, Olivier/0000-0002-6979-9012 FU Mars Science Laboratory Program through Malin Space Science Systems [08-0315]; Danish Council for Independent Research/Natural Sciences (FNU) [12-127126, 11-107019]; TICRA Foundation; Deutsche Forschungsgemeinschaft (DFG) [GO 2288/1-1]; National Aeronautics and Space Administration FX We gratefully acknowledge the constructive reviews whose comments improved this manuscript. This research was supported by the Mars Science Laboratory Program through Malin Space Science Systems contract 08-0315 to R.A.Y. We thank Hallie E. Gengl, JPL's OPGS team, for processing the standard clast survey images for stereo analysis by generating the 3-D local-level maps. Work in Denmark was funded by the Danish Council for Independent Research/Natural Sciences (FNU grants 12-127126 and 11-107019) and the TICRA Foundation. Work in Germany was funded by the Deutsche Forschungsgemeinschaft (DFG grant GO 2288/1-1). The work of R. Deen, O. Pariser, and Hallie Gengl was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. NR 84 TC 16 Z9 16 U1 4 U2 20 PU AMER GEOPHYSICAL UNION PI WASHINGTON PA 2000 FLORIDA AVE NW, WASHINGTON, DC 20009 USA SN 2169-9097 EI 2169-9100 J9 J GEOPHYS RES-PLANET JI J. Geophys. Res.-Planets PD NOV PY 2013 VL 118 IS 11 BP 2361 EP 2380 DI 10.1002/2013JE004435 PG 20 WC Geochemistry & Geophysics SC Geochemistry & Geophysics GA 270YJ UT WOS:000328355300007 ER PT J AU Ho, CY Tsai, SC Lin, HT Chen, FR Kai, JJ AF Ho, Chun-Yu Tsai, Shuo-Cheng Lin, Hua-Tay Chen, Fu-Rong Kai, Ji-Jung TI Microstructural investigation of Si-ion-irradiated single crystal 3C-SiC and SA-Tyrannohex SiC fiber-bonded composite at high temperatures SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID SILICON-CARBIDE; ELEVATED-TEMPERATURES; ELECTRON-MICROSCOPY; HIGH-STRENGTH; DEGREES-C; DEFECTS; EVOLUTION; HELIUM AB Silicon carbides (SiCs) are considered as one of the promising candidates for structural and core materials used in fusion reactor and high temperature gas-cooled reactor (HTGR) due to its high thermal stability, and good resistance to irradiation and chemical attack. Single crystal 3C-SiC with less intrinsic defects was used to precisely characterize the radiation-induced defects in 3C-SiC. In addition, there are limited discussions related to radiation effect of SA-Tyrannohex fiber-bonded composite at high temperatures. Therefore, in this study, single crystal 3C-SiC thin film and SA-Tyrannohex SiC fiber-bonded composite were irradiated at 1000-1350 degrees C with 7 MeV Si3+ ion to simulate the neutron irradiation in reactors. The microstructure of the irradiated SiC was examined by using high resolution transmission electron microscope (HRTEM). In irradiated single crystal 3C-SiC, high resolution images showed that the planar defects were extrinsic stacking faulted loop with changing atomic sequences and intrinsic stacking faulted loop, i.e. vacancy loop. In addition, dislocation loops, voids, and edge dislocations in SA-Tyrannohex SiC fiber-bonded composite after irradiation were investigated. Besides, larger voids (with diameter 10-40 nm) formed in alumina with preferred orientation after irradiation perhaps resulting in degradation of strength of the SA-Tyrannohex SiC fiber-bonded composite. (C) 2013 Elsevier B.V. All rights reserved. C1 [Ho, Chun-Yu; Kai, Ji-Jung] Natl Tsing Hua Univ, Inst Nucl Engn & Sci, Hsinchu 30013, Taiwan. [Tsai, Shuo-Cheng; Chen, Fu-Rong; Kai, Ji-Jung] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu 30013, Taiwan. [Lin, Hua-Tay] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Kai, JJ (reprint author), Natl Tsing Hua Univ, Inst Nucl Engn & Sci, Hsinchu 30013, Taiwan. EM ceer0001@gmail.com OI KAI, Ji-jung/0000-0001-7848-8753 NR 26 TC 6 Z9 6 U1 2 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 443 IS 1-3 BP 1 EP 7 DI 10.1016/j.jnucmat.2013.06.045 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 264UF UT WOS:000327905800001 ER PT J AU Yang, TF Taylor, CA Kong, SY Wang, CX Zhang, YW Huang, XJ Xue, JM Yan, S Wang, YG AF Yang, Tengfei Taylor, Caitlin A. Kong, Shuyan Wang, Chenxu Zhang, Yanwen Huang, Xuejun Xue, Jianming Yan, Sha Wang, Yugang TI The discrepancies in multistep damage evolution of yttria-stabilized zirconia irradiated with different ions SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CUBIC ZIRCONIA; RADIATION-DAMAGE; CERAMIC INSULATORS; DEFECT PRODUCTION; METALS; REACTORS; OXIDES AB This paper reports a comprehensive investigation of structural damage in yttria-stabilized zirconia irradiated with different ions over a wide fluence range. A similar multistep damage accumulation exists for the irradiations of different ions, but the critical doses for occurrence of second damage step, characterized by a faster increase in damage fraction, and the maximum elastic strain at the first damage step are varied and depend on ion mass. For irradiations of heavier ions, the second damage step occurs at a higher dose with a lower critical elastic strain. Furthermore, larger extended defects were observed in the irradiations of heavy ions at the second damage step. Associated with other experiment results and multistep damage accumulation model, the distinct discrepancies in the damage buildup under irradiations of different ions were interpreted by the effects of electronic excitation, energy of primary knock-on atom and chemistry contributions of deposited ions. (C) 2013 Elsevier B.V. All rights reserved. C1 [Yang, Tengfei; Kong, Shuyan; Wang, Chenxu; Huang, Xuejun; Xue, Jianming; Yan, Sha; Wang, Yugang] Peking Univ, State Key Lab Nucl Phys & Technol, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China. [Taylor, Caitlin A.; Zhang, Yanwen] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Zhang, Yanwen] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Wang, YG (reprint author), Peking Univ, State Key Lab Nucl Phys & Technol, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China. EM ygwang@pku.edu.cn OI , /0000-0003-2655-0804 FU Ministry of Science and Technology of China [2010CB832904]; National Natural Science Foundation of China [11075005, 91226202] FX This work was financially supported by the Ministry of Science and Technology of China (2010CB832904) and National Natural Science Foundation of China (11075005) and (91226202). NR 54 TC 6 Z9 6 U1 2 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 443 IS 1-3 BP 40 EP 48 DI 10.1016/j.jnucmat.2013.06.033 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 264UF UT WOS:000327905800007 ER PT J AU Xu, HX Stoller, RE Osetsky, YN AF Xu, Haixuan Stoller, Roger E. Osetsky, Yury N. TI Cascade defect evolution processes: Comparison of atomistic methods SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID KINETIC MONTE-CARLO; FINDING SADDLE-POINTS; INFREQUENT EVENTS; ALPHA-IRON; DAMAGE ACCUMULATION; RADIATION-DAMAGE; BCC IRON; SIMULATION; DYNAMICS; IRRADIATION AB Determining defect evolution beyond the molecular dynamics (MD) time scale is critical to bridging the gap between atomistic simulations and experiments. The recently developed self-evolving atomistic kinetic Monte Carlo (SEAKMC) method provides new opportunities to simulate long-term defect evolution with MD-like fidelity to the atomistic processes involved. To demonstrate this capability, three examples are presented in which SEAKMC has been used to investigate the evolution of typical radiation-induced defects in bcc iron. Depending on the particular example. SEAKMC results are compared with those obtained using two other on-the-fly KMC techniques, object KMC, and MD. The three examples are: (1) evolution of a vacancy-rich region similar to the core of a displacement cascade, (2) the stability of recently reported interstitial clusters with a structure similar to the 05 Laves phase, and (3) long-term aging of atomic displacement cascade debris. In the various examples, the SEAKMC approach provides better agreement with MD simulations, highlights the importance of the underlying atomistic processes, and provides new information on long-term defect evolution in iron. Published by Elsevier BV. C1 [Xu, Haixuan; Stoller, Roger E.; Osetsky, Yury N.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Xu, HX (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM xuh1@ornl.gov RI Xu, Haixuan/C-9841-2009; OI Osetskiy, Yury/0000-0002-8109-0030 FU Center for Defect Physics, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science [ERKCS99]; U.S. Department of Energy Office of Basic Energy Sciences [ERKCS99] FX Research at the Oak Ridge National Laboratory supported as part of the Center for Defect Physics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number ERKCS99. NR 33 TC 12 Z9 12 U1 4 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 443 IS 1-3 BP 66 EP 70 DI 10.1016/j.jnucmat.2013.07.001 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 264UF UT WOS:000327905800010 ER PT J AU He, LF Gupta, M Yablinsky, CA Gan, J Kirk, MA Bai, XM Pakarinen, J Allen, TR AF He, Ling-Feng Gupta, Mahima Yablinsky, Clarissa A. Gan, Jian Kirk, Marquis A. Bai, Xian-Ming Pakarinen, Janne Allen, Todd R. TI In situ TEM observation of dislocation evolution in Kr-irradiated UO2 single crystal SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID URANIUM-DIOXIDE; DISPLACEMENT CASCADES; RADIATION-DAMAGE; DEFECTS; BUBBLES; BURNUP; FUELS AB In situ transmission electron microscopy(TEM) observation of UO2 single crystal irradiated with Kr ions at high temperatures was conducted to understand the dislocation evolution due to high-energy radiation. The dislocation evolution in UO2 single crystal is shown to occur as nucleation and growth of dislocation loops at low-irradiation doses, followed by transformation to extended dislocation segments and networks at high doses, as well as shrinkage and annihilation of some loops and dislocations due to high temperature annealing. Generally the trends of dislocation evolution in UO2 were similar under Kr irradiation at different ion energies and temperatures (150 keV at 600 degrees C and 1 MeV at 800 degrees C) used in this work. Interstitial-type dislocation loops with Burgers vector along (1 1 0) were observed in the Kr-irradiated UO2. The irradiated specimens were denuded of dislocation loops near the surface. Published by Elsevier B.V. C1 [He, Ling-Feng; Gupta, Mahima; Yablinsky, Clarissa A.; Pakarinen, Janne; Allen, Todd R.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Gan, Jian; Bai, Xian-Ming] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Kirk, Marquis A.] Argonne Natl Lab, Argonne, IL 60439 USA. RP He, LF (reprint author), Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. EM lhe33@wisc.edu RI He, Lingfeng/D-3534-2014; Bai, Xianming/E-2376-2017; OI He, Lingfeng/0000-0003-2763-1462; Bai, Xianming/0000-0002-4609-6576; Allen, Todd/0000-0002-2372-7259 FU Center for Materials Science of Nuclear Fuel, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; U.S. Department of Energy Office of Science Laboratory [DE-AC02-06CH11357] FX This work was supported as part of the Center for Materials Science of Nuclear Fuel, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The electron microscopy was accomplished at the Electron Microscopy Center for Materials Research at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under Contract No. DE-AC02-06CH11357 by UChicago Argonne, LLC, and the Center for Advanced Energy Studies located in Idaho Falls, Idaho. We thank Peter M. Baldo of Argonne National Lab for his help in performing the irradiations. NR 34 TC 18 Z9 18 U1 0 U2 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 443 IS 1-3 BP 71 EP 77 DI 10.1016/j.jnucmat.2013.06.050 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 264UF UT WOS:000327905800011 ER PT J AU Taller, SA Bai, XM AF Taller, Stephen A. Bai, Xian-Ming TI Assessment of structures and stabilities of defect clusters and surface energies predicted by nine interatomic potentials for UO2 SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID STOICHIOMETRIC URANIUM-DIOXIDE; MOLECULAR-DYNAMICS SIMULATION; THERMAL-CONDUCTIVITY; OXYGEN DIFFUSION; GRAIN-BOUNDARY; POINT-DEFECTS; EQUILIBRIUM; HELIUM; OXIDES; DAMAGE AB The irradiation in nuclear reactors creates many point defects and defect clusters in uranium dioxide (UO2) and their evolution severely degrades the thermal and mechanical properties of the nuclear fuels. Previously many empirical interatomic potentials have been developed for modeling defect production and evolution in UO2. However, the properties of defect clusters and extended defects are usually not fitted into these potentials. In this work nine interatomic potentials for UO2 are examined by using molecular statics and molecular dynamics to assess their applicability in predicting the properties of various types of defect clusters in UO2. The binding energies and structures for these defect clusters have been evaluated for each potential. In addition, the surface energies of voids of different radii and (1 1 0) flat surfaces predicted by these potentials are also evaluated. It is found that both good agreement and significant discrepancies exist for these potentials in predicting these properties. For oxygen interstitial clusters, these potentials predict significantly different defect cluster structures and stabilities; For defect clusters consisting of both uranium and oxygen defects, the prediction is in better agreement; The surface energies predicted by these potentials have significant discrepancies, and some of them are much higher than the experimentally measured values. The results from this work can provide insight on interpreting the outcome of atomistic modeling of defect production using these potentials and may provide guidelines for choosing appropriate potential models to study problems of interest in UO2. (C) 2013 Elsevier B.V. All rights reserved. C1 [Taller, Stephen A.] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47907 USA. [Bai, Xian-Ming] Idaho Natl Lab, Fuels Modeling & Simulat Dept, Idaho Falls, ID 83415 USA. RP Bai, XM (reprint author), Idaho Natl Lab, Fuels Modeling & Simulat Dept, Idaho Falls, ID 83415 USA. EM xianming.bai@inl.gov RI Bai, Xianming/E-2376-2017 OI Bai, Xianming/0000-0002-4609-6576 FU U.S. Department of Energy, Office of Science [FWP 1356]; U.S. Department of Energy Office of Science [FWP 1356]; U.S. Department of Energy [DE-AC07-051D14517] FX This work is conducted under the work scope of the Center for Materials Science of Nuclear Fuel (CMSNF) at Idaho National Laboratory, an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number FWP 1356. The authors acknowledge the High Performance Computing (HPC) group at Idaho National Laboratory (INL) for allowing them to conduct the calculations on INL's HPC clusters. S. A. T. would like to thank INL for hosting his summer internship, and the Science Undergraduate Laboratory Internship (SULI) program sponsored by the Department of Energy's Office of Science for supporting his summer internship. This manuscript has been coauthored by Battelle Energy Alliance, LLC under Contract No. DE-AC07-051D14517 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 54 TC 6 Z9 6 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 443 IS 1-3 BP 84 EP 98 DI 10.1016/j.jnucmat.2013.06.038 PG 15 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 264UF UT WOS:000327905800013 ER PT J AU Men, D Patel, MK Usov, IO Toiammou, M Monnet, I Pivin, JC Porter, JR Mecartney, ML AF Men, Danju Patel, Maulik K. Usov, Igor O. Toiammou, Moidi Monnet, Isabelle Pivin, Jean Claude Porter, John R. Mecartney, Martha L. TI Radiation damage in multiphase ceramics SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID INDUCED PHASE-TRANSFORMATION; HEAVY-ION IRRADIATION; OXIDE FUELS; INDUCED AMORPHIZATION; THERMAL-CONDUCTIVITY; MOLECULAR-DYNAMICS; FISSION-PRODUCTS; URANIUM-DIOXIDE; MINOR ACTINIDES; PURE ZIRCONIA AB Four-phase ceramic composites containing 3 mol% Y2O3 stabilized ZrO2 (3Y-TZP), Al2O3, MgAl2O4, and LaPO4 were synthesized as model materials representing inert matrix fuel with enhanced thermal conductivity and decreased radiation-induced microstructural damage with respect to single-phase UO2. This multi-phase concept, if successful, could be applied to design advanced nuclear fuels which could then be irradiated to higher burn-ups. 3Y-TZP in the composite represents a host (fuel) phase with the lowest thermal conductivity and Al2O3 is the high thermal conductivity phase. The role of MgAl2O4 and LaPO4 was to stabilize the structure under irradiation. The radiation response was evaluated by ion irradiation at 500 degrees C with 10 MeV Au ions and at 800 degrees C with 92 MeV Xe ions, to simulate damage due to primary knock-on atoms and fission fragments, respectively. Radiation damage and microstructural changes were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy and computational modeling. Al2O3. Y2O3 stabilized ZrO2 and MgAl2O4 phases exhibit high amorphization resistance and remain stable when irradiated with both Au and Xe ions. A monoclinic-to-tetragonal phase transformation, however, is promoted by Xe and Au ion irradiation in 3Y-TZP. The LaPO4 monazite phase appears to melt, dewet the other phases, and recrystallize under Au irradiation, but does not change under Xe irradiation. (C) 2013 Elsevier B.V. All rights reserved. C1 [Men, Danju; Mecartney, Martha L.] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA. [Patel, Maulik K.; Usov, Igor O.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. [Toiammou, Moidi; Monnet, Isabelle] Univ Caen Basse Normandie, CEA, CNRS, CIMAP,ENSICAEN, F-14070 Caen 5, France. [Pivin, Jean Claude] Univ Paris 11, CNRS, UMR 8609, Ctr Spectrometrie Nucl & Spectrometrie Masse,IN2P, F-91405 Orsay, France. [Porter, John R.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. RP Mecartney, ML (reprint author), Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA. EM martham@uci.edu FU National Science Foundation [NSF DMR 0606063]; Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This research was supported by the National Science Foundation, funding under Grant NSF DMR 0606063. The opinions expressed are those of the authors alone, and do not reflect any official endorsement by NSF. The authors would like to thank Dr. Kurt E. Sickafus, while at Los Alamos National Laboratory for his initial invitation to conduct research and for input. The Xe beam-time was obtained at Grand Accelerateur National d'Ions Lourds.; The TEM work on the FEI Tecnai, JEOL 3010. CM200, assisted by Chengyu Song, was performed at Lawrence Berkeley Laboratory National Center for Electron Microscopy, which is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 48 TC 5 Z9 5 U1 5 U2 62 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 443 IS 1-3 BP 120 EP 127 DI 10.1016/j.jnucmat.2013.06.042 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 264UF UT WOS:000327905800017 ER PT J AU Dunn, AY Capolungo, L Martinez, E Cherkaoui, M AF Dunn, Aaron Y. Capolungo, Laurent Martinez, Enrique Cherkaoui, Mohammed TI Spatially resolved stochastic cluster dynamics for radiation damage evolution in nanostructured metals SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID KINETIC MONTE-CARLO; ALPHA-FE; COMPUTER-SIMULATION; DEFECT PRODUCTION; VACANCY CLUSTERS; HELIUM; CU; ACCUMULATION; DIFFUSION; MIGRATION AB A spatially resolved stochastic cluster dynamics (SRSCD) model is introduced to describe radiation-induced defect evolution in metals. The stochastic nature of the method allows SRSCD to model more chemical species and more mobile defects than rate theory methods without loss of computational efficiency, while reaching larger timescales and simulating larger volumes than object-oriented kinetic Monte Carlo (OKMC) methods. To comprehend the capabilities of the method and access new understanding of defect evolution, SRSCD is used in three scenarios. In the first, the results of Frenkel pair implantation are found to match those of rate theory in both spatially homogeneous and spatially resolved media. Next, to study spatial resolution effects and correspondence to OKMC, the results of 20 key cascade implantation into copper is simulated and an acceptable match with OKMC is found. Finally the method is used to study the problem of helium desorption in thin iron foils. The model is compared with available experimental measures and is found to be in good agreement. The ability of SRSCD to include many mobile species of defects allows a detailed analysis of the mechanisms of helium release from the free surface of the iron foils. As a result new dominant mechanisms of helium release are discussed as well as their operating regimes. (C) 2013 Elsevier B.V. All rights reserved. C1 [Dunn, Aaron Y.; Capolungo, Laurent; Cherkaoui, Mohammed] CNRS, UMI Georgia Tech 2958, Georgia Inst Technol, George W Woodruff Sch Mech Engn, F-57070 Metz, France. [Martinez, Enrique] Los Alamos Natl Lab, Los Alamos, NM USA. RP Capolungo, L (reprint author), CNRS, UMI Georgia Tech 2958, Georgia Inst Technol, George W Woodruff Sch Mech Engn, F-57070 Metz, France. EM laurent.capolungo@me.gatech.edu OI Martinez Saez, Enrique/0000-0002-2690-2622 FU European Union; Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center; US Department of Energy at Los Alamos National Laboratory [2008LANL1026] FX The authors gratefully acknowledge support from European Union, Project RADINTERFACES. The authors thank I. Martin-Bragado and L Agudo for their discussions and assistance on this work. The authors thank C. Ortiz and M..). Caturla for their correspondence. A. Dunn would like to thank M. McPhie for discussions on this work. E. Martinez gratefully acknowledges support from thel funded by the US Department of Energy (Award Number 2008LANL1026) at Los Alamos National Laboratory. NR 48 TC 8 Z9 8 U1 2 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 443 IS 1-3 BP 128 EP 139 DI 10.1016/j.jnucmat.2013.07.009 PG 12 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 264UF UT WOS:000327905800018 ER PT J AU Crapps, J DeCroix, DS Galloway, JD Korzekwa, DA Aikin, R Fielding, R Kennedy, R Unal, C AF Crapps, J. DeCroix, D. S. Galloway, J. D. Korzekwa, D. A. Aikin, R. Fielding, R. Kennedy, R. Unal, C. TI Separate effects identification via casting process modeling for experimental measurement of U-Pu-Zr alloys SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB Computational simulations of gravity casting processes for metallic U-Pu-Zr nuclear fuel rods have been performed using a design-of-experiments technique to determine the fluid flow, liquid heat transfer, and solid heat transfer parameters which most strongly influence the process solidification speed and fuel rod porosity. The results are used to make recommendations for the best investment of experimental time and effort to measure process parameters. (C) 2013 Elsevier B.V. All rights reserved. C1 [Crapps, J.; DeCroix, D. S.; Galloway, J. D.; Korzekwa, D. A.; Aikin, R.; Unal, C.] Los Alamos Natl Lab, Los Alamos, NM USA. [Fielding, R.; Kennedy, R.] Idaho Natl Lab, Idaho Falls, ID USA. [Crapps, J.] ExxonMobil Upstream Res Co, Houston, TX USA. RP Crapps, J (reprint author), ExxonMobil Upstream Res Co, Houston, TX USA. EM justin.crapps@gmail.com FU Fuel Cycle Research and Development Project [FTLA11AF0207] FX This work was funded through the Fuel Cycle Research and Development Project. FTLA11AF0207. NR 17 TC 0 Z9 0 U1 2 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 443 IS 1-3 BP 176 EP 184 DI 10.1016/j.jnucmat.2013.07.016 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 264UF UT WOS:000327905800024 ER PT J AU Pokorny, R Rice, JA Crum, JV Schweiger, MJ Hrma, P AF Pokorny, Richard Rice, Jarrett A. Crum, Jarrod V. Schweiger, Michael J. Hrma, Pavel TI Kinetic model for quartz and spinet dissolution during melting of high-level-waste glass batch SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID BOROSILICATE GLASS; MOLTEN GLASS; COLD-CAP; CRYSTALLIZATION; CRYSTALS; SILICA; TEMPERATURE; CONVERSION; PARTICLES; GROWTH AB The dissolution of quartz particles and the growth and dissolution of crystalline phases during the conversion of batch to glass potentially affects both the glass melting process and product quality. Crystals of spinet exiting the cold cap to molten glass below can be troublesome during the vitrification of iron-containing high-level wastes. To estimate the distribution of quartz and spinel fractions within the cold cap, we used kinetic models that relate fractions of these phases to temperature and heating rate. Fitting the model equations to data showed that the heating rate, apart from affecting quartz and spinel behavior directly, also affects them indirectly via concurrent processes, such as the formation and motion of bubbles. Because of these indirect effects, it was necessary to allow one kinetic parameter (the pre-exponential factor) to vary with the heating rate. The resulting kinetic equations are sufficiently simple for the detailed modeling of batch-to-glass conversion as it occurs in glass melters. The estimated fractions and sizes of quartz and spinel particles as they leave the cold cap, determined in this study, will provide the source terms needed for modeling the behavior of these solid particles within the flow of molten glass in the melter. (C) 2013 Elsevier B.V. All rights reserved. C1 [Pokorny, Richard] Prague Inst Chem Technol, Dept Chem Engn, CR-16628 Prague 6, Czech Republic. [Rice, Jarrett A.; Crum, Jarrod V.; Schweiger, Michael J.; Hrma, Pavel] Pacific NW Natl Lab, Richland, WA 99352 USA. [Hrma, Pavel] Pohang Univ Sci & Technol, Div Adv Nucl Engn, Pohang, South Korea. RP Hrma, P (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM pavel.hrma@pnnl.gov FU Department of Energy's Waste Treatment & Immobilization Plant Federal Project Office; WCU (World Class University) program through the National Research Foundation of Korea; Ministry of Education, Science and Technology [R31-30005]; specific university research (MSMT) [20/2013]; Battelle [DE-AC05-76RL01830] FX This work was supported by the Department of Energy's Waste Treatment & Immobilization Plant Federal Project Office under the direction of Dr. Albert A. Kruger and by the WCU (World Class University) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-30005). Richard Pokorny acknowledges financial support from specific university research (MSMT No. 20/2013). The authors are grateful to Jaehun Chun and Dong-Sang Kim for insightful discussions and Derek R. Dixon for providing the scanning electron micrograph image. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under Contract DE-AC05-76RL01830. NR 37 TC 9 Z9 9 U1 2 U2 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 443 IS 1-3 BP 230 EP 235 DI 10.1016/j.jnucmat.2013.07.039 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 264UF UT WOS:000327905800032 ER PT J AU Allahar, KN Burns, J Jaques, B Wu, YQ Charit, I Cole, J Butt, DP AF Allahar, Kerry N. Burns, Jatuporn Jaques, Brian Wu, Y. Q. Charit, Indrajit Cole, James Butt, Darryl P. TI Ferritic oxide dispersion strengthened alloys by spark plasma sintering SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID FEAL ALLOY; STEELS; RECRYSTALLIZATION; MICROSTRUCTURE; STABILITY; TITANIUM; REACTORS; TI AB Spark plasma sintering (SPS) was used to consolidate a Fe-16Cr-3Al (wt.%) powder that was mechanically alloyed with Y2O3 and Ti powders to produce 0.5 Y2O3 and 0.5 Y2O3-1Ti powders. The effects of mechanical alloying and sintering conditions on the microstructure, relative density and hardness of the sintered oxide dispersion strengthened (ODS) alloys are presented. Scanning electron microscopy indicated a mixed fine-grain and coarse-grain microstructure that was attributed to recrystallization and grain growth during sintering. Analysis of the transmission electron microscopy (TEM) and atom probe tomography (APT) data identified Y-O and Y-O-Ti nanoclusters. Elemental ratios of these nanoclusters were consistent with that observed in hot-extruded ODS alloys. The influence of Ti was to refine the grains as well as the nanoclusters with there being greater number density and smaller sizes of the Y-O-Ti nanoclusters as compared to the Y-O nanoclusters. This resulted in the Ti-containing samples being harder than the Ti-free alloys. The hardness of the alloys with the Y-O-Ti nanoclusters was insensitive to sintering time while smaller hardness values were associated with longer sintering times for the alloys with the Y-O nanoclusters. Pressures greater than 80 MPa are recommended for improved densification as higher sintering temperatures and longer sintering times at 80 MPa did not improve the relative density beyond 97.5%. (C) 2013 Elsevier B.V. All rights reserved. C1 [Allahar, Kerry N.; Burns, Jatuporn; Jaques, Brian; Wu, Y. Q.; Butt, Darryl P.] Boise State Univ, Mat & Sci Engn Dept, Boise, ID 83725 USA. [Charit, Indrajit] Univ Idaho, Dept Chem & Mat Engn, Moscow, ID 83844 USA. [Cole, James] Idaho Natl Lab, Idaho Falls, ID 83401 USA. [Allahar, Kerry N.; Burns, Jatuporn; Wu, Y. Q.; Butt, Darryl P.] Ctr Adv Energy Studies, Idaho Falls, ID 83401 USA. RP Allahar, KN (reprint author), Ctr Adv Energy Studies, 995 Univ Blvd, Idaho Falls, ID 83401 USA. EM KerryAllahar@boisestate.edu OI Cole, James/0000-0003-1178-5846; Jaques, Brian/0000-0002-5324-555X FU Battelle Energy Alliance through the Laboratory Directed Research and Development program at the Idaho National Laboratory FX Funding for this work was provided in part by Battelle Energy Alliance through the Laboratory Directed Research and Development program at the Idaho National Laboratory. NR 30 TC 9 Z9 9 U1 1 U2 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 443 IS 1-3 BP 256 EP 265 DI 10.1016/j.jnucmat.2013.07.019 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 264UF UT WOS:000327905800036 ER PT J AU White, JT Nelson, AT AF White, J. T. Nelson, A. T. TI Thermal conductivity of UO2+x and U4O9-y SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID NONSTOICHIOMETRIC U4O9-Y; ELECTRICAL-CONDUCTIVITY; UO2-BASED SIMFUEL; URANIUM-DIOXIDE; DEFECTIVE FUEL; OXIDATION; TEMPERATURE; SCATTERING; STEAM; HEAT AB Stoichiometries of UO2 specimens ranging from 2.000 to 2.210 were prepared in situ at 1673 K within thermoanalytical equipment. Thermal conductivities were analyzed according to Klemens-Callaway defect model. Analysis of the data sets allows for extraction of the fundamental phonon-phonon and phonon-defect scattering contributions for the materials investigated. Low temperature thermal conductivity data was modeled using sigmoidal averaging to calculate the dual phase field UO2+x-U4O9-y. This allowed the thermal conductivity of U4O9-y to be calculated as a function of temperature up to 873 K. This fundamental dataset provides a key contribution to ongoing efforts in the modeling and simulation communities in the areas of both light water reactor fuel performance and accident evolution. (C) 2013 Elsevier B.V. All rights reserved. C1 [White, J. T.; Nelson, A. T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP White, JT (reprint author), Los Alamos Natl Lab, Los Alamos, NM 87545 USA. EM jtwhite@lanl.gov; atnelson@lanl.gov OI Nelson, Andrew/0000-0002-4071-3502 FU U.S. Department of Energy, Office of Nuclear Energy Fuel Cycle Research and Development program FX The authors thank Mr. John Dunwoody and Mr. Darrin Byler of Los Alamos National Laboratory for assistance in pellet fabrication and useful discussions. The authors would like to extend their appreciation to D.R. Clarke of Harvard University for his helpful advice on modeling the thermal conductivity of this system, as well as to D.A. Andersson of Los Alamos National Laboratory for insights into the defect structures of hyperstoichiometric UO2. The support of the U.S. Department of Energy, Office of Nuclear Energy Fuel Cycle Research and Development program is gratefully acknowledged. NR 38 TC 12 Z9 12 U1 1 U2 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 443 IS 1-3 BP 342 EP 350 DI 10.1016/j.jnucmat.2013.07.063 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 264UF UT WOS:000327905800047 ER PT J AU Tan, L Busby, JT AF Tan, L. Busby, J. T. TI Alloying effect of Ni and Cr on irradiated microstructural evolution of type 304 stainless steels SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article AB Life extension of the existing nuclear power plants imposes significant challenges to core structural materials that suffer increased fluences. This paper presents the microstructural evolution of a type 304 stainless steel and its variants alloyed with extra Ni and Cr under neutron irradiation at similar to 320 degrees C for up to 10.2 dpa. Similar to the reported data of type 304 variants, a large amount of Frank loops, ultrafine G-phase/M23C6 particles, and limited amount of cavities were observed in the irradiated samples. The irradiation promoted the growth of pre-existing M23C6 at grain boundaries and resulted in some phase transformation to CrC in the alloy with both extra Ni and Cr. A new type of ultrafine precipitates, possibly (Ti,Cr)N, was observed in all the samples, and its amount was increased by the irradiation. Additionally, alpha-ferrite was observed in the type 304 steel but not in the Ni or Ni + Cr alloyed variants. The effect of Ni and Cr alloying on the microstructural evolution is discussed. (C) 2013 Elsevier B.V. All rights reserved. C1 [Tan, L.; Busby, J. T.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Tan, L (reprint author), 1 Bethel Valley Rd,POB 2008,MS-6151, Oak Ridge, TN 37831 USA. EM tanl@ornl.gov RI Tan, Lizhen/A-7886-2009 OI Tan, Lizhen/0000-0002-3418-2450 FU US Department of Energy (DOE), Office of Nuclear Energy, Light-Water Reactor Sustainability Program [DE-AC05-00OR22725]; ORNL's Shared Research Equipment (ShaRE) User Facility; Office of Basic Energy Sciences, US DOE; UT-Battelle, LLC. FX This research was sponsored by the US Department of Energy (DOE), Office of Nuclear Energy, Light-Water Reactor Sustainability Program, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Research supported in part by ORNL's Shared Research Equipment (ShaRE) User Facility, which is sponsored by the Office of Basic Energy Sciences, US DOE. The authors thank Dr. M.N. Gussev for managing the irradiated materials, Dr. K. Leonard assisting TEM characterization, Dr. K.G. Field helpful discussion, and Ms. S.M. Curlin for preparation of the TEM specimens. NR 22 TC 9 Z9 9 U1 0 U2 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 443 IS 1-3 BP 351 EP 358 DI 10.1016/j.jnucmat.2013.07.054 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 264UF UT WOS:000327905800048 ER PT J AU Gregg, DJ Zhang, YJ Middleburgh, SC Conradson, SD Triani, G Lumpkin, GR Vance, ER AF Gregg, Daniel J. Zhang, Yingjie Middleburgh, Simon C. Conradson, Steven D. Triani, Gerry Lumpkin, Gregory R. Vance, Eric R. TI The incorporation of plutonium in lanthanum zirconate pyrochlore SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DIFFUSE-REFLECTANCE SPECTROSCOPY; BRANNERITE STRUCTURE; URANIUM-DIOXIDE; OXIDES; SPECTRA; IONS; ZIRCONOLITE; DIFFRACTION; SPECIATION; LA2ZR2O7 AB The incorporation of plutonium (Pu) within lanthanum zirconate pyrochlore was investigated using air, argon, and N-2-3.5%H-2 sintering atmospheres together with Ca2+ and Sr2+ incorporation for charge compensation. The samples have been characterised in the first instance by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffuse reflectance spectroscopy (DRS). The results show Pu can be exchanged for La3+ on the A-site with and without charge compensation and for Zr4+ on the B-site. DRS measurements were made over the wavenumber range of 4000-19,000 cm(-1) and the Pu in all air- and argon-sintered samples was found to be present as Pu4+ while that in samples sintered in N-2-3.5%H-2 was present as Pu3+. The Pu valence was confirmed for three of the samples using X-ray near-edge absorption spectroscopy (XANES). Pu valences >4+ were not observed in any of the samples. (C) 2013 Elsevier B.V. All rights reserved. C1 [Gregg, Daniel J.; Zhang, Yingjie; Middleburgh, Simon C.; Triani, Gerry; Lumpkin, Gregory R.; Vance, Eric R.] Australian Nucl Sci & Technol Org, Inst Mat Engn, Kirrawee Dc, NSW 2232, Australia. [Conradson, Steven D.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Gregg, DJ (reprint author), Australian Nucl Sci & Technol Org, Inst Mat Engn, Locked Bag 2001, Kirrawee Dc, NSW 2232, Australia. EM daniel.gregg@ansto.gov.au RI Lumpkin, Gregory/A-7558-2008; OI Middleburgh, Simon/0000-0001-6716-4200 NR 47 TC 11 Z9 11 U1 2 U2 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 443 IS 1-3 BP 444 EP 451 DI 10.1016/j.jnucmat.2013.07.030 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 264UF UT WOS:000327905800062 ER PT J AU Mosbrucker, PL Brown, DW Anderoglu, O Balogh, L Maloy, SA Sisneros, TA Almer, J Tulk, EF Morgenroth, W Dippel, AC AF Mosbrucker, P. L. Brown, D. W. Anderoglu, O. Balogh, L. Maloy, S. A. Sisneros, T. A. Almer, J. Tulk, E. F. Morgenroth, W. Dippel, A. C. TI Neutron and X-ray diffraction analysis of the effect of irradiation dose and temperature on microstructure of irradiated HT-9 steel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID LINE-PROFILE ANALYSIS; PLASTIC-DEFORMATION; DISLOCATION MODEL; STRAIN ANISOTROPY; FERRITIC STEELS; CRYSTALS; STABILITY; EVOLUTION; STRENGTH; PHASES AB Material harvested from several positions within a nuclear fuel duct (the ACO-3 duct) used in a 6-year irradiation of a fuel assembly in the Fast Flux Test Reactor Facility (FFTF) was examined using neutron and high-energy X-ray diffraction. Samples with a wide range of irradiation dose and irradiation temperature history, reaching doses of up to 147 dpa and temperatures of up to 777 K, were examined. The response of various microstructural characteristics such as the weight fraction of M23C6 carbides, the dislocation density and character, and the crystallographic texture were determined using whole profile analysis of the diffraction data and related to the macroscopic mechanical behavior. For instance, the dislocation density was observed to be intimately linked with observed flow strength of the irradiated materials, following the Taylor law. In general, at the high doses studied in this work, the irradiation temperature is the predominant controlling factor of the dislocation density and, thus, the flow strength of the irradiated material. The results, representing some of the first diffraction work done on samples exposed to such a high received dose, demonstrate how non-destructive and stand-off diffraction techniques can be used to characterize irradiation induced microstructure and at least estimate mechanical properties in irradiated materials without exposing workers to radiation hazards. (C) 2013 Elsevier B.V. All rights reserved. C1 [Mosbrucker, P. L.; Tulk, E. F.] Kinectrics Inc, Toronto, ON M8Z 5G5, Canada. [Brown, D. W.; Anderoglu, O.; Balogh, L.; Maloy, S. A.; Sisneros, T. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Almer, J.] Argonne Natl Lab, Argonne, IL 60439 USA. [Morgenroth, W.] Goethe Univ Frankfurt, Abt Kristallog, Inst Geowissensch, D-60438 Frankfurt, Germany. [Dippel, A. C.] Deutsch Elektronen Synchrotron DESY, D-22607 Hamburg, Germany. RP Brown, DW (reprint author), Los Alamos Natl Lab, MS-H805, Los Alamos, NM 87545 USA. EM dbrown@lanl.gov RI Maloy, Stuart/A-8672-2009; Balogh, Levente/S-1238-2016; OI Maloy, Stuart/0000-0001-8037-1319; Mosbrucker, Paula/0000-0003-0262-7117; Morgenroth, Wolfgang/0000-0001-8921-0052 FU LDRD program; LANL; U.S. DOE [DE-AC02-06CH1135]; U.S. DOE, Office of Basic Energy Sciences; Los Alamos National Security LLC under DOE [DE-AC52-06NA25396] FX This work was supported by LDRD program funding at LANL. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH1135. The Lujan Center at the Los Alamos Neutron Science Center at LANSCE is funded by the U.S. DOE, Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE contract DE-AC52-06NA25396. Portions of this research were carried out at the light source PETRA III at DESY, a member of the Helmholtz Association (HGF). The authors acknowledge Tank Saleh, John Balog and Toby Romero of LANL and Mychailo Toloczko of PNNL for their help in preparing and shipping the samples. NR 44 TC 9 Z9 9 U1 6 U2 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 443 IS 1-3 BP 522 EP 530 DI 10.1016/j.jnucmat.2013.07.065 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 264UF UT WOS:000327905800072 ER PT J AU Hales, JD Williamson, RL Novascone, SR Perez, DM Spencer, BW Pastore, G AF Hales, J. D. Williamson, R. L. Novascone, S. R. Perez, D. M. Spencer, B. W. Pastore, G. TI Multidimensional multiphysics simulation of TRISO particle fuel SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID HIGH-TEMPERATURE; FISSION-GAS; HTR FUEL; URANIUM-DIOXIDE; NUCLEAR-FUEL; IRRADIATION; REACTORS; RELEASE AB Multidimensional multiphysics analysis of TRISO-coated particle fuel using the BISON finite element nuclear fuels code is described. The governing equations and material models applicable to particle fuel and implemented in BISON are outlined. Code verification based on a recent IAEA benchmarking exercise is described, and excellent comparisons are reported. Multiple TRISO-coated particles of increasing geometric complexity are considered. The code's ability to use the same algorithms and models to solve problems of varying dimensionality from 1D through 3D is demonstrated. The code provides rapid solutions of 10 spherically symmetric and 2D axially symmetric models, and its scalable parallel processing capability allows for solutions of large, complex 3D models. Additionally, the flexibility to easily include new physical and material models and straightforward ability to couple to lower length scale simulations makes BISON a powerful tool for simulation of coated-particle fuel. Future code development activities and potential applications are identified. (C) 2013 Elsevier B.V. All rights reserved. C1 [Hales, J. D.; Williamson, R. L.; Novascone, S. R.; Perez, D. M.; Spencer, B. W.; Pastore, G.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Williamson, RL (reprint author), Idaho Natl Lab, POB 1625, Idaho Falls, ID 83415 USA. EM Jason.Hales@inl.gov; Richard.Williamson@inl.gov; Stephen.Novascone@inl.gov; Danielle.Perez@inl.gov; Benjamin.Spencer@inl.gov; Giovanni.Pastore@inl.gov OI Hales, Jason/0000-0003-0836-0476; Williamson, Richard/0000-0001-7734-3632; Pastore, Giovanni/0000-0003-2812-506X FU U.S. Government [DE-AC07-05ID14517] FX The submitted manuscript has been authored by a contractor of the U.S. Government under Contract DE-AC07-05ID14517. Accordingly, the U.S. Government retains a non-exclusive, royalty free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. NR 44 TC 12 Z9 12 U1 0 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 443 IS 1-3 BP 531 EP 543 DI 10.1016/j.jnucmat.2013.07.070 PG 13 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 264UF UT WOS:000327905800073 ER PT J AU Short, MP Hussey, D Kendrick, BK Besmann, TM Stanek, CR Yip, S AF Short, M. P. Hussey, D. Kendrick, B. K. Besmann, T. M. Stanek, C. R. Yip, S. TI Multiphysics modeling of porous CRUD deposits in nuclear reactors SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID THERMAL-CONDUCTIVITY; FUEL CRUD; TEMPERATURES; WATER; CONSTANTS; MEDIA AB The formation of porous CRUD deposits on nuclear reactor fuel rods, a longstanding problem in the operation of pressurized water reactors (PWRs), is a significant challenge to science-based multiscale modeling and simulation. While existing, published studies have focused on individual or loosely coupled processes, such as heat transfer, fluid flow, and compound dissolution/precipitation, none have addressed their coupled effects sufficiently to enable a comprehensive, scientific understanding of CRUD. Here we present the formulation and results of a model, MAMBA-BDM, which begins to incorporate mechanistic details in describing CRUD in PWRs. CRUD is treated as a chemical deposition process in an environment of variable concentration, an arbitrary level of heating, and a complex fractal-based flow geometry. We present results on spatial distributions of temperature, pressure, velocity, and concentration that give insight into the interplay between these physical properties and geometrical parameters. We show the role of heat convection which has not been discussed previously. Furthermore, we suggest that the assumption of liquid saturation in the CRUD deserves scrutiny, as a result of our attempt to determine an effective CRUD thermal conductivity. (C) 2013 Elsevier B.V. All rights reserved. C1 [Short, M. P.; Yip, S.] MIT, Cambridge, MA 02139 USA. [Hussey, D.] Elect Power Res Inst, Palo Alto, CA 94304 USA. [Besmann, T. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Kendrick, B. K.; Stanek, C. R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Short, MP (reprint author), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM hereiam@mit.edu; dhussey@epri.com; bkendric@lanl.gov; besmanntm@ornl.gov; stanek@lanl.gov; syip@mit.edu OI Short, Michael/0000-0002-9216-2482 FU CASL, the Consortium for Advanced Simulation of LWRs FX The authors wish to acknowledge CASL, the Consortium for Advanced Simulation of LWRs, for generous funding of this work. The development of MAMBA-BDM could not be realized without the consultation and support of many members of the CASL/MPO team, as well as experts from industry. Special recognition is due to David Andersson (LANL), Don Brenner (NCSU), Jacopo Buongiorno (MIT), Jeff Deshon (EPRI), Avinash Dongare (NCSU), Jacob Eapen (NCSU), Derek Gaston (INL), Jim Henshaw (NNL), Zeses Karoutas (Westinghouse), John McGurk (NNL), Cody Permann (INL), and Jeff Secker (Westinghouse). Special thanks is also due to Ittinop Dumnernchanvanit (MIT), for his thorough reading of this manuscript. NR 37 TC 11 Z9 11 U1 3 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 443 IS 1-3 BP 579 EP 587 DI 10.1016/j.jnucmat.2013.08.014 PG 9 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 264UF UT WOS:000327905800078 ER PT J AU McMurray, JW Shin, D Slone, BW Besmann, TM AF McMurray, J. W. Shin, D. Slone, B. W. Besmann, T. M. TI Thermochemical modeling of the U1-yGdyO2 +/- x phase SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; SOLID-SOLUTIONS; OXYGEN POTENTIALS; HIGH-TEMPERATURES; URANIA; SYSTEM; OXIDE; NONSTOICHIOMETRY; SOLUBILITY AB A thermodynamic model for the U1-yGdyO2 +/- x phase was developed using the compound energy formalism (CEF) with a three sublattice approach and is an extension of the already successful CEF representation of the fluorite UO2 +/- x phase. The Gibbs energies for the end-members created by the addition of Gd to the cation sublattice are estimated using the lattice stability of a fictive gadolinium oxide fluorite structure compound from density functional theory. The model interaction parameters are determined from reported oxygen potential-temperature-composition measurements. The calculated results are in good agreement with the experimental data and the trends are consistent. The CEF for the U1-yGdyO2 +/- x solid solution can be combined with other representations of actinide and fission product containing fluorite UO2 phases to develop multi-component models within the CEF framework. (C) 2013 Elsevier B.V. All rights reserved. C1 [McMurray, J. W.; Shin, D.; Slone, B. W.; Besmann, T. M.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Besmann, TM (reprint author), Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. EM besmanntm@ornl.gov RI Shin, Dongwon/C-6519-2008; OI Shin, Dongwon/0000-0002-5797-3423; McMurray, Jacob/0000-0001-5111-3054 FU US Department of Energy, Office of Nuclear Energy Fuel Cycle Research and Development Program FX The authors would like to thank Stewart Voit and Dane Wilson for helpful comments. The work was supported by the US Department of Energy, Office of Nuclear Energy Fuel Cycle Research and Development Program. NR 25 TC 7 Z9 7 U1 3 U2 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 443 IS 1-3 BP 588 EP 595 DI 10.1016/j.jnucmat.2013.08.005 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 264UF UT WOS:000327905800079 ER PT J AU Silva, CM Lindemer, TB Hunt, RD Collins, JL Terrani, KA Snead, LL AF Silva, Chinthaka M. Lindemer, Terrence B. Hunt, Rodney D. Collins, Jack L. Terrani, Kurt A. Snead, Lance L. TI Evaluation of sintering effects on SiC-incorporated UO2 kernels under Ar and Ar-4%H-2 environments SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID SILICON-CARBIDE; FUEL; TEMPERATURE; IRRADIATION; OXIDATION AB Silicon carbide (SiC) is suggested as an oxygen getter in UO2 kernels used for tristructural isotropic (TRISO) particle fuels and to prevent kernel migration during irradiation. Scanning electron microscopy and X-ray diffractometry analyses performed on sintered kernels verified that an internal gelation process can be used to incorporate SiC in UO2 fuel kernels. Even though the presence of UC in either argon (Ar) or Ar-4%H-2 sintered samples suggested a lowering of the SiC up to 3.5-1.4 mol%, respectively, the presence of other silicon-related chemical phases indicates the preservation of silicon in the kernels during sintering process. UC formation was presumed to occur by two reactions. The first was by the reaction of SiC with its protective SiO2 oxide layer on SiC grains to produce volatile SiO and free carbon that subsequently reacted with UO2 to form UC. The second process was direct UO2 reaction with SiC grains to form SiO, CO, and UC. A slightly higher density and UC content were observed in the sample sintered in Ar-4%H-2, but both atmospheres produced kernels with similar to 95% of theoretical density. It is suggested that incorporating CO in the sintering gas could prevent UC formation and preserve the initial SiC content. Published by Elsevier B.V. C1 [Silva, Chinthaka M.; Lindemer, Terrence B.; Hunt, Rodney D.; Collins, Jack L.; Terrani, Kurt A.; Snead, Lance L.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Silva, Chinthaka M.] Univ Tennessee, Knoxville, TN 37996 USA. RP Silva, CM (reprint author), Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA. EM silvagw@ornl.gov FU US Department of Energy through the Office of Nuclear Energy, Science and Technology [DE-AC05-00OR22725]; UT-Battelle, LLC; Fuel Cycle and Isotopes Division; US Department of Energy [DE-AC05-00OR22725] FX This research was sponsored by the US Department of Energy through the Office of Nuclear Energy, Science and Technology's Deep-Burn Development Project under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. The work was performed at the ORNL under the auspices of the Fuel Cycle and Isotopes Division.; This manuscript has been authored by the Oak Ridge National Laboratory, managed by UT-Battelle LLC under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US Government purposes. NR 15 TC 1 Z9 1 U1 2 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 443 IS 1-3 BP 596 EP 602 DI 10.1016/j.jnucmat.2013.08.007 PG 7 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 264UF UT WOS:000327905800080 ER PT J AU Hill, MA Schulze, RK Bingert, JF Field, RD McCabe, RJ Papin, PA AF Hill, M. A. Schulze, R. K. Bingert, J. F. Field, R. D. McCabe, R. J. Papin, P. A. TI Filiform-mode hydride corrosion of uranium surfaces SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID ALPHA-URANIUM; ALUMINUM SHEET; HYDROGEN; GROWTH; NICKEL; MICROSTRUCTURE; PRECIPITATION; NUCLEATION; MICROSCOPE; ZIRCALOY-4 AB Hydride nucleation and growth has previously been studied in uranium with an air-formed oxide. Preferred directional growth of uranium hydride has not been observed, presumably due to the constraint of the oxide layer and/or the presence of a surface layer distorted by mechanical grinding and polishing. Instead, hydrides typically first form as subsurface blisters that do not exhibit preferred growth directionality. By eliminating the strained surface layer through electropolishing, removing the natural oxide through ion sputtering, avoiding exposure of the uranium to air, and then exposing uranium to high purity hydrogen in an environmental cell, hydride growth patterns emerge that correspond to defect structures within the microstructure. These hydride growth patterns are similar to filiform corrosion, a type of corrosion that frequently forms under thin protective films. This work describes the first reported observation of filiform-like corrosion in uranium. The uranium hydride initiates at defects, but grows into filaments up to 20 pm wide, and tends to form in straight lines, largely propagating along twin boundaries. Propagation is driven by hydrogen reaction at the filament head, promoted by more efficient delivery of reactant. However, this phenomenon does not involve an electrochemical process associated with conventional filiform corrosion and is therefore described as filiform-like. Hydride growth was observed using optical microscopy for a period of nearly three years. Sample characterization included automated electron backscatter diffraction (EBSD) measurements to determine growth directions. Observation of this anomalous hydride growth provides clues as to the mechanisms operating in uranium hydriding for more conventionally prepared sample surfaces. (C) 2013 Elsevier B.V. All rights reserved. C1 [Hill, M. A.; Schulze, R. K.; Bingert, J. F.; Field, R. D.; McCabe, R. J.; Papin, P. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Hill, MA (reprint author), Los Alamos Natl Lab, MST-6,Mail Stop G770,POB 1663, Los Alamos, NM 87545 USA. EM mahill@lanl.gov OI McCabe, Rodney /0000-0002-6684-7410; Schulze, Roland/0000-0002-6601-817X FU Enhanced Surveillance Campaign Office; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX The authors acknowledge Rob Aikin for casting the uranium rods and Robert Hanrahan for useful discussions. The authors also acknowledge the funding support of the Enhanced Surveillance Campaign Office and its Program Manager Tom Zocco. This work was performed at Los Alamos National Laboratory, operated by Los Alamos National Security Administration, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 38 TC 6 Z9 6 U1 0 U2 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 442 IS 1-3 BP 106 EP 115 DI 10.1016/j.jnucmat.2013.08.049 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 268MQ UT WOS:000328175400014 ER PT J AU Hosemann, P Martos, JN Frazer, D Vasudevamurthy, G Byun, TS Hunn, JD Jolly, BC Terrani, K Okuniewski, M AF Hosemann, P. Martos, J. N. Frazer, D. Vasudevamurthy, G. Byun, T. S. Hunn, J. D. Jolly, B. C. Terrani, K. Okuniewski, M. TI Mechanical characteristics of SiC coating layer in TRISO fuel particles SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID MEASURING FRACTURE-TOUGHNESS; DEPOSITED SILICON-CARBIDE; CHEMICAL-VAPOR-DEPOSITION; BRITTLE RING TEST; YOUNGS MODULUS; SPHERICAL-PARTICLES; STRESS; MICROSTRUCTURE; INDENTATION; TEMPERATURE AB Tristructural isotropic (TRISO) particles are considered as advanced fuel forms for a variety of fission platforms. While these fuel structures have been tested and deployed in reactors, the mechanical properties of these structures as a function of production parameters need to be investigated in order to ensure their reliability during service. Nanoindentation techniques, indentation crack testing, and half sphere crush testing were utilized in order to evaluate the integrity of the SiC coating layer that is meant to prevent fission product release in the coated particle fuel form. The results are complimented by scanning electron microscopy (SEM) of the grain structure that is subject to change as a function of processing parameters and can alter the mechanical properties such as hardness, elastic modulus, fracture toughness and fracture strength. Through utilization of these advanced techniques, subtle differences in mechanical properties that can be important for in-pile fuel performance can be distinguished and optimized in iteration with processing science of coated fuel particle production. (C) 2013 Elsevier B.V. All rights reserved. C1 [Hosemann, P.; Martos, J. N.; Frazer, D.] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Vasudevamurthy, G.] Virginia Commonwealth Univ, Richmond, VA 23284 USA. [Byun, T. S.; Hunn, J. D.; Jolly, B. C.; Terrani, K.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Okuniewski, M.] Idaho Natl Lab, Idaho Falls, ID USA. RP Hosemann, P (reprint author), 4169 Etcheverry Hall, Berkeley, CA 94720 USA. EM peterh@berkeley.edu OI Frazer, David/0000-0001-5139-858X; Hosemann, Peter/0000-0003-2281-2213 FU NRC [NRC-38-09-948]; US Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office [DE-AC07-051D14517] FX The authors want to thank the NRC for providing funding for this work, through NRC faculty development grant number NRC-38-09-948. In addition, we want to thank the DOE/AGR program at ORNL and the NRC safeguards program for student support.; Instrument access at CAES was supported by the ATR-NSUF user program at Idaho National Laboratory, which is supported by the US Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07-051D14517. NR 48 TC 10 Z9 11 U1 1 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 442 IS 1-3 BP 133 EP 142 DI 10.1016/j.jnucmat.2013.08.041 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 268MQ UT WOS:000328175400017 ER PT J AU Zhuo, MJ Yan, L Fu, EG Wang, YQ Misra, A Nastasi, M Uberuaga, BP Jia, QX AF Zhuo, M. J. Yan, L. Fu, E. G. Wang, Y. Q. Misra, A. Nastasi, M. Uberuaga, B. P. Jia, Q. X. TI Phase transformations and defect clusters in single crystal SrTiO3 irradiated at different temperatures SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID ION; RECRYSTALLIZATION; CRYSTALLIZATION; DISLOCATION; OXIDES; LOOPS AB Radiation damage mechanisms in single crystal SrTiO3 irradiated with 250 key Ne ions to a fluence of 1.11 x 10(20) ions/m(2) at both room temperature and 773 K were systematically investigated. The irradiation-induced microstructural evolution was characterized using transmission electron microscopy. Ion irradiation at room temperature results in amorphization of crystalline SrTiO3 near the peak damage region at this fluence. On the other hand, ion irradiation at high temperature leads to less irradiation-induced damage in SrTiO3 due to the higher recovery rate of defects. Nevertheless, the formation of dislocation loops has been observed in the SrTiO3 crystals irradiated at high temperature. These dislocation loops were determined to be unfaulted loops with Burgers vector along < 0 1 1 >. (C) 2013 Elsevier B.V. All rights reserved. C1 [Zhuo, M. J.; Yan, L.; Fu, E. G.; Misra, A.; Nastasi, M.; Jia, Q. X.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Wang, Y. Q.; Uberuaga, B. P.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Uberuaga, BP (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM blas@lanl.gov; qxjia@lanl.gov RI Jia, Q. X./C-5194-2008; Misra, Amit/H-1087-2012 FU Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center; U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences [2008LANL1026]; National Nuclear Security Administration of the U.S. DOE [DE-AC52-06NA25396] FX The authors wish to acknowledge K.E. Sickafus and T.E. Mitchell for helpful discussions. This work was supported as part of the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under Award Number 2008LANL1026. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. Los Alamos National Laboratory operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under contract DE-AC52-06NA25396 NR 26 TC 4 Z9 4 U1 2 U2 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 442 IS 1-3 BP 143 EP 147 DI 10.1016/j.jnucmat.2013.08.046 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 268MQ UT WOS:000328175400018 ER PT J AU Nenoff, TM Ferriera, SR Huang, JY Hanson, DJ AF Nenoff, Tina M. Ferriera, Summer R. Huang, Jianyu Hanson, Donald J. TI Formation of uranium based nanoparticles via gamma-irradiation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID COLLOIDAL SILVER; AQUEOUS-SOLUTION; CLUSTERS; NANOALLOYS; OXIDATION; ALLOY AB The ability to fabricate nuclear fuels at low temperatures allows for the production of complex Uranium metal and alloys with minimum volatility of alloy components in the process. Gamma irradiation is a valuable method for the synthesis of a wide range of metal-based nanoparticles. We report on the synthesis via room temperature radiolysis and characterization of uranium (depleted, d-U) metal and uranium-lathanide (d-ULn, Ln = lanthanide surrogates) alloy nanoparticles from aqueous acidic salt solutions. The lanthanide surrogates chosen include La and Eu due to their similarity in ionic size and charge in solution. Detailed characterization results including UV-vis, TEM/HR-TEM, and single particle EDX (elemental analyses) are presented for the room temperature formed nanoparticle products. (C) 2013 Elsevier B.V. All rights reserved. C1 [Nenoff, Tina M.; Ferriera, Summer R.] Sandia Natl Labs, Nanoscale Sci Dept, Albuquerque, NM 87185 USA. [Huang, Jianyu] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Hanson, Donald J.] Sandia Natl Labs, Dept Hot Cells & Gamma Facil, Albuquerque, NM 87185 USA. RP Nenoff, TM (reprint author), Sandia Natl Labs, Nanoscale Sci Dept, POB 5800,MS-1415, Albuquerque, NM 87185 USA. EM tmnenof@sandia.gov FU Sandia's Laboratory Directed Research and Development (LDRD) program; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors acknowledge financial support from Sandia's Laboratory Directed Research and Development (LDRD) program.; Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 25 TC 7 Z9 7 U1 3 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 442 IS 1-3 BP 162 EP 167 DI 10.1016/j.jnucmat.2013.08.027 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 268MQ UT WOS:000328175400020 ER PT J AU Barrow, L Barrow, ATW Almer, J Daymond, MR AF Barrow, L. Barrow, A. T. W. Almer, J. Daymond, M. R. TI The Zr20Nb-H phase diagram and the characterisation of hydrides in beta-Zr SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID WT-PERCENT NB; ZIRCONIUM HYDRIDE; PRECIPITATION KINETICS; NEUTRON-DIFFRACTION; ALLOYS; TRANSFORMATION; SOLUBILITY; NUCLEATION; ZIRCALOY-4; STABILITY AB In this work a combination of synchrotron X-ray diffraction, transmission electron microscopy and differential scanning calorimetry have been used to characterise the Zr20Nb-H phase diagram and hydrides in beta-Zr. A single hydride phase, termed gamma' was found to be present in beta-Zr over a wide range of H concentrations up to 1559 wppm. gamma'-hydride had an orthorhombic crystal structure with the composition ZrH0.4 +/- 0.2, and was found to be stable during heating to 450 degrees C; it can therefore be considered the equilibrium hydride in beta-Zr. Accompanying hydride nucleation is a volumetric strain of 10.4% that is accommodated elastically and plastically by the beta-Zr. The body-centre cubic to orthorhombic martensitic transformation is analogous to the Au-Cd system where the basal plane in the hydride is constructed from the (0 1 1)(beta) to give the Bain correspondence. There are strong similarities between the Zr20Nb-H and Nb-H phase diagrams with the former having a lower solubility for H at room temperature, similar to 130 wppm and similar to 290 wppm respectively. The room temperature solubility difference between body-centre cubic Nb and beta-Zr can be attributed to their electron configurations and the reduction in energy associated with the metallic Zr/Nb-H bonding. (C) 2013 Elsevier B.V. All rights reserved. C1 [Barrow, L.; Barrow, A. T. W.; Daymond, M. R.] Queens Univ, Dept Mech & Mat Engn, Nucl Mat Grp, Kingston, ON K7L 3N6, Canada. [Almer, J.] Argonne Natl Lab, Argonne, IL 60439 USA. RP Daymond, MR (reprint author), Queens Univ, Dept Mech & Mat Engn, Nucl Mat Grp, Kingston, ON K7L 3N6, Canada. EM daymond@me.queensu.ca FU NSERC; COG; OPG; Nu-Tech Precision Metals under the Industrial Research Chair programme in Nuclear Materials at Queen's University; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was sponsored by NSERC, COG, OPG and Nu-Tech Precision Metals under the Industrial Research Chair programme in Nuclear Materials at Queen's University. Usage of the Advanced Photon Source (APS) was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under contract number DE-AC02-06CH11357. The electron-energy loss spectroscopy described in this paper was performed at the Canadian Centre for Electron Microscopy at McMaster University, which is supported by NSERC and other government agencies. The differential scanning calorimetry work was carried by Patrick Wilson at Atomic Energy Canada Ltd. NR 43 TC 3 Z9 3 U1 6 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 442 IS 1-3 BP 292 EP 297 DI 10.1016/j.jnucmat.2013.08.031 PG 6 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 268MQ UT WOS:000328175400036 ER PT J AU Dinh, LN Cairns, GA Krueger, R Mayer, BP Maxwell, RS AF Dinh, L. N. Cairns, G. A. Krueger, R. Mayer, B. P. Maxwell, R. S. TI Aging aspects of DEB getters SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID CARBON-MONOXIDE; HYDROGEN UPTAKE; DESORPTION; PALLADIUM; KINETICS; SURFACES; DPB AB The changes in uptake capacity of 1,4-bis(phenylethynyl)benzene (DEB) blended with carbon-supported Pd (DEB-Pd/C) in the form of pellets as a function of temperature and time were investigated. Experimental results revealed a segregation and crystallization of DEB molecules toward the geometrical surfaces of the getter pellets, but very little or no diffusion-aggregation of Pd nano-catalysts even after long term storage at 75 degrees C in nitrogen. Despite the observation of surface segregation and crystallization of DEB molecules with increasing temperature and time, statistically there was no reduction in uptake capacity for the getter pellets stored at higher temperature. However, significant reversible reductions in uptake capacity was found among getter pellets exposed to air for extended time. The possible causes for these observations and their respective roles in the aging of getters are discussed. (C) 2013 Elsevier B.V. All rights reserved. C1 [Dinh, L. N.; Krueger, R.; Mayer, B. P.; Maxwell, R. S.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Cairns, G. A.] AWE plc, Reading, Berks, England. RP Dinh, LN (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM dinh1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Furthermore the authors express their gratitude to Dogan Ozkaya for the microscopy work, carried out under contract to AWE, at Johnson Matthey. NR 14 TC 2 Z9 2 U1 4 U2 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 442 IS 1-3 BP 298 EP 305 DI 10.1016/j.jnucmat.2013.09.018 PG 8 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 268MQ UT WOS:000328175400037 ER PT J AU Lepry, WC Riley, BJ Crum, JV Rodriguez, CP Pierce, DA AF Lepry, William C. Riley, Brian J. Crum, Jarrod V. Rodriguez, Carmen P. Pierce, David A. TI Solution-based approaches for making high-density sodalite waste forms to immobilize spent electrochemical salts SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID ENCLATHRATED SODALITE; CRYSTAL-CHEMISTRY; DIFFRACTION; NEPHELINE; MINERALS; FAMILY; CESIUM; PART; NAOH AB Three different solution-based approaches were taken to make sodalite minerals as a host for a mixed salt simulating the waste in the electrochemical separations process of nuclear fuel reprocessing. The methods used an aqueous solution of mixed chlorides (simulated waste) but the other reactants varied: (1) Al(OH)(3) + NaOH + CS, (2) NaAlO2 + CS, and (3) Al2Si2O7 + NaOH, (CS = colloidal silica). The products were dried, ground, pressed into pellets, and fired at 650-950 degrees C. In some cases, either 5 or 10 mass% of a Si-Na-B oxide glass sintering aid was introduced at different stages in the process. Method (2) proved the most successful at producing high sodalite fractions (up to 100%) with minimal sintering aid additions and showed high consolidation potential (up to 91.4% of theoretical density) at reduced firing temperatures. (C) 2013 Elsevier B.V. All rights reserved. C1 [Lepry, William C.; Riley, Brian J.; Crum, Jarrod V.; Rodriguez, Carmen P.; Pierce, David A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Riley, BJ (reprint author), Pacific NW Natl Lab, POB 999,MSIN K6-24, Richland, WA 99352 USA. EM brian.riley@pnnl.gov OI Riley, Brian/0000-0002-7745-6730 FU Battelle [DE-AC05-76RL01830] FX The Pacific Northwest National Laboratory is operated by Battelle under Contract Number DE-AC05-76RL01830. Authors thank Xiaohong (Shari) Li for help with BET measurements, John McCloy for helpful review of this document as well as Thomas Johnson and Steven Frank for project oversight. Authors also thank the Southwest Research Institute for analytical services of the PCT rinsates and leachates. NR 48 TC 6 Z9 6 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 442 IS 1-3 BP 350 EP 359 DI 10.1016/j.jnucmat.2013.08.033 PG 10 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 268MQ UT WOS:000328175400044 ER PT J AU Kim, JH Byun, TS Hoelzer, DT AF Kim, Jeoung Han Byun, Thak Sang Hoelzer, D. T. TI High temperature deformation mechanisms of nano-structured ferritic alloys in the context of internal variable theory of inelastic deformation SO JOURNAL OF NUCLEAR MATERIALS LA English DT Article ID DISPERSION-STRENGTHENED-STEELS; CONSTITUTIVE ANALYSIS; STRESS-RELAXATION; BEHAVIOR; TI-6AL-4V AB The stress relaxation behavior of 14YWT and ODS-Eurofer97 was examined within the framework of an internal-variable theory of inelastic deformation. Stress versus strain rate curves obtained by stress relaxation tests for 14YWT were described well by the equations for grain-matrix deformation while those of ODS-Eurofer97 were fitted with the combined curves of grain matrix deformation and grain boundary sliding. The sudden drop of total elongation of 14YWT was discussed in light of fracture surface observations. Grain boundary decohesion at 900 degrees C was identified. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kim, Jeoung Han] Korea Inst Mat Sci, Struct Mat Div, Chang Won 642831, Sangnamdong, South Korea. [Byun, Thak Sang; Hoelzer, D. T.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA. RP Kim, JH (reprint author), Korea Inst Mat Sci, Chang Won 642831, Sangnamdong, South Korea. EM kjh1754@kims.re.kr RI Hoelzer, David/L-1558-2016 NR 19 TC 1 Z9 1 U1 1 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3115 EI 1873-4820 J9 J NUCL MATER JI J. Nucl. Mater. PD NOV PY 2013 VL 442 IS 1-3 BP 458 EP 462 DI 10.1016/j.jnucmat.2013.02.048 PG 5 WC Materials Science, Multidisciplinary; Nuclear Science & Technology SC Materials Science; Nuclear Science & Technology GA 268MQ UT WOS:000328175400060 ER PT J AU Wierer, JJ Tsao, JY Sizov, DS AF Wierer, Jonathan J., Jr. Tsao, Jeffrey Y. Sizov, Dmitry S. TI Comparison between blue lasers and light-emitting diodes for future solid-state lighting SO LASER & PHOTONICS REVIEWS LA English DT Article DE Solid-state lighting; LEDs; LDs; light-emitting diodes; laser diodes; semiconductor laser; blue lasers; III-nitride; InGaN; AlInGaN; power-conversion efficiency; efficiency droop; quantum efficiency; phosphor-converted LEDs; PC-LEDs; gain; semipolar GaN; Auger recombination; cost of light; thermal management; heat management; heat sink; areal chip cost ID QUANTUM-WELL LASER; OPTICAL GAIN SPECTRA; HIGH-POWER; INGAN LASER; DEGRADATION MECHANISMS; SEMICONDUCTOR-LASERS; LIFT-OFF; GAN; EFFICIENCY; LEDS AB Solid-state lighting (SSL) is now the most efficient source of high color quality white light ever created. Nevertheless, the blue InGaN light-emitting diodes (LEDs) that are the light engine of SSL still have significant performance limitations. Foremost among these is the decrease in efficiency at high input current densities widely known as efficiency droop. Efficiency droop limits input power densities, contrary to the desire to produce more photons per unit LED chip area and to make SSL more affordable. Pending a solution to efficiency droop, an alternative device could be a blue laser diode (LD). LDs, operated in stimulated emission, can have high efficiencies at much higher input power densities than LEDs can. In this article, LEDs and LDs for future SSL are explored by comparing: their current state-of-the-art input-power-density-dependent power-conversion efficiencies; potential improvements both in their peak power-conversion efficiencies and in the input power densities at which those efficiencies peak; and their economics for practical SSL. C1 [Wierer, Jonathan J., Jr.; Tsao, Jeffrey Y.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Sizov, Dmitry S.] Corning Inc, Corning, NY 14831 USA. RP Wierer, JJ (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jwierer@sandia.gov RI Wierer, Jonathan/G-1594-2013 OI Wierer, Jonathan/0000-0001-6971-4835 FU Sandia's Solid-State-Lighting Science Energy Frontier Research Center; U.S. Department of Energy, Office of Basic Energy Sciences. Sandia National Laboratories; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank Mike Coltrin, Weng Chow, Art Fischer, and Nathan Young for their careful reading and useful suggestions for the manuscript. Work at Sandia National Laboratories was supported by Sandia's Solid-State-Lighting Science Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Basic Energy Sciences. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 158 TC 66 Z9 67 U1 21 U2 127 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1863-8880 EI 1863-8899 J9 LASER PHOTONICS REV JI Laser Photon. Rev. PD NOV PY 2013 VL 7 IS 6 BP 963 EP 993 DI 10.1002/lpor.201300048 PG 31 WC Optics; Physics, Applied; Physics, Condensed Matter SC Optics; Physics GA 268EA UT WOS:000328150300016 ER PT J AU Jain, N Buchner, J Dorfman, S Ji, HT Sharma, AS AF Jain, Neeraj Buechner, Joerg Dorfman, Seth Ji, Hantao Sharma, A. Surjalal TI Current disruption and its spreading in collisionless magnetic reconnection SO PHYSICS OF PLASMAS LA English DT Article ID THIN CURRENT SHEETS; ELECTRON MAGNETOHYDRODYNAMICS; 3-DIMENSIONAL RECONNECTION; IMPULSIVE RECONNECTION; KINETIC SIMULATIONS; MODE-INSTABILITY; X-LINE; SUBSTORMS; PLASMAS AB Recent magnetic reconnection experiments (MRX) [Dorfman et al., Geophys. Res. Lett. 40, 233 (2013)] have disclosed current disruption in the absence of an externally imposed guide field. During current disruption in MRX, both the current density and the total observed out-of-reconnection-plane current drop simultaneous with a rise in out-of-reconnection-plane electric field. Here, we show that current disruption is an intrinsic property of the dynamic formation of an X-point configuration of magnetic field in magnetic reconnection, independent of the model used for plasma description and of the dimensionality (2D or 3D) of reconnection. An analytic expression for the current drop is derived from Ampere's Law. Its predictions are verified by 2D and 3D electron-magnetohydrodynamic (EMHD) simulations. Three dimensional EMHD simulations show that the current disruption due to localized magnetic reconnection spreads along the direction of the electron drift velocity with a speed which depends on the wave number of the perturbation. The implications of these results for MRX are discussed. (C) 2013 AIP Publishing LLC. C1 [Jain, Neeraj; Buechner, Joerg; Ji, Hantao] Max Planck Princeton Ctr Plasma Phys, D-37191 Katlenburg Lindau, Germany. [Jain, Neeraj; Buechner, Joerg] Max Planck Inst Solar Syst Res, D-37191 Katlenburg Lindau, Germany. [Dorfman, Seth] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Ji, Hantao] Princeton Univ, Deparment Astrophys Sci, Princeton, NJ 08540 USA. [Ji, Hantao] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08540 USA. [Sharma, A. Surjalal] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. RP Jain, N (reprint author), Max Planck Princeton Ctr Plasma Phys, D-37191 Katlenburg Lindau, Germany. FU Max-Planck/Princeton Center for Plasma Physics [M.MC.A.Aero8003 Max Planck]; NSF [AGS 1027185]; DOS FES Fellowship; NDSEG Fellowship Program [DE-AC02-09CH11466] FX The work of N.J. was funded by the Max-Planck/Princeton Center for Plasma Physics (Grant No. M.MC.A.Aero8003 Max Planck) and the NSF grant (AGS 1027185) to the University of Maryland. The work of A.S. Sharma was funded by the NSF grant (AGS 1027185) to the University of Maryland. S.D. was supported by a DOS FES Fellowship and the NDSEG Fellowship Program (Contract No. DE-AC02-09CH11466). The MPS authors (N.J. and J.B.) thank Dr. Bernhardt Bandow for his help to numerically optimize the EMHD code. NR 38 TC 6 Z9 6 U1 3 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2013 VL 20 IS 11 AR 112101 DI 10.1063/1.4827828 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 270MY UT WOS:000328323800003 ER PT J AU Schmit, PF Molvig, K Nakhleh, CW AF Schmit, P. F. Molvig, Kim Nakhleh, C. W. TI Tail-ion transport and Knudsen layer formation in the presence of magnetic fields SO PHYSICS OF PLASMAS LA English DT Article ID CYLINDRICAL GEOMETRY; KINETIC SIMULATIONS; IGNITION CONDITIONS; TARGET FUSION; ICF TARGETS; IMPLOSIONS; PLASMA; BURN AB Knudsen layer losses of tail fuel ions could reduce significantly the fusion reactivity of highly compressed cylindrical and spherical targets in inertial confinement fusion (ICF). With the class of magnetized ICF targets in mind, the effect of embedded magnetic fields on Knudsen layer formation is investigated for the first time. The modified energy scaling of ion diffusivity in magnetized hot spots is found to suppress the preferential losses of tail-ions perpendicular to the magnetic field lines to a degree that the tail distribution can be at least partially, if not fully, restored. Two simple threshold conditions are identified leading to the restoration of fusion reactivity in magnetized hot spots. A kinetic equation for tail-ion transport in the presence of a magnetic field is derived, and solutions to the equation are obtained numerically in simulations. Numerical results confirm the validity of the threshold conditions for restored reactivity and identify two different asymptotic regimes of the fusion fuel. While Knudsen layer formation is shown to be suppressed entirely in strongly magnetized cylindrical hot spot cavities, uniformly magnetized spherical cavities demonstrate remnant, albeit reduced, levels of tail-ion depletion. (C) 2013 AIP Publishing LLC. C1 [Schmit, P. F.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Molvig, Kim; Nakhleh, C. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Schmit, PF (reprint author), Sandia Natl Labs, MS 1186,POB 5800, Albuquerque, NM 87185 USA. FU Sandia National Laboratories Truman Fellowship in National Security Science and Engineering; Sandia National Laboratories Truman Fellowship in National Security Science and Engineering, which is part of the Laboratory Directed Research and Development (LDRD) Program; Sandia Corporation under its U.S. Department of Energy [DE-AC04-94AL85000] FX The authors gratefully acknowledge Adam Sefkow, Dan Sinars, Patrick Knapp, Evan Dodd, and Brian Albright for many useful discussions. This research was supported in part by an appointment to the Sandia National Laboratories Truman Fellowship in National Security Science and Engineering, which is part of the Laboratory Directed Research and Development (LDRD) Program, and sponsored by Sandia Corporation (a wholly owned subsidiary of Lockheed Martin Corporation) as Operator of Sandia National Laboratories under its U. S. Department of Energy Contract No. DE-AC04-94AL85000. NR 32 TC 14 Z9 14 U1 0 U2 6 PU AMER INST PHYSICS PI MELVILLE PA 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2013 VL 20 IS 11 AR 112705 DI 10.1063/1.4831958 PG 15 WC Physics, Fluids & Plasmas SC Physics GA 270MY UT WOS:000328323800036 ER PT J AU Sun, X Intrator, TP Liu, M Sears, J Weber, T AF Sun, X. Intrator, T. P. Liu, M. Sears, J. Weber, T. TI A phenomenological model on the kink mode threshold varying with the inclination of sheath boundary SO PHYSICS OF PLASMAS LA English DT Article ID FLUX ROPES; PLASMA; INSTABILITY AB In nature and many laboratory plasmas, a magnetic flux tube threaded by current or a flux rope has a footpoint at a boundary. The current driven kink mode is one of the fundamental ideal magnetohydrodynamic instabilities in plasmas. It has an instability threshold that has been found to strongly depend on boundary conditions (BCs). We provide a theoretical model to explain the transition of this threshold dependence between nonline tied and line tied boundary conditions. We evaluate model parameters using experimentally measured plasma data, explicitly verify several kink eigenfunctions, and validate the model predictions for boundary conditions BCs that span the range between NLT and LT BCs. Based on this model, one could estimate the kink threshold given knowledge of the displacement of a flux rope end, or conversely estimate flux rope end motion based on knowledge of it kink stability threshold. (C) 2013 AIP Publishing LLC. C1 [Sun, X.; Liu, M.] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China. [Sun, X.; Intrator, T. P.; Sears, J.; Weber, T.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sun, X (reprint author), Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China. FU DOE [DE-AC52-06NA25396]; DOE Office Fusion Energy Sciences; NASA Geospace [NNHIOA044I]; NSF Center for Magnetic Self Organization; MOST of China [2013GB112007] FX T.P.I. acknowledges support from DOE DE-AC52-06NA25396; DOE Office Fusion Energy Sciences; NASA Geospace NNHIOA044I; NSF Center for Magnetic Self Organization. X.S. acknowledges support from MOST of China, Contract number 2013GB112007. NR 26 TC 2 Z9 2 U1 2 U2 4 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2013 VL 20 IS 11 AR 112106 DI 10.1063/1.4829431 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 270MY UT WOS:000328323800008 ER PT J AU Terry, PW Pueschel, MJ Carmody, D Nevins, WM AF Terry, P. W. Pueschel, M. J. Carmody, D. Nevins, W. M. TI The effect of magnetic flutter on residual flow SO PHYSICS OF PLASMAS LA English DT Article ID TURBULENCE; TOKAMAKS; DRIVEN AB The hypothesis that stochastic magnetic fields disrupt zonal flows associated with ion temperature gradient turbulence saturation is investigated analytically with a residual flow calculation in the presence of magnetic flutter. The calculation starts from the time-asymptotic zero-beta residual flow of Rosenbluth and Hinton [Phys. Rev. Lett. 80, 724 (1998)] with the sudden application of an externally imposed, fixed magnetic field perturbation. The short-time electron response from radial charge loss due to magnetic flutter is calculated from the appropriate gyrokinetic equation. The potential evolution has quadratic behavior, with a zero crossing at finite time. The crossing time and its parametric dependencies are compared with numerical results from a gyrokinetic simulation of residual flow in the presence of magnetic flutter. The numerical and analytical results are in good agreement and support the hypothesis that the high-beta runaway of numerical simulations is a result of the disabling of zonal flows by finite-beta charge losses associated with magnetic flutter. (C) 2013 AIP Publishing LLC. C1 [Terry, P. W.; Pueschel, M. J.; Carmody, D.] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA. [Nevins, W. M.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Terry, PW (reprint author), Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA. FU US Department of Energy [DE-FG02-89ER53291]; Center for Momentum Transport and Flow Organization FX The authors acknowledge useful conversations with Frank Jenko, Chris Hegna, and Felix Parra. This work was supported by US Department of Energy (Grant No. DE-FG02-89ER53291) and the Center for Momentum Transport and Flow Organization. NR 18 TC 6 Z9 6 U1 1 U2 7 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 1070-664X EI 1089-7674 J9 PHYS PLASMAS JI Phys. Plasmas PD NOV PY 2013 VL 20 IS 11 AR 112502 DI 10.1063/1.4828396 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 270MY UT WOS:000328323800024 ER PT J AU Shehabi, A DeForest, N McNeil, A Masanet, E Greenblatt, J Lee, ES Masson, G Helms, BA Milliron, DJ AF Shehabi, Arman DeForest, Nicholas McNeil, Andrew Masanet, Eric Greenblatt, Jeffery Lee, Eleanor S. Masson, Georgeta Helms, Brett A. Milliron, Delia J. TI U.S. energy savings potential from dynamic daylighting control glazings SO ENERGY AND BUILDINGS LA English DT Article DE Indoor environmental quality; Energy efficiency; Day lighting; Radiance; Glare; Dynamic prismatic optical elements (dPOE); Windows; Clerestories ID PERFORMANCE AB Daylighting controls have the potential to reduce the substantial amount of electricity consumed for lighting in commercial buildings. Material science research is now pursuing the development of a dynamic prismatic optical element (dPOE) window coating that can continuously readjust incoming light to maximize the performance and energy savings available from daylighting controls. This study estimates the technical potential for energy savings available from vertical daylighting strategies and explores additional savings that may be available if current dPOE research culminates in a successful market-ready product. Radiance daylight simulations are conducted with a multi-shape prismatic window coating. Simulated lighting energy savings are then applied to perimeter floorspace estimates generated from U.S. commercial building stock data. Results indicate that fully functional dPOE coatings, when paired with conventional vertical daylight strategies, have the potential to reduce energy use associated with U.S. commercial electric lighting demand by as much as 930TBtu. This reduction in electric lighting demand represents an approximately 85% increase in the energy savings estimated from implementing conventional vertical daylight strategies alone. Results presented in this study provide insight into energy and cost performance targets for dPOE coatings, which can help accelerate the development process and establish a successful new daylighting technology. Published by Elsevier B.V. C1 [Shehabi, Arman; DeForest, Nicholas; McNeil, Andrew; Greenblatt, Jeffery; Lee, Eleanor S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Masanet, Eric] Northwestern Univ, McCormick Sch Engn, Evanston, IL 60208 USA. [Masson, Georgeta; Helms, Brett A.; Milliron, Delia J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Shehabi, A (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, 1 Cyclotron Rd,Bldg 90R2000, Berkeley, CA 94720 USA. EM ashehabi@lbl.gov RI Masanet, Eric /I-5649-2012; McNeil, Andrew/I-9530-2014; Milliron, Delia/D-6002-2012; Foundry, Molecular/G-9968-2014; OI McNeil, Andrew/0000-0001-9994-9002; Helms, Brett/0000-0003-3925-4174 FU Office of Science, Office of Basic Energy Sciences; DOE Early Career Research Program Award; Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory; US DOE [DE-AC02-05CH11231] FX The authors thank William Morrow for his assistance with ArcGIS and James O'Donnell for his work compiling ASHRAE 90.1 lighting schedules. This work was conducted at Lawrence Berkeley National Laboratory. Portions of this project were carried out at the Molecular Foundry, Lawrence Berkeley National Laboratory, which is supported by the Office of Science, Office of Basic Energy Sciences. D.J.M. was supported by a DOE Early Career Research Program Award. Portions of this project were supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory. All work was performed under the US DOE Contract No. DE-AC02-05CH11231. NR 23 TC 14 Z9 14 U1 2 U2 11 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD NOV PY 2013 VL 66 BP 415 EP 423 DI 10.1016/j.enbuild.2013.07.013 PG 9 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA 264TP UT WOS:000327904200044 ER PT J AU Chan, WYR Joh, J Sherman, MH AF Chan, Wanyu R. Joh, Jeffrey Sherman, Max H. TI Analysis of air leakage measurements of US houses SO ENERGY AND BUILDINGS LA English DT Article DE Blower door; Fan pressurization test; Normalized leakage; Air infiltration; Building envelope airtightness ID RATES; MODEL AB Building envelope airtightness is important for residential energy use, occupant health and comfort. We analyzed the air leakage measurements of 134,000 single-family detached homes in US, using normalized leakage (NL) as the metric. Weatherization assistance programs (WAPs) and residential energy efficiency programs contributed most of the data. We performed regression analyses to examine the relationship between NL and various house characteristics. Explanatory variables that are correlated with NL include year built, climate zone, floor area, house height, and whether homes participated in WAPs or if they are energy efficiency rated homes. Foundation type and whether ducts are located outside or inside the conditioned space are also found to be useful parameters for predicting NL. We developed a regression model that explains approximately 68% of the observed variability across US homes. Of these variables considered, year built and climate zone are the two that have the largest influence on NL. The regression model can be used to predict air leakage values for individual homes, and distributions for groups of homes, based on their characteristics. Using RECS 2009 data, the regression model predicts 90% of US houses have NL between 0.22 and 1.95, with a median of 0.67. (C) 2013 Elsevier B.V. All rights reserved. C1 [Chan, Wanyu R.; Joh, Jeffrey; Sherman, Max H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Chan, WYR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, 1 Cyclotron Rd,Mailstop 90R3058, Berkeley, CA 94720 USA. EM wrchan@lbl.gov FU California Energy Commission Public Interest Energy Research Program [CEC-500-07-006]; Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program [DE-AC02-05CH11231] FX We greatly appreciate the organizations and individuals who shared their blower door measurements and other diagnostic data with us. This work was supported by the California Energy Commission Public Interest Energy Research Program award number CEC-500-07-006 and the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the US Department of Energy under contract No. DE-AC02-05CH11231. NR 27 TC 14 Z9 14 U1 1 U2 21 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0378-7788 EI 1872-6178 J9 ENERG BUILDINGS JI Energy Build. PD NOV PY 2013 VL 66 BP 616 EP 625 DI 10.1016/j.enbuild.2013.07.047 PG 10 WC Construction & Building Technology; Energy & Fuels; Engineering, Civil SC Construction & Building Technology; Energy & Fuels; Engineering GA 264TP UT WOS:000327904200066 ER PT J AU Fox, EB Liu, ZW Liu, ZT AF Fox, Elise B. Liu, Zhong-Wen Liu, Zhao-Tie TI Ultraclean Fuels Production and Utilization for the Twenty-First Century: Advances toward Sustainable Transportation Fuels SO ENERGY & FUELS LA English DT Review ID FISCHER-TROPSCH SYNTHESIS; CATALYSTS; HYDRODESULFURIZATION; DESULFURIZATION; BIOMASS; STREAMS; SYNGAS; SULFUR AB Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow for the introduction of alternative feedstocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive cleanup and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization and synthesis gas conversion into fuels and feedstocks that were presented at the 245th American Chemical Society (ACS) Spring Annual Meeting in New Orleans, LA, in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization". C1 [Fox, Elise B.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Liu, Zhong-Wen; Liu, Zhao-Tie] Shaanxi Normal Univ, Sch Chem & Chem Engn, Key Lab Appl Surface & Colloid Chem, Xian 710062, Peoples R China. RP Fox, EB (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM elise.fox@srnl.doe.gov RI Fox, Elise/G-5438-2013; OI Fox, Elise/0000-0002-4527-5820; LIU, ZHAO-TIE/0000-0002-8107-8234 FU ACS Division of Energy and Fuels; [DE-AC09-08SR22470] FX The authors wish to thank the ACS Division of Energy and Fuels and Program Chairs Yun Hang Hu and Todd H. Gardner for their support on this effort. Dr. Elise Fox is an employee of Savannah River National Laboratory, which is managed by Savannah River Nuclear Solutions. Her portion of this work was prepared under Federal Contract DE-AC09-08SR22470. The United States Government retains, and by accepting the article for publication the publisher acknowledges that the United States Government retains, a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for United States Government purposes. NR 43 TC 7 Z9 7 U1 3 U2 62 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2013 VL 27 IS 11 BP 6335 EP 6338 DI 10.1021/ef401094t PG 4 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 259WU UT WOS:000327557800001 ER PT J AU Fox, EB Smith, LT Williamson, TK Kendrick, SE AF Fox, Elise B. Smith, L. Taylor Williamson, Tyler K. Kendrick, Sarah E. TI Aging Effects on the Properties of Imidazolium-, Quaternary Ammonium-, Pyridinium-, and Pyrrolidinium-Based Ionic Liquids Used in Fuel and Energy Production SO ENERGY & FUELS LA English DT Article ID HEAT-TRANSFER FLUIDS; THERMAL-DEGRADATION; INFRARED-SPECTRA; WATER; HEXAFLUOROPHOSPHATE; DESULFURIZATION; SOLVENTS; GASOLINE; SALTS; NEILS AB Ionic liquids (ILs) are often cited for their excellent thermal stability, a key property for their use as solvents and in the chemical processing of biofuels. However, there has been little supporting data on the long-term aging effect of the temperature on these materials. Imizadolium-, quaternary ammonium-, pyridinium-, and pyrrolidnium-based ILs with the bis(trifluoromethylsulfonyl)imide and bis(perfluoroethylsulfonyl)imide anions were aged for 2520 h (15 weeks) at 200 C in air to determine the effects of an oxidizing environment on their chemical structure and thermal stability over time. It was found that the minor changes in the cation chemistry could greatly affect the properties of the ILs over time. C1 [Fox, Elise B.; Smith, L. Taylor; Williamson, Tyler K.; Kendrick, Sarah E.] Savannah River Natl Lab, Aiken, SC 29808 USA. RP Fox, EB (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM elise.fox@srnl.doe.gov RI Fox, Elise/G-5438-2013 OI Fox, Elise/0000-0002-4527-5820 FU DOE-EERE Solar Energy Technology Program; Savannah River Nuclear Solutions [DE-AC0908SR22470]; The Savannah River National Laboratory FX The authors thank Ann E. Visser and Nicholas J. Bridges for helpful discussions, insight, and IL structure drawings. The authors also thank Erich Hansen for the use of his rheometer and his assistance. The DOE-EERE Solar Energy Technology Program and the SunShot Initiative are gratefully acknowledged for funding of this work. The Savannah River National Laboratory is managed by Savannah River Nuclear Solutions. This work was prepared under Federal Contract DE-AC0908SR22470. NR 32 TC 7 Z9 7 U1 1 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2013 VL 27 IS 11 BP 6355 EP 6361 DI 10.1021/ef401148j PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 259WU UT WOS:000327557800004 ER PT J AU Surasani, VK Li, L Ajo-Franklin, JB Hubbard, C Hubbard, SS Wu, YX AF Surasani, Vikranth K. Li, Li Ajo-Franklin, Jonathan B. Hubbard, Chris Hubbard, Susan S. Wu, Yuxin TI Bioclogging and Permeability Alteration by L-mesenteroides in a Sandstone Reservoir: A Reactive Transport Modeling Study SO ENERGY & FUELS LA English DT Article ID SATURATED POROUS-MEDIA; BIOMASS PLUG DEVELOPMENT; LEUCONOSTOC-MESENTEROIDES; MICROBIAL-GROWTH; HYDRAULIC CONDUCTIVITY; PHYSICAL-PROPERTIES; BIOFILM GROWTH; OIL-RECOVERY; HYDROTHERMAL SYSTEMS; SPATIAL-DISTRIBUTION AB Selective bioclogging targets the biofilm growth in highly permeable zones of reservoirs or aquifers to divert water into low permeability zones. It alters the hydrodynamics of the subsurface flow systems to favorable performance conditions. Applications may include microbial-enhanced-hydrocarbon-recovery (MEHR) and bioremediation. Despite its success at the laboratory scale, application of bioclogging at the reservoir scale is hindered by the lack of understanding and advanced modeling and prediction tools. To understand controls of bioclogging processes at the reservoir scale, a Reactive Transport Model (RTM) has been developed in this work for in situ biostimulation of L. mesenteroides. This fermenting bacterium produces the biopolymer dextran in the presence of sucrose. As a first step, we considered the flow, transport, and bacterial growth and dextran production reactions in a single phase fluid (water) system, because most reactions occur either in the water phase or at the water-solid interface. Parameters for biomass growth and dextran production were obtained from column experimental data. The numerical experiments were carried out using the spatial distribution of porosity and permeability extracted from open-hole well logs collected at a characterization well near the King Island gas field in Southern Sacramento basin in California. The numerical experiments suggest that there exists an optimum range of injection rates (between 543 and 1,195 bbls/day). The volumetric injection rates need to be sufficiently fast to overcome microbial growth and clogging at the vicinity of the bore wells. They also need to be low enough to allow sufficiently long residence times for dextran production. Results show significant dextran formation and the associated porosity and permeability alterations to divert water into low permeability zones. The bioclogging effectiveness, measured by the percentage of the water diverted into the low permeability zones, varied between 10 to 75% depending on injection conditions. With the same total mass injection rates of sucrose, increasing flow rate is more effective in selectively bioclogging highly permeable zones than increasing sucrose concentration. Other processes, including the attachment of biomass to the solid surface without being washed out, are also important. The developed model offers a powerful tool to optimize injection conditions for effective bioclogging in naturally heterogeneous reservoirs. C1 [Surasani, Vikranth K.; Li, Li] Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA USA. [Surasani, Vikranth K.] Birla Inst Sci & Technol, Dept Chem Engn, Hyderabad, Andhra Pradesh, India. [Ajo-Franklin, Jonathan B.; Hubbard, Chris; Hubbard, Susan S.; Wu, Yuxin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Li, L (reprint author), Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA USA. EM lili@eme.psu.edu RI Hubbard, Christopher/J-6150-2014; Ajo-Franklin, Jonathan/G-7169-2015; Hubbard, Susan/E-9508-2010; Wu, Yuxin/G-1630-2012; Li, Li/A-6077-2008; OI Hubbard, Christopher/0000-0002-8217-8122; Wu, Yuxin/0000-0002-6953-0179; Li, Li/0000-0002-1641-3710; Ajo-Franklin, Jonathan/0000-0002-6666-4702 FU Assistant Secretary for Fossil Energy; Office of Coal and Power Systems through the National Energy Technology Laboratory; U.S. Department of Energy [AC0205CH11231] FX The project support from Energy Bioscience Institute (EBI), University of California, Berkeley and the financial support from British Petroleum are gratefully acknowledged. We would also like to thank John H. Beyer and the WESTCARB partnership for allowing use of the Citizen Green #1 well logs for development of our synthetic reservoir model. WESTCARB acquisition of the well logs was supported by the Assistant Secretary for Fossil Energy, Office of Coal and Power Systems through the National Energy Technology Laboratory, of the U.S. Department of Energy, under contract number DE AC0205CH11231. NR 70 TC 11 Z9 11 U1 3 U2 43 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2013 VL 27 IS 11 BP 6538 EP 6551 DI 10.1021/ef401446f PG 14 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 259WU UT WOS:000327557800022 ER PT J AU Hammache, S Hoffman, JS Gray, ML Fauth, DJ Howard, BH Pennline, HW AF Hammache, Sonia Hoffman, James S. Gray, McMahan L. Fauth, Daniel J. Howard, Bret H. Pennline, Henry W. TI Comprehensive Study of the Impact of Steam on Polyethyleneimine on Silica for CO2 Capture SO ENERGY & FUELS LA English DT Article ID CARBON-DIOXIDE CAPTURE; MESOPOROUS MOLECULAR-SIEVE; SOLID SORBENTS; HIGH-CAPACITY; AMINE; ADSORPTION; ADSORBENT; PERFORMANCE; REMOVAL AB An amine sorbent, prepared by impregnation of polyethyleneimine on silica, was tested for steam stability. The stability of the sorbent was investigated in a fixed bed reactor using multiple steam cycles of 90 vol % H2O/He at 105 degrees C, and the gas effluent was monitored with a mass spectrometer. CO2 uptake of sorbent was found to decrease with repeated exposure to steam. Characterization of the spent sorbent using N-2 physisorption, SEM, and thermogravimetric analysis (TGA) showed that the decrease in CO2 loading can possibly be attributed to a reagglomeration of the amine in the pores of the silica. No support effect was found in this study. The commercial SiO2 used, Cariact G10, was found to be stable under the conditions used. While it was found that subjecting the sorbent to several steam cycles decreased its CO2 uptake, a continuous exposure of the sorbent to steam did not have a significant performance impact. A silanated sorbent, consisting of a mixture of PEI and aminopropyltriethoxysilane on SiO2 support, was also investigated for steam stability. Similarly to the nonsilanated sorbent, the CO2 loading of this sorbent decreased upon steam exposure, although a mechanism for this change has not been postulated at this time. C1 [Hammache, Sonia; Hoffman, James S.; Gray, McMahan L.; Fauth, Daniel J.; Howard, Bret H.; Pennline, Henry W.] US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Hammache, Sonia] URS Corp, South Pk, PA 15129 USA. RP Hammache, S (reprint author), US DOE, Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. EM Sonia.Hammache@contr.netl.doe.gov FU National Energy Technology Laboratory's ongoing research under the RES [DE-FE0004000] FX This technical effort was performed in support of the National Energy Technology Laboratory's ongoing research under the RES contract DE-FE0004000. Reference in this work to any specific commercial product is to facilitate understanding and does not necessarily imply endorsement by the U.S. Department of Energy. S.H. would like to thank Dr. Brian Kail for LCMS analysis. NR 33 TC 27 Z9 27 U1 2 U2 37 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2013 VL 27 IS 11 BP 6899 EP 6905 DI 10.1021/ef401562w PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 259WU UT WOS:000327557800061 ER PT J AU Enick, RM Koronaios, P Stevenson, C Warman, S Morsi, B Nulwala, H Luebke, D AF Enick, R. M. Koronaios, P. Stevenson, C. Warman, S. Morsi, B. Nulwala, H. Luebke, D. TI Hydrophobic Polymeric Solvents for the Selective Absorption of CO2 from Warm Gas Streams that also Contain H-2 and H2O SO ENERGY & FUELS LA English DT Article ID CARBON-DIOXIDE; SOLUBILITY; HYDROGEN; TEMPERATURES; PRESSURES; OIL AB The hydrophobic polymers polydimethyl siloxane (PDMS) and polypropyleneglycol dimethylether (PPGDME) may provide an alternative to physical solvents based on the hydrophilic polymer polyethyleneglycol dimethylether (PEGDME) for the precombustion capture of CO2 from the warm, high pressure stream that also contains H2O and H-2. PPGDME can be made with a linear repeat unit (PPGDME(1), poly(1,3-propanediol) dimethylether) or a branched repeat unit (PPGDME(b), poly(1,2-propanediol) dimethylether). The solubility of CO2 and H-2 in each of the four solvents of specified average molecular weight (PEGDME 250, PDMS 550, PPGDME(1) 678 and PPGDME(b) 430) is determined between 25 and 120 degrees C at pressures to 10 MPa. CO2 is much more soluble in each solvent than H-2; however, the solubility of CO2 decreases as the solubility of H-2 increases with increasing temperature. PPGDME(1) 678 and PPGDME(b) 430 are comparable CO2 solvents. PPGDME(1) 678 absorbs less H-2 than all the other solvents, while PPGDME(b) 430 absorbs significantly more H-2. PDMS 550 is a very good CO2 solvent, absorbing more CO2 than all of the other solvents at all temperatures except for PEGDME 250 at 25 degrees C. PDMS 550 absorbs more H-2 than all of the other solvents. C1 [Enick, R. M.; Morsi, B.; Nulwala, H.] Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. [Enick, R. M.; Koronaios, P.; Stevenson, C.; Warman, S.] Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA. [Nulwala, H.] Carnegie Mellon Univ, Dept Chem, Pittsburgh, PA 15213 USA. [Luebke, D.] US DOE NETL, Pittsburgh, PA 15236 USA. RP Enick, RM (reprint author), Natl Energy Technol Lab, 626 Cochrans Mill Rd POB 10940, Pittsburgh, PA 15236 USA. EM rme@pitt.edu OI Nulwala, Hunaid/0000-0001-7481-3723 FU RES [DE-FE0004000] FX As part of the National Energy Technology Laboratory's Regional University Alliance (NETL-RUA), a collaboration initiative of the NETL, this technical effort was performed under the RES contract DE-FE0004000. NR 22 TC 9 Z9 9 U1 2 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0887-0624 EI 1520-5029 J9 ENERG FUEL JI Energy Fuels PD NOV PY 2013 VL 27 IS 11 BP 6913 EP 6920 DI 10.1021/ef401740w PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 259WU UT WOS:000327557800063 ER PT J AU Teeguarden, JG Fisher, JW Doerge, DR AF Teeguarden, Justin G. Fisher, Jeffrey W. Doerge, Daniel R. TI Exposure Conditions and Pharmacokinetic Principles: Interpreting Bisphenol A Absorption in the Canine Oral Cavity SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Letter C1 [Teeguarden, Justin G.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Fisher, Jeffrey W.; Doerge, Daniel R.] US FDA, Natl Ctr Toxicol Res, Jefferson, AR 72079 USA. RP Teeguarden, JG (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM jt@pnl.gov NR 7 TC 3 Z9 3 U1 0 U2 8 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 EI 1552-9924 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD NOV-DEC PY 2013 VL 121 IS 11-12 BP A323 EP A323 DI 10.1289/ehp.1307424 PG 1 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 266ZA UT WOS:000328061900003 PM 24284408 ER PT J AU Vesterinen, HM Johnson, PI Koustas, E Lam, J Sutton, P Woodruff, TJ AF Vesterinen, Hanna M. Johnson, Paula I. Koustas, Erica Lam, Juleen Sutton, Patrice Woodruff, Tracey J. TI In Support of EHP's Proposal to Adopt the ARRIVE Guidelines SO ENVIRONMENTAL HEALTH PERSPECTIVES LA English DT Letter ID SYSTEMATIC REVIEWS; QUALITY C1 [Vesterinen, Hanna M.; Johnson, Paula I.; Sutton, Patrice; Woodruff, Tracey J.] Univ Calif San Francisco, Program Reprod Hlth & Environm, Oakland, CA USA. [Koustas, Erica] Oak Ridge Inst Sci & Educ, Washington, DC USA. [Lam, Juleen] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Hlth Policy & Management, Baltimore, MD USA. RP Vesterinen, HM (reprint author), Univ Calif San Francisco, Program Reprod Hlth & Environm, Oakland, CA USA. EM VesterinenH@obgyn.ucsf.edu FU NIEHS NIH HHS [P01 ES022841] NR 15 TC 4 Z9 4 U1 0 U2 4 PU US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE PI RES TRIANGLE PK PA NATL INST HEALTH, NATL INST ENVIRONMENTAL HEALTH SCIENCES, PO BOX 12233, RES TRIANGLE PK, NC 27709-2233 USA SN 0091-6765 EI 1552-9924 J9 ENVIRON HEALTH PERSP JI Environ. Health Perspect. PD NOV-DEC PY 2013 VL 121 IS 11-12 BP A325 EP A325 DI 10.1289/ehp.1307775 PG 1 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 266ZA UT WOS:000328061900005 PM 24284027 ER PT J AU Kolemen, E Ellis, R La Haye, RJ Humphreys, DA Lohr, J Noraky, S Penaflor, BG Welander, AS AF Kolemen, E. Ellis, R. La Haye, R. J. Humphreys, D. A. Lohr, J. Noraky, S. Penaflor, B. G. Welander, A. S. TI Real-time mirror steering for improved closed loop neoclassical tearing mode suppression by electron cyclotron current drive in DIII-D SO FUSION ENGINEERING AND DESIGN LA English DT Article DE NTM; Control; ECCD; DIII-D; Mirror; Steer ID SYSTEM AB The development and operation of the neoclassical tearing mode (NTM) avoidance and control system for DIII-D, which uses six sets of real-time steerable mirrors in order to move the electron cyclotron current drive (ECCD) deposition location in plasma, is described. The real-time DIII-D NTM control algorithm residing in the Plasma Control System (PCS) automatically detects an NTM by analysis of the Mirnov diagnostics, employs motional Stark effect (MSE) EFIT MHD equilibrium reconstruction to locate the rational q-surface where the NTM island can be found, then calculates the appropriate mirror position for alignment of the ECCD with the island using ray tracing. The control commands from PCS are sent to the electron cyclotron system to switch on and off or modulate the gyrotrons and to the steerable mirror system to move the steerable mirrors to the requested positions. Successful NTM suppression has been achieved in DIII-D using this control system to rapidly align the NTM island and the ECCD deposition location, and to actively maintain the alignment as plasma conditions change. (C) 2013 Published by Elsevier B.V. C1 [Kolemen, E.; Ellis, R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [La Haye, R. J.; Humphreys, D. A.; Lohr, J.; Noraky, S.; Penaflor, B. G.; Welander, A. S.] Gen Atom Co, San Diego, CA 92186 USA. RP Kolemen, E (reprint author), Princeton Plasma Phys Lab, POB 45, Princeton, NJ 08543 USA. EM ekolemen@pppl.gov FU US Department of Energy [DE-AC02-09CH11466, DE-FC02-04ER54698] FX This work was supported by the US Department of Energy under DE-AC02-09CH11466 and DE-FC02-04ER54698. NR 11 TC 7 Z9 7 U1 0 U2 8 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD NOV PY 2013 VL 88 IS 11 BP 2757 EP 2760 DI 10.1016/j.fusengdes.2013.02.168 PG 4 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 264VV UT WOS:000327910000002 ER PT J AU Liu, HB Abdou, MA Greenwood, LR AF Liu, Haibo Abdou, Mohamed A. Greenwood, Larry R. TI Fe-55 effect on enhancing ferritic steel He/dpa ratio in fission reactor irradiations to simulate fusion conditions SO FUSION ENGINEERING AND DESIGN LA English DT Article DE Fe-55 (n, a) cross section; He(appm)/dpa ratio; Isotopic tailoring; Fusion material irradiation; Ferritic steel irradiation ID HELIUM AB This study evaluated methods for increasing the helium production rate in ferritic steel irradiation in a fission reactor neutron spectrum in order to increase the helium to atomic displacement ratio to values typical of fusion reactor first wall conditions. An early experiment showed that the accelerated He(appm)/dpa ratio of about 2.3 was achieved for 96% enriched Fe-54 in iron in the High Flux Isotope Reactor (HFIR), ORNL. In the current work, the ferritic steel He(appm)/dpa ratio was studied in the neutron spectrum of HFIR with the Fe-55 thermal neutron helium production taken into account. A benchmark calculation for the same sample, as used in the aforementioned experiment, was then used to adjust and evaluate the Fe-55 (n, a) cross section values in TALYS-based Evaluated Nuclear Data Library (TENDL). The analysis showed that a decrease of a factor of 6700 for the TENDL Fe-55 (n, a) cross section in the intermediate and low energy regions was required in order to fit the experimental results. The best fit to the cross section value at thermal neutron energy was about 27 mb. With the adjusted Fe-55 (n, a) cross sections, calculation showed that the Fe-54 and Fe-55 isotopes could be enriched by the isotopic tailoring technique in a ferritic steel sample irradiated in HFIR to significantly enhance the helium production rate. This new calculation can be used to guide future isotopic tailoring experiments designed to increase the He(appm)/dpa ratio in fission reactors. A benchmark experiment is suggested to be performed to evaluate the Fe-55 (n, a) cross section at thermal energy. Published by Elsevier B.V. C1 [Liu, Haibo; Abdou, Mohamed A.] Univ Calif Los Angeles, Mech & Aerosp Engn Dept, Los Angeles, CA 90095 USA. [Greenwood, Larry R.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Abdou, MA (reprint author), Univ Calif Los Angeles, Mech & Aerosp Engn Dept, Los Angeles, CA 90095 USA. EM abdou@fusion.ucla.edu RI Greenwood, Lawrence/H-9539-2016 OI Greenwood, Lawrence/0000-0001-6563-0650 FU US Department of Energy FX Work supported by the US Department of Energy. NR 19 TC 0 Z9 0 U1 1 U2 10 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD NOV PY 2013 VL 88 IS 11 BP 2860 EP 2864 DI 10.1016/j.fusengdes.2013.05.067 PG 5 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 264VV UT WOS:000327910000018 ER PT J AU Youssef, M Feder, R Batistoni, P Fischer, U Jakhar, S Konno, C Loughlin, M Villari, R Wu, YC AF Youssef, Mahmoud Feder, Russell Batistoni, Paola Fischer, Ulrich Jakhar, Shrichand Konno, Chikara Loughlin, Michael Villari, Rosaria Wu, Yican TI Benchmarking of the 3-D CAD-based Discrete Ordinates code "ATTILA" for dose rate calculations against experiments and Monte Carlo calculations SO FUSION ENGINEERING AND DESIGN LA English DT Article DE ATTILA 3-D Discrete Ordinates; ITER diagnostics ports; Shutdown dose rates; 14-MeV integral experiments; Calculation benchmarking; FNG facility ID NEUTRONICS ANALYSIS; FUSION TECHNOLOGY; ITER; DIAGNOSTICS; PLUG; VERIFICATION; VALIDATION; SHUT; JET AB Shutdown dose rate (SDDR) inside and around the diagnostics ports of ITER is performed at PPPL/UCLA using the 3-D, FEM, Discrete Ordinates code, ATTILA, along with its updated FORNAX transmutation/decay gamma library. Other ITER partners assess SDDR using codes based on the Monte Carlo (MC) approach (e.g. MCNP code) for transport calculation and the radioactivity inventory code FISPACT or other equivalent decay data libraries for dose rate assessment. To reveal the range of discrepancies in the results obtained by various analysts, an extensive experimental and calculation benchmarking effort has been undertaken to validate the capability of ATTILA for dose rate assessment. On the experimental validation front, the comparison was performed using the measured data from two SDDR experiments performed at the FNG facility, Italy. Comparison was made to the experimental data and to MC results obtained by other analysts. On the calculation validation front, the ATTILA's predictions were compared to other results at key locations inside a calculation benchmark whose configuration duplicates an upper diagnostics port plug (UPP) in ITER. Both serial and parallel version of ATTILA-7.1.0 are used in the PPPL/UCLA analysis performed with FENDL-2.1/FORNAX databases. In the FNG 1st experimental, it was shown that ATTILA's dose rates are largely over estimated (by similar to 30-60%) with the ANSI/ANS-6.1.1 flux-to-dose factors whereas the ICRP-74 factors give better agreement (10-20%) with the experimental data and with the MC results at all cooling times. In the 2nd experiment, there is an under estimation in SDDR calculated by both MCNP and ATTILA based on ANSI/ANS-6.1.1 for cooling times up to similar to 4 days after irradiation. Thereafter, an over estimation is observed (similar to 5-10% with MCNP and similar to 10-15% with ATTILA). As for the calculation benchmark, the agreement is much better based on ICRP-74 1996 data. The divergence among all dose rate results at similar to 11 days cooling time is no more than 15% among all participants. Published by Elsevier B.V. C1 [Youssef, Mahmoud] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Feder, Russell] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Batistoni, Paola] Culham Sci Ctr, EFDA JET, Abingdon, Oxon, England. [Fischer, Ulrich] KIT, Karlsruhe, Germany. [Jakhar, Shrichand] Inst Plasma Res, Bhat, Gandhinagar, India. [Konno, Chikara] JAEA, Fus Neutron Grp, Div Fus Energy Technol, Tokai, Ibaraki, Japan. [Loughlin, Michael] ITER Org, Project Engn & Integrat Div, St Paul Les Durance, France. [Villari, Rosaria] ENEA Fus Tech Unit, I-00044 Frascati, Rome, Italy. [Wu, Yican] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China. RP Youssef, M (reprint author), Univ Calif Los Angeles, Los Angeles, CA 90095 USA. EM youssef@fusion.ucla.edu; rfeder@pppl.gov OI Jakhar, S./0000-0002-9656-5051 FU Princeton Plasma Physics Laboratory through US ITER Project [S006987-R]; Princeton Plasma Physics Laboratory through USITER [15300-PD0002-R00]; United States Department of Energy through PPPL Prime [DE-AC02-09CH11466] FX This work is funded by the Princeton Plasma Physics Laboratory under contract # S006987-R through US ITER Project and USITER 15300-PD0002-R00. The work performed in support of this report was made possible by the United States Department of Energy through PPPL Prime Contract Number DE-AC02-09CH11466. All US ITER activities are managed by the US ITER Project Office, hosted by Oak Ridge National Laboratory with partner labs Princeton Plasma Physics Laboratory and Savannah River National Laboratory. The project is being accomplished through a collaboration of DOE Laboratories, Universities and industry. NR 31 TC 3 Z9 3 U1 3 U2 14 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0920-3796 EI 1873-7196 J9 FUSION ENG DES JI Fusion Eng. Des. PD NOV PY 2013 VL 88 IS 11 BP 3033 EP 3040 DI 10.1016/j.fusengdes.2013.07.010 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 264VV UT WOS:000327910000044 ER PT J AU Weng, QH Zhou, YY Quattrochi, DA AF Weng, Qihao Zhou, Yuyu Quattrochi, Dale A. TI Geographical applications of remote sensing SO GEOCARTO INTERNATIONAL LA English DT Editorial Material C1 [Weng, Qihao] Indiana State Univ, Ctr Urban & Environm Change, Dept Earth & Environm Syst, Terre Haute, IN 47809 USA. [Zhou, Yuyu] Pacific NW Natl Lab, Joint Global Change Res Inst, Richland, WA 99352 USA. [Quattrochi, Dale A.] NASA, Dept Earth Sci, George C Marshall Space Flight Ctr, Washington, DC 20546 USA. RP Weng, QH (reprint author), Indiana State Univ, Ctr Urban & Environm Change, Dept Earth & Environm Syst, Terre Haute, IN 47809 USA. EM qweng@indstate.edu; yuyu.zhou@pnnl.gov; dale.quattrochi@nasa.gov OI Weng, Qihao/0000-0002-2498-0934 NR 0 TC 1 Z9 1 U1 0 U2 4 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1010-6049 EI 1752-0762 J9 GEOCARTO INT JI Geocarto Int. PD NOV 1 PY 2013 VL 28 IS 7 SI SI BP 561 EP 561 DI 10.1080/10106049.2013.856202 PG 1 WC Environmental Sciences; Geosciences, Multidisciplinary; Remote Sensing; Imaging Science & Photographic Technology SC Environmental Sciences & Ecology; Geology; Remote Sensing; Imaging Science & Photographic Technology GA 265CV UT WOS:000327928200001 ER PT J AU Tomsia, AP Lee, JS Wegst, UGK Saiz, E AF Tomsia, Antoni P. Lee, Janice S. Wegst, Ulrike G. K. Saiz, Eduardo TI Nanotechnology for Dental Implants SO INTERNATIONAL JOURNAL OF ORAL & MAXILLOFACIAL IMPLANTS LA English DT Article DE bone formation; coatings; dental implants; hydroxyapatite; nanotechnology; surface topography ID BIOACTIVE GLASS COATINGS; PLASMA-SPRAYED COATINGS; TOTAL HIP-ARTHROPLASTY; POROUS COATED IMPLANTS; OSTEOBLAST-LIKE CELLS; METAL-ION RELEASE; TI-BASED IMPLANTS; IN-VITRO; ELECTROPHORETIC DEPOSITION; MECHANICAL-PROPERTIES AB With the advent of nanotechnology, an opportunity exists for the engineering of new dental implant materials. Metallic dental implants have been successfully used for decades, but they have shortcomings related to osseointegration and mechanical properties that do not match those of bone. Absent the development of an entirely new class of materials, faster osseointegration of currently available dental implants can be accomplished by various surface modifications. To date, there is no consensus regarding the preferred method(s) of implant surface modification, and further development will be required before the ideal implant surface can be created, let alone become available for clinical use. Current approaches can generally be categorized into three areas: ceramic coatings, surface functionalization, and patterning on the micro-to nanoscale. The distinctions among these are imprecise, as some or all of these approaches can be combined to improve in vivo implant performance. These surface improvements have resulted in durable implants with a high percentage of success and long-term function. Nanotechnology has provided another set of opportunities for the manipulation of implant surfaces in its capacity to mimic the surface topography formed by extracellular matrix components of natural tissue. The possibilities introduced by nanotechnology now permit the tailoring of implant chemistry and structure with an unprecedented degree of control. For the first time, tools are available that can be used to manipulate the physicochemical environment and monitor key cellular events at the molecular level. These new tools and capabilities will result in faster bone formation, reduced healing time, and rapid recovery to function. C1 [Tomsia, Antoni P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Lee, Janice S.] Univ Calif San Francisco, Dept Oral & Maxillofacial Surg, San Francisco, CA USA. [Wegst, Ulrike G. K.] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA. [Saiz, Eduardo] Univ London Imperial Coll Sci Technol & Med, Ctr Adv Struct Ceram, Dept Mat, London SW7 2AZ, England. RP Tomsia, AP (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM aptomsia@lbl.gov FU NIH National Institute of Dental and Craniofacial Research [5R01 DE015633] FX This work was supported by the NIH National Institute of Dental and Craniofacial Research under grant 5R01 DE015633 ("Complex nanocomposites for bone regeneration"). The authors wish to thank Dr Alessandro Polini for reading the manuscript and useful discussions. NR 109 TC 11 Z9 11 U1 5 U2 25 PU QUINTESSENCE PUBLISHING CO INC PI HANOVER PARK PA 4350 CHANDLER DRIVE, HANOVER PARK, IL 60133 USA SN 0882-2786 EI 1942-4434 J9 INT J ORAL MAX IMPL JI Int. J. Oral Maxillofac. Implants PD NOV-DEC PY 2013 VL 28 IS 6 BP E535 EP E546 PG 12 WC Dentistry, Oral Surgery & Medicine SC Dentistry, Oral Surgery & Medicine GA 267VH UT WOS:000328125900023 PM 24278949 ER PT J AU Zhong, DK Zhao, SL Polyansky, DE Fujita, E AF Zhong, Diane K. Zhao, Shengliang Polyansky, Dmitry E. Fujita, Etsuko TI Diminished photoisomerization of active ruthenium water oxidation catalyst by anchoring to metal oxide electrodes SO JOURNAL OF CATALYSIS LA English DT Article DE Ruthenium catalyst; Water oxidation; Surface-binding; Photoisomerization ID ARTIFICIAL PHOTOSYNTHESIS; POLYPYRIDYL COMPLEXES; REDOX PROPERTIES; RU COMPLEXES; SINGLE-SITE; PHOSPHONATE; SURFACES; OXYGEN; PHOTOANODES; HYDROGEN AB Surface-binding of molecular water oxidation catalysts through phosphonated ligands offers a promising strategy for attaching homogeneous catalysts onto conductive or semiconductive oxide surfaces for heterogeneous catalysis. In this work, the highly active [Ru(tpy)(pynap)OH2](2+) (tpy = 2,2':6',2 ''-terpyridine; pynap = 2-(pyrid-2'-yl)-1,8-naphthyridine) water oxidation catalyst is attached onto metal oxide electrodes through a phosphate group. Electrochemical and photoelectrochemical results confirm that ruthenium oxidation chemistries and water oxidation proficiency remain largely unaffected by phosphonation. Surface-binding reveals minimal photoisomerization of the active d-form and allows us to evaluate photoelectrochemical and mechanistic properties of the catalyst. Spectroelectrochemical experiments support the evolution of multiple ruthenium oxidation states in agreement with Pourbaix diagrams. Although photoisomerization of d-[Ru(H2PO3-tpy)(pynap)OH2](2+) is considerably hindered when the catalyst is attached onto a rigid oxide electrode, surface desorption remains a major challenge. (C) 2013 Elsevier Inc. All rights reserved. C1 [Zhong, Diane K.; Zhao, Shengliang; Polyansky, Dmitry E.; Fujita, Etsuko] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Fujita, E (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM Fujita@bnl.gov RI Polyansky, Dmitry/C-1993-2009 OI Polyansky, Dmitry/0000-0002-0824-2296 FU Brookhaven National Laboratory (BNL) [DE-AC02-98CH10886]; U.S. Department of Energy; Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences; U.S. Department of Energy, Office of Basic Energy Sciences FX This work is carried out at Brookhaven National Laboratory (BNL) under Contract DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences, & Biosciences, Office of Basic Energy Sciences. Part of the research is carried out at the Center for Functional Nanomaterials (CFN) at BNL, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences. The authors thank Dr. Mingzhao Liu and Dr. Chang-Yong Nam for their assistance with instrumentation at the CFN, Dr. Jonathan F. Hull for providing us with nanoITO films and helpful advice on spectroelectrochemistry, and Prof. Randolph Thummel and Dr. Ruifa Zong for providing us with the pynap ligand. NR 39 TC 15 Z9 15 U1 1 U2 34 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD NOV PY 2013 VL 307 BP 140 EP 147 DI 10.1016/j.jcat.2013.07.018 PG 8 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 264TM UT WOS:000327903900016 ER PT J AU Rodriguez, JA Evans, J Feria, L Vidal, AB Liu, P Nakamura, K Illas, F AF Rodriguez, Jose A. Evans, Jaime Feria, Leticia Vidal, Alba B. Liu, Ping Nakamura, Kenichi Illas, Francesc TI CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: Production of CO, methanol, and methane SO JOURNAL OF CATALYSIS LA English DT Article DE CO2 activation; CO production; Methane synthesis; Metal carbides; Noble metals ID TRANSITION-METAL CARBIDES; DENSITY-FUNCTIONAL THEORY; AUGMENTED-WAVE METHOD; GAS SHIFT KINETICS; CARBON-DIOXIDE; CHARGE POLARIZATION; CU SURFACES; AU; NI(110); CU(110) AB Small Au, Cu, and Ni particles in contact with TiC(001) display a very high activity for the catalytic hydrogenation of CO2. The major product over these catalysts is CO which is produced by the reverse water gas shift reaction (RWGS, CO2 + H-2 -> CO + H2O). In the cases of Au/TiC(001) and Cu/TiC(001), a substantial amount of methanol is also produced, but no methane is detected. Ni/TiC(001) produces a mixture of CO, methanol, and methane. The highest catalytic activity is found for small two-dimensional particles or clusters of the admetals in close contact with TiC(001). The catalytic activity of the supported metals can be orders of magnitude higher than those-of Au(100), Cu(100), or Ni(100). Density functional calculations point to HOCO as a key intermediate for the generation of CO through the RWGS, with the production of methanol probably involving the hydrogenation of a HCOO intermediate or the CO generated by the RWGS. (C) 2013 Elsevier Inc. All rights reserved. C1 [Rodriguez, Jose A.; Vidal, Alba B.; Liu, Ping] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Evans, Jaime] Cent Univ Venezuela, Fac Ciencias, Caracas 1020A, Venezuela. [Feria, Leticia; Illas, Francesc] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain. [Feria, Leticia; Illas, Francesc] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, E-08028 Barcelona, Spain. [Vidal, Alba B.] IVIC, Ctr Quim, Caracas 1020A, Venezuela. [Nakamura, Kenichi] Tokyo Inst Technol, Mat & Struct Lab, Yokohama, Kanagawa 2268503, Japan. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Illas, Francesc /C-8578-2011 OI Illas, Francesc /0000-0003-2104-6123 FU US Department of Energy, Chemical Sciences Division [DE-AC02-98CH10886]; INTEVEP; IDB; Nippon Foundation for Materials Science; Spanish MICINN/MINECO research grants [FIS2008-02238, CTQ2010-14872/BQU, CTQ2012-30751]; Generalitat de Catalunya grants [2009SGR1041]; XRQTC; ICREA Academia Award for excellence FX The research carried out at BNL was supported by the US Department of Energy, Chemical Sciences Division (DE-AC02-98CH10886). J.E. is grateful to INTEVEP and IDB for support of the work carried out at the UCV. K.N. is grateful to the Nippon Foundation for Materials Science for grants that made possible part of this work. The research at UB was supported support by Spanish MICINN/MINECO research grants FIS2008-02238, CTQ2010-14872/BQU and CTQ2012-30751 and, in part, by Generalitat de Catalunya grants 2009SGR1041 and XRQTC. FI acknowledges additional support through the 2009 ICREA Academia Award for excellence in research. Computational time on the Center for Functional Nanomaterials at BNL and the Marenostrum supercomputer of the Barcelona Supercomputing Center is gratefully acknowledged. NR 58 TC 43 Z9 43 U1 19 U2 205 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0021-9517 EI 1090-2694 J9 J CATAL JI J. Catal. PD NOV PY 2013 VL 307 BP 162 EP 169 DI 10.1016/j.jcat.2013.07.023 PG 8 WC Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 264TM UT WOS:000327903900019 ER PT J AU Saxena, A Bhalla, AS AF Saxena, A. Bhalla, A. S. TI Bioferroics and biomultiferroics: ferroic behaviour of biological systems SO MATERIALS RESEARCH INNOVATIONS LA English DT Article DE Biomagnetism; Elastomechanics; Piezoelectric; Secondary ferroic; Bioflexoelectric; Biosensory systems ID BONE AB The three primary ferroic properties, namely, ferromagnetism, ferroelectricity and ferroelasticity, have been observed in biological systems. The quest for the fourth primary ferroic, namely, ferrotoroidics, along with magnetoelectricity and multiferroic behaviour in biological systems is under way. Control of such bioferroic behaviour by small electric, magnetic and stress fields may lead to novel medical, therapeutic and diagnostic applications. C1 [Saxena, A.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Bhalla, A. S.] Univ Texas San Antonio, Dept Elect Engn, San Antonio, TX 78249 USA. RP Saxena, A (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM avadh@lanl.gov FU US Department of Energy National Science Foundation INAMM Program at UTSA [0844081] FX This work was supported in part by the US Department of Energy and in part by the National Science Foundation INAMM Program at UTSA (grant no. 0844081). NR 25 TC 1 Z9 1 U1 3 U2 39 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 1432-8917 EI 1433-075X J9 MATER RES INNOV JI Mater. Res. Innov. PD NOV PY 2013 VL 17 IS 7 BP 440 EP 441 DI 10.1179/1433075X13Y.0000000177 PG 2 WC Materials Science, Multidisciplinary SC Materials Science GA 267CV UT WOS:000328075200001 ER PT J AU Youngquist, JT Schumacher, MH Rose, JP Raines, TC Politz, MC Copeland, MF Pfleger, BF AF Youngquist, J. Tyler Schumacher, Martin H. Rose, Joshua P. Raines, Thomas C. Politz, Mark C. Copeland, Matthew F. Pfleger, Brian F. TI Production of medium chain length fatty alcohols in Escherichia coli SO METABOLIC ENGINEERING LA English DT Article DE Escherichia coli; Thioesterase; Acyl-CoA reductase; Fatty alcohol; Dodecanol; Tetradecanol ID ACYL-COA REDUCTASE; SYNTHETIC BIOLOGY; ACID PRODUCTION; EXPRESSION; COENZYME; BIOSYNTHESIS; FUELS; MICROCOMPARTMENTS; OPTIMIZATION; CONVERSION AB Metabolic engineering offers the opportunity to produce a wide range of commodity chemicals that are currently derived from petroleum or other non-renewable resources. Microbial synthesis of fatty alcohols is an attractive process because it can control the distribution of chain lengths and utilize low cost fermentation substrates. Specifically, primary alcohols with chain lengths of 12 to 14 carbons have many uses in the production of detergents, surfactants, and personal care products. The current challenge is to produce these compounds at titers and yields that would make them economically competitive. Here, we demonstrate a metabolic engineering strategy for producing fatty alcohols from glucose. To produce a high level of 1-dodecanol and 1-tetradecanol, an acyl-ACP thioesterase (BTE), an acyl-CoA ligase (FadD), and an acyl-CoA/aldehyde reductase (MAACR) were overexpressecl in an engineered strain of Escherichia coli. Yields were improved by balancing expression levels of each gene, using a fed batch cultivation strategy, and adding a solvent to the culture for extracting the product from cells. Using these strategies, a Liter of over 1.6 g/L fatty alcohol with a yield of over 0.13 g fatty alcohol/g carbon source was achieved. These are the highest reported yield of fatty alcohols produced from glucose in E. coli. (C) 2013 Elsevier Inc. All tights reserved. C1 [Youngquist, J. Tyler; Schumacher, Martin H.; Rose, Joshua P.; Raines, Thomas C.; Politz, Mark C.; Copeland, Matthew F.; Pfleger, Brian F.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Youngquist, J. Tyler; Pfleger, Brian F.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. RP Pfleger, BF (reprint author), 3629 Engn Hall,1415 Engn Dr, Madison, WI 53706 USA. EM pfleger@engr.wisc.edu FU DOE Great Lakes Bioenergy Research Center (GLBRC; DOE Office of Science BER) [DE-FC02-07ER64494]; National Science Foundation [CBET-1149678]; National Institutes of Health [NHGRI HG002760, T32 GM08349] FX This work was funded by the DOE Great Lakes Bioenergy Research Center (GLBRC; DOE Office of Science BER DE-FC02-07ER64494) the National Science Foundation (CBET-1149678) and the National Institutes of Health (NHGRI HG002760 and T32 GM08349). The authors are grateful to Brett Barney, Zachariah Harris, Mick McGee, and Daniel Mendez-Perez for their contributions. NR 47 TC 27 Z9 29 U1 5 U2 51 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1096-7176 EI 1096-7184 J9 METAB ENG JI Metab. Eng. PD NOV PY 2013 VL 20 BP 177 EP 186 DI 10.1016/j.ymben.2013.10.006 PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 267ES UT WOS:000328080100019 PM 24141053 ER PT J AU Hofmann, F Abbey, B Liu, WJ Xu, RQ Usher, BF Balaur, E Liu, YZ AF Hofmann, Felix Abbey, Brian Liu, Wenjun Xu, Ruqing Usher, Brian F. Balaur, Eugeniu Liu, Yuzi TI X-ray micro-beam characterization of lattice rotations and distortions due to an individual dislocation SO NATURE COMMUNICATIONS LA English DT Article ID STRAIN FIELDS; LAUE MICRODIFFRACTION; EDGE DISLOCATION; WHITE-BEAM; DIFFRACTION; DEFORMATION; RESOLUTION; GRADIENTS; DEFECTS; CRYSTAL AB Understanding and controlling the behaviour of dislocations is crucial for a wide range of applications, from nano-electronics and solar cells to structural engineering alloys. Quantitative X-ray diffraction measurements of the strain fields due to individual dislocations, particularly in the bulk, however, have thus far remained elusive. Here we report the first characterization of a single dislocation in a freestanding GaAs/In0.2Ga0.8As/GaAs membrane by synchrotron X-ray micro-beam Laue diffraction. Our experimental X-ray data agrees closely with textbook anisotropic elasticity solutions for dislocations, providing one of few experimental validations of this fundamental theory. On the basis of the experimental uncertainty in our measurements, we predict the X-ray beam size required for three-dimensional measurements of lattice strains and rotations due to individual dislocations in the material bulk. These findings have important implications for the in situ study of dislocation structure formation, self-organization and evolution in the bulk. C1 [Hofmann, Felix] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England. [Abbey, Brian; Balaur, Eugeniu] La Trobe Univ, Dept Phys, ARC Ctr Excellence Coherent Xray Sci, Melbourne, Vic 3086, Australia. [Abbey, Brian; Balaur, Eugeniu] Melbourne Ctr Nanofabricat, Melbourne, Vic 3168, Australia. [Liu, Wenjun; Xu, Ruqing] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Usher, Brian F.] La Trobe Univ, Dept Elect Engn, Melbourne, Vic 3086, Australia. [Liu, Yuzi] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Hofmann, F (reprint author), Univ Oxford, Dept Engn Sci, Parks Rd, Oxford OX1 3PJ, England. EM felix.hofmann@eng.ox.ac.uk RI Abbey, Brian/D-3274-2011; Xu, Ruqing/K-3586-2012; Liu, Yuzi/C-6849-2011; Balaur, Eugeniu/J-5865-2016 OI Abbey, Brian/0000-0001-6504-0503; Xu, Ruqing/0000-0003-1037-0059; Balaur, Eugeniu/0000-0003-4029-2055 FU John Fell Oxford University Press (OUP) Research Fund; Australian Research Council Centre of Excellence for Coherent X-ray Science; Australian Synchrotron Research Program; U.S. DOE [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX F.H. acknowledges funding from the John Fell Oxford University Press (OUP) Research Fund. B.A. acknowledges the support of the Australian Research Council Centre of Excellence for Coherent X-ray Science and the Australian Synchrotron Research Program. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U. S. Department of Energy (DOE) Office of Science by Argonne National Laboratory (ANL), was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. Use of the Centre for Nanoscale Materials at ANL was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The authors also acknowledge the use of the facilities at the Melbourne Centre for Nanofabrication. NR 46 TC 6 Z9 6 U1 1 U2 39 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2013 VL 4 AR 2774 DI 10.1038/ncomms3774 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 266KY UT WOS:000328023900012 PM 24216614 ER PT J AU Kim, K Coh, S Kisielowski, C Crommie, MF Louie, SG Cohen, ML Zettl, A AF Kim, Kwanpyo Coh, Sinisa Kisielowski, C. Crommie, M. F. Louie, Steven G. Cohen, Marvin L. Zettl, A. TI Atomically perfect torn graphene edges and their reversible reconstruction SO NATURE COMMUNICATIONS LA English DT Article ID CARBON NANOTUBES; LAYER GRAPHENE; NANORIBBONS; NANOSTRUCTURES; SPECTROSCOPY; STABILITY; DYNAMICS; ZIGZAG AB The atomic structure of graphene edges is critical in determining the electrical, magnetic and chemical properties of truncated graphene structures, notably nanoribbons. Unfortunately, graphene edges are typically far from ideal and suffer from atomic-scale defects, structural distortion and unintended chemical functionalization, leading to unpredictable properties. Here we report that graphene edges fabricated by electron beam-initiated mechanical rupture or tearing in high vacuum are clean and largely atomically perfect, oriented in either the armchair or zigzag direction. We demonstrate, via aberration-corrected transmission electron microscopy, reversible and extended pentagon-heptagon (5-7) reconstruction at zigzag edges, and explore experimentally and theoretically the dynamics of the transitions between configuration states. Good theoretical-experimental agreement is found for the flipping rates between 5-7 and 6-6 zigzag edge states. Our study demonstrates that simple ripping is remarkably effective in producing atomically clean, ideal terminations, thus providing a valuable tool for realizing atomically tailored graphene and facilitating meaningful experimental study. C1 [Kim, Kwanpyo; Coh, Sinisa; Crommie, M. F.; Louie, Steven G.; Cohen, Marvin L.; Zettl, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Kim, Kwanpyo; Coh, Sinisa; Crommie, M. F.; Louie, Steven G.; Cohen, Marvin L.; Zettl, A.] Univ Calif Berkeley, Ctr Integrated Nanomech Syst, Berkeley, CA 94720 USA. [Kim, Kwanpyo; Coh, Sinisa; Crommie, M. F.; Louie, Steven G.; Cohen, Marvin L.; Zettl, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kisielowski, C.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. RP Zettl, A (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM azettl@berkeley.edu RI Kim, Kwanpyo/D-9121-2011; Foundry, Molecular/G-9968-2014; Zettl, Alex/O-4925-2016 OI Kim, Kwanpyo/0000-0001-8497-2330; Zettl, Alex/0000-0001-6330-136X FU Office of Energy Research, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231]; Office of Naval Research under MURI [N00014-09-1066]; National Science Foundation within Center of Integrated Nanomechanical Systems [EEC-0832819] FX This research was supported in part by the Director, Office of Energy Research, Materials Sciences and Engineering Division, of the US Department of Energy under Contract number DE-AC02-05CH11231, which provided for TEM characterization, including that performed at the National Center for Electron Microscopy, and theoretical modelling; by the Office of Naval Research under MURI Grant N00014-09-1066, which provided for graphene synthesis and suspension; and by the National Science Foundation within the Center of Integrated Nanomechanical Systems, under Grant EEC-0832819, which provided for additional sample characterization and personnel support. NR 38 TC 41 Z9 41 U1 3 U2 90 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2013 VL 4 AR 2723 DI 10.1038/ncomms3723 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 266KD UT WOS:000328021600004 PM 24177166 ER PT J AU Kiraly, B Iski, EV Mannix, AJ Fisher, BL Hersam, MC Guisinger, NP AF Kiraly, Brian Iski, Erin V. Mannix, Andrew J. Fisher, Brandon L. Hersam, Mark C. Guisinger, Nathan P. TI Solid-source growth and atomic-scale characterization of graphene on Ag(111) SO NATURE COMMUNICATIONS LA English DT Article ID EPITAXIAL GRAPHENE; RAMAN-SPECTROSCOPY; GRAIN-BOUNDARIES; HIGH-QUALITY; EDGE STATES; NANORIBBONS; SCATTERING; INTERFERENCE; DEFECTS AB Silver is a desirable platform for graphene growth because of the potential for hybrid graphene plasmonics and its emerging role as a preferred growth substrate for other two-dimensional materials, such as silicene. Here we demonstrate the direct growth of monolayer graphene on a single-crystal Ag(111) substrate. The inert nature of Ag has made it difficult to use for graphene synthesis using standard chemical vapour deposition techniques, which we have overcome by using an elemental carbon source. Atomic-scale scanning tunnelling microscopy reveals that the atomically clean graphene-silver substrate is free of organic residue and other contaminants. The dendritic graphene possesses a variety of edge terminations, many of which give rise to quantum interferences previously seen only on insulating substrates. This scattering supports spectroscopic evidence that the graphene electronic structure is minimally perturbed by the underlying silver, providing a new system in which graphene is decoupled from its growth substrate. C1 [Kiraly, Brian; Iski, Erin V.; Mannix, Andrew J.; Fisher, Brandon L.; Guisinger, Nathan P.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Kiraly, Brian; Mannix, Andrew J.; Hersam, Mark C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Hersam, Mark C.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. RP Guisinger, NP (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 South Cass Ave,Bldg 440, Argonne, IL 60439 USA. EM nguisinger@anl.gov RI Hersam, Mark/B-6739-2009 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation Graduate Research Fellowship [DGE-0824162]; US Department of Energy SISGR [DE-FG02-09ER16109] FX We thank M. Koppen and C. Linsmeier for their help with the carbon e-beam evaporation. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. B.K. acknowledges support from a National Science Foundation Graduate Research Fellowship (DGE-0824162). This work was also supported by the US Department of Energy SISGR contract number DE-FG02-09ER16109. NR 44 TC 39 Z9 39 U1 22 U2 176 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2013 VL 4 AR 2804 DI 10.1038/ncomms3804 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 266LR UT WOS:000328025800001 ER PT J AU Ma, T Wang, JY Zhou, GK Yue, Z Hu, QJ Chen, Y Liu, BB Qiu, Q Wang, Z Zhang, J Wang, K Jiang, DC Gou, CY Yu, LL Zhan, DL Zhou, R Luo, WC Ma, H Yang, YZ Pan, SK Fang, DM Luo, YD Wang, X Wang, GN Wang, J Wang, Q Lu, X Chen, Z Liu, JC Lu, Y Yin, Y Yang, HM Abbott, RJ Wu, YX Wan, DS Li, J Yin, TM Lascoux, M DiFazio, SP Tuskan, GA Wang, J Liu, JQ AF Ma, Tao Wang, Junyi Zhou, Gongke Yue, Zhen Hu, Quanjun Chen, Yan Liu, Bingbing Qiu, Qiang Wang, Zhuo Zhang, Jian Wang, Kun Jiang, Dechun Gou, Caiyun Yu, Lili Zhan, Dongliang Zhou, Ran Luo, Wenchun Ma, Hui Yang, Yongzhi Pan, Shengkai Fang, Dongming Luo, Yadan Wang, Xia Wang, Gaini Wang, Juan Wang, Qian Lu, Xu Chen, Zhe Liu, Jinchao Lu, Yao Yin, Ye Yang, Huanming Abbott, Richard J. Wu, Yuxia Wan, Dongshi Li, Jia Yin, Tongming Lascoux, Martin DiFazio, Stephen P. Tuskan, Gerald A. Wang, Jun Liu Jianquan TI Genomic insights into salt adaptation in a desert poplar SO NATURE COMMUNICATIONS LA English DT Article ID POPULUS-EUPHRATICA; RNA-SEQ; STRESS ACCLIMATION; GENE-EXPRESSION; ARABIDOPSIS; TOLERANCE; TRANSPORT; DROUGHT; PLANTS; TRANSCRIPTOME AB Despite the high economic and ecological importance of forests, our knowledge of the genomic evolution of trees under salt stress remains very limited. Here we report the genome sequence of the desert poplar, Populus euphratica, which exhibits high tolerance to salt stress. Its genome is very similar and collinear to that of the closely related mesophytic congener, P. trichocarpa. However, we find that several gene families likely to be involved in tolerance to salt stress contain significantly more gene copies within the P. euphratica lineage. Furthermore, genes showing evidence of positive selection are significantly enriched in functional categories related to salt stress. Some of these genes, and others within the same categories, are significantly upregulated under salt stress relative to their expression in another salt-sensitive poplar. Our results provide an important background for understanding tree adaptation to salt stress and facilitating the genetic improvement of cultivated poplars for saline soils. C1 [Ma, Tao; Hu, Quanjun; Liu, Bingbing; Qiu, Qiang; Zhang, Jian; Wang, Kun; Jiang, Dechun; Zhou, Ran; Luo, Wenchun; Ma, Hui; Yang, Yongzhi; Wang, Xia; Wang, Gaini; Wang, Juan; Wang, Qian; Lu, Xu; Wu, Yuxia; Wan, Dongshi; Li, Jia; Liu Jianquan] Lanzhou Univ, Sch Life Sci, State Key Lab Grassland Agroecosyst, Lanzhou 730000, Peoples R China. [Wang, Junyi; Yue, Zhen; Chen, Yan; Wang, Zhuo; Gou, Caiyun; Yu, Lili; Zhan, Dongliang; Pan, Shengkai; Fang, Dongming; Luo, Yadan; Chen, Zhe; Liu, Jinchao; Lu, Yao; Yin, Ye; Yang, Huanming; Wang, Jun] BGI Shenzhen, Shenzhen 518083, Peoples R China. [Zhou, Gongke] Chinese Acad Sci, Key Lab Biofuels, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China. [Zhou, Gongke] Chinese Acad Sci, Shandong Prov Key Lab Energy Genet, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China. [Abbott, Richard J.] Univ St Andrews, Sch Biol, St Andrews KY16 9TH, Fife, Scotland. [Yin, Tongming] Nanjing Forestry Univ, Key Lab Forest Genet & Gene Engn, Nanjing 210037, Jiangsu, Peoples R China. [Lascoux, Martin] Uppsala Univ, Evolutionary Biol Ctr, Dept Ecol & Genet, S-75326 Uppsala, Sweden. [DiFazio, Stephen P.] W Virginia Univ, Dept Biol, Morgantown, WV 26506 USA. [Tuskan, Gerald A.] Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA. [Wang, Jun] Univ Copenhagen, Dept Biol, DK-1017 Copenhagen, Denmark. RP Liu, JQ (reprint author), Lanzhou Univ, Sch Life Sci, State Key Lab Grassland Agroecosyst, Lanzhou 730000, Peoples R China. EM wangj@genomics.org.cn; liujq@lzu.edu.cn RI Wang, Jun/C-8434-2016; Tuskan, Gerald/A-6225-2011; Wang, Jun/B-9503-2016; OI Wang, Jun/0000-0002-8540-8931; Tuskan, Gerald/0000-0003-0106-1289; Hu, Quanjun/0000-0001-6922-2144; Wang, Jun/0000-0002-2113-5874; Lascoux, Martin/0000-0003-1699-9042 FU National Key Project for Basic Research [2012CB114504]; National High Technology Research and Development Program of China (863 Program) [2013AA100605]; National Science and Technology Support Program [2013BAD22B01]; Fundamental Research Funds for the Central Universities [lzujbky-2009-k05]; Shenzhen Municipal Government [ZYC200903240077A]; International Collaboration 111 Projects of China; 985 and 211 Projects of Lanzhou University FX Financial support was provided by the National Key Project for Basic Research (2012CB114504), the National High Technology Research and Development Program of China (863 Program, No. 2013AA100605), the National Science and Technology Support Program (2013BAD22B01), the Fundamental Research Funds for the Central Universities (lzujbky-2009-k05), the International Collaboration 111 Projects of China, the 985 and 211 Projects of Lanzhou University and the Shenzhen Municipal Government (ZYC200903240077A). NR 60 TC 51 Z9 54 U1 6 U2 80 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2013 VL 4 AR 2797 DI 10.1038/ncomms3797 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 266LJ UT WOS:000328025000012 PM 24256998 ER PT J AU Mann, IR Lee, EA Claudepierre, SG Fennell, JF Degeling, A Rae, IJ Baker, DN Reeves, GD Spence, HE Ozeke, LG Rankin, R Milling, DK Kale, A Friedel, RHW Honary, F AF Mann, Ian R. Lee, E. A. Claudepierre, S. G. Fennell, J. F. Degeling, A. Rae, I. J. Baker, D. N. Reeves, G. D. Spence, H. E. Ozeke, L. G. Rankin, R. Milling, D. K. Kale, A. Friedel, R. H. W. Honary, F. TI Discovery of the action of a geophysical synchrotron in the Earth's Van Allen radiation belts SO NATURE COMMUNICATIONS LA English DT Article ID RELATIVISTIC ELECTRON FLUX; ULF WAVE POWER; INNER MAGNETOSPHERE; GEOMAGNETIC STORMS; ACCELERATION; ENERGIZATION; DIFFUSION; PARTICLES; DYNAMICS; FIELD AB Although the Earth's Van Allen radiation belts were discovered over 50 years ago, the dominant processes responsible for relativistic electron acceleration, transport and loss remain poorly understood. Here we show evidence for the action of coherent acceleration due to resonance with ultra-low frequency waves on a planetary scale. Data from the CRRES probe, and from the recently launched multi-satellite NASA Van Allen Probes mission, with supporting modelling, collectively show coherent ultra-low frequency interactions which high energy resolution data reveals are far more common than either previously thought or observed. The observed modulations and energy-dependent spatial structure indicate a mode of action analogous to a geophysical synchrotron; this new mode of response represents a significant shift in known Van Allen radiation belt dynamics and structure. These periodic collisionless betatron acceleration processes also have applications in understanding the dynamics of, and periodic electromagnetic emissions from, distant plasma-astrophysical systems. C1 [Mann, Ian R.; Lee, E. A.; Degeling, A.; Rae, I. J.; Ozeke, L. G.; Rankin, R.; Milling, D. K.; Kale, A.] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. [Claudepierre, S. G.; Fennell, J. F.] Aerosp Corp, Los Angeles, CA 90009 USA. [Rae, I. J.] Univ Coll London, Mullard Space Sci Lab, Dept Space & Climate Phys, Dorking RH5 6NT, Surrey, England. [Baker, D. N.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Reeves, G. D.; Friedel, R. H. W.] Los Alamos Natl Lab, Los Alamos, NM 87544 USA. [Spence, H. E.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Honary, F.] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England. RP Mann, IR (reprint author), Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada. EM imann@ualberta.ca RI Friedel, Reiner/D-1410-2012; Degeling, Alexander/F-1091-2016; OI Friedel, Reiner/0000-0002-5228-0281; Degeling, Alexander/0000-0001-7338-9270; Reeves, Geoffrey/0000-0002-7985-8098 FU Canadian NSERC; RBSP-ECT; JHU/APL [967399]; NASA's Prime [NAS5-01072]; Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA); Canadian Space Agency; Facility for Data Analysis and Modeling (FDAM); Canadian NSERC, Canada Foundation for Innovation, WestGrid; Monitoring, Analyzing, and Assessing Radiation Belt Loss and Energization (MAARBLE) FX E.A.L. was supported by a Discovery Grant from Canadian NSERC awarded to IRM. This work was supported by RBSP-ECT funding provided by JHU/APL Contract No. 967399 under NASA's Prime Contract No. NAS5-01072. The Canadian Array for Real-time Investigations of Magnetic Activity (CARISMA; www.carisma.ca (2013)) array is operated by the University of Alberta, funded by the Canadian Space Agency. The Sub-Auroral Magnetometer Network data (SAMNET) is operated by the Space Plasma Environment and Radio Science (SPEARS) group, Department of Physics, Lancaster University. This work was supported by the Facility for Data Analysis and Modeling (FDAM), with funding from Canadian NSERC, Canada Foundation for Innovation, WestGrid, and the Canadian Space Agency. This work was also supported by the Monitoring, Analyzing, and Assessing Radiation Belt Loss and Energization (MAARBLE) project under the European Commission (EC) FP7 framework (note that the work reflects the authors views, and the EC is not liable for any use that may be made of the information contained herein). NR 31 TC 23 Z9 23 U1 2 U2 22 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2013 VL 4 AR 2795 DI 10.1038/ncomms3795 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 266LJ UT WOS:000328025000010 ER PT J AU Petrovic, M Rakic, IS Runte, S Busse, C Sadowski, JT Lazic, P Pletikosic, I Pan, ZH Milun, M Pervan, P Atodiresei, N Brako, R Sokcevic, D Valla, T Michely, T Kralj, M AF Petrovic, M. Rakic, I. Srut Runte, S. Busse, C. Sadowski, J. T. Lazic, P. Pletikosic, I. Pan, Z. -H. Milun, M. Pervan, P. Atodiresei, N. Brako, R. Sokcevic, D. Valla, T. Michely, T. Kralj, M. TI The mechanism of caesium intercalation of graphene SO NATURE COMMUNICATIONS LA English DT Article ID METAL-SURFACES; GRAPHITE; SUPERCONDUCTIVITY; IR(111); IRIDIUM; CARBON; FILMS AB Properties of many layered materials, including copper- and iron-based superconductors, topological insulators, graphite and epitaxial graphene, can be manipulated by the inclusion of different atomic and molecular species between the layers via a process known as intercalation. For example, intercalation in graphite can lead to superconductivity and is crucial in the working cycle of modern batteries and supercapacitors. Intercalation involves complex diffusion processes along and across the layers; however, the microscopic mechanisms and dynamics of these processes are not well understood. Here we report on a novel mechanism for intercalation and entrapment of alkali atoms under epitaxial graphene. We find that the intercalation is adjusted by the van der Waals interaction, with the dynamics governed by defects anchored to graphene wrinkles. Our findings are relevant for the future design and application of graphene-based nano-structures. Similar mechanisms can also have a role for intercalation of layered materials. C1 [Petrovic, M.; Rakic, I. Srut; Pletikosic, I.; Milun, M.; Pervan, P.; Kralj, M.] Inst Fiziku, Zagreb 10000, Croatia. [Runte, S.; Busse, C.; Michely, T.] Univ Cologne, Inst Phys 2, D-50937 Cologne, Germany. [Sadowski, J. T.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Lazic, P.; Brako, R.; Sokcevic, D.] Rudjer Boskovic Inst, Zagreb 10000, Croatia. [Pan, Z. -H.; Valla, T.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Atodiresei, N.] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany. [Atodiresei, N.] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich, Germany. [Atodiresei, N.] JARA, D-52425 Julich, Germany. RP Kralj, M (reprint author), Inst Fiziku, Bijenicka 46, Zagreb 10000, Croatia. EM mkralj@ifs.hr RI Lazic, Predrag/K-1908-2012; Busse, Carsten/A-7485-2008; Petrovic, Marin/N-2473-2013; Kralj, Marko/A-8232-2008; Pletikosic, Ivo/A-5683-2010; Pervan, Petar/F-8142-2010; OI Busse, Carsten/0000-0001-5522-0578; Petrovic, Marin/0000-0002-2234-1207; Kralj, Marko/0000-0002-9786-3130; Pletikosic, Ivo/0000-0003-4697-8912; Pervan, Petar/0000-0002-0273-2737; Sadowski, Jerzy/0000-0002-4365-7796; Atodiresei, Nicolae/0000-0002-8203-1227 FU Unity Through Knowledge Fund [66/10]; Deutsche Forschungsgemeinschaft [Bu2197/2, INST 2156/514-1]; Ministry of Science and Technology of the Republic of Croatia [098-0352828-2863]; German Academic Exchange Service and Ministry of Science of the Republic of Croatia; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX We acknowledge experimental assistance by F. Craes and J. Klinkhammer. This work was supported by the Unity Through Knowledge Fund (grant no. 66/10), the Deutsche Forschungsgemeinschaft (projects Bu2197/2 and INST 2156/514-1), the Ministry of Science and Technology of the Republic of Croatia (contract no. 098-0352828-2863) and by the German Academic Exchange Service and Ministry of Science of the Republic of Croatia via the project 'Electrons in two dimensions'. Research carried out at the Center for Functional Nanomaterials and National Synchrotron Light Source, Brookhaven National Laboratory is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under the Contract No. DE-AC02-98CH10886. NR 53 TC 57 Z9 57 U1 15 U2 193 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2013 VL 4 AR 2772 DI 10.1038/ncomms3772 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 266KY UT WOS:000328023900010 PM 24212475 ER PT J AU Rasool, HI Ophus, C Klug, WS Zettl, A Gimzewski, JK AF Rasool, Haider I. Ophus, Colin Klug, William S. Zettl, A. Gimzewski, James K. TI Measurement of the intrinsic strength of crystalline and polycrystalline graphene SO NATURE COMMUNICATIONS LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; GRAIN-BOUNDARIES; DISLOCATION; NANOSCALE; TRANSPORT; MEMBRANES; GROWTH; FILMS; MONOLAYER; SIZE AB The mechanical properties of materials depend strongly on crystal structure and defect configuration. Here we measure the strength of suspended single-crystal and bicrystal graphene membranes prepared by chemical vapour deposition. Membranes of interest are first characterized by transmission electron microscopy and subsequently tested using atomic force microscopy. Single-crystal membranes prepared by chemical vapour deposition show strengths comparable to previous results of single-crystal membranes prepared by mechanical exfoliation. Grain boundaries with large mismatch angles in polycrystalline specimens have higher strengths than their low angle counterparts. Remarkably, these large angle grain boundaries show strength comparable to that of single-crystal graphene. To investigate this enhanced strength, we employ aberration-corrected high-resolution transmission electron microscopy to explicitly map the atomic-scale strain fields in suspended graphene. The high strength is attributed to the presence of low atomic-scale strain in the carbon-carbon bonds at the boundary. C1 [Rasool, Haider I.; Zettl, A.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Rasool, Haider I.; Zettl, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Rasool, Haider I.; Gimzewski, James K.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Rasool, Haider I.; Klug, William S.; Gimzewski, James K.] Univ Calif Los Angeles, Calif NanoSyst Inst CNSI, Los Angeles, CA 90095 USA. [Ophus, Colin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Klug, William S.] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA. [Zettl, A.] Univ Calif Berkeley, COINS, Berkeley, CA 94720 USA. [Gimzewski, James K.] Int Ctr Mat Nanoarchitecton MANA, Tsukuba, Ibaraki 3050044, Japan. RP Rasool, HI (reprint author), Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. EM hrasool@berkeley.edu RI Foundry, Molecular/G-9968-2014; Zettl, Alex/O-4925-2016; OI Zettl, Alex/0000-0001-6330-136X; Ophus, Colin/0000-0003-2348-8558 FU MEXT WPI Program: International Center for Materials Nanoarchitectonics (MANA) of Japan; Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; Defense Threat Reduction Agency (DTRA) [HDTRA1-13-1-0035]; National Science Foundation (NSF) [DMR-1006128, CMMI-0748034] FX H.I.R. and J.K.G. thank the MEXT WPI Program: International Center for Materials Nanoarchitectonics (MANA) of Japan for financial support. This work was supported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the U.S. Department of Energy (DOE) under contract DE-AC02-05CH11231, which provided for high-resolution TEM characterization, including the work performed at the National Center of Electron Microscopy (NCEM), and the Defense Threat Reduction Agency (DTRA) under award HDTRA1-13-1-0035, which provided for graphene growth and transfer. W.S.K. acknowledges support for this work from the National Science Foundation (NSF) under Grant No. DMR-1006128 and CMMI-0748034. NR 45 TC 79 Z9 80 U1 14 U2 118 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2013 VL 4 AR 2811 DI 10.1038/ncomms3811 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 266LV UT WOS:000328026200001 ER PT J AU Yu, R Goswami, P Si, QM Nikolic, P Zhu, JX AF Yu, Rong Goswami, Pallab Si, Qimiao Nikolic, Predrag Zhu, Jian-Xin TI Superconductivity at the border of electron localization and itinerancy SO NATURE COMMUNICATIONS LA English DT Article ID HIGH-TEMPERATURE SUPERCONDUCTIVITY; MAGNETIC EXCHANGE INTERACTIONS; IRON PNICTIDES; SPIN-WAVES; INSULATOR; ORIGIN; FILMS; GAP AB The superconducting state of iron pnictides and chalcogenides exists at the border of anti-ferromagnetic order. Consequently, these materials could provide clues about the relationship between magnetism and unconventional superconductivity. One explanation, motivated by the so-called bad metal behaviour of these materials proposes that magnetism and superconductivity develop out of quasi-localized magnetic moments that are generated by strong electron-electron correlations. Another suggests that these phenomena are the result of weakly interacting electron states that lie on nested Fermi surfaces. Here we address the issue by comparing the newly discovered alkaline iron selenide superconductors, which exhibit no Fermi-surface nesting, to their iron pnictide counterparts. We show that the strong-coupling approach leads to similar pairing amplitudes in these materials, despite their different Fermi surfaces. We also find that the pairing amplitudes are largest at the boundary between electronic localization and itinerancy, suggesting that new superconductors might be found in materials with similar characteristics. C1 [Yu, Rong] Renmin Univ China, Dept Phys, Beijing 100872, Peoples R China. [Yu, Rong; Goswami, Pallab; Si, Qimiao] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. [Nikolic, Predrag] George Mason Univ, Sch Phys Astron & Computat Sci, Fairfax, VA 22030 USA. [Zhu, Jian-Xin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zhu, Jian-Xin] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM USA. RP Si, QM (reprint author), Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA. EM qmsi@rice.edu RI Yu, Rong/H-3355-2016; OI Zhu, Jianxin/0000-0001-7991-3918 FU NSF [DMR-1309531, DMR-0654118]; Robert A. Welch Foundation [C-1411]; National Science Foundation of China [11374361]; State of Florida; U. S. Department of Energy through the National High Magnetic Field Laboratory; Office of Naval Research [N00014-09-1-1025A]; National Institute of Standards and Technology [70NANB7H6138, Am001]; U.S. DOE [DE-AC52-06NA25396]; US DOE Office of Basic Energy Sciences; Center for Integrated Nanotechnologies FX This work was supported in part by the NSF Grant number DMR-1309531 and the Robert A. Welch Foundation Grant number C-1411 (R.Y., P.G. and Q.S.), the National Science Foundation of China Grant number 11374361 (R.Y.), the NSF Cooperative Agreement No. DMR-0654118, the State of Florida, and the U. S. Department of Energy through the National High Magnetic Field Laboratory (P.G.), the Office of Naval Research Grant N00014-09-1-1025A and the National Institute of Standards and Technology Grant 70NANB7H6138, Am001 (P.N.), and the U.S. DOE under Contract number DE-AC52-06NA25396, the US DOE Office of Basic Energy Sciences and the Center for Integrated Nanotechnologies-a US DOE user facility (J.-X.Z.). NR 47 TC 24 Z9 24 U1 1 U2 41 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2013 VL 4 AR 2783 DI 10.1038/ncomms3783 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 266LC UT WOS:000328024300001 PM 24231858 ER PT J AU Zamadar, M Asaoka, S Grills, DC Miller, JR AF Zamadar, Matibur Asaoka, Sadayuki Grills, David C. Miller, John R. TI Giant infrared absorption bands of electrons and holes in conjugated molecules SO NATURE COMMUNICATIONS LA English DT Article ID VIBRATIONAL-MODES; CHARGED SOLITONS; STRETCHING MODES; POLYMERS; POLYACETYLENE; INTENSITIES; CARBONYL; POLARONS; STATE; DERIVATIVES AB Infrared (IR) absorption bands often convey identifying information about molecules, but are usually weak, having molar absorption coefficients <200M(-1) cm(-1). Here we report observation of radical anions and cations of conjugated oligomers and polymers of fluorene and thiophene that possess intense mid-infrared absorption coefficients as large as 50,000M(-1) cm(-1), perhaps the largest known for molecular species. For anions of fluorene oligomers, F-n, n = 2-4, IR intensities increase almost linearly with n, but with a slope much larger than one, indicating that the absorptions are not extensive properties. Large intensities seem to arise from a mechanism known for charged solitons and polarons in conjugated polymers. In this mechanism, vibrations of ungerade symmetry drive substantial displacements of charge, creating the large dipole derivatives responsible for intense IR absorption. Both experiments and calculations find that pairing with counter-ions attenuates IR band intensities. The IR bands may be diagnostic for bound ion pairs and their escape to form free ions. C1 [Zamadar, Matibur; Asaoka, Sadayuki; Grills, David C.; Miller, John R.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Miller, JR (reprint author), Brookhaven Natl Lab, Dept Chem, Bldg 555, Upton, NY 11973 USA. EM jrmiller@bnl.gov RI Grills, David/F-7196-2016 OI Grills, David/0000-0001-8349-9158 FU Brookhaven National Laboratory [DE-AC02-98CH10886]; US Department of Energy; Division of Chemical Sciences, Geosciences & Biosciences, Office of Basic Energy Sciences; Laboratory Directed Research at Brookhaven National Laboratory [02544] FX This research was carried out at Brookhaven National Laboratory under contract DE-AC02-98CH10886 with the US Department of Energy and supported by its Division of Chemical Sciences, Geosciences & Biosciences, Office of Basic Energy Sciences, and to Laboratory Directed Research Grant number 02544 at Brookhaven National Laboratory for support to M.Z. and partial support to J.R.M. We thank Dr. Andrew Cook for technical assistance and Larry Nafie for discussions. NR 44 TC 5 Z9 5 U1 3 U2 41 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2013 VL 4 AR 2818 DI 10.1038/ncomms3818 PG 7 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 266LY UT WOS:000328026500001 ER PT J AU Zhang, JX Ke, XX Gou, GY Seidel, J Xiang, B Yu, P Liang, WI Minor, AM Chu, YH Van Tendeloo, G Ren, XB Ramesh, R AF Zhang, Jinxing Ke, Xiaoxing Gou, Gaoyang Seidel, Jan Xiang, Bin Yu, Pu Liang, Wen-I Minor, Andrew M. Chu, Ying-hao Van Tendeloo, Gustaaf Ren, Xiaobing Ramesh, Ramamoorthy TI A nanoscale shape memory oxide SO NATURE COMMUNICATIONS LA English DT Article ID FIELD-INDUCED STRAINS; BIFEO3 THIN-FILMS; ELECTROMECHANICAL RESPONSE; PHASE-TRANSFORMATIONS; SINGLE-CRYSTALS; POLARIZATION; PSEUDOPOTENTIALS; ALLOYS; TRANSITION; MECHANISM AB Stimulus-responsive shape-memory materials have attracted tremendous research interests recently, with much effort focused on improving their mechanical actuation. Driven by the needs of nanoelectromechanical devices, materials with large mechanical strain, particularly at nanoscale level, are therefore desired. Here we report on the discovery of a large shape-memory effect in bismuth ferrite at the nanoscale. A maximum strain of up to similar to 14% and a large volumetric work density of similar to 600 +/- 90 J cm(-3) can be achieved in association with a martensitic-like phase transformation. With a single step, control of the phase transformation by thermal activation or electric field has been reversibly achieved without the assistance of external recovery stress. Although aspects such as hysteresis, microcracking and so on have to be taken into consideration for real devices, the large shape-memory effect in this oxide surpasses most alloys and, therefore, demonstrates itself as an extraordinary material for potential use in state-of-art nanosystems. C1 [Zhang, Jinxing] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China. [Zhang, Jinxing; Seidel, Jan; Yu, Pu; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Ke, Xiaoxing; Van Tendeloo, Gustaaf] Univ Antwerp, EMAT Electron Microscopy Mat Sci, B-2020 Antwerp, Belgium. [Gou, Gaoyang; Ren, Xiaobing] Xi An Jiao Tong Univ, Frontier Inst Sci & Technol, Multidisciplinary Mat Res Ctr, Xian 710049, Peoples R China. [Seidel, Jan] Univ New S Wales, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia. [Xiang, Bin] Univ Sci & Technol China, Dept Mat Sci & Engn, CAS Key Lab Mat Energy Convers, Hefei 230026, Peoples R China. [Yu, Pu] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China. [Yu, Pu] Tsinghua Univ, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China. [Liang, Wen-I; Chu, Ying-hao] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan. [Xiang, Bin; Minor, Andrew M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Minor, Andrew M.; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. RP Zhang, JX (reprint author), Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China. EM jxzhang@bnu.edu.cn; xiaoxing.ke@uantwerpen.be RI Ying-Hao, Chu/A-4204-2008; Gou, Gaoyang/D-9289-2011; Yu, Pu/F-1594-2014; Xiang, Bin/C-9192-2012; Ke, Xiaoxing/A-2723-2013; Foundry, Molecular/G-9968-2014; Ren, Xiaobing/B-6072-2009 OI Ying-Hao, Chu/0000-0002-3435-9084; Ke, Xiaoxing/0000-0003-2004-6906; Ren, Xiaobing/0000-0002-4973-2486 FU National Science Foundation of China [51322207, 51332001, 11274045]; European Research Council (ERC) [246791-COUNTATOMS]; National Basic Research Program of China [2012CB619401]; Natural Science Foundation of China [11204230]; National Super-conmputer Center in Tianjin (NSCC); National Science Council, R.O.C [NSC-101-2119-M-009-003-MY2]; Ministry of Education [MOE-ATU 101W961]; Center for Interdisciplinary Science of National Chiao Tung University; Australian Research Council (ARC) [FT110100523]; National Center for Electron Microscopy [DE-AC02-05CH11231] FX The work in Beijing Normal University is supported by the National Science Foundation of China under contract numbers 51322207, 51332001 and 11274045. X.K. and G.V.T. are grateful to funding from the European Research Council under the Seventh Framework Program (FP7), ERC Advanced grant number 246791-COUNTATOMS. We thank Professor Dr Sandra Van Aert for helpful discussions. G.Y.G. and X.B.R. were support by the National Basic Research Program of China, under contract number 2012CB619401, Natural Science Foundation of China (11204230) and National Super-conmputer Center in Tianjin (NSCC). The work at National Chiao Tung University is supported by the National Science Council, R.O.C (NSC-101-2119-M-009-003-MY2), Ministry of Education (MOE-ATU 101W961) and Center for Interdisciplinary Science of National Chiao Tung University. J.S. acknowledges support by the Australian Research Council (ARC) through a Future Fellowship (FT110100523). B.X. and A.M.M acknowledge the support of National Center for Electron Microscopy, under Contract #DE-AC02-05CH11231. NR 60 TC 32 Z9 33 U1 17 U2 175 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2013 VL 4 AR 2768 DI 10.1038/ncomms3768 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 266KY UT WOS:000328023900006 PM 24253399 ER PT J AU Wu, WM Watson, DB Luo, J Carley, J Mehlhorn, T Kitanidis, PK Jardine, PM Criddle, CS AF Wu, Wei-Min Watson, David B. Luo, Jian Carley, Jack Mehlhorn, Tonia Kitanidis, Peter K. Jardine, Phlip M. Criddle, Craig S. TI Surge block method for controlling well clogging and sampling sediment during bioremediation SO WATER RESEARCH LA English DT Article DE Surge block; Bioremediation; Subsurface; Clogging; Well rehabilitation; Sediment sampling ID EMULSIFIED VEGETABLE-OIL; IN-SITU BIOREMEDIATION; MICROBIAL COMMUNITIES; SUBMICROMOLAR LEVELS; ELECTRON-DONOR; URANIUM; BIOREDUCTION; REDUCTION; SULFATE; AQUIFER AB A surge block treatment method (i.e. inserting a solid rod plunger with a flat seal that closely fits the casing interior into a well and stocking it up and down) was performed for the rehabilitation of wells clogged with biomass and for the collection of time series sediment samples during in situ bioremediation tests for U(VI) immobilization at a the U.S. Department of Energy site in Oak Ridge, TN. The clogging caused by biomass growth had been controlled by using routine surge block treatment for18 times over a nearly four year test period. The treatment frequency was dependent of the dosage of electron donor injection and microbial community developed in the subsurface. Hydraulic tests showed that the apparent aquifer transmissivity at a clogged well with an inner diameter (ID) of 10.16 cm was increased by 8-13 times after the rehabilitation, indicating the effectiveness of the rehabilitation. Simultaneously with the rehabilitation, the surge block method was successfully used for collecting time series sediment samples composed of fine particles (clay and silt) from wells with ID 1.9-10.16 cm for the analysis of mineralogical and geochemical composition and microbial community during the same period. Our results demonstrated that the surge block method provided a cost-effective approach for both well rehabilitation and frequent solid sampling at the same location. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Wu, Wei-Min; Kitanidis, Peter K.; Criddle, Craig S.] Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. [Wu, Wei-Min] Stanford Univ, Ctr Sustainable Dev & Global Competitiveness, Stanford, CA 94305 USA. [Watson, David B.; Carley, Jack; Mehlhorn, Tonia] Oak Ridge Natl Lab, Environm Sci Div, Oak Ridge, TN 37831 USA. [Luo, Jian] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA. [Jardine, Phlip M.] Univ Tennessee, Biosyst Engn & Soil Sci Dept, Knoxville, TN 37996 USA. RP Wu, WM (reprint author), Stanford Univ, Dept Civil & Environm Engn, Stanford, CA 94305 USA. EM wei-min.wu@stanford.edu; watsondb@ornl.gov RI Watson, David/C-3256-2016 OI Watson, David/0000-0002-4972-4136 FU U.S. DOE Subsurface Biogeochemical Research Program [DOE-AC05-00OR22725, DE-SC0006783] FX This work was funded by the U.S. DOE Subsurface Biogeochemical Research Program under grants DOE-AC05-00OR22725 and DE-SC0006783. NR 23 TC 1 Z9 1 U1 2 U2 16 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0043-1354 J9 WATER RES JI Water Res. PD NOV 1 PY 2013 VL 47 IS 17 BP 6566 EP 6573 DI 10.1016/j.watres.2013.08.033 PG 8 WC Engineering, Environmental; Environmental Sciences; Water Resources SC Engineering; Environmental Sciences & Ecology; Water Resources GA 264WM UT WOS:000327911700015 PM 24070865 ER PT J AU Cardiel, JJ Tonggu, L Dohnalkova, AC de la Iglesia, P Pozzo, DC Wang, LG Shen, AQ AF Cardiel, Joshua J. Tonggu, Lige Dohnalkova, Alice C. de la Iglesia, Pablo Pozzo, Danilo C. Wang, Liguo Shen, Amy Q. TI Worming Their Way into Shape: Toroidal Formations in Micellar Solutions SO ACS NANO LA English DT Article DE toroidal nanostructures; wormlike micelles; flow-induced structures; microfluidics; sonication ID DRYING-INDUCED ARTIFACTS; SURFACTANT DISPERSIONS; ELECTRON-MICROSCOPY; ELASTIC PROPERTIES; WORMLIKE MICELLES; PHASE; SHEAR; VESICLES; FLOW; ASSEMBLIES AB We report the formation of nanostructured toroidal micellar bundles (nTMB) from a semidilute wormlike micellar solution, evidenced by both cryogenic-electron microscopy and transmission electron microscopy images. Our strategy for creating nTMB involves a two-step protocol consisting of a simple prestraining process followed by flow through a microfluidic device containing an array of microposts, producing strain rates in the wormlike micelles on the order of 10(5) s(-1). In combination with microfluidic confinement, these unusually large strain rates allow for the formation of stable nTMB. Electron microscopy images reveal a variety of nTMB morphologies and provide the size distribution of the nTMB. Small-angle neutron scattering indicates the underlying microstructural transition from wormlike micelles to nTMB. We also show that other flow-induced approaches such as sonication can induce and control the emergence of onion-like and nTMB structures, which may provide a useful tool for nanotemplating. C1 [Cardiel, Joshua J.; Shen, Amy Q.] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA. [Tonggu, Lige; Wang, Liguo] Univ Washington, Dept Biol Struct, Seattle, WA 98195 USA. [Dohnalkova, Alice C.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA. [de la Iglesia, Pablo; Pozzo, Danilo C.] Univ Washington, Dept Chem Engn, Seattle, WA 98195 USA. RP Shen, AQ (reprint author), Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA. EM amyshen@uw.edu RI Shen, Amy/B-5981-2015 OI Shen, Amy/0000-0002-1222-6264 FU National Science Foundation [CBET 0852471, DMR 0907638, DMR 0944772]; Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory [PNNL-EMSL-39946]; CONACYT-Ph.D. fellowship FX We acknowledge support from the National Science Foundation (CBET 0852471 (A.Q.S.), DMR 0907638 (A.Q.S.), and DMR 0944772 (D.C.P.)). We also thank NIST, U.S. Department of Commerce, in providing access to neutron research facilities. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL-EMSL-39946). J.J.C. is grateful for a CONACYT-Ph.D. fellowship. NR 45 TC 3 Z9 3 U1 4 U2 52 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD NOV PY 2013 VL 7 IS 11 BP 9704 EP 9713 DI 10.1021/nn404191s PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 262QH UT WOS:000327752200019 PM 24168354 ER PT J AU Meng, H Zhao, Y Dong, JY Xue, M Lin, YS Ji, ZX Mai, WX Zhang, HY Chang, CH Brinker, CJ Zink, JI Nel, AE AF Meng, Huan Zhao, Yang Dong, Juyao Xue, Min Lin, Yu-Shen Ji, Zhaoxia Mai, Wilson X. Zhang, Haiyuan Chang, Chong Hyun Brinker, C. Jeffrey Zink, Jeffrey I. Nel, Andre E. TI Two-Wave Nanotherapy To Target the Stroma and Optimize Gemcitabine Delivery To a Human Pancreatic Cancer Model in Mice SO ACS NANO LA English DT Article DE nano-engineered approach; two-wave; pancreatic cancer; pericyte and stroma; TGF-beta; gemcitabine; mesoporous silica nanoparticles; liposome ID GROWTH-FACTOR-BETA; MESOPOROUS SILICA NANOPARTICLES; VIVO ANTITUMOR-ACTIVITY; TGF-BETA; DUCTAL ADENOCARCINOMA; IN-VIVO; CYTIDINE DEAMINASE; BREAST-CARCINOMA; PROSTATE-CANCER; NAB-PACLITAXEL AB Pancreatic ductal adenocarcinoma (PDAC) elicits a dense stromal response that blocks vascular access because of pericyte coverage of vascular fenestrations. In this way, the PDAC stroma contributes to chemotherapy resistance in addition to causing other problems. In order to improve the delivery of gemcitabine, a first-line chemotherapeutic agent, a PEGylated drug-carrying liposome was developed, using a transmembrane ammonium sulfate gradient to encapsulate the protonated drug up to 20% w/w. However, because the liposome was precluded from entering the xenograft site due to the stromal interference, we developed a first-wave nanocarrier that decreases pericyte coverage of the vasculature through interference in the pericyte recruiting TGF-beta signaling pathway. This was accomplished using a polyethyleneimine (PEI)/polyethylene glycol (PEG)-coated mesoporous silica nanoparticle (MSNP) for molecular complexation to a small molecule TGF-beta inhibitor, LY364947. LY364947 contains a nitrogen atom that attaches, through H-bonding, to PEI amines with a high rate of efficiency. The copolymer coating also facilitates systemic biodistribution and retention at the tumor site. Because of the high loading capacity and pH-dependent LY364947 release from the MSNPs, we achieved rapid entry of IV-injected liposomes and MSNPs at the PDAC tumor site. This two-wave approach provided effective shrinkage of the tumor xenografts beyond 25 days, compared to the treatment with free drug or gemcitabine-loaded liposomes only. Not only does this approach overcome stromal resistance to drug delivery in PDAC, but it also introduces the concept of using a stepwise engineered approach to address a range of biological impediments that interfere in nanocancer therapy in a spectrum of cancers. C1 [Meng, Huan; Zhao, Yang; Mai, Wilson X.; Zhang, Haiyuan; Nel, Andre E.] Univ Calif Los Angeles, Dept Med, Div NanoMed, Los Angeles, CA 90095 USA. [Dong, Juyao; Xue, Min; Zink, Jeffrey I.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA. [Ji, Zhaoxia; Chang, Chong Hyun; Zink, Jeffrey I.; Nel, Andre E.] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90095 USA. [Brinker, C. Jeffrey] Sandia Natl Labs, Selfassembled Mat Dept, Albuquerque, NM 87185 USA. [Lin, Yu-Shen] Univ New Mexico, Ctr Microengn Mat, Albuquerque, NM 87131 USA. [Brinker, C. Jeffrey] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM 87131 USA. [Brinker, C. Jeffrey] Sandia Natl Labs, Albuquerque, NM 87106 USA. RP Nel, AE (reprint author), Univ Calif Los Angeles, Dept Med, Div NanoMed, Los Angeles, CA 90095 USA. EM hmeng@mednet.ucla.edu; anel@mednet.ucla.edu RI Xue, Min/I-9276-2014; Meng, Huan/J-3428-2014; Zhao, Yang/J-2690-2014; OI Xue, Min/0000-0002-8136-6551; Zhang, Haiyuan/0000-0003-4076-1771 FU U.S. Public Health Service [RO1 CA133697]; NCI [1U01CA151792-01] FX This study was funded by the U.S. Public Health Service Grant RO1 CA133697. Y.-S.L. and C.J.B. are supported by NCI Cancer Nanotechnology Platform Partnership Grant 1U01CA151792-01. NR 64 TC 39 Z9 40 U1 9 U2 94 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD NOV PY 2013 VL 7 IS 11 BP 10048 EP 10065 DI 10.1021/nn404083m PG 18 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 262QH UT WOS:000327752200053 PM 24143858 ER PT J AU Zhang, H Son, JS Jang, J Lee, JS Ong, WL Malen, JA Talapin, DV AF Zhang, Hao Son, Jae Sung Jang, Jaeyoung Lee, Jong-Soo Ong, Wee-Liat Malen, Jonathan A. Talapin, Dmitri V. TI Bi1-xSbx Alloy Nanocrystals: Colloidal Synthesis, Charge Transport, and Thermoelectric Properties SO ACS NANO LA English DT Article DE Bi1-xSbx nanocrystals; electrical conductivity; Hall effect measurements; grain boundaries; surface chemistry; thermoelectrics ID BI-SB ALLOYS; CHALCOGENIDE SURFACE LIGANDS; BISMUTH NANOPARTICLES; SEMICONDUCTING ALLOYS; ELECTRONIC-PROPERTIES; NANOWIRE ARRAYS; THIN-FILMS; SOLIDS; INSB; TRISDIMETHYLAMINOANTIMONY AB Nanostructured Bi1-xSbx alloys constitute a convenient system to study charge transport in a nanostructured narrow-gap semiconductor with promising thermoelectric properties. In this work, we developed the colloidal synthesis of monodisperse sub-10 nm Bi1-xSbx alloy nanocrystals (NCs) with controllable size and compositions. The surface chemistry of Bi1-xSbx NCs was tailored with inorganic ligands to improve the interparticle charge transport as well as to control the carrier concentration. Temperature-dependent (10-300 K) electrical measurements were performed on the Bi1-xSbx NC based pellets to investigate the effect of surface chemistry and grain size (similar to 10-40 nm) on their charge transport properties. The Hall effect measurements revealed that the temperature dependence of carrier mobility and concentration strongly depended on the grain size and the surface chemistry, which was different from the reported bulk behavior. At low temperatures, electron mobility in nanostructured Bi1-xSbx was directly proportional to the average grain size, while the concentration of free carriers was inversely proportional to the grain size. We propose a model explaining such behavior. Preliminary measurements of thermoelectric properties showed a ZT value comparable to those of bulk Bi1-xSbx alloys at 300 K, suggesting a potential of Bi1-xSbx NCs for low-temperature thermoelectric applications. C1 [Zhang, Hao; Son, Jae Sung; Jang, Jaeyoung; Lee, Jong-Soo; Talapin, Dmitri V.] Univ Chicago, Dept Chem, Chicago, IL 60637 USA. [Zhang, Hao; Son, Jae Sung; Jang, Jaeyoung; Lee, Jong-Soo; Talapin, Dmitri V.] Univ Chicago, James Frank Inst, Chicago, IL 60637 USA. [Talapin, Dmitri V.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Malen, Jonathan A.] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA. [Ong, Wee-Liat; Malen, Jonathan A.] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA. RP Talapin, DV (reprint author), Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA. EM dvtalapin@uchicago.edu RI Son, Jae Sung/C-2903-2014; Lee, Jong-Soo /F-7461-2010; Malen, Jonathan/D-5954-2013 OI Lee, Jong-Soo /0000-0002-3045-2206; Malen, Jonathan/0000-0003-4560-4476 FU II-VI Foundation; NSF MRSEC Program [DMR-0213745]; AFOSR Young Investigator Program [FA95501110030]; NSF CAREER [ENG1149374] FX We thank W. Liu and M. Boles for the discussion on the synthesis of Bi1-xSbx NCs and D. Dolzhnikov for the synthesis of metal-free chalcogenide ligands. This work was supported by the II-VI Foundation and the NSF MRSEC Program under Award Number DMR-0213745. J.A.M. and W-L.O. acknowledge support from the AFOSR Young Investigator Program (FA95501110030) and the NSF CAREER Award (ENG1149374). NR 57 TC 15 Z9 15 U1 11 U2 91 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD NOV PY 2013 VL 7 IS 11 BP 10296 EP 10306 DI 10.1021/nn404692s PG 11 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 262QH UT WOS:000327752200078 PM 24134215 ER PT J AU Kaz, DM Bischak, CG Hetherington, CL Howard, HH Marti, X Clarkson, JD Adamo, C Schlom, DG Ramesh, R Aloni, S Ogletree, DF Ginsberg, NS AF Kaz, David M. Bischak, Connor G. Hetherington, Craig L. Howard, Hannah H. Marti, Xavier Clarkson, James D. Adamo, Carolina Schlom, Darrell G. Ramesh, Ramamoorthy Aloni, Shaul Ogletree, D. Frank Ginsberg, Naomi S. TI Bright Cathodoluminescent Thin Films for Scanning Nano-Optical Excitation and Imaging SO ACS NANO LA English DT Article DE cathodoluminescence; thin-films; nano-optical; near-field; imaging; nanopatterning ID FIELD-EMISSION DISPLAY; ULTRA-HIGH-RESOLUTION; SCINTILLATION PROPERTIES; SPATIAL-DISTRIBUTION; WAVE-GUIDES; MICROSCOPY; LUMINESCENCE; FLUORESCENCE; SPECTROSCOPY; LIGHT AB Demand for visualizing nanoscale dynamics in biological and advanced materials continues to drive the development of subdiffraction optical probes. While many strategies employ scanning tips for this purpose, we instead exploit a focused electron beam to create scannable nanoscale optical excitations in an epitaxially grown thin-film of cerium-doped yttrium aluminum perovskite, whose cathodoluminescence response is bright, robust, and spatially resolved to 18 nm. We also demonstrate lithographic patterning of the film's luminescence at the nanoscale. We anticipate that converting these films into free-standing membranes will yield a powerful near-field optical microscopy without the complication of mechanical scanning. C1 [Kaz, David M.; Bischak, Connor G.; Hetherington, Craig L.; Howard, Hannah H.; Ginsberg, Naomi S.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Ramesh, Ramamoorthy; Ginsberg, Naomi S.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Marti, Xavier; Clarkson, James D.; Ramesh, Ramamoorthy] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Kaz, David M.; Ginsberg, Naomi S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Ramesh, Ramamoorthy; Aloni, Shaul; Ogletree, D. Frank; Ginsberg, Naomi S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Aloni, Shaul; Ogletree, D. Frank] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Adamo, Carolina; Schlom, Darrell G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Schlom, Darrell G.] Cornell Nanoscale Sci, Kavli Inst, Ithaca, NY 14853 USA. [Ginsberg, Naomi S.] Kavli Energy NanoSci Inst, Berkeley, CA 94720 USA. RP Ginsberg, NS (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM nsginsberg@berkeley.edu RI Marti, Xavier/E-1103-2014; Foundry, Molecular/G-9968-2014; Ogletree, D Frank/D-9833-2016 OI Marti, Xavier/0000-0003-1653-5619; Ogletree, D Frank/0000-0002-8159-0182 FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US. Department of Energy, FWP; National Science Foundation [1152656]; Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy [DE-AC02-05CH11231]; AFOSR [FA9550-10-1-0123]; NSF Graduate Research Fellowship [DGE 1106400] FX YAP:Ce film deposition was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US. Department of Energy, FWP number SISGRKN. CL characterization and nano-fabrication were supported by the National Science Foundation under Grant Number 1152656. CL, AFM and time-resolved fluorescence at the LBL Molecular Foundry were supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. CA. and D.G.S. acknowledge support under the AFOSR Grant No. FA9550-10-1-0123, C.G.B. acknowledges an NSF Graduate Research Fellowship (DGE 1106400), and N.S.G. acknowledges a David and Lucile Packard Fellowship for Science and Engineering. We thank the P. Yang group for use of their XRD and the G. R. Fleming group for use of their fluorimeter. N.S.G. also thanks T. G. Ristroph for scintillating discussions. NR 55 TC 10 Z9 10 U1 1 U2 35 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD NOV PY 2013 VL 7 IS 11 BP 10397 EP 10404 DI 10.1021/nn404911a PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 262QH UT WOS:000327752200089 PM 24156282 ER PT J AU Cox, PA Waldow, DA Dupper, TJ Jesse, S Ginger, DS AF Cox, Phillip A. Waldow, Dean A. Dupper, Torin J. Jesse, Stephen Ginger, David S. TI Mapping Nanoscale Variations in Photochemical Damage of Polymer/Fullerene Solar Cells with Dissipation Imaging SO ACS NANO LA English DT Article DE atomic force microscopy; organic solar cells; photovoltaics; dissipation imaging; photo-oxidation; photodegradation; PTB7 ID ATOMIC-FORCE MICROSCOPY; ORGANIC PHOTOVOLTAIC DEVICES; ENERGY-DISSIPATION; TRAP FORMATION; DYNAMIC-MODE; ACTIVE LAYER; DEGRADATION; MORPHOLOGY; EFFICIENCY; STABILITY AB We use frequency-modulated electrostatic force microscopy to track changes in cantilever quality factor (Q) as a function of photochemical damage in a model organic photovoltaic system poly-[[4,8-bis[(2-ethylhexl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diy1]- [3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno(3,4-b]thiophenediyl]] (PTB7) and 3'H-cyclopropa[8,25][5,6]fullerene-C71-D5h(6)-3'-butanoic acid, 3'-phenyl-, methyl ester (Pc71BM). We correlate local Q factor imaging with macroscopic device performance and show that, for this system, changes in cantilever Q correlate well with changes in external quantum efficiency and can thus be used to monitor local photochemical damage over the entire functional lifetime of a PTB7:PC71BM solar cell. We explore how Q imaging is affected by the choice of cantilever resonance frequency. Finally, we use Q imaging to elucidate the differences in the evolution of nanoscale structure in the photochemical damage occurring in PTB7:PC71BM solar cells processed with and without the solvent additive 1,8-diiodooctane (DIO). We show that processing with DIO not only yields a preferable morphology for uniform performance across the surface of the device but also enhances the stability of PTB7:PC71BM solar cells-an effect that can be predicted based on the local Q images. C1 [Cox, Phillip A.; Dupper, Torin J.; Ginger, David S.] Univ Washington, Dept Chem, Seattle, WA 98195 USA. [Waldow, Dean A.] Pacific Lutheran Univ, Dept Chem, Tacoma, WA 98447 USA. [Jesse, Stephen] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Ginger, DS (reprint author), Univ Washington, Dept Chem, Seattle, WA 98195 USA. EM ginger@chem.washington.edu RI Zhou, David/N-5367-2015; Jesse, Stephen/D-3975-2016; Ginger, David/C-4866-2011; OI Jesse, Stephen/0000-0002-1168-8483; Ginger, David/0000-0002-9759-5447; Waldow, Dean/0000-0002-0588-4760 FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy FX This work was initially seeded by the National Science Foundation (NSF) DMR-1005504 and completed under NSF DMR-1306079. D.W. acknowledges NSF for research instrumentation (MRI-0619826). Band excitation measurements were conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. NR 60 TC 11 Z9 11 U1 5 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD NOV PY 2013 VL 7 IS 11 BP 10405 EP 10413 DI 10.1021/nn404920t PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 262QH UT WOS:000327752200090 PM 24138326 ER PT J AU Acharya, DP Yoon, Y Li, ZJ Zhang, ZR Lin, X Mu, RT Chen, L Kay, BD Rousseau, R Dohnalek, Z AF Acharya, Danda P. Yoon, Yeohoon Li, Zhenjun Zhang, Zhenrong Lin, Xiao Mu, Rentao Chen, Long Kay, Bruce D. Rousseau, Roger Dohnalek, Zdenek TI Site-Specific Imaging of Elemental Steps in Dehydration of Diols on TiO2(110) SO ACS NANO LA English DT Article DE titanium dioxide; diols; scanning tunneling microscopy; adsorbate dynamics; dehydration ID DENSITY-FUNCTIONAL THEORY; ETHYLENE-GLYCOL; SINGLE-CRYSTAL; RUTILE TIO2(110); O-H; DISSOCIATIVE ADSORPTION; ALIPHATIC-ALCOHOLS; SURFACE SCIENCE; BOND SCISSION; TIO2 AB Scanning tunneling microscopy is employed to follow elemental steps in conversion of ethylene glycol and 1,3-propylene glycol on partially reduced TiO2(110) as a function of temperature. Mechanistic details about the observed processes are corroborated by density functional theory calculations. The use of these two diol reactants allows us to compare and contrast the chemistries of two functionally similar molecules with different steric constraints, thereby allowing us to understand how molecular geometry may influence the observed chemical reactivity. We find that both glycols initially adsorb on Ti sites, where a dynamic equilibrium between molecularly bound and deprotonated species is observed. As the diols start to diffuse along the Ti rows above 230 K, they irreversibly dissociate upon encountering bridging oxygen vacancies. Surprisingly, two dissociation pathways, one via O-H and the other via C-O bond scission, are observed. Theoretical calculations suggest that the differences in the C-O/O-H bond breaking processes are the result of steric factors enforced upon the diols by the second Ti-bound OH group. Above similar to 400 K, a new stable intermediate centered on the bridging oxygen (O-b) row is observed. Combined experimental and theoretical evidence shows that this intermediate is most likely a new dioxo species. Further annealing leads to sequential C-O-b bond cleavage and alkene desorption above similar to 500 K. Simulations demonstrate that the sequential C-O-b bond breaking process follows a homolytic diradical pathway, with the first C-O-b bond breaking event accompanied with a nonadiabatic electron transfer within the TiO2(110) substrate. C1 [Acharya, Danda P.; Yoon, Yeohoon; Li, Zhenjun; Lin, Xiao; Mu, Rentao; Chen, Long; Kay, Bruce D.; Rousseau, Roger; Dohnalek, Zdenek] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Acharya, Danda P.; Yoon, Yeohoon; Li, Zhenjun; Lin, Xiao; Mu, Rentao; Chen, Long; Kay, Bruce D.; Rousseau, Roger; Dohnalek, Zdenek] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Zhang, Zhenrong] Baylor Univ, Dept Phys, Waco, TX 76798 USA. RP Rousseau, R (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, POB 999, Richland, WA 99352 USA. EM Roger.Rousseau@pnnl.gov; Zdenek.Dohnalek@pnnl.gov RI MU, RENTAO/A-1334-2014; Rousseau, Roger/C-3703-2014; Yoon, Yeohoon/D-4934-2014; Mu, Rentao/H-1059-2011; Lin, Xiao/B-5055-2009; OI Zhang, Zhenrong/0000-0003-3969-2326 FU Linus Pauling Distinguished Postdoctoral Fellowship Program; Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL); American Chemical Society Petroleum Research Fund; U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences Biosciences; Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL) FX X.L. is grateful for the support of the Linus Pauling Distinguished Postdoctoral Fellowship Program funded by Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). Z.Z. acknowledges the American Chemical Society Petroleum Research Fund for the support of this research. Other authors were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences, and the work was performed in EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated for the DOE by Battelle. NR 62 TC 11 Z9 11 U1 2 U2 53 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1936-0851 EI 1936-086X J9 ACS NANO JI ACS Nano PD NOV PY 2013 VL 7 IS 11 BP 10414 EP 10423 DI 10.1021/nn404934q PG 10 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Chemistry; Science & Technology - Other Topics; Materials Science GA 262QH UT WOS:000327752200091 PM 24134162 ER PT J AU Choi, IC Kim, YJ Wang, YM Ramamurty, U Jang, JI AF Choi, In-Chul Kim, Yong-Jae Wang, Y. Morris Ramamurty, Upadrasta Jang, Jae-il TI Nanoindentation behavior of nanotwinned Cu: Influence of indenter angle on hardness, strain rate sensitivity and activation volume SO ACTA MATERIALIA LA English DT Article DE Nanotwinned metals; Nanoindentation; Hardness; Strain-rate sensitivity; Activation volume ID NANO-SCALE TWINS; INDENTATION EXPERIMENTS; NANOCRYSTALLINE METALS; NANOSCALE TWINS; ELASTIC-MODULUS; DEFORMATION; COPPER; STRESS; NICKEL; CREEP AB The influence of strain on the mechanical properties and deformation kinetic parameters of nanotwinned (at) copper is investigated by a series of nanoindentation experiments, which were performed by employing sharp indenters with five varying centerline-to-face angles (psi). Comparison experiments were also conducted on (1 1 0) single crystalline Cu. Experimental results indicate that, unlike coarsegrained materials, nt-Cu is prone to plastic flow softening with large material pile-up around the indentation impression at high levels of strains. Localized detwinning becomes more significant with decreasing psi, concomitant with reduced strain-rate sensitivity (m) and enhanced activation volume (V*). The m of nt-Cu is found to depend sensitively on psi with a variation of more than a factor of 3, whereas V* exhibits a much less sensitive trend. This paper discusses the validation of the experimental techniques and the implications of various deformation kinetic parameters on the underlying deformation mechanisms of nt-Ca. 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Choi, In-Chul; Kim, Yong-Jae; Jang, Jae-il] Hanyang Univ, Div Mat Sci & Engn, Seoul 133791, South Korea. [Wang, Y. Morris] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA. [Ramamurty, Upadrasta] Indian Inst Sci, Dept Mat Engn, Bangalore 560012, Karnataka, India. [Ramamurty, Upadrasta] King Abdulaziz Univ, Ctr Excellence Adv Mat Res, Jeddah 21589, Saudi Arabia. RP Jang, JI (reprint author), Hanyang Univ, Div Mat Sci & Engn, Seoul 133791, South Korea. EM jijang@hanyang.ac.kr RI Jang, Jae-il/A-3486-2011; Choi, In-Chul/E-1499-2014; Ramamurty, Upadrasta/E-5623-2011; Wang, Yinmin (Morris)/F-2249-2010 OI Jang, Jae-il/0000-0003-4526-5355; Wang, Yinmin (Morris)/0000-0002-7161-2034 FU Basic Science Research Program through the National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology [2010-0025526]; Human Resources Development program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant [20114010203020]; Korea Government Ministry of Trade, Industry and Energy; US Department of Energy by Lawrence Livermore National Security, LLC [DE-AC52-07NA27344] FX This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010-0025526), and in part by the Human Resources Development program (No. 20114010203020) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea Government Ministry of Trade, Industry and Energy. The work at LLNL was performed under the auspices of the US Department of Energy by Lawrence Livermore National Security, LLC under Contract No. DE-AC52-07NA27344. NR 60 TC 25 Z9 26 U1 5 U2 78 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD NOV PY 2013 VL 61 IS 19 BP 7313 EP 7323 DI 10.1016/j.actamat.2013.08.037 PG 11 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 261SA UT WOS:000327683700025 ER PT J AU Smith, HL Hornbuckle, BC Mauger, L Fu, B Tracy, SJ Thompson, GB Lucas, MS Xiao, Y Hu, MY Zhao, J Alp, EE Fultz, B AF Smith, Hillary L. Hornbuckle, B. C. Mauger, L. Fu, B. Tracy, S. J. Thompson, G. B. Lucas, M. S. Xiao, Y. Hu, M. Y. Zhao, J. Alp, E. Ercan Fultz, B. TI Changes in vibrational entropy during the early stages of chemical unmixing in fcc Cu-6% Fe SO ACTA MATERIALIA LA English DT Article DE Nanocrystalline material; Microstructure formation; Vibrational entropy; Atom probe tomography; Fe-Cu alloy ID DENSITY-OF-STATES; NUCLEAR RESONANT SCATTERING; NANOCRYSTALLINE NI3FE; SMALL PARTICLE; DYNAMICS; PHONONS; HEAT; IRON AB A nanocrystalline face-centered cubic (fcc) solid solution of 6% Fe in Cu was prepared by high-energy ball milling, and annealed at temperatures from 200 to 360 degrees C to induce chemical unmixing. The chemical state of the material was characterized by three-dimensional atom probe microscopy, Mossbauer spectrometry and X-ray powder diffractometry. The unmixing was heterogeneous, with iron atoms forming iron-rich zones that thicken with further annealing. The phonon partial density of states (pDOS) of Fe-57 was measured by nuclear resonant inelastic X-ray scattering, showing the pDOS of the as-prepared material to be that of an fcc crystal. The features of this pDOS became broader in the early stages of unmixing, but only small changes in average phonon frequencies occurred until the body-centered cubic (bcc) phase began to form. The vibrational entropy calculated from the pDOS underwent little change during the early stage of annealing, but decreased rapidly when the bcc phase formed in the material. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Smith, Hillary L.; Mauger, L.; Tracy, S. J.; Fultz, B.] CALTECH, Dept Appl Phys & Mat Sci, Pasadena, CA 91125 USA. [Hornbuckle, B. C.; Fu, B.; Thompson, G. B.] Univ Alabama, Dept Met & Mat Engn, Tuscaloosa, AL 35487 USA. [Lucas, M. S.] Air Force Res Lab, Wright Patterson AFB, OH 45433 USA. [Xiao, Y.] Carnegie Inst Sci, Geophys Lab, HPCAT, Argonne, IL 60439 USA. [Hu, M. Y.; Zhao, J.; Alp, E. Ercan] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. RP Smith, HL (reprint author), CALTECH, Dept Appl Phys & Mat Sci, Pasadena, CA 91125 USA. EM HLS@caltech.edu OI Fu, Bianzhu/0000-0003-4085-0889 FU CIW through DOE-NNSA; CDAC through DOE-NNSA; UNLV through DOE-NNSA; LLNL through DOE-NNSA; CIW through DOE-BES; CDAC through DOE-BES; UNLV through DOE-BES; LLNL through DOE-BES; CIW through NSF; CDAC through NSF; UNLV through NSF; LLNL through NSF; DOE-BES [DE-AC02-06CH11357, DE-FG02-03ER46055]; NSF [DMR-0520547] FX Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by CIW, CDAC, UNLV and LLNL through funding from DOE-NNSA, DOE-BES and NSF. Use of the APS was supported by DOE-BES, under Contract No. DE-AC02-06CH11357. This work benefited from DANSE software developed under NSF Grant No. DMR-0520547. This work was supported by DOE-BES under contract DE-FG02-03ER46055. NR 40 TC 2 Z9 2 U1 2 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD NOV PY 2013 VL 61 IS 19 BP 7466 EP 7472 DI 10.1016/j.actamat.2013.08.057 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 261SA UT WOS:000327683700040 ER PT J AU Krcmar, M Fu, CL AF Krcmar, M. Fu, C. L. TI Effect of lattice anharmonicity in the structural phase transformation of Laves phase HfV2 alloy: A first-principles investigation SO ACTA MATERIALIA LA English DT Article DE First-principles calculations; Mean-field analysis; Intermetallic Laves phases; Phase transformations ID AUGMENTED-WAVE METHOD; ELECTRONIC-STRUCTURE; TOTAL-ENERGY; ELASTIC PROPERTIES; TRANSITIONS; NB; TA AB First-principles theory was developed to study the structural phase transformations in the Laves phase HfV2 alloy. We explored the energy landscape and established the role of lattice anharmonicity underlying the structural phase transitions. Our approach is based on a phenomenological Landau theory for the structural phase transition and a mean-field approximation for the free energy. First-principles calculations were utilized to obtain the distortion energy as a function of relevant deformations, and to deduce parameters for constructing the free energy. Our result for the phase transition temperature of HfV2 is in good agreement with experiment. We find that the high-temperature cubic C15 phase is stabilized by the effect of lattice anharmonicity. The theory also predicts an anomalous increase in shear modulus with increasing temperature for systems where the anharmonicity is pronounced. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Krcmar, M.] Grand Valley State Univ, Dept Phys, Allendale, MI 49401 USA. [Fu, C. L.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Krcmar, M (reprint author), Grand Valley State Univ, Dept Phys, Allendale, MI 49401 USA. EM krcmarm@gvsu.edu FU Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy; UT-Battelle, LLC.; National Science Foundation [1228291] FX This research is sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy under contract with UT-Battelle, LLC. Research at Grand Valley State University (M.K.) is supported in part by National Science Foundation grant 1228291. NR 24 TC 1 Z9 1 U1 3 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD NOV PY 2013 VL 61 IS 19 BP 7473 EP 7480 DI 10.1016/j.actamat.2013.08.059 PG 8 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 261SA UT WOS:000327683700041 ER PT J AU Beyerlein, IJ Wang, J Zhang, RF AF Beyerlein, Irene J. Wang, Jian Zhang, Ruifeng TI Mapping dislocation nucleation behavior from bimetal interfaces SO ACTA MATERIALIA LA English DT Article DE Interfaces; Nucleation; Dislocation; Nanocomposites ID SEVERE PLASTIC-DEFORMATION; GRAIN-BOUNDARY LEDGES; CU-NB MULTILAYERS; NANOLAMELLAR COMPOSITES; SCREW DISLOCATIONS; TWIN BOUNDARIES; PETCH RELATION; HIGH-STRENGTH; METALS; SIMULATIONS AB Interfaces between two dissimilar metals have been observed to exhibit a range of atomic structures, from atomically flat to atomically stepped. Using atomic-scale simulation and theory, we study the influence of the intrinsic bimetal interface structure on the nucleation of lattice dislocations. Interface structure is found to have a strong effect on which dislocations are nucleated and the type of nucleation site. We develop a theoretical model that provides criteria for predicting these effects based on key structural relationships between the interface and adjoining crystals. In recognition of these critical conditions, we construct a map that identifies the most likely nucleation site from a given interface. The theory and map developed here can guide efforts to tune interface structures for controlling the strength and deformation of heterogeneous materials. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Beyerlein, Irene J.; Zhang, Ruifeng] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Wang, Jian] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Beyerlein, IJ (reprint author), Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. EM Irene@lanl.gov RI Beyerlein, Irene/A-4676-2011; Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X FU Center for Materials at Irradiation and Mechanical Extremes; US Department of Energy, Office of Science, Office of Basic Energy Sciences [2008LANL1026]; National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396]; Energy Frontier Research Center FX The authors gratefully acknowledge support by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number 2008LANL1026. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under Contract DE-AC52-06NA25396. NR 62 TC 40 Z9 40 U1 4 U2 54 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6454 EI 1873-2453 J9 ACTA MATER JI Acta Mater. PD NOV PY 2013 VL 61 IS 19 BP 7488 EP 7499 DI 10.1016/j.actamat.2013.08.061 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 261SA UT WOS:000327683700043 ER PT J AU Jeen, H Bi, ZH Choi, WS Chisholm, MF Bridges, CA Paranthaman, MP Lee, HN AF Jeen, Hyoungjeen Bi, Zhonghe Choi, Woo Seok Chisholm, Matthew F. Bridges, Craig A. Paranthaman, M. Parans Lee, Ho Nyung TI Orienting Oxygen Vacancies for Fast Catalytic Reaction SO ADVANCED MATERIALS LA English DT Article DE solid oxide fuel cells; oxygen reduction reaction; pulsed laser epitaxy; brownmillerite; strontium cobaltite ID FUEL-CELLS; ELECTRODES; EXCHANGE; SRCOO2.5; BROWNMILLERITE; SPECTROSCOPY; PEROVSKITES; DIFFUSION; IMPEDANCE; DESIGN C1 [Jeen, Hyoungjeen; Bi, Zhonghe; Choi, Woo Seok; Chisholm, Matthew F.; Bridges, Craig A.; Paranthaman, M. Parans; Lee, Ho Nyung] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Lee, HN (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM hnlee@ornl.gov RI Choi, Woo Seok/G-8783-2014; Albe, Karsten/F-1139-2011; Paranthaman, Mariappan/N-3866-2015; Lee, Ho Nyung/K-2820-2012 OI Paranthaman, Mariappan/0000-0003-3009-8531; Lee, Ho Nyung/0000-0002-2180-3975 FU U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division FX The work was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division. NR 25 TC 19 Z9 19 U1 11 U2 96 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 0935-9648 EI 1521-4095 J9 ADV MATER JI Adv. Mater. PD NOV PY 2013 VL 25 IS 44 BP 6459 EP 6463 DI 10.1002/adma.201302919 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 261VK UT WOS:000327692500018 PM 24114810 ER PT J AU Baboly, MG Su, MF Reinke, CM Alaie, S Goettler, DF El-Kady, I Leseman, ZC AF Baboly, M. Ghasemi Su, M. F. Reinke, C. M. Alaie, S. Goettler, D. F. El-Kady, I. Leseman, Z. C. TI The effect of stiffness and mass on coupled oscillations in a phononic crystal SO AIP ADVANCES LA English DT Article AB Insight into phononic bandgap formation is presented using a first principles-type approach where phononic lattices are treated as coupled oscillators connected via massless tethers. The stiffness of the tethers and the mass of the oscillator are varied and their influences on the bandgap formation are deduced. This analysis is reinforced by conducting numerical simulations to examine the modes bounding the bandgap and highlighting the effect of the above parameters. The analysis presented here not only sheds light on the origins of gap formation, but also allows one to define design rules for wide phononic gaps and maximum gap-to-midgap ratios. (c) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License. C1 [Baboly, M. Ghasemi; Su, M. F.; Alaie, S.; Goettler, D. F.; Leseman, Z. C.] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. [Reinke, C. M.; El-Kady, I.] Sandia Natl Labs, Dept Adv Photon Microsyst, Albuquerque, NM 87185 USA. RP Leseman, ZC (reprint author), Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA. EM zleseman@unm.edu OI alaie, seyedhamidreza/0000-0001-6359-297X FU National Science Foundation Division of CMMI [1056077]; U.S. Department of Energy's National Nuclear Security Administration [AC04-94AL85000] FX This work was supported by the National Science Foundation Division of CMMI under Award 1056077. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 16 TC 3 Z9 3 U1 1 U2 11 PU AMER INST PHYSICS PI MELVILLE PA CIRCULATION & FULFILLMENT DIV, 2 HUNTINGTON QUADRANGLE, STE 1 N O 1, MELVILLE, NY 11747-4501 USA SN 2158-3226 J9 AIP ADV JI AIP Adv. PD NOV PY 2013 VL 3 IS 11 AR 112121 DI 10.1063/1.4834335 PG 7 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 261WJ UT WOS:000327695000021 ER PT J AU Shell, SM Hawkins, EK Tsai, MS Hlaing, AS Rizzo, CJ Chazin, WJ AF Shell, Steven M. Hawkins, Edward K. Tsai, Miaw-Sheue Hlaing, Aye Su Rizzo, Carmelo J. Chazin, Walter J. TI Xeroderma pigmentosum complementation group C protein (XPC) serves as a general sensor of damaged DNA SO DNA REPAIR LA English DT Article DE XPC; Nucleotide excision repair; Base excision repair; Lesion recognition; DNA binding; High-throughput assay ID NUCLEOTIDE EXCISION-REPAIR; SITE-SPECIFIC SYNTHESIS; IN-VITRO; MOLECULAR-MECHANISMS; COMPLEX; RECOGNITION; ADDUCTS; OLIGONUCLEOTIDES; BINDING; LESIONS AB The Xeroderma pigmentosum complementation group C protein (XPC) serves as the primary initiating factor in the global genome nucleotide excision repair pathway (GG-NER). Recent reports suggest XPC also stimulates repair of oxidative lesions by base excision repair. However, whether XPC distinguishes among various types of DNA lesions remains unclear. Although the DNA binding properties of XPC have been studied by several groups, there is a lack of consensus over whether XPC discriminates between DNA damaged by lesions associated with NER activity versus those that are not. In this study we report a high-throughput fluorescence anisotropy assay used to measure the DNA binding affinity of XPC for a panel of DNA substrates containing a range of chemical lesions in a common sequence. Our results demonstrate that while XPC displays a preference for binding damaged DNA, the identity of the lesion has little effect on the binding affinity of XPC. Moreover, XPC was equally capable of binding to DNA substrates containing lesions not repaired by GG-NER. Our results suggest XPC may act as a general sensor of damaged DNA that is capable of recognizing DNA containing lesions not repaired by NER. (C) 2013 Elsevier B.V. All rights reserved. C1 [Shell, Steven M.; Chazin, Walter J.] Vanderbilt Univ, Ctr Mol Toxicol, Struct Biol Ctr, Dept Biochem, Nashville, TN 37232 USA. [Shell, Steven M.; Hawkins, Edward K.; Rizzo, Carmelo J.; Chazin, Walter J.] Vanderbilt Univ, Vanderbilt Ingram Canc Ctr, Nashville, TN 37232 USA. [Hawkins, Edward K.; Rizzo, Carmelo J.; Chazin, Walter J.] Vanderbilt Univ, Ctr Mol Toxicol, Dept Chem, Nashville, TN 37232 USA. [Tsai, Miaw-Sheue; Hlaing, Aye Su] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Chazin, WJ (reprint author), 465 21st Ave South,BIOSCI MRB 3,Suite 5140, Nashville, TN 37232 USA. EM walter.j.chazin@vanderbilt.edu FU NIH [R01 ES016561, P01 CA092584, P30 ES00267, P30 CA068485]; American Cancer Society [119569-PF-11-271-01-DMC]; [T32 ES07028] FX The authors wish to acknowledge Dan Dorset of the Vanderbilt University High-throughput Screening Core Facility for his assistance with the automated liquid handling system used in this study. This work was supported by NIH grants R01 ES016561 (to CJR, WJC), P01 CA092584 (to John A. Tainer), P30 ES00267 (to the Vanderbilt Center in Molecular Toxicology), and P30 CA068485 (to the Vanderbilt-Ingram Cancer Center). E.K.H. and S.M.S were provided pre- and post-doctoral support from training grant T32 ES07028. S.M.S is supported by postdoctoral fellowship 119569-PF-11-271-01-DMC from the American Cancer Society. NR 52 TC 18 Z9 19 U1 1 U2 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1568-7864 EI 1568-7856 J9 DNA REPAIR JI DNA Repair PD NOV PY 2013 VL 12 IS 11 BP 947 EP 953 DI 10.1016/j.dnarep.2013.08.013 PG 7 WC Genetics & Heredity; Toxicology SC Genetics & Heredity; Toxicology GA 260FA UT WOS:000327579200010 PM 24051049 ER PT J AU Kroposki, B Sen, PK Malmedal, K AF Kroposki, Benjamin Sen, Pankaj K. Malmedal, Keith TI Optimum Sizing and Placement of Distributed and Renewable Energy Sources in Electric Power Distribution Systems SO IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS LA English DT Article; Proceedings Paper CT 44th Annual Meeting of the IEEE-Industry-Applications-Society CY OCT 04-08, 2009 CL Houston, TX SP IEEE Ind Applicat Soc DE Distributed energy resources (DERs); distributed generation; distribution system; optimization; storage AB Concerns with climate change, requirements for the renewable portfolio standards, government incentives, and lowering cost of renewable and distributed energy resources (DERs) are some of the driving forces for the steeper growth in DER installations. DERs are commonly connected near the load in electric power distribution systems and include renewable energy sources such as wind and solar, fossil-fuel-based generation such as microturbines, and other distributed energy storage elements. A novel methodology is developed in this paper that optimizes the sizing and placement of DER on electrical distribution feeders based on both technical and economic considerations and tested on the IEEE 34-bus system. C1 [Kroposki, Benjamin] Natl Renewable Energy Lab, Distributed Energy Syst Integrat Grp, Golden, CO 80401 USA. [Sen, Pankaj K.] Colorado Sch Mines, Power Syst Engn Res Ctr PSerc, Golden, CO 80401 USA. [Malmedal, Keith] NEI Elect Power Engn Inc, Arvada, CO 80001 USA. [Malmedal, Keith] Univ Colorado, Denver, CO 80217 USA. RP Kroposki, B (reprint author), Natl Renewable Energy Lab, Distributed Energy Syst Integrat Grp, Golden, CO 80401 USA. EM Benjamin.kroposki@nrel.gov; psen@mines.edu; kmalmedal@neiengineering.com NR 16 TC 7 Z9 7 U1 4 U2 19 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-9994 EI 1939-9367 J9 IEEE T IND APPL JI IEEE Trans. Ind. Appl. PD NOV-DEC PY 2013 VL 49 IS 6 BP 2741 EP 2752 DI 10.1109/TIA.2013.2262661 PG 12 WC Engineering, Multidisciplinary; Engineering, Electrical & Electronic SC Engineering GA 259UT UT WOS:000327552500042 ER PT J AU Kroposki, B Sen, PK Malmedal, K AF Kroposki, Benjamin Sen, Pankaj K. Malmedal, Keith TI Selection of Distribution Feeders for Implementing Distributed Generation and Renewable Energy Applications SO IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS LA English DT Article; Proceedings Paper CT 53rd Annual IEEE Rural Electric Power Conference CY APR 26-29, 2009 CL Fort Collins, CO SP IEEE DE Distributed energy resources (DERs); distributed generation; distributed storage; distribution feeder; distribution system; optimization ID INTEGRATING PHOTOVOLTAICS; DISTRIBUTION-SYSTEMS; UTILITY; LOSSES; IMPACT AB Climate change concerns mandated renewable portfolio standards, lucrative government incentives, and accelerated cost reduction in renewables, and distributed energy applications are driving steep growth in system installations. Distributed energy resources (DERs) are not commonly connected to a bulk power transmission system but are interconnected near the load in the electric power distribution system. DER includes renewable energy such as wind and solar, fossil-fuel-based generation (micro-turbines and small gas turbines), and distributed energy storage. In this paper, a novel methodology is developed that ranks utility feeders for implementation of DER systems. This performance index is based on peak-load reduction, increased system capacity, load-generation correlation, and feeder load growth. This is based on a statistical measure that quantifies the relationship between loads and the stochastic nature of renewable resources. This allows the utility to gain insight into improved benefits from nondispatchable renewable resources such as solar and wind technologies as well as dispatchable DER technologies. C1 [Kroposki, Benjamin] Natl Renewable Energy Lab, Distributed Energy Syst Integrat Grp, Golden, CO 80401 USA. [Sen, Pankaj K.] Colorado Sch Mines, Div Engn, Golden, CO 80401 USA. [Malmedal, Keith] NEI Elect Power Engn Inc, Arvada, CO 80001 USA. RP Kroposki, B (reprint author), Natl Renewable Energy Lab, Distributed Energy Syst Integrat Grp, Golden, CO 80401 USA. EM Benjamin.kroposki@nrel.gov; psen@mines.edu; kmalmedal@neiengineering.com NR 26 TC 4 Z9 4 U1 0 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0093-9994 EI 1939-9367 J9 IEEE T IND APPL JI IEEE Trans. Ind. Appl. PD NOV-DEC PY 2013 VL 49 IS 6 BP 2825 EP 2834 DI 10.1109/TIA.2013.2262091 PG 10 WC Engineering, Multidisciplinary; Engineering, Electrical & Electronic SC Engineering GA 259UT UT WOS:000327552500051 ER PT J AU Ramani, S Reiten, MT Colestock, PL Taylor, AJ Azad, AK O'Hara, JF AF Ramani, Suchitra Reiten, Matthew T. Colestock, Patrick L. Taylor, Antoinette J. Azad, Abul K. O'Hara, John F. TI Electromagnetic Response of Finite Terahertz Metafilm Arrays Excited on Total Internal Reflection Boundaries SO IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY LA English DT Article DE Attenuated total reflection (ATR); diffraction; metamaterials; reflection; spectroscopy; surface wave; terahertz; time domain ID SURFACE-PLASMONS; WAVES; METAMATERIALS; SPECTROSCOPY; PULSES; EDGE AB Resonant excitation of planar terahertz metamaterials using attenuated total reflection is demonstrated. Experimental results reveal an anomalous increase in the resonance strength while the sample is illuminated near the edge of the metamaterial array with a finite-size terahertz beam. A re-radiation signal at the fundamental metamaterial resonance is observed on the transmission side of the total internal reflection interface where no signal was expected. Multiple theoretical approaches address the physical origins of this re-radiation signal and rich behavior has been simulated with numeric simulations. Although models indicate that surface waves could exist, radiation coupled across the total internal reflection surface appears predominately mediated by finite currents oscillating in resonators at the edge of the metafilm array. The observations could lead to a better understanding of boundary effects in finite, planar metamaterials and more accurate modeling of MM-mediated total reflection spectroscopy. C1 [Ramani, Suchitra; O'Hara, John F.] Oklahoma State Univ, Dept Elect & Comp Engn, Stillwater, OK 74078 USA. [Ramani, Suchitra; Azad, Abul K.] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. [Reiten, Matthew T.] Los Alamos Natl Lab, AOT HPE, Los Alamos, NM 87545 USA. [Colestock, Patrick L.] Los Alamos Natl Lab, ISR 2, Los Alamos, NM 87545 USA. [Taylor, Antoinette J.] Los Alamos Natl Lab, MPA DO, Los Alamos, NM 87545 USA. [O'Hara, John F.] Wavetech LLC, Perry, OK 73077 USA. RP Ramani, S (reprint author), Oklahoma State Univ, Dept Elect & Comp Engn, Stillwater, OK 74078 USA. EM s.ramani@okstate.edu; mtreiten@lanl.gov; colestoc@lanl.gov; ttaylor@lanl.gov; aazad@lanl.gov; oharaj@okstate.edu OI Azad, Abul/0000-0002-7784-7432 FU Los Alamos National Laboratory LDRD Program; National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported by the Los Alamos National Laboratory LDRD Program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences Nanoscale Science Research Center operated jointly by Los Alamos and Sandia National Laboratories. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under Contract DE-AC52-06NA25396. NR 32 TC 0 Z9 0 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-342X J9 IEEE T THZ SCI TECHN JI IEEE Trans. Terahertz Sci. Technol. PD NOV PY 2013 VL 3 IS 6 SI SI BP 709 EP 720 DI 10.1109/TTHZ.2013.2284858 PG 12 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 262GZ UT WOS:000327723600008 ER PT J AU Chowdhury, DR Azad, AK Zhang, WL Singh, R AF Chowdhury, Dibakar Roy Azad, Abul K. Zhang, Weili Singh, Ranjan TI Near Field Coupling in Passive and Active Terahertz Metamaterial Devices SO IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY LA English DT Article DE Near fields; coupling; metamaterials; plasmonics; terahertz; ultrafast; silicon ID SPLIT-RING RESONATORS; NEGATIVE-INDEX; ARRAYS AB A wide variety of optical phenomena rely on the near field manipulation and confinement of electromagnetic field in subwavelength metallic and dielectric resonators with applications ranging from the design of micro and nano scale photonic devices to super lenses and ultrasensitive sensors. In this invited paper, we present a discussion on controlling the metamaterial properties by active and passive manipulation of near field coupling in an array of split ring resonators. We show that near field coupling between the meta-atoms could lead to resonance tuning, mode splitting, and ultrafast switching in passive and active resonators. The near field coupling schemes discussed here demonstrate the application possibilities of such structures towards the design of active switches, amplitude modulators, frequency agile behaviors, and slow light devices, particularly for the terahertz frequency regime, which still suffers from the shortage of practical devices required to bridge the so called "THz gap." C1 [Chowdhury, Dibakar Roy] Australian Natl Univ, Coll Engn & Comp Sci, Ctr Sustainable Energy Syst, Canberra, ACT 0200, Australia. [Azad, Abul K.] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA. [Zhang, Weili] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA. [Singh, Ranjan] Nanyang Technol Univ, Ctr Disrupt Photon Technol, Singapore 639798, Singapore. RP Chowdhury, DR (reprint author), Australian Natl Univ, Coll Engn & Comp Sci, Ctr Sustainable Energy Syst, Canberra, ACT 0200, Australia. EM dibakarrc@gmail.com; ranjans@ntu.edu.sg RI Singh, Ranjan/B-4091-2010; Zhang, Weili/C-5416-2011; OI Singh, Ranjan/0000-0001-8068-7428; Zhang, Weili/0000-0002-8591-0200; Azad, Abul/0000-0002-7784-7432 FU U.S. National Science Foundation (NSF) FX This work was supported in part by the U.S. National Science Foundation (NSF). NR 51 TC 12 Z9 12 U1 5 U2 55 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 2156-342X J9 IEEE T THZ SCI TECHN JI IEEE Trans. Terahertz Sci. Technol. PD NOV PY 2013 VL 3 IS 6 SI SI BP 783 EP 790 DI 10.1109/TTHZ.2013.2285569 PG 8 WC Engineering, Electrical & Electronic; Optics; Physics, Applied SC Engineering; Optics; Physics GA 262GZ UT WOS:000327723600016 ER PT J AU Mitri, FG AF Mitri, F. G. TI Comment on "Effects of Multi-Scattering on the Performance of a Single-Beam Acoustic Manipulation Device" SO IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL LA English DT Editorial Material ID RADIATION FORCE; RIGID SPHERE; BESSEL BEAM; FLUID AB The concern addressed in the present commentary is to point out the omission of the azimuthal component F-phi of the axial acoustic radiation force provided in M. Az-arpeyvand, M. A. Alibakhshi, R. Self, "Effects of multi-scattering on the performance of a single-beam acoustic manipulation device,"IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 59, no. 8, pp. 1741-1749, 2012, which may suggest a miscalculation of the radiation force function Y-m and its related numerical computations. C1 Los Alamos Natl Lab, Acoust & Sensors Technol Team, Los Alamos, NM 87545 USA. RP Mitri, FG (reprint author), Los Alamos Natl Lab, Acoust & Sensors Technol Team, MPA 11,MS D429, Los Alamos, NM 87545 USA. EM mitri@lanl.gov NR 11 TC 0 Z9 0 U1 1 U2 10 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-3010 EI 1525-8955 J9 IEEE T ULTRASON FERR JI IEEE Trans. Ultrason. Ferroelectr. Freq. Control PD NOV PY 2013 VL 60 IS 11 BP 2235 EP 2236 DI 10.1109/TUFFC.2013.2821 PG 2 WC Acoustics; Engineering, Electrical & Electronic SC Acoustics; Engineering GA 262JC UT WOS:000327729700001 PM 24158280 ER PT J AU Caridade, M Oliveira, VG Agua-Doce, A Graca, L Ribeiro, RM AF Caridade, Marta Oliveira, Vanessa G. Agua-Doce, Ana Graca, Luis Ribeiro, Ruy M. TI The fate of CD4(+) T cells under tolerance-inducing stimulation: a modeling perspective SO IMMUNOLOGY AND CELL BIOLOGY LA English DT Article DE anti-CD4; foxp3; immune tolerance; mathematical modeling; proliferation kinetics ID EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS; INFECTIOUS TRANSPLANTATION TOLERANCE; NONDEPLETING ANTI-CD4; CFSE DATA; LYMPHOCYTE DIVISION; TRANSGENIC MICE; CLONAL DELETION; IN-VIVO; INDUCTION; ANTIBODIES AB Non-depleting anti-CD4 monoclonal antibodies (MAbs) induce long-term dominant tolerance mediated by regulatory T cells in several animal models of transplantation, allergy and autoimmunity. However, despite many studies on tolerance induction following CD4 blockade, the consequences of this intervention on T-cell kinetics are still unknown. Mathematical models have been useful to understand lymphocyte dynamics, estimating rates of proliferation and cell death following an intervention. Using the same strategy, we found that CD4(+) T cells activated in vitro in the presence of non-depleting anti-CD4 MAbs are prevented from undergoing optimal proliferation and show a higher frequency of apoptosis. Although the changes are small, during the course of a proliferative response, they lead to very distinct final levels of cell numbers. The importance of these mechanisms, predicted by the mathematical model, was validated by showing that lck-driven Bcl-x(L) transgenic mice, bearing T cells resistant to apoptosis, fail to become tolerant to skin grafts following CD4-blockade. Our data show that, in addition to induction of regulatory T cells, CD4 blockade has a marked effect in the effector T-cell pool by the combined action of hindering proliferation while favoring apoptosis. It is, therefore, the combination of all those mechanisms that leads to stable tolerance. C1 [Caridade, Marta; Oliveira, Vanessa G.; Agua-Doce, Ana; Graca, Luis; Ribeiro, Ruy M.] Univ Lisbon, Fac Med, Inst Mol Med, P-1649028 Lisbon, Portugal. [Caridade, Marta; Oliveira, Vanessa G.; Agua-Doce, Ana; Graca, Luis] Gulbenkian Inst Sci, Oeiras, Portugal. [Ribeiro, Ruy M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Graca, L (reprint author), Univ Lisbon, Fac Med, Inst Mol Med, Ave Prof Egas Moniz, P-1649028 Lisbon, Portugal. EM lgraca@fm.ul.pt; ruy@lanl.gov RI Graca, Luis/B-8887-2008; Caridade, Marta/L-5045-2013; Agua-Doce, Ana/L-2997-2014; OI Graca, Luis/0000-0001-6935-8500; Caridade, Marta/0000-0001-5294-1329; Goncalves de Oliveira, Vanessa Alexandra/0000-0001-6884-2675; Agua-Doce, Ana/0000-0002-0466-7297; Ribeiro, Ruy/0000-0002-3988-8241 FU Fundacao para a Ciencia e Tecnologia, Portugal [PIC/IC/82895/2007, PTDC/SAU-TOX/114424/2009]; European Union [PCOFUND-GA-2009-246542]; Fundacao para a Ciencia e Tecnologia, Portugal FX This work was funded by grants number PIC/IC/82895/2007 and PTDC/SAU-TOX/114424/2009 from Fundacao para a Ciencia e Tecnologia, Portugal (to Luis Graca). Ruy M Ribeiro has received funding from the European Union 7th Framework Program under grant no PCOFUND-GA-2009-246542 and from Fundacao para a Ciencia e Tecnologia, Portugal. NR 45 TC 1 Z9 1 U1 2 U2 6 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 0818-9641 EI 1440-1711 J9 IMMUNOL CELL BIOL JI Immunol. Cell Biol. PD NOV-DEC PY 2013 VL 91 IS 10 BP 652 EP 660 DI 10.1038/icb.2013.63 PG 9 WC Cell Biology; Immunology SC Cell Biology; Immunology GA 260FT UT WOS:000327581100010 PM 24145855 ER PT J AU Liu, J Ru, P Zhang, WN Wong, CY AF Liu, Jie Ru, Peng Zhang, Wei-Ning Wong, Cheuk-Yin TI CHAOTIC PARAMETER lambda IN HANBURY-BROWN-TWISS INTERFEROMETRY IN AN ANISOTROPIC BOSON GAS MODEL SO INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS LA English DT Article DE Chaotic parameter; Bose-Einstein condensation; two-pion interferometry; high energy heavy-ion collisions ID HEAVY-ION COLLISIONS AB Using and two-body density matrices, we calculate the spatial and momentum distributions, two-particle Hanbury-Brown-Twiss (HBT) correlation functions, and the chaotic parameter lambda in HBT interferometry for the systems of boson gas within the harmonic oscillator potentials with anisotropic frequencies in transverse and longitudinal directions. The HBT chaotic parameter, which can be obtained by measuring the correlation functions at zero relative momentum of the particle pair, is related to the degree of Bose-Einstein condensation and thus the system environment. We investigate the effects of system temperature, particle number and the average momentum of the particle pair on the chaotic parameter. The value of lambda decreases with the condensed fraction, f(0). It is one for f(0) = 0 and zero for f(0) = 1. For a certain f(0) between 0 and 1, we find that lambda increases with the average momentum of the particle pair and decreases with the particle number of system. The results of lambda are sensitive to the ratio, nu = w(z)/w(rho), of the frequencies in longitudinal and transverse directions. They are smaller for larger nu when w(rho), is fixed. In the heavy-ion collisions at the Large Hadron Collider (LHC) energy the large identical pion multiplicity may possibly lead to a considerable Bose-Einstein condensation. Its effect on the chaotic parameter in two-pion interferometry is worth considering in earnest. C1 [Liu, Jie; Ru, Peng; Zhang, Wei-Ning] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Liaoning, Peoples R China. [Zhang, Wei-Ning] Harbin Inst Technol, Dept Phys, Harbin 150006, Heilongjiang, Peoples R China. [Wong, Cheuk-Yin] Oak Ridge Natl Lab, Div Phys, Oak Ridge, TN 37831 USA. RP Zhang, WN (reprint author), Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Liaoning, Peoples R China. EM wnzhang@dlut.edu.cn; wongc@ornl.gov FU National Natural Science Foundation of China [11075027, 11275037] FX This research was supported by the National Natural Science Foundation of China under Grant Nos. 11075027 and 11275037. NR 19 TC 2 Z9 2 U1 0 U2 1 PU WORLD SCIENTIFIC PUBL CO PTE LTD PI SINGAPORE PA 5 TOH TUCK LINK, SINGAPORE 596224, SINGAPORE SN 0218-3013 EI 1793-6608 J9 INT J MOD PHYS E JI Int. J. Mod. Phys. E-Nucl. Phys. PD NOV PY 2013 VL 22 IS 11 AR 1350083 DI 10.1142/S0218301313500833 PG 25 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 264BA UT WOS:000327850700008 ER PT J AU Holden, NE Coplen, TB AF Holden, Norman E. Coplen, Tyler B. TI ConfChem Conference on A Virtual Colloquium to Sustain and Celebrate IYC 2011 Initiatives in Global Chemical Education: The IUPAC Periodic Table of Isotopes for the Educational Community SO JOURNAL OF CHEMICAL EDUCATION LA English DT Article DE Continuing Education; General Public; Inorganic Chemistry; Public Understanding/Outreach; Isotopes; Nuclear Radiochemistry; Periodicity/Periodic Table AB The IUPAC Periodic Table of the Isotopes (www.ciaaw.org) was prepared as an educational outreach effort to expose teachers, students, and the general public to the existence of both stable and radioactive isotopes of the chemical elements. This Table provides information on the isotopes of each element, including the mass number and fraction of each isotope in a stable or a long-lived radioactive chemical element. These data allow scientists to determine the atomic weight of each element, which connects the microscopic and the macroscopic worlds. For many elements, there is a variation in the fraction of an element's isotopes in naturally occurring substances. The atomic weight is variable beyond its measurement uncertainty and the upper and lower bounds of the standard atomic weight are presented as an interval, rather than as a value with uncertainty, for 10 elements. The Table provides examples of the importance of both the stable and radioactive isotopes in our everyday world because of the variability of the stable isotope ratios or the radioactive decay of the unstable isotopes. There are 440 examples of applications to our everyday life. Applications, such as medical, industrial, geo-chronological, earth and planetary science, biological and forensic science, and anthropological are shown. Readers of the conference paper responded with questions, and the answers to the questions are included. This communication summarizes one of the invited papers to the ConfChem online conference A Virtual Colloquium to Sustain and Celebrate IYC 2011 Initiates in Global Chemistry Education held from May 18 to June 28, 2012, and jointly hosted by the ACS DivCHED Committee on Computers in Chemical Education and the IUPAC Committee on Chemistry Education. C1 [Holden, Norman E.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Coplen, Tyler B.] US Geol Survey, Reston, VA 20192 USA. RP Holden, NE (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM holden@bnl.gov NR 0 TC 1 Z9 1 U1 0 U2 10 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 0021-9584 EI 1938-1328 J9 J CHEM EDUC JI J. Chem. Educ. PD NOV PY 2013 VL 90 IS 11 BP 1550 EP 1551 DI 10.1021/ed3008236 PG 2 WC Chemistry, Multidisciplinary; Education, Scientific Disciplines SC Chemistry; Education & Educational Research GA 262PE UT WOS:000327747900033 ER PT J AU Kim, D Schweiger, MJ AF Kim, Dongsang Schweiger, Michael J. TI Incorporation and distribution of rhenium in a borosilicate glass melt heat treated in a sealed ampoule SO JOURNAL OF NON-CRYSTALLINE SOLIDS LA English DT Article DE Rhenium; Technetium; Solubility; Low-activity waste; Borosilicate glass AB We investigated a mass balance of rhenium (used as a surrogate for technetium-99) in a borosilicate glass that was mixed with excess Re source (KReO4) beyond its solubility and heat treated in a vacuum-sealed fused silica ampoule. Distribution of Re in the bulk of the glass, in a salt phase formed on the melt surface, and in condensate material deposited on the ampoule wall was evaluated to understand the Re migration into different phases during the reaction between the molten glass and KReO4. The information gained from this study will contribute to an effort to understand the mechanism of technetium retention in, or escape from, glass melt during early stages of glass batch melting, which is a goal of the present series of studies. (C) 2013 Elsevier B.V. All rights reserved. C1 [Kim, Dongsang; Schweiger, Michael J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Kim, D (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd, Richland, WA 99352 USA. EM dongsang.kim@pnnl.gov FU U.S. Department of Energy's Waste Treatment and Immobilization Plant Federal Project Office; U.S. Department of Energy [DE-AC05-76RL01830] FX This work was supported by the U.S. Department of Energy's Waste Treatment and Immobilization Plant Federal Project Office under the direction of Dr. Albert A. Kruger. The authors greatly appreciate Dr. John McCloy for his helpful suggestions. Pacific Northwest National Laboratory is operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC05-76RL01830. NR 9 TC 2 Z9 2 U1 1 U2 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0022-3093 EI 1873-4812 J9 J NON-CRYST SOLIDS JI J. Non-Cryst. Solids PD NOV 1 PY 2013 VL 379 BP 123 EP 126 DI 10.1016/j.jnoncrysol.2013.07.031 PG 4 WC Materials Science, Ceramics; Materials Science, Multidisciplinary SC Materials Science GA 260DG UT WOS:000327574600017 ER PT J AU Leggett, CJ Jensen, MP AF Leggett, Christina J. Jensen, Mark P. TI Studies of Size-Based Selectivity in Aqueous Ternary Complexes of Americium(III) or Lanthanide(III) Cations SO JOURNAL OF SOLUTION CHEMISTRY LA English DT Article DE Ternary complexes; Thermodynamics; Americium; Lanthanides; Calorimetry ID MIXED-LIGAND COMPLEXES; DICARBOXYLIC-ACIDS; STABILITY-CONSTANTS; SINGLE-CRYSTAL; RARE-EARTHS; F-ELEMENTS; THERMODYNAMICS; LUMINESCENCE; EDTA; AM3+ AB Spectrophotometric and calorimetric titrations were used to determine the equilibrium constants (log(10) K (111)) and enthalpies of formation (Delta H (111)) for aqueous ternary complexes of the form M(L-a)(L-b) (M = Nd3+, Sm3+, Tb3+, Ho3+, Er3+, or Am3+; L-a = DTPA(5-), DO3A(3-), or CDTA(4-); L-b = oxalate (Ox), malonate (Mal), or iminodiacetate (IDA)). Inner-sphere ternary complexes were readily formed with the septadentate DO3A (1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid) and hexadentate CDTA (trans-1,2-diaminocyclohexanetetraacetic acid) ligands, whose binary complexes have residual metal-coordinated water molecules that are readily displaced by the smaller secondary ligands. The stability constants for the formation of lanthanide-CDTA complexes with Ox, Mal, and IDA generally increase with decreasing ionic radius when steric hindrance is minimal, with the trend in the M(CDTA)(-) formation constants overshadowing any size-based reversal in the stepwise ternary complexation constants. Similar ternary complexes with DO3A showed little increase in thermodynamic stability compared to analogous CDTA complexes and no preference for larger Ln cations. The octadentate DTPA (diethylenetriaminepentaacetic acid) ligand proved too large to form ternary complexes to a measurable extent with any of the secondary ligands investigated, despite the presence of one residual inner sphere water molecule. C1 [Leggett, Christina J.; Jensen, Mark P.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. [Leggett, Christina J.] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA. RP Jensen, MP (reprint author), Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM mjensen@anl.gov RI Jensen, Mark/G-9131-2012 OI Jensen, Mark/0000-0003-4494-6693 FU U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Research and Development Program [DE-AC0206CH11357]; U.S. DOE Office of Civilian Radioactive Waste Management Fellowship FX Work supported by the U.S. Department of Energy, Assistant Secretary of the Office of Nuclear Energy, Fuel Cycle Research and Development Program, under contract number DE-AC0206CH11357. C.J.L. acknowledges support by a U.S. DOE Office of Civilian Radioactive Waste Management Fellowship. NR 38 TC 4 Z9 4 U1 1 U2 16 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-9782 EI 1572-8927 J9 J SOLUTION CHEM JI J. Solut. Chem. PD NOV PY 2013 VL 42 IS 11 BP 2119 EP 2136 DI 10.1007/s10953-013-0098-3 PG 18 WC Chemistry, Physical SC Chemistry GA 264FD UT WOS:000327861500004 ER PT J AU Benz, A Campione, S Liu, S Montano, I Klem, JF Allerman, A Wendt, JR Sinclair, MB Capolino, F Brener, I AF Benz, A. Campione, S. Liu, S. Montano, I. Klem, J. F. Allerman, A. Wendt, J. R. Sinclair, M. B. Capolino, F. Brener, I. TI Strong coupling in the sub-wavelength limit using metamaterial nanocavities SO NATURE COMMUNICATIONS LA English DT Article ID SEMICONDUCTOR QUANTUM-WELLS; ELECTROMAGNETIC ENERGY; INTERSUBBAND; REFRACTION; EMISSION; CRYSTAL AB The interaction between cavity modes and optical transitions leads to new coupled light-matter states in which the energy is periodically exchanged between the matter states and the optical mode. Here we present experimental evidence of optical strong coupling between modes of individual sub-wavelength metamaterial nanocavities and engineered optical transitions in semiconductor heterostructures. We show that this behaviour is generic by extending the results from the mid-infrared (similar to 10 mu m) to the near-infrared (similar to 1.5 mu m). Using mid-infrared structures, we demonstrate that the light-matter coupling occurs at the single resonator level and with extremely small interaction volumes. We calculate a mode volume of 4.9 x 10(-4) (lambda/n)(3) from which we infer that only similar to 2,400 electrons per resonator participate in this energy exchange process. C1 [Benz, A.; Liu, S.; Brener, I.] Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, Albuquerque, NM 87185 USA. [Benz, A.; Liu, S.; Montano, I.; Klem, J. F.; Allerman, A.; Wendt, J. R.; Sinclair, M. B.; Brener, I.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Campione, S.; Capolino, F.] Univ Calif Irvine, Dept Elect Engn & Comp Sci, Irvine, CA 92697 USA. RP Benz, A (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol CINT, POB 5800, Albuquerque, NM 87185 USA. EM anbenz@sandia.gov; ibrener@sandia.gov RI Liu, Sheng/P-6029-2014; Campione, Salvatore/A-2349-2015 OI Liu, Sheng/0000-0003-0967-4514; Campione, Salvatore/0000-0003-4655-5485 FU Laboratory Directed Research and Development program at Sandia National Laboratories; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Portions of this work were supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 42 TC 39 Z9 39 U1 5 U2 48 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2013 VL 4 AR 2882 DI 10.1038/ncomms3882 PG 8 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 266NI UT WOS:000328030400001 PM 24287692 ER PT J AU Fang, L Jia, Y Mishra, V Chaparro, C Vlasko-Vlasov, VK Koshelev, AE Welp, U Crabtree, GW Zhu, S Zhigadlo, ND Katrych, S Karpinski, J Kwok, WK AF Fang, L. Jia, Y. Mishra, V. Chaparro, C. Vlasko-Vlasov, V. K. Koshelev, A. E. Welp, U. Crabtree, G. W. Zhu, S. Zhigadlo, N. D. Katrych, S. Karpinski, J. Kwok, W. K. TI Huge critical current density and tailored superconducting anisotropy in SmFeAsO0.8F0.15 by low-density columnar-defect incorporation SO NATURE COMMUNICATIONS LA English DT Article ID PNICTIDE SUPERCONDUCTORS; MAGNETIZATION; CONDUCTORS; CRYSTALS AB Iron-based superconductors could be useful for electricity distribution and superconducting magnet applications because of their relatively high critical current densities and upper critical fields. SmFeAsO0.8F0.15 is of particular interest as it has the highest transition temperature among these materials. Here we show that by introducing a low density of correlated nano-scale defects into this material by heavy-ion irradiation, we can increase its critical current density to up to 2 x 10(7) A cm(-2) at 5 K-the highest ever reported for an iron-based superconductor-without reducing its critical temperature of 50 K. We also observe a notable reduction in the thermodynamic superconducting anisotropy, from 8 to 4 upon irradiation. We develop a model based on anisotropic electron scattering that predicts that the superconducting anisotropy can be tailored via correlated defects in semimetallic, fully gapped type II superconductors. C1 [Fang, L.; Jia, Y.; Mishra, V.; Chaparro, C.; Vlasko-Vlasov, V. K.; Koshelev, A. E.; Welp, U.; Crabtree, G. W.; Kwok, W. K.] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Zhu, S.] Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. [Zhigadlo, N. D.; Katrych, S.; Karpinski, J.] Swiss Fed Inst Technol, Solid State Phys Lab, CH-8093 Zurich, Switzerland. [Katrych, S.; Karpinski, J.] Ecole Polytech Fed Lausanne, Inst Condensed Matter Phys, CH-1015 Lausanne, Switzerland. RP Fang, L (reprint author), Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA. EM lfang@anl.gov; wkwok@anl.gov RI Koshelev, Alexei/K-3971-2013 OI Koshelev, Alexei/0000-0002-1167-5906 FU Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357]; EC Research Council; Swiss National Science Foundation; National Center of Competence in Research MaNEP (Materials with Novel Electronic Properties); US Department of Energy, Office of Science, Office of Basic Energy Sciences FX Critical current measurements and theory were supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (L.F., Y.J., V.M., A.E.K., W.K.K., G.W.C.), specific heat and magneto-optical measurements were supported by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 (C.C., V.K. V.-V., U.W.). J.K. and S.K. acknowledge support of the EC Research Council project SuperIron. N.D.Z. acknowledges the support of the Swiss National Science Foundation and the National Center of Competence in Research MaNEP (Materials with Novel Electronic Properties). NR 36 TC 24 Z9 24 U1 8 U2 43 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2013 VL 4 AR 2655 DI 10.1038/ncomms3655 PG 6 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 266IS UT WOS:000328017900001 PM 24189627 ER PT J AU Liu, J Kargarian, M Kareev, M Gray, B Ryan, PJ Cruz, A Tahir, N Chuang, YD Guo, JH Rondinelli, JM Freeland, JW Fiete, GA Chakhalian, J AF Liu, Jian Kargarian, Mehdi Kareev, Mikhail Gray, Ben Ryan, Phil J. Cruz, Alejandro Tahir, Nadeem Chuang, Yi-De Guo, Jinghua Rondinelli, James M. Freeland, John W. Fiete, Gregory A. Chakhalian, Jak TI Heterointerface engineered electronic and magnetic phases of NdNiO3 thin films SO NATURE COMMUNICATIONS LA English DT Article ID METAL-INSULATOR-TRANSITION; RAY-ABSORPTION SPECTROSCOPY; AUGMENTED-WAVE METHOD; EQUALS RARE-EARTH; RNIO3 PEROVSKITES; HUBBARD-MODEL; BAND-GAPS; SPECTRA; SYSTEMS; OXIDE AB Mott physics is characterized by an interaction-driven metal-to-insulator transition in a partially filled band. In the resulting insulating state, antiferromagnetic orders of the local moments typically develop, but in rare situations no long-range magnetic order appears, even at zero temperature, rendering the system a quantum spin liquid. A fundamental and technologically critical question is whether one can tune the underlying energetic landscape to control both metal-to-insulator and Neel transitions, and even stabilize latent metastable phases, ideally on a platform suitable for applications. Here we demonstrate how to achieve this in ultrathin films of NdNiO3 with various degrees of lattice mismatch, and report on the quantum critical behaviours not reported in the bulk by transport measurements and resonant X-ray spectroscopy/scattering. In particular, on the decay of the antiferromagnetic Mott insulating state into a non-Fermi liquid, we find evidence of a quantum metal-to-insulator transition that spans a non-magnetic insulating phase. C1 [Liu, Jian; Kareev, Mikhail; Gray, Ben; Chakhalian, Jak] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. [Liu, Jian; Cruz, Alejandro; Tahir, Nadeem; Chuang, Yi-De; Guo, Jinghua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Liu, Jian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Kargarian, Mehdi; Fiete, Gregory A.] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA. [Ryan, Phil J.; Freeland, John W.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Rondinelli, James M.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. RP Liu, J (reprint author), Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA. EM jian.liu@berkeley.edu RI Rondinelli, James/A-2071-2009; Liu, Jian/I-6746-2013; Chakhalian, Jak/F-2274-2015 OI Rondinelli, James/0000-0003-0508-2175; Liu, Jian/0000-0001-7962-2547; FU DOD-ARO [0402-17291, W911NF-09-1-0527, W911NF-12-1-0573]; NSF [DMR-0747808, DMR-0955778]; DARPA [D13AP00052, N66001-12-1-4224]; ALS Doctoral Fellowship programme; US DOE, Office of Science, BES [DE-AC02-06CH11357]; Office of Science, Office of Basic Energy Sciences of the US Department of Energy [DE-AC02-05CH11231]; US Department of Energy, Office of Science [DE-AC02-06CH11357] FX We acknowledge numerous insightful discussions with D. I. Khomskii, A.J. Millis, D. D. Sarma, S. Okamoto, G. A. Sawatzky, S. Papanikolaou, D. Maslov and M. Lawler. We also acknowledge B. Dabrowski for providing the bulk reference powders. J.C. was supported by DOD-ARO under the Grant number 0402-17291 and NSF Grant number DMR-0747808, M. K. and G. A. F. by DOD-ARO Grant number W911NF-09-1-0527, W911NF-12-1-0573, DARPA D13AP00052 and NSF Grant number DMR-0955778. J.M.R. was supported by DARPA under Award number N66001-12-1-4224. J.L. acknowledges the support from the ALS Doctoral Fellowship programme. The density functional studies made use of the CARBON cluster at the Center for Nanoscale Materials (Argonne National Laboratory) supported by the US DOE, Office of Science, BES, under Contract number DE-AC02-06CH11357. Work at ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract number DE-AC02-05CH11231. Work at the APS is supported by the US Department of Energy, Office of Science under Grant number DE-AC02-06CH11357. NR 57 TC 42 Z9 42 U1 9 U2 96 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2013 VL 4 AR 2714 DI 10.1038/ncomms3714 PG 11 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 266KB UT WOS:000328021400003 PM 24193317 ER PT J AU Wen, H Gomella, AA Patel, A Lynch, SK Morgan, NY Anderson, SA Bennett, EE Xiao, XH Liu, C Wolfe, DE AF Wen, Han Gomella, Andrew A. Patel, Ajay Lynch, Susanna K. Morgan, Nicole Y. Anderson, Stasia A. Bennett, Eric E. Xiao, Xianghui Liu, Chian Wolfe, Douglas E. TI Subnanoradian X-ray phase-contrast imaging using a far-field interferometer of nanometric phase gratings SO NATURE COMMUNICATIONS LA English DT Article ID FOURIER-TRANSFORM METHOD; UNWRAPPING ALGORITHM; DIFFRACTION; TOMOGRAPHY; RETRIEVAL; MICROTOMOGRAPHY; RADIOGRAPHY; MICROSCOPY; RADIATION; RATIO AB Hard X-ray phase-contrast imaging characterizes the electron density distribution in an object without the need for radiation absorption. The power of phase contrast to resolve subtle changes, such as those in soft tissue structures, lies in its ability to detect minute refractive bending of X-rays. Here we report a far-field, two-arm interferometer based on the new nanometric phase gratings, which can detect X-ray refraction with subnanoradian sensitivity, and at the same time overcomes the fundamental limitation of ultra-narrow bandwidths (Delta lambda/lambda similar to 10(-4)) of the current, most sensitive methods based on crystal interferometers. On a 1.5% bandwidth synchrotron source, we demonstrate clear visualization of blood vessels in unstained mouse organs in simple projection views, with over an order-of-magnitude higher phase contrast than current near-field grating interferometers. C1 [Wen, Han; Gomella, Andrew A.; Patel, Ajay; Lynch, Susanna K.; Morgan, Nicole Y.; Anderson, Stasia A.; Bennett, Eric E.] NIH, Bethesda, MD 20892 USA. [Xiao, Xianghui; Liu, Chian] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA. [Wolfe, Douglas E.] Penn State Univ, State Coll, PA 16804 USA. RP Wen, H (reprint author), NIH, Bldg 10, Bethesda, MD 20892 USA. EM han.wen@nih.gov FU US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank the staff of the NanoFab facility of National Institute of Standards and Technology, Gaithersburg, Maryland, for their assistance with fabrication of the gratings; the Animal Surgery and Resources Core and Dr. Alan Michelson of NHLBI, NIH, for their help with biological specimens; Dr. Dumitru Mazilu for his help with mechanical design and fabrication. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no DE-AC02-06CH11357. NR 56 TC 11 Z9 11 U1 2 U2 19 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 2041-1723 J9 NAT COMMUN JI Nat. Commun. PD NOV PY 2013 VL 4 AR 2659 DI 10.1038/ncomms3659 PG 9 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 266IU UT WOS:000328018100001 PM 24189696 ER PT J AU Becker-Weimann, S Xiong, GF Furuta, S Han, J Kuhn, I Akavia, UD Pe'er, D Bissell, MJ Xu, R AF Becker-Weimann, Sabine Xiong, Gaofeng Furuta, Saori Han, Ju Kuhn, Irene Akavia, Uri-David Pe'er, Dana Bissell, Mina J. Xu, Ren TI NFkB disrupts tissue polarity in 3D by preventing integration of microenvironmental signals SO ONCOTARGET LA English DT Article DE Disorganization gene signature; p65; RelB; three-dimensional tissue structure; tissue polarity ID BREAST EPITHELIAL-CELLS; FACTOR-KAPPA-B; 3-DIMENSIONAL CULTURE; EXTRACELLULAR-MATRIX; CANCER CELLS; ALPHA-6-BETA-4 INTEGRIN; RECIPROCAL INTERACTIONS; GENE-EXPRESSION; IN-VIVO; GROWTH AB The microenvironment of cells controls their phenotype, and thereby the architecture of the emerging multicellular structure or tissue. We have reported more than a dozen microenvironmental factors whose signaling must be integrated in order to effect an organized, functional tissue morphology. However, the factors that prevent integration of signaling pathways that merge form and function are still largely unknown. We have identified nuclear factor kappa B (NFkB) as a transcriptional regulator that disrupts important microenvironmental cues necessary for tissue organization. We compared the gene expression of organized and disorganized epithelial cells of the HMT-3522 breast cancer progression series: the non-malignant S1 cells that form polarized spheres ('acini'), the malignant T4-2 cells that form large tumor-like clusters, and the 'phenotypically reverted' T4-2 cells that polarize as a result of correction of the microenvironmental signaling. We identified 180 genes that display an increased expression in disorganized compared to polarized structures. Network, GSEA and transcription factor binding site analyses suggested that NFkB is a common activator for the 180 genes. NFkB was found to be activated in disorganized breast cancer cells, and inhibition of microenvironmental signaling via EGFR, beta1 integrin, MMPs, or their downstream signals suppressed its activation. The postulated role of NFkB was experimentally verified: Blocking the NFkB pathway with a specific chemical inhibitor or shRNA induced polarization and inhibited invasion of breast cancer cells in 3D cultures. These results may explain why NFkB holds promise as a target for therapeutic intervention: Its inhibition can reverse the oncogenic signaling involved in breast cancer progression and integrate the essential microenvironmental control of tissue architecture. C1 [Becker-Weimann, Sabine; Furuta, Saori; Han, Ju; Kuhn, Irene; Bissell, Mina J.] Lawrence Berkeley Natl Lab 1, Div Life Sci, Berkeley, CA 94720 USA. [Xiong, Gaofeng; Xu, Ren] Univ Kentucky, Markey Canc Ctr, Lexington, KY USA. [Xu, Ren] Univ Kentucky, Dept Mol & Biomed Pharmacol, Lexington, KY USA. [Akavia, Uri-David; Pe'er, Dana] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA. RP Bissell, MJ (reprint author), Lawrence Berkeley Natl Lab 1, Div Life Sci, Berkeley, CA 94720 USA. EM mjbissell@lbl.gov; ren.xu2010@uky.edu FU U.S. Department of Energy, the Office of Biological and Environmental Research [DE-AC02-05CH1123, 03-76SF00098]; National Cancer Institute [R01CA064786, U54CA143836, U54CA112970]; U.S. Department of Defense Medical and Materiel Command [W81XWH0810736]; Breast Cancer Research Foundation; AHA [12SDG8600000]; ACS [IRG 85-001-22]; Physical Sciences Oncology Center FX This work was supported by grants from the U.S. Department of Energy, the Office of Biological and Environmental Research (contract no. DE-AC02-05CH1123) and a Distinguished Fellow Award from the above (contract no. 03-76SF00098), from the National Cancer Institute (awards R01CA064786, U54CA143836 and U54CA112970) to MJB and SB, the U.S. Department of Defense Medical and Materiel Command innovator awards (contract no.W81XWH0810736) to MJB, in part by a grant from the Breast Cancer Research Foundation to MJB, and in part by AHA (12SDG8600000) and ACS grants (IRG 85-001-22) to R. X. R. X. thanks Dr. Catherine Anthony for editorial assistance. We (MJB and SB) thank the Physical Sciences Oncology Center for providing support for completion of this work. NR 39 TC 14 Z9 15 U1 1 U2 6 PU IMPACT JOURNALS LLC PI ALBANY PA 6211 TIPTON HOUSE, STE 6, ALBANY, NY 12203 USA SN 1949-2553 J9 ONCOTARGET JI Oncotarget PD NOV PY 2013 VL 4 IS 11 BP 2010 EP 2020 PG 11 WC Oncology; Cell Biology SC Oncology; Cell Biology GA 261KW UT WOS:000327664900017 PM 24243820 ER PT J AU Cui, HY Hanus, R Kessler, MR AF Cui, Hongyu Hanus, Riley Kessler, Michael R. TI Degradation of ROMP-based bio-renewable polymers by UV radiation SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE UV degradation; Photo-degradation; Bio-renewable; Auto-oxidation ID TRANSFORM-INFRARED-SPECTROSCOPY; OPENING METATHESIS POLYMERIZATION; POLYPROPYLENE; OXIDATION; OIL; POLYETHYLENE; MECHANISMS; BEHAVIOR; PROFILE; FILMS AB The degradation of a bio-renewable polymer under UV exposure was studied using various methods. Degradation of the bio-renewable polymer increased with increasing exposure time. Enhanced cross-link density in the early stage of degradation was confirmed by Soxhlet extraction. Tensile testing showed a transition from ductile failure to brittle fracture. Surface cracks and embrittlement were primary reasons for most reductions in mechanical properties, such as tensile strength and breaking strain. The effects of degradation were confined to the surface of thick bio-based polymer specimens, confirmed by both SEM and PAS-FTIR. Depth profile studies of degraded samples showed that the concentration of oxidation products, such as hydroxyl and carbonyl groups, varied with depth depending on the diffusion of oxygen. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Cui, Hongyu; Hanus, Riley; Kessler, Michael R.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. [Kessler, Michael R.] US DOE, Ames Lab, Ames, IA 50011 USA. [Kessler, Michael R.] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA. RP Kessler, MR (reprint author), Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. EM MichaelR.Kessler@wsu.edu RI Kessler, Michael/C-3153-2008 OI Kessler, Michael/0000-0001-8436-3447 FU National Science Foundation (NSF) [0954314]; Consortium for Plant Biotechnology Research (CPBR) through USEPA grant [EM-83438801] FX Funding from the National Science Foundation (NSF) through Award 0954314, and the Consortium for Plant Biotechnology Research (CPBR) through USEPA grant EM-83438801, is gratefully acknowledged. The contents of the paper are solely the responsibility of the grantee and do not necessarily represent the views of the USEPA. Further, USEPA does not endorse the purchase of any commercial products or services mentioned in this publication. NR 23 TC 5 Z9 5 U1 3 U2 24 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 EI 1873-2321 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD NOV PY 2013 VL 98 IS 11 BP 2357 EP 2365 DI 10.1016/j.polymdegradstab.2013.08.003 PG 9 WC Polymer Science SC Polymer Science GA 264VJ UT WOS:000327908800030 ER PT J AU Anderson, BJ AF Anderson, Benjamin J. TI Thermal stability and lifetime estimates of a high temperature epoxy by T-g reduction SO POLYMER DEGRADATION AND STABILITY LA English DT Article DE Epoxy; Degradation; Thermal aging; Lifetime ID GLASS-TRANSITION TEMPERATURE; NON-ARRHENIUS BEHAVIOR; DEGRADATION; PREDICTION; POLYMERS; KINETICS; RESINS; OXIDATION AB Thermal degradation of a high temperature epoxy network is studied in terms glass transition temperature (T-g) reduction over a temperature window encompassing the T-g of the network. The T-g is shown to decrease as the network is thermally aged at elevated temperatures in air and in argon. The duration of the aging experiments is extended to long time such that the absolute T-g reduction approaches a long time reduction plateau. Degradation is dominated by non-oxidative pyrolysis with a small contribution from diffusion limited thermal oxidative degradation at the surface. A time-temperature superposition is constructed from the extent of T-g reduction of samples aged in air and the thermal shift factors are shown to have Arrhenius scaling behavior. An activation energy is extracted that agrees with previous activation energy measurements derived from other property measurements of the same network aged under similar conditions. The agreement of the activation energy with past results shows that T-g reduction is controlled by the same degradation mechanism and may be used as an observable for lifetime estimates when thermal degradation is pyrolytic in nature. The extent of T-g reduction is modeled with an autocatalytic rate expression and compared to previous property measurements to show the difference in sensitivity of observable material properties on degradation. (C) 2013 Elsevier Ltd. All rights reserved. C1 Sandia Natl Labs, Mat Sci & Engn Ctr, Albuquerque, NM 87185 USA. RP Anderson, BJ (reprint author), Sandia Natl Labs, Mat Sci & Engn Ctr, POB 5800, Albuquerque, NM 87185 USA. EM bjander@sandia.gov FU United States Department of Energy [DE-AC04-94AL85000] FX The author thanks Joanetta Bruhn for material sample preparation, thermal aging of samples, and DMA testing. The author also thanks Mat Celina for helpful comments with regard to preparation of the manuscript. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. NR 25 TC 3 Z9 3 U1 3 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0141-3910 EI 1873-2321 J9 POLYM DEGRAD STABIL JI Polym. Degrad. Stabil. PD NOV PY 2013 VL 98 IS 11 BP 2375 EP 2382 DI 10.1016/j.polymdegradstab.2013.08.001 PG 8 WC Polymer Science SC Polymer Science GA 264VJ UT WOS:000327908800032 ER PT J AU Schmidt, MW Gordon, MS AF Schmidt, Michael W. Gordon, Mark S. TI The Decomposition of Hydrazine in the Gas Phase and over an Iridium Catalyst SO ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS LA English DT Article DE Hydrazine; Gas Phase; Ir Catalyst; Quantum Chemistry ID SUPPORTED METAL-CLUSTERS; REVERSE HYDROGEN SPILLOVER; MOLECULAR-ORBITAL METHODS; PD AUTOMOTIVE CATALYSTS; GAMMA-ALUMINA SURFACES; OPEN-SHELL SYSTEMS; TETRAIRIDIUM CLUSTERS; PERTURBATION-THEORY; BASIS-SETS; AB-INITIO AB Hydrazine is an important rocket fuel, used as both a monopropellant and a bipropellant. This paper presents theoretical results to complement the extensive experimental studies of the gas phase and Ir catalyzed decompositions involved in the monopropellant applications of hydrazine. Gas phase electronic structure theory calculations that include electron correlation predict that numerous molecular and free radical reactions occur within the same energy range as the basic free radical pathways: NN bond breaking around 65 kcal/mol and NH bond breaking around 81 kcal/mol. The data suggest that a revision to existing kinetics modeling is desirable, based on the energetics and the new elementary steps reported herein. A supported Ir-6 octahedron model for the Shell 405 Iridium catalyst used in thrusters was developed. Self-Consistent Field and electron correlation calculations (with core potentials and associated basis sets) find a rich chemistry for hydrazine on this catalyst model. The model catalyst provides dramatically lower NN and NH bond cleavage energies and an even smaller barrier to breaking the NH bond by NH2 abstractions. Thus, the low temperature decomposition over the catalyst is interpreted in terms of consecutive NH2 abstractions to produce ammonia and nitrogen. The higher temperature channel, which has hydrogen and nitrogen products, may be due to a mixture of two mechanisms. These two mechanisms are successive NH cleavages with surface H + H recombinations, and the same type of assisted H-2 eliminations found to occur in the gas phase part of this study. C1 [Gordon, Mark S.] Iowa State Univ, Dept Chem, Ames, IA 50011 USA. Iowa State Univ, Ames Lab, Ames, IA 50011 USA. RP Gordon, MS (reprint author), Iowa State Univ, Dept Chem, Ames, IA 50011 USA. EM mark@si.msg.chem.iastate.edu FU Air Force Office of Scientific Research under AFOSR Award [FA9550-09-1-0059]; Department of Defense FX The research presented here is based upon work supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-09-1-0059. The calculations were performed under the auspices of a Department of Defense Grand Challenge grant of computer time, on a computer cluster that was purchased in part by a DoD DURIP grant, and on a GPU-based cluster that was provided in part by the Nvidia Corporation, the Ames Laboratory, and Iowa State University. The authors are very grateful to Dr. Spencer Pruitt for many helpful discussions. NR 107 TC 4 Z9 4 U1 1 U2 25 PU WALTER DE GRUYTER GMBH PI BERLIN PA GENTHINER STRASSE 13, D-10785 BERLIN, GERMANY SN 0942-9352 J9 Z PHYS CHEM JI Z. Phys. Chemie-Int. J. Res. Phys. Chem. Chem. Phys. PD NOV PY 2013 VL 227 IS 9-11 BP 1301 EP 1336 DI 10.1524/zpch.2013.0404 PG 36 WC Chemistry, Physical SC Chemistry GA 264EZ UT WOS:000327861100009 ER PT J AU Di Gennaro, E di Uccio, US Aruta, C Cantoni, C Gadaleta, A Lupini, AR Maccariello, D Marre, D Pallecchi, I Paparo, D Perna, P Riaz, M Granozio, FM AF Di Gennaro, Emiliano di Uccio, Umberto Scotti Aruta, Carmela Cantoni, Claudia Gadaleta, Alessandro Lupini, Andrew R. Maccariello, Davide Marre, Daniele Pallecchi, Ilaria Paparo, Domenico Perna, Paolo Riaz, Muhammad Granozio, Fabio Miletto TI Persistent Photoconductivity in 2D Electron Gases at Different Oxide Interfaces SO ADVANCED OPTICAL MATERIALS LA English DT Article ID LAALO3/SRTIO3 HETEROSTRUCTURES; HETEROINTERFACE; CONDUCTIVITY AB The transport characterization in the dark and under light irradiation of three different interfaces-LaAlO3/SrTiO3, LaGaO3/SrTiO3, and the novel NdGaO3/ SrTiO3 heterostructure is reported. All of them share a perovskite structure, an insulating nature of the single building blocks, a polar/non-polar character, and a critical thickness of four unit cells for the onset of conductivity. The interface structure and charge confinement in NdGaO3/SrTiO3 are probed by atomic-scale-resolved electron energy loss spectroscopy showing that, similarly to LaAlO3/SrTiO3, extra electronic charge confined in a sheet of about 1.5 nm in thickness is present at the NdGaO3/SrTiO3 interface. Electric transport measurements performed in the dark and under radiation show remarkable similarities and provide evidence that the persistent perturbation induced by light is an intrinsic peculiar property of the three investigated oxide-based polar/non-polar interfaces. This sets a framework for understanding the previous contrasting results found in the literature about photoconductivity in LaAlO3/SrTiO3 and highlights the connection between the origin of persistent photoconductivity and the origin of conductivity itself. An improved understanding of the photoinduced metastable electron-hole pairs might allow light to be shed directly on the complex physics of this system and on the recently proposed perspectives of oxide interfaces for solar energy conversion. C1 [Di Gennaro, Emiliano; di Uccio, Umberto Scotti; Aruta, Carmela; Maccariello, Davide; Paparo, Domenico; Perna, Paolo; Riaz, Muhammad; Granozio, Fabio Miletto] Univ Naples Federico II, CNR SPIN, I-80126 Naples, Italy. [Di Gennaro, Emiliano; di Uccio, Umberto Scotti; Aruta, Carmela; Maccariello, Davide; Paparo, Domenico; Perna, Paolo; Riaz, Muhammad; Granozio, Fabio Miletto] Univ Naples Federico II, Dipartimento Fis, I-80126 Naples, Italy. [Cantoni, Claudia; Lupini, Andrew R.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. [Gadaleta, Alessandro; Marre, Daniele; Pallecchi, Ilaria] Univ Genoa, CNR SPIN, I-16146 Genoa, Italy. [Gadaleta, Alessandro; Marre, Daniele; Pallecchi, Ilaria] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy. RP Granozio, FM (reprint author), Univ Naples Federico II, CNR SPIN, Compl Univ Monte S Angelo,Via Cintia, I-80126 Naples, Italy. EM fabio.miletto@spin.cnr RI PERNA, PAOLO/C-3862-2012; Maccariello, Davide/J-8165-2013; Aruta, Carmela/L-2957-2015; Paparo, Domenico/L-7766-2015; Marre, Daniele/G-5965-2014; Di Gennaro, Emiliano/G-6311-2010; Cantoni, Claudia/G-3031-2013 OI PERNA, PAOLO/0000-0001-8537-4834; Maccariello, Davide/0000-0002-8681-2717; Aruta, Carmela/0000-0002-6917-6667; Paparo, Domenico/0000-0002-7745-230X; Marre, Daniele/0000-0002-6230-761X; Di Gennaro, Emiliano/0000-0003-4231-9776; Cantoni, Claudia/0000-0002-9731-2021 FU EU; MIUR [264098]; US Department of Energy, Office of Science, Materials Sciences and Engineering Division; ORNL's Shared Research Equipment (ShaRE) User Program; Office of Basic Energy Sciences, U.S. Department of Energy FX Financial support by EU under the project OXIDES, by MIUR under Grant Agreement PRIN 2008 - 2DEG FOXI, by European Union Seventh Framework Program (FP7/2007-2013) under grant agreement N. 264098 - MAMA, and by Compagnia di San Paolo is acknowledged. CC and ARL acknowledge funding by the US Department of Energy, Office of Science, Materials Sciences and Engineering Division. Part of this research was supported by ORNL's Shared Research Equipment (ShaRE) User Program, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. NR 56 TC 9 Z9 9 U1 6 U2 122 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 2195-1071 J9 ADV OPT MATER JI Adv. Opt. Mater. PD NOV PY 2013 VL 1 IS 11 BP 834 EP 843 DI 10.1002/adom.201300150 PG 10 WC Materials Science, Multidisciplinary; Optics SC Materials Science; Optics GA 251KA UT WOS:000326926100009 ER PT J AU Penton, CR St Louis, D Cole, JR Luo, YQ Wu, LY Schuur, EAG Zhou, JZ Tiedje, JM AF Penton, C. Ryan St Louis, Derek Cole, James R. Luo, Yiqi Wu, Liyou Schuur, E. A. G. Zhou, Jizhong Tiedje, James M. TI Fungal Diversity in Permafrost and Tallgrass Prairie Soils under Experimental Warming Conditions SO APPLIED AND ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID COMMUNITY STRUCTURE; SEASONAL DYNAMICS; ARCTIC TUNDRA; MICROBIAL COMMUNITIES; SEQUENCE DATABASES; ALASKAN TUNDRA; DNA-SEQUENCES; PH GRADIENT; ROOTS; BACTERIAL AB Soil fungi play a major role in terrestrial ecosystem functioning through interactions with soil structure, plants, micro- and mesofauna, and nutrient cycling through predation, pathogenesis, mutualistic, and saprotrophic roles. The diversity of soil fungi was assessed by sequencing their 28S rRNA gene in Alaskan permafrost and Oklahoma tallgrass prairie soils at experimental sites where the effect of climate warming is under investigation. A total of 226,695 reads were classified into 1,063 genera, covering 62% of the reference data set. Using the Bayesian Classifier offered by the Ribosomal Database Project (RDP) with 50% boot-strapping classification confidence, approximately 70% of sequences were returned as "unclassified" at the genus level, although the majority (similar to 65%) were classified at the class level, which provided insight into these lesser-known fungal lineages. Those unclassified at the genus level were subjected to BLAST analysis against the ARB-SILVA database, where similar to 50% most closely matched nonfungal taxa. Compared to the more abundant sequences, a higher proportion of rare operational taxonomic units (OTU) were successfully classified to genera at 50% bootstrap confidence, indicating that the fungal rare biosphere in these sites is not composed of sequencing artifacts. There was no significant effect after 1 year of warming on the fungal community structure at both sites, except perhaps for a few minor members, but there was a significant effect of sample depth in the permafrost soils. Despite overall significant community structure differences driven by variations in OTU dominance, the prairie and permafrost soils shared 90% and 63% of all fungal sequences, respectively, indicating a fungal "seed bank" common between both sites. C1 [Penton, C. Ryan; St Louis, Derek; Cole, James R.; Tiedje, James M.] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. [Luo, Yiqi; Wu, Liyou] Univ Oklahoma, Dept Microbiol & Plant Biol, Norman, OK 73019 USA. [Wu, Liyou; Zhou, Jizhong] Univ Oklahoma, Inst Environm Genom, Norman, OK 73019 USA. [Schuur, E. A. G.] Univ Florida, Dept Biol, Gainesville, FL USA. [Zhou, Jizhong] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Penton, CR (reprint author), Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. EM pentonch@msu.edu FU Department of Energy, Biological Systems Research on the Role of Microbial Communities in Carbon Cycling Program [DE-SC0004601] FX This work is supported by the Department of Energy, Biological Systems Research on the Role of Microbial Communities in Carbon Cycling Program (DE-SC0004601). NR 81 TC 18 Z9 19 U1 6 U2 68 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0099-2240 EI 1098-5336 J9 APPL ENVIRON MICROB JI Appl. Environ. Microbiol. PD NOV PY 2013 VL 79 IS 22 BP 7063 EP 7072 DI 10.1128/AEM.01702-13 PG 10 WC Biotechnology & Applied Microbiology; Microbiology SC Biotechnology & Applied Microbiology; Microbiology GA 259CE UT WOS:000327504200030 PM 24014534 ER PT J AU Ponoum, R Rutbers, M Boum, A AF Ponoum, Ratcharit Rutbers, Michael Boum, Antonio TI Energy Storage for PV Power SO ASHRAE JOURNAL LA English DT Article AB Photovoltaic (PV) power is one of the fastest growing renewable energy technologies today. Because of the intermittent nature of PV electrical output, energy storage will be an important enabler for its continued growth. Of the candidate storage technologies, electrochemical batteries hold the most promise for widespread deployment. Development of economical, scalable PV energy storage systems is being actively pursued across a range of battery technologies, from lead-acid to lithium-ion to redox flow batteries. C1 [Rutbers, Michael] TIAX LLC, Mech Syst Grp, Lexington, MA USA. [Boum, Antonio] US DOE, Washington, DC USA. NR 11 TC 0 Z9 0 U1 0 U2 3 PU AMER SOC HEATING REFRIGERATING AIR-CONDITIONING ENG, INC, PI ATLANTA PA 1791 TULLIE CIRCLE NE, ATLANTA, GA 30329 USA SN 0001-2491 EI 1943-6637 J9 ASHRAE J JI ASHRAE J. PD NOV PY 2013 VL 55 IS 11 BP 80 EP 83 PG 4 WC Thermodynamics; Construction & Building Technology; Engineering, Mechanical SC Thermodynamics; Construction & Building Technology; Engineering GA 252XP UT WOS:000327046500018 ER PT J AU Janssen, R Turhollow, AF Rutz, D Mergner, R AF Janssen, Rainer Turhollow, Anthony F. Rutz, Dominik Mergner, Rita TI Production facilities for second-generation biofuels in the USA and the EU - current status and future perspectives SO BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR LA English DT Article DE second-generation biofuels; United States; Europe; demonstration plants; ethanol; synthetic fuels AB Second-generation biofuel production facilities have been slower to reach large-scale production than was anticipated a few years ago even though in Europe, the Renewable Energy Directive provides incentives; in the United States there are also financial incentives and the Energy Independence and Security Act of 2007 has targets for second-generation biofuels. But starting in 2013 it appears that significant quantities of second-generation biofuels will be produced. A variety of conversion processes, thermochemical and biological, as well as hybrids of the two is being utilized. There will be a variety of fuels - ethanol, drop-in fuels (e.g. gasoline, diesel), biodiesel, steam, electricity, bio-oil, sugars, and chemicals; and a variety of feedstocks - crop residues, wood, wood wastes, energy crops, waste oils and municipal solid waste (MSW). One approach to reducing the risk of moving from first- to second-generation biofuel production has been to take incremental steps such as converting the cellulosic part of grains into ethanol in addition to the starch portion. Many of the second-generation biofuel facilities are co-located with first-generation biofuel production facilities to share infrastructure as well as trade by-products (e.g. excess steam). One of the challenges has been financing, but both private and government sources are being utilized. Private sources include internal corporate funds and debt offerings, and venture capital. Government sources include the US federal government, the European Union, European national governments, and state and local governments. (c) 2013 Society of Chemical Industry and John Wiley & Sons, Ltd C1 [Janssen, Rainer] WIP Renewable Energies, Biomass Dept, D-81369 Munich, Germany. [Turhollow, Anthony F.] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Rutz, Dominik; Mergner, Rita] WIP Renewable Energies, D-81369 Munich, Germany. RP Janssen, R (reprint author), WIP Renewable Energies, Sylvensteinstr 2, D-81369 Munich, Germany. EM rainer.janssen@wip-munich.de FU Project BIOLYFE (Demonstrating large-scale bioethanol production from lignocellulosic feedstocks); European Commission [FP7-239204, FP7-227422]; Project SWEETFUEL (Sweet Sorghum: An alternative energy crop); U.S. Department of Energy EERE Bioenergy Technologies Office; US Department of Energy [DE-AC05-00OR22725] FX This paper was supported by: Project BIOLYFE (Demonstrating large-scale bioethanol production from lignocellulosic feedstocks) co-funded by the European Commission in the 7th Framework Programme (Project No. FP7-239204); Project SWEETFUEL (Sweet Sorghum: An alternative energy crop) co-funded by the European Commission in the 7th Framework Programme (Project No. FP7-227422); The U.S. Department of Energy EERE Bioenergy Technologies Office and performed at Oak Ridge National Laboratory (ORNL). ORNL is managed by UT-Battelle, LLC, for the US Department of Energy under contract DE-AC05-00OR22725. NR 39 TC 15 Z9 15 U1 5 U2 50 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1932-104X EI 1932-1031 J9 BIOFUEL BIOPROD BIOR JI Biofuels Bioprod. Biorefining PD NOV PY 2013 VL 7 IS 6 SI SI BP 647 EP 665 DI 10.1002/bbb.1451 PG 19 WC Biotechnology & Applied Microbiology; Energy & Fuels SC Biotechnology & Applied Microbiology; Energy & Fuels GA 250YQ UT WOS:000326893400014 ER PT J AU Stone, D Auffhammer, M Carey, M Hansen, G Huggel, C Cramer, W Lobell, D Molau, U Solow, A Tibig, L Yohe, G AF Stone, Daithi Auffhammer, Maximilian Carey, Mark Hansen, Gerrit Huggel, Christian Cramer, Wolfgang Lobell, David Molau, Ulf Solow, Andrew Tibig, Lourdes Yohe, Gary TI The challenge to detect and attribute effects of climate change on human and natural systems SO CLIMATIC CHANGE LA English DT Article ID IMPACTS; VARIABILITY AB Anthropogenic climate change has triggered impacts on natural and human systems world-wide, yet the formal scientific method of detection and attribution has been only insufficiently described. Detection and attribution of impacts of climate change is a fundamentally cross-disciplinary issue, involving concepts, terms, and standards spanning the varied requirements of the various disciplines. Key problems for current assessments include the limited availability of long-term observations, the limited knowledge on processes and mechanisms involved in changing environmental systems, and the widely different concepts applied in the scientific literature. In order to facilitate current and future assessments, this paper describes the current conceptual framework of the field and outlines a number of conceptual challenges. Based on this, it proposes workable cross-disciplinary definitions, concepts, and standards. The paper is specifically intended to serve as a baseline for continued development of a consistent cross-disciplinary framework that will facilitate integrated assessment of the detection and attribution of climate change impacts. C1 [Stone, Daithi] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Auffhammer, Maximilian] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Auffhammer, Maximilian] Natl Bur Econ Res, Cambridge, MA 02138 USA. [Carey, Mark] Univ Oregon, Eugene, OR 97403 USA. [Hansen, Gerrit] Potsdam Inst Climate Impact Res, Potsdam, Germany. [Huggel, Christian] Univ Zurich, Zurich, Switzerland. [Cramer, Wolfgang] Aix Marseille Univ CNRS IRD UAPV, IMBE, F-13545 Aix En Provence, France. [Lobell, David] Stanford Univ, Stanford, CA 94305 USA. [Molau, Ulf] Univ Gothenburg, Gothenburg, Sweden. [Solow, Andrew] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA. [Tibig, Lourdes] Manila Observ, Quezon City, Philippines. [Yohe, Gary] Wesleyan Univ, Middletown, CT USA. RP Stone, D (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd,MS-50F1650, Berkeley, CA 94720 USA. EM dstone@lbl.gov; wolfgang.cramer@imbe.fr RI Cramer, Wolfgang/B-8221-2008; OI Cramer, Wolfgang/0000-0002-9205-5812; Stone, Daithi/0000-0002-2518-100X FU Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science; Earth System Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science [DE-AC02-05CH11231]; German Ministry for Education and Research FX We thank the Detection and Attribution Liaisons to IPCC AR5 WGII Chapter 18, Chris Field, and Mike Mastrandrea for many helpful discussions. We are also grateful to Yuka Estrada and Monalisa Chatterjee for assistance in graphic design. While the chapter authors are all members of the AR5 Chapter 18 author team, all opinions, findings, and errors are those of the authors alone. Many of the discussions distilled here were conducted during and around Lead Author Meetings of the IPCC assessment process, supported by various national governments. DS was supported by the Regional and Global Climate Modeling Program and the Earth System Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science under contract number DE-AC02-05CH11231. GH was supported by a grant from the German Ministry for Education and Research. NR 41 TC 27 Z9 28 U1 5 U2 35 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0165-0009 EI 1573-1480 J9 CLIMATIC CHANGE JI Clim. Change PD NOV PY 2013 VL 121 IS 2 BP 381 EP 395 DI 10.1007/s10584-013-0873-6 PG 15 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 251QD UT WOS:000326944000020 ER PT J AU Koch, A McBratney, A Adams, M Field, D Hill, R Crawford, J Minasny, B Lal, R Abbott, L O'Donnell, A Angers, D Baldock, J Barbier, E Binkley, D Parton, W Wall, DH Bird, M Bouma, J Chenu, C Flora, CB Goulding, K Grunwald, S Hempel, J Jastrow, J Lehmann, J Lorenz, K Morgan, CL Rice, CW Whitehead, D Young, I Zimmermann, M AF Koch, Andrea McBratney, Alex Adams, Mark Field, Damien Hill, Robert Crawford, John Minasny, Budiman Lal, Rattan Abbott, Lynette O'Donnell, Anthony Angers, Denis Baldock, Jeffrey Barbier, Edward Binkley, Dan Parton, William Wall, Diana H. Bird, Michael Bouma, Johan Chenu, Claire Flora, Cornelia Butler Goulding, Keith Grunwald, Sabine Hempel, Jon Jastrow, Julie Lehmann, Johannes Lorenz, Klaus Morgan, Cristine L. Rice, Charles W. Whitehead, David Young, Iain Zimmermann, Michael TI Soil Security: Solving the Global Soil Crisis SO GLOBAL POLICY LA English DT Article ID CARBON SEQUESTRATION; ORGANIC-CARBON; FOOD SECURITY; FRAMEWORK; WORLD AB Soil degradation is a critical and growing global problem. As the world population increases, pressure on soil also increases and the natural capital of soil faces continuing decline. International policy makers have recognized this and a range of initiatives to address it have emerged over recent years. However, a gap remains between what the science tells us about soil and its role in underpinning ecological and human sustainable development, and existing policy instruments for sustainable development. Functioning soil is necessary for ecosystem service delivery, climate change abatement, food and fiber production and fresh water storage. Yet key policy instruments and initiatives for sustainable development have under-recognized the role of soil in addressing major challenges including food and water security, biodiversity loss, climate change and energy sustainability. Soil science has not been sufficiently translated to policy for sustainable development. Two underlying reasons for this are explored and the new concept of soil security is proposed to bridge the science-policy divide. Soil security is explored as a conceptual framework that could be used as the basis for a soil policy framework with soil carbon as an exemplar indicator. C1 [Koch, Andrea; McBratney, Alex; Field, Damien; Hill, Robert; Crawford, John; Minasny, Budiman] Univ Sydney, Sydney, NSW 2006, Australia. [Lal, Rattan] Ohio State Univ, Columbus, OH 43210 USA. [Abbott, Lynette; O'Donnell, Anthony] Univ Western Australia, Nedlands, WA 6009, Australia. [Barbier, Edward] Univ Wyoming, Laramie, WY 82071 USA. [Binkley, Dan; Parton, William; Wall, Diana H.] Colorado State Univ, Ft Collins, CO 80523 USA. [Bird, Michael] James Cook Univ, Townsville, Qld, Australia. [Bouma, Johan] Wageningen Univ, NL-6700 AP Wageningen, Netherlands. [Chenu, Claire] AgroParisTech, UMR Bioemco, Paris, France. [Flora, Cornelia Butler] Iowa State Univ, Ames, IA 50011 USA. [Grunwald, Sabine] Univ Florida, Gainesville, FL 32611 USA. [Jastrow, Julie] Argonne Natl Lab, Argonne, IL 60439 USA. [Lehmann, Johannes] Cornell Univ, Ithaca, NY 14853 USA. [Morgan, Cristine L.] Texas A&M Univ, College Stn, TX 77843 USA. [Rice, Charles W.] Kansas State Univ, Manhattan, KS 66506 USA. [Young, Iain] Univ New England, Sch Environm & Rural Sci, Armidale, NSW 2351, Australia. [Zimmermann, Michael] Univ Nat Resources & Life Sci Vienna, Vienna, Austria. RP Koch, A (reprint author), Univ Sydney, Sydney, NSW 2006, Australia. RI Morgan, Cristine`/A-1555-2013; James Cook University, TESS/B-8171-2012; Abbott, Lynette/F-7489-2011; Baldock, Jeffrey/G-1362-2010; adams, mark/H-1303-2012; Bird, Michael/G-5364-2010; Zimmermann, Michael/F-7547-2010; Goulding, Keith/B-2635-2012; OI Morgan, Cristine`/0000-0001-9836-0669; Abbott, Lynette/0000-0001-8586-7858; Baldock, Jeffrey/0000-0002-6428-8555; adams, mark/0000-0001-8989-508X; Minasny, Budiman/0000-0002-1182-2371; Bird, Michael/0000-0003-1801-8703; Zimmermann, Michael/0000-0002-5162-2008; Goulding, Keith/0000-0002-6465-1465; Field, Damien/0000-0002-6877-8332 NR 48 TC 34 Z9 35 U1 16 U2 118 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1758-5880 EI 1758-5899 J9 GLOB POLICY JI Glob. Policy PD NOV PY 2013 VL 4 IS 4 BP 434 EP 441 DI 10.1111/1758-5899.12096 PG 8 WC International Relations; Political Science SC International Relations; Government & Law GA 251AD UT WOS:000326897700018 ER PT J AU Calyam, P Dovrolis, C Jorgenson, L Kettimuthu, R Tierney, B Zurawski, J AF Calyam, Prasad Dovrolis, Constantine Joergenson, Loki Kettimuthu, Raj Tierney, Brian Zurawski, Jason TI MONITORING AND TROUBLESHOOTING MULTI-DOMAIN NETWORKS USING MEASUREMENT FEDERATIONS SO IEEE COMMUNICATIONS MAGAZINE LA English DT Editorial Material C1 [Calyam, Prasad] Univ Missouri, Dept Comp Sci, Columbia, MO 65211 USA. [Dovrolis, Constantine] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA. [Joergenson, Loki] Lionsgate Technol, Vancouver, BC, Canada. [Joergenson, Loki] INETCO Syst, Burnaby, BC, Canada. [Kettimuthu, Raj] Argonne Natl Lab, Math & Comp Sci Div, Argonne, IL 60439 USA. [Kettimuthu, Raj] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Tierney, Brian] Lawrence Berkeley Natl Lab, ESnet Adv Network Technol Grp, Berkeley, CA USA. [Zurawski, Jason] Lawrence Berkeley Natl Lab, Energy Sci Network ESnet, Sci Networking Div, Comp Sci Directorate, Berkeley, CA USA. RP Calyam, P (reprint author), Univ Missouri, Dept Comp Sci, Columbia, MO 65211 USA. EM calyamp@missouri.edu; dovrolis@cc.gatech.edu; ljorgenson@ACM.org; kettimut@mcs.anl.gov; bltierney@es.net; zurawski@es.net NR 0 TC 1 Z9 1 U1 0 U2 2 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0163-6804 EI 1558-1896 J9 IEEE COMMUN MAG JI IEEE Commun. Mag. PD NOV PY 2013 VL 51 IS 11 BP 53 EP 54 PG 2 WC Engineering, Electrical & Electronic; Telecommunications SC Engineering; Telecommunications GA 257ZM UT WOS:000327426500007 ER PT J AU Cummings, AW Varennes, J Leonard, F AF Cummings, Aron W. Varennes, Julien Leonard, Francois TI Electrical Contacts to Three-Dimensional Arrays of Carbon Nanotubes SO IEEE TRANSACTIONS ON NANOTECHNOLOGY LA English DT Article DE Carbon nanotubes (CNTs); contact resistance; nanocontacts; nanotube devices ID FIELD-EFFECT TRANSISTORS; ELECTRONIC-STRUCTURE; PERFORMANCE; ROPES AB We use numerical simulations to investigate the properties of metal contacts to three-dimensional arrays of carbon nanotubes (CNTs). For undoped arrays top-contacted with high or low work function metals, electrostatic screening is very strong, resulting in a small Schottky barrier for current injection in the top layer and large Schottky barriers for current injection in the deeper layers. As a consequence, the majority of the current flows through the top layer of the array. Our simulations show that doping of the CNT array can alleviate this problem, even without direct contact to each tube in the array; however, we find that the charge transfer length is unusually long in arrays and increases with the number of CNT layers under the contact. We also show that a bottom gate can modulate the contact resistance, but only very weakly. These results are important for the design of electronic and optoelectronic devices based on CNT arrays, because they suggest that increasing the thickness of the array does little to improve the device performance unless the film is strongly doped at the contacts and the contact is long, or unless each tube in the array is directly contacted by the metal. C1 [Cummings, Aron W.; Varennes, Julien; Leonard, Francois] Sandia Natl Labs, Livermore, CA 94551 USA. RP Cummings, AW (reprint author), ICN2, Campus UAB, Bellaterra 08193, Barcelona, Spain. EM aron.cummings@icn.cat; julien.var@gmail.com; fleonar@sandia.gov RI Cummings, Aron/A-1426-2014 OI Cummings, Aron/0000-0003-2307-497X FU U.S. Department of Energy, Office of Science, through the National Institute for Nano-Engineering (NINE) at Sandia National Laboratories; Laboratory Directed Research and Development program at Sandia National Laboratories; a multiprogram laboratory operated by Sandia Corporation; a Lockheed Martin Co., for the United States Department of Energy [DEAC01-94-AL85000] FX This project was supported in part by the U.S. Department of Energy, Office of Science, through the National Institute for Nano-Engineering (NINE) at Sandia National Laboratories, and in part by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Co., for the United States Department of Energy under Contract DEAC01-94-AL85000. NR 32 TC 0 Z9 0 U1 3 U2 24 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1536-125X EI 1941-0085 J9 IEEE T NANOTECHNOL JI IEEE Trans. Nanotechnol. PD NOV PY 2013 VL 12 IS 6 BP 1166 EP 1172 DI 10.1109/TNANO.2013.2282902 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Science & Technology - Other Topics; Materials Science; Physics GA 258AC UT WOS:000327428600049 ER PT J AU Tafen, D Gao, MC AF Tafen, De Nyago Gao, Michael C. TI Oxygen Atom Adsorption on and Diffusion into Nb(110) and Nb(100) from First Principles SO JOM LA English DT Article ID TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; NIOBIUM; SURFACE; OXIDATION; STABILITY; METALS; AES; NB AB To understand the dynamics of oxidation of Nb, we examine the adsorption, absorption, and diffusion of an oxygen atom on, in, and into Nb(110) and Nb(100) surfaces, respectively, using density functional theory. Our calculations predict that the oxygen atom adsorbs on the threefold site on Nb(110) and the fourfold hollow site on Nb(100), and the adsorption energy is -5.08 eV and -5.18 eV, respectively. We find the long and short bridge sites to be transition states for O diffusion on Nb(110), while the on-top site is a rank-2 saddle point. In the subsurface region, the oxygen atom prefers the octahedral site, as in bulk niobium. Our results show also that the O atom is more stable on Nb(110) subsurface than on Nb(100) subsurface. The diffusion of oxygen atoms into niobium surfaces passes through transition states where the oxygen atom is coordinated to four niobium atoms. The diffusion barriers of the oxygen atom into Nb(110) and Nb(100) are 1.81 eV and 2.05 eV, respectively. An analysis of the electronic density of states reveals the emergence of well-localized electronic states below the lowest states of clean Nb surfaces due to d-p orbital hybridization. C1 [Tafen, De Nyago; Gao, Michael C.] Natl Energy Technol Lab, Albany, OR 97321 USA. [Tafen, De Nyago; Gao, Michael C.] URS Corp, Albany, OR 97321 USA. RP Tafen, D (reprint author), Natl Energy Technol Lab, 1450 Queen Ave SW, Albany, OR 97321 USA. EM denyago.tafen@contr.netl.doe.gov OI Tafen, De Nyago/0000-0002-4360-9508 FU National Energy Technology Laboratory's (NETL) ongoing research on Turbines Materials Development for Oxy-combustion Environments under the RES [DE-FE-0004000]; Texas Advanced Computing Center (TACC) [DMR120048]; National Science Foundation [OCI-1053575] FX This technical effort was performed in support of the National Energy Technology Laboratory's (NETL) ongoing research on Turbines Materials Development for Oxy-combustion Environments under the RES Contract DE-FE-0004000. This work used the computing facility at the Texas Advanced Computing Center (TACC) through Award# DMR120048 by the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575. "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof." NR 31 TC 2 Z9 2 U1 2 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD NOV PY 2013 VL 65 IS 11 BP 1473 EP 1481 DI 10.1007/s11837-013-0735-8 PG 9 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 258ZE UT WOS:000327496400015 ER PT J AU Kim, S Park, JS AF Kim, Sungtae Park, J. S. TI Ab Initio Calculated Thermodynamic Properties of Mo5SiB2 Phase and Nb5SiB2 Phase SO JOM LA English DT Article AB Due to their attractive high-temperature properties, multiphase Mo-Si-B alloys in the Mo-rich Mo-Si-B ternary system have been identified for high-temperature applications. The ternary intermetallic T-2 (Mo5SiB2) phase is a central feature of the phase equilibria within this ternary system. Experimental stability analyses of the T-2 phase shows its broad homogeneous composition ranges that can yield a constitutional defect structure such as vacancies for Mo-rich compositions and antisite defects for Mo-lean compositions. Previous thermodynamic model did not conform to the defect structures as reported in experiments, and thus subsequently a new sublattice thermodynamic model for the T-2 phase is initiated in this study. To support the new sublattice thermodynamic model, ab initio calculations were implemented to compute formation energy data. The calculated formation energy data explain a source for broad compositional homogeneity range of T-2 structure. C1 [Kim, Sungtae] Sandia Natl Labs, Def Waste Management Programs, Carlsbad, NM 88220 USA. [Park, J. S.] Hanbat Natl Univ, Dept Mat Sci & Engn, Taejon 305719, South Korea. RP Kim, S (reprint author), Sandia Natl Labs, Def Waste Management Programs, 4100 Natl Pk Highway, Carlsbad, NM 88220 USA. EM sunkim@sandia.gov NR 10 TC 0 Z9 0 U1 2 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1047-4838 EI 1543-1851 J9 JOM-US JI JOM PD NOV PY 2013 VL 65 IS 11 BP 1482 EP 1486 DI 10.1007/s11837-013-0770-5 PG 5 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing SC Materials Science; Metallurgy & Metallurgical Engineering; Mineralogy; Mining & Mineral Processing GA 258ZE UT WOS:000327496400016 ER PT J AU Hu, HS Kowalski, K AF Hu, Han-Shi Kowalski, Karol TI Excitation Energies with Cost-Reduced Variant of the Active-Space EOMCCSDT Method: The EOMCCSDt-(3)over-bar Approach SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID EQUATION-OF-MOTION; COUPLED-CLUSTER METHODS; EXCITED ELECTRONIC STATES; SINGLE-REFERENCE FORMALISM; SYMMETRY-ADAPTED-CLUSTER; CONFIGURATION-INTERACTION; TRANSITION-PROBABILITIES; RESPONSE FUNCTIONS; BUILDING-BLOCKS; LINEAR-RESPONSE AB In this paper, we discuss the performance of several simplified variants of equation-of-motion coupled cluster method (EOMCC) with iterative inclusion of singles, doubles, and active-space triples (EOMCCSDt). In particular, we explore simplified EOMCCSDt approaches that enable one to generate the triply excited amplitudes in an on-the-fly manner. The original EOMCCSDt formulation has already demonstrated great success in encapsulating the most important excited-state correlation effects due to triples. In analogy to the original EOMCCSDT-3 formulation, the proposed approach can bypass the typical bottlenecks associated with the need for storing triply excited amplitudes. In this paper, we illustrate the performance of several approximate EOMCCSDt methods, named EOMCCSDt-(3) over bar and energies close to the EOMCCSDt ones. The extrapolation of excitation energies for basis sets ranging from cc-pVDZ to cc-pV6Z for N-2 and C-2 shows very good convergence to the experimental results for states dominated by single excitations. The performance of the EOMCCSDt-(3) over barx approach is also compared with the results obtained with popular CCSDR(3) and CC3 approaches. C1 [Hu, Han-Shi; Kowalski, Karol] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Kowalski, K (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, K8-91,POB 999, Richland, WA 99352 USA. EM karol.kowalski@pnl.gov FU Extreme Scale Computing Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory; U.S. Department of Energy by the Battelle Memorial Institute [DE-AC06-76RLO-1830]; Department of Energy's Office of Biological and Environmental Research FX H.S.H. acknowledges Dr. Kiran Bhaskaran-Nair for helpful discussion and Dr. Kenneth Lopata for helpful proof reading of the manuscript. This work was supported by the Extreme Scale Computing Initiative (H.S.H., K.K.), a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory. All calculations have been performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by the Battelle Memorial Institute under Contract No. DE-AC06-76RLO-1830. NR 78 TC 2 Z9 2 U1 0 U2 9 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD NOV PY 2013 VL 9 IS 11 BP 4761 EP 4768 DI 10.1021/ct400501z PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 252WV UT WOS:000327044500010 PM 26583394 ER PT J AU Nicolai, A Zhu, P Sumpter, BG Meunier, V AF Nicolai, Adrien Zhu, Pan Sumpter, Bobby G. Meunier, Vincent TI Molecular Dynamics Simulations of Graphene Oxide Frameworks SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID BORONIC ACIDS; FREE-ENERGY; RESP MODEL; IMPLEMENTATION; MECHANICS; ALKYL; AMBER; WELL AB We use quantum mechanical calculations to develop a full set of force field parameters in order to perform molecular dynamics simulations to understand and optimize the molecular storage properties inside graphene oxide frameworks (GOFs). A set of boron-related parameters for commonly used empirical force fields is determined to describe the nonbonded and bonded interactions between linear boronic acid linkers and graphene sheets of GOF materials. The transferability of the parameters is discussed and their validity is quantified by comparing quantum mechanical and molecular mechanical structural and vibrational properties. The application of the model to the dynamics of water inside the GOFs reveals significant variations in structural flexibility depending on the linker density, which is shown to be usable as a tuning parameter for desired diffusion properties. C1 [Nicolai, Adrien; Zhu, Pan; Meunier, Vincent] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. [Sumpter, Bobby G.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Sumpter, Bobby G.] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. RP Meunier, V (reprint author), Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA. EM meuniv@rpi.edu RI Meunier, Vincent/F-9391-2010; Sumpter, Bobby/C-9459-2013 OI Meunier, Vincent/0000-0002-7013-179X; Sumpter, Bobby/0000-0001-6341-0355 FU Office of Naval Research; Center for Nanophase Materials Sciences; Office of Science, U.S. Department of Energy FX A.N. thanks Jingsong Huang (Oak Ridge National Laboratory) for helpful discussions and Jonathan R. Owens for manuscript review. Work at RPI was supported by the Office of Naval Research. Calculations were done on the Computational Center for Nanotechnology Innovations (CCNI) cluster, at Rensselaer Polytechnic Institute (RPI), and the Center for Nanophase Materials Sciences (CNMS) cluster at Oak Ridge National Laboratory (ORNL). B.G.S. was supported by the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Science, U.S. Department of Energy. NR 26 TC 12 Z9 12 U1 9 U2 89 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD NOV PY 2013 VL 9 IS 11 BP 4890 EP 4900 DI 10.1021/ct4006097 PG 11 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 252WV UT WOS:000327044500024 PM 26583408 ER PT J AU Lopata, K Govind, N AF Lopata, Kenneth Govind, Niranian TI Near and Above Ionization Electronic Excitations with Non-Hermitian Real-Time Time-Dependent Density Functional Theory SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID AB-INITIO; MOLECULES; ACETYLENE; STATES; PHOTOIONIZATION; DYNAMICS; VALENCE; PHOTOABSORPTION; SPECTROSCOPY; CONTINUUM AB We present a real-time time-dependent density functional theory (RT-TDDFT) prescription for capturing near and post-ionization excitations based on non-Hermitian von Neumann density matrix propagation with atom-centered basis sets, tuned range-separated DFT, and a phenomenological imaginary molecular orbital-based absorbing potential to mimic coupling to the continuum. The computed extreme ultraviolet absorption spectra for acetylene (C2H2), water (H2O), and Freon 12 (CF2Cl2) agree well with electron energy loss spectroscopy (EELS) data over the range of 0-50 eV. The absorbing potential removes spurious high-energy finite basis artifacts, yielding correct bound-to-bound transitions, metastable (autoionizing) resonance states, and consistent overall absorption shapes. C1 [Lopata, Kenneth; Govind, Niranian] Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. RP Lopata, K (reprint author), Pacific NW Natl Lab, William R Wiley Environm Mol Sci Lab, Richland, WA 99352 USA. EM klopata@lsu.edu; niri.govind@pnnl.gov FU U.S. Department of Energy's Office of Biological and Environmental Research; Department of Energy by the Battelle Memorial Institute [DE-AC06-76RLO-1830]; EMSL; U.S. Department of Energy, Office of Basic Energy Sciences under SciDAC program [DESC0008666] FX The research was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the Department of Energy by the Battelle Memorial Institute, under Contract DE-AC06-76RLO-1830. K.L. acknowledges the William Wiley Postdoctoral Fellowship from EMSL. N.G. acknowledges support from the U.S. Department of Energy, Office of Basic Energy Sciences, under Grant No. DESC0008666 of the SciDAC program. NR 61 TC 10 Z9 10 U1 1 U2 13 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD NOV PY 2013 VL 9 IS 11 BP 4939 EP 4946 DI 10.1021/ct400569s PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 252WV UT WOS:000327044500028 PM 26583412 ER PT J AU Akimov, AV Prezhdo, OV AF Akimov, Alexey V. Prezhdo, Oleg V. TI The PYXAID Program for Non-Adiabatic Molecular Dynamics in Condensed Matter Systems SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID SENSITIZED SOLAR-CELLS; INITIO TIME-DOMAIN; CDSE QUANTUM DOTS; BORN-OPPENHEIMER TRAJECTORIES; INTERFACIAL ELECTRON-TRANSFER; QUANTIZED HAMILTON DYNAMICS; MULTIPLE EXCITON GENERATION; RETINAL CHROMOPHORE MODEL; DENSITY-FUNCTIONAL THEORY; PROTON-TRANSFER REACTIONS AB This work introduces the PYXAID program, developed for non-adiabatic molecular dynamics simulations in condensed matter systems. By applying the classical path approximation to the fewest switches surface hopping approach, we have developed an efficient computational tool that can be applied to study photoinduced dynamics at the air initio level in systems composed of hundreds of atoms and involving thousands of electronic states. The technique is used to study in detail the ultrafast relaxation of hot electrons in crystalline pentacene. The simulated relaxation occurs on a 500 fs time scale, in excellent agreement with experiment, and is driven by molecular lattice vibrations in the 200-250 cm(-1) frequency range. The PYXAID program is organized as a Python extension module and can be easily combined with other Python-driven modules, enhancing user-friendliness and flexibility of the software. The source code and additional information are available on the Web at the address http://gdriv.es/pyxaid. The program is released under the GNU General Public License. C1 [Akimov, Alexey V.; Prezhdo, Oleg V.] Univ Rochester, Dept Chem, Rochester, NY 14627 USA. [Akimov, Alexey V.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. RP Prezhdo, OV (reprint author), Univ Rochester, Dept Chem, Rochester, NY 14627 USA. EM oleg.prezhdo@rochester.edu RI Akimov, Alexey/H-9547-2014 FU Computational Materials and Chemical Sciences Network (CMCSN) project at Brookhaven National Laboratory [DE-AC02-98CH10886]; U.S. Department of Energy [DE-SC0006527]; Division of Chemical Sciences, Geosciences & Biosciences, Office of Basic Energy Sciences FX The authors are grateful to Dhara Trivedi for comments on the manuscript. A.V.A. was funded by the Computational Materials and Chemical Sciences Network (CMCSN) project at Brookhaven National Laboratory under contract DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences & Biosciences, Office of Basic Energy Sciences. O.V.P. acknowledges financial support of the U.S. Department of Energy, grant DE-SC0006527. NR 148 TC 71 Z9 71 U1 6 U2 65 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD NOV PY 2013 VL 9 IS 11 BP 4959 EP 4972 DI 10.1021/ct400641n PG 14 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 252WV UT WOS:000327044500030 PM 26583414 ER PT J AU Nagarajan, A Junghans, C Matysiak, S AF Nagarajan, Anu Junghans, Christoph Matysiak, Silvina TI Multiscale Simulation of Liquid Water Using a Four-to-One Mapping for Coarse-Graining SO JOURNAL OF CHEMICAL THEORY AND COMPUTATION LA English DT Article ID MOLECULAR-DYNAMICS SIMULATIONS; IMPLICIT SOLVENT MODELS; TEMPERATURE-DEPENDENCE; MAXIMUM DENSITY; RECENT PROGRESS; FREE-ENERGIES; SOFT MATTER; PROTEINS; HYDRATION; ORDER AB We present a multiresolution simulation scheme for the solvent environment where four atomistic water molecules are mapped onto one coarse-grained bead. Soft restraining potentials are used to allow a resolution exchange of four water molecules into a single coarse-grained site. We first study the effect of adding restraining potentials in liquid water using full all-atom simulations. The usage of very soft restraining potentials to bundle four nearest neighbor water molecules does not disrupt the hydrogen bonding patterns in the liquid water. The structural properties of the first solvation shell around hydrophobic, hydrophilic, and ionic solutes are well preserved when soft restraining potentials are added. By modeling a bundle of four water molecules as a single molecule, a smooth transition and free exchange between coarse-grained and all-atom resolution is possible by using the adaptive resolution scheme (AdResS). C1 [Nagarajan, Anu; Matysiak, Silvina] Univ Maryland, Fischell Dept Bioengn, College Pk, MD 20742 USA. [Junghans, Christoph] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. RP Matysiak, S (reprint author), Univ Maryland, Fischell Dept Bioengn, College Pk, MD 20742 USA. EM matysiak@umd.edu RI Junghans, Christoph/G-4238-2010 OI Junghans, Christoph/0000-0003-0925-1458 FU National Science Foundation [TG-MCB110075, TG-MCB120045]; LANL FX This research was supported in part by the National Science Foundation through XSEDE resources provided by The Texas Advanced Computing Center (TACC) under grant numbers [TG-MCB110075] and [TG-MCB120045]. We would also like to thank Sebastian Fritsch for his help and support with AdResS and the VOTCA package. Christoph Junghans thanks LANL for a Director's fellowship. NR 64 TC 7 Z9 7 U1 2 U2 18 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1549-9618 EI 1549-9626 J9 J CHEM THEORY COMPUT JI J. Chem. Theory Comput. PD NOV PY 2013 VL 9 IS 11 BP 5168 EP 5175 DI 10.1021/ct400566j PG 8 WC Chemistry, Physical; Physics, Atomic, Molecular & Chemical SC Chemistry; Physics GA 252WV UT WOS:000327044500046 PM 26583426 ER PT J AU Stickel, JJ Knutsen, JS Liberatore, MW AF Stickel, Jonathan J. Knutsen, Jeffrey S. Liberatore, Matthew W. TI Response of elastoviscoplastic materials to large amplitude oscillatory shear flow in the parallel-plate and cylindrical-Couette geometries SO JOURNAL OF RHEOLOGY LA English DT Article ID YIELD-STRESS FLUIDS; FOURIER-TRANSFORM RHEOLOGY; ROTATIONAL VISCOMETER; MODEL; LAOS; THIXOTROPY; RHEOMETRY; CURVES; GEL AB Most investigations of large amplitude oscillatory shear (LAOS) rheometry to date have presumed uniform shear. The study of structured materials would especially benefit from LAOS rheometry but require the use of the larger gaps and roughened surfaces in parallel-plate and cylindrical-Couette geometries. However, in these geometries, the shear profiles are not homogeneous throughout the deformation field. For elastoviscoplastic materials undergoing LAOS in these geometries, both elastic and viscoplastic deformations may occur simultaneously, complicating the data analysis. By means of model simulations, we provide a comprehensive picture of a model elastoviscoplastic material undergoing oscillatory shear deformation in the parallel-plate and cylindrical-Couette geometries, and we compare the oscillatory signals to those obtained from a uniform-shear field. Both displacement-controlled and torque-controlled oscillatory flows were simulated. We show that using popular linear formulas for mapping displacement to strain and torque to stress results in strain and stress signals that deviate significantly from their uniform-shear counterparts. For some limited cases, specifically displacement-controlled parallel-plate and torque-controlled cylindrical-Couette oscillatory rheometry, the use of advanced mapping methods to improve the calculation of strain and stress signals was demonstrated. As an alternative, we suggest that analyzing LAOS signals via constitutive modeling provides a unifying approach. (C) 2013 The Society of Rheology. C1 [Stickel, Jonathan J.] Natl Bioenergy Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA. [Knutsen, Jeffrey S.; Liberatore, Matthew W.] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA. RP Stickel, JJ (reprint author), Natl Bioenergy Ctr, Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM jonathan.stickel@nrel.gov RI Liberatore, Matthew/B-6828-2008 FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory; BioEnergy Technologies Office FX This work was funded by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory and through the BioEnergy Technologies Office. NR 46 TC 14 Z9 14 U1 2 U2 26 PU JOURNAL RHEOLOGY AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0148-6055 J9 J RHEOL JI J. Rheol. PD NOV PY 2013 VL 57 IS 6 BP 1569 EP 1596 DI 10.1122/1.4820495 PG 28 WC Mechanics SC Mechanics GA 257BE UT WOS:000327357100004 ER PT J AU Choudhary, K Hill, LB Kemper, TW Sinnott, SB AF Choudhary, Kamal Hill, Leah B. Kemper, Travis W. Sinnott, Susan B. TI Mechanisms for hyperthermal polyatomic hydrocarbon modification of PMMA surfaces from molecular dynamics simulations SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; POLY(METHYL METHACRYLATE); POLYMER MELTS; FILMS; ABLATION; HYDROGEN; CARBON; FLUOROCARBON; POLYSTYRENE; EROSION AB Classical molecular dynamics simulations are performed to determine the mechanisms by which hyperthermal hydrocarbon polyatomics, which are present in low-energy plasmas, chemically modify polymer surfaces. In particular, C2H, CH3, and C3H5 are deposited on an amorphous poly (methyl methacrylate) (PMMA) substrate with kinetic energies of 4, 10, 25, and 50 eV and compared to the deposition of H at the same energies. The short-range forces on the atoms are determined using the second generation reactive empirical many-body potential, while the long-range forces are determined using a Lennard-Jones potential. The simulations predict that at all these incident energies, the chemical modification of the PMMA is limited to within a nanometer of the surface. Atoms, fragments, and incident polyatomics are further predicted to chemically attach to specific sites on the PMMA monomers at low energies and to attach to a wider range of sites at higher energies. However, no appreciable cross-linking between polymer chains is predicted to occur. Variation in the penetration depth of the deposited polyatomics or H is correlated to differences in their size and bond saturation. The greatest extent of chemical modification of the PMMA surface slab is achieved for C2H deposition with 50 eV of kinetic energy. (C) 2013 American Vacuum Society. C1 [Choudhary, Kamal; Hill, Leah B.; Sinnott, Susan B.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Kemper, Travis W.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Choudhary, K (reprint author), Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. EM ssinn@mse.ufl.edu RI Sinnott, Susan/P-8523-2014 OI Sinnott, Susan/0000-0002-3598-0403 FU National Science Foundation [CHE-0809376] FX The authors gratefully acknowledge the support of the National Science Foundation (CHE-0809376). NR 48 TC 0 Z9 0 U1 2 U2 16 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD NOV-DEC PY 2013 VL 31 IS 6 AR 061403 DI 10.1116/1.4823477 PG 7 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 255QC UT WOS:000327253900023 ER PT J AU Jaffe, JE Kaspar, TC Droubay, TC Varga, T AF Jaffe, John E. Kaspar, Tiffany C. Droubay, Timothy C. Varga, Tamas TI Band offsets for mismatched interfaces: The special case of ZnO on CdTe (001) SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; AUGMENTED-WAVE METHOD; SOLAR-CELL; ATOMIC-HYDROGEN; BASIS-SET; SEMICONDUCTORS; ZINCBLENDE; METALS; TRANSITION AB High-quality planar interfaces between ZnO and CdTe would be useful in optoelectronic applications. Although CdTe is zinc blende with cubic lattice constant a 6.482 angstrom while ZnO is hexagonal wurtzite with a = 3.253 angstrom and c = 5.213 angstrom, (001)-oriented cubic zinc blende ZnO films could be stabilized epitaxially on a CdTe (001) surface in an root 2 x root 2 R45 degrees configuration with a lattice mismatch of < 0.5%. Modeling such a configuration allows density-functional total-energy electronic-structure calculations to be performed on several interface arrangements (varying terminations and in-plane fractional translations) to identify the most likely form of the interface, and to predict valence-band offsets between CdTe and ZnO in each case. Growth of ZnO on Te-terminated CdTe(001) is predicted to produce small or even negative (CdTe below ZnO) valence band offsets, resulting in a Type I band alignment. Growth on Cd-terminated CdTe is predicted to produce large positive offsets for a Type II alignment as needed, for example, in solar cells. To corroborate some of these predictions, thin layers of ZnO were deposited on CdTe(001) by pulsed laser deposition, and the band alignments of the resulting heterojunctions were determined from x-ray photoelectron spectroscopy measurements. Although zinc blende ZnO could not be confirmed, the measured valence band offset (2.0-2.2 eV) matched well with the predicted value. (C) 2013 American Vacuum Society. C1 [Jaffe, John E.; Kaspar, Tiffany C.; Droubay, Timothy C.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Varga, Tamas] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Jaffe, JE (reprint author), Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, POB 999, Richland, WA 99352 USA. EM Tiffany.Kaspar@pnnl.gov RI Droubay, Tim/D-5395-2016 OI Droubay, Tim/0000-0002-8821-0322 FU U.S. Department of Energy's Office of Biological and Environmental Research; Laboratory Directed Research and Development Program at PNNL FX A portion of this research was performed using EMSL, a national scientific user facility sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory. This research was supported by the Laboratory Directed Research and Development Program at PNNL. NR 37 TC 0 Z9 0 U1 0 U2 16 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD NOV-DEC PY 2013 VL 31 IS 6 AR 061102 DI 10.1116/1.4816951 PG 9 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 255QC UT WOS:000327253900006 ER PT J AU Manandhar, K Trenary, M Otani, S Zapol, P AF Manandhar, Kedar Trenary, Michael Otani, Shigeki Zapol, Peter TI Dissociation of trimethylgallium on the ZrB2(0001) surface SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A LA English DT Article ID PULSED-LASER DEPOSITION; MOLECULAR-BEAM EPITAXY; GROUP-III NITRIDES; THREADING DISLOCATIONS; GALLIUM NITRIDE; GROWTH; GAN; DECOMPOSITION; ADSORPTION; SI(100) AB X-ray photoelectron spectroscopy and reflection absorption infrared spectroscopy (RAIRS) have been used to study the dissociative adsorption of trimethylgallium (TMG) on the ZrB2(0001) surface. Spectra were obtained as a function of annealing temperature following TMG exposure at temperatures of 95 and 300 K, and also as a function of TMG exposure for a surface temperature of 300 K. After annealing above 220 K, a significant decrease in the relative concentration of carbon and gallium occurred accompanied by a shift of similar to 0.2 eV in the Ga 2p(3/2) binding energy. The RAIR spectra show that after annealing to similar to 220 K, only one CH3 deformation band at 1196 cm(-1) remains, the intensity of which is considerably decreased indicating loss of at least one methyl group from TMG. Further annealing leads to the sequential loss of the other methyl groups. The first methyl desorbs while the last two dissociate to deposit two C atoms per TMG molecule onto the ZrB2 surface. (C) 2013 American Vacuum Society. C1 [Manandhar, Kedar; Trenary, Michael] Univ Illinois, Dept Chem, Chicago, IL 60607 USA. [Otani, Shigeki] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050044, Japan. [Zapol, Peter] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. RP Manandhar, K (reprint author), Univ Illinois, Dept Chem, 845W Taylor St, Chicago, IL 60607 USA. EM mtrenary@uic.edu RI Zapol, Peter/G-1810-2012 OI Zapol, Peter/0000-0003-0570-9169 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences-Materials Science [DE-AC02-06CH11357]; National Science Foundation [CHE-1012201] FX This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences-Materials Science under Contract No. DE-AC02-06CH11357. K. M. and M. T. also acknowledge partial support from the National Science Foundation under grant CHE-1012201. NR 55 TC 2 Z9 2 U1 0 U2 9 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 0734-2101 J9 J VAC SCI TECHNOL A JI J. Vac. Sci. Technol. A PD NOV-DEC PY 2013 VL 31 IS 6 AR UNSP 061405 DI 10.1116/1.4826881 PG 9 WC Materials Science, Coatings & Films; Physics, Applied SC Materials Science; Physics GA 255QC UT WOS:000327253900025 ER PT J AU Anderson, EH Chao, WL Gullikson, EM Rekawa, S Andresen, N Naulleau, P AF Anderson, Erik H. Chao, Weilun Gullikson, Eric M. Rekawa, Senajith Andresen, Nord Naulleau, Patrick TI Silicon nitride zoneplates and packaging for extreme ultraviolet instruments SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID GRATINGS AB Diffractive optical elements such as Fresnel zoneplate lenses have many uses at extreme ultraviolet (EUV), particularly in short focal length, high-resolution applications. However, the diffraction efficiency of a pure absorption zoneplate is limited to about 10%, and it suffers additional loss through the membrane support material. To this end, the authors explored the possibility of silicon nitride (Si3N4) as a EUV phase shifting material. At an etched depth of 244 nm, they measured a diffraction efficiency of 18% in the first order and 18% in the zero order, which compares favorably to an amplitude grating of 10% and 25%, respectively. The measured efficiency as a function of etch depth matches the scalar theory quite well using a measured EUV index of refraction 0.9790 +0.0066i at the wavelength of 13.5 nm. To further increase the efficiency, zoneplates were made freestanding, with the support membrane completely removed, and a 15% absolute efficiency was obtained. Vector electromagnetic calculations showed that at normal incidence, these optics produce excellent wavefront and efficiency for outer zones of 50nm or larger. Zoneplates of narrower zones or those illuminated obliquely can suffer larger wavefront errors and low efficiency and would require careful design optimization. In the work, the authors also demonstrated a technique to package zoneplates and associated apertures for high precision insertion and removal from a EUV instrument. This technique has yielded alignment accuracy from a few microns to few 10s microns, depending on the exact design. (C) 2013 American Vacuum Society. C1 [Anderson, Erik H.; Chao, Weilun; Gullikson, Eric M.; Rekawa, Senajith; Andresen, Nord; Naulleau, Patrick] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Anderson, EH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Mail Stop 2-400,1 Cyclotron Rd, Berkeley, CA 94720 USA. EM wlchao@lbl.gov FU U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division [DE-AC02-05CH11231] FX This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231. NR 9 TC 0 Z9 0 U1 3 U2 4 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2013 VL 31 IS 6 AR 06F606 DI 10.1116/1.4826695 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 262BE UT WOS:000327708300025 ER PT J AU Czaplewski, DA Ocola, LE AF Czaplewski, David A. Ocola, Leonidas E. TI Variation of backscatter electron intensity SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID PROXIMITY-EFFECT CORRECTION; BEAM LITHOGRAPHY; NANOMETER-SCALE; PROTEINS; CRYSTAL; SILICON; QUBIT AB The authors report experimental data on the dose contribution of backscattered electrons on a silicon substrate. The backscattered electron intensity, i.e., the relative dose contribution from backscattered electrons with respect to direct write dose, is not constant, but varies with the percentage of the total dose received by backscattered electrons. In order to measure the backscattered electron contribution, the position and number of electrons are controlled by electron beam lithography. The dose contribution is measured using a negative electron beam resist, which quantifies the electron interactions in a nanoscale volume on the surface of the substrate. The data presented here will lead to improvements in proximity effect correction algorithms and ultimately improve pattern creation using electron beam lithography. (C) 2013 American Vacuum Society. C1 [Czaplewski, David A.; Ocola, Leonidas E.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. RP Czaplewski, DA (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM dczaplewski@anl.gov OI Ocola, Leonidas/0000-0003-4990-1064 FU Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility [DE-AC02-06CH11357] FX This work was performed at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. NR 30 TC 0 Z9 0 U1 0 U2 2 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2013 VL 31 IS 6 AR 06F202 DI 10.1116/1.4818881 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 262BE UT WOS:000327708300004 ER PT J AU Divan, R Rosenthal, D Ogando, K Ocola, LE Rosenmann, D Moldovan, N AF Divan, Ralu Rosenthal, Dan Ogando, Karim Ocola, Leonidas E. Rosenmann, Daniel Moldovan, Nicolaie TI Metal-assisted etching of silicon molds for electroforming SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID ZONE PLATES; POROUS SILICON; NANOWIRES; FABRICATION; ARRAYS; LITHOGRAPHY; NANOSTRUCTURES; DIAMETER AB Ordered arrays of high-aspect-ratio micro/nanostructures in semiconductors stirred a huge scientific interest due to their unique one-dimensional physical morphology and the associated electrical, mechanical, chemical, optoelectronic, and thermal properties. Metal-assisted chemical etching enables fabrication of such high aspect ratio Si nanostructures with controlled diameter, shape, length, and packing density, but suffers from structure deformation and shape inconsistency due to uncontrolled migration of noble metal structures during etching. Hereby the authors prove that a Ti adhesion layer helps in stabilizing gold structures, preventing their migration on the wafer surface while not impeding the etching. Based on this finding, the authors demonstrate that the method can be used to fabricate linear Fresnel zone plates. (C) 2013 American Vacuum Society. C1 [Divan, Ralu; Ocola, Leonidas E.; Rosenmann, Daniel] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Rosenthal, Dan] Illinois Math & Sci Acad, Aurora, IL 60506 USA. [Ogando, Karim] Ctr Atom Bariloche, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. [Ogando, Karim] Inst Balseiro, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina. [Moldovan, Nicolaie] Adv Diamond Technol Inc, Romeoville, IL 60446 USA. RP Divan, R (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM divan@anl.gov OI Ocola, Leonidas/0000-0003-4990-1064 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX Use of the Center for Nanoscale Materials, Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. NR 36 TC 0 Z9 0 U1 2 U2 17 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2013 VL 31 IS 6 AR 06FF03 DI 10.1116/1.4821651 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 262BE UT WOS:000327708300053 ER PT J AU Li, LZ Trusheim, M Gaathon, O Kisslinger, K Cheng, CJ Lu, M Su, D Yao, XW Huang, HC Bayn, I Wolcott, A Osgood, RM Englund, D AF Li, Luozhou Trusheim, Matthew Gaathon, Ophir Kisslinger, Kim Cheng, Ching-Jung Lu, Ming Su, Dong Yao, Xinwen Huang, Hsu-Cheng Bayn, Igal Wolcott, Abraham Osgood, Richard M., Jr. Englund, Dirk TI Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID SINGLE-CRYSTAL-DIAMOND; NITROGEN-VACANCY CENTERS; CROSS-SECTION SPECIMENS; VAPOR-DEPOSITED DIAMOND; RAMAN-SPECTROSCOPY; SAMPLE PREPARATION; COLOR-CENTERS; BEAM; IMPLANTATION; DAMAGE AB Commonly used preparation method for thin diamond membranes by focused ion beam (FIB) techniques results in surface damage. Here, the authors introduce an alternative method based on reactive ion etching (RIE). To compare these methods, cross-sectional samples are produced in single crystal diamond, a material that has generated growing interest for a variety of applications. The samples are examined by Raman spectroscopy and high-resolution transmission electron microscopy (TEM). Raman spectra indicate that the crystalline structure of the RIE-processed diamond is preserved, while the FIB-processed diamond membrane has a broad-background sp(2) feature. Atomic-resolution TEM imaging demonstrates that the RIE-based process produces no detectable damage, while the FIB-processed sample has an amorphous carbon layer of about 11 nm thick. These findings show that the RIE-based process allows the production of diamond TEM samples with reduced near-surface damage and can thus enable direct examination of growth defects and crystallographic damage induced by processes such as ion implantation and bombardment. (C) 2013 American Vacuum Society. C1 [Li, Luozhou; Yao, Xinwen; Huang, Hsu-Cheng; Osgood, Richard M., Jr.] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA. [Trusheim, Matthew; Gaathon, Ophir; Osgood, Richard M., Jr.] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA. [Trusheim, Matthew; Gaathon, Ophir; Bayn, Igal; Englund, Dirk] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. [Kisslinger, Kim; Cheng, Ching-Jung; Lu, Ming; Su, Dong] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Wolcott, Abraham] Columbia Univ, Dept Chem, New York, NY 10027 USA. RP Li, LZ (reprint author), Columbia Univ, Dept Elect Engn, New York, NY 10027 USA. EM ll2670@columbia.edu; englund@mit.edu RI Kisslinger, Kim/F-4485-2014; Su, Dong/A-8233-2013 OI Su, Dong/0000-0002-1921-6683 FU U.S. Air Force Office of Scientific Research Quantum Memories MURI, PECASE, and Young Investigator Program (AFOSR) [FA9550-11-1-0014]; Defense Threat Reduction Agency [HDTRA1-11-1-0022]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was supported by the U.S. Air Force Office of Scientific Research Quantum Memories MURI, PECASE, and Young Investigator Program (AFOSR Grant No. FA9550-11-1-0014, supervised by Gernot Pomrenke), and in part by the Defense Threat Reduction Agency, Basic Research Award #HDTRA1-11-1-0022 to Columbia University. Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. The authors would like to thank Mircea Cotlet, Aaron Stein, Fernando Camino, Hsin-hui Huang, and Sergio Allegri for their assistance in this work. NR 51 TC 7 Z9 7 U1 1 U2 26 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2013 VL 31 IS 6 AR 06FF01 DI 10.1116/1.4813559 PG 6 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 262BE UT WOS:000327708300051 ER PT J AU Li, W Esquiroz, VM Urbanski, L Patel, D Menoni, CS Marconi, MC Stein, A Chao, WL Anderson, EH AF Li, Wei Esquiroz, Victor Martinez Urbanski, Lukasz Patel, Dinesh Menoni, Carmen S. Marconi, Mario C. Stein, Aaron Chao, Weilun Anderson, Erik H. TI Defect-free periodic structures using extreme ultraviolet Talbot lithography in a table-top system SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID X-RAY LASER; ENHANCED RAMAN-SCATTERING; COHERENT DIFFRACTION LITHOGRAPHY; INTERFEROMETRIC LITHOGRAPHY; INTERFERENCE LITHOGRAPHY; WAVELENGTH RESOLUTION; PHOTONIC CRYSTALS; REPETITION RATE; LARGE-AREA; FABRICATION AB A compact nanofabrication system that combines Talbot lithography and a table-top extreme ultraviolet laser is presented. The lithographic method based on the Talbot effect provides a robust and simple experimental setup that is capable to print periodic structures over millimeter square areas free of defects. Test structures were printed and transferred into metal layers showing a complete coherent extreme ultraviolet lithographic process in a table-top system. (C) 2013 American Vacuum Society. C1 [Li, Wei; Esquiroz, Victor Martinez; Urbanski, Lukasz; Patel, Dinesh; Menoni, Carmen S.; Marconi, Mario C.] Colorado State Univ, Engn Res Ctr Extreme Ultraviolet Sci & Technol, Ft Collins, CO 80523 USA. [Li, Wei; Esquiroz, Victor Martinez; Urbanski, Lukasz; Patel, Dinesh; Menoni, Carmen S.; Marconi, Mario C.] Colorado State Univ, Elect & Comp Engn Dept, Ft Collins, CO 80523 USA. [Stein, Aaron] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [Chao, Weilun; Anderson, Erik H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Xray Opt, Berkeley, CA 94720 USA. RP Li, W (reprint author), Colorado State Univ, Engn Res Ctr Extreme Ultraviolet Sci & Technol, Ft Collins, CO 80523 USA. EM Mario.marconi@colostate.edu OI Stein, Aaron/0000-0003-4424-5416 FU National Science Foundation [ECCS 0901806]; NSF ERC for Extreme Ultraviolet Science and Technology [EEC 0310717]; NSF SBIR program [1248924]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was supported by the National Science Foundation, Award ECCS 0901806, and the NSF ERC for Extreme Ultraviolet Science and Technology, Award EEC 0310717. Partial support from the NSF SBIR program through Grant 1248924 is also acknowledged. The e-beam written mask research was carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 40 TC 8 Z9 8 U1 1 U2 9 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2013 VL 31 IS 6 AR 06F604 DI 10.1116/1.4826344 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 262BE UT WOS:000327708300023 ER PT J AU Ocola, LE Palacios, E AF Ocola, Leonidas E. Palacios, Edgar TI Advances in ion beam micromachining for complex 3D microfluidics SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID MICROFABRICATION AB In this paper, the authors present microfluidic mixers containing complex curvilinear and several tens of microns deep three-dimensional (3D) geometries used to decrease mixing lengths in passive microfluidic systems. In order to create these 3D geometries, the authors use ion beam micromachining (IB mu M) and address redeposition and exposure strategy effects that follow this type of fabrication. Results of this work clearly demonstrate that fabrication of 3D microfluidic mixers using IB mu M is achievable for real practical applications. In order to scale up to the tens of microns width and depth, and hundreds of microns in length fabrication, high current is required. This raises unique challenges of redeposition handling. This was achieved by realizing that redeposited silicon can be removed with an extended buffered oxide etch. In addition, data management and writing strategies not encountered in electron beam lithography have to be considered when designing the solid to be milled. Both designs, straight 3D and serpentine 3D mixers, were significantly faster mixers than the standard focusing mixer with no 3D texturing. This demonstrates that adding programmed depth variations to existing microfluidic devices can open new opportunities in microfluidic research and IB mu M. (C) 2013 American Vacuum Society. C1 [Ocola, Leonidas E.] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Palacios, Edgar] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA. [Palacios, Edgar] Univ Illinois, Dept Civil & Mat Engn, Chicago, IL 60607 USA. RP Ocola, LE (reprint author), Argonne Natl Lab, Ctr Nanoscale Mat, 9700 S Cass Ave, Argonne, IL 60439 USA. EM ocola@anl.gov OI Ocola, Leonidas/0000-0003-4990-1064 FU Department of Energy [DE-AC02-06CH11357]; U.S. Department of Energy, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This work was supported by the Department of Energy under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 21 TC 1 Z9 1 U1 4 U2 16 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2013 VL 31 IS 6 AR 06F401 DI 10.1116/1.4819302 PG 7 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 262BE UT WOS:000327708300008 ER PT J AU Voss, LF Reinhardt, CE Graff, RT Conway, AM Shao, QH Nikolic, RJ Dar, MA Cheung, CL AF Voss, Lars F. Reinhardt, Cathy E. Graff, Robert T. Conway, Adam M. Shao, Qinghui Nikolic, Rebecca J. Dar, Mushtaq A. Cheung, Chin L. TI Analysis of strain in dielectric coated three dimensional Si micropillar arrays SO JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B LA English DT Article ID RAMAN MEASUREMENTS; SILICON; BORON; (10)BORON AB Stress induced in [100] oriented Si circular micropillars by coatings of low pressure chemical vapor deposited B-10, SiyNx, and plasma enhanced chemical vapor deposited SiO2 were measured using micro-Raman spectroscopy. Both tensile and compressive strains in the Si micropillars were observed. Exceptionally large stresses were found to exist in some of the measured Si micropillars. The cross-sectional shapes of these structures were shown to be an important factor in correlating their strain concentrations which could fracture the micropillar. (C) 2013 American Vacuum Society. C1 [Voss, Lars F.; Reinhardt, Cathy E.; Graff, Robert T.; Conway, Adam M.; Shao, Qinghui; Nikolic, Rebecca J.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Dar, Mushtaq A.; Cheung, Chin L.] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA. [Dar, Mushtaq A.; Cheung, Chin L.] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE 68588 USA. RP Voss, LF (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA. EM voss5@llnl.gov RI Cheung, Chin Li/B-8270-2013 FU U.S. Department of Homeland Security, Domestic Nuclear Detection Office [IAA HSHQDC-08-C-00874]; LLNL Laboratory Directed Research and Development; U.S. DOE by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-426150] FX The authors acknowledge the assistance of Chris Orme with Raman measurements. This work has been partially supported by the U.S. Department of Homeland Security, Domestic Nuclear Detection Office, under competitively awarded IAA HSHQDC-08-C-00874. This support does not constitute an express or implied endorsement on the part of the Government. This work has been partially supported by LLNL Laboratory Directed Research and Development. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-JRNL-426150. NR 30 TC 2 Z9 2 U1 0 U2 4 PU A V S AMER INST PHYSICS PI MELVILLE PA STE 1 NO 1, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747-4502 USA SN 1071-1023 J9 J VAC SCI TECHNOL B JI J. Vac. Sci. Technol. B PD NOV PY 2013 VL 31 IS 6 AR 060602 DI 10.1116/1.4826500 PG 5 WC Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Physics, Applied SC Engineering; Science & Technology - Other Topics; Physics GA 262BE UT WOS:000327708300061 ER PT J AU Almagro, JC Gilliland, GL Scott, J Larrick, JW Pluckthun, A Veldman, T Adams, GP Parren, PWHI Chester, KA Bradbury, A Reichert, JM Huston, JS AF Almagro, Juan Carlos Gilliland, Gary L. Scott, Jamie Larrick, James W. Plueckthun, Andreas Veldman, Trudi Adams, Gregory P. Parren, Paul W. H. I. Chester, Kerry A. Bradbury, Andrew Reichert, Janice M. Huston, James S. TI Antibody Engineering and Therapeutics Conference The Annual Meeting of the Antibody Society, December 8-12, 2013, Huntington Beach, CA SO MABS LA English DT Editorial Material AB The Antibody Engineering and Therapeutics conference, which serves as the annual meeting of The Antibody Society, will be held in Huntington Beach, CA from Sunday December 8 through Thursday December 12, 2013. The scientific program will cover the full spectrum of challenges in antibody research and development, and provide updates on recent progress in areas from basic science through approval of antibody therapeutics. Keynote presentations will be given by Leroy Hood (Institute of System Biology), who will discuss a systems approach for studying disease that is enabled by emerging technology; Douglas Lauffenburger (Massachusetts Institute of Technology), who will discuss systems analysis of cell communication network dynamics for therapeutic biologics design; David Baker (University of Washington), who will describe computer-based design of smart protein therapeutics; and William Schief (The Scripps Research Institute), who will discuss epitope-focused immunogen design. In this preview of the conference, the workshop and session chairs share their thoughts on what conference participants may learn in sessions on: (1) three-dimensional structure antibody modeling; (2) identifying clonal lineages from next-generation data sets of expressed V-H gene sequences; (3) antibodies in cardiometabolic medicine; (4) the effects of antibody gene variation and usage on the antibody response; (5) directed evolution; (6) antibody pharmacokinetics, distribution and off-target toxicity; (7) use of knowledge-based design to guide development of complementarity-determining regions and epitopes to engineer or elicit the desired antibody; (8) optimizing antibody formats for immunotherapy; (9) antibodies in a complex environment; (10) polyclonal, oligoclonal and bispecific antibodies; (11) antibodies to watch in 2014; and (12) polyreactive antibodies and polyspecificity. C1 [Almagro, Juan Carlos] Pfizer, Boston, MA USA. [Gilliland, Gary L.] Janssen Res & Dev LLC, Spring House, PA USA. [Scott, Jamie] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada. [Larrick, James W.] Veloc Pharmaceut Dev, San Francisco, CA USA. [Plueckthun, Andreas] Univ Zurich, Zurich, Switzerland. [Veldman, Trudi] AbbVie Biores Ctr, Worcester, MA USA. [Adams, Gregory P.] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA. [Parren, Paul W. H. I.] Genmab, Utrecht, Netherlands. [Chester, Kerry A.] UCL, London, England. [Bradbury, Andrew] Los Alamos Natl Lab, Los Alamos, NM USA. [Reichert, Janice M.] Reichert Biotechnol Consulting LLC, Framingham, MA USA. [Huston, James S.] Huston BioConsulting LLC, Boston, MA USA. RP Reichert, JM (reprint author), Reichert Biotechnol Consulting LLC, Framingham, MA USA. EM janice.reichert@landesbioscience.com OI Bradbury, Andrew/0000-0002-5567-8172 NR 0 TC 2 Z9 2 U1 0 U2 10 PU LANDES BIOSCIENCE PI AUSTIN PA 1806 RIO GRANDE ST, AUSTIN, TX 78702 USA SN 1942-0862 EI 1942-0870 J9 MABS-AUSTIN JI mAbs PD NOV 1 PY 2013 VL 5 IS 6 BP 817 EP 825 DI 10.4161/mabs.26545 PG 9 WC Medicine, Research & Experimental SC Research & Experimental Medicine GA 258CN UT WOS:000327436700001 ER PT J AU Cheng, AX Gou, JY Yu, XH Yang, HJ Fang, X Chen, XY Liu, CJ AF Cheng, Ai-Xia Gou, Jin-Ying Yu, Xiao-Hong Yang, Huijun Fang, Xin Chen, Xiao-Ya Liu, Chang-Jun TI Characterization and Ectopic Expression of a Populus Hydroxyacid Hydroxycinnamoyltransferase SO MOLECULAR PLANT LA English DT Article DE cutin; suberin; ferulate; BAHD; acyltransferase; Populus ID ACID O-HYDROXYCINNAMOYLTRANSFERASE; ARABIDOPSIS-THALIANA; POTATO-TUBER; TISSUE-CULTURES; CUTIN POLYESTER; LIPID POLYESTER; BRASSICA-NAPUS; HIGHER-PLANTS; SUBERIN; BIOSYNTHESIS AB A Populus BAHD/HXXXD acyltransferase was identified as hydroxyacid/fatty alcohol hydroxycinnamoyltransferase. When ectopically expressed in Arabidopsis, it increased the incorporation of ferulate in both suberin and cutin polyesters, which consequently enhanced the tolerance of transgenic plants to salt stress.Cutinized and suberized cell walls in plants constitute physiologically important environment interfaces. They act as barriers limiting the loss of water and nutrients and protecting against radiation and invasion of pathogens. The roles of cutin- and suberin polyesters are often attributed to their dominant aliphatic components, but the contribution of aromatic composition to their physiological function remains unclear. By functionally screening a subset of Populus trichocarpa BAHD/HXXXD acyltransferases, we identified a hydroxycinnamoyltransferase that shows specific transacylation activity on ?-hydroxyacids using both feruloyl- and p-coumaroyl- CoA as the acyl donors. We named this enzyme P. trichocarpa hydroxyacid/fatty alcohol hydroxycinnamoyltransferase 1 (PtFHT1). The ectopic expression of the PtFHT1 gene in Arabidopsis increased the incorporation of ferulate in root and seed suberins and in leaf cutin, but not that of p-coumarate, while the aliphatic load in both suberin and cutin polyesters essentially remained unaffected. The overaccumulation of ferulate in lipophilic polyester significantly increased the tolerance of transgenic plants to salt stress treatment; under sub-lethal conditions of salt stress, the ratios of their seed germination and seedling establishment were 50% higher than those of wild-type plants. Our study suggests that, although aromatics are the minor component of polyesters, they play important role in the sealing function of lipidic polymers in planta. C1 [Cheng, Ai-Xia; Gou, Jin-Ying; Yu, Xiao-Hong; Yang, Huijun; Liu, Chang-Jun] Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. [Cheng, Ai-Xia] Shandong Univ, Sch Pharmaceut Sci, Jinan 250012, Peoples R China. [Fang, Xin; Chen, Xiao-Ya] Shanghai Inst Biol Sci, Inst Plant Physiol & Ecol, Shanghai 200032, Peoples R China. RP Liu, CJ (reprint author), Brookhaven Natl Lab, Dept Biosci, Upton, NY 11973 USA. EM cliu@bnl.gov OI Chen, Xiaoya/0000-0002-2909-8414 FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy (DOE) [DEAC0298CH10886]; National Science Foundation [MCB-1051675]; National Science Foundation of China [31028003] FX This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy (DOE) (grant no. DEAC0298CH10886 to C.J.L.); the transgenic Arabidopsis analyses were also partially supported by National Science Foundation (grant no. MCB-1051675) and by the oversea collaborative project of National Science Foundation of China (grant no. 31028003). NR 55 TC 6 Z9 7 U1 0 U2 21 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1674-2052 EI 1752-9867 J9 MOL PLANT JI Mol. Plant. PD NOV PY 2013 VL 6 IS 6 BP 1889 EP 1903 DI 10.1093/mp/sst085 PG 15 WC Biochemistry & Molecular Biology; Plant Sciences SC Biochemistry & Molecular Biology; Plant Sciences GA 259QK UT WOS:000327541200013 PM 23709341 ER PT J AU Binder, M Justo, A Riley, R Salamov, A Lopez-Giraldez, F Sjokvist, E Copeland, A Foster, B Sun, H Larsson, E Larsson, KH Townsend, J Grigoriev, IV Hibbett, DS AF Binder, Manfred Justo, Alfredo Riley, Robert Salamov, Asaf Lopez-Giraldez, Francesc Sjokvist, Elisabet Copeland, Alex Foster, Brian Sun, Hui Larsson, Ellen Larsson, Karl-Henrik Townsend, Jeffrey Grigoriev, Igor V. Hibbett, David S. TI Phylogenetic and phylogenomic overview of the Polyporales SO MYCOLOGIA LA English DT Article DE genomics; new molecular markers; Polyporales; taxonomy ID FUNGAL PHYLOGENETICS; SEQUENCE ALIGNMENTS; MAXIMUM-LIKELIHOOD; DIVERGENCE TIMES; GENOME SEQUENCE; RIBOSOMAL DNA; PRIMER SETS; BROWN-ROT; GENES; CLASSIFICATION AB We present a phylogenetic and phylogenomic overview of the Polyporales. The newly sequenced genomes of Bjerkandera adusta, Ganoderma sp., and Phlebia brevispora are introduced and an overview of 10 currently available Polyporales genomes is provided. The new genomes are 39 500 000-49 900 00 bp and encode for 12 910 16 170 genes. We searched available genomes for single-copy genes and performed phylogenetic informativeness analyses to evaluate their potential for phylogenetic systematics of the Polyporales. Phylogenomic datasets (25, 71, 356 genes) were assembled for the 10 Polyporales species with genome data and compared with the most comprehensive dataset of Polyporales to date (six-gene dataset for 373 taxa, including taxa with missing data) Maximum likelihood and Bayesian phylogenetic analyses of genomic datasets yielded identical topologies, and the corresponding clades also were recovered in the 373-taxa dataset although with different support values in some datasets. Three previously recognized lineages of Polyporales, antrodia, core polyporoid and phlebioid clades, are supported in most datasets, while the status of the residual polyporoid clade remains uncertain and certain taxa (e.g. Gelatoporia, Grifola, Tyromyces) apparently do not belong to any of the major lineages of Polyporales. The most promising candidate single-copy genes are presented, and nodes in the Polyporales phylogeny critical for the suprageneric taxonomy of the order are identified and discussed. C1 [Binder, Manfred; Justo, Alfredo; Hibbett, David S.] Clark Univ, Dept Biol, Worcester, MA 01610 USA. [Binder, Manfred] CBS KNAW Fungal Biodivers Ctr, NL-3584 CT Utrecht, Netherlands. [Riley, Robert; Salamov, Asaf; Copeland, Alex; Foster, Brian; Sun, Hui; Grigoriev, Igor V.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Lopez-Giraldez, Francesc; Townsend, Jeffrey] Yale Univ, Dept Ecol & Evolutionary Biol, Osborne Mem Labs 226, New Haven, CT 06520 USA. [Sjokvist, Elisabet] Univ Gothenburg, Deptartment Biol & Environm Sci, SE-40530 Gothenburg, Sweden. [Larsson, Ellen] Univ Gothenburg, Deptment Biol & Environm Sci, SE-40530 Gothenburg, Sweden. [Larsson, Karl-Henrik] Univ Oslo, Nat Hist Museum, NO-0318 Oslo, Norway. RP Grigoriev, IV (reprint author), US DOE, Joint Genome Inst, 2800 Michell Dr, Walnut Creek, CA 94598 USA. EM ivgrigoriev@lbl.gov; dhibbett@clarku.edu RI Binder, Manfred/C-8571-2013; Lopez-Giraldez, Francesc/A-5251-2011; OI Lopez-Giraldez, Francesc/0000-0001-7476-9822; Sjokvist, Elisabet/0000-0001-5890-8677 FU NSF through PolyPEET [DEB 0933081]; Office of Science of the US Department of Energy [DE-ACO205CH11231] FX We acknowledge the financial support of NSF through the PolyPEET grant (DEB 0933081) to DSH. The work conducted by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under contract No. DE-ACO205CH11231. NR 64 TC 67 Z9 72 U1 4 U2 50 PU ALLEN PRESS INC PI LAWRENCE PA 810 E 10TH ST, LAWRENCE, KS 66044 USA SN 0027-5514 EI 1557-2536 J9 MYCOLOGIA JI Mycologia PD NOV-DEC PY 2013 VL 105 IS 6 BP 1350 EP 1373 DI 10.3852/13-003 PG 24 WC Mycology SC Mycology GA 260BJ UT WOS:000327569700002 PM 23935031 ER PT J AU Syed, K Nelson, DR Riley, R Yadav, JS AF Syed, Khajamohiddin Nelson, David R. Riley, Robert Yadav, Jagjit S. TI Genomewide annotation and comparative genomics of cytochrome P450 monooxygenases (P450s) in the polypore species Bjerkandera adusta, Ganoderma sp and Phlebia brevispora SO MYCOLOGIA LA English DT Article DE Bjerkandera adusta; Cytochrome P450 monooxygenases; Ganoderma sp.; P450ome; Phanerochaete chrysosporium; Phlebia brevispora; Postia placenta ID PHANEROCHAETE-CHRYSOSPORIUM; HYDROXYLASE; SEQUENCE; ENZYMES AB Genomewide annotation of cytochrome P450 monooxygenases (P450s) in three white-rot species of the fungal order Polyporales, namely Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora, revealed a large contingent of P450 genes (P450ome) in their genomes. A total of 199 P450 genes in B. adusta and 209 P450 genes each in Ganoderma sp. and P. brevispora were identified. These P450omes were classified into families and subfamilies as follows: B. adusta (39 families, 86 subfamilies), Ganoderma sp. (41 families, 105 subfamilies) and P. brevispora (42 families, 111 subfamilies). Of note, the B. adusta genome lacked the CYP505 family (P450foxy), a group of P450-CPR fusion proteins. The three polypore species revealed differential enrichment of individual P450 families in their genomes. The largest GYP families in the three genomes were CYP5144 (67 P450s), CYP5359 (46 P450s) and CYP5344 (43 P450s) in B. adusta, Ganoderma sp. and P. brevispora, respectively. Our analyses showed that tandem gene duplications led to expansions in certain P450 families. An estimated 33% (72 P450s), 28% (55 P450s) and 23% (49 P450s) of P450ome genes were duplicated in P. brevispora, B. adusta and Ganoderma sp., respectively. Family-wise comparative analysis revealed that 22 GYP families are common across the three Polypore species. Comparative P450ome analysis with Ganoderma lucidum revealed the presence of 143 orthologs and 56 paralogs in Ganoderma sp. Multiple P450s were found near the characteristic biosynthetic genes for secondary metabolites, namely polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), terpene cyclase and terpene synthase in the three genomes, suggesting a likely role of these P450s in secondary metabolism in these Polyporales. Overall, the three species had a richer P450 diversity both in terms of the P450 genes and P450 subfamilies as compared to the model white-rot and brown-rot polypore species Phanerochaete chrysosporium and Postia placenta. C1 [Syed, Khajamohiddin; Yadav, Jagjit S.] Univ Cincinnati, Coll Med, Dept Environm Hlth, Environm Genet & Mol Toxicol Div, Cincinnati, OH 45267 USA. [Nelson, David R.] Univ Tennessee, Ctr Hlth Sci, Dept Microbiol Immunol & Biochem, Memphis, TN 38163 USA. [Riley, Robert] Dept Energy, Joint Genome Inst, Walnut Creek, CA 94598 USA. RP Yadav, JS (reprint author), Univ Cincinnati, Coll Med, Dept Environm Hlth, Environm Genet & Mol Toxicol Div, Cincinnati, OH 45267 USA. EM jagjit.yadav@uc.edu OI Nelson, David/0000-0003-0583-5421 FU National Institute of Environmental Health Sciences (NIEHS) [R01ES015543] FX The work was supported primarily by the National Institute of Environmental Health Sciences (NIEHS) grant R01ES015543 to JSY. NR 24 TC 13 Z9 13 U1 1 U2 11 PU ALLEN PRESS INC PI LAWRENCE PA 810 E 10TH ST, LAWRENCE, KS 66044 USA SN 0027-5514 EI 1557-2536 J9 MYCOLOGIA JI Mycologia PD NOV-DEC PY 2013 VL 105 IS 6 BP 1445 EP 1455 DI 10.3852/13-002 PG 11 WC Mycology SC Mycology GA 260BJ UT WOS:000327569700007 PM 23928414 ER PT J AU Howell, SL Padalkar, S Yoon, K Li, QM Koleske, DD Wierer, JJ 'Wang, GT Lauhon, LJ AF Howell, Sarah L. Padalkar, Sonal Yoon, KunHo Li, Qiming Koleske, Daniel D. Wierer, Jonathan J. 'Wang, George T. Lauhon, Lincoln J. TI Spatial Mapping of Efficiency of GaN/InGaN Nanowire Array Solar Cells Using Scanning Photocurrent Microscopy SO NANO LETTERS LA English DT Article DE Nanowire; InGaN; SPCM; solar cell; photovoltaics ID MULTIPLE-QUANTUM-WELLS; LIGHT-EMITTING-DIODES; RAMAN-SCATTERING; PHOTOVOLTAICS; DEVICES; NANOROD AB GaN-InGaN core shell nanowire array devices are characterized by spectrally resolved scanning photocurrent microscopy (SPCM). The spatially resolved external quantum efficiency is correlated with structure and composition inferred from atomic force microscope (AFM) topography, scanning transmission electron microscope (STEM) imaging, Raman microspectroscopy, and scanning photocurrent microscopy (SPCM) maps of the effective absorption edge. The experimental analyses are coupled with finite difference time domain simulations to provide mechanistic understanding of spatial variations in carrier generation and collection, which is essential to the development of heterogeneous novel architecture solar cell devices. C1 [Howell, Sarah L.; Padalkar, Sonal; Yoon, KunHo; Lauhon, Lincoln J.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Li, Qiming; Koleske, Daniel D.; Wierer, Jonathan J.; 'Wang, George T.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lauhon, LJ (reprint author), Northwestern Univ, Dept Mat Sci & Engn, 2220 Campus Dr, Evanston, IL 60208 USA. EM lauhon@northwestern.edu RI Lauhon, Lincoln/B-7526-2009; Lauhon, Lincoln/H-2976-2015; Wierer, Jonathan/G-1594-2013 OI Lauhon, Lincoln/0000-0001-6046-3304; Wierer, Jonathan/0000-0001-6971-4835 FU DOE BES [DE-FG02-07ER46401]; NSF Graduate Research Fellowship [DGE-1324585]; Sandia's Solid State Lighting Science Energy Frontier Research Center; DOE BES; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Nanowire SPCM and Raman studies in the group of L.J.L. were supported by DOE BES grant DE-FG02-07ER46401. S.L.H. was supported in part by an NSF Graduate Research Fellowship under DGE-1324585. The nanowire solar cell growth, device fabrication, and STEM characterization were supported by Sandia's Solid State Lighting Science Energy Frontier Research Center, funded by DOE BES. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 30 TC 40 Z9 40 U1 11 U2 108 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2013 VL 13 IS 11 BP 5123 EP 5128 DI 10.1021/nl402331u PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 253TH UT WOS:000327111700021 PM 24099617 ER PT J AU Gu, M Kushima, A Shao, YY Zhang, JG Liu, J Browning, ND Li, J Wang, CM AF Gu, Meng Kushima, Akihiro Shao, Yuyan Zhang, Ji-Guang Liu, Jun Browning, Nigel D. Li, Ju Wang, Chongmin TI Probing the Failure Mechanism of SnO2 Nanowires for Sodium-Ion Batteries SO NANO LETTERS LA English DT Article DE Na-ion battery; SnO2 anode; in situ TEM; Na diffusion; DFT calculation; failure mechanism ID IN-SITU TEM; TRANSMISSION ELECTRON-MICROSCOPY; HIGH-CAPACITY; HIGH-PERFORMANCE; SILICON NANOWIRES; ELECTROCHEMICAL LITHIATION; NANOSTRUCTURED SILICON; ENERGY-STORAGE; LOW-COST; ANODE AB Nonlithium metals such as sodium have attracted wide attention as a potential charge carrying ion for rechargeable batteries. Using in situ transmission electron microscopy in combination with density functional theory calculations, we probed the structural and chemical evolution of SnO2 nanowire anodes in Na-ion batteries and compared them quantitatively with results from Li-ion batteries (Huang, J. Y.; et al. Science 2010, 330, 1515-1520). Upon Na insertion into SnO2, a displacement reaction occurs, leading to the formation of amorphous NaxSn nanoparticles dispersed in Na2O matrix. With further Na insertion, the NaxSn crystallized into Na15Sn4 (x = 3.75). Upon extraction of Na (desodiation), the NaxSn transforms to Sn nanoparticles. Associated with the dealloying, pores are found to form, leading to a structure of Sn particles confined in a hollow matrix of Na2O. These pores greatly increase electrical impedance, therefore accounting for the poor cyclability of SnO2. DFT calculations indicate that Na+ diffuses 30 times slower than Li+ in SnO2, in agreement with in situ TEM measurement. Insertion of Na can chemomechanically soften the reaction product to a greater extent than in lithiation. Therefore, in contrast to the lithiation of SnO2 significantly less dislocation plasticity was seen ahead of the sodiation front. This direct comparison of the results from Na and Li highlights the critical role of ionic size and electronic structure of different ionic species on the charge/discharge rate and failure mechanisms in these batteries. C1 [Gu, Meng; Wang, Chongmin] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. [Kushima, Akihiro; Li, Ju] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. [Kushima, Akihiro; Li, Ju] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. [Browning, Nigel D.] Pacific NW Natl Lab, Fundamental & Computat Sci Directorate, Richland, WA 99352 USA. [Shao, Yuyan; Zhang, Ji-Guang; Liu, Jun] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA. RP Li, J (reprint author), MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM liju@mit.edu; Chongmin.wang@pnnl.gov RI Kushima, Akihiro/H-2347-2011; Shao, Yuyan/A-9911-2008; Li, Ju/A-2993-2008; Gu, Meng/B-8258-2013 OI Browning, Nigel/0000-0003-0491-251X; Shao, Yuyan/0000-0001-5735-2670; Li, Ju/0000-0002-7841-8058; FU Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub; U.S. Department of Energy, Office of Science, Basic Energy Sciences; DOE's Office of Biological and Environmental Research; Department of Energy [DE-AC05-76RLO1830]; NSF [DMR-1008104, DMR-1120901] FX This work was supported as part of the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. The work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the Department of Energy under Contract DE-AC05-76RLO1830. A.K. and J.L. acknowledge support by NSF DMR-1008104 and DMR-1120901. NR 42 TC 76 Z9 78 U1 31 U2 332 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2013 VL 13 IS 11 BP 5203 EP 5211 DI 10.1021/nl402633n PG 9 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 253TH UT WOS:000327111700034 PM 24079296 ER PT J AU Liang, WT Hong, L Yang, H Fan, FF Liu, Y Li, H Li, J Huang, JY Chen, LQ Zhu, T Zhang, SL AF Liang, Wentao Hong, Liang Yang, Hui Fan, FeiFei Liu, Yang Li, Hong Li, Ju Huang, Jian Yu Chen, Long-Qing Zhu, Ting Zhang, Sulin TI Nanovoid Formation and Annihilation in Gallium Nanodroplets under Lithiation-Delithiation Cycling SO NANO LETTERS LA English DT Article DE Gallium nanodroplets; lithium ion battery; nanovoid; in situ TEM; phase field ID LITHIUM-ION BATTERIES; TRANSMISSION ELECTRON-MICROSCOPY; IN-SITU TEM; SILICON NANOWIRES; ELECTROCHEMICAL LITHIATION; AMORPHOUS-SILICON; SNO2 NANOWIRE; CHALLENGES; FRACTURE; ALLOYS AB The irreversible chemomechanical degradation is a critical issue in the development of high-capacity electrode materials for the next-generation lithium (Li)-ion batteries. Here we report the self-healing behavior of gallium nanodroplets (GaNDs) under electrochemical cycling at room temperature, observed with in situ transmission electron microscopy (TEM). During lithiation, the GaNDs underwent a liquid-to-solid phase transition, forming a crystalline phase (LixGa) with similar to 160% volume expansion. Owing to the uneven Li flow during lithiation, the fully lithiated GaNDs exhibited highly distorted morphologies. Upon delithiation, the reverse phase transition occurred, accompanied with the nucleation and growth of a nanosized void. After the GaNDs were fully delithiated, the nanovoid gradually annihilated. Our analysis, along with phase field modeling and experimental measurements of the void growth and annihilation, provides mechanistic insights into the void formation and annihilation mechanism. The GaNDs may function as an effective healing agent in durable composite electrodes for high-performance Li-ion batteries, wherein active components, such as Si, are susceptible to fracture. C1 [Liang, Wentao; Yang, Hui; Zhang, Sulin] Penn State Univ, Dept Engn Sci & Mech, University Pk, PA 16802 USA. [Hong, Liang; Chen, Long-Qing] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA. [Fan, FeiFei; Zhu, Ting] Georgia Inst Technol, Woodruff Sch Mech Engn, Atlanta, GA 30332 USA. [Liu, Yang; Huang, Jian Yu] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Li, Hong] Chinese Acad Sci, Inst Phys, Renewable Energy Lab, Beijing 100190, Peoples R China. [Li, Ju] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA. [Li, Ju] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA. RP Zhang, SL (reprint author), Penn State Univ, Dept Engn Sci & Mech, 227 Hammond Bldg, University Pk, PA 16802 USA. EM suz10@psu.edu RI Hong, Liang/K-5673-2013; Li, Ju/A-2993-2008; Zhu, Ting/A-2206-2009; Li, Hong/C-4643-2008; Zhang, Sulin /E-6457-2010; Chen, LongQing/I-7536-2012; YANG, HUI/H-6996-2012; Liang, Wentao/J-8771-2015; OI Li, Ju/0000-0002-7841-8058; Li, Hong/0000-0002-8659-086X; Chen, LongQing/0000-0003-3359-3781; YANG, HUI/0000-0002-2628-4676; Fan, Feifei/0000-0003-0455-4900 FU National Science Foundation [CMMI-1201058, CMMI-1100205, CMMI-1235092, DMR-1240933, DMR-1120901]; Laboratory Directed Research and Development (LDRD) project at Sandia National Laboratories (SNL); Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC); U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160]; LDRD; NEES center; U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX We acknowledge the support by National Science Foundation under the grant numbers CMMI-1201058, CMMI-1100205, CMMI-1235092, DMR-1240933 and DMR-1120901. Portions of this work were supported by a Laboratory Directed Research and Development (LDRD) project at Sandia National Laboratories (SNL) and partly by Nanostructures for Electrical Energy Storage (NEES), an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. The LDRD supported the development and fabrication of platforms. The NEES center supported the development of TEM techniques. CINT supported the TEM capability; in addition, this work represents the efforts of several CINT users, primarily those with affiliation external to Sandia National Laboratories. In addition, this work was performed, in part, at the Sandia-Los Alamos Center for Integrated Nanotechnologies (CINT), a U.S. Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 47 TC 13 Z9 14 U1 17 U2 129 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2013 VL 13 IS 11 BP 5212 EP 5217 DI 10.1021/nl402644w PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 253TH UT WOS:000327111700035 PM 24102207 ER PT J AU Xia, T Zhang, W Murowchick, J Liu, G Chen, XB AF Xia, Ting Zhang, Wei Murowchick, James Liu, Gao Chen, Xiaobo TI Built-in Electric Field-Assisted Surface-Amorphized Nanocrystals for High-Rate Lithium-Ion Battery SO NANO LETTERS LA English DT Article DE Built-in electric field; surface-amorphized nanocsystals; titanium dioxide; lithium-ion battery ID ANATASE TIO2; TITANIUM-DIOXIDE; HIGH-CAPACITY; SILICON NANOWIRES; PERFORMANCE; STORAGE; NANOTUBES; ANODES; NANOPARTICLES; NANOMATERIALS AB High-power batteries require fast charge/discharge rates and high capacity besides safe operation. TiO2 has been investigated as a safer alternative candidate to the current graphite or incoming silicon anodes due to higher redox potentials in effectively preventing lithium deposition. However, its charge/discharge rates. are reluctant to improve due to poor ion diffusion coefficients, and its capacity fades quickly with rate as only thinner surface layers can be effectively used in faster charge/discharge processes. Here, we demonstrate that surface-amorphized TiO2 nanocrystals greatly improve lithium-ion rechargeable battery performance: 20 times rate and 340% capacity improvement over crystalline TiO2 nanocrystals. This improvement is benefited from the built-in electric field within the nanocrystals that induces much lower lithium-ion diffusion resistance and facilitates its transport in both insertion and extraction processes. This concept thus offers an innovative and general approach toward designing battery materials with better performance. C1 [Xia, Ting; Chen, Xiaobo] Univ Missouri, Dept Chem, Kansas City, MO 64110 USA. [Zhang, Wei; Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Murowchick, James] Univ Missouri, Dept Geosci, Kansas City, MO 64110 USA. RP Liu, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM GLiu@lbl.gov; chenxiaobo@umkc.edu OI Murowchick, James/0000-0003-2987-0352 FU College of Arts and Sciences, University of Missouri-Kansas City, University of Missouri Research Board; University of Missouri Research Board; Office of Vehicle Technologies of the United States Department of Energy [DE-AC03-76SF00098] FX X.C. thanks the support from College of Arts and Sciences, University of Missouri-Kansas City, the University of Missouri Research Board, and the generous gift from Dow Kokam. G.L. thanks the fund by the Assistant Secretary for Energy Efficiency, Office of Vehicle Technologies of the United States Department of Energy under Contract No. DE-AC03-76SF00098. NR 39 TC 52 Z9 52 U1 4 U2 91 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2013 VL 13 IS 11 BP 5289 EP 5296 DI 10.1021/nl402810d PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 253TH UT WOS:000327111700046 PM 24099557 ER PT J AU Jun, YC Reno, J Ribaudo, T Shaner, E Greffet, JJ Vassant, S Marquier, F Sinclair, M Brener, I AF Jun, Young Chul Reno, John Ribaudo, Troy Shaner, Eric Greffet, Jean-Jacques Vassant, Simon Marquier, Francois Sinclair, Mike Brener, Igal TI Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures SO NANO LETTERS LA English DT Article DE Nano-optics; metamaterials; semiconductors; strong coupling; optoelectronics; infrared ID MOLECULES AB We present a new type of electrically tunable strong coupling between planar metamaterials and epsilon-near-zero modes that exist in a doped semiconductor nanolayer. The use of doped semiconductors makes this strong coupling tunable over a wide range of wavelengths through the use of different doping densities. We also modulate this coupling by depleting the doped semiconductor layer electrically. Our hybrid approach incorporates strong optical interactions into a highly tunable, integrated device platform. C1 [Jun, Young Chul; Reno, John; Brener, Igal] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA. [Jun, Young Chul; Ribaudo, Troy; Shaner, Eric; Sinclair, Mike; Brener, Igal] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Jun, Young Chul] Inha Univ, Dept Phys, Inchon 402751, South Korea. [Greffet, Jean-Jacques; Vassant, Simon; Marquier, Francois] Univ Paris 11, CNRS, Lab Charles Fabry, Inst Opt, F-91127 Palaiseau, France. RP Jun, YC (reprint author), Sandia Natl Labs, Ctr Integrated Nanotechnol, POB 5800, Albuquerque, NM 87185 USA. EM youngchul.jun@inha.ac.kr; ibrener@sandia.gov RI Jun, Young Chul/I-2274-2013; Marquier, Francois/A-2359-2015; Greffet, Jean-Jacques/Q-2427-2015; Vassant, Simon/K-7787-2016 OI Jun, Young Chul/0000-0002-7578-8811; Marquier, Francois/0000-0003-3118-1150; Greffet, Jean-Jacques/0000-0002-4048-2150; Vassant, Simon/0000-0002-9896-6676 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; MSIP (Ministry of Science, ICT&Future Planning), Korea under the ITRC (Information Technology Research Center) support program [NIPA-2013-H0301-13-1010] FX This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Y.C.J. acknowledges the support from the MSIP (Ministry of Science, ICT&Future Planning), Korea, under the ITRC (Information Technology Research Center) support program (NIPA-2013-H0301-13-1010) supervised by the NIPA (National IT Industry Promotion Agency). NR 24 TC 37 Z9 37 U1 2 U2 47 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2013 VL 13 IS 11 BP 5391 EP 5396 DI 10.1021/nl402939t PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 253TH UT WOS:000327111700062 PM 24124754 ER PT J AU Wu, MY Sabisch, JEC Song, XY Minor, AM Battaglia, VS Liu, G AF Wu, Mingyan Sabisch, Julian E. C. Song, Xiangyun Minor, Andrew M. Battaglia, Vincent S. Liu, Gao TI In Situ Formed Si Nanoparticle Network with Micron-Sized Si Particles for Lithium-Ion Battery Anodes SO NANO LETTERS LA English DT Article DE Silicon; nanoparticle; lithium-ion battery; anode; conductive polymer binder; additives ID SOLID-ELECTROLYTE INTERPHASE; HIGH-CAPACITY; HIGH-PERFORMANCE; RECHARGEABLE BATTERIES; SECONDARY BATTERIES; SILICON PARTICLES; ENERGY-STORAGE; LI; NANOWIRES; CARBON AB To address the significant challenges associated with large volume change of micrometer-sized Si particles as high-capacity anode materials for lithium-ion batteries, we demonstrated a simple but effective strategy: using Si nanoparticles as a structural and conductive additive, with micrometer-sized Si as the main lithium-ion storage material. The Si nanopartides connected into the network structure in situ during the charge process, to provide electronic connectivity and structure stability for the electrode. The resulting electrode showed a high specific capacity of 2500 mAh/g after 30 cycles with high initial Coulombic efficiency (73%) and good rate performance during electrochemical lithiation and delithiation: between 0.01 and 1 V vs Li/Li+. C1 [Wu, Mingyan; Song, Xiangyun; Battaglia, Vincent S.; Liu, Gao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. [Sabisch, Julian E. C.; Minor, Andrew M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA. [Sabisch, Julian E. C.; Minor, Andrew M.] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94704 USA. RP Liu, G (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. EM gliu@lbl.gov RI Foundry, Molecular/G-9968-2014 FU Office of Vehicle Technologies of the U.S. Department of Energy under the Batteries for Advanced Transportation Technologies (BATT) Program; University of California, Office of the President through the University of California Discovery Grant; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work is funded by the Assistant Secretary for Energy Efficiency, Office of Vehicle Technologies of the U.S. Department of Energy, under the Batteries for Advanced Transportation Technologies (BATT) Program and by University of California, Office of the President through the University of California Discovery Grant. Electron microscopy experiments were conducted at the National Center for Electron Microscopy (NCEM), located at Lawrence Berkeley National Laboratory (LBNL) and supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. NR 51 TC 42 Z9 42 U1 20 U2 193 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2013 VL 13 IS 11 BP 5397 EP 5402 DI 10.1021/nl402953h PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 253TH UT WOS:000327111700063 PM 24079331 ER PT J AU Marchuk, K Fang, N AF Marchuk, Kyle Fang, Ning TI Three-Dimensional Orientation Determination of Stationary Anisotropic Nanoparticles with Sub-Degree Precision under Total Internal Reflection Scattering Microscopy SO NANO LETTERS LA English DT Article DE Total internal reflection scattering (TIRS); single-particle; orientation determination; microtubule cargo; localized surface plasmon resonance ID INTERFERENCE CONTRAST MICROSCOPY; ROTATIONAL-DYNAMICS; GOLD NANORODS; TRACKING; SENSORS AB Single-particle and single-molecule orientation determination plays a vital role in deciphering nanoscale motion in complex environments. Previous attempts to determine the absolute three-dimensional orientation of anisotropic particles rely on subjective pattern matching and are inherently plagued by high degrees of uncertainty. Herein, we describe a method utilizing total internal reflection scattering microscopy to determine the 3D orientation of gold nanorods with subdegree uncertainty. The method is then applied to the biologically relevant system of microtubule cargo loading. Finally, we demonstrate the method holds potential for identifying single particles versus proximate neighbors within the diffraction limited area. C1 [Fang, Ning] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Fang, N (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM nfang@iastate.edu FU U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory; U.S. Department of Energy by Iowa State University [DE-AC02- 07CH11358] FX The authors of this paper would like to thank Keith Fritzsching from Iowa State University for his help regarding the home written MATLAB codes. Keith provided valuable discussions concerning the design of the programs along with help in the coding itself. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences through the Ames Laboratory. The Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under contract no. DE-AC02- 07CH11358. NR 22 TC 12 Z9 12 U1 0 U2 25 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2013 VL 13 IS 11 BP 5414 EP 5419 DI 10.1021/nl4029818 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 253TH UT WOS:000327111700066 PM 24144109 ER PT J AU Takahashi, T Yu, ZB Chen, K Kiriya, D Wang, C Takei, K Shiraki, H Chen, T Ma, BW Javey, A AF Takahashi, Toshitake Yu, Zhibin Chen, Kevin Kiriya, Daisuke Wang, Chuan Takei, Kuniharu Shiraki, Hiroshi Chen, Teresa Ma, Biwu Javey, Ali TI Carbon Nanotube Active-Matrix Backplanes for Mechanically Flexible Visible Light and X-ray Imagers SO NANO LETTERS LA English DT Article DE Thin film transistors; single-walled carbon nanotubes; organic photodiodes; electronic skin; bendable; imaging ID DENSITY-GRADIENT ULTRACENTRIFUGATION; POLYMER PHOTOVOLTAIC CELLS; ORGANIC PHOTODIODES; SOLAR-CELLS; ELECTRONIC SKIN; CIRCUITS; THIN; EFFICIENCY; PRESSURE; VOLTAGE AB We report visible light and X-ray imagers on lightweight and mechanically flexible plastic substrates. The process involves solution processing of organic photodetectors on top of an active-matrix backplane consisting of carbon nanotube thin-film transistors. The system takes advantage of the high mobility of nanotube transistors for low operating voltages and efficient light absorption of organic bulk-heterojunctions for high imaging sensitivity. With this highly scalable process scheme, 18 x 18 pixel-array flexible imagers (physical size of 2 cm x 1.5 cm) with high performance are successfully demonstrated. In addition, as the absorption peak of the adopted organic photodiodes covers the green band of the light spectrum, X-ray imaging is readily demonstrated by placing a scintillator film on top of the flexible imagers. C1 [Takahashi, Toshitake; Yu, Zhibin; Chen, Kevin; Kiriya, Daisuke; Wang, Chuan; Takei, Kuniharu; Shiraki, Hiroshi; Javey, Ali] Univ Calif Berkeley, Berkeley, CA 94702 USA. [Takahashi, Toshitake; Yu, Zhibin; Chen, Kevin; Kiriya, Daisuke; Wang, Chuan; Takei, Kuniharu; Shiraki, Hiroshi; Javey, Ali] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94702 USA. [Takahashi, Toshitake; Yu, Zhibin; Chen, Kevin; Kiriya, Daisuke; Wang, Chuan; Takei, Kuniharu; Shiraki, Hiroshi; Ma, Biwu; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Ma, Biwu] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [Javey, Ali] King Abudulaziz Univ, Dept Chem, Fac Sci, Jeddah 21589, Saudi Arabia. RP Javey, A (reprint author), Univ Calif Berkeley, Berkeley, CA 94702 USA. EM ajavey@eecs.berkeley.edu RI Wang, Chuan/B-3649-2011; Javey, Ali/B-4818-2013; Foundry, Molecular/G-9968-2014 FU NSF NASCENT Center; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank Dr. R. Gupta of Harvard University for valuable discussions and providing the GOS films. This work was supported by NSF NASCENT Center. Work at the Molecular Foundry (photodiode fabrication) was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Measurements of the photodiodes were performed in the Electronic Materials laboratory, LBNL, which is supported by the Director, Office of Science, Office Basic Energy Sciences, Division of Materials Sciences and Engineering, of the U.S. Department of Energy. NR 28 TC 29 Z9 29 U1 3 U2 31 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2013 VL 13 IS 11 BP 5425 EP 5430 DI 10.1021/nl403001r PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 253TH UT WOS:000327111700068 PM 24143966 ER PT J AU Li, Z Shao, S Li, N McCall, K Wang, J Zhang, SX AF Li, Z. Shao, S. Li, N. McCall, K. Wang, J. Zhang, S. X. TI Single Crystalline Nanostructures of Topological Crystalline Insulator SnTe with Distinct Facets and Morphologies SO NANO LETTERS LA English DT Article DE Topological crystalline insulators; tin telluride; nanowires; synthesis ID SURFACE CONDUCTION; PHASE-TRANSITION; NANORIBBONS; NANOWIRES; STATES AB Topological crystalline insulators (TCIs) are a new class of topological materials that possess unique metallic surface states protected by crystalline mirror symmetry. Their topological surface properties are expected to strongly depend on the surface orientation. By combining density functional theory (DFT) calculations and synthesis experiments, we demonstrate the controlled growth of single crystalline nanostructures of the prototypical TCI SnTe with distinct facets and morphologies. Our calculations suggest that the excess energy of the {111} surfaces can be either higher or lower than that of the {100} surfaces, depending on the stoichiometry, while the {110} is always higher than the {100}. In our synthesis experiment, we qualitatively controlled the stoichiometry by tailoring the growth temperature and obtained two types of single crystalline nanowires: smooth nanowires dominated by {100} facets at high temperatures and zigzag nanowires composed of both {100} and {111} surfaces at low temperatures. Notably, there is no {110} facet in our nanostructures, strongly supporting the DFT calculations. Our device fabrication and electrical characterizations suggest that both types of nanowires are suitable for transport studies of topological surface states. C1 [Li, Z.; McCall, K.; Zhang, S. X.] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA. [Shao, S.; Wang, J.] Los Alamos Natl Lab, MST 8, Los Alamos, NM 87545 USA. [Li, N.] Los Alamos Natl Lab, MPA CINT, Los Alamos, NM 87545 USA. RP Wang, J (reprint author), Los Alamos Natl Lab, MST 8, Los Alamos, NM 87545 USA. EM sxzhang@indiana.edu; wangj6@lanl.gov RI Li, Nan /F-8459-2010; Shao, Shuai/B-2037-2014; Shao, Shuai/I-4108-2014; Wang, Jian/F-2669-2012 OI Li, Nan /0000-0002-8248-9027; Shao, Shuai/0000-0002-4718-2783; Shao, Shuai/0000-0002-4718-2783; Wang, Jian/0000-0001-5130-300X FU Indiana University (IU); NSF REU program [PHY-1156540]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences; Los Alamos National Laboratory Directed Research and Development [LDRD-ER20140450] FX S.X.Z. acknowledges startup fund from Indiana University (IU) and the use of facility in the IU Nanoscience Center. KM. was supported by the NSF REU program under Grant PHY-1156540. S.S., N.L., and J.W. acknowledge the support provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences and also acknowledge support provided by the Los Alamos National Laboratory Directed Research and Development (LDRD-ER20140450). NR 38 TC 30 Z9 30 U1 9 U2 98 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2013 VL 13 IS 11 BP 5443 EP 5448 DI 10.1021/nl4030193 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 253TH UT WOS:000327111700071 PM 24138562 ER PT J AU Kang, J Li, JB Li, SS Xia, JB Wang, LW AF Kang, Jun Li, Jingbo Li, Shu-Shen Xia, Jian-Bai Wang, Lin-Wang TI Electronic Structural Moire Pattern Effects on MoS2/MoSe2 2D Heterostructures SO NANO LETTERS LA English DT Article DE 2D heterostructure; lattice incommensurateness; Moire pattern; wave function localization ID HEXAGONAL BORON-NITRIDE; LAYERED MATERIALS; GRAPHENE; MOS2; POLARIZATION; ENERGY AB The structural and electronic properties of MoS2/MoSe2 bilayers are calculated using first-principles methods. It is found that the interlayer van der Waals interaction is not strong enough to form a lattice-matched coherent heterostructure. Instead, a nanometer-scale Moire pattern structure will be formed. By analyzing the electronic structures of different stacking configurations, we predict that the valence-band maximum (VBM) state will come from the Gamma point due to interlayer electronic coupling. This is confirmed by a direct calculation of a Moire pattern supercell containing 6630 atoms using the linear scaling three-dimensional fragment method. The VBM state is found to be strongly localized, while the conduction band minimum (CBM) state is only weakly localized, and it comes from the MoS2 layer at the K point. We predict such wave function localization can be a general feature for many two-dimensional (2D) van der Waals heterostructures and can have major impacts on the carrier mobility and other electronic and optical properties. C1 [Kang, Jun; Li, Jingbo; Li, Shu-Shen; Xia, Jian-Bai] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China. [Kang, Jun; Wang, Lin-Wang] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Wang, LW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM lwwang@lbl.gov RI Kang, Jun/F-7105-2011 OI Kang, Jun/0000-0003-4788-0028 FU Theory of Materials program; Office of Science (SC), Basic Energy Science (BES)/Material Science and Engineering Division (MSED) of the U.S. Department of Energy (DOE) [DE-AC02-05CH11231] FX This work was supported by the Theory of Materials program, funded by the Director, Office of Science (SC), Basic Energy Science (BES)/Material Science and Engineering Division (MSED) of the U.S. Department of Energy (DOE) under the contract no. DE-AC02-05CH11231. It used resources of the National Energy Research Scientific Computing Center (NERSC) and Oak Ridge Leadership Computing Facility (ORLCF) that are supported by the Office of Science of the U.S. Department of Energy, with the computational time allocated by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) project. NR 33 TC 84 Z9 84 U1 34 U2 300 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2013 VL 13 IS 11 BP 5485 EP 5490 DI 10.1021/nl4030648 PG 6 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 253TH UT WOS:000327111700078 PM 24079953 ER PT J AU Lin, YJ Battaglia, C Boccard, M Hettick, M Yu, ZB Ballif, C Ager, JW Javey, A AF Lin, Yongjing Battaglia, Corsin Boccard, Mathieu Hettick, Mark Yu, Zhibin Ballif, Christophe Ager, Joel W. Javey, Ali TI Amorphous Si Thin Film Based Photocathodes with High Photovoltage for Efficient Hydrogen Production SO NANO LETTERS LA English DT Article DE Water splitting hydrogen production; photochemistry; high photovoltage; a-Si photocathodes ID VISIBLE-LIGHT; SOLAR; EVOLUTION; CELLS; SEMICONDUCTORS; ELECTROLYSIS; CATALYST; DEVICE; NI AB An amorphous Si thin film with TiO2 encapsulation layer is demonstrated as a highly promising and stable photocathode for solar hydrogen production. With platinum as prototypical cocatalyst, a photocurrent onset potential of 0.93 V vs RHE and saturation photocurrent of 11.6 mA/cm(2) are measured. Importantly, the a-Si photocathodes exhibit impressive photocurrent of similar to 6.1 mA/cm(2) at a large positive bias of 0.8 V vs RHE, which is the highest for all reported photocathodes at such positive potential. Ni-Mo alloy is demonstrated as an alternative low-cost catalyst with onset potential and saturation current similar to those obtained with platinum. This low-cost photocathode with high photovoltage and current is a highly promising photocathode for solar hydrogen production. C1 [Lin, Yongjing; Battaglia, Corsin; Hettick, Mark; Yu, Zhibin; Javey, Ali] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Lin, Yongjing; Hettick, Mark; Ager, Joel W.; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. [Lin, Yongjing; Battaglia, Corsin; Hettick, Mark; Yu, Zhibin; Ager, Joel W.; Javey, Ali] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Boccard, Mathieu; Ballif, Christophe] Ecole Polytech Fed Lausanne, Inst Microengn IMT, Photovolta & Thin Film Elect Lab, Lausanne, Switzerland. RP Ager, JW (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. EM jwager@lbl.gov; ajavey@eecs.berkeley.edu RI Battaglia, Corsin/B-2917-2010; Javey, Ali/B-4818-2013; OI Ager, Joel/0000-0001-9334-9751 FU Office of Science of the U.S. Department of Energy [DE-SC0004993]; WCU program at Sunchon National University; Swiss Federal Office of Energy FX The development and characterization of a-Si photocathodes were supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. A.J. acknowledges support from the WCU program at Sunchon National University. Work at EPFL was supported by the Swiss Federal Office of Energy. NR 27 TC 61 Z9 65 U1 8 U2 104 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2013 VL 13 IS 11 BP 5615 EP 5618 DI 10.1021/nl403265k PG 4 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 253TH UT WOS:000327111700097 PM 24079390 ER PT J AU Niu, KY Park, J Zheng, HM Aivisatos, AP AF Niu, Kai-Yang Park, Jungwon Zheng, Haimei Aivisatos, A. Paul TI Revealing Bismuth Oxide Hollow Nanoparticle Formation by the Kirkendall Effect SO NANO LETTERS LA English DT Article DE In situ TEM; liquid cell; Kirkendall effect; void formation; diffusion; core-shell nanoparrcles ID ELECTRON-MICROSCOPY; SHRINKING KINETICS; VACANCY DIFFUSION; GROWTH; LIQUID; NANOSTRUCTURES; NANOSPHERES; TEMPERATURE; PARTICLES AB We study the formation of bismuth oxide hollow nanoparticles by the Kirkendall effect using liquid cell transmission electron microscopy (TEM). Rich dynamics of bismuth diffusion through the bismuth oxide shell have been captured in situ. The diffusion coefficient of bismuth through bismuth oxide shell is 3-4 orders of magnitude higher than that of bulk. Observation reveals that defects, temperature, sizes of the particles, and so forth can affect the diffusion of reactive species and modify the kinetics of the hollowing process. C1 [Niu, Kai-Yang; Zheng, Haimei; Aivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Park, Jungwon; Zheng, Haimei] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA. [Aivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. RP Zheng, HM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. EM hmzheng@lbl.gov; alivis@berkeley.edu RI Foundry, Molecular/G-9968-2014; Alivisatos , Paul /N-8863-2015; Park, Jungwon/O-1153-2016 OI Alivisatos , Paul /0000-0001-6895-9048; Park, Jungwon/0000-0003-2927-4331 FU U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; DOE Office of Science Early Career Research Program FX The experiments were conducted using both MSD TEM facility and a JEOL3010 microscope at National Center for Electron Microscopy (NCEM) of the Lawrence Berkeley National Laboratory (LBNL), which is supported by the U.S. Department of Energy (DOE) under contract no. DE-AC02-05CH11231. H.Z. thanks the DOE Office of Science Early Career Research Program for their support. NR 33 TC 60 Z9 60 U1 14 U2 140 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2013 VL 13 IS 11 BP 5715 EP 5719 DI 10.1021/nl4035362 PG 5 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 253TH UT WOS:000327111700113 PM 24131312 ER PT J AU Cho, JH Picraux, ST AF Cho, Jeong-Hyun Picraux, S. Tom TI Enhanced Lithium Ion Battery Cycling of Silicon Nanowire Anodes by Template Growth to Eliminate Silicon Underlayer Islands SO NANO LETTERS LA English DT Article DE Lithium-ion battery; anode; silicon nanowire; silicon island; anodic aluminum oxide template ID THIN-FILM ELECTRODES; PERFORMANCE; CAPACITY; LIFE; STABILITY; CELLS AB It is well-known that one-dimensional nanostructures reduce pulverization of silicon (SO-based anode materials during Li ion cycling because they allow lateral relaxation. However, even with improved designs, Si nano-wirebased structures still exhibit limited cycling stability for extended numbers of cycles, with the specific capacity retention with cycling not showing significant improvements over commercial carbon-based anode materials. We have found that one important reason for the lack of long cycling stability can be the presence of milli- and microscale Si islands which typically form under nanowire arrays during their growth. Stress buildup in these Si island underlayers with cycling results in cracking, and the loss of specific capacity for Si nanowire anodes, due to progressive loss of contact with current collectors. We show that the formation of these parasitic Si islands for Si nanowires grown directly on metal current collectors can be avoided by growth through anodized aluminum oxide templates containing a high density of sub-100 nm nanopores. Using this template approach we demonstrate significantly enhanced cycling stability for Si nanowire-based lithium-ion battery anodes, with retentions of more than similar to 1000 rnA.h/g discharge capacity over 1100 cycles. C1 [Cho, Jeong-Hyun; Picraux, S. Tom] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA. RP Cho, JH (reprint author), Los Alamos Natl Lab, Ctr Integrated Nanotechnol, POB 1663, Los Alamos, NM 87545 USA. EM jcho@umn.edu; picraux@lanl.gov FU Nanostructures for Electrical Energy Storage, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DESC0001160]; Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy [DE-AC52-06NA25396] FX This work was supported as part of the Nanostructures for Electrical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160. The work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Science user facility. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. NR 31 TC 36 Z9 36 U1 5 U2 110 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1530-6984 EI 1530-6992 J9 NANO LETT JI Nano Lett. PD NOV PY 2013 VL 13 IS 11 BP 5740 EP 5747 DI 10.1021/nl4036498 PG 8 WC Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Science & Technology - Other Topics; Materials Science; Physics GA 253TH UT WOS:000327111700117 PM 24144166 ER PT J AU Gehin, JC Maldonado, GI AF Gehin, Jess C. Maldonado, G. Ivan TI Special Issue on the PHYSOR 2012 International Conference on the Physics of Reactors Preface SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Editorial Material C1 [Gehin, Jess C.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Maldonado, G. Ivan] Univ Tennessee, Knoxville, TN 37996 USA. RP Gehin, JC (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD NOV PY 2013 VL 175 IS 3 SI SI BP VII EP VII PG 1 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 257DK UT WOS:000327363600001 ER PT J AU Sanchez, R Rabiti, C Wang, YQ AF Sanchez, Richard Rabiti, Cristian Wang, Yaqi TI Nonlinear Acceleration of a Continuous Finite Element Discretization of the Self-Adjoint Angular Flux Form of the Transport Equation SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article; Proceedings Paper CT American-Nuclear-Society (ANS) International Conference on the Physics of Reactors (PHYSOR) CY APR 15-20, 2012 CL Knoxville, TN SP Amer Nucl Soc, Amer Nucl Soc, Reactor Phys Div, Amer Nucl Soc, Math & Computat Div ID CONTINUOUS GALERKIN METHOD AB Nonlinear acceleration of a continuous finite element (CFE) discretization of the transport equation requires a modification of the transport solution in order to achieve local conservation, a condition used in nonlinear acceleration to define the stopping criterion. In this work we implement a coarse-mesh finite difference acceleration for a CFE discretization of the second-order self-adjoint angular flux (SAAF) form of the transport equation and use a postprocessing to enforce local conservation. Numerical results are given for one-group source calculations of one-dimensional slabs. We also give a novel formal derivation of the boundary conditions for the SAAF. C1 [Sanchez, Richard] Commissariat Energie Atom & Energies Alternat, Serv Etud Reacteurs & Math Appl, Ctr Saclay, DEN SERMA DM2S, Gif Sur Yvettes, France. [Rabiti, Cristian; Wang, Yaqi] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Sanchez, R (reprint author), Commissariat Energie Atom & Energies Alternat, Serv Etud Reacteurs & Math Appl, Ctr Saclay, DEN SERMA DM2S, Gif Sur Yvettes, France. EM richard.sanchez@cea.fr NR 9 TC 1 Z9 1 U1 0 U2 2 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD NOV PY 2013 VL 175 IS 3 SI SI BP 213 EP 226 PG 14 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 257DK UT WOS:000327363600002 ER PT J AU Jarrell, JJ Evans, TM Davidson, GG Godfrey, AT AF Jarrell, Joshua J. Evans, Thomas M. Davidson, Gregory G. Godfrey, Andrew T. TI Full Core Reactor Analysis: Running Denovo on Jaguar SO NUCLEAR SCIENCE AND ENGINEERING LA English DT Article; Proceedings Paper CT American-Nuclear-Society (ANS) International Conference on the Physics of Reactors (PHYSOR) CY APR 15-20, 2012 CL Knoxville, TN SP Amer Nucl Soc, Amer Nucl Soc, Reactor Phys Div, Amer Nucl Soc, Math & Computat Div AB Fully consistent, full core, three-dimensional, deterministic neutron transport simulations using the orthogonal mesh code Denovo were run on the massively parallel computing architecture Jaguar XT5. Using energy and spatial parallelization schemes, Denovo was able to efficiently scale to more than 160000 processors. Cell-homogenized cross sections were used with step characteristics, linear discontinuous finite element, and trilinear discontinuous finite element spatial methods. It was determined that using the finite element methods gave considerably more accurate eigenvalue solutions for large aspect ratio meshes than using step characteristics. C1 [Jarrell, Joshua J.; Evans, Thomas M.; Davidson, Gregory G.] Oak Ridge Natl Lab, Radiat Transport Grp, Oak Ridge, TN 37831 USA. [Godfrey, Andrew T.] Oak Ridge Natl Lab, Reactor Phys Grp, Oak Ridge, TN 37831 USA. RP Jarrell, JJ (reprint author), Oak Ridge Natl Lab, Radiat Transport Grp, POB 2008, Oak Ridge, TN 37831 USA. EM jarrelljj@ornl.gov OI Jarrell, Joshua/0000-0003-1041-8729 NR 12 TC 4 Z9 4 U1 0 U2 10 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5639 EI 1943-748X J9 NUCL SCI ENG JI Nucl. Sci. Eng. PD NOV PY 2013 VL 175 IS 3 SI SI BP 283 EP 291 PG 9 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 257DK UT WOS:000327363600008 ER PT J AU Neil, J Hash, C Brugh, A Fisk, M Storlie, CB AF Neil, Joshua Hash, Curtis Brugh, Alexander Fisk, Mike Storlie, Curtis B. TI Scan Statistics for the Online Detection of Locally Anomalous Subgraphs SO TECHNOMETRICS LA English DT Article DE Anomaly detection; Dynamic graph; Network intrusion detection; Path; Star ID INTRUSION DETECTION; APPROXIMATIONS; NETWORKS; MODELS; TIME AB We introduce a computationally scalable method for detecting small anomalous areas in a large, time-dependent computer network, motivated by the challenge of identifying intruders operating inside enterprise-sized computer networks. Time-series of communications between computers are used to detect anomalies, and are modeled using Markov models that capture the bursty, often human-caused behavior that dominates a large subset of the time-series. Anomalies in these time-series are common, and the network intrusions we seek involve coincident anomalies over multiple connected pairs of computers. We show empirically that each time-series is nearly always independent of the time-series of other pairs of communicating computers. This independence is used to build models of normal activity in local areas from the models of the individual time-series, and these local areas are designed to detect the types of intrusions we are interested in. We define a locality statistic calculated by testing for deviations from historic behavior in each local area, and then define a scan statistic as the maximum deviation score over all local areas. We show that identifying these local anomalies is sufficient to correctly identify anomalies of various relevant shapes in the network. Supplementary material, including additional details and simulation code, are provided online. C1 [Neil, Joshua; Hash, Curtis; Brugh, Alexander; Fisk, Mike] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Storlie, Curtis B.] Los Alamos Natl Lab, Stat Sci Grp CCS 6, Los Alamos, NM 87545 USA. RP Neil, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jneil@lanl.gov; chash@lanl.gov; abrugh@lanl.gov; mfisk@lanl.gov; storlie@lanl.gov NR 29 TC 12 Z9 12 U1 2 U2 4 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 0040-1706 EI 1537-2723 J9 TECHNOMETRICS JI Technometrics PD NOV PY 2013 VL 55 IS 4 BP 403 EP 414 DI 10.1080/00401706.2013.822830 PG 12 WC Statistics & Probability SC Mathematics GA 257OO UT WOS:000327394500004 ER PT J AU Lawrence, E Wiel, SV Bent, R AF Lawrence, Earl Wiel, Scott Vander Bent, Russell TI Model Bank State Estimation for Power Grids Using Importance Sampling SO TECHNOMETRICS LA English DT Article DE Electric power; Emulator; Network modeling; Simulator; Surrogate model ID TOPOLOGY ERRORS; IDENTIFICATION; CALIBRATION; PREDICTION AB Power grid operators decide where and how much power to generate based on the current topology and demands of the network. The topology can change as safety devices trigger (connecting or disconnecting parts of the network) or as lines go down. Often, the operator cannot observe these events directly, but instead has contemporary measurements and historical information about a subset of the line flows and bus (node) properties. This information can be used in conjunction with a computational model to infer the topology of the network. We present a Bayesian approach to topological inference that considers a bank of possible topologies. The solution provides a probability for each member in the model bank. The approach has two important features. First, we build a statistical approximation, or emulator, to the computational model, which is too computationally expensive to run a large number of times. Second, we use the emulator in an importance sampling scheme to estimate the probabilities. The resulting algorithm is fast enough to use in real time and very accurate. This article has online supplementary materials. C1 [Lawrence, Earl; Wiel, Scott Vander; Bent, Russell] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Lawrence, E (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM earl@lanl.gov; scottv@lanl.gov; rbent@lanl.gov OI Bent, Russell/0000-0002-7300-151X FU LDRD program at Los Alamos National Laboratory FX This work was supported by the LDRD program at Los Alamos National Laboratory. Thanks to Kary Myers for organizing the Conference on Data Analysis and for helpful comments on the article. Thanks also to the reviewers, the associate editor, and, especially, the editor. NR 23 TC 2 Z9 2 U1 1 U2 3 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 0040-1706 EI 1537-2723 J9 TECHNOMETRICS JI Technometrics PD NOV PY 2013 VL 55 IS 4 BP 426 EP 435 DI 10.1080/00401706.2013.822424 PG 10 WC Statistics & Probability SC Mathematics GA 257OO UT WOS:000327394500006 ER PT J AU Storlie, CB Fugate, ML Higdon, DM Huzurbazar, AV Francois, EG McHugh, DC AF Storlie, Curtis B. Fugate, Michael L. Higdon, David M. Huzurbazar, Aparna V. Francois, Elizabeth G. McHugh, Douglas C. TI Methods for Characterizing and Comparing Populations of Shock Wave Curves SO TECHNOMETRICS LA English DT Article DE B-splines; Functional data analysis; Gaussian process; Hierarchical modeling; Nonparametric regression; Onionskin ID BAYES FACTORS; MODELS AB At Los Alamos National Laboratory, engineers conduct experiments to evaluate how well detonators and high explosives work. The experimental unit, often called an "onionskin," is a hemisphere consisting of a detonator and a booster pellet surrounded by high explosive material. When the detonator explodes, a streak camera mounted above the pole of the hemisphere records when the shock wave arrives at the surface. The output from the camera is a two-dimensional image that is transformed into a curve that shows the arrival time as a function of polar angle. The statistical challenge is to characterize the population of arrival time curves and to compare the baseline population of onionskins to a new population. The engineering goal is to manufacture a new population of onionskins that generate arrival time curves with the same shape as the baseline. We present two statistical approaches that test for differences in mean curves and provide simultaneous confidence bands for the difference: (i) a B-Spline basis approach and (ii) a Bayesian hierarchical Gaussian process approach. In problems that involve complex modeling with modest sample sizes, it is important to apply multiple approaches with complementary strengths such as these to determine whether all approaches provide similar results. Solid performances of the two approaches are demonstrated on several simulations that were constructed to mimic the actual onionskin analysis. Finally, an analysis of onionskin data is presented. This article also has supplementary materials available online. C1 [Storlie, Curtis B.; Fugate, Michael L.; Higdon, David M.; Huzurbazar, Aparna V.; Francois, Elizabeth G.; McHugh, Douglas C.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Storlie, CB (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM storlie@lanl.gov; fugate@lanl.gov; dhigdon@lanl.gov; aparna@lanl.gov; elizabethf@lanl.gov; dmchugh@lanl.gov FU C-8 Enhanced Surveillance program of Los Alamos National Security, LLC (LANS); U.S. Department of Energy [DE-AC52-06NA25396] FX The authors' work was funded by the C-8 Enhanced Surveillance program of Los Alamos National Security, LLC (LANS), operator of the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with the U.S. Department of Energy. This article is published under LA-UR-11-05417. NR 30 TC 1 Z9 1 U1 1 U2 4 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 0040-1706 EI 1537-2723 J9 TECHNOMETRICS JI Technometrics PD NOV PY 2013 VL 55 IS 4 BP 436 EP 449 DI 10.1080/00401706.2013.805662 PG 14 WC Statistics & Probability SC Mathematics GA 257OO UT WOS:000327394500007 ER PT J AU Lennox, KP Glascoe, LG AF Lennox, Kristin P. Glascoe, Lee G. TI A Bayesian Measurement Error Model for Misaligned Radiographic Data SO TECHNOMETRICS LA English DT Article DE Bayesian nonparametrics; Berkson error; Curve registration; Heteroscedasticity; Micro-computed tomography; p-splines ID PENALIZED SPLINES; P-SPLINES; REGISTRATION; REGRESSION; PENALTIES AB An understanding of the inherent variability in micro-computed tomography (micro-CT) data is essential to tasks such as statistical process control and the validation of radiographic simulation tools. These data present unique challenges to variability analysis due to the relatively low resolution of radiographs, and also due to minor variations from run to run which can result in misalignment or magnification changes between repeated measurements of a sample. Such positioning changes artificially inflate the variability of the data in ways that mask true physical phenomena. We present a novel Bayesian nonparametric regression model that incorporates both additive and multiplicative measurement error in addition to heteroscedasticity to address this problem. We use this model to assess the effects of sample thickness and sample position on measurement variability for an aluminum specimen. Supplementary materials for this article are available online. C1 [Lennox, Kristin P.; Glascoe, Lee G.] Lawrence Livermore Natl Lab, Computat Engn Div, Livermore, CA 94550 USA. RP Lennox, KP (reprint author), Lawrence Livermore Natl Lab, Computat Engn Div, 7000 East Ave, Livermore, CA 94550 USA. EM lennox3@llnl.gov; glascoe1@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of Homeland Security, Science and Technology Directorate FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The experimental data collection and analysis were performed under sponsorship of the U.S. Department of Homeland Security, Science and Technology Directorate. The authors also thank the Editor, Associate Editor, and referees for their comments and suggestions. NR 30 TC 0 Z9 0 U1 1 U2 4 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 0040-1706 EI 1537-2723 J9 TECHNOMETRICS JI Technometrics PD NOV PY 2013 VL 55 IS 4 BP 450 EP 460 DI 10.1080/00401706.2013.838192 PG 11 WC Statistics & Probability SC Mathematics GA 257OO UT WOS:000327394500008 ER PT J AU Lu, L Chapman, JL Anderson-Cook, CM AF Lu, Lu Chapman, Jessica L. Anderson-Cook, Christine M. TI A Case Study on Selecting a Best Allocation of New Data for Improving the Estimation Precision of System and Subsystem Reliability Using Pareto Fronts SO TECHNOMETRICS LA English DT Article DE Complex system reliability; Genetic algorithm; Multiple data sources; Optimizing multiple objectives; Resource allocation; Sequential data collection ID RESPONSE-SURFACE DESIGN; BINOMIAL SUBSYSTEMS; MULTIPLE CRITERIA; OPTIMIZATION; SERIES; COMPONENTS AB This article demonstrates how the Pareto front multiple objective optimization approach can be used to select a best allocation of new data to collect from among many different possible data sources with the goal of maximally reducing the width of the credible intervals of system and two subsystem reliability estimates. The method provides a streamlined decision-making process by identifying a set of noninferior or admissible allocations either from a given set of candidate choices or through a global optimization search and then using graphical methods for selecting the best allocation from the set of contending choices based on the specific goals of the study. The approach allows for an easy assessment of the tradeoffs between criteria and the robustness of different choices to different prioritization of experiment objectives. This is important for decision makers to make a defensible choice of a best allocation that matches their priorities as well as to quantify the anticipated advantages of their choice relative to other options. The method is demonstrated on a small nonaging series system with two subsystems comprised of six components for a total of nine possible data sources. We first consider finding the Pareto front of superior allocations based on 60 logistically viable candidates that have been identified, and second, optimizing over all possible allocations within the allowable fixed budget and comparing how global solutions perform relative to the logistically viable choices. We develop a new search algorithm to populate the Pareto front while taking into account the different costs of the data sources. The method generalizes easily to other system structures and flexible objectives of interest. In addition, a new Fraction of Weight Space plot (FWS) is proposed to provide a simple comparison between different solution choices by summarizing individual performance over the entire weighting space. This article has supplementary materials and computer code available online. C1 [Lu, Lu] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA. [Chapman, Jessica L.] St Lawrence Univ, Dept Math Comp Sci & Stat, Canton, NY 13617 USA. [Anderson-Cook, Christine M.] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. RP Lu, L (reprint author), Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA. EM lulu1@usf.edu; jchapman@stlawu.edu; candcook@lanl.gov FU NSF [0959713] FX This work was funded in part by NSF Award # 0959713 awarded to St. Lawrence University. In addition, the authors thank the editor, the associate editor, and anonymous referees for their valuable comments and suggestions that have substantially improved this article. NR 22 TC 6 Z9 6 U1 2 U2 5 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 0040-1706 EI 1537-2723 J9 TECHNOMETRICS JI Technometrics PD NOV PY 2013 VL 55 IS 4 BP 473 EP 487 DI 10.1080/00401706.2013.831776 PG 15 WC Statistics & Probability SC Mathematics GA 257OO UT WOS:000327394500010 ER PT J AU Higdon, D Gattiker, J Lawrence, E Pratola, M Jackson, C Tobis, M Habib, S Heitmann, K Price, S AF Higdon, Dave Gattiker, Jim Lawrence, Earl Pratola, Matt Jackson, Charles Tobis, Michael Habib, Salman Heitmann, Katrin Price, Steve TI Computer Model Calibration Using the Ensemble Kalman Filter SO TECHNOMETRICS LA English DT Article DE Bayesian statistics; Computer experiments; Data assimilation; Gaussian process; Model validation; Parameter estimation; Uncertainty quantification ID DIGITAL SKY SURVEY; DATA ASSIMILATION; PARAMETER-ESTIMATION; EFFICIENT EMULATORS; INVERSE PROBLEMS; OUTPUT; STATE; VALIDATION; REDUCTION; SYSTEMS AB Computer model calibration is the process of determining input parameter settings to a computational model that are consistent with physical observations. This is often quite challenging due to the computational demands of running the model. In this article, we use the ensemble Kalman filter (EnKF) for computer model calibration. The EnKF has proven effective in quantifying uncertainty in data assimilation problems such as weather forecasting and ocean modeling. We find that the EnKF can be directly adapted to Bayesian computer model calibration. It is motivated by the mean and covariance relationship between the model inputs and outputs, producing an approximate posterior ensemble of the calibration parameters. While this approach may not fully capture effects due to nonlinearities in the computer model response, its computational efficiency makes it a viable choice for exploratory analyses, design problems, or problems with large numbers of model runs, inputs, and outputs. C1 [Higdon, Dave; Gattiker, Jim; Lawrence, Earl] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA. [Pratola, Matt] Ohio State Univ, Dept Stat, Columbus, OH 43210 USA. [Jackson, Charles; Tobis, Michael] Univ Texas Austin, Inst Geophys, Austin, TX 78759 USA. [Habib, Salman; Heitmann, Katrin] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 USA. [Price, Steve] Los Alamos Natl Lab, Fluid Dynam Grp, Los Alamos, NM 87545 USA. RP Higdon, D (reprint author), Los Alamos Natl Lab, Stat Sci Grp, POB 1663, Los Alamos, NM 87545 USA. EM dhigdon@lanl.gov; gatt@lanl.gov; earl@lanl.gov; pratola@gmail.com; charles@ig.utexas.edu; tobis@ig.utexas.edu; habib@anl.gov; heitmann@hep.anl.gov; sprice@lanl.gov RI Price, Stephen /E-1568-2013; Jackson, Charles/A-2202-2009 OI Price, Stephen /0000-0001-6878-2553; Jackson, Charles/0000-0002-2870-4494 FU U.S. Department of Energy Office of Science; Office of Advanced Scientific Computing Research; Scientific Discovery through Advanced Computing (SciDAC) program FX We thank the reviewers, Associate Editor, and Editor for many helpful comments on earlier drafts. This work was supported in part by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research, and Scientific Discovery through Advanced Computing (SciDAC) program. NR 50 TC 1 Z9 1 U1 2 U2 14 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 0040-1706 EI 1537-2723 J9 TECHNOMETRICS JI Technometrics PD NOV PY 2013 VL 55 IS 4 BP 488 EP 500 DI 10.1080/00401706.2013.842936 PG 13 WC Statistics & Probability SC Mathematics GA 257OO UT WOS:000327394500011 ER PT J AU Chen, WC Ostrouchov, G Pugmire, D Prabhat Wehner, M AF Chen, Wei-Chen Ostrouchov, George Pugmire, David Prabhat Wehner, Michael TI A Parallel EM Algorithm for Model-Based Clustering Applied to the Exploration of Large Spatio-Temporal Data SO TECHNOMETRICS LA English DT Article DE Parallel computing; Parallel coordinate plot; Spatial time series; Unsupervised learning ID PRECIPITATION EXTREMES; DISCRIMINANT-ANALYSIS; MAXIMUM-LIKELIHOOD AB We develop a parallel expectation-maximization (EM) algorithm for multivariate Gaussian mixture models and use it to perform model-based clustering of a large climate dataset. Three variants of the EM algorithm are reformulated in parallel and a new variant that is faster is presented. All are implemented using the single program, multiple data programming model, which is able to take advantage of the combined collective memory of large distributed computer architectures to process larger datasets. Displays of the estimated mixture model rather than the data allow us to explore multivariate relationships in a way that scales to arbitrary size data. We study the performance of our methodology on simulated data and apply our methodology to a high-resolution climate dataset produced by the community atmosphere model (CAM5). This article has supplementary material online. C1 [Chen, Wei-Chen] Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. [Ostrouchov, George; Pugmire, David] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA. [Prabhat; Wehner, Michael] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Chen, WC (reprint author), Univ Tennessee, Dept Ecol & Evolutionary Biol, Knoxville, TN 37996 USA. EM wcchen@utk.edu; ostrouchovg@ornl.gov; pugmire@ornl.gov; prabhat@lbl.gov; mfwehner@lbl.gov FU Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science [DE-AC02-05CH11231]; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX We sincerely thank the editor, an associate editor and two reviewers for providing many insightful comments and suggestions which substantially improved this article. Work at LBNL was supported by the Regional and Global Climate Modeling Program of the Office of Biological and Environmental Research in the Department of Energy Office of Science under contract number DE-AC02-05CH11231. This research also used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 31 TC 1 Z9 1 U1 1 U2 9 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 0040-1706 EI 1537-2723 J9 TECHNOMETRICS JI Technometrics PD NOV PY 2013 VL 55 IS 4 BP 513 EP 523 DI 10.1080/00401706.2013.826146 PG 11 WC Statistics & Probability SC Mathematics GA 257OO UT WOS:000327394500013 ER PT J AU Theiler, J AF Theiler, James TI Matched-Pair Machine Learning SO TECHNOMETRICS LA English DT Article DE Algorithms; Classification; Hyperspectral imagery; Hypothesis testing; Signal detection; Structured data ID PLUMES AB Following an analogous distinction in statistical hypothesis testing and motivated by chemical plume detection in hyperspectral imagery, we investigate machine-learning algorithms where the training set is comprised of matched pairs. We find that even conventional classifiers exhibit improved performance when the input data have a matched-pair structure, and we develop an example of a "dipole" algorithm to directly exploit this structured input. In some scenarios, matched pairs can be generated from independent samples, with the effect of not only doubling the nominal size of the training set, but of providing the matched-pair structure that leads to better learning. The creation of matched pairs from a dataset of interest also permits a kind of transductive learning, which is found for the plume detection problem to exhibit improved performance. Supplementary materials for this article are available online. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Theiler, J (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM jt@lanl.gov FU United States Department of Energy through the Los Alamos Laboratory Directed Research and Development (LDRD) program FX I am grateful to Bernard Foy for many valuable conversations about chemical plumes in hyperspectral imagery, and to Don Hush and Reid Porter for insightful discussions on transductive learning. I am very pleased to acknowledge the reviewers and editors of Technometrics for their careful reading of this article, and for their numerous and thoughtful suggestions; thanks to them, this is a much better article. This work was supported by the United States Department of Energy through the Los Alamos Laboratory Directed Research and Development (LDRD) program. NR 18 TC 3 Z9 3 U1 1 U2 2 PU AMER STATISTICAL ASSOC PI ALEXANDRIA PA 732 N WASHINGTON ST, ALEXANDRIA, VA 22314-1943 USA SN 0040-1706 EI 1537-2723 J9 TECHNOMETRICS JI Technometrics PD NOV PY 2013 VL 55 IS 4 BP 536 EP 547 DI 10.1080/00401706.2013.838191 PG 12 WC Statistics & Probability SC Mathematics GA 257OO UT WOS:000327394500015 ER PT J AU Wirth, M Oh, H Mormino, EC Markley, C Landau, SM Jagust, WJ AF Wirth, Miranka Oh, Hwamee Mormino, Elizabeth C. Markley, Candace Landau, Susan M. Jagust, William J. TI The effect of amyloid beta on cognitive decline is modulated by neural integrity in cognitively normal elderly SO ALZHEIMERS & DEMENTIA LA English DT Article DE Alzheimer's disease; Cognitive aging; Memory; Preclinical decline; Amyloid; PiB; Glucose metabolism; FDG; Gray matter structure ID PRECLINICAL ALZHEIMERS-DISEASE; PITTSBURGH COMPOUND-B; A-BETA; NONDEMENTED INDIVIDUALS; EPISODIC MEMORY; VOLUME LOSS; BRAIN; DEPOSITION; IMPAIRMENT; DYSFUNCTION AB Objective: Alzheimer's disease (AD) pathology of amyloid beta (A beta) accumulation and neurodegeneration may be relevant to preclinical cognitive decline. The objective of this study was to relate AD-sensitive biomarkers of A beta and neurodegeneration and their interaction to longitudinal cognitive change in cognitively normal elderly. Methods: Thirty-eight older people completed at least three consecutive neuropsychological examinations. Using positron emission tomography (PET), A beta plaque burden was measured with [C-11] Pittsburgh compound B (PiB). PiB retention was dichotomized into a positive (n = 13) and negative (n = 25) PiB status. Neurodegenerative biomarkers were extracted within AD-vulnerable regions of interest (ROIs)-namely, the hippocampus and temporoparietal cortical areas. Within each ROT, metabolism was quantified with [F-18] fluorodeoxyglucose (FDG) PET, and the gray matter structure was evaluated using volume (hippocampus) or thickness (cortical regions). ROT-specific functional and structural biomarkers were combined further into cross-modality neurodegenerative composite measures. Using hierarchical regression models, PiB and the neurodegenerative biomarkers were related to cognitive trajectories. Results: PiB positivity was associated with memory and nonmemory worsening. The neurodegenerative biomarkers modified these relationships. Longitudinal cognitive decline was accelerated in those individuals who exhibited both PiB positivity and lower neurodegenerative biomarker scores, although the two measures appeared to be independent. PiB retention interacted predominantly with the cortical neurodegenerative composite for nonmemory change. Memory decline was best explained by the interaction between PiB and the hippocampal neurodegenerative composite, suggesting regional specificity of the neurodegenerative modulations. Conclusions: Our findings indicate that cognitive trajectories deteriorate at a faster rate in cognitively normal individuals expressing A beta burden and neurodegeneration within specific AD-sensitive regions. (C) 2013 The Alzheimer's Association. All rights reserved. C1 [Wirth, Miranka; Oh, Hwamee; Mormino, Elizabeth C.; Markley, Candace; Landau, Susan M.; Jagust, William J.] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. [Landau, Susan M.; Jagust, William J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Wirth, M (reprint author), Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA. EM miranka.wirth@gmail.com FU National Institutes of Health [AG034570]; Swiss National Science Foundation [PA00P1_131515] FX This work was supported by National Institutes of Health grant AG034570 and the Swiss National Science Foundation grant PAO0P1_131515. We gratefully thank the following contributors: Martina Studer (University of Bern, Switzerland, behavioral analysis), Cindee Madison (University of California [UC] at Berkeley, neuroimaging analysis), Tad Haight (UC at Berkeley, statistics support), Natalie Marchant (UC at Berkeley, manuscript editing), Benedicte Rossi (UC at Berkeley, discussion). NR 49 TC 18 Z9 18 U1 2 U2 8 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1552-5260 EI 1552-5279 J9 ALZHEIMERS DEMENT JI Alzheimers. Dement. PD NOV PY 2013 VL 9 IS 6 BP 687 EP 698 DI 10.1016/j.jalz.2012.10.012 PG 12 WC Clinical Neurology SC Neurosciences & Neurology GA 254NP UT WOS:000327172700009 PM 23474040 ER PT J AU Manghnani, MH Hushur, A Smyth, JR Nestola, F Dera, P Sekar, M Amulele, G Frost, DJ AF Manghnani, Murli H. Hushur, Anwar Smyth, Joseph R. Nestola, Fabrizio Dera, Przemyslaw Sekar, Mariappan Amulele, George Frost, Daniel J. TI Compressibility and structural stability of two variably hydrated olivine samples (Fo(97)Fa(3)) to 34 GPa by X-ray diffraction and Raman spectroscopy SO AMERICAN MINERALOGIST LA English DT Article DE Hydrous olivine; X-ray diffraction; Raman spectroscopy; hydration mechanism; high pressure ID SAN CARLOS OLIVINE; POSSIBLE HYDROGEN POSITIONS; HIGH-PRESSURE; CRYSTAL-STRUCTURE; SILICA ACTIVITY; FORSTERITE MG2SIO4; ACCESSORY MINERALS; THERMAL-EXPANSION; MANTLE PRESSURES; WATER AB The content and transport of fluid phases such as water into the deep Earth is of great importance not only to correlate seismological models of the planet's interior with mineralogical models, but also for the understanding of the evolution of the solid Earth as well as the Earth's atmosphere. This study reports on the influence of water on the structural and physical properties of olivine, which is known to be the main constituent of the upper mantle. Two hydrous olivines of composition Fo(97)Fa(3) with water content of 4883 parts per million by weight (ppmw) (SZ0407A) and 8000 ppmw (SZ0407B) were synthesized at 1250 degrees C and 12 GPa. Single-crystal X-ray diffraction was used to determine unit-cell parameters of SZ0407A and SZ0407B at pressures up to 7.1 GPa at room temperature. Synchrotron powder X-ray diffraction and Raman scattering experiments were performed on sample SZ0407A in a diamond-anvil cell to 34 GPa at room temperature. For both samples, the compressibility is the largest along the b-axis and smallest along the a-axis. Using the compression (V/V-o) vs. pressure data for sample SZ0407A to 29 GPa, in conjunction with the third-order Birch-Murnaghan equation of state, we calculate the isothermal bulk modulus and its pressure derivative as K-o = 119.2(12) GPa and K-o' = 6.6(4). Single-crystal compression data for sample SZ0407A to 7 GPa give K-o = 121.5(6) GPa and K-o' = 5.7(2); and for sample SZ0407B K-o = 122.2(12) GPa and K-o' = 6.2(4). High-pressure Raman spectra for SZ0407A up to 34 GPa show a continuous shift of all the observed bands to higher frequency with increasing pressure; there is no indication of any first-order phase transition. However, the Raman spectra indicate subtle discontinuous changes around 22 GPa, unobserved in previously reported studies on anhydrous olivines. C1 [Manghnani, Murli H.; Hushur, Anwar; Amulele, George] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. [Smyth, Joseph R.] Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA. [Nestola, Fabrizio] Univ Padua, Dept Geosci, I-35131 Padua, Italy. [Dera, Przemyslaw] Univ Chicago, Argonne Natl Lab, Ctr Adv Radiat Sources, Chicago, IL 60637 USA. [Sekar, Mariappan] Indira Gandhi Ctr Atom Res, Kalpaakam 603102, Tamil Nadu, India. [Frost, Daniel J.] Univ Bayreuth, Bayer Geoinst, D-95440 Bayreuth, Germany. RP Manghnani, MH (reprint author), Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA. EM murli@soest.hawaii.edu RI nestola, fabrizio/K-2798-2015; Frost, Daniel/B-7526-2016 OI nestola, fabrizio/0000-0002-4875-5125; Frost, Daniel/0000-0002-4443-8149 FU U.S. National Science Foundation [EAR 0538884, 0957137, EAR 11-13369]; Alexander von Humboldt Foundation; National Science Foundation - Earth Sciences [EAR-1128799]; Department of Energy, Geosciences [DE-FG02-94ER14466]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX We thank the two reviewers, Quentin Williams, and Alexandra Friedrich (Associate Editor) for their valuable comments and suggestions for improving the manuscript. Thanks are due to John Balogh for maintaining the Raman system in good working order. This work was supported by U.S. National Science Foundation Grants EAR 0538884 and 0957137 to M.H.M., and EAR 11-13369 to J.R.S. Syntheses were performed at Bayerisches Geoinstitut, Universitaet Bayreuth, Germany, and supported, in part, by the Alexander von Humboldt Foundation to J.S. and F.N. Portions of this work were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation - Earth Sciences (EAR-1128799) and Department of Energy, Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. The SOEST and HIGP contribution numbers for this paper are 2013 and 8941. NR 66 TC 4 Z9 6 U1 1 U2 40 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD NOV-DEC PY 2013 VL 98 IS 11-12 BP 1972 EP 1979 DI 10.2138/am.2013.4462 PG 8 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 252YP UT WOS:000327049100007 ER PT J AU Xiong, YL Kirkes, L Westfall, T AF Xiong, Yongliang Kirkes, Leslie Westfall, Terry TI Experimental determination of solubilities of sodium tetraborate (borax) in NaCl solutions, and a thermodynamic model for the Na-B(OH)(3)-Cl-SO4 system to high-ionic strengths at 25 degrees C SO AMERICAN MINERALOGIST LA English DT Article DE Pitzer model; borate; actinide solubility; nuclear waste isolation; geological repositories; Waste Isolation Pilot Plant (WIPP); performance assessment (PA); concentrated brines ID NUCLEAR-WASTE ISOLATION; ROOM-TEMPERATURE; NATURAL-WATERS; HYDROMAGNESITE; DISSOCIATION; PREDICTION; EQUILIBRIA; STABILITY; CONSTANTS; PAIRS AB In this study, solubility experiments on sodium tetraborate (NaB4O7 center dot 10H(2)O, borax) are conducted in NaCl solutions up to 5.0 m at room temperature (22.5 +/- 1.5 degrees C). In combination with solubility data of sodium tetraborate in Na2SO4 solutions from the literature, the solubility constant (log K-sp) for sodium tetraborate for the following reaction Na2B4O7 center dot 10H(2)O = 2Na(+) + 4B(OH)(4)(-) + 2H(+) + H2O (1) (1) is determined as -24.80 +/- 0.10 based on the Pitzer model. In conjunction with the relevant Pitzer parameters, based on the above log K-sp for borax, and log beta(1) (0.25 +/- 0.01) evaluated from the literature for the following complex formation reaction Na+ + B(OH)(4)(-) = NaB(OH)(4)(aq) (2) a thermodynamic model with high precision is established for the Na+-B(OH)(3)-Cl--SO42- system at high-ionic strengths up to saturation of halite (NaCl), mirabilite (Na2SO4 center dot 10H(2)O), and thenardite (Na2SO4). The model is validated by comparison of model predicted equilibrium compositions for the assemblages of borax alone, borax + halite, borax + mirabilite, borax + halite + thenardite, and borax + mirabilite + thenardite in the mixtures of NaCl+Na2SO4 to ionic strengths of 8.0 m, with independent experimental values from the literature. The differences in concentrations of major ions, e.g., Na+, Cl-, and SO42-, between model predicted and experimental values are generally <0.5%. The difference for total boron concentrations is <0.05 m with an error <25%. The revised thermodynamic model is applied to the potential recovery of borax from boron-enriched brines via evaporation at 25 degrees C, using the two brines from China as examples. The reaction path calculations suggest that the brine from the Zhabei Salt Lake in Xizang (Tibet) Autonomous Region, is suitable to recovery of borax via evaporation at 25 degrees C, whereas the brine from the western Sichuan Province, although it is enriched in boron, is not suitable to extraction of boron as borax, but is suitable to extraction of potassium as sylvite, via evaporation at 25 degrees C. C1 [Xiong, Yongliang; Kirkes, Leslie; Westfall, Terry] Sandia Natl Labs, Carlsbad Programs Grp, Carlsbad, NM 88220 USA. RP Xiong, YL (reprint author), Sandia Natl Labs, Carlsbad Programs Grp, 4100 Natl Pk Highway, Carlsbad, NM 88220 USA. EM yxiong@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]; WIPP programs FX Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy. We are grateful to Shelly Nielsen, Taya Olivas, Tana Saul, Diana Goulding, Brittany Hoard, Cassandra Marrs, Danelle Morrill, Mathew Stroble, and Kira Vincent, for their laboratory assistance. We thank the journal reviewers for their reviews, Rick Wilkin, the Associate Editor, and Keith Putirka, the Editor, for their reviews and editorial efforts. NR 31 TC 0 Z9 0 U1 2 U2 23 PU MINERALOGICAL SOC AMER PI CHANTILLY PA 3635 CONCORDE PKWY STE 500, CHANTILLY, VA 20151-1125 USA SN 0003-004X EI 1945-3027 J9 AM MINERAL JI Am. Miner. PD NOV-DEC PY 2013 VL 98 IS 11-12 BP 2030 EP 2036 DI 10.2138/am.2013.4398 PG 7 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 252YP UT WOS:000327049100012 ER PT J AU Pazmino, JH Bai, CS Miller, JT Ribeiro, FH Delgass, WN AF Pazmino, Jorge H. Bai, Chuansheng Miller, Jeffrey T. Ribeiro, Fabio H. Delgass, W. Nicholas TI Effects of Support on Sulfur Tolerance and Regeneration of Pt Catalysts Measured by Ethylene Hydrogenation and EXAFS SO CATALYSIS LETTERS LA English DT Article DE Sulfur; Poisoning; Regeneration; Ethylene hydrogenation; EXAFS; SMSI; Support effect ID INFRARED-SPECTROSCOPY; REDUCTION CATALYST; PT/AL2O3 CATALYSTS; IRIDIUM CATALYSTS; NOX STORAGE; PLATINUM; TIO2; CHEMISORPTION; PT(111); PT/TIO2 AB The effect of support on sulfur tolerance and regenerability under reducing environments was investigated by rate measurements for ethylene hydrogenation, hydrogen chemisorption, and extended X-ray absorption fine structure (EXAFS). Catalysts, 1 % Pt/Al2O3 and 1 % Pt/P25 (TiO2), were tested after sulfidation in H2S/H-2 at 250 A degrees C followed by regeneration treatments in H-2 at 250, 350 and 450 A degrees C. Our combined results showed a 20-27 times decrease in the rate of ethylene hydrogenation on both sulfided catalysts, accompanied by a 4-6 times drop in the Pt surface area. Regenerations up to 450 A degrees C were unable to remove all the sulfur, as evidenced by the presence of Pt-S bonds by EXAFS at about 2.25-2.33 , characteristic lengths for chemisorbed sulfur and bulk-type PtS. However, a partial recovery of the hydrogenation rate per mole of Pt was observed on sulfided Pt/Al2O3 after reduction at 450 A degrees C, while the induction of strong metal support interactions (SMSI) at reduction temperature above 350 A degrees C was observed on Pt/P25, regardless of the presence of sulfur. For Pt/P25, the reversal of the SMSI state together with sulfur removal by mild oxidation suggests that sequential reduction/oxidation treatments may be more effective in restoring the S-free state of TiO2-supported catalysts. Pt/Al2O3 and Pt/TiO2 (P25) sulfur tolerance and regenerability were evaluated after reduction treatments in H-2. Both catalysts were equally poisoned by sulfur based on C2H4 hydrogenation. Reduction treatments up to 450 A degrees C were not able to remove sulfur on either catalyst. Sulfur on Pt may inhibit the formation of the SMSI state on Pt/TiO2, especially below 350 A degrees C. C1 [Pazmino, Jorge H.; Ribeiro, Fabio H.; Delgass, W. Nicholas] Purdue Univ, Sch Chem Engn, W Lafayette, IN 47907 USA. [Bai, Chuansheng] ExxonMobil Res & Engn Co, Annandale, NJ 08801 USA. [Miller, Jeffrey T.] Argonne Natl Lab, Div Chem Technol, Argonne, IL 60439 USA. RP Delgass, WN (reprint author), Purdue Univ, Sch Chem Engn, 480 Stadium Mall Dr, W Lafayette, IN 47907 USA. EM delgass@ecn.purdue.edu RI ID, MRCAT/G-7586-2011; OI Ribeiro, Fabio/0000-0001-7752-461X FU ExxonMobil Research and Engineering Company FX The authors would like to acknowledge Drs. Stuart Soled, Michael Daage, Pallassana S. Vankataraman, Prasenjeet Ghosh and Yogesh V. Joshi for useful discussions and active participation in this work and ExxonMobil Research and Engineering Company for financial support. NR 54 TC 5 Z9 5 U1 5 U2 46 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1011-372X EI 1572-879X J9 CATAL LETT JI Catal. Lett. PD NOV PY 2013 VL 143 IS 11 BP 1098 EP 1107 DI 10.1007/s10562-013-1135-y PG 10 WC Chemistry, Physical SC Chemistry GA 250YP UT WOS:000326893300002 ER PT J AU Muller, MR Muller, MB Rao, P AF Muller, Michael R. Muller, Michael B. Rao, Prakash TI Optimize Energy Use in Industrial Cooling Systems SO CHEMICAL ENGINEERING PROGRESS LA English DT Article ID TOWERS C1 [Muller, Michael R.; Muller, Michael B.] Rutgers State Univ, Piscataway, NJ 08855 USA. [Rao, Prakash] Lawrence Berkeley Natl Lab, Berkeley, CA USA. RP Muller, MR (reprint author), Rutgers State Univ, Piscataway, NJ 08855 USA. EM mullerm@rci.rutgers.edu; mbmuller@caes.rutgers.edu; prao@lbl.gov NR 12 TC 0 Z9 0 U1 1 U2 4 PU AMER INST CHEMICAL ENGINEERS PI NEW YORK PA 3 PARK AVE, NEW YORK, NY 10016-5901 USA SN 0360-7275 EI 1945-0710 J9 CHEM ENG PROG JI Chem. Eng. Prog. PD NOV PY 2013 VL 109 IS 11 BP 18 EP 23 PG 6 WC Engineering, Chemical SC Engineering GA 252XQ UT WOS:000327046600009 ER PT J AU Caes, BR Van Oosbree, TR Lu, FC Ralph, J Maravelias, CT Raines, RT AF Caes, Benjamin R. Van Oosbree, Thomas R. Lu, Fachuang Ralph, John Maravelias, Christos T. Raines, Ronald T. TI Simulated Moving Bed Chromatography: Separation and Recovery of Sugars and Ionic Liquid from Biomass Hydrolysates SO CHEMSUSCHEM LA English DT Article DE corn stover; ionic liquids; lignin; liquid chromatography; oligosaccharides ID LIGNOCELLULOSIC BIOMASS; BIOFUELS PRODUCTION; ESCHERICHIA-COLI; ARYL ETHERS; CORN STOVER; CELLULOSE; LIGNIN; PRETREATMENT; DISSOLUTION; HYDROLYZATE C1 [Caes, Benjamin R.; Van Oosbree, Thomas R.; Lu, Fachuang; Ralph, John; Maravelias, Christos T.; Raines, Ronald T.] Univ Wisconsin, Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Caes, Benjamin R.; Raines, Ronald T.] Univ Wisconsin, Dept Chem, Madison, WI 53706 USA. [Van Oosbree, Thomas R.; Lu, Fachuang; Ralph, John; Raines, Ronald T.] Univ Wisconsin, Dept Biochem, Madison, WI 53706 USA. [Maravelias, Christos T.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. RP Caes, BR (reprint author), Univ Wisconsin, Great Lakes Bioenergy Res Ctr, 1550 Linden Dr, Madison, WI 53706 USA. EM rtraines@wisc.edu RI Maravelias, Christos/B-1376-2009 OI Maravelias, Christos/0000-0002-4929-1748 FU DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science) [DE-FC02-07ER64494]; University of Wisconsin-Madison BACTER Institute [DE-FG02-04ER25627]; NIH [P41 RR02301, P41 GM066326, RR02781, RR08438]; University of Wisconsin-Madison; NSF [DMB-8415048, OIA-9977486, BIR-9214394]; USDA FX This work was supported by the DOE Great Lakes Bioenergy Research Center (DOE BER Office of Science DE-FC02-07ER64494) and the University of Wisconsin-Madison BACTER Institute through grant DE-FG02-04ER25627. This work made use of the National Magnetic Resonance Facility at Madison, which is supported by NIH Grants P41 RR02301 and P41 GM066326. Additional equipment was purchased with funds from the University of Wisconsin-Madison, the NIH (RR02781, RR08438), the NSF (DMB-8415048, OIA-9977486, BIR-9214394), and the USDA. We are grateful to Semba Biosciences for the loan of an Octave 10 Chromatography System, Dr. A. Grabski and Dr. R. Mierendorf for assistance with its use, Dr. N. de Leon and Dr. B. E. Dale for corn stover samples, Dr. D. H. Keating for E. coli KO11, Dr. M. T. Tremaine, S. Liu, and C. H. Eller for experimental assistance, and Merck KGaA for [BMIM]Cl. NR 63 TC 11 Z9 11 U1 3 U2 60 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1864-5631 EI 1864-564X J9 CHEMSUSCHEM JI ChemSusChem PD NOV PY 2013 VL 6 IS 11 BP 2083 EP 2089 DI 10.1002/cssc.201300267 PG 7 WC Chemistry, Multidisciplinary; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY SC Chemistry; Science & Technology - Other Topics GA 250HA UT WOS:000326840000015 PM 23939991 ER PT J AU Chae, WS Yu, H Ham, SK Lee, MJ Jung, JS Robinson, DB AF Chae, Weon-Sik Yu, Hyunung Ham, Sung-Kyoung Lee, Myung-Jin Jung, Jin-Seung Robinson, David B. TI Bimodal porous gold opals for molecular sensing SO ELECTRONIC MATERIALS LETTERS LA English DT Article DE nanoporous; gold; bimodal; SERS; opal ID ENHANCED RAMAN-SCATTERING; SURFACE-PLASMON; FILMS; FABRICATION; ELECTRODES; SERS AB We have fabricated bimodal porous gold skeletons by double-templating routes using poly(styrene) colloidal opals as templates. The fabricated gold skeletons show a bimodal pore-size distribution, with small pores within spheres and large pores between spheres. The templated bimodal porous gold skeletons were applied in Raman scattering experiments to study sensing efficiency for probe molecules. We found that the bimodal porous gold skeletons showed obvious enhancement of Raman scattering signals versus that of the unimodal porous gold which only has interstitial pores of several hundred nanometers. C1 [Chae, Weon-Sik; Ham, Sung-Kyoung; Lee, Myung-Jin] Korea Basic Sci Inst, Gangneung Ctr, Kangnung 210702, South Korea. [Yu, Hyunung] Korea Res Inst Stand & Sci, Taejon 305340, South Korea. [Jung, Jin-Seung] Gangneung Wonju Nanot Univ, Dept Chem, Kangnung 210702, South Korea. [Robinson, David B.] Sandia Natl Labs, Livermore, CA 94550 USA. RP Chae, WS (reprint author), Korea Basic Sci Inst, Gangneung Ctr, Kangnung 210702, South Korea. EM wschae@kbsi.re.kr FU KBSI [F32603]; KRF [2011-0008671]; WISET grant [PGD046] FX This work was supported by KBSI, International Joint Research Program (F32603) and partly by a KRF grant (No. 2011-0008671) and a WISET grant (PGD046). NR 15 TC 7 Z9 7 U1 3 U2 16 PU KOREAN INST METALS MATERIALS PI SEOUL PA KIM BLDG 6TH FLOOR, SEOCHO-DAERO 56 GIL 38, SEOCHO-GU, SEOUL 137-881, SOUTH KOREA SN 1738-8090 EI 2093-6788 J9 ELECTRON MATER LETT JI Electron. Mater. Lett. PD NOV PY 2013 VL 9 IS 6 BP 783 EP 786 DI 10.1007/s13391-013-6011-9 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA 253YQ UT WOS:000327126500017 ER PT J AU Greene, DL AF Greene, David L. TI Energy policy: Where are the boundaries? SO ENERGY POLICY LA English DT Editorial Material C1 Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Greene, DL (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. NR 0 TC 2 Z9 2 U1 0 U2 14 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD NOV PY 2013 VL 62 BP 1 EP 2 DI 10.1016/j.enpol.2013.08.042 PG 2 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 249IG UT WOS:000326770300001 ER PT J AU Davidson, C Steinberg, D AF Davidson, Carolyn Steinberg, Daniel TI Evaluating the impact of third-party price reporting and other drivers on residential photovoltaic price estimates SO ENERGY POLICY LA English DT Article DE Residential photovoltaic; Third-party ownership; Market tracking AB Aim: Policy-makers typically track the rapidly evolving U.S. residential photovoltaic (PV) market by relying on price data reported by PV installers/integrators to incentive programs. Recent years have witnessed a shift toward third-party-owned (TPO) business models, in which the absence of a cash purchase price obscures data interpretation. Appraisals-often based on estimates of the average fair market value across a diverse fleet of systems-are one way TPO prices are reported. Scope: This study investigates residential PV system price drivers to improve the accuracy, consistency, and relevance of PV price-tracking efforts. Our econometric approach evaluates system price drivers using California Solar Initiative data, controlling for system, installer, and geographic variables. Conclusions: We find that reported prices for confirmed appraised systems are $1.13/W higher than non-appraised systems and do not respond to hypothesized price drivers. For non-appraised systems, we find preliminary evidence of market distortions based on the impact of the incentive level, module cost and household income on reported price. Further, unspecified installer heterogeneity-possibly due to differences in products, cost structure or reporting practices-is a substantial price driver. Using estimates, we develop a price model to approximate non-appraised system prices. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Davidson, Carolyn; Steinberg, Daniel] Natl Renewable Energy Lab, Strateg Energy Anal Ctr, Golden, CO 80401 USA. RP Davidson, C (reprint author), Natl Renewable Energy Lab, Strateg Energy Anal Ctr, 15013 Denver West Pkwy,RSF 300, Golden, CO 80401 USA. EM Carolyn.Davidson@nrel.gov OI Steinberg, Daniel/0000-0003-1769-2261 NR 23 TC 4 Z9 4 U1 1 U2 13 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD NOV PY 2013 VL 62 BP 752 EP 761 DI 10.1016/j.enpol.2013.07.112 PG 10 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 249IG UT WOS:000326770300076 ER PT J AU He, YX Wang, B Wang, JH Xiong, W Xia, T AF He, Yongxiu Wang, Bing Wang, Jianhui Xiong, Wei Xia, Tian TI Correlation between Chinese and international energy prices based on a HP filter and time difference analysis SO ENERGY POLICY LA English DT Article DE Energy prices; HP filter; Time difference analysis ID ELECTRICITY PRICE; GAS PRICES; OIL; CAUSALITY; DYNAMICS; MARKETS; COSTS; COAL AB To establish a reasonable system and mechanism for Chinese energy prices, we use the Granger causality test, Hodrick-Prescott (HP) filter and time difference analysis to research the pricing relationship between Chinese and international energy prices. We find that Chinese and international crude oil prices changed synchronously while Chinese refined oil prices follow the changes of international oil prices with the time difference being about 1 month to 2 months. Further, Australian coal prices Granger causes Chinese coal prices, and there is a high correlation between them. The U.S. electricity price is influenced by the WTI crude oil price, the U.S. gasoline price and the HenryHub gas price. Due to the unreasonable price-setting mechanism and regulation from the central government, China's terminal market prices for both electricity and natural gas do not reflect the real supply-demand situation. This paper provides quantitative results on the correlation between Chinese and international energy prices to better predict the impact of international energy price fluctuations on China's domestic energy supply and guide the design of more efficient energy pricing policies. Moreover, it provides references for developing countries to improve their energy market systems and trading, and to coordinate domestic and international energy markets. (C) 2013 Elsevier Ltd. All rights reserved. C1 [He, Yongxiu; Wang, Bing; Xiong, Wei; Xia, Tian] North China Elect Power Univ, Sch Econ & Management, Beijing 102206, Peoples R China. [Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Wang, Jianhui] Shanghai Univ Elect Power, Sch Econ & Management, Shanghai, Peoples R China. [Xia, Tian] Gansu Elect Power Corp, Lanzhou, Peoples R China. RP He, YX (reprint author), North China Elect Power Univ, Sch Econ & Management, Bei Nong Rd 2, Beijing 102206, Peoples R China. EM heyongxiu@ncepu.edu.cn FU National Natural Science Foundation of China [71273089]; Beijing Natural Science Foundation of China [9122022]; U.S. Department of Energy [DE-AC02-06CH11357] FX The work described in this paper was supported by the National Natural Science Foundation of China (Grant No. 71273089) and Beijing Natural Science Foundation of China (Grant No. 9122022). Argonne National Laboratory's work was supported under U.S. Department of Energy contract DE-AC02-06CH11357. NR 24 TC 4 Z9 5 U1 5 U2 27 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD NOV PY 2013 VL 62 BP 898 EP 909 DI 10.1016/j.enpol.2013.07.136 PG 12 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 249IG UT WOS:000326770300091 ER PT J AU Cappers, P MacDonald, J Goldman, C Ma, O AF Cappers, Peter MacDonald, Jason Goldman, Charles Ma, Ookie TI An assessment of market and policy barriers for demand response providing ancillary services in US electricity markets SO ENERGY POLICY LA English DT Article DE Demand response; Renewable integration; Ancillary services ID TECHNOLOGIES AB An impact of increased variable renewable generation is the need for balancing authorities to procure more ancillary services. While demand response resources are technically capable of providing these services, current experience across the U.S. illustrates they are relatively minor players in most regions. Accessing demand response resources for ancillary services may require a number of changes to policies and common practices at multiple levels. Regional reliability councils must first define ancillary services such that demand response resources may provide them. Once the opportunity exists, balancing authorities define and promulgate rules that set the infrastructure investments and performance attributes of a resource wishing to provide such services. These rules also dictate expected revenue streams which reveal the cost effectiveness of these resources. The regulatory compact between utility and state regulators, along with other statutes and decisions by state policymakers, may impact the interest of demand response program providers to pursue these resources as ancillary service providers. This paper identifies within these broad categories specific market and policy barriers to demand response providing ancillary services in different wholesale and retail environments, with emphasis on smaller customers who must be aggregated through a program provider to meet minimum size requirements for wholesale transactions. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Cappers, Peter; MacDonald, Jason; Goldman, Charles] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ma, Ookie] US DOE, Off Energy Efficiency & Renewable Energy, Washington, DC 20585 USA. RP Cappers, P (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM PACappers@lbl.gov RI MacDonald, Jason/C-8726-2013 OI MacDonald, Jason/0000-0003-0298-5387 NR 39 TC 26 Z9 27 U1 0 U2 11 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD NOV PY 2013 VL 62 BP 1031 EP 1039 DI 10.1016/j.enpol.2013.08.003 PG 9 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 249IG UT WOS:000326770300103 ER PT J AU Hong, LX Zhou, N Fridley, D Raczkowski, C AF Hong, Lixuan Zhou, Nan Fridley, David Raczkowski, Chris TI Assessment of China's renewable energy contribution during the 12th Five Year Plan SO ENERGY POLICY LA English DT Article DE China; Renewable; 12th Five Year Plan ID LARGE-SCALE INTEGRATION; SMALL CHP-PLANTS; WIND POWER; HIGH PENETRATION; SYSTEM-ANALYSIS; ELECTRICITY; CHALLENGES; STRATEGIES; MARKET; IMPLEMENTATION AB In recent years, China has been ambitious in investing and developing renewable energy technologies, aiming to enhance its energy security, mitigate its energy-related CO2 emissions and develop renewable energy industry. The 12th Five Year Plan (2011-2015) has set clear targets on installed capacities of different renewable energy technologies. This study aimed to assess the possible contribution of 12th Five Year Plan for China's future energy system and identify factors that might influence its impacts. First, current status of renewable energy development in China has been reviewed. Then several energy scenarios have been developed in an hourly simulation using an energy system analysis tool EnergyPLAN. It was identified that existing grid bottleneck would greatly reduce the potential contribution of renewable installations in terms of share of renewable electricity generation, share of non-fossil fuels in primary energy and system CO2 emissions. In contrast, improving technical performance of renewable energy technologies and sectoral energy efficiency plays an important role in increasing the share of renewables and promoting China's energy system transition. Finally, some policy suggestions were drawn to facilitate a better implementation of the renewable energy plan. Published by Elsevier Ltd. C1 [Hong, Lixuan; Zhou, Nan; Fridley, David] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Raczkowski, Chris] Azure Int, Beijing 100027, Peoples R China. RP Hong, LX (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM lixuanhong@lbl.gov NR 83 TC 20 Z9 22 U1 1 U2 36 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0301-4215 EI 1873-6777 J9 ENERG POLICY JI Energy Policy PD NOV PY 2013 VL 62 BP 1533 EP 1543 DI 10.1016/j.enpol.2013.07.110 PG 11 WC Energy & Fuels; Environmental Sciences; Environmental Studies SC Energy & Fuels; Environmental Sciences & Ecology GA 249IG UT WOS:000326770300157 ER PT J AU Wlodawer, A Minor, W Dauter, Z Jaskolski, M AF Wlodawer, Alexander Minor, Wladek Dauter, Zbigniew Jaskolski, Mariusz TI Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination SO FEBS JOURNAL LA English DT Review DE data collection and processing; electron density maps; protein crystallography; structure refinement; structure solution; structure quality; structure validation ID HIGH-RESOLUTION STRUCTURE; X-RAY-STRUCTURE; NATIVE BIOLOGICAL MACROMOLECULES; PANCREATIC TRYPSIN-INHIBITOR; NERVE GROWTH-FACTOR; CRYSTAL-STRUCTURE; ANOMALOUS DIFFRACTION; MOLECULAR-REPLACEMENT; 3-DIMENSIONAL STRUCTURE; SYNCHROTRON-RADIATION AB The number of macromolecular structures deposited in the Protein Data Bank now approaches 100000, with the vast majority of them determined by crystallographic methods. Thousands of papers describing such structures have been published in the scientific literature, and 20 Nobel Prizes in chemistry or medicine have been awarded for discoveries based on macromolecular crystallography. New hardware and software tools have made crystallography appear to be an almost routine (but still far from being analytical) technique and many structures are now being determined by scientists with very limited experience in the practical aspects of the field. However, this apparent ease is sometimes illusory and proper procedures need to be followed to maintain high standards of structure quality. In addition, many noncrystallographers may have problems with the critical evaluation and interpretation of structural results published in the scientific literature. The present review provides an outline of the technical aspects of crystallography for less experienced practitioners, as well as information that might be useful for users of macromolecular structures, aiming to show them how to interpret (but not overinterpret) the information present in the coordinate files and in their description. A discussion of the extent of information that can be gleaned from the atomic coordinates of structures solved at different resolution is provided, as well as problems and pitfalls encountered in structure determination and interpretation. C1 [Wlodawer, Alexander] NCI, Prot Struct Sect, Macromol Crystallog Lab, Frederick, MD 21702 USA. [Minor, Wladek] Univ Virginia, Dept Mol Physiol & Biol Phys, Charlottesville, VA USA. [Minor, Wladek] Midwest Ctr Struct Genom, Lemont, IL USA. [Minor, Wladek] New York Struct Genom Consortium, New York, NY USA. [Minor, Wladek] Ctr Struct Genom Infect Dis, Bethesda, MD USA. [Dauter, Zbigniew] NCI, Synchrotron Radiat Res Sect, Macromol Crystallog Lab, Argonne Natl Lab, Chicago, IL USA. [Jaskolski, Mariusz] Adam Mickiewicz Univ, Fac Chem, Dept Crystallog, PL-60780 Poznan, Poland. [Jaskolski, Mariusz] Polish Acad Sci, Inst Bioorgan Chem, Ctr Biocrystallog Res, Poznan, Poland. RP Wlodawer, A (reprint author), NCI, Prot Struct Sect, Macromol Crystallog Lab, Frederick, MD 21702 USA. EM wlodawer@nih.gov RI Minor, Wladek/F-3096-2014; OI Minor, Wladek/0000-0001-7075-7090 FU NIH, National Cancer Institute, Center for Cancer Research; Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services [HHSN272201200026C]; [GM053163]; [GM094585]; [GM094662]; [GM093342] FX We thank Dr Jerry Alexandratos for assistance with the preparation of the figures and Milosz Ruszkowski for the photograph in Fig. 1A. Original work in the laboratories of A. W. and Z.D. was supported by the Intramural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. W. M. was supported by grants GM053163, GM094585, GM094662 and GM093342, and was funded in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN272201200026C. NR 136 TC 27 Z9 27 U1 3 U2 49 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1742-464X EI 1742-4658 J9 FEBS J JI FEBS J. PD NOV PY 2013 VL 280 IS 22 BP 5705 EP 5736 DI 10.1111/febs.12495 PG 32 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 254AA UT WOS:000327130900013 PM 24034303 ER PT J AU Rennie, E Heazlewood, J Stonebloom, S Chiu, TY Christiansen, K Miles, G Dupree, P Scheller, H AF Rennie, Emilie Heazlewood, Joshua Stonebloom, Solomon Chiu, Tsan-Yu Christiansen, Katy Miles, Godfrey Dupree, Paul Scheller, Henrik TI Identification of a GlcA transferase involved in biosynthesis of glycosyl inositol phosphorylceramide sphingolipids in plants SO GLYCOBIOLOGY LA English DT Meeting Abstract CT Annual Conference of the Society-for-Glycobiology CY NOV 17-20, 2013 CL St Petersburg, FL SP Soc Glycobiol C1 [Rennie, Emilie; Heazlewood, Joshua; Chiu, Tsan-Yu; Christiansen, Katy; Scheller, Henrik] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Stonebloom, Solomon] Univ Copenhagen, DK-1168 Copenhagen, Denmark. [Miles, Godfrey; Dupree, Paul] Univ Cambridge, Cambridge CB2 1TN, England. RI Scheller, Henrik/A-8106-2008 OI Scheller, Henrik/0000-0002-6702-3560 NR 0 TC 0 Z9 0 U1 0 U2 3 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0959-6658 EI 1460-2423 J9 GLYCOBIOLOGY JI Glycobiology PD NOV PY 2013 VL 23 IS 11 MA 11 BP 1333 EP 1333 PG 1 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 251YY UT WOS:000326972400021 ER PT J AU Kronewitter, SR Slysz, GW LaMarche, BL Hagler, CD Harris, MY Monroe, ME Crowell, KL Polyukh, CA Zhao, R Marginean, I Fillmore, TL Carlson, TS Camp, DG Payne, SH Moore, RJ Adkins, JN Anderson, GA Rodland, KD Smith, RD AF Kronewitter, Scott R. Slysz, Gordon W. LaMarche, Brian L. Hagler, Clay D. Harris, Myanna Y. Monroe, Matthew E. Crowell, Kevin L. Polyukh, Christina A. Zhao, Rui Marginean, Ioan Fillmore, Thomas L. Carlson, Timothy S. Camp, David G., II Payne, Samuel H. Moore, Ronald J. Adkins, Joshua N. Anderson, Gordon A. Rodland, Karin D. Smith, Richard D. TI High-Throughput Human Serum N-Glycan Profiling with GlycoGrid 4D Visualization and Automated Annotation Using GlyQ-IQ Multi-Core Software and PNNL Institutional Computing SO GLYCOBIOLOGY LA English DT Meeting Abstract CT Annual Conference of the Society-for-Glycobiology CY NOV 17-20, 2013 CL St Petersburg, FL SP Soc Glycobiol C1 [Kronewitter, Scott R.; Slysz, Gordon W.; LaMarche, Brian L.; Hagler, Clay D.; Harris, Myanna Y.; Monroe, Matthew E.; Crowell, Kevin L.; Polyukh, Christina A.; Zhao, Rui; Marginean, Ioan; Fillmore, Thomas L.; Carlson, Timothy S.; Camp, David G., II; Payne, Samuel H.; Moore, Ronald J.; Adkins, Joshua N.; Anderson, Gordon A.; Rodland, Karin D.; Smith, Richard D.] Pacific NW Natl Lab, Richland, WA 99352 USA. RI Smith, Richard/J-3664-2012 OI Smith, Richard/0000-0002-2381-2349 NR 0 TC 0 Z9 0 U1 0 U2 4 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0959-6658 EI 1460-2423 J9 GLYCOBIOLOGY JI Glycobiology PD NOV PY 2013 VL 23 IS 11 MA 74 BP 1356 EP 1356 PG 1 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 251YY UT WOS:000326972400084 ER PT J AU Harvey, B Rana, NA Wang, T Li, HL Haltiwanger, RS AF Harvey, Beth Rana, Nadia A. Wang, Tong Li, Huilin Haltiwanger, Robert S. TI Investigating the Effects of Fringe Modification on Drosophila Notch Structure and Function SO GLYCOBIOLOGY LA English DT Meeting Abstract CT Annual Conference of the Society-for-Glycobiology CY NOV 17-20, 2013 CL St Petersburg, FL SP Soc Glycobiol C1 [Harvey, Beth; Rana, Nadia A.; Haltiwanger, Robert S.] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA. [Wang, Tong; Li, Huilin] Brookhaven Natl Lab, Dept Biol, Upton, NY 11973 USA. NR 0 TC 0 Z9 0 U1 0 U2 2 PU OXFORD UNIV PRESS INC PI CARY PA JOURNALS DEPT, 2001 EVANS RD, CARY, NC 27513 USA SN 0959-6658 EI 1460-2423 J9 GLYCOBIOLOGY JI Glycobiology PD NOV PY 2013 VL 23 IS 11 MA 132 BP 1375 EP 1375 PG 1 WC Biochemistry & Molecular Biology SC Biochemistry & Molecular Biology GA 251YY UT WOS:000326972400142 ER PT J AU Jeanne, P Guglielmi, Y Cappa, F AF Jeanne, Pierre Guglielmi, Yves Cappa, Frederic TI Hydromechanical Heterogeneities of a Mature Fault Zone: Impacts on Fluid Flow SO GROUND WATER LA English DT Article ID CARBONATE RESERVOIR; DAMAGE ZONE; SLIP; PERMEABILITY; DISPLACEMENT; ROCKS; FIELD; ARCHITECTURE; EARTHQUAKE; PRESSURE AB lec In this paper, fluid flow is examined for a mature strike-slip fault zone with anisotropic permeability and internal heterogeneity. The hydraulic properties of the fault zone were first characterized in situ by microgeophysical (V-P and sigma(c)) and rock-quality measurements (Q-value) performed along a 50-m long profile perpendicular to the fault zone. Then, the local hydrogeological context of the fault was modified to conduct a water-injection test. The resulting fluid pressures and flow rates through the different fault-zone compartments were then analyzed with a two-phase fluid-flow numerical simulation. Fault hydraulic properties estimated from the injection test signals were compared to the properties estimated from the multiscale geological approach. We found that (1) the microgeophysical measurements that we made yield valuable information on the porosity and the specific storage coefficient within the fault zone and (2) the Q-value method highlights significant contrasts in permeability. Fault hydrodynamic behavior can be modeled by a permeability tensor rotation across the fault zone and by a storativity increase. The permeability tensor rotation is linked to the modification of the preexisting fracture properties and to the development of new fractures during the faulting process, whereas the storativity increase results from the development of micro- and macrofractures that lower the fault-zone stiffness and allows an increased extension of the pore space within the fault damage zone. Finally, heterogeneities internal to the fault zones create complex patterns of fluid flow that reft the connections of paths with contrasting properties. C1 [Jeanne, Pierre] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Jeanne, Pierre; Guglielmi, Yves] Univ Aix Marseille, CEREGE, F-13331 Marseille, France. [Cappa, Frederic] Univ Nice Sophia Antipolis, Observ Cote Azur, Geoazur, F-06550 Sophia Antipolis, France. RP Jeanne, P (reprint author), Univ Aix Marseille, CEREGE, F-13331 Marseille, France. EM pierrejeanne06@yahoo.fr; guglielmi@cerege.fr RI Jeanne, Pierre/I-2996-2015; Cappa, Frederic/B-4014-2017 OI Jeanne, Pierre/0000-0003-1487-8378; Cappa, Frederic/0000-0003-4859-8024 FU ANR "Captage de CO2" through the "HPPP-CO2" project; PACA county through the "MONIDER" project FX This work has been funded by the ANR "Captage de CO2" through the "HPPP-CO2" project and by the PACA county through the "MONIDER" project. We are grateful for the constructive comments and recommendations of the reviewers and the Editor-in-Chief, Frank W. Schwartz, which substantially improved this paper. NR 44 TC 3 Z9 3 U1 1 U2 15 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0017-467X EI 1745-6584 J9 GROUND WATER JI Ground Water PD NOV PY 2013 VL 51 IS 6 BP 880 EP 892 DI 10.1111/gwat.12017 PG 13 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 251YX UT WOS:000326972100011 PM 23373845 ER PT J AU Yuan, JY Gleason, SS Cheriyadat, AM AF Yuan, Jiangye Gleason, Shaun S. Cheriyadat, Anil M. TI Systematic Benchmarking of Aerial Image Segmentation SO IEEE GEOSCIENCE AND REMOTE SENSING LETTERS LA English DT Article DE Aerial image dataset; image segmentation ID COLOR AB This letter presents a benchmarking study for aerial image segmentation. We construct an image data set consisting of various aerial scenes. Segmentations generated by different human subjects are used as ground truth. We analyze the consistency between segmentations from different subjects. We select six leading segmentation algorithms, which include not only the algorithms specifically designed for aerial images but also more generally applicable algorithms. We also select a recently proposed algorithm due to its promising performance in handling texture regions. We apply these algorithms to the aerial image data set and quantitatively evaluate their performance. We interpret the evaluation results based on the characteristics of algorithms, which provide general guidance for selecting proper algorithms in specific applications. C1 [Yuan, Jiangye; Gleason, Shaun S.; Cheriyadat, Anil M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Yuan, JY (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM yuanj@ornl.gov; gleasonss@ornl.gov; cheriyadatam@ornl.gov FU U.S. Department of Energy [DE-AC05-00OR22725] FX This letter has been authored by employees of UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. Accordingly, the U. S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U. S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for U. S. Government purposes. NR 15 TC 2 Z9 2 U1 0 U2 8 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1545-598X EI 1558-0571 J9 IEEE GEOSCI REMOTE S JI IEEE Geosci. Remote Sens. Lett. PD NOV PY 2013 VL 10 IS 6 BP 1527 EP 1531 DI 10.1109/LGRS.2013.2261453 PG 5 WC Geochemistry & Geophysics; Engineering, Electrical & Electronic; Remote Sensing; Imaging Science & Photographic Technology SC Geochemistry & Geophysics; Engineering; Remote Sensing; Imaging Science & Photographic Technology GA 251XI UT WOS:000326966700052 ER PT J AU Kim, Y Gupta, A Urgaonkar, B AF Kim, Youngjae Gupta, Aayush Urgaonkar, Bhuvan TI A Temporal Locality-Aware Page-Mapped Flash Translation Layer SO JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY LA English DT Article DE flash memory; flash translation layer; storage system ID MEMORY AB The poor performance of random writes has been a cause of major concern which needs to be addressed to better utilize the potential of flash in enterprise-scale environments. We examine one of the important causes of this poor performance: the design of the flash translation layer (FTL) which performs the virtual-to-physical address translations and hides the erase-before-write characteristics of flash. We propose a complete paradigm shift in the design of the core FTL engine from the existing techniques with our Demand-Based Flash Translation Layer (DFTL) which selectively caches page-level address mappings. Our experimental evaluation using FlashSim with realistic enterprise-scale workloads endorses the utility of DFTL in enterprise-scale storage systems by demonstrating: 1) improved performance, 2) reduced garbage collection overhead and 3) better overload behavior compared with hybrid FTL schemes which are the most popular implementation methods. For example, a predominantly random-write dominant I/O trace from an OLTP application running at a large financial institution shows a 78% improvement in average response time (due to a 3-fold reduction in operations of the garbage collector), compared with the hybrid FTL scheme. Even for the well-known read-dominant TPC-H benchmark, for which DFTL introduces additional overheads, we improve system response time by 56%. Moreover, interestingly, when write-back cache on DFTL-based SSD is enabled, DFTL even outperforms the page-based FTL scheme, improving their response time by 72% in Financial trace. C1 [Kim, Youngjae] Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. [Gupta, Aayush] IBM Almaden Res Ctr, San Jose, CA 95120 USA. [Urgaonkar, Bhuvan] Penn State Univ, Dept Comp Sci & Engn, University Pk, PA 16802 USA. RP Kim, Y (reprint author), Oak Ridge Natl Lab, Natl Ctr Computat Sci, Oak Ridge, TN 37831 USA. EM kimy1@ornl.gov; guptaaa@us.ibm.com; bhuvan@cse.psu.edu FU Natural Science Foundation of U.S. [CCF-0811670, CNS-0720456]; Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725] FX This research was funded in part by the Natural Science Foundation of U.S. under Grant Nos. CCF-0811670, CNS-0720456, a gift from Cisco System, Inc. and partially through the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. NR 29 TC 5 Z9 5 U1 0 U2 8 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 1000-9000 EI 1860-4749 J9 J COMPUT SCI TECH-CH JI J. Comput. Sci. Technol. PD NOV PY 2013 VL 28 IS 6 BP 1025 EP 1044 DI 10.1007/s11390-013-1395-4 PG 20 WC Computer Science, Hardware & Architecture; Computer Science, Software Engineering SC Computer Science GA 251TI UT WOS:000326953200008 ER PT J AU Herbert, EG Johanns, KE Singleton, RS Pharr, GM AF Herbert, Erik G. Johanns, Kurt E. Singleton, Robert S. Pharr, George M. TI On the measurement of energy dissipation using nanoindentation and the continuous stiffness measurement technique SO JOURNAL OF MATERIALS RESEARCH LA English DT Article ID INSTRUMENTED INDENTATION; VISCOELASTIC PROPERTIES; BONE; TIME; FREQUENCY; PROPERTY; PMMA AB New experimental methods have been developed to optimize the accuracy and precision of the measured phase angle in nanoindentation experiments on viscoelastic materials performed with a Berkovich indenter. Measurements conducted in fused silica and sapphire form the basis of a new instrument calibration. Experimental verification of the new calibration and an enhanced test method is demonstrated in polycarbonate (PC) and polymethyl methacrylate (PMMA). In comparison to the standard continuous stiffness measurement (CSM) technique, the new calibration and test method reduces the measurement error in the phase angle of PC from 1900% to 10% and from 135% to 10% in PMMA. Scatter in phase angle measured by the new test method is nearly 10 times less than the level observed using the standard CSM technique. The effect of time dependent deformation on the measured phase angle is also documented. The experimental observations and results are applicable to a variety of dynamic nanoindentation test methods. C1 [Herbert, Erik G.; Johanns, Kurt E.; Singleton, Robert S.; Pharr, George M.] Univ Tennessee, Dept Mat Sci & Engn, Coll Engn, Knoxville, TN 37996 USA. [Pharr, George M.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN 37831 USA. RP Herbert, EG (reprint author), Univ Tennessee, Dept Mat Sci & Engn, Coll Engn, Knoxville, TN 37996 USA. EM eherbert@utk.edu FU National Science Foundation under NSF [1069165] FX Financial support for this work was provided by the National Science Foundation under NSF Grant No. 1069165. NR 20 TC 7 Z9 7 U1 0 U2 29 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0884-2914 EI 2044-5326 J9 J MATER RES JI J. Mater. Res. PD NOV PY 2013 VL 28 IS 21 BP 3029 EP 3042 DI 10.1557/jmr.2013.305 PG 14 WC Materials Science, Multidisciplinary SC Materials Science GA 251NQ UT WOS:000326936700013 ER PT J AU Hernandez, AM Huber, JS Murphy, ST Janabi, M Zeng, GSL Brennan, KM O'Neil, JP Seo, Y Gullberg, GT AF Hernandez, Andrew M. Huber, Jennifer S. Murphy, Stephanie T. Janabi, Mustafa Zeng, Gengsheng L. Brennan, Kathleen M. O'Neil, James P. Seo, Youngho Gullberg, Grant T. TI Longitudinal Evaluation of Left Ventricular Substrate Metabolism, Perfusion, and Dysfunction in the Spontaneously Hypertensive Rat Model of Hypertrophy Using Small- Animal PET/CT Imaging SO JOURNAL OF NUCLEAR MEDICINE LA English DT Article DE spontaneously hypertensive rat; myocardial substrate; metabolism; myocardial perfusion; F-18-fluorodihydrorotenol; F-18-fluoro-6-thia-heptadecanoic acid ID MYOCARDIAL FATTY-ACID; CONGESTIVE-HEART-FAILURE; PARAMETER-ESTIMATION; GLUCOSE-METABOLISM; BLOOD-FLOW; TRANSITION; EXPRESSION; MUSCLE AB Myocardial metabolic and perfusion imaging is a vital tool for understanding the physiologic consequences of heart failure. We used PET imaging to examine the longitudinal kinetics of F-18-FDG and 14(R, S)-F-18-fluoro-6-thia-heptadecanoic acid (F-18-FTHA) as analogs of glucose and fatty acid (FA) to quantify metabolic substrate shifts with the spontaneously hypertensive rat (SHR) as a model of left ventricular hypertrophy (LVH) and failure. Myocardial perfusion and left ventricular function were also investigated using a newly developed radiotracer F-18-fluorodihydrorotenol (F-18-FDHROL). Methods: Longitudinal dynamic electrocardiogram-gated small-animal PET/CT studies were performed with 8 SHR and 8 normotensive Wistar-Kyoto (WKY) rats over their life cycle. We determined the myocardial influx rate constant for F-18-FDG and F-18-FTHA (K-i(FDG) and K-i(FTHA), respectively) and the wash-in rate constant for F-18-FDHROL (K-1(FDHROL)). (FFDHROL)-F-18 data were also used to quantify left ventricular ejection fraction (LVEF) and end-diastolic volume (EDV). Blood samples were drawn to independently measure plasma concentrations of glucose, insulin, and free fatty acids (FFAs). Results: K-i(FDG) and K-i(FTHA) were higher in SHRs than WKY rats (P, 3 1028 and 0.005, respectively) independent of age. A decrease in Ki FDG with age was evident when models were combined (P 5 0.034). The SHR exhibited higher K-1(FDHROL) (P, 5 x 1026) than the control, with no age-dependent trends in either model (P 5 0.058). Glucose plasma concentrations were lower in SHRs than controls (P < 6 x 10(-12)), with an agedependent rise for WKY rats (P < 2 x 10(-5)). Insulin plasma concentrations were higher in SHRs than controls (P < 3 x 10(-3)), with an agedependent decrease when models were combined (P = 0.046). FFA levels were similar between models (P = 0.374), but an increase with age was evident only in SHR (P <7 x 10(-6)). Conclusion: The SHR exhibited alterations in myocardial substrate use at 8 mo characterized by increased glucose and FA utilizations. At 20 mo, the SHR had LVH characterized by decreased LVEF and increased EDV, while simultaneously sustaining higher glucose and similar FA utilizations (compared with WKY rats), which indicates maladaptation of energy substrates in the failing heart. Elevated K-1(FDHROL) in the SHR may reflect elevated oxygen consumption and decreased capillary density in the hypertrophied heart. From our findings, metabolic changes ap-pear to precede mechanical changes of LVH progression in the SHR model. C1 [Hernandez, Andrew M.; Huber, Jennifer S.; Janabi, Mustafa; Brennan, Kathleen M.; O'Neil, James P.; Gullberg, Grant T.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Hernandez, Andrew M.; Murphy, Stephanie T.; Seo, Youngho; Gullberg, Grant T.] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, San Francisco, CA 94143 USA. [Zeng, Gengsheng L.] Univ Utah, Dept Radiol, Salt Lake City, UT 84132 USA. [Seo, Youngho] Univ Calif San Francisco, Dept Radiat Oncol, San Francisco, CA USA. [Seo, Youngho; Gullberg, Grant T.] UC Berkeley UCSF Grad Program Bioengn, Berkeley, CA USA. [Seo, Youngho; Gullberg, Grant T.] UC Berkeley UCSF Grad Program Bioengn, San Francisco, CA USA. RP Hernandez, AM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM amhernandez@lbl.gov FU National Institutes of Health of the U. S. Department of Health and Human Services [R01-EB007219]; Director, Office of Science, Office of Biological and Environmental Research of the U. S. Department of Energy [DE-AC02-05CH11231] FX The costs of publication of this article were defrayed in part by the payment of page charges. Therefore, and solely to indicate this fact, this article is hereby marked "advertisement" in accordance with 18 USC section 1734. This study was supported by the National Institutes of Health of the U. S. Department of Health and Human Services under grant R01-EB007219 and by the Director, Office of Science, Office of Biological and Environmental Research of the U. S. Department of Energy under contract DE-AC02-05CH11231. No other potential conflict of interest relevant to this article was NR 32 TC 9 Z9 10 U1 0 U2 5 PU SOC NUCLEAR MEDICINE INC PI RESTON PA 1850 SAMUEL MORSE DR, RESTON, VA 20190-5316 USA SN 0161-5505 EI 1535-5667 J9 J NUCL MED JI J. Nucl. Med. PD NOV 1 PY 2013 VL 54 IS 11 BP 1938 EP 1945 DI 10.2967/jnumed.113.120105 PG 8 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 250TF UT WOS:000326876800019 PM 24092939 ER PT J AU Williams, CL Charland, P Radloff, G Sample, D Jackson, RD AF Williams, Carol L. Charland, Paul Radloff, Gary Sample, David Jackson, Randall D. TI Grass-shed: Place and process for catalyzing perennial grass bioeconomies and their potential multiple benefits SO JOURNAL OF SOIL AND WATER CONSERVATION LA English DT Article ID INTENSIFICATION; AGRICULTURE; MANAGEMENT; BIOFUELS; ECOLOGY; SCIENCE; INPUT; MODEL; KEY C1 [Williams, Carol L.; Jackson, Randall D.] Univ Wisconsin, Dept Agron, Madison, WI 53706 USA. [Williams, Carol L.; Radloff, Gary] Univ Wisconsin, Wisconsin Energy Inst, Madison, WI USA. [Charland, Paul] US Fish & Wildlife Serv, Portage, WI USA. [Sample, David] Wisconsin Dept Nat Resources, Bur Sci Serv, Madison, WI USA. [Jackson, Randall D.] Univ Wisconsin, US Dept Energy, Great Lakes Bioenergy Res Ctr, Madison, WI USA. RP Williams, CL (reprint author), Univ Wisconsin, Dept Agron, 1575 Linden Dr, Madison, WI 53706 USA. FU University of Wisconsin College of Agriculture USDA Hatch Grant [WIS01730]; DOE Great Lakes Bioenergy Research Center (DOE Office of Science) [BER DE-FC02-07ER64494] FX We thank Andy Paulios, David Williams, and Pamela Porter for their insights and comments in the early stages of this work. This work was funded in part by a University of Wisconsin College of Agriculture USDA Hatch Grant (WIS01730) and the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494). NR 44 TC 4 Z9 4 U1 1 U2 9 PU SOIL WATER CONSERVATION SOC PI ANKENY PA 945 SW ANKENY RD, ANKENY, IA 50023-9723 USA SN 0022-4561 EI 1941-3300 J9 J SOIL WATER CONSERV JI J. Soil Water Conserv. PD NOV-DEC PY 2013 VL 68 IS 6 BP 141A EP 146A DI 10.2489/jswc.68.6.141A PG 6 WC Ecology; Soil Science; Water Resources SC Environmental Sciences & Ecology; Agriculture; Water Resources GA 254QT UT WOS:000327181100001 ER PT J AU Smetana, V Corbett, JD Miller, GJ AF Smetana, Volodymyr Corbett, John D. Miller, Gordon J. TI Na8Au9.8(4)Ga7.2 and Na17Au15.87(2)Ga46.63: The diversity of pseudo 5-fold 0 Cross Mark symmetries in the Na-Au-Ga system SO JOURNAL OF SOLID STATE CHEMISTRY LA English DT Article DE Crystallography; Quasioystals; Five-fold symmetry; Bonding ID CRYSTAL-STRUCTURE DETERMINATION; ICOSAHEDRAL LI CLUSTERS; DECAGONAL QUASI-CRYSTAL; INTERMETALLIC PHASE; BUILDING-BLOCKS; GOLD; GALLIUM; NETWORK; STABILIZATION; TETRAHEDRA AB The Na-rich part (similar to 30% Na) of the Na-Au-Ga system between NaAu2, NaGa4, and Na(22)Ga39 has been found to contain the ternary phases NasAug(8)(4)Ga-7.2 (I) and NavAu(5.87(2))Ga46.63 (II), according to the results of single crystal X-ray diffraction measurements. I is orthorhombic, Cmcm, a= 5.3040(1), b=24.519(5), c=14.573(3) A, and contains a network of clusters with local 5-fold symmetry along the a-axis. Such clusters are frequent building units in decagonal quasicrystals and their approximants. II is rhombohedral, a =16.325(2), c=35.242(7) A, and contains building blocks that are structurally. identical to the Bergman-type clusters as well as fused icosahedral units known with active metals, triels and late transition elements. II also contains a polycationic network with elements of the clathrate V type structure. Tight-binding electronic structure calculations using linear muffin-tin-orbital (LMTO) methods on idealized models of I and II indicate that both compounds are metallic with evident pseudogaps at the corresponding Fermi levels. The overall Hamilton bond populations are generally dominated by Au-Ga and Au-Au bonds in I and by Ga-Ga bonds in II; moreover, the Na-Au and Na-Ga contributions in I are unexpectedly large, 20% of the total. A similar involvement of sodium in covalent bonding has also been found in the electron-richer i-Nai(3)Aui(2)Gai(5) quasicrystal approximant. (C) 2013 Elsevier Inc. All rights reserved. C1 [Corbett, John D.] US DOE, Ames Lab, Ames, IA 50011 USA. Iowa State Univ, Dept Chem, Ames, IA 50011 USA. RP Corbett, JD (reprint author), US DOE, Ames Lab, Ames, IA 50011 USA. EM jcorbett@iastate.edu RI Smetana, Volodymyr/C-1340-2015; OI Smetana, Volodymyr/0000-0003-0763-1457 FU Office of the Basic Energy Sciences, Materials Sciences Division; US Department of Energy (DOE); DOE by Iowa State University [DE-ACO2-07CH11358] FX The research was supported by the Office of the Basic Energy Sciences, Materials Sciences Division, US Department of Energy (DOE). Ames Laboratory is operated for DOE by Iowa State University under Contract no. DE-ACO2-07CH11358. NR 50 TC 10 Z9 10 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0022-4596 EI 1095-726X J9 J SOLID STATE CHEM JI J. Solid State Chem. PD NOV PY 2013 VL 207 BP 21 EP 28 DI 10.1016/j.jssc.2013.08.017 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical SC Chemistry GA 250JX UT WOS:000326850200004 ER PT J AU Liu, JL Inouye, H Venugopalan, N Fischetti, RF Gleber, SC Vogt, S Cusumano, JC Kim, JI Chapple, C Makowski, L AF Liu, Jiliang Inouye, Hideyo Venugopalan, Nagarajan Fischetti, Robert F. Gleber, S. Charlotte Vogt, Stefan Cusumano, Joanne C. Kim, Jeong Im Chapple, Clint Makowski, Lee TI Tissue specific specialization of the nanoscale architecture of Arabidopsis SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE Scanning X-ray microdiffraction; X-ray fluorescence microscopy; Cellulose structure; Arabidopsis ID X-RAY-SCATTERING; ECERIFERUM MUTANTS; CELL-WALL; EPICUTICULAR WAXES; CELLULOSE FIBRILS; PICEA-ABIES; ANGLE; WOOD; DIFFRACTION; MICRODIFFRACTION AB The Arabidopsis stem is composed of five tissues - the pith, xylem, phloem, cortex and epidermis - each of which fulfills specific roles in support of the growth and survival of the organism. The lignocellulosic scaffolding of cell walls is specialized to provide optimal support for the diverse functional roles of these layers, but little is known about this specialization. X-ray scattering can be used to study this tissue-specific diversity because the cellulosic components of the cell walls give rise to recognizable scattering features interpretable in terms of the underlying molecular architecture and distinct from the largely unoriented scatter from other constituents. Here we use scanning X-ray microdiffraction from thin sections to characterize the diversity of molecular architecture in the Arabidopsis stem and correlate that diversity to the functional roles the distinct tissues of the stem play in the growth and survival of the organism. (C) 2013 Published by Elsevier Inc. C1 [Liu, Jiliang; Inouye, Hideyo; Makowski, Lee] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA. [Venugopalan, Nagarajan; Fischetti, Robert F.] Argonne Natl Lab, Adv Photon Source, XSD, GM CA CAT, Argonne, IL 60439 USA. [Gleber, S. Charlotte; Vogt, Stefan] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA. [Cusumano, Joanne C.; Kim, Jeong Im; Chapple, Clint] Purdue Univ, Dept Biochem, W Lafayette, IN 47907 USA. [Makowski, Lee] Northeastern Univ, Depatment Chem & Chem Biol, Boston, MA 02115 USA. RP Makowski, L (reprint author), Northeastern Univ, Dept Elect & Comp Engn, 360 Huntington Ave, Boston, MA 02115 USA. EM liu.jil@husky.neu.edu; H.Inouye@neu.edu; vnagas@anl.gov; rfischetti@anl.gov; gleber@ap-s.anl.gov; vogt@aps.anl.gov; cusumano@purdue.edu; kim16@purdue.edu; chapple@purdue.edu; makowski@ece.neu.edu RI Vogt, Stefan/B-9547-2009; Vogt, Stefan/J-7937-2013 OI Vogt, Stefan/0000-0002-8034-5513; Vogt, Stefan/0000-0002-8034-5513 FU Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0000997]; National Cancer Institute [Y1-CO-1020]; National Institute of General Medical Science [Y1-GM-1104]; U.S. DOE [DE-AC02-06CH11357] FX We would like to thank John Badger for insightful discussions. This work was supported as part of the Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Award number DE-SC0000997. GM/CA CAT has been funded in whole or in part with Federal funds from the National Cancer Institute (Y1-CO-1020) and the National Institute of General Medical Science (Y1-GM-1104). Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. NR 38 TC 4 Z9 4 U1 0 U2 9 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 EI 1095-8657 J9 J STRUCT BIOL JI J. Struct. Biol. PD NOV PY 2013 VL 184 IS 2 BP 103 EP 114 DI 10.1016/j.jsb.2013.09.013 PG 12 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 254MY UT WOS:000327171000001 PM 24075949 ER PT J AU Shatsky, M Arbelaez, P Glaeser, RM Brenner, SE AF Shatsky, Maxim Arbelaez, Pablo Glaeser, Robert M. Brenner, Steven E. TI Optimal and fast rotational alignment of volumes with missing data in Fourier space SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Article DE Missing data in Fourier space; Rotational alignment of tomograms; Spherical harmonics; Constrained cross-correlation ID CLASSIFICATION; MICROSCOPY; TOMOGRAMS; RIBOSOME AB Electron tomography of intact cells has the potential to reveal the entire cellular content at a resolution corresponding to individual macromolecular complexes. Characterization of macromolecular complexes in tomograms is nevertheless an extremely challenging task due to the high level of noise, and due to the limited tilt angle that results in missing data in Fourier space. By identifying particles of the same type and averaging their 3D volumes, it is possible to obtain a structure at a more useful resolution for biological interpretation. Currently, classification and averaging of sub-tomograms is limited by the speed of computational methods that optimize alignment between two sub-tomographic volumes. The alignment optimization is hampered by the fact that the missing data in Fourier space has to be taken into account during the rotational search. A similar problem appears in single particle electron microscopy where the random conical tilt procedure may require averaging of volumes with a missing cone in Fourier space. We present a fast implementation of a method guaranteed to find an optimal rotational alignment that maximizes the constrained cross-correlation function (cCCF) computed over the actual overlap of data in Fourier space. (C) 2013 The Authors. Published by Elsevier Inc. All rights reserved. C1 [Shatsky, Maxim; Brenner, Steven E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Arbelaez, Pablo] Univ Calif Berkeley, Elect Engn & Comp Sci Div, Berkeley, CA 94720 USA. [Glaeser, Robert M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Brenner, Steven E.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Shatsky, M (reprint author), Univ Calif Berkeley, 461 Koshland Hall, Berkeley, CA 94720 USA. EM max.shatsky@gmail.com RI Brenner, Steven/A-8729-2008; OI Brenner, Steven/0000-0001-7559-6185; Arbelaez, Pablo/0000-0001-5244-2407 FU Office of Science, Office of Biological and Environmental Research, of the US Department of Energy [DE-AC02-05CH11231] FX We thank Julio Kovacs and Pablo Chacon for providing source code of the frm3d program. This work conducted by ENIGMA - Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov), a Scientific Focus Area Program at Lawrence Berkeley National Laboratory, was supported by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 17 TC 1 Z9 1 U1 1 U2 6 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 EI 1095-8657 J9 J STRUCT BIOL JI J. Struct. Biol. PD NOV PY 2013 VL 184 IS 2 BP 345 EP 347 DI 10.1016/j.jsb.2013.08.006 PG 3 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 254MY UT WOS:000327171000027 PM 23994045 ER PT J AU Glaeser, RM AF Glaeser, Robert M. TI Replication and validation of cryo-EM structures SO JOURNAL OF STRUCTURAL BIOLOGY LA English DT Letter C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Glaeser, RM (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM rmglaeser@lbl.gov NR 7 TC 2 Z9 2 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 1047-8477 EI 1095-8657 J9 J STRUCT BIOL JI J. Struct. Biol. PD NOV PY 2013 VL 184 IS 2 BP 379 EP 380 DI 10.1016/j.jsb.2013.09.007 PG 2 WC Biochemistry & Molecular Biology; Biophysics; Cell Biology SC Biochemistry & Molecular Biology; Biophysics; Cell Biology GA 254MY UT WOS:000327171000033 PM 24036314 ER PT J AU Dahl, RH Zhang, F Alonso-Gutierrez, J Baidoo, E Batth, TS Redding-Johanson, AM Petzold, CJ Mukhopadhyay, A Lee, TS Adams, PD Keasling, JD AF Dahl, Robert H. Zhang, Fuzhong Alonso-Gutierrez, Jorge Baidoo, Edward Batth, Tanveer S. Redding-Johanson, Alyssa M. Petzold, Christopher J. Mukhopadhyay, Aindrila Lee, Taek Soon Adams, Paul D. Keasling, Jay D. TI Engineering dynamic pathway regulation using stress-response promoters SO NATURE BIOTECHNOLOGY LA English DT Article ID ESCHERICHIA-COLI; GENE-EXPRESSION; ISOPRENOID PRODUCTION; MICROBIAL-PRODUCTION; FUNCTIONAL GENOMICS; MEVALONATE PATHWAY; MICROARRAY DATA; METABOLIC FLUX; SYSTEM; ACID AB Heterologous pathways used in metabolic engineering may produce intermediates toxic to the cell. Dynamic control of pathway enzymes could prevent the accumulation of these metabolites, but such a strategy requires sensors, which are largely unknown, that can detect and respond to the metabolite. Here we applied whole-genome transcript arrays to identify promoters that respond to the accumulation of toxic intermediates, and then used these promoters to control accumulation of the intermediate and improve the final titers of a desired product. We apply this approach to regulate farnesyl pyrophosphate (FPP) production in the isoprenoid biosynthetic pathway in Escherichia coli. This strategy improved production of amorphadiene, the final product, by twofold over that from inducible or constitutive promoters, eliminated the need for expensive inducers, reduced acetate accumulation and improved growth. We extended this approach to another toxic intermediate to demonstrate the broad utility of identifying novel sensor-regulator systems for dynamic regulation. C1 [Dahl, Robert H.; Zhang, Fuzhong; Alonso-Gutierrez, Jorge; Baidoo, Edward; Batth, Tanveer S.; Redding-Johanson, Alyssa M.; Petzold, Christopher J.; Mukhopadhyay, Aindrila; Lee, Taek Soon; Adams, Paul D.; Keasling, Jay D.] Joint BioEnergy Inst, Emeryville, CA USA. [Dahl, Robert H.; Zhang, Fuzhong; Alonso-Gutierrez, Jorge; Baidoo, Edward; Batth, Tanveer S.; Redding-Johanson, Alyssa M.; Petzold, Christopher J.; Mukhopadhyay, Aindrila; Lee, Taek Soon; Adams, Paul D.; Keasling, Jay D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Dahl, Robert H.; Zhang, Fuzhong; Keasling, Jay D.] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA. [Adams, Paul D.; Keasling, Jay D.] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA. RP Keasling, JD (reprint author), Joint BioEnergy Inst, Emeryville, CA USA. EM keasling@berkeley.edu RI Keasling, Jay/J-9162-2012; Adams, Paul/A-1977-2013 OI Keasling, Jay/0000-0003-4170-6088; Adams, Paul/0000-0001-9333-8219 FU US Department of Energy, Office of Science, Office of Biological and Environmental Research [DE-AC02-05CH11231] FX The authors thank D.Pitera for the pADSmut plasmid and W.Holtz for the BglBrick plasmids with the lacUV5 promoter and LacIQ removed. J.A.-G. thanks Fundacion Ramon Areces for his PostDoc fellowship. This work was part of the Department of Energy Joint BioEnergy Institute (http://www.jbei.org/) supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy. NR 54 TC 99 Z9 110 U1 9 U2 83 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1087-0156 EI 1546-1696 J9 NAT BIOTECHNOL JI Nat. Biotechnol. PD NOV PY 2013 VL 31 IS 11 BP 1039 EP + PG 10 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 251IM UT WOS:000326921200027 PM 24142050 ER PT J AU Rudakov, F Zhang, Y Cheng, XX Weber, PM AF Rudakov, Fedor Zhang, Yao Cheng, Xinxin Weber, Peter M. TI Standoff trace chemical sensing via manipulation of excited electronic state lifetimes SO OPTICS LETTERS LA English DT Article ID RYDBERG FINGERPRINT SPECTROSCOPY; MULTIPHOTON IONIZATION; PHOTOELECTRON-SPECTROSCOPY; POLYATOMIC-MOLECULES; ENERGY-DEPENDENCE; DIP; DYNAMICS; SPECTRA AB We present a technique for standoff trace chemical sensing that is based on the dependence of excited electronic state lifetimes on the amount of internal vibrational energy. The feasibility of the technique is demonstrated using N, N-dimethylisopropylamine (DMIPA). Time-resolved measurements show that the lifetime of the S-1 state in DMIPA exponentially decreases with the amount of vibrational energy. This property is employed to acquire molecular spectral signatures. Two laser pulses are used: one ionizes the molecule through the S-1 state; the other alters the S-1 state lifetime by depositing energy into vibrations. Reduction of the S-1 state lifetime decreases ionization efficiency that is observed by probing the laser-induced plasma with microwave radiation. (C) 2013 Optical Society of America C1 [Rudakov, Fedor] Univ Missouri, Dept Chem, Kansas City, MO 64110 USA. [Rudakov, Fedor] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37931 USA. [Zhang, Yao; Cheng, Xinxin; Weber, Peter M.] Brown Univ, Dept Chem, Providence, RI 02912 USA. RP Rudakov, F (reprint author), Univ Missouri, Dept Chem, Kansas City, MO 64110 USA. EM rudakovf@umkc.edu RI Cheng, Xinxin/G-5377-2014 OI Cheng, Xinxin/0000-0001-7586-8240 FU Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL); United States Department of Energy (DOE) [De-AC05-00OR22725]; Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences; U.S. Department of Energy [DE-FG02-03ER15452] FX The research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the United States Department of Energy (DOE) under contract De-AC05-00OR22725, and the Division of Chemical Sciences, Geosciences, and Biosciences, the Office of Basic Energy Sciences, and the U.S. Department of Energy by Grant No. DE-FG02-03ER15452. NR 28 TC 6 Z9 6 U1 1 U2 4 PU OPTICAL SOC AMER PI WASHINGTON PA 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA SN 0146-9592 EI 1539-4794 J9 OPT LETT JI Opt. Lett. PD NOV 1 PY 2013 VL 38 IS 21 BP 4445 EP 4448 DI 10.1364/OL.38.004445 PG 4 WC Optics SC Optics GA 254CQ UT WOS:000327141100047 PM 24177115 ER PT J AU Sutter, M Wilson, SC Deutsch, S Kerfeld, CA AF Sutter, Markus Wilson, Steven C. Deutsch, Samuel Kerfeld, Cheryl A. TI Two new high-resolution crystal structures of carboxysome pentamer proteins reveal high structural conservation of CcmL orthologs among distantly related cyanobacterial species SO PHOTOSYNTHESIS RESEARCH LA English DT Article DE Cyanobacteria; Microcompartment; Carboxysome; CcmL ID SYNECHOCOCCUS PCC7942; SHELL; ORGANELLES; MICROCOMPARTMENTS; ORGANIZATION; GENOMICS; INSIGHTS; OPERON; GENES; MODEL AB Cyanobacteria have evolved a unique carbon fixation organelle known as the carboxysome that compartmentalizes the enzymes RuBisCO and carbonic anhydrase. This effectively increases the local CO2 concentration at the active site of RuBisCO and decreases its relatively unproductive side reaction with oxygen. Carboxysomes consist of a protein shell composed of hexameric and pentameric proteins arranged in icosahedral symmetry. Facets composed of hexameric proteins are connected at the vertices by pentameric proteins. Structurally homologous pentamers and hexamers are also found in heterotrophic bacteria where they form architecturally related microcompartments such as the Eut and Pdu organelles for the metabolism of ethanolamine and propanediol, respectively. Here we describe two new high-resolution structures of the pentameric shell protein CcmL from the cyanobacteria Thermosynechococcus elongatus and Gloeobacter violaceus and provide detailed analysis of their characteristics and comparison with related shell proteins. C1 [Sutter, Markus; Deutsch, Samuel; Kerfeld, Cheryl A.] US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. [Wilson, Steven C.; Kerfeld, Cheryl A.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Kerfeld, Cheryl A.] Berkeley Synthet Biol Inst, Berkeley, CA 94720 USA. RP Kerfeld, CA (reprint author), US DOE, Joint Genome Inst, Walnut Creek, CA 94598 USA. EM ckerfeld@lbl.gov FU Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy [DE-AC02-05CH11231]; NSF [EF1105897]; Swiss National Science Foundation FX We would like to thank the entire staff at the Advanced Light Source, Lawrence Berkeley National Laboratory, which is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. CAK and SCW are supported by the NSF ( EF1105897). MS was supported by a Swiss National Science Foundation Postdoctoral Fellowship. NR 32 TC 15 Z9 15 U1 0 U2 11 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0166-8595 EI 1573-5079 J9 PHOTOSYNTH RES JI Photosynth. Res. PD NOV PY 2013 VL 118 IS 1-2 SI SI BP 9 EP 16 DI 10.1007/s11120-013-9909-z PG 8 WC Plant Sciences SC Plant Sciences GA 253EP UT WOS:000327065500002 PM 23949415 ER PT J AU Liberton, M Collins, AM Page, LE O'Dell, WB O'Neill, H Urban, VS Timlin, JA Pakrasi, HB AF Liberton, Michelle Collins, Aaron M. Page, Lawrence E. O'Dell, William B. O'Neill, Hugh Urban, Volker S. Timlin, Jerilyn A. Pakrasi, Himadri B. TI Probing the consequences of antenna modification in cyanobacteria SO PHOTOSYNTHESIS RESEARCH LA English DT Review DE Cyanobacteria; Photosynthesis; Thylakoid; Neutron scattering; Hyperspectral imaging; Photobioreactor ID MULTIVARIATE CURVE RESOLUTION; PCC 6803; SYNECHOCYSTIS PCC-6803; PHYCOBILISOME MUTANTS; PIGMENT LOCALIZATION; THYLAKOID MEMBRANES; NEUTRON-SCATTERING; PHOTOSYNTHESIS; SUSPENSION; EFFICIENCY AB Photosynthetic organisms rely on antenna systems to harvest and deliver energy from light to reaction centers. In fluctuating photic environments, regulation of light harvesting is critical for a photosynthetic organism's survival. Here, we describe the use of a suite of phycobilisome mutants to probe the consequences of antenna truncation in the cyanobacterium Synechocystis sp. PCC 6803. Studies using transmission electron microscopy (TEM), hyperspectral confocal fluorescence microscopy (HCFM), small-angle neutron scattering (SANS), and an optimized photobioreactor system have unraveled the adaptive strategies that cells employ to compensate for antenna reduction. As the phycobilisome antenna size decreased, changes in thylakoid morphology were more severe and physical segregation of the two photosystems increased. Repeating distances between thylakoid membranes measured by SANS were correlated with TEM data, and corresponded to the degree of phycobilisome truncation. Thylakoid membranes were found to have a high degree of structural flexibility, and changes in the membrane system upon illumination were rapid and reversible. Phycobilisome truncation in Synechocystis 6803 reduced the growth rate and lowered biomass accumulation. Together, these results lend a dynamic perspective to the intracellular membrane organization in cyanobacteria cells and suggest an adaptive mechanism that allows cells to adjust to altered light absorption capabilities, while highlighting the cell-wide implications of antenna truncation. C1 [Liberton, Michelle; Page, Lawrence E.; Pakrasi, Himadri B.] Washington Univ, Dept Biol, St Louis, MO 63130 USA. [Collins, Aaron M.; Timlin, Jerilyn A.] Sandia Natl Labs, Dept Bioenergy & Def Technol, Albuquerque, NM 87185 USA. [O'Dell, William B.; O'Neill, Hugh; Urban, Volker S.] Oak Ridge Natl Lab, Biol & Soft Matter Div, Oak Ridge, TN 37831 USA. RP Pakrasi, HB (reprint author), Washington Univ, Dept Biol, 1 Brookings Dr, St Louis, MO 63130 USA. EM pakrasi@wustl.edu RI Urban, Volker/N-5361-2015; OI Urban, Volker/0000-0002-7962-3408; O'Dell, William/0000-0002-8063-5190; O'Neill, Hugh/0000-0003-2966-5527; Timlin, Jerilyn/0000-0003-2953-1721 FU U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC 0001035]; U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research [ERKP291]; Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy; U. S. Department of Energy's National Nuclear Security Administration [DE-AC0494AL85000] FX The authors thank Ghada Ajlani for the kind gift of the phycobilisome mutant strains described in this study, Michael Sinclair for the maintenance and use of the hyperspectral confocal fluorescence microscope, and Howland Jones for the development of the multivariate analysis software. The authors also thank Howard Berg of the Donald Danforth Plant Science Center's Integrated Microscopy Facility for TEM assistance. This material is based upon work supported as part of the Photosynthetic Antenna Research Center ( PARC), an Energy Frontier Research Center funded by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC 0001035.; The Bio-SANS instrument is a resource of the Center for Structural Molecular Biology at Oak Ridge National Laboratory that is supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research Project ERKP291. Bio-SANS is located at the Oak Ridge National Laboratory's High Flux Isotope Reactor. The neutron source is sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy.; Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC0494AL85000. NR 29 TC 9 Z9 10 U1 2 U2 45 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0166-8595 EI 1573-5079 J9 PHOTOSYNTH RES JI Photosynth. Res. PD NOV PY 2013 VL 118 IS 1-2 SI SI BP 17 EP 24 DI 10.1007/s11120-013-9940-0 PG 8 WC Plant Sciences SC Plant Sciences GA 253EP UT WOS:000327065500003 PM 24132812 ER PT J AU Welkie, DG Sherman, DM Chrisler, WB Orr, G Sherman, LA AF Welkie, David G. Sherman, Debra M. Chrisler, William B. Orr, Galya Sherman, Louis A. TI Analysis of carbohydrate storage granules in the diazotrophic cyanobacterium Cyanothece sp PCC 7822 SO PHOTOSYNTHESIS RESEARCH LA English DT Article DE Cyanothece; Cyanobacteria; Glycogen granules; Biohydrogen production; Carbon: nitrogen ratio; Nitrogen: phosphate ratio; N-2 fixation ID SP STRAIN ATCC-51142; HYDROGEN-PRODUCTION; ATCC 51142; GENUS CYANOTHECE; CONTINUOUS-LIGHT; H-2 PRODUCTION; GROWTH; STOICHIOMETRY; SYNECHOCOCCUS; OPTIMIZATION AB The unicellular diazotrophic cyanobacteria of the genus Cyanothece demonstrate oscillations in nitrogenase activity and H-2 production when grown under 12 h light-12 h dark cycles. We established that Cyanothece sp. PCC 7822 allows for the construction of knock-out mutants and our objective was to improve the growth characteristics of this strain and to identify the nature of the intracellular storage granules. We report the physiological and morphological effects of reduction in nitrate and phosphate concentrations in BG-11 media on this strain. We developed a series of BG-11-derived growth media and monitored batch culture growth, nitrogenase activity and nitrogenase-mediated hydrogen production, culture synchronicity, and intracellular storage content. Reduction in NaNO3 and K2HPO4 concentrations from 17.6 and 0.23 to 4.41 and 0.06 mM, respectively, improved growth characteristics such as cell size and uniformity, and enhanced the rate of cell division. Cells grown in this low NP BG-11 were less complex, a parameter that related to the composition of the intracellular storage granules. Cells grown in low NP BG-11 had less polyphosphate, fewer polyhydroxybutyrate granules and many smaller granules became evident. Biochemical analysis and transmission electron microscopy using the histocytochemical PATO technique demonstrated that these small granules contained glycogen. The glycogen levels and the number of granules per cell correlated nicely with a 2.3 to 3.3-fold change from the minimum at L0 to the maximum at D0. The differences in granule morphology and enzymes between Cyanothece ATCC 51142 and Cyanothece PCC 7822 provide insights into the formation of large starch-like granules in some cyanobacteria. C1 [Welkie, David G.; Sherman, Louis A.] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. [Sherman, Debra M.] Purdue Univ, Life Sci Microscopy Facil, W Lafayette, IN 47907 USA. [Chrisler, William B.; Orr, Galya] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Sherman, LA (reprint author), Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA. EM lsherman@bilbo.bio.purdue.edu FU GTL Program [DE 09-19 PO 2905402N]; U. S. DOE Office of Biological and Environmental Research Program; DOE [DE-ACO5-76RLO 1830] FX This work was supported in part by a grant from the DOE Genomics: GTL Program (DE 09-19 PO 2905402N; Himadri Pakrasi, principal investigator) and in part by a grant from the Membrane Biology EMSL Scientific Grand Challenge Project at the W. R. Wiley Environmental Molecular Science Laboratory, a national scientific user facility sponsored by the U. S. DOE Office of Biological and Environmental Research Program and located at the Pacific Northwest National Laboratory. Battelle operates PNNL for the DOE under Contract DE-ACO5-76RLO 1830. NR 32 TC 6 Z9 6 U1 2 U2 24 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0166-8595 EI 1573-5079 J9 PHOTOSYNTH RES JI Photosynth. Res. PD NOV PY 2013 VL 118 IS 1-2 SI SI BP 25 EP 36 DI 10.1007/s11120-013-9941-z PG 12 WC Plant Sciences SC Plant Sciences GA 253EP UT WOS:000327065500004 PM 24142038 ER PT J AU Prokudin, A AF Prokudin, A. TI SPIN effects, QCD, and Jefferson Laboratory with 12 GeV electrons SO PHYSICS OF PARTICLES AND NUCLEI LA English DT Article; Proceedings Paper CT 20th International Symposium on Spin Physics CY SEP 17-22, 2012 CL Dubna, RUSSIA ID NONLINEAR GLUON EVOLUTION; COLOR GLASS CONDENSATE; QUANTUM CHROMODYNAMICS; TRANSVERSE-MOMENTUM; PARTON DISTRIBUTION; HADRON STRUCTURE; CROSS-SECTIONS; ASYMMETRIES; SCATTERING; PROTONS AB QCD and Spin physics are playing important role in our understanding of hadron structure. I will give a short overview of origin of hadron structure in QCD and highlight modern understanding of the subject. Jefferson Laboratory is undergoing an upgrade that will increase the energy of electron beam up to 12 GeV. JLab is one of the leading facilities in nuclear physics studies and once operational in 2015 JLab 12 will be crucial for future of nuclear physics. I will briefly discuss future studies in four experimental halls of Jefferson Lab. C1 Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. RP Prokudin, A (reprint author), Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 USA. EM prokudin@jlab.org FU Jefferson Science Associate, LLC under U.S. DOE [DE-AC05-06OR23177] FX The author thanks Hugh Montgomery for careful reading of the manuscript and Anatoly Radyushkin for useful discussions. Authored by a Jefferson Science Associate, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. NR 63 TC 0 Z9 0 U1 0 U2 0 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 1063-7796 EI 1531-8559 J9 PHYS PART NUCLEI+ JI Phys. Part. Nuclei PD NOV PY 2013 VL 44 IS 6 BP 947 EP 953 DI 10.1134/S1063779613060191 PG 7 WC Physics, Particles & Fields SC Physics GA 248PO UT WOS:000326713800018 ER PT J AU Hevener, R Yim, MS Baird, K AF Hevener, Ryne Yim, Man-Sung Baird, Ken TI Investigation of energy windowing algorithms for effective cargo screening with radiation portal monitors SO RADIATION MEASUREMENTS LA English DT Article DE Radiation portal monitor; Energy windowing; Illicit trafficking AB Radiation portal monitors (RPMs) are distributed across the globe in an effort to decrease the illicit trafficking of nuclear materials. Many current generation RPMs utilizes large polyvinyltoluene (PVT) plastic scintillators. These detectors are low cost and reliable but have very poor energy resolution. The lack of spectroscopic detail available from PVT spectra has restricted these systems primarily to performing simple gross counting measurements in the past. A common approach to extend the capability of PVT detectors beyond simple "gross-gamma" use is to apply a technique known as energy windowing (EW) to perform rough nuclide identification with limited spectral information. An approach to creating EW algorithms was developed in this work utilizing a specific set of calibration sources and modified EW equations; this algorithm provided a degree of increased identification capability. A simulated real-time emulation of the algorithm utilizing actual port-of-entry RPM data supplied by ORNL provided an extensive proving ground for the algorithm. This algorithm is able to identify four potential threat nuclides and the major NORM source with a high degree of accuracy. High-energy masking, a major detriment of EW algorithms, is reduced by the algorithm's design. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Hevener, Ryne; Yim, Man-Sung] N Carolina State Univ, Dept Nucl Engn, Raleigh, NC 27695 USA. [Baird, Ken] Oak Ridge Natl Lab, Global Nucl Secur Technol Div, Oak Ridge, TN USA. RP Yim, MS (reprint author), Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, Taejon, South Korea. RI Yim, Man-Sung/G-2720-2011 NR 4 TC 0 Z9 0 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1350-4487 J9 RADIAT MEAS JI Radiat. Meas. PD NOV PY 2013 VL 58 BP 113 EP 120 DI 10.1016/j.radmeas.2013.08.004 PG 8 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 256AW UT WOS:000327283100017 ER PT J AU Nie, ZM Zhou, XY Zhang, QF Cao, GZ Liu, J AF Nie, Zimin Zhou, Xiaoyuan Zhang, Qifeng Cao, Guozhong Liu, Jun TI Aggregated TiO2-Based Nanotubes for Dye Sensitized Solar Cells SO SCIENCE OF ADVANCED MATERIALS LA English DT Article DE TiO2; Nanotubes; Photovoltaics; Aggregates ID ENERGY-CONVERSION-EFFICIENCY; MESOPOROUS TIO2 BEADS; HIGH SURFACE-AREAS; TRITITANATE NANOTUBES; NANOCRYSTALLINE TIO2; TITANATE NANOTUBES; ZNO NANOSTRUCTURES; FILM; SCATTERING; TRANSPORT AB One-dimensional (1D) semiconducting oxides have attracted great attention for dye sensitized solar cells (DSCs), but the overall performance is still quite limited as compared to TiO2 nanocrystalline DSCs. Here, we report the synthesis of aggregated TiO2-based nanotubes with controlled morphologies and crystalline structures to obtain an overall power conversion efficiency of 9.9% using conventional dye without any additional chemical treatment steps. The high efficiency is attributed to the unique aggregate structure for light harvesting, optimized high surface area, and good crystallinity of the nanotube aggregates obtained through proper thermal annealing. This study demonstrates that high efficiency DSCs can be obtained with 1D nanomaterials, and provides lessons on the importance of optimizing both the nanocrystalline structure and the overall microscale morphology. C1 [Nie, Zimin; Liu, Jun] Pacific NW Natl Lab, Richland, WA 99352 USA. [Zhou, Xiaoyuan; Zhang, Qifeng; Cao, Guozhong] Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. RP Cao, GZ (reprint author), Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA. EM gzcao@u.washington.edu; jun.liu@pnl.gov RI Cao, Guozhong/E-4799-2011 FU U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [KC020105-FWP12152, DE-FG02-07ER46467]; DOE [DE-AC05-76RL01830]; National Science Foundation [DMR 1035196]; Department of Energy's Office of Biological and Environmental Research FX The work is supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Awards KC020105-FWP12152 and DE-FG02-07ER46467 (Qifeng Zhang). PNNL is operated for DOE by Battelle under Contract DE-AC05-76RL01830. TEM investigation was performed in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The device performance characterization at the University of Washington is also supported in part by the National Science Foundation (DMR 1035196). NR 59 TC 11 Z9 11 U1 2 U2 26 PU AMER SCIENTIFIC PUBLISHERS PI VALENCIA PA 26650 THE OLD RD, STE 208, VALENCIA, CA 91381-0751 USA SN 1947-2935 EI 1947-2943 J9 SCI ADV MATER JI Sci. Adv. Mater. PD NOV PY 2013 VL 5 IS 11 BP 1750 EP 1755 DI 10.1166/sam.2013.1622 PG 6 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied SC Science & Technology - Other Topics; Materials Science; Physics GA 254LL UT WOS:000327167100025 ER PT J AU Marion, B Schaefer, R Caine, H Sanchez, G AF Marion, Bill Schaefer, Robert Caine, Holden Sanchez, Gonzalo TI Measured and modeled photovoltaic system energy losses from snow for Colorado and Wisconsin locations SO SOLAR ENERGY LA English DT Article DE PV system performance; Energy losses; Modeling; Snow; Data; Irradiance AB A study was conducted to measure the photovoltaic (PV) system energy production losses caused by the presence of snow for Colorado and Wisconsin locations, and to develop a model for predicting PV system performance losses from snowfall. The PV system performance and associated meteorological data for six PV systems in Colorado and Wisconsin were measured during the winters of 2010-2011 and 2011-2012. The PV systems included two residential systems with stand-off roof mounts; two small commercial systems - one with stand-off mounts on a tilted roof and the other rack-mounted on a flat roof; a 100-kW rack-mounted PV system on a flat roof; and a 200-kW PV system with ground-mounted racks. The measured monthly PV system energy losses caused by snow were as high as 90%. Losses expressed as a percentage of annual energy production ranged from 1% to 12%. A model was developed that uses daily snow depth to identify the presence of new snow; an hourly plane-of-array irradiance and air temperature relationship to identify when snow slides down the PV array; the PV array tilt angle to determine how far the snow slides; and the extent of snow coverage on the PV array to determine the fractional energy output of the PV array. On average, the model worked well. For the two-year period, the modeled annual energy losses were within 0.5% (absolute) of those measured for the non-residential systems. For the residential systems, the modeled annual energy losses were about 1.5% (absolute) less than measured losses. Larger differences between modeled and measured energy losses should be expected for monthly or shorter time periods. The standard deviation of the differences between modeled and measured monthly losses was 10.5% (absolute). (C) 2013 Published by Elsevier Ltd. C1 [Marion, Bill] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Schaefer, Robert; Caine, Holden] AlsoEnergy, Boulder, CO 80308 USA. [Sanchez, Gonzalo] Sanchez Ind Design Inc, Middleton, WI 53562 USA. RP Marion, B (reprint author), 15013 Denver West Pkwy, Golden, CO 80401 USA. EM bill.marion@nrel.gov FU U.S. Department of Energy [DE-AC36-08GO28308] FX This work was performed under the U.S. Department of Energy Contract No. DE-AC36-08GO28308. NR 15 TC 2 Z9 2 U1 3 U2 12 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-092X J9 SOL ENERGY JI Sol. Energy PD NOV PY 2013 VL 97 BP 112 EP 121 DI 10.1016/j.solener.2013.07.029 PG 10 WC Energy & Fuels SC Energy & Fuels GA 250KJ UT WOS:000326851400012 ER PT J AU Juarez-Arellano, EA Winkler, B Friedrich, A Bayarjargal, L Morgenroth, W Kunz, M Milman, V AF Juarez-Arellano, Erick A. Winkler, Bjoern Friedrich, Alexandra Bayarjargal, Lkhamsuren Morgenroth, Wolfgang Kunz, Martin Milman, Victor TI In situ study of the formation of rhenium borides from the elements at high-(p, T) conditions: Extreme incompressibility of Re7B3 and formation of new phases SO SOLID STATE SCIENCES LA English DT Article DE Rhenium borides; Laser-heated diamond-anvil cell; Synchrotron; DFT calculations ID NEUTRON POWDER DIFFRACTION; HIGH-PRESSURE; CRYSTAL STRUCTURE; MECHANICAL-PROPERTIES; METAL DIBORIDES; TEMPERATURE; TRANSITION; SUPERHARD; BORON; STABILITY AB Based on in situ synchrotron X-ray diffraction experiments employing laser heated diamond anvil cells to investigate the reaction of rhenium and boron from the elements at high-(p, 7) conditions, Re7B3 was found to be extremely incompressible, with B-Re3B3 = 435(14) GPa, making it one of the least compressible binary compounds known to date. We also have determined the previously unknown bulk modulus of Re3B, B-Re3B = 320(15) GPa, and have confirmed earlier reports of the bulk modulus of ReB2, B-ReB2 = 360(18) GPa. The experimental findings were supported by density functional theory calculations, which were also employed to compute elastic stiffness coefficients and estimates for the hardness. At different high-(p, 7) conditions the formation of new phases were observed. (C) 2013 Elsevier Masson SAS. All rights reserved. C1 [Juarez-Arellano, Erick A.] Univ Papaloapan, Inst Quim Aplicada, Tuxtepec 68301, Oaxaca, Mexico. [Winkler, Bjoern; Friedrich, Alexandra; Bayarjargal, Lkhamsuren; Morgenroth, Wolfgang] Goethe Univ Frankfurt, Inst Geowissensch, D-60438 Frankfurt, Germany. [Kunz, Martin] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Milman, Victor] Accelrys, Cambridge, England. RP Juarez-Arellano, EA (reprint author), Univ Papaloapan, Inst Quim Aplicada, Circuito Cent 200,Parque Ind, Tuxtepec 68301, Oaxaca, Mexico. EM eajuarez@unpa.edu.mx RI Milman, Victor/M-6117-2015; OI Milman, Victor/0000-0003-2258-1347; Juarez-Arellano, Erick/0000-0003-4844-8317; Morgenroth, Wolfgang/0000-0001-8921-0052 FU DFG, Germany [FR-2491/2-1, WI-1232]; BMBF, Germany [05KS7RF1, 05K10RFA]; Vereinigung der Freunde und Forderer der Goethe-Universitat; FOKUS program of the Goethe University; CONACYT [CB-2009-01-129934]; COMPRES under NSF [EAR 06-49658]; Office of Science, Office of Basic Energy Science, of the U.S. Department of Energy [DE-AC02-05CH11231]; [Wi1232/35] FX Financial support from the DFG, Germany, within the priority program SPP1236 (Projects FR-2491/2-1, WI-1232), and within project Wi1232/35, the BMBF, Germany (Project 05KS7RF1 and 05K10RFA), the Vereinigung der Freunde und Forderer der Goethe-Universitat, the FOKUS program of the Goethe University, and CONACYT (project CB-2009-01-129934) is gratefully acknowledged. Part of this research was carried out at the light source PETRA III at DESY, a member of Helmholtz Association (HGF). This research was partially supported by COMPRES under NSF Cooperative Agreement No. EAR 06-49658. We also thank S.M. Clark and J. Yan (ALS) for technical support at beamline 12.2.2. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 49 TC 1 Z9 1 U1 0 U2 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 1293-2558 EI 1873-3085 J9 SOLID STATE SCI JI Solid State Sci. PD NOV PY 2013 VL 25 BP 85 EP 92 DI 10.1016/j.solidstatesciences.2013.07.020 PG 8 WC Chemistry, Inorganic & Nuclear; Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 253SE UT WOS:000327108800014 ER PT J AU Chan, GCY Mao, XL Choi, I Sarkar, A Lam, OP Shuh, DK Russo, RE AF Chan, George C-Y. Mao, Xianglei Choi, Inhee Sarkar, Arnab Lam, Oanh P. Shuh, David K. Russo, Richard E. TI Multiple emission line analysis for improved isotopic determination of uranium - a computer simulation study SO SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY LA English DT Article DE Laser-induced breakdown spectroscopy; Isotopic analysis; Uranium; Partial least square; Isotopic splitting ID INDUCED BREAKDOWN SPECTROSCOPY; IONIZATION MASS-SPECTROMETRY; OPTICAL SPECTRAL METHOD; LASER-ABLATION; ENERGY-LEVELS; OPTOGALVANIC SPECTROSCOPY; QUANTITATIVE-ANALYSIS; ATOMIC ABSORPTION; HYDROGEN ISOTOPE; RATIO ANALYSIS AB Forty-three atomic emission lines for U-235 and U-238 were compiled for computer simulation of isotopic analysis using laser induced breakdown spectroscopy (LIBS). The spectral line profile was assumed to be Lorentzian in shape and the magnitude of three common types of noises (detector-read, photon-shot and flicker) were experimentally determined and incorporated into the simulation. Precision and root mean square error of prediction (RMSEP) for isotopic analysis of a single U line were simulated, and it was found that analytical performance (precision) primarily depended on the signal-to-background ratio (SBR) and net intensity of the emission line, rather than on the magnitude of isotopic splitting (IS), when partial least squares (PIS) was used for calibration. This is because PLS multivariate calibration can be performed correctly even when the spectra are only partially resolved, which in turn relaxes the requirement on having IS larger than the spectral resolution. The analytical performance was found to improve with multiple-line analysis. Depending on the criteria (e.g., SBR, net intensity, magnitude of IS, or best single-line performance) used in sorting the spectral lines into the multiline pool, improvement factors ranging from 2x to 9x were obtained. The absolute uncertainty of isotopic analysis is practically constant and independent of isotopic abundance, which makes experimental estimation of the detection limit in isotopic analysis straightforward because one can experimentally measure this uncertainty with one arbitrary and conveniently chosen isotopic standard and then estimate the detection limit through simple extrapolation. Published by Elsevier B.V. C1 [Chan, George C-Y.; Mao, Xianglei; Choi, Inhee; Sarkar, Arnab; Lam, Oanh P.; Shuh, David K.; Russo, Richard E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sarkar, Arnab] Bhabha Atom Res Ctr, Div Fuel Chem, Bombay 400085, Maharashtra, India. RP Russo, RE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM rerusso@lbl.gov OI Sarkar, Arnab/0000-0003-3783-8299 FU Defense Nuclear Nonproliferation Research and Development Office of the U.S. Department of Energy at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, Separations and Analysis Program (GCC, XLM, IC, AS, RER) and the Heavy Element Chemistry Program (OPL, DKS), and the Defense Nuclear Nonproliferation Research and Development Office of the U.S. Department of Energy under contract number DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory. Arnab Sarkar also gratefully acknowledges the Indo-US Science & Technology Forum for providing him an IUSSTF - 2012 fellowship. NR 57 TC 13 Z9 13 U1 5 U2 30 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0584-8547 J9 SPECTROCHIM ACTA B JI Spectroc. Acta Pt. B-Atom. Spectr. PD NOV 1 PY 2013 VL 89 BP 40 EP 49 DI 10.1016/j.sab.2013.09.001 PG 10 WC Spectroscopy SC Spectroscopy GA 257ES UT WOS:000327367000006 ER PT J AU Kwak, JH Kovarik, L Szanyi, J AF Kwak, Ja Hun Kovarik, Libor Szanyi, Janos TI CO2 Reduction on Supported Ru/Al2O3 Catalysts: Cluster Size Dependence of Product Selectivity SO ACS CATALYSIS LA English DT Article DE CO2 reduction; Ru/Al2O3; CO/CH4 selectivity; Ru dispersion; reaction mechanism ID RUTHENIUM CATALYSTS; CARBON-DIOXIDE; RU CATALYSTS; HYDROGENATION; METHANATION; CU/SIO2; METALS; OXIDES AB The catalytic performance of a series of Ru/Al2O3 catalysts with Ru content in the 0.1-5% range was examined in the reduction of CO2 with H-2. At low Ru loadings (<= 0.5%) where the active metal phase is highly dispersed (mostly atomically) on the alumina support, CO is formed with high selectivity. With increasing metal loading, the selectivity toward CH, formation increases, while that for CO production decreases. In the 0.1% Ru/Al2O3 catalyst, Ru is mostly present in atomic dispersion, as scanning transmission electron microscopy (STEM) images obtained from the fresh sample prior to catalytic testing reveal. STEM images recorded from this same sample, following the temperature programmed reaction test, clearly show the agglomeration of small metal particles (and atoms) into 3D clusters. The clustering of the highly dispersed metal phase is responsible for the observed dramatic selectivity change during elevated temperature tests: dramatic decrease in CO and large increase in CH4 selectivity. Apparent activation energies, estimated from the slopes of Arrhenius plots, of 82 and 62 kJ/mol for CO and CH4 formation were determined, respectively, regardless of Ru loading. These results suggest that the formation of CO and CH4 follow different reaction pathways or proceed on active centers of a different nature. Reactions with CO2/H-2 and CO/H-2 mixtures (under otherwise identical reaction conditions) reveal that the onset temperature of CO2 reduction is about 150 degrees C lower than of CO reduction. C1 [Kwak, Ja Hun; Szanyi, Janos] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. [Kovarik, Libor] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Kwak, JH (reprint author), UNIST, Sch Nanobiosci & Chem Engn, 100 Banyeon Ri, Ulsan 689798, South Korea. EM jhkwak@unist.ac.kr; janos.szanyi@pnnl.gov RI Kwak, Ja Hun/J-4894-2014; Kovarik, Libor/L-7139-2016; OI Kovarik, Libor/0000-0002-2418-6925 FU Chemical Imaging Initiative at the Pacific Northwest National Laboratory (PNNL); US Department of Energy [DE-AC05-76RL01830]; UNIST (Ulsan National Institute of Science and Technology, Ulsan, Korea) FX We thank Dr. Feng Gao for carrying out the H2 chemisorption measurements on all the Ru/Al2O3 catalysts discussed in this work. The catalyst preparation and catalytic measurements were supported by a Laboratory Directed Research and Development (LDRD) project, while the TEM work was supported by the Chemical Imaging Initiative at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US Department of Energy by Battelle Memorial Institute under contract number DE-AC05-76RL01830. J.H.K. also acknowledges the support of this work by the 2013 Research Fund of UNIST (Ulsan National Institute of Science and Technology, Ulsan, Korea). NR 30 TC 45 Z9 47 U1 14 U2 172 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2013 VL 3 IS 11 BP 2449 EP 2455 DI 10.1021/cs400381f PG 7 WC Chemistry, Physical SC Chemistry GA 247KB UT WOS:000326615200004 ER PT J AU Childers, D Saha, A Schweitzer, N Rioux, RM Miller, JT Meyer, RJ AF Childers, David Saha, Arindom Schweitzer, Neil Rioux, Robert M. Miller, Jeffrey T. Meyer, Randall J. TI Correlating Heat of Adsorption of CO to Reaction Selectivity: Geometric Effects vs Electronic Effects in Neopentane Isomerization over Pt and Pd Catalysts SO ACS CATALYSIS LA English DT Article DE particle size effects; neopentane; hydrogenolysis; isomerization; calorimetry ID SUPPORTED PLATINUM CATALYSTS; SINGLE-CRYSTAL SURFACES; BRIDGED-BONDED CO; CARBON-MONOXIDE; PARTICLE-SIZE; ISOBUTANE DEHYDROGENATION; EXTINCTION COEFFICIENTS; HYDROCARBON REACTIONS; PT-AU/SIO2 CATALYSTS; ETHYLENE ADSORPTION AB Silica-supported Pt and Pd nanoparticles from 1 to 10 nm in diameter were evaluated for neopentane conversion (hydrogenolysis and isomerization). Characterization of the catalysts was conducted utilizing scanning transmission electron microscopy (STEM), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) of adsorbed CO, X-ray absorption spectroscopy (XAS), and isothermal calorimetry of CO adsorption to determine how geometric or electronic structure effects can explain changes in reactivity. Isomerization selectivity of Pt was much higher than Pd for all particle sizes. There is a pronounced effect of particle size on selectivity, with the highest isomerization selectivity achieved over catalysts containing the largest particle size for both Pt (57%) and Pd so (26%) catalysts. For both Pd and Pt catalysts, DRIFTS showed a decrease in the ratio of linear-to-bridge bonded CO with particle size, while isothermal calorimetry of CO adsorption shows that both Pt and Pd enthalpies of adsorption decrease with increasing particle size. The isomerization selectivity was found to correlate inversely with the strength of CO adsorption for all catalysts suggesting that the chemisorption energy and not the particle size, coordination geometry, or ensemble size is the most important factor for increasing the isomerization selectivity. C1 [Childers, David; Meyer, Randall J.] Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA. [Saha, Arindom; Rioux, Robert M.] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA. [Schweitzer, Neil; Miller, Jeffrey T.] Argonne Natl Lab, Div Chem Sci & Engn, Lemont, IL 60439 USA. RP Meyer, RJ (reprint author), Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA. EM rjm@uic.edu RI BM, MRCAT/G-7576-2011 FU Institute for Atom-Efficient Chemical Transformations (IACT), an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; National Science Foundation (CBET Grant) [0747646]; Chemical Sciences and Engineering Division at Argonne National Laboratory; Office of the Vice Chancellor for Research at the University of Illinois at Chicago; 3M Non-Tenured Faculty Grant (NTFG) FX J.T.M. and N.S. were supported as part of the Institute for Atom-Efficient Chemical Transformations (IACT), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. R.J.M. and D.C. gratefully acknowledge funding for this work from the National Science Foundation (CBET Grant 0747646). Partial funding for D.C. was provided by the Chemical Sciences and Engineering Division at Argonne National Laboratory and the Office of the Vice Chancellor for Research at the University of Illinois at Chicago. The STEM work was performed at the UIC Research Resource Center. R.M.R. acknowledges financial support provided through a 3M Non-Tenured Faculty Grant (NTFG). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. MRCAT operations are supported by the Department of Energy and the MRCAT member institutions. NR 62 TC 11 Z9 11 U1 7 U2 55 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2013 VL 3 IS 11 BP 2487 EP 2496 DI 10.1021/cs400527p PG 10 WC Chemistry, Physical SC Chemistry GA 247KB UT WOS:000326615200008 ER PT J AU Wiese, S Kilgore, UJ Ho, MH Raugei, S DuBois, DL Bullock, RM Helm, ML AF Wiese, Stefan Kilgore, Uriah J. Ho, Ming-Hsun Raugei, Simone DuBois, Daniel L. Bullock, R. Morris Helm, Monte L. TI Hydrogen Production Using Nickel Electrocatalysts with Pendant Amines: Ligand Effects on Rates and Overpotentials SO ACS CATALYSIS LA English DT Article DE hydrogen production; electrocatalysis; nickel phosphine complexes; pendant amines; proton relay; proton reduction ID IRON-ONLY HYDROGENASE; ACTIVE-SITE; H-2 PRODUCTION; DESULFOVIBRIO-DESULFURICANS; MOLECULAR ELECTROCATALYSTS; DIPHOSPHINE LIGANDS; CATALYTIC RATES; COMPLEXES; ENERGY; PROTON AB A Ni-based electrocatalyst for H-2 production, [Ni(8P(2)(Ph)N(C6H4Br))(2)](BF4)(2), featuring eight-membered cyclic diphosphine ligands incorporating a single amine base, 1-para-bromophenyl-3,7-triphenyl-1-aza-3,7-diphosphacycloheptane (8P(2)(Ph)N(C6H4Br)) has been synthesized and characterized. X-ray diffraction studies reveal that the cation of [Ni(8P(2)(Ph)N(C6H4Br))(2)](CH3CN)(BF4)(2) has a distorted trigonal bipyramidal geometry. In CH3CN, [Ni(8P(2)(Ph)N(C6H4Br))(2)](2+) is an electrocatalyst for reduction of protons, and it has a maximum turnover frequency for H-2 production of 800 s(-1) with a 700 mV overpotential (at E-cat/2) when using [(DMF)H]OTf as the acid. Addition of H2O to acidic CH3CN solutions of [Ni(8P(2)(Ph)N(C6H4Br))(2)](2+) results in an increase in the turnover frequency for H-2 production to a maximum of 3300 s(-1) with an overpotential of 760 mV at E-cat/2. Computational studies carried out on [Ni(8P(2)(Ph)N(C6H4Br))(2)](2+) indicate the observed catalytic rate is limited by formation of nonproductive protonated isomers, diverting active catalyst from the catalytic cycle. The results of this research show that proton delivery from the exogenous acid to the correct position on the proton relay of the metal complex is essential for fast H-2 production. C1 [Wiese, Stefan; Kilgore, Uriah J.; Ho, Ming-Hsun; Raugei, Simone; DuBois, Daniel L.; Bullock, R. Morris; Helm, Monte L.] Pacific NW Natl Lab, Ctr Mol Electrocatalysis, Richland, WA 99352 USA. RP Helm, ML (reprint author), Pacific NW Natl Lab, Ctr Mol Electrocatalysis, Richland, WA 99352 USA. EM Monte.Helm@pnnl.gov RI Bullock, R. Morris/L-6802-2016 OI Bullock, R. Morris/0000-0001-6306-4851 FU Center for Molecular Electrocatalysis, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Basic Energy Sciences FX We thank Dr. Jonathan M. Darmon and Dr. Charles J. Weiss for their assistance with the graphical abstract. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy. NR 80 TC 24 Z9 24 U1 3 U2 67 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2013 VL 3 IS 11 BP 2527 EP 2535 DI 10.1021/cs400638f PG 9 WC Chemistry, Physical SC Chemistry GA 247KB UT WOS:000326615200014 ER PT J AU Kim, HY Henkelman, G AF Kim, Hyun You Henkelman, Graeme TI CO Adsorption-Driven Surface Segregation of Pd on Au/Pd Bimetallic Surfaces: Role of Defects and Effect on CO Oxidation SO ACS CATALYSIS LA English DT Article DE density functional theory; gold; palladium; heterogeneous catalysis; adsorption-induced segregation; CO oxidation ID NEAR-ATMOSPHERIC PRESSURES; ADSORBATE-INDUCED CHANGES; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; SHELL NANOPARTICLES; ULTRAHIGH-VACUUM; ALLOY CATALYSTS; SADDLE-POINTS; AU; 1ST-PRINCIPLES AB We use density functional theory (DFT) to study CO-adsorption-induced Pd surface segregation in Au/Pd bimetallic surfaces, dynamics of Pd-Au swapping, effect of defects on the swapping rate, CO-induced Pd clustering, and the reaction mechanism of CO oxidation. The strong CO-philic nature of Pd atoms supplies a driving force for the preferential surface segregation of Pd atoms and Pd cluster formation. Surface vacancies are found to dramatically accelerate the rate of Pd-Au swapping. We find that Pd clusters consisting of at least four Pd atoms prefer to bind O-2 rather than CO. These clusters facilitate the rapid dissociation of O-2 and supply reactive oxygen species for CO oxidation. Our findings suggest that geometric, electronic, and dynamic effects should be considered in the function of bimetallic alloys or nanoparticles whose components asymmetrically interact with reacting molecules. C1 [Kim, Hyun You; Henkelman, Graeme] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA. RP Kim, HY (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM hykim8083@gmail.com; henkelman@cm.utexas.edu FU Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy [DE-FG02-13ER16428] FX We gratefully acknowledge support from the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (Contract: DE-FG02-13ER16428). Computing time was provided by the National Energy Research Scientific Computing Center and the Texas Advanced Computing Center at the University of Texas at Austin. NR 30 TC 18 Z9 18 U1 7 U2 93 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 2155-5435 J9 ACS CATAL JI ACS Catal. PD NOV PY 2013 VL 3 IS 11 BP 2541 EP 2546 DI 10.1021/cs4006259 PG 6 WC Chemistry, Physical SC Chemistry GA 247KB UT WOS:000326615200016 ER PT J AU de Vries, J Mereghetti, E Timmermans, RGE van Kolck, U AF de Vries, J. Mereghetti, E. Timmermans, R. G. E. van Kolck, U. TI The effective chiral Lagrangian from dimension-six parity and time-reversal violation SO ANNALS OF PHYSICS LA English DT Article DE CP violation; Time-reversal violation; Chiral effective field theory; Electric dipole moments; Dimension-six operators ID ELECTRIC-DIPOLE MOMENT; EFFECTIVE-FIELD THEORY; STRONG CP-VIOLATION; PERTURBATION-THEORY; NUCLEAR-FORCES; FORM-FACTOR; QUANTUM CHROMODYNAMICS; ISOSPIN VIOLATION; STANDARD MODEL; NEUTRON AB We classify the parity- and time-reversal-violating operators involving quark and gluon fields that have effective dimension six: the quark electric dipole moment, the quark and gluon chromo-electric dipole moments, and four four-quark operators. We construct the effective chiral Lagrangian with hadronic and electromagnetic interactions that originate from them, which serves as the basis for calculations of low-energy observables. The form of the effective interactions depends on the chiral properties of these operators. We develop a power-counting scheme and calculate within this scheme, as an example, the parity- and time-reversal-violating pion-nucleon form factor. We also discuss the electric dipole moments of the nucleon and light nuclei. (C) 2013 Elsevier Inc. All rights reserved. C1 [de Vries, J.; Timmermans, R. G. E.] Univ Groningen, Theory Grp, KVI, NL-9747 AA Groningen, Netherlands. [de Vries, J.] Nikhef, NL-1098 XG Amsterdam, Netherlands. [Mereghetti, E.] Univ Calif Berkeley, Ernest Orlando Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [van Kolck, U.] Univ Paris 11, Inst Phys Nucl, CNRS, IN2P3, F-91406 Orsay, France. [van Kolck, U.] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA. RP de Vries, J (reprint author), Univ Groningen, Theory Grp, KVI, NL-9747 AA Groningen, Netherlands. EM devries.jordy@gmail.com OI mereghetti, emanuele/0000-0002-8623-5796 FU Dutch Stichting FOM [104, 114]; US DOE [DE-AC02-05CH11231]; Office of Science, Office of High Energy Physics [DE-FG02-04ER41338] FX We thank D. Boer, J. Bsaisou, C. Hanhart, C.-P. Liu, I. Stetcu, and A. Wirzba for helpful discussions. We thank M. Ramsey-Musolf for helpful discussions and comments on the manuscript, and for pointing out a misprint in Eq. (46).J. de Vries and E. Mereghetti acknowledge discussions with W. den Dunnen and W. Dekens, and with H. Murayama, respectively. U. van Kolck acknowledges discussions with W. Hockings at very early stages of this work, and the hospitality of the KVI Groningen on many occasions. This research was supported by the Dutch Stichting FOM under programs 104 and 114 (JdV, RGET), and by the US DOE under contract DE-AC02-05CH11231 with the Director, Office of Science, Office of High Energy Physics (EM), and under grant DE-FG02-04ER41338 (UvK). NR 111 TC 31 Z9 31 U1 0 U2 4 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0003-4916 EI 1096-035X J9 ANN PHYS-NEW YORK JI Ann. Phys. PD NOV PY 2013 VL 338 BP 50 EP 96 DI 10.1016/j.aop.2013.05.022 PG 47 WC Physics, Multidisciplinary SC Physics GA 246PS UT WOS:000326552200004 ER PT J AU Ackermann, M Ajello, M Asano, K Axelsson, M Baldini, L Ballet, J Barbiellini, G Bastieri, D Bechtol, K Bellazzini, R Bhat, PN Bissaldi, E Bloom, ED Bonamente, E Bonnell, J Bouvier, A Brandt, TJ Bregeon, J Brigida, M Bruel, P Buehler, R Burgess, JM Buson, S Byrne, D Caliandro, GA Cameron, RA Caraveo, PA Cecchi, C Charles, E Chaves, RCG Chekhtman, A Chiang, J Chiaro, G Ciprini, S Claus, R Cohen-Tanugi, J Connaughton, V Conrad, J Cutini, S D'Ammando, F de Angelis, A de Palma, F Dermer, CD Desiante, R Digel, SW Dingus, BL Di Venere, L Drell, PS Drlica-Wagner, A Dubois, R Favuzzi, C Ferrara, EC Fitzpatrick, G Foley, S Franckowiak, A Fukazawa, Y Fusco, P Gargano, F Gasparrini, D Gehrels, N Germani, S Giglietto, N Giommi, P Giordano, F Giroletti, M Glanzman, T Godfrey, G Goldstein, A Granot, J Grenier, IA Grove, JE Gruber, D Guiriec, S Hadasch, D Hanabata, Y Hayashida, M Horan, D Hou, X Hughes, RE Inoue, Y Jackson, MS Jogler, T Johannesson, G Johnson, AS Johnson, WN Kamae, T Kataoka, J Kawano, T Kippen, RM Knodlseder, J Kocevski, D Kouveliotou, C Kuss, M Lande, J Larsson, S Latronico, L Lee, SH Longo, F Loparco, F Lovellette, MN Lubrano, P Massaro, F Mayer, M Mazziotta, MN McBreen, S McEnery, JE McGlynn, S Michelson, PF Mizuno, T Moiseev, AA Monte, C Monzani, ME Moretti, E Morselli, A Murgia, S Nemmen, R Nuss, E Nymark, T Ohno, M Ohsugi, T Omodei, N Orienti, M Orlando, E Paciesas, WS Paneque, D Panetta, JH Pelassa, V Perkins, JS Pesce-Rollins, M Piron, F Pivato, G Porter, TA Preece, R Racusin, JL Raino, S Rando, R Rau, A Razzano, M Razzaque, S Reimer, A Reimer, O Reposeur, T Ritz, S Romoli, C Roth, M Ryde, F Parkinson, PMS Schalk, TL Sgro, C Siskind, EJ Sonbas, E Spandre, G Spinelli, P Suson, DJ Tajima, H Takahashi, H Takeuchi, Y Tanaka, Y Thayer, JG Thayer, JB Thompson, DJ Tibaldo, L Tierney, D Tinivella, M Torres, DF Tosti, G Troja, E Tronconi, V Usher, TL Vandenbroucke, J van der Horst, AJ Vasileiou, V Vianello, G Vitale, V von Kienlin, A Winer, BL Wood, KS Wood, M Xiong, S Yang, Z AF Ackermann, M. Ajello, M. Asano, K. Axelsson, M. Baldini, L. Ballet, J. Barbiellini, G. Bastieri, D. Bechtol, K. Bellazzini, R. Bhat, P. N. Bissaldi, E. Bloom, E. D. Bonamente, E. Bonnell, J. Bouvier, A. Brandt, T. J. Bregeon, J. Brigida, M. Bruel, P. Buehler, R. Burgess, J. Michael Buson, S. Byrne, D. Caliandro, G. A. Cameron, R. A. Caraveo, P. A. Cecchi, C. Charles, E. Chaves, R. C. G. Chekhtman, A. Chiang, J. Chiaro, G. Ciprini, S. Claus, R. Cohen-Tanugi, J. Connaughton, V. Conrad, J. Cutini, S. D'Ammando, F. de Angelis, A. de Palma, F. Dermer, C. D. Desiante, R. Digel, S. W. Dingus, B. L. Di Venere, L. Drell, P. S. Drlica-Wagner, A. Dubois, R. Favuzzi, C. Ferrara, E. C. Fitzpatrick, G. Foley, S. Franckowiak, A. Fukazawa, Y. Fusco, P. Gargano, F. Gasparrini, D. Gehrels, N. Germani, S. Giglietto, N. Giommi, P. Giordano, F. Giroletti, M. Glanzman, T. Godfrey, G. Goldstein, A. Granot, J. Grenier, I. A. Grove, J. E. Gruber, D. Guiriec, S. Hadasch, D. Hanabata, Y. Hayashida, M. Horan, D. Hou, X. Hughes, R. E. Inoue, Y. Jackson, M. S. Jogler, T. Johannesson, G. Johnson, A. S. Johnson, W. N. Kamae, T. Kataoka, J. Kawano, T. Kippen, R. M. Knoedlseder, J. Kocevski, D. Kouveliotou, C. Kuss, M. Lande, J. Larsson, S. Latronico, L. Lee, S. -H. Longo, F. Loparco, F. Lovellette, M. N. Lubrano, P. Massaro, F. Mayer, M. Mazziotta, M. N. McBreen, S. McEnery, J. E. McGlynn, S. Michelson, P. F. Mizuno, T. Moiseev, A. A. Monte, C. Monzani, M. E. Moretti, E. Morselli, A. Murgia, S. Nemmen, R. Nuss, E. Nymark, T. Ohno, M. Ohsugi, T. Omodei, N. Orienti, M. Orlando, E. Paciesas, W. S. Paneque, D. Panetta, J. H. Pelassa, V. Perkins, J. S. Pesce-Rollins, M. Piron, F. Pivato, G. Porter, T. A. Preece, R. Racusin, J. L. Raino, S. Rando, R. Rau, A. Razzano, M. Razzaque, S. Reimer, A. Reimer, O. Reposeur, T. Ritz, S. Romoli, C. Roth, M. Ryde, F. Parkinson, P. M. Saz Schalk, T. L. Sgro, C. Siskind, E. J. Sonbas, E. Spandre, G. Spinelli, P. Suson, D. J. Tajima, H. Takahashi, H. Takeuchi, Y. Tanaka, Y. Thayer, J. G. Thayer, J. B. Thompson, D. J. Tibaldo, L. Tierney, D. Tinivella, M. Torres, D. F. Tosti, G. Troja, E. Tronconi, V. Usher, T. L. Vandenbroucke, J. van der Horst, A. J. Vasileiou, V. Vianello, G. Vitale, V. von Kienlin, A. Winer, B. L. Wood, K. S. Wood, M. Xiong, S. Yang, Z. TI THE FIRST FERMI-LAT GAMMA-RAY BURST CATALOG SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE catalogs; gamma-ray burst: general; methods: data analysis ID LARGE-AREA TELESCOPE; INTERNAL SHOCK MODEL; HIGH-ENERGY EMISSION; DELAYED GEV EMISSION; SPECTRAL COMPONENT; PROMPT EMISSION; GRB 100728A; LIKELIHOOD RATIO; FLARING ACTIVITY; PHOTON-EMISSION AB In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (greater than or similar to 20 MeV) gamma-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above similar to 20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model. C1 [Ackermann, M.; Mayer, M.] Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. [Ajello, M.] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA. [Asano, K.] Tokyo Inst Technol, Interact Res Ctr Sci, Meguro, Tokyo 1528551, Japan. [Axelsson, M.; Larsson, S.] Stockholm Univ, Dept Astron, SE-10691 Stockholm, Sweden. [Axelsson, M.; Conrad, J.; Jackson, M. S.; Larsson, S.; Moretti, E.; Nymark, T.; Ryde, F.; Yang, Z.] AlbaNova, Oskar Klein Ctr Cosmoparticle Phys, SE-10691 Stockholm, Sweden. [Axelsson, M.; Jackson, M. S.; Moretti, E.; Nymark, T.; Ryde, F.] Royal Inst Technol KTH, Dept Phys, SE-10691 Stockholm, Sweden. [Baldini, L.] Univ Pisa, I-56127 Pisa, Italy. [Baldini, L.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Ballet, J.; Chaves, R. C. G.; Grenier, I. A.] Univ Paris Diderot, CEA Saclay, Serv Astrophys, Lab AIM,CEA IRFU,CNRS, F-91191 Gif Sur Yvette, France. [Barbiellini, G.; Desiante, R.; Longo, F.] Ist Nazl Fis Nucl, Sez Trieste, I-34127 Trieste, Italy. [Barbiellini, G.; Longo, F.] Univ Trieste, Dipartimento Fis, I-34127 Trieste, Italy. [Bastieri, D.; Buson, S.; Rando, R.] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua, Italy. [Bastieri, D.; Buson, S.; Chiaro, G.; Pivato, G.; Rando, R.; Romoli, C.; Tronconi, V.] Univ Padua, Dipartimento Fis & Astron G Galilei, I-35131 Padua, Italy. [Bechtol, K.; Bloom, E. D.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Inoue, Y.; Jogler, T.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Massaro, F.; Michelson, P. F.; Monzani, M. E.; Murgia, S.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Wood, M.] Stanford Univ, Dept Phys, Kavli Inst Particle Astrophys & Cosmol, WW Hansen Expt Phys Lab, Stanford, CA 94305 USA. [Bechtol, K.; Bloom, E. D.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; Di Venere, L.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Franckowiak, A.; Glanzman, T.; Godfrey, G.; Hayashida, M.; Inoue, Y.; Jogler, T.; Johnson, A. S.; Kamae, T.; Kocevski, D.; Lande, J.; Massaro, F.; Michelson, P. F.; Monzani, M. E.; Murgia, S.; Omodei, N.; Orlando, E.; Paneque, D.; Panetta, J. H.; Porter, T. A.; Reimer, A.; Reimer, O.; Tajima, H.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Usher, T. L.; Vandenbroucke, J.; Vianello, G.; Wood, M.] Stanford Univ, SLAC Natl Accelerator Lab, Stanford, CA 94305 USA. [Bellazzini, R.; Bregeon, J.; Kuss, M.; Pesce-Rollins, M.; Razzano, M.; Sgro, C.; Spandre, G.; Tinivella, M.] Ist Nazl Fis Nucl, Sez Pisa, I-56127 Pisa, Italy. [Bhat, P. N.; Burgess, J. Michael; Connaughton, V.; Goldstein, A.; Pelassa, V.; Preece, R.; Xiong, S.] Univ Alabama, CSPAR, Huntsville, AL 35899 USA. [Bissaldi, E.; Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Astro & Teilchenphys, A-6020 Innsbruck, Austria. [Bissaldi, E.; Reimer, A.; Reimer, O.] Leopold Franzens Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Tosti, G.] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy. [Bonamente, E.; Cecchi, C.; Germani, S.; Lubrano, P.; Tosti, G.] Univ Perugia, Dipartimento Fis, I-06123 Perugia, Italy. [Bonnell, J.; Brandt, T. J.; Ferrara, E. C.; Gehrels, N.; Guiriec, S.; McEnery, J. E.; Nemmen, R.; Perkins, J. S.; Racusin, J. L.; Sonbas, E.; Thompson, D. J.; Troja, E.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bonnell, J.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. [Bonnell, J.; McEnery, J. E.; Moiseev, A. A.] Univ Maryland, Dept Astron, College Pk, MD 20742 USA. [Bouvier, A.; Razzano, M.; Ritz, S.; Parkinson, P. M. Saz; Schalk, T. L.] Univ Calif Santa Cruz, Dept Phys, Santa Cruz Inst Particle Phys, Santa Cruz, CA 95064 USA. [Bouvier, A.; Razzano, M.; Ritz, S.; Parkinson, P. M. Saz; Schalk, T. L.] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Giglietto, N.; Giordano, F.; Loparco, F.; Monte, C.; Raino, S.; Spinelli, P.] Univ Bari, Dipartimento Fis M Merlin, I-70126 Bari, Italy. [Brigida, M.; de Palma, F.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Mazziotta, M. N.; Monte, C.; Raino, S.; Spinelli, P.] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy. [Bruel, P.; Horan, D.] Ecole Polytech, CNRS, IN2P3, Lab Leprince Ringuet, F-91128 Palaiseau, France. [Byrne, D.; Fitzpatrick, G.; Foley, S.; McBreen, S.; Tierney, D.] Univ Coll Dublin, Dublin 4, Ireland. [Caliandro, G. A.; Hadasch, D.; Torres, D. F.] Inst Ciencies Espai IEEE CSIC, Barcelona 08193, Spain. [Caraveo, P. A.] INAF Ist Astrofis Spaziale & Fis Cosm, I-20133 Milan, Italy. [Chekhtman, A.] George Mason Univ, Coll Sci, Ctr Earth Observing & Space Res, Fairfax, VA 22030 USA. [Ciprini, S.; Cutini, S.; Gasparrini, D.; Giommi, P.] Agenzia Spaziale Italiana Sci Data Ctr, I-00044 Rome, Italy. [Ciprini, S.; Cutini, S.; Gasparrini, D.] Osserv Astron Roma, Ist Nazl Astrofis, I-00040 Rome, Italy. [Cohen-Tanugi, J.; Nuss, E.; Piron, F.; Vasileiou, V.] Univ Montpellier 2, CNRS, IN2P3, Lab Univers & Particules Montpellier, Montpellier, France. [Conrad, J.; Larsson, S.; Yang, Z.] Stockholm Univ, AlbaNova, Dept Phys, SE-10691 Stockholm, Sweden. [Conrad, J.] Royal Swedish Acad Sci, SE-10405 Stockholm, Sweden. [D'Ammando, F.; Giroletti, M.; Orienti, M.] INAF Ist Radioastron, I-40129 Bologna, Italy. [de Angelis, A.] Univ Udine, Dipartimento Fis, I-33100 Udine, Italy. [de Angelis, A.] Ist Nazl Fis Nucl, Sez Trieste, Grp Collegato Udine, I-33100 Udine, Italy. [Dermer, C. D.; Grove, J. E.; Johnson, W. N.; Lovellette, M. N.; Wood, K. S.] Naval Res Lab, Div Space Sci, Washington, DC 20375 USA. [Dingus, B. L.; Kippen, R. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Foley, S.; Gruber, D.; McBreen, S.; Rau, A.; von Kienlin, A.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Fukazawa, Y.; Hanabata, Y.; Kawano, T.; Takahashi, H.] Hiroshima Univ, Dept Phys Sci, Hiroshima 7398526, Japan. [Granot, J.] Open Univ Israel, Dept Nat Sci, IL-43537 Raanana, Israel. [Hayashida, M.] Kyoto Univ, Grad Sch Sci, Dept Astron, Sakyo Ku, Kyoto 6068502, Japan. [Hou, X.; Reposeur, T.] Univ Bordeaux 1, CNRS, IN2P3, Ctr Etud Nucl Bordeaux Gradignan, F-33175 Gradignan, France. [Hughes, R. E.; Winer, B. L.] Ohio State Univ, Dept Phys, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Johannesson, G.] Univ Iceland, Inst Sci, IS-107 Reykjavik, Iceland. [Kataoka, J.; Takeuchi, Y.] Waseda Univ, Res Inst Sci & Engn, Shinjuku Ku, Tokyo 1698555, Japan. [Knoedlseder, J.] IRAP, CNRS, F-31028 Toulouse 4, France. [Knoedlseder, J.] Univ Toulouse, GAHEC, UPS OMP, IRAP, Toulouse, France. [Kouveliotou, C.; Moiseev, A. A.; Perkins, J. S.; van der Horst, A. J.] NASA, George C Marshall Space Flight Ctr, Huntsville, AL 35812 USA. [Latronico, L.] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy. [Lee, S. -H.] Kyoto Univ, Yukawa Inst Theoret Phys, Sakyo Ku, Kyoto 6068502, Japan. [McGlynn, S.] Tech Univ Munich, Exzellenzcluster Universe, D-85748 Garching, Germany. [Mizuno, T.; Ohsugi, T.] Hiroshima Univ, Hiroshima Astrophys Sci Ctr, Hiroshima 7398526, Japan. [Moiseev, A. A.; Perkins, J. S.] CRESST, Greenbelt, MD 20771 USA. [Morselli, A.; Vitale, V.] Ist Nazl Fis Nucl, Sez Roma Tor Vergata, I-00133 Rome, Italy. [Ohno, M.; Tanaka, Y.] JAXA, Inst Space & Astronaut Sci, Chuo Ku, Sagamihara, Kanagawa 2525210, Japan. [Paciesas, W. S.; Sonbas, E.] USRA, Columbia, MD 21044 USA. [Paneque, D.] Max Planck Inst Phys & Astrophys, D-80805 Munich, Germany. [Perkins, J. S.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Perkins, J. S.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Perkins, J. S.] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA. [Razzaque, S.] Univ Johannesburg, Dept Phys, ZA-2006 Auckland Pk, South Africa. [Roth, M.] Univ Washington, Dept Phys, Seattle, WA 98195 USA. [Siskind, E. J.] NYCB Real Time Comp Inc, Lattingtown, NY 11560 USA. [Sonbas, E.] Adiyaman Univ, TR-02040 Adiyaman, Turkey. [Suson, D. J.] Purdue Univ Calumet, Dept Chem & Phys, Hammond, IN 46323 USA. [Tajima, H.] Nagoya Univ, Solar Terr Environm Lab, Nagoya, Aichi 4648601, Japan. [Torres, D. F.] ICREA, Barcelona, Spain. [Vianello, G.] CIFS, I-10133 Turin, Italy. [Vitale, V.] Univ Roma Tor Vergata, Dipartimento Fis, I-00133 Rome, Italy. RP Ackermann, M (reprint author), Deutsch Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany. EM nicola.omodei@stanford.edu; piron@in2p3.fr; soebur.razzaque@gmail.com; vlasios.vasileiou@lupm.in2p3.fr RI Johnson, Neil/G-3309-2014; Orlando, E/R-5594-2016; Reimer, Olaf/A-3117-2013; Morselli, Aldo/G-6769-2011; Nemmen, Rodrigo/O-6841-2014; Johannesson, Gudlaugur/O-8741-2015; Loparco, Francesco/O-8847-2015; Mazziotta, Mario /O-8867-2015; Gargano, Fabio/O-8934-2015; giglietto, nicola/I-8951-2012; Sgro, Carmelo/K-3395-2016; Bissaldi, Elisabetta/K-7911-2016; Massaro, Francesco/L-9102-2016; Torres, Diego/O-9422-2016; Di Venere, Leonardo/C-7619-2017; OI Baldini, Luca/0000-0002-9785-7726; Larsson, Stefan/0000-0003-0716-107X; Reimer, Olaf/0000-0001-6953-1385; Morselli, Aldo/0000-0002-7704-9553; Johannesson, Gudlaugur/0000-0003-1458-7036; Loparco, Francesco/0000-0002-1173-5673; Mazziotta, Mario /0000-0001-9325-4672; Gargano, Fabio/0000-0002-5055-6395; giglietto, nicola/0000-0002-9021-2888; Bissaldi, Elisabetta/0000-0001-9935-8106; Massaro, Francesco/0000-0002-1704-9850; Torres, Diego/0000-0002-1522-9065; Di Venere, Leonardo/0000-0003-0703-824X; Inoue, Yoshiyuki/0000-0002-7272-1136; Giordano, Francesco/0000-0002-8651-2394; Dingus, Brenda/0000-0001-8451-7450; giommi, paolo/0000-0002-2265-5003; De Angelis, Alessandro/0000-0002-3288-2517; Preece, Robert/0000-0003-1626-7335; Caraveo, Patrizia/0000-0003-2478-8018; Sgro', Carmelo/0000-0001-5676-6214; SPINELLI, Paolo/0000-0001-6688-8864; Rando, Riccardo/0000-0001-6992-818X; Burgess, James/0000-0003-3345-9515; Bastieri, Denis/0000-0002-6954-8862; Omodei, Nicola/0000-0002-5448-7577; Pesce-Rollins, Melissa/0000-0003-1790-8018; orienti, monica/0000-0003-4470-7094; Axelsson, Magnus/0000-0003-4378-8785; Giroletti, Marcello/0000-0002-8657-8852; McBreen, Sheila/0000-0002-1477-618X; Moretti, Elena/0000-0001-5477-9097; Gasparrini, Dario/0000-0002-5064-9495 FU National Aeronautics and Space Administration; Department of Energy in the United States; Commissariat a l'Energie Atom-ique; Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; Agenzia Spaziale Italiana; Istituto Nazionale di Fisica Nucleare in Italy; Ministry of Education, Culture, Sports, Science and Technology (MEXT); High Energy Accelerator Research Organization (KEK); Japan Aerospace Exploration Agency (JAXA) in Japan; K. A. Wallenberg Foundation; Swedish Research Council; Swedish National Space Board in Sweden; Istituto Nazionale di Astrofisica in Italy; Centre National d'Etudes Spatiales in France FX The Fermi-LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States; the Commissariat a l'Energie Atom-ique and the Centre National de la Recherche Scientifique/Institut National de Physique Nucleaire et de Physique des Particules in France; the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy; the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the High Energy Accelerator Research Organization (KEK), and the Japan Aerospace Exploration Agency (JAXA) in Japan; and the K. A. Wallenberg Foundation, the Swedish Research Council, and the Swedish National Space Board in Sweden.; Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d'Etudes Spatiales in France. NR 297 TC 80 Z9 81 U1 0 U2 29 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2013 VL 209 IS 1 AR UNSP 11 DI 10.1088/0067-0049/209/1/11 PG 90 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 246WJ UT WOS:000326571000011 ER PT J AU Hasselfield, M Moodley, K Bond, JR Das, S Devlin, MJ Dunkley, J Dunner, R Fowler, JW Gallardo, P Gralla, MB Hajian, A Halpern, M Hincks, AD Marriage, TA Marsden, D Niemack, MD Nolta, MR Page, LA Partridge, B Schmitt, BL Sehgal, N Sievers, J Staggs, ST Swetz, DS Switzer, ER Wollack, EJ AF Hasselfield, Matthew Moodley, Kavilan Bond, J. Richard Das, Sudeep Devlin, Mark J. Dunkley, Joanna Duenner, Rolando Fowler, Joseph W. Gallardo, Patricio Gralla, Megan B. Hajian, Amir Halpern, Mark Hincks, Adam D. Marriage, Tobias A. Marsden, Danica Niemack, Michael D. Nolta, Michael R. Page, Lyman A. Partridge, Bruce Schmitt, Benjamin L. Sehgal, Neelima Sievers, Jon Staggs, Suzanne T. Swetz, Daniel S. Switzer, Eric R. Wollack, Edward J. TI THE ATACAMA COSMOLOGY TELESCOPE: BEAM MEASUREMENTS AND THE MICROWAVE BRIGHTNESS TEMPERATURES OF URANUS AND SATURN SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE cosmology: observations; planets and satellites: individual (Saturn, Uranus) ID PROBE WMAP OBSERVATIONS; CALIBRATION SOURCES; WINDOW FUNCTIONS; 148 GHZ; NEPTUNE; MAPS; SUBMILLIMETER; PROFILES; JUPITER; PLANETS AB We describe the measurement of the beam profiles and window functions for the Atacama Cosmology Telescope (ACT), which operated from 2007 to 2010 with kilopixel bolometer arrays centered at 148, 218, and 277 GHz. Maps of Saturn are used to measure the beam shape in each array and for each season of observations. Radial profiles are transformed to Fourier space in a way that preserves the spatial correlations in the beam uncertainty to derive window functions relevant for angular power spectrum analysis. Several corrections are applied to the resulting beam transforms, including an empirical correction measured from the final cosmic microwave background (CMB) survey maps to account for the effects of mild pointing variation and alignment errors. Observations of Uranus made regularly throughout each observing season are used to measure the effects of atmospheric opacity and to monitor deviations in telescope focus over the season. Using the WMAP-based calibration of the ACT maps to the CMB blackbody, we obtain precise measurements of the brightness temperatures of the Uranus and Saturn disks at effective frequencies of 149 and 219 GHz. For Uranus we obtain thermodynamic brightness temperatures T-U(149) = 106.7 +/- 2.2 K and T-U(219) = 100.1 +/- 3.1 K. For Saturn, we model the effects of the ring opacity and emission using a simple model and obtain resulting (unobscured) disk temperatures of T-S(149) = 137.3 +/- 3.2 K and T-S(219) = 137.3 +/- 4.7 K. C1 [Hasselfield, Matthew; Sievers, Jon] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Hasselfield, Matthew; Halpern, Mark] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Moodley, Kavilan] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Bond, J. Richard; Hajian, Amir; Hincks, Adam D.; Nolta, Michael R.; Sievers, Jon; Switzer, Eric R.] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Das, Sudeep] Argonne Natl Lab, Div High Energy Phys, Lemont, IL 60439 USA. [Das, Sudeep] Univ Calif Berkeley, LBL, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Das, Sudeep] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Devlin, Mark J.; Marsden, Danica; Schmitt, Benjamin L.; Swetz, Daniel S.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Dunkley, Joanna] Univ Oxford, Dept Astrophys, Oxford OX1 3RH, England. [Duenner, Rolando; Gallardo, Patricio] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Fowler, Joseph W.; Niemack, Michael D.] NIST Quantum Devices Grp, Boulder, CO 80305 USA. [Fowler, Joseph W.; Gallardo, Patricio; Niemack, Michael D.; Page, Lyman A.; Staggs, Suzanne T.] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Gralla, Megan B.; Marriage, Tobias A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Marsden, Danica] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Niemack, Michael D.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Partridge, Bruce] Haverford Coll, Dept Phys & Astron, Haverford, PA 19041 USA. [Sehgal, Neelima] Dept Phys & Astron, Stony Brook, NY 11794 USA. [Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hasselfield, M (reprint author), Princeton Univ, Dept Astrophys Sci, Peyton Hall, Princeton, NJ 08544 USA. RI Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Sievers, Jonathan/0000-0001-6903-5074 FU U.S. National Science Foundation [AST-0408698, AST-0965625]; Princeton University; University of Pennsylvania; Canada Foundation for Innovation (CFI) award; Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT); CFI under Compute Canada; Government of Ontario; Ontario Research Fund-Research Excellence; University of Toronto; [PHY-0855887]; [PHY-1214379] FX This work was supported by the U.S. National Science Foundation through awards AST-0408698 and AST-0965625 for the ACT project, as well as awards PHY-0855887 and PHY-1214379. Funding was also provided by Princeton University, the University of Pennsylvania, and a Canada Foundation for Innovation (CFI) award to the University of British Columbia. ACT operates in the Parque Astronomico Atacama in northern Chile under the auspices of the Comision Nacional de Investigacion Cientifica y Tecnologica de Chile (CONICYT). Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the CFI under the auspices of Compute Canada, the Government of Ontario, the Ontario Research Fund-Research Excellence, and the University of Toronto. NR 30 TC 11 Z9 11 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2013 VL 209 IS 1 AR UNSP 17 DI 10.1088/0067-0049/209/1/17 PG 13 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 246WJ UT WOS:000326571000017 ER PT J AU Krimm, HA Holland, ST Corbet, RHD Pearlman, AB Romano, P Kennea, JA Bloom, JS Barthelmy, SD Baumgartner, WH Cummings, JR Gehrels, N Lien, AY Markwardt, CB Palmer, DM Sakamoto, T Stamatikos, M Ukwatta, TN AF Krimm, H. A. Holland, S. T. Corbet, R. H. D. Pearlman, A. B. Romano, P. Kennea, J. A. Bloom, J. S. Barthelmy, S. D. Baumgartner, W. H. Cummings, J. R. Gehrels, N. Lien, A. Y. Markwardt, C. B. Palmer, D. M. Sakamoto, T. Stamatikos, M. Ukwatta, T. N. TI THE SWIFT/BAT HARD X-RAY TRANSIENT MONITOR SO ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES LA English DT Article DE black hole physics; pulsars: general; surveys; X-rays: binaries; X-rays: general ID LARGE-AREA TELESCOPE; SOFT GAMMA-RAY; MILLISECOND PULSAR SWIFT-J1756.9-2508; ACTIVE GALACTIC NUCLEI; BLACK-HOLE; 2011 OUTBURST; MULTIWAVELENGTH OBSERVATIONS; SPECTRAL EVOLUTION; IGR J17544-2619; ALERT TELESCOPE AB The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations. C1 [Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Baumgartner, W. H.; Cummings, J. R.] CRESST, Greenbelt, MD 20771 USA. [Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Ukwatta, T. N.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Krimm, H. A.] Univ Space Res Assoc, Columbia, MD 21044 USA. [Holland, S. T.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Corbet, R. H. D.; Pearlman, A. B.; Baumgartner, W. H.; Cummings, J. R.] Univ Maryland Baltimore Cty, Dept Phys, Baltimore, MD 21250 USA. [Corbet, R. H. D.; Pearlman, A. B.; Baumgartner, W. H.; Cummings, J. R.] Univ Maryland Baltimore Cty, Ctr Space Sci & Technol, Baltimore, MD 21250 USA. [Pearlman, A. B.] CALTECH, Dept Appl Phys, Pasadena, CA 91125 USA. [Romano, P.] Ist Astrofis Spaziale & Fis Cosm, INAF, I-90146 Palermo, Italy. [Kennea, J. A.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Bloom, J. S.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [Palmer, D. M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Sakamoto, T.] Aoyama Gakuin Univ, Coll Sci & Engn, Dept Math & Phys, Chuo Ku, Sagamihara, Kanagawa 2525258, Japan. [Stamatikos, M.] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA. [Stamatikos, M.] Ohio State Univ, Ctr Cosmol & Astroparticle Phys, Columbus, OH 43210 USA. [Ukwatta, T. N.] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA. RP Krimm, HA (reprint author), CRESST, Greenbelt, MD 20771 USA. FU NASA [NNX09AU85G, NNX12AD32G, NNX12AE57G, NNX13AC75G]; ASI-INAF grant [1/004/11/0] FX The Swift/BAT transient monitor is supported by NASA under Swift Guest Observer grants NNX09AU85G, NNX12AD32G, NNX12AE57G, and NNX13AC75G. H.A.K. also acknowledges these NASA grants for partial support. P. R. acknowledges ASI-INAF grant 1/004/11/0. We gratefully acknowledge the RXTE and Swift principal investigators for approving, and mission planners for scheduling, the many observations discussed in this work. This research has made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA's Goddard Space Flight Center and from the UK Swift Science Data Centre at the University of Leicester. This research has also made use of the SIMBAD database, operated at CDS, Strasbourg, France. Finally, the authors acknowledge helpful comments from an anonymous referee. NR 218 TC 105 Z9 106 U1 0 U2 8 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0067-0049 EI 1538-4365 J9 ASTROPHYS J SUPPL S JI Astrophys. J. Suppl. Ser. PD NOV PY 2013 VL 209 IS 1 AR UNSP 14 DI 10.1088/0067-0049/209/1/14 PG 33 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 246WJ UT WOS:000326571000014 ER PT J AU Mante, OD Rodriguez, JA Babu, SP AF Mante, Ofei D. Rodriguez, Jose A. Babu, Suresh P. TI Selective defunctionalization by TiO2 of monomeric phenolics from lignin pyrolysis into simple phenols SO BIORESOURCE TECHNOLOGY LA English DT Article DE Lignin Pyrolysis; Aromatic chemicals; Phenols; Monomeric phenolics; Titanium dioxide ID TITANIUM-DIOXIDE; PHOTOCATALYTIC DEGRADATION; CATALYTIC PYROLYSIS; BIO-OILS; CHEMICALS; BIOMASS; HYDRODEOXYGENATION; FUELS; DECOMPOSITION; COMPONENTS AB This study is focused on defunctionalizing monomeric phenolics from lignin into simple phenols for applications such as phenol/formaldehyde resins, epoxidized novolacs, adhesives and binders. Towards this goal. Titanium dioxide (TiO2) was used to selectively remove hydroxyl, methoxy, carbonyl and carboxyl functionalities from the monomeric phenolic compounds from lignin to produce mainly phenol, cresols and xylenols. The results showed that anatase TiO2 was more selective and active compared to rutile TiO2. Catechols were found to be the most reactive phenolics and 4-ethylguaiacol the least reactive with anatase TiO2. An overall conversion of about 87% of the phenolics was achieved at 550 degrees C with a catalyst-to-feed ratio of 5 w/w. Over 97% conversion of phenolics is achievable at moderate temperatures (550 degrees C or <= 600 degrees C) and a moderate catalyst-to-feed ratio of 6.5:1. The reactivity of catechols on TiO2 suggests that titania is a promising catalyst in the removal of hydroxyl moiety. Published by Elsevier Ltd. C1 [Mante, Ofei D.] Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. [Rodriguez, Jose A.] Brookhaven Natl Lab, Dept Chem, Upton, NY 11973 USA. [Babu, Suresh P.] Brookhaven Natl Lab, Global & Reg Solut Directorate, Upton, NY 11973 USA. RP Mante, OD (reprint author), Brookhaven Natl Lab, Sustainable Energy Technol Dept, Upton, NY 11973 USA. EM nmante@bnl.gov RI Mante, Ofei/E-8513-2014 OI Mante, Ofei/0000-0002-0960-2943 FU BNL Laboratory-Directed Research and Development Program, LDRD [12-024] FX The authors acknowledge funding support from the BNL Laboratory-Directed Research and Development Program, LDRD Project #12-024. NR 32 TC 10 Z9 11 U1 6 U2 75 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD NOV PY 2013 VL 148 BP 508 EP 516 DI 10.1016/j.biortech.2013.09.003 PG 9 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 251CM UT WOS:000326905400070 PM 24080289 ER PT J AU Jin, MJ Bothfeld, W Austin, S Sato, TK La Reau, A Li, HB Foston, M Gunawan, C LeDuc, RD Quensen, JF Mcgee, M Uppugundla, N Higbee, A Ranatunga, R Donald, CW Bone, G Ragauskas, AJ Tiedje, JM Noguera, DR Dale, BE Zhang, YP Balan, V AF Jin, Mingjie Bothfeld, William Austin, Samantha Sato, Trey K. La Reau, Alex Li, Haibo Foston, Marcus Gunawan, Christa LeDuc, Richard D. Quensen, John F. Mcgee, Mick Uppugundla, Nirmal Higbee, Alan Ranatunga, Ruwan Donald, Charles W. Bone, Gwen Ragauskas, Arthur J. Tiedje, James M. Noguera, Daniel R. Dale, Bruce E. Zhang, Yaoping Balan, Venkatesh TI Effect of storage conditions on the stability and fermentability of enzymatic lignocellulosic hydrolysate SO BIORESOURCE TECHNOLOGY LA English DT Article DE Hydrolysate storage; Hydrolysate characterization; AFEX; Hydrolysate fermentation; Hydrolysate precipitate ID SACCHAROMYCES-CEREVISIAE 424A(LNH-ST); CELLULOSIC ETHANOL-PRODUCTION; CORN STOVER HYDROLYSATE; FIBER EXPANSION AFEX; BIOMASS; PRETREATMENT; FERMENTATION; SWITCHGRASS; CONVERSION; XYLOSE AB To minimize the change of lignocellulosic hydrolysate composition during storage, the effects of storage conditions (temperature, pH and time) on the composition and fermentability of hydrolysate prepared from AFEX (TM) (Ammonia Fiber Expansion - a trademark of MBI, Lansing, MI) pretreated corn stover were investigated. Precipitates formed during hydrolysate storage increased with increasing storage pH and time. The precipitate amount was the least when hydrolysate was stored at 4 degrees C and pH 4.8, accounting for only 0.02% of the total hydrolysate weight after 3-month storage. No significant changes of NMR (Nuclear Magnetic Resonance) spectra and concentrations of sugars, minerals and heavy metals were observed after storage under this condition. When pH was adjusted higher before fermentation, precipitates also formed, consisting of mostly struvite (MgNH4PO4 center dot 6H(2)O) and brushite (CaHPO4 center dot 2H(2)O). Escherichia coli and Saccharomyces cerevisiae fermentation studies and yeast cell growth assays showed no significant difference in fermentability between fresh hydrolysate and stored hydrolysate. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Jin, Mingjie; Gunawan, Christa; Uppugundla, Nirmal; Donald, Charles W.; Dale, Bruce E.; Balan, Venkatesh] Michigan State Univ, BCRL, Dept Chem Engn & Mat Sci, Lansing, MI 48910 USA. [Jin, Mingjie; Gunawan, Christa; Uppugundla, Nirmal; Donald, Charles W.; Dale, Bruce E.; Balan, Venkatesh] Michigan State Univ, DOE Great Lakes Bioenergy Res Ctr, E Lansing, MI 48824 USA. [Bothfeld, William; Austin, Samantha; Sato, Trey K.; La Reau, Alex; Li, Haibo; LeDuc, Richard D.; Mcgee, Mick; Higbee, Alan; Ranatunga, Ruwan; Bone, Gwen; Noguera, Daniel R.; Zhang, Yaoping] Univ Wisconsin, DOE Great Lakes Bioenergy Res Ctr, Madison, WI 53706 USA. [Foston, Marcus] Washington Univ, DOE BioEnergy Sci Ctr, St Louis, MO 63130 USA. [Quensen, John F.; Tiedje, James M.] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA. [Ragauskas, Arthur J.] Georgia Inst Technol, DOE BioEnergy Sci Ctr, Atlanta, GA 30332 USA. [Austin, Samantha; Noguera, Daniel R.] Univ Wisconsin, Dept Civil & Environm Engn, Madison, WI 53706 USA. RP Jin, MJ (reprint author), Michigan State Univ, BCRL, Dept Chem Engn & Mat Sci, 3900 Collins Rd, Lansing, MI 48910 USA. EM jinmingj@egr.msu.edu; yzhang8@wisc.edu; balan@egr.msu.edu RI Jin, Mingjie/I-4616-2012; OI Jin, Mingjie/0000-0002-9493-305X; Ragauskas, Arthur/0000-0002-3536-554X FU U.S. Department of Energy through the DOE Great Lakes Bioenergy Research Center (GLBRC) [DE-FC02-07ER64494]; BioEnergy Science Center; Office of Biological and Environmental Research in the DOE Office of Science FX This work was funded by U.S. Department of Energy through the DOE Great Lakes Bioenergy Research Center (GLBRC) Grant DE-FC02-07ER64494. We would like to thank Ying Gao for experiment data management, Genencor Inc., for supplying us commercial enzymes for this work, and Dr. Nancy Ho (Purdue University) for providing us 424A (LNH-ST) strain. We also thank Steve Slate (GLBRC scientific officer) who was instrumental in connecting different groups with different expertise to make this work possible. This work was partially supported and performed as part of the BioEnergy Science Center. The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. NR 20 TC 5 Z9 5 U1 5 U2 39 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD NOV PY 2013 VL 147 BP 212 EP 220 DI 10.1016/j.biortech.2013.08.018 PG 9 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 247YM UT WOS:000326660900030 PM 23999256 ER PT J AU Chen, XW Kuhn, E Wang, W Park, S Flanegan, K Trass, O Tenlep, L Tao, L Tucker, M AF Chen, Xiaowen Kuhn, Erik Wang, Wei Park, Sunkyu Flanegan, Keith Trass, Olev Tenlep, Lisette Tao, Ling Tucker, Melvin TI Comparison of different mechanical refining technologies on the enzymatic digestibility of low severity acid pretreated corn stover SO BIORESOURCE TECHNOLOGY LA English DT Article DE Biorefinery; Pretreatment; Biomass saccharification; Mechanical refining ID BIOMASS; LIGNOCELLULOSE; DEACETYLATION; CONVERSION; YIELD; PULP AB The effect of mechanical refining on the enzymatic digestibility of pretreated corn stover (PCS) was investigated. Low severity, dilute sulfuric acid PCS was subjected to mechanical refining using a bench-scale food processor blender, a PFI mill, a 12-inch laboratory disk refiner, and a 25 mm co-rotating twin-screw extruder. Glucose yields from enzymatic hydrolysis were improved by 10-15% after blending and disk refining, while PFI refining and twin-screw extrusion showed a glucose yield improvement of 16-20%. A pilot scale refining test using a Szego mill was performed and showed approximately 10% improvements in biomass digestibility. This suggests the possibility to scale up a mechanical refining technique to obtain similar enzymatic digestibility glucose yield enhancement as achieved by PFI milling and extrusion technologies. Proposed mechanisms of each mechanical refining technology are presented and reasons for improvements in biomass digestibility are discussed in this paper. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved. C1 [Chen, Xiaowen; Kuhn, Erik; Wang, Wei; Tao, Ling; Tucker, Melvin] Natl Renewable Energy Lab, Natl Bioenergy Ctr, Golden, CO 80401 USA. [Park, Sunkyu] N Carolina State Univ, Dept Forest Biomat, Raleigh, NC 27695 USA. [Flanegan, Keith] IdeaCHEM Inc, Rapid City, SD 57701 USA. [Trass, Olev] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada. [Tenlep, Lisette] Biomethodes OptaFuel, Norton, VA 24273 USA. RP Chen, XW (reprint author), Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM Xiaowen.Chen@nrel.gov RI chen, xiaowen/H-4823-2014 NR 20 TC 22 Z9 23 U1 7 U2 48 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD NOV PY 2013 VL 147 BP 401 EP 408 DI 10.1016/j.biortech.2013.07.109 PG 8 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 247YM UT WOS:000326660900055 PM 24001565 ER PT J AU Zhang, WH Mao, SY Chen, H Huang, L Qiu, RL AF Zhang, Weihua Mao, Shengyao Chen, Hao Huang, Long Qiu, Rongliang TI Pb(II) and Cr(VI) sorption by biochars pyrolyzed from the municipal wastewater sludge under different heating conditions SO BIORESOURCE TECHNOLOGY LA English DT Article DE Biochar; Heavy metals; Pyrolysis; Sludge; Sorption ID HEXAVALENT CHROMIUM REMOVAL; ACTIVATED CARBON; SEWAGE-SLUDGE; AQUEOUS-SOLUTIONS; FLUIDIZED-BED; ADSORPTION; LEAD; COPPER; IONS; MECHANISMS AB To optimize the pyrolysis process of municipal wastewater sludge for metal sorption, this study investigated the characteristics of the produced biochar under different heating conditions with particular interest in Pb(II) or Cr(VI) sorption. Results indicate that the biochar pyrolyzed at 400 degrees C for 2 h obtained the largest BET surface area and was rich of organic functional groups, owning the highest Pb(II) (at pH 5.0) and Cr(VI) (at pH 2.0) sorption capacity. The Pb sorption is dominated by the rate-limited chemical processes, and a longer residence during pyrolysis significantly reinforces its sorption bonds. The Cr(VI) sorption is highly pH-dependent, and the optimal occurs at pH 2, where the transformation of Cr(VI) to Cr(III) makes a significant contribution as confirmed by the XPS spectra. Similarly, a longer residence during pyrolysis also facilitates the Cr(VI) sorption in terms of capacity and affinity, likely due to the greater reducing potential of biochar. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Zhang, Weihua; Mao, Shengyao; Chen, Hao; Huang, Long; Qiu, Rongliang] Sun Yat Sen Univ, Sch Environm Sci & Engn, Guangzhou 510275, Guangdong, Peoples R China. [Zhang, Weihua] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. [Zhang, Weihua; Qiu, Rongliang] Guangdong Prov Key Lab Environm Pollut Control &, Guangzhou 510275, Guangdong, Peoples R China. RP Zhang, WH (reprint author), Sun Yat Sen Univ, B118 North Acad Bldg,East Campus, Guangzhou 510006, Guangdong, Peoples R China. EM zhangwh5@mail.sysu.edu.cn RI QIU, Rong-Liang/F-9450-2012 FU National Natural Science Foundation of China [41272383]; Guangzhou Municipal Science and Technology Plan Project [2012J2200020]; China Scholarship Council [2011638506] FX The authors wish to thank the National Natural Science Foundation of China (Project No. 41272383), Guangzhou Municipal Science and Technology Plan Project (contract No: 2012J2200020), and State Scholarship Fund (No. 2011638506) from China Scholarship Council for the financial support of this study. NR 33 TC 32 Z9 39 U1 17 U2 133 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD NOV PY 2013 VL 147 BP 545 EP 552 DI 10.1016/j.biortech.2013.08.082 PG 8 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 247YM UT WOS:000326660900074 PM 24013292 ER PT J AU Linville, JL Rodriguez, M Mielenz, JR Cox, CD AF Linville, Jessica L. Rodriguez, Miguel, Jr. Mielenz, Jonathan R. Cox, Chris D. TI Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum SO BIORESOURCE TECHNOLOGY LA English DT Article DE Clostridium thermocellum; Populus hydrolysate; Kinetic model; Inhibition; Biofuels ID SACCHAROMYCES-CEREVISIAE; ETHANOL TOLERANCE; PRETREATMENT; INHIBITION; CULTURE; BACTERIA; BIOMASS; REACTOR; CELL AB The extent of inhibition of two strains of Clostridium thermocellum by a Populus hydrolysate was investigated. A Monod-based model of wild type (WT) and Populus hydrolysate tolerant mutant (PM) strains of the cellulolytic bacterium C thermocellum was developed to quantify growth kinetics in standard media and the extent of inhibition to a Populus hydrolysate. The PM was characterized by a higher growth rate (mu(max) = 1.223 vs. 0.571 h(-1)) and less inhibition (k(I,gen) = 0.991 vs. 0.757) in 10% v/v Populus hydrolysate compared to the WT. In 17.5% v/v Populus hydrolysate inhibition of PM increased slightly (K-I,K-gen = 0.888), whereas the WT was strongly inhibited and did not grow in a reproducible manner. Of the individual inhibitors tested, 4-hydroxybenzoic acid was the most inhibitory, followed by galacturonic acid. The PM did not have a greater ability to detoxify the hydrolysate than the WT. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Linville, Jessica L.; Cox, Chris D.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Linville, Jessica L.; Rodriguez, Miguel, Jr.; Mielenz, Jonathan R.; Cox, Chris D.] Oak Ridge Natl Lab, Bioenergy Sci Ctr, Oak Ridge, TN USA. [Rodriguez, Miguel, Jr.; Mielenz, Jonathan R.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN USA. [Cox, Chris D.] Univ Tennessee, Ctr Environm Biotechnol, Knoxville, TN 37932 USA. RP Cox, CD (reprint author), Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. EM ccox9@utk.edu FU BioEnergy Science Center, a Department of Energy Bioenergy Research Center; Office of Biological and Environmental Research in the Department of Energy Office of Science; Institute for a Secure and Sustainable Environment at the University of Tennessee; DOE [DE-AC05-00OR22725] FX This research was supported by the BioEnergy Science Center, a Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the Department of Energy Office of Science. Additional support was provided by the Institute for a Secure and Sustainable Environment at the University of Tennessee. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the DOE under Contract DE-AC05-00OR22725. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NR 33 TC 6 Z9 6 U1 0 U2 25 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0960-8524 EI 1873-2976 J9 BIORESOURCE TECHNOL JI Bioresour. Technol. PD NOV PY 2013 VL 147 BP 605 EP 613 DI 10.1016/j.biortech.2013.08.086 PG 9 WC Agricultural Engineering; Biotechnology & Applied Microbiology; Energy & Fuels SC Agriculture; Biotechnology & Applied Microbiology; Energy & Fuels GA 247YM UT WOS:000326660900081 PM 24036527 ER PT J AU Rosner, R Goldberg, SM AF Rosner, Robert Goldberg, Stephen M. TI A practical, regional approach to nuclear waste storage SO BULLETIN OF THE ATOMIC SCIENTISTS LA English DT Article DE cask storage; nonproliferation; nuclear fuel cycle; nuclear recycling; nuclear reprocessing; nuclear storage; nuclear waste; regional storage AB Nuclear power continues to offer the potential to be a major, worldwide, scalable, carbon-free energy sourceif the challenges of safety, nonproliferation, waste management, and economic competitiveness are addressed. The international community has spent decades attempting to find a pragmatic approach to address waste-management concerns. Along the way, the advocates of open and closed nuclear fuel cycles have engaged in a running debate. For those who favor an open cycle, Sweden and Finland serve as excellent models today for successfully navigating both technical issues and public opinion to dispose of their spent nuclear fuel in a permanent repository that does not allow used fuel to be retrieved. But these successes have yet to be replicated elsewhere. For closed-cycle advocates, economically convincing technology solutions have yet to surface; as a result, leading reprocessing advocates claim that the future value of accumulated waste material can provide the economic justification for nuclear recycling. The authors discuss a middle-ground path that encourages research and development on advancements in fuel cycle technology while providing for safe waste storage on a century-long, or intermediate, timescale. Acknowledging the risks of pursuing such a venture, the authors also write on the importance of establishing performance metrics that would support nuclear energy as a sustainable, secure, and safe energy choice. The authors argue that the most important metric is the establishment of a surety index that could capture the nonproliferation and security risks of alternate fuel cycles. C1 [Rosner, Robert] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Rosner, Robert] Univ Chicago, Dept Phys, Chicago, IL 60637 USA. [Rosner, Robert; Goldberg, Stephen M.] Argonne Natl Lab, Argonne, IL 60439 USA. [Rosner, Robert] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA. [Goldberg, Stephen M.] Argonne Natl Lab, Nucl Energy Div, Argonne, IL 60439 USA. [Goldberg, Stephen M.] Amer Acad Arts & Sci, Global Nucl Future Initiat, Cambridge, MA USA. RP Rosner, R (reprint author), Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. NR 6 TC 2 Z9 2 U1 5 U2 32 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 0096-3402 EI 1938-3282 J9 B ATOM SCI JI Bull. Atom. Scient. PD NOV PY 2013 VL 69 IS 6 BP 58 EP 66 DI 10.1177/0096340213508677 PG 9 WC International Relations; Social Issues SC International Relations; Social Issues GA 245GC UT WOS:000326449300008 ER PT J AU Davidovich, RL Marinin, DV Stavila, V Whitmire, KH AF Davidovich, Ruven L. Marinin, Dmitry V. Stavila, Vitalie Whitmire, Kenton H. TI Stereochemistry of fluoride and mixed-ligand fluoride complexes of zirconium and hafnium SO COORDINATION CHEMISTRY REVIEWS LA English DT Review DE Zirconium; Hafnium; Fluoride complex; Mixed-ligand; Crystal structure ID CRYSTAL-STRUCTURE; SODIUM TRIDECAFLUORODIZIRCONATE; STRUCTURAL RELATIONSHIPS; ION MOBILITY; HEXAFLUOROZIRCONATE; PENTAFLUOROZIRCONATE; REFINEMENT; PHASE; HF; DIFFRACTION AB As a continuation of the published reviews dedicated to the stereochemistry of fluoride complexes (1998) and mixed-ligand fluoride complexes of zirconium and hafnium (1999), the stereochemistry of 93 fluoride and 34 mixed-ligand fluoride complexes of zirconium and hafnium, whose structures were published since 1998, has been considered. The structure of complex anions (complexes) of structurally studied fluoride and mixed-ligand fluoride complexes of zirconium and hafnium and the dependence of the structural motif of the complex anion (complex) on the F(L):Zr(Hf) ratio in the compound and the central atom coordination number have been discussed. Comprehensive tables containing the chemical formula of the compound, the configuration of the central atom polyhedron reflecting its coordination number, polyhedron composition, the structural motif of the complex, the character of polyhedra association in the structure, and references are presented. (C) 2013 Elsevier B.V. All rights reserved. C1 [Davidovich, Ruven L.; Marinin, Dmitry V.] Russian Acad Sci, Far Eastern Branch, Inst Chem, Vladivostok 690022, Russia. [Stavila, Vitalie] Sandia Natl Labs, Livermore, CA 94551 USA. [Whitmire, Kenton H.] Rice Univ, Dept Chem, Houston, TX 77005 USA. RP Whitmire, KH (reprint author), Rice Univ, Dept Chem, MS 60,6100 Main St, Houston, TX 77005 USA. EM davidovich@ich.dvo.ru; whitmir@rice.edu OI Whitmire, Kenton/0000-0001-7362-535X FU Robert A. Welch Foundation [C-0976]; U.S. Department of Energy [DE-AC04-94AL85000] FX RLD acknowledges Prof. A. Le Bail for providing reprint of a publication on the crystal structure of a zirconium fluoride complex. KHW is grateful to the Robert A. Welch Foundation (C-0976) for financial support. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 127 TC 6 Z9 6 U1 1 U2 15 PU ELSEVIER SCIENCE SA PI LAUSANNE PA PO BOX 564, 1001 LAUSANNE, SWITZERLAND SN 0010-8545 EI 1873-3840 J9 COORDIN CHEM REV JI Coord. Chem. Rev. PD NOV PY 2013 VL 257 IS 21-22 BP 3074 EP 3088 DI 10.1016/j.ccr.2013.06.016 PG 15 WC Chemistry, Inorganic & Nuclear SC Chemistry GA 249JK UT WOS:000326773300007 ER PT J AU Zhu, JX Fiore, J Li, DS Kinsinger, NM Wang, QQ DiMasi, E Guo, JC Kisailus, D AF Zhu, Jianxin Fiore, Joseph Li, Dongsheng Kinsinger, Nichola M. Wang, Qianqian DiMasi, Elaine Guo, Juchen Kisailus, David TI Solvothermal Synthesis, Development, and Performance of LiFePO4 Nanostructures SO CRYSTAL GROWTH & DESIGN LA English DT Article ID LITHIUM-ION BATTERIES; IMPROVING ELECTROCHEMICAL PROPERTIES; CATHODE MATERIALS; HYDROTHERMAL SYNTHESIS; SURFACE MODIFICATION; IRON PHOSPHATE; ENERGY; CARBON; NANOPARTICLES; PRECURSOR AB We report the synthesis and nanostructural development of polycrystalline and single crystalline LiFePO4 (LFP) nanostructures using a solvothermal media (i.e., water-tri(ethylene glycol) mixture). Crystal phase and growth behavior were monitored by powder and synchrotron X-ray diffraction, as well as transmission electron microscopy (TEM), while particle morphologies were examined using scanning electron microscopy (SEM). Initially, thin (100 nm) platelets of Fe-3(PO4)(2)center dot 8H(2)O (vivianite, VTE) formed at short reaction times followed by the nucleation of LFP (20 nm particles) on the metastable surfaces. Upon decrease in pH, primary LFP nanocrystals subsequently aggregated into polycrystalline diamond-like via an oriented attachment (OA). With increasing reaction time, the solution pH further decreased, leading to a dissolution recrystallization process (i.e., Ostwald ripening, OR) of the oriented polycrystalline LFP particles to yield evenly sized, single crystalline LiFePO4. Samples prepared at short reaction durations demonstrated a larger discharge capacity at higher rates compared with the single crystalline particles. This is due to the small size of the primary crystallites within larger secondary LiFePO4 particles, which reduced the lithium ion diffusion path while subsequently maintaining a high tap density. Understanding the relationship between solution conditions and nanostructural development as well as performance revealed by this study will help to develop synthetic guidelines to enable efficient lithium ion battery performance. C1 [Zhu, Jianxin; Guo, Juchen; Kisailus, David] Univ Calif Riverside, Mat Sci & Engn Program, Riverside, CA 92521 USA. [Fiore, Joseph; Kinsinger, Nichola M.; Wang, Qianqian; Guo, Juchen; Kisailus, David] Univ Calif Riverside, Dept Chem & Environm Engn, Riverside, CA 92521 USA. [Li, Dongsheng] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. [DiMasi, Elaine] Brookhaven Natl Lab, Synchrotron Light Source Dept, Upton, NY 11973 USA. RP Kisailus, D (reprint author), Univ Calif Riverside, Mat Sci & Engn Program, Riverside, CA 92521 USA. EM david@engr.ucr.edu FU Winston Chung Global Energy Center FX This work is sponsored by Winston Chung Global Energy Center. NR 35 TC 22 Z9 22 U1 3 U2 114 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD NOV PY 2013 VL 13 IS 11 BP 4659 EP 4666 DI 10.1021/cg4013312 PG 8 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 249KB UT WOS:000326775000006 ER PT J AU Chang, KB Frazer, L Schwartz, JJ Ketterson, JB Poeppelmeier, KR AF Chang, Kelvin B. Frazer, Laszlo Schwartz, Johanna J. Ketterson, John B. Poeppelmeier, Kenneth R. TI Removal of Copper Vacancies in Cuprous Oxide Single Crystals Grown by the Floating Zone Method SO CRYSTAL GROWTH & DESIGN LA English DT Article ID ELECTRICAL-CONDUCTIVITY; POINT-DEFECTS; ELEVATED-TEMPERATURES; OXIDATION MECHANISM; CZOCHRALSKI GROWTH; BRIDGMAN METHOD; CU2O; FILMS; MELT; CUO AB Single crystals of cuprous oxide (Cu2O) with minimal defects were grown using the optical floating zone technique. Copper vacancies were removed through the promotion of CuO precipitation within the bulk Cu2O crystal following the reaction Cu-Cu(Cu2O)+ V-Cu(Cu2O) + O-O(Cu2O) -> Cu-Cu(CuO) + O-O(CuO). This reaction was promoted through the use of high purity samples and by growing crystals under an oxidizing atmosphere. Although an increase in the oxygen concentration of the atmosphere will initially increase the oxygen to copper ratio, the excess oxygen in the final Cu2O crystal is ultimately decreased through the formation of CuO as the crystal cools. Copper vacancies were reduced further, and the CuO phase was eventually removed from the Cu2O crystal when thin slices of the crystal were annealed. C1 [Chang, Kelvin B.; Poeppelmeier, Kenneth R.] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA. [Frazer, Laszlo; Schwartz, Johanna J.; Ketterson, John B.] Northwestern Univ, Dept Phys, Evanston, IL 60208 USA. [Ketterson, John B.] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA. [Poeppelmeier, Kenneth R.] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA. RP Poeppelmeier, KR (reprint author), Northwestern Univ, Dept Chem, 2145 Sheridan Rd, Evanston, IL 60208 USA. EM krp@northwestern.edu OI Frazer, Laszlo/0000-0003-3574-8003 FU Argonne National Laboratory under U.S. Department of Energy [DE-AC02-06CH11357]; Center for Inverse Design, an Energy Frontier Research Center; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC-36-08GO28308] FX The authors thank Alexandre Revcolevschi for helpful discussions. Crystal growth was supported by NSF DMR-1307698 and in part by Argonne National Laboratory under U.S. Department of Energy contract DE-AC02-06CH11357. Optical measurements were supported by NSF IGERT DGE-0801685. K.C. was supported as part of the Center for Inverse Design, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under award number DE-AC-36-08GO28308. This work made use of the J. B. Cohen X-Ray Diffraction Facility and Optical Microscopy and Metallography Facility supported by the MRSEC program of the National Science Foundation (DMR-1121262) at the Materials Research Center of Northwestern University. NR 47 TC 10 Z9 10 U1 0 U2 40 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD NOV PY 2013 VL 13 IS 11 BP 4914 EP 4922 DI 10.1021/cg401081m PG 9 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 249KB UT WOS:000326775000036 ER PT J AU Burrows, CW Dobbie, A Myronov, M Hase, TPA Wilkins, SB Walker, M Mudd, JJ Maskery, I Lees, MR McConville, CF Leadley, DR Bell, GR AF Burrows, Christopher W. Dobbie, Andrew Myronov, Maksym Hase, Thomas P. A. Wilkins, Stuart B. Walker, Marc Mudd, James J. Maskery, Ian Lees, Martin R. McConville, Christopher F. Leadley, David R. Bell, Gavin R. TI Heteroepitaxial Growth of Ferromagnetic MnSb(0001) Films on Ge/Si(111) Virtual Substrates SO CRYSTAL GROWTH & DESIGN LA English DT Article ID SURFACE RECONSTRUCTIONS; SPIN INJECTION; MNSB; MICROSTRUCTURE AB Molecular beam epitaxial growth of ferromagnetic MnSb(0001) has been achieved on high quality, fully relaxed Ge(111)/Si(111) virtual substrates grown by reduced pressure chemical vapor deposition. The epilayers were characterized using reflection high energy electron diffraction, synchrotron hard X-ray diffraction, X-ray photoemission spectroscopy, and magnetometry. The surface reconstructions, magnetic properties, crystalline quality, and strain relaxation behavior of the MnSb films are similar to those of MnSb grown on GaAs(111). In contrast to GaAs substrates, segregation of substrate atoms through the MnSb film does not occur, and alternative polymorphs of MnSb are absent. C1 [Burrows, Christopher W.; Dobbie, Andrew; Myronov, Maksym; Hase, Thomas P. A.; Walker, Marc; Mudd, James J.; Maskery, Ian; Lees, Martin R.; McConville, Christopher F.; Leadley, David R.; Bell, Gavin R.] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. [Wilkins, Stuart B.] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA. RP Bell, GR (reprint author), Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England. EM gavin.bell@warwick.ac.uk RI Lees, Martin/D-9584-2013; Mudd, James/A-4469-2013; OI Lees, Martin/0000-0002-2270-2295; Mudd, James/0000-0002-4382-8903; Maskery, Ian/0000-0003-1729-4837 FU U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886]; EPSRC (UK) [EP/I00114X/1]; Science City Advanced Materials Project 1: Creating and Characterizing Next Generation of Advanced Materials; Advantage West Midlands (AWM); European Regional Development Fund (ERDF) FX Work undertaken at the National Synchrotron Light Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract Number DE-AC02-98CH10886. We acknowledge the support of EPSRC (UK) through the Doctoral Training Grant and an Overseas Travel Grant EP/I00114X/1. The XPS system used in this research was funded through the Science City Advanced Materials Project 1: Creating and Characterizing Next Generation of Advanced Materials with support from Advantage West Midlands (AWM) and European Regional Development Fund (ERDF). We are grateful to R I. Johnston for expert technical support. NR 34 TC 7 Z9 8 U1 0 U2 22 PU AMER CHEMICAL SOC PI WASHINGTON PA 1155 16TH ST, NW, WASHINGTON, DC 20036 USA SN 1528-7483 EI 1528-7505 J9 CRYST GROWTH DES JI Cryst. Growth Des. PD NOV PY 2013 VL 13 IS 11 BP 4923 EP 4929 DI 10.1021/cg4011136 PG 7 WC Chemistry, Multidisciplinary; Crystallography; Materials Science, Multidisciplinary SC Chemistry; Crystallography; Materials Science GA 249KB UT WOS:000326775000037 ER PT J AU Scott, DE Komoroski, MJ Croshaw, DA Dixon, PM AF Scott, David E. Komoroski, Mark J. Croshaw, Dean A. Dixon, Philip M. TI Terrestrial distribution of pond-breeding salamanders around an isolated wetland SO ECOLOGY LA English DT Article DE Ambystoma opacum; Ambystoma talpoideum; dispersal; isolated wetland; juvenile emigration; pond-breeding salamander; terrestrial buffer zone; terrestrial distribution ID AMBYSTOMA-OPACUM; HABITAT LOSS; SPOTTED SALAMANDERS; LARVAL DENSITY; BUFFER ZONES; LANDSCAPE COMPOSITION; FOREST FRAGMENTATION; POPULATION-DYNAMICS; MARBLED SALAMANDER; SPECIES RICHNESS AB Terrestrial habitats surrounding isolated wetlands are a critical resource for many pond-breeding amphibian species, yet few studies have examined the terrestrial distribution of post-metamorphic juveniles and adults. We used an encircling drift fence at a breeding pond in conjunction with partial fences at 90, 172, and 332 m from the wetland to estimate the terrestrial distribution of adult marbled salamanders (Ambystoma opacum; four breeding seasons) and mole salamanders (A. talpoideum; two seasons), as well as the dispersion of newly metamorphosed A. opacum (one summer). For newly metamorphosed A. opacum, 79% emigrated <90 m from the wetland, and 8% moved beyond 172 m; movement distance was unrelated to body size. Distribution of adult A. opacum varied among years, with an average of 28% (range 23-31%) occurring beyond 172 m in all years. Averaged across two years, 51% of adult A. talpoideum occurred beyond 172 m. Lognormal models provided a good fit to both the juvenile and adult ambystomatid distributions, and parameters differed between age classes, sexes, species, and years within species. For adult A. opacum a buffer radius of 300 m or 340 m, depending on the year, is estimated to include 95% of adults; for A. talpoideum the estimate is 464 m or 501 m. A reanalysis of distribution data for seven ambystomatid species shows that a previous estimate of a 164-m radius to protect 95% of a population underestimates the needed buffer radius by 185 m. Because our study wetland requires a nearly 500 m wide radius to protect 95% of its ambystomatid adults, preservation of similar communities may require much more surrounding terrestrial habitat than previously thought. C1 [Scott, David E.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. [Komoroski, Mark J.] Swansea High Sch, Swansea, SC 29160 USA. [Croshaw, Dean A.] Florida Gulf Coast Univ, Dept Biol Sci, Ft Myers, FL 33965 USA. [Dixon, Philip M.] Iowa State Univ, Dept Stat, Ames, IA 50011 USA. RP Scott, DE (reprint author), Univ Georgia, Savannah River Ecol Lab, Aiken, SC 29802 USA. EM dsopacum@gmail.com FU Department of Energy [DE-FC09-07SR22506]; University of New Orleans; NIH [1K12 GM000708] FX This study was supported by the Department of Energy under Award Number DE-FC09-07SR22506 to the University of Georgia Research Foundation, made possible by the DOE Set-Aside Program, and enhanced by the status of the SRS as a National Environmental Research Park (NERP). J. Nestor, B. Metts, K. Stark, and S. Wiens assisted in checking the drift fences and processing animals. The manuscript benefited from early reviews by L. Janecek, J. Pechmann, S. Lance, W. Fields, and B. Rothermel, and final reviews by P. Trenham and an anonymous reviewer. D. A. Croshaw was supported by a Board of Regents Superior Graduate Fellowship from the University of New Orleans and NIH Training Grant #1K12 GM000708 to the Center for Insect Science, University of Arizona. NR 56 TC 5 Z9 5 U1 3 U2 46 PU ECOLOGICAL SOC AMER PI WASHINGTON PA 1990 M STREET NW, STE 700, WASHINGTON, DC 20036 USA SN 0012-9658 EI 1939-9170 J9 ECOLOGY JI Ecology PD NOV PY 2013 VL 94 IS 11 BP 2537 EP 2546 DI 10.1890/12-1999.1 PG 10 WC Ecology SC Environmental Sciences & Ecology GA 248OX UT WOS:000326712100016 PM 24400505 ER PT J AU Inomata, Y Kajino, M Sato, K Ohara, T Kurokawa, J Ueda, H Tang, N Hayakawa, K Ohizumi, T Akimoto, H AF Inomata, Yayoi Kajino, Mizuo Sato, Keiichi Ohara, Toshimasa Kurokawa, Jun-ichi Ueda, Hiromasa Tang, Ning Hayakawa, Kazuichi Ohizumi, Tsuyoshi Akimoto, Hajime TI Source contribution analysis of surface particulate polycyclic aromatic hydrocarbon concentrations in northeastern Asia by source-receptor relationships SO ENVIRONMENTAL POLLUTION LA English DT Article DE Particulate PAHs; Model simulation; Source receptor relationships; Northeast Asia; Transboundary transport ID LONG-RANGE TRANSPORT; GASEOUS DRY DEPOSITION; EAST-ASIA; EMISSION INVENTORY; ATMOSPHERIC TRANSPORT; WET DEPOSITION; MODEL; CHINA; GAS; PARAMETERIZATION AB We analyzed the source receptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Old and Tsushima (Japan), transboundary transport from northern China (>40 degrees N, 40-60%) and central China (30-40 degrees N, 10-40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40-80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAM species depending on their particulate phase oxidation rates. Reaction with O-3 on particulate surfaces may be an important component of the PAH oxidation processes. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Inomata, Yayoi; Sato, Keiichi; Kurokawa, Jun-ichi; Ohizumi, Tsuyoshi; Akimoto, Hajime] Asia Ctr Air Pollut Res, Nishi Ku, Niigata 9502144, Japan. [Kajino, Mizuo] Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan. [Kajino, Mizuo] Pacific NW Natl Lab, Richland, WA 99352 USA. [Ohara, Toshimasa; Kurokawa, Jun-ichi] Natl Inst Environm Studies, Tsukuba, Ibaraki 3058506, Japan. [Ueda, Hiromasa] Toyohashi Univ Technol, Toyohashi, Aichi 4418580, Japan. [Tang, Ning; Hayakawa, Kazuichi] Kanazawa Univ, Grad Sch Nat Sci & Technol, Kanazawa, Ishikawa 9201154, Japan. RP Inomata, Y (reprint author), Asia Ctr Air Pollut Res, Nishi Ku, 1182 Sowa, Niigata 9502144, Japan. EM inomata@acap.asia RI Tang, Ning/B-9319-2015 OI Tang, Ning/0000-0002-3106-6534 FU Ministry of the Environment, Japan [B-0905, 5-1306, A-1101] FX This research was financially supported by the Environment Research and Technology Development Fund (Project No. B-0905, 5-1306, and A-1101) of the Ministry of the Environment, Japan. We wish to thank Dr. M. Shiraiwa of Max Planck Institute for Chemistry for valuable comments with respect to the heterogeneous reaction of PAHs. NR 59 TC 3 Z9 3 U1 1 U2 32 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0269-7491 EI 1873-6424 J9 ENVIRON POLLUT JI Environ. Pollut. PD NOV PY 2013 VL 182 BP 324 EP 334 DI 10.1016/j.envpol.2013.07.020 PG 11 WC Environmental Sciences SC Environmental Sciences & Ecology GA 247YU UT WOS:000326661700040 PM 23973884 ER PT J AU Hutter, C Sanna, A Karayiannis, TG Kenning, DBR Nelson, RA Sefiane, K Walton, AJ AF Hutter, C. Sanna, A. Karayiannis, T. G. Kenning, D. B. R. Nelson, R. A. Sefiane, K. Walton, A. J. TI Vertical coalescence during nucleate boiling from a single artificial cavity SO EXPERIMENTAL THERMAL AND FLUID SCIENCE LA English DT Article DE Nucleate pool boiling; Single bubble growth; Vertical coalescence; Artificial cavity ID HEAT-TRANSFER; PHYSICAL-MECHANISMS; BUBBLE; SURFACE; LIQUID; FC-72; DYNAMICS; SILICON AB In this experimental study bubble growth from an isolated artificial cavity micro-fabricated on a 380 gm thick silicon wafer was investigated. The horizontally oriented boiling surface was heated by a thin resistance heater integrated on the rear of the silicon test section. The temperature was measured using an integrated micro-sensor situated on the boiling surface with the artificial cavity located in its geometrical centre. To conduct saturated pool boiling experiments the test section was immersed in degassed fluorinert FC-72. Bubble nucleation, growth, detachment and the evaporative heat flux at different pressures were analysed using high-speed imaging and temperature micro-sensors. Vertical coalescence was initially observed at the boundary between the isolated bubble and interference regimes. For wall superheats outside the isolated bubble regime, the occurrence of vertical coalescence is decreasing with increasing pressure. Although vertical coalescence seems initially more frequent with increasing wall superheat, the explicit dependency on temperature is covered by the scattering nature of the data. The applied heat flux was compared to the evaporative heat flux, nominally based on an arbitrary chosen area of influence on the boiling substrate. (C) 2013 Elsevier Inc. All rights reserved. C1 [Hutter, C.; Sefiane, K.; Walton, A. J.] Univ Edinburgh, Sch Engn, Edinburgh EH9 3JL, Midlothian, Scotland. [Sanna, A.; Karayiannis, T. G.; Kenning, D. B. R.] Brunel Univ, Sch Engn & Design, Uxbridge UB8 3PH, Middx, England. [Nelson, R. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Sefiane, K (reprint author), Univ Edinburgh, Sch Engn, Kings Bldg,Mayfield Rd, Edinburgh EH9 3JL, Midlothian, Scotland. EM K.Sefiane@ed.ac.uk RI Walton, Anthony/A-1550-2010 FU UK Engineering and Physical Sciences Research Council (EPSRC) [EP/C532813/1] FX This work was funded by the UK Engineering and Physical Sciences Research Council (EPSRC) by Grant EP/C532813/1. The authors are grateful to H. Lin and G. Cummins for the silicon device fabrication and the surface roughness measurements. NR 20 TC 1 Z9 1 U1 3 U2 24 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0894-1777 EI 1879-2286 J9 EXP THERM FLUID SCI JI Exp. Therm. Fluid Sci. PD NOV PY 2013 VL 51 BP 94 EP 102 DI 10.1016/j.expthermflusci.2013.07.005 PG 9 WC Thermodynamics; Engineering, Mechanical; Physics, Fluids & Plasmas SC Thermodynamics; Engineering; Physics GA 249HH UT WOS:000326767800010 ER PT J AU Marchesini, S Schirotzek, A Yang, C Wu, HT Maia, F AF Marchesini, Stefano Schirotzek, Andre Yang, Chao Wu, Hau-tieng Maia, Filipe TI Augmented projections for ptychographic imaging SO INVERSE PROBLEMS LA English DT Article ID WIGNER-DISTRIBUTION DECONVOLUTION; TRANSVERSE TRANSLATION DIVERSITY; PHASE-RETRIEVAL ALGORITHMS; ELECTRON DIFFRACTION; WAVE-FIELD; MICROSCOPY AB Ptychography is a popular technique to achieve diffraction limited resolution images of a two- or three-dimensional sample using high frame rate detectors. We introduce a relaxation of common projection algorithms to account for instabilities given by intensity and background fluctuations, position errors, or poor calibration using multiplexing illumination. This relaxation introduces an additional phasing optimization at every step that enhances the convergence rate of common projection algorithms. Numerical tests exhibit the exact recovery of the object and the perturbations when there is high redundancy in the data. C1 [Marchesini, Stefano; Schirotzek, Andre] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Yang, Chao] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Wu, Hau-tieng] Univ Calif Berkeley, Berkeley, CA 94720 USA. [Maia, Filipe] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, NERSC, Berkeley, CA 94720 USA. RP Marchesini, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. EM smarchesini@lbl.gov; aschirotzek@lbl.gov; cyang@lbl.gov; hauwu@berkeley.edu; frmaia@lbl.gov RI Rocha Neves Couto Maia, Filipe/C-3146-2014; OI Rocha Neves Couto Maia, Filipe/0000-0002-2141-438X; Wu, Hau-tieng/0000-0002-0253-3156 FU Applied Mathematical Sciences subprogram of the Office of Energy Research; US Department of Energy [DE-AC02-05CH11231]; Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory; National Energy Research Scientific Computing Center (NERSC); Director, Office of Advanced Scientific Computing Research; Purdue National Science Foundation of United States [CCF-0939370, DMS-1160319] FX The authors thank Professors Bin Yu and Jeff Donatelli for discussions. This research was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, US Department of Energy, under contract DE-AC02-05CH11231 (SM, CY), and by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under the US Department of Energy contract number DE-AC02-05CH11231 (AS), and by the Director, Office of Science, Advanced Scientific Computing Research, of the US Department of Energy under Contract No DE-AC02-05CH11231 (FM). The computational results presented were obtained at the National Energy Research Scientific Computing Center (NERSC), which is supported by the Director, Office of Advanced Scientific Computing Research of the US Department of Energy under contract number DE-AC02-05CH11232. H-tW acknowledges the support by Purdue National Science Foundation of United States (CCF-0939370) and Focused Research Group (DMS-1160319). NR 40 TC 16 Z9 16 U1 1 U2 14 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0266-5611 EI 1361-6420 J9 INVERSE PROBL JI Inverse Probl. PD NOV PY 2013 VL 29 IS 11 DI 10.1088/0266-5611/29/11/115009 PG 23 WC Mathematics, Applied; Physics, Mathematical SC Mathematics; Physics GA 248UK UT WOS:000326729500009 ER PT J AU Smalikho, IN Banakh, VA Pichugina, YL Brewer, WA Banta, RM Lundquist, JK Kelley, ND AF Smalikho, I. N. Banakh, V. A. Pichugina, Y. L. Brewer, W. A. Banta, R. M. Lundquist, J. K. Kelley, N. D. TI Lidar Investigation of Atmosphere Effect on a Wind Turbine Wake SO JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY LA English DT Article DE Wind; Lidars; Lidar observations ID COHERENT DOPPLER LIDAR; ENERGY-DISSIPATION RATE; LOW-LEVEL JET; BOUNDARY-LAYER; PART I; PROFILES; VELOCITY; SENSITIVITY; MODEL; SODAR AB An experimental study of the spatial wind structure in the vicinity of a wind turbine by a NOAA coherent Doppler lidar has been conducted. It was found that a working wind turbine generates a wake with the maximum velocity deficit varying from 27% to 74% and with the longitudinal dimension varying from 120 up to 1180 m, depending on the wind strength and atmospheric turbulence. It is shown that, at high wind speeds, the twofold increase of the turbulent energy dissipation rate (from 0.0066 to 0.013 m(2) s(-3)) leads, on average, to halving of the longitudinal dimension of the wind turbine wake (from 680 to 340 m). C1 [Smalikho, I. N.; Banakh, V. A.] RAS, SB, VE Zuev Inst Atmospher Opt, Tomsk 634021, Russia. [Pichugina, Y. L.; Brewer, W. A.; Banta, R. M.] NOAA, Earth Syst Res Lab, Boulder, CO USA. [Lundquist, J. K.; Kelley, N. D.] Natl Renewable Energy Lab, Golden, CO USA. RP Smalikho, IN (reprint author), RAS, SB, VE Zuev Inst Atmospher Opt, 1 Acad Zuev Sq, Tomsk 634021, Russia. EM smalikho@iao.ru RI Banta, Robert/B-8361-2008; Manager, CSD Publications/B-2789-2015 FU U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind and Hydropower Technologies program; Russian Foundation for Basic Research [10-05-9205]; Civilian Research and Development Foundation [RUG1-2981-TO-10] FX We thank our colleagues from the National Oceanic and Atmospheric Administration (NOAA), including R. M. Hardesty, R.-J. Alvarez, S. P. Sandberg, and A. M. Weickmann, and J. Mirocha from the Lawrence Livermore National Laboratory for preparing and conducting the experiment; John Brown from NOAA for his help with weather forecasting; Andrew Clifton from the National Renewable Energy Laboratory (NREL) for providing updates on tall-tower measurements; Padriac Fowler and Paul Quelet for updates on turbine operations; and Michael Stewart from NREL for his help with security and safety issues. Funding for this experiment was from the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind and Hydropower Technologies program. This work was also supported by the Russian Foundation for Basic Research (Project 10-05-9205) and the Civilian Research and Development Foundation (Project RUG1-2981-TO-10). NR 44 TC 22 Z9 24 U1 4 U2 26 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0739-0572 EI 1520-0426 J9 J ATMOS OCEAN TECH JI J. Atmos. Ocean. Technol. PD NOV PY 2013 VL 30 IS 11 BP 2554 EP 2570 DI 10.1175/JTECH-D-12-00108.1 PG 17 WC Engineering, Ocean; Meteorology & Atmospheric Sciences SC Engineering; Meteorology & Atmospheric Sciences GA 251SQ UT WOS:000326951400004 ER PT J AU Mukhopadhyay, S Liu, HH Spycher, N Kennedy, BM AF Mukhopadhyay, Sumit Liu, H. -H. Spycher, N. Kennedy, B. M. TI Impact of fluid-rock chemical interactions on tracer transport in fractured rocks SO JOURNAL OF CONTAMINANT HYDROLOGY LA English DT Article DE Tracer transport; Reactive; Fluid-rock interactions; Fractured rocks; Dual-permeability; Fracture spacing; Fracture-matrix interface area ID LAPLACE TRANSFORMS; NUMERICAL INVERSION; POROUS-MEDIA; CONTAMINANT TRANSPORT; MATRIX DIFFUSION; FISSURED ROCKS; ALGORITHM; COSINE; MODEL AB In this paper, we investigate the impact of chemical interactions, in the form of mineral precipitation and dissolution reactions, on tracer transport in fractured rocks. When a tracer is introduced in fractured rocks, it moves through the fracture primarily by advection and it also enters the stagnant water of the surrounding rock matrix through diffusion. Inside the porous rock matrix, the tracer chemically interacts with the solid materials of the rock, where it can precipitate depending on the local equilibrium conditions. Alternatively, it can be dissolved from the solid phase of the rock matrix into the matrix pore water, diffuse into the flowing fluids of the fracture and is advected out of it. We show that such chemical interactions between the fluid and solid phases have significant impact on tracer transport in fractured rocks. We invoke the dual-porosity conceptualization to represent the fractured rocks and develop a semi-analytical solution to describe the transient transport of tracers in interacting fluid-rock systems. To test the accuracy and stability of the semi-analytical solution, we compare it with simulation results obtained with the TOUGHREACT simulator. We observe that, in a chemically interacting system, the tracer breakthrough curve exhibits a pseudo-steady state, where the tracer concentration. remains more or less constant over a finite period of time. Such a pseudo-steady condition is not observed in a non-reactive fluid-rock system. We show that the duration of the pseudo-state depends on the physical and chemical parameters of the system, and can be exploited to extract information about the fractured rock system, such as the fracture spacing and fracture-matrix interface area. Published by Elsevier B.V. C1 [Mukhopadhyay, Sumit; Liu, H. -H.; Spycher, N.; Kennedy, B. M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Mukhopadhyay, S (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM SMukhopadhyay@lbl.gov RI Spycher, Nicolas/E-6899-2010 FU U.S. Department of Energy; Berkeley Lab through the U.S. Department of Energy [DE-AC02-05CH11231] FX We thank the anonymous journal reviewers for their careful and critical review of the manuscript. We also thank Jim Houseworth and Daniel Hawkes of the Lawrence Berkeley National Laboratory for their careful review of the draft manuscript. This work was supported in part by the U.S. Department of Energy. The support is provided by the Berkeley Lab through the U.S. Department of Energy Contract No. DE-AC02-05CH11231. NR 26 TC 3 Z9 3 U1 5 U2 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-7722 EI 1873-6009 J9 J CONTAM HYDROL JI J. Contam. Hydrol. PD NOV PY 2013 VL 154 BP 42 EP 52 DI 10.1016/j.jconhyd.2013.08.008 PG 11 WC Environmental Sciences; Geosciences, Multidisciplinary; Water Resources SC Environmental Sciences & Ecology; Geology; Water Resources GA 248AD UT WOS:000326665200005 PM 24077359 ER PT J AU Alvarez, CJ Liu, YZ Leonard, RL Johnson, JA Petford-Long, AK AF Alvarez, Carlos J. Liu, Yuzi Leonard, Russell L. Johnson, Jacqueline A. Petford-Long, Amanda K. TI Nanocrystallization in Fluorochlorozirconate Glass-Ceramics SO JOURNAL OF THE AMERICAN CERAMIC SOCIETY LA English DT Article ID PHOTOSTIMULATED LUMINESCENCE; FLUOROZIRCONATE GLASSES; FLUORIDE GLASSES; CRYSTALLIZATION AB Heat treating fluorochlorozirconate (FCZ) glasses nucleates nanocrystals in the glass matrix, resulting in a nanocomposite glass-ceramic that has optical properties suitable for use as a medical imaging plate. Understanding the way in which the nanocrystal nucleation proceeds is critical to controlling the optical behavior. The nucleation and growth of nanocrystals in FCZ glass-ceramics was investigated with in situ transmission electron microscopy heating experiments. The experiments showed the nucleation and growth of previously unreported BaF2 nanocrystals in addition to the expected BaCl2 nanocrystals. Chemical analysis of the BaF2 nanocrystals shows an association with the optically active dopant previously thought only to interact with BaCl2 nanocrystals. The association of the dopant with BaF2 crystals suggests that it plays a role in the photoluminescent (PL) properties of FCZ glass-ceramics. C1 [Alvarez, Carlos J.; Petford-Long, Amanda K.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. [Alvarez, Carlos J.; Liu, Yuzi; Petford-Long, Amanda K.] Argonne Natl Lab, Nanosci & Technol Div, Argonne, IL 60439 USA. [Leonard, Russell L.; Johnson, Jacqueline A.] Univ Tennessee, Mech Aerosp & Biomed Engn Dept, Inst Space, Tullahoma, TN 37388 USA. RP Alvarez, CJ (reprint author), Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. EM cja@u.northwestern.edu RI Petford-Long, Amanda/P-6026-2014; Johnson, Jacqueline/P-4844-2014; Liu, Yuzi/C-6849-2011 OI Petford-Long, Amanda/0000-0002-3154-8090; Johnson, Jacqueline/0000-0003-0830-9275; FU National Science Foundation [DMR-1001381]; Center for Nanoscale Materials at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory by UChicago Argonne, LLC [DE-AC02-06CH11357]; Argonne, a U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357] FX The authors thank the National Science Foundation for their support under grant no. DMR-1001381. We acknowledge use of the Electron Microscopy Center for Materials Research and the Center for Nanoscale Materials at Argonne National Laboratory, a U.S. Department of Energy Office of Science Laboratory operated under contract no. DE-AC02-06CH11357 by UChicago Argonne, LLC. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. RL and JJ thank Ms. Sharon Gray for her assistance and the Center for Laser Applications (CLA) at the University of Tennessee Space Institute (UTSI) for its support and use of facilities. NR 30 TC 4 Z9 4 U1 1 U2 36 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0002-7820 EI 1551-2916 J9 J AM CERAM SOC JI J. Am. Ceram. Soc. PD NOV PY 2013 VL 96 IS 11 BP 3617 EP 3621 DI 10.1111/jace.12540 PG 5 WC Materials Science, Ceramics SC Materials Science GA 248OY UT WOS:000326712200041 PM 24707056 ER PT J AU Maguire, K Sullivan, M Patat, F Gal-Yam, A Hook, IM Dhawan, S Howell, DA Mazzali, P Nugent, PE Pan, YC Podsiadlowski, P Simon, JD Sternberg, A Valenti, S Baltay, C Bersier, D Blagorodnova, N Chen, TW Ellman, N Feindt, U Foerster, F Fraser, M Gonzalez-Gaitan, S Graham, ML Gutierrez, C Hachinger, S Hadjiyska, E Inserra, C Knapic, C Laher, RR Leloudas, G Margheim, S McKinnon, R Molinaro, M Morrell, N Ofek, EO Rabinowitz, D Rest, A Sand, D Smareglia, R Smartt, SJ Taddia, F Walker, ES Walton, NA Young, DR AF Maguire, K. Sullivan, M. Patat, F. Gal-Yam, A. Hook, I. M. Dhawan, S. Howell, D. A. Mazzali, P. Nugent, P. E. Pan, Y. -C. Podsiadlowski, P. Simon, J. D. Sternberg, A. Valenti, S. Baltay, C. Bersier, D. Blagorodnova, N. Chen, T. -W. Ellman, N. Feindt, U. Foerster, F. Fraser, M. Gonzalez-Gaitan, S. Graham, M. L. Gutierrez, C. Hachinger, S. Hadjiyska, E. Inserra, C. Knapic, C. Laher, R. R. Leloudas, G. Margheim, S. McKinnon, R. Molinaro, M. Morrell, N. Ofek, E. O. Rabinowitz, D. Rest, A. Sand, D. Smareglia, R. Smartt, S. J. Taddia, F. Walker, E. S. Walton, N. A. Young, D. R. TI A statistical analysis of circumstellar material in Type Ia supernovae SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE circumstellar matter; supernovae: general; distance scale ID HUBBLE-SPACE-TELESCOPE; HOST GALAXY PROPERTIES; DIGITAL SKY SURVEY; BVRI LIGHT CURVES; WHITE-DWARF STAR; SN 2011FE; KEPLERS SUPERNOVA; DARK-ENERGY; MAXIMUM BRIGHTNESS; EQUIVALENT WIDTHS AB A key tracer of the elusive progenitor systems of Type Ia supernovae (SNe Ia) is the detection of narrow blueshifted time-varying Na I D absorption lines, interpreted as evidence of circumstellar material surrounding the progenitor system. The origin of this material is controversial, but the simplest explanation is that it results from previous mass-loss in a system containing a white dwarf and a non-degenerate companion star. We present new single-epoch intermediate-resolution spectra of 17 low-redshift SNe Ia taken with XShooter on the European Southern Observatory Very Large Telescope. Combining this sample with events from the literature, we confirm an excess (similar to 20 per cent) of SNe Ia displaying blueshifted narrow Na I D absorption features compared to redshifted Na I D features. The host galaxies of SNe Ia displaying blueshifted absorption profiles are skewed towards later-type galaxies, compared to SNe Ia that show no Na I D absorption and SNe Ia displaying blueshifted narrow Na I D absorption features have broader light curves. The strength of the Na I D absorption is stronger in SNe Ia displaying blueshifted Na I D absorption features than those without blueshifted features, and the strength of the blueshifted Na I D is correlated with the B - V colour of the SN at maximum light. This strongly suggests the absorbing material is local to the SN. In the context of the progenitor systems of SNe Ia, we discuss the significance of these findings and other recent observational evidence on the nature of SN Ia progenitors. We present a summary that suggests that there are at least two distinct populations of normal, cosmologically useful SNe Ia. C1 [Maguire, K.; Hook, I. M.; Dhawan, S.; Pan, Y. -C.; Podsiadlowski, P.] Univ Oxford, Dept Phys Astrophys, DWB, Oxford OX1 3RH, England. [Sullivan, M.] Univ Southampton, Southampton SO17 1BJ, Hants, England. [Patat, F.] European Org Astron Res Southern Hemisphere ESO, D-85748 Garching, Germany. [Gal-Yam, A.; Ofek, E. O.] Weizmann Inst Sci, Benoziyo Ctr Astrophys, IL-76100 Rehovot, Israel. [Hook, I. M.] INAF Osservatorio Astron Roma, I-00040 Monte Porzio Catone, Roma, Italy. [Howell, D. A.; Valenti, S.; Graham, M. L.] Las Cumbres Observ Global Telescope Network, Goleta, CA 93117 USA. [Howell, D. A.; Valenti, S.; Graham, M. L.] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Mazzali, P.; Bersier, D.] Liverpool John Moores, Liverpool L3 5RF, Merseyside, England. [Nugent, P. E.] CALTECH, Cahill Ctr Astrophys, Pasadena, CA 91125 USA. [Nugent, P. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Cosmol Ctr, Berkeley, CA 94720 USA. [Simon, J. D.] Observ Carnegie Inst Washington, Pasadena, CA 91101 USA. [Sternberg, A.] Max Planck Inst Astrophys, D-85748 Garching, Germany. [Baltay, C.; Ellman, N.; Hadjiyska, E.; McKinnon, R.; Rabinowitz, D.; Walker, E. S.] Yale Univ, Dept Phys, New Haven, CT 06250 USA. [Blagorodnova, N.; Walton, N. A.] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England. [Chen, T. -W.; Fraser, M.; Inserra, C.; Smartt, S. J.; Young, D. R.] Queens Univ Belfast, Sch Math & Phys, Astrophys Res Ctr, Belfast BT7 1NN, Antrim, North Ireland. [Feindt, U.] Univ Bonn, Inst Phys, D-53115 Bonn, Germany. [Foerster, F.; Gonzalez-Gaitan, S.; Gutierrez, C.] Univ Chile, Dept Astron, Santiago, Chile. [Hachinger, S.] Univ Wurzburg, D-97074 Wurzburg, Germany. [Knapic, C.; Molinaro, M.; Smareglia, R.] INAF Osservatorio Astron Trieste, I-34143 Trieste, Italy. [Laher, R. R.] CALTECH, Spitzer Sci Ctr, Pasadena, CA 91125 USA. [Leloudas, G.] Stockholm Univ, Dept Phys, Oskar Klein Ctr, AlbaNova, S-10691 Stockholm, Sweden. [Leloudas, G.] Univ Copenhagen, Niels Bohr Inst, Dark Cosmol Ctr, DK-2100 Copenhagen, Denmark. [Margheim, S.] Southern Operat Ctr, Gemini Observ, La Serena, Chile. [Morrell, N.] Carnegie Observ, Las Campanas Observ, La Serena, Chile. [Rest, A.] Space Telescope Sci Inst, Baltimore, MD 21218 USA. [Sand, D.] Texas Tech Univ, Dept Phys, Lubbock, TX 79409 USA. [Taddia, F.] Stockholm Univ, Dept Astron, Oskar Klein Ctr, AlbaNova, S-10691 Stockholm, Sweden. RP Maguire, K (reprint author), Univ Oxford, Dept Phys Astrophys, DWB, Keble Rd, Oxford OX1 3RH, England. EM kate.maguire@astro.ox.ac.uk OI Knapic, Cristina/0000-0002-4752-6777; Molinaro, Marco/0000-0001-5028-6041; Smareglia, Riccardo/0000-0001-9363-3007; Chen, Ting-Wan/0000-0002-1066-6098; Patat, Ferdinando/0000-0002-0537-3573; Inserra, Cosimo/0000-0002-3968-4409; Fraser, Morgan/0000-0003-2191-1674; Sullivan, Mark/0000-0001-9053-4820; Hook, Isobel/0000-0002-2960-978X FU Royal Society; European Research Council (ERC) under European Union [291222]; EU/FP7 via ERC; Minerva/ARCHES award; Kimmel award; Swedish Research Council [623-2011-7117]; UK Science and Technology Facilities Council; Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington FX MS acknowledges support from the Royal Society. Research leading to these results has received funding from the European Research Council (ERC) under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no [291222] (PI: Smartt). AG is supported by the EU/FP7 via an ERC grant, and by Minerva/ARCHES and Kimmel awards. SH is supported by a Minerva/ARCHES award. GL is supported by the Swedish Research Council through grant No. 623-2011-7117. Based on observations collected at the European Organisation for Astronomical Research in the Southern hemisphere, Chile, as part of PESSTO (the Public ESO Spectroscopic Survey for Transient Objects Survey) ESO programme ID 188.D-3003, as well as observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 090.D-0828(A) and 089.D-0647(A). Based on observations (GS-2012B-Q-86) obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministerio da Ciencia, Tecnologia e Inovacao (Brazil) and Ministerio de Ciencia, Tecnologia e Innovacion Productiva (Argentina). Based in part on data from the 1.3 m telescope operated by the SMARTS consortium.; The Liverpool Telescope is operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. Observations were obtained with the Samuel Oschin Telescope at the Palomar Observatory as part of the Palomar Transient factory project, a scientific collaboration between the California Institute of Technology, Columbia Unversity, La Cumbres Observatory, the Lawrence Berkeley National Laboratory, the National Energy Research Scientific Computing Center, the University of Oxford and the Weizmann Institute of Science. The William Herschel Telescope is operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. This paper uses observations obtained with facilities of the Las Cumbres Observatory Global Telescope. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory and the University of Washington. NR 123 TC 45 Z9 45 U1 0 U2 7 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2013 VL 436 IS 1 BP 222 EP 240 DI 10.1093/mnras/stt1586 PG 19 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 245BY UT WOS:000326435100040 ER PT J AU Maraston, C Pforr, J Henriques, BM Thomas, D Wake, D Brownstein, JR Capozzi, D Tinker, J Bundy, K Skibba, RA Beifiori, A Nichol, RC Edmondson, E Schneider, DP Chen, Y Masters, KL Steele, O Bolton, AS York, DG Weaver, BA Higgs, T Bizyaev, D Brewington, H Malanushenko, E Malanushenko, V Snedden, S Oravetz, D Pan, K Shelden, A Simmons, A AF Maraston, Claudia Pforr, Janine Henriques, Bruno M. Thomas, Daniel Wake, David Brownstein, Joel R. Capozzi, Diego Tinker, Jeremy Bundy, Kevin Skibba, Ramin A. Beifiori, Alessandra Nichol, Robert C. Edmondson, Edd Schneider, Donald P. Chen, Yanmei Masters, Karen L. Steele, Oliver Bolton, Adam S. York, Donald G. Weaver, Benjamin A. Higgs, Tim Bizyaev, Dmitry Brewington, Howard Malanushenko, Elena Malanushenko, Viktor Snedden, Stephanie Oravetz, Daniel Pan, Kaike Shelden, Alaina Simmons, Audrey TI Stellar masses of SDSS-III/BOSS galaxies at z similar to 0.5 and constraints to galaxy formation models SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: evolution; galaxies: formation; galaxies: stellar content ID DIGITAL SKY SURVEY; COLOR-MAGNITUDE RELATION; LUMINOUS RED GALAXIES; OSCILLATION SPECTROSCOPIC SURVEY; ACTIVE GALACTIC NUCLEI; HUBBLE-DEEP-FIELD; EXTRAGALACTIC LEGACY SURVEY; INFRARED CLUSTER SURVEY; HIGH-REDSHIFT GALAXIES; LARGE-SCALE STRUCTURE AB We calculate stellar masses for similar to 400 000 massive luminous galaxies at redshift similar to 0.2-0.7 using the first two years of data from the Baryon Oscillation Spectroscopic Survey (BOSS). Stellar masses are obtained by fitting model spectral energy distributions to u, g, r, i, z magnitudes, and simulations with mock galaxies are used to understand how well the templates recover the stellar mass. Accurate BOSS spectroscopic redshifts are used to constrain the fits. We find that the distribution of stellar masses in BOSS is narrow (delta log M similar to 0.5 dex) and peaks at about log M/M-circle dot similar to 11.3 (for a Kroupa initial stellar mass function), and that the mass sampling is uniform over the redshift range 0.2-0.6, in agreement with the intended BOSS target selection. The galaxy masses probed by BOSS extend over similar to 10(12) M-circle dot, providing unprecedented measurements of the high-mass end of the galaxy mass function. We find that the galaxy number density above similar to 2.5 x 10(11) M-circle dot agrees with previous determinations. We perform a comparison with semi-analytic galaxy formation models tailored to the BOSS target selection and volume, in order to contain incompleteness. The abundance of massive galaxies in the models compare fairly well with the BOSS data, but the models lack galaxies at the massive end. Moreover, no evolution with redshift is detected from similar to 0.6 to 0.4 in the data, whereas the abundance of massive galaxies in the models increases to redshift zero. Additionally, BOSS data display colour-magnitude (mass) relations similar to those found in the local Universe, where the most massive galaxies are the reddest. On the other hand, the model colours do not display a dependence on stellar mass, span a narrower range and are typically bluer than the observations. We argue that the lack of a colour-mass relation for massive galaxies in the models is mostly due to metallicity, which is too low in the models. C1 [Maraston, Claudia; Thomas, Daniel; Capozzi, Diego; Nichol, Robert C.; Edmondson, Edd; Masters, Karen L.; Steele, Oliver; Higgs, Tim] Inst Cosm Ray Res, PO1 3FX Portsmouth, Hants, England. [Henriques, Bruno M.] Max Planck Inst Astrophys, D-85741 Munich, Germany. [Wake, David] Yale Univ, Dept Astron, New Haven, CT 06520 USA. [Brownstein, Joel R.; Chen, Yanmei] Nanjing Univ, Minist Educ, Key Lab Modern Astron & Astrophys, Nanjing 210093, Jiangsu, Peoples R China. [Tinker, Jeremy] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Bundy, Kevin] Univ Tokyo, Kavli IPMU, WPI, Todai Inst Adv Study, Kashiwa, Chiba 2778583, Japan. [Skibba, Ramin A.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Beifiori, Alessandra] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Chen, Yanmei] Nanjing Univ, Dept Astron, Nanjing 210093, Jiangsu, Peoples R China. [Bolton, Adam S.] Univ Utah, Dept Phys & Astron, Salt Lake City, UT 84112 USA. [York, Donald G.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60615 USA. [York, Donald G.] Univ Chicago, Fermi Inst, Chicago, IL 60615 USA. [Weaver, Benjamin A.] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA. [Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Snedden, Stephanie; Oravetz, Daniel; Pan, Kaike; Shelden, Alaina; Simmons, Audrey] Apache Point Observ, Sunspot, NM 88349 USA. RP Maraston, C (reprint author), Inst Cosm Ray Res, Dennis Sciama Bldg,Burnaby Rd, PO1 3FX Portsmouth, Hants, England. EM claudia.maraston@port.ac.uk RI Pforr, Janine/J-3967-2015; OI Pforr, Janine/0000-0002-3414-8391; Henriques, Bruno/0000-0002-1392-489X FU Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy Office of Science; ICG; SEPNet; University of Portsmouth FX Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation and the US Department of Energy Office of Science. The SDSS-III website is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington and Yale University.; Numerical computations were performed on the Sciama High Performance Compute (HPC) cluster which is supported by the ICG, SEPNet and the University of Portsmouth. NR 156 TC 64 Z9 65 U1 0 U2 6 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2013 VL 435 IS 4 BP 2764 EP 2792 DI 10.1093/mnras/stt1424 PG 29 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 236DP UT WOS:000325774700002 ER PT J AU Wilkins, SM Coulton, W Caruana, J Croft, R Di Matteo, T Khandai, N Feng, Y Bunker, A Elbert, H AF Wilkins, Stephen M. Coulton, William Caruana, Joseph Croft, Rupert Di Matteo, Tiziana Khandai, Nishikanta Feng, Yu Bunker, Andrew Elbert, Holly TI Theoretical predictions for the effect of nebular emission on the broad-band photometry of high-redshift galaxies SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: high-redshift; galaxies: photometry ID STAR-FORMING GALAXIES; ULTRA-DEEP-FIELD; SIMILAR-TO 7; STELLAR POPULATION SYNTHESIS; UV LUMINOSITY FUNCTION; EARLY RELEASE SCIENCE; LYMAN-BREAK GALAXIES; WFC3/IR OBSERVATIONS; DROP GALAXIES; EVOLUTION AB By combining optical and near-IR observations from the Hubble Space Telescope with near-IR photometry from the Spitzer Space Telescope, it is possible to measure the rest-frame UV-optical colours of galaxies at z = 4-8. The UV-optical spectral energy distribution of star formation dominated galaxies is the result of several different factors. These include the joint distribution of stellar masses, ages and metallicities (solely responsible for the pure stellar spectral energy distribution), and the subsequent reprocessing by dust and gas in the interstellar medium. Using a large cosmological hydrodynamical simulation (MassiveBlack-II), we investigate the predicted spectral energy distributions of galaxies at high redshift with a particular emphasis on assessing the potential contribution of nebular emission. We find that the average (median) pure stellar UV-optical colour correlates with both luminosity and redshift such that galaxies at lower redshift and higher luminosity are typically redder. Assuming that the escape fraction of ionizing photons is close to zero, the effect of nebular emission is to redden the UV-optical 1500 - V-w colour by, on average, 0.4 mag at z = 8 declining to 0.25 mag at z = 4. Young and low-metallicity stellar populations, which typically have bluer pure stellar UV-optical colours, produce larger ionizing luminosities and are thus more strongly affected by the reddening effects of nebular emission. This causes the distribution of 1500 - V-w colours to narrow and the trends with luminosity and redshift to weaken. The strong effect of nebular emission leaves observed-frame colours critically sensitive to the redshift of the source. For example, increasing the redshift by 0.1 can result in observed-frame colours changing by up to similar to 0.6. These predictions reinforce the need to include nebular emission when modelling the spectral energy distributions of galaxies at high redshift and also highlight the difficultly in interpreting the observed colours of individual galaxies without precise redshift information. C1 [Wilkins, Stephen M.] Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. [Wilkins, Stephen M.; Coulton, William; Caruana, Joseph; Croft, Rupert; Di Matteo, Tiziana; Bunker, Andrew; Elbert, Holly] Univ Oxford, Dept Phys, Oxford OX1 3RH, England. [Caruana, Joseph] Leibniz Inst Astrophys, D-14482 Potsdam, Germany. [Croft, Rupert; Di Matteo, Tiziana; Khandai, Nishikanta; Feng, Yu] Carnegie Mellon Univ, McWilliams Ctr Cosmol, Pittsburgh, PA 15213 USA. [Khandai, Nishikanta] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA. RP Wilkins, SM (reprint author), Univ Sussex, Dept Phys & Astron, Ctr Astron, Brighton BN1 9QH, E Sussex, England. EM s.wilkins@sussex.ox.ac.uk RI Di Matteo, Tiziana/O-4762-2014; Croft, Rupert/N-8707-2014 OI Di Matteo, Tiziana/0000-0002-6462-5734; Croft, Rupert/0000-0003-0697-2583 FU Science and Technology Facilities Council; Institute of Physics/Nuffield Foundation; Leverhulme Trust; National Science Foundation (NSF) [OCI-0749212]; NSF [AST-1009781] FX We would like to thank the anonymous referees for their useful comments and suggestions that we feel have greatly improved this manuscript. SMW and AB acknowledge support from the Science and Technology Facilities Council. WRC acknowledges support from an Institute of Physics/Nuffield Foundation funded summer internship at the University of Oxford. RACC thanks the Leverhulme Trust for their award of a Visiting Professorship at the University of Oxford. The simulations were run on the Cray XT5 supercomputer Kraken at the National Institute for Computational Sciences. This research has been funded by the National Science Foundation (NSF) PetaApps programme, OCI-0749212 and by NSF AST-1009781. NR 46 TC 15 Z9 15 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2013 VL 435 IS 4 BP 2885 EP 2895 DI 10.1093/mnras/stt1471 PG 11 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 236DP UT WOS:000325774700009 ER PT J AU Alexandroff, R Strauss, MA Greene, JE Zakamska, NL Ross, NP Brandt, WN Liu, GL Smith, PS Ge, J Hamann, F Myers, AD Petitjean, P Schneider, DP Yesuf, H York, DG AF Alexandroff, Rachael Strauss, Michael A. Greene, Jenny E. Zakamska, Nadia L. Ross, Nicholas P. Brandt, W. N. Liu, Guilin Smith, Paul S. Ge, Jian Hamann, Fred Myers, Adam D. Petitjean, Patrick Schneider, Donald P. Yesuf, Hassen York, Donald G. TI Candidate type II quasars at 2 < z < 4.3 in the Sloan Digital Sky Survey III SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE quasars: emission lines; quasars: general ID ACTIVE GALACTIC NUCLEI; OSCILLATION SPECTROSCOPIC SURVEY; HARD X-RAY; HUBBLE-SPACE-TELESCOPE; REDSHIFT RADIO GALAXIES; LINE SEYFERT-1 GALAXIES; DATA RELEASE 9; ULTRALUMINOUS INFRARED GALAXIES; SPECTRAL ENERGY-DISTRIBUTIONS; BARYON ACOUSTIC-OSCILLATIONS AB At low redshifts, dust-obscured quasars often have strong yet narrow permitted lines in the rest-frame optical and ultraviolet, excited by the central active nucleus, earning the designation type II quasars. We present a sample of 145 candidate type II quasars at redshifts between 2 and 4.3, encompassing the epoch at which quasar activity peaked in the universe. These objects, selected from the quasar sample of the Baryon Oscillation Spectroscopic Survey of the Sloan Digital Sky Survey III, are characterized by weak continuum in the rest-frame ultraviolet (typical continuum magnitude of i approximate to 22) and strong lines of C iv and Ly alpha, with full width at half-maximum less than 2000 km s(-1). The continuum magnitudes correspond to an absolute magnitude of -23 or brighter at redshift 3, too bright to be due exclusively to the host galaxies of these objects. Roughly one third of the objects are detected in the shorter wavelength bands of the Wide-Field Infrared Survey Explorer survey; the spectral energy distributions of these objects appear to be intermediate between classic type I and type II quasars seen at lower redshift. Five objects are detected at rest frame 6 mu m by Spitzer, implying bolometric luminosities of several times 10(46) erg s(-1). We have obtained polarization measurements for two objects; they are roughly 3 per cent polarized. We suggest that these objects are luminous quasars, with modest dust extinction (A(V) similar to 0.5 mag), whose ultraviolet continuum also includes a substantial scattering contribution. Alternatively, the line of sight to the central engines of these objects may be obscured by optically thick material whose covering fraction is less than unity. C1 [Alexandroff, Rachael; Zakamska, Nadia L.; Liu, Guilin] Johns Hopkins Univ, Dept Phys & Astron, Ctr Astrophys Sci, Baltimore, MD 21218 USA. [Alexandroff, Rachael; Strauss, Michael A.; Greene, Jenny E.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Ross, Nicholas P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Brandt, W. N.; Schneider, Donald P.] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA. [Brandt, W. N.; Schneider, Donald P.] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA. [Smith, Paul S.] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA. [Ge, Jian; Hamann, Fred] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Myers, Adam D.] Univ Wyoming, Dept Phys & Astron, Laramie, WY 82072 USA. [Petitjean, Patrick] UPMC CNRS, UMR7095, Inst Astrophys Paris, F-75014 Paris, France. [Yesuf, Hassen] Univ Calif Santa Cruz, UCO, Lick Observ, Santa Cruz, CA 95064 USA. [York, Donald G.] Univ Chicago, Ctr Astron & Astrophys, Chicago, IL 60637 USA. [York, Donald G.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. RP Alexandroff, R (reprint author), Johns Hopkins Univ, Dept Phys & Astron, Ctr Astrophys Sci, Baltimore, MD 21218 USA. EM rmalexan@pha.jhu.edu RI Brandt, William/N-2844-2015; OI Brandt, William/0000-0002-0167-2453; Smith, Paul/0000-0002-5083-3663 FU Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy Office of Science; University of Arizona; Brazilian Participation Group; Brookhaven National Laboratory; University of Cambridge; Carnegie Mellon University; University of Florida; French Participation Group; German Participation Group; Harvard University; Instituto de Astrofisica de Canarias; Michigan State/Notre Dame/JINA Participation Group; Johns Hopkins University; Lawrence Berkeley National Laboratory; Max Planck Institute for Astrophysics; Max Planck Institute for Extraterrestrial Physics; New Mexico State University; New York University; Ohio State University; Pennsylvania State University; University of Portsmouth; Princeton University; Spanish Participation Group; University of Tokyo; University of Utah; Vanderbilt University; University of Virginia; University of Washington; Yale University; NSF [AST-0707266, AST-1108604]; Theodore Dunham, Jr, Grant of the Fund for Astrophysical Research; NASA ADAP [NNX10AC99G]; National Aeronautics and Space Administration FX Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation and the US Department of Energy Office of Science. The SDSS-III website is http://www.sdss3.org/.; SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration including the University of Arizona, the Brazilian Participation Group, Brookhaven National Laboratory, University of Cambridge, Carnegie Mellon University, University of Florida, the French Participation Group, the German Participation Group, Harvard University, the Instituto de Astrofisica de Canarias, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, Max Planck Institute for Extraterrestrial Physics, New Mexico State University, New York University, Ohio State University, Pennsylvania State University, University of Portsmouth, Princeton University, the Spanish Participation Group, University of Tokyo, University of Utah, Vanderbilt University, University of Virginia, University of Washington and Yale University. RA and MAS acknowledge the support of NSF grant AST-0707266, and JEG and NZ acknowledge the support of Alfred P. Sloan Foundation Fellowships. NZ is also supported by the Theodore Dunham, Jr, Grant of the Fund for Astrophysical Research. WNB acknowledges the support of NASA ADAP grant NNX10AC99G and NSF grant AST-1108604.; This publication makes use of data products from the Widefield Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This research has made use of the NASA/IPAC IRSA, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of data obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), provided by NASA's Goddard Space Flight Center. NR 143 TC 27 Z9 27 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2013 VL 435 IS 4 BP 3306 EP 3325 DI 10.1093/mnras/stt1500 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 236DP UT WOS:000325774700043 ER PT J AU Hilton, M Hasselfield, M Sifon, C Baker, AJ Barrientos, LF Battaglia, N Bond, JR Crichton, D Das, S Devlin, MJ Gralla, M Hajian, A Hincks, AD Hughes, JP Infante, L Irwin, KD Kosowsky, A Lin, YT Marriage, TA Marsden, D Menanteau, F Moodley, K Niemack, MD Nolta, MR Page, LA Reese, ED Sievers, J Spergel, DN Wollack, EJ AF Hilton, Matt Hasselfield, Matthew Sifon, Cristobal Baker, Andrew J. Felipe Barrientos, L. Battaglia, Nicholas Bond, J. Richard Crichton, Devin Das, Sudeep Devlin, Mark J. Gralla, Megan Hajian, Amir Hincks, Adam D. Hughes, John P. Infante, Leopoldo Irwin, Kent D. Kosowsky, Arthur Lin, Yen-Ting Marriage, Tobias A. Marsden, Danica Menanteau, Felipe Moodley, Kavilan Niemack, Michael D. Nolta, Mike R. Page, Lyman A. Reese, Erik D. Sievers, Jon Spergel, David N. Wollack, Edward J. TI The Atacama Cosmology Telescope: the stellar content of galaxy clusters selected using the Sunyaev-Zel'dovich effect SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE galaxies: clusters: general; galaxies: luminosity function; mass function; galaxies: stellar content; cosmology: observations ID INITIAL MASS FUNCTION; COLOR-MAGNITUDE RELATION; BAND LUMINOSITY FUNCTION; X-RAY-CLUSTERS; TO-LIGHT RATIO; POPULATION SYNTHESIS; PHYSICAL-PROPERTIES; SCALING RELATIONS; INTRACLUSTER LIGHT; ELLIPTIC GALAXIES AB We present a first measurement of the stellar mass component of galaxy clusters selected via the Sunyaev-Zel'dovich (SZ) effect, using 3.6 and 4.5 mu m photometry from the Spitzer Space Telescope. Our sample consists of 14 clusters detected by the Atacama Cosmology Telescope (ACT), which span the redshift range 0.27 < z < 1.07 (median z = 0.50) and have dynamical mass measurements, accurate to about 30 per cent, with median M-500 = 6.9 x 10(14) M-circle dot. We measure the 3.6 and 4.5 mu m galaxy luminosity functions, finding the characteristic magnitude (m*) and faint-end slope (alpha) to be similar to those for infrared-selected cluster samples. We perform the first measurements of the scaling of SZ observables (Y-500 and y(0)) with both brightest cluster galaxy (BCG) stellar mass and total cluster stellar mass (M-500(star)). We find a significant correlation between BCG stellar mass and Y-500 (E(z)(-2/3) D-A(2) Y-500 proportional to M-*(1.2 +/- 0.6)), although we are not able to obtain a strong constraint on the slope of the relation due to the small sample size. Additionally, we obtain E(z)(-2/3) D-A(2) Y-500 proportional to M-500(star) (1.0 +/- 0.6) for the scaling with total stellar mass. The mass fraction in stars spans the range 0.006-0.034, with the second ranked cluster in terms of dynamical mass (ACT-CL J0237-4939) having an unusually low total stellar mass and the lowest stellar mass fraction. For the five clusters with gas mass measurements available in the literature, we see no evidence for a shortfall of baryons relative to the cosmic mean value. C1 [Hilton, Matt] Univ Nottingham, Sch Phys & Astron, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England. [Hilton, Matt; Moodley, Kavilan] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, ZA-4041 Durban, South Africa. [Hasselfield, Matthew] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada. [Sifon, Cristobal] Leiden Univ, Leiden Observ, NL-2300 RA Leiden, Netherlands. [Baker, Andrew J.; Hughes, John P.; Menanteau, Felipe] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA. [Felipe Barrientos, L.; Infante, Leopoldo] Pontificia Univ Catolica Chile, Fac Fis, Dept Astron & Astrofis, Santiago 22, Chile. [Battaglia, Nicholas] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA. [Battaglia, Nicholas; Bond, J. Richard; Hajian, Amir; Hincks, Adam D.; Nolta, Mike R.; Sievers, Jon] Univ Toronto, Canadian Inst Theoret Astrophys, Toronto, ON M5S 3H8, Canada. [Crichton, Devin; Gralla, Megan; Marriage, Tobias A.] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA. [Das, Sudeep] Argonne Natl Lab, Lemont, IL 60439 USA. [Das, Sudeep] Univ Calif Berkeley, LBL, Berkeley Ctr Cosmol Phys, Berkeley, CA 94720 USA. [Das, Sudeep] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Devlin, Mark J.; Reese, Erik D.] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA. [Irwin, Kent D.] NIST, Quantum Devices Grp, Boulder, CO 80305 USA. [Kosowsky, Arthur] Univ Pittsburgh, Dept Phys & Astron, Pittsburgh, PA 15260 USA. [Lin, Yen-Ting] Acad Sinica, Inst Astron & Astrophys, Taipei 115, Taiwan. [Marsden, Danica] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA. [Niemack, Michael D.] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA. [Page, Lyman A.; Sievers, Jon] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. [Spergel, David N.] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA. [Wollack, Edward J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. RP Hilton, M (reprint author), Univ Nottingham, Sch Phys & Astron, Ctr Astron & Particle Theory, Nottingham NG7 2RD, England. EM hiltonm@ukzn.ac.za RI Hilton, Matthew James/N-5860-2013; Wollack, Edward/D-4467-2012; OI Wollack, Edward/0000-0002-7567-4451; Menanteau, Felipe/0000-0002-1372-2534; Sievers, Jonathan/0000-0001-6903-5074; Sifon, Cristobal/0000-0002-8149-1352 FU NASA; Leverhulme trust; US National Science Foundation [AST-0408698, AST-0965625, PHY-0855887, PHY-1214379, AST-0955810]; Princeton University; University of Pennsylvania; Canada Foundation for Innovation (CFI); Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); CFI under Compute Canada; Government of Ontario; Ontario Research Fund - Research Excellence; University of Toronto FX This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. MH acknowledges financial support from the Leverhulme trust. This work was supported by the US National Science Foundation through awards AST-0408698 and AST-0965625 for the ACT project, as well as awards PHY-0855887 and PHY-1214379, along with award AST-0955810 to AJB. Funding was also provided by Princeton University, the University of Pennsylvania and a Canada Foundation for Innovation (CFI) award to UBC. ACT operates in the Parque Astronomico Atacama in northern Chile under the auspices of the Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT). Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the CFI under the auspices of Compute Canada, the Government of Ontario, the Ontario Research Fund - Research Excellence and the University of Toronto. NR 101 TC 5 Z9 5 U1 0 U2 3 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2013 VL 435 IS 4 BP 3469 EP 3480 DI 10.1093/mnras/stt1535 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 236DP UT WOS:000325774700056 ER PT J AU Beck, AM Dolag, K Lesch, H Kronberg, PP AF Beck, A. M. Dolag, K. Lesch, H. Kronberg, P. P. TI Strong magnetic fields and large rotation measures in protogalaxies from supernova seeding SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE methods: analytical; methods: numerical; galaxies: formation; galaxies: haloes; galaxies: magnetic fields; early Universe ID REDSHIFT RADIO GALAXIES; PARTICLE HYDRODYNAMICS SIMULATIONS; SMALL-SCALE DYNAMO; FARADAY-ROTATION; X-RAY; MULTIFREQUENCY OBSERVATIONS; COSMOLOGICAL SIMULATIONS; INTERGALACTIC MEDIUM; STAR-FORMATION; 1ST STARS AB We present a model for the seeding and evolution of magnetic fields in protogalaxies. Supernova (SN) explosions during the assembly of a protogalaxy self-consistently provide magnetic seed fields, which are subsequently amplified by compression, shear flows and random motions. Our model explains the origin of strong magnetic fields of mu G amplitude within the first star-forming protogalactic structures shortly after the first stars have formed. We implement the model into the magnetohydrodynamics (MHD) version of the cosmological N-body/smoothed-particle hydrodynamics (SPH) simulation code gadget and couple the magnetic seeding directly to the underlying multi-phase description of star formation. We perform simulations of Milky-Way-like galactic halo formation using a standard Lambda CDM cosmology and analyse the strength and distribution of the subsequent evolving magnetic field. Within star-forming regions and given typical dimensions and magnetic field strengths in canonical SN remnants, we inject a dipole-shaped magnetic field at a rate of approximate to 10(-9) G Gyr(-1). Subsequently, the magnetic field strength increases exponentially on time-scales of a few tens of millions of years within the innermost regions of the halo. Furthermore, turbulent diffusion, shocks and gas motions transport the magnetic field towards the halo outskirts. At redshift z approximate to 0, the entire galactic halo is magnetized and the field amplitude is of the order of a few mu G in the centre of the halo and approximate to 10(-9) G at the virial radius. Additionally, we analyse the intrinsic rotation measure (RM) of the forming galactic halo over a range of redshift. The mean halo intrinsic RM peaks between redshifts z approximate to 4 and z approximate to 2 and reaches absolute values around 1000 rad m(-2). While the halo virializes towards redshift z approximate to 0, the intrinsic RM values decline to a mean value below 10 rad m(-2). At high redshifts, the distribution of individual star-forming and thus magnetized regions is widespread. This leads to a widespread distribution of large intrinsic RM values. In our model for the evolution of galactic magnetic fields, the seed magnetic field amplitude and distribution are no longer free parameters, but determined self-consistently by the star formation process occurring during the formation of cosmic structures. Thus, this model provides a solution to the seed field problem. C1 [Beck, A. M.; Dolag, K.; Lesch, H.] Univ Observ Munich, D-81679 Munich, Germany. [Beck, A. M.] Max Planck Inst Extraterr Phys, D-85748 Garching, Germany. [Dolag, K.] Max Planck Inst Astrophys, D-85741 Garching, Germany. [Kronberg, P. P.] Los Alamos Natl Lab, Div Theoret, MS B285, Los Alamos, NM 87545 USA. [Kronberg, P. P.] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada. RP Beck, AM (reprint author), Univ Observ Munich, Scheinerstr 1, D-81679 Munich, Germany. EM abeck@usm.uni-muenchen.de FU DFG Cluster of Excellence 'Origin and Structure of the Universe'; NSERC (Canada) [A5713] FX We thank the anonymous referee for a report that helped to improve the presentation of this article. We acknowledge additional comments from Uli Klein, Michal Hanasz, Rainer Beck and members of the DFG Research Unit 1254. We thank Stefan Heigl for proofreading the article. Special thanks go to Felix Stoehr for providing the original initial conditions. KD is supported by the DFG Cluster of Excellence 'Origin and Structure of the Universe'. PPK acknowledges support from an NSERC (Canada) Discovery Grant A5713. NR 85 TC 15 Z9 15 U1 0 U2 5 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2013 VL 435 IS 4 BP 3575 EP 3586 DI 10.1093/mnras/stt1549 PG 12 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 236DP UT WOS:000325774700065 ER PT J AU Schuck, PJ AF Schuck, P. James TI NANOIMAGING Hot electrons go through the barrier SO NATURE NANOTECHNOLOGY LA English DT News Item C1 Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. RP Schuck, PJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA. EM pjschuck@lbl.gov RI Foundry, Molecular/G-9968-2014 NR 12 TC 23 Z9 23 U1 6 U2 34 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD NOV PY 2013 VL 8 IS 11 BP 799 EP 800 DI 10.1038/nnano.2013.228 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 251KJ UT WOS:000326927200007 PM 24141537 ER PT J AU Fei, Z Rodin, AS Gannett, W Dai, S Regan, W Wagner, M Liu, MK McLeod, AS Dominguez, G Thiemens, M Neto, AHC Keilmann, F Zettl, A Hillenbrand, R Fogler, MM Basov, DN AF Fei, Z. Rodin, A. S. Gannett, W. Dai, S. Regan, W. Wagner, M. Liu, M. K. McLeod, A. S. Dominguez, G. Thiemens, M. Castro Neto, Antonio H. Keilmann, F. Zettl, A. Hillenbrand, R. Fogler, M. M. Basov, D. N. TI Electronic and plasmonic phenomena at graphene grain boundaries SO NATURE NANOTECHNOLOGY LA English DT Article ID CHEMICAL-VAPOR-DEPOSITION; SPECTROSCOPY; MICROSCOPY; TRANSPORT; DEFECTS; DOMAINS AB Graphene(1), a two-dimensional honeycomb lattice of carbon atoms of great interest in (opto)electronics(2,3) and plasmonics(4-11), can be obtained by means of diverse fabrication techniques, among which chemical vapour deposition (CVD) is one of the most promising for technological applications(12). The electronic and mechanical properties of CVD-grown graphene depend in large part on the characteristics of the grain boundaries(13-19). However, the physical properties of these grain boundaries remain challenging to characterize directly and conveniently(15-23). Here we show that it is possible to visualize and investigate the grain boundaries in CVD-grown graphene using an infrared nano-imaging technique. We harness surface plasmons that are reflected and scattered by the graphene grain boundaries, thus causing plasmon interference. By recording and analysing the interference patterns, we can map grain boundaries for a large-area CVD graphene film and probe the electronic properties of individual grain boundaries. Quantitative analysis reveals that grain boundaries form electronic barriers that obstruct both electrical transport and plasmon propagation. The effective width of these barriers (similar to 10-20 nm) depends on the electronic screening and is on the order of the Fermi wavelength of graphene. These results uncover a microscopic mechanism that is responsible for the low electron mobility observed in CVD-grown graphene, and suggest the possibility of using electronic barriers to realize tunable plasmon reflectors and phase retarders in future graphene-based plasmonic circuits. C1 [Fei, Z.; Dai, S.; Wagner, M.; Liu, M. K.; McLeod, A. S.; Fogler, M. M.; Basov, D. N.] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. [Rodin, A. S.; Castro Neto, Antonio H.] Boston Univ, Dept Phys, Boston, MA 02215 USA. [Gannett, W.; Regan, W.; Zettl, A.] Univ Calif Berkeley, Dept Phys & Astron, Berkeley, CA 94720 USA. [Gannett, W.; Regan, W.; Zettl, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Dominguez, G.; Thiemens, M.] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA. [Dominguez, G.] Calif State Univ, Dept Phys, San Marcos, CA 92093 USA. [Castro Neto, Antonio H.] Natl Univ Singapore, Graphene Res Ctr, Singapore 117542, Singapore. [Castro Neto, Antonio H.] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore. [Keilmann, F.] Univ Munich, D-80539 Munich, Germany. [Keilmann, F.] Ctr Nanosci, D-80539 Munich, Germany. [Hillenbrand, R.] CiC NanoGUNE Consolider, Donostia San Sebastian 20018, Spain. [Hillenbrand, R.] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain. RP Basov, DN (reprint author), Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA. EM dbasov@physics.ucsd.edu RI Castro Neto, Antonio/C-8363-2014; Fei, Zhe/E-6475-2015; Hillenbrand, Rainer/N-3428-2016; Zettl, Alex/O-4925-2016; nanoGUNE, CIC/A-2623-2015; OI Castro Neto, Antonio/0000-0003-0613-4010; Fei, Zhe/0000-0002-7940-5566; Zettl, Alex/0000-0001-6330-136X; Regan, William/0000-0003-0143-9827 FU Office of Naval Research; National Aeronautics and Space Administration [NNX11AF24G]; University of California Office of the President; National Science Foundation [PHY11-25915]; Singapore National Research Foundation Competitive Research Programme [R-144-000-295-281]; Alexander von Humboldt Foundation; European Research Council [258461]; US Department of Energy Office of Science Graduate Fellowship FX The authors acknowledge support from the Office of Naval Research. The development of scanning plasmon interferometry is supported by the US Department of Energy Office of Basic Energy Sciences. G. D. and M. T. were supported by the National Aeronautics and Space Administration (grant no. NNX11AF24G). M. F. is supported by the University of California Office of the President and the National Science Foundation (PHY11-25915). A.H.C.N. acknowledges a Singapore National Research Foundation Competitive Research Programme grant (R-144-000-295-281). M. W. thanks the Alexander von Humboldt Foundation for financial support. R. H. acknowledges a European Research Council starting grant (no. 258461). A. S. M. is supported by a US Department of Energy Office of Science Graduate Fellowship. NR 30 TC 77 Z9 77 U1 15 U2 216 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD NOV PY 2013 VL 8 IS 11 BP 821 EP 825 DI 10.1038/NNANO.2013.197 PG 5 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 251KJ UT WOS:000326927200015 PM 24122082 ER PT J AU Zhang, YG Lu, F Yager, KG van der Lelie, D Gang, O AF Zhang, Yugang Lu, Fang Yager, Kevin G. van der Lelie, Daniel Gang, Oleg TI A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems SO NATURE NANOTECHNOLOGY LA English DT Article ID QUANTUM DOTS; BINARY SUPERLATTICES; GOLD NANOPARTICLES; OPTICAL-RESPONSE; CRYSTALLIZATION; CRYSTALS; NANOCLUSTERS; NANOCRYSTALS; FABRICATION; LATTICE AB Nanoparticles coated with DNA molecules can be programmed to self-assemble into three-dimensional superlattices. Such superlattices can be made from nanoparticles with different functionalities and could potentially exploit the synergetic properties of the nanoscale components. However, the approach has so far been used primarily with single-component systems. Here, we report a general strategy for the creation of heterogeneous nanoparticle superlattices using DNA and carboxylic-based conjugation. We show that nanoparticles with all major types of functionality-plasmonic (gold), magnetic (Fe2O3), catalytic (palladium) and luminescent (CdSe/Te@ZnS and CdSe@ZnS)-can be incorporated into binary systems in a rational manner. We also examine the effect of nanoparticle characteristics (including size, shape, number of DNA per particle and DNA flexibility) on the phase behaviour of the heterosystems, and demonstrate that the assembled materials can have novel optical and field-responsive properties. C1 [Zhang, Yugang; Lu, Fang; Yager, Kevin G.; Gang, Oleg] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. [van der Lelie, Daniel] Res Triangle Inst Int, Ctr Agr & Environm Biotechnol, Res Triangle Pk, NC USA. RP Gang, O (reprint author), Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. EM ogang@bnl.gov RI Yager, Kevin/F-9804-2011 OI Yager, Kevin/0000-0001-7745-2513 FU US Department of Energy, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Research carried out at the Center for Functional Nanomaterials and National Synchrotron Light Source (Brookhaven National Laboratory) was supported by the US Department of Energy, Office of Basic Energy Sciences (contract no. DE-AC02-98CH10886). NR 43 TC 83 Z9 83 U1 30 U2 216 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1748-3387 EI 1748-3395 J9 NAT NANOTECHNOL JI Nat. Nanotechnol. PD NOV PY 2013 VL 8 IS 11 BP 865 EP 872 DI 10.1038/NNANO.2013.209 PG 8 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary SC Science & Technology - Other Topics; Materials Science GA 251KJ UT WOS:000326927200022 PM 24141539 ER PT J AU Bader, A Anderson, DT Hegna, CC Feng, Y Lore, JD Talmadge, JN AF Bader, A. Anderson, D. T. Hegna, C. C. Feng, Y. Lore, J. D. Talmadge, J. N. TI Simulations of edge configurations in quasi-helically symmetric geometry using EMC3-EIRENE SO NUCLEAR FUSION LA English DT Article ID ISLAND DIVERTOR EXPERIMENTS; PLASMA; TRANSPORT; PHYSICS; W7-AS; LHD; STELLARATOR; DETACHMENT AB Simulations of the edge of a quasi-helically symmetric (QHS) stellarator with geometry based on the Helically Symmetric eXperiment (HSX) are performed using the coupled codes EMC3-EIRENE. The standard configuration of HSX has an island structure outside the separatrix, corresponding to the 8/7 resonance. In addition to the standard configuration, two other configurations are examined: one with small islands outside the separatrix corresponding to the 16/15 resonance, and one with large islands corresponding to the 4/4 resonance. Using EMC3-EIRENE, density scans are employed, while scaling input power linearly with density, in order to determine the transition point from a low-to a high-recycling regime. The small island and the standard cases show markedly similar behaviour, but the large island configuration transitions to high-recycling and detached regimes at significantly lower plasma densities. Reducing the perpendicular diffusion coefficients creates behaviour more consistent with two-point model predictions by reducing the role of perpendicular transport through edge islands and reducing friction loss from counter-streaming parallel flows. When carbon impurities are added, the large island configuration exhibits a large increase in radiated power, while the two configurations with smaller islands do not. C1 [Bader, A.; Anderson, D. T.; Hegna, C. C.; Talmadge, J. N.] Univ Wisconsin, Madison, WI 53706 USA. [Feng, Y.] Max Planck Inst Plasma Phys, Greifswald, Germany. [Lore, J. D.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Bader, A (reprint author), Univ Wisconsin, Madison, WI 53706 USA. OI Lore, Jeremy/0000-0002-9192-465X FU US Department of Energy [USDOE-SC0006103] FX This work was supported by the US Department of Energy under grant USDOE-SC0006103. NR 27 TC 7 Z9 7 U1 2 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2013 VL 53 IS 11 AR 113036 DI 10.1088/0029-5515/53/11/113036 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 248GI UT WOS:000326684400037 ER PT J AU Battaglia, DJ Chang, CS Kaye, SM Kim, K Ku, S Maingi, R Bell, RE Diallo, A Gerhardt, S LeBlanc, BP Menard, J Podesta, M AF Battaglia, D. J. Chang, C. S. Kaye, S. M. Kim, K. Ku, S. Maingi, R. Bell, R. E. Diallo, A. Gerhardt, S. LeBlanc, B. P. Menard, J. Podesta, M. CA NSTX Team TI Dependence of the L-H transition on X-point geometry and divertor recycling on NSTX SO NUCLEAR FUSION LA English DT Article ID TOKAMAK PLASMA EDGE; PHYSICS; MODE AB The edge electron (T-e) and ion temperature (T-i) at the time of the L-H transition increase when the X-point radius (R-X) is reduced to a high-triangularity shape while maintaining constant edge density. Consequently the L-H power threshold (P-LH) is larger for the high-triangularity shape. This supports the prediction that a single-particle loss hole, whose properties are strongly linked to R-X and T-i, influences the edge radial electric field (E-r) and E-r x B flow-shearing rate available for turbulence suppression. Simulations using XGC0, a full-f drift-kinetic neoclassical code, indicate that maintaining a constant E-r x B flow-shearing rate does require a larger heat flux and edge T-i as R-X decreases. NSTX also observes a decrease in P-LH when the divertor recycling is decreased using lithium coatings. However, the edge T-e and T-i at the L-H transition appear independent of the divertor recycling for a constant shape. XGC0 calculations demonstrate that more heat flux is needed to maintain the edge Ti and the E-r x B flow-shearing rate as the contribution of divertor recycling to the overall neutral fuelling rate increases. C1 [Battaglia, D. J.; Chang, C. S.; Kaye, S. M.; Ku, S.; Bell, R. E.; Diallo, A.; Gerhardt, S.; LeBlanc, B. P.; Menard, J.; Podesta, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Kim, K.] Korea Adv Inst Sci & Technol, Taejon 305701, South Korea. [Maingi, R.] Oak Ridge Natl Lab, Oak Ridge, TN USA. RP Battaglia, DJ (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM dbattagl@pppl.gov RI Ku, Seung-Hoe/D-2315-2009; OI Ku, Seung-Hoe/0000-0002-9964-1208; Menard, Jonathan/0000-0003-1292-3286 FU US Department of Energy [DE-AC02-09CH11466, DE-AC05-00OR22725]; Office of Science of the US Department of Energy [DE-AC02-05CH11231] FX This work was funded by the US Department of Energy under Contract Numbers DE-AC02-09CH11466 and DE-AC05-00OR22725. This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No DE-AC02-05CH11231. NR 32 TC 9 Z9 9 U1 3 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2013 VL 53 IS 11 AR 113032 DI 10.1088/0029-5515/53/11/113032 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 248GI UT WOS:000326684400033 ER PT J AU Canik, JM Guttenfelder, W Maingi, R Osborne, TH Kubota, S Ren, Y Bell, RE Kugel, HW LeBlanc, BP Soukhanovskii, VA AF Canik, J. M. Guttenfelder, W. Maingi, R. Osborne, T. H. Kubota, S. Ren, Y. Bell, R. E. Kugel, H. W. LeBlanc, B. P. Soukhanovskii, V. A. TI Edge microstability of NSTX plasmas without and with lithium-coated plasma-facing components SO NUCLEAR FUSION LA English DT Article ID SPHERICAL TOKAMAK; BALLOONING MODES; TOROIDAL PLASMA; STABILITY; MICROTURBULENCE; PEDESTAL AB The pedestal structure in NSTX is strongly affected by lithium coatings applied to the PFCs. In discharges with lithium, the density pedestal widens, and the electron temperature (T-e) gradient increases inside a radius of psi(N) similar to 0.95, but is unchanged for psi(N) > 0.95. The inferred effective electron thermal (chi(eff)(e)) and particle (D-e(eff)) profiles reflect the profile changes:chi(eff)(e) is slightly increased in the near-separatrix region, and is reduced in the region psi(N) < 0.95 in the with-lithium case. The D-e(eff) profile shows a broadening of the region with low diffusivity with lithium, while the minimum value within the steep-gradient region is comparable in the two cases. The linear microstability properties of the edge plasma without and with lithium have been analysed. At the pedestal top microtearing modes are unstable without lithium. These are stabilized by the stronger density gradient with lithium, becoming TEM-like with growth rates reduced and comparable to E x B shearing rates. In the region psi(N) > 0.95, both the pre- and with-lithium cases are calculated to be unstable to ETG modes, with higher growth rates with lithium. Both cases are also found to lie near the onset for kinetic ballooning modes, but in the second-stable region where growth rates decrease with increasing pressure gradient. C1 [Canik, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Guttenfelder, W.; Maingi, R.; Ren, Y.; Bell, R. E.; Kugel, H. W.; LeBlanc, B. P.] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Osborne, T. H.] Gen Atom Co, San Diego, CA 92186 USA. [Kubota, S.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA. [Soukhanovskii, V. A.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Canik, JM (reprint author), Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. EM canikjm@ornl.gov OI Canik, John/0000-0001-6934-6681 FU US Department of Energy [DE-AC05-00OR22725, DE-FG02-99ER54527, DE-AC02-09CH11466, DE-FC02-04ER54698, DE-AC52-07NA27344] FX Research sponsored by the US Department of Energy under contracts DE-AC05-00OR22725, DE-FG02-99ER54527, DE-AC02-09CH11466, DE-FC02-04ER54698 and DE-AC52-07NA27344. NR 36 TC 17 Z9 17 U1 2 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2013 VL 53 IS 11 AR 113016 DI 10.1088/0029-5515/53/11/113016 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 248GI UT WOS:000326684400017 ER PT J AU Eder, DC Fisher, AC Koniges, AE Masters, ND AF Eder, D. C. Fisher, A. C. Koniges, A. E. Masters, N. D. TI Modelling debris and shrapnel generation in inertial confinement fusion experiments SO NUCLEAR FUSION LA English DT Article ID EXPERIMENTAL-DESIGNS; FACILITY AB Modelling and mitigation of damage are crucial for safe and economical operation of high-power laser facilities. Experiments at the National Ignition Facility use a variety of targets with a range of laser energies spanning more than two orders of magnitude (similar to 14 kJ to similar to 1.9 MJ). Low-energy inertial confinement fusion experiments are used to study early-time x-ray load symmetry on the capsule, shock timing, and other physics issues. For these experiments, a significant portion of the target is not completely vaporized and late-time (hundreds of ns) simulations are required to study the generation of debris and shrapnel from these targets. Damage to optics and diagnostics from shrapnel is a major concern for low-energy experiments. We provide the first full-target simulations of entire cryogenic targets, including the Al thermal mechanical package and Si cooling rings. We use a 3D multi-physics multi-material hydrodynamics code, ALE-AMR, for these late-time simulations. The mass, velocity, and spatial distribution of shrapnel are calculated for three experiments with laser energies ranging from 14 to 250 kJ. We calculate damage risk to optics and diagnostics for these three experiments. For the lowest energy re-emit experiment, we provide a detailed analysis of the effects of shrapnel impacts on optics and diagnostics and compare with observations of damage sites. C1 [Eder, D. C.; Fisher, A. C.; Masters, N. D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Koniges, A. E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Eder, DC (reprint author), Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94551 USA. EM deder@llnl.gov FU US Department of Energy [DE-AC52-07NA27344]; Office of Science, US Department of Energy [DE-AC02-05CH11231] FX We thank NIF management, in particular, Drs Brian MacGowan and Otto Landen, for support and encouragement of this project. We acknowledge many useful conversations with Dr David Bailey on numerical and modelling issues. Professor David Benson at UCSD provided valuable insight on computational modelling of fragmentation. Dr Tayyab Suratwala developed the formula used to calculate penetration depths in glass and Dr Mike Tobin conducted experiments that validated this formula. Drs Harry Robey, David Braun, and Jose Milovich provided results from early-time ICF simulations that were used as inputs for some of the simulations. Dr Rahul Prasad measured impacts sites observed on collimators and DIM nose cones. The work performed by LLNL is under the auspices of the US Department of Energy under Contract DE-AC52-07NA27344. The work performed by LBNL is supported by the Office of Science, US Department of Energy under Contract DE-AC02-05CH11231. Code development research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No DE-AC02-05CH11231. IM#:LLNL-JRNL-626315. NR 36 TC 8 Z9 8 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2013 VL 53 IS 11 AR 113037 DI 10.1088/0029-5515/53/11/113037 PG 13 WC Physics, Fluids & Plasmas SC Physics GA 248GI UT WOS:000326684400038 ER PT J AU Guo, SC Xu, XY Wang, ZR Liu, YQ AF Guo, S. C. Xu, X. Y. Wang, Z. R. Liu, Y. Q. TI Does shaping bring an advantage for reversed field pinch plasmas? SO NUCLEAR FUSION LA English DT Article ID RESISTIVE WALL MODES; STABILITY; TOKAMAKS; LIMITS; FLOW; RFX AB The MHD-kinetic hybrid toroidal stability code MARS-K (Liu et al 2008 Phys. Plasmas 15 112503) is applied to study the shaping effects on magnetohydrodynamic (MHD) stabilities in reversed field pinch (RFP) plasmas, where both elongation and triangularity are taken into account. The ideal wall beta (the ratio of the gaso-kinetic to magnetic pressures) limit set by the ideal kink mode/resistive wall mode in shaped RFP is investigated first, followed by a study of the kinetic damping on the resistive wall mode. Physics understanding of the results is provided by a systematic numerical analysis. Furthermore, the stability boundary of the linear resistive tearing mode in shaped RFP plasmas is computed and compared with that of the circular case. Finally, bootstrap currents are calculated for both circular and shaped RFP plasmas. Overall, the results of these studies indicate that the current circular cross-section is an appropriate choice for RFP devices, in the sense that the plasma shaping does not bring an appreciable advantage to the RFP performance in terms of macroscopic stabilities. In order to reach a steady-state operation, future RFP fusion reactors will probably need a substantial fraction of external current drives, due to the unfavourable scaling for the plasma-generated bootstrap current in the RFP configuration. C1 [Guo, S. C.; Xu, X. Y.] Assoc Euratom ENEA Fus, Consorzio RFX, I-35127 Padua, Italy. [Wang, Z. R.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Liu, Y. Q.] Euratom CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. RP Guo, SC (reprint author), Assoc Euratom ENEA Fus, Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy. EM shichong.guo@igi.cnr.it FU Euratom Communities; RCUK Energy Programme [EP/I501045]; European Communities FX This work was supported by the Euratom Communities under the contract of Association between EURATOM and ENEA, and part-funded by The RCUK Energy Programme under Grant No EP/I501045 and the European Communities under the contract of Association between EURATOM and CCFE. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 35 TC 3 Z9 3 U1 1 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2013 VL 53 IS 11 AR 113035 DI 10.1088/0029-5515/53/11/113035 PG 14 WC Physics, Fluids & Plasmas SC Physics GA 248GI UT WOS:000326684400036 ER PT J AU Mansfield, DK Roquemore, AL Carroll, T Sun, Z Hu, JS Zhang, L Liang, YF Gong, XZ Li, JG Guo, HY Zuo, GZ Parks, P Wu, W Maingi, R AF Mansfield, D. K. Roquemore, A. L. Carroll, T. Sun, Z. Hu, J. S. Zhang, L. Liang, Y. F. Gong, X. Z. Li, J. G. Guo, H. Y. Zuo, G. Z. Parks, P. Wu, W. Maingi, R. TI First observations of ELM triggering by injected lithium granules in EAST SO NUCLEAR FUSION LA English DT Article ID ABLATION; TOKAMAK; DEVICES AB The first results of edge-localized mode (ELM) pacing using small spherical lithium granules injected mechanically into H-mode discharges are reported. Triggering of ELMs was accomplished using a simple rotating impeller to inject sub-millimetre size granules at speeds of a few tens of meters per second into the outer midplane of the EAST fusion device. During the injection phase, ELMs were triggered with near 100% efficiency and the amplitude of the induced ELMs as measured by D alpha was clearly reduced compared to contemporaneous naturally occurring ELMs. In addition, a wide range of granule penetration depths was observed. Moreover, a substantial fraction of the injected granules appeared to penetrate up to 50% deeper than the 3 cm nominal EAST H-mode pedestal width. The observed granule penetration was, however, less deep than suggested by ablation modelling carried out after the experiment. The observation that ELMs can be triggered using the injection of something other than frozen hydrogenic pellets allows for the contemplation of lithium or beryllium-based ELM pace-making on future fusion devices. This change in triggering paradigm would allow for the decoupling of the ELM-triggering process from the plasma-fuelling process which is currently a limitation on the performance of hydrogen-based ELM mitigation by injected pellets. C1 [Mansfield, D. K.; Roquemore, A. L.; Carroll, T.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Sun, Z.; Hu, J. S.; Zhang, L.; Gong, X. Z.; Li, J. G.; Guo, H. Y.; Zuo, G. Z.] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China. [Liang, Y. F.] Forschungszentrum Julich, Assoc EURATOM FZ Julich, Inst Plasmaphys, Trilateral Euregio Cluster, D-52425 Julich, Germany. [Parks, P.; Wu, W.; Maingi, R.] Gen Atom Co, San Diego, CA 92121 USA. RP Mansfield, DK (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM dmansfield@pppl.gov RI Carroll, Timothy/B-6934-2009 FU US Department of Energy [DE-AC02-09CH11466]; National Natural Science Foundation of China [11075185, 11021565, 11075181, 10725523, 10721505, 10990212]; National Magnetic confinement Fusion Science Program [2013GB114004, 2010GB104001, 2010GB104002]; Chinese Academy of Sciences [2012T1J0025] FX This work was sponsored in part by the US Department of Energy under contracts DE-AC02-09CH11466 and by the National Natural Science Foundation of China under contracts 11075185, 11021565, 11075181, 10725523, 10721505, 10990212 and the National Magnetic confinement Fusion Science Program under Contracts No 2013GB114004, 2010GB104001 and 2010GB104002. The work was also supported by the Chinese Academy of Sciences Visiting Professorship for Senior International Scientists Grant No 2012T1J0025. NR 22 TC 18 Z9 19 U1 5 U2 32 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2013 VL 53 IS 11 AR 113023 DI 10.1088/0029-5515/53/11/113023 PG 7 WC Physics, Fluids & Plasmas SC Physics GA 248GI UT WOS:000326684400024 ER PT J AU McKee, GR Yan, Z Holland, C Buttery, RJ Evans, TE Moyer, RA Mordijck, S Nazikian, R Rhodes, TL Schmitz, O Wade, MR AF McKee, G. R. Yan, Z. Holland, C. Buttery, R. J. Evans, T. E. Moyer, R. A. Mordijck, S. Nazikian, R. Rhodes, T. L. Schmitz, O. Wade, M. R. TI Increase of turbulence and transport with resonant magnetic perturbations in ELM-suppressed plasmas on DIII-D SO NUCLEAR FUSION LA English DT Article ID EDGE LOCALIZED MODES AB Long-wavelength turbulence increases dramatically in the outer regions of DIII-D plasmas with the application of resonant magnetic field perturbations (RMPs) that suppress edge-localized modes (ELMs). Correspondingly, transport increases and global energy confinement decreases in these low-collisionality RMP-ELM suppressed discharges. The core and pedestal density are sharply reduced, while ion and electron temperatures may change only slightly. Low wavenumber density turbulence (k(perpendicular to rho i) < 1) in the range of 60-300 kHz, measured with beam emission spectroscopy, is modified and generally increases throughout the outer region (0.6 < rho < 1.0) of the plasma in response to RMPs over a range of q(95) values; ELM suppression, in contrast, occurs for a narrower range in q(95). Radial magnetic field modulation experiments indicate that these turbulence modifications occur on a time scale of a few milliseconds or less near rho = 0.85-0.95, significantly faster than transport time-scales and faster than the local pressure gradients and shearing rates evolve at these locations. As the internal coil current is modulated in a square-wave fashion from 3.2 to 4.2 kA, the turbulence magnitude varies in phase by 30% or more, while local density changes by only a few per cent. This dynamical behaviour suggests that the turbulence is directly affected by the RMP, which may partially or largely explain the resulting increased transport and stabilization of the pedestal against peeling-ballooning instabilities that are thought to drive ELMs. C1 [McKee, G. R.; Yan, Z.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Holland, C.; Moyer, R. A.] Univ Calif San Diego, Energy Res Ctr, La Jolla, CA 92037 USA. [Buttery, R. J.; Evans, T. E.; Wade, M. R.] Gen Atom Co, San Diego, CA 92186 USA. [Mordijck, S.] Coll William & Mary, Williamsburg, VA 23187 USA. [Nazikian, R.] Princeton Plasma Phys Lab, Princeton, NJ USA. [Rhodes, T. L.] Univ Calif Los Angeles, Los Angeles, CA USA. [Schmitz, O.] Forschungszentrum Julich, IEK 4, D-52425 Julich, Germany. RP McKee, GR (reprint author), Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. EM grmckee@wisc.edu FU US Department of Energy [DE-FG02-89ER53296, DE-FG02-08ER54999, DE-FG02-07ER54917, DE-FC02-04ER54698, DE-FG02-05ER54809, DE-SC0007880, DE-AC02-09CH11466, DE-FG02-08ER54984] FX This work was supported in part by the US Department of Energy under DE-FG02-89ER53296, DE-FG02-08ER54999, DE-FG02-07ER54917, DE-FC02-04ER54698, DE-FG02-05ER54809, DE-SC0007880, DE-AC02-09CH11466 and DE-FG02-08ER54984. NR 19 TC 17 Z9 17 U1 3 U2 24 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2013 VL 53 IS 11 AR UNSP 113011 DI 10.1088/0029-5515/53/11/113011 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 248GI UT WOS:000326684400012 ER PT J AU Ono, M Jaworski, MA Kaita, R Kugel, HW Ahn, JW Allain, JP Bell, MG Bell, RE Clayton, DJ Canik, JM Ding, S Gerhardt, S Gray, TK Guttenfelder, W Hirooka, Y Kallman, J Kaye, S Kumar, D LeBlanc, BP Maingi, R Mansfield, DK McLean, A Menard, J Mueller, D Nygren, R Paul, S Podesta, M Raman, R Ren, Y Sabbagh, S Scotti, F Skinner, CH Soukhanovskii, V Surla, V Taylor, CN Timberlake, J Zakharov, LE AF Ono, M. Jaworski, M. A. Kaita, R. Kugel, H. W. Ahn, J. -W. Allain, J. P. Bell, M. G. Bell, R. E. Clayton, D. J. Canik, J. M. Ding, S. Gerhardt, S. Gray, T. K. Guttenfelder, W. Hirooka, Y. Kallman, J. Kaye, S. Kumar, D. LeBlanc, B. P. Maingi, R. Mansfield, D. K. McLean, A. Menard, J. Mueller, D. Nygren, R. Paul, S. Podesta, M. Raman, R. Ren, Y. Sabbagh, S. Scotti, F. Skinner, C. H. Soukhanovskii, V. Surla, V. Taylor, C. N. Timberlake, J. Zakharov, L. E. CA NSTX Res Team TI Recent progress in the NSTX/NSTX-U lithium programme and prospects for reactor-relevant liquid-lithium based divertor development SO NUCLEAR FUSION LA English DT Article ID FUSION-REACTOR; TRANSPORT; T-11M; EDGE AB Developing a reactor-compatible divertor has been identified as a particularly challenging technology problem for magnetic confinement fusion. Application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and other plasma performance benefits. During the 2010 NSTX campaign, application of a relatively modest amount of Li (300 mg prior to the discharge) resulted in a similar to 50% reduction in heat load on the liquid lithium divertor (LLD) attributable to enhanced divertor bolometric radiation. These promising Li results in NSTX and related modelling calculations motivated the radiative LLD concept proposed here. Li is evaporated from the liquid lithium (LL) coated divertor strike-point surface due to the intense heat flux. The evaporated Li is readily ionized by the plasma due to its low ionization energy, and the poor Li particle confinement near the divertor plate enables ionized Li ions to radiate strongly, resulting in a significant reduction in the divertor heat flux. This radiative process has the desired effect of spreading the localized divertor heat load to the rest of the divertor chamber wall surfaces, facilitating the divertor heat removal. The LL coating of divertor surfaces can also provide a 'sacrificial' protective layer to protect the substrate solid material from transient high heat flux such as the ones caused by the edge localized modes. By operating at lower temperature than the first wall, the LL covered large divertor chamber wall surfaces can serve as an effective particle pump for the entire reactor chamber, as impurities generally migrate towards lower temperature LL divertor surfaces. To maintain the LL purity, a closed LL loop system with a modest circulating capacity (e.g., similar to 1 l s(-1) for similar to 1% level 'impurities') is envisioned for a steady-state 1GW-electric class fusion power plant. C1 [Ono, M.; Jaworski, M. A.; Kaita, R.; Kugel, H. W.; Bell, M. G.; Bell, R. E.; Gerhardt, S.; Guttenfelder, W.; Kallman, J.; Kaye, S.; LeBlanc, B. P.; Mansfield, D. K.; Menard, J.; Mueller, D.; Paul, S.; Podesta, M.; Ren, Y.; Scotti, F.; Skinner, C. H.; Timberlake, J.; Zakharov, L. E.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Ahn, J. -W.; Canik, J. M.; Gray, T. K.; Maingi, R.; McLean, A.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Allain, J. P.; Taylor, C. N.] Purdue Univ, Coll Engn, W Lafayette, IN 47907 USA. [Clayton, D. J.; Kumar, D.] Johns Hopkins Univ, Baltimore, MD 21218 USA. [Ding, S.] Acad Sci, Inst Plasma Phys, Hefei, Peoples R China. [Hirooka, Y.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Kallman, J.; McLean, A.; Soukhanovskii, V.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. [Nygren, R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Raman, R.] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA. [Sabbagh, S.] Columbia Univ, Dept Appl Phys, New York, NY 10027 USA. [Surla, V.] Univ Illinois, Ctr Plasma Mat Interact, Urbana, IL 61801 USA. RP Ono, M (reprint author), Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. EM mono@pppl.gov RI Kumar, Deepak/G-6001-2014; Kumar, Deepak/J-3614-2015; OI Canik, John/0000-0001-6934-6681; Menard, Jonathan/0000-0003-1292-3286; Allain, Jean Paul/0000-0003-1348-262X FU DoE [DE-AC02-09CH11466] FX This work was supported by DoE Contract No DE-AC02-09CH11466. NR 51 TC 12 Z9 12 U1 4 U2 27 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2013 VL 53 IS 11 AR 113030 DI 10.1088/0029-5515/53/11/113030 PG 11 WC Physics, Fluids & Plasmas SC Physics GA 248GI UT WOS:000326684400031 ER PT J AU Petrie, TW Canik, JM Lasnier, CJ Leonard, AW Mahdavi, MA Watkins, JG Fenstermacher, ME Ferron, JR Groebner, RJ Hill, DN Hyatt, AW Holcomb, CT Luce, TC Makowski, M Moyer, RA Osborne, TE Stangeby, PC AF Petrie, T. W. Canik, J. M. Lasnier, C. J. Leonard, A. W. Mahdavi, M. A. Watkins, J. G. Fenstermacher, M. E. Ferron, J. R. Groebner, R. J. Hill, D. N. Hyatt, A. W. Holcomb, C. T. Luce, T. C. Makowski, M. Moyer, R. A. Osborne, T. E. Stangeby, P. C. TI Effect of changes in separatrix magnetic geometry on divertor behaviour in DIII-D SO NUCLEAR FUSION LA English DT Article ID B2-EIRENE AB Results and interpretation of recent experiments on DIII-D designed to evaluate divertor geometries favourable for radiative heat dispersal are presented. Two approaches examined here involved lengthening the parallel connection in the scrape-off layer, L-parallel to, and increasing the radius of the outer divertor separatrix strike point, R-OSP, with the goal of reducing target temperature, T-TAR, and increasing target density, n(TAR). From one-dimensional (1D) two-point modelling based on conducted parallel heat flux, it is expected that: n(TAR) proportional to R(OSP)(2)L(parallel to)(6/7)n(SEP)(3) and T-TAR proportional to R(OSP)(-2)L(parallel to)(-4/7)n(SEP)(-2), where n(SEP) is the midplane separatrix density. These scalings suggest that conditions conducive to a radiative divertor solution can be achieved at low n(SEP) by increasing either R-OSP or L-parallel to. Our data are consistent with the above L-parallel to scalings. On the other hand, the observed dependence of n(TAR) and T-TAR on R-OSP displayed a more complex behaviour, under certain conditions deviating from the above scalings. Our analysis indicates that deviations from the R-OSP scaling were due to the presence of convected heat flux, driven by escaping neutrals, in the more open configurations of the larger R-OSP cases. A comparison of ` open' versus 'closed' divertor configurations for the H-mode plasmas in this study show that the 'closed' case provides at least 30% reduction in the peaked heat flux at common density with the 'open' case and partial divertor detachment at lower plasma density. C1 [Petrie, T. W.; Leonard, A. W.; Mahdavi, M. A.; Ferron, J. R.; Groebner, R. J.; Hyatt, A. W.; Luce, T. C.; Osborne, T. E.] Gen Atom Co, San Diego, CA 92186 USA. [Canik, J. M.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Lasnier, C. J.; Fenstermacher, M. E.; Hill, D. N.; Holcomb, C. T.; Makowski, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Watkins, J. G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Moyer, R. A.] Univ Calif San Diego, La Jolla, CA 92093 USA. [Stangeby, P. C.] Univ Toronto, Inst Aerosp Studies, Toronto, ON, Canada. RP Petrie, TW (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. OI Canik, John/0000-0001-6934-6681 FU US Department of Energy [DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC52-07NA27344, DE-AC04-94AL85000, DE-FG02-07ER54917, DE-FG02-05ER54809] FX This work was supported by the US Department of Energy under DE-FC02-04ER54698, DE-AC05-00OR22725, DE-AC52-07NA27344, DE-AC04-94AL85000, DE-FG02-07ER54917 and DE-FG02-05ER54809. NR 15 TC 4 Z9 4 U1 3 U2 13 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2013 VL 53 IS 11 AR 113024 DI 10.1088/0029-5515/53/11/113024 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 248GI UT WOS:000326684400025 ER PT J AU Piron, L Bonfiglio, D Piovesan, P Zaniol, B Auriemma, F Carraro, L Chacon, L Marrelli, L Valisa, M Veranda, M Zuin, M AF Piron, L. Bonfiglio, D. Piovesan, P. Zaniol, B. Auriemma, F. Carraro, L. Chacon, L. Marrelli, L. Valisa, M. Veranda, M. Zuin, M. TI 3D magnetic fields and plasma rotation in RFX-mod tokamak plasmas SO NUCLEAR FUSION LA English DT Article ID PINCH; STABILITY AB Plasma rotation has been one of the topics of major interest in the fusion community over the last few years, given in particular its role on magnetohydrodynamic stability and turbulence suppression. Rotation can be affected by three-dimensional (3D) magnetic fields, e.g. due to intrinsic magnetic field errors or active coils. The reversed field pinch RFX-mod device (Sonato et al 2003 Fusion Eng. Des. 66 161) has been recently operated as an ohmic tokamak with q(a) < 2 thanks to the suppression of the m = 2, n = 1 mode through magnetic feedback control. In such discharges, plasma rotation is sensitive to the presence of 3D magnetic fields, applied through magnetic feedback or due to the growth of the m = 2, n = 1 mode. In particular, it has been observed that above a threshold value of m = 2, n = 1 radial magnetic field amplitude, plasma rotation reverses from counter- to co-I-p direction. The physical mechanisms that can play a role on momentum transport in these plasmas have been investigated, such as the neoclassical toroidal viscosity, the ambipolar electric field due to magnetic stochasticity, and the friction force due to neutrals coming from the wall. All these phenomena are expected to be important in determining the plasma rotation behaviour also in larger tokamaks. Since the RFX-mod experiment has a simple geometry (circular cross-section) and a wide choice of 3D magnetic fields can be applied with the 192 active coils available, it provides a unique test bed to study the basic physics mechanisms responsible for momentum transport. C1 [Piron, L.; Bonfiglio, D.; Piovesan, P.; Zaniol, B.; Auriemma, F.; Carraro, L.; Marrelli, L.; Valisa, M.; Veranda, M.; Zuin, M.] EURATOM ENEA Assoc, Consorzio RFX, I-35127 Padua, Italy. [Chacon, L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Piron, L (reprint author), EURATOM ENEA Assoc, Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy. RI Marrelli, Lionello/G-4451-2013; Bonfiglio, Daniele/I-9398-2012; OI Marrelli, Lionello/0000-0001-5370-080X; Bonfiglio, Daniele/0000-0003-2638-317X; Chacon, Luis/0000-0002-4566-8763 FU European Communities FX Many thanks to Andrew Cole and Paolo Zanca for useful discussions. This work was supported by the European Communities under the contract of Association between the EURATOM/ENEA Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 35 TC 8 Z9 8 U1 0 U2 16 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2013 VL 53 IS 11 AR 113022 DI 10.1088/0029-5515/53/11/113022 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 248GI UT WOS:000326684400023 ER PT J AU Satake, S Park, JK Sugama, H Kanno, R AF Satake, S. Park, J. -K. Sugama, H. Kanno, R. TI Simulation studies of the effect of E x B rotation on neoclassical toroidal viscosity in tokamaks with small magnetic perturbations SO NUCLEAR FUSION LA English DT Article ID DELTA-F METHOD; TRANSPORT; PLASMAS AB The effect of non-axisymmetric magnetic perturbations and E x B rotation on neoclassical toroidal viscosity (NTV) is investigated using a drift-kinetic delta f Monte-Carlo simulation code, FORTEC-3D, and the simulation is benchmarked with an analytic formula which uses bounce-average approximation. Although the delta f code agrees with the analytic formula if the E x B velocity is low or the radial position is away from the resonant rational flux surface, a clear difference appears in the radial profile of NTV when the E x B velocity becomes large. A double-peak profile of NTV appears around the resonant rational flux surface only in the delta f simulation. The double peak is created as a result of the resonance of E x B drift and passing particle motion. The benchmark result suggests that the precise drift-kinetic simulation, which treats both trapped and passing particle contributions to neoclassical viscosity, is essential for quantitative evaluation of the rotation damping rate by NTV when the E x B rotation is not slow. C1 [Satake, S.; Sugama, H.; Kanno, R.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu, Japan. [Park, J. -K.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Sugama, H.; Kanno, R.] Grad Univ Adv Studies SOKENDAI, Dept Fus Sci, Toki, Gifu, Japan. RP Satake, S (reprint author), Natl Inst Nat Sci, Natl Inst Fus Sci, Oroshi Cho 322-6, Toki, Gifu, Japan. EM satake@nifs.ac.jp FU JSPS [23760810]; NIFS collaborative research programmes [11KNST014] FX This work was supported by JSPS Grant-in-Aid for Young Scientists (B), No 23760810, and the NIFS collaborative research programmes 11KNST014. Part of calculations was carried out using the HELIOS supercomputer system at the International Fusion Energy Research Centre, Aomori, Japan, under the Broader Approach collaboration between Euratom and Japan, implemented by Fusion for Energy and JAEA. NR 29 TC 4 Z9 4 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2013 VL 53 IS 11 AR 113033 DI 10.1088/0029-5515/53/11/113033 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 248GI UT WOS:000326684400034 ER PT J AU Shi, YJ Ko, WH Kwon, JM Diamond, PH Lee, SG Ko, SH Wang, L Yi, S Ida, K Terzolo, L Yoon, SW Lee, KD Lee, JH Nam, UN Bae, YS Oh, YK Kwak, JG Bitter, M Hill, K Gurcan, OD Hahm, TS AF Shi, Y. J. Ko, W. H. Kwon, J. M. Diamond, P. H. Lee, S. G. Ko, S. H. Wang, L. Yi, S. Ida, K. Terzolo, L. Yoon, S. W. Lee, K. D. Lee, J. H. Nam, U. N. Bae, Y. S. Oh, Y. K. Kwak, J. G. Bitter, M. Hill, K. Gurcan, O. D. Hahm, T. S. TI ECH effects on toroidal rotation: KSTAR experiments, intrinsic torque modelling and gyrokinetic stability analyses SO NUCLEAR FUSION LA English DT Article ID PLASMAS; TOKAMAKS; SYSTEM AB Toroidal rotation profiles have been investigated in KSTAR H-mode plasma using combined auxiliary heating by co-neutral beam injection (NBI) and electron cyclotron resonance heating (ECH). The ion temperature and toroidal rotation are measured with x-ray imaging crystal spectroscopy and charge exchange recombination spectroscopy. H-mode plasma is achieved using co-current 1.3MW NBI, and a 0.35MW ECH pulse is added to the flat-top of H-mode. The core rotation profiles, which are centrally peaked in the pure NBI heating phase, flatten when ECH is injected, while the edge pedestal is unchanged. Dramatic decreases in the core toroidal rotation values (Delta V-tor/V-tor similar to -30%) are observed when on-axis ECH is added to H-mode. The experimental data show that the decrease of core rotation velocity and its gradient are correlated with the increase of core electron temperature and its gradient, and also with the likely steepening of the density gradient. We thus explore the viability of a hypothesized ITG (ITG ion temperature gradient instability) -> TEM (trapped electron mode instability) transition as the explanation of the observed counter-current flow induced by ECH. However, the results of linear microstability analyses using inferred profiles suggest that the TEM is excited only in the deep core, so the viability of the hypothesized explanation is not yet clear. C1 [Shi, Y. J.; Kwon, J. M.; Diamond, P. H.; Ko, S. H.; Yi, S.] Natl Fus Res Inst, WCI Ctr Fus Theory, Taejon 305333, South Korea. [Shi, Y. J.; Ko, W. H.; Lee, S. G.; Terzolo, L.; Yoon, S. W.; Lee, K. D.; Lee, J. H.; Nam, U. N.; Bae, Y. S.; Oh, Y. K.; Kwak, J. G.] Natl Fus Res Inst, KSTAR, Taejon 305333, South Korea. [Diamond, P. H.] Univ Calif San Diego, CMTFO, San Diego, CA 92904 USA. [Diamond, P. H.] Univ Calif San Diego, CASS, San Diego, CA 92904 USA. [Wang, L.] Huazhong Univ Sci & Technol, Coll Elect & Elect Engn, Wuhan 430074, Peoples R China. [Ida, K.] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan. [Bitter, M.; Hill, K.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Gurcan, O. D.] Ecole Polytech, CNRS, F-91128 Palaiseau, France. [Hahm, T. S.] Seoul Natl Univ, Dept Nucl Engn, Seoul 151742, South Korea. RP Shi, YJ (reprint author), Natl Fus Res Inst, WCI Ctr Fus Theory, Taejon 305333, South Korea. EM yjshi@nfri.re.kr RI Gurcan, Ozgur/A-1362-2013; Wang, Lu/F-1875-2010; Ida, Katsumi/E-4731-2016 OI Gurcan, Ozgur/0000-0002-2278-1544; Ida, Katsumi/0000-0002-0585-4561 FU World Class Institute (WCI) Programme of the National Research Foundation of Korea (NRF); Ministry of Education, Science and Technology of Korea (MEST) (NRF) [WCI 2009-001]; US DOE FX The authors thank the participants in the 24th IAEA FEC and 2th APTWG workshop for useful discussions and encouragement. This work was partly supported by the World Class Institute (WCI) Programme of the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology of Korea (MEST) (NRF Grant No WCI 2009-001) and US DOE. NR 24 TC 16 Z9 17 U1 1 U2 15 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2013 VL 53 IS 11 AR 113031 DI 10.1088/0029-5515/53/11/113031 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 248GI UT WOS:000326684400032 ER PT J AU Shiraiwa, S Baek, G Bonoli, PT Faust, IC Hubbard, AE Meneghini, O Parker, RR Wallace, GM Wilson, JR Harvey, RW Smirnov, AP Brunner, D LaBombard, B Lau, C Mumgaard, R Scott, S Tsujii, N Wolfe, S AF Shiraiwa, S. Baek, G. Bonoli, P. T. Faust, I. C. Hubbard, A. E. Meneghini, O. Parker, R. R. Wallace, G. M. Wilson, J. R. Harvey, R. W. Smirnov, A. P. Brunner, D. LaBombard, B. Lau, C. Mumgaard, R. Scott, S. Tsujii, N. Wolfe, S. CA Alcator C-Mod Team TI Progress towards steady-state regimes in Alcator C-Mod SO NUCLEAR FUSION LA English DT Article ID INTERNAL TRANSPORT BARRIERS; REVERSED MAGNETIC SHEAR; HYBRID FREQUENCY-RANGE; PARAMETRIC-INSTABILITIES; TOKAMAK; PLASMA; ELECTRON; TFTR; CONFINEMENT; DISCHARGES AB Recent progress on lower hybrid current drive (LHCD) experiment and simulation towards steady-state (t >= 3-5 x tau(r), where tau(r) is the current relaxation time) regimes on Alcator C-Mod is presented. Highly non-inductive reversed shear plasmas are obtained with spontaneous generation of internal transport barriers at the density close to what is expected on ITER steady-state scenarios. Progress has been made to better understand and mitigate the unexpected degradation of LHCD efficiency at high densities, which poses an issue both for extending the non-inductive plasmas to advanced tokamak regimes (with a high bootstrap current fraction, f(BS)) on C-Mod and for predicting the performance of LHCD on future devices such as ITER. Several physics mechanisms that potentially contribute anomalous losses of LHCD power have been studied extensively. Numerical modelling of collisional absorption in cold scrape-off layer plasmas has been integrated into a ray-tracing code. The LHEAF full-wave code clarifies that full-wave effects move the power deposition profile closer to the separatrix than a calculation based on the WKB approximation, leading to a lower efficiency. Non-linear wave interactions were studied experimentally by LH wave spectral measurements using Langmuir probes, suggesting parametric decay instabilities to explain the remaining difference between experiments and simulations. An experimental demonstration of recovery of good LHCD efficiency at high densities is also reported. Improving the single pass absorption is proposed as a key to recover LHCD efficiency. A wave physics design of additional launcher (LH3) has been developed in order to demonstrate an improved LHCD performance by realizing high (similar to 80%) single pass absorption, in which the synergistic interaction in the velocity space with the existing launcher is maximized. C1 [Shiraiwa, S.; Baek, G.; Bonoli, P. T.; Faust, I. C.; Hubbard, A. E.; Meneghini, O.; Parker, R. R.; Wallace, G. M.; Brunner, D.; LaBombard, B.; Lau, C.; Mumgaard, R.; Tsujii, N.; Wolfe, S.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Wilson, J. R.; Scott, S.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Harvey, R. W.] CompX, Del Mar, CA 92014 USA. [Smirnov, A. P.] Moscow MV Lomonosov State Univ, Moscow, Russia. RP Shiraiwa, S (reprint author), MIT, Plasma Sci & Fus Ctr, 77 Massachusetts Ave, Cambridge, MA 02139 USA. EM shiraiwa@psfc.mit.edu RI Smirnov, Alexander /A-4886-2014; OI , Cornwall/0000-0002-8576-5867 NR 48 TC 14 Z9 14 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2013 VL 53 IS 11 AR 113028 DI 10.1088/0029-5515/53/11/113028 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 248GI UT WOS:000326684400029 ER PT J AU Smith, DR Parker, SE Wan, W Chen, Y Diallo, A Dudson, BD Fonck, RJ Guttenfelder, W McKee, GR Kaye, SM Thompson, DS Bell, RE LeBlanc, BP Podesta, M AF Smith, D. R. Parker, S. E. Wan, W. Chen, Y. Diallo, A. Dudson, B. D. Fonck, R. J. Guttenfelder, W. McKee, G. R. Kaye, S. M. Thompson, D. S. Bell, R. E. LeBlanc, B. P. Podesta, M. TI Measurements and simulations of low-wavenumber pedestal turbulence in the National Spherical Torus Experiment SO NUCLEAR FUSION LA English DT Article ID EDGE PLASMA TURBULENCE; TRANSPORT; TOKAMAKS; CONFINEMENT; PHYSICS; NSTX AB Previous pedestal turbulence measurements in the National Spherical Torus Experiment assessed the spatial and temporal properties of turbulence in the steep gradient region of H-mode pedestals during edge localized mode (ELM)-free, MHD-quiescent periods. Here, we extend the analysis to fluctuation amplitudes and compare observations to pedestal turbulence simulations. Measurements indicate normalized fluctuation amplitudes are about 1-5% in the steep gradient region. Regression analysis indicates fluctuation amplitudes scale positively with electron density gradient, collisionality, and poloidal beta, and scale negatively with magnetic shear, electron density, ion temperature gradient (ITG), toroidal flow and radial electric field. The scalings are most consistent with trapped electron mode, kinetic ballooning mode, or microtearing instabilities, but, notably, least consistent with ITG turbulence. Gyrokinetic simulations of pedestal turbulence with realistic pedestal profiles show collisional instabilities with growth rates that increase at higher density gradient and decrease at higher ITG, in qualitative agreement with observed scalings. Finally, Braginskii fluid simulations of pedestal turbulence do not reproduce scalings from measurements and gyrokinetic simulations, and suggest electron dynamics can be a critical factor for accurate pedestal turbulence simulations. C1 [Smith, D. R.; Fonck, R. J.; McKee, G. R.; Thompson, D. S.] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. [Parker, S. E.; Wan, W.; Chen, Y.] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Diallo, A.; Guttenfelder, W.; Kaye, S. M.; Bell, R. E.; LeBlanc, B. P.; Podesta, M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. [Dudson, B. D.] Univ York, Dept Phys, York YO10 5DD, N Yorkshire, England. RP Smith, DR (reprint author), Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA. EM drsmith@engr.wisc.edu OI Dudson, Benjamin/0000-0002-0094-4867 FU US Department of Energy [DE-FG02-89ER53296, DE-SC0001288, DE-AC02-09CH11466] FX The authors gratefully acknowledge helpful discussions with D.R. Mikkelsen and S.J. Zweben. This work was supported by US Department of Energy Grant Nos DE-FG02-89ER53296, DE-SC0001288 and DE-AC02-09CH11466. NR 51 TC 8 Z9 8 U1 0 U2 22 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2013 VL 53 IS 11 AR 113029 DI 10.1088/0029-5515/53/11/113029 PG 9 WC Physics, Fluids & Plasmas SC Physics GA 248GI UT WOS:000326684400030 ER PT J AU Staebler, GM Candy, J Waltz, RE Kinsey, JE Solomon, WM AF Staebler, G. M. Candy, J. Waltz, R. E. Kinsey, J. E. Solomon, W. M. TI A new paradigm for E x B velocity shear suppression of gyro-kinetic turbulence and the momentum pinch SO NUCLEAR FUSION LA English DT Article ID IMPROVED CONFINEMENT; POLOIDAL ROTATION; EDGE TURBULENCE; TRANSPORT; EQUATIONS; PLASMAS; MODEL; INSTABILITIES; BIFURCATION; SIMULATION AB Detailed studies of the non-linear radial wavenumber spectrum of electric potential fluctuations in gyro-kinetic plasma turbulence simulations have led to a new paradigm that is capable of computing the momentum pinch quasilinearly. It is found that shear in the E x B velocity Doppler shift suppresses turbulence by inducing a shift in the peak of the radial wavenumber spectrum, and a reduction in the amplitude. An analytic model of the process is used to understand the roles of the sheared velocity and the non-linear mode coupling. The analytic model leads to a simple formula that fits the non-linear spectrum and only depends on the spectral average shift in the radial wavenumber. This 'spectral shift' model is a new paradigm that radial parity breaking is the fundamental mechanism that suppresses the turbulence through a radial wavenumber shift. The E x B velocity shear is one of a number of radial parity breaking mechanisms. Using a model of the spectral shift the toroidal Reynolds stress due to the E x B velocity shear can be computed for the first time with a quasilinear model. It is shown that, when diamagnetic and neoclassical contributions to the parallel flows are included, the E x B velocity shear term in the toroidal Reynolds stress allows the sign of the intrinsic toroidal rotation to change. Simulations of the co-current and balanced neutral beam injection phase of a DIII-D discharge using the quasilinear model show good agreement with experiment. C1 [Staebler, G. M.; Candy, J.; Waltz, R. E.; Kinsey, J. E.] Gen Atom Co, San Diego, CA 92186 USA. [Solomon, W. M.] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA. RP Staebler, GM (reprint author), Gen Atom Co, POB 85608, San Diego, CA 92186 USA. EM Gary.Staebler@gat.com FU US Department of Energy [DE-FG02-95ER54309, DE-AC02-09CH11466] FX This work was supported by the US Department of Energy under DE-FG02-95ER54309 and DE-AC02-09CH11466. NR 34 TC 6 Z9 6 U1 1 U2 11 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2013 VL 53 IS 11 AR 113017 DI 10.1088/0029-5515/53/11/113017 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 248GI UT WOS:000326684400018 ER PT J AU Terranova, D Marrelli, L Hanson, JD Hirshman, SP Cianciosa, M Franz, P AF Terranova, D. Marrelli, L. Hanson, J. D. Hirshman, S. P. Cianciosa, M. Franz, P. TI Helical equilibrium reconstruction with V3FIT in the RFX-mod Reversed Field Pinch SO NUCLEAR FUSION LA English DT Article ID PLASMAS AB Helical states are routinely found in all reversed field pinch experiments. The inherently three-dimensional feature of these states requires an adequate equilibrium reconstruction. In this paper we present the use of the V3FIT code for the RFX-mod experiment. V3FIT uses VMEC as an equilibrium solver and varies reconstruction parameters to minimize the difference between experimental and modelled signals. Both magnetic (local field, saddle coils and flux loops) and kinetic diagnostics (Thomson scattering, interferometric and soft x-ray emissivity data) are used in order to properly deal with the problem of equilibrium degeneracy. From this point of view a sensitivity study of external magnetic measurements on the internal topological structure is presented. As the work deals with fixed-boundary equilibria, a solution to the issue of vacuum fields computation is also presented. A comparison with previous procedures for obtaining both axisymmetric and helical equilibria is presented, with particular attention to the role of pressure and thermal measurements-information which is missing in previous analyses. The results provide a good match with experimental data showing that indeed a consistent inclusion of pressure with temperature and density measurements is necessary. The equilibria obtained are suitable for both transport and stability analysis. C1 [Terranova, D.; Marrelli, L.; Franz, P.] Assoc EURATOM ENEA Fus, Consorzio RFX, Padua, Italy. [Hanson, J. D.; Cianciosa, M.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Hirshman, S. P.] ORNL, Fus Energy Div, Oak Ridge, TN USA. RP Terranova, D (reprint author), Assoc EURATOM ENEA Fus, Consorzio RFX, Padua, Italy. RI Marrelli, Lionello/G-4451-2013 OI Marrelli, Lionello/0000-0001-5370-080X FU European Communities under the contract of Association between Euratom/ENEA FX This work was supported by the European Communities under the contract of Association between Euratom/ENEA. The views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 21 TC 8 Z9 8 U1 1 U2 10 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2013 VL 53 IS 11 AR 113014 DI 10.1088/0029-5515/53/11/113014 PG 10 WC Physics, Fluids & Plasmas SC Physics GA 248GI UT WOS:000326684400015 ER PT J AU Xi, PW Xu, XQ Xia, TY Nevins, WM Kim, SS AF Xi, P. W. Xu, X. Q. Xia, T. Y. Nevins, W. M. Kim, S. S. TI Impact of a large density gradient on linear and nonlinear edge-localized mode simulations SO NUCLEAR FUSION LA English DT Article ID BALLOONING MODES; MAGNETOHYDRODYNAMIC STABILITY; GYROKINETIC EQUATIONS; DYNAMICS; PLASMA; TURBULENCE; GEOMETRY; SHEAR AB The impact of a large density gradient on edge-localized modes (ELMs) is studied linearly and nonlinearly by employing both two-fluid and gyro-fluid simulations. In two-fluid simulations, the ion diamagnetic stabilization on high-n modes disappears when the large density gradient is taken into account. But gyro-fluid simulations show that the finite Larmor radius (FLR) effect can effectively stabilize high-n modes, so the ion diamagnetic effect alone is not sufficient to represent the FLR stabilizing effect. We further demonstrate that additional gyroviscous terms must be kept in the two-fluid model to recover the linear results from the gyro-fluid model. Nonlinear simulations show that the density variation significantly weakens the E x B shearing at the top of the pedestal and thus leads to more energy loss during ELMs. The turbulence spectrum after an ELM crash is measured and has the relation of P(k(z)) proportional to k(z)(-3.3). C1 [Xi, P. W.] Peking Univ, Fus Simulat Ctr, Beijing 100871, Peoples R China. [Xi, P. W.] Peking Univ, State Key Lab Nucl Phys & Technol, Dept Phys, Beijing 100871, Peoples R China. [Xi, P. W.; Xu, X. Q.; Nevins, W. M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Xia, T. Y.] Chinese Acad Sci, Inst Plasma Phys, Hefei, Peoples R China. [Kim, S. S.] Natl Fus Res Inst, WCI Ctr Fus Theory, Taejon, South Korea. RP Xi, PW (reprint author), Peking Univ, Fus Simulat Ctr, Beijing 100871, Peoples R China. FU US DoE by LLNL [DE-AC52-7NA27344]; ITER-China Program [2013GB111000, 2013GB112006]; NSFC [11261140326, 10935004] FX The authors wish to thank B.D. Dudson and M.V. Umansky for their contributions to BOUT++ framework. This work was performed under the auspices of the US DoE by LLNL under Contract DE-AC52-7NA27344 and is supported by the ITER-China Program (2013GB111000, 2013GB112006) and NSFC (11261140326, 10935004). NR 25 TC 12 Z9 12 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0029-5515 EI 1741-4326 J9 NUCL FUSION JI Nucl. Fusion PD NOV PY 2013 VL 53 IS 11 AR 113020 DI 10.1088/0029-5515/53/11/113020 PG 8 WC Physics, Fluids & Plasmas SC Physics GA 248GI UT WOS:000326684400021 ER PT J AU Semin, BK Davletshina, LN Timofeev, KN Ivanov, II Rubin, AB Seibert, M AF Semin, Boris K. Davletshina, Lira N. Timofeev, Kirill N. Ivanov, Il'ya I. Rubin, Andrei B. Seibert, Michael TI Production of reactive oxygen species in decoupled, Ca2+-depleted PSII and their use in assigning a function to chloride on both sides of PSII SO PHOTOSYNTHESIS RESEARCH LA English DT Article DE Photosystem II; Superoxide anion radical; Hydrogen peroxide; Chloride; Decoupling; Oxygen-evolving complex ID DEPLETED PHOTOSYSTEM-II; ELECTRON DONATION; PEROXIDE FORMATION; HYDROGEN-PEROXIDE; PHOTOSYNTHETIC MEMBRANES; LAUROYLCHOLINE CHLORIDE; ABSORPTION SPECTROSCOPY; SUPEROXIDE-PRODUCTION; MOLECULAR-OXYGEN; EVOLVING COMPLEX AB Extraction of Ca2+ from the oxygen-evolving complex of photosystem II (PSII) in the absence of a chelator inhibits O-2 evolution without significant inhibition of the light-dependent reduction of the exogenous electron acceptor, 2,6-dichlorophenolindophenol (DCPIP) on the reducing side of PSII. The phenomenon is known as "the decoupling effect" (Semin et al. Photosynth Res 98:235-249, 2008). Extraction of Cl- from Ca2+-depleted membranes (PSII[-Ca]) suppresses the reduction of DCPIP. In the current study we investigated the nature of the oxidized substrate and the nature of the product(s) of the substrate oxidation. After elimination of all other possible donors, water was identified as the substrate. Generation of reactive oxygen species HO, H2O2, and O (2) (center dot-) , as possible products of water oxidation in PSII(-Ca) membranes was examined. During the investigation of O (2) (center dot-) production in PSII(-Ca) samples, we found that (i) O (2) (center dot-) is formed on the acceptor side of PSII due to the reduction of O-2; (ii) depletion of Cl- does not inhibit water oxidation, but (iii) Cl- depletion does decrease the efficiency of the reduction of exogenous electron acceptors. In the absence of Cl- under aerobic conditions, electron transport is diverted from reducing exogenous acceptors to reducing O-2, thereby increasing the rate of O (2) (center dot-) generation. From these observations we conclude that the product of water oxidation is H2O2 and that Cl- anions are not involved in the oxidation of water to H2O2 in decoupled PSII(-Ca) membranes. These results also indicate that Cl- anions are not directly involved in water oxidation by the Mn cluster in the native PSII membranes, but possibly provide access for H2O molecules to the Mn4CaO5 cluster and/or facilitate the release of H+ ions into the lumenal space. C1 [Semin, Boris K.; Davletshina, Lira N.; Timofeev, Kirill N.; Ivanov, Il'ya I.; Rubin, Andrei B.] Lomonosov Moscow State Univ, Fac Biol, Dept Biophys, Moscow 119234, Russia. [Semin, Boris K.; Seibert, Michael] Natl Renewable Energy Lab, Energy Sci Directorate, Golden, CO 80401 USA. RP Semin, BK (reprint author), Lomonosov Moscow State Univ, Fac Biol, Dept Biophys, Moscow 119234, Russia. EM semin@biophys.msu.ru FU US Department of Energy [DE-AC36-08-GO28308]; Russian Foundation for Basic Research [08-04-00354]; Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy; NREL pension program FX The work at the National Renewable Energy Laboratory was carried out under US Department of Energy contract number DE-AC36-08-GO28308. This study was also supported in part by the Russian Foundation for Basic Research, Project Numbers 08-04-00354 (AR), by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (MS), and by the NREL pension program (MS). The authors would like to thank Drs. Gary Brudvig and Ken Sauer for their valuable comments and recommendations during the inception of this work. NR 55 TC 5 Z9 5 U1 2 U2 32 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0166-8595 EI 1573-5079 J9 PHOTOSYNTH RES JI Photosynth. Res. PD NOV PY 2013 VL 117 IS 1-3 SI SI BP 385 EP 399 DI 10.1007/s11120-013-9870-x PG 15 WC Plant Sciences SC Plant Sciences GA 247GN UT WOS:000326604900027 PM 23794169 ER PT J AU Lucker, B Kramer, DM AF Lucker, Ben Kramer, David M. TI Regulation of cyclic electron flow in Chlamydomonas reinhardtii under fluctuating carbon availability SO PHOTOSYNTHESIS RESEARCH LA English DT Article DE Photosynthesis; Chlamydomonas; State transitions; Cyclic electron flow; Stt7; Carboncon-centrating mechanism; Electrochromic shift ID DIOXIDE CONCENTRATING MECHANISM; STATE TRANSITIONS; ABSORBENCY CHANGES; LIGHT REACTIONS; PHOTOSYSTEM-I; ATP SYNTHESIS; PHOTOSYNTHESIS; TRANSPORT; PROTON; LEAVES AB The chloroplast must rapidly and precisely adjust photosynthetic ATP and NADPH output to meet changing metabolic demands imposed by fluctuating environmental conditions. Cyclic electron flow (CEF) around photosystem I is thought to contribute to this adjustment by providing ATP in excess of that supplied by linear electron low, balancing chloroplast energy budget when relative demand for ATP is high. We assessed the kinetics and energy production of CEF activation in Chlamydomonas reinhardtii under rapid changes of organic and inorganic carbon availability. Comparisons of transient electric field and chlorophyll fluorescence measurements indicated CEF was activated under conditions where ATP demand is expected to be high, consistent with a role in balancing the cellular ATP/NADPH budget under fluctuating environmental or metabolic conditions. CEF activation was not correlated with antenna state transitions, both in wild-type and the state transition mutant stt7-9, suggesting that CEF is rapidly regulated by allosteric or redox modulators. Comparing the CEF under ambient and high CO2 conditions suggests an increase in required energy output of approximately 1ATP/CO2 fixed, nearly sufficient to power proposed mechanistic models for the carbon-concentrating mechanism. Additionally, we see three-fold higher CEF rates in cells under steady-state conditions than cells under similar conditions with inhibited photosystem II, and up to five times higher in cells with severe depletion of inorganic carbon, implying that CEF has larger energetic capacity than predicted from some previous work. C1 [Lucker, Ben; Kramer, David M.] Michigan State Univ, DOE Plant Res Lab, E Lansing, MI 48824 USA. [Kramer, David M.] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA. RP Kramer, DM (reprint author), Michigan State Univ, Dept Biochem & Mol Biol, S222 Plant Biol Bldg, E Lansing, MI 48824 USA. EM Kramerd8@msu.edu FU US Department of Energy Office of Biomass Program [DE-EE0003046]; Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy [DE-FG02-91ER20021] FX We would like to dedicate this work to Pierre Joliot. We would like to thank Dr. Jeffrey Cruz and Dr. Helmut Kirchoff for valuable discussions and technical expertise. Measurements and algal cultivation were supported by US Department of Energy Office of Biomass Program Grant DE-EE0003046 and the development of the spectrophotometer and related techniques by Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy Grant DE-FG02-91ER20021. NR 56 TC 27 Z9 27 U1 0 U2 52 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0166-8595 EI 1573-5079 J9 PHOTOSYNTH RES JI Photosynth. Res. PD NOV PY 2013 VL 117 IS 1-3 SI SI BP 449 EP 459 DI 10.1007/s11120-013-9932-0 PG 11 WC Plant Sciences SC Plant Sciences GA 247GN UT WOS:000326604900032 PM 24113925 ER PT J AU Parvez, S Evans, AM Lorber, M Hawkins, BS Swartout, JC Teuschler, LK Rice, GE AF Parvez, Shahid Evans, Amanda M. Lorber, Matthew Hawkins, Belinda S. Swartout, Jeffery C. Teuschler, Linda K. Rice, Glenn E. TI A sensitivity analysis using alternative toxic equivalency factors to estimate US dietary exposures to dioxin-like compounds SO REGULATORY TOXICOLOGY AND PHARMACOLOGY LA English DT Article DE Dioxin-like compounds (DLCs); Toxic equivalency factor (TEF); Toxic equivalency (TEQ); 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD); Dietary intake; Relative estimates of potency (REP); Sensitivity analysis; Dose addition AB EPA recommends sensitivity analyses when applying the toxic equivalency factor (TEF) method to evaluate exposures to dioxin-like compounds (DLCs). Applying the World Health Organization's (WHO) 2005 TEF values and estimating average U.S. daily dietary intakes of 25 DLCs from eight food categories, we estimate a toxic equivalency (TEQ) intake of 23 pg/day. Among DLCs, PCB 126(26%) and 1,2,3,7,8-PeCDD (23%) dominate TEQ intakes. Among food categories, milk (14%), other dairy (28%), beef (25%), and seafood (18%) most influenced TEQ intakes. We develop two approaches to estimate alternative TEF values. Based on WHO's assumption regarding TEF uncertainty, Approach1 estimates upper and lower TEFs for each DLC by multiplying and dividing, respectively, its individual TEF by +/- half a log. Based on compiled empirical ranges of relative potency estimates, Approach2 uses percentile values for individual TEFs. Total TEQ intake estimates using the lower and upper TEFs based on Approach1 were 8 and 68 pg TEQ/day, respectively. The 25th and 75th percentile TEFs from Approach2 yielded 12 and 28 pg TEQ/day, respectively. The influential DLCs and food categories remained consistent across alternative TEFs, except at the 90th percentile using Approach2. We highlight the need for developing underlying TEF probability distributions. Published by Elsevier Inc. C1 [Parvez, Shahid; Evans, Amanda M.] ORISE, Oak Ridge, TN 37831 USA. [Lorber, Matthew] US EPA, Natl Ctr Environm Assessment, Off Res & Dev, Washington, DC 20004 USA. [Hawkins, Belinda S.; Swartout, Jeffery C.; Teuschler, Linda K.; Rice, Glenn E.] US EPA, Natl Ctr Environm Assessment, Off Res & Dev, Cincinnati, OH 45268 USA. RP Rice, GE (reprint author), US EPA, Natl Ctr Environm Assessment, 26 W Martin Luther King Dr MS-A110, Cincinnati, OH 45268 USA. EM rice.glenn@epa.gov NR 11 TC 6 Z9 7 U1 3 U2 13 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0273-2300 EI 1096-0295 J9 REGUL TOXICOL PHARM JI Regul. Toxicol. Pharmacol. PD NOV PY 2013 VL 67 IS 2 BP 278 EP 284 DI 10.1016/j.yrtph.2013.08.007 PG 7 WC Medicine, Legal; Pharmacology & Pharmacy; Toxicology SC Legal Medicine; Pharmacology & Pharmacy; Toxicology GA 246SI UT WOS:000326559000018 PM 23973911 ER PT J AU Koukarine, A Nesterenko, I Petrunin, Y Shiltsev, V AF Koukarine, A. Nesterenko, I. Petrunin, Yu Shiltsev, V. TI Experimental reconstruction of Lomonosov's discovery of Venus's atmosphere with antique refractors during the 2012 transit of Venus SO SOLAR SYSTEM RESEARCH LA English DT Article AB In 1761, the Russian polymath Mikhail Vasilievich Lomonosov (1711-1765) discovered the atmosphere of Venus during its transit over the Sun's disc. In this paper we report on experimental reenactments of Lomonosov's discovery with antique refractors during the transit of Venus June 5-6, 2012. We conclude that Lomonosov's telescope was fully adequate to the task of detecting the arc of light around Venus off the Sun's disc during ingress or egress provided proper experimental techniques as described by Lomonosov in his 1761 report are employed. C1 [Nesterenko, I.] Budker Inst Nucl Phys, Novosibirsk 630090, Russia. [Petrunin, Yu] Telescope Engn Co Inc, Golden, CO 80401 USA. [Shiltsev, V.] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. NR 13 TC 0 Z9 0 U1 1 U2 4 PU MAIK NAUKA/INTERPERIODICA/SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013-1578 USA SN 0038-0946 EI 1608-3423 J9 SOLAR SYST RES+ JI Solar Syst. Res. PD NOV PY 2013 VL 47 IS 6 BP 487 EP 490 DI 10.1134/S0038094613060038 PG 4 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 248WF UT WOS:000326735600008 ER PT J AU Olorode, OM Freeman, CM Moridis, GJ Blasingame, TA AF Olorode, O. M. Freeman, C. M. Moridis, G. J. Blasingame, T. A. TI High-Resolution Numerical Modeling of Complex and Irregular Fracture Patterns in Shale-Gas Reservoirs and Tight Gas Reservoirs SO SPE RESERVOIR EVALUATION & ENGINEERING LA English DT Article; Proceedings Paper CT SPE Latin American and Caribbean Petroleum Engineering Conference CY APR 16-18, 2012 CL Mexico City, MEXICO SP SPE AB Various models featuring horizontal wells with multiple fractures have been proposed to characterize flow behavior over time in tight gas systems and shale-gas systems. Currently, little is known about the effects of nonideal fracture patterns and coupled primary-/secondary-fracture interactions on reservoir performance in unconventional gas reservoirs. We developed a 3D Voronoi mesh-generation application that provides the flexibility to accurately represent various complex and irregular fracture patterns. We also developed a numerical simulator of gas flow through tight porous media, and used several Voronoi grids to assess the potential performance of such irregular fractures on gas production from unconventional gas reservoirs. Our simulations involved up to a half-million cells, and we considered production periods that are orders of magnitude longer than the expected productive life of wells and reservoirs. Our aim was to describe a wide range of flow regimes that can be observed in irregular fracture patterns, and to fully assess even nuances in flow behavior. We investigated coupled primary/secondary fractures, with multiple/vertical hydraulic fractures intersecting horizontal secondary "stress-release" fractures. We studied irregular fracture patterns to show the effect of fracture angularity and nonplanar fracture configurations on production. The results indicate that the presence of high-conductivity secondary fractures results in the highest increase in production, whereas, contrary to expectations, strictly planar and orthogonal fractures yield better production performance than nonplanar and nonorthogonal fractures with equivalent propped-fracture lengths. C1 [Olorode, O. M.; Freeman, C. M.] Texas A&M Univ, College Stn, TX 77843 USA. [Moridis, G. J.] Lawrence Berkeley Natl Lab, Div Earth Sci, Deputy Program Lead Energy Resources, Berkeley, CA USA. [Blasingame, T. A.] Texas A&M Univ, Dept Petr Engn, College Stn, TX USA. RP Olorode, OM (reprint author), Texas A&M Univ, College Stn, TX 77843 USA. NR 19 TC 8 Z9 8 U1 4 U2 22 PU SOC PETROLEUM ENG PI RICHARDSON PA 222 PALISADES CREEK DR,, RICHARDSON, TX 75080 USA SN 1094-6470 J9 SPE RESERV EVAL ENG JI SPE Reserv. Eval. Eng. PD NOV PY 2013 VL 16 IS 4 BP 443 EP 455 PG 13 WC Energy & Fuels; Engineering, Petroleum; Geosciences, Multidisciplinary SC Energy & Fuels; Engineering; Geology GA 250JM UT WOS:000326849100009 ER PT J AU Chen, YN Brandizzi, F AF Chen, Yani Brandizzi, Federica TI IRE1: ER stress sensor and cell fate executor SO TRENDS IN CELL BIOLOGY LA English DT Review DE unfolded protein response; ER stress; IRE1; cell fate; protein quality control; membrane trafficking system ID UNFOLDED PROTEIN RESPONSE; ENDOPLASMIC-RETICULUM STRESS; MESSENGER-RNA; LIPID-METABOLISM; ARABIDOPSIS-THALIANA; TRANSCRIPTION FACTOR; NLRP3 INFLAMMASOME; BAX INHIBITOR-1; MAMMALIAN-CELLS; IRE1-ALPHA AB Cells operate a signaling network termed the unfolded protein response (UPR) to monitor protein-folding capacity in the endoplasmic reticulum (ER). Inositol-requiring enzyme 1 (IRE1) is an ER transmembrane sensor that activates the UPR to maintain the ER and cellular function. Although mammalian IRE1 promotes cell survival, it can initiate apoptosis via decay of antiapoptotic miRNAs. Convergent and divergent IRE1 characteristics between plants and animals underscore its significance in cellular homeostasis. This review provides an updated scenario of the IRE1 signaling model, discusses emerging IRE1 sensing mechanisms, compares IRE1 features among species, and outlines exciting future directions in UPR research. C1 [Brandizzi, Federica] Michigan State Univ, MSU DOE Plant Res Lab, E Lansing, MI 48824 USA. Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA. RP Brandizzi, F (reprint author), Michigan State Univ, MSU DOE Plant Res Lab, 612 Wilson Rd,Room 122, E Lansing, MI 48824 USA. EM fb@msu.edu FU National Institutes of Health [R01 GM101038-01]; Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. DOE [DE-FG02-91ER20021]; NASA [NNX12AN71G]; National Science Foundation [MCB0948584, MCB1243792] FX The authors thank Dr Danielle Loughlin for helpful comments and suggestions. They apologize to those authors whose work could not be cited owing to space constraints. This work was supported by grants from the National Institutes of Health (R01 GM101038-01), Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. DOE (DE-FG02-91ER20021), NASA (NNX12AN71G) and the National Science Foundation (MCB0948584 and MCB1243792). NR 85 TC 83 Z9 85 U1 8 U2 52 PU ELSEVIER SCIENCE LONDON PI LONDON PA 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND SN 0962-8924 J9 TRENDS CELL BIOL JI Trends Cell Biol. PD NOV PY 2013 VL 23 IS 11 BP 547 EP 555 DI 10.1016/j.tcb.2013.06.005 PG 9 WC Cell Biology SC Cell Biology GA 252JK UT WOS:000327000800006 PM 23880584 ER PT J AU Marcia, M Humphris-Narayanan, E Keating, KS Somarowthu, S Rajashankar, K Pyle, AM AF Marcia, Marco Humphris-Narayanan, Elisabeth Keating, Kevin S. Somarowthu, Srinivas Rajashankar, Kanagalaghatta Pyle, Anna Marie TI Solving nucleic acid structures by molecular replacement: examples from group II intron studies SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article DE nucleic acid sequence homology; de novo structure design; long noncoding RNA; RNA structure; homology modeling; RCrane ID SEQUENCE-STRUCTURE RELATIONSHIPS; PROTEIN-STRUCTURE MODELS; RNA 3D STRUCTURES; TERTIARY STRUCTURE; CRYSTAL-STRUCTURE; HUMAN GENOME; 3-DIMENSIONAL STRUCTURE; MULTIDOMAIN PROTEINS; SECONDARY STRUCTURE; ATOMIC-ACCURACY AB Structured RNA molecules are key players in ensuring cellular viability. It is now emerging that, like proteins, the functions of many nucleic acids are dictated by their tertiary folds. At the same time, the number of known crystal structures of nucleic acids is also increasing rapidly. In this context, molecular replacement will become an increasingly useful technique for phasing nucleic acid crystallographic data in the near future. Here, strategies to select, create and refine molecular-replacement search models for nucleic acids are discussed. Using examples taken primarily from research on group II introns, it is shown that nucleic acids are amenable to different and potentially more flexible and sophisticated molecular-replacement searches than proteins. These observations specifically aim to encourage future crystallographic studies on the newly discovered repertoire of noncoding transcripts. C1 [Marcia, Marco; Humphris-Narayanan, Elisabeth; Keating, Kevin S.; Pyle, Anna Marie] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06511 USA. [Rajashankar, Kanagalaghatta] Argonne Natl Lab, NE Collaborat Access Team NE CAT, Argonne, IL 60439 USA. [Pyle, Anna Marie] Yale Univ, Dept Chem, New Haven, CT 06511 USA. [Pyle, Anna Marie] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA. RP Marcia, M (reprint author), Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06511 USA. EM marco.marcia@yale.edu; anna.pyle@yale.edu RI Marcia, Marco/M-2887-2014 OI Marcia, Marco/0000-0003-2430-0713 FU National Institutes of Health [RO1GM50313]; National Institute of General Medical Sciences of the National Institutes of Health [8 P41 GM103403-10, F32GM096516]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [W-31-109-Eng-38] FX We acknowledge the beamline scientists at 24-ID-C and 24-ID-E, NE-CAT, APS, Argonne, Illinois, USA, where all of the diffraction data for the group II intron were collected. We thank all members of the Pyle laboratory for constructive discussion and critical reading of the manuscript. This project was supported by the National Institutes of Health (RO1GM50313). AMP is a Howard Hughes Medical Institute Investigator. KRR is supported by a grant from the National Institute of General Medical Sciences (8 P41 GM103403-10) of the National Institutes of Health. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. W-31-109-Eng-38. EHN is supported by a grant from the National Institute of General Medical Sciences (F32GM096516) of the National Institutes of Health. NR 108 TC 7 Z9 7 U1 0 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 EI 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD NOV PY 2013 VL 69 SI SI BP 2174 EP 2185 DI 10.1107/S0907444913013218 PN 11 PG 12 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 247UW UT WOS:000326648900003 PM 24189228 ER PT J AU Terwilliger, TC Read, RJ Adams, PD Brunger, AT Afonine, PV Hung, LW AF Terwilliger, Thomas C. Read, Randy J. Adams, Paul D. Brunger, Axel T. Afonine, Pavel V. Hung, Li-Wei TI Model morphing and sequence assignment after molecular replacement SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article DE morphing; model building; sequence assignment; model-map correlation; loop-building ID STRUCTURE REFINEMENT; DENSITY; CRYSTALLOGRAPHY; SOFTWARE; PHENIX AB A procedure termed `morphing' for improving a model after it has been placed in the crystallographic cell by molecular replacement has recently been developed. Morphing consists of applying a smooth deformation to a model to make it match an electron-density map more closely. Morphing does not change the identities of the residues in the chain, only their coordinates. Consequently, if the true structure differs from the working model by containing different residues, these differences cannot be corrected by morphing. Here, a procedure that helps to address this limitation is described. The goal of the procedure is to obtain a relatively complete model that has accurate main-chain atomic positions and residues that are correctly assigned to the sequence. Residues in a morphed model that do not match the electron-density map are removed. Each segment of the resulting trimmed morphed model is then assigned to the sequence of the molecule using information about the connectivity of the chains from the working model and from connections that can be identified from the electron-density map. The procedure was tested by application to a recently determined structure at a resolution of 3.2 angstrom and was found to increase the number of correctly identified residues in this structure from the 88 obtained using phenix.resolve sequence assignment alone (Terwilliger, 2003) to 247 of a possible 359. Additionally, the procedure was tested by application to a series of templates with sequence identities to a target structure ranging between 7 and 36%. The mean fraction of correctly identified residues in these cases was increased from 33% using phenix.resolve sequence assignment to 47% using the current procedure. The procedure is simple to apply and is available in the Phenix software package. C1 [Terwilliger, Thomas C.; Hung, Li-Wei] Los Alamos Natl Lab, Biosci Div, Los Alamos, NM 87545 USA. [Read, Randy J.] Univ Cambridge, Cambridge Inst Med Res, Dept Haematol, Cambridge CB2 0XY, England. [Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Brunger, Axel T.] Stanford Univ, Dept Cellular & Mol Physiol, Stanford, CA 94305 USA. [Brunger, Axel T.] Stanford Univ, Howard Hughes Med Inst, Stanford, CA 94305 USA. [Afonine, Pavel V.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Terwilliger, TC (reprint author), Los Alamos Natl Lab, Biosci Div, Mail Stop M888, Los Alamos, NM 87545 USA. EM terwilliger@lanl.gov RI Read, Randy/L-1418-2013; Terwilliger, Thomas/K-4109-2012; Adams, Paul/A-1977-2013; OI Read, Randy/0000-0001-8273-0047; Terwilliger, Thomas/0000-0001-6384-0320; Adams, Paul/0000-0001-9333-8219; Brunger, Axel/0000-0001-5121-2036; Hung, Li-Wei/0000-0001-6690-8458 FU NIH [P01GM063210]; HHMI; Wellcome Trust (UK) FX The authors would like to thank the NIH (Grant No. P01GM063210 to PDA, TCT and RJR) and the HHMI (ATB) for generous support. RJR is supported by a Principal Research Fellowship from the Wellcome Trust (UK). NR 21 TC 2 Z9 2 U1 0 U2 5 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 EI 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD NOV PY 2013 VL 69 SI SI BP 2244 EP 2250 DI 10.1107/S0907444913017770 PN 11 PG 7 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 247UW UT WOS:000326648900011 PM 24189236 ER PT J AU Bunkoczi, G Echols, N McCoy, AJ Oeffner, RD Adams, PD Read, RJ AF Bunkoczi, Gabor Echols, Nathaniel McCoy, Airlie J. Oeffner, Robert D. Adams, Paul D. Read, Randy J. TI Phaser.MRage: automated molecular replacement SO ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY LA English DT Article DE molecular replacement; pipeline; automation; phaser; MRage ID PROTEIN DATA-BANK; CRYSTAL-STRUCTURE; ALIGNMENT; SOFTWARE; SEQUENCE; SEARCH; ACCURACY; PIPELINE; DENSITY; BALBES AB Phaser.MRage is a molecular-replacement automation framework that implements a full model-generation workflow and provides several layers of model exploration to the user. It is designed to handle a large number of models and can distribute calculations efficiently onto parallel hardware. In addition, phaser.MRage can identify correct solutions and use this information to accelerate the search. Firstly, it can quickly score all alternative models of a component once a correct solution has been found. Secondly, it can perform extensive analysis of identified solutions to find protein assemblies and can employ assembled models for subsequent searches. Thirdly, it is able to use a priori assembly information (derived from, for example, homologues) to speculatively place and score molecules, thereby customizing the search procedure to a certain class of protein molecule (for example, antibodies) and incorporating additional biological information into molecular replacement. C1 [Bunkoczi, Gabor; McCoy, Airlie J.; Oeffner, Robert D.; Read, Randy J.] Univ Cambridge, Addenbrookes Hosp, CIMR, Dept Haematol, Cambridge CB2 0XY, England. [Echols, Nathaniel; Adams, Paul D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Read, RJ (reprint author), Univ Cambridge, Addenbrookes Hosp, CIMR, Dept Haematol, Wellcome Trust MRC Bldg,Hills Rd, Cambridge CB2 0XY, England. EM rjr27@cam.ac.uk RI Read, Randy/L-1418-2013; Adams, Paul/A-1977-2013 OI Read, Randy/0000-0001-8273-0047; Adams, Paul/0000-0001-9333-8219 FU NIH [GM063210]; Wellcome Trust [082961]; US Department of Energy [DE-AC02-05CH11231] FX The authors would like to thank Joel Bard, Herb Klei, Bob Nolte and Steven Sheriff for suggestions, testing and code. Support received from the NIH (grant GM063210) and the Wellcome Trust (Principal Research Fellowship to RJR, grant 082961) is gratefully acknowledged. This work was partially supported by the US Department of Energy under Contract DE-AC02-05CH11231. The algorithms described here are available in the PHENIX software suite (http://www.phenix-online.org). NR 35 TC 30 Z9 30 U1 0 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0907-4449 EI 1399-0047 J9 ACTA CRYSTALLOGR D JI Acta Crystallogr. Sect. D-Biol. Crystallogr. PD NOV PY 2013 VL 69 SI SI BP 2276 EP 2286 DI 10.1107/S0907444913022750 PN 11 PG 11 WC Biochemical Research Methods; Biochemistry & Molecular Biology; Biophysics; Crystallography SC Biochemistry & Molecular Biology; Biophysics; Crystallography GA 247UW UT WOS:000326648900015 PM 24189240 ER PT J AU Stovall, DB Wan, MM Miller, LD Cao, P Maglic, D Zhang, Q Stampfer, MR Liu, WN Xu, JF Sui, GC AF Stovall, Daniel B. Wan, Meimei Miller, Lance D. Cao, Paul Maglic, Dejan Zhang, Qiang Stampfer, Martha R. Liu, Wennuan Xu, Jianfeng Sui, Guangchao TI The Regulation of SOX7 and Its Tumor Suppressive Role in Breast Cancer SO AMERICAN JOURNAL OF PATHOLOGY LA English DT Article ID SEX-DETERMINING REGION; COLORECTAL-CANCER; EPITHELIAL-CELLS; MAMMALIAN-CELLS; RNAI TECHNOLOGY; GENE-EXPRESSION; REDUNDANT ROLES; POOR-PROGNOSIS; VECTOR; TRANSFORMATION AB Both epigenetic silencing and genetic deletion of tumor suppressors contribute to the development and progression of breast cancer. SOX7 is a transcription factor important to development, and its downregulation has been reported in tumor tissues and cell lines of prostate, colon, and lung cancers. However, the regulation of SOX7 expression and its functional role in breast cancer have not been reported. The current study demonstrates that SOX7 mRNA and protein expression are down-regulated in breast cancer tissues and cell Lines compared with adjacent normal tissues and nontumorigenic cells, respectively. The SOX7 promoter is hypermethylated in breast cancer cell lines compared with nontumorigenic cells, and the inhibition of DNA methylation increases SOX7 mRNA Levels. With shRNAmediated SOX7 silencing, nontumorigenic immortal breast cells display increased proliferation, migration, and invasion and form structures that resemble that of breast cancer cells in a threedimensional culture system. Conversely, ectopic SOX7 expression inhibits proliferation, migration, and invasion of breast cancer cells in vitro and tumor growth in vivo. Importantly, we discovered that SOX7 transcript levels positively correlated with clinical outcome of 674 breast cancer patients. Overall, our data suggest that SOX7 acts as a tumor suppressor in breast cancer. SOX7 expression is likely regulated by multiple mechanisms and potentially serves as a prognostic marker for breast cancer patients. C1 [Stovall, Daniel B.; Wan, Meimei; Miller, Lance D.; Cao, Paul; Maglic, Dejan; Zhang, Qiang; Sui, Guangchao] Wake Forest Univ, Bowman Gray Sch Med, Dept Canc Biol, Winston Salem, NC USA. [Stovall, Daniel B.; Wan, Meimei; Miller, Lance D.; Cao, Paul; Maglic, Dejan; Zhang, Qiang; Sui, Guangchao] Wake Forest Univ, Bowman Gray Sch Med, Ctr Comprehens Canc, Winston Salem, NC USA. [Maglic, Dejan] Wake Forest Univ, Bowman Gray Sch Med, Dept Pathol, Winston Salem, NC 27103 USA. [Liu, Wennuan; Xu, Jianfeng; Sui, Guangchao] Wake Forest Univ, Bowman Gray Sch Med, Ctr Canc Genom, Winston Salem, NC 27103 USA. [Stampfer, Martha R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Sui, GC (reprint author), Hanes Bldg,Room 5055,Med Ctr Blvd, Winston Salem, NC 27157 USA. EM gsui@wakehealth.edu FU American Cancer Society [116403-RSG-09-082-01-MGO]; National Cancer Institute [5T32CA079448]; Office of Science, Office of Biological and Environmental Research, US Department of Energy [DE-AC02-05CH11231]; National Cancer Institute Cancer Center [P30CA012197]; [5R01CA106314] FX Supported in part by Research Scholars grant 116403-RSG-09-082-01-MGO from the American Cancer Society and grant 5R01CA106314 (G.S.); National Cancer Institute training grant 5T32CA079448 (D.B.S.); and contract DE-AC02-05CH11231 from the Office of Science, Office of Biological and Environmental Research, US Department of Energy. The Cell & Virus Vector Core Laboratory and the Tumor Tissue Core Laboratory at the Comprehensive Cancer Center of Wake Forest University School of Medicine are supported by National Cancer Institute Cancer Center Support grant P30CA012197. NR 37 TC 16 Z9 18 U1 0 U2 6 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0002-9440 EI 1525-2191 J9 AM J PATHOL JI Am. J. Pathol. PD NOV PY 2013 VL 183 IS 5 BP 1645 EP 1653 DI 10.1016/j.ajpath.2013.07.025 PG 9 WC Pathology SC Pathology GA 246QE UT WOS:000326553400029 PM 24012678 ER PT J AU Yang, XF Zheng, ZC Winecki, S Eckels, S AF Yang, Xiaofan Zheng, Zhongquan Charlie Winecki, Slawomir Eckels, Steve TI Model simulation and experiments of flow and mass transport through a nano-material gas filter SO APPLIED MATHEMATICAL MODELLING LA English DT Article DE Packed-bed; Nano-material; Numerical models of porous materials; Adsorption ID ACTIVATED CARBON-FIBERS; WATER-VAPOR; FIXED-BED; ADSORPTION DYNAMICS; HEAT-TRANSFER; AMMONIA; CFD; KINETICS AB A computational model for evaluating the performance of nano-material packed-bed filters was developed. The porous effects of the momentum and mass transport within the filter bed were simulated. For the momentum transport, an extended Ergun-type model was employed and the energy loss (pressure drop) along the packed-bed was simulated and compared with measurement. For the mass transport, a bulk adsorption model was developed to study the adsorption process (breakthrough behavior). Various types of porous materials and gas flows were tested in the filter system where the mathematical models used in the porous substrate were implemented and validated by comparing with experimental data and analytical solutions under similar conditions. Good agreements were obtained between experiments and model predictions. (C) 2013 Elsevier Inc. All rights reserved. C1 [Yang, Xiaofan] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. [Zheng, Zhongquan Charlie] Univ Kansas, Dept Aerosp Engn, Lawrence, KS 66045 USA. [Winecki, Slawomir] NanoScale Corp, Manhattan, KS 66506 USA. [Eckels, Steve] Kansas State Univ, Dept Mech & Nucl Engn, Manhattan, KS 66506 USA. RP Zheng, ZC (reprint author), Univ Kansas, Dept Aerosp Engn, Lawrence, KS 66045 USA. EM zzheng@ku.edu RI Yang, Xiaofan/L-6472-2015 OI Yang, Xiaofan/0000-0003-4514-0229 FU Kansas State University FX The support of the Targeted Excellence Grant of Kansas State University is acknowledged. NR 22 TC 4 Z9 4 U1 3 U2 24 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 0307-904X EI 1872-8480 J9 APPL MATH MODEL JI Appl. Math. Model. PD NOV 1 PY 2013 VL 37 IS 20-21 BP 9052 EP 9062 DI 10.1016/j.apm.2013.04.021 PG 11 WC Engineering, Multidisciplinary; Mathematics, Interdisciplinary Applications; Mechanics SC Engineering; Mathematics; Mechanics GA 244BC UT WOS:000326361100030 ER PT J AU Choi, I Chan, GCY Mao, XL Perry, DL Russo, RE AF Choi, Inhee Chan, George C. -Y. Mao, Xianglei Perry, Dale L. Russo, Richard E. TI Line Selection and Parameter Optimization for Trace Analysis of Uranium in Glass Matrices by Laser-Induced Breakdown Spectroscopy (LIBS) SO APPLIED SPECTROSCOPY LA English DT Article DE Laser-induced breakdown spectroscopy; LIBS; Laser ablation; Uranium; Spectral interference ID OPTICAL-EMISSION SPECTROSCOPY; MERCURY PENCIL LAMPS; ISOTOPE RATIOS; INDUCED PLASMA; SPECTRAL-LINES; ABLATION; SPECTROMETRY; BORON; IONIZATION; SEPARATION AB Laser-induced breakdown spectroscopy (LIBS) has been evaluated for the determination of uranium in real-world samples such as uraninite. NIST Standard Reference Materials were used to evaluate the spectral interferences on detection of uranium. The study addresses the detection limit of LIBS for several uranium lines and their relationship to non-uranium lines, with emphasis on spectral interferences. The data are discussed in the context of optimizing the choice of emission lines for both qualitative and quantitative analyses from a complex spectrum of uranium in the presence of other elements. Temporally resolved spectral emission intensities, line width, and line shifts were characterized to demonstrate the parameter influence on these measurements. The measured uranium line width demonstrates that LIBS acquired with moderately high spectral resolution (e.g., by a 1.25 m spectrometer with a 2400 grooves/mm grating) can be utilized for isotope shift measurements in air at atmospheric pressure with single to tens of parts per million (ppm) level detection limits, as long as an appropriate transition is chosen for analysis. C1 [Choi, Inhee; Chan, George C. -Y.; Mao, Xianglei; Perry, Dale L.; Russo, Richard E.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Russo, RE (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM rerusso@lbl.gov FU Defense Threat Reduction Administration (DTRA) of the U.S. Department of Defense [LB09005541, LB09005541A]; U.S. Department of Energy, National Nuclear Security Administration (NNSA) at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX This work was supported by the Defense Threat Reduction Administration (DTRA) of the U.S. Department of Defense under Federal Awards No. LB09005541 and LB09005541A and the U.S. Department of Energy, National Nuclear Security Administration (NNSA) under Contract No. DE-AC02-05CH11231 at the Lawrence Berkeley National Laboratory. NR 44 TC 12 Z9 12 U1 4 U2 47 PU SOC APPLIED SPECTROSCOPY PI FREDERICK PA 5320 SPECTRUM DRIVE SUITE C, FREDERICK, MD 21703 USA SN 0003-7028 EI 1943-3530 J9 APPL SPECTROSC JI Appl. Spectrosc. PD NOV PY 2013 VL 67 IS 11 BP 1275 EP 1284 DI 10.1366/13-07066 PG 10 WC Instruments & Instrumentation; Spectroscopy SC Instruments & Instrumentation; Spectroscopy GA 245SS UT WOS:000326484700007 PM 24160879 ER PT J AU Sperber, K Annamalai, H Kang, IS Kitoh, A Moise, A Turner, A Wang, B Zhou, T AF Sperber, K. R. Annamalai, H. Kang, I. -S. Kitoh, A. Moise, A. Turner, A. Wang, B. Zhou, T. TI The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century SO CLIMATE DYNAMICS LA English DT Article DE Asian summer monsoon; Climate model; Intercomparison; Model systematic error; Skill metrics ID 30-50 DAY VARIABILITY; SEA THERMAL CONTRAST; INTERANNUAL VARIABILITY; AUSTRALIAN MONSOON; CLIMATE-CHANGE; GLOBAL PRECIPITATION; MODEL SIMULATIONS; INDIAN-OCEAN; EL-NINO; PREDICTABILITY AB The boreal summer Asian monsoon has been evaluated in 25 Coupled Model Intercomparison Project-5 (CMIP5) and 22 CMIP3 GCM simulations of the late twentieth Century. Diagnostics and skill metrics have been calculated to assess the time-mean, climatological annual cycle, interannual variability, and intraseasonal variability. Progress has been made in modeling these aspects of the monsoon, though there is no single model that best represents all of these aspects of the monsoon. The CMIP5 multi-model mean (MMM) is more skillful than the CMIP3 MMM for all diagnostics in terms of the skill of simulating pattern correlations with respect to observations. Additionally, for rainfall/convection the MMM outperforms the individual models for the time mean, the interannual variability of the East Asian monsoon, and intraseasonal variability. The pattern correlation of the time (pentad) of monsoon peak and withdrawal is better simulated than that of monsoon onset. The onset of the monsoon over India is typically too late in the models. The extension of the monsoon over eastern China, Korea, and Japan is underestimated, while it is overestimated over the subtropical western/central Pacific Ocean. The anti-correlation between anomalies of all-India rainfall and Nio3.4 sea surface temperature is overly strong in CMIP3 and typically too weak in CMIP5. For both the ENSO-monsoon teleconnection and the East Asian zonal wind-rainfall teleconnection, the MMM interannual rainfall anomalies are weak compared to observations. Though simulation of intraseasonal variability remains problematic, several models show improved skill at representing the northward propagation of convection and the development of the tilted band of convection that extends from India to the equatorial west Pacific. The MMM also well represents the space-time evolution of intraseasonal outgoing longwave radiation anomalies. Caution is necessary when using GPCP and CMAP rainfall to validate (1) the time-mean rainfall, as there are systematic differences over ocean and land between these two data sets, and (2) the timing of monsoon withdrawal over India, where the smooth southward progression seen in India Meteorological Department data is better realized in CMAP data compared to GPCP data. C1 [Sperber, K. R.] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94551 USA. [Annamalai, H.; Wang, B.] Univ Hawaii, Int Pacific Res Ctr, Sch Ocean & Earth Sci & Technol, Honolulu, HI 96822 USA. [Kang, I. -S.] Seoul Natl Univ, SEES, Seoul 151742, South Korea. [Kitoh, A.] Meteorol Res Inst, Tsukuba, Ibaraki 3050052, Japan. [Moise, A.] Australian Bur Meteorol, Climate Variabil & Change Grp, Ctr Australian Weather & Climate Res, Melbourne, Vic 3001, Australia. [Turner, A.] Univ Reading, Dept Meteorol, Natl Ctr Atmospher Sci Climate, Reading RG6 6BB, Berks, England. [Zhou, T.] Chinese Acad Sci, LASG, Inst Atmospher Phys, Beijing 100029, Peoples R China. RP Sperber, K (reprint author), Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, POB 808,L-103, Livermore, CA 94551 USA. EM sperber1@llnl.gov RI Turner, Andrew/D-2286-2009; Sperber, Kenneth/H-2333-2012; 안, 민섭/D-9972-2015; ZHOU, Tianjun/C-3195-2012 OI Turner, Andrew/0000-0002-0642-6876; ZHOU, Tianjun/0000-0002-5829-7279 FU Office of Science (BER), U.S. Department of Energy through Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; Office of Science (BER) U.S. Department of Energy [DEFG02-07ER6445]; JAMSTEC of the International Pacific Research Center; NOAA of the International Pacific Research Center; NASA of the International Pacific Research Center; National Research Foundation of Korea [NRF-2009-C1AAA001-2009-0093042]; Australian Climate Change Science Program; Department of Climate Change and Energy Efficiency; Bureau of Meteorology; CSIRO; NERC Fellowship [NE/H015655/1]; US NSF [AGS-1005599] FX We thank the CLIVAR AAMP and other invited experts for helpful comments and encouragement during the course of this work. We acknowledge the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. K. R. Sperber was supported by the Office of Science (BER), U.S. Department of Energy through Lawrence Livermore National Laboratory contract DE-AC52-07NA27344. H. Annamalai was supported by the Office of Science (BER) U.S. Department of Energy, Grant DEFG02-07ER6445, and also by three institutional grants (JAMSTEC, NOAA and NASA) of the International Pacific Research Center. In-Sik Kang was supported by the National Research Foundation of Korea (NRF-2009-C1AAA001-2009-0093042). Aurel Moise was supported by the Australian Climate Change Science Program, funded jointly by the Department of Climate Change and Energy Efficiency, the Bureau of Meteorology and CSIRO. A. G. Turner is supported by a NERC Fellowship reference number NE/H015655/1. B. Wang was supported by US NSF award #AGS-1005599. NR 74 TC 156 Z9 169 U1 12 U2 99 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0930-7575 EI 1432-0894 J9 CLIM DYNAM JI Clim. Dyn. PD NOV PY 2013 VL 41 IS 9-10 BP 2711 EP 2744 DI 10.1007/s00382-012-1607-6 PG 34 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 242LY UT WOS:000326244700028 ER PT J AU Klosowiak, JL Focia, PJ Chakravarthy, S Landahl, EC Freymann, DM Rice, SE AF Klosowiak, Julian L. Focia, Pamela J. Chakravarthy, Srinivas Landahl, Eric C. Freymann, Douglas M. Rice, Sarah E. TI Structural coupling of the EF hand and C-terminal GTPase domains in the mitochondrial protein Miro SO EMBO REPORTS LA English DT Article DE EF hand; ELM domain; GTPase; Miro; mitochondria ID AXONAL-TRANSPORT; CALCIUM SENSOR; MECHANISM; SYNAPSES; MILTON; TRAFFICKING; HOMEOSTASIS; RECOVERIN; MOTILITY; PINK1 AB Miro is a highly conserved calcium-binding GTPase at the regulatory nexus of mitochondrial transport and autophagy. Here we present crystal structures comprising the tandem EF hand and carboxy terminal GTPase (cGTPase) domains of Drosophila Miro. The structures reveal two previously unidentified 'hidden' EF hands, each paired with a canonical EF hand. Each EF hand pair is bound to a helix that structurally mimics an EF hand ligand. A key nucleotide-sensing element and a Pink1 phosphorylation site both lie within an extensive EF hand-cGTPase interface. Our results indicate structural mechanisms for calcium, nucleotide and phosphorylation-dependent regulation of mitochondrial function by Miro. C1 [Klosowiak, Julian L.; Rice, Sarah E.] Northwestern Univ, Dept Cell & Mol Biol, Feinberg Sch Med, Chicago, IL 60611 USA. [Focia, Pamela J.; Freymann, Douglas M.] Northwestern Univ, Dept Mol Pharmacol & Biol Chem, Feinberg Sch Med, Chicago, IL 60611 USA. [Chakravarthy, Srinivas] Argonne Natl Lab, Adv Photon Source, Biophys Collaborat Access Team, Argonne, IL 60439 USA. [Landahl, Eric C.] Depaul Univ, Dept Phys, Chicago, IL 60604 USA. RP Rice, SE (reprint author), Northwestern Univ, Dept Cell & Mol Biol, Feinberg Sch Med, 303 East Chicago Ave, Chicago, IL 60611 USA. EM s-rice@northwestern.edu RI ID, BioCAT/D-2459-2012 FU NIH [R01GM072656, T32GM008382, 2 P41R008630-17, 9 P41 GM103622-17]; DePaul University College of Science and Health Faculty Research Grant; ARCS Foundation; Kosciuszko Foundation; PNA scholarship; PAMS scholarship; Robert H. Lurie Comprehensive Cancer Center [NCI-CCSG-P30-CA060553]; U. S. DOE [DE-AC02-06CH11357]; Michigan Economic Development and the Michigan Technology Tri-Corridor [085P1000817] FX Y We thank Y. Wong, M. Seeger, M. Gonzalez, C. Sato, A. Banks, K. Smith, S. Light, C. Janczak, A. Grigorescu and APS staff Z. Wawrzak, R. Graceffa and M. Vukonich for discussions and assistance; J. Waitzman, M. French, M. Wietecha, M. Cronin, T. Schwarz, Z. Grabarek for comments on the manuscript. This work was supported by NIH grants R01GM072656 (S. E. R.) and T32GM008382 (J. L. K.), the DePaul University College of Science and Health Faculty Research Grant (E. C. L.), and the ARCS Foundation, Kosciuszko Foundation, and PNA and PAMS scholarships (J. L. K.). This work used resources of the Northwestern University Structural Biology Facility and the Keck Biophysics Facility, supported by NCI-CCSG-P30-CA060553 awarded to the Robert H. Lurie Comprehensive Cancer Center. Use of the APS was supported by U. S. DOE contract DE-AC02-06CH11357. Use of the LS-CAT was supported by the Michigan Economic Development and the Michigan Technology Tri-Corridor (085P1000817). Use of BiocAT was supported by NIH grants 2 P41R008630-17 and 9 P41 GM103622-17. See supplementary Methods online for more details. NR 30 TC 17 Z9 17 U1 2 U2 8 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1469-221X EI 1469-3178 J9 EMBO REP JI EMBO Rep. PD NOV PY 2013 VL 14 IS 11 BP 968 EP 974 DI 10.1038/embor.2013.151 PG 7 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 244LJ UT WOS:000326389600008 PM 24071720 ER PT J AU Atanasova, L Knox, BP Kubicek, CP Druzhinina, IS Baker, SE AF Atanasova, Lea Knox, Benjamin P. Kubicek, Christian P. Druzhinina, Irina S. Baker, Scott E. TI The Polyketide Synthase Gene pks4 of Trichoderma reesei Provides Pigmentation and Stress Resistance SO EUKARYOTIC CELL LA English DT Article ID MELANIN-LIKE PIGMENTS; CRYPTOCOCCUS-NEOFORMANS; ASPERGILLUS-FUMIGATUS; IN-VITRO; PHYLOGENOMIC ANALYSIS; MAMMALIAN INFECTION; SEXUAL DEVELOPMENT; VOLATILE COMPOUNDS; HYPOCREA-JECORINA; GIBBERELLA-ZEAE AB Species of the fungal genus Trichoderma (Hypocreales, Ascomycota) are well-known for their production of various secondary metabolites. Nonribosomal peptides and polyketides represent a major portion of these products. In a recent phylogenomic investigation of Trichoderma polyketide synthase (PKS)-encoding genes, the pks4 from T. reesei was shown to be an orthologue of pigment-forming PKSs involved in synthesis of aurofusarin and bikaverin in Fusarium spp. In this study, we show that deletion of this gene in T. reesei results in loss of green conidial pigmentation and in pigmentation alteration of teleomorph structures. It also has an impact on conidial cell wall stability and the antagonistic abilities of T. reesei against other fungi, including formation of inhibitory metabolites. In addition, deletion of pks4 significantly influences the expression of other PKS-encoding genes of T. reesei. To our knowledge, this is the first indication that a low-molecular-weight pigment-forming PKS is involved in defense, mechanical stability, and stress resistance in fungi. C1 [Atanasova, Lea; Kubicek, Christian P.; Druzhinina, Irina S.] Vienna Univ Technol, Res Area Biotechnol & Microbiol, Microbiol Grp, Inst Chem Engn, A-1040 Vienna, Austria. [Knox, Benjamin P.; Baker, Scott E.] Pacific NW Natl Lab, Chem & Biol Proc Dev Grp, Richland, WA 99352 USA. [Kubicek, Christian P.; Druzhinina, Irina S.] Vienna Univ Technol, Austrian Ctr Ind Biotechnol GmBH, Inst Chem Engn, A-1040 Vienna, Austria. RP Druzhinina, IS (reprint author), Vienna Univ Technol, Res Area Biotechnol & Microbiol, Microbiol Grp, Inst Chem Engn, A-1040 Vienna, Austria. EM druzhini@mail.zserv.tuwien.ac.at OI Atanasova, Lea/0000-0002-1751-277X FU Austrian Science Fund (FWF) [P 21266]; U.S. DOE Biomass Program FX This study was supported by a grant of the Austrian Science Fund (FWF) to C. P. K. (P 21266). S.E.B. and B.P.K. were supported by funding from the U.S. DOE Biomass Program. NR 65 TC 17 Z9 17 U1 4 U2 25 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 1535-9778 EI 1535-9786 J9 EUKARYOT CELL JI Eukaryot. Cell PD NOV PY 2013 VL 12 IS 11 BP 1499 EP 1508 DI 10.1128/EC.00103-13 PG 10 WC Microbiology; Mycology SC Microbiology; Mycology GA 241IK UT WOS:000326159800009 PM 24036343 ER PT J AU Romero, NR Nozick, LK Dobson, ID Xu, NX Jones, DA AF Romero, Natalia R. Nozick, Linda K. Dobson, Ian D. Xu, Ningxiong Jones, Dean A. TI Transmission and Generation Expansion to Mitigate Seismic Risk SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Earthquakes; optimization methods; power generation planning; power transmission planning; strategic planning; systems engineering ID RELIABILITY TEST SYSTEM; STRATEGY AB This paper develops a two-stage stochastic program and solution procedure to optimize the selection of capacity enhancement strategies to increase the resilience of electric power systems to earthquakes. The model explicitly considers the range of earthquake events that are possible and, for each, an approximation of the distribution of damage to be experienced. This is important because electric power systems are spatially distributed; hence their performance is driven by the distribution of damage to the components. We test this solution procedure against the nonlinear integer solver in LINGO 13 and apply the formulation and solution strategy to the Eastern Interconnect where the seismic hazard primarily stems from the New Madrid Seismic Zone. We show the feasibility of optimized capacity expansion to improve the resilience of large-scale power systems with respect to large earthquakes. C1 [Romero, Natalia R.; Nozick, Linda K.; Xu, Ningxiong] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. [Dobson, Ian D.] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA. [Jones, Dean A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Romero, NR (reprint author), Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA. EM nr229@cornell.edu; lkn3@cornell.edu; dobson@iastate.edu; nx22@cornell.edu; dajones@sandia.gov FU DOE [DE-SC0002283] FX This work was supported in part by DOE grant DE-SC0002283. Paper no. TPWRS-00606-2012. NR 27 TC 6 Z9 7 U1 1 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD NOV PY 2013 VL 28 IS 4 BP 3692 EP 3701 DI 10.1109/TPWRS.2013.2265853 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA 241RD UT WOS:000326184100018 ER PT J AU Zhou, N Meng, D Lu, S AF Zhou, Ning Meng, Da Lu, Shuai TI Estimation of the Dynamic States of Synchronous Machines Using an Extended Particle Filter SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Extended Kalman filter (EKF); particle filter; phasor measurement unit (PMU); power system dynamics; state estimation; unscented Kalman filter (UKF) ID STABILIZING CONTROL; POWER-SYSTEMS AB In this paper, an extended particle filter (PF) is proposed to estimate the dynamic states of a synchronous machine using phasor measurement unit (PMU) data. A PF propagates the mean and covariance of states via Monte Carlo simulation, is easy to implement, and can be directly applied to a nonlinear system with non-Gaussian noise. The proposed extended PF improves robustness of the basic PF through iterative sampling and inflation of particle dispersion. Using Monte Carlo simulations with practical noise and model uncertainty considerations, the extended PF's performance is evaluated and compared with the basic PF, an extended Kalman filter (EKF) and an unscented Kalman filter (UKF). The extended PF results showed high accuracy and robustness against measurement and model noise. C1 [Zhou, Ning; Meng, Da; Lu, Shuai] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Zhou, N (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM ning.zhou@pnnl.gov; da.meng@pnnl.gov; shuai.lu@pnnl.gov FU Pacific Northwest National Laboratory FX The authors would like to thank Drs. Z. Huang, P. Du, F. Tuffner, and P. Whitney with Pacific Northwest National Laboratory for their assistance and support of this work. NR 20 TC 20 Z9 20 U1 2 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD NOV PY 2013 VL 28 IS 4 BP 4152 EP 4161 DI 10.1109/TPWRS.2013.2262236 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA 241RD UT WOS:000326184100065 ER PT J AU Woo, CK Zarnikau, J Kadish, J Horowitz, I Wang, JH Olson, A AF Woo, Chi-Keung Zarnikau, Jay Kadish, Jonathan Horowitz, Ira Wang, Jianhui Olson, Arne TI The Impact of Wind Generation on Wholesale Electricity Prices in the Hydro-Rich Pacific Northwest SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Electricity markets; electricity prices; power-system economics; regression analysis; sustainable development; wind energy ID MARKET PRICES; POWER MARKET; STRATEGIES; OPTIMIZATION; INCENTIVES; VARIANCE; ENERGY; LEVEL AB Extant literature documents that wind generation can reduce wholesale electricity market prices by displacing conventional generation. But how large is the wholesale price effect of wind generation in an electricity market dominated by hydroelectric generation? We explore this question by analyzing the impact of wind generation on wholesale electricity prices in the Pacific Northwest region of the United States. This hydro-rich system tends to be energy-limited, rather than capacity-constrained, with its marginal generation during the hydro runoff season often a hydro unit, instead of a natural-gas-fired unit. We find that increased wind generation reduces wholesale market prices by a small, but statistically-significant, amount. While a hydro-rich system can integrate wind generation at a lower cost than a thermal-dominated region, the direct economic benefits to end-users from greater investment in wind power may be negligible. C1 [Woo, Chi-Keung] Hong Kong Baptist Univ, Dept Econ, Hong Kong, Hong Kong, Peoples R China. [Zarnikau, Jay] Univ Texas Austin, LBJ Sch Publ Affairs, Austin, TX 78713 USA. [Zarnikau, Jay] Univ Texas Austin, Div Stat, Austin, TX 78713 USA. [Zarnikau, Jay] Frontier Associates LLC, Austin, TX 78746 USA. [Kadish, Jonathan; Olson, Arne] Energy & Environm Econ Inc, San Francisco, CA 94104 USA. [Horowitz, Ira] Univ Florida, Warrington Coll Business Adm, Gainesville, FL 32611 USA. [Wang, Jianhui] Argonne Natl Lab, Ctr Energy Environm & Econ Syst, Argonne, IL 60439 USA. RP Woo, CK (reprint author), Hong Kong Baptist Univ, Dept Econ, Hong Kong, Hong Kong, Peoples R China. EM chiwoo@hkbu.edu.hk; jayz@mail.utexas.edu; jonathan@ethree.com; ira.horowitz@war-rington.ufl.edu; jianhui.wang@anl.gov; arne@ethree.com NR 34 TC 17 Z9 17 U1 0 U2 14 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD NOV PY 2013 VL 28 IS 4 BP 4245 EP 4253 DI 10.1109/TPWRS.2013.2265238 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 241RD UT WOS:000326184100075 ER PT J AU Liu, Y Vittal, V Undrill, J Eto, JH AF Liu, Yuan Vittal, Vijay Undrill, John Eto, Joseph H. TI Transient Model of Air-Conditioner Compressor Single Phase Induction Motor SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Air-conditioner compressors; electro-magnetic transients; fault-induced delayed voltage recovery; load modeling; single phase induction motor ID POWER-SYSTEM; MACHINES AB This paper describes an air-conditioner (A/C) compressor single phase induction motor (SPIM) model for use in an electro-magnetic transients (EMTs) simulation. The system of differential equations representing the SPIM model is developed and formulated. The angular position of the rotor shaft is retained in the electrical and mechanical equations of the model so that position dependence of the driven-load torque can be explicitly recognized. The equivalent circuit of the proposed model is represented as an interface to the external electric network in the EMTs simulator. Motor dynamic response to voltage dip at different points on the voltage waveform has been studied. The rationale of motor stalling is explored. Multiple aggregate units of the proposed model have been implemented on a distribution feeder to test and verify the motor dynamics in an EMTs simulation. C1 [Liu, Yuan; Vittal, Vijay; Undrill, John] Arizona State Univ, Dept Elect Comp & Energy Engn, Tempe, AZ 85281 USA. [Eto, Joseph H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Liu, Y (reprint author), Arizona State Univ, Dept Elect Comp & Energy Engn, Tempe, AZ 85281 USA. EM yliu250@asu.edu; vijay.vittal@asu.edu; jundrill@q.com; jheto@lbl.gov FU U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability through the Lawrence Berkeley National Laboratory FX This work was supported in part by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability through the Lawrence Berkeley National Laboratory. Paper no. TPWRS-01377-2012. NR 18 TC 8 Z9 8 U1 0 U2 6 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD NOV PY 2013 VL 28 IS 4 BP 4528 EP 4536 DI 10.1109/TPWRS.2013.2275256 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 241RD UT WOS:000326184100104 ER PT J AU Zhang, W Lian, JM Chang, CY Kalsi, K AF Zhang, Wei Lian, Jianming Chang, Chin-Yao Kalsi, Karanjit TI Aggregated Modeling and Control of Air Conditioning Loads for Demand Response SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Aggregated load modeling; demand response; direct load control; thermostatically controlled loads ID THERMOSTATICALLY CONTROLLED LOADS; SYSTEM; POPULATIONS; MANAGEMENT; POWER AB Demand response is playing an increasingly important role in the efficient and reliable operation of the electric grid. Modeling the dynamic behavior of a large population of responsive loads is especially important to evaluate the effectiveness of various demand response strategies. In this paper, a highly accurate aggregated model is developed for a population of air conditioning loads. The model effectively includes statistical information of the load population, systematically deals with load heterogeneity, and accounts for second-order dynamics necessary to accurately capture the transient dynamics in the collective response. Based on the model, a novel aggregated control strategy is designed for the load population under realistic conditions. The proposed controller is fully responsive and achieves the control objective without sacrificing end-use performance. The proposed aggregated modeling and control strategy is validated through realistic simulations using GridLAB-D. Extensive simulation results indicate that the proposed approach can effectively manage a large number of air conditioning systems to provide various demand response services, such as frequency regulation and peak load reduction. C1 [Zhang, Wei; Chang, Chin-Yao] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA. [Lian, Jianming; Kalsi, Karanjit] Pacific NW Natl Lab, Adv Power & Energy Syst Grp, Richland, WA 99354 USA. RP Zhang, W (reprint author), Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA. EM zhang@ece.osu.edu; jian-ming.lian@pnnl.gov; chang.981@osu.edu; karanjit.kalsi@pnnl.gov RI Zhang, Wei/B-3219-2013; Zhang, Wei/L-2407-2016 OI Zhang, Wei/0000-0002-7511-2870 FU Pacific Northwest National Laboratory; U.S. Department of Energy [DE-AC05-76RL01830] FX This work was supported in part by the Smart Grid program at the Pacific Northwest National Laboratory. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC05-76RL01830. Paper no. TPWRS-00078-2013.s NR 30 TC 57 Z9 63 U1 2 U2 9 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD NOV PY 2013 VL 28 IS 4 BP 4655 EP 4664 DI 10.1109/TPWRS.2013.2266121 PG 10 WC Engineering, Electrical & Electronic SC Engineering GA 241RD UT WOS:000326184100117 ER PT J AU Cotilla-Sanchez, E Hines, PDH Barrows, C Blumsack, S Patel, M AF Cotilla-Sanchez, Eduardo Hines, Paul D. H. Barrows, Clayton Blumsack, Seth Patel, Mahendra TI Multi-Attribute Partitioning of Power Networks Based on Electrical Distance SO IEEE TRANSACTIONS ON POWER SYSTEMS LA English DT Article DE Electrical distance; evolutionary algorithms; network clustering; power network partitioning ID DYNAMIC VULNERABILITY ASSESSMENT; VOLTAGE CONTROL; TEST SYSTEM; AREAS; REAL AB Identifying coherent sub-graphs in networks is important in many applications. In power systems, large systems are divided into areas and zones to aid in planning and control applications. But not every partitioning is equally good for all applications; different applications have different goals, or attributes, against which solutions should be evaluated. This paper presents a hybrid method that combines a conventional graph partitioning algorithm with an evolutionary algorithm to partition a power network to optimize a multi-attribute objective function based on electrical distances, cluster sizes, the number of clusters, and cluster connectedness. Results for the IEEE RTS-96 show that clusters produced by this method can be used to identify buses with dynamically coherent voltage angles, without the need for dynamic simulation. Application of the method to the IEEE 118-bus and a 2383-bus case indicates that when a network is well partitioned into zones, intra-zone transactions have less impact on power flows outside of the zone; i.e., good partitioning reduces loop flows. This property is particularly useful for power system applications where ensuring deliverability is important, such as transmission planning or determination of synchronous reserve zones. C1 [Cotilla-Sanchez, Eduardo] Oregon State Univ, Sch Elect Engn & Comp Sci, Corvallis, OR 97331 USA. [Hines, Paul D. H.] Univ Vermont, Sch Engn, Burlington, VT 05405 USA. [Barrows, Clayton] Natl Renewable Energy Lab, Golden, CO 80401 USA. [Blumsack, Seth] Penn State Univ, Leone Family Dept Energy & Mineral Engn, University Pk, PA 16802 USA. [Patel, Mahendra] PJM Appl Solut, Norristown, PA 19403 USA. RP Cotilla-Sanchez, E (reprint author), Oregon State Univ, Sch Elect Engn & Comp Sci, Corvallis, OR 97331 USA. EM cotillaj@eecs.oregonstate.edu; paul.hines@uvm.edu; clayton.barrows@nrel.gov; sethb@psu.edu; patelm3@pjm.com FU PJM Applied Solutions; US DOE [0848247, DE-OE0000447] FX This work was supported in part by PJM Applied Solutions, US DOE award #0848247, and US DOE award #DE-OE0000447. Paper no. TPWRS-01186-2012. NR 44 TC 29 Z9 29 U1 0 U2 7 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0885-8950 EI 1558-0679 J9 IEEE T POWER SYST JI IEEE Trans. Power Syst. PD NOV PY 2013 VL 28 IS 4 BP 4979 EP 4987 DI 10.1109/TPWRS.2013.2263886 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 241RD UT WOS:000326184100154 ER PT J AU Ruiz, JP Wang, JH Liu, C Sun, GY AF Ruiz, Juan P. Wang, Jianhui Liu, Cong Sun, Gengyang TI Outer-approximation method for security constrained unit commitment SO IET GENERATION TRANSMISSION & DISTRIBUTION LA English DT Article DE approximation theory; heuristic programming; integer programming; linear programming; piecewise linear techniques; power generation dispatch; power generation scheduling; power system security; piecewise linear method; heuristic method; UB; upper bounds; MILP problem; function evaluations; LB; lower bounds; mixed-integer linear programs; mixed-integer nonlinear security constrained unit commitment problem; outer-approximation method ID UNIFIED SOLUTION; THERMAL UNIT; POWER; GENERATION; ALGORITHM; PROGRAMS; SYSTEMS AB In this study, the authors present an outer-approximation method to solve the mixed-integer non-linear security constrained unit commitment problem. The main idea lies in solving sequentially a set of mixed-integer linear programs (MILP) to obtain lower bounds (LBs) of the global optimum and perform function evaluations on the incumbent solution of the MILP problem to obtain upper bounds (UBs). The algorithm stops when the LB and UB are sufficiently close. The authors also present a heuristic method that builds on the proposed framework to improve the quality of the solution obtained from the piecewise linear method. The authors show through a set of numerical examples the performance of this approach. C1 [Ruiz, Juan P.] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. [Wang, Jianhui; Liu, Cong; Sun, Gengyang] Argonne Natl Lab, Div Informat & Sci, Argonne, IL 60439 USA. RP Ruiz, JP (reprint author), Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA. EM jianhui.wang@anl.gov NR 25 TC 5 Z9 5 U1 1 U2 5 PU INST ENGINEERING TECHNOLOGY-IET PI HERTFORD PA MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND SN 1751-8687 EI 1751-8695 J9 IET GENER TRANSM DIS JI IET Gener. Transm. Distrib. PD NOV PY 2013 VL 7 IS 11 BP 1210 EP 1218 DI 10.1049/iet-gtd.2012.0311 PG 9 WC Engineering, Electrical & Electronic SC Engineering GA 241PD UT WOS:000326178400005 ER PT J AU Berryman, JG AF Berryman, James G. TI Combining analysis of random elastic polycrystals with poroelasticity for granular composites having orthotropic porous grains and fluid-filled pores SO INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE LA English DT Article ID LONG-WAVELENGTH PROPAGATION; EFFECTIVE MODULI; BOUNDS; MEDIA; COMPRESSIBILITY; INCLUSIONS; CONSTANTS; SYMMETRY; CRYSTALS; MODEL AB Analysis of random polycrystals has typically been applied to solid grains of anisotropic elastic materials. Poroelastic analysis has similarly been applied to otherwise isotropic systems with pores having a variety of shapes and filled with fluids. Present effort is focused on combining these two types of geomechanical analyses by treating anisotropic (specifically orthotropic) poroelastic grains jumbled together to form an overall isotropic polycrystalline poroelastic material. The resulting problem is approximately twice as difficult to solve as the typical elastic polycrystal problem because the polycrystal analysis must be carried through twice: once for the drained (pore-fluid free to escape) poroelastic constants, and again for the undrained (pore-fluid trapped) poroelastic constants. As should be anticipated, poroelastic effects induced by trapped fluid are significantly stronger for the effective bulk modulus than for the effective shear modulus. (C) 2013 Elsevier Ltd. All rights reserved. RP Berryman, JG (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd MS74R316C, Berkeley, CA 94720 USA. EM JGBerryman@LBL.GOV NR 39 TC 3 Z9 3 U1 2 U2 11 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7225 EI 1879-2197 J9 INT J ENG SCI JI Int. J. Eng. Sci. PD NOV PY 2013 VL 72 BP 11 EP 21 DI 10.1016/j.ijengsci.2013.06.007 PG 11 WC Engineering, Multidisciplinary SC Engineering GA 236WV UT WOS:000325831100002 ER PT J AU Khanafer, K Aithal, SM AF Khanafer, Khalil Aithal, S. M. TI Laminar mixed convection flow and heat transfer characteristics in a lid driven cavity with a circular cylinder SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Lid-driven cavity; Mixed convection; Circular cylinder ID NATURAL-CONVECTION; SQUARE ENCLOSURE AB Mixed convection flow and heat transfer characteristics in a lid-driven cavity with a circular body inside are studied numerically using a finite element formulation based on the Galerkin method of weighted residuals. Comparisons of streamlines, isotherms and average Nusselt number are presented to show the impact of the Richardson number, non-dimensional radius of the cylinder, and the location of the cylinder on the transport phenomena within the cavity. The results of this investigation show that the presence of the cylinder results in an increase in the average Nusselt number compared with a case with no cylinder. This result is observed for both, an adiabatic and isothermal, boundary condition imposed on the cylinder. The average Nusselt number increases with an increase in the Richardson number for all non-dimensional radius of the cylinder studied in this work. Moreover, the optimal heat transfer results are obtained when placing the cylinder near the bottom wall for various Richardson numbers. For dominant natural convection (Ri >= 2.5), the average Nusselt number increases with an increase in the non-dimensional radius for 0.05 < r(0)/H < 0.2. Further increase in the non-dimensional radius does not change the Nusselt number at a particular Ri. For dominant mixed convection, the average Nusselt number increases with an increase in the radius of the cylinder for various Richardson numbers. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Khanafer, Khalil] Univ Michigan, Dept Biomed Engn, Frankel Vasc Mech Lab, Ann Arbor, MI 48109 USA. [Khanafer, Khalil] Univ Michigan, Vasc Surg Sect, Samuel & Jean Frankel Cardiovasc Ctr, Ann Arbor, MI 48109 USA. [Aithal, S. M.] Argonne Natl Lab, Comp Environm & Life Sci Directorate, Argonne, IL 60439 USA. RP Khanafer, K (reprint author), Univ Michigan, Dept Biomed Engn, Frankel Vasc Mech Lab, Ann Arbor, MI 48109 USA. EM khanafer@umich.edu NR 25 TC 26 Z9 27 U1 0 U2 14 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD NOV PY 2013 VL 66 BP 200 EP 209 DI 10.1016/j.ijheatmasstransfer.2013.07.023 PG 10 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA 242BF UT WOS:000326211700019 ER PT J AU Kothari, R Sun, C Dinwiddie, R Wang, H AF Kothari, Rushabh Sun, Ct. Dinwiddie, Ralph Wang, Hsin TI Experimental and numerical study of the effective thermal conductivity of nano composites with thermal boundary resistance SO INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER LA English DT Article DE Hot disk technique; Thermal Interface Material (TIM); Silica nanocomposites; Thermal boundary resistance; Particulate composites; Epoxy matrix ID CONTACT CONDUCTANCE; MODEL AB The thermal interface resistance at the macro scale is mainly described by the physical gap between two (inter) faces and constriction resistance due to this gap. The small gaps and surface geometry mismatch between the two material faces makes up the majority of thermal interface resistance (R-c) at the macro scale. There are various models to predict R-c at macro scale. Although R-c represents thermal resistance accurately for macro size contacts between two metals, it is neither suitable nor accurate to describe interface resistance of a modern composite Thermal Interface Material (TIM) containing micron to nano-sized particles. The thermal discontinuity at a perfectly bonded interface of two dissimilar materials is termed as thermal boundary resistance (R-b) or Kapitza resistance. It is necessary to understand feasibility of using nanoparticles in composite TIM by having better understanding of thermal boundary resistance at that scale. The phenomenon of thermal boundary resistance is an inherent material property and arises due to fundamental mechanisms of thermal transport. For metal-matrix particulate composites, R-b plays a more important role than R-c. The free flowing nature of the polymer would eliminate most of the gaps between the two materials at their interface. This means almost all of the thermal resistance at particle/matrix interface would occur due to R-b. Here, the thermal boundary resistance for silica nanoparticles embedded inside epoxy resin is studied. The bulk conductivity of the sample is measured, and R-b is back calculated using the Hasselman-Johnson's (H-J) equation. The numerical validation of the equation is also presented, including extrapolation study to predict effective conductivity of the nanocomposite TIM. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Kothari, Rushabh; Sun, Ct.] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA. [Dinwiddie, Ralph; Wang, Hsin] Oak Ridge Natl Lab, High Temp Mat Lab, Oak Ridge, TN 37831 USA. RP Kothari, R (reprint author), Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA. EM rushabh.kothari@gmail.com RI Wang, Hsin/A-1942-2013 OI Wang, Hsin/0000-0003-2426-9867 FU Indiana 21st Century Research and Technology Funds; U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies FX This research was supported by a grant from the Indiana 21st Century Research and Technology Funds. The research at the Oak Ridge National Laboratory's High Temperature Materials Laboratory was sponsored by the U. S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies. NR 24 TC 10 Z9 10 U1 3 U2 55 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0017-9310 EI 1879-2189 J9 INT J HEAT MASS TRAN JI Int. J. Heat Mass Transf. PD NOV PY 2013 VL 66 BP 823 EP 829 DI 10.1016/j.ijheatmasstransfer.2013.07.061 PG 7 WC Thermodynamics; Engineering, Mechanical; Mechanics SC Thermodynamics; Engineering; Mechanics GA 242BF UT WOS:000326211700078 ER PT J AU Oliker, L Vuduc, R AF Oliker, Leonid Vuduc, Richard TI Introduction for Special Issue on Autotuning SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Editorial Material C1 [Oliker, Leonid] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. [Vuduc, Richard] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA. RP Oliker, L (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 EI 1741-2846 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD NOV PY 2013 VL 27 IS 4 SI SI BP 377 EP 378 DI 10.1177/1094342013495303 PG 2 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 238TH UT WOS:000325972000001 ER PT J AU Ibrahim, KZ Madduri, K Williams, S Wang, B Ethier, S Oliker, L AF Ibrahim, Khaled Z. Madduri, Kamesh Williams, Samuel Wang, Bei Ethier, Stephane Oliker, Leonid TI Analysis and optimization of gyrokinetic toroidal simulations on homogenous and heterogenous platforms SO INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS LA English DT Article DE Particle-in-cell; hybrid programming; memory-centric multi-core tuning; multi-core optimization; GPU programming ID IN-CELL CODE; PARTICLE SIMULATION; MICROTURBULENCE; PLASMAS AB The Gyrokinetic Toroidal Code (GTC) uses the particle-in-cell method to efficiently simulate plasma microturbulence. This work presents novel analysis and optimization techniques to enhance the performance of GTC on large-scale machines. We introduce cell access analysis to better manage locality vs. synchronization tradeoffs on CPU and GPU-based architectures. Our optimized hybrid parallel implementation of GTC uses MPI, OpenMP, and NVIDIA CUDA, achieves up to a 2x speedup over the reference Fortran version on multiple parallel systems, and scales efficiently to tens of thousands of cores. C1 [Ibrahim, Khaled Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, High Performance Computat Res Div, Berkeley, CA 94720 USA. [Williams, Samuel; Oliker, Leonid] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Future Technol Grp, Berkeley, CA 94720 USA. [Madduri, Kamesh] Penn State Univ, Comp Sci & Engn Dept, University Pk, PA 16802 USA. [Wang, Bei] Princeton Univ, Princeton Inst Computat Sci & Engn, Princeton, NJ 08544 USA. RP Ibrahim, KZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, High Performance Computat Res Div, 1 Cyclotron Rd,MS 50A-1148, Berkeley, CA 94720 USA. EM KZIbrahim@lbl.gov RI Wang, Bei/G-4605-2014 OI Wang, Bei/0000-0003-4942-9652 FU DOE Office of Advanced Scientific Computing Research [DE-AC02-05CH11231]; DOE [DE-AC02-09CH11466]; Office of Science of the US Department of Energy [DE-AC02-05CH11231, DE-AC02-06CH11357, DE-AC05-00OR22725] FX All authors from from Lawrence Berkeley National Laboratory were supported by the DOE Office of Advanced Scientific Computing Research (grant number DE-AC02-05CH11231). Dr Ethier is supported by the DOE (grant number DE-AC02-09CH11466). This research used resources of the Argonne Leadership Computing Facility at the Argonne National Laboratory, which is supported by the Office of Science of the US Department of Energy (grant number DE-AC02-06CH11357). This research also used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy (grant number DE-AC02-05CH11231). Finally, this research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy (grant number DE-AC05-00OR22725). NR 28 TC 2 Z9 2 U1 1 U2 14 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1094-3420 EI 1741-2846 J9 INT J HIGH PERFORM C JI Int. J. High Perform. Comput. Appl. PD NOV PY 2013 VL 27 IS 4 SI SI BP 454 EP 473 DI 10.1177/1094342013492446 PG 20 WC Computer Science, Hardware & Architecture; Computer Science, Interdisciplinary Applications; Computer Science, Theory & Methods SC Computer Science GA 238TH UT WOS:000325972000008 ER PT J AU Cazacu, O Revil-Baudard, B Lebensohn, RA Garajeu, M AF Cazacu, Oana Revil-Baudard, Benoit Lebensohn, Ricardo A. Garajeu, Mihail TI On the Combined Effect of Pressure and Third Invariant on Yielding of Porous Solids With von Mises Matrix SO JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME LA English DT Article DE porous ductile solids; coupled mean stress third-invariant effect; tension-compression asymmetry; limit analysis ID FIELDS; VOIDS AB In this work it is shown that the exact plastic potential for porous solids with von Mises perfectly plastic matrix containing spherical cavities should involve a very specific coupling between the mean stress and the third invariant of the stress deviator. Furthermore, a new approximate plastic potential that preserves this key feature of the exact one is developed. Unlike all existing analytical criteria for porous solids with von Mises matrix, this new criterion displays a lack of symmetry with respect to both the hydrostatic and deviatoric axes. A full-field approach is also used to generate numerical gauge surfaces. These calculations confirm the aforementioned new features of the dilatational response. C1 [Cazacu, Oana; Revil-Baudard, Benoit] Univ Florida, Dept Mech & Aerosp Engn, REEF, Shalimar, FL 32579 USA. [Lebensohn, Ricardo A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Garajeu, Mihail] Univ Aix Marseille, CNRS, M2P2 UMR7340, F-13397 Marseille, France. RP Cazacu, O (reprint author), Univ Florida, Dept Mech & Aerosp Engn, REEF, 1350 N Poquito Rd, Shalimar, FL 32579 USA. EM cazacu@reef.ufl.edu RI Lebensohn, Ricardo/A-2494-2008; Cazacu, Oana/L-4635-2016; Revil-Baudard, Benoit/L-5576-2016 OI Lebensohn, Ricardo/0000-0002-3152-9105; Cazacu, Oana/0000-0002-2499-9096; Revil-Baudard, Benoit/0000-0001-8682-5035 NR 13 TC 11 Z9 11 U1 1 U2 7 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0021-8936 EI 1528-9036 J9 J APPL MECH-T ASME JI J. Appl. Mech.-Trans. ASME PD NOV PY 2013 VL 80 IS 6 AR 064501 DI 10.1115/1.4024074 PG 5 WC Mechanics SC Mechanics GA 241PM UT WOS:000326179400026 ER PT J AU Conboy, T Pasch, J Fleming, D AF Conboy, T. Pasch, J. Fleming, D. TI Control of a Supercritical CO2 Recompression Brayton Cycle Demonstration Loop SO JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME LA English DT Article AB The U. S. Department of Energy is currently focused on the development of next-generation nuclear power reactors, with an eye towards improved efficiency and reduced capital cost. To this end, reactors using a closed-Brayton power conversion cycle have been proposed as an attractive alternative to steam turbines. The supercritical-CO2 recompression cycle has been identified as a leading candidate for this application since it can achieve high efficiency at relatively low operating temperatures with extremely compact turbomachinery. Sandia National Laboratories has been a leader in hardware and component development for the supercritical-CO2 cycle. With contractor Barber-Nichols Inc., Sandia has constructed a megawatt-class S-CO2 cycle test-loop to investigate the key areas of technological uncertainty for this power cycle and to confirm model estimates of advantageous thermodynamic performance. Until recently, much of the work has centered on the simple S-CO2 cycle-a recuperated Brayton loop with a single turbine and compressor. However, work has recently progressed to a recompression cycle with split-shaft turbo-alternator-compressors, unlocking the potential for much greater efficiency power conversion, but introducing greater complexity in control operations. The following sections use testing experience to frame control actions made by test loop operators in bringing the recompression cycle from cold startup conditions through transition to power generation on both turbines, to the desired test conditions, and finally to a safe shutdown. During this process, considerations regarding the turbocompressor thrust state, CO2 thermodynamic state at the compressor inlet, compressor surge and stall, turbine u/c ratio, and numerous other factors must be taken into account. The development of these procedures on the Sandia test facility has greatly reduced the risk to industry in commercial development of the S-CO2 power cycle. C1 [Conboy, T.; Pasch, J.; Fleming, D.] Sandia Natl Labs, Adv Nucl Concepts, Albuquerque, NM 87185 USA. RP Conboy, T (reprint author), Sandia Natl Labs, Adv Nucl Concepts, POB 5800,MS 1136, Albuquerque, NM 87185 USA. EM tmconbo@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank the U.S. Department of Energy-Nuclear Energy Division, Barber-Nichols Inc., and PrimeCore Systems. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 10 TC 4 Z9 4 U1 5 U2 19 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0742-4795 EI 1528-8919 J9 J ENG GAS TURB POWER JI J. Eng. Gas. Turbines Power-Trans. ASME PD NOV PY 2013 VL 135 IS 11 AR 111701 DI 10.1115/1.4025127 PG 12 WC Engineering, Mechanical SC Engineering GA 241IU UT WOS:000326160900008 ER PT J AU Tomkins, CD Balakumar, BJ Orlicz, G Prestridge, KP Ristorcelli, JR AF Tomkins, C. D. Balakumar, B. J. Orlicz, G. Prestridge, K. P. Ristorcelli, J. R. TI Evolution of the density self-correlation in developing Richtmyer-Meshkov turbulence SO JOURNAL OF FLUID MECHANICS LA English DT Article DE transition to turbulence; turbulence modelling; turbulent mixing ID HIGH-REYNOLDS-NUMBER; RAYLEIGH-TAYLOR; 2ND-MOMENT CLOSURE; ACCELERATED FLOW; GAS-CURTAIN; FLUID LAYER; INSTABILITY; TRANSITION; SIMULATIONS; VELOCITY AB Turbulent mixing in a Richtmyer-Meshkov unstable light-heavy-light (air-SF6-air) fluid layer subjected to a shock (Mach 1.20) and a reshock (Mach 1.14) is investigated using ensemble statistics obtained from simultaneous velocity-density measurements. The mixing is driven by an unstable array of initially symmetric vortices that induce rapid material mixing and create smaller-scale vortices. After reshock the flow appears to transition to a turbulent (likely three-dimensional) state, at which time our planar measurements are used to probe the developing flow field. The density selfcorrelation b = - (where rho and nu are the fluctuating density and specific volume, respectively) and terms in its evolution equation are directly measured experimentally for the first time. Amongst other things, it is found that production terms in the b equation are balanced by the dissipation terms, suggesting a form of equilibrium in b. Simultaneous velocity measurements are used to probe the state of the incipient turbulence. A length-scale analysis suggests that an inertial range is beginning to form, consistent with the onset of a mixing transition. The developing turbulence is observed to reduce non-Boussinesq effects in the flow, which are found to be small over much of the layer after reshock. Second-order two-point structure functions of the density field exhibit a power-law behaviour with a steeper exponent than the standard 2/3 power found in canonical turbulence. The absence of a significant 2/3 region is observed to be consistent with the state of the flow, and the emergence of the steeper power-law region is discussed. C1 [Tomkins, C. D.; Balakumar, B. J.; Orlicz, G.; Prestridge, K. P.; Ristorcelli, J. R.] Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. RP Tomkins, CD (reprint author), Los Alamos Natl Lab, Div Phys, Los Alamos, NM 87545 USA. EM ctomkins@lanl.gov RI Prestridge, Kathy/C-1137-2012 OI Prestridge, Kathy/0000-0003-2425-5086 NR 39 TC 11 Z9 15 U1 0 U2 7 PU CAMBRIDGE UNIV PRESS PI NEW YORK PA 32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473 USA SN 0022-1120 EI 1469-7645 J9 J FLUID MECH JI J. Fluid Mech. PD NOV PY 2013 VL 735 BP 288 EP 306 DI 10.1017/jfm.2013.430 PG 19 WC Mechanics; Physics, Fluids & Plasmas SC Mechanics; Physics GA 244KJ UT WOS:000326386700017 ER PT J AU Riffle, BW Henderson, WM Laws, SC AF Riffle, Brandy W. Henderson, W. Matthew Laws, Susan C. TI Measurement of steroids in rats after exposure to an endocrine disruptor: Mass spectrometry and radioimmunoassay demonstrate similar results SO JOURNAL OF PHARMACOLOGICAL AND TOXICOLOGICAL METHODS LA English DT Article DE Methods; Steroids; Radioimmunoassay; Mass spectroscopy; Quality control ID FEMALE WISTAR RATS; PUBERTAL DEVELOPMENT; THYROID-FUNCTION; OVARIAN-FUNCTION; LC-MS/MS; ATRAZINE; METABOLITES; SERUM; RIA; CHLOROTRIAZINE AB Introduction: Commercially available radioimmunoassays (RIAs) are frequently used to evaluate the effects of endocrine disrupting chemicals (EDCs) on steroidogenesis in rats. Currently there are limited data comparing steroid concentrations in rats as measured by RIAs to those obtained using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). This study evaluates the concordance of serum and urine steroid concentrations as quantified by select RIA kits and LC-MS/MS following exposure to an EDC, atrazine (ATR). Methods: Adult male rats were orally dosed with ATR (200 mg/kg/day) or methylcellulose (1%, vehicle control) for 5 days. Serum was collected and separated into aliquots for analysis. Serumwas assayed by RIA for androstenedione (ANDRO), corticosterone (CORT), estradiol (E2), estrone (E1), progesterone (P4), and testosterone (T). Serum was extracted prior to LC-MS/MS analysis with positive electrospray ionization in multiple-reaction monitoring mode for ANDRO, CORT, P4, and T. E1 and E2 concentrations were quantified similarly by LC-MS/MS, following derivatization with dansyl chloride. To compare CORT values from urine, pregnant adult rats were orally dosed with either ATR (100 mg/kg/day) or methylcellulose for 5 days (i.e., gestational days 14-18). Urine samples were collected daily and assayed for CORT by RIA and LC-MS/MS as described above. Results: Data analyses demonstrated significant agreement between the two detection methods as assessed by Pearson product-moment correlation coefficient, Bland-Altman analysis, and the interclass correlation coefficient. No statistically significant differences were observed between RIA and LC-MS/MS means for any of the steroids assayed. Discussion: These findings indicate a significant correlation between the measurement of steroids within rat serum and urine using RIA kits and LC-MS/MS. Differences in the absolute measurements existed, but these were not statistically significant. These findings indicate that steroids may be reliably measured in rat biological media using RIAs or LC-MS/MS. Published by Elsevier Inc. C1 [Riffle, Brandy W.] ORISE, Res Participat Program, Oak Ridge, TN 37831 USA. [Henderson, W. Matthew] US EPA, Ecosyst Res Div, NERL, ORD, Athens, GA 30605 USA. [Riffle, Brandy W.; Laws, Susan C.] US EPA, Toxic Assessment Div, Endocrine Toxicol Branch, ORD,NHEERL, Res Triangle Pk, NC 27711 USA. RP Laws, SC (reprint author), US EPA, Toxic Assessment Div MD 72, Natl Hlth & Environm Effects Res Lab, 109 TW Alexander Dr, Res Triangle Pk, NC 27711 USA. EM laws.susan@epa.gov FU U.S. EPA; Oak Ridge Institute of Science and Education Research Participation Program FX This work was conducted at the National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, NC, and supported by the U.S. EPA and the Oak Ridge Institute of Science and Education Research Participation Program. The authors gratefully acknowledge the contributions of Alvin Moore, Henry Deas, Derek Puffer, Guadalupe Moran, Priority One Services, Alexandria, VA; Faye Poythress, Shelley Bagby, Annemarie Shoffner, Patty Dillard, Marta Aguilar, and Vivian Wilson, Alpha Omega Bioservices, Baltimore, MD, for their outstanding technical support and assistance with animal care; Deborah Best, U.S. EPA, for her assistance with animal dosing; Michelle Hotchkiss and Ashley Murr, U.S. EPA, for their assistance with RIAs; and Dr. Jamie Dewitt (East Carolina University), and Dr. Jerome Goldman (U.S. EPA) for their reviews and helpful comments on earlier drafts of the manuscript. NR 50 TC 6 Z9 7 U1 3 U2 28 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1056-8719 EI 1873-488X J9 J PHARMACOL TOX MET JI J. Pharmacol. Toxicol. Methods PD NOV-DEC PY 2013 VL 68 IS 3 BP 314 EP 322 DI 10.1016/j.vascn.2013.07.003 PG 9 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 242JS UT WOS:000326237100003 PM 23871967 ER PT J AU Coppari, F Smith, RF Eggert, JH Wang, J Rygg, JR Lazicki, A Hawreliak, JA Collins, GW Duffy, TS AF Coppari, F. Smith, R. F. Eggert, J. H. Wang, J. Rygg, J. R. Lazicki, A. Hawreliak, J. A. Collins, G. W. Duffy, T. S. TI Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures SO NATURE GEOSCIENCE LA English DT Article ID EQUATION-OF-STATE; ISENTROPIC COMPRESSION EXPERIMENTS; MULTIMEGABAR PRESSURES; ELECTRONIC-STRUCTURE; MGO; DYNAMICS; SIMULATIONS; STABILITY; PERICLASE; SYSTEM AB Magnesium oxide is an important component of the Earth's mantle and has been extensively studied at pressures and temperatures relevant to Earth(1). However, much less is known about the behaviour of this oxide under conditions likely to occur in extrasolar planets with masses up to 10 times that of Earth, termed super-Earths, where pressures can exceed 1,000 GPa (10 million atmospheres). Magnesium oxide is expected to change from a rocksalt crystal structure (B1) to a caesium chloride (B2) structure at pressures of about 400-600 GPa (refs 2,3). Whereas no structural transformation was observed in static compression experiments up to 250 GPa (ref. 4), evidence for a solid-solid phase transition was obtained in shockwave experiments above 400 GPa and 9,000 K (ref. 5), albeit no structural measurements were made. As a result, the properties and the structure of MgO under conditions relevant to super-Earths and large planets are unknown. Here we present dynamic X-ray diffraction measurements of ramp-compressed magnesium oxide. We show that a solid-solid phase transition, consistent with a transformation to the B2 structure, occurs near 600 GPa. On further compression, this structure remains stable to 900 GPa. Our results provide an experimental benchmark to the equations of state and transition pressure of magnesium oxide, and may help constrain mantle viscosity and convection in the deep mantle of extrasolar super-Earths. C1 [Coppari, F.; Smith, R. F.; Eggert, J. H.; Rygg, J. R.; Lazicki, A.; Hawreliak, J. A.; Collins, G. W.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Wang, J.; Duffy, T. S.] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA. RP Coppari, F (reprint author), Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. EM coppari1@llnl.gov RI Wang, Jue/I-4705-2014; Duffy, Thomas/C-9140-2017 OI Wang, Jue/0000-0001-9206-4367; Duffy, Thomas/0000-0002-5357-1259 FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NNSA/DOE through the National Laser Users' Facility Program [DE-NA0000856, DE-FG52-09NA29037]; Laboratory Directed Research and Development program at LLNL [12-SI-007] FX The authors thank S. Uhlich, W. Unites, T. Uphaus and R. Wallace for their assistance in target preparation and the operation staff at the OMEGA Laser Facility for supporting these experiments. F.C. is grateful to D. C. Swift for providing a tabular equation of state of MgO. The authors thank R. E. Cohen and M. J. Mehl for discussions and for making simulation results available. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. The research was supported by NNSA/DOE through the National Laser Users' Facility Program under contracts DE-NA0000856 and DE-FG52-09NA29037. Part of this work was financially supported by the Laboratory Directed Research and Development program at LLNL (project number 12-SI-007). NR 30 TC 39 Z9 40 U1 5 U2 42 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1752-0894 EI 1752-0908 J9 NAT GEOSCI JI Nat. Geosci. PD NOV PY 2013 VL 6 IS 11 BP 926 EP 929 DI 10.1038/NGEO1948 PG 4 WC Geosciences, Multidisciplinary SC Geology GA 245ZW UT WOS:000326505800013 ER PT J AU Dyer, GC Aizin, GR Allen, SJ Grine, AD Bethke, D Reno, JL Shaner, EA AF Dyer, Gregory C. Aizin, Gregory R. Allen, S. James Grine, Albert D. Bethke, Don Reno, John L. Shaner, Eric A. TI Induced transparency by coupling of Tamm and defect states in tunable terahertz plasmonic crystals SO NATURE PHOTONICS LA English DT Article ID GRAPHENE PLASMONICS; NEGATIVE REFRACTION; ELECTRON-GAS; METAMATERIALS; SUPERLATTICES; OPTICS AB Photonic crystals and metamaterials have emerged as two classes of tailorable materials that enable the precise control of light. Plasmonic crystals, which can be thought of as photonic crystals fabricated from plasmonic materials, Bragg scatter incident electromagnetic waves from a repeated unit cell. However, plasmonic crystals, like metamaterials, are composed of subwavelength unit cells. Here, we study terahertz plasmonic crystals of several periods in a two-dimensional electron gas. This plasmonic medium is both extremely subwavelength (similar to gimel/100) and reconfigurable through the application of voltages to metal electrodes. Weakly localized crystal surface states known as Tamm states are observed. By introducing an independently controlled plasmonic defect that interacts with the Tamm states, we demonstrate a frequency-agile electromagnetically induced transparency phenomenon. The observed 50% in situ tuning of the plasmonic crystal band edges should be realizable in materials such as graphene to actively control plasmonic crystal dispersion in the infrared. C1 [Dyer, Gregory C.; Grine, Albert D.; Bethke, Don; Reno, John L.; Shaner, Eric A.] Sandia Natl Labs, Albuquerque, NM 87185 USA. [Aizin, Gregory R.] CUNY, Kingsborough Coll, Brooklyn, NY 11235 USA. [Allen, S. James] Univ Calif Santa Barbara, Inst Terahertz Sci & Technol, Santa Barbara, CA 93106 USA. RP Dyer, GC (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM gcdyer@sandia.gov; eashane@sandia.gov FU Department of Energy Office of Basic Energy Sciences FX The work at Sandia National Laboratories was supported by the Department of Energy Office of Basic Energy Sciences. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences user facility. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration (contract DE-AC04-94AL85000). NR 50 TC 32 Z9 33 U1 6 U2 97 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1749-4885 EI 1749-4893 J9 NAT PHOTONICS JI Nat. Photonics PD NOV PY 2013 VL 7 IS 11 BP 925 EP 930 DI 10.1038/NPHOTON.2013.252 PG 6 WC Optics; Physics, Applied SC Optics; Physics GA 244MZ UT WOS:000326394600021 ER PT J AU Chen, YL Kanou, M Liu, ZK Zhang, HJ Sobota, JA Leuenberger, D Mo, SK Zhou, B Yang, SL Kirchmann, PS Lu, DH Moore, RG Hussain, Z Shen, ZX Qi, XL Sasagawa, T AF Chen, Y. L. Kanou, M. Liu, Z. K. Zhang, H. J. Sobota, J. A. Leuenberger, D. Mo, S. K. Zhou, B. Yang, S-L. Kirchmann, P. S. Lu, D. H. Moore, R. G. Hussain, Z. Shen, Z. X. Qi, X. L. Sasagawa, T. TI Discovery of a single topological Dirac fermion in the strong inversion asymmetric compound BiTeCl SO NATURE PHYSICS LA English DT Article ID RESOLVED PHOTOEMISSION-SPECTROSCOPY; INSULATORS; SURFACE; BI2TE3; PHASE; CONE AB In the past few years, a new state of quantum matter known as the time-reversal-invariant topological insulator has been predicted theoretically and realized experimentally. All of the topological insulators discovered so far in experiment are inversion symmetric(1-5)-except for strained HgTe, which has weak inversion asymmetry, a small bulk gap but no bulk charge polarization(6). Strong inversion asymmetry in topological insulators would not only lead to many interesting phenomena, such as crystalline-surface-dependent topological electronic states, pyroelectricity and intrinsic topological p-n junctions, but would also serve as an ideal platform for the realization of topological magneto-electric effects(7,8), which result from the modification of Maxwell equations in topological insulators. Here we report the discovery of a strong inversion asymmetric topological insulator phase in BiTeCl by angle-resolved photoemission spectroscopy, which reveals Dirac surface states and crystalline-surface-dependent electronic structures. Moreover, we observe a tenfold increase of the bulk energy gap in BiTeCl over the weak inversion asymmetric topological insulator HgTe, making it a promising platform for topological phenomena and possible applications at high temperature. C1 [Chen, Y. L.; Zhou, B.] Univ Oxford, Dept Phys, Clarendon Lab, Oxford OX1 3PU, England. [Chen, Y. L.] Diamond Light Source, Didcot OX11 0DE, Oxon, England. [Chen, Y. L.; Sobota, J. A.; Leuenberger, D.; Yang, S-L.; Kirchmann, P. S.; Moore, R. G.; Shen, Z. X.] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA. [Kanou, M.; Sasagawa, T.] Tokyo Inst Technol, Mat & Struct Lab, Tokyo, Kanagawa 2268503, Japan. [Liu, Z. K.; Zhang, H. J.; Sobota, J. A.; Leuenberger, D.; Yang, S-L.; Shen, Z. X.; Qi, X. L.] Stanford Univ, Dept Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Liu, Z. K.; Zhang, H. J.; Sobota, J. A.; Leuenberger, D.; Yang, S-L.; Shen, Z. X.; Qi, X. L.] Stanford Univ, Dept Appl Phys, Geballe Lab Adv Mat, Stanford, CA 94305 USA. [Mo, S. K.; Zhou, B.; Hussain, Z.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Lu, D. H.] Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA. RP Chen, YL (reprint author), Univ Oxford, Dept Phys, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England. EM Yulin.Chen@physics.ox.ac.uk; sasagawa@msl.titech.ac.jp RI Sasagawa, Takao/E-6666-2014; Kirchmann, Patrick/C-1195-2008; Mo, Sung-Kwan/F-3489-2013; OI Sasagawa, Takao/0000-0003-0149-6696; Kirchmann, Patrick/0000-0002-4835-0654; Mo, Sung-Kwan/0000-0003-0711-8514; Yang, Shuolong/0000-0002-8200-9898 FU DARPA MESO project [N66001-11-1-4105]; EPSRC First Grant [EP/K04074X/1]; Department of Energy, Office of Basic Energy Science [DE-AC02-76SF00515]; MEXT, Japan [24340078]; Army Research Office [W911NF-09-1-0508]; Stanford Graduate Fellowship FX We thank Z. Wang and C. X. Liu for the helpful discussion. Y.L.C. acknowledges support from a DARPA MESO project (No. N66001-11-1-4105) and the EPSRC First Grant (EP/K04074X/1). B. Z., Z. K. L., Z. X. S. and X. L. Q. acknowledge support from Department of Energy, Office of Basic Energy Science (contract DE-AC02-76SF00515). T. S. acknowledges support from MEXT, Japan (Grant-in-Aid for Scientific Research (B), No. 24340078). H.J.Z. acknowledges support from the Army Research Office (No. W911NF-09-1-0508). J.A.S. acknowledges support from the Stanford Graduate Fellowship. D. L. acknowledges the Swiss National Science Foundation. NR 30 TC 39 Z9 39 U1 10 U2 95 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD NOV PY 2013 VL 9 IS 11 BP 704 EP 708 DI 10.1038/NPHYS2768 PG 5 WC Physics, Multidisciplinary SC Physics GA 248GM UT WOS:000326685000010 ER PT J AU Huxter, VM Oliver, TAA Budker, D Fleming, GR AF Huxter, V. M. Oliver, T. A. A. Budker, D. Fleming, G. R. TI Vibrational and electronic dynamics of nitrogen-vacancy centres in diamond revealed by two-dimensional ultrafast spectroscopy SO NATURE PHYSICS LA English DT Article ID NUCLEAR-SPIN QUBITS; NANOSCALE RESOLUTION; TEMPERATURE; BAND AB The optical and material properties of negatively charged nitrogen-vacancy (NV) centres in diamond make them attractive for applications ranging from quantum information to electromagnetic sensing. These properties are strongly dependent on the vibrational manifold associated with the centre, which determines phenomena associated with decoherence, relaxation and spin-orbit coupling. Despite its paramount importance in tuning these properties, the role of the vibrational bath and its effect on the electronic-state dynamics of NV centres in diamond is not fully understood. To elucidate the role of the bath, we present two-dimensional electronic spectroscopic studies of ensembles of negatively charged NV defect centres in diamond (NVD). We observe picosecond non-radiative relaxation within the phonon sideband and find that strongly coupled local modes dominate the vibrational bath. These findings provide a starting point for new insights into dephasing, spin addressing and relaxation in NVD with broad implications for magnetometry, quantum information, nanophotonics, sensing and ultrafast spectroscopy. C1 [Huxter, V. M.; Oliver, T. A. A.; Fleming, G. R.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Huxter, V. M.; Oliver, T. A. A.; Fleming, G. R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Budker, D.] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA. [Budker, D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Nucl Sci, Berkeley, CA 94720 USA. RP Fleming, GR (reprint author), Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. EM grfleming@lbl.gov RI Budker, Dmitry/F-7580-2016 OI Budker, Dmitry/0000-0002-7356-4814 FU National Science and Engineering Research Council of Canada; NSF [CHE-1012168]; AFOSR/DARPA QuASAR programme FX The authors thank A. Gali for initially suggesting ultrafast measurements with nitrogen-vacancy-diamond, A. Jarmola for preparing the nitrogen-vacancy-diamond sample, and N. Manson and P. Kehayias for helpful discussions. V.M.H. thanks the National Science and Engineering Research Council of Canada for a postdoctoral fellowship. D.B. was supported by NSF and the AFOSR/DARPA QuASAR programme. The work by V.M.H., T.A.A.O. and G.R.F. was supported by NSF grant CHE-1012168. NR 36 TC 12 Z9 12 U1 7 U2 55 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1745-2473 EI 1745-2481 J9 NAT PHYS JI Nat. Phys. PD NOV PY 2013 VL 9 IS 11 BP 744 EP 749 DI 10.1038/NPHYS2753 PG 6 WC Physics, Multidisciplinary SC Physics GA 248GM UT WOS:000326685000018 ER PT J AU Takayama, K Adachi, T Arai, T Arakawa, D Asao, H Barata, Y Harada, S Horioka, K Iwata, T Kadokura, E Kwakubo, T Kubo, T Leo, KW Liu, XG Mochiki, K Munemoto, N Nakanishi, H Okada, Y Okamura, K Okamura, M Okazaki, K Someya, H Takahashi, K Takano, S Wake, M Yoshimoto, T AF Takayama, Ken Adachi, Toshikazu Arai, Teruo Arakawa, Dai Asao, Hiroyuki Barata, Yuji Harada, Shinya Horioka, Kazuhiko Iwata, Taiki Kadokura, Eiichi Kwakubo, Tadamichi Kubo, Tomio Leo, Kwee Wah Liu, Xingguaung Mochiki, Koichi Munemoto, Naoya Nakanishi, Hiroshi Okada, Yoshihito Okamura, Katsuya Okamura, Masahiro Okazaki, Koji Someya, Hirohiko Takahashi, Kazumasa Takano, Susumu Wake, Masayoshi Yoshimoto, Takashi TI Heavy ion beam factory for material science based on the KEK digital accelerator SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Accelerator; Synchrotron; Digital accelerator; Heavy ion AB The KEK digital accelerator (DA) is an alternative to high-voltage electrostatic accelerators and conventional cyclotrons and synchrotrons, which are commonly used as swift heavy ion beam drivers. Compared with conventional accelerators, KEK-DA is capable of delivering a wider variety of ion species with various energies, as a result of its intrinsic properties. It is expected to serve as a heavy ion beam factory for research in materials science. Plans for its utilization include unique application programs, such as laboratory-based space science using virtual cosmic rays, heavy-ion mutagenesis in microorganisms, deep ion implantation, and modification of materials, which may be categorized into systematic studies of the spatial and temporal evolution of the locally and highly excited states of materials. (C) 2013 Elsevier B.V. All rights reserved. C1 [Takayama, Ken; Adachi, Toshikazu; Arai, Teruo; Arakawa, Dai; Barata, Yuji; Harada, Shinya; Iwata, Taiki; Kadokura, Eiichi; Kwakubo, Tadamichi; Kubo, Tomio; Leo, Kwee Wah; Liu, Xingguaung; Nakanishi, Hiroshi; Okamura, Katsuya; Someya, Hirohiko; Takano, Susumu; Wake, Masayoshi; Yoshimoto, Takashi] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. [Takayama, Ken; Adachi, Toshikazu; Leo, Kwee Wah; Okamura, Katsuya] Grad Univ Adv Studies, Hayama, Kanagawa 2400193, Japan. [Takayama, Ken; Horioka, Kazuhiko; Liu, Xingguaung; Munemoto, Naoya; Takahashi, Kazumasa; Yoshimoto, Takashi] Tokyo Inst Technol, Yokohama, Kanagawa 2268502, Japan. [Asao, Hiroyuki; Okada, Yoshihito] NEC Network Sensor, Fuchu, Tokyo 1838501, Japan. [Barata, Yuji; Harada, Shinya; Mochiki, Koichi] Tokyo City Univ, Tokyo 1588586, Japan. [Okamura, Masahiro] Brookhaven Natl Lab, Upton, NY 11973 USA. [Okazaki, Koji; Takano, Susumu] Nippon Adv Technol Co Ltd NAT, Tokai, Ibaraki 3191112, Japan. RP Takayama, K (reprint author), High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan. EM takayama@post.kek.jp RI Horioka, Kazuhiko/B-9844-2015; OI Horioka, Kazuhiko/0000-0002-4524-0775; Liu, Xingguang/0000-0002-0950-5852 FU KAKENHI [23240082, 24310077]; Center for the Promotion of Integrated Science (CPIS) of Sokendai FX This work was supported by Grants-in-Aid for Scientific Research (A) (KAKENHI No. 23240082) and (B) (KAKENHI No. 24310077). In addition, This work was also supported in part by the Center for the Promotion of Integrated Science (CPIS) of Sokendai. NR 12 TC 2 Z9 3 U1 1 U2 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD NOV 1 PY 2013 VL 314 BP 11 EP 17 DI 10.1016/j.nimb.2013.05.029 PG 7 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 246QG UT WOS:000326553600003 ER PT J AU Makgato, TN Sideras-Haddad, E Shrivastava, S Schenkel, T Ritter, R Kowarik, G Aumayr, F Lopez-Urrutia, JC Bernitt, S Beilmann, C Ginzel, R AF Makgato, T. N. Sideras-Haddad, E. Shrivastava, S. Schenkel, T. Ritter, R. Kowarik, G. Aumayr, F. Lopez-Urrutia, J. Crespo Bernitt, S. Beilmann, C. Ginzel, R. TI Highly charged ion impact induced nanodefects in diamond SO NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS LA English DT Article DE Diamond; Highy charged ions; Nanostructuring; Nano-craters; Electron beam ion trap ID NANOSCALE MODIFICATION; COULOMB EXPLOSION; POTENTIAL-ENERGY; SLOW; SURFACE; IRRADIATION; HOPG; HCI; BOMBARDMENT; DEPOSITION AB We investigate the interaction of slow highly charged ion (SHCI) beams with insulating type Ib diamond (1 1 1) surfaces. Bismuth and Xenon SHCI beams produced using an Electron Beam Ion Trap (EBIT) and an Electron Cyclotron Resonance source (ECR) respectively, are accelerated onto type Ib diamond (1 1 1) surfaces with impact velocities up to approximate to 0.4 upsilon(Bohr). SHCIs with charge states corresponding to potential energies between 4.5 keV and 110 keV are produced for this purpose. Atomic Force Microscopy analysis (AFM) of the diamond surfaces following SHCI impact reveals surface morphological modifications characterized as nanoscale craters (nano-craters). To interpret the results from Tapping Mode AFM analysis of the irradiated diamond surfaces we discuss the interplay between kinetic and potential energy in nanocrater formation using empirical data together with Stopping and Range of Ions in Matter (SRIM) Monte Carlo Simulations. (C) 2013 Elsevier B.V. All rights reserved. C1 [Makgato, T. N.; Sideras-Haddad, E.; Shrivastava, S.] Univ Witwatersrand, Sch Phys, ZA-2050 Johannesburg, South Africa. [Makgato, T. N.] Univ Witwatersrand, Microscopy & Microanal Unit, ZA-2050 Johannesburg, South Africa. [Schenkel, T.] EO Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Ritter, R.; Kowarik, G.; Aumayr, F.] TU Wien Vienna Univ Technol, Inst Appl Phys, A-1040 Vienna, Austria. [Lopez-Urrutia, J. Crespo; Bernitt, S.; Beilmann, C.; Ginzel, R.] Max Planck Inst Nucl Phys, D-69117 Heidelberg, Germany. [Sideras-Haddad, E.] Univ Witwatersrand, Ctr Excellence Strong Mat, ZA-2050 Johannesburg, South Africa. RP Makgato, TN (reprint author), Univ Witwatersrand, Sch Phys, ZA-2050 Johannesburg, South Africa. EM thuto.makgato@wits.ac.za RI Aumayr, Friedrich/A-3920-2009; Crespo Lopez-Urrutia, Jose R./F-7069-2011 OI Aumayr, Friedrich/0000-0002-9788-0934; Crespo Lopez-Urrutia, Jose R./0000-0002-2937-8037 NR 39 TC 2 Z9 2 U1 1 U2 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0168-583X EI 1872-9584 J9 NUCL INSTRUM METH B JI Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms PD NOV 1 PY 2013 VL 314 BP 135 EP 139 DI 10.1016/j.nimb.2013.04.062 PG 5 WC Instruments & Instrumentation; Nuclear Science & Technology; Physics, Atomic, Molecular & Chemical; Physics, Nuclear SC Instruments & Instrumentation; Nuclear Science & Technology; Physics GA 246QG UT WOS:000326553600031 ER PT J AU Phaneuf, RA Kilcoyne, ALD Aryal, NB Baral, KK Esteves-Macaluso, DA Thomas, CM Hellhund, J Lomsadze, R Gorczyca, TW Ballance, CP Manson, ST Hasoglu, MF Schippers, S Muller, A AF Phaneuf, R. A. Kilcoyne, A. L. D. Aryal, N. B. Baral, K. K. Esteves-Macaluso, D. A. Thomas, C. M. Hellhund, J. Lomsadze, R. Gorczyca, T. W. Ballance, C. P. Manson, S. T. Hasoglu, M. F. Schippers, S. Mueller, A. TI Probing confinement resonances by photoionizing Xe inside a C-60(+) molecular cage SO PHYSICAL REVIEW A LA English DT Article ID ENDOHEDRAL FULLERENE; ELECTRON-IMPACT; ATOMS; PHOTOABSORPTION AB Double photoionization accompanied by loss of n C atoms (n = 0, 2, 4, 6) was investigated by merging beams of Xe@C-60(+) ions and synchrotron radiation and measuring the yields of product ions. The giant 4d dipole resonance of the caged Xe atom has a prominent signature in the cross section for these product channels, which together account for 6.2 +/- 1.4 of the total Xe 4d oscillator strength of 10. Compared to that for a free Xe atom, the oscillator strength is redistributed in photon energy due to multipath interference of outgoing Xe 4d photoelectron waves that may be transmitted or reflected by the spherical C-60(+) molecular cage, yielding so-called confinement resonances. The data are compared with an earlier measurement and with theoretical predictions for this single-molecule photoelectron interferometer system. Relativistic R-matrix calculations for the Xe atom in a spherical potential shell representing the fullerene cage show the sensitivity of the interference pattern to the molecular geometry. C1 [Phaneuf, R. A.; Aryal, N. B.; Baral, K. K.; Thomas, C. M.; Hellhund, J.; Lomsadze, R.] Univ Nevada, Dept Phys, Reno, NV 89557 USA. [Kilcoyne, A. L. D.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. [Esteves-Macaluso, D. A.] Univ Montana, Dept Phys & Astron, Missoula, MT 59812 USA. [Hellhund, J.; Schippers, S.; Mueller, A.] Univ Giessen, Inst Atom & Mol Phys, D-35392 Giessen, Germany. [Lomsadze, R.] Tbilisi State Univ, Fac Exact & Nat Sci, GE-0128 Tbilisi, Rep of Georgia. [Gorczyca, T. W.] Western Michigan Univ, Dept Phys, Kalamazoo, MI 49008 USA. [Ballance, C. P.] Auburn Univ, Dept Phys, Auburn, AL 36849 USA. [Manson, S. T.] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA. [Hasoglu, M. F.] Hasan Kalyoncu Univ, TR-27100 Sahinbey, Gaziantep, Turkey. RP Phaneuf, RA (reprint author), Univ Nevada, Dept Phys, Reno, NV 89557 USA. EM phaneuf@unr.edu RI Muller, Alfred/A-3548-2009; Kilcoyne, David/I-1465-2013; Schippers, Stefan/A-7786-2008 OI Muller, Alfred/0000-0002-0030-6929; Schippers, Stefan/0000-0002-6166-7138 FU Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy [DE-FG02-03ER15424]; Office of Basic Energy Sciences, US Department of Energy [DE-AC03-76SF0098]; Deutsche Forschungsgemeinschaft FX This research was supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy under Grant No. DE-FG02-03ER15424. Additional funding was provided by the Office of Basic Energy Sciences, US Department of Energy under Contract No. DE-AC03-76SF0098 and by the Deutsche Forschungsgemeinschaft. NR 32 TC 20 Z9 20 U1 0 U2 8 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1050-2947 EI 1094-1622 J9 PHYS REV A JI Phys. Rev. A PD NOV 1 PY 2013 VL 88 IS 5 AR 053402 DI 10.1103/PhysRevA.88.053402 PG 7 WC Optics; Physics, Atomic, Molecular & Chemical SC Optics; Physics GA 245ZL UT WOS:000326504500003 ER PT J AU Johnson-Wilke, RL Marincel, D Zhu, S Warusawithana, MP Hatt, A Sayre, J Delaney, KT Engel-Herbert, R Schlepuetz, CM Kim, JW Gopalan, V Spaldin, NA Schlom, DG Ryan, PJ Trolier-McKinstry, S AF Johnson-Wilke, R. L. Marincel, D. Zhu, S. Warusawithana, M. P. Hatt, A. Sayre, J. Delaney, K. T. Engel-Herbert, R. Schlepuetz, C. M. Kim, J. -W. Gopalan, V. Spaldin, N. A. Schlom, D. G. Ryan, P. J. Trolier-McKinstry, S. TI Quantification of octahedral rotations in strained LaAlO3 films via synchrotron x-ray diffraction SO PHYSICAL REVIEW B LA English DT Article ID FERROELECTRICITY; PEROVSKITES; INTERFACES AB In recent years, there has been an increased interest in octahedral rotations in perovskite materials, particularly on their response to strain in epitaxial thin films. The current theoretical framework assumes that rotations are affected primarily through the change in in-plane lattice parameters imposed by coherent heteroepitaxy on a substrate of different lattice constant. This model, which permits prediction of the thin-film rotational pattern using first-principles density functional theory, has not been tested quantitatively over a range of strain states. To assess the validity of this picture, coherent LaAlO3 thin films were grown on SrTiO3, NdGaO3, LaSrAlO4, NdAlO3, and YAlO3 substrates to achieve strain states ranging from +3.03% to -2.35%. The out-of-plane and in-plane octahedral rotation angles were extracted from the intensity of superlattice reflections measured using synchrotron x-ray diffraction. Density functional calculations show that no measurable change in intrinsic defect concentration should occur throughout the range of accessible strain states. Thus, the measured rotation angles were compared with those calculated previously for defect-free films. [Hatt and Spaldin, Phys. Rev. B 82, 195402 (2010)]. Good agreement between theory and experiment was found, suggesting that the current framework correctly captures the appropriate physics in LaAlO3. C1 [Johnson-Wilke, R. L.; Marincel, D.; Engel-Herbert, R.; Gopalan, V.; Trolier-McKinstry, S.] Penn State Univ, Mat Sci & Engn Dept, University Pk, PA 16802 USA. [Johnson-Wilke, R. L.; Marincel, D.; Engel-Herbert, R.; Gopalan, V.; Trolier-McKinstry, S.] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA. [Zhu, S.; Schlom, D. G.] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA. [Warusawithana, M. P.] Florida State Univ, Dept Phys, Natl High Magnet Field Lab, Tallahassee, FL 32306 USA. [Hatt, A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Sayre, J.; Delaney, K. T.] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA. [Schlepuetz, C. M.; Kim, J. -W.; Ryan, P. J.] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA. [Spaldin, N. A.] ETH, CH-8093 Zurich, Switzerland. [Schlom, D. G.] Kavli Inst Cornell Nanoscale Sci, Ithaca, NY 14853 USA. RP Johnson-Wilke, RL (reprint author), Penn State Univ, Mat Sci & Engn Dept, University Pk, PA 16802 USA. RI Schleputz, Christian/C-4696-2008; Spaldin, Nicola/A-1017-2010; Delaney, Kris/D-4324-2011; OI Schleputz, Christian/0000-0002-0485-2708; Spaldin, Nicola/0000-0003-0709-9499; Delaney, Kris/0000-0003-0356-1391; Trolier-McKinstry, Susan/0000-0002-7267-9281 FU National Science Foundation (NSF)-Materials Research Science and Engineering Centers Penn State Center for Nanoscale Science (Division of Materials Research, or DMR [0820404]; DMR [0908718, DMR-1210588]; Air Force Office of Scientific Research Grant [FA9550-10-1-0524]; ERC [291151]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; NSF [CHE-0321368]; Hewlett-Packard; Eidgenossische Technische Hochschule Zurich FX We acknowledge support from the National Science Foundation (NSF)-Materials Research Science and Engineering Centers Penn State Center for Nanoscale Science (Division of Materials Research, or DMR, Grant No. 0820404). V. G. acknowledges DMR Grants No. 0908718 and No. DMR-1210588. S.Z. acknowledges support from Air Force Office of Scientific Research Grant No. FA9550-10-1-0524. N.S. acknowledges the ERC Advanced Grant program, No. 291151. The measurements were made at Sector 6-ID B at the APS. Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Calculations were performed at the TeraGrid computing facilities at the National Center for Supercomputing Applications, and the California Nanosystems Institute facilities provided by NSF Grant No. CHE-0321368 and Hewlett-Packard. N.A.S. was supported by Eidgenossische Technische Hochschule Zurich. NR 38 TC 19 Z9 19 U1 8 U2 56 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 1 PY 2013 VL 88 IS 17 AR 174101 DI 10.1103/PhysRevB.88.174101 PG 8 WC Physics, Condensed Matter SC Physics GA 245ZT UT WOS:000326505500001 ER PT J AU Pizorn, I Verstraete, F Konik, RM AF Pizorn, Iztok Verstraete, Frank Konik, Robert M. TI Tree tensor networks and entanglement spectra SO PHYSICAL REVIEW B LA English DT Article ID DENSITY-MATRIX RENORMALIZATION; THERMODYNAMIC LIMIT AB A tree tensor network variational method is proposed to simulate quantum many-body systems with global symmetries where the optimization is reduced to individual charge configurations. A computational scheme is presented, namely how to extract the entanglement spectra in a bipartite splitting of a loopless tensor network across multiple links of the network, by constructing a matrix product operator for the reduced density operator and simulating its eigenstates. The entanglement spectra of 2 x L, 3 x L, and 4 x L with either open or periodic boundary conditions on the rungs are studied using the presented methods, where it is found that the entanglement spectrum depends not only on the subsystem but also on the boundaries between the subsystems. C1 [Pizorn, Iztok] ETH, CH-8093 Zurich, Switzerland. [Verstraete, Frank] Univ Vienna, Vienna Ctr Quantum Sci, A-1090 Vienna, Austria. [Verstraete, Frank] Univ Ghent, Dept Phys & Astron, B-9000 Ghent, Belgium. [Konik, Robert M.] Brookhaven Natl Lab, CMPMS Dept, Upton, NY 11973 USA. RP Pizorn, I (reprint author), ETH, CH-8093 Zurich, Switzerland. RI Verstraete, Frank/F-1306-2014; Konik, Robert/L-8076-2016 OI Verstraete, Frank/0000-0003-0270-5592; Konik, Robert/0000-0003-1209-6890 FU National Competence Center in Research (NCCR) QSIT; EU; FWF SFB project ViCoM; US DOE [DE-AC02-98 CH 10886] FX I.P. thanks RMK and Brookhaven National Laboratory, where this work was initiated, for hospitality during his stay there. This work was supported through the National Competence Center in Research (NCCR) QSIT, the EU project QUEVADIS, the FWF SFB project ViCoM, and by the US DOE under Contract No. DE-AC02-98 CH 10886. The simulations were run on the Brutus cluster at ETH Zurich and on the Vienna Scientific Cluster. NR 56 TC 8 Z9 8 U1 2 U2 11 PU AMER PHYSICAL SOC PI COLLEGE PK PA ONE PHYSICS ELLIPSE, COLLEGE PK, MD 20740-3844 USA SN 1098-0121 EI 1550-235X J9 PHYS REV B JI Phys. Rev. B PD NOV 1 PY 2013 VL 88 IS 19 AR 195102 DI 10.1103/PhysRevB.88.195102 PG 14 WC Physics, Condensed Matter SC Physics GA 245ZX UT WOS:000326505900002 ER PT J AU Manabe, Y Verhertbruggen, Y Gille, S Harholt, J Chong, SL Pawar, PMA Mellerowicz, EJ Tenkanen, M Cheng, K Pauly, M Scheller, HV AF Manabe, Yuzuki Verhertbruggen, Yves Gille, Sascha Harholt, Jesper Chong, Sun-Li Pawar, Prashant Mohan-Anupama Mellerowicz, Ewa J. Tenkanen, Maija Cheng, Kun Pauly, Markus Scheller, Henrik Vibe TI Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis SO PLANT PHYSIOLOGY LA English DT Article ID GLUCURONOXYLAN BIOSYNTHESIS; INCREASED RESISTANCE; DUF231 DOMAIN; ACID; XYLAN; GLYCOSYLTRANSFERASE; 4-O-METHYLATION; DEACETYLATION; MUTANTS; IMPACTS AB The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double, triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development. The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco) mannan, and xyloglucan as well as overall cell wall acetylation is affected differently in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell differentiation of cell types with secondary cell walls. C1 [Manabe, Yuzuki; Verhertbruggen, Yves; Scheller, Henrik Vibe] Joint BioEnergy Inst, Feedstocks Div, Emeryville, CA 94608 USA. [Manabe, Yuzuki; Verhertbruggen, Yves; Scheller, Henrik Vibe] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Gille, Sascha; Cheng, Kun; Pauly, Markus] Energy Biosci Inst, Berkeley, CA 94720 USA. [Harholt, Jesper] Univ Copenhagen, Dept Plant & Environm Sci, DK-1871 Frederiksberg, Denmark. [Chong, Sun-Li; Tenkanen, Maija] Univ Helsinki, Dept Food & Environm Sci, FI-00014 Helsinki, Finland. [Pawar, Prashant Mohan-Anupama; Mellerowicz, Ewa J.] Swedish Univ Agr Sci, Dept Forest Genet & Plant Physiol, S-90183 Umea, Sweden. [Pauly, Markus; Scheller, Henrik Vibe] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. RP Scheller, HV (reprint author), Joint BioEnergy Inst, Feedstocks Div, Emeryville, CA 94608 USA. EM hscheller@lbl.gov RI Harholt, Jesper/F-6865-2014; Scheller, Henrik/A-8106-2008; Tenkanen, Maija/F-9080-2016; Pauly, Markus/B-5895-2008; OI Harholt, Jesper/0000-0002-7984-0066; Scheller, Henrik/0000-0002-6702-3560; Pauly, Markus/0000-0002-3116-2198; Verhertbruggen, Yves/0000-0003-4114-5428; Tenkanen, Maija/0000-0003-2883-2717 FU U.S. Department of Energy Office of Science and Office of Biological and Environmental Research [DE-AC02-05CH11231]; Energy Biosciences Institute FX This work was supported by the U.S. Department of Energy Office of Science and Office of Biological and Environmental Research (contract no. DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy) and in part by the Energy Biosciences Institute. NR 34 TC 20 Z9 24 U1 2 U2 43 PU AMER SOC PLANT BIOLOGISTS PI ROCKVILLE PA 15501 MONONA DRIVE, ROCKVILLE, MD 20855 USA SN 0032-0889 EI 1532-2548 J9 PLANT PHYSIOL JI Plant Physiol. PD NOV PY 2013 VL 163 IS 3 BP 1107 EP 1117 DI 10.1104/pp.113.225193 PG 11 WC Plant Sciences SC Plant Sciences GA 246ER UT WOS:000326520900004 PM 24019426 ER PT J AU Abel, IG Plunk, GG Wang, E Barnes, M Cowley, SC Dorland, W Schekochihin, AA AF Abel, I. G. Plunk, G. G. Wang, E. Barnes, M. Cowley, S. C. Dorland, W. Schekochihin, A. A. TI Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows SO REPORTS ON PROGRESS IN PHYSICS LA English DT Review ID GRADIENT-DRIVEN TURBULENCE; MAGNETIC FIELD CONFIGURATIONS; E X B; ASTROPHYSICAL GYROKINETICS; AXISYMMETRIC PLASMAS; KINETIC SIMULATION; ENTROPY PRODUCTION; ION-TRANSPORT; EQUATIONS; INSTABILITIES AB This paper presents a complete theoretical framework for studying turbulence and transport in rapidly rotating tokamak plasmas. The fundamental scale separations present in plasma turbulence are codified as an asymptotic expansion in the ratio epsilon = rho(i)/a of the gyroradius to the equilibrium scale length. Proceeding order by order in this expansion, a set of coupled multiscale equations is developed. They describe an instantaneous equilibrium, the fluctuations driven by gradients in the equilibrium quantities, and the transport-timescale evolution of mean profiles of these quantities driven by the interplay between the equilibrium and the fluctuations. The equilibrium distribution functions are local Maxwellians with each flux surface rotating toroidally as a rigid body. The magnetic equilibrium is obtained from the generalized Grad-Shafranov equation for a rotating plasma, determining the magnetic flux function from the mean pressure and velocity profiles of the plasma. The slow (resistive-timescale) evolution of the magnetic field is given by an evolution equation for the safety factor q. Large-scale deviations of the distribution function from a Maxwellian are given by neoclassical theory. The fluctuations are determined by the 'high-flow' gyrokinetic equation, from which we derive the governing principle for gyrokinetic turbulence in tokamaks: the conservation and local (in space) cascade of the free energy of the fluctuations (i.e. there is no turbulence spreading). Transport equations for the evolution of the mean density, temperature and flow velocity profiles are derived. These transport equations show how the neoclassical and fluctuating corrections to the equilibrium Maxwellian act back upon the mean profiles through fluxes and heating. The energy and entropy conservation laws for the mean profiles are derived from the transport equations. Total energy, thermal, kinetic and magnetic, is conserved and there is no net turbulent heating. Entropy is produced by the action of fluxes flattening gradients, Ohmic heating and the equilibration of interspecies temperature differences. This equilibration is found to include both turbulent and collisional contributions. Finally, this framework is condensed, in the low-Mach-number limit, to a more concise set of equations suitable for numerical implementation. C1 [Abel, I. G.; Schekochihin, A. A.] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. [Plunk, G. G.; Cowley, S. C.] EURATOM CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England. [Abel, I. G.; Schekochihin, A. A.] Univ Oxford Merton Coll, Oxford OX1 4JD, England. [Plunk, G. G.] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany. [Wang, E.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. [Barnes, M.] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA. [Cowley, S. C.] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2AZ, England. [Dorland, W.] Univ Maryland, Dept Phys, College Pk, MD 20742 USA. RP Abel, IG (reprint author), Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England. EM iga@physics.org FU CASE EPSRC; EURATOM/CCFE Fusion Association; Merton College, Oxford; US DOE Center for Multiscale Plasma Dynamics; Oxford-Culham Fusion Research Fellowship; DoE Fusion Energy Sciences Postdoctoral Fellowship; STFC Advanced Fellowship; STFC Astronomy Grant FX We wish to thank G Hammett, E Highcock and F I Parra for many useful discussions. We also wish to thank L F vanWyk, M F J Fox, and the anonymous referees for their careful reading of the paper, which has greatly improved its content. We are grateful to the Leverhulme Trust Academic Network for Magnetized Plasma Turbulence for travel support (GGP, EW, MAB and WD) and to the Isaac Newton Institute, Cambridge, for its hospitality during the programme 'Gyrokinetics for Laboratory and Astrophysical Plasmas'. IGA was supported by a CASE EPSRC studentship jointly with the EURATOM/CCFE Fusion Association and by a Junior Research Fellowship at Merton College, Oxford; GGP and WD were supported by the US DOE Center for Multiscale Plasma Dynamics; MB was supported by the Oxford-Culham Fusion Research Fellowship and a DoE Fusion Energy Sciences Postdoctoral Fellowship; AAS was supported in part by an STFC Advanced Fellowship and an STFC Astronomy Grant. Although this work was carried out within the framework of the European Fusion Development Agreement, the views and opinions expressed herein do not necessarily reflect those of the European Commission. NR 107 TC 24 Z9 24 U1 2 U2 18 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0034-4885 EI 1361-6633 J9 REP PROG PHYS JI Rep. Prog. Phys. PD NOV PY 2013 VL 76 IS 11 AR 116201 DI 10.1088/0034-4885/76/11/116201 PG 69 WC Physics, Multidisciplinary SC Physics GA 245BZ UT WOS:000326435200002 PM 24169038 ER PT J AU Yue, YF Sun, XG Mayes, RT Kim, J Fulvio, PF Qiao, ZA Brown, S Tsouris, C Oyola, Y Dai, S AF Yue YanFeng Sun XiaoGuang Mayes, Richard T. Kim, Jungseung Fulvio, Pasquale F. Qiao ZhenAn Brown, Suree Tsouris, Costas Oyola, Yatsandra Dai Sheng TI Polymer-coated nanoporous carbons for trace seawater uranium adsorption SO SCIENCE CHINA-CHEMISTRY LA English DT Article DE mesoporous carbon; nanocomposite; copolymerization; seawater uranium adsorption ID SEA-WATER; AMIDOXIME GROUPS; MESOPOROUS CARBONS; EXTRACTION; ADSORBENT; RECOVERY; RESINS; PRECONCENTRATION; COMPLEXES; MEMBRANE AB Polymer-coated mesoporous carbon nanocomposites were prepared from the immobilization of acrylonitrile and acrylic acid copolymers with divinylbenzene as a crosslinker onto a mesoporous carbon framework. High surface areas were maintained after polymerization with accessible porosity. This functional nanocomposite was tested as an adsorbent for uranium from high salinity solutions. Uranium adsorption results have shown that the adsorption capacities are strongly influenced by the density of the amidoxime groups and the specific surface area. C1 [Yue YanFeng; Sun XiaoGuang; Mayes, Richard T.; Fulvio, Pasquale F.; Qiao ZhenAn; Oyola, Yatsandra; Dai Sheng] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. [Kim, Jungseung; Tsouris, Costas] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. [Brown, Suree; Dai Sheng] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA. RP Dai, S (reprint author), Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN 37831 USA. EM dais@ornl.gov RI Fulvio, Pasquale/B-2968-2014; Tsouris, Costas/C-2544-2016; Dai, Sheng/K-8411-2015; Mayes, Richard/G-1499-2016; OI Fulvio, Pasquale/0000-0001-7580-727X; Tsouris, Costas/0000-0002-0522-1027; Dai, Sheng/0000-0002-8046-3931; Mayes, Richard/0000-0002-7457-3261; Qiao, Zhen-An/0000-0001-6064-9360 FU US Department of Energy, Office of Nuclear Energy [DE-AC05-00OR22725]; Oak Ridge National Laboratory FX This work was sponsored by the US Department of Energy, Office of Nuclear Energy, under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed by UT-Battelle, LLC. NR 38 TC 17 Z9 18 U1 7 U2 83 PU SCIENCE PRESS PI BEIJING PA 16 DONGHUANGCHENGGEN NORTH ST, BEIJING 100717, PEOPLES R CHINA SN 1674-7291 EI 1869-1870 J9 SCI CHINA CHEM JI Sci. China-Chem. PD NOV PY 2013 VL 56 IS 11 BP 1510 EP 1515 DI 10.1007/s11426-013-4995-5 PG 6 WC Chemistry, Multidisciplinary SC Chemistry GA 243OY UT WOS:000326327500004 ER PT J AU Kletzing, CA Kurth, WS Acuna, M MacDowall, RJ Torbert, RB Averkamp, T Bodet, D Bounds, SR Chutter, M Connerney, J Crawford, D Dolan, JS Dvorsky, R Hospodarsky, GB Howard, J Jordanova, V Johnson, RA Kirchner, DL Mokrzycki, B Needell, G Odom, J Mark, D Pfaff , R Phillips, JR Piker, CW Remington, SL Rowland, D Santolik, O Schnurr, R Sheppard, D Smith, CW Thorne, RM Tyler, J AF Kletzing, C. A. Kurth, W. S. Acuna, M. MacDowall, R. J. Torbert, R. B. Averkamp, T. Bodet, D. Bounds, S. R. Chutter, M. Connerney, J. Crawford, D. Dolan, J. S. Dvorsky, R. Hospodarsky, G. B. Howard, J. Jordanova, V. Johnson, R. A. Kirchner, D. L. Mokrzycki, B. Needell, G. Odom, J. Mark, D. Pfaff, R., Jr. Phillips, J. R. Piker, C. W. Remington, S. L. Rowland, D. Santolik, O. Schnurr, R. Sheppard, D. Smith, C. W. Thorne, R. M. Tyler, J. TI The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP SO SPACE SCIENCE REVIEWS LA English DT Review DE Radiation belt physics; Wave measurements; Magnetometer measurements; Space flight instruments; RBSP; Radiation belt storm probes; Van Allen probes; Whistler waves; Geomagnetic storms; Space weather AB The Electric and Magnetic Field Instrument and Integrated Science (EMFISIS) investigation on the NASA Radiation Belt Storm Probes (now named the Van Allen Probes) mission provides key wave and very low frequency magnetic field measurements to understand radiation belt acceleration, loss, and transport. The key science objectives and the contribution that EMFISIS makes to providing measurements as well as theory and modeling are described. The key components of the instruments suite, both electronics and sensors, including key functional parameters, calibration, and performance, demonstrate that EMFISIS provides the needed measurements for the science of the RBSP mission. The EMFISIS operational modes and data products, along with online availability and data tools provide the radiation belt science community with one the most complete sets of data ever collected. C1 [Kletzing, C. A.; Kurth, W. S.; Averkamp, T.; Bounds, S. R.; Crawford, D.; Dolan, J. S.; Dvorsky, R.; Hospodarsky, G. B.; Howard, J.; Johnson, R. A.; Kirchner, D. L.; Mokrzycki, B.; Phillips, J. R.; Piker, C. W.; Remington, S. L.] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. [Acuna, M.; MacDowall, R. J.; Connerney, J.; Odom, J.; Schnurr, R.; Sheppard, D.] NASA, Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA. [Torbert, R. B.; Bodet, D.; Chutter, M.; Needell, G.; Smith, C. W.; Tyler, J.] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA. [Torbert, R. B.; Bodet, D.; Chutter, M.; Needell, G.; Smith, C. W.; Tyler, J.] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA. [Thorne, R. M.] Univ Calif Los Angeles, Los Angeles, CA USA. [Jordanova, V.] Los Alamos Natl Lab, Los Alamos, NM USA. [Santolik, O.] Inst Atmospher Phys, Dept Space Phys, Prague, Czech Republic. [Santolik, O.] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic. [Mark, D.] Bison Aerosp Inc, Newcastle, WY USA. [Pfaff, R., Jr.; Rowland, D.] NASA, Goddard Space Flight Ctr, Heliophys Sci Div, Greenbelt, MD 20771 USA. RP Kletzing, CA (reprint author), Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA. EM craig-kletzing@uiowa.edu RI Santolik, Ondrej/F-7766-2014; Rowland, Douglas/F-5589-2012; OI Rowland, Douglas/0000-0003-0948-6257; Kletzing, Craig/0000-0002-4136-3348; Kurth, William/0000-0002-5471-6202; Jordanova, Vania/0000-0003-0475-8743; Hospodarsky, George/0000-0001-9200-9878 FU JHU/APL under NASA Prime contract [921647, NAS5-01072] FX We would like to thank the entire Van Allen Probes team who have made this mission the success that it is. We would also like to thank the EFW team, in particular, for their work in supplying electric field signals to EMFISIS as well as supporting cross-calibration of the two sets of instruments. This work was performed under supported on JHU/APL contract no. 921647 under NASA Prime contract No. NAS5-01072. NR 145 TC 201 Z9 201 U1 1 U2 29 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD NOV PY 2013 VL 179 IS 1-4 BP 127 EP 181 DI 10.1007/s11214-013-9993-6 PG 55 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 244IM UT WOS:000326381300005 ER PT J AU Spence, HE Reeves, GD Baker, DN Blake, JB Bolton, M Bourdarie, S Chan, AA Claudepierre, SG Clemmons, JH Cravens, JP Elkington, SR Fennell, JF Friedel, RHW Funsten, HO Goldstein, J Green, JC Guthrie, A Henderson, MG Horne, RB Hudson, MK Jahn, JM Jordanova, VK Kanekal, SG Klatt, BW Larsen, BA Li, X MacDonald, EA Mann, IR Niehof, J O'Brien, TP Onsager, TG Salvaggio, D Skoug, RM Smith, SS Suther, LL Thomsen, MF Thorne, RM AF Spence, H. E. Reeves, G. D. Baker, D. N. Blake, J. B. Bolton, M. Bourdarie, S. Chan, A. A. Claudepierre, S. G. Clemmons, J. H. Cravens, J. P. Elkington, S. R. Fennell, J. F. Friedel, R. H. W. Funsten, H. O. Goldstein, J. Green, J. C. Guthrie, A. Henderson, M. G. Horne, R. B. Hudson, M. K. Jahn, J. -M. Jordanova, V. K. Kanekal, S. G. Klatt, B. W. Larsen, B. A. Li, X. MacDonald, E. A. Mann, I. R. Niehof, J. O'Brien, T. P. Onsager, T. G. Salvaggio, D. Skoug, R. M. Smith, S. S. Suther, L. L. Thomsen, M. F. Thorne, R. M. TI Science Goals and Overview of the Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA's Van Allen Probes Mission SO SPACE SCIENCE REVIEWS LA English DT Review DE Radiation belts; Particle senors; Radiation detection; Space weather; Van Allen Probes ID INNER MAGNETOSPHERE; ACCELERATION; VARIABILITY; CONSISTENT; ELECTRONS; DYNAMICS; SAMPEX; DECAY AB The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ions, key science objectives of NASA's Living With a Star program and the Van Allen Probes mission. The RBSP-ECT suite consists of three highly-coordinated instruments: the Magnetic Electron Ion Spectrometer (MagEIS), the Helium Oxygen Proton Electron (HOPE) sensor, and the Relativistic Electron Proton Telescope (REPT). Collectively they cover, continuously, the full electron and ion spectra from one eV to 10's of MeV with sufficient energy resolution, pitch angle coverage and resolution, and with composition measurements in the critical energy range up to 50 keV and also from a few to 50 MeV/nucleon. All three instruments are based on measurement techniques proven in the radiation belts. The instruments use those proven techniques along with innovative new designs, optimized for operation in the most extreme conditions in order to provide unambiguous separation of ions and electrons and clean energy responses even in the presence of extreme penetrating background environments. The design, fabrication and operation of ECT spaceflight instrumentation in the harsh radiation belt environment ensure that particle measurements have the fidelity needed for closure in answering key mission science questions. ECT instrument details are provided in companion papers in this same issue. In this paper, we describe the science objectives of the RBSP-ECT instrument suite on the Van Allen Probe spacecraft within the context of the overall mission objectives, indicate how the characteristics of the instruments satisfy the requirements to achieve these objectives, provide information about science data collection and dissemination, and conclude with a description of some early mission results. C1 [Spence, H. E.; Smith, S. S.] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. [Reeves, G. D.; Friedel, R. H. W.; Funsten, H. O.; Guthrie, A.; Henderson, M. G.; Jordanova, V. K.; Larsen, B. A.; MacDonald, E. A.; Niehof, J.; Skoug, R. M.; Thomsen, M. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Baker, D. N.; Bolton, M.; Elkington, S. R.; Li, X.] Univ Colorado, Lab Atmospher & Space Phys, Boulder, CO 80309 USA. [Blake, J. B.; Claudepierre, S. G.; Clemmons, J. H.; Fennell, J. F.; O'Brien, T. P.; Salvaggio, D.] Aerosp Corp, El Segundo, CA USA. [Chan, A. A.] Rice Univ, Houston, TX 77005 USA. [Cravens, J. P.] JPC LLC, Port Aransas, TX 78373 USA. [Goldstein, J.; Jahn, J. -M.] SW Res Inst, San Antonio, TX 78238 USA. [Green, J. C.; Onsager, T. G.] Natl Ocean & Atmospher Adm, Boulder, CO 80305 USA. [Horne, R. B.] British Antarctic Survey, Cambridge CB3 0ET, England. [Hudson, M. K.] Dartmouth Coll, Hanover, NH 03755 USA. [Kanekal, S. G.] NASA Goddard, Greenbelt, MD 20771 USA. [Klatt, B. W.] MIT, Cambridge, MA 02139 USA. [Mann, I. R.] Univ Alberta, Edmonton, AB T6G 2R3, Canada. [Bourdarie, S.] ONERA CERT, Toulouse 04, France. [Suther, L. L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA. [Thorne, R. M.] Univ Calif Los Angeles, Los Angeles, CA 90095 USA. [Klatt, B. W.] Univ Calgary, Calgary, AB T2N 1N4, Canada. RP Spence, HE (reprint author), Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA. EM Harlan.Spence@unh.edu RI Friedel, Reiner/D-1410-2012; Funsten, Herbert/A-5702-2015; Larsen, Brian/A-7822-2011; Reeves, Geoffrey/E-8101-2011; Henderson, Michael/A-3948-2011; OI Jordanova, Vania/0000-0003-0475-8743; Spence, Harlan/0000-0002-2526-2205; Friedel, Reiner/0000-0002-5228-0281; Funsten, Herbert/0000-0002-6817-1039; Larsen, Brian/0000-0003-4515-0208; Reeves, Geoffrey/0000-0002-7985-8098; Henderson, Michael/0000-0003-4975-9029; Horne, Richard/0000-0002-0412-6407; Clemmons, James/0000-0002-5298-5222 FU RBSP-ECT; JHU/APL under NASA's Prime Contract [967399, NAS5-01072] FX We gratefully acknowledge the Van Allen Probes mission team at the Johns Hopkins University (JHU)/Applied Physics Laboratory (APL) and the Project Science team at JHU/APL, NASA GSFC, and NASA HQ for their invaluable support during the design, development, testing, and early operations of the mission. This work was supported by RBSP-ECT funding provided by JHU/APL Contract No. 967399 under NASA's Prime Contract No. NAS5-01072. NR 49 TC 124 Z9 125 U1 1 U2 31 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD NOV PY 2013 VL 179 IS 1-4 BP 311 EP 336 DI 10.1007/s11214-013-0007-5 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 244IM UT WOS:000326381300009 ER PT J AU Baker, DN Kanekal, SG Hoxie, VC Batiste, S Bolton, M Li, X Elkington, SR Monk, S Reukauf, R Steg, S Westfall, J Belting, C Bolton, B Braun, D Cervelli, B Hubbell, K Kien, M Knappmiller, S Wade, S Lamprecht, B Stevens, K Wallace, J Yehle, A Spence, H Friedel, R AF Baker, D. N. Kanekal, S. G. Hoxie, V. C. Batiste, S. Bolton, M. Li, X. Elkington, S. R. Monk, S. Reukauf, R. Steg, S. Westfall, J. Belting, C. Bolton, B. Braun, D. Cervelli, B. Hubbell, K. Kien, M. Knappmiller, S. Wade, S. Lamprecht, B. Stevens, K. Wallace, J. Yehle, A. Spence, H. E. Friedel, R. TI The Relativistic Electron-Proton Telescope (REPT) Instrument on Board the Radiation Belt Storm Probes (RBSP) Spacecraft: Characterization of Earth's Radiation Belt High-Energy Particle Populations SO SPACE SCIENCE REVIEWS LA English DT Review DE Radiation detection; Particle sensors; Radiation belts; Space weather ID ACCELERATION; SOLAR; SIMULATION; INJECTIONS; SAMPEX; MAGNETOSPHERE; PREDICTION; MISSION; ZONE AB Particle acceleration and loss in the million electron Volt (MeV) energy range (and above) is the least understood aspect of radiation belt science. In order to measure cleanly and separately both the energetic electron and energetic proton components, there is a need for a carefully designed detector system. The Relativistic Electron-Proton Telescope (REPT) on board the Radiation Belt Storm Probe (RBSP) pair of spacecraft consists of a stack of high-performance silicon solid-state detectors in a telescope configuration, a collimation aperture, and a thick case surrounding the detector stack to shield the sensors from penetrating radiation and bremsstrahlung. The instrument points perpendicular to the spin axis of the spacecraft and measures high-energy electrons (up to similar to 20 MeV) with excellent sensitivity and also measures magnetospheric and solar protons to energies well above E=100 MeV. The instrument has a large geometric factor (g=0.2 cm(2) sr) to get reasonable count rates (above background) at the higher energies and yet will not saturate at the lower energy ranges. There must be fast enough electronics to avert undue dead-time limitations and chance coincidence effects. The key goal for the REPT design is to measure the directional electron intensities (in the range 10(-2)-10(6) particles/cm(2) s sr MeV) and energy spectra (Delta E/E similar to 25 %) throughout the slot and outer radiation belt region. Present simulations and detailed laboratory calibrations show that an excellent design has been attained for the RBSP needs. We describe the engineering design, operational approaches, science objectives, and planned data products for REPT. C1 [Baker, D. N.; Hoxie, V. C.; Batiste, S.; Bolton, M.; Li, X.; Elkington, S. R.; Monk, S.; Reukauf, R.; Steg, S.; Westfall, J.; Belting, C.; Braun, D.; Cervelli, B.; Hubbell, K.; Kien, M.; Knappmiller, S.; Wade, S.; Lamprecht, B.; Wallace, J.; Yehle, A.] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80303 USA. [Kanekal, S. G.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA. [Bolton, B.] Ball Aerosp, Boulder, CO 80301 USA. [Stevens, K.] Efficient Log Designs, Boulder, CO 80304 USA. [Spence, H. E.] Univ New Hampshire, Ctr Earth Oceans & Space, Durham, NH 03824 USA. [Friedel, R.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Baker, DN (reprint author), Univ Colorado, Atmospher & Space Phys Lab, 3665 Discovery Dr, Boulder, CO 80303 USA. EM daniel.baker@lasp.colorado.edu RI Friedel, Reiner/D-1410-2012; OI Friedel, Reiner/0000-0002-5228-0281; Spence, Harlan/0000-0002-2526-2205 FU NASA prime contract [NAS5-01072] FX This work has been supported by NASA prime contract NAS5-01072 to Johns Hopkins University Applied Physics Laboratory (JHU/APL). NR 55 TC 49 Z9 50 U1 0 U2 21 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD NOV PY 2013 VL 179 IS 1-4 BP 337 EP 381 DI 10.1007/s11214-012-9950-9 PG 45 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 244IM UT WOS:000326381300010 ER PT J AU Blake, JB Carranza, PA Claudepierre, SG Clemmons, JH Crain, WR Dotan, Y Fennell, JF Fuentes, FH Galvan, RM George, JS Henderson, MG Lalic, M Lin, AY Looper, MD Mabry, DJ Mazur, JE McCarthy, B Nguyen, CQ O'Brien, TP Perez, MA Redding, MT Roeder, JL Salvaggio, DJ Sorensen, GA Spence, HE Yi, S Zakrzewski, MP AF Blake, J. B. Carranza, P. A. Claudepierre, S. G. Clemmons, J. H. Crain, W. R., Jr. Dotan, Y. Fennell, J. F. Fuentes, F. H. Galvan, R. M. George, J. S. Henderson, M. G. Lalic, M. Lin, A. Y. Looper, M. D. Mabry, D. J. Mazur, J. E. McCarthy, B. Nguyen, C. Q. O'Brien, T. P. Perez, M. A. Redding, M. T. Roeder, J. L. Salvaggio, D. J. Sorensen, G. A. Spence, H. E. Yi, S. Zakrzewski, M. P. TI The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft SO SPACE SCIENCE REVIEWS LA English DT Article DE Relativistic electron sensors; Energetic magnetospheric particles; Acceleration; Transport and loss of radiation belt particles AB This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20-240 keV), two medium-energy units (80-1200 keV), and a high-energy unit (800-4800 keV). The high unit also contains a proton telescope (55 keV-20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented. C1 [Blake, J. B.; Carranza, P. A.; Claudepierre, S. G.; Clemmons, J. H.; Crain, W. R., Jr.; Dotan, Y.; Fennell, J. F.; Fuentes, F. H.; Galvan, R. M.; George, J. S.; Lalic, M.; Lin, A. Y.; Looper, M. D.; Mabry, D. J.; Mazur, J. E.; Nguyen, C. Q.; O'Brien, T. P.; Perez, M. A.; Redding, M. T.; Roeder, J. L.; Salvaggio, D. J.; Sorensen, G. A.; Yi, S.; Zakrzewski, M. P.] Aerosp Corp, Space Sci Applicat Lab, El Segundo, CA 90245 USA. [Henderson, M. G.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [McCarthy, B.] Aerosp Corp, Environm Test & Assessment Dept, El Segundo, CA 90245 USA. [Spence, H. E.] Univ New Hampshire, Ctr Earth Oceans & Space, Durham, NH 03824 USA. RP Blake, JB (reprint author), Aerosp Corp, Space Sci Applicat Lab, El Segundo, CA 90245 USA. EM jbernard.blake@aero.org RI Henderson, Michael/A-3948-2011; OI Henderson, Michael/0000-0003-4975-9029; Clemmons, James/0000-0002-5298-5222; Spence, Harlan/0000-0002-2526-2205 FU University of New Hampshire [10-068]; Johns Hopkins Applied Physics Laboratory [967399]; NASA [NAS5-014072] FX This work was supported by the University of New Hampshire under Contract 10-068, the Johns Hopkins Applied Physics Laboratory under Contract 967399, and NASA under contract NAS5-014072. NR 0 TC 133 Z9 133 U1 3 U2 11 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD NOV PY 2013 VL 179 IS 1-4 BP 383 EP 421 DI 10.1007/s11214-013-9991-8 PG 39 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 244IM UT WOS:000326381300011 ER PT J AU Funsten, HO Skoug, RM Guthrie, AA MacDonald, EA Baldonado, JR Harper, RW Henderson, KC Kihara, KH Lake, JE Larsen, BA Puckett, AD Vigil, VJ Friedel, RH Henderson, MG Niehof, JT Reeves, GD Thomsen, MF Hanley, JJ George, DE Jahn, JM Cortinas, S De Los Santos, A Dunn, G Edlund, E Ferris, M Freeman, M Maple, M Nunez, C Taylor, T Toczynski, W Urdiales, C Spence, HE Cravens, JA Suther, LL Chen, J AF Funsten, H. O. Skoug, R. M. Guthrie, A. A. MacDonald, E. A. Baldonado, J. R. Harper, R. W. Henderson, K. C. Kihara, K. H. Lake, J. E. Larsen, B. A. Puckett, A. D. Vigil, V. J. Friedel, R. H. Henderson, M. G. Niehof, J. T. Reeves, G. D. Thomsen, M. F. Hanley, J. J. George, D. E. Jahn, J. -M. Cortinas, S. De Los Santos, A. Dunn, G. Edlund, E. Ferris, M. Freeman, M. Maple, M. Nunez, C. Taylor, T. Toczynski, W. Urdiales, C. Spence, H. E. Cravens, J. A. Suther, L. L. Chen, J. TI Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission SO SPACE SCIENCE REVIEWS LA English DT Review DE Space plasma; Radiation belts; Ion mass spectrometry; Electron spectrometry; RBSP ID MICROWAVE ION-SOURCE; THIN CARBON FOILS; RELATIVISTIC ELECTRONS; GEOSYNCHRONOUS ORBIT; GEOMAGNETIC STORMS; RING CURRENT; OUTER MAGNETOSPHERE; MAGNETIC STORMS; MARCH 24; SPACE AB The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4 pi sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution Delta E (FWHM)/Ea parts per thousand 15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance. C1 [Funsten, H. O.; Skoug, R. M.; Guthrie, A. A.; MacDonald, E. A.; Baldonado, J. R.; Harper, R. W.; Henderson, K. C.; Kihara, K. H.; Lake, J. E.; Larsen, B. A.; Puckett, A. D.; Vigil, V. J.; Friedel, R. H.; Henderson, M. G.; Niehof, J. T.; Reeves, G. D.; Thomsen, M. F.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Hanley, J. J.; George, D. E.; Jahn, J. -M.; Cortinas, S.; De Los Santos, A.; Dunn, G.; Edlund, E.; Ferris, M.; Freeman, M.; Maple, M.; Nunez, C.; Taylor, T.; Toczynski, W.; Urdiales, C.] SW Res Inst, San Antonio, TX 78238 USA. [Spence, H. E.; Cravens, J. A.] Univ New Hampshire, Durham, NH 03824 USA. [Suther, L. L.] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD 20723 USA. [Chen, J.] Baja Technol LLC, Tucson, AZ 85721 USA. RP Funsten, HO (reprint author), Los Alamos Natl Lab, MS D466,POB 1663, Los Alamos, NM 87545 USA. EM hfunsten@lanl.gov RI Friedel, Reiner/D-1410-2012; Funsten, Herbert/A-5702-2015; Larsen, Brian/A-7822-2011; Reeves, Geoffrey/E-8101-2011; Henderson, Michael/A-3948-2011; OI Friedel, Reiner/0000-0002-5228-0281; Funsten, Herbert/0000-0002-6817-1039; Larsen, Brian/0000-0003-4515-0208; Reeves, Geoffrey/0000-0002-7985-8098; Henderson, Michael/0000-0003-4975-9029; Spence, Harlan/0000-0002-2526-2205 FU United States Department of Energy under Interagency Purchase Request [NNG07EK09I] FX The HOPE mass spectrometer is the result of an outstanding collaboration between scientists, engineers, technicians, and support personnel at multiple institutions. In particular, we gratefully appreciate the seamless collaboration with the other instrument teams of the ECT instrument suite (at Aerospace Corporation and University of Colorado) as well as engagement, expertise, and specialty engineering provided by the broader RBSP team, primarily at APL/JHU. Work at Los Alamos National Laboratory was performed under the auspices of the United States Department of Energy under Interagency Purchase Request NNG07EK09I. NR 83 TC 94 Z9 94 U1 2 U2 16 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD NOV PY 2013 VL 179 IS 1-4 BP 423 EP 484 DI 10.1007/s11214-013-9968-7 PG 62 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 244IM UT WOS:000326381300012 ER PT J AU Ginet, GP O'Brien, TP Huston, SL Johnston, WR Guild, TB Friedel, R Lindstrom, CD Roth, CJ Whelan, P Quinn, RA Madden, D Morley, S Su, YJ AF Ginet, G. P. O'Brien, T. P. Huston, S. L. Johnston, W. R. Guild, T. B. Friedel, R. Lindstrom, C. D. Roth, C. J. Whelan, P. Quinn, R. A. Madden, D. Morley, S. Su, Yi-Jiun TI AE9, AP9 and SPM: New Models for Specifying the Trapped Energetic Particle and Space Plasma Environment SO SPACE SCIENCE REVIEWS LA English DT Review DE Radiation belt modeling; Energetic trapped particles; Space environment climatology; Space weather ID PROBABILITY MODEL; BELT; CRRES; MAGNETOSPHERE; SPECIFICATION; FLUXES; ORBIT; FIELD AB The radiation belts and plasma in the Earth's magnetosphere pose hazards to satellite systems which restrict design and orbit options with a resultant impact on mission performance and cost. For decades the standard space environment specification used for spacecraft design has been provided by the NASA AE8 and AP8 trapped radiation belt models. There are well-known limitations on their performance, however, and the need for a new trapped radiation and plasma model has been recognized by the engineering community for some time. To address this challenge a new set of models, denoted AE9/AP9/SPM, for energetic electrons, energetic protons and space plasma has been developed. The new models offer significant improvements including more detailed spatial resolution and the quantification of uncertainty due to both space weather and instrument errors. Fundamental to the model design, construction and operation are a number of new data sets and a novel statistical approach which captures first order temporal and spatial correlations allowing for the Monte-Carlo estimation of flux thresholds for user-specified percentile levels (e.g., 50th and 95th) over the course of the mission. An overview of the model architecture, data reduction methods, statistics algorithms, user application and initial validation is presented in this paper. C1 [Ginet, G. P.] MIT, Lincoln Lab, Lexington, MA 20420 USA. [O'Brien, T. P.; Guild, T. B.] Aerosp Corp, Chantilly, VA 20151 USA. [Huston, S. L.; Madden, D.] Inst Sci Res, Boston, MA 02467 USA. [Johnston, W. R.; Lindstrom, C. D.; Su, Yi-Jiun] AF Res Lab, Space Vehicles Directorate, Kirtland AFB, NM 87117 USA. [Roth, C. J.; Whelan, P.; Quinn, R. A.] Atmospher & Environm Res Inc, Lexington, MA 02421 USA. [Friedel, R.; Morley, S.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Ginet, GP (reprint author), MIT, Lincoln Lab, 244 Wood St, Lexington, MA 20420 USA. EM gregory.ginet@ll.mit.edu RI Morley, Steven/A-8321-2008; Friedel, Reiner/D-1410-2012 OI Morley, Steven/0000-0001-8520-0199; Friedel, Reiner/0000-0002-5228-0281 FU Air Force contracts [FA8718-05-C-0036, FA8718-10-C-001, FA8721-05-C-0002, FA8802-09-C-0001]; NASA grant [NNG05GM22G] FX Many people have been involved in building AE9/AP9/SPM. Much credit is due Clark Groves for getting the project started. The authors especially wish to thank Joe Mazur, Bern Blake, Jim Roeder and Joe Fennell for technical advice on the HEO, ICO and POLAR/CAMMICE data; Richard Selesnick for cleaning and analysis of the SAMPEX/PET and POLAR/HISTp data and for his physics-based proton belt climatology model; Jon Niehof and Jack Scudder for access to their versions of the POLAR/MICS and POLAR/HYDRA data; Jean-Andre Sauvaud for use of the DEMETER data; Don Brautigam, Sebastien Bourdarie, Daniel Boscher, Jay Albert, Kara Perry, Brian Wie and Seth Claudepierre for technical assistance; Bill Olson, Dave Byers, James Metcalf, Michael Starks, Tim Alsruhe and Geoff Reeves for project management; Bob Weigel and Mike Xapsos for ViRBO and LWS-SET website support; Sharon Benedict for graphics support; Dave Chenette and Michael Bodeau for helping define the requirements; and the "short list" of engineers and scientists who tested the beta versions and provided valuable feedback all along the way. This work was supported through Air Force contracts FA8718-05-C-0036, FA8718-10-C-001, FA8721-05-C-0002 and FA8802-09-C-0001 and NASA grant NNG05GM22G. NR 78 TC 47 Z9 49 U1 2 U2 12 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0038-6308 EI 1572-9672 J9 SPACE SCI REV JI Space Sci. Rev. PD NOV PY 2013 VL 179 IS 1-4 BP 579 EP 615 DI 10.1007/s11214-013-9964-y PG 37 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 244IM UT WOS:000326381300017 ER PT J AU Samaniego, H Marquet, PA AF Samaniego, Horacio Marquet, Pablo A. TI Range structure analysis: unveiling the internal structure of species' ranges SO THEORETICAL ECOLOGY LA English DT Article DE Range dynamics; Population biology; Species distribution; Species' border; Metapopulation ID POPULATION-DYNAMICS; SPATIAL VARIATION; TURNOVER RATES; CIRCUIT-THEORY; ABUNDANCE; DISPERSAL; ECOLOGY; MODELS; CONSEQUENCES; EXTINCTION AB Assessing risks of local extinction and shifts in species ranges are fundamental tasks in ecology and conservation. Most studies have focused either on the border of species' range or on complex spatiotemporal dynamics of populations within the spatial distribution of species. The internal properties of species ranges, however, have received less attention due to a general lack of simple tools. We propose a novel approach within a metapopulation framework to study species ranges based on simple mathematical rules. We formulate and test a model of population fluctuations through space to identify key factors that regulate population density. We propose that spatial variability in species abundance reflects the interaction between temporal variability in population dynamics and the spatial variability of population parameters. This approach, that we call range structure analysis, integrates temporal and spatial properties to diagnose how each parameter contributes to species occupancy throughout its geographic range. C1 [Samaniego, Horacio] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA. [Samaniego, Horacio] Univ Austral Chile, Fac Ciencias Forest & Recursos Nat, Valdivia, Chile. [Marquet, Pablo A.] Pontificia Univ Catolica Chile, Ctr Adv Studies Ecol & Biodivers, Santiago, Chile. [Marquet, Pablo A.] Pontificia Univ Catolica Chile, Dept Ecol, Santiago, Chile. [Marquet, Pablo A.] Inst Ecol & Biodivers, Santiago, Chile. [Marquet, Pablo A.] Santa Fe Inst, Santa Fe, NM 87501 USA. RP Samaniego, H (reprint author), Univ Austral Chile, Fac Ciencias Forest & Recursos Nat, Valdivia, Chile. EM horacio@ecoinformatica.cl; pmarquet@bio.puc.cl RI Marquet, Pablo /B-7732-2009 OI Marquet, Pablo /0000-0001-6369-9339 FU US Department of Energy through the LANL/LDRD Program FX We thank Bruce T. Milne and Drew Allen for enlightening discussions. HS acknowledges the support of the US Department of Energy through the LANL/LDRD Program. NR 66 TC 3 Z9 4 U1 0 U2 16 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1874-1738 EI 1874-1746 J9 THEOR ECOL-NETH JI Theor. Ecol. PD NOV PY 2013 VL 6 IS 4 BP 419 EP 426 DI 10.1007/s12080-013-0177-5 PG 8 WC Ecology SC Environmental Sciences & Ecology GA 245JZ UT WOS:000326461200003 ER PT J AU Tourassi, G Yoon, HJ Xu, SH Morin-Ducote, G Hudson, K AF Tourassi, Georgia Yoon, Hong-Jun Xu, Songhua Morin-Ducote, Garnetta Hudson, Kathy TI Comparative Analysis of Data Collection Methods for Individualized Modeling of Radiologists' Visual Similarity Judgments in Mammograms SO ACADEMIC RADIOLOGY LA English DT Article DE Breast imaging; mammography; observer variability; perception; visual similarity user modeling ID IMAGE RETRIEVAL; RELEVANCE FEEDBACK; CLUSTERED MICROCALCIFICATIONS; SUBJECTIVE SIMILARITY; BREAST MASSES; PAIRS; INFORMATION; PERCEPTION; BENEFITS; FEATURES AB Rationale and Objectives: We conducted an Observer study to investigate how the data collection method affects the efficacy of modeling individual radiologists' judgments regarding the perceptual similarity of breast masses on mammograms. Materials and Methods: Six observers of varying experience levels in breast imaging were recruited to assess the perceptual similarity of mammographic masses. The observers' subjective judgments were collected using (i) a rating method, (ii) a preference method, and (Hi) a hybrid method combining rating and ranking. Personalized user models were developed with the collected data to predict observers' opinions. The relative efficacy of each data collection method was assessed based on the classification accuracy of the resulting user models. Results: The average accuracy of the user models derived from data collected with the hybrid method was 55.5 +/- 1.5%. The models were significantly more accurate (P < .0005) than those derived from the rating (45.3 +/- 3.5%) and the preference (40.8 +/- 5%) methods. On average, the rating data collection method was significantly faster than the other two methods (P < .0001). No time advantage was observed between the preference and the hybrid methods. Conclusions: A hybrid method combining rating and ranking is an intuitive and efficient way for collecting subjective similarity judgments to model human perceptual opinions with a higher accuracy than other, more commonly used data collection methods. C1 [Tourassi, Georgia; Yoon, Hong-Jun; Xu, Songhua] Oak Ridge Natl Lab, Biomed Sci & Engn Ctr, Oak Ridge, TN 37831 USA. [Morin-Ducote, Garnetta; Hudson, Kathy] Univ Tennessee, Med Ctr Knoxville, Dept Radiol, Knoxville, TN USA. RP Tourassi, G (reprint author), Oak Ridge Natl Lab, Biomed Sci & Engn Ctr, 1 Bethel Valley Rd,POB 2008, Oak Ridge, TN 37831 USA. EM tourassig@ornl.gov OI Tourassi, Georgia/0000-0002-9418-9638 FU UT-Battelle, LLC [DE-AC05 00OR22725]; U.S. Department of Energy FX This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05 00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. NR 42 TC 1 Z9 1 U1 1 U2 3 PU ELSEVIER SCIENCE INC PI NEW YORK PA 360 PARK AVE SOUTH, NEW YORK, NY 10010-1710 USA SN 1076-6332 EI 1878-4046 J9 ACAD RADIOL JI Acad. Radiol. PD NOV PY 2013 VL 20 IS 11 BP 1371 EP 1380 DI 10.1016/j.acra.2013.08.002 PG 10 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 241AW UT WOS:000326139800007 PM 24119349 ER PT J AU Gao, F Bonsignori, M Liao, H Kumar, A Xia, S Cai, F Lu, X Kozink, DM Kwong, P Zhou, T Lynch, R Alam, SM Ferrari, G Kelsoe, G Sandrasegaram, G Shaw, GM Hahn, BH Montefiori, DC Kamanga, G Cohen, M Braber, P Korber, BT Mascola, JR Kepler, TB Haynes, BF AF Gao, F. Bonsignori, M. Liao, H. Kumar, A. Xia, S. Cai, F. Lu, X. Kozink, D. M. Kwong, P. Zhou, T. Lynch, R. Alam, S. M. Ferrari, G. Kelsoe, G. Sandrasegaram, G. Shaw, G. M. Hahn, B. H. Montefiori, D. C. Kamanga, G. Cohen, M. Braber, P. Korber, B. T. Mascola, J. R. Kepler, T. B. Haynes, B. F. TI Multiple Pathways of HIV-1 Autologous Neutralizing Antibodies Cooperate to Drive CD4 Binding Site Broadly Neutralizing Antibody Responses SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Meeting Abstract CT Conference on AIDS Vaccine CY OCT 07-10, 2013 CL Barcelona, SPAIN C1 [Gao, F.; Bonsignori, M.; Liao, H.; Kumar, A.; Xia, S.; Cai, F.; Lu, X.; Kozink, D. M.; Alam, S. M.; Ferrari, G.; Kelsoe, G.; Montefiori, D. C.; Haynes, B. F.] Duke Univ, Med Ctr, Durham, NC USA. [Kwong, P.; Zhou, T.; Lynch, R.; Mascola, J. R.] NIAID, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA. [Sandrasegaram, G.; Braber, P.; Korber, B. T.] Los Alamos Natl Lab, Los Alamos, NM USA. [Shaw, G. M.; Hahn, B. H.] Univ Penn, Philadelphia, PA 19104 USA. [Kamanga, G.; Cohen, M.] Univ N Carolina, Chapel Hill, NC USA. [Kepler, T. B.] Boston Univ, Boston, MA 02215 USA. RI Zhou, Tongqing/A-6880-2010 OI Zhou, Tongqing/0000-0002-3935-4637 NR 0 TC 0 Z9 0 U1 0 U2 2 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 EI 1931-8405 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD NOV 1 PY 2013 VL 29 IS 11 SI SI BP A186 EP A186 PG 1 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 239PI UT WOS:000326037500485 ER PT J AU Gnanakaran, G Sethi, A Tian, J Derdeyn, C Korber, B AF Gnanakaran, G. Sethi, A. Tian, J. Derdeyn, C. Korber, B. TI A Mechanistic Understanding of Immune Escape Pathways in the HIV-1 Envelope Glycoprotein SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Meeting Abstract CT Conference on AIDS Vaccine CY OCT 07-10, 2013 CL Barcelona, SPAIN C1 [Gnanakaran, G.; Sethi, A.; Tian, J.; Korber, B.] Los Alamos Natl Labs, Los Alamos, NM USA. [Derdeyn, C.] Emory Univ, Atlanta, GA 30322 USA. NR 0 TC 0 Z9 0 U1 0 U2 1 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 EI 1931-8405 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD NOV 1 PY 2013 VL 29 IS 11 SI SI BP A60 EP A60 PG 1 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 239PI UT WOS:000326037500149 ER PT J AU Rolland, M Edlefsen, PT Gottardo, R Montefiori, DC Zolla-Pazner, S Moody, A Liao, LH Liu, P Tomaras, GD Haynes, BF Bailer, RT Koup, RA Mascola, JR Shen, X Korber, BT Tovanabutra, S Rerks-Ngarm, S Nitayaphan, S Pitisuttihum, P Kaewkungwal, J Robb, ML Michael, NL Mullins, JI Gilbert, PB Kim, JH AF Rolland, M. Edlefsen, P. T. Gottardo, R. Montefiori, D. C. Zolla-Pazner, S. Moody, A. Liao, L. H. Liu, P. Tomaras, G. D. Haynes, B. F. Bailer, R. T. Koup, R. A. Mascola, J. R. Shen, X. Korber, B. T. Tovanabutra, S. Rerks-Ngarm, S. Nitayaphan, S. Pitisuttihum, P. Kaewkungwal, J. Robb, M. L. Michael, N. L. Mullins, J. I. Gilbert, P. B. Kim, J. H. TI Genetic and Immunological Evidence for a Role of Env-V3 Antibodies in the RV144 Trial SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Meeting Abstract CT Conference on AIDS Vaccine CY OCT 07-10, 2013 CL Barcelona, SPAIN C1 [Rolland, M.; Tovanabutra, S.; Robb, M. L.; Michael, N. L.; Kim, J. H.] US MHRP, Silver Spring, MD USA. [Edlefsen, P. T.; Gottardo, R.; Gilbert, P. B.] Fred Hutchinson Canc Res Ctr, Seattle, WA 98104 USA. [Montefiori, D. C.; Moody, A.; Liao, L. H.; Liu, P.; Tomaras, G. D.; Haynes, B. F.; Shen, X.] Duke Univ, Med Ctr, Raleigh, NC USA. [Zolla-Pazner, S.] NYU, New York, NY USA. [Bailer, R. T.; Koup, R. A.; Mascola, J. R.] NIAID, Vaccine Res Ctr, NIH, Bethesda, MD 20892 USA. [Korber, B. T.] Los Alamos Natl Lab, Santa Fe, NM USA. [Rerks-Ngarm, S.] MOPH, Bangkok, Thailand. [Nitayaphan, S.] AFRIMS, Bangkok, Thailand. [Pitisuttihum, P.; Kaewkungwal, J.] Mahidol Univ, Bangkok 10700, Thailand. [Mullins, J. I.] Univ Washington, Seattle, WA 98195 USA. RI Tomaras, Georgia/J-5041-2016 NR 0 TC 2 Z9 2 U1 0 U2 1 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 EI 1931-8405 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD NOV 1 PY 2013 VL 29 IS 11 SI SI BP A168 EP A168 PG 1 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 239PI UT WOS:000326037500440 ER PT J AU Sirivichayakul, S Buranapraditkun, S Thantiworasit, P Rosati, M Felber, B Pitakpolrat, P Korber, B Ruxrungtham, K AF Sirivichayakul, S. Buranapraditkun, S. Thantiworasit, P. Rosati, M. Felber, B. Pitakpolrat, P. Korber, B. Ruxrungtham, K. TI Env-Specific Immunogenicity of Asian Mosaic HIV-1 Subtype AE/B gag/pol/env Combination and HIV-1 env Alone DNA Vaccine in BALB/c Mice SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Meeting Abstract CT Conference on AIDS Vaccine CY OCT 07-10, 2013 CL Barcelona, SPAIN C1 [Sirivichayakul, S.; Buranapraditkun, S.; Thantiworasit, P.; Pitakpolrat, P.; Ruxrungtham, K.] Chulalongkorn Univ, Bangkok, Thailand. [Rosati, M.; Felber, B.] NIH, Bethesda, MD 20892 USA. [Korber, B.] LANL, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 EI 1931-8405 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD NOV 1 PY 2013 VL 29 IS 11 SI SI BP A154 EP A154 PG 1 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 239PI UT WOS:000326037500402 ER PT J AU Wahren, B Kilpelainen, A Robertson, RA Sandstrom, E Maeurer, M Leitner, T AF Wahren, B. Kilpelainen, A. Robertson, R. Axelsson Sandstrom, E. Maeurer, M. Leitner, T. TI Novel Epitopes of Nef, Suitable for an HIV Vaccine in Africa SO AIDS RESEARCH AND HUMAN RETROVIRUSES LA English DT Meeting Abstract CT Conference on AIDS Vaccine CY OCT 07-10, 2013 CL Barcelona, SPAIN C1 [Wahren, B.; Kilpelainen, A.; Robertson, R. Axelsson; Sandstrom, E.; Maeurer, M.] Karolinska Inst, Stockholm, Sweden. [Leitner, T.] Los Alamos Natl Lab, Los Alamos, NM USA. NR 0 TC 0 Z9 0 U1 0 U2 0 PU MARY ANN LIEBERT, INC PI NEW ROCHELLE PA 140 HUGUENOT STREET, 3RD FL, NEW ROCHELLE, NY 10801 USA SN 0889-2229 EI 1931-8405 J9 AIDS RES HUM RETROV JI Aids Res. Hum. Retrovir. PD NOV 1 PY 2013 VL 29 IS 11 SI SI BP A189 EP A189 PG 1 WC Immunology; Infectious Diseases; Virology SC Immunology; Infectious Diseases; Virology GA 239PI UT WOS:000326037500494 ER PT J AU You, FQ Grossmann, IE AF You, Fengqi Grossmann, Ignacio E. TI Multicut Benders decomposition algorithm for process supply chain planning under uncertainty SO ANNALS OF OPERATIONS RESEARCH LA English DT Article DE Benders decomposition; Stochastic programming; Planning; Supply chain ID STOCHASTIC-PROGRAMMING APPROACH; LINEAR-PROGRAMS; RECOURSE; OPTIMIZATION AB In this paper, we present a multicut version of the Benders decomposition method for solving two-stage stochastic linear programming problems, including stochastic mixed-integer programs with only continuous recourse (two-stage) variables. The main idea is to add one cut per realization of uncertainty to the master problem in each iteration, that is, as many Benders cuts as the number of scenarios added to the master problem in each iteration. Two examples are presented to illustrate the application of the proposed algorithm. One involves production-transportation planning under demand uncertainty, and the other one involves multiperiod planning of global, multiproduct chemical supply chains under demand and freight rate uncertainty. Computational studies show that while both the standard and the multicut versions of the Benders decomposition method can solve large-scale stochastic programming problems with reasonable computational effort, significant savings in CPU time can be achieved by using the proposed multicut algorithm. C1 [You, Fengqi] Argonne Natl Lab, Argonne, IL 60439 USA. [You, Fengqi] Northwestern Univ, Evanston, IL 60208 USA. [Grossmann, Ignacio E.] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. RP Grossmann, IE (reprint author), Carnegie Mellon Univ, Pittsburgh, PA 15213 USA. EM grossmann@cmu.edu RI You, Fengqi/F-6894-2011; You, Fengqi/B-5040-2011 OI You, Fengqi/0000-0001-9609-4299 FU Dow Chemical Company; Pennsylvania Infrastructure Technology Alliance (PITA); National Science Foundation [CMMI-0556090]; U.S. Department of Energy [DE-AC02-06CH11357] FX We gratefully acknowledge financial support from the Dow Chemical Company, the Pennsylvania Infrastructure Technology Alliance (PITA), the National Science Foundation under Grant No. CMMI-0556090, and the U.S. Department of Energy under contract DE-AC02-06CH11357. NR 33 TC 20 Z9 21 U1 1 U2 23 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0254-5330 EI 1572-9338 J9 ANN OPER RES JI Ann. Oper. Res. PD NOV PY 2013 VL 210 IS 1 BP 191 EP 211 DI 10.1007/s10479-011-0974-4 PG 21 WC Operations Research & Management Science SC Operations Research & Management Science GA 242YK UT WOS:000326282300009 ER PT J AU Van Dinter, J Rebennack, S Kallrath, J Denholm, P Newman, A AF Van Dinter, Jennifer Rebennack, Steffen Kallrath, Josef Denholm, Paul Newman, Alexandra TI The unit commitment model with concave emissions costs: a hybrid Benders' Decomposition with nonconvex master problems SO ANNALS OF OPERATIONS RESEARCH LA English DT Article DE Integer programming applications; Unit commitment model; Power systems; Benders' Decomposition; Spinning reserves; Mixed integer nonlinear programming; Storage; Renewables; Convex underestimators ID INTEGER NONLINEAR PROGRAMS; WIND POWER-GENERATION; SECURITY; CONSTRAINTS; RESERVE AB We present a unit commitment model which determines generator schedules, associated production and storage quantities, and spinning reserve requirements. Our model minimizes fixed costs, fuel costs, shortage costs, and emissions costs. A constraint set balances the load, imposes requirements on the way in which generators and storage devices operate, and tracks reserve requirements. We capture cost functions with piecewise-linear and (concave) nonlinear constructs. We strengthen the formulation via cut addition. We then describe an underestimation approach to obtain an initial feasible solution to our model. Finally, we constitute a Benders' master problem from the scheduling variables and a subset of those variables associated with the nonlinear constructs; the subproblem contains the storage and reserve requirement quantities, and power from generators with convex (linear) emissions curves. We demonstrate that our strengthening techniques and Benders' Decomposition approach solve our mixed integer, nonlinear version of the unit commitment model more quickly than standard global optimization algorithms. We present numerical results based on a subset of the Colorado power system that provide insights regarding storage, renewable generators, and emissions. C1 [Van Dinter, Jennifer; Rebennack, Steffen; Newman, Alexandra] Colorado Sch Mines, Div Econ & Business, Golden, CO 80401 USA. [Kallrath, Josef] Univ Florida, Dept Astron, Gainesville, FL 32611 USA. [Denholm, Paul] NREL, Energy Forecasting & Modeling Grp, Golden, CO 80401 USA. RP Rebennack, S (reprint author), Colorado Sch Mines, Div Econ & Business, Golden, CO 80401 USA. EM jvandint@mines.edu; srebenna@mines.edu; kallrath@astro.ufl.edu; Paul.Denholm@nrel.gov; anewman@mines.edu FU NREL [KXEA-3-33607-53] FX We acknowledge the following people who have assisted significantly in this research. James Milford of the National Renewable Energy Lab (NREL) introduced us to this problem. Dr. Greg Brinkman, also of NREL, provided guidance regarding data collection and analysis. Donal O'Sullivan of the Colorado School of Mines helped with the initial coding efforts. Ryan Bracken and Maureen McDaniel, also of the Colorado School of Mines, gathered and cleaned data. Professor Luis Tenorio of the Colorado School of Mines provided suggestions for categorizing the intervals of the heat input curves. Dr. Sven Leyffer of Argonne National Labs provided general nonlinear programming recommendations. Jennifer Van Dinter was generously supported by NREL grant number KXEA-3-33607-53. NR 29 TC 3 Z9 3 U1 2 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0254-5330 EI 1572-9338 J9 ANN OPER RES JI Ann. Oper. Res. PD NOV PY 2013 VL 210 IS 1 BP 361 EP 386 DI 10.1007/s10479-012-1102-9 PG 26 WC Operations Research & Management Science SC Operations Research & Management Science GA 242YK UT WOS:000326282300016 ER PT J AU Zheng, QPP Wang, JH Pardalos, PM Guan, YP AF Zheng, Qipeng P. Wang, Jianhui Pardalos, Panos M. Guan, Yongpei TI A decomposition approach to the two-stage stochastic unit commitment problem SO ANNALS OF OPERATIONS RESEARCH LA English DT Article DE Benders decomposition; Energy; Two-stage stochastic unit commitment; Stochastic mixed integer programming; Mixed integer subproblem ID ACCELERATING BENDERS DECOMPOSITION; POWER-GENERATION; INTEGER PROGRAMS; ALGORITHM; RECOURSE; MODEL; OPTIMIZATION AB The unit commitment problem has been a very important problem in the power system operations, because it is aimed at reducing the power production cost by optimally scheduling the commitments of generation units. Meanwhile, it is a challenging problem because it involves a large amount of integer variables. With the increasing penetration of renewable energy sources in power systems, power system operations and control have been more affected by uncertainties than before. This paper discusses a stochastic unit commitment model which takes into account various uncertainties affecting thermal energy demand and two types of power generators, i.e., quick-start and non-quick-start generators. This problem is a stochastic mixed integer program with discrete decision variables in both first and second stages. In order to solve this difficult problem, a method based on Benders decomposition is applied. Numerical experiments show that the proposed algorithm can solve the stochastic unit commitment problem efficiently, especially those with large numbers of scenarios. C1 [Zheng, Qipeng P.] W Virginia Univ, Dept Ind & Management Syst Engn, Morgantown, WV 26506 USA. [Wang, Jianhui] Argonne Natl Lab, Decis & Informat Sci Div, Argonne, IL 60439 USA. [Pardalos, Panos M.; Guan, Yongpei] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA. [Pardalos, Panos M.] Natl Res Univ, Higher Sch Econ, LATNA, Moscow 101000, Russia. RP Zheng, QPP (reprint author), W Virginia Univ, Dept Ind & Management Syst Engn, POB 6070, Morgantown, WV 26506 USA. EM Qipeng.Zheng@mail.wvu.edu; jianhui.wang@anl.gov; pardalos@ise.ufl.edu; guan@ise.ufl.edu OI Zheng, Qipeng/0000-0002-4597-3426 NR 43 TC 16 Z9 17 U1 2 U2 14 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0254-5330 EI 1572-9338 J9 ANN OPER RES JI Ann. Oper. Res. PD NOV PY 2013 VL 210 IS 1 BP 387 EP 410 DI 10.1007/s10479-012-1092-7 PG 24 WC Operations Research & Management Science SC Operations Research & Management Science GA 242YK UT WOS:000326282300017 ER PT J AU Hong, TZ Chang, WK Lin, HW AF Hong, Tianzhen Chang, Wen-Kuei Lin, Hung-Wen TI A fresh look at weather impact on peak electricity demand and energy use of buildings using 30-year actual weather data SO APPLIED ENERGY LA English DT Article DE Actual meteorological year; Building simulation; Energy use; Peak electricity demand; Typical meteorological year; Weather data ID HONG-KONG; PERFORMANCE; IRRADIANCE; MODEL AB Buildings consume more than one third of the world's total primary energy. Weather plays a unique and significant role as it directly affects the thermal loads and thus energy performance of buildings. The traditional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the building performance for a typical year, but not necessarily the average or typical long-term performance as buildings with different energy systems and designs respond differently to weather changes. Furthermore, the single-year TMY simulations do not provide a range of results that capture yearly variations due to changing weather, which is important for building energy management, and for performing risk assessments of energy efficiency investments. This paper employs large-scale building simulation (a total of 3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year (1980-2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data are compared to those from the TMY3 data to determine and analyze the differences. Besides further demonstration, as done by other studies, that actual weather has a significant impact on both the peak electricity demand and energy use of buildings, the main findings from the current study include: (1) annual weather variation has a greater impact on the peak electricity demand than it does on energy use in buildings; (2) the simulated energy use using the TMY3 weather data is not necessarily representative of the average energy use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY data; (3) the weather impact is greater for buildings in colder climates than warmer climates; (4) the weather impact on the medium-sized office building was the greatest, followed by the large office and then the small office; and (5) simulated energy savings and peak demand reduction by energy conservation measures using the TMY3 weather data can be significantly underestimated or overestimated. It is crucial to run multi-decade simulations with AMY weather data to fully assess the impact of weather on the long-term performance of buildings, and to evaluate the energy savings potential of energy conservation measures for new and existing buildings from a life cycle perspective. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Hong, Tianzhen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Chang, Wen-Kuei; Lin, Hung-Wen] Ind Technol Res Inst, Green Energy & Environm Res Labs, Hsinchu, Taiwan. RP Hong, TZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM thong@LBL.gov FU US Department of Energy under the US-China Clean Energy Research Center on Building Energy Efficiency; Bureau of Energy, Ministry of Economic Affairs, Taiwan, ROC FX This work was supported by the US Department of Energy under the US-China Clean Energy Research Center on Building Energy Efficiency. It is also part of our research activities for the IEA ECBCS Annex 53: Total Energy Use in Buildings - Evaluation and Analysis Methods. This work was co-sponsored by the Bureau of Energy, Ministry of Economic Affairs, Taiwan, ROC. NR 34 TC 25 Z9 25 U1 1 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD NOV PY 2013 VL 111 BP 333 EP 350 DI 10.1016/j.apenergy.2013.05.019 PG 18 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 236YH UT WOS:000325834900032 ER PT J AU Lin, HW Hong, TZ AF Lin, Hung-Wen Hong, Tianzhen TI On variations of space-heating energy use in office buildings SO APPLIED ENERGY LA English DT Article DE Building simulation; Design and operation; EnergyPlus; Office buildings; Performance benchmarking; Space heating ID COMMERCIAL BUILDINGS; CLIMATES; CONSUMPTION; DISTRICT; SYSTEMS AB Space heating is the largest energy end use, consuming more than seven quintillion joules of site energy annually in the U.S. building sector. A few recent studies showed discrepancies in simulated space-heating energy use among different building energy modeling programs, and the simulated results are suspected to be underpredicting reality. While various uncertainties are associated with building simulations, especially when simulations are performed by different modelers using different simulation programs for buildings with different configurations, it is crucial to identify and evaluate key driving factors to space-heating energy use in order to support the design and operation of low-energy buildings. In this study, 10 design and operation parameters for space-heating systems of two prototypical office buildings in each of three U.S. heating climates are identified and evaluated, using building simulations with EnergyPlus, to determine the most influential parameters and their impacts on variations of space-heating energy use. The influence of annual weather change on space-heating energy is also investigated using 30-year actual weather data. The simulated space-heating energy use is further benchmarked against those from similar actual office buildings in two U.S. commercial-building databases to better understand the discrepancies between simulated and actual energy use. In summary, variations of both the simulated and actual space-heating energy use of office buildings in all three heating climates can be very large. However these variations are mostly driven by a few influential parameters related to building design and operation. The findings provide insights for building designers, owners, operators, and energy policy makers to make better decisions on energy-efficiency technologies to reduce space-heating energy use for both new and existing buildings. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Lin, Hung-Wen] Ind Technol Res Inst, Green Energy & Environm Res Labs, Intelligent Energy Saving Syst Div, Hsinchu 31040, Taiwan. [Hong, Tianzhen] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA. RP Hong, TZ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Energy Technol Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM thong@LBL.gov FU U.S. Department of Energy under the U.S.-China Clean Energy Research Center on Building Energy Efficiency; Bureau of Energy, Ministry of Economic Affairs, Taiwan, ROC FX This work was supported by the U.S. Department of Energy under the U.S.-China Clean Energy Research Center on Building Energy Efficiency. It was co-sponsored by the Bureau of Energy, Ministry of Economic Affairs, Taiwan, ROC. NR 31 TC 16 Z9 16 U1 2 U2 17 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD NOV PY 2013 VL 111 BP 515 EP 528 DI 10.1016/j.apenergy.2013.05.040 PG 14 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 236YH UT WOS:000325834900048 ER PT J AU Meyer, PA Tews, IJ Magnuson, JK Karagiosis, SA Jones, SB AF Meyer, Pimphan A. Tews, Iva J. Magnuson, Jon K. Karagiosis, Sue A. Jones, Susanne B. TI Techno-economic analysis of corn stover fungal fermentation to ethanol SO APPLIED ENERGY LA English DT Article DE Consolidated; Ethanol; Fungi; Fermentation; Lignocellulosic; Techno-economic ID XYLOSE-FERMENTING YEAST; SACCHAROMYCES-CEREVISIAE; ENZYMATIC-HYDROLYSIS; FUSARIUM-OXYSPORUM; HOT-WATER; BIOETHANOL PRODUCTION; PICHIA-STIPITIS; SUGAR RECOVERY; FUEL ETHANOL; ISOMERASE AB Researchers at the Pacific Northwest National Laboratory (PNNL) perform fungal research and development activities to support the goal of promoting renewable energy production as set by the U.S. Department of Energy (DOE). This techno-economic analysis assesses the process economics of ethanol production from lignocellulosic feedstock by fungi to identify promising opportunities, and the research needed to exploit them. Based on literature derived data, four different ethanologen strains are considered in this study: native and recombinant Saccharomyces cerevisiae, the natural pentose-fermenting yeast, Pichia stipitis and the filamentous fungus Fusarium oxysporum. In addition, filamentous fungi are applied in multi-organism and consolidated process configurations. Organism performance and technology readiness are categorized as near-term (<5 years), mid-term (5-10 years), and long-term (>10 years) process deployment. Processes classified as near-term could reasonably be developed in this shorter time frame, as suggested by recent literature. Mid-term technology process models are based on published lab-scale experimental data. Yields near the theoretical limit are classified as long-term technology goals. Among the four ethanologen strains, recombinant S. cerevisiae provides the most attractive process economics as defined by the lowest Minimum Ethanol Selling Price (MESP). This also falls in a range of the model analysis results suggested by literature based on different feedstock and organisms. Moreover, the analysis of mid-term and long-term processes shows improved profitability, revenue and process economics when co-producing chemicals on-site is applied, resulting in 1.98$/gallon of ethanol from a mid-term process scenario. The results of the analysis suggest that the opportunity for fungal fermentation exists for lignocellulosic ethanol production. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Meyer, Pimphan A.; Tews, Iva J.; Magnuson, Jon K.; Karagiosis, Sue A.; Jones, Susanne B.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Jones, SB (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM sue.jones@pnnl.gov NR 52 TC 6 Z9 6 U1 1 U2 33 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD NOV PY 2013 VL 111 BP 657 EP 668 DI 10.1016/j.apenergy.2013.04.085 PG 12 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 236YH UT WOS:000325834900061 ER PT J AU Iverson, BD Conboy, TM Pasch, JJ Kruizenga, AM AF Iverson, Brian D. Conboy, Thomas M. Pasch, James J. Kruizenga, Alan M. TI Supercritical CO2 Brayton cycles for solar-thermal energy SO APPLIED ENERGY LA English DT Article DE Supercritical CO2; Brayton; Solar-thermal; Concentrating solar power; Energy ID CIRCUIT HEAT-EXCHANGER; COOLED FAST-REACTOR; S-SHAPED FINS; CARBON-DIOXIDE; HYDRAULIC PERFORMANCE; MOLTEN-SALTS; CORROSION; OXIDATION; CHLORIDES; ALLOYS AB Of the mechanisms to improve efficiency for solar-thermal power plants, one of the most effective ways to improve overall efficiency is through power cycle improvements. As increases in operating temperature continue to be pursued, supercritical CO2 Brayton cycles begin to look more attractive despite the development costs of this technology. Further, supercritical CO2 Brayton has application in many areas of power generation beyond that for solar energy alone. One challenge particular to solar-thermal power generation is the transient nature of the solar resource. This work illustrates the behavior of developmental Brayton turbomachinery in response to a fluctuating thermal input, much like the short-term transients experienced in solar environments. Thermal input to the cycle was cut by 50% and 100% for short durations while the system power and conditions were monitored. It has been shown that despite these fluctuations, the thermal mass in the system effectively enables the Brayton cycle to continue to run for short periods until the thermal input can recover. For systems where significant thermal energy storage is included in the plant design, these transients can be mitigated by storage; a comparison of short- and long-term storage approaches on system efficiency is provided. Also, included in this work is a data set for stable supercritical CO2 Brayton cycle operation that is used to benchmark computer modeling. With a benchmarked model, specific improvements to the cycle are interrogated to identify the resulting impact on cycle efficiency and loss mechanisms. Status of key issues remaining to be addressed for adoption of supercritical CO2 Brayton cycles in solar-thermal systems is provided in an effort to expose areas of necessary research. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Iverson, Brian D.] Brigham Young Univ, Provo, UT 84602 USA. [Iverson, Brian D.; Conboy, Thomas M.; Pasch, James J.; Kruizenga, Alan M.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Iverson, BD (reprint author), Brigham Young Univ, Provo, UT 84602 USA. EM bdiverson@byu.edu FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This manuscript has been authored by Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. The authors would also like to thank Craig Turchi for assistance with the economic analysis. NR 99 TC 68 Z9 70 U1 14 U2 88 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD NOV PY 2013 VL 111 BP 957 EP 970 DI 10.1016/j.apenergy.2013.06.020 PG 14 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 236YH UT WOS:000325834900086 ER PT J AU Kim, J Miller, JE Maravelias, CT Stechel, EB AF Kim, Jiyong Miller, James E. Maravelias, Christos T. Stechel, Ellen B. TI Comparative analysis of environmental impact of S2P (Sunshine to Petrol) system for transportation fuel production SO APPLIED ENERGY LA English DT Article DE Life cycle assessment; Solar energy; CO2 utilization; Solar fuels; Social cost ID LIFE-CYCLE ASSESSMENT; THERMOCHEMICAL CYCLES; ELECTRIC VEHICLES; HYDROGEN; GAS; CO2; GASOLINE; ENERGY; CELL AB A previous study on Sunshine to Petrol (S2P), a technology framework to produce liquid hydrocarbon fuels from CO2 and water using a concentrated solar energy source, focused on process development as well as economic evaluation. The study herein presents results from a life cycle assessment (LCA) approach to a comparative analysis of the environmental impacts of S2P-derived and petroleum-derived gasoline. Results reveal that S2P gasoline shows lower impact scores than the conventional gasoline for all evaluated impact categories. Based on the LCA results, we then analyze the environmental benefits including greenhouse gas (GHG) mitigation and external cost savings. We find that if S2P gasoline could be successfully introduced to satisfy the gasoline demand of a sample city, Victorville in east California, 3.6 Mt CO2-eq of the greenhouse gas (GHG) emissions (77% of the total regional emissions) would be mitigated based on the current fleet of vehicles. The lighter impact also corresponds to 4.2 M$ annual cost savings from avoided environment damage. More generally, for each million vehicles running on S2P gasoline there would be nearly $30 M in savings and 335 M gallons of gasoline displaced, which in turn results in nearly 25.8 Mt of CO2-eq avoided. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Kim, Jiyong; Maravelias, Christos T.] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. [Miller, James E.] Sandia Natl Labs, Adv Mat Lab, Albuquerque, NM 87106 USA. [Stechel, Ellen B.] Arizona State Univ, ASU LightWorks, Tempe, AZ 85287 USA. RP Maravelias, CT (reprint author), Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA. EM maravelias@wisc.edu RI Maravelias, Christos/B-1376-2009; OI Maravelias, Christos/0000-0002-4929-1748; Kim, Jiyong/0000-0002-9999-736X FU United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. NR 50 TC 12 Z9 12 U1 2 U2 29 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD NOV PY 2013 VL 111 BP 1089 EP 1098 DI 10.1016/j.apenergy.2013.06.035 PG 10 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 236YH UT WOS:000325834900098 ER PT J AU Mobini, M Sowlati, T Sokhansanj, S AF Mobini, Mandi Sowlati, Taraneh Sokhansanj, Shahab TI A simulation model for the design and analysis of wood pellet supply chains SO APPLIED ENERGY LA English DT Article DE Simulation; Wood pellets; Supply chain; Bioenergy; Renewable energy ID BIOMASS PELLETS; TECHNOLOGIES; CONVERSION; PLANT; HEAT; COST AB During the past decade, the global trade of wood pellets has been growing. Rapid increases in the production and consumption of wood pellets, and predictions on its increased demand in the near future have formed a competitive global market. Several studies have focused on the economic, environmental, and technological aspects of wood pellet production and consumption. In this paper, a simulation model is developed to enhance and facilitate the studies concerning the design and analysis of wood pellet supply chains. The scope of the model covers the entire supply chain from sources of raw materials to the end customers, providing a framework for assessment of the supply chains. The model includes uncertainties, interdependencies between stages of the supply chain, and resource constraints, which are usually simplified or ignored in previous studies. The outputs of the model include the amount of energy consumed in each process and its related CO2 emissions, and the cost components of delivered wood pellets to the customers. The model was applied to an existing supply chain located in BC, Canada. The estimated cost of wood pellets was 69.27$ t(-1) at the pellet mill's gate and 101.33 $ t(-1) at customers' locations. Distribution of wood pellets to the customers contributed about 30.65% to total costs. Raw material procurement and transportation accounted for 29.16% of the total delivered cost, while pellet production contributes 40.19% to the total delivered cost. The energy consumption and CO2 emission along the supply chain were estimated at 568.93 kW h t(-1) and 136.91 kg t(-1), respectively. The results of scenario-based analysis showed that by changing the drying fuel from sawdust to bark, about 1.5% cost reduction was achievable. Blending 10% bark in the whitewood feedstock reduced the estimated cost to 96.51 $ t(-1) (4.75% reduction). (C) 2013 Elsevier Ltd. All rights reserved. C1 [Mobini, Mandi; Sowlati, Taraneh] Univ British Columbia, Dept Wood Sci, Ind Engn Res Grp, Vancouver, BC V6T 1Z4, Canada. [Sokhansanj, Shahab] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada. [Sokhansanj, Shahab] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA. RP Sowlati, T (reprint author), Univ British Columbia, Dept Wood Sci, Ind Engn Res Grp, 2931-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada. EM taraneh.sowlati@ubc.ca FU University of British Columbia Graduate Fellowship; Natural Sciences and Engineering Research Council of Canada (NSERC); BC Ministry of Forest; Wood Pellet Association of Canada FX This research is funded partly through the University of British Columbia Graduate Fellowship to the senior author, by Natural Sciences and Engineering Research Council of Canada (NSERC), BC Ministry of Forest, and Wood Pellet Association of Canada. This work continues the development of Integrated Biomass Supply Analysis & Logistics (IBSAL) [40] by adding the wood pellet supply chain model to it. The Office of Biomass Program of the US DOE is acknowledged for supporting the development of IBSAL model at the Oak Ridge National laboratory and at the University of British Columbia. We also acknowledge the great support of the pellet mill's President in providing the required data and information for our modeling and validating our results. NR 40 TC 16 Z9 17 U1 4 U2 34 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0306-2619 EI 1872-9118 J9 APPL ENERG JI Appl. Energy PD NOV PY 2013 VL 111 BP 1239 EP 1249 DI 10.1016/j.apenergy.2013.06.026 PG 11 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 236YH UT WOS:000325834900113 ER PT J AU Lee, YS Beers, TC Masseron, T Plez, B Rockosi, CM Sobeck, J Yanny, B Lucatello, S Sivarani, T Placco, VM Carollo, D AF Lee, Young Sun Beers, Timothy C. Masseron, Thomas Plez, Bertrand Rockosi, Constance M. Sobeck, Jennifer Yanny, Brian Lucatello, Sara Sivarani, Thirupathi Placco, Vinicius M. Carollo, Daniela TI CARBON-ENHANCED METAL-POOR STARS IN SDSS/SEGUE. I. CARBON ABUNDANCE ESTIMATION AND FREQUENCY OF CEMP STARS SO ASTRONOMICAL JOURNAL LA English DT Article DE methods: data analysis; stars: abundances; stars: fundamental parameters; surveys; techniques: imaging spectroscopy ID DIGITAL SKY SURVEY; HIGH-RESOLUTION SPECTROSCOPY; NEUTRON-CAPTURE ELEMENTS; LOW-METALLICITY STARS; GIANT BRANCH MODELS; DATA RELEASE; MILKY-WAY; EARLY GALAXY; S-PROCESS; ATMOSPHERIC PARAMETERS AB We describe a method for the determination of stellar [C/Fe] abundance ratios using low-resolution (R = 2000) stellar spectra from the Sloan Digital Sky Survey (SDSS) and its Galactic sub-survey, the Sloan Extension for Galactic Understanding and Exploration (SEGUE). By means of a star-by-star comparison with a set of SDSS/SEGUE spectra with available estimates of [C/Fe] based on published high-resolution analyses, we demonstrate that we can measure [C/Fe] from SDSS/SEGUE spectra with S/N >= 15 angstrom(-1) to a precision better than 0.35 dex for stars with atmospheric parameters in the range T-eff = [4400, 6700] K, log g = [1.0, 5.0], [Fe/H] = [-4.0, +0.5], and [C/Fe] = [-0.25, +3.5]. Using the measured carbon-to-iron abundance ratios obtained by this technique, we derive the frequency of carbon-enhanced stars ([C/Fe] >= +0.7) as a function of [Fe/H], for both the SDSS/SEGUE stars and other samples from the literature. We find that the differential frequency slowly rises from almost zero to about 14% at [Fe/H] similar to -2.4, followed by a sudden increase, by about a factor of three, to 39% from [Fe/H] similar to -2.4 to [Fe/H] similar to -3.7. Although the number of stars known with [Fe/H] < -4.0 remains small, the frequency of carbon-enhanced metal-poor (CEMP) stars below this value is around 75%. We also examine how the cumulative frequency of CEMP stars varies across different luminosity classes. The giant sample exhibits a cumulative CEMP frequency of 32% for [Fe/H] <= -2.5, 31% for [Fe/H] <= -3.0, and 33% for [Fe/H] <= -3.5; a roughly constant value. For the main-sequence turnoff stars, we obtain a lower cumulative CEMP frequency, around 10% for [Fe/H] <= -2.5, presumably due to the difficulty of identifying CEMP stars among warmer turnoff stars with weak CH G-bands. The dwarf population displays a large change in the cumulative frequency for CEMP stars below [Fe/H] = -2.5, jumping from 15% for [Fe/H] <= -2.5 to about 75% for [Fe/H] <= -3.0. When we impose a restriction with respect to distance from the Galactic mid-plane (vertical bar Z vertical bar < 5 kpc), the frequency of the CEMP giants does not increase at low metallicity ([Fe/H] < -2.5), but rather decreases due to the dilution of C-rich material in stars that have undergone mixing with CNO-processed material from their interiors. The frequency of CEMP stars near the main-sequence turnoff, which are not expected to have experienced mixing, increases for [Fe/H] <= -3.0. The general rise in the global CEMP frequency at low metallicity is likely due to the transition from the inner-halo to the outer-halo stellar populations with declining metallicity and increasing distance from the plane. C1 [Lee, Young Sun] New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. [Beers, Timothy C.; Placco, Vinicius M.] Natl Opt Astron Observ, Tucson, AZ 85719 USA. [Beers, Timothy C.] Michigan State Univ, JINA, E Lansing, MI 48824 USA. [Masseron, Thomas] Univ Libre Bruxelles, Inst Astron & Astrophys, B-1050 Brussels, Belgium. [Plez, Bertrand] Univ Montpellier 2, CNRS, Lab Univers & Particules Montpellier, F-34095 Montpellier, France. [Rockosi, Constance M.] Univ Calif Santa Cruz, Dept Astron & Astrophys, UCO Lick Observ, Santa Cruz, CA 95064 USA. [Sobeck, Jennifer] Univ Nice Sophia Antipolis, CNRS, Observ Cote Azur, Lab Lagrange,UMR7293, F-06304 Nice 04, France. [Sobeck, Jennifer] Univ Chicago, JINA, Chicago, IL 60637 USA. [Sobeck, Jennifer] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Yanny, Brian] Fermilab Natl Accelerator Lab, Batavia, IL 60510 USA. [Lucatello, Sara] Osserv Astron Padova, INAF, I-35122 Padua, Italy. [Sivarani, Thirupathi] Indian Inst Astrophys, Bangalore 560034, Karnataka, India. [Placco, Vinicius M.] Univ Sao Paulo, Dept Astron, Inst Astron Geofis & Ciencias Atmosfer, BR-05508090 Sao Paulo, Brazil. [Carollo, Daniela] Macquarie Univ, Dept Phys & Astron, Astron Astrophys & Astrophoton Res Ctr, N Ryde, NSW 2019, Australia. RP Lee, YS (reprint author), New Mexico State Univ, Dept Astron, Las Cruces, NM 88003 USA. EM yslee@nmsu.edu RI Placco, Vinicius/C-6864-2015; Plez, Bertrand/G-6697-2011 OI Placco, Vinicius/0000-0003-4479-1265; Plez, Bertrand/0000-0002-0398-4434 FU Physics Frontiers Center/Joint Institute for Nuclear Astrophysics (JINA) [PHY 02-16783, PHY 08-22648]; U.S. National Science Foundation; Action de Recherche Concertee from the Direction generale de l'enseignement non obligatoire et de la Recherche Scientifique; Direction de la Recherche Scientifique; Communaute Francaise de Belgique; F.R.S.-FNRS FRFC [2.4533.09]; FAPESP [2012/13722-1] FX Y.S.L. is a Tombaugh Fellow. This work was supported in part by grants PHY 02-16783 and PHY 08-22648: Physics Frontiers Center/Joint Institute for Nuclear Astrophysics (JINA), awarded by the U.S. National Science Foundation. T.M. is supported in part by an Action de Recherche Concertee from the Direction generale de l'enseignement non obligatoire et de la Recherche Scientifique, Direction de la Recherche Scientifique, Communaute Francaise de Belgique and by the F.R.S.-FNRS FRFC grant 2.4533.09. V.M.P. acknowledges support for this work through FAPESP fellowship (2012/13722-1). NR 93 TC 44 Z9 45 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0004-6256 EI 1538-3881 J9 ASTRON J JI Astron. J. PD NOV PY 2013 VL 146 IS 5 AR 132 DI 10.1088/0004-6256/146/5/132 PG 20 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 238UK UT WOS:000325976200029 ER PT J AU Booth, CM Agertz, O Kravtsov, AV Gnedin, NY AF Booth, C. M. Agertz, Oscar Kravtsov, Andrey V. Gnedin, Nickolay Y. TI SIMULATIONS OF DISK GALAXIES WITH COSMIC RAY DRIVEN GALACTIC WINDS SO ASTROPHYSICAL JOURNAL LETTERS LA English DT Article DE cosmic rays; galaxies: formation; methods: numerical ID STELLAR FEEDBACK; STAR-FORMATION; HYDRODYNAMICAL SIMULATIONS; CIRCUMGALACTIC MEDIUM; STARBURST GALAXIES; MAGNETIC-FIELD; BLACK-HOLES; CLUSTERS; RADIO; OUTFLOWS AB We present results from high-resolution hydrodynamic simulations of isolated Small Magellanic Cloud (SMC)- and Milky-Way-sized galaxies that include a model for feedback from galactic cosmic rays (CRs). We find that CRs are naturally able to drive winds with mass loading factors of up to similar to 10 in dwarf systems. The scaling of the mass loading factor with circular velocity between the two simulated systems is consistent with eta proportional to v(circ)(1-2) required to reproduce the faint end of the galaxy luminosity function. In addition, simulations with CR feedback reproduce both the normalization and the slope of the observed trend of wind velocity with galaxy circular velocity. We find that winds in simulations with CR feedback exhibit qualitatively different properties compared to supernova-driven winds, where most of acceleration happens violently in situ near star forming sites. The CR-driven winds are accelerated gently by the large-scale pressure gradient established by CRs diffusing from the star-forming galaxy disk out into the halo. The CR-driven winds also exhibit much cooler temperatures and, in the SMC-sized system, warm (T similar to 10(4) K) gas dominates the outflow. The prevalence of warm gas in such outflows may provide a clue as to the origin of ubiquitous warm gas in the gaseous halos of galaxies detected via absorption lines in quasar spectra. C1 [Booth, C. M.; Agertz, Oscar; Kravtsov, Andrey V.; Gnedin, Nickolay Y.] Univ Chicago, Dept Astron & Astrophys, Chicago, IL 60637 USA. [Agertz, Oscar] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England. [Kravtsov, Andrey V.; Gnedin, Nickolay Y.] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA. [Kravtsov, Andrey V.] Univ Chicago, Enrico Fermi Inst, Chicago, IL 60637 USA. [Gnedin, Nickolay Y.] Fermilab Natl Accelerator Lab, Ctr Particle Astrophys, Batavia, IL 60510 USA. RP Booth, CM (reprint author), Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA. EM cmbooth@oddjob.uchicago.edu FU NSF [OCI-0904482]; NASA ATP [NNH12ZDA001N]; Kavli Institute for Cosmological Physics at the University of Chicago [NSF PHY-0551142, PHY-1125897] FX N.G. and A. K. were supported via NSF grant OCI-0904482. A. K. was supported by NASA ATP grant NNH12ZDA001N and by the Kavli Institute for Cosmological Physics at the University of Chicago through grants NSF PHY-0551142 and PHY-1125897 and an endowment from the Kavli Foundation and its founder Fred Kavli. NR 49 TC 25 Z9 25 U1 0 U2 5 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 2041-8205 EI 2041-8213 J9 ASTROPHYS J LETT JI Astrophys. J. Lett. PD NOV 1 PY 2013 VL 777 IS 1 AR L16 DI 10.1088/2041-8205/777/1/L16 PG 5 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 241SH UT WOS:000326187400016 ER PT J AU Schafer, S Wyrzgol, SA Lercher, JA Stutzmann, M Sharp, ID AF Schaefer, Susanne Wyrzgol, Sonja A. Lercher, Johannes A. Stutzmann, Martin Sharp, Ian D. TI Charge Transfer across the GaN/Pt Nanoparticle Interface in an Electrolyte SO CHEMCATCHEM LA English DT Article DE charge transfer; electrochemistry; gallium nitride; nanoparticles; platinum ID N-TYPE GAN; P-TYPE GAN; GALLIUM NITRIDE; PLATINUM NANOPARTICLES; SEMICONDUCTOR SURFACES; SOLID-SOLUTION; PHOTOELECTRODE; PHOTOCATALYST; TRANSISTORS; DIODES C1 [Schaefer, Susanne; Stutzmann, Martin; Sharp, Ian D.] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany. [Schaefer, Susanne; Stutzmann, Martin; Sharp, Ian D.] Tech Univ Munich, Dept Phys, D-85748 Garching, Germany. [Wyrzgol, Sonja A.; Lercher, Johannes A.] Tech Univ Munich, Catalysis Res Ctr, D-85747 Garching, Germany. RP Sharp, ID (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM idsharp@lbl.gov RI Sharp, Ian/I-6163-2015; Stutzmann, Martin/B-1480-2012; OI Sharp, Ian/0000-0001-5238-7487; Stutzmann, Martin/0000-0002-0068-3505 FU Deutsche Forschungsgemeinschaft (DFG) through the Technische Universitat Munchen (TUM) International Graduate School of Science and Engineering (IGSSE); TUM Institute for Advanced Study; German Excellence Initiative FX This work was supported by the Deutsche Forschungsgemeinschaft (DFG) through the Technische Universitat Munchen (TUM) International Graduate School of Science and Engineering (IGSSE). I.D.S. acknowledges support from the TUM Institute for Advanced Study, funded by the German Excellence Initiative. NR 24 TC 3 Z9 3 U1 2 U2 30 PU WILEY-V C H VERLAG GMBH PI WEINHEIM PA BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY SN 1867-3880 EI 1867-3899 J9 CHEMCATCHEM JI ChemCatChem PD NOV PY 2013 VL 5 IS 11 SI SI BP 3224 EP 3227 DI 10.1002/cctc.201300070 PG 4 WC Chemistry, Physical SC Chemistry GA 240NW UT WOS:000326104700008 ER PT J AU Collette, NM Yee, CS Murugesh, D Sebastian, A Taher, L Gale, NW Economides, AN Harland, RM Loots, GG AF Collette, Nicole M. Yee, Cristal S. Murugesh, Deepa Sebastian, Aimy Taher, Leila Gale, Nicholas W. Economides, Aris N. Harland, Richard M. Loots, Gabriela G. TI Sost and its paralog Sostdc1 coordinate digit number in a Gli3-dependent manner SO DEVELOPMENTAL BIOLOGY LA English DT Article DE WNT signaling; Sost; Sclerostin; Sostdc1; Shh; Limb formation; Polydactyly; syndactyly ID BONE MORPHOGENETIC PROTEIN; BMP ANTAGONIST; POLARIZING ACTIVITY; TARGETED DELETION; WNT/BETA-CATENIN; SONIC-HEDGEHOG; GENE-1 USAG-1; PROBE LEVEL; SCLEROSTIN; MOUSE AB WNT signaling is critical in most aspects of skeletal development and homeostasis, and antagonists of WNT signaling are emerging as key regulatory proteins with great promise as therapeutic agents for bone disorders. Here we show that Sost and its paralog Sostdc1 emerged through ancestral genome duplication and their expression patterns have diverged to delineate non-overlapping domains in most organ systems including musculoskeletal, cardiovascular, nervous, digestive, reproductive and respiratory. In the developing limb, Sost and Sostdc1 display dynamic expression patterns with Sost being restricted to the distal ectoderm and Sostdc1 to the proximal ectoderm and the mesenchyme. While Sostdc1(-/-) mice lack any obvious limb or skeletal defects, Sost(-/-) mice recapitulate the hand defects described for Sclerosteosis patients. However, elevated WNT signaling in Sost(-/-); Sostdc1(-/-) mice causes misregulation of SHH signaling, ectopic activation of Sox9 in the digit 1 field and preaxial polydactyly in a Gli1- and Gli3-dependent manner. In addition, we show that the syndactyly documented in Sclerosteosis is present in both Sost(-/-) and Sost(-/-); Sostdc1(-/-) mice, and is driven by misregulation of Fgf8 in the AER, a region lacking Sost and Sostdc1 expression. This study highlights the complexity of WNT signaling in skeletal biology and disease and emphasizes how redundant mechanism and non-cell autonomous effects can synergize to unveil new intricate phenotypes caused by elevated WNT signaling. (C) 2013 The Authors. Published by Elsevier Inc. All rights reserved. C1 [Collette, Nicole M.; Yee, Cristal S.; Murugesh, Deepa; Sebastian, Aimy; Loots, Gabriela G.] Lawrence Livermore Natl Lab, Biol & Biotechnol Div, Livermore, CA 94550 USA. [Yee, Cristal S.; Sebastian, Aimy; Loots, Gabriela G.] Univ Calif, Sch Nat Sci, Merced, CA USA. [Taher, Leila] NIH, Computat Biol Branch, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20892 USA. [Taher, Leila] Univ Rostock, Inst Biostat & Informat Med & Ageing Res, D-18055 Rostock, Germany. [Gale, Nicholas W.; Economides, Aris N.] Regeneron Pharmaceut Inc, Tarrytown, NY 10591 USA. [Harland, Richard M.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. RP Loots, GG (reprint author), Lawrence Livermore Natl Lab, Biol & Biotechnol Div, 7000 East Ave,L-452, Livermore, CA 94550 USA. EM loots1@llnl.gov OI Economides, Aris/0000-0002-6508-8942; Sebastian, Aimy/0000-0002-7822-7040 FU National Institutes of Health (NIH) Knock-Out Mouse Program (KOMP); NIH [HD47853, DK075730]; U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; NIH, NLM FX We would like to thank the National Institutes of Health (NIH) Knock-Out Mouse Program (KOMP) and Regeneron for providing the Sost and Sostdc1 knockout mice. NMC, CV, DM and GGL were supported by NIH Grant HD47853 and DK075730. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LT was supported by the Intramural Research Program of the NIH, NLM. NR 72 TC 9 Z9 9 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0012-1606 EI 1095-564X J9 DEV BIOL JI Dev. Biol. PD NOV 1 PY 2013 VL 383 IS 1 BP 90 EP 105 DI 10.1016/j.ydbio.2013.08.015 PG 16 WC Developmental Biology SC Developmental Biology GA 239WX UT WOS:000326057800011 PM 23994639 ER PT J AU Polizzotti, A Repins, IL Noufi, R Wei, SH Mitzi, DB AF Polizzotti, Alex Repins, Ingrid L. Noufi, Rommel Wei, Su-Huai Mitzi, David B. TI The state and future prospects of kesterite photovoltaics SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Review ID FILM SOLAR-CELLS; GRAIN-BOUNDARIES; BAND ALIGNMENT; ADMITTANCE MEASUREMENTS; ELECTRONIC-PROPERTIES; DEVICE PERFORMANCE; PHASE-EQUILIBRIA; DEFECT STATES; BACK CONTACT; GA-CONTENT AB A recent meeting of experts in kesterite, chalcopyrite, and related thin-film solar cell devices; characterization; and modeling from industry, academia, and national labs identified high-impact pathways forward in kesterite photovoltaics research, towards the end-goal of achieving high-efficiency (>18%) devices in an accelerated timeframe. This paper summarizes the conclusions of this meeting while providing background on key areas of kesterite research. This paper does not aim to provide a comprehensive status-of-the-field review but rather to suggest specific and targeted areas where additional focus might yield the highest-impact results. C1 [Polizzotti, Alex] DOE SunShot, Washington, DC USA. [Repins, Ingrid L.; Noufi, Rommel; Wei, Su-Huai] Natl Renewable Energy Lab, Golden, CO USA. [Mitzi, David B.] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA. RP Polizzotti, A (reprint author), DOE SunShot, 950 LEnfant Plaza SW, Washington, DC USA. EM a_zotti@mit.edu FU US DOE; SunShot program FX The authors would like to acknowledge the meeting attendees: Rakesh Agrawal (Purdue U), Tonio Buonassisi (MIT), Tayfun Gokmen (IBM), Supratik Guha (IBM), Oki Gunawan (IBM), Qijie Guo (DuPont), Chuck Hages (Purdue U), Richard Haight (IBM), Hugh Hillhouse (U Washington), Tsuyoshi Maeda (Ryukoku U), Brian McCandless (IEC, U Delaware), David Mitzi (IBM), Rommel Nou. (NREL), Alex Polizzotti (DOE), Ingrid Repins (NREL), Angus Rockett (U Illinois), Mike Scarpulla (U Utah), Byungha Shin (IBM), Hiroki Sugimoto (Solar Frontier), Glenn Teeter (NREL), Teodor Todorov (IBM), Mike Toney (SLAC), Thomas Unold (HZB), Suhuai Wei (NREL), Yang Yang (UCLA), Kenji Yoshino (Miyazaki U). In addition, the authors thank the US DOE and the SunShot program for funding and support. NR 116 TC 99 Z9 99 U1 6 U2 143 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD NOV PY 2013 VL 6 IS 11 BP 3171 EP 3182 DI 10.1039/c3ee41781f PG 12 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 238KW UT WOS:000325946400004 ER PT J AU Ruminski, AM Bardhan, R Brand, A Aloni, S Urban, JJ AF Ruminski, Anne M. Bardhan, Rizia Brand, Alyssa Aloni, Shaul Urban, Jeffrey J. TI Synergistic enhancement of hydrogen storage and air stability via Mg nanocrystal-polymer interfacial interactions SO ENERGY & ENVIRONMENTAL SCIENCE LA English DT Article ID MECHANICAL-PROPERTIES; NANOCOMPOSITES; HYBRID AB The role of encapsulating polymers in nanocrystalline Mg air stability and hydrogen storage density was studied for a series of composites varying in both % Mg and polymer identity. In these materials, the Mg nanocrystals are completely dependent on the polymer for air stability. Remarkably, both air stability and hydrogen sorption capacity of poly(methylmethacrylate) composites were enhanced by reducing the amount of polymer. Composites consisting of 65 wt% Mg absorbed 6.95 wt% hydrogen and showed little oxidation after 3 months air exposure even after enduring the volume expansion induced by hydrogen sorption, whereas composites with 33.2 wt% Mg absorbed just 4.86 wt% hydrogen and were completely oxidized upon air exposure after hydrogen sorption. This surprising synergistic enhancement in stability and storage density is attributed to an increase in the tortuosity of the paths of gas molecules and increased interfacial structure-templating regions, which scale with % Mg loading and lead to nanoparticle entanglements, hindering polymer chain motion. C1 [Ruminski, Anne M.; Bardhan, Rizia; Brand, Alyssa; Aloni, Shaul; Urban, Jeffrey J.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. RP Urban, JJ (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Mol Foundry, Berkeley, CA 94720 USA. EM jjurban@lbl.gov RI Bardhan, Rizia/B-4674-2014; Foundry, Molecular/G-9968-2014 FU Office of Science, Office of Basic Energy Sciences, at the U.S. Department of Energy (DOE) [DE-AC02-05CH11231]; Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center; DOE FX We thank Nick Norberg and Zoey Herm for helpful discussions. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, at the U.S. Department of Energy (DOE), Contract no. DE-AC02-05CH11231. A.M.R. is supported through the Center for Nanoscale Control of Geologic CO2, an Energy Frontier Research Center. R.B. is supported under the DOE H2 Storage Program. NR 19 TC 7 Z9 9 U1 6 U2 46 PU ROYAL SOC CHEMISTRY PI CAMBRIDGE PA THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND SN 1754-5692 EI 1754-5706 J9 ENERG ENVIRON SCI JI Energy Environ. Sci. PD NOV PY 2013 VL 6 IS 11 BP 3267 EP 3271 DI 10.1039/c3ee41977k PG 5 WC Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences SC Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology GA 238KW UT WOS:000325946400015 ER PT J AU Grostern, A Alvarez-Cohen, L AF Grostern, Ariel Alvarez-Cohen, Lisa TI RubisCO-based CO2 fixation and C-1 metabolism in the actinobacterium Pseudonocardia dioxanivorans CB1190 SO ENVIRONMENTAL MICROBIOLOGY LA English DT Article ID CARBON-MONOXIDE DEHYDROGENASE; JC1 DSM 3803; ALCALIGENES-EUTROPHUS; SP-NOV.; GEN-NOV; NITROSOMONAS-EUROPAEA; XANTHOBACTER-FLAVUS; STRAIN CB1190; BACTERIA; ACTINOMYCETE AB Pseudonocardia is an actinobacterial genus of interest due to its potential biotechnological, medical and environmental remediation applications, as well as for the ecologically relevant symbiotic relationships it forms with attine ants. Some Pseudonocardia spp. can grow autotrophically, but the genetic basis of this capability has not previously been reported. In this study, we examined autotrophy in Pseudonocardia dioxanivoransCB1190, which can grow using H-2 and CO2, as well as heterotrophically. Genomic and transcriptomic analysis of CB1190 cells grown with H-2/bicarbonate implicated the Calvin-Benson-Bassham (CBB) cycle in growth-supporting CO2 fixation, as well as a [NiFe] hydrogenase-encoding gene cluster in H-2 oxidation. The CBB cycle genes are evolutionarily most related to actinobacterial homologues, although synteny has not been maintained. Ribulose-1,5-bisphosphate carboxylase activity was confirmed in H-2/bicarbonate-grown CB1190 cells and was detected in cells grown with the C-1 compounds formate, methanol and carbon monoxide. We also demonstrated the upregulation of CBB cycle genes upon exposure of CB1190 to these C-1 substrates, and identified genes putatively involved in generating CO2 from the C-1 substrates by using RT-qPCR. Finally, the potential for autotrophic growth of other Pseudonocardia spp. was explored, and the ecological implications of autotrophy in attine ant- and plant root-associated Pseudonocardia discussed. C1 [Grostern, Ariel; Alvarez-Cohen, Lisa] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. [Alvarez-Cohen, Lisa] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Alvarez-Cohen, L (reprint author), Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA. EM alvarez@ce.berkeley.edu OI Grostern, Ariel/0000-0002-9792-8977 FU Strategic Environmental Research and Development Program [ER-1417]; NIEHS Superfund Basic Research Program [ES04705-19] FX We thank Professor Rebecca Parales, UC Davis, for providing the CB1190 strain. This work was funded by Strategic Environmental Research and Development Program Grant ER-1417 and NIEHS Superfund Basic Research Program Grant ES04705-19. NR 70 TC 5 Z9 6 U1 6 U2 42 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1462-2912 EI 1462-2920 J9 ENVIRON MICROBIOL JI Environ. Microbiol. PD NOV PY 2013 VL 15 IS 11 BP 3040 EP 3053 DI 10.1111/1462-2920.12144 PG 14 WC Microbiology SC Microbiology GA 240PF UT WOS:000326108700013 PM 23663433 ER PT J AU Franc, BL Cho, SY Rosenthal, SA Cui, YG Tsui, B Vandewalker, KMN Holz, AL Poonamallee, U Pomper, MG James, RB AF Franc, Benjamin L. Cho, Steve Y. Rosenthal, Seth A. Cui, Yonggang Tsui, Benjamin Vandewalker, Kristen M. N. Holz, Andrew L. Poonamallee, Uday Pomper, Martin G. James, Ralph B. TI Detection and localization of carcinoma within the prostate using high resolution transrectal gamma imaging (TRGI) of monoclonal antibody directed at prostate specific membrane antigen (PSMA)-Proof of concept and initial imaging results SO EUROPEAN JOURNAL OF RADIOLOGY LA English DT Article DE Molecular imaging; Prostate cancer; Gamma camera; Imaging-guided biopsy; Imaging-guided therapy; Endoluminal imaging ID CANCER; BIOPSY AB Purpose: Molecular imaging methods may identify primary prostate cancer foci and potentially guide biopsy and optimal management approaches. In this exploratory study, safety and first human imaging experience of a novel solid state endocavity transrectal gamma-imaging (TRGI) device was evaluated. Methods: Twelve patients received 5 +/- 0.5 mCi In-111 capromab pendetide (ProstaScint (R)) intravenously and the prostate of each was imaged 4 days later transrectally using an endoluminal cadmium zinc telluride (CZT)-based compact gamma camera (ProxiScan (TM), Hybridyne Imaging Technologies, Inc.). Immediate and 5-7-day post imaging safety assessments were performed. In those patients with a prostate cancer diagnosis (N=10), single photon emission computed tomography (SPECT-CT) and magnetic resonance imaging (MRI) of the pelvis were also acquired. Images were reviewed and sites of suspected cancer were localized by prostate quadrant by consensus of two nuclear medicine physicians. Pathology from TRUS biopsy, or surgical pathology following prostatectomy (N=3) when available, served as the gold standard. Results: There were no serious adverse events associated with TRGI. No focal signal was detected in patients without a diagnosis of prostate cancer (N=2). Of 40 quadrants evaluated in the cancer cohort (N=10), 22 contained malignancy. In 8 of these 10 patients, the most focal site of uptake on TRGI corresponded to a prostatic quadrant with biopsy-proven malignancy. In 6 cancer-containing quadrants, TRGI was positive where SPECT-CT was negative; MRI showed a detectable abnormality in only 1 of these 6 quadrants. Qualitative image review of the planar TRGI images for prostate cancer localization was severely limited in some cases by scatter artifact within the vicinity of the prostate gland arising from physiologic urine and blood pool activity from nearby structures. Conclusions: TRGI is a safe imaging method that can potentially detect radiopharmaceutical uptake of primary prostate cancer and facilitate prostatic quadrant - localization of cancer. Further investigation of this technology is warranted. (C) 2013 Elsevier Ireland Ltd. All rights reserved. C1 [Franc, Benjamin L.; Rosenthal, Seth A.; Holz, Andrew L.; Poonamallee, Uday] Radiol Associates Sacramento Med Grp, Sacramento, CA 95815 USA. [Cho, Steve Y.; Tsui, Benjamin; Pomper, Martin G.] Johns Hopkins Univ, Dept Radiol, Baltimore, MD 21287 USA. [Cui, Yonggang; James, Ralph B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Vandewalker, Kristen M. N.] Diagnost Pathol Med Grp, Sacramento, CA 95816 USA. RP Franc, BL (reprint author), Radiol Associates Sacramento Med Grp, 1500 Expo Pkwy, Sacramento, CA 95815 USA. EM francbl@radiological.com FU Hybridyne Imaging Technologies FX The authors gratefully acknowledge the generous financial support by Hybridyne Imaging Technologies for providing the funds for this study and training on the use of the Proxiscan imaging platform. NR 12 TC 4 Z9 4 U1 2 U2 10 PU ELSEVIER IRELAND LTD PI CLARE PA ELSEVIER HOUSE, BROOKVALE PLAZA, EAST PARK SHANNON, CO, CLARE, 00000, IRELAND SN 0720-048X EI 1872-7727 J9 EUR J RADIOL JI Eur. J. Radiol. PD NOV PY 2013 VL 82 IS 11 BP 1877 EP 1884 DI 10.1016/j.ejrad.2013.07.025 PG 8 WC Radiology, Nuclear Medicine & Medical Imaging SC Radiology, Nuclear Medicine & Medical Imaging GA 232HU UT WOS:000325484600026 PM 23993140 ER PT J AU Park, JS Lienert, U Dawson, PR Miller, MP AF Park, J. -S. Lienert, U. Dawson, P. R. Miller, M. P. TI Quantifying Three-Dimensional Residual Stress Distributions Using Spatially-Resolved Diffraction Measurements and Finite Element Based Data Reduction SO EXPERIMENTAL MECHANICS LA English DT Article DE Residual stress; High energy synchrotron x-ray; Diffraction; Lattice strain; Multi-scale; Conical slits ID SYNCHROTRON X-RAY; NICKEL-BASED SUPERALLOYS; NEUTRON-DIFFRACTION; INTERGRANULAR STRAINS; STAINLESS-STEEL; ELASTIC STRAINS; ORIENTATION; MICROSTRUCTURE AB Residual stress can play a significant role in the processing and performance of an engineered metallic component. The stress state within a polycrystalline part can vary significantly between its surface and its interior. To measure three-dimensional (3D) residual stress fields, a synchrotron x-ray diffraction-based experimental technique capable of non-destructively measuring a set of lattice strain pole figures (SPFs) at various surface and internal points within a component was developed. The resulting SPFs were used as input for a recently developed bi-scale optimization scheme McNelis et al. J Mech Phys Sol 61:428-1007 449 (2013) that combines crystal-scale measurements and continuum-scale constraints to determinethe 3D residual stress field in the component. To demonstrate this methodology, the 3D residual stress distribution was evaluated for an interference-fit sample fabricated from a low solvus high refractory (LSHR) polycrystalline Ni-base superalloy. C1 [Dawson, P. R.; Miller, M. P.] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA. [Park, J. -S.] Argonne Natl Lab, Adv Photon Source, Lemont, IL USA. [Lienert, U.] DESY, Hamburg, Germany. RP Miller, MP (reprint author), Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA. EM parkjs@aps.anl.gov; ulrich.lienert@desy.de; prd5@cornell.edu; mpm4@cornell.edu FU U.S. Air Force Office of Scientific Research Multi-Scale Structural Mechanics Program [FA9550-09-1-0642]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX This research was financially supported by the U.S. Air Force Office of Scientific Research Multi-Scale Structural Mechanics Program under contract number FA9550-09-1-0642. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract number DE-AC02-06CH11357. Professor Jim Williams of the Ohio State University is gratefully acknowledged for motivation and guidance of this work. The LSHR material used in this work was provided by Dr. T.J. Turner at the Air Force Research Laboratory (AFRL). The DPLAB Polycrystal Library (OdfPf) at Cornell University was used extensively for this work (http://anisotropy.mae.cornell.edu). NR 50 TC 5 Z9 5 U1 0 U2 23 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 EI 1741-2765 J9 EXP MECH JI Exp. Mech. PD NOV PY 2013 VL 53 IS 9 BP 1491 EP 1507 DI 10.1007/s11340-013-9771-0 PG 17 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 239SN UT WOS:000326045800001 ER PT J AU Song, B Antoun, BR Jin, H AF Song, B. Antoun, B. R. Jin, H. TI Dynamic Tensile Characterization of a 4330-V Steel with Kolsky Bar Techniques SO EXPERIMENTAL MECHANICS LA English DT Article DE Kolsky tension bar; Stress-strain response; 4330-V steel; Strain rate effect; Tensile characterization ID HIGH-STRAIN-RATE; HOPKINSON PRESSURE BAR; COMPRESSION; RATES; DUCTILITY; STRENGTH; STRESS AB Dynamic tensile experimental techniques of high-strength alloys using a Kolsky tension bar implemented with pulse shaping and advanced analytical and diagnostic techniques have been developed. The issues that include minimizing abnormal stress peak, determining strain in specimen gage section, evaluating uniform deformation, as well as developing pulse shaping for constant strain rate and stress equilibrium have been addressed in this study to ensure valid experimental conditions and obtainment of reliable high-rate tensile stress-strain response of alloys with a Kolsky tension bar. The techniques were applied to characterize the tensile stress-strain response of a 4330-V steel at two high strain rates. Comparing these high-rate results with quasi-static data, the strain rate effect on the tensile stress-strain response of the 4330-V steel was determined. The 4330-V steel exhibits slight work-hardening behavior in tension and the tensile flow stress is significantly sensitive to strain rate. C1 [Song, B.; Antoun, B. R.; Jin, H.] Sandia Natl Labs, Livermore, CA 94551 USA. RP Song, B (reprint author), Sandia Natl Labs, Livermore, CA 94551 USA. EM bsong@sandia.gov RI Song, Bo/D-3945-2011 FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX The authors would like to thank Dr. Wei-Yang Lu for the valuable discussion about this work. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 28 TC 2 Z9 2 U1 1 U2 16 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 EI 1741-2765 J9 EXP MECH JI Exp. Mech. PD NOV PY 2013 VL 53 IS 9 BP 1519 EP 1529 DI 10.1007/s11340-013-9721-x PG 11 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 239SN UT WOS:000326045800003 ER PT J AU Jin, H Lu, WY Foulk, JW Mota, A Johnson, G Korellis, J AF Jin, H. Lu, W. -Y. Foulk, J. W., III Mota, A. Johnson, G. Korellis, J. TI An Examination of Anisotropic Void Evolution in Aluminum Alloy 7075 SO EXPERIMENTAL MECHANICS LA English DT Article DE Anisotropy; Void evolution; X-ray tomography ID X-RAY TOMOGRAPHY; DUCTILE FRACTURE; GROWTH; MODEL AB This paper investigates the anisotropy of void evolution and its relation with ductility in the high strength rolled aluminum alloy 7075-T7351. Smooth tension specimens are extracted from three principal material orientations, i.e. rolling (R), transverse (T), and short transverse (S). The mechanical behavior of these specimens is characterized and the varying ductility in the three orientations is clearly observed. Electron Backscattered Diffraction (EBSD), optical microscopy, and Scanning Electron Microscopy (SEM) are employed to characterize the grain structure and the size, location, and chemical composition of the intermetallic particles. In-situ X-ray Tomography (XCT) experiments are performed to obtain tomographic images of the specimens at critical loading steps. The radiographs acquired during the tensile test are then reconstructed and examined through quantitative analysis to partition particles and voids. These tomographic images enable us to visualize void evolution as the specimens are loaded along material orientations. The tomographic images clearly illustrate anisotropy in the void evolution and highlight the importance of local coalescence in developing 1D and 2D void structures prior to global coalescence. Fractography confirms tomography. These findings motivate model forms with appropriate internal variables to adequately describe the dominant mechanisms which govern anisotropic void evolution. C1 [Jin, H.; Lu, W. -Y.; Foulk, J. W., III; Mota, A.; Korellis, J.] Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. [Johnson, G.] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA. RP Jin, H (reprint author), Sandia Natl Labs, Mech Mat Dept, Livermore, CA 94550 USA. EM hjin@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors greatly appreciate the help from the staff members Alastair MacDowell, Dula Parkinson and Jamie Nasiatka at the Advanced Light Source, Lawrence-Berkeley National Laboratory. NR 22 TC 2 Z9 2 U1 2 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 EI 1741-2765 J9 EXP MECH JI Exp. Mech. PD NOV PY 2013 VL 53 IS 9 BP 1583 EP 1596 DI 10.1007/s11340-013-9765-y PG 14 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 239SN UT WOS:000326045800008 ER PT J AU Reu, PL AF Reu, P. L. TI A Study of the Influence of Calibration Uncertainty on the Global Uncertainty for Digital Image Correlation Using a Monte Carlo Approach SO EXPERIMENTAL MECHANICS LA English DT Article DE Digital image correlation; DIC; Full-field measurements; Uncertainty quantification; Optical methods; Measurement techniques ID ERRORS AB Stereo digital image correlation (DIC) is now a standard measurement technique. It is, therefore, important to quantify the measurement uncertainties when using it for experiments. Because of the complexity of the DIC measurement process, a Monte Carlo approach is presented as a method to discover the magnitude of the stereo-DIC calibration uncertainty. Then, the calibration errors, along with an assumed sensor position error, are propagated through the stereo-triangulation process to find the uncertainty in three-dimensional position and object motion. Details on the statistical results of the calibration parameters are presented, with estimated errors for different calibration targets and calibration image quality. A sensitivity study was done to look at the influence of the different calibration error sources. Details on the best approach for propagating the errors from a statistical perspective are discussed, including the importance of using a "boot-strap" approach for error propagation because of the covariance of many of the calibration parameters. The calibration and error propagation results are then interpreted to provide some best-practices guidelines for DIC. C1 Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Reu, PL (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM plreu@sandia.gov FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 21 TC 9 Z9 9 U1 2 U2 22 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0014-4851 EI 1741-2765 J9 EXP MECH JI Exp. Mech. PD NOV PY 2013 VL 53 IS 9 BP 1661 EP 1680 DI 10.1007/s11340-013-9746-1 PG 20 WC Materials Science, Multidisciplinary; Mechanics; Materials Science, Characterization & Testing SC Materials Science; Mechanics GA 239SN UT WOS:000326045800014 ER PT J AU de Pater, I Dunn, DE Stam, DM Showalter, MR Hammel, HB Min, M Hartung, M Gibbard, SG van Dam, MA Matthews, K AF de Pater, Imke Dunn, David E. Stam, Daphne M. Showalter, Mark R. Hammel, Heidi B. Min, Michiel Hartung, Markus Gibbard, Seran G. van Dam, Marcos A. Matthews, Keith TI Keck and VLT AO observations and models of the uranian rings during the 2007 ring plane crossings SO ICARUS LA English DT Article DE Planetary rings; Uranus; Infrared observations ID HUBBLE-SPACE-TELESCOPE; SATURNS F-RING; ADAPTIVE-OPTICS; MU-M; URANUS; SYSTEM; SATELLITES; EVOLUTION; ORBITS; 1ST AB We present observations of the uranian ring system at a wavelength of 2.2 mu m, taken between 2003 and 2008 with NIRC2 on the W.M. Keck telescope in Hawaii, and on 15-17 August 2007 with NaCo on the Very Large Telescope (VLT) in Chile. Of particular interest are the data taken around the time of the uranian ring plane crossing with Earth on 16 August 2007, and with the Sun (equinox) on 7 December 2007. We model the data at the different viewing aspects with a Monte Carlo model to determine: (1) the normal optical depth tau(0), the location, and the radial extent of the main rings, and (2) the parameter A tau(0) (A is the particle geometric albedo), the location, and the radial plus vertical extent of the dusty rings. Our main conclusions are: (i) The brightness of the epsilon ring is significantly enhanced at small phase and ring inclination angles; we suggest this extreme opposition effect to probably be dominated by a reduction in interparticle shadowing. (ii) A broad sheet of dust particles extends inwards from the lambda ring almost to the planet itself. This dust sheet has a vertical extent of similar to 140 km, and A tau(0) = 2.2 x 10(-6). (iii) The dusty rings between ring 4 and the alpha ring and between the alpha and beta rings are vertically extended with a thickness of 3 similar to 00 km. (iv) The zeta ring extends from similar to 41,350 km almost all the way inwards to the planet. The main zeta ring, centered at similar to 39,500 km from the planet, is characterized by A tau(0) = 3.7 x 10(-6); this parameter decreases closer to the planet. The zeta ring has a full vertical extent of order 800-900 km, with a pronounced density enhancement in the mid-plane. (v) The eta(c) ring is optically thin and less than several tens of km in the vertical direction. This ring may be composed of macroscopic material, surrounded by clumps of dust. (C) 2013 Elsevier Inc. All rights reserved. C1 [de Pater, Imke; Dunn, David E.] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA. [de Pater, Imke; Stam, Daphne M.] Delft Univ Technol, Fac Aerosp Engn, NL-2629 HS Delft, Netherlands. [de Pater, Imke; Stam, Daphne M.] SRON Netherlands Inst Space Res, NL-3584 CA Utrecht, Netherlands. [Dunn, David E.] Sierra Coll, Dept Astron, Rocklin, CA 95677 USA. [Min, Michiel] Astron Inst Anton Pannekoek, NL-1098 XH Amsterdam, Netherlands. [Showalter, Mark R.] SETI Inst, Mountain View, CA 94043 USA. [Hammel, Heidi B.] Assoc Univ Res Astron, Washington, DC 20005 USA. [Hammel, Heidi B.] Space Sci Inst, Boulder, CO 80301 USA. [Matthews, Keith] CALTECH, Caltech Opt Observ, Pasadena, CA 91125 USA. [van Dam, Marcos A.] Flat Wavefronts, Christchurch, New Zealand. [Hartung, Markus] AURA, Gemini South, La Serena, Chile. [Gibbard, Seran G.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP de Pater, I (reprint author), Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA. EM imke@berkeley.edu FU W.M. Keck Foundation; National Science Foundation Science and Technology Center for Adaptive Optics [AST 98-76783]; NASA [NNX07AK70G]; NASA's Planetary Geology and Geophysics program [NNX09AG14G] FX We thank Larry Sromovsky and Patrick Fry for contributing data to our program on UT 19 and 20 August, 2007, and Daniel Guirado Rodriguez for insightful discussions with regard to the opposition effect. We thank the referees for their help to significantly improve our manuscript. Most of the near-infrared data were obtained with the W.M. Keck Observatory, which is operated by the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. This work was further supported in part by the National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement AST 98-76783. In addition, IdP acknowledges support from NASA Grant NNX07AK70G, and MRS was supported by NASA's Planetary Geology and Geophysics program through Grant NNX09AG14G. The authors extend special thanks to those of Hawaiian ancestry on whose sacred mountain we are privileged to be guests. Without their generous hospitality, none of the observations presented would have been possible. NR 49 TC 3 Z9 3 U1 0 U2 3 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0019-1035 EI 1090-2643 J9 ICARUS JI Icarus PD NOV-DEC PY 2013 VL 226 IS 2 BP 1399 EP 1424 DI 10.1016/j.icarus.2013.08.001 PG 26 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 239DX UT WOS:000326003900015 ER PT J AU Derr, K Manic, M AF Derr, Kurt Manic, Milos TI Adaptive Control Parameters for Dispersal of Multi-Agent Mobile Ad Hoc Network (MANET) Swarms SO IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS LA English DT Article DE Adaptive algorithm; control parameter; extended virtual springmesh (EVSM); formation; multi-agent mobile ad hoc network (MANET); robot; self-organizing network; self repair; self-stabilizing; swarm; wireless sensor network ID ROBOTS AB A mobile ad hoc network is a collection of independent nodes that communicate wirelessly with one another. This paper investigates nodes that are swarm robots with communications and sensing capabilities. Each robot in the swarm may operate in a distributed and decentralized manner to achieve some goal. This paper presents a novel approach to dynamically adapting control parameters to achieve mesh configuration stability. The presented approach to robot interaction is based on spring force laws (attraction and repulsion laws) to create near-optimal mesh like configurations. In prior work, we presented the extended virtual spring mesh (EVSM) algorithm for the dispersion of robot swarms. This paper extends the EVSM framework by providing the first known study on the effects of adaptive versus static control parameters on robot swarm stability. The EVSM algorithm provides the following novelties: 1) improved performance with adaptive control parameters and 2) accelerated convergence with high formation effectiveness. Simulation results show that 120 robots reach convergence using adaptive control parameters more than twice as fast as with static control parameters in a multiple obstacle environment. C1 [Derr, Kurt] Idaho Natl Lab, Idaho Falls, ID 83415 USA. [Manic, Milos] Univ Idaho, Idaho Falls, ID 83402 USA. RP Derr, K (reprint author), Idaho Natl Lab, Idaho Falls, ID 83415 USA. EM kurt.derr@inl.gov; misko@uidaho.edu NR 37 TC 4 Z9 5 U1 1 U2 15 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 1551-3203 EI 1941-0050 J9 IEEE T IND INFORM JI IEEE Trans. Ind. Inform. PD NOV PY 2013 VL 9 IS 4 BP 1900 EP 1911 DI 10.1109/TII.2012.2228870 PG 12 WC Automation & Control Systems; Computer Science, Interdisciplinary Applications; Engineering, Industrial SC Automation & Control Systems; Computer Science; Engineering GA 240RC UT WOS:000326113700011 ER PT J AU Wang, SW Anselin, L Bhaduri, B Crosby, C Goodchild, MF Liu, Y Nyerges, TL AF Wang, Shaowen Anselin, Luc Bhaduri, Budhendra Crosby, Christopher Goodchild, Michael F. Liu, Yan Nyerges, Timothy L. TI CyberGIS software: a synthetic review and integration roadmap SO INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE LA English DT Article DE CyberGIS; cyberinfrastructure; geographic information science; spatial analysis and modeling ID SPATIAL DATA-ANALYSIS; COMPUTING APPROACH; CYBERINFRASTRUCTURE; GIS; INFRASTRUCTURES; ENVIRONMENT; FRAMEWORK; MODELS; FUTURE AB CyberGIS - defined as cyberinfrastructure-based geographic information systems (GIS) - has emerged as a new generation of GIS representing an important research direction for both cyberinfrastructure and geographic information science. This study introduces a 5-year effort funded by the US National Science Foundation to advance the science and applications of CyberGIS, particularly for enabling the analysis of big spatial data, computationally intensive spatial analysis and modeling (SAM), and collaborative geospatial problem-solving and decision-making, simultaneously conducted by a large number of users. Several fundamental research questions are raised and addressed while a set of CyberGIS challenges and opportunities are identified from scientific perspectives. The study reviews several key CyberGIS software tools that are used to elucidate a vision and roadmap for CyberGIS software research. The roadmap focuses on software integration and synthesis of cyberinfrastructure, GIS, and SAM by defining several key integration dimensions and strategies. CyberGIS, based on this holistic integration roadmap, exhibits the following key characteristics: high-performance and scalable, open and distributed, collaborative, service-oriented, user-centric, and community-driven. As a major result of the roadmap, two key CyberGIS modalities - gateway and toolkit - combined with a community-driven and participatory approach have laid a solid foundation to achieve scientific breakthroughs across many geospatial communities that would be otherwise impossible. C1 [Wang, Shaowen; Liu, Yan] Univ Illinois, CyberInfrastruct & Geospatial Informat Lab, Urbana, IL 61801 USA. [Wang, Shaowen; Liu, Yan] Univ Illinois, Dept Geog & Geog Informat Sci, Urbana, IL 61801 USA. [Wang, Shaowen] Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USA. [Wang, Shaowen] Univ Illinois, Dept Urban & Reg Planning, Urbana, IL 61801 USA. [Wang, Shaowen; Liu, Yan] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA. [Anselin, Luc] Arizona State Univ, Sch Geog Sci & Urban Planning, GeoDa Ctr Geospatial Anal & Computat, Tempe, AZ 84287 USA. [Bhaduri, Budhendra] Oak Ridge Natl Lab, Computat Sci & Engn Div, Geog Informat Sci & Technol Grp, Oak Ridge, TN 37831 USA. [Crosby, Christopher] Univ Navstar Consortium, Boulder, CO 80301 USA. [Goodchild, Michael F.] Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA. [Goodchild, Michael F.] Univ Calif Santa Barbara, Ctr Spatial Studies, Santa Barbara, CA 93106 USA. [Nyerges, Timothy L.] Univ Washington, Dept Geog, Profess Masters Program GIS Sustainabil Managemen, Seattle, WA 98195 USA. [Nyerges, Timothy L.] Univ Washington, Dept Geog, Participatory GIS Technol Grp, Seattle, WA 98195 USA. RP Wang, SW (reprint author), Univ Illinois, CyberInfrastruct & Geospatial Informat Lab, Urbana, IL 61801 USA. EM shaowen@illinois.edu RI Wang, Shaowen/O-1926-2013; OI Wang, Shaowen/0000-0001-5848-590X; Liu, Yan Y/0000-0003-2298-4728 FU U.S. National Science Foundation [OCI-1047916, BCS-0846655, EAR-0930731, EAR-0930643, EIA-0325916] FX This material is based in part upon work supported by the U.S. National Science Foundation under grant numbers OCI-1047916, BCS-0846655, EAR-0930731, EAR-0930643, and EIA-0325916. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The authors are grateful for insightful comments on the earlier drafts received from Editor May Yuan and four anonymous reviewers, Sriram Krishnan, Anand Padmanabhan, Wenwu Tang, Ranga Raju Vatsavai, and NancyWilkins-Diehr. Assistance received from Anand Padmanabhan, Wenwu Tang, Yanli Zhao on data processing and graphics preparation is greatly appreciated. NR 55 TC 31 Z9 38 U1 7 U2 74 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 1365-8816 EI 1362-3087 J9 INT J GEOGR INF SCI JI Int. J. Geogr. Inf. Sci. PD NOV 1 PY 2013 VL 27 IS 11 SI SI BP 2122 EP 2145 DI 10.1080/13658816.2013.776049 PG 24 WC Computer Science, Information Systems; Geography; Geography, Physical; Information Science & Library Science SC Computer Science; Geography; Physical Geography; Information Science & Library Science GA 242GK UT WOS:000326226300002 ER PT J AU Ma, HY Mechoso, CR Xue, YK Xiao, H Neelin, JD Ji, X AF Ma, Hsi-Yen Mechoso, C. Roberto Xue, Yongkang Xiao, Heng Neelin, J. David Ji, Xuan TI On the Connection between Continental-Scale Land Surface Processes and the Tropical Climate in a Coupled Ocean-Atmosphere-Land System SO JOURNAL OF CLIMATE LA English DT Article DE Atmosphere-land interaction; Atmosphere-ocean interaction; Atmospheric circulation; Convection; Teleconnections; Climate models ID GENERAL-CIRCULATION MODELS; PLANETARY BOUNDARY-LAYER; BIOSPHERE MODEL; MONSOON DEVELOPMENT; GLOBAL CLIMATE; SEASONAL CYCLE; PACIFIC; SENSITIVITY; VEGETATION; IMPACT AB An evaluation is presented of the impact on tropical climate of continental-scale perturbations given by different representations of land surface processes (LSPs) in a general circulation model that includes atmosphere-ocean interactions. One representation is a simple land scheme, which specifies climatological albedos and soil moisture availability. The other representation is the more comprehensive Simplified Simple Biosphere Model, which allows for interactive soil moisture and vegetation biophysical processes.The results demonstrate that such perturbations have strong impacts on the seasonal mean states and seasonal cycles of global precipitation, clouds, and surface air temperature. The impact is especially significant over the tropical Pacific Ocean. To explore the mechanisms for such impact, model experiments are performed with different LSP representations confined to selected continental-scale regions where strong interactions of climate-vegetation biophysical processes are present. The largest impact found over the tropical Pacific is mainly from perturbations in the tropical African continent where convective heating anomalies associated with perturbed surface heat fluxes trigger global teleconnections through equatorial wave dynamics. In the equatorial Pacific, the remote impacts of the convection anomalies are further enhanced by strong air-sea coupling between surface wind stress and upwelling, as well as by the effects of ocean memory. LSP perturbations over South America and Asia-Australia have much weaker global impacts. The results further suggest that correct representations of LSP, land use change, and associated changes in the deep convection over tropical Africa are crucial to reducing the uncertainty of future climate projections with global climate models under various climate change scenarios. C1 [Ma, Hsi-Yen] Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Livermore, CA 94551 USA. [Mechoso, C. Roberto; Xue, Yongkang; Neelin, J. David; Ji, Xuan] Univ Calif Los Angeles, Dept Atmospher & Ocean Sci, Los Angeles, CA USA. [Xue, Yongkang] Univ Calif Los Angeles, Dept Geog, Los Angeles, CA 90024 USA. [Xiao, Heng] Pacific North Natl Lab, Atmospher Sci & Global Change Div, Richland, WA USA. RP Ma, HY (reprint author), Lawrence Livermore Natl Lab, Program Climate Model Diag & Intercomparison, Mail Code L-103,7000 East Ave, Livermore, CA 94551 USA. EM ma21@llnl.gov RI Ma, Hsi-Yen/K-1019-2013 FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]; U.S. Department of Energy [DE-AC05-76RL01830]; NOAA's MAPP/CPO program [NA10 0AR4310262]; NSF [ATM-0751030, AGS-1041477, AGS-1102838, AGS-1115506] FX We thank three anonymous reviewers for their valuable comments on this paper and Professor Min-Hui Lo for very helpful discussion. Computing resources were provided from the NCAR Computational and Information Systems Laboratory. The contribution of Hsi-Yen Ma to this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. The Pacific Northwest National Laboratory is operated by the Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC05-76RL01830. NOAA's MAPP/CPO program provided support for this work under Grant NA10 0AR4310262. This work was also supported under NSF Grants ATM-0751030, AGS-1041477, AGS-1102838, and AGS-1115506. NR 52 TC 4 Z9 4 U1 3 U2 19 PU AMER METEOROLOGICAL SOC PI BOSTON PA 45 BEACON ST, BOSTON, MA 02108-3693 USA SN 0894-8755 EI 1520-0442 J9 J CLIMATE JI J. Clim. PD NOV PY 2013 VL 26 IS 22 BP 9006 EP 9025 DI 10.1175/JCLI-D-12-00819.1 PG 20 WC Meteorology & Atmospheric Sciences SC Meteorology & Atmospheric Sciences GA 242DB UT WOS:000326216500018 ER PT J AU Wright, JS Washington, AL Duff, MC Burger, A Groza, M Matei, L Buliga, V AF Wright, Jonathan S. Washington, Aaron L., II Duff, Martine C. Burger, Arnold Groza, Michael Matei, Liviu Buliga, Vladimir TI The Effect of Subbandgap Illumination on the Bulk Resistivity of CdZnTe SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE CdZnTe; bulk resistivity; IR illumination; defect distribution; secondary phases; current-voltage (I-V) ID SINGLE-CRYSTALS; DETECTORS; CDTE AB The variation in bulk resistivity during infrared (IR) illumination above 950 nm of state-of-the-art CdZnTe (CZT) crystals grown using the traveling heating method or the modified Bridgman method is documented. The change in steady-state current with and without illumination is also evaluated. The influence of secondary phases (SP) on current-voltage (I-V) characteristics is discussed using IR transmission microscopy to determine the defect concentration within the crystal bulk. SP present within the CZT are connected to the existence of deep, IR-excitable traps within the bandgap. C1 [Wright, Jonathan S.; Washington, Aaron L., II; Duff, Martine C.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Burger, Arnold; Groza, Michael; Matei, Liviu; Buliga, Vladimir] Fisk Univ, Nashville, TN 37208 USA. RP Wright, JS (reprint author), Savannah River Natl Lab, Aiken, SC 29808 USA. EM aaron.washington@srnl.doe.gov FU U.S. Dept. of Energy; U.S. DOE-National Nuclear Security Administration through the Office of Nonproliferation and Verification Research and Development-NA-22 [DE-FG52-05NA27035]; National Science Foundation through Fisk University Center for Physics and Chemistry of Materials (CPCoM) [CA: HRD-0420516]; [DE-AC09-08SR22470] FX This document was prepared in conjunction with work accomplished under Contract No. DE-AC09-08SR22470 with the U.S. Dept. of Energy. This work was supported by U.S. DOE-National Nuclear Security Administration through the Office of Nonproliferation and Verification Research and Development-NA-22 (Grant No. DE-FG52-05NA27035) and the National Science Foundation through Fisk University Center for Physics and Chemistry of Materials (CPCoM), Cooperative Agreement CA: HRD-0420516 (CREST program). Thanks are due to Redlen Technologies for supplying the crystal used in this study. NR 18 TC 1 Z9 1 U1 0 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 EI 1543-186X J9 J ELECTRON MATER JI J. Electron. Mater. PD NOV PY 2013 VL 42 IS 11 BP 3119 EP 3124 DI 10.1007/s11664-013-2676-y PG 6 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 239SW UT WOS:000326046800017 ER PT J AU Yang, G Bolotnikov, AE Cui, Y Camarda, GS Hossain, A Kim, KH Franc, J Belas, E James, RB AF Yang, G. Bolotnikov, A. E. Cui, Y. Camarda, G. S. Hossain, A. Kim, K. H. Franc, J. Belas, E. James, R. B. TI Low-Temperature Photoluminescence Study of CdTe:In Crystals Annealed in Molten Bismuth SO JOURNAL OF ELECTRONIC MATERIALS LA English DT Article DE CdTe; postgrowth annealing; bismuth; photoluminescence ID CDZNTE SINGLE-CRYSTALS; LUMINESCENCE; TELLURIDE; QUALITY AB We used a low-temperature photoluminescence (PL) technique to investigate CdTe:In crystals after annealing in molten bismuth (Bi). The two annealed samples showed different resistivities after the treatment. For both samples, we observed very strong emissions in the excitonic spectral region and revealed fine structures of exciton emissions in the PL spectrum. In the sample with high resistivity, we found one ionized donor-bound exciton peak, (D+,X), that we ascribed to incorporated Bi atoms occupying Cd sites in the CdTe. The temperature dependence of the (D+,X) peak emission had an associated activation energy of 3.59 meV for the exciton bound to this ionized donor. Meanwhile, a donor-acceptor pair peak at 1.5315 eV, which was absent from the PL of the low-resistivity sample, suggested the likelihood of some Bi atoms occupying Te sites in the high-resistivity sample. Our findings highlight the need for detailed investigation of annealing conditions to ensure precise control of the electrical properties of the material during annealing in molten Bi. C1 [Yang, G.; Bolotnikov, A. E.; Cui, Y.; Camarda, G. S.; Hossain, A.; Kim, K. H.; James, R. B.] Brookhaven Natl Lab, Upton, NY 11973 USA. [Franc, J.; Belas, E.] Charles Univ Prague, Inst Phys, CR-12116 Prague, Czech Republic. RP Yang, G (reprint author), Brookhaven Natl Lab, Bldg 197D, Upton, NY 11973 USA. EM gyang@bnl.gov RI Franc, Jan/C-3802-2017 OI Franc, Jan/0000-0002-9493-3973 FU US Department of Energy, Office of Nonproliferation & Verification Research Development [NA-22]; Brookhaven Science Associates, LLC [DE-AC02-98CH1-886]; U.S. Department of Energy FX This work was supported by US Department of Energy, Office of Nonproliferation & Verification Research & Development, NA-22. The manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH1-886 with the U.S. Department of Energy. NR 16 TC 1 Z9 1 U1 3 U2 24 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0361-5235 EI 1543-186X J9 J ELECTRON MATER JI J. Electron. Mater. PD NOV PY 2013 VL 42 IS 11 BP 3138 EP 3141 DI 10.1007/s11664-013-2683-z PG 4 WC Engineering, Electrical & Electronic; Materials Science, Multidisciplinary; Physics, Applied SC Engineering; Materials Science; Physics GA 239SW UT WOS:000326046800021 ER PT J AU Jakopic, R Sturm, M Kraiem, M Richter, S Aregbe, Y AF Jakopic, R. Sturm, M. Kraiem, M. Richter, S. Aregbe, Y. TI Certified reference materials and reference methods for nuclear safeguards and security SO JOURNAL OF ENVIRONMENTAL RADIOACTIVITY LA English DT Article; Proceedings Paper CT 6th International Symposium on In Situ Nuclear Metrology as a Tool for Radioecology (INSINUME) CY JUN 11-15, 2012 CL Brussels, BELGIUM DE Certified reference materials; Nuclear safeguards and security; IDMS; Traceability; Age dating; Quality control ID IONIZATION MASS-SPECTROMETRY; ISOTOPE RATIO MEASUREMENTS AB Confidence in comparability and reliability of measurement results in nuclear material and environmental sample analysis are established via certified reference materials (CRMs), reference measurements, and inter-laboratory comparisons (ILCs). Increased needs for quality control tools in proliferation resistance, environmental sample analysis, development of measurement capabilities over the years and progress in modern analytical techniques are the main reasons for the development of new reference materials and reference methods for nuclear safeguards and security. The Institute for Reference Materials and Measurements (IRMM) prepares and certifices large quantities of the so-called "large-sized dried" (LSD) spikes for accurate measurement of the uranium and plutonium content in dissolved nuclear fuel solutions by isotope dilution mass spectrometry (IDMS) and also develops particle reference materials applied for the detection of nuclear signatures in environmental samples. IRMM is currently replacing some of its exhausted stocks of CRMs with new ones whose specifications are up-to-date and tailored for the demands of modern analytical techniques. Some of the existing materials will be re-measured to improve the uncertainties associated with their certified values, and to enable laboratories to reduce their combined measurement uncertainty. Safeguards involve the quantitative verification by independent measurements so that no nuclear material is diverted from its intended peaceful use. Safeguards authorities pay particular attention to plutonium and the uranium isotope U-235, indicating the so-called 'enrichment', in nuclear material and in environmental samples. In addition to the verification of the major ratios, n(U-235)/n(U-238) and n(Pu-249)/n(Pu-239), the minor ratios of the less abundant uranium and plutonium isotopes contain valuable information about the origin and the 'history' of material used for commercial or possibly clandestine purposes, and have therefore reached high level of attention for safeguards authorities. Furthermore, IRMM initiated and coordinated the development of a Modified Total Evaporation (MTE) technique for accurate abundance ratio measurements of the "minor" isotope-amount ratios of uranium and plutonium in nuclear material and, in combination with a multi-dynamic measurement technique and filament carburization, in environmental samples. Currently IRMM is engaged in a study on the development of plutonium reference materials for "age dating", i.e. determination of the time elapsed since the last separation of plutonium from its daughter nuclides. The decay of a radioactive parent isotope and the build-up of a corresponding amount of daughter nuclide serve as chronometer to calculate the age of a nuclear material. There are no such certified reference materials available yet. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Jakopic, R.; Sturm, M.; Richter, S.; Aregbe, Y.] European Commiss Joint Res Ctr, Inst Reference Mat & Measurements, B-2440 Geel, Belgium. [Sturm, M.] Univ Nat Resources & Life Sci BOKU, Vienna, Austria. [Kraiem, M.] New Brunswick Lab, Argonne, IL USA. RP Jakopic, R (reprint author), European Commiss Joint Res Ctr, Inst Reference Mat & Measurements, Retieseweg 111, B-2440 Geel, Belgium. EM rozle.jakopic@ec.europa.eu NR 16 TC 5 Z9 5 U1 0 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0265-931X EI 1879-1700 J9 J ENVIRON RADIOACTIV JI J. Environ. Radioact. PD NOV PY 2013 VL 125 SI SI BP 17 EP 22 DI 10.1016/j.jenvrad.2013.02.013 PG 6 WC Environmental Sciences SC Environmental Sciences & Ecology GA 240ZZ UT WOS:000326137500004 PM 23507450 ER PT J AU Hodas, N Turpin, BJ Lunden, MM Baxter, LK Ozkaynak, H Burke, J Ohman-Strickland, P Thevenet-Morrison, K Kostis, JB Rich, DQ AF Hodas, Natasha Turpin, Barbara J. Lunden, Melissa M. Baxter, Lisa K. Oezkaynak, Haluk Burke, Janet Ohman-Strickland, Pamela Thevenet-Morrison, Kelly Kostis, John B. Rich, David Q. CA MIDAS 21 Study Grp TI Refined ambient PM2.5 exposure surrogates and the risk of myocardial infarction SO JOURNAL OF EXPOSURE SCIENCE AND ENVIRONMENTAL EPIDEMIOLOGY LA English DT Article DE air pollution; myocardial infarction; Aerosol Penetration and Persistence Model; Stochastic Human Exposure and Dose Simulation Model ID SHORT-TERM MORTALITY; AIR EXCHANGE-RATES; PARTICULATE MATTER; PARTICLE COMPOSITION; SPATIAL-ANALYSIS; INDOOR EXPOSURE; NEW-JERSEY; POLLUTION; MODEL; INFILTRATION AB Using a case-crossover study design and conditional logistic regression, we compared the relative odds of transmural (full-wall) myocardial infarction (MI) calculated using exposure surrogates that account for human activity patterns and the indoor transport of ambient PM2.5 with those calculated using central-site PM2.5 concentrations to estimate exposure to PM2.5 of outdoor origin (exposure to ambient PM2.5). Because variability in human activity and indoor PM2.5 transport contributes exposure error in epidemiologic analyses when central-site concentrations are used as exposure surrogates, we refer to surrogates that account for this variability as "refined" surrogates. As an alternative analysis, we evaluated whether the relative odds of transmural MI associated with increases in ambient PM2.5 is modified by residential air exchange rate (AER), a variable that influences the fraction of ambient PM2.5 that penetrates and persists indoors. Use of refined exposure surrogates did not result in larger health effect estimates (ORs = 1.10-1.11 with each interquartile range (IQR) increase), narrower confidence intervals, or better model fits compared with the analysis that used central-site PM2.5. We did observe evidence for heterogeneity in the relative odds of transmural MI with residential AER (effect-modification), with residents of homes with higher AERs having larger ORs than homes in lower AER tertiles. For the level of exposure-estimate refinement considered here, our findings add support to the use of central-site PM2.5 concentrations for epidemiological studies that use similar case-crossover study designs. In such designs, each subject serves as his or her own matched control. Thus, exposure error related to factors that vary spatially or across subjects should only minimally impact effect estimates. These findings also illustrate that variability in factors that influence the fraction of ambient PM2.5 in indoor air (e. g., AER) could possibly bias health effect estimates in study designs for which a spatiotemporal comparison of exposure effects across subjects is conducted. C1 [Hodas, Natasha; Turpin, Barbara J.] Rutgers State Univ, Dept Environm Sci, New Brunswick, NJ 08903 USA. [Lunden, Melissa M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Environm Technol Div, Berkeley, CA 94720 USA. [Baxter, Lisa K.; Oezkaynak, Haluk; Burke, Janet] US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC 27711 USA. [Ohman-Strickland, Pamela] Univ Med & Dent New Jersey, Sch Publ Hlth, Dept Biostat, Piscataway, NJ 08854 USA. [Thevenet-Morrison, Kelly; Rich, David Q.] Univ Rochester, Sch Med & Dent, Dept Publ Hlth Sci, Rochester, NY 14642 USA. [Kostis, John B.; MIDAS 21 Study Grp] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Med, New Brunswick, NJ 08903 USA. RP Rich, DQ (reprint author), Univ Rochester, Sch Med & Dent, Dept Publ Hlth Sci, 265 Crittenden Blvd,CU 420644, Rochester, NY 14642 USA. EM david_rich@urmc.rochester.edu RI Turpin, Barbara /D-8346-2012 FU US Environmental Protection Agency [CR-83407201-0]; NIEHS [NIEHS P30ES005022]; New Jersey Agricultural Experiment Station; Graduate Assistance in Areas of National Need Fellowship; EPA STAR Fellowship FX This research was funded, in part, by the US Environmental Protection Agency (Cooperative Agreement CR-83407201-0), NIEHS-sponsored UMDNJ Center for Environmental Exposures and Disease (NIEHS P30ES005022), and the New Jersey Agricultural Experiment Station. Natasha Hodas was supported by a Graduate Assistance in Areas of National Need Fellowship and an EPA STAR Fellowship. Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official agency policy. NR 45 TC 14 Z9 15 U1 1 U2 31 PU NATURE PUBLISHING GROUP PI NEW YORK PA 75 VARICK ST, 9TH FLR, NEW YORK, NY 10013-1917 USA SN 1559-0631 EI 1559-064X J9 J EXPO SCI ENV EPID JI J. Expo. Sci. Environ. Epidemiol. PD NOV-DEC PY 2013 VL 23 IS 6 BP 573 EP 580 DI 10.1038/jes.2013.24 PG 8 WC Environmental Sciences; Public, Environmental & Occupational Health; Toxicology SC Environmental Sciences & Ecology; Public, Environmental & Occupational Health; Toxicology GA 240ID UT WOS:000326087900003 PM 23715082 ER PT J AU Arik, M Sharma, R Lustbader, J He, X AF Arik, Mehmet Sharma, Rajdeep Lustbader, Jason He, Xin TI Steady and Unsteady Air Impingement Heat Transfer for Electronics Cooling Applications SO JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME LA English DT Article DE synthetic jets; pulsating flow; steady jets; electronics cooling; unsteady heat transfer; impingement cooling ID SMOOTH FLAT SURFACE; JET IMPINGEMENT; SYNTHETIC JETS; SLOT JET; NOZZLE; PLATE AB This paper focuses on two forced convection methods-steady jet flow and pulsating flow by synthetic jets-that can be used in applications requiring significant amounts of heat removal from electronics components. Given the dearth of available data, we have experimentally investigated steady jets and piezoelectrically driven synthetic jets that provide pulsating flow of air at a high coefficient of performance. To mimic a typical electronics component, a 25.4-mm x 25.4-mm vertical heated surface was used for heat removal. The impingement heat transfer, in the form of Nusselt number, is reported for both steady and unsteady jets over Reynolds numbers from 100 to 3000. The effect of jet-to-plate surface distance on the impingement heat transfer is also investigated. Our results show that synthetic jets can provide significantly higher cooling than steady jets in the Reynolds number range of 100 to 3000. We attribute the superior performance of synthetic jets to vortex shedding associated with the unsteady flow. C1 [Arik, Mehmet] Ozyegin Univ Cekmekoy, Dept Mech Engn, Fac Engn, TR-34782 Istanbul, Turkey. [Sharma, Rajdeep] Exponent Inc, Menlo Pk, CA 94025 USA. [Lustbader, Jason; He, Xin] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Arik, M (reprint author), Ozyegin Univ Cekmekoy, Dept Mech Engn, Fac Engn, TR-34782 Istanbul, Turkey. EM mehmet.arik@ozyegin.edu.tr FU General Electric Corporation FX We would like to acknowledge a number of organizations and people for their technical and financial support for this research. We would like to acknowledge the support provided by Susan Rogers and Steven Boyd, program managers of the Department of Energy Advanced Power Electronics and Electric Motors Program. We also thank General Electric Corporation for providing financial support for this research. NR 35 TC 4 Z9 4 U1 2 U2 18 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-1481 EI 1528-8943 J9 J HEAT TRANS-T ASME JI J. Heat Transf.-Trans. ASME PD NOV PY 2013 VL 135 IS 11 SI SI AR 111009 DI 10.1115/1.4024614 PG 8 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 241MG UT WOS:000326170500010 ER PT J AU Moreno, G Narumanchi, S King, C AF Moreno, Gilberto Narumanchi, Sreekant King, Charles TI Pool Boiling Heat Transfer Characteristics of HFO-1234yf on Plain and Microporous-Enhanced Surfaces SO JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME LA English DT Article DE critical heat flux; HFO-1234yf; microporous coating; pool boiling heat transfer ID TRANSFER COEFFICIENTS; REFRIGERANTS; CONDENSATION; PRESSURE; R1234YF; FC-72; FIN AB This study characterizes the pool boiling performance of HFO-1234yf (hydrofluoroolefin 2,3,3,3-tetrafluoropropene). HFO-1234yf is a new, environmentally friendly refrigerant likely to replace HFC-134a in automotive air-conditioning systems. Pool boiling experiments were conducted at system pressures ranging from 0.7 to 1.7 MPa using horizontally oriented 1-cm(2) heated surfaces. Test results for pure (oil-free) HFO-1234yf and HFC-134a were compared. The results showed that the boiling heat transfer coefficients of HFO-1234yf and HFC-134a were nearly identical at lower heat fluxes. HFO-1234yf yielded lower heat transfer coefficients at higher heat fluxes and lower critical heat flux (CHF) values as compared with HFC-134a. To enhance boiling heat transfer, a copper microporous coating was applied to the test surfaces. The coating enhanced both the boiling heat transfer coefficients and CHF for both refrigerants at all tested pressures. Increasing pressure decreased the level of heat transfer coefficient enhancements and increased the level of CHF enhancements. The experimental data were then used to develop a correlation for predicting the CHF for a smooth/plain heated surface. C1 [Moreno, Gilberto; Narumanchi, Sreekant; King, Charles] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Moreno, G (reprint author), Natl Renewable Energy Lab, Golden, CO 80401 USA. EM gilbert.moreno@nrel.gov OI Narumanchi, Sreekant/0000-0001-5337-6069 NR 36 TC 3 Z9 3 U1 1 U2 18 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0022-1481 EI 1528-8943 J9 J HEAT TRANS-T ASME JI J. Heat Transf.-Trans. ASME PD NOV PY 2013 VL 135 IS 11 SI SI AR 111014 DI 10.1115/1.4024622 PG 10 WC Thermodynamics; Engineering, Mechanical SC Thermodynamics; Engineering GA 241MG UT WOS:000326170500015 ER PT J AU Hopkins, JB AF Hopkins, Jonathan B. TI Synthesizing Parallel Flexures That Mimic the Kinematics of Serial Flexures Using Freedom and Constraint Topologies SO JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME LA English DT Article DE parallel and serial flexure systems; Freedom and Constraint Topologies; FACT; screw systems; projective geometry ID DEGREE-OF-FREEDOM; SYSTEM CONCEPTS; SCREW SYSTEMS; GEOMETRY; MANIPULATORS; FACT AB The principles of the freedom and constraint topologies (FACT) synthesis approach are adapted and applied to the design of parallel flexure systems that mimic degrees of freedom (DOFs) primarily achievable by serial flexure systems. FACT provides designers with a comprehensive library of geometric shapes. These shapes enable designers to visualize the regions wherein compliant flexure elements may be placed for achieving desired DOFs. By displacing these shapes far from the point of interest of the stage of a flexure system, designers can compare a multiplicity of concepts that utilizes the advantages of both parallel and serial systems. A complete list of which FACT shapes mimic which DOFs when displaced far from the point of interest of the flexure system's stage is provided as well as an intuitive approach for verifying the completeness of this list. The proposed work intends to cater to the design of precision motion stages, optical mounts, microscopy stages, and general purpose flexure bearings. Two case studies are provided to demonstrate the application of the developed procedure. C1 Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Hopkins, JB (reprint author), Lawrence Livermore Natl Lab, L-223,7000 East Ave L-223, Livermore, CA 94551 USA. EM hopkins30@llnl.gov FU U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344, LLNL-JRNL-584412] FX This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344. LLNL-JRNL-584412. NR 31 TC 0 Z9 0 U1 0 U2 8 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 1942-4302 EI 1942-4310 J9 J MECH ROBOT JI J. Mech. Robot. PD NOV PY 2013 VL 5 IS 4 AR 041004 DI 10.1115/1.4024474 PG 9 WC Engineering, Mechanical; Robotics SC Engineering; Robotics GA 241SI UT WOS:000326187600004 ER PT J AU Durso, AM Willson, JD Winne, CT AF Durso, A. M. Willson, J. D. Winne, C. T. TI Habitat influences diet overlap in aquatic snake assemblages SO JOURNAL OF ZOOLOGY LA English DT Article DE niche overlap; niche partitioning; competition; isolated wetlands; community dynamics; occupancy ID WATER SNAKES; INTERSPECIFIC COMPETITION; ISOLATED WETLAND; FEEDING-HABITS; GARTER SNAKES; RESOURCE; PREY; POPULATION; STRATEGIES; LOUISIANA AB Competition for prey is thought to be important in structuring snake assemblages. However, due in part to the secretive behavior and low detectability of many snake species, this generalization is based on a limited number of studies, most of which focus on a single study site. We examined differences in diet composition, trophic niche overlap, site occupancy and detectability of five sympatric aquatic snake species between two different habitat types in the Southeastern US, replicated at the landscape scale: permanent wetlands with fishes (n=13) and isolated, often ephemeral wetlands without fishes (n=10). We collected >3700 prey items from snakes and compared diet composition among snake species to examine niche breadth and overlap, correcting for relative availability of prey captured independently in the same wetlands. We evaluated evidence for competitive exclusion by estimating the probability of co-occupancy for pairs of snake species in each habitat type using occupancy modeling. In wetlands with fishes, niche overlap was low, suggesting resource partitioning. Conversely, in wetlands without fishes, niche overlap was high, with most species feeding on larval or paedomorphic ambystomatid salamanders, but competitive exclusion did not occur. We suggest that high co-occupancy of aquatic snakes in wetlands without fishes despite the apparent lack of resource partitioning is due to a combination of seasonally high abundance of high quality amphibian prey, unique aspects of predator physiology and stochastic abiotic processes that prevent these systems from reaching equilibrium. Our results demonstrate that snake diets can be highly context (e.g. habitat)-specific. Studies should consider other factors in addition to competition for prey when attempting to understand snake population and community dynamics. C1 [Durso, A. M.] Utah State Univ, Dept Biol, Logan, UT 84321 USA. [Willson, J. D.] Univ Arkansas, Dept Biol Sci, Fayetteville, AR 72701 USA. [Durso, A. M.; Willson, J. D.; Winne, C. T.] Univ Georgia, Savannah River Ecol Lab, Aiken, SC USA. RP Durso, AM (reprint author), Utah State Univ, Dept Biol, 5305 Old Main Hill, Logan, UT 84321 USA. EM amdurso@gmail.com FU National Science Foundation through REU program; National Science Foundation through Graduate Research Fellowship; Department of Energy [DEFC09-96SR18546, DE-FC09-07SR22506] FX We thank E. Eskew for field assistance and D. Lesmeister for assistance with software. Comments from S. Cobbold, P. Vogrinc and the Utah State University herpetology group improved this manuscript. This work was supported by the National Science Foundation through the REU program to AMD and a Graduate Research Fellowship to J.D.W., and by the Department of Energy under Award Numbers DEFC09-96SR18546 and DE-FC09-07SR22506. Animals were collected under South Carolina Department of Natural Resources scientific collection permits (G-06-04) and procedures were approved by the University of Georgia IACUC (A2006-10069-0). NR 54 TC 5 Z9 5 U1 7 U2 41 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0952-8369 EI 1469-7998 J9 J ZOOL JI J. Zool. PD NOV PY 2013 VL 291 IS 3 BP 185 EP 193 DI 10.1111/jzo.12061 PG 9 WC Zoology SC Zoology GA 242YZ UT WOS:000326284200004 ER PT J AU Dean, MPM Dellea, G Springell, RS Yakhou-Harris, F Kummer, K Brookes, NB Liu, X Sun, YJ Strle, J Schmitt, T Braicovich, L Ghiringhelli, G Bozovic, I Hill, JP AF Dean, M. P. M. Dellea, G. Springell, R. S. Yakhou-Harris, F. Kummer, K. Brookes, N. B. Liu, X. Sun, Y-J. Strle, J. Schmitt, T. Braicovich, L. Ghiringhelli, G. Bozovic, I. Hill, J. P. TI Persistence of magnetic excitations in La2-xSrxCuO4 from the undoped insulator to the heavily overdoped non-superconducting metal SO NATURE MATERIALS LA English DT Article ID ENERGY SPIN EXCITATIONS; TEMPERATURE SUPERCONDUCTOR; LA2CUO4; DYNAMICS; STRIPES; LAYER AB One of the most intensely studied scenarios of high-temperature superconductivity (HTS) postulates pairing by exchange of magnetic excitations(1). Indeed, such excitations have been observed up to optimal doping in the cuprates(2-7). In the heavily overdoped regime, neutron scattering measurements indicate that magnetic excitations have effectively disappeared(8-10), and this has been argued to cause the demise of HTS with overdoping(1,8,10). Here we use resonant inelastic X-ray scattering, which is sensitive to complementary parts of reciprocal space, to measure the evolution of the magnetic excitations in La2-xSrxCuO4 across the entire phase diagram, from a strongly correlated insulator (x = 0) to a non-superconducting metal (x = 0.40). For x = 0, well-defined magnon excitations are observed(11). These magnons broaden with doping, but they persist with a similar dispersion and comparable intensity all the way to the non-superconducting, heavily overdoped metallic phase. The destruction of HTS with overdoping is therefore caused neither by the general disappearance nor by the overall softening of magnetic excitations. Other factors, such as the redistribution of spectral weight, must be considered. C1 [Dean, M. P. M.; Liu, X.; Sun, Y-J.; Strle, J.; Bozovic, I.; Hill, J. P.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. [Dellea, G.; Braicovich, L.; Ghiringhelli, G.] Politecn Milan, Dipartimento Fis, I-20133 Milan, Italy. [Springell, R. S.] Univ Bristol, Interface Anal Ctr, Royal Commiss Exhibit Res Fellow 1851, Bristol BS2 8BS, Avon, England. [Yakhou-Harris, F.; Kummer, K.; Brookes, N. B.] European Synchrotron Radiat Facil, F-38043 Grenoble, France. [Liu, X.; Sun, Y-J.] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China. [Liu, X.; Sun, Y-J.] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China. [Strle, J.] Jozef Stefan Inst, Dept Complex Matter, Ljubljana 1000, Slovenia. [Schmitt, T.] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland. RP Dean, MPM (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM mdean@bnl.gov RI Dean, Mark/B-4541-2011; Schmitt, Thorsten/A-7025-2010; Ghiringhelli, Giacomo/D-1159-2014 OI Dean, Mark/0000-0001-5139-3543; Ghiringhelli, Giacomo/0000-0003-0867-7748 FU Center for Emergent Superconductivity, an Energy Frontier Research Center; US DOE, Office of Basic Energy Sciences; Office of Basic Energy Sciences, Division of Materials Science and Engineering, US Department of Energy [DEAC02-98CH10886]; Italian Ministry of Research MIUR [PRIN- 20094W2LAY] FX M.P.M.D. and J.P.H. are supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US DOE, Office of Basic Energy Sciences. Work at Brookhaven National Laboratory was supported by the Office of Basic Energy Sciences, Division of Materials Science and Engineering, US Department of Energy under Award No. DEAC02-98CH10886. This work was also partially supported by the Italian Ministry of Research MIUR (Grant No. PRIN- 20094W2LAY). The experiment was performed using the AXES instrument at ID08 at the European Synchrotron Radiation Facility. We acknowledge insightful, continuing discussions with A. James, R. Konik and J. Tranquada. NR 32 TC 61 Z9 61 U1 4 U2 68 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1476-1122 EI 1476-4660 J9 NAT MATER JI Nat. Mater. PD NOV PY 2013 VL 12 IS 11 BP 1018 EP 1022 DI 10.1038/NMAT3723 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 240LZ UT WOS:000326099300016 ER PT J AU Talamo, A Gohar, Y Kiyavitskaya, H Bournos, V Fokov, Y Routkovskaya, C AF Talamo, Alberto Gohar, Yousry Kiyavitskaya, H. Bournos, V. Fokov, Y. Routkovskaya, C. TI MONTE CARLO AND DETERMINISTIC NEUTRONICS ANALYSES OF YALINA THERMAL FACILITY AND COMPARISON WITH EXPERIMENTAL RESULTS SO NUCLEAR TECHNOLOGY LA English DT Article DE ADS; subcritical; MCNP ID ACCELERATOR DRIVEN SYSTEMS; COOLED EFIT PLANT AB This study compares Monte Carlo and deterministic neutronics analyses of the zero-power YALINA Thermal subcritical assembly, which is located in Minsk, Belarus. The YALINA Thermal facility consists of a subcritical core that can be driven by either a californium neutron source or a deuterium-deuterium (D-D) neutron source. The californium neutron source is generated by the natural decay of Cf-252; the D-D neutron source is generated by a deuteron accelerator. The MCNPX, MONK, NJOY, DRAGON, PARTISN, and TORT computer programs have been used for calculating the neutron spectrum, the neutron flux, and the He-3(n,p) reaction rate set by californium and D-D neutron sources. These parameters have been computed in different experimental channels of the assembly for different fuel loading configurations. The MCNPX and MONK computer programs modeled the facility without any major approximation; the PARTISN and TORT computer simulations used 69 energy groups, S-16 angular quadrature set, linear anisotropic scattering, and approximately 60 homogenized material zones. The results calculated by different computer programs are in good agreement; in addition, they match the He-3(n,p) reaction rate from experimental measurements obtained by californium and D-D neutron sources. C1 [Talamo, Alberto; Gohar, Yousry] Argonne Natl Lab, Nucl Engn Div, Argonne, IL 60439 USA. [Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.] Natl Acad Sci Belarus, Joint Inst Power & Nucl Res Sosny, Minsk 220109, Byelarus. RP Talamo, A (reprint author), Argonne Natl Lab, Nucl Engn Div, 9700 S Cass Ave, Argonne, IL 60439 USA. EM alby@anl.gov OI talamo, alberto/0000-0001-5685-0483 FU U.S. Department of Energy Office of Science laboratory [DE-AC02-06CH11357]; U.S. Department of Energy, National Nuclear Security Administration, Office of Global Nuclear Material Threat Reduction [NA213] FX The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under contract DE-AC02-06CH11357.; This project is supported by the U.S. Department of Energy, National Nuclear Security Administration, Office of Global Nuclear Material Threat Reduction (NA213). NR 18 TC 1 Z9 1 U1 0 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2013 VL 184 IS 2 BP 131 EP 147 PG 17 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 239EQ UT WOS:000326005800001 ER PT J AU Petti, DA Hobbins, RR Lowry, P Gougar, H AF Petti, D. A. Hobbins, R. R. Lowry, P. Gougar, H. TI REPRESENTATIVE SOURCE TERMS AND THE INFLUENCE OF REACTOR ATTRIBUTES ON FUNCTIONAL CONTAINMENT IN MODULAR HIGH-TEMPERATURE GAS-COOLED REACTORS SO NUCLEAR TECHNOLOGY LA English DT Article DE MHTGRs; TRISO; fission products AB Modular high-temperature gas-cooled reactors (MHTGRs) offer a high degree of passive safety. The low power density of the reactor and the high heat capacity of the graphite core result in slow transients that do not challenge the integrity of the robust TRISO fuel. Another benefit of this fuel form and the surrounding graphite is their superior ability to retain fission products under all anticipated normal and off-normal conditions, which limits reactor accident source terms to very low values. In this paper, we develop estimates of the source term for a generic MHTGR to illustrate the performance of the radionuclide barriers that comprise the MHTGR functional containment. We also examine the influence of initial fuel quality, fuel performance/failure, reactor outlet temperature, and retention outside of the reactor core on the resultant source term to the environment. C1 [Petti, D. A.; Gougar, H.] Idaho Natl Lab, Idaho Falls, ID 83401 USA. [Hobbins, R. R.] RRH Consulting, Wilson, WY 83014 USA. [Lowry, P.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Petti, DA (reprint author), Idaho Natl Lab, Idaho Falls, ID 83401 USA. EM david.petti@inl.gov NR 13 TC 1 Z9 1 U1 0 U2 5 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2013 VL 184 IS 2 BP 181 EP 197 PG 17 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 239EQ UT WOS:000326005800005 ER PT J AU Martz, RL Marshall, KM AF Martz, Roger L. Marshall, Kevin M. TI A NOTABLE COMPARISON OF COMPUTATIONAL GEOMETRIES IN MCNP6 CALCULATIONS SO NUCLEAR TECHNOLOGY LA English DT Article DE MCNP6; computer-aided engineering; Monte Carlo AB MCNP6 has been extended to include a new capability that permits tracking of neutrons and photons on an unstructured mesh (UM) embedded as a mesh universe within its constructive solid geometry capability. Our mesh geometry was created through Abaqus/CAE using its solid modeling capabilities. Monte Carlo transport results are calculated for mesh elements using a path length estimator while particles track from element face to element face on the mesh. This paper presents some performance comparisons for the initialization and calculation phases of two well-known benchmark problems using both the legacy and the UM tracking capabilities. For detailed geometries, UM initialization is always faster. For very detailed geometries where the models are comparable, the UM capability is faster than the legacy geometry capability. C1 [Martz, Roger L.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Marshall, Kevin M.] Atom Weap Estab, Reading, Berks, England. RP Martz, RL (reprint author), Los Alamos Natl Lab, POB 1663,MS A143, Los Alamos, NM 87545 USA. EM martz@lanl.gov FU U.S. Department of Energy's National Nuclear Security Administration Advanced Simulation and Computing Campaign 7 programs FX MCNP UM development over the life of this work is due to funding from the U.S. Department of Energy's National Nuclear Security Administration Advanced Simulation and Computing Campaign 7 programs. We thank these sponsors. NR 12 TC 0 Z9 0 U1 2 U2 3 PU AMER NUCLEAR SOC PI LA GRANGE PK PA 555 N KENSINGTON AVE, LA GRANGE PK, IL 60526 USA SN 0029-5450 EI 1943-7471 J9 NUCL TECHNOL JI Nucl. Technol. PD NOV PY 2013 VL 184 IS 2 BP 239 EP 248 PG 10 WC Nuclear Science & Technology SC Nuclear Science & Technology GA 239EQ UT WOS:000326005800010 ER PT J AU Tobimatsu, Y Wagner, A Donaldson, L Mitra, P Niculaes, C Dima, O Kim, JI Anderson, N Loque, D Boerjan, W Chapple, C Ralph, J AF Tobimatsu, Yuki Wagner, Armin Donaldson, Lloyd Mitra, Prajakta Niculaes, Claudiu Dima, Oana Kim, Jeong Im Anderson, Nickolas Loque, Dominique Boerjan, Wout Chapple, Clint Ralph, John TI Visualization of plant cell wall lignification using fluorescence-tagged monolignols SO PLANT JOURNAL LA English DT Article DE Arabidopsis thaliana; cell wall; dehydrogenative polymerization; fluorescence microscopy; fluorescent probes; lignin; Pinus radiata; technical advance ID PEROXIDASE-CATALYZED POLYMERIZATION; IN-VITRO LIGNIFICATION; LIGNIN BIOSYNTHESIS; ARABIDOPSIS-THALIANA; MONOCLONAL-ANTIBODIES; NMR CHARACTERIZATION; TOF-SIMS; XYLEM; PINE; BIOMASS AB Lignin is an abundant phenylpropanoid polymer produced by the oxidative polymerization of p-hydroxycinnamyl alcohols (monolignols). Lignification, i.e., deposition of lignin, is a defining feature of secondary cell wall formation in vascular plants, and provides an important mechanism for their disease resistance; however, many aspects of the cell wall lignification process remain unclear partly because of a lack of suitable imaging methods to monitor the process in vivo. In this study, a set of monolignol analogs -linked to fluorogenic aminocoumarin and nitrobenzofuran dyes were synthesized and tested as imaging probes to visualize the cell wall lignification process in Arabidopsis thaliana and Pinus radiata under various feeding regimens. In particular, we demonstrate that the fluorescence-tagged monolignol analogs can penetrate into live plant tissues and cells, and appear to be metabolically incorporated into lignifying cell walls in a highly specific manner. The localization of the fluorogenic lignins synthesized during the feeding period can be readily visualized by fluorescence microscopy and is distinguishable from the other wall components such as polysaccharides as well as the pre-existing lignin that was deposited earlier in development. C1 [Tobimatsu, Yuki; Ralph, John] Univ Wisconsin, Wisconsin Energy Inst, Dept Biochem, Madison, WI 53726 USA. [Tobimatsu, Yuki; Ralph, John] Univ Wisconsin, Wisconsin Energy Inst, GLBRC, US DOE, Madison, WI 53726 USA. [Wagner, Armin; Donaldson, Lloyd] Scion, Rotorua, New Zealand. [Mitra, Prajakta; Loque, Dominique] Lawrence Berkeley Natl Lab, Phys Biosci Div, Joint BioEnergy Inst JBEI, US DOE, Emeryville, CA 94608 USA. [Niculaes, Claudiu; Dima, Oana; Boerjan, Wout] VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium. [Niculaes, Claudiu; Dima, Oana; Boerjan, Wout] Univ Ghent, Dept Plant Biotechnol & Bioinformat, B-9052 Ghent, Belgium. [Kim, Jeong Im; Anderson, Nickolas; Chapple, Clint] Purdue Univ, Dept Biochem, W Lafayette, IN 47907 USA. RP Tobimatsu, Y (reprint author), Univ Wisconsin, Wisconsin Energy Inst, Dept Biochem, 1552 Univ Ave, Madison, WI 53726 USA. EM tobimatsu@wisc.edu; jralph@wisc.edu RI Loque, Dominique/A-8153-2008; OI Boerjan, Wout/0000-0003-1495-510X FU US Department of Energy, the Office of Science [DE-SC0006930]; University of Wisconsin Vilas Associate Award; Stanford University Global Climate and Energy Project (GCEP); Scion CORE; Great Lakes Bioenergy Research Center (GLBRC); Joint BioEnergy Institute (JBEI); Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center; US DOE's Office of Science [DE-FC02-07ER64494, DE-AC02-05CH11231, DE-SC0000997]; Japan Society for the Promotion of Science (JSPS) FX We thank Darrel McCaslin (UW Biochemistry, Biophysics Instrumentation Facility) for assistance with fluorescence spectroscopy. The authors acknowledge partial funding from US Department of Energy, the Office of Science (DE-SC0006930), University of Wisconsin Vilas Associate Award, Stanford University Global Climate and Energy Project (GCEP), and Scion CORE funding. This work was also supported, in part, by the Great Lakes Bioenergy Research Center (GLBRC), Joint BioEnergy Institute (JBEI), and Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio), an Energy Frontier Research Center, funded by the US DOE's Office of Science (DE-FC02-07ER64494, DE-AC02-05CH11231, and DE-SC0000997, respectively). YT gratefully acknowledges Postdoctoral Fellowship support from the Japan Society for the Promotion of Science (JSPS). NR 64 TC 20 Z9 21 U1 12 U2 116 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD NOV PY 2013 VL 76 IS 3 BP 357 EP 366 DI 10.1111/tpj.12299 PG 10 WC Plant Sciences SC Plant Sciences GA 242MP UT WOS:000326246700001 PM 23889038 ER PT J AU Punshon, T Tappero, R Ricachenevsky, FK Hirschi, K Nakata, PA AF Punshon, Tracy Tappero, Ryan Ricachenevsky, Felipe K. Hirschi, Kendal Nakata, Paul A. TI Contrasting calcium localization and speciation in leaves of the Medicago truncatula mutant cod5 analyzed via synchrotron X-ray techniques SO PLANT JOURNAL LA English DT Article DE calcium oxalate; elemental imaging; Medicago truncatula; synchrotron X-ray fluorescence; XANES ID OXALATE CRYSTAL-FORMATION; MEDICAGO-TRUNCATULA; PLANTS; ARABIDOPSIS; MUTANTS; SPECTROSCOPY; FORMS AB Oxalate-producing plants accumulate calcium oxalate crystals (CaOx((c))) in the range of 3-80% w/w of their dry weight, reducing calcium (Ca) bioavailability. The calcium oxalate deficient5 (cod5) mutant of Medicago truncatula has been previously shown to contain similar Ca concentrations to wild-type (WT) plants, but lower oxalate and CaOx((c)) concentrations. We imaged the Ca distribution in WT and cod5 leaflets via synchrotron X-ray fluorescence mapping (SXRF). We observed a difference in the Ca distribution between cod5 and WT leaflets, manifested as an abundance of Ca in the interveinal areas and a lack of Ca along the secondary veins in cod5, i.e. the opposite of what is observed in WT. X-ray microdiffraction (XRD) of M.truncatula leaves confirmed that crystalline CaOx((c)) (whewellite; CaC2O4H2O) was present in the WT only, in cells sheathing the secondary veins. Together with XRD, microbeam Ca K-edge X-ray absorption near-edge structure spectroscopy (XANES) indicated that, among the forms of CaOx, i.e. crystalline or amorphous, only amorphous CaOx was present in cod5. These results demonstrate that deletion of COD5 changes both Ca localization and the form of CaOx within leaflets. C1 [Punshon, Tracy] Dartmouth Coll, Life Sci Ctr, Hanover, NH 03755 USA. [Tappero, Ryan] Brookhaven Natl Lab, Natl Synchrotron Light Source, Photon Sci Directorate, Upton, NY 11973 USA. [Ricachenevsky, Felipe K.] Univ Fed Rio Grande do Sul, Ctr Biotecnol, Porto Alegre, RS, Brazil. [Hirschi, Kendal] Texas A&M Univ, Vegetable & Fruit Improvement Ctr, College Stn, TX 77845 USA. [Hirschi, Kendal; Nakata, Paul A.] Baylor Coll Med, Childrens Nutr Res Ctr, Dept Pediat, USDA ARS, Houston, TX 77030 USA. RP Punshon, T (reprint author), Dartmouth Coll, Life Sci Ctr, Hanover, NH 03755 USA. EM tracy.punshon@dartmouth.edu RI Ricachenevsky, Felipe/E-2386-2013 OI Ricachenevsky, Felipe/0000-0001-5429-3759 FU US National Institute of Environmental Health Sciences [P42 ES007373-17]; Children's Environmental Health and Disease Prevention Center [P20 ES018175, RD-83459901]; US Department of Agriculture/Agricultural Research Service [58-62650-6001, 58-6250-0-008]; US Department of Agriculture [2005-34402-16401]; US Department of Energy - Geosciences [DE-FG02-92ER14244]; Brookhaven National Laboratory-Department of Environmental Sciences; Department of Energy [58-6250-0-008] FX The authors would like to thank Megan Bourassa for her work on cryo-sectioning of the Medicago leaf samples. This work was supported by grants from the US National Institute of Environmental Health Sciences (Superfund Research Program P42 ES007373-17) and the Children's Environmental Health and Disease Prevention Center (P20 ES018175 and RD-83459901) to T. P., a grant to K. H. from the US Department of Agriculture/Agricultural Research Service (under cooperative agreement 58-62650-6001), US Department of Agriculture grant CSRESS#2005-34402-16401 'Designing Foods for Health' to K. H., and a grant to P.A.N. from the US Department of Agriculture/Agricultural Research Service (under cooperative agreement 58-6250-0-008). Part of this work was performed at beamline X27A, National Synchrotron Light Source, Brookhaven National Laboratory (Upton, NY). Beamline X27A is supported in part by the US Department of Energy - Geosciences (grant DE-FG02-92ER14244 to the University of Chicago) and Brookhaven National Laboratory-Department of Environmental Sciences. Use of the National Synchrotron Light Source was supported by the Department of Energy under contract number DEAC02-98CH10886. NR 24 TC 3 Z9 3 U1 2 U2 24 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD NOV PY 2013 VL 76 IS 4 BP 627 EP 633 DI 10.1111/tpj.12322 PG 7 WC Plant Sciences SC Plant Sciences GA 241AF UT WOS:000326138100008 PM 24033783 ER PT J AU Mascher, M Muehlbauer, GJ Rokhsar, DS Chapman, J Schmutz, J Barry, K Munoz-Amatriain, M Close, TJ Wise, RP Schulman, AH Himmelbach, A Mayer, KFX Scholz, U Poland, JA Stein, N Waugh, R AF Mascher, Martin Muehlbauer, Gary J. Rokhsar, Daniel S. Chapman, Jarrod Schmutz, Jeremy Barry, Kerrie Munoz-Amatriain, Maria Close, Timothy J. Wise, Roger P. Schulman, Alan H. Himmelbach, Axel Mayer, Klaus F. X. Scholz, Uwe Poland, Jesse A. Stein, Nils Waugh, Robbie TI Anchoring and ordering NGS contig assemblies by population sequencing (POPSEQ) SO PLANT JOURNAL LA English DT Article DE next-generation sequencing; genome assembly; genetic mapping; barley; Hordeum vulgare; population sequencing; technical advance ID MAIZE GENOME; DRAFT GENOME; WHEAT; MAP; ASSOCIATION AB Next-generation whole-genome shotgun assemblies of complex genomes are highly useful, but fail to link nearby sequence contigs with each other or provide a linear order of contigs along individual chromosomes. Here, we introduce a strategy based on sequencing progeny of a segregating population that allows de novo production of a genetically anchored linear assembly of the gene space of an organism. We demonstrate the power of the approach by reconstructing the chromosomal organization of the gene space of barley, a large, complex and highly repetitive 5.1Gb genome. We evaluate the robustness of the new assembly by comparison to a recently released physical and genetic framework of the barley genome, and to various genetically ordered sequence-based genotypic datasets. The method is independent of the need for any prior sequence resources, and will enable rapid and cost-efficient establishment of powerful genomic information for many species. C1 [Mascher, Martin; Himmelbach, Axel; Scholz, Uwe; Stein, Nils] Leibniz Inst Plant Genet & Crop Plant Res IPK, D-06466 Seeland Ot Gatersleben, Germany. [Muehlbauer, Gary J.; Munoz-Amatriain, Maria] Univ Minnesota, Dept Agron & Plant Genet, St Paul, MN 55108 USA. [Muehlbauer, Gary J.] Univ Minnesota, Dept Plant Biol, St Paul, MN 55108 USA. [Rokhsar, Daniel S.; Chapman, Jarrod; Schmutz, Jeremy; Barry, Kerrie] Joint Genome Inst, Dept Energy, Walnut Creek, CA 94598 USA. [Rokhsar, Daniel S.] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA. [Schmutz, Jeremy] HudsonAlpha Inst Biotechnol, Huntsville, AL 35806 USA. [Close, Timothy J.] Univ Calif Riverside, Dept Bot & Plant Sci, Riverside, CA 92521 USA. [Wise, Roger P.] Iowa State Univ, USDA ARS, Dept Plant Pathol & Microbiol, Ames, IA 50011 USA. [Schulman, Alan H.] Univ Helsinki, Inst Biotechnol, MTT Agrifood Res, Helsinki 00014, Finland. [Mayer, Klaus F. X.] Helmholtz Zentrum Munchen, Munich Informat Ctr Prot Sequences, Inst Bioinformat & Syst Biol, D-85764 Neuherberg, Germany. [Poland, Jesse A.] Kansas State Univ, USDA ARS, Hard Winter Wheat Genet Res Unit, Manhattan, KS 65506 USA. [Poland, Jesse A.] Kansas State Univ, Dept Agron, Manhattan, KS 65506 USA. [Waugh, Robbie] Univ Dundee, James Hutton Inst, Div Plant Sci, Dundee DD2 5DA, Scotland. RP Stein, N (reprint author), Leibniz Inst Plant Genet & Crop Plant Res IPK, D-06466 Seeland Ot Gatersleben, Germany. EM stein@ipk-gatersleben.de; robbie.waugh@hutton.ac.uk RI Schulman, Alan/A-9322-2011; Mayer, Klaus/M-7941-2015; OI Schulman, Alan/0000-0002-4126-6177; Mayer, Klaus/0000-0001-6484-1077; Scholz, Uwe/0000-0001-6113-3518; Poland, Jesse/0000-0002-7856-1399 FU Office of Science of the US Department of Energy [DE-AC02-05CH11231]; Triticeae Coordinated Agricultural Project, US Department of Agriculture/National Institute for Food and Agriculture [2011-68002-30029]; Scottish Government Rural and Environment Science and Analytical Services Division Research Programme; Bundesministerium fur Bildung und Forschung [TRI-TEX 0315954] FX The work performed by the US Department of Energy Joint Genome Institute is supported by the Office of Science of the US Department of Energy under contract number DE-AC02-05CH11231. The authors would also like to acknowledge the support given by funds received from the Triticeae Coordinated Agricultural Project, US Department of Agriculture/National Institute for Food and Agriculture grant number 2011-68002-30029 to G.J.M. and T.J.C., the Scottish Government Rural and Environment Science and Analytical Services Division Research Programme to R. W., and the Bundesministerium fur Bildung und Forschung (TRI-TEX 0315954) to N.S. and U.S. We thank Sarah Ayling (The Genome Analysis Centre, Norwich, UK) for helpful discussions about simulating read coverage. Finally, we acknowledge S. Taudien and M. Platzer (Fritz Lipmann Institute, Jena, Germany), for providing a paired-end library of cv. Morex for HiSeq 2000 sequencing, and D. Stengel for sequence data submission. NR 29 TC 80 Z9 80 U1 4 U2 52 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0960-7412 EI 1365-313X J9 PLANT J JI Plant J. PD NOV PY 2013 VL 76 IS 4 BP 718 EP 727 DI 10.1111/tpj.12319 PG 10 WC Plant Sciences SC Plant Sciences GA 241AF UT WOS:000326138100016 PM 23998490 ER PT J AU White, RB Spizzo, G Gobbin, M AF White, R. B. Spizzo, G. Gobbin, M. TI Guiding center equations of high accuracy SO PLASMA PHYSICS AND CONTROLLED FUSION LA English DT Article ID CENTER MOTION AB Guiding center simulations are an important means of predicting the effect of resistive and ideal magnetohydrodynamic instabilities on particle distributions in toroidal magnetically confined thermonuclear fusion research devices. Because saturated instabilities typically have amplitudes of delta B/B of a few times 10(-4) numerical accuracy is of concern in discovering the effect of mode particle resonances. We develop a means of following guiding center orbits which is greatly superior to the methods currently in use. For full implementation, the method requires some breaking of axisymmetry, either through toroidal field ripple or magnetohydrodynamic instabilities. In the presence of ripple or time dependent magnetic perturbations both energy and canonical momentum are conserved in a time step to better than one part in 10(14), an improvement of nine orders of magnitude over standard Runge-Kutta integration, and the relation between changes in canonical momentum and energy is also conserved to very high order. C1 [White, R. B.] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA. [Spizzo, G.; Gobbin, M.] Euratom ENEA Assoc, Consorzio RFX, Corso Stati Uniti, I-35127 Padua, Italy. RP White, RB (reprint author), Princeton Univ, Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA. RI White, Roscoe/D-1773-2013; Spizzo, Gianluca/B-7075-2009 OI White, Roscoe/0000-0002-4239-2685; Spizzo, Gianluca/0000-0001-8586-2168 FU US Department of Energy [DE-AC02-09CH11466] FX This work was partially supported by the US Department of Energy Grant DE-AC02-09CH11466. NR 10 TC 3 Z9 3 U1 0 U2 12 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0741-3335 EI 1361-6587 J9 PLASMA PHYS CONTR F JI Plasma Phys. Control. Fusion PD NOV PY 2013 VL 55 IS 11 AR 115002 DI 10.1088/0741-3335/55/11/115002 PG 6 WC Physics, Fluids & Plasmas SC Physics GA 242LC UT WOS:000326242200002 ER PT J AU Fierer, N Ladau, J Clemente, JC Leff, JW Owens, SM Pollard, KS Knight, R Gilbert, JA McCulley, RL AF Fierer, Noah Ladau, Joshua Clemente, Jose C. Leff, Jonathan W. Owens, Sarah M. Pollard, Katherine S. Knight, Rob Gilbert, Jack A. McCulley, Rebecca L. TI Reconstructing the Microbial Diversity and Function of Pre-Agricultural Tallgrass Prairie Soils in the United States SO SCIENCE LA English DT Article ID SPECIES RICHNESS; COMMUNITY COMPOSITION; VERRUCOMICROBIA; BACTERIA; DISTRIBUTIONS; RESTORATION; CULTIVATION; GRADIENTS AB Native tallgrass prairie once dominated much of the midwestern United States, but this biome and the soil microbial diversity that once sustained this highly productive system have been almost completely eradicated by decades of agricultural practices. We reconstructed the soil microbial diversity that once existed in this biome by analyzing relict prairie soils and found that the biogeographical patterns were largely driven by changes in the relative abundance of Verrucomicrobia, a poorly studied bacterial phylum that appears to dominate many prairie soils. Shotgun metagenomic data suggested that these spatial patterns were associated with strong shifts in carbon dynamics. We show that metagenomic approaches can be used to reconstruct below-ground biogeochemical and diversity gradients in endangered ecosystems; such information could be used to improve restoration efforts, given that even small changes in below-ground microbial diversity can have important impacts on ecosystem processes. C1 [Fierer, Noah; Leff, Jonathan W.] Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA. [Fierer, Noah; Leff, Jonathan W.] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA. [Ladau, Joshua; Pollard, Katherine S.] Univ Calif San Francisco, Gladstone Inst, San Francisco, CA 94158 USA. [Clemente, Jose C.] Mt Sinai Sch Med, Dept Genet & Genom Sci, New York, NY 10029 USA. [Clemente, Jose C.] Mt Sinai Sch Med, Dept Med, New York, NY 10029 USA. [Owens, Sarah M.; Gilbert, Jack A.] Argonne Natl Lab, Inst Genom & Syst Biol, Argonne, IL 60439 USA. [Owens, Sarah M.] Univ Chicago, Computat Inst, Chicago, IL 60637 USA. [Pollard, Katherine S.] Univ Calif San Francisco, Inst Human Genet, San Francisco, CA 94143 USA. [Pollard, Katherine S.] Univ Calif San Francisco, Div Biostat, San Francisco, CA 94143 USA. [Knight, Rob] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA. [Knight, Rob] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA. [Gilbert, Jack A.] Univ Chicago, Dept Ecol & Evolut, Chicago, IL 60637 USA. [McCulley, Rebecca L.] Univ Kentucky, Dept Plant & Soil Sci, Lexington, KY 40546 USA. RP Fierer, N (reprint author), Univ Colorado, Dept Ecol & Evolutionary Biol, Boulder, CO 80309 USA. EM noah.fierer@colorado.edu RI Knight, Rob/D-1299-2010 FU NSF [DEB-0953331, DMS-1069303]; Howard Hughes Medical Institute; Gordon and Betty Moore Foundation [3300]; U.S. Department of Energy [DE-AC02-06CH11357]; USDA National Research Initiative [2005-35101-15335/17371] FX We thank K. McLauchlan and three anonymous reviewers for their critical feedback on earlier versions of the manuscript; R. Jackson for his help with soil collection and analyses; and J. Henley for her help with the laboratory analyses. Supported by NSF grants DEB-0953331 (N.F.) and DMS-1069303 (K. S. P.), the Howard Hughes Medical Institute (R. K.), Gordon and Betty Moore Foundation grant 3300 (K. S. P.), U.S. Department of Energy contract DE-AC02-06CH11357 (J. A. G.), and USDA National Research Initiative 2005-35101-15335/17371 (R. L. M.). All amplicon data have been deposited in the European Nucleotide Archive under accession number ERP003610; the accession number for the shotgun metagenomic data is ERP003954. Data have also been made available through the Dryad data depository. NR 29 TC 110 Z9 119 U1 33 U2 275 PU AMER ASSOC ADVANCEMENT SCIENCE PI WASHINGTON PA 1200 NEW YORK AVE, NW, WASHINGTON, DC 20005 USA SN 0036-8075 EI 1095-9203 J9 SCIENCE JI Science PD NOV 1 PY 2013 VL 342 IS 6158 BP 621 EP 624 DI 10.1126/science.1243768 PG 4 WC Multidisciplinary Sciences SC Science & Technology - Other Topics GA 243RJ UT WOS:000326334300049 PM 24179225 ER PT J AU Cox-Galhotra, RA Huq, A Hodges, JP Yu, CF Wang, XQ Gong, WQ Jacobson, AJ McIntosh, S AF Cox-Galhotra, Rosemary A. Huq, Ashfia Hodges, Jason P. Yu, Chengfei Wang, Xiqu Gong, Wenquan Jacobson, Allan J. McIntosh, Steven TI An in-situ neutron diffraction study of the crystal structure of PrBaCo2O5 (+) (delta) at high temperature and controlled oxygen partial pressure SO SOLID STATE IONICS LA English DT Article DE In-situ neutron powder diffraction (NPD); PrBaCo2O5 (+) (delta) (PBCO); Crystal structure; layered perovskite; Double perovskite; Mixed ion and electron conductor (MIEC); Solid oxide fuel cell (SOFC) ID OXIDE FUEL-CELLS; POWDER DIFFRACTION; PHASE-TRANSITION; DIFFUSION; PEROVSKITE; LNBACO(2)O(5+DELTA); STABILITY; REFINEMENT; COBALTITES; CONDUCTOR AB Neutron powder diffraction was used to characterize the layered perovskite PrBaCo2O6 (+) (delta)(PBCO) under in-situ conditions from 573 to 852 degrees C and at pO(2) = 10(-1)-10(-4) atm. The data were fit to a tetragonal model in space group P4/mmm. The oxygen vacancies were found to be localized within the Pr layer, with total oxygen stoichiometry between 5.57(1) and 5.17(2). This was verified by coulometric titration. The location of these vacancies and the anisotropic displacement of the surrounding oxygen anion sites indicate that ion transport occurs via a hopping mechanism between O sites in the Pr layer and the nearest neighbor sites in the Co layer. While the direct hopping distance between these sites was found to be greater for PBCO than previously reported for NdBaCo2O5 (+) (delta), the larger radius of Pr3+ stabilizes a higher concentration of mobile anions within the Ln layer. (C) 2013 Elsevier B.V. All rights reserved. C1 [Cox-Galhotra, Rosemary A.] Univ Virginia, Dept Chem Engn, Charlottesville, VA 22904 USA. [Huq, Ashfia; Hodges, Jason P.] Oak Ridge Natl Lab, Spallat Neutron Source, Oak Ridge, TN 37830 USA. [Yu, Chengfei; Wang, Xiqu; Gong, Wenquan; Jacobson, Allan J.] Univ Houston, Dept Chem, Houston, TX 77204 USA. [McIntosh, Steven] Lehigh Univ, Dept Chem Engn, Bethlehem, PA 18015 USA. RP McIntosh, S (reprint author), Lehigh Univ, Dept Chem Engn, Bethlehem, PA 18015 USA. EM mcintosh@lehigh.edu RI Albe, Karsten/F-1139-2011; Huq, Ashfia/J-8772-2013; OI Huq, Ashfia/0000-0002-8445-9649; Hodges, Jason/0000-0003-3016-4578 FU Robert A Welch Foundation [E-0024]; U.S. Department of Energy (U.S. DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-SC0001284] FX A portion of this research at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. The US. National Science Foundation Graduate Research Fellowship supported Rosemary A Cox-Galhotra. CV and XW acknowledge support for sample preparation and the neutron experiments from the Robert A Welch Foundation (Grant No. E-0024, XW) and the U.S. Department of Energy (U.S. DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering (under Award No. DE-SC0001284, AJJ, CY). NR 38 TC 14 Z9 14 U1 3 U2 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-2738 EI 1872-7689 J9 SOLID STATE IONICS JI Solid State Ion. PD NOV 1 PY 2013 VL 249 BP 34 EP 40 DI 10.1016/j.ssi.2013.07.017 PG 7 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 239FB UT WOS:000326006900005 ER PT J AU Johnston, DC AF Johnston, David C. TI Elaboration of the alpha-model derived from the BCS theory of superconductivity SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article; Proceedings Paper CT Workshop on Electromagnetic and Mechanical Effects in Superconductors (MEM13) CY MAR 12-14, 2013 CL Aix en Provence, FRANCE AB The single-band alpha-model of superconductivity (Padamsee et al 1973 J. Low Temp. Phys. 12 387) is a popular model that was adapted from the single-band Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity mainly to allow fits to electronic heat capacity versus temperature T data that deviate from the BCS prediction. The model assumes that the normalized superconducting order parameter Delta(T)/Delta(0) and therefore the normalized London penetration depth lambda(L)(T)/lambda(L)(0) are the same as in BCS theory, calculated using the BCS value alpha(BCS) approximate to 1.764 of alpha equivalent to Delta(0)/k(B)T(c), where k(B) is Boltzmann's constant and T-c is the superconducting transition temperature. On the other hand, to calculate the electronic free energy, entropy, heat capacity and thermodynamic critical field versus T, the alpha-model takes alpha to be an adjustable parameter. Here we write the BCS equations and limiting behaviors for the superconducting state thermodynamic properties explicitly in terms of alpha, as needed for calculations within the alpha-model, and present plots of the results versus T and alpha that are compared with the respective BCS predictions. Mechanisms such as gap anisotropy and strong coupling that can cause deviations of the thermodynamics from the BCS predictions, especially the heat capacity jump at T-c, are considered. Extensions of the alpha-model that have appeared in the literature, such as the two-band model, are also discussed. Tables of values of Delta(T)/Delta(0), the normalized London parameter Lambda(T)/Lambda(0) and lambda(L)(T)/lambda(L)(0) calculated from the BCS theory using alpha = alpha(BCS) are provided, which are the same in the alpha-model by assumption. Tables of values of the entropy, heat capacity and thermodynamic critical field versus T for seven values of alpha, including alpha(BCS), are also presented. C1 [Johnston, David C.] Iowa State Univ, Ames Lab, Ames, IA 50011 USA. [Johnston, David C.] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA. RP Johnston, DC (reprint author), Iowa State Univ, Ames Lab, Ames, IA 50011 USA. EM johnston@ameslab.gov FU US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering; US Department of Energy by Iowa State University [DE-AC02-07CH11358] FX The author is grateful to V K Anand, R M Fernandes, V G Kogan and R Prozorov for helpful discussions and correspondence. This research was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. NR 29 TC 15 Z9 15 U1 3 U2 28 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD NOV PY 2013 VL 26 IS 11 AR 115011 DI 10.1088/0953-2048/26/11/115011 PG 18 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 238YU UT WOS:000325989100018 ER PT J AU Nishijima, S Eckroad, S Marian, A Choi, K Kim, WS Terai, M Deng, ZG Zheng, J Wang, JS Umemoto, K Du, J Febvre, P Keenan, S Mukhanov, O Cooley, LD Foley, CP Hassenzahl, WV Izumi, M AF Nishijima, Shigehiro Eckroad, Steven Marian, Adela Choi, Kyeongdal Kim, Woo Seok Terai, Motoaki Deng, Zigang Zheng, Jun Wang, Jiasu Umemoto, Katsuya Du, Jia Febvre, Pascal Keenan, Shane Mukhanov, Oleg Cooley, Lance D. Foley, Cathy P. Hassenzahl, William V. Izumi, Mitsuru TI Superconductivity and the environment: a Roadmap SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article; Proceedings Paper CT Workshop on Electromagnetic and Mechanical Effects in Superconductors (MEM13) CY MAR 12-14, 2013 CL Aix en Provence, FRANCE ID MAGNETIC SEPARATION; SMES; MAGLEV; VEHICLE; NOISE; PURIFICATION; OPERATION; EMISSION; RUSTREL; SYSTEMS AB There is universal agreement between the United Nations and governments from the richest to the poorest nations that humanity faces unprecedented global challenges relating to sustainable energy, clean water, low-emission transportation, coping with climate change and natural disasters, and reclaiming use of land. We have invited researchers from a range of eclectic research areas to provide a Roadmap of how superconducting technologies could address these major challenges confronting humanity. Superconductivity has, over the century since its discovery by Kamerlingh Onnes in 1911, promised to provide solutions to many challenges. So far, most superconducting technologies are esoteric systems that are used in laboratories and hospitals. Large science projects have long appreciated the ability of superconductivity to efficiently create high magnetic fields that are otherwise very costly to achieve with ordinary materials. The most successful applications outside of large science are high-field magnets for magnetic resonance imaging, laboratory magnetometers for mineral and materials characterization, filters for mobile communications, and magnetoencephalography for understanding the human brain. The stage is now set for superconductivity to make more general contributions. Humanity uses practically unthinkable amounts of energy to drive our modern way of life. Overall, global power usage has been predicted to almost double from 16.5 to 30 TW in the next four decades (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources). The economy with which electrons carry energy compels the continued quest for efficient superconducting power generation, energy storage, and power transmission. The growing global population requires new arable land and treatment of water, especially in remote areas, and superconductivity offers unique solutions to these problems. Exquisite detectors give warning of changes that are otherwise invisible. Prediction of climate and disasters will be helped by future supercomputer technologies that support huge amounts of data and sophisticated modeling, and with the aid of superconductivity these systems might not require the energy of a large city. We present different sections on applications that could address (or are addressing) a range of environmental issues. The Roadmap covers water purification, power distribution and storage, low-environmental impact transport, environmental sensing (particularly for the removal of unexploded munitions), monitoring the Earth's magnetic fields for earthquakes and major solar activity, and, finally, developing a petaflop supercomputer that only requires 3% of the current supercomputer power provision while being 50 times faster. Access to fresh water. With only 2.5% of the water on Earth being fresh and climate change modeling forecasting that many areas will become drier, the ability to recycle water and achieve compact water recycling systems for sewage or ground water treatment is critical. The first section (by Nishijima) points to the potential of superconducting magnetic separation to enable water recycling and reuse. Energy. The Equinox Summit held in Waterloo Canada 2011 (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources) identified electricity use as humanity's largest contributor to greenhouse gas emissions. Our appetite for electricity is growing faster than for any other form of energy. The communique from the summit said 'Transforming the ways we generate, distribute and store electricity is among the most pressing challenges facing society today .... If we want to stabilize CO2 levels in our atmosphere at 550 parts per million, all of that growth needs to be met by non-carbon forms of energy' (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources). Superconducting technologies can provide the energy efficiencies to achieve, in the European Union alone, 33-65% of the required reduction in greenhouse gas emissions according to the Kyoto Protocol (Hartikainen et al 2003 Supercond. Sci. Technol. 16 963). New technologies would include superconducting energy storage systems to effectively store power generation from renewable sources as well as high-temperature superconducting systems used in generators, transformers and synchronous motors in power stations and heavy-industry facilities. However, to be effective, these systems must be superior to conventional systems and, in reality, market penetration will occur as existing electrical machinery is written off. At current write-off rates, to achieve a 50% transfer to superconducting systems will take 20 years (Hartikainen et al 2003 Supercond. Sci. Technol. 16 963). The Roadmap next considers dc transmission of green power with a section by Eckroad and Marian who provide an update on the development of superconducting power transmission lines in view of recent sustainability studies. The potential of magnetic energy storage is then presented by Coi and Kim, who argue that a successful transition to wind and solar power generation must be harmonized with the conventional electrical network, which requires a storage technology with a fast response and long backup times. Transport. Superconducting Maglev trains and motors for international shipping have the potential to considerably reduce the emissions that contribute to greenhouse gases while improving their economic viability by reducing losses and improving efficiencies. International shipping, alone, contributes 3% of the greenhouse gas emissions. Three sections of the Roadmap identify how high-speed rail can be a major solution to providing fast, low energy, environmentally-friendly transport enabling reduction in automobile and aircraft travel by offering an alternative that is very competitive. With maritime international environmental regulations tightening, HTS motors with the characteristics of high torque and compactness will become important devices for high-performance and low-emission electric ship propulsion systems. A section on the development of a megawatt-class superconducting motor for ship propulsion is presented by Umemoto. Monitoring in manufacturing for waste reduction. Environmental impact from the waste created by the manufacturing sector and the need to make manufacturing efficient can be addressed by terahertz imaging. This technology has great potential in non-destructive testing, industrial process monitoring and control to greatly improve the industry process efficiency and reliability by reducing waste materials and toxic by-products. The section by Du shows how terahertz imaging can provide process and property information such as rust levels under paint that can assist with the reduction of waste in manufacturing and maintenance. Monitoring for naturally occurring disturbances. The environmental and social impact of natural disasters is mounting. Febvre provides the Roadmap for the use of ultra-sensitive magnetometry to understand geomagnetic phenomena and Earth-ionosphere couplings through the study of very small variations of the magnetic field. This magnetic monitoring has many implications for understanding our environment and providing new tools for early warning of natural hazards, either on Earth or in space which will enable us to be better prepared for natural disasters. Restoring environments after military use. Throughout the world, there are many areas confirmed or suspected of being contaminated by unexploded munitions known as unexploded ordnance (UXO). Its presence is the result of wars and training of military forces. Areas affected by UXO contamination are hazardous to the public and have a major influence on the nature of land use. UXO has impact in developed as well as developing nations. For example, the USA has UXO dating back to the American Civil War and countries such as Cambodia are living with landmines as a daily issue due to more recent wars. Underwater UXO has caused severe impacts such as the explosion in 1969 in the waters of Kent in the UK that caused a reading of 4.5 on the Richter scale for earthquake monitors. Another example was a land-based detonation of a 500 kg World War II bomb in Germany killing three people in 2010. There is countless UXO from recent conflicts worldwide. Detection and accurate location with 100% reliability is required to return land to safe civilian use. Keenan provides details of a prototype magnetic gradiometer developed for this purpose. Reducing power needs for high-end IT. Supercomputers are so large that they are close to requiring their own small power plant to support the energy needed to run the computer. For example, in 2011 Facebook data centers and operations used 532 million kW hours of energy. Mukhanov explores the potential of reducing the power dissipation for future supercomputers from more than 500 MW for Exascale systems to 0.2 MW by using superconducting-ferromagnetic Josephson junctions for magnetic memory and programmable logic. Clearly superconductivity is an ultimate energy-saving technology, and its practical implementation will contribute to the reduction of CO2 emissions, improved water purification, reduction of waste and timely preparedness for natural disasters or significant events. This Roadmap shows how the application of superconducting technologies will have a significant impact when they are adopted. C1 [Nishijima, Shigehiro] Osaka Univ, Grad Sch Engn, Suita, Osaka 5650871, Japan. [Eckroad, Steven] Elect Power Res Inst, Charlotte, NC 28262 USA. [Marian, Adela] Inst Adv Sustainabil Studies, D-14467 Potsdam, Germany. [Choi, Kyeongdal; Kim, Woo Seok] Korea Polytech Univ, Gyeonggi Do 429793, South Korea. [Terai, Motoaki] Cent Japan Railway Co, Minato Ku, Tokyo 1088204, Japan. [Deng, Zigang; Zheng, Jun; Wang, Jiasu] Southwest Jiaotong Univ SWJTU, State Key Lab Tract Power, Appl Superconduct Lab ASCLab, Chengdu 610031, Peoples R China. [Umemoto, Katsuya] Kawasaki Heavy Ind Co Ltd, Akashi, Hyogo 6738666, Japan. [Du, Jia; Keenan, Shane; Foley, Cathy P.] CSIRO, Div Mat Sci & Engn, Lindfield, NSW 2070, Australia. [Febvre, Pascal] Univ Savoie, IMEP LAHC CNRS UMR 5130, F-73376 Le Bourget Du Lac, France. [Mukhanov, Oleg] HYPRES Inc, Elmsford, NY 10523 USA. [Cooley, Lance D.] Fermilab Natl Accelerator Lab, Tech Div, Superconducting Mat Dept, Batavia, IL 60510 USA. [Hassenzahl, William V.] Adv Energy Anal, Piedmont, CA 94611 USA. [Izumi, Mitsuru] Tokyo Univ Marine Sci & Technol, Dept Marine Elect & Mech Engn, Appl Phys Lab, Koto Ku, Tokyo 1358533, Japan. RP Nishijima, S (reprint author), Osaka Univ, Grad Sch Engn, 2-1 Yamada Oka, Suita, Osaka 5650871, Japan. EM nishijima@see.eng.osaka-u.ac.jp; seckroad@EPRI.com; choidal@kpu.ac.kr; m.terai@jr-central.co.jp; asclabcn@gmail.com; umemoto_katsuya@khi.co.jp; jia.du@csiro.au; Pascal.Febvre@univ-savoie.fr; shane.keenan@csiro.au; mukhanov@hypres.com; ldcooley@fnal.gov; cathy.foley@csiro.au; advenergy1@aol.com; izumi@kaiyodai.ac.jp RI IZUMI, MITSURU/F-4380-2014; Foley, Catherine/F-6407-2012; Cooley, Lance/E-7377-2015; Zheng, Jun/B-1422-2009; China, ASCLab/A-1629-2010; Deng, Zigang/C-4245-2008 OI Foley, Catherine/0000-0002-3503-9672; Cooley, Lance/0000-0003-3488-2980; NR 109 TC 41 Z9 45 U1 29 U2 277 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD NOV PY 2013 VL 26 IS 11 AR 113001 DI 10.1088/0953-2048/26/11/113001 PG 35 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 238YU UT WOS:000325989100003 ER PT J AU Xi, XX Carr, GL AF Xi, Xiaoxiang Carr, G. L. TI A THz time-domain susceptibility for superconductors including strong-current effects SO SUPERCONDUCTOR SCIENCE & TECHNOLOGY LA English DT Article; Proceedings Paper CT Workshop on Electromagnetic and Mechanical Effects in Superconductors (MEM13) CY MAR 12-14, 2013 CL Aix en Provence, FRANCE ID FINITE-DIFFERENCE; TERAHERTZ METAMATERIAL; SUM-RULE; CONDUCTIVITY; FILMS; STATE; PULSE AB Finite-difference time-domain methods are increasingly being used to develop, model and analyze the response of materials, including engineered metamaterials that may contain superconductors. Though simple and useful expressions for the time-domain susceptibility exist for basic metals and dielectrics, the time-domain response for a superconductor has not been developed, mainly because the frequency-dependent expressions themselves are rather complex. In this paper we present a simple approximate expression for the time-domain susceptibility of a superconductor for the h/2 Delta time scale (where Delta is the BCS energy gap) that fulfils causality requirements, and demonstrate its ability to model the transmission and reflection of a fully-gapped superconductor in the THz region. By allowing Delta to be a function of current, we also show how this model function can be used to describe nonlinear microwave response in superconductors. C1 [Xi, Xiaoxiang; Carr, G. L.] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Xi, XX (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM carr@bnl.gov FU US Department of Energy at BNL [DE-AC02-98CH10886] FX This work was supported by the US Department of Energy through contract DE-AC02-98CH10886 at BNL. NR 33 TC 3 Z9 3 U1 1 U2 9 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0953-2048 EI 1361-6668 J9 SUPERCOND SCI TECH JI Supercond. Sci. Technol. PD NOV PY 2013 VL 26 IS 11 AR 114001 DI 10.1088/0953-2048/26/11/114001 PG 7 WC Physics, Applied; Physics, Condensed Matter SC Physics GA 238YU UT WOS:000325989100004 ER PT J AU Klacar, S Martin, NM Gustafson, J Blomberg, S Liu, Z Axnanda, S Chang, R Lundgren, E Gronbeck, H AF Klacar, S. Martin, N. M. Gustafson, J. Blomberg, S. Liu, Z. Axnanda, S. Chang, R. Lundgren, E. Gronbeck, H. TI Facile NOx interconversion over preoxidized Ag(111) SO SURFACE SCIENCE LA English DT Article DE Density functional theory; Photoemission spectroscopy; Ag; Silver; Nitrogen oxides ID GENERALIZED GRADIENT APPROXIMATION; LOW-TEMPERATURES; SURFACE-REACTION; NITRIC-OXIDE; ADSORPTION; REDUCTION; DIMERS; OXYGEN; COADSORPTION; CONVERSION AB X-ray photoelectron spectroscopy and density functional theory calculations are used to investigate NO adsorption at low (100 K) and room temperature (RT) over preoxidized Ag(111). At 100 K, the data indicates presence of NO and N2O2, with little or no nitrite/nitrate formation. This is consistent with the calculated surface core level shifts and the pronounced barrier for nitrite formation. At RT, the recorded spectra indicate a complex interconversion between adsorbed species with an initial formation of a p(4 x 4) nitrate overlayer. With increasing NO pressure, the experimental results are best rationalized by partial nitrate decomposition into nitrites and subsequent NO physisorption, which leads to the formation of N2O3-like species. (C) 2013 Elsevier B.V. All rights reserved. C1 [Klacar, S.; Gronbeck, H.] Chalmers, Competence Ctr Catalysis, SE-41296 Gothenburg, Sweden. [Klacar, S.; Gronbeck, H.] Chalmers, Dept Appl Phys, SE-41296 Gothenburg, Sweden. [Martin, N. M.; Gustafson, J.; Blomberg, S.; Lundgren, E.] Lund Univ, Div Synchrotron Radiat Res, SE-22100 Lund, Sweden. [Liu, Z.; Axnanda, S.; Chang, R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA. RP Klacar, S (reprint author), Chalmers, Competence Ctr Catalysis, SE-41296 Gothenburg, Sweden. EM klacar@chalmers.se RI Liu, Zhi/B-3642-2009; Gronbeck, Henrik/B-6585-2016; Lundgren, Edvin/F-5551-2010 OI Liu, Zhi/0000-0002-8973-6561; FU Foundation for Strategic Research (SSF); Swedish Research Council; Crafoord Foundation; Knut and Alice Wallenberg Foundation; Anna and Edwin Berger Foundation; SNIC; Swedish Energy Agency FX This work was financially supported by the Foundation for Strategic Research (SSF), the Swedish Research Council, the Crafoord Foundation, the Knut and Alice Wallenberg Foundation and the Anna and Edwin Berger Foundation. The MAX IV and ALS staff are gratefully acknowledged. The calculations were performed at C3SE (Goteborg) via a SNIC grant The Competence Centre for Catalysis is hosted by Chalmers University of Technology and supported by the Swedish Energy Agency and the member companies AB Volvo, Volvo Car Corporation, Scania CV AB, Haldor Topsoe A/S and ECAPS AB. NR 56 TC 4 Z9 4 U1 2 U2 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD NOV PY 2013 VL 617 BP 167 EP 174 DI 10.1016/j.susc.2013.07.004 PG 8 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 241BJ UT WOS:000326141100025 ER PT J AU Hong, MK Wohlwend, JL Behera, RK Phillpot, SR Sinnott, SB Uberuaga, BP AF Hong, Minki Wohlwend, Jennifer L. Behera, Rakesh K. Phillpot, Simon R. Sinnott, Susan B. Uberuaga, Bias P. TI Surface diffusion on SrTiO3 (100): A temperature accelerated dynamics and first principles study SO SURFACE SCIENCE LA English DT Article DE SrTiO3; Temperature accelerated dynamics; Surface diffusion; Migration energy ID THIN-FILM GROWTH; MOLECULAR-DYNAMICS; STRONTIUM-TITANATE; INFREQUENT EVENTS; LASER DEPOSITION; PAIR-POTENTIALS; SIMULATION; ENERGIES; CRYSTAL; DENSITY AB Temperature accelerated dynamics (TAD) with an empirical potential is used to predict diffusion mechanisms and energy barriers associated with surface diffusion of adatoms and surface vacancies on (100) SrTiO3 (STO). Specifically, Sr, O, and Ti adatoms and vacancies are investigated on each termination - Sr and TiO2 - of the SrTiO3 surface. We find that the empirical potential predicts different surface mobility of adatoms depending on the surface termination: they are mobile with relatively low diffusion barriers on the SrO-terminated surface, whereas they are largely immobile on the TiO2-terminated surface. One important finding is that, of the two binding sites on the SrO-terminated surface, one is typically very close in energy to the saddle point. Thus, one of the two sites is a good estimator of the migration energy of the adatom, a conclusion supported by select density functional theory (DFT) calculations. Motivated by this result, we calculate the migration energies for a number of metal elements on the SrO-terminated surface: Ti, Ba, La, and Al. The DFT results also reveal that the details of the migration mechanism depend on the charge state of the diffusing species and that the ability of the empirical potential to properly estimate the migration mechanism depends on the magnitude and variability of the charge transfer between the adatom and the surface. (C) 2013 Elsevier B.V. All rights reserved. C1 [Hong, Minki; Wohlwend, Jennifer L.; Behera, Rakesh K.; Phillpot, Simon R.; Sinnott, Susan B.] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA. [Uberuaga, Bias P.] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. RP Uberuaga, BP (reprint author), Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA. EM blas@lan1.gov RI Sinnott, Susan/P-8523-2014; OI Sinnott, Susan/0000-0002-3598-0403; Phillpot, Simon/0000-0002-7774-6535 FU National Science Foundation [DMR-1005779, DMR-0426870]; Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center; DOE (Office of Science, Office of Basic Energy Sciences) [2008LANL1026]; National Nuclear Security Administration of the (U.S.) Department of Energy [DE-AC52-06NA25396] FX This work was supported by the National Science Foundation under grants DMR-1005779 and DMR-0426870. We would like to thank Arthur F. Voter for his assistance in our use of TAD as well as the clsmanview program. BPU, who performed the TAD simulations, acknowledges the support by the Center for Materials at Irradiation and Mechanical Extremes, an Energy Frontier Research Center funded by DOE (Office of Science, Office of Basic Energy Sciences, 2008LANL1026). Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the (U.S.) Department of Energy under contract DE-AC52-06NA25396. NR 50 TC 2 Z9 3 U1 2 U2 65 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0039-6028 EI 1879-2758 J9 SURF SCI JI Surf. Sci. PD NOV PY 2013 VL 617 BP 237 EP 241 DI 10.1016/j.susc.2013.08.002 PG 5 WC Chemistry, Physical; Physics, Condensed Matter SC Chemistry; Physics GA 241BJ UT WOS:000326141100036 ER PT J AU Zhou, H Connery, KE Bartsch, RA Moyer, BA Haverlock, TJ Delmau, LH AF Zhou, Hui Connery, Kathryn E. Bartsch, Richard A. Moyer, Bruce A. Haverlock, Tamara J. Delmau, Laetitia H. TI LIPOPHILIC, MONO-IONIZABLE, CALIX[4]ARENE-BIS(BENZOCROWN-6) COMPOUNDS FOR SOLVENT EXTRACTION OF CESIUM FROM NUCLEAR WASTES: SYNTHESIS AND EVALUATION SO SOLVENT EXTRACTION AND ION EXCHANGE LA English DT Article DE Calix[4]arenes; calixcrown ethers; proton-ionizable groups; lipophilic groups; alkali metal cation extraction ID SUPPORTED LIQUID-MEMBRANES; REMOVAL; KETONES; ETHER) AB As potential radiocesium extractants from nuclear waste solutions, a series of lipophilic, proton-ionizable calix[4]arene-bis(benzocrown-6) compounds with their calixarene units locked in the 1,3-alternate conformation was prepared. In these ligands, the acidic side arm is positioned over one crown ether cavity to enhance metal ion extraction. Upon ionization of the acidic group, the ligand provides the requisite anion for electroneutral extraction complex formation. To enhance the lipophilicity of the extractants, a 2-ethylhexyl group was attached to the benzo group of each crown ether fragment. Using radiotracer techniques and ICAP spectrometry, the ligands were evaluated in terms of the efficiency and selectivity with which they extract Cs+ from aqueous solutions into chloroform. C1 [Zhou, Hui; Connery, Kathryn E.; Bartsch, Richard A.] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. [Moyer, Bruce A.; Haverlock, Tamara J.; Delmau, Laetitia H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. RP Bartsch, RA (reprint author), Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. EM richard.bartsch@ttu.edu RI Moyer, Bruce/L-2744-2016 OI Moyer, Bruce/0000-0001-7484-6277 FU Office of Biological and Environmental Research of the U.S. Department of Energy [FG02-03ER63676]; U.S. Department of Energy through the Environmental Management Science Program, Office of Science; NSF CRIF MU grant [CHE-1048553] FX This research was supported at Texas Tech University by a grant to RAB from the Office of Biological and Environmental Research of the U.S. Department of Energy (Grant Number FG02-03ER63676) and at ORNL by the U.S. Department of Energy through the Environmental Management Science Program, Office of Science. NSF CRIF MU grant CHE-1048553 was utilized to purchase the NMR spectrometer at TTU. NR 20 TC 4 Z9 5 U1 4 U2 32 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0736-6299 EI 1532-2262 J9 SOLVENT EXTR ION EXC JI Solvent Extr. Ion Exch. PD NOV 1 PY 2013 VL 31 IS 7 BP 683 EP 696 DI 10.1080/07366299.2013.806754 PG 14 WC Chemistry, Multidisciplinary SC Chemistry GA 224QO UT WOS:000324903400001 ER PT J AU Zhou, H Surowiec, MA Bartsch, RA Haverlock, TJ Moyer, BA Delmau, LH AF Zhou, Hui Surowiec, Malgorzata A. Bartsch, Richard A. Haverlock, Tamara J. Moyer, Bruce A. Delmau, Laetitia H. TI HIGHLY LIPOPHILIC, MONO-IONIZABLE CALIX[4]ARENE-BENZOCROWN-6 EXTRACTANTS FOR REMOVAL OF RADIOCESIUM FROM NUCLEAR WASTES SO SOLVENT EXTRACTION AND ION EXCHANGE LA English DT Article DE Calix[4]arenes; calixcrown ethers; proton-ionizable groups; lipophilic groups; alkali metal cation extraction ID CESIUM; KETONES AB A series of lipophilic, proton-ionizable calix[4]arene-benzocrown-6 compounds with calixarene units locked in the 1,3-alternate conformation was prepared for evaluation of their potential as radiocesium ion extractants. Upon ionization of the pendant acidic function, the ligand provides the requisite anion for the formation of an electroneutral extraction complex, thereby markedly increasing Cs+ extraction efficiency. To enhance the lipophilicity, each proton-ionizable calix[4]arene-crown-6 ligand bears a (2-ethylhexyl)benzo unit and two octyl groups. By use of radiotracer techniques for Cs+ and Na+ and ICP spectrometry for K+, the ligands were evaluated in terms of the efficiency and selectivity with which they extract Cs+ from aqueous solutions into toluene. Supplementary materials are available for this article. Go to the publisher's online edition of Solvent Extraction and Ion Exchange to view the supplementary file. C1 [Zhou, Hui; Surowiec, Malgorzata A.; Bartsch, Richard A.] Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. [Haverlock, Tamara J.; Moyer, Bruce A.; Delmau, Laetitia H.] Oak Ridge Natl Lab, Div Chem Sci, Oak Ridge, TN USA. RP Bartsch, RA (reprint author), Texas Tech Univ, Dept Chem & Biochem, Lubbock, TX 79409 USA. EM richard.bartsch@ttu.edu RI Moyer, Bruce/L-2744-2016 OI Moyer, Bruce/0000-0001-7484-6277 FU Office of Biological and Environmental Research of the U.S. Department of Energy [FG02-03ER63676]; U.S. Department of Energy through the Environmental Management Science Program, Office of Science; NSF CRIF MU grant [CHE-1048553] FX This research was supported at Texas Tech University by a grant to RAB from the Office of Biological and Environmental Research of the U.S. Department of Energy (Grant Number FG02-03ER63676) and at ORNL by the U.S. Department of Energy through the Environmental Management Science Program, Office of Science. NSF CRIF MU grant CHE-1048553 was utilized to purchase the NMR spectrometer at TTU. NR 19 TC 2 Z9 2 U1 0 U2 18 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0736-6299 EI 1532-2262 J9 SOLVENT EXTR ION EXC JI Solvent Extr. Ion Exch. PD NOV 1 PY 2013 VL 31 IS 7 BP 697 EP 714 DI 10.1080/07366299.2013.806763 PG 18 WC Chemistry, Multidisciplinary SC Chemistry GA 224QO UT WOS:000324903400002 ER PT J AU Mincher, BJ Mezyk, SP Elias, G Groenewold, GS Riddle, CL Olson, LG AF Mincher, Bruce J. Mezyk, Stephen P. Elias, Gracy Groenewold, Gary S. Riddle, Catherine L. Olson, Lonnie G. TI THE RADIATION CHEMISTRY OF CMPO: PART 1. GAMMA RADIOLYSIS SO SOLVENT EXTRACTION AND ION EXCHANGE LA English DT Article DE CMPO; degradation products; free radicals; radiolysis; solvent extraction ID DEGRADATION; SOLVENT; EXTRACTION; IRRADIATION; PRODUCTS; ACTINIDE; ARTICLE; WASTE; OXIDE AB Octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) was irradiated using Co-60 -rays, and post-irradiation samples were analyzed for the decrease in CMPO concentration, the appearance of degradation products, and the effects on americium solvent extraction. The -G-value for the radiolytic degradation of CMPO depends on the presence of nitric acid and oxygen during irradiation, with both providing protection from radiolytic degradation. The -G-value does not depend on the -ray dose rate or the CMPO concentration. Effects on solvent extraction performance were independent of the change in CMPO concentration, but rather related to the nature of the degradation products. The main products were identified by ESI-MS and were different for irradiation in the presence of nitric acid. C1 [Mincher, Bruce J.; Riddle, Catherine L.; Olson, Lonnie G.] Idaho Natl Lab, Aqueous Separat & Radiochem Dept, Idaho Falls, ID 83415 USA. [Mezyk, Stephen P.] Calif State Univ Long Beach, Dept Chem & Biochem, Long Beach, CA 90840 USA. [Elias, Gracy; Groenewold, Gary S.] Idaho Natl Lab, Chem & Radiat Measurements Dept, Idaho Falls, ID 83415 USA. RP Mincher, BJ (reprint author), Idaho Natl Lab, Aqueous Separat & Radiochem Dept, POB 1625, Idaho Falls, ID 83415 USA. EM bruce.mincher@inl.gov RI Mincher, Bruce/C-7758-2017; OI Riddle, Catherine/0000-0002-9667-7707 FU DOE-NEUP [DE-AC07-05ID14517]; Fuel Cycle R&D programmatic funding [DE-AC07-05ID14517] FX This work was supported under a DOE-NEUP grant and Fuel Cycle R&D programmatic funding, both under Idaho Operations Contract DE-AC07-05ID14517. NR 22 TC 7 Z9 7 U1 1 U2 14 PU TAYLOR & FRANCIS INC PI PHILADELPHIA PA 530 WALNUT STREET, STE 850, PHILADELPHIA, PA 19106 USA SN 0736-6299 EI 1532-2262 J9 SOLVENT EXTR ION EXC JI Solvent Extr. Ion Exch. PD NOV 1 PY 2013 VL 31 IS 7 BP 715 EP 730 DI 10.1080/07366299.2013.815491 PG 16 WC Chemistry, Multidisciplinary SC Chemistry GA 224QO UT WOS:000324903400003 ER PT J AU Kaskaoutis, DG Sinha, PR Vinoj, V Kosmopoulos, PG Tripathi, SN Misra, A Sharma, M Singh, RP AF Kaskaoutis, D. G. Sinha, P. R. Vinoj, V. Kosmopoulos, P. G. Tripathi, S. N. Misra, Amit Sharma, M. Singh, R. P. TI Aerosol properties and radiative forcing over Kanpur during severe aerosol loading conditions SO ATMOSPHERIC ENVIRONMENT LA English DT Article DE Severe aerosol; Optical properties; Radiative forcing; Kanpur AERONET ID INDO-GANGETIC BASIN; LONG-RANGE TRANSPORT; SKY RADIANCE MEASUREMENTS; GROUND-BASED MEASUREMENTS; BLACK CARBON AEROSOLS; THERMAL POWER-PLANTS; OPTICAL-PROPERTIES; DUST AEROSOLS; SEASONAL VARIABILITY; PHYSICAL-PROPERTIES AB The present work analyzes the aerosol episode (AE) days and examines the modification in aerosol properties and radiative forcing during the period 2001-2010 based on Kanpur-AERONET data. AEs are defined as the days having daily-mean aerosol optical depth (AOD) above the decadal mean + 1 STD (standard deviation); the threshold value is defined at 0.93. The analysis identifies 277 out of 2095 days (13.2%) of AEs over Kanpur, which are most frequently observed during post-monsoon (78 cases, 18.6%) and monsoon (76, 14.7%) seasons due to biomass-burning episodes and dust influence, respectively. On the other hand, the AEs during winter and pre-monsoon are lesser in both absolute and percentage values (65, 12.5% and 58, 9.1%, respectively). The modification in aerosol properties on the AE days is strongly dependent on season; during post-monsoon and winter, the AEs are associated with enhanced presence of fine-mode aerosols from anthropogenic emissions and/or biomass burning, while during pre-monsoon and monsoon seasons, they are mostly associated with dust. Aerosol radiative forcing (ARF) calculated using SBDART shows much more surface (similar to-69 to-97 Wm(-2)) and Top of Atmosphere cooling (-20 to 30 Wm(-2)) as well as atmospheric heating (similar to 43 to 71 Wm(-2)) during the AE days as compared to seasonal means. These forcing values are mainly controlled by the higher AODs and the modified aerosol characteristics (Angstrom Exponent a, single scattering albedo SSA) during the AE days in each season. Furthermore, the vertical profiles of aerosols and atmospheric radiative heating exhibit significant increase in lower and mid troposphere during the AE days. This may cause serious climate implications over Ganges Basin and surrounding regions with further consequences on cloud microphysics, monsoon rainfall and melting of Himalayan glaciers. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Kaskaoutis, D. G.] Shiv Nadar Univ, Sch Nat Sci, Dept Phys, Dadri 203207, India. [Sinha, P. R.] Tata Inst Fundamental Res, Natl Balloon Facil, Hyderabad 500062, Andhra Pradesh, India. [Vinoj, V.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Kosmopoulos, P. G.] Univ Athens, Dept Phys, Lab Meteorol, Athens, Greece. [Tripathi, S. N.; Misra, Amit] Indian Inst Technol, Dept Civil Engn, Kanpur 208016, Uttar Pradesh, India. [Sharma, M.] Sharda Univ, Res & Technol Dev Ctr, Greater Noida Ncr 201306, India. [Singh, R. P.] Chapman Univ, Schmid Coll Sci & Technol, Sch Earth & Environm Sci, Orange, CA 92866 USA. RP Singh, RP (reprint author), Chapman Univ, Schmid Coll Sci & Technol, Sch Earth & Environm Sci, Orange, CA 92866 USA. EM rsingh@chapman.edu RI Vinoj, V./C-3241-2008; Tripathi, Sachchida/J-4840-2016 OI Vinoj, V./0000-0001-8573-6073; FU Changing Water Cycle program under MoES; India and NERC UK; Climate Change Program-Department of Science and Technology Network Programme on [82] FX The Kanpur AERONET station was initiated by Drs. R.P. Singh and Brent Holben in 2001. We are thankful to Kanpur PIs (Drs. R.P. Singh, S.N. Tripahi and B.N. Holben) for their efforts in maintaining CIMEL instrument used in the current work. The authors thank E.J. Welton (PI of the Kanpur MPLNET) for his efforts in establishing and maintenance of the lidar network. The current work is supported by the Changing Water Cycle program under MoES, India and NERC UK. SNT acknowledges support from Climate Change Program-Department of Science and Technology Network Programme on "Climate Change Science 82 Modelling". We also acknowledge the support of IIT Kanpur Flight laboratory for housing Mpinet. The authors are grateful to the anonymous reviewers for their comments/suggestions that have helped us to improve the earlier version of the manuscript. NR 102 TC 29 Z9 31 U1 1 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1352-2310 EI 1873-2844 J9 ATMOS ENVIRON JI Atmos. Environ. PD NOV PY 2013 VL 79 BP 7 EP 19 DI 10.1016/j.atmosenv.2013.06.020 PG 13 WC Environmental Sciences; Meteorology & Atmospheric Sciences SC Environmental Sciences & Ecology; Meteorology & Atmospheric Sciences GA 236YF UT WOS:000325834700002 ER PT J AU Crowell, KL Slysz, GW Baker, ES LaMarche, BL Monroe, ME Ibrahim, YM Payne, SH Anderson, GA Smith, RD AF Crowell, Kevin L. Slysz, Gordon W. Baker, Erin S. LaMarche, Brian L. Monroe, Matthew E. Ibrahim, Yehia M. Payne, Samuel H. Anderson, Gordon A. Smith, Richard D. TI LC-IMS-MS Feature Finder: detecting multidimensional liquid chromatography, ion mobility and mass spectrometry features in complex datasets SO BIOINFORMATICS LA English DT Article ID OPEN-SOURCE SOFTWARE; IDENTIFICATION; PACKAGE AB Motivation: The addition of ion mobility spectrometry to liquid chromatography-mass spectrometry experiments requires new, or updated, software tools to facilitate data processing. Results: We introduce a command line software application LC-IMS-MS Feature Finder that searches for molecular ion signatures in multidimensional liquid chromatography-ion mobility spectrometry-mass spectrometry ( LC-IMS-MS) data by clustering deisotoped peaks with similar monoisotopic mass, charge state, LC elution time and ion mobility drift time values. The software application includes an algorithm for detecting and quantifying co-eluting chemical species, including species that exist in multiple conformations that may have been separated in the IMS dimension. C1 [Crowell, Kevin L.; Slysz, Gordon W.; Baker, Erin S.; Monroe, Matthew E.; Ibrahim, Yehia M.; Payne, Samuel H.; Anderson, Gordon A.; Smith, Richard D.] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [LaMarche, Brian L.] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99352 USA. RP Smith, RD (reprint author), Pacific NW Natl Lab, Div Biol Sci, 999 Battelle Blvd, Richland, WA 99352 USA. EM rds@pnnl.gov RI Smith, Richard/J-3664-2012; OI Smith, Richard/0000-0002-2381-2349; Payne, Samuel/0000-0002-8351-1994 FU National Institute of General Medical Sciences [8 P41 GM103493-10]; Environmental Research Genome Sciences Program under the Pan-omics project; National Institute of Health [R01ES022190]; U.S. Department of Energy (DOE)/BER Research Genome Sciences Program; DOE [DE-AC05-76RLO1830] FX National Institute of General Medical Sciences (8 P41 GM103493-10), the Environmental Research Genome Sciences Program under the Pan-omics project, the National Institute of Health (R01ES022190) and by the U.S. Department of Energy (DOE)/BER Research Genome Sciences Program. Significant portions of the work were performed in the Environmental Molecular Science Laboratory, a DOE/BER national scientific user facility at Pacific Northwest National Laboratory in Richland, Washington. PNNL is operated for the DOE by Battelle under Contract DE-AC05-76RLO1830. NR 13 TC 6 Z9 6 U1 1 U2 16 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 1367-4803 EI 1460-2059 J9 BIOINFORMATICS JI Bioinformatics PD NOV 1 PY 2013 VL 29 IS 21 BP 2804 EP 2805 DI 10.1093/bioinformatics/btt465 PG 2 WC Biochemical Research Methods; Biotechnology & Applied Microbiology; Computer Science, Interdisciplinary Applications; Mathematical & Computational Biology; Statistics & Probability SC Biochemistry & Molecular Biology; Biotechnology & Applied Microbiology; Computer Science; Mathematical & Computational Biology; Mathematics GA 239BW UT WOS:000325997500024 PM 24008421 ER PT J AU Isaacson, SA Larabell, CA Le Gros, MA McQueen, DM Peskin, CS AF Isaacson, Samuel A. Larabell, Carolyn A. Le Gros, Mark A. McQueen, David M. Peskin, Charles S. TI The Influence of Spatial Variation in Chromatin Density Determined by X-Ray Tomograms on the Time to Find DNA Binding Sites SO BULLETIN OF MATHEMATICAL BIOLOGY LA English DT Article DE First passage time; Gene regulation ID EXACT STOCHASTIC SIMULATION; DIFFUSION; MECHANISMS; EXPRESSION; KINETICS; SYSTEMS; SEARCH; 3D AB In this work, we examine how volume exclusion caused by regions of high chromatin density might influence the time required for proteins to find specific DNA binding sites. The spatial variation of chromatin density within mouse olfactory sensory neurons is determined from soft X-ray tomography reconstructions of five nuclei. We show that there is a division of the nuclear space into regions of low-density euchromatin and high-density heterochromatin. Volume exclusion experienced by a diffusing protein caused by this varying density of chromatin is modeled by a repulsive potential. The value of the potential at a given point in space is chosen to be proportional to the density of chromatin at that location. The constant of proportionality, called the volume exclusivity, provides a model parameter that determines the strength of volume exclusion. Numerical simulations demonstrate that the mean time for a protein to locate a binding site localized in euchromatin is minimized for a finite, nonzero volume exclusivity. For binding sites in heterochromatin, the mean time is minimized when the volume exclusivity is zero (the protein experiences no volume exclusion). An analytical theory is developed to explain these results. The theory suggests that for binding sites in euchromatin there is an optimal level of volume exclusivity that balances a reduction in the volume searched in finding the binding site, with the height of effective potential barriers the protein must cross during the search process. C1 [Isaacson, Samuel A.] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA. [Larabell, Carolyn A.; Le Gros, Mark A.] Univ Calif San Francisco, Dept Anat, San Francisco, CA 94143 USA. [Larabell, Carolyn A.; Le Gros, Mark A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [McQueen, David M.; Peskin, Charles S.] NYU, Courant Inst Math Sci, New York, NY USA. RP Isaacson, SA (reprint author), Boston Univ, Dept Math & Stat, Boston, MA 02215 USA. EM isaacson@math.bu.edu; Carolyn.Larabell@ucsf.edu; MALeGros@lbl.gov; mcqueen@cims.nyu.edu; peskin@cims.nyu.edu OI Isaacson, Samuel/0000-0002-7543-8619 FU Systems Biology Center New York (National Institutes of Health) [P50GM071558]; National Science Foundation [DMS-0920886]; Department of Energy Office of Biological and Environmental Research [DE-AC02-05CH11231]; NIH National Center for Research Resources [5P41 RR019664-08]; National Institute of General Medical Sciences from the National Institutes of Health [8P41 GM103445-08] FX S.A. Isaacson, D. M. McQueen, and C. S. Peskin were supported by the Systems Biology Center New York (National Institutes of Health Grant P50GM071558). S. A. Isaacson was also supported by National Science Foundation Grant DMS-0920886. M. A. Le Gros and C. A. Larabell were supported by the Department of Energy Office of Biological and Environmental Research Grant DE-AC02-05CH11231, the NIH National Center for Research Resources (5P41 RR019664-08), and the National Institute of General Medical Sciences (8P41 GM103445-08) from the National Institutes of Health. NR 25 TC 9 Z9 9 U1 2 U2 12 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0092-8240 EI 1522-9602 J9 B MATH BIOL JI Bull. Math. Biol. PD NOV PY 2013 VL 75 IS 11 BP 2093 EP 2117 DI 10.1007/s11538-013-9883-9 PG 25 WC Biology; Mathematical & Computational Biology SC Life Sciences & Biomedicine - Other Topics; Mathematical & Computational Biology GA 239QH UT WOS:000326040000005 PM 23955281 ER PT J AU Ye, Y Smyth, JR Jacobsen, SD Panero, WR Brown, DA Katsura, T Chang, YY Townsend, JP Dera, P Tkachev, S Unterborn, C Liu, ZX Goujon, C AF Ye, Yu Smyth, Joseph R. Jacobsen, Steven D. Panero, Wendy R. Brown, David A. Katsura, Tomoo Chang, Yun-Yuan Townsend, Joshua P. Dera, Przemyslaw Tkachev, Sergey Unterborn, Cayman Liu, Zhenxian Goujon, Celine TI Crystal structure, Raman and FTIR spectroscopy, and equations of state of OH-bearing MgSiO3 akimotoite SO CONTRIBUTIONS TO MINERALOGY AND PETROLOGY LA English DT Article DE Akimotoite; Crystal structure; Thermal expansion; Compressibility; Anisotropy; FTIR ID X-RAY-DIFFRACTION; HIGH-PRESSURE; THERMAL-EXPANSION; COMPARATIVE COMPRESSIBILITIES; HYDROUS RINGWOODITE; PHASE-TRANSITIONS; ILMENITE-TYPE; OF-STATE; WADSLEYITE; PEROVSKITE AB MgSiO3 akimotoite is stable relative to majorite-garnet under low-temperature geotherms within steeply or rapidly subducting slabs. Two compositions of Mg-akimotoite were synthesized under similar conditions: Z674 (containing about 550 ppm wt H2O) was synthesized at 22 GPa and 1,500 A degrees C and SH1101 (nominally anhydrous) was synthesized at 22 GPa and 1,250 A degrees C. Crystal structures of both samples differ significantly from previous studies to give slightly smaller Si sites and larger Mg sites. The bulk thermal expansion coefficients of Z674 are (153-839 K) of a (1) = 20(3) x 10(-9) K-2 and a (0) = 17(2) x 10(-6) K-1, with an average of alpha (0) = 27.1(6) x 10(-6) K-1. Compressibility at ambient temperature of Z674 was measured up to 34.6 GPa at Sector 13 (GSECARS) at Advanced Photon Source Argonne National Laboratory. The second-order Birch-Murnaghan equation of state (BM2 EoS) fitting yields: V (0) = 263.7(2) (3), K (T0) = 217(3) GPa (K' fixed at 4). The anisotropies of axial thermal expansivities and compressibilities are similar: alpha (a) = 8.2(3) and alpha (c) = 10.68(9) (10(-6) K-1); beta (a) = 11.4(3) and beta (c) = 15.9(3) (10(-4) GPa). Hydration increases both the bulk thermal expansivity and compressibility, but decreases the anisotropy of structural expansion and compression. Complementary Raman and Fourier transform infrared (FTIR) spectroscopy shows multiple structural hydration sites. Low-temperature and high-pressure FTIR spectroscopy (15-300 K and 0-28 GPa) confirms that the multiple sites are structurally unique, with zero-pressure intrinsic anharmonic mode parameters between -1.02 x 10(-5) and +1.7 x 10(-5) K-1, indicating both weak hydrogen bonds (O-H center dot center dot center dot O) and strong OH bonding due to long O center dot center dot center dot O distances. C1 [Ye, Yu] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. [Ye, Yu] Univ Colorado, Dept Phys, Boulder, CO 80309 USA. [Smyth, Joseph R.; Brown, David A.] Univ Colorado, Dept Geol Sci, Boulder, CO 80309 USA. [Jacobsen, Steven D.; Chang, Yun-Yuan; Townsend, Joshua P.] Northwestern Univ, Dept Earth & Planetary Sci, Evanston, IL 60208 USA. [Panero, Wendy R.; Unterborn, Cayman] Ohio State Univ, Sch Earth Sci, Columbus, OH 43210 USA. [Katsura, Tomoo] Univ Bayreuth, Bayer Geoinst, D-95440 Bayreuth, Germany. [Dera, Przemyslaw; Tkachev, Sergey] Univ Chicago, Argonne Natl Lab, Ctr Adv Radiat Sources, Argonne, IL 60439 USA. [Liu, Zhenxian] Carnegie Inst Sci, Geophys Lab, Washington, DC 20015 USA. [Goujon, Celine] CNRS, Inst Neel, F-38042 Grenoble 9, France. [Goujon, Celine] Univ Grenoble 1, F-38042 Grenoble 9, France. RP Ye, Y (reprint author), Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA. EM yuye1@asu.edu RI Jacobsen, Steven/F-3443-2013; Panero, Wendy/C-9602-2009; OI Jacobsen, Steven/0000-0002-9746-958X; Townsend, Joshua/0000-0002-1137-3924; Katsura, Tomoo/0000-0001-7857-5101 FU US National Science Foundation [EAR 11-13369, EAR-0748707, EAR-0955647]; Carnegie/DOE Alliance Center (CDAC); David and Lucile Packard Foundation; BGI Visitors Program; NSF [EAR-0622171]; Department of Energy (DOE) [DE-FG02-94ER14466]; State of Illinois; DOE Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]; COMPRES, through the NSF [EAR 06-49658]; DOE, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX This work was supported by US National Science Foundation Grants EAR 11-13369 to JRS, EAR-0748707 (CAREER) to SDJ, and EAR-0955647 (CAREER) to WRP. We also acknowledge the support from Carnegie/DOE Alliance Center (CDAC) and the David and Lucile Packard Foundation. Synthesis was carried out at Bayerisches Geoinstitut (BGI), through support of the BGI Visitors Program. Neal Blair is acknowledged for access to the FTIR microscope at Northwestern University. GeoSoilEnviroCARS was supported by the NSF (EAR-0622171), the Department of Energy (DOE) DE-FG02-94ER14466, and the State of Illinois. Use of the Advanced Photon Source was supported by the DOE Office of Science, Office of Basic Energy Sciences, Under Contract No. DE-AC02-06CH11357. The use of the U2A beamline at the National Synchrotron Light Source beamline was supported by COMPRES, through the NSF Cooperative Agreement EAR 06-49658 and by the DOE, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 47 TC 0 Z9 0 U1 2 U2 40 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0010-7999 EI 1432-0967 J9 CONTRIB MINERAL PETR JI Contrib. Mineral. Petrol. PD NOV PY 2013 VL 166 IS 5 BP 1375 EP 1388 DI 10.1007/s00410-013-0933-y PG 14 WC Geochemistry & Geophysics; Mineralogy SC Geochemistry & Geophysics; Mineralogy GA 234EU UT WOS:000325625500007 ER PT J AU Kang, S Van Nostrand, JD Gough, HL He, ZL Hazen, TC Stahl, DA Zhou, JZ AF Kang, Sanghoon Van Nostrand, Joy D. Gough, Heidi L. He, Zhili Hazen, Terry C. Stahl, David A. Zhou, Jizhong TI Functional gene array-based analysis of microbial communities in heavy metals-contaminated lake sediments SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE GeoChip; functional gene microarray; metals contamination; sulfate-reducing bacteria; metal resistance; microbial communities ID SULFATE-REDUCING BACTERIA; RESISTANT BACTERIA; AGRICULTURAL SOILS; TOXIC METALS; DIVERSITY; REDUCTION; NICKEL; COPPER; ZINC; ECOSYSTEM AB Lake DePue (IL, USA) has been contaminated for >80years by an adjacent Zn-smelting facility. Previous work indicated that sulfate reduction increased and biomass declined as pore-water metal concentrations increased, while 16S rRNA gene profiles remained relatively stable. To better understand this phenomenon, the sediment microbial community structure and functional potential were investigated using a functional gene microarray (GeoChip) targeting >10000 functional genes. Nonmetric multidimensional scaling and clustering analyses showed that the overall community structure was similar across all sites based on the relative abundance of all detected genes, but some individual gene categories did show differences. A subset of sulfate reduction genes (dsr) and the most relevant metal resistance genes were more abundant than other categories and were highly correlated with metal contamination. The most significant correlations were between pore-water metal concentrations and dsr, with Zn, Cd, and Mn as the most predictive for the presence of dsr. These results suggest that metal contamination influences sediment microbial community structure and function by increasing the abundance of relevant metal-resistant and sulfate-reducing populations. These populations therefore appear to contribute significantly to the resistance and stability of the microbial communities throughout the gradient of metal contamination in Lake DePue. C1 [Kang, Sanghoon; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong] Univ Oklahoma, Dept Microbiol & Plant Biol, Inst Environm Genom, Norman, OK 73019 USA. [Gough, Heidi L.; Stahl, David A.] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. [Hazen, Terry C.] Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN USA. [Zhou, Jizhong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. RP Zhou, JZ (reprint author), Univ Oklahoma, Dept Microbiol & Plant Biol, Inst Environm Genom, 101 David L Boren Blvd,SRTC 2022, Norman, OK 73019 USA. EM jzhou@ou.edu RI Van Nostrand, Joy/F-1740-2016; Hazen, Terry/C-1076-2012; OI Van Nostrand, Joy/0000-0001-9548-6450; Hazen, Terry/0000-0002-2536-9993; Kang, Sanghoon/0000-0002-3504-7955 FU ENIGMA [DE-AC02-05CH11231]; Subsurface Biogeochemical Research Program [DE-FG02-07ER64398]; US Department of Energy, Office of Science, Office of Biological and Environmental Research; United States National Science Foundation [9807697] FX This work has been supported, through contract DE-AC02-05CH11231 (as part of ENIGMA) and contract DE-FG02-07ER64398 (Subsurface Biogeochemical Research Program), by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, and by the United States National Science Foundation Grant MCB: #9807697. NR 67 TC 14 Z9 14 U1 10 U2 122 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0168-6496 EI 1574-6941 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD NOV PY 2013 VL 86 IS 2 BP 200 EP 214 DI 10.1111/1574-6941.12152 PG 15 WC Microbiology SC Microbiology GA 238XX UT WOS:000325986500004 PM 23710534 ER PT J AU Zhang, R Wu, QL Piceno, YM Desantis, TZ Saunders, FM Andersen, GL Liu, WT AF Zhang, Rui Wu, Qinglong Piceno, Yvette M. Desantis, Todd Z. Saunders, F. Michael Andersen, Gary L. Liu, Wen-Tso TI Diversity of bacterioplankton in contrasting Tibetan lakes revealed by high-density microarray and clone library analysis SO FEMS MICROBIOLOGY ECOLOGY LA English DT Article DE microbial diversity; Tibetan lakes; PhyloChip ID 16S RIBOSOMAL-RNA; MICROBIAL DIVERSITY; BACTERIAL DIVERSITY; NORTHWESTERN CHINA; MOUNTAIN LAKES; SAR11; PLATEAU; COMMUNITIES; WATER; PATTERNS AB Tibetan lakes represent a unique microbial environment and are a good ecosystem to investigate the microbial diversity of high mountain lakes and their relationship with environmental factors. The diversity and community structure of bacterioplankton in Tibetan lakes was determined using DNA fingerprinting analysis, high-density 16S rRNA gene microarray (PhyloChip) analysis, and extensive clone library analysis of bacterial 16S rRNA genes. A previously unseen high microbial diversity (1732 operational taxonomic units based on PhyloChip data) and numerous novel bacterial 16S rRNA gene sequences were observed. Abundant SAR11-like sequences retrieved from saline Lake Qinghai demonstrated a unique SAR11 phylogenetic sister clade related to the freshwater LD12 clade. Water chemistry (e.g. salinity) and altitude played important roles in the selection of bacterial taxa (both presence and relative abundance) in Tibetan lakes. The ubiquity and uniqueness of bacterial taxa, as well as the correlation between environmental factors and bacterial taxa, was observed to vary gradually with different phylogenetic levels. Our study suggested high microbial cosmopolitanism and high endemicity observed at higher and lower phylogenetic levels, respectively. C1 [Zhang, Rui; Wu, Qinglong; Saunders, F. Michael; Liu, Wen-Tso] Natl Univ Singapore, Div Environm Sci & Engn, Singapore 117548, Singapore. [Zhang, Rui] Xiamen Univ, State Key Lab Marine Environm Sci, Xiamen, Peoples R China. [Wu, Qinglong] Chinese Acad Sci, Nanjing Inst Geog & Limnol, State Key Lab Lake Sci & Environm, Nanjing, Jiangsu, Peoples R China. [Piceno, Yvette M.; Desantis, Todd Z.; Andersen, Gary L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. [Liu, Wen-Tso] Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. RP Liu, WT (reprint author), Univ Illinois, Dept Civil & Environm Engn, Urbana, IL 61801 USA. EM wtliu@illinois.edu RI Liu, Wen-Tso/C-8788-2011; Andersen, Gary/G-2792-2015; Piceno, Yvette/I-6738-2016 OI Liu, Wen-Tso/0000-0002-8700-9803; Andersen, Gary/0000-0002-1618-9827; Piceno, Yvette/0000-0002-7915-4699 FU 973 Program [2013CB955700]; 863 Program [2012AA092003]; Fundamental Research Funds for the Central Universities [2012121052]; NSFC [31225004] FX We thank Eoin L. Brodie and Shariff Osman for their help during PhyloChip processing and data analysis. R.Z. was supported by the 973 Program (2013CB955700), 863 Program (2012AA092003) and the Fundamental Research Funds for the Central Universities (2012121052). Field investigation was supported by NSFC project grant 31225004. NR 41 TC 6 Z9 6 U1 5 U2 39 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0168-6496 EI 1574-6941 J9 FEMS MICROBIOL ECOL JI FEMS Microbiol. Ecol. PD NOV PY 2013 VL 86 IS 2 BP 277 EP 287 DI 10.1111/1574-6941.12160 PG 11 WC Microbiology SC Microbiology GA 238XX UT WOS:000325986500010 PM 23837564 ER PT J AU Bravo, D Martin, G David, MM Cailleau, G Verrecchia, E Junier, P AF Bravo, Daniel Martin, Gaetan David, Maude M. Cailleau, Guillaume Verrecchia, Eric Junier, Pilar TI Identification of active oxalotrophic bacteria by Bromodeoxyuridine DNA labeling in a microcosm soil experiments SO FEMS MICROBIOLOGY LETTERS LA English DT Article DE oxalate-carbonate pathway; Iroko; Milicia excelsa; BrdU; DGGE ID OXALATE-CARBONATE PATHWAY; BALTIC SEA SEDIMENTS; MICROBIAL ECOLOGY; IMMUNOCAPTURE; COMMUNITIES; POPULATIONS; DIVERSITY; ECOSYSTEM; GENE; DGGE AB The oxalate-carbonate pathway (OCP) leads to a potential carbon sink in terrestrial environments. This process is linked to the activity of oxalotrophic bacteria. Although isolation and molecular characterizations are used to study oxalotrophic bacteria, these approaches do not give information on the active oxalotrophs present in soil undergoing the OCP. The aim of this study was to assess the diversity of active oxalotrophic bacteria in soil microcosms using the Bromodeoxyuridine (BrdU) DNA labeling technique. Soil was collected near an oxalogenic tree (Milicia excelsa). Different concentrations of calcium oxalate (0.5%, 1%, and 4% w/w) were added to the soil microcosms and compared with an untreated control. After 12days of incubation, a maximal pH of 7.7 was measured for microcosms with oxalate (initial pH 6.4). At this time point, a DGGE profile of the frc gene was performed from BrdU-labeled soil DNA and unlabeled soil DNA. Actinobacteria (Streptomyces- and Kribbella-like sequences), Gammaproteobacteria and Betaproteobacteria were found as the main active oxalotrophic bacterial groups. This study highlights the relevance of Actinobacteria as members of the active bacterial community and the identification of novel uncultured oxalotrophic groups (i.e. Kribbella) active in soils. C1 [Bravo, Daniel; Junier, Pilar] Univ Neuchatel, Inst Biol, Microbiol Lab, CH-2009 Neuchatel, Switzerland. [Martin, Gaetan; Cailleau, Guillaume; Verrecchia, Eric] Univ Lausanne, Inst Earth Sci ISTE, Biogeosci Lab, Lausanne, Switzerland. [David, Maude M.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. RP Junier, P (reprint author), Univ Neuchatel, Inst Biol, Microbiol Lab, Rue Emile Argand 11, CH-2009 Neuchatel, Switzerland. EM pilar.junier@unine.ch NR 38 TC 5 Z9 5 U1 3 U2 35 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0378-1097 EI 1574-6968 J9 FEMS MICROBIOL LETT JI FEMS Microbiol. Lett. PD NOV PY 2013 VL 348 IS 2 BP 103 EP 111 DI 10.1111/1574-6968.12244 PG 9 WC Microbiology SC Microbiology GA 239WO UT WOS:000326056800003 PM 24033776 ER PT J AU Fix, G Seames, W Mann, M Benson, S Miller, D AF Fix, Gregory Seames, Wayne Mann, Michael Benson, Steve Miller, Dean TI The effect of combustion temperature on coal ash fine-fragmentation mode formation mechanisms SO FUEL LA English DT Article DE Coal ash; Fine fragment ash; Formation mechanism; Combustion temperature; Pulverized coal combustion ID PARTICLE-SIZE DISTRIBUTIONS; PARTICULATE AIR-POLLUTION; PULVERIZED-COAL; FLY-ASH; UTILITY BOILER; MATTER AB Ash particles smaller than 2.5 mu m in pulverized coal combustion ash are difficult to capture in particulate control devices and may pose greater harm to human health than larger particles if emitted into the atmosphere. The fine fragment coal ash mode, centered around 2 mu m, is less well understood than larger coarse and smaller ultrafine ash. Proposed formation mechanisms include bursting, shedding, or fragmenting of larger particles; particle-to-particle impaction; and adjunct particle formation. Increased heating rate may increase bursting and shedding of large particles and an increased overall temperature may lead to increased mineral vaporization, condensation, and subsequent merging into fine fragment particles. This study aimed at exploring these effects by varying the combustion temperature while maintaining a nearly constant residence time. Pulverized Illinois #6 bituminous coal was combusted at three different peak combustion temperatures in a self-sustaining downflow combustor operated at 15 kW to generate ash, resulting in incremental temperature/residence time profiles following the same general trend. The size segregated ash samples were collected from the post-combustion zone in a Dekati low pressure inertial impactor. The mass of each fraction was measured and the ash was analyzed using scanning electron microscopy and X-ray microanalysis. The fine fragment mode ash types were classified into char, coarse, agglomerates, fragments, multi-spheres, and odd/unidentifiable classes. The abundance of these particle types were used to evaluate the significant fine fragment ash formation mechanisms and determine potential impacts of heating rate/temperature on fine-fragment particle formation. The results revealed that the mass fraction of multi-sphere, fragments, char, and agglomerates all increase with decreasing temperature. Further, there appears to be multiple formation mechanisms responsible for the generation of fine fragment sized multi-sphere and fragment type particles. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Fix, Gregory; Seames, Wayne; Mann, Michael; Benson, Steve] Univ N Dakota, Dept Chem Engn, Grand Forks, ND 58202 USA. [Miller, Dean] Argonne Natl Lab, Argonne, IL 60439 USA. RP Seames, W (reprint author), Univ N Dakota, Dept Chem Engn, 241 Centennial Dr Stop 7101, Grand Forks, ND 58202 USA. EM wayne.seames@engr.und.edu FU Department of Energy's North Dakota EPSCoR Infrastructure Improvement Program [DE-FG02-06ER46292]; U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors would like to thank the Argonne National Laboratory Microscopy Center and the University of North Dakota School of Medicine & Health Sciences Imaging Center for their assistance in training, set up, and instrument time for the SEMs utilized in this work. The authors would also like to thank Jason Hrdlicka, Sanjoy Bhattachara, and Chunmei Wang for their assistance with the combustion experiments and Dekati operation utilized for this project. Additional thanks to M. Dennis Sisk for helping with document preparation and review. Funding for this project was provided by the Department of Energy's North Dakota EPSCoR Infrastructure Improvement Program, Contract # DE-FG02-06ER46292. The Electron Microscopy Center at Argonne is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 32 TC 9 Z9 10 U1 2 U2 22 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 EI 1873-7153 J9 FUEL JI Fuel PD NOV PY 2013 VL 113 BP 140 EP 147 DI 10.1016/j.fuel.2013.05.096 PG 8 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 211UR UT WOS:000323937300017 ER PT J AU Vander Wal, RL Strzelec, A Toops, TJ Daw, CS Genzale, CL AF Vander Wal, Randy L. Strzelec, Andrea Toops, Todd J. Daw, C. Stuart Genzale, Caroline L. TI Forensics of soot: C5-related nanostructure as a diagnostic of in-cylinder chemistry SO FUEL LA English DT Article DE Soot; Biodiesel; Nanostructure; HRTEM; In-cylinder mixing ID FLAMES; GROWTH; HYDROCARBONS; FULLERENES; COMBUSTION AB We report observations of nanoscale microstructural changes in soot from an experimental light-duty diesel engine, produced with varying levels of biodiesel fuel blending. Based on these observations and current information in the literature, we propose a mechanistic hypothesis to explain the effects of biodiesel blending. Our underlying assumption is that particulate nanostructure is closely coupled to the local chemistry at the time the soot is formed. In the context of in-cylinder soot formation, this implies that changes in nanostructure may aid in diagnosing important changes in fuel-air mixing. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Vander Wal, Randy L.] Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA. [Vander Wal, Randy L.] Penn State Univ, EMS Energy Inst, University Pk, PA 16802 USA. [Strzelec, Andrea] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. [Toops, Todd J.; Daw, C. Stuart] Oak Ridge Nat Lab, Fuels Engines & Emiss Res Ctr, Knoxville, TN 37932 USA. [Genzale, Caroline L.] Georgia Inst Technol, Dept Mech Engn, Atlanta, GA 30332 USA. RP Vander Wal, RL (reprint author), Penn State Univ, John & Willie Leone Family Dept Energy & Mineral, University Pk, PA 16802 USA. EM ruv12@psu.edu FU DOE OVT; Oak Ridge National Laboratory; DOE FX This work was funded by DOE OVT under contract with Oak Ridge National Laboratory. The authors acknowledge the support of DOE Sponsors Gurpreet Singh, Ken Howden and Kevin Stork. NR 26 TC 11 Z9 11 U1 4 U2 18 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 EI 1873-7153 J9 FUEL JI Fuel PD NOV PY 2013 VL 113 BP 522 EP 526 DI 10.1016/j.fuel.2013.05.104 PG 5 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 211UR UT WOS:000323937300060 ER PT J AU Liu, HY Wang, BJ Fan, MH Henson, N Zhang, YL Towler, BF Harris, HG AF Liu, Hongyan Wang, Baojun Fan, Maohong Henson, Neil Zhang, Yulong Towler, Brian Francis Harris, H. Gordon TI Study on carbon deposition associated with catalytic CH4 reforming by using density functional theory SO FUEL LA English DT Article DE Catalytic CH4 reforming; Carbon deposition; Density functional theory ID BIMETALLIC PALLADIUM CATALYSTS; SUPPORTED CO CATALYSTS; SYNTHESIS GAS; NICKEL-CATALYSTS; METAL-SURFACES; NI CATALYSTS; METHANE; DISSOCIATION; DIOXIDE; REACTIVITY AB Density functional theory (DFT) has been applied to investigate the adsorptions of CH4, CH3, CH2, CH, C, H and dissociations CH4, CH3, CH2, CH on the (111) catalyst surfaces of elementary metals Co bimetals NiFe. More important, the adsorptions and dissociations of those adspecies on elementary metals (Fe, Co, Ni and Cu) and bimetals (NiFe, NiCo and NiCu) have been analyzed. The adsorption energies, activation energies, reaction energies and d-band centers of the catalysts were calculated and their linear correlations were established. The adsorption energy decreases with the d-band center of the catalyst surface shift away from the Fermi level, and thus the increase in activation energy and reaction energy. Therefore, a good catalyst should have a moderate d-band center in CH4/CO2 reforming. This research finds that segregated NiCu is the best one among the eight CH4/CO2 reforming catalysts, Fe, Co, Ni, Cu, NiFe, NiCo, NiCu, and NiCu(S) [segregated NiCu]. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Liu, Hongyan; Fan, Maohong; Towler, Brian Francis; Harris, H. Gordon] Univ Wyoming, Dept Chem & Petr Engn, Laramie, WY 82071 USA. [Liu, Hongyan] Shanxi Datong Univ, Coll Chem & Chem Engn, Datong 037009, Shanxi, Peoples R China. [Liu, Hongyan] Taiyuan Univ Technol, Minist Educ & Shanxi Prov, Key Lab Coal Sci & Technol, Taiyuan 030024, Shanxi, Peoples R China. [Henson, Neil] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zhang, Yulong] Western Res Inst, Laramie, WY 82070 USA. RP Wang, BJ (reprint author), Taiyuan Univ Technol, Minist Educ & Shanxi Prov, Key Lab Coal Sci & Technol, Taiyuan 030024, Shanxi, Peoples R China. EM wangbaojun@tyut.edu.cn; mfan@uwyo.edu FU National Natural Science Foundation of China [21276171]; School of Energy Resources at University of Wyoming; US Department of Energy FX The work was supported by the National Natural Science Foundation of China (No. 21276171) and the School of Energy Resources at University of Wyoming as well as the US Department of Energy. NR 49 TC 27 Z9 27 U1 13 U2 118 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0016-2361 EI 1873-7153 J9 FUEL JI Fuel PD NOV PY 2013 VL 113 BP 712 EP 718 DI 10.1016/j.fuel.2013.06.022 PG 7 WC Energy & Fuels; Engineering, Chemical SC Energy & Fuels; Engineering GA 211UR UT WOS:000323937300082 ER PT J AU Nof, SY Cheng, GJ Weiner, AM Chen, XW Bechar, A Jones, MG Reed, CB Donmez, A Weldon, TD Bermel, P Bukkapatnam, STS Cheng, CQ Kumara, SRT Bement, A Koubek, R Bidanda, B Shin, YC Capponi, A Lee, S Lehto, MR Liu, AL Nohadani, O Dantus, M Lorraine, PW Nolte, DD Proctor, RW Sardesai, HP Shi, LY Wachs, JP Zhang, XC AF Nof, Shimon Y. Cheng, Gary J. Weiner, Andrew M. Chen, Xin W. Bechar, Avital Jones, Marshall G. Reed, Claude B. Donmez, Alkan Weldon, Thomas D. Bermel, Peter Bukkapatnam, Satish T. S. Cheng, Changqing Kumara, Soundar R. T. Bement, Arden Koubek, Richard Bidanda, Bopaya Shin, Yung C. Capponi, Agostino Lee, Seokcheon Lehto, Mark R. Liu, Andrew L. Nohadani, Omid Dantus, Marcos Lorraine, Peter W. Nolte, David D. Proctor, Robert W. Sardesai, Harshad P. Shi, Leyuan Wachs, Juan P. Zhang, Xi-Cheng TI Laser and Photonic Systems Integration: Emerging Innovations and Framework for Research and Education SO HUMAN FACTORS AND ERGONOMICS IN MANUFACTURING & SERVICE INDUSTRIES LA English DT Article DE Advanced manufacturing; Laser processing; Healthcare; Optical communication; Precision collaboration ID CHIRPED MIRRORS; WARNING SYSTEM; E-WORK; COMPENSATION; DESIGN; CHALLENGES; SERVICE; PULSE AB The purpose of this article is to review the key emerging innovations in laser and photonics systems as well as their design and integration, focusing on challenges and opportunities for solutions of societal challenges. Developments, their significance, and frontier challenges are explained in advanced manufacturing, biomedicine and healthcare, and communication. Systems, networks, and integration issues and challenges are then discussed, and an integration framework for networking laser- and photonic-based services and products is proposed. The article concludes with implications and an agenda for education, research and development, and policy needs, with a focus on human, society, science, and technology integration. (c) 2013 Wiley Periodicals, Inc. C1 [Nof, Shimon Y.; Cheng, Gary J.; Weiner, Andrew M.; Bermel, Peter; Bement, Arden; Shin, Yung C.; Capponi, Agostino; Lee, Seokcheon; Lehto, Mark R.; Liu, Andrew L.; Nohadani, Omid; Nolte, David D.; Proctor, Robert W.; Wachs, Juan P.] Purdue Univ, W Lafayette, IN 47907 USA. [Chen, Xin W.] So Illinois Univ, Edwardsville, IL 62026 USA. [Bechar, Avital] Ben Gurion Univ Negev, IL-84105 Beer Sheva, Israel. [Reed, Claude B.] Argonne Natl Lab, Argonne, IL 60439 USA. [Donmez, Alkan] NIST, Gaithersburg, MD 20899 USA. [Weldon, Thomas D.] Innovat Factory, Duluth, GA USA. [Bukkapatnam, Satish T. S.; Cheng, Changqing] Oklahoma State Univ, Stillwater, OK 74078 USA. [Kumara, Soundar R. T.] Penn State Univ, University Pk, PA 16802 USA. [Koubek, Richard] Louisiana State Univ, Baton Rouge, LA 70803 USA. [Bidanda, Bopaya] Univ Pittsburgh, Pittsburgh, PA USA. [Dantus, Marcos] Michigan State Univ, E Lansing, MI 48824 USA. [Shi, Leyuan] Univ Wisconsin, Madison, WI USA. [Zhang, Xi-Cheng] Univ Rochester, Rochester, NY USA. RP Nof, SY (reprint author), Purdue Univ, W Lafayette, IN 47907 USA. EM nof@purdue.edu RI Nohadani, Omid/N-8177-2013; Zhang, Xi-Cheng/G-1306-2016; OI Zhang, Xi-Cheng/0000-0003-3721-1357; Bidanda, Bopaya/0000-0002-6239-6800; Shin, Yung/0000-0003-3157-9345 NR 88 TC 4 Z9 4 U1 1 U2 26 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1090-8471 EI 1520-6564 J9 HUM FACTOR ERGON MAN JI Hum. Factors Ergonom. Manuf. Serv. Ind. PD NOV PY 2013 VL 23 IS 6 BP 483 EP 516 DI 10.1002/hfm.20555 PG 34 WC Engineering, Manufacturing; Ergonomics SC Engineering GA 239BF UT WOS:000325995800001 ER PT J AU Chen, MJ Buscheck, TA Wagoner, JL Sun, YW White, JA Chiaramonte, L Aines, RD AF Chen, Mingjie Buscheck, Thomas A. Wagoner, Jeffrey L. Sun, Yunwei White, Joshua A. Chiaramonte, Laura Aines, Roger D. TI Analysis of fault leakage from Leroy underground natural gas storage facility, Wyoming, USA SO HYDROGEOLOGY JOURNAL LA English DT Article DE Natural gas; Underground storage; Gas leakage; Fault; USA ID MODEL; TRANSPORT; RESERVOIR; WELL AB Leroy natural-gas storage site is an anticlinal, fault-bounded, aquifer-storage system located in Wyoming, USA. Based on its abundant data, uncontrolled leakage history and subsequent control by the facility operators, a modeling framework was developed for studying reservoir behavior, examining pressure and gas-inventory histories, as well as gas and brine leakage, and evaluating the sensitivity of that behavior to uncertainty about reservoir properties. A three-dimensional model capturing the bounding fault, layered geologic stratigraphy, and surface topography was calibrated by history data of reservoir pressure and gas inventory. The calibrated model predicted gas arrival at the ground surface that was consistent with the timing of observed gas bubbling into a creek. A global sensitivity analysis was performed to examine the parameters influencing fault leakage, and a geomechanical stability analysis was conducted to investigate the likelihood of fault reactivation. In general, it is shown that a discrete leakage pathway is required to explain the observed gas leakage and its subsequent operational control by reducing reservoir pressures. Specifically, the results indicate that fault leakage is a plausible explanation for the observed gas leakage. The results are relevant to other natural-gas storage sites, as well as other subsurface storage applications of buoyant fluids, such as CO2. C1 [Chen, Mingjie; Buscheck, Thomas A.; Wagoner, Jeffrey L.; Sun, Yunwei; White, Joshua A.; Chiaramonte, Laura; Aines, Roger D.] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA. RP Chen, MJ (reprint author), Lawrence Livermore Natl Lab, POB 808,L-223, Livermore, CA 94551 USA. EM cmj1014@yahoo.com RI Sun, Yunwei/C-9751-2010 FU USDOE Fossil Energy, National Energy Technology Laboratory; US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX This work was sponsored by USDOE Fossil Energy, National Energy Technology Laboratory. The authors want to acknowledge and thank Questar Pipeline for furnishing technical information on the Leroy natural gas-storage facility. The authors would like to thank associate editor Fabien Magri, Dr. Stephen Laubach and two anonymous reviewers for their valuable comments. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. NR 36 TC 2 Z9 2 U1 1 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1431-2174 EI 1435-0157 J9 HYDROGEOL J JI Hydrogeol. J. PD NOV PY 2013 VL 21 IS 7 BP 1429 EP 1445 DI 10.1007/s10040-013-1020-1 PG 17 WC Geosciences, Multidisciplinary; Water Resources SC Geology; Water Resources GA 236NI UT WOS:000325803900005 ER PT J AU Middleton, RS AF Middleton, Richard S. TI A new optimization approach to energy network modeling: anthropogenic CO2 capture coupled with enhanced oil recovery SO INTERNATIONAL JOURNAL OF ENERGY RESEARCH LA English DT Article DE CO2 capture and storage (CCS); enhanced oil recovery (EOR); pipeline optimization; energy network modeling; climate change policy; SimCCS ID CARBON CAPTURE; STORAGE; CCS; INFRASTRUCTURE; DEPLOYMENT; TRANSPORT; CHINA; COAL AB To meet next generation energy needs such as wind- and solar-generated electricity, enhanced oil recovery (EOR), CO2 capture and storage (CCS), and biofuels, the US will have to construct tens to hundreds of thousands of kilometers of new transmission lines and pipelines. Energy network models are central to optimizing these energy resources, including how best to produce, transport, and deliver energy-related products such as oil, natural gas, electricity, and CO2. Consequently, understanding how to model new transmission lines and pipelines is central to this process. However, current energy models use simplifying assumptions for deploying pipelines and transmission lines, leading to the design of more costly and inefficient energy networks. In this paper, we introduce a two-stage optimization approach for modeling CCS infrastructure. We show how CO2 pipelines with discrete capacities can be linearized' without loss of information and accuracy, therefore allowing necessarily complex energy models to be solved. We demonstrate the new approach by designing a CCS network that collects large volumes of anthropogenic CO2 (up to 45 million tonnes of CO2 per year) from ethylene production facilities and delivers the CO2 to depleted oil fields to stimulate recovery through EOR. Utilization of anthropogenic CO2 has great potential to jumpstart commercial-scale CCS while simultaneously reducing the carbon footprint of domestic oil production. Model outputs illustrate the engineering challenge and spatial extent of CCS infrastructure, as well as the costs (or profits) of deploying CCS technology. We show that the new linearized approach is able to offer insights that other network approaches cannot reveal and how the approach can change how we develop future energy systems including transporting massive volumes of shale gas and biofuels as well as electricity transmission for wind and solar energy. Published 2012. This article is a U.S. Government work and is in the public domain in the USA. C1 Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Middleton, RS (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM rsm@lanl.gov OI Middleton, Richard/0000-0002-8039-6601 FU US Department of Energy FX This work was funded by the US Department of Energy's Carbon Sequestration Research Program administered by the National Energy Technology Laboratory (NETL). NR 40 TC 16 Z9 16 U1 2 U2 57 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0363-907X EI 1099-114X J9 INT J ENERG RES JI Int. J. Energy Res. PD NOV PY 2013 VL 37 IS 14 BP 1794 EP 1810 DI 10.1002/er.2993 PG 17 WC Energy & Fuels; Nuclear Science & Technology SC Energy & Fuels; Nuclear Science & Technology GA 237UZ UT WOS:000325897700007 ER PT J AU Gaballa, O Cook, BA Russell, AM AF Gaballa, Osama Cook, B. A. Russell, A. M. TI Reduced-temperature processing and consolidation of ultra-refractory Ta4HfC5 SO INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS LA English DT Article DE Tantalum hafnium carbide; Ultra-refractory materials; Powder processing; Tungsten carbide; Hot press ID HFC-BASED COMPOSITES; TANTALUM CARBIDE; MECHANICAL-PROPERTIES; ELECTRONIC-STRUCTURE; OXIDATION BEHAVIOR; BORON-CARBIDE; HAFNIUM; TAC; CERAMICS; DENSIFICATION AB TaC, HfC, and WC powders were subjected to high-energy milling and hot pressing to produce Ta4HfC5, a composite of Ta(4)HfC5 + 30 vol.% WC, and a composite of Ta4HfC5 + 50 vol.% WC. Sub-micron powders were examined after four different milling intervals prior to hot pressing. XRD was used to verify proper phase formation. SEM, relative density, and hardness measurements were used to examine the resulting phases. Hot pressed compacts of Ta4HfC5 showed densification as high as 98.6% along with Vickers hardness values of 21.4 GPa. Similarly, Ta4HfC5 + 30 vol.% WC exhibited 99% densification with a Vickers hardness of 22.5 GPa. These levels of densification were achieved at 1500 degrees C, which is lower than any previously reported sintering temperature for Ta4HfC5. Microhardness values measured in this study were higher than those previously reported for Ta4HfC5. The WC additions to Ta4HfC5 were found to improve densification and increase microhardness. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Gaballa, Osama; Russell, A. M.] Iowa State Univ, Ames Lab, Div Engn & Mat Sci, Ames, IA 50011 USA. [Gaballa, Osama] Cent Met Res & Dev Inst, Cairo, Egypt. [Cook, B. A.] RTI Int, Ctr Solid State Energet, Res Triangle Pk, NC 27709 USA. [Gaballa, Osama; Russell, A. M.] Iowa State Univ, Dept Mat Sci & Engn, Ames, IA 50011 USA. RP Gaballa, O (reprint author), Iowa State Univ, Ames Lab, Div Engn & Mat Sci, Ames, IA 50011 USA. RI gaballa, osama/B-9408-2014 FU U.S. Department of Energy, Division of Materials Science Engineering [AC02-07CH11358]; Egyptian Ministry of Higher Education and Scientific Research FX Work at the Ames Laboratory was supported by the U.S. Department of Energy, Division of Materials Science & Engineering under contract DE-AC02-07CH11358. ICP-MS chemical analysis by Frank Weber of RTI International's Discovery and Analytical Science Division is gratefully acknowledged. One of the authors (OG) wishes to acknowledge support from the Egyptian Ministry of Higher Education and Scientific Research. NR 55 TC 5 Z9 5 U1 4 U2 31 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0263-4368 J9 INT J REFRACT MET H JI Int. J. Refract. Met. Hard Mat. PD NOV PY 2013 VL 41 BP 293 EP 299 DI 10.1016/j.ijrmhm.2013.04.018 PG 7 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 237AN UT WOS:000325840700045 ER PT J AU Blazewicz, SJ Barnard, RL Daly, RA Firestone, MK AF Blazewicz, Steven J. Barnard, Romain L. Daly, Rebecca A. Firestone, Mary K. TI Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses SO ISME JOURNAL LA English DT Article DE community rRNA; microbial activity; microbial growth; ribosomes; environmental samples; ecosystem processes ID IN-SITU HYBRIDIZATION; ESCHERICHIA-COLI; GROWTH-RATE; RIBONUCLEIC ACID; NUCLEIC-ACID; SALMONELLA-TYPHIMURIUM; BACTERIAL COMMUNITIES; GEL-ELECTROPHORESIS; METABOLIC-ACTIVITY; MARINE VIBRIO AB Microbes exist in a range of metabolic states (for example, dormant, active and growing) and analysis of ribosomal RNA (rRNA) is frequently employed to identify the 'active' fraction of microbes in environmental samples. While rRNA analyses are no longer commonly used to quantify a population's growth rate in mixed communities, due to rRNA concentration not scaling linearly with growth rate uniformly across taxa, rRNA analyses are still frequently used toward the more conservative goal of identifying populations that are currently active in a mixed community. Yet, evidence indicates that the general use of rRNA as a reliable indicator of metabolic state in microbial assemblages has serious limitations. This report highlights the complex and often contradictory relationships between rRNA, growth and activity. Potential mechanisms for confounding rRNA patterns are discussed, including differences in life histories, life strategies and non-growth activities. Ways in which rRNA data can be used for useful characterization of microbial assemblages are presented, along with questions to be addressed in future studies. C1 [Blazewicz, Steven J.; Barnard, Romain L.; Firestone, Mary K.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. [Daly, Rebecca A.] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA. [Daly, Rebecca A.; Firestone, Mary K.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Dept Ecol, Berkeley, CA 94720 USA. RP Blazewicz, SJ (reprint author), US Geol Survey, 345 Middlefield Rd,MS 962, Menlo Pk, CA 94025 USA. EM sjblazewicz@usgs.gov RI Barnard, Romain/G-8190-2011 FU National Science Foundation Graduate Research Fellowship; European Community [PIOF-GA-2008-219357]; DOE Genomic Science Program grant [FOA DE-PS02-09ER09-25, 0016377] FX We thank Jim Prosser, Josh Schimel, Eoin Brodie and Laurent Philippot for constructive comments. SJB was supported by a National Science Foundation Graduate Research Fellowship. RLB was funded by the European Community's Seventh Framework Programme under grant agreement PIOF-GA-2008-219357. DOE Genomic Science Program grant (FOA DE-PS02-09ER09-25 award #0016377) to MKF. NR 76 TC 135 Z9 136 U1 17 U2 139 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD NOV PY 2013 VL 7 IS 11 BP 2061 EP 2068 DI 10.1038/ismej.2013.102 PG 8 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 240JD UT WOS:000326090800001 PM 23823491 ER PT J AU Stegen, JC Lin, XJ Fredrickson, JK Chen, XY Kennedy, DW Murray, CJ Rockhold, ML Konopka, A AF Stegen, James C. Lin, Xueju Fredrickson, Jim K. Chen, Xingyuan Kennedy, David W. Murray, Christopher J. Rockhold, Mark L. Konopka, Allan TI Quantifying community assembly processes and identifying features that impose them SO ISME JOURNAL LA English DT Article DE metacommunity assembly; Hanford Site; neutral theory; niche theory; null models; phylogenetic beta diversity ID BETA-DIVERSITY; ECOLOGICAL COMMUNITIES; PHYLOGENETIC STRUCTURE; MICROBIAL COMMUNITY; NICHE CONSERVATISM; DYNAMICS; NEUTRALITY; ENVIRONMENT; PATTERNS; DRIVERS AB Spatial turnover in the composition of biological communities is governed by (ecological) Drift, Selection and Dispersal. Commonly applied statistical tools cannot quantitatively estimate these processes, nor identify abiotic features that impose these processes. For interrogation of subsurface microbial communities distributed across two geologically distinct formations of the unconfined aquifer underlying the Hanford Site in southeastern Washington State, we developed an analytical framework that advances ecological understanding in two primary ways. First, we quantitatively estimate influences of Drift, Selection and Dispersal. Second, ecological patterns are used to characterize measured and unmeasured abiotic variables that impose Selection or that result in low levels of Dispersal. We find that (i) Drift alone consistently governs similar to 25% of spatial turnover in community composition; (ii) in deeper, finer-grained sediments, Selection is strong (governing similar to 60% of turnover), being imposed by an unmeasured but spatially structured environmental variable; (iii) in shallower, coarser-grained sediments, Selection is weaker (governing similar to 30% of turnover), being imposed by vertically and horizontally structured hydrological factors; (iv) low levels of Dispersal can govern nearly 30% of turnover and be caused primarily by spatial isolation resulting from limited exchange between finer and coarser-grain sediments; and (v) highly permeable sediments are associated with high levels of Dispersal that homogenize community composition and govern over 20% of turnover. We further show that our framework provides inferences that cannot be achieved using preexisting approaches, and suggest that their broad application will facilitate a unified understanding of microbial communities. C1 [Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.; Kennedy, David W.; Konopka, Allan] Pacific NW Natl Lab, Div Biol Sci, Richland, WA 99352 USA. [Lin, Xueju] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA. [Chen, Xingyuan; Rockhold, Mark L.] Pacific NW Natl Lab, Hydrol Grp, Richland, WA 99352 USA. [Murray, Christopher J.] Pacific NW Natl Lab, Dept Geosci, Richland, WA 99352 USA. RP Stegen, JC (reprint author), Pacific NW Natl Lab, Div Biol Sci, 902 Battelle Blvd,POB 999,MSIN J4-18, Richland, WA 99352 USA. EM James.Stegen@pnnl.gov RI Stegen, James/Q-3078-2016; OI Stegen, James/0000-0001-9135-7424; Kennedy, David/0000-0003-0763-501X FU Linus Pauling Distinguished Postdoctoral Fellowship at Pacific Northwest National Laboratory; US Department of Energy (DOE), Office of Biological and Environmental Research (BER), Subsurface Biogeochemistry Research Program's Scientific Focus Area (SFA); Integrated Field-Scale Research Challenge (IFRC) at the Pacific Northwest National Laboratory (PNNL); DOE by Battelle [DE-AC06-76RLO 1830] FX JCS was supported by a Linus Pauling Distinguished Postdoctoral Fellowship at Pacific Northwest National Laboratory. We thank AH Hurlbert, NJB Kraft and M Vellend for their helpful discussions related to this work. This research was supported by the US Department of Energy (DOE), Office of Biological and Environmental Research (BER), as part of Subsurface Biogeochemistry Research Program's Scientific Focus Area (SFA) and Integrated Field-Scale Research Challenge (IFRC) at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle under contract DE-AC06-76RLO 1830. NR 48 TC 37 Z9 38 U1 16 U2 121 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD NOV PY 2013 VL 7 IS 11 BP 2069 EP 2079 DI 10.1038/ismej.2013.93 PG 11 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 240JD UT WOS:000326090800002 PM 23739053 ER PT J AU Rajeev, L da Rocha, UN Klitgord, N Luning, EG Fortney, J Axen, SD Shih, PM Bouskill, NJ Bowen, BP Kerfeld, CA Garcia-Pichel, F Brodie, EL Northen, TR Mukhopadhyay, A AF Rajeev, Lara da Rocha, Ulisses Nunes Klitgord, Niels Luning, Eric G. Fortney, Julian Axen, Seth D. Shih, Patrick M. Bouskill, Nicholas J. Bowen, Benjamin P. Kerfeld, Cheryl A. Garcia-Pichel, Ferran Brodie, Eoin L. Northen, Trent R. Mukhopadhyay, Aindrila TI Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust SO ISME JOURNAL LA English DT Article DE biological soil crust; desiccation survival; dormancy; Microcoleus vaginatus; pulsed-activity event; resuscitation ID OXIDATIVE STRESS; MICROCOLEUS-VAGINATUS; CARBONIC-ANHYDRASE; STRAIN PCC-6803; NOSTOC-COMMUNE; MOJAVE DESERT; NEGEV DESERT; DESICCATION; PROTEIN; RESISTANCE AB Biological soil crusts (BSCs) cover extensive portions of the earth's deserts. In order to survive desiccation cycles and utilize short periods of activity during infrequent precipitation, crust microorganisms must rely on the unique capabilities of vegetative cells to enter a dormant state and be poised for rapid resuscitation upon wetting. To elucidate the key events involved in the exit from dormancy, we performed a wetting experiment of a BSC and followed the response of the dominant cyanobacterium, Microcoleus vaginatus, in situ using a whole-genome transcriptional time course that included two diel cycles. Immediate, but transient, induction of DNA repair and regulatory genes signaled the hydration event. Recovery of photosynthesis occurred within 1 h, accompanied by upregulation of anabolic pathways. Onset of desiccation was characterized by the induction of genes for oxidative and photo-oxidative stress responses, osmotic stress response and the synthesis of C and N storage polymers. Early expression of genes for the production of exopolysaccharides, additional storage molecules and genes for membrane unsaturation occurred before drying and hints at preparedness for desiccation. We also observed signatures of preparation for future precipitation, notably the expression of genes for anaplerotic reactions in drying crusts, and the stable maintenance of mRNA through dormancy. These data shed light on possible synchronization between this cyanobacterium and its environment, and provides key mechanistic insights into its metabolism in situ that may be used to predict its response to climate, and or, land-use driven perturbations. C1 [Rajeev, Lara; Luning, Eric G.; Garcia-Pichel, Ferran; Mukhopadhyay, Aindrila] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [da Rocha, Ulisses Nunes; Fortney, Julian; Bouskill, Nicholas J.; Brodie, Eoin L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Klitgord, Niels; Bowen, Benjamin P.; Northen, Trent R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Axen, Seth D.; Shih, Patrick M.; Kerfeld, Cheryl A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Genom Div, Berkeley, CA 94720 USA. [Garcia-Pichel, Ferran] Arizona State Univ, Sch Life Sci, Phoenix, AZ USA. RP Northen, TR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. EM TRNorthen@lbl.gov; AMukhopadhyay@lbl.gov RI Nunes da Rocha, Ulisses/M-7467-2013; Brodie, Eoin/A-7853-2008; Bouskill, Nick/G-2390-2015; OI Nunes da Rocha, Ulisses/0000-0001-6972-6692; Brodie, Eoin/0000-0002-8453-8435; Rajeev, Lara/0000-0002-0106-9195; Northen, Trent/0000-0001-8404-3259 FU Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory; US Department of Energy [DE-AC02-05CH11231] FX We thank Joern Larsen and Hsiao-Chien Lim for analytical assistance. This work was funded through the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory supported by the US Department of Energy under contract number DE-AC02-05CH11231. NR 56 TC 41 Z9 43 U1 8 U2 83 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1751-7362 EI 1751-7370 J9 ISME J JI ISME J. PD NOV PY 2013 VL 7 IS 11 BP 2178 EP 2191 DI 10.1038/ismej.2013.83 PG 14 WC Ecology; Microbiology SC Environmental Sciences & Ecology; Microbiology GA 240JD UT WOS:000326090800012 PM 23739051 ER PT J AU Moon, JW Ivanov, IN Duty, CE Love, LJ Rondinone, AJ Wang, W Li, YL Madden, AS Mosher, JJ Hu, MZ Suresh, AK Rawn, CJ Jung, H Lauf, RJ Phelps, TJ AF Moon, Ji-Won Ivanov, Ilia N. Duty, Chad E. Love, Lonnie J. Rondinone, Adam J. Wang, Wei Li, Yi-Liang Madden, Andrew S. Mosher, Jennifer J. Hu, Michael Z. Suresh, Anil K. Rawn, Claudia J. Jung, Hyunsung Lauf, Robert J. Phelps, Tommy J. TI Scalable economic extracellular synthesis of CdS nanostructured particles by a non-pathogenic thermophile SO JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY LA English DT Article DE CdS nanostructured particles; Nano-biotechnology; Thermoanaerobacter; Fermentation; Photoluminescence; Scalable synthesis ID ENGINEERED ESCHERICHIA-COLI; HIGH-QUALITY CDS; QUANTUM DOTS; CADMIUM-SULFIDE; SEMICONDUCTOR NANOCRYSTALS; DEEP SUBSURFACE; NANOPARTICLES; BIOSYNTHESIS; ENVIRONMENTS; TEMPERATURE AB We report microbially facilitated synthesis of cadmium sulfide (CdS) nanostructured particles (NP) using anaerobic, metal-reducing Thermoanaerobacter sp. The extracellular CdS crystallites were < 10 nm in size with yields of 3 g/L of growth medium/month with demonstrated reproducibility and scalability up to 24 L. During synthesis, Thermoanaerobacter cultures reduced thiosulfate and sulfite salts to H2S, which reacted with Cd2+ cations to produce thermodynamically favored NP in a single step at 65 A degrees C with catalytic nucleation on the cell surfaces. Photoluminescence (PL) analysis of dry CdS NP revealed an exciton-dominated PL peak at 440 nm, having a narrow full width at half maximum of 10 nm. A PL spectrum of CdS NP produced by dissimilatory sulfur reducing bacteria was dominated by features associated with radiative exciton relaxation at the surface. High reproducibility of CdS NP PL features important for scale-up conditions was confirmed from test tubes to 24 L batches at a small fraction of the manufacturing cost associated with conventional inorganic NP production processes. C1 [Moon, Ji-Won; Suresh, Anil K.; Jung, Hyunsung; Lauf, Robert J.; Phelps, Tommy J.] ORNL, Biosci Div, Oak Ridge, TN 37831 USA. [Ivanov, Ilia N.; Rondinone, Adam J.] ORNL, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Duty, Chad E.; Rawn, Claudia J.] ORNL, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. [Love, Lonnie J.] ORNL, Measurement Sci & Syst Engn Div, Oak Ridge, TN 37831 USA. [Wang, Wei] ORNL, Div Environm Sci, Oak Ridge, TN 37831 USA. [Li, Yi-Liang] Univ Hong Kong, Dept Earth Sci, Hong Kong, Hong Kong, Peoples R China. [Madden, Andrew S.] Univ Oklahoma, Sch Geol & Geophys, Norman, OK 73019 USA. [Mosher, Jennifer J.] Stroud Water Res Ctr, Avondale, PA 19311 USA. [Hu, Michael Z.] ORNL, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA. RP Moon, JW (reprint author), ORNL, Biosci Div, Oak Ridge, TN 37831 USA. EM moonj@ornl.gov RI Moon, Ji-Won/A-9186-2011; Wang, Wei/B-5924-2012; ivanov, ilia/D-3402-2015; Rondinone, Adam/F-6489-2013; Love, Lonnie/P-3010-2015; OI Moon, Ji-Won/0000-0001-7776-6889; ivanov, ilia/0000-0002-6726-2502; Rondinone, Adam/0000-0003-0020-4612; Mosher, Jennifer/0000-0001-6976-2036; Love, Lonnie/0000-0002-5934-7135; Hu, Michael/0000-0001-8461-9684 FU Department of Energy's (DOE) Advanced Manufacturing Office (AMO); Nano-manufacturing for Energy Efficiency [NT08845]; Laboratory Directed Research and Development Program of ORNL [L05512]; ORNL Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE; U.S. DOE [DE-AC05-00OR22725] FX This research was supported by the Department of Energy's (DOE) Advanced Manufacturing Office (AMO), Nano-manufacturing for Energy Efficiency (NT08845) and by the Laboratory Directed Research and Development Program of ORNL (L05512). Part of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at the ORNL Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. The ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725. The authors also appreciate James G. Elkins for constructive comments, Tae Hwan Kim for peak analysis, and Sue Carroll for cell counting. NR 39 TC 7 Z9 7 U1 1 U2 55 PU SPRINGER HEIDELBERG PI HEIDELBERG PA TIERGARTENSTRASSE 17, D-69121 HEIDELBERG, GERMANY SN 1367-5435 EI 1476-5535 J9 J IND MICROBIOL BIOT JI J. Ind. Microbiol. Biotechnol. PD NOV PY 2013 VL 40 IS 11 BP 1263 EP 1271 DI 10.1007/s10295-013-1321-3 PG 9 WC Biotechnology & Applied Microbiology SC Biotechnology & Applied Microbiology GA 237DG UT WOS:000325847800007 PM 24005990 ER PT J AU Arrington, J AF Arrington, John TI Coulomb corrections in the extraction of the proton radius SO JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS LA English DT Article ID FUNDAMENTAL PHYSICAL CONSTANTS; CODATA RECOMMENDED VALUES; ELECTROSTATIC-FIELD; OLYMPUS EXPERIMENT; SCATTERING; 2-PHOTON-EXCHANGE; DISTORTION; APPROXIMATION; ELECTRONS AB Multi-photon exchange contributions are important in extracting the proton charge radius from elastic electron-proton scattering. So far, only diagrams associated with the exchange of a second photon have been evaluated. At the low Q(2) values relevant to the radius extraction, and especially the very low Q(2) region to be probed by proposed measurements, higher order contributions may become important. We evaluate these corrections in the Effective Momentum Approximation, which includes the Coulomb interaction to all orders, and find small corrections with a strong Q(2) dependence at low Q(2) and large scattering angles. This suggests that the higher order terms may be important in the evaluation of the proton magnetic radius. C1 Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. RP Arrington, J (reprint author), Argonne Natl Lab, Div Phys, Argonne, IL 60439 USA. EM johna@anl.gov RI Arrington, John/D-1116-2012 OI Arrington, John/0000-0002-0702-1328 FU US DOE [DE-AC02-06CH11357] FX I thank M K Medina checking the calculations presented here, and A Aste, P Blunden and B Kobushkin for providing calculations and useful discussion. This work was supported by the US DOE through contract DE-AC02-06CH11357. NR 48 TC 11 Z9 11 U1 0 U2 3 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0954-3899 EI 1361-6471 J9 J PHYS G NUCL PARTIC JI J. Phys. G-Nucl. Part. Phys. PD NOV PY 2013 VL 40 IS 11 AR 115003 DI 10.1088/0954-3899/40/11/115003 PG 8 WC Physics, Nuclear; Physics, Particles & Fields SC Physics GA 236AQ UT WOS:000325766300003 ER PT J AU Williams, SD Johnson, TJ Sharpe, SW Yavelak, V Oates, RP Brauer, CS AF Williams, Stephen D. Johnson, Timothy J. Sharpe, Steven W. Yavelak, Veronica Oates, R. P. Brauer, Carolyn S. TI Quantitative vapor-phase IR intensities and DFT computations to predict absolute IR spectra based on molecular structure: I. Alkanes SO JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER LA English DT Article DE Quantitative IR; Alkane; B3LYP; Intensity correlation; Absolute IR intensity; Integrated IR intensity ID ABSORPTION CROSS-SECTIONS; MU-M REGION; HARMONIC VIBRATIONAL FREQUENCIES; PURE COMPONENT PROPERTIES; INFRARED INTENSITIES; ORGANIC-COMPOUNDS; HYDROGEN-PEROXIDE; BAND INTENSITIES; SCALE FACTORS; CH BONDS AB Recently recorded quantitative IR spectra of a variety of gas-phase alkanes are shown to have integrated intensities in both the C-H stretching and C-H bending regions that depend linearly on the molecular size, i.e. the number of C-H bonds. This result is well predicted from CH4 to C15H32 by density functional theory (DFT) computations of IR spectra using Becke's three parameter functional (B3LYP(6-31+G(d,p)). Using the experimental data, a simple model predicting the absolute IR band intensities of alkanes based only on structural formula is proposed: For the C-H stretching band envelope centered near 2930 cm-I this is given by (km/mol) CH_str -(34 +/- 1) x CH-(41 +/- 23) where CH is number of C-H bonds in the alkane. The linearity is explained in terms of coordinated motion of methylene groups rather than the summed intensities of autonomous -CH2-units. The effect of alkyl chain length on the intensity of a C-H bending mode is explored and interpreted in terms of conformer distribution. The relative intensity contribution of a methyl mode compared to the total C-H stretch intensity is shown to be linear in the number of methyl groups in the alkane, and can be used to predict quantitative spectra a priori based on structure alone. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Williams, Stephen D.; Yavelak, Veronica; Oates, R. P.] Appalachian State Univ, AR Smith Dept Chem, Boone, NC 28618 USA. [Johnson, Timothy J.; Sharpe, Steven W.; Brauer, Carolyn S.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Williams, SD (reprint author), Appalachian State Univ, AR Smith Dept Chem, 525 Rivers St, Boone, NC 28618 USA. EM willsd@appstate.edu FU US Department of Energy by the Battelle Memorial Institute [DE-AC06-76RLO 1830]; Strategic Environmental Research and Development Program (SERDP) [RC-1649]; DOE [NA-22] FX PNNL is operated for the US Department of Energy by the Battelle Memorial Institute under Contract DE-AC06-76RLO 1830. This work was supported by the Strategic Environmental Research and Development Program (SERDP) research conservation program, Project RC-1649. The work was also supported by the DOE NA-22 Program and we thank both sponsors for their support. NR 54 TC 6 Z9 6 U1 1 U2 25 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-4073 EI 1879-1352 J9 J QUANT SPECTROSC RA JI J. Quant. Spectrosc. Radiat. Transf. PD NOV PY 2013 VL 129 BP 298 EP 307 DI 10.1016/j.jqsrt.2013.07.005 PG 10 WC Optics; Spectroscopy SC Optics; Spectroscopy GA 237BQ UT WOS:000325843600029 ER PT J AU Kurosaki, H Tucker, AA Iden, SE Sexton, SM Gonzalez, BD Rao, GR AF Kurosaki, Hiromu Tucker, April A. Iden, Sarah E. Sexton, Shirley M. Gonzalez, Benito D. Rao, Govind R. TI Use of chromatographic pre-concentration for routine uranium bioassay analysis by ICP-MS SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Uranium; Bioassay; Routine; ICP-MS; Pre-concentration ID PLASMA-MASS SPECTROMETRY; URINE; ISOTOPES; CAPABILITIES; THORIUM AB Routine monitoring of urine is an effective way to detect occupational intake of radioactive material. Historically, determinations of uranium isotopic ratios have been performed by radiochemical separation followed by alpha spectrometry. With recent advancements in technology, inductively coupled plasma-mass spectrometry (ICP-MS) has become widely available for the determination of trace metals as well as radioactive nuclides with long half-lives, such as U-238 in urine. Furthermore, ICP-MS measurements of U-238 do not require radiochemical separation since the number of atoms in the sample is determined instead of the number of alpha particles emitted. However, this method does not provide good sensitivity for the determination of U-235 due to its shorter half-life. An improved procedure using pre-concentration of uranium and determination by ICP-MS decreases the detection limit by a factor of ten or greater with only slight increase in total analysis time. The method also has the capability of accurately determining the isotopic ratio of the sample, which is very important in cases where enriched or depleted uranium is involved. C1 [Kurosaki, Hiromu; Tucker, April A.; Iden, Sarah E.; Sexton, Shirley M.; Gonzalez, Benito D.; Rao, Govind R.] Oak Ridge Natl Lab, Nucl & Radiol Protect Div, UT Battelle LLC, Oak Ridge, TN 37831 USA. RP Kurosaki, H (reprint author), Oak Ridge Natl Lab, Nucl & Radiol Protect Div, UT Battelle LLC, Oak Ridge, TN 37831 USA. EM hzk@ornl.gov FU Department of Energy [DE-AC05-00OR22725] FX Oak Ridge National Laboratory managed by UT-Battelle, LLC, for the Department of Energy under Contract DE-AC05-00OR22725. NR 12 TC 1 Z9 1 U1 0 U2 8 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2013 VL 298 IS 2 BP 1017 EP 1022 DI 10.1007/s10967-013-2437-7 PG 6 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 234EM UT WOS:000325624300034 ER PT J AU Mausolf, E Johnstone, E Poineau, F Nguyen, S Jones, S Hartmann, T Buck, E Czerwinski, K AF Mausolf, Edward Johnstone, Erik Poineau, Frederic Nguyen, Suzanne Jones, Steven Hartmann, Thomas Buck, Edgar Czerwinski, Kenneth TI Formation of Tc metal in 12 M HCl using Zn as a reductant SO JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY LA English DT Article DE Technetium; Reduction; Metal; Zinc; Hexachlorotechnetate; XAFS; XRD; Waste ID RAY-ABSORPTION SPECTROSCOPY; OCTACHLORODITECHNETATE ION; FINE-STRUCTURE; TECHNETIUM; COMPLEXES; ATOMS AB Amorphous TcO2 and NH4TcO4 solubilized into 12 M HCl will spontaneously convert to hexachlorotechnetate (TcCl6 (2-)). This process is accelerated upon heating but species lower than Tc(IV) are not generated by this action. TcCl6 (2-) is kinetically unstable with regards to formation in solutions of low concentrations of HCl and will spontaneously convert back to soluble and insoluble forms of Tc(IV) in water. TcCl6 (2-) in 12 M HCl placed in contact with the reducing metal Zn at elevated temperatures (90 A degrees C) forms a black precipitate that contains amorphous Tc metal, TcO2, and oxy-chlorides of Tc. Powder X-ray diffraction indicates the presence of Tc metal after thermal treatment where X-ray absorption fine structure spectroscopy indicates the presence of hexagonal Tc metal and amorphous TcO2 in the precipitate after rinsing with 12 HCl but before thermal treatment. The resulting solution contains a mixture of Tc chlorides and oxy-chlorides following reduction where TcCl6 (2-) is completely consumed resulting primarily in Tc2OCl10 (4-) dominating the UV-visible spectra. Reducing the solution volume and reconstituting the products into 12 M HCl while boiling the mixed solution (> 24 h) will slowly convert all soluble Tc back to TcCl6 (2-). Expanding on previous efforts made in this laboratory to recover Tc metal from aqueous solution, we investigate its synthesis when Tc(IV) and Tc(VII) in 12 M HCl is placed in contact with the reducing metal (i.e., Zn) at elevated temperatures. C1 [Mausolf, Edward; Buck, Edgar] Pacific NW Natl Lab, Richland, WA 99352 USA. [Johnstone, Erik; Poineau, Frederic; Hartmann, Thomas; Czerwinski, Kenneth] Univ Nevada, Harry Reid Ctr Environm Studies, Las Vegas, NV USA. [Nguyen, Suzanne] Univ Calif Los Angeles, Dept Chem & Biochem, Lost Angeles, CA 90095 USA. [Jones, Steven] Univ Tennessee, Bredesen Ctr Interdisciplinary Res, Knoxville, TN 37996 USA. RP Mausolf, E (reprint author), Pacific NW Natl Lab, 902 Batelle Ave,Mail Stop P7-27,POB 999, Richland, WA 99352 USA. EM Edward.Mausolf@pnnl.gov; poineauf@unlv.nevada.edu; ngsuzanne@ucla.edu; sjone115@utk.edu; Thomas.Hartmann@unlv.edu; Edgar.Buck@pnnl.gov; czerwin2@unlv.nevada.edu RI Buck, Edgar/N-7820-2013 OI Buck, Edgar/0000-0001-5101-9084 FU NEUP grant "Development of Alternative Technetium Waste Forms" from the U.S. Department of Energy, Office of Nuclear Energy, through INL/BEA, LLC [89445]; U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357] FX The authors would like to recognize Dr. Tom O'Dou, Mr. Trevor Low, and Ms. Julie Bertoia for outstanding health physics support and Dr. Sungsik Lee at the APS for outstanding support during EXAFS experiment. The authors thank Dr. Gordon Jarvinen for a very generous loan of ammonium Pertechnetate. Funding for this research was provided by an NEUP grant "Development of Alternative Technetium Waste Forms" from the U.S. Department of Energy, Office of Nuclear Energy, through INL/BEA, LLC, 89445. Use of the Advanced Photon Source at Argonne was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. NR 26 TC 2 Z9 2 U1 1 U2 10 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0236-5731 EI 1588-2780 J9 J RADIOANAL NUCL CH JI J. Radioanal. Nucl. Chem. PD NOV PY 2013 VL 298 IS 2 BP 1315 EP 1321 DI 10.1007/s10967-013-2453-7 PG 7 WC Chemistry, Analytical; Chemistry, Inorganic & Nuclear; Nuclear Science & Technology SC Chemistry; Nuclear Science & Technology GA 234EM UT WOS:000325624300068 ER PT J AU Turchi, CS Ma, ZW Neises, TW Wagner, MJ AF Turchi, Craig S. Ma, Zhiwen Neises, Ty W. Wagner, Michael J. TI Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems SO JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME LA English DT Article AB Supercritical CO2 (s-CO2) operated in a closed-loop Brayton cycle offers the potential of higher cycle efficiency versus superheated or supercritical steam cycles at temperatures relevant for concentrating solar power (CSP) applications. Brayton-cycle systems using s-CO2 have a smaller weight and volume, lower thermal mass, and less complex power blocks versus Rankine cycles due to the higher density of the fluid and simpler cycle design. The simpler machinery and compact size of the s-CO2 process may also reduce the installation, maintenance, and operation cost of the system. In this work we explore s-CO2 Brayton cycle configurations that have attributes that are desirable from the perspective of a CSP application, such as the ability to accommodate dry cooling and achieve greater than 50% efficiency, as specified for the U. S. Department of Energy Sun-Shot goal. Recompression cycles combined with intercooling and/or turbine reheat appear able to hit this efficiency target, even when combined with dry cooling. In addition, the intercooled cycles expand the temperature differential across the primary heat exchanger, which is favorable for CSP systems featuring sensible-heat thermal energy storage. C1 [Turchi, Craig S.; Ma, Zhiwen; Neises, Ty W.; Wagner, Michael J.] Natl Renewable Energy Lab, Golden, CO 80401 USA. RP Turchi, CS (reprint author), Natl Renewable Energy Lab, 15013 Denver West Pkwy, Golden, CO 80401 USA. EM craig.turchi@nrel.gov; zhiwen.ma@nrel.gov; ty.neises@nrel.gov; michael.wagner@nrel.gov FU U.S. Department of Energy [DE-AC36-08-GO28308]; National Renewable Energy Laboratory FX This work was supported by the U.S. Department of Energy under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory. The authors are grateful for turbine/compressor performance discussions with Robert Fuller of Barber-Nichols, Inc. and Dr. Steven Wright, formerly with Sandia National Laboratories. NR 26 TC 35 Z9 35 U1 8 U2 59 PU ASME PI NEW YORK PA TWO PARK AVE, NEW YORK, NY 10016-5990 USA SN 0199-6231 EI 1528-8986 J9 J SOL ENERG-T ASME JI J. Sol. Energy Eng. Trans.-ASME PD NOV PY 2013 VL 135 IS 4 AR 041007 DI 10.1115/1.4024030 PG 7 WC Energy & Fuels; Engineering, Mechanical SC Energy & Fuels; Engineering GA 239JA UT WOS:000326017600016 ER PT J AU Tourassi, G Voisin, S Paquit, V Krupinski, E AF Tourassi, Georgia Voisin, Sophie Paquit, Vincent Krupinski, Elizabeth TI Investigating the link between radiologists' gaze, diagnostic decision, and image content SO JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION LA English DT Article DE machine learning; user modeling; eye-tracking; mammography ID SCREENING MAMMOGRAPHY; EYE-POSITION; BREAST CANCERS; VISUAL-SEARCH; MEDICAL INFORMATICS; PATTERN-RECOGNITION; REPORTED CANCERS; PERCEPTION; PERFORMANCE; ACCURACY AB Objective To investigate machine learning for linking image content, human perception, cognition, and error in the diagnostic interpretation of mammograms. Methods Gaze data and diagnostic decisions were collected from three breast imaging radiologists and three radiology residents who reviewed 20 screening mammograms while wearing a head-mounted eye-tracker. Image analysis was performed in mammographic regions that attracted radiologists' attention and in all abnormal regions. Machine learning algorithms were investigated to develop predictive models that link: (i) image content with gaze, (ii) image content and gaze with cognition, and (iii) image content, gaze, and cognition with diagnostic error. Both group-based and individualized models were explored. Results By pooling the data from all readers, machine learning produced highly accurate predictive models linking image content, gaze, and cognition. Potential linking of those with diagnostic error was also supported to some extent. Merging readers' gaze metrics and cognitive opinions with computer-extracted image features identified 59% of the readers' diagnostic errors while confirming 97.3% of their correct diagnoses. The readers' individual perceptual and cognitive behaviors could be adequately predicted by modeling the behavior of others. However, personalized tuning was in many cases beneficial for capturing more accurately individual behavior. Conclusions There is clearly an interaction between radiologists' gaze, diagnostic decision, and image content which can be modeled with machine learning algorithms. C1 [Tourassi, Georgia; Voisin, Sophie; Paquit, Vincent] Oak Ridge Natl Lab, Biomed Sci & Engn Ctr, Oak Ridge, TN 37831 USA. [Krupinski, Elizabeth] Univ Arizona, Dept Med Imaging, Tucson, AZ USA. RP Tourassi, G (reprint author), Oak Ridge Natl Lab, Biomed Sci & Engn Ctr, 1 Bethel Valley Rd,POB 2008, Oak Ridge, TN 37831 USA. EM tourassig@ornl.gov RI Paquit, Vincent/K-9541-2013; OI Paquit, Vincent/0000-0003-0331-2598; Voisin, Sophie/0000-0002-9726-4605; Tourassi, Georgia/0000-0002-9418-9638 FU UT-Battelle, LLC [DE-AC05 00OR22725]; US Department of Energy; US Department of Energy [DE-AC05 00OR22725] FX This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05 00OR22725 with the US Department of Energy. The US Government retains and the publisher, by accepting the article for publication, acknowledges that the USA Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for USA Government purposes. NR 65 TC 15 Z9 15 U1 2 U2 22 PU BMJ PUBLISHING GROUP PI LONDON PA BRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H 9JR, ENGLAND SN 1067-5027 EI 1527-974X J9 J AM MED INFORM ASSN JI J. Am. Med. Inf. Assoc. PD NOV PY 2013 VL 20 IS 6 BP 1067 EP 1075 DI 10.1136/amiajnl-2012-001503 PG 9 WC Computer Science, Information Systems; Computer Science, Interdisciplinary Applications; Health Care Sciences & Services; Information Science & Library Science; Medical Informatics SC Computer Science; Health Care Sciences & Services; Information Science & Library Science; Medical Informatics GA 233GZ UT WOS:000325557600010 PM 23788627 ER PT J AU Klein, K Veazey, RS Warrier, R Hraber, P Doyle-Meyers, LA Buffa, V Liao, HX Haynes, BF Shaw, GM Shattock, RJ AF Klein, Katja Veazey, Ronald S. Warrier, Ranjit Hraber, Peter Doyle-Meyers, Lara A. Buffa, Viviana Liao, Hua-Xin Haynes, Barton F. Shaw, George M. Shattock, Robin J. TI Neutralizing IgG at the Portal of Infection Mediates Protection against Vaginal Simian/Human Immunodeficiency Virus Challenge SO JOURNAL OF VIROLOGY LA English DT Article ID NEONATAL FC-RECEPTOR; HUMAN MONOCLONAL-ANTIBODIES; PROXIMAL EXTERNAL REGION; DENDRITIC CELLS; IMMUNOGLOBULIN-G; NONNEUTRALIZING ANTIBODIES; PASSIVE-IMMUNIZATION; TYPE-1 ANTIBODIES; EPITHELIAL-CELLS; HIV-1 INFECTION AB Neutralizing antibodies may have critical importance in immunity against human immunodeficiency virus type 1 (HIV-1) infection. However, the amount of protective antibody needed at mucosal surfaces has not been fully established. Here, we evaluated systemic and mucosal pharmacokinetics (PK) and pharmacodynamics (PD) of 2F5 IgG and 2F5 Fab fragments with respect to protection against vaginal challenge with simian-human immunodeficiency virus-BaL in macaques. Antibody assessment demonstrated that 2F5 IgG was more potent than polymeric forms (IgM and IgA) across a range of cellular and tissue models. Vaginal challenge studies demonstrated a dose-dependent protection for 2F5 IgG and no protection with 2F5 Fab despite higher vaginal Fab levels at the time of challenge. Animals receiving 50 or 25 mg/kg of body weight 2F5 IgG were completely protected, while 3/5 animals receiving 5 mg/kg were protected. In the control animals, infection was established by a minimum of 1 to 4 transmitted/founder (T/F) variants, similar to natural human infection by this mucosal route; in the two infected animals that had received 5mg 2F5 IgG, infection was established by a single T/F variant. Serum levels of 2F5 IgG were more predictive of sterilizing protection than measured vaginal levels. Fc-mediated antiviral activity did not appear to influence infection of primary target cells in cervical explants. However, PK studies highlighted the importance of the Fc portion in tissue biodistribution. Data presented in this study may be important in modeling serum levels of neutralizing antibodies that need to be achieved by either vaccination or passive infusion to prevent mucosal acquisition of HIV-1 infection in humans. C1 [Klein, Katja; Buffa, Viviana; Shattock, Robin J.] Univ London Imperial Coll Sci Technol & Med, Infect Dis Sect, Mucosal Infect & Immun Grp, London, England. [Veazey, Ronald S.; Doyle-Meyers, Lara A.] Tulane Univ, Sch Med, Tulane Natl Primate Res Ctr, Covington, LA USA. [Liao, Hua-Xin; Haynes, Barton F.] Duke Univ, Sch Med, Duke Human Vaccine Inst, Durham, NC USA. [Warrier, Ranjit; Shaw, George M.] Univ Penn, Dept Med, Philadelphia, PA 19104 USA. [Warrier, Ranjit; Shaw, George M.] Univ Penn, Dept Microbiol, Philadelphia, PA 19104 USA. [Hraber, Peter] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA. RP Shattock, RJ (reprint author), Univ London Imperial Coll Sci Technol & Med, Infect Dis Sect, Mucosal Infect & Immun Grp, St Marys Campus, London, England. EM r.shattock@imperial.ac.uk OI Hraber, Peter/0000-0002-2920-4897 FU National Institute of Allergy and Infectious Diseases (NIAID); National Institutes of Health (NIH); Division of AIDS (DAIDS); U.S. Department of Health and Human Services (HHS); Center for HIV/AIDS Vaccine Immunology (CHAVI) [U19 AI067854-05]; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery [UM1-AI10064501]; Dormeur Investment Service Ltd. FX Research for this publication was supported by the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Division of AIDS (DAIDS), U.S. Department of Health and Human Services (HHS), Center for HIV/AIDS Vaccine Immunology (CHAVI) U19 AI067854-05, and the Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, grant number UM1-AI10064501. We gratefully acknowledge an equipment grant from Dormeur Investment Service Ltd. that provided funding to purchase equipment used in these studies. NR 75 TC 18 Z9 18 U1 1 U2 2 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0022-538X EI 1098-5514 J9 J VIROL JI J. Virol. PD NOV PY 2013 VL 87 IS 21 BP 11604 EP 11616 DI 10.1128/JVI.01361-13 PG 13 WC Virology SC Virology GA 237IR UT WOS:000325863400025 PM 23966410 ER PT J AU Chakraborty, S Manahan, MP Mench, MM AF Chakraborty, Subhadeep Manahan, Michael P. Mench, Matthew M. TI A signal processing framework for simultaneous detection of multiple environmental contaminants SO MEASUREMENT SCIENCE AND TECHNOLOGY LA English DT Article DE electrochemical sensor; environmental contaminants; symbolic dynamics ID ELECTROCHEMICAL SENSOR; CHEMICAL SENSORS; GAS SENSOR; PATTERN-RECOGNITION; FUEL-CELLS; SYSTEMS; CO; IDENTIFICATION; PRESSURE; FILTERS AB The possibility of large-scale attacks using chemical warfare agents (CWAs) has exposed the critical need for fundamental research enabling the reliable, unambiguous and early detection of trace CWAs and toxic industrial chemicals. This paper presents a unique approach for the identification and classification of simultaneously present multiple environmental contaminants by perturbing an electrochemical (EC) sensor with an oscillating potential for the extraction of statistically rich information from the current response. The dynamic response, being a function of the degree and mechanism of contamination, is then processed with a symbolic dynamic filter for the extraction of representative patterns, which are then classified using a trained neural network. The approach presented in this paper promises to extend the sensing power and sensitivity of these EC sensors by augmenting and complementing sensor technology with state-of-the-art embedded real-time signal processing capabilities. C1 [Chakraborty, Subhadeep; Mench, Matthew M.] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. [Manahan, Michael P.] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA. [Mench, Matthew M.] ORNL, Emiss & Catalysis Res Grp, Oak Ridge, TN 37831 USA. RP Chakraborty, S (reprint author), Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA. EM schakrab@utk.edu; manahan@psu.edu; mmench@utk.edu NR 46 TC 0 Z9 0 U1 2 U2 17 PU IOP PUBLISHING LTD PI BRISTOL PA TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND SN 0957-0233 EI 1361-6501 J9 MEAS SCI TECHNOL JI Meas. Sci. Technol. PD NOV PY 2013 VL 24 IS 11 AR 115102 DI 10.1088/0957-0233/24/11/115102 PG 11 WC Engineering, Multidisciplinary; Instruments & Instrumentation SC Engineering; Instruments & Instrumentation GA 237CY UT WOS:000325847000013 ER PT J AU Serizawa, A Miller, MK AF Serizawa, Ai Miller, Michael K. TI Radius Dependence of Solute Concentration Estimates of Simulated Ultrafine Precipitates SO MICROSCOPY RESEARCH AND TECHNIQUE LA English DT Article DE nanocluster detection; atom probe tomography; simulation; isoconcentration surface; proximity histogram ID ATOM-PROBE TOMOGRAPHY; ALLOYS; EVOLUTION AB Estimates of the radii and solute concentrations of simulated microstructures containing ultrafine spherical precipitates were determined from isoconcentration surfaces and proximity histograms. The accuracy of the estimates of the solute concentrations and the radii of precipitates was found to depend on the size of precipitates. Optimized parameters for analyzing 0.5- to 2-nm-radius precipitates are proposed. The solute content of 0.5-nm-radius precipitates was not estimated correctly by this method. The accuracy of the estimates of the solute concentration and the radius of precipitates were primarily influenced by the solute concentrations of the precipitates. The ranges of error of the solute concentration in the precipitates, which are associated with the analytical limitations of the ultrafine precipitates, were determined, and the results indicated a limitation of the estimates. Microsc. Res. Tech. 76:1196-1203, 2013. (c) 2013 Wiley Periodicals, Inc. C1 [Serizawa, Ai] Osaka Univ, Grad Sch Engn, Div Mat & Mfg Sci, Suita, Osaka 5650871, Japan. [Serizawa, Ai; Miller, Michael K.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Microscopy Grp, Oak Ridge, TN 37831 USA. RP Serizawa, A (reprint author), Osaka Univ, Grad Sch Engn, Div Mat & Mfg Sci, 2-1 Yamada Oka, Suita, Osaka 5650871, Japan. EM serizawa@mat.eng.osaka-u.ac.jp FU Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy [DE-AC05-00OR22725] FX Contract grant sponsors: Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy; Materials Science and Engineering Division, Office of Basic Energy Sciences, U.S. Department of Energy; Contract grant number: DE-AC05-00OR22725. NR 12 TC 2 Z9 2 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1059-910X EI 1097-0029 J9 MICROSC RES TECHNIQ JI Microsc. Res. Tech. PD NOV PY 2013 VL 76 IS 11 BP 1196 EP 1203 DI 10.1002/jemt.22285 PG 8 WC Anatomy & Morphology; Biology; Microscopy SC Anatomy & Morphology; Life Sciences & Biomedicine - Other Topics; Microscopy GA 239KY UT WOS:000326023800014 PM 24009187 ER PT J AU Liu, WS Yuan, JS Stewart, CN AF Liu, Wusheng Yuan, Joshua S. Stewart, C. Neal, Jr. TI Advanced genetic tools for plant biotechnology SO NATURE REVIEWS GENETICS LA English DT Review ID ZINC-FINGER NUCLEASES; MEDIATED CHROMOSOMAL TRUNCATION; DOUBLE-STRAND BREAKS; STABLE CHLOROPLAST TRANSFORMATION; DNA-BINDING SPECIFICITY; SITE-SPECIFIC EXCISION; MOLECULAR-WEIGHT DNA; LACTUCA-SATIVA L.; TRANSCRIPTION FACTORS; HOMOLOGOUS RECOMBINATION AB Basic research has provided a much better understanding of the genetic networks and regulatory hierarchies in plants. To meet the challenges of agriculture, we must be able to rapidly translate this knowledge into generating improved plants. Therefore, in this Review, we discuss advanced tools that are currently available for use in plant biotechnology to produce new products in plants and to generate plants with new functions. These tools include synthetic promoters, 'tunable' transcription factors, genome-editing tools and site-specific recombinases. We also review some tools with the potential to enable crop improvement, such as methods for the assembly and synthesis of large DNA molecules, plant transformation with linked multigenes and plant artificial chromosomes. These genetic technologies should be integrated to realize their potential for applications to pressing agricultural and environmental problems. C1 [Liu, Wusheng; Stewart, C. Neal, Jr.] Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. [Yuan, Joshua S.] Texas A&M Univ, Inst Plant Genom & Microbiol, Dept Plant Pathol & Microbiol, Texas A&M AgriLife Synthet & Syst Biol Innovat Hu, College Stn, TX 77843 USA. [Stewart, C. Neal, Jr.] Oak Ridge Natl Lab, BioEnergy Sci Ctr, Oak Ridge, TN 37831 USA. RP Stewart, CN (reprint author), Univ Tennessee, Dept Plant Sci, Knoxville, TN 37996 USA. EM nealstewart@utk.edu FU Advanced Research Projects Agency-Energy; BioEnergy Science Center; Office of Biological and Environmental Research in the DOE Office of Science FX The authors thank J. Haseloff, who provided much feedback on earlier drafts. They appreciate their respective universities for the freedom and resources to undertake this Review, including funding by Advanced Research Projects Agency-Energy to J.S.Y. and by the BioEnergy Science Center to C.N.S. The BioEnergy Science Center is a US Department of Energy (DOE) Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. The authors appreciate the work of multiple anonymous reviewers. They thank J. Hinds and M. Rudis for their assistance on various drafts of the paper. NR 137 TC 55 Z9 56 U1 7 U2 164 PU NATURE PUBLISHING GROUP PI LONDON PA MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND SN 1471-0056 EI 1471-0064 J9 NAT REV GENET JI Nat. Rev. Genet. PD NOV PY 2013 VL 14 IS 11 BP 781 EP 793 DI 10.1038/nrg3583 PG 13 WC Genetics & Heredity SC Genetics & Heredity GA 238EF UT WOS:000325923900010 PM 24105275 ER PT J AU Porth, I Klapste, J Skyba, O Hannemann, J McKown, AD Guy, RD DiFazio, SP Muchero, W Ranjan, P Tuskan, GA Friedmann, MC Ehlting, J Cronk, QCB El-Kassaby, YA Douglas, CJ Mansfield, SD AF Porth, Ilga Klapste, Jaroslav Skyba, Oleksandr Hannemann, Jan McKown, Athena D. Guy, Robert D. DiFazio, Stephen P. Muchero, Wellington Ranjan, Priya Tuskan, Gerald A. Friedmann, Michael C. Ehlting, Juergen Cronk, Quentin C. B. El-Kassaby, Yousry A. Douglas, Carl J. Mansfield, Shawn D. TI Genome-wide association mapping for wood characteristics in Populus identifies an array of candidate single nucleotide polymorphisms SO NEW PHYTOLOGIST LA English DT Article DE association genetics; cellulose; lignin; Populus; single nucleotide polymorphism (SNP); wood traits; woodultrastructure ID POPULATION-STRUCTURE; BLACK COTTONWOOD; LINKAGE DISEQUILIBRIUM; GENETIC ASSOCIATION; NATURAL-POPULATIONS; CELLULOSE SYNTHESIS; ARABINOGALACTAN PROTEINS; MISSING HERITABILITY; PRINCIPAL-COMPONENTS; ARABIDOPSIS-THALIANA AB Establishing links between phenotypes and molecular variants is of central importance to accelerate genetic improvement of economically important plant species. Our work represents the first genome-wide association study to the inherently complex and currently poorly understood genetic architecture of industrially relevant wood traits. Here, we employed an Illumina Infinium 34K single nucleotide polymorphism (SNP) genotyping array that generated 29233 high-quality SNPs in c. 3500 broad-based candidate genes within a population of 334 unrelated Populus trichocarpa individuals to establish genome-wide associations. The analysis revealed 141 significant SNPs (0.05) associated with 16 wood chemistry/ultrastructure traits, individually explaining 3-7% of the phenotypic variance. A large set of associations (41% of all hits) occurred in candidate genes preselected for their suggested a priori involvement with secondary growth. For example, an allelic variant in the FRA8 ortholog explained 21% of the total genetic variance in fiber length, when the trait's heritability estimate was considered. The remaining associations identified SNPs in genes not previously implicated in wood or secondary wall formation. Our findings provide unique insights into wood trait architecture and support efforts for population improvement based on desirable allelic variants. C1 [Porth, Ilga; Skyba, Oleksandr; Mansfield, Shawn D.] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z4, Canada. [Klapste, Jaroslav; McKown, Athena D.; Guy, Robert D.; El-Kassaby, Yousry A.] Univ British Columbia, Dept Forest & Conservat Sci, Vancouver, BC V6T 1Z4, Canada. [Klapste, Jaroslav] Czech Univ Life Sci, Fac Forestry & Wood Sci, Dept Dendrol & Forest Tree Breeding, Prague 16521, Czech Republic. [Hannemann, Jan; Ehlting, Juergen] Univ Victoria, Dept Biol, Victoria, BC V8W 3N5, Canada. [Hannemann, Jan; Ehlting, Juergen] Univ Victoria, Ctr Forest Biol, Victoria, BC V8W 3N5, Canada. [DiFazio, Stephen P.] W Virginia Univ, Dept Biol, Morgantown, WV 26506 USA. [Muchero, Wellington; Ranjan, Priya; Tuskan, Gerald A.] Oak Ridge Natl Lab, BioSci Div, Oak Ridge, TN 37831 USA. [Friedmann, Michael C.; Cronk, Quentin C. B.; Douglas, Carl J.] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada. RP Douglas, CJ (reprint author), Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada. EM carl.douglas@ubc.ca; shawn.mansfield@ubc.ca RI Klapste, Jaroslav/B-6668-2016; Porth, Ilga/N-4862-2015; El-Kassaby, Yousry/K-9856-2016; Tuskan, Gerald/A-6225-2011; OI Klapste, Jaroslav/0000-0001-5504-3735; Porth, Ilga/0000-0002-9344-6348; El-Kassaby, Yousry/0000-0002-4887-8977; Tuskan, Gerald/0000-0003-0106-1289; McKown, Athena/0000-0002-7402-9952; Cronk, Quentin/0000-0002-4027-7368 FU Genome British Columbia Applied Genomics Innovation Program [103BIO]; Genome Canada Large-Scale Applied Research Project [168BIO]; BioEnergy Science Center, a US DOE Bioenergy Research Facility; Office of Biological and Environmental Research in the DOE Office of Science FX This work was supported by the Genome British Columbia Applied Genomics Innovation Program (project 103BIO) and the Genome Canada Large-Scale Applied Research Project (project 168BIO), by funding to Q. C. B. C., C.J.D., R. D. G., J.E., Y.E-K., S. D. M. and by funding within the BioEnergy Science Center, a US DOE Bioenergy Research Facility supported by the Office of Biological and Environmental Research in the DOE Office of Science. Oak Ridge National Laboratory is managed by the University of Tennessee-Battelle LLC for the DOE. NR 89 TC 33 Z9 34 U1 5 U2 57 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1469-8137 J9 NEW PHYTOL JI New Phytol. PD NOV PY 2013 VL 200 IS 3 BP 710 EP 726 DI 10.1111/nph.12422 PG 17 WC Plant Sciences SC Plant Sciences GA 233GI UT WOS:000325555400015 PM 23889164 ER PT J AU Day, FP Schroeder, RE Stover, DB Brown, ALP Butnor, JR Dilustro, J Hungate, BA Dijkstra, P Duval, BD Seiler, TJ Drake, BG Hinkle, CR AF Day, Frank P. Schroeder, Rachel E. Stover, Daniel B. Brown, Alisha L. P. Butnor, John R. Dilustro, John Hungate, Bruce A. Dijkstra, Paul Duval, Benjamin D. Seiler, Troy J. Drake, Bert G. Hinkle, C. Ross TI The effects of 11 yr of CO2 enrichment on roots in a Florida scrub-oak ecosystem SO NEW PHYTOLOGIST LA English DT Article DE CO2 enrichment; disturbance; ground-penetrating radar; minirhizotrons; root biomass; root closure; scrub-oak ID ELEVATED ATMOSPHERIC CO2; GROUND-PENETRATING RADAR; LONG-TERM EXPOSURE; SOIL CARBON; FINE ROOTS; NITROGEN LIMITATION; ABOVEGROUND BIOMASS; NATURAL ECOSYSTEMS; TALLGRASS PRAIRIE; TEMPERATE FOREST AB Uncertainty surrounds belowground plant responses to rising atmospheric CO2 because roots are difficult to measure, requiring frequent monitoring as a result of fine root dynamics and long-term monitoring as a result of sensitivity to resource availability. We report belowground plant responses of a scrub-oak ecosystem in Florida exposed to 11yr of elevated atmospheric CO2 using open-top chambers. We measured fine root production, turnover and biomass using minirhizotrons, coarse root biomass using ground-penetrating radar and total root biomass using soil cores. Total root biomass was greater in elevated than in ambient plots, and the absolute difference was larger than the difference aboveground. Fine root biomass fluctuated by more than a factor of two, with no unidirectional temporal trend, whereas leaf biomass accumulated monotonically. Strong increases in fine root biomass with elevated CO2 occurred after fire and hurricane disturbance. Leaf biomass also exhibited stronger responses following hurricanes. Responses after fire and hurricanes suggest that disturbance promotes the growth responses of plants to elevated CO2. Increased resource availability associated with disturbance (nutrients, water, space) may facilitate greater responses of roots to elevated CO2. The disappearance of responses in fine roots suggests limits on the capacity of root systems to respond to CO2 enrichment. C1 [Day, Frank P.; Schroeder, Rachel E.; Brown, Alisha L. P.] Old Dominion Univ, Dept Biol Sci, Norfolk, VA 23529 USA. [Stover, Daniel B.] US DOE, Off Biol & Environm Res, Washington, DC 20585 USA. [Butnor, John R.] US Forest Serv, So Res Stn, USDA, Burlington, VT 05405 USA. [Dilustro, John] Chowan Univ, Dept Biol, Murfreesboro, NC 27855 USA. [Hungate, Bruce A.; Dijkstra, Paul] Univ Arizona, Dept Biol Sci, Flagstaff, AZ 86011 USA. [Hungate, Bruce A.; Dijkstra, Paul] Univ Arizona, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86011 USA. [Duval, Benjamin D.] Univ Illinois, Inst Genom Biol, Global Change Solut, Urbana, IL 61801 USA. [Seiler, Troy J.] ENSCO Inc, Melbourne, FL 32940 USA. [Drake, Bert G.] Smithsonian Environm Res Ctr, Edgewater, MD 21037 USA. [Hinkle, C. Ross] Univ Cent Florida, Dept Biol, Orlando, FL 32816 USA. RP Day, FP (reprint author), Old Dominion Univ, Dept Biol Sci, Norfolk, VA 23529 USA. EM fday@odu.edu RI Butnor, John/P-9738-2016 FU US Department of Energy [DE-FG-02-95ER61993]; Smithsonian Institution [95-59-MPOOO02]; National Science Foundation [DEB 9873715, 0092642, 0445324] FX This research was funded by US Department of Energy grant (DE-FG-02-95ER61993) to the Smithsonian Institution with subcontract (95-59-MPOOO02) to F. P. D. at Old Dominion University, and by grants from the National Science Foundation (DEB 9873715, 0092642 and 0445324) to B. A. H. at Northern Arizona University. We thank the US Fish and Wildlife Service at Merritt Island National Wildlife Refuge and the National Aeronautics and Space Administration at Kennedy Space Center for their cooperation. Soil coring was assisted by J. Brown, J. Blankinship, J. Coyle, C. LaViolete, Z. Wu, Tom Powell and Pat Megonigal. Kadrin Getman provided invaluable field assistance. Dan Welch of Geophysical Survey Systems Inc. provided help with data processing questions, and Dayanand Naik assisted with statistical analyses. NR 81 TC 13 Z9 14 U1 5 U2 55 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1469-8137 J9 NEW PHYTOL JI New Phytol. PD NOV PY 2013 VL 200 IS 3 BP 778 EP 787 DI 10.1111/nph.12246 PG 10 WC Plant Sciences SC Plant Sciences GA 233GI UT WOS:000325555400020 PM 23528147 ER PT J AU Xu, HW Zhao, YS Hickmott, DD Lane, NJ Vogel, SC Zhang, JZ Daemen, LL AF Xu, Hongwu Zhao, Yusheng Hickmott, Donald D. Lane, Nina J. Vogel, Sven C. Zhang, Jianzhong Daemen, Luke L. TI High-temperature neutron diffraction study of deuterated brucite SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE Brucite; Neutron diffraction; First-principles calculation; Thermal expansion; Hydrogen bonding; Crystal chemistry ID SITU NANOSCALE OBSERVATIONS; X-RAY-DIFFRACTION; EQUATION-OF-STATE; HIGH-PRESSURE; MG(OH)(2) DEHYDROXYLATION; POWDER DIFFRACTION; THERMAL-EXPANSION; GPA; COMPRESSION; DISORDER AB To study the structural behavior of brucite at high temperature, we conducted in situ neutron diffraction experiments of a deuterated brucite powder sample, Mg(OD)(2), in the temperature range 313-583 K. The sample was stable up to 553 K, above which it started to decompose into periclase (MgO) and D2O vapor. Rietveld analyses of the obtained data were performed using both single-site and three-site split-atom hydrogen models. Our results show that with increasing temperature, unit-cell parameter c increases at a rate similar to 7.7 times more rapidly than a. This large anisotropy of thermal expansion is primarily due to rapid increase in the interlayer thickness along the c-axis on heating. The amplitudes of thermal vibration for Mg, O, and D increase linearly with increasing temperature; however, the rate of the increase for the lighter D is much larger. In addition, D vibrates anisotropically with a higher magnitude within the (001) plane, as confirmed by our first-principles phonon calculations. On heating, the interatomic distances between a given D and its associated O and D from the adjacent [MgO6] layer increase, whereas the O-D bond length decreases. This behavior suggests weakened D center dot center dot center dot O and D center dot center dot center dot D interlayer interactions but strengthened O-D bonding with increasing temperature. C1 [Xu, Hongwu; Hickmott, Donald D.] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. [Zhao, Yusheng; Vogel, Sven C.; Zhang, Jianzhong; Daemen, Luke L.] Los Alamos Natl Lab, Los Alamos Neutron Sci Ctr, Los Alamos, NM 87545 USA. [Lane, Nina J.] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA. RP Xu, HW (reprint author), Los Alamos Natl Lab, Earth & Environm Sci Div, POB 1663, Los Alamos, NM 87545 USA. EM hxu@lanl.gov OI Xu, Hongwu/0000-0002-0793-6923; Zhang, Jianzhong/0000-0001-5508-1782; Vogel, Sven C./0000-0003-2049-0361 FU laboratory-directed research and development (LDRD) program of Los Alamos National Laboratory; DOE [DE-AC52-06NA25396]; Department of Energy's Office of Basic Energy Sciences FX We thank Ming Zhang for conducting the Infrared spectroscopic measurement. This work was supported by the laboratory-directed research and development (LDRD) program of Los Alamos National Laboratory, which is operated by Los Alamos National Security LLC, under DOE Contract DE-AC52-06NA25396. This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Department of Energy's Office of Basic Energy Sciences. NR 39 TC 2 Z9 2 U1 3 U2 34 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0342-1791 EI 1432-2021 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD NOV PY 2013 VL 40 IS 10 BP 799 EP 810 DI 10.1007/s00269-013-0614-4 PG 12 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA 239WL UT WOS:000326056500005 ER PT J AU Zhang, FX Xiao, HY Lang, M Zhang, JM Zhang, YW Weber, WJ Ewing, RC AF Zhang, F. X. Xiao, H. Y. Lang, M. Zhang, J. M. Zhang, Yanwen Weber, W. J. Ewing, R. C. TI Structure and properties of rare earth silicates with the apatite structure at high pressure SO PHYSICS AND CHEMISTRY OF MINERALS LA English DT Article DE Apatite structure; High pressure; Phase transition ID NUCLEAR-WASTE FORMS; IONIC CONDUCTORS; TRANSPORT MECHANISMS; OXIDE; DIFFRACTION; DEFECTS; INSIGHT; NMR; ND AB The pressure-induced structural transformation of rare earth, non-stoichiometric silicates, (REE9.33(SiO4)(6)O-2, RE = La, Ce, Nd, Eu, and Gd) with the apatite structure type, were investigated by X-ray diffraction, photoluminescence, far-infrared spectroscopy, and DFT calculations. A pressure-induced degradation of symmetry from P6 (3) /m to P6 (3) occurs with increasing pressure. The transition is due to the tilting of SiO4 tetrahedra and reduced symmetry constraints on one of the O atoms in the tetrahedron. The critical transition pressure increased from similar to 13 GPa in La-9.33(SiO4)(6)O-2 to similar to 25 GPa in Gd-9.33(SiO4)(6)O-2 with the decrease in lanthanide cation size. The high-pressure phase shows an unexpectedly low value for the bulk modulus over a narrow pressure range (below similar to 30 GPa), as compared with the low-pressure phase, especially for the structure with larger rare earth elements. High-pressure studies of alkaline earth-doped samples (Nd-8 A (2)(SiO4)(6)O-2 where A = Ca, Sr) showed that the pressure for the phase transition is mainly related to the size of lanthanides that occupy the large channels along the c axis of the apatite structure type. C1 [Zhang, F. X.; Lang, M.; Zhang, J. M.; Ewing, R. C.] Univ Michigan, Dept Earth & Environm Sci, Ann Arbor, MI 48109 USA. [Xiao, H. Y.; Zhang, Yanwen; Weber, W. J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Zhang, Yanwen; Weber, W. J.] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA. RP Zhang, FX (reprint author), Univ Michigan, Dept Earth & Environm Sci, Ann Arbor, MI 48109 USA. EM Zhangfx@UMich.edu RI Weber, William/A-4177-2008; Zhang, Fuxiang/P-7365-2015 OI Weber, William/0000-0002-9017-7365; Zhang, Fuxiang/0000-0003-1298-9795 FU Materials Science of Actinides, an Energy Frontier Research Center; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001089]; NSF COMPRES [EAR01-35554]; US-DOE [DE-AC02-10886]; Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]; CPMPRES under NSF [EAR 10-43050] FX This work was supported by Materials Science of Actinides, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award No. DE-SC0001089. The use of X-ray beam line at X17C station and U2A station of NSLS is supported by NSF COMPRES EAR01-35554 and by US-DOE contract DE-AC02-10886. The use of beam 12.2 at ALS, Berkeley National Lab, was supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and CPMPRES under NSF Cooperative Agreement EAR 10-43050. NR 34 TC 5 Z9 5 U1 3 U2 24 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0342-1791 EI 1432-2021 J9 PHYS CHEM MINER JI Phys. Chem. Miner. PD NOV PY 2013 VL 40 IS 10 BP 817 EP 825 DI 10.1007/s00269-013-0616-2 PG 9 WC Materials Science, Multidisciplinary; Mineralogy SC Materials Science; Mineralogy GA 239WL UT WOS:000326056500007 ER PT J AU Zipperer, A Aloise-Young, PA Suryanarayanan, S Roche, R Earle, L Christensen, D Bauleo, P Zimmerle, D AF Zipperer, Adam Aloise-Young, Patricia A. Suryanarayanan, Siddharth Roche, Robin Earle, Lieko Christensen, Dane Bauleo, Pablo Zimmerle, Daniel TI Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior SO PROCEEDINGS OF THE IEEE LA English DT Article DE Behavioral science; consumer behavior; decision making; energy management; load management; smart grid; smart home ID DEMAND RESPONSE; CONSUMPTION AB Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and transforming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electricity grid and consumer electronics. This paper presents a discussion of the state of the art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage. C1 [Zipperer, Adam; Aloise-Young, Patricia A.; Suryanarayanan, Siddharth; Zimmerle, Daniel] Colorado State Univ, Ft Collins, CO 80523 USA. [Roche, Robin] Univ Technol Belfort Montbeliard, Res Inst Transportat Energy & Soc IRTES SET, F-90010 Belfort, France. [Earle, Lieko; Christensen, Dane] Natl Renewable Energy Lab, Elect Resources & Bldg Syst Integrat Ctr, Golden, CO 80401 USA. [Bauleo, Pablo] Ft Collins Util, Ft Collins, CO 80524 USA. RP Zipperer, A (reprint author), Colorado State Univ, Ft Collins, CO 80523 USA. EM adam.zipperer@rams.colostate.edu; robin.roche@utbm.fr; dane.christensen@nrel.gov; pbauleo@fcgov.com OI Christensen, Dane/0000-0002-4539-2402 FU U.S. Department of Energy [DE-AC36-08GO28308]; U.S. National Science Foundation; U.S. National Science Foundation [0931748]; Program of Research and Scholarly Excellence (PRSE) grant from the Office of the Vice President for Research (VPR) at Colorado State University FX This work was supported in part by the U.S. Department of Energy under Contract DE-AC36-08GO28308 with the U.S. National Science Foundation; by the U.S. National Science Foundation under Award 0931748; and by the Program of Research and Scholarly Excellence (PRSE) grant from the Office of the Vice President for Research (VPR) at Colorado State University. NR 65 TC 19 Z9 21 U1 2 U2 29 PU IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC PI PISCATAWAY PA 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA SN 0018-9219 EI 1558-2256 J9 P IEEE JI Proc. IEEE PD NOV PY 2013 VL 101 IS 11 SI SI BP 2397 EP 2408 DI 10.1109/JPROC.2013.2270172 PG 12 WC Engineering, Electrical & Electronic SC Engineering GA 238UB UT WOS:000325974900009 ER PT J AU de Val, N McMurray, MA Lam, LH Hsiung, CCS Bertin, A Nogales, E Thorner, J AF de Val, Natalia McMurray, Michael A. Lam, Lisa H. Hsiung, Chris C. -S. Bertin, Aurelie Nogales, Eva Thorner, Jeremy TI Native cysteine residues are dispensable for the structure and function of all five yeast mitotic septins SO PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS LA English DT Article DE Saccharomyces cerevisiae; site-directed mutagenesis; genetic complementation; gene replacement; protein purification; electron microscopy ID SACCHAROMYCES-CEREVISIAE; BUDDING YEAST; FILAMENT FORMATION; GTP-BINDING; CELL-CYCLE; NUCLEOTIDE-BINDING; COPY-NUMBER; ORGANIZATION; CYTOKINESIS; PROTEIN AB Budding yeast septins assemble into hetero-octamers and filaments required for cytokinesis. Solvent-exposed cysteine (Cys) residues provide sites for attaching substituents useful in assessing assembly kinetics and protein interactions. To introduce Cys at defined locations, site-directed mutagenesis was used, first, to replace the native Cys residues in Cdc3 (C124 C253 C279), Cdc10 (C266), Cdc11 (C43 C137 C138), Cdc12 (C40 C278), and Shs1 (C29 C148) with Ala, Ser, Val, or Phe. When plasmid-expressed, each Cys-less septin mutant rescued the cytokinesis defects caused by absence of the corresponding chromosomal gene. When integrated and expressed from its endogenous promoter, the same mutants were fully functional, except Cys-less Cdc12 mutants (which were viable, but exhibited slow growth and aberrant morphology) and Cdc3(C124V C253V C279V) (which was inviable). No adverse phenotypes were observed when certain pairs of Cys-less septins were co-expressed as the sole source of these proteins. Cells grew less well when three Cys-less septins were co-expressed, suggesting some reduction in fitness. Nonetheless, cells chromosomally expressing Cys-less Cdc10, Cdc11, and Cdc12, and expressing Cys-less Cdc3 from a plasmid, grew well at 30 degrees C. Moreover, recombinant Cys-less septinsor where one of the Cys-less septins contained a single Cys introduced at a new sitedisplayed assembly properties in vitro indistinguishable from wild-type. Proteins 2013; 81:1964-1979. (c) 2013 Wiley Periodicals, Inc. C1 [de Val, Natalia; McMurray, Michael A.; Lam, Lisa H.; Hsiung, Chris C. -S.; Bertin, Aurelie; Nogales, Eva; Thorner, Jeremy] Univ Calif Berkeley, Dept Mol & Cell Biol, Div Biochem Biophys & Struct Biol, Berkeley, CA 94720 USA. [Nogales, Eva] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. [Nogales, Eva] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA. RP Thorner, J (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Room 16,Barker Hall, Berkeley, CA 94720 USA. EM jthorner@berkeley.edu OI THORNER, Jeremy/0000-0002-2583-500X FU Commissariat general aux Relations internationales de la Communaute francaise de Belgique (Bourses d'Excellence World WBI) [2008-20642-S]; National Institutes of Health K99 [GM86603]; Jane Coffin Childs Postdoctoral Research Fellowship [61-1357]; Howard Hughes Medical Institute; National Institutes of Health R01 [GM21841] FX Grant sponsor: Commissariat general aux Relations internationales de la Communaute francaise de Belgique (Bourses d'Excellence World WBI); Grant number: 2008-20642-S (to N.d.V.); Grant sponsor: National Institutes of Health K99; Grant number: GM86603 (to M. A. M.); Grant sponsor: Jane Coffin Childs Postdoctoral Research Fellowship; Grant number: 61-1357 (to A. B.); Grant sponsor: Howard Hughes Medical Institute (to E.N.); Grant sponsor: National Institutes of Health R01; Grant number: GM21841 (to J.T.). NR 60 TC 5 Z9 5 U1 1 U2 6 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0887-3585 EI 1097-0134 J9 PROTEINS JI Proteins PD NOV PY 2013 VL 81 IS 11 BP 1964 EP 1979 DI 10.1002/prot.24345 PG 16 WC Biochemistry & Molecular Biology; Biophysics SC Biochemistry & Molecular Biology; Biophysics GA 238VT UT WOS:000325980300010 PM 23775754 ER PT J AU Pozzi, ECC Trivillin, VA Colombo, LL Hughes, AM Thorp, SI Cardoso, JE Garabalino, MA Molinari, AJ Heber, EM Curotto, P Miller, M Itoiz, ME Aromando, RF Nigg, DW Schwint, AE AF Pozzi, Emiliano C. C. Trivillin, Vernica A. Colombo, Lucas L. Monti Hughes, Andrea Thorp, Silvia I. Cardoso, Jorge E. Garabalino, Marcela A. Molinari, Ana J. Heber, Elisa M. Curotto, Paula Miller, Marcelo Itoiz, Maria E. Aromando, Romina F. Nigg, David W. Schwint, Amanda E. TI Boron neutron capture therapy (BNCT) for liver metastasis in an experimental model: dose-response at five-week follow-up based on retrospective dose assessment in individual rats SO RADIATION AND ENVIRONMENTAL BIOPHYSICS LA English DT Article DE Boron neutron capture therapy; BNCT; Liver metastasis; Liver metastasis experimental model; BDIX rats; DHD/K12/TRb cells ID EXPERIMENTAL ORAL-CANCER; HAMSTER-CHEEK POUCH; COLORECTAL-CANCER; CLINICAL-TRIAL; BIODISTRIBUTION; EFFICACY; ADENOCARCINOMA; RADIOBIOLOGY; GLIOBLASTOMA; CHEMOTHERAPY AB Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. Employing an experimental model of liver metastases in rats, we recently demonstrated that BNCT mediated by boronophenylalanine (BPA-BNCT) at 13 Gy prescribed to tumor is therapeutically useful at 3-week follow-up. The aim of the present study was to evaluate dose-response at 5-week follow-up, based on retrospective dose assessment in individual rats. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA-BNCT (n = 19), Beam only (n = 8) and Sham (n = 7) (matched manipulation, no treatment). For each rat, neutron flux was measured in situ and boron content was measured in a pre-irradiation blood sample for retrospective individual dose assessment. For statistical analysis (ANOVA), individual data for the BPA-BNCT group were pooled according to absorbed tumor dose, BPA-BNCT I: 4.5-8.9 Gy and BPA-BNCT II: 9.2-16 Gy. At 5 weeks post-irradiation, the tumor surface area post-treatment/pre-treatment ratio was 12.2 +/- A 6.6 for Sham, 7.8 +/- A 4.1 for Beam only, 4.4 +/- A 5.6 for BPA-BNCT I and 0.45 +/- A 0.20 for BPA-BNCT II; tumor nodule weight was 750 +/- A 480 mg for Sham, 960 +/- A 620 mg for Beam only, 380 +/- A 720 mg for BPA-BNCT I and 7.3 +/- A 5.9 mg for BPA-BNCT II. The BPA-BNCT II group exhibited statistically significant tumor control with no contributory liver toxicity. Potential threshold doses for tumor response and significant tumor control were established at 6.1 and 9.2 Gy, respectively. C1 [Pozzi, Emiliano C. C.; Curotto, Paula] Natl Atom Energy Commiss, Dept Res & Prod Reactors, Ezeiza, Buenos Aires, Argentina. [Trivillin, Vernica A.; Monti Hughes, Andrea; Garabalino, Marcela A.; Molinari, Ana J.; Heber, Elisa M.; Itoiz, Maria E.; Aromando, Romina F.; Schwint, Amanda E.] Natl Atom Energy Commiss, Dept Radiobiol, San Martin, Buenos Aires, Argentina. [Trivillin, Vernica A.; Colombo, Lucas L.; Monti Hughes, Andrea; Molinari, Ana J.; Schwint, Amanda E.] Natl Res Council CONICET, Buenos Aires, DF, Argentina. [Colombo, Lucas L.; Cardoso, Jorge E.] Oncol Inst Angel H Roffo, Buenos Aires, DF, Argentina. [Colombo, Lucas L.] UAI, CAECIHS, Buenos Aires, DF, Argentina. [Thorp, Silvia I.; Miller, Marcelo] Natl Atom Energy Commiss, Dept Instrumentat & Control, Ezeiza, Buenos Aires, Argentina. [Itoiz, Maria E.; Aromando, Romina F.] Univ Buenos Aires, Dept Oral Pathol, Fac Dent, Buenos Aires, DF, Argentina. [Nigg, David W.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Schwint, AE (reprint author), Natl Atom Energy Commiss, Dept Radiobiol, Ave Gen Paz 1499,B1650KNA, San Martin, Buenos Aires, Argentina. EM schwint@cnea.gov.ar FU US Department of Energy through Idaho National Laboratory; National Agency for the Promotion of Science and Technology of Argentina (ANPCyT); National Research Council of Argentina (CONICET) FX This study was supported in part by in-kind contributions from the US Department of Energy through Idaho National Laboratory, a grant from the National Agency for the Promotion of Science and Technology of Argentina (ANPCyT) and a grant from the National Research Council of Argentina (CONICET). The study sponsors were not involved in the study. The authors are indebted to the expert maintenance, radioprotection, and operation teams of RA-3. NR 43 TC 7 Z9 7 U1 0 U2 8 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0301-634X EI 1432-2099 J9 RADIAT ENVIRON BIOPH JI Radiat. Environ. Biophys. PD NOV PY 2013 VL 52 IS 4 BP 481 EP 491 DI 10.1007/s00411-013-0490-9 PG 11 WC Biology; Biophysics; Environmental Sciences; Radiology, Nuclear Medicine & Medical Imaging SC Life Sciences & Biomedicine - Other Topics; Biophysics; Environmental Sciences & Ecology; Radiology, Nuclear Medicine & Medical Imaging GA 240DM UT WOS:000326074900006 PM 24077963 ER PT J AU Skurikhin, AN Gangodagamage, C Rowland, JC Wilson, CJ AF Skurikhin, Alexei N. Gangodagamage, Chandana Rowland, Joel C. Wilson, Cathy J. TI Arctic tundra ice-wedge landscape characterization by active contours without edges and structural analysis using high-resolution satellite imagery SO REMOTE SENSING LETTERS LA English DT Article ID DISTANCE TRANSFORMS; LAKE BASINS; ALASKA; SCALE; CARBON; DELTA AB In this letter, we present a semi-automated approach to identify and classify Arctic polygonal tundra landscape components, such as troughs, ponds, rivers and lakes, using high spatial resolution satellite imagery. The approach starts by segmenting water bodies from an image, which are then categorized using shape-based classification. Segmentation uses combination of multispectral bands and is based on the active contours without edges technique. The segmentation is robust to noise and can detect objects with weak boundaries, which is important for the extraction of troughs. Classification of the regions is accomplished by utilizing distance transform and regional structural characteristics. The approach is evaluated using 0.6m resolution WorldView-2 satellite image of ice-wedge polygonal tundra. The segmentation user's and producer's accuracies are approximately 92% and 97%, respectively. Visual inspection of the classification results has demonstrated qualitatively accurate object categorization. C1 [Skurikhin, Alexei N.] Los Alamos Natl Lab, Intelligence & Space Res Div, Los Alamos, NM 87545 USA. [Gangodagamage, Chandana; Rowland, Joel C.; Wilson, Cathy J.] Los Alamos Natl Lab, Earth & Environm Sci Div, Los Alamos, NM 87545 USA. RP Skurikhin, AN (reprint author), Los Alamos Natl Lab, Intelligence & Space Res Div, POB 1663, Los Alamos, NM 87545 USA. EM alexei@lanl.gov OI Skurikhin, Alexei/0000-0001-5606-4933; Gangodagamage, Chandana/0000-0001-6511-1711 FU US Department of Energy Office of Science Biologic and Environmental Research program; Next Generation Ecosystem Experiments, NGEE-Arctic project; Los Alamos National Laboratory's Laboratory-Directed Research and Development program FX This study was supported by the US Department of Energy Office of Science Biologic and Environmental Research program, Next Generation Ecosystem Experiments, NGEE-Arctic project, and the Los Alamos National Laboratory's Laboratory-Directed Research and Development program. NR 33 TC 6 Z9 6 U1 8 U2 41 PU TAYLOR & FRANCIS LTD PI ABINGDON PA 4 PARK SQUARE, MILTON PARK, ABINGDON OX14 4RN, OXON, ENGLAND SN 2150-704X EI 2150-7058 J9 REMOTE SENS LETT JI Remote Sens. Lett. PD NOV 1 PY 2013 VL 4 IS 11 BP 1077 EP 1086 DI 10.1080/2150704X.2013.840404 PG 10 WC Remote Sensing; Imaging Science & Photographic Technology SC Remote Sensing; Imaging Science & Photographic Technology GA 236HO UT WOS:000325786300005 ER PT J AU He, YJ Shao, M Xiao, K Smith, SC Hong, KL AF He, Youjun Shao, Ming Xiao, Kai Smith, Sean C. Hong, Kunlun TI High-performance polymer photovoltaics based on rationally designed fullerene acceptors SO SOLAR ENERGY MATERIALS AND SOLAR CELLS LA English DT Article DE Fullerene derivatives; Polymer photovoltaic; Open circuit voltage ID HETEROJUNCTION SOLAR-CELLS; OPEN-CIRCUIT VOLTAGE; LOW-BANDGAP POLYMERS; TANDEM POLYMER; CONVERSION EFFICIENCY; CYCLOADDITION REACTIONS; ENDOHEDRAL FULLERENES; POLY(3-HEXYLTHIOPHENE); BENZODITHIOPHENE; ENHANCEMENT AB A novel C-70 fullerene derivative ICBM was rationally designed and synthesized by [4+2] cyclic addition reaction between an indene derivative (methyl 4-(1H-inden-3-yl)butanoate) and C-70. The absorption and photoluminescence of the mixed films of ICBM with different polymer donor materials were characterized. The electrochemical reduction behavior of ICBM in the range of 0 to -2.5 V was investigated by the cyclic voltammetry method, and the result shows that the lowest unoccupied molecular orbital (LUMO) level of ICBM is 0.07 eV higher than that of PC70BM. The photovoltaic devices based on poly (3-hexylthiophene) (P3HT) and a low band gap polymer (PTB7) as donors, with ICBM as an acceptor gave power conversion efficiencies of 5.00% and 6.67%, respectively. The result demonstrates that this novel C-70 fullerene derivative is a much better acceptor for wide-band gap as well as low-band gap donor polymers in the BHJ polymer photovoltaics. (C) 2013 Elsevier B.V. All rights reserved. C1 [He, Youjun; Shao, Ming; Xiao, Kai; Smith, Sean C.; Hong, Kunlun] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. RP Hong, KL (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. EM hongkq@ornl.gov RI Smith, Sean/H-5003-2015; Hong, Kunlun/E-9787-2015; OI Smith, Sean/0000-0002-5679-8205; Hong, Kunlun/0000-0002-2852-5111; Xiao, Kai /0000-0002-0402-8276 FU Oak Ridge National Laboratory by Office of Basic Energy Sciences, U.S. Department of Energy FX This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by Office of Basic Energy Sciences, U.S. Department of Energy. NR 62 TC 11 Z9 11 U1 1 U2 58 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0248 EI 1879-3398 J9 SOL ENERG MAT SOL C JI Sol. Energy Mater. Sol. Cells PD NOV PY 2013 VL 118 BP 171 EP 178 DI 10.1016/j.solmat.2013.08.019 PG 8 WC Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied SC Energy & Fuels; Materials Science; Physics GA 237XN UT WOS:000325905000024 ER PT J AU Henne, WA Kularatne, SA Hakenjos, J Carron, JD Henne, KL AF Henne, Walter A. Kularatne, Sumith A. Hakenjos, John Carron, Joshua D. Henne, Kristene L. TI Synthesis and activity of a folate targeted monodisperse PEG camptothecin conjugate SO BIOORGANIC & MEDICINAL CHEMISTRY LETTERS LA English DT Article DE Monodisperse PEG; PEG; Folate conjugate; Small molecule drug conjugate; SMDC; Camptothecin ID FOLIC-ACID; BINDING-PROTEIN; REGIOSELECTIVE SYNTHESIS; INFLAMMATORY DISEASES; BIOLOGICAL EVALUATION; ANTITUMOR-ACTIVITY; NEW-GENERATION; IN-VITRO; RECEPTOR; CANCER AB A folate targeted camptothecin small molecule drug conjugate (SMDC) was synthesized using a monodisperse PEG spacer linked to folate via a releasable disulfide carbonate linker. Cell cytotoxicity in human KB cells exhibited an IC50 of 6 nM. Importantly, activity of the prodrug was blocked by excess folate, demonstrating receptor-mediated celluar uptake of the PEG conjugate. (c) 2013 Elsevier Ltd. All rights reserved. C1 [Henne, Walter A.; Hakenjos, John; Carron, Joshua D.] Governors State Univ, Div Sci, University Pk, IL 60484 USA. [Kularatne, Sumith A.] Target Labs, W Lafayette, IN 47906 USA. [Henne, Kristene L.] Argonne Natl Labs, Lemont, IL 60439 USA. RP Henne, WA (reprint author), Governors State Univ, Div Sci, 1 Univ Pkwy, University Pk, IL 60484 USA. EM whenne@govst.edu; sumithk@ontargetlabs.com NR 36 TC 9 Z9 10 U1 6 U2 57 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-894X EI 1464-3405 J9 BIOORG MED CHEM LETT JI Bioorg. Med. Chem. Lett. PD NOV 1 PY 2013 VL 23 IS 21 BP 5810 EP 5813 DI 10.1016/j.bmcl.2013.08.113 PG 4 WC Chemistry, Medicinal; Chemistry, Organic SC Pharmacology & Pharmacy; Chemistry GA 232HH UT WOS:000325483000009 PM 24064501 ER PT J AU Windsor, MA Valk, PL Xu, S Banerjee, S Marnett, LJ AF Windsor, Matthew A. Valk, Pieter L. Xu, Shu Banerjee, Surajit Marnett, Lawrence J. TI Exploring the molecular determinants of substrate-selective inhibition of cyclooxygenase-2 by lumiracoxib SO BIOORGANIC & MEDICINAL CHEMISTRY LETTERS LA English DT Article DE COX-2; Substrate-selective inhibition; Lumiracoxib; Endocannabinoids; Prostaglandins ID ENDOCANNABINOID OXYGENATION; STRUCTURAL BASIS; ANTIINFLAMMATORY AGENTS; BINDING; ACID; MECHANISM; COX-2 AB Lumiracoxib is a substrate-selective inhibitor of endocannabinoid oxygenation by cyclooxygenase-2 (COX-2). We assayed a series of lumiracoxib derivatives to identify the structural determinants of substrate-selective inhibition. The hydrogen-bonding potential of the substituents at the ortho positions of the aniline ring dictated the potency and substrate selectivity of the inhibitors. The presence of a 5'-methyl group on the phenylacetic acid ring increased the potency of molecules with a single ortho substituent. Des-fluorolumiracoxib (2) was the most potent and selective inhibitor of endocannabinoid oxygenation. The positioning of critical substituents in the binding site was identified from a 2.35 angstrom crystal structure of lumiracoxib bound to COX-2. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved. C1 [Windsor, Matthew A.; Valk, Pieter L.; Xu, Shu; Marnett, Lawrence J.] Vanderbilt Univ, Sch Med, AB Hancock Jr Mem Lab Canc Res,Vanderbilt Inst Ch, Dept Biochem,Dept Chem,Dept Pharmacol,Ctr Mol Tox, Nashville, TN 37212 USA. [Windsor, Matthew A.; Valk, Pieter L.; Xu, Shu; Marnett, Lawrence J.] Vanderbilt Univ, Sch Med, Vanderbilt Ingram Canc Ctr, Nashville, TN 37212 USA. [Banerjee, Surajit] Cornell Univ, Northeastern Collaborat Access Team, Dept Chem & Chem Biol, Ithaca, NY USA. [Banerjee, Surajit] Argonne Natl Lab, Argonne, IL 60439 USA. RP Marnett, LJ (reprint author), Vanderbilt Univ, Sch Med, AB Hancock Jr Mem Lab Canc Res,Vanderbilt Inst Ch, Dept Biochem,Dept Chem,Dept Pharmacol,Ctr Mol Tox, Nashville, TN 37212 USA. EM larry.marnett@vanderbilt.edu RI Xu, Shu/K-6089-2013; OI Xu, Shu/0000-0002-6876-7991; Banerjee, Surajit/0000-0002-9414-7163 FU National Institutes of Health [CA89450, GM15431] FX This research was supported by research grants from the National Institutes of Health (CA89450 and GM15431). NR 22 TC 6 Z9 6 U1 2 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0960-894X EI 1464-3405 J9 BIOORG MED CHEM LETT JI Bioorg. Med. Chem. Lett. PD NOV 1 PY 2013 VL 23 IS 21 BP 5860 EP 5864 DI 10.1016/j.bmcl.2013.08.097 PG 5 WC Chemistry, Medicinal; Chemistry, Organic SC Pharmacology & Pharmacy; Chemistry GA 232HH UT WOS:000325483000020 PM 24060487 ER PT J AU Hartley, DM Nelson, NP Arthur, RR Barboza, P Collier, N Lightfoot, N Linge, JP van der Goot, E Mawudeku, A Madoff, LC Vaillant, L Walters, R Yangarber, R Mantero, J Corley, CD Brownstein, JS AF Hartley, D. M. Nelson, N. P. Arthur, R. R. Barboza, P. Collier, N. Lightfoot, N. Linge, J. P. van der Goot, E. Mawudeku, A. Madoff, L. C. Vaillant, L. Walters, R. Yangarber, R. Mantero, J. Corley, C. D. Brownstein, J. S. TI An overview of Internet biosurveillance SO CLINICAL MICROBIOLOGY AND INFECTION LA English DT Review DE Digital disease detection; digital epidemiology; electronic surveillance; epidemic intelligence; event-based surveillance; Internet-based surveillance; participatory epidemiology; web-based text mining ID INFECTIOUS-DISEASE DETECTION; PUBLIC-HEALTH SURVEILLANCE; OUTBREAK; CLASSIFICATION; INTELLIGENCE; SYSTEM; DENGUE; MEDIA; WEB AB Internet biosurveillance utilizes unstructured data from diverse web-based sources to provide early warning and situational awareness of public health threats. The scope of source coverage ranges from local media in the vernacular to international media in widely read languages. Internet biosurveillance is a timely modality that is available to government and public health officials, healthcare workers, and the public and private sector, serving as a real-time complementary approach to traditional indicator-based public health disease surveillance methods. Internet biosurveillance also supports the broader activity of epidemic intelligence. This overview covers the current state of the field of Internet biosurveillance, and provides a perspective on the future of the field. C1 [Hartley, D. M.] Georgetown Univ, Sch Med, Imaging Sci & Informat Syst Ctr, Washington, DC 20057 USA. [Hartley, D. M.] Georgetown Univ, Med Ctr, Dept Microbiol & Immunol, Washington, DC 20057 USA. [Nelson, N. P.] Georgetown Univ, Med Ctr, Dept Pediat, Washington, DC 20057 USA. [Arthur, R. R.] Ctr Dis Control & Prevent, Ctr Global Hlth, Atlanta, GA USA. [Barboza, P.; Vaillant, L.] French Inst Publ Hlth Surveillance InVS, Int Dept, St Maurice, France. [Collier, N.] Natl Inst Informat, Tokyo, Japan. [Collier, N.] European Bioinformat Inst, Cambridge, England. [Lightfoot, N.] CORDS, Lyon, France. [Linge, J. P.; van der Goot, E.] Commiss European Communities, Joint Res Ctr, I-21020 Ispra, Italy. [Mawudeku, A.] PHAC, Ottawa, ON, Canada. [Madoff, L. C.] Univ Massachusetts, Sch Med, Worcester, MA USA. [Walters, R.; Corley, C. D.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Yangarber, R.] Univ Helsinki, Dept Comp Sci, SF-00510 Helsinki, Finland. [Mantero, J.] European Ctr Dis Prevent & Control, Surveillance & Response Support Unit, Stockholm, Sweden. [Brownstein, J. S.] Harvard Univ, Harvard Mit Div Hlth Sci & Technol, Childrens Hosp Boston, Sch Med, Boston, MA USA. RP Hartley, DM (reprint author), Georgetown Univ, Med Ctr, Imaging Sci & Informat Syst Ctr, 2115 Wisconsin Ave NW,Suite 603, Washington, DC 20057 USA. EM hartley@isis.georgetown.edu RI Yangarber, Roman/H-4762-2016; OI , David/0000-0003-2589-2538 NR 48 TC 19 Z9 19 U1 6 U2 34 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1198-743X EI 1469-0691 J9 CLIN MICROBIOL INFEC JI Clin. Microbiol. Infect. PD NOV PY 2013 VL 19 IS 11 BP 1006 EP 1013 DI 10.1111/1469-0691.12273 PG 8 WC Infectious Diseases; Microbiology SC Infectious Diseases; Microbiology GA 233JK UT WOS:000325564400012 PM 23789639 ER PT J AU Sun, WC Ostien, JT Salinger, AG AF Sun, WaiChing Ostien, Jakob T. Salinger, Andrew G. TI A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain SO INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS LA English DT Article DE poromechanics; stabilized procedure; multiphase medium; bubble functions ID EMBEDDED ANALYSIS CAPABILITIES; MANAGING SOFTWARE COMPLEXITY; SATURATED POROUS-MEDIA; COMPRESSIBLE CONSTITUENTS; MULTIPHYSICS SIMULATION; NODAL INTEGRATION; EFFECTIVE STRESS; PLASTICITY; EQUATIONS; DIFFUSION AB An adaptively stabilized finite element scheme is proposed for a strongly coupled hydro-mechanical problem in fluid-infiltrating porous solids at finite strain. We first present the derivation of the poromechanics model via mixture theory in large deformation. By exploiting assumed deformation gradient techniques, we develop a numerical procedure capable of simultaneously curing the multiple-locking phenomena related to shear failure, incompressibility imposed by pore fluid, and/or incompressible solid skeleton and produce solutions that satisfy the inf-sup condition. The template-based generic programming and automatic differentiation (AD) techniques used to implement the stabilized model are also highlighted. Finally, numerical examples are given to show the versatility and efficiency of this model. Copyright (c) 2013 John Wiley & Sons, Ltd. C1 [Sun, WaiChing; Ostien, Jakob T.] Sandia Natl Labs, Livermore, CA USA. [Salinger, Andrew G.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Sun, WC (reprint author), Sandia Natl Labs, Mail Stop 9912,7011 East Ave, Livermore, CA USA. EM wsun@sandia.gov RI Sun, WaiChing/A-2638-2009; Ostien, Jakob/K-7053-2012 OI Sun, WaiChing/0000-0002-3078-5086; FU U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX Thanks are due to Joshua A. White, Alejandro Mota, and James W. Foulk III for their helpful discussion and Eric Phipps for his significant contributions to Albany and the AD infrastructure. We also thank the reviewer for the constructive comment and suggestions. The Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 56 TC 25 Z9 25 U1 0 U2 11 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0363-9061 EI 1096-9853 J9 INT J NUMER ANAL MET JI Int. J. Numer. Anal. Methods Geomech. PD NOV PY 2013 VL 37 IS 16 BP 2755 EP 2788 DI 10.1002/nag.2161 PG 34 WC Engineering, Geological; Materials Science, Multidisciplinary; Mechanics SC Engineering; Materials Science; Mechanics GA 233DM UT WOS:000325545800008 ER PT J AU Mortensen, NP Boisen, N Carey, S Kennel, SJ Fowlkes, JD Doktycz, MJ Nataro, JP Allison, DP AF Mortensen, Ninell P. Boisen, Nadia Carey, Sonia Kennel, Stephen J. Fowlkes, Jason D. Doktycz, Mitchel J. Nataro, James P. Allison, David P. TI Enteroaggregative Escherichia coli: surface protein dispersin increases bacterial uptake of ciprofloxacin SO INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS LA English DT Article DE Enteroaggregative Escherichia coli; Dispersin; Ciprofloxacin; Radiolabelled; Antibiotic susceptibility ID CHILDREN; ADHERENCE; OUTBREAK; DIARRHEA AB Enteroaggregative Escherichia coli (EAEC) causes diarrhoea. The antibiotic of choice for treating EAEC infections is ciprofloxacin. EAEC differs from other subgroups of pathogenic E. coli by having a surface protein, dispersin, which has previously been shown to play an important role in ciprofloxacin susceptibility for EAEC model strain 042. To investigate further the role of dispersin in ciprofloxacin susceptibility, minimum inhibitory concentrations (MICs) were determined for 25 clinical isolates, including 15 with dispersin and 10 without. Dispersin-positive strains had a lower MIC than dispersin-negative strains. The mechanism of action behind this observation may be caused by dispersin (i) increasing the bacteria-antibiotic interaction or (ii) facilitating ciprofloxacin access to the intracellular target, DNA gyrase/topoisomerase. To test the role of dispersin in ciprofloxacin sensitivity, EAEC 042 as well as its isogenic mutants, dispersin mutant (042aap) and a mutant in the transporter apparatus gene aatA, believed to be involved in dispersin transport to the bacterial surface (042aatA), were utilised. As predicted, 042 had a higher sensitivity to ciprofloxacin than 042aap, but it was also found that the MIC of 042aatA was similar to 042aap. To address the question of the role of dispersin in ciprofloxacin susceptibility, the concentration of ciprofloxacin bound in biofilms of 042 and 042aap was quantified by treating bacteria with radiolabelled 2-C-14-ciprofloxacin. The results showed that dispersin did not increase the amount of bound ciprofloxacin as a function of biomass, indicating instead that dispersin facilitates ciprofloxacin access to the intracellular target leading to increased antibiotic susceptibility. (c) 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved. C1 [Mortensen, Ninell P.; Carey, Sonia; Doktycz, Mitchel J.; Allison, David P.] Oak Ridge Natl Lab, Biosci Div, Biol & Nanoscale Syst Grp, Oak Ridge, TN 37831 USA. [Mortensen, Ninell P.] RTI Int, Ctr Aerosol & Nanomat Engn, Res Triangle Pk, NC 27709 USA. [Boisen, Nadia; Nataro, James P.] Univ Virginia, Sch Med, Dept Pediat, Charlottesville, VA 22908 USA. [Kennel, Stephen J.] Univ Tennessee, Grad Sch Med, Dept Med, Preclin & Diagnost Mol Imaging Lab, Knoxville, TN 37920 USA. [Fowlkes, Jason D.] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA. [Allison, David P.] Univ Tennessee, Dept Biochem & Cellular & Mol Biol, Knoxville, TN 37932 USA. RP Allison, DP (reprint author), Univ Tennessee, M407 Walters Life Sci,1414 Cumberland Ave, Knoxville, TN 37996 USA. EM allisond@utk.edu RI Doktycz, Mitchel/A-7499-2011 OI Doktycz, Mitchel/0000-0003-4856-8343 FU Department of Energy (DOE) Office of Biological and Environmental Sciences [DEAC05-00OR22725]; Lundbeckfonden, Denmark FX The authors acknowledge research support from the Department of Energy (DOE) Office of Biological and Environmental Sciences [contract no. DEAC05-00OR22725]. Financial support from Lundbeckfonden, Denmark (to NPM). NR 18 TC 0 Z9 0 U1 0 U2 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0924-8579 EI 1872-7913 J9 INT J ANTIMICROB AG JI Int. J. Antimicrob. Agents PD NOV PY 2013 VL 42 IS 5 BP 462 EP 465 DI 10.1016/j.ijantimicag.2013.07.007 PG 4 WC Infectious Diseases; Microbiology; Pharmacology & Pharmacy SC Infectious Diseases; Microbiology; Pharmacology & Pharmacy GA 232DI UT WOS:000325469600015 PM 24011504 ER PT J AU Chabaud, BM Brock, JS Williams, TO Smith, BM AF Chabaud, Brandon M. Brock, Jerry S. Williams, Todd O. Smith, Brandon M. TI Benchmark analytic solution of the dynamic response of a spherical shell composed of a transverse isotropic elastic material SO INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES LA English DT Article DE Dynamic sphere problem; Transverse isotropic; Benchmark analytic solution AB Developing benchmark analytic solutions for problems in solid and fluid mechanics is very important for the purpose of testing and verifying computational physics codes. In order to test the numerical results of physics codes, we consider the geometrically linear dynamic sphere problem. We present an exact solution for the dynamic response of a spherical shell composed of a linearly elastic material exhibiting transverse isotropic symmetry. The solution takes the form of an infinite series of eigenfunctions. We demonstrate, both qualitatively and quantitatively, the convergence of the computed benchmark solution under spatial, temporal, and eigenmode refinement. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Chabaud, Brandon M.; Brock, Jerry S.; Williams, Todd O.; Smith, Brandon M.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. RP Chabaud, BM (reprint author), Los Alamos Natl Lab, MS B-259, Los Alamos, NM 87545 USA. EM chabaud@lanl.gov; jsbrock@lanl.gov; oakhill@lanl.gov; bmsmith@lanl.gov NR 11 TC 2 Z9 2 U1 0 U2 4 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0020-7683 EI 1879-2146 J9 INT J SOLIDS STRUCT JI Int. J. Solids Struct. PD NOV PY 2013 VL 50 IS 24 BP 4089 EP 4097 DI 10.1016/j.ijsolstr.2013.08.019 PG 9 WC Mechanics SC Mechanics GA 236ZO UT WOS:000325838200029 ER PT J AU Meyer, B Kuehl, JV Deutschbauer, AM Arkin, AP Stahl, DA AF Meyer, Birte Kuehl, Jennifer V. Deutschbauer, Adam M. Arkin, Adam P. Stahl, David A. TI Flexibility of Syntrophic Enzyme Systems in Desulfovibrio Species Ensures Their Adaptation Capability to Environmental Changes SO JOURNAL OF BACTERIOLOGY LA English DT Article ID SUBSP VULGARIS HILDENBOROUGH; SULFATE-REDUCING BACTERIA; METHANOSPIRILLUM-HUNGATEI; ELECTRON-TRANSFER; METHANOGENIC ARCHAEA; HETERODISULFIDE REDUCTASE; FORMATE DEHYDROGENASE; ESCHERICHIA-COLI; HMC OPERON; SYNTROPHOBACTER-FUMAROXIDANS AB The mineralization of organic matter in anoxic environments relies on the cooperative activities of hydrogen producers and consumers obligately linked by interspecies metabolite exchange in syntrophic consortia that may include sulfate reducing species such as Desulfovibrio. To evaluate the metabolic flexibility of syntrophic Desulfovibrio to adapt to naturally fluctuating methanogenic environments, we studied Desulfovibrio alaskensis strain G20 grown in chemostats under respiratory and syntrophic conditions with alternative methanogenic partners, Methanococcus maripaludis and Methanospirillum hungatei, at different growth rates. Comparative whole-genome transcriptional analyses, complemented by G20 mutant strain growth experiments and physiological data, revealed a significant influence of both energy source availability (as controlled by dilution rate) and methanogen on the electron transfer systems, ratios of interspecies electron carriers, energy generating systems, and interspecies physical associations. A total of 68 genes were commonly differentially expressed under syntrophic versus respiratory lifestyle. Under low-energy (low-growth-rate) conditions, strain G20 further had the capacity to adapt to the metabolism of its methanogenic partners, as shown by its differing gene expression of enzymes involved in the direct metabolic interactions (e. g., periplasmic hydrogenases) and the ratio shift in electron carriers used for interspecies metabolite exchange (hydrogen/formate). A putative monomeric [Fe-Fe] hydrogenase and Hmc (high-molecular-weight-cytochrome c(3)) complex-linked reverse menaquinone (MQ) redox loop become increasingly important for the reoxidation of the lactate-/pyruvate oxidation-derived redox pair, DsrC(red) and Fd(red), relative to the Qmo-MQ-Qrc (quinone-interacting membrane-bound oxidoreductase; quinone-reducing complex) loop. Together, these data underscore the high enzymatic and metabolic adaptive flexibility that likely sustains Desulfovibrio in naturally fluctuating methanogenic environments. C1 [Meyer, Birte; Stahl, David A.] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. [Kuehl, Jennifer V.; Deutschbauer, Adam M.; Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Stahl, DA (reprint author), Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA. EM dastahl@u.washington.edu RI Arkin, Adam/A-6751-2008 OI Arkin, Adam/0000-0002-4999-2931 FU Office of Science, Office of Biological and Environmental Research, U.S. Department of Energy [DE-AC02-05CH11231] FX This study, conducted by ENIGMA-Ecosystems and Networks Integrated with Genes and Molecular Assemblies (http://enigma.lbl.gov), a Scientific Focus Area Program at the LBNL, was supported by the Office of Science, Office of Biological and Environmental Research, U.S. Department of Energy, under contract DE-AC02-05CH11231. NR 87 TC 10 Z9 10 U1 4 U2 36 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD NOV PY 2013 VL 195 IS 21 BP 4900 EP 4914 DI 10.1128/JB.00504-13 PG 15 WC Microbiology SC Microbiology GA 235XI UT WOS:000325755400014 PM 23974031 ER PT J AU Bendall, ML Luong, K Wetmore, KM Blow, M Korlach, J Deutschbauer, A Malmstrom, RR AF Bendall, Matthew L. Luong, Khai Wetmore, Kelly M. Blow, Matthew Korlach, Jonas Deutschbauer, Adam Malmstrom, Rex R. TI Exploring the Roles of DNA Methylation in the Metal-Reducing Bacterium Shewanella oneidensis MR-1 SO JOURNAL OF BACTERIOLOGY LA English DT Article ID ESCHERICHIA-COLI CHROMOSOME; DIFFERENTIAL EXPRESSION ANALYSIS; GENE-EXPRESSION; SINGLE-MOLECULE; REPLICATION INITIATION; BIOCONDUCTOR PACKAGE; PROTEIN INTERACTIONS; ADENINE METHYLATION; EPIGENETIC SWITCH; GENOME SEQUENCE AB We performed whole-genome analyses of DNA methylation in Shewanella oneidensis MR-1 to examine its possible role in regulating gene expression and other cellular processes. Single-molecule real-time (SMRT) sequencing revealed extensive methylation of adenine (N6mA) throughout the genome. These methylated bases were located in five sequence motifs, including three novel targets for type I restriction/modification enzymes. The sequence motifs targeted by putative methyltranferases were determined via SMRT sequencing of gene knockout mutants. In addition, we found that S. oneidensis MR-1 cultures grown under various culture conditions displayed different DNA methylation patterns. However, the small number of differentially methylated sites could not be directly linked to the much larger number of differentially expressed genes under these conditions, suggesting that DNA methylation is not a major regulator of gene expression in S. oneidensis MR-1. The enrichment of methylated GATC motifs in the origin of replication indicates that DNA methylation may regulate genome replication in a manner similar to that seen in Escherichia coli. Furthermore, comparative analyses suggest that many Gammaproteobacteria, including all members of the Shewanellaceae family, may also utilize DNA methylation to regulate genome replication. C1 [Bendall, Matthew L.; Blow, Matthew; Malmstrom, Rex R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, DOE Joint Genome Inst, Genom Div, Berkeley, CA 94720 USA. [Luong, Khai; Korlach, Jonas] Pacific Biosci, Menlo Pk, CA USA. [Wetmore, Kelly M.; Deutschbauer, Adam] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. RP Malmstrom, RR (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, DOE Joint Genome Inst, Genom Div, Berkeley, CA 94720 USA. EM rrmalmstrom@lbl.gov RI Blow, Matthew/G-6369-2012 OI Blow, Matthew/0000-0002-8844-9149 FU US Department of Energy Office of Science [DE-AC02-05CH11231] FX The DOE Joint Genome Institute was supported by the US Department of Energy Office of Science under contract number DE-AC02-05CH11231. NR 71 TC 12 Z9 15 U1 5 U2 31 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0021-9193 EI 1098-5530 J9 J BACTERIOL JI J. Bacteriol. PD NOV PY 2013 VL 195 IS 21 BP 4966 EP 4974 DI 10.1128/JB.00935-13 PG 9 WC Microbiology SC Microbiology GA 235XI UT WOS:000325755400020 PM 23995632 ER PT J AU Lu, JX Xu, YS Buchko, GW Shaw, WJ AF Lu, J. X. Xu, Y. S. Buchko, G. W. Shaw, W. J. TI Mineral Association Changes the Secondary Structure and Dynamics of Murine Amelogenin SO JOURNAL OF DENTAL RESEARCH LA English DT Article DE solid-state NMR; biomineralization; enamel; amelogenin; structural characterization; nanosphere ID SOLID-STATE NMR; LIGHT-SCATTERING; ENAMEL; PROTEIN; HYDROXYAPATITE; LRAP; BIOMINERALIZATION; TERMINUS; SURFACES; PEPTIDE AB Amelogenin is one of the key protein constituents responsible for the exquisite organization of the calcium phosphate crystals in enamel. Amelogenin forms into nanospheres in solution, while its association with hydroxyapatite is also essential to enamel development. Structural information of full-length amelogenin in either of these physiologically important forms has the potential to provide mechanistic information; however, these data are limited because of the difficulty of determining the structure of large protein complexes and proteins bound to surfaces. To obtain structural insights into amelogenin during these early stages of enamel development, we used a lysine-specific C-13-, N-15-labeled sample of murine amelogenin to provide insight into the structure of the hydroxyapatite (HAP)-binding domains of the protein. A combination of one-and two-dimensional solid-state NMR experiments was used to obtain molecular-level insights into the secondary structure and dynamics of full-length amelogenin within a nanosphere-gel and on the surface of HAP. Regions of amelogenin that appear to be primarily random coil in the nanosphere-gel adopt a -strand structure and are less mobile with HAP binding, indicative of a structural switch upon binding that may be important in the role of amelogenin in enamel development. C1 [Lu, J. X.; Xu, Y. S.; Buchko, G. W.; Shaw, W. J.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Shaw, WJ (reprint author), Pacific NW Natl Lab, Richland, WA 99352 USA. EM wendy.shaw@pnnl.gov RI Buchko, Garry/G-6173-2015 OI Buchko, Garry/0000-0002-3639-1061 FU NIH-NIDCR [DE-015347]; U.S. DOE Biological and Environmental Research program FX This research was supported by NIH-NIDCR Grant DE-015347. The research was performed at Pacific Northwest National Laboratory, a facility operated by Battelle for the U.S. DOE, with a portion of it performed at the W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the U.S. DOE Biological and Environmental Research program. The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article. NR 26 TC 8 Z9 8 U1 1 U2 19 PU SAGE PUBLICATIONS INC PI THOUSAND OAKS PA 2455 TELLER RD, THOUSAND OAKS, CA 91320 USA SN 0022-0345 EI 1544-0591 J9 J DENT RES JI J. Dent. Res. PD NOV PY 2013 VL 92 IS 11 BP 1000 EP 1004 DI 10.1177/0022034513504929 PG 5 WC Dentistry, Oral Surgery & Medicine SC Dentistry, Oral Surgery & Medicine GA 235AC UT WOS:000325685300010 PM 24130249 ER PT J AU Jackson, DG Looney, BB Craig, RR Thompson, MC Kmetz, TF AF Jackson, Dennis G. Looney, Brian B. Craig, Robert R. Thompson, Martha C. Kmetz, Thomas F. TI Development of Chemical Reduction and Air Stripping Processes to Remove Mercury from Wastewater SO JOURNAL OF ENVIRONMENTAL ENGINEERING LA English DT Article DE Mercury; Pollutants; Permits; Waste treatment plants; Chemical treatment; Volatilization; Oxidation AB This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping with a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C approximate to 250ng/L). The baseline air stripping process was ineffective in removing mercury from the water that exceeded a proposed limit of 51ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6h at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64-297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated mercury removal. Competing electron acceptors likely inhibited the reaction at the lower doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large volumes of water to emerging part-per-trillion regulatory standards for mercury. (C) 2013 American Society of Civil Engineers. C1 [Jackson, Dennis G.; Looney, Brian B.] Savannah River Natl Lab, Aiken, SC 29808 USA. [Craig, Robert R.; Thompson, Martha C.; Kmetz, Thomas F.] Savannah River Nucl Solut LLC, Aiken, SC 29808 USA. RP Jackson, DG (reprint author), Savannah River Natl Lab, Bldg 773-42A, Aiken, SC 29808 USA. EM dennis.jackson@srnl.doe.gov FU U.S. Department of Energy [DE-AC09-96SR18500, DE-AC09-08SR22470] FX The information contained in this paper was developed during the course of work under Contract No. DE-AC09-96SR18500 and DE-AC09-08SR22470 with the U.S. Department of Energy. NR 21 TC 3 Z9 4 U1 2 U2 24 PU ASCE-AMER SOC CIVIL ENGINEERS PI RESTON PA 1801 ALEXANDER BELL DR, RESTON, VA 20191-4400 USA SN 0733-9372 EI 1943-7870 J9 J ENVIRON ENG JI J. Environ. Eng.-ASCE PD NOV 1 PY 2013 VL 139 IS 11 BP 1336 EP 1342 DI 10.1061/(ASCE)EE.1943-7870.0000761 PG 7 WC Engineering, Environmental; Engineering, Civil; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 234KT UT WOS:000325643400003 ER PT J AU Wilkes, M Srinivasan, M Cole, G Tardif, R Richardson, LC Plescia, M AF Wilkes, Michael Srinivasan, Malathi Cole, Galen Tardif, Richard Richardson, Lisa C. Plescia, Marcus TI Discussing Uncertainty and Risk in Primary Care: Recommendations of a Multi-Disciplinary Panel Regarding Communication Around Prostate Cancer Screening SO JOURNAL OF GENERAL INTERNAL MEDICINE LA English DT Article DE prostate cancer screening; men's health; shared decision-making; communication; funding priorities; risk ID CONTINUING MEDICAL-EDUCATION; SHARED DECISION-MAKING; SERVICES TASK-FORCE; GENERAL-PRACTICE; HEALTH; AIDS; INTERVENTIONS; STRATEGIES; FRAMEWORK; BENEFITS AB Shared decision making improves value-concordant decision-making around prostate cancer screening (PrCS). Yet, PrCS discussions remain complex, challenging and often emotional for physicians and average-risk men. In July 2011, the Centers for Disease Control and Prevention convened a multidisciplinary expert panel to identify priorities for funding agencies and development groups to promote evidence-based, value-concordant decisions between men at average risk for prostate cancer and their physicians. Two-day multidisciplinary expert panel in Atlanta, Georgia, with structured discussions and formal consensus processes. Sixteen panelists represented diverse specialties (primary care, medical oncology, urology), disciplines (sociology, communication, medical education, clinical epidemiology) and market sectors (patient advocacy groups, Federal funding agencies, guideline-development organizations). Panelists used guiding interactional and evaluation models to identify and rate strategies that might improve PrCS discussions and decisions for physicians, patients and health systems/society. Efficacy was defined as the likelihood of each strategy to impact outcomes. Effort was defined as the relative amount of effort to develop, implement and sustain the strategy. Each strategy was rated (1-7 scale; 7 = maximum) using group process software (ThinkTank(TM)). For each group, intervention strategies were grouped as financial/regulatory, educational, communication or attitudinal levers. For each strategy, barriers were identified. Highly ranked strategies to improve value-concordant shared decision-making (SDM) included: changing outpatient clinic visit reimbursement to reward SDM; development of evidence-based, technology-assisted, point-of-service tools for physicians and patients; reframing confusing prostate cancer screening messages; providing pre-visit decision support interventions; utilizing electronic health records to promote benchmarking/best practices; providing additional training for physicians around value-concordant decision-making; and using re-accreditation to promote training. Conference outcomes present an expert consensus of strategies likely to improve value-concordant prostate cancer screening decisions. In addition, the methodology used to obtain agreement provides a model of successful collaboration around this and future controversial cancer screening issues, which may be of interest to funding agencies, educators and policy makers. C1 [Wilkes, Michael; Srinivasan, Malathi] Univ Calif Davis, Sch Med, Sacramento, CA 95817 USA. [Cole, Galen; Richardson, Lisa C.; Plescia, Marcus] Ctr Dis Control & Prevent, Natl Ctr Chron Dis Prevent & Hlth Promot, Atlanta, GA USA. [Tardif, Richard] Oak Ridge Inst Sci & Educ, Oak Ridge, TN USA. RP Wilkes, M (reprint author), Univ Calif Davis, Sch Med, 1 Shield Ave, Sacramento, CA 95817 USA. EM mswilkes@ucdavis.edu FU Oak Ridge Institute for Science and Education (ORISE) under Centers for Disease Control and Prevention FX Funding for and coordination of the workgroup was provided by the Oak Ridge Institute for Science and Education (ORISE) under contract with the Centers for Disease Control and Prevention. NR 52 TC 4 Z9 4 U1 2 U2 17 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0884-8734 EI 1525-1497 J9 J GEN INTERN MED JI J. Gen. Intern. Med. PD NOV PY 2013 VL 28 IS 11 BP 1410 EP 1419 DI 10.1007/s11606-013-2419-z PG 10 WC Health Care Sciences & Services; Medicine, General & Internal SC Health Care Sciences & Services; General & Internal Medicine GA 236DQ UT WOS:000325774800011 PM 23649782 ER PT J AU Seaver, M Chattopadhyay, A Papandreou-Suppapola, A Kim, SB Kovvali, N Farrar, CR Triplett, MH Derriso, MM AF Seaver, Mark Chattopadhyay, Aditi Papandreou-Suppapola, Antonia Kim, Seung B. Kovvali, Narayan Farrar, Charles R. Triplett, Matt H. Derriso, Mark M. TI Workshop on transitioning structural health monitoring technology to military platforms SO JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES LA English DT Article DE Structural health monitoring; control; embedded intelligence AB Interest in structural health monitoring/management is attracting lots of attention across a spectrum that ranges from sensor developers to end users. The US military, in particular, is making a concerted effort to implement condition-based maintenance as a means of reducing the life cycle costs and improving availability of various weapon platforms. Despite this effort, the majority of installed health monitoring systems are limited to rotating machinery such as engines, transmissions, and other gear boxes. The goal of this workshop was to bring together representatives from military, industry, and academia covering the spectrum from hardware developers to end users and platform managers and have them discuss issues that must be addressed as structural health monitoring systems mature to the point that managers will implement them. This article describes those discussions and highlights important issues that need to be addressed as structural health monitoring systems make the transition from laboratory scale demonstrations to real-world use. C1 [Seaver, Mark] Naval Res Lab, Washington, DC 20375 USA. [Chattopadhyay, Aditi; Kim, Seung B.] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. [Papandreou-Suppapola, Antonia; Kovvali, Narayan] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA. [Kim, Seung B.] United Technol Res Ctr, E Hartford, CT 06118 USA. [Farrar, Charles R.] Los Alamos Natl Lab, Engn Inst, Los Alamos, NM 87545 USA. [Triplett, Matt H.] AMSRD AMR PS AM, Redstone Arsenal, AL 35898 USA. [Derriso, Mark M.] Air Force Res Lab, Air Vehicles Directorate, Wright Patterson AFB, OH 45433 USA. RP Seaver, M (reprint author), Naval Res Lab, Code 5673, Washington, DC 20375 USA. EM mark.seaver.ctr@nrl.navy.mil RI Lin, Zhao/C-8319-2011; OI Lin, Zhao/0000-0002-6131-9723; Farrar, Charles/0000-0001-6533-6996 FU Office of Naval Research; Air Force Office of Scientific Research; Air Force Research Laboratory; Army Aviation and Missile Research Development and Engineering Center FX This research was funded by Ignacio Perez (Office of Naval Research), David Stargel (Air Force Office of Scientific Research), Mark Derriso (Air Force Research Laboratory), and Matt Triplett (Army Aviation and Missile Research Development and Engineering Center). NR 8 TC 1 Z9 1 U1 0 U2 7 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1045-389X EI 1530-8138 J9 J INTEL MAT SYST STR JI J. Intell. Mater. Syst. Struct. PD NOV PY 2013 VL 24 IS 17 SI SI BP 2063 EP 2073 DI 10.1177/1045389X12440753 PG 11 WC Materials Science, Multidisciplinary SC Materials Science GA 235HF UT WOS:000325707100002 ER PT J AU Luo, CT Mohanty, S Chattopadhyay, A AF Luo, Chuntao Mohanty, Subhasish Chattopadhyay, Aditi TI Fatigue damage prediction of cruciform specimen under biaxial loading SO JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES LA English DT Article DE Al alloys; structural health monitoring; multiscale modeling ID CONSTITUTIVE RELATIONS; CRYSTAL PLASTICITY; HEALTH; PROGNOSIS; CRITERION; STRAIN AB This article investigates an energy-based multiscale damage criterion for a biaxial loading case. The criterion incorporates crystal plasticity at the microscale that produces a damage tensor, representing the local damage state derived from a least squares method. The damage tensor, driven by modification of strain energy density on each potential slip system, is averaged from local to grain level to obtain a damage vector for each grain. The Kreisselmeier-Steinhauser function, which produces an envelope function for multiobjective optimization is adopted to predict the failure of a meso-representative volume element, and to calculate the damage index for meso-representative volume element. A weighted averaging method is also used to simultaneously provide the most potential cracking directions for meso-representative volume element. In order to verify that the developed method is capable of producing an acceptable prediction of fatigue damage initiation and growth under multiaxial loading conditions, a cruciform specimen is used for biaxial loading. A biaxial torsion MTS machine is used to conduct fatigue tests on the cruciform specimen. Numerical fatigue analysis is also performed based on the multiscale fatigue damage criterion. Comparing the simulation results with the experimental data shows that the multiscale fatigue damage model can provide acceptable prediction of failure of meso-representative volume element and crack direction. C1 [Luo, Chuntao; Chattopadhyay, Aditi] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. [Mohanty, Subhasish] Argonne Natl Lab, Div Nucl Engn, Argonne, IL 60439 USA. RP Luo, CT (reprint author), Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA. EM ctluo@asu.edu FU Department of Defense, AFOSR Multidisciplinary University Research Initiation (MURI) [FA95550-06-1-0309] FX This research was supported by the Department of Defense, AFOSR Multidisciplinary University Research Initiation (MURI) (grant no. FA95550-06-1-0309), under Technical Monitor Dr David S Stargel. NR 28 TC 1 Z9 1 U1 2 U2 14 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1045-389X EI 1530-8138 J9 J INTEL MAT SYST STR JI J. Intell. Mater. Syst. Struct. PD NOV PY 2013 VL 24 IS 17 SI SI BP 2084 EP 2096 DI 10.1177/1045389X12455726 PG 13 WC Materials Science, Multidisciplinary SC Materials Science GA 235HF UT WOS:000325707100004 ER PT J AU Yamada, Y Chavas, LMG Igarashi, N Hiraki, M Wakatsuki, S Matsugaki, N AF Yamada, Yusuke Chavas, Leonard M. G. Igarashi, Noriyuki Hiraki, Masahiko Wakatsuki, Soichi Matsugaki, Naohiro TI Improvements toward highly accurate diffraction experiments at the macromolecular micro-crystallography beamline BL-17A SO JOURNAL OF SYNCHROTRON RADIATION LA English DT Article DE macromolecular crystallography; beamline ID MICROCRYSTALLOGRAPHY AB BL-17A is a macromolecular crystallography beamline dedicated to diffraction experiments conducted using micro-crystals and structure determination studies using a lower energy X-ray beam. In these experiments, highly accurate diffraction intensity measurements are definitively important. Since this beamline was constructed, the beamline apparatus has been improved in several ways to enable the collection of accurate diffraction data. The stability of the beam intensities at the sample position was recently improved by modifying the monochromator. The diffractometer has also been improved. A new detector table was installed to prevent distortions in the diffractometer's base during the repositioning of the diffractometer detector. A new pinhole system and an on-axis viewing system were installed to improve the X-ray beam profile at the sample position and the centering of tiny crystal samples. C1 [Yamada, Yusuke; Chavas, Leonard M. G.; Igarashi, Noriyuki; Hiraki, Masahiko; Wakatsuki, Soichi; Matsugaki, Naohiro] High Energy Accelerator Res Org, Inst Mat Struct Sci, Tsukuba, Ibaraki 3050801, Japan. [Wakatsuki, Soichi] SLAC, Menlo Pk, CA 94025 USA. [Wakatsuki, Soichi] Stanford Univ, Sch Med, Stanford, CA 94305 USA. RP Yamada, Y (reprint author), High Energy Accelerator Res Org, Inst Mat Struct Sci, 1-1 Oho, Tsukuba, Ibaraki 3050801, Japan. EM yusuke.yamada@kek.jp FU Ministry of Education, Culture, Sports, Science and Technology (MEXT); MEXT [C-1]; MEXT FX The authors would like to thank the staff at the Photon Factory macromolecular crystallography beamline for their suggestions and support toward improving and operating the beamline. This work was partly supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the Targeted Proteins Research Program (C-1) of the MEXT and Platform for Drug Discovery, Informatics and Structural Life Science from the MEXT. NR 7 TC 0 Z9 0 U1 1 U2 3 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 0909-0495 EI 1600-5775 J9 J SYNCHROTRON RADIAT JI J. Synchrot. Radiat. PD NOV PY 2013 VL 20 BP 938 EP 942 DI 10.1107/S0909049513022875 PN 6 PG 5 WC Instruments & Instrumentation; Optics; Physics, Applied SC Instruments & Instrumentation; Optics; Physics GA 234JK UT WOS:000325639200026 PM 24121344 ER PT J AU Konopka, A Plymale, AE Carvajal, DA Lin, XJ McKinley, JP AF Konopka, Allan Plymale, Andrew E. Carvajal, Denny A. Lin, Xueju McKinley, James P. TI Environmental Controls on the Activity of Aquifer Microbial Communities in the 300 Area of the Hanford Site SO MICROBIAL ECOLOGY LA English DT Article ID LIMITING BACTERIAL-GROWTH; ALGA CHLORELLA SP.; DESULFOVIBRIO-DESULFURICANS; LEUCINE INCORPORATION; ORGANIC-CARBON; GREEN-ALGA; URANIUM; REDUCTION; TOXICITY; SOIL AB Aquifer microbes in the 300 Area of the Hanford Site in southeastern Washington State, USA, are located in an oligotrophic environment and are periodically exposed to U(VI) concentrations that can range up to 10 mu M in small sediment fractures. Assays of H-3-leucine incorporation indicated that both sediment-associated and planktonic microbes were metabolically active, and that organic C was growth-limiting in the sediments. Although bacteria suspended in native groundwater retained high activity when exposed to 100 mu M U(VI), they were inhibited by U(VI) < 1 mu M in synthetic groundwater that lacked added bicarbonate. Chemical speciation modeling suggested that positively charged species and particularly (UO2)(3)(OH)(5) (+) rose in concentration as more U(VI) was added to synthetic groundwater, but that carbonate complexes dominated U(VI) speciation in natural groundwater. U toxicity was relieved when increasing amounts of bicarbonate were added to synthetic groundwater containing 4.5 mu M U(VI). Pertechnetate, an oxyanion that is another contaminant of concern at the Hanford Site, was not toxic to groundwater microbes at concentrations up to 125 mu M. C1 [Konopka, Allan; Plymale, Andrew E.] Pacific NW Natl Lab, Microbiol Grp, Richland, WA 99352 USA. [Carvajal, Denny A.] Florida Int Univ, Appl Res Ctr, Miami, FL 33174 USA. [Lin, Xueju] Georgia Inst Technol, Sch Biol, Atlanta, GA 30332 USA. [McKinley, James P.] Pacific NW Natl Lab, Geochem Grp, Richland, WA 99352 USA. RP Konopka, A (reprint author), Pacific NW Natl Lab, Microbiol Grp, POB 999,MSIN J4-18, Richland, WA 99352 USA. EM allan.konopka@pnnl.gov FU US Department of Energy (DOE), Office of Biological and Environmental Research, as part of Subsurface Biogeochemistry Research Program's Scientific Focus Area and Integrated Field-Scale Research Challenge at the Pacific Northwest National Laboratory (PNNL); DOE [DE-AC06-76RLO 1830] FX We thank Tom Resch and Dean Moore for their assistance with chemical analyses and groundwater sampling. This research was supported by the US Department of Energy (DOE), Office of Biological and Environmental Research, as part of Subsurface Biogeochemistry Research Program's Scientific Focus Area and Integrated Field-Scale Research Challenge at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle under contract DE-AC06-76RLO 1830. NR 54 TC 4 Z9 4 U1 2 U2 27 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0095-3628 EI 1432-184X J9 MICROB ECOL JI Microb. Ecol. PD NOV PY 2013 VL 66 IS 4 BP 889 EP 896 DI 10.1007/s00248-013-0283-3 PG 8 WC Ecology; Marine & Freshwater Biology; Microbiology SC Environmental Sciences & Ecology; Marine & Freshwater Biology; Microbiology GA 236EW UT WOS:000325778500017 PM 24061343 ER PT J AU Wu, DL Potluri, N Kim, Y Rastinejad, F AF Wu, Dalei Potluri, Nalini Kim, Youngchang Rastinejad, Fraydoon TI Structure and Dimerization Properties of the Aryl Hydrocarbon Receptor PAS-A Domain SO MOLECULAR AND CELLULAR BIOLOGY LA English DT Article ID CRYSTAL-STRUCTURE; DIOXIN RECEPTOR; TRANSCRIPTION FACTOR; NUCLEAR TRANSLOCATOR; SIGNAL-TRANSDUCTION; DROSOPHILA PERIOD; LIGAND-BINDING; SENSOR; MECHANISM; ARNT AB The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that binds to xenobiotics and responds by regulating the expression of gene programs required for detoxification and metabolism. AHR and its heterodimerization partner aryl hydrocarbon receptor nuclear translocator (ARNT) belong to the basic helix-loop-helix (bHLH)-PER-ARNT-SIM (PAS) family of transcription factors. Here we report the 2.55-angstrom-resolution crystal structure of the mouse AHR PAS-A domain, which represents the first AHR-derived protein structure. The AHR PAS-A domain forms a helix-swapped homodimer in the crystal and also in solution. Through a detailed mutational analysis of all interface residues, we identified several hydrophobic residues that are important for AHR dimerization and function. Our crystallographic visualization of AHR PAS-A dimerization leads us to propose a mode of heterodimerization with ARNT that is supported by both biochemical and cell-based data. Our studies also highlight the residues of other mammalian bHLH-PAS proteins that are likely involved in their homo- or heterodimerization. C1 [Wu, Dalei; Potluri, Nalini; Rastinejad, Fraydoon] Sanford Burnham Med Res Inst, Metab Signaling & Dis Program, Orlando, FL USA. [Kim, Youngchang] Argonne Natl Lab, Biosci Div, Struct Biol Ctr, Argonne, IL 60439 USA. RP Rastinejad, F (reprint author), Sanford Burnham Med Res Inst, Metab Signaling & Dis Program, Orlando, FL USA. EM frastinejad@sanfordburnham.org NR 45 TC 16 Z9 17 U1 0 U2 13 PU AMER SOC MICROBIOLOGY PI WASHINGTON PA 1752 N ST NW, WASHINGTON, DC 20036-2904 USA SN 0270-7306 EI 1098-5549 J9 MOL CELL BIOL JI Mol. Cell. Biol. PD NOV PY 2013 VL 33 IS 21 BP 4346 EP 4356 DI 10.1128/MCB.00698-13 PG 11 WC Biochemistry & Molecular Biology; Cell Biology SC Biochemistry & Molecular Biology; Cell Biology GA 235XS UT WOS:000325756800016 PM 24001774 ER PT J AU Louis, T Naess, S Das, S Dunkley, J Sherwin, B AF Louis, Thibaut Naess, Sigurd Das, Sudeep Dunkley, Joanna Sherwin, Blake TI Lensing simulation and power spectrum estimation for high-resolution CMB polarization maps SO MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY LA English DT Article DE cosmic background radiation ID MICROWAVE BACKGROUND POLARIZATION AB We present efficient algorithms for cosmic microwave background (CMB) lensing simulation and power spectrum estimation for flat-sky CMB polarization maps. We build a pure B-mode estimator to remedy E to B leakage due to partial sky coverage. We show that our estimators are unbiased, and consistent with the projected errors. We demonstrate our algorithm using simulated observations of small sky patches with realistic noise and weights for upcoming CMB polarization experiments. C1 [Louis, Thibaut; Naess, Sigurd; Dunkley, Joanna] Univ Oxford, Sub Dept Astrophys, Oxford OX1 3RH, England. [Das, Sudeep] Argonne Natl Lab, Argonne, IL 60439 USA. [Sherwin, Blake] Princeton Univ, Joseph Henry Labs Phys, Princeton, NJ 08544 USA. RP Louis, T (reprint author), Univ Oxford, Sub Dept Astrophys, Keble Rd, Oxford OX1 3RH, England. EM Thibaut.Louis@astro.ox.ac.uk FU David Schramm Fellowship at Argonne National Laboratory; Berkeley Center for Cosmological Physics fellowship; ERC [259505] FX We thank David Spergel and Jeff McMahon for useful discussions and Mike Nolta for providing simulated coverage for the upcoming ACTPol experiment. SD acknowledges support from the David Schramm Fellowship at Argonne National Laboratory and the Berkeley Center for Cosmological Physics fellowship. Funding from ERC grant 259505 supports JD, TL and SN. NR 29 TC 8 Z9 8 U1 0 U2 2 PU OXFORD UNIV PRESS PI OXFORD PA GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND SN 0035-8711 EI 1365-2966 J9 MON NOT R ASTRON SOC JI Mon. Not. Roy. Astron. Soc. PD NOV PY 2013 VL 435 IS 3 BP 2040 EP 2047 DI 10.1093/mnras/stt1421 PG 8 WC Astronomy & Astrophysics SC Astronomy & Astrophysics GA 236DA UT WOS:000325773000015 ER PT J AU Hunke, EC Hebert, DA Lecomte, O AF Hunke, Elizabeth C. Hebert, David A. Lecomte, Olivier TI Level-ice melt ponds in the Los Alamos sea ice model, CICE SO OCEAN MODELLING LA English DT Article DE Sea ice; Albedo; Melt ponds; Ridging; Modeling; Arctic ID SPECTRAL ALBEDO; EVOLUTION; SNOW; TRANSPORT; DYNAMICS; AEROSOLS; SUMMER AB A new meltpond parameterization has been developed for the CICE sea ice model, taking advantage of the level ice tracer available in the model. The ponds evolve according to physically based process descriptions, assuming a depth-area ratio for changes in pond volume. A novel aspect of the new scheme is that the ponds are carried as tracers on the level ice area of each thickness category, thus limiting their spatial extent based on the simulated sea ice topography. This limiting is meant to approximate the horizontal drainage of melt water into depressions in ice floes. Simulated melt pond processes include collection of liquid melt water and rain into ponds, drainage through permeable sea ice or over the edges of floes, infiltration of snow by pond water, and refreezing of ponds. Furthermore, snow that falls on top of ponds whose top surface has refrozen blocks radiation from penetrating into the ponds and sea ice below. Along with a control simulation, we present a range of sensitivity tests to parameters related to each subprocess described by the parameterization. With the exception of one parameter that alters the albedo of snow-covered pond ice, results are not highly sensitive to these parameters unless an entire process is removed. The snow simulation itself is critical, because the volume of snow deposition and rate of snow melt largely determine the timing and extent of the simulated melt ponds. Nevertheless, compensating effects moderate the model's sensitivity to precipitation changes. For instance, infiltration of the snow by melt water postpones the appearance of ponds and the subsequent acceleration of melting through albedo feedback, while snow on top of refrozen pond ice also reduces the ponds' effect on the radiation budget. By construction, the model simulation of level and ridged ice is also important for this parameterization. We find that as sea ice thins, either through time or when comparing sensitivity tests, the area of level ice increases. This leads to an enhanced thinning feedback in the model, because a greater ice area may be exposed to ponding and further thinning due to lowered albedo. (C) 2012 Elsevier Ltd. All rights reserved. C1 [Hunke, Elizabeth C.] Los Alamos Natl Lab, Div Theoret, Fluid Dynam & Solid Mech Grp T3, Los Alamos, NM 87545 USA. [Hebert, David A.] Naval Res Lab, Div Oceanog, Stennis Space Ctr, MS USA. [Lecomte, Olivier] Catholic Univ Louvain, Earth & Life Inst, Georges Lemaitre Ctr Earth & Climate Res, B-1348 Louvain, Belgium. RP Hunke, EC (reprint author), Los Alamos Natl Lab, MS-B216, Los Alamos, NM 87545 USA. EM eclare@lanl.gov FU Earth System Modeling and Regional and Global Climate Modeling programs of the Office of Biological and Environmental Research within the U.S. Department of Energy's Office of Science; National Nuclear Security Administration of the DOE [DE-AC52-06NA25396] FX This modeling venture originated as a student project during the 2011 IARC Summer School on "Modeling of the Arctic Climate System,'' held at the International Arctic Research Center in Fair-banks, Alaska, in May 2011. We extend special thanks to John Walsh and Vladimir Alexeev for organizing this event. Hunke is supported by the Earth System Modeling and Regional and Global Climate Modeling programs of the Office of Biological and Environmental Research within the U.S. Department of Energy's Office of Science; Los Alamos National Laboratory is operated by the National Nuclear Security Administration of the DOE under Contract No. DE-AC52-06NA25396. D. Hebert is supported by NRL's 6.1 Core Program "Determining the Impact of Sea Ice Thickness on the Arctic's Naturally Changing Environment (DISTANCE)'' (Program Element PE 0602435N). O. Lecomte is partly supported by the European Commission's 7th Framework Programme, under Grant Agreement No. 226520, COMBINE Project (Comprehensive Modelling of the Earth System for Better Climate Prediction and Projection). NR 43 TC 18 Z9 19 U1 0 U2 19 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 1463-5003 EI 1463-5011 J9 OCEAN MODEL JI Ocean Model. PD NOV PY 2013 VL 71 BP 26 EP 42 DI 10.1016/j.ocemod.2012.11.008 PG 17 WC Meteorology & Atmospheric Sciences; Oceanography SC Meteorology & Atmospheric Sciences; Oceanography GA 234LP UT WOS:000325646000004 ER PT J AU Wei, MY Liu, HH Li, LC Wang, EY AF Wei, Ming-Yao Liu, Hui-Hai Li, Lian-Chong Wang, En-Yuan TI A Fractal-Based Model for Fracture Deformation Under Shearing and Compression SO ROCK MECHANICS AND ROCK ENGINEERING LA English DT Article DE Shear behavior; Dilation; Fracture aperture; Scale effect; Fractal; Degradation of asperities ID JOINT ROUGHNESS COEFFICIENTS; ROCK JOINTS; MECHANICAL-PROPERTIES; ASPERITY DEGRADATION; SURFACE-ROUGHNESS; FLOW PATTERNS; CYCLIC SHEAR; BEHAVIOR; STRENGTH; DAMAGE AB This study presents an improved model for calculating mechanical deformation of individual fractures subject to shearing and compression processes. Considering that the fracture-surface roughness can be characterized by fractals, a relationship between asperity angle and size of a fracture with fractal surfaces is derived. In addition, plastic work is employed to account for the effects of fracture-asperity degradation during the shearing process. Based on these developments, a scale-dependent relationship between shear stress and displacement is proposed, and also a formulation to calculate fracture aperture during shearing and compression processes is developed, by relating normal displacement to shear displacement for fractal surfaces. The usefulness of this model is demonstrated by agreements between calculated results and observations from laboratory experiments under different test conditions. C1 [Wei, Ming-Yao; Wang, En-Yuan] China Univ Min & Technol, Sch Safety Engn, Xuzhou 221116, Peoples R China. [Wei, Ming-Yao; Liu, Hui-Hai; Li, Lian-Chong] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. [Li, Lian-Chong] Dalian Univ Technol, Sch Civil Engn, Dalian 116024, Peoples R China. RP Liu, HH (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA. EM hhliu@lbl.gov FU DOE [DE-AC02-05CH11231] FX The initial version of the paper was carefully reviewed by Drs. Antonio Rinaldi and Dan Hawkes from Lawrence Berkeley National Laboratory (LBNL). The work for LBNL authors was performed under DOE contract DE-AC02-05CH11231. NR 65 TC 3 Z9 4 U1 1 U2 29 PU SPRINGER WIEN PI WIEN PA SACHSENPLATZ 4-6, PO BOX 89, A-1201 WIEN, AUSTRIA SN 0723-2632 EI 1434-453X J9 ROCK MECH ROCK ENG JI Rock Mech. Rock Eng. PD NOV PY 2013 VL 46 IS 6 BP 1539 EP 1549 DI 10.1007/s00603-013-0367-x PG 11 WC Engineering, Geological; Geosciences, Multidisciplinary SC Engineering; Geology GA 236UW UT WOS:000325825900018 ER PT J AU Chen, CQ Hu, G Florando, JN Kumar, M Hemker, KJ Ramesh, KT AF Chen, C. Q. Hu, G. Florando, J. N. Kumar, M. Hemker, K. J. Ramesh, K. T. TI Interplay of dislocation slip and deformation twinning in tantalum at high strain rates SO SCRIPTA MATERIALIA LA English DT Article DE bcc tantalum; Dynamic deformation; Dominant shear deformation; Twinning; Slip-twinning interplay ID METALS; CRYSTALS AB Deformation twinning was introduced in Ta through dynamic compression shear and uniaxial compression at high strain rates up to similar to 10(4) s(-1) at low temperatures. Under dominant shear, the specimens showed continuous strain softening at high rates, and the deformation twins showed anomalous and highly irregular morphologies. Under compression, deformation twins appeared as typical straight and thin plates accompanied by considerable strain hardening in mechanical response. The results are correlated with the interplay of slip and deformation twinning unique for body-centered cubic metals. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. C1 [Chen, C. Q.; Hu, G.; Hemker, K. J.; Ramesh, K. T.] Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA. [Chen, C. Q.; Hu, G.; Hemker, K. J.; Ramesh, K. T.] Johns Hopkins Univ, Hopkins Extreme Mat Inst, Baltimore, MD 21218 USA. [Florando, J. N.; Kumar, M.] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA. RP Chen, CQ (reprint author), Johns Hopkins Univ, Dept Mech Engn, Baltimore, MD 21218 USA. EM cqchen01@gmail.com RI Hu, Guangli/F-2461-2011; Chen, Changqiang/G-6310-2010 OI Hu, Guangli/0000-0003-4751-1628; FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC5207NA27344] FX This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC5207NA27344. NR 20 TC 6 Z9 6 U1 0 U2 46 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2013 VL 69 IS 10 BP 709 EP 712 DI 10.1016/j.scriptamat.2013.07.010 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 234SY UT WOS:000325665800002 ER PT J AU DeAngelis, KM Chivian, D Fortney, JL Arkin, AP Simmons, B Hazen, TC Silver, WL AF DeAngelis, Kristen M. Chivian, Dylan Fortney, Julian L. Arkin, Adam P. Simmons, Blake Hazen, Terry C. Silver, Whendee L. TI Changes in microbial dynamics during long-term decomposition in tropical forests SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Anaerobic decomposition; Fluctuating redox potential; Small subunit ribosomal rRNA gene; community analysis; Hydrolytic and oxidative enzyme activity; Population dynamics; Microbial succession ID LEAF-LITTER DECOMPOSITION; SOIL ORGANIC-MATTER; NITROGEN DEPOSITION; COMMUNITY STRUCTURE; FUNGAL COMMUNITIES; SPECIES RICHNESS; IRON OXIDATION; GLOBAL-SCALE; CARBON; BACTERIAL AB Humid tropical forest soils are characterized by low and fluctuating redox, conditions which are thought to inhibit organic matter degradation by microbes. However, evidence suggests that soil microbial communities are adapted to the redox conditions in these ecosystems. In this study we tested the hypothesis that soil oxygen (02) availability as an index of redox conditions structures patterns in litter decomposition and associated microbial community dynamics over space and time in humid tropical forests. We conducted a two year decomposition experiment on a common litter substrate in four sites along an elevational gradient with well described climate and redox dynamics. Microbial community sequencing, potential enzyme activities, and litter chemistry measurements were made on litter and soil to determine the relationship between soil and litter communities and biogeochemistry. Decomposition was slowest in the upper elevation site, which was the wettest and had the lowest average soil 02 availability. However, soil hydrolytic and litter phenol oxidase activities were greatest at this site. Small subunit ribosomal RNA genes were sequenced with universal primers for bacteria, archaea and eukaryotes, yielding 40,850 unique taxa after quality filtering and clustering. Across all sites, microbial succession was observed as increasing litter richness, converging bacterial community profiles, and diverging fungal community profiles. Initial decomposers (1-4 weeks) included many r-selected bacteria, including Alpha-, Beta- and Gammaproteobacteria, Clostridia, Bacteroidetes. We also found evidence of anaerobic fungi such as Cryptococcus, as well as the plant-associated Phialocephala and Phyllachora species, suggesting that anaerobic and plant-associated fungi are prevalent later in decomposition in soils with low and fluctuating redox conditions. Because of the striking similarities between sites in functional potential despite differences in wet tropical soil decomposing communities and litter chemistry, we suggest that future climate-driven disruptions to redox fluctuations could significantly alter the terrestrial carbon (C) cycle in tropical forests. (C) 2013 Elsevier Ltd. All rights reserved. C1 [DeAngelis, Kristen M.] Univ Massachusetts, Dept Microbiol, Amherst, MA 01003 USA. [DeAngelis, Kristen M.; Simmons, Blake; Hazen, Terry C.] DOE Joint BioEnergy Inst, Deconstruct Div, Emeryville, CA USA. [Chivian, Dylan; Arkin, Adam P.] DOE Joint BioEnergy Inst, Div Technol, Emeryville, CA USA. [Chivian, Dylan; Arkin, Adam P.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Phys Biosci Div, Berkeley, CA 94720 USA. [Fortney, Julian L.; Hazen, Terry C.] Univ Tennessee, Dept Civil & Environm Engn, Knoxville, TN 37996 USA. [Simmons, Blake] Sandia Natl Labs, Livermore, CA USA. [Hazen, Terry C.; Silver, Whendee L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Ecol, Berkeley, CA 94720 USA. [Hazen, Terry C.] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA. [Silver, Whendee L.] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA. RP DeAngelis, KM (reprint author), Univ Massachusetts, Dept Microbiol, 639 N Pleasant St,203 Morrill IVN, Amherst, MA 01003 USA. EM kristen@post.harvard.edu RI Arkin, Adam/A-6751-2008; Hazen, Terry/C-1076-2012; OI Arkin, Adam/0000-0002-4999-2931; Hazen, Terry/0000-0002-2536-9993; DeAngelis, Kristen/0000-0002-5585-4551; Simmons, Blake/0000-0002-1332-1810 FU Office of Science, Office of Biological and Environmental Research, of the U. S. Department of Energy [DE-AC02-05CH11231]; NSF [DEB-0620910, EAR-08199072, DEB-0842385]; International Institute of Tropical Forestry (IITF); NSF Luquillo Critical Zone Observatory [EAR-0722476]; Office of Science of the U.S. Department of Energy [DE-AC02-05CH11231] FX This work was conducted by the Joint BioEnergy Institute and was supported by the Office of Science, Office of Biological and Environmental Research, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231. The research was also partially supported by Contract No. DEB-0620910 from NSF to the Institute of Tropical Ecosystem Studies, University of Puerto Rico, and the International Institute of Tropical Forestry (IITF) as part of the Luquillo LTER program, and by NSF Grants EAR-08199072 and DEB-0842385 to WLS, and the NSF Luquillo Critical Zone Observatory (EAR-0722476). We would also like to thank Gail Hazen for helping with materials construction, and Dr. Ken Vogel of the USDA for switchgrass used in this study. Susannah Tringe, Tijana Glavina Del Rio, and Stephanie Malfatti of the Joint Genome Institute are acknowledged for their assistance in obtaining pyrosequencing data, which was conducted by the Joint Genome Institute and is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. NR 89 TC 14 Z9 17 U1 16 U2 192 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD NOV PY 2013 VL 66 BP 60 EP 68 DI 10.1016/j.soilbio.2013.06.010 PG 9 WC Soil Science SC Agriculture GA 234SU UT WOS:000325665400009 ER PT J AU Sullivan, TS McBride, MB Thies, JE AF Sullivan, Tarah S. McBride, Murray B. Thies, Janice E. TI Soil bacterial and archaeal community composition reflects high spatial heterogeneity of pH, bioavailable Zn, and Cu in a metalliferous peat soil SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Soil bacteria; Soil archaea; Sulfur; T-RFLP; Muck soils; Salix puipurea L ID HEAVY-METAL CONTAMINATION; MICROBIAL COMMUNITY; DIFFERENT GENOTYPES; T-RFLP; ZINC; DIVERSITY; CADMIUM; SALIX; PHYTOREMEDIATION; ACCUMULATION AB Because Zn, Cd, and Cu are chalcophilic (sulfur-loving) heavy-metals, understanding the spatial variability in soil chemical variables and relationships with soil microbial community composition will lead to a better understanding of their cycling and availability. In this study, we evaluate field-scale spatial variability in soil chemical parameters and relationships with the soil microbial community composition in the Elba muck soils of Western NY which are drained annually. In May, 2005, soil samples were collected along a series of transects in order to capture spatial heterogeneity across the site (approximate field dimensions: 36 x 90 m). Soils were collected at two depths, 0-15 and 15-30 cm, and analyzed for % H2O, pH, total, as well as 0.01 M CaCl2-extractable S, Zn, Cd, and Cu. Soil Bacteria and Archaea community composition were characterized by terminal restriction fragment length polymorphism (T-RFLP) analysis. Field hedgerow willow (Salix purpurea L) tissues were also analyzed for total S. Zn, Cd, and Cu. Spatial variability across the field was vast within all measured parameters. Soil pH, total soil S, extractable soil Cu and Zn exerted the greatest influence on the composition of the soil microbial communities, and willow tissue concentrations reflected bioavailable fractions of soil heavy metals. Our results demonstrate the intricate link between soil chemistry and soil microbial community composition over a field scale in organic soils with high soil S and heavy metals content. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Sullivan, Tarah S.; McBride, Murray B.; Thies, Janice E.] Cornell Univ, Dept Crop & Soil Sci, Ithaca, NY 14850 USA. RP Sullivan, TS (reprint author), Oak Ridge Natl Lab, Biosci Div, Bldg 1505,MS 6038, Oak Ridge, TN 37831 USA. EM tarah_sullivan@yahoo.com FU NSF [EAR-0311934]; Cornell University Andrew Mellon Award; Cornell University Department of Crop and Soil Sciences Scholarship FX We gratefully acknowledge Dr. Art Lembo, Cornell University, for his extensive help with GIS mapping procedures and remote image acquisition, as well as Steve Culman, Thanwalee Sooksa-nguan, the Thies and Buckley laboratories at Cornell University for assistance with data management and analysis. This research was supported by NSF Award No. EAR-0311934, the Cornell University Andrew Mellon Award, the Cornell University Department of Crop and Soil Sciences Scholarship. NR 53 TC 6 Z9 7 U1 10 U2 97 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD NOV PY 2013 VL 66 BP 102 EP 109 DI 10.1016/j.soilbio.2013.06.021 PG 8 WC Soil Science SC Agriculture GA 234SU UT WOS:000325665400013 ER PT J AU van Groenigen, KJ Forristal, D Jones, M Smyth, N Schwartz, E Hungate, B Dijkstra, P AF van Groenigen, Kees Jan Forristal, Dermot Jones, Mike Smyth, Niamh Schwartz, Egbert Hungate, Bruce Dijkstra, Paul TI Using metabolic tracer techniques to assess the impact of tillage and straw management on microbial carbon use efficiency in soil SO SOIL BIOLOGY & BIOCHEMISTRY LA English DT Article DE Tillage; Stable isotopes; Carbon; Soil microbial biomass; Metabolic tracer probing; Pentose phosphate pathway; Glycolysis; TCA cycle; Carbon use efficiency ID ORGANIC-MATTER; SUBSTRATE UTILIZATION; N-MINERALIZATION; GLUCOSE; BIOMASS; GROWTH; SEQUESTRATION; FERTILIZATION; LIMITATION; PHYSIOLOGY AB Tillage practices and straw management can affect soil microbial activities with consequences for soil organic carbon (C) dynamics. Microorganisms metabolize soil organic C and in doing so gain energy and building blocks for biosynthesis, and release CO2 to the atmosphere. Insight into the response of microbial metabolic processes and C use efficiency (CUE; microbial C produced per substrate C utilized) to management practices may therefore help to predict long term changes in soil C stocks. In this study, we assessed the effects of reduced (RT) and conventional tillage (CT) on the microbial central C metabolic network, using soil samples from a 12-year-old field experiment in an Irish winter wheat cropping system. Straw was removed from half of the RT and CT plots after harvest or incorporated into the soil in the other half, resulting in four treatment combinations. We added 1-C-13 and 2,3-C-13 pyruvate and 1-C-13 and U-C-13 glucose as metabolic tracer isotopomers to composite soil samples taken at two depths (0-15 cm and 15-30 cm) from each of the treatments and used the rate of position-specific respired (CO2)-C-13 to parameterize a metabolic model. Model outcomes were then used to calculate CUE of the microbial community. Whereas the composite samples differed in CUE, the changes were small, with values ranging between 0.757 and 0.783 across treatments and soil depth. Increases in CUE were associated with a reduced tricarboxylic acid cycle and reductive pentose phosphate pathway activity and increased consumption of metabolic intermediates for biosynthesis. Our results suggest that RT and straw incorporation do not substantially affect CUE. (C) 2013 Elsevier Ltd. All rights reserved. C1 [van Groenigen, Kees Jan; Jones, Mike; Smyth, Niamh] Univ Dublin Trinity Coll, Dept Bot, Dublin 2, Ireland. [van Groenigen, Kees Jan; Schwartz, Egbert; Hungate, Bruce; Dijkstra, Paul] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA. [van Groenigen, Kees Jan; Schwartz, Egbert; Hungate, Bruce; Dijkstra, Paul] No Arizona Univ, Ecosyst Sci & Soc Ctr, Flagstaff, AZ 86011 USA. [Forristal, Dermot] TEAGASC, Crops Res Ctr, Carlow, Ireland. RP van Groenigen, KJ (reprint author), No Arizona Univ, Dept Biol Sci, Box 5640, Flagstaff, AZ 86011 USA. EM cjvangroenigen@nau.edu OI van groenigen, kees jan/0000-0002-9165-3925 FU IRC Marie Curie research grant; NSF grant [DEB-1146449]; NSF MRI [DBI-0723250, 1126840] FX Kees Jan van Groenigen is supported by an IRC Marie Curie research grant. This research is further supported by an NSF grant (DEB-1146449) to Paul Dijkstra and NSF MRI (DBI-0723250 and 1126840) to George Koch and Tom Whitham. A big "thank you" to Rebecca Mau for helping out with the gas sample analyses, and to Steven Allison and Stefano Manzoni for their personal communication on soil C modeling. NR 41 TC 2 Z9 2 U1 7 U2 92 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0038-0717 J9 SOIL BIOL BIOCHEM JI Soil Biol. Biochem. PD NOV PY 2013 VL 66 BP 139 EP 145 DI 10.1016/j.soilbio.2013.07.002 PG 7 WC Soil Science SC Agriculture GA 234SU UT WOS:000325665400017 ER PT J AU Novakov, T Rosen, H AF Novakov, Tica Rosen, Hal TI The Black Carbon Story: Early History and New Perspectives SO AMBIO LA English DT Review DE Atmospheric aerosols; History; Black carbon; Climate ID AIR-POLLUTION; OPTICAL-ABSORPTION; AEROSOL-PARTICLES; PHOTOELECTRON-SPECTROSCOPY; ANTHROPOGENIC AEROSOLS; CHEMICAL COMPOSITION; ATMOSPHERIC AEROSOL; RADIATIVE-TRANSFER; PASADENA AEROSOL; UNITED-STATES AB A number of recent studies have suggested that black carbon (BC), the light-absorbing fraction of soot, is next to CO2 one of the strongest contributors to the global climate change. BC heats the air, darkens the snow and ice surfaces and could contribute to the melting of Arctic ice, snowpacks, and glaciers. Although soot is the oldest known pollutant its importance in climate modification has only been recently recognized. In this article, we trace the historical developments over about three decades that changed the view of the role of BC in the environment, from a pollutant of marginal importance to one of the main climate change agents. We also discuss some of the reasons for the initial lack of interest in BC and the subsequent rigorous research activity on the role of aerosols in climate change. C1 [Novakov, Tica] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Rosen, Hal] Hitachi Res San Jose, San Jose, CA 95135 USA. RP Novakov, T (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Bldg 70,Rm 215, Berkeley, CA 94720 USA. EM tnovakov@lbl.gov; hal.rosen@hitachigst.com FU National Science Foundation; US Department of Energy FX The work at Lawrence Berkeley Laboratory summarized above has been supported by the National Science Foundation and by the US Department of Energy. NR 73 TC 8 Z9 9 U1 6 U2 114 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 0044-7447 J9 AMBIO JI Ambio PD NOV PY 2013 VL 42 IS 7 BP 840 EP 851 DI 10.1007/s13280-013-0392-8 PG 12 WC Engineering, Environmental; Environmental Sciences SC Engineering; Environmental Sciences & Ecology GA 230QK UT WOS:000325357000005 PM 23558981 ER PT J AU Musaev, OR Driver, MS Sutter, EA Caruso, AN Wrobel, JM Kruger, MB AF Musaev, O. R. Driver, M. S. Sutter, E. A. Caruso, A. N. Wrobel, J. M. Kruger, M. B. TI Influence of the liquid environment on the products formed from the laser ablation of tin SO APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING LA English DT Article ID LITHIUM-ION BATTERIES; GOLD NANOPARTICLES; AQUEOUS-SOLUTION; NANOCRYSTALS; PERFORMANCE; SURFACE AB Tin targets immersed in ethanol and distilled water were ablated using a UV pulsed laser. The ablated products were investigated with transmission and scanning electron microscopy, X-ray photoelectron spectroscopy, and energy dispersive spectroscopy. For ablation in both liquids, the size distribution of the produced particles was bimodal, with particles having diameters of similar to 10 nm and similar to 1 mu m. Formation mechanisms that caused the bimodal distribution are suggested. Ablation in ethanol resulted in nanoparticles that were found to be single crystals of tin coated with tin hydroxide (Sn(OH)(2)) while ablation in water yielded nanoparticles that were polycrystalline tin dioxide (SnO2) throughout. C1 [Musaev, O. R.; Driver, M. S.; Caruso, A. N.; Wrobel, J. M.; Kruger, M. B.] Univ Missouri, Dept Phys & Astron, Kansas City, MO 64110 USA. [Sutter, E. A.] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA. RP Musaev, OR (reprint author), Univ Missouri, Dept Phys & Astron, 5110 Rockhill Rd, Kansas City, MO 64110 USA. EM musaevo@umkc.edu FU National Science Foundation [DMR-0605493, DMR-0923166]; US Department of Energy [DE-AC02-98CH10886] FX This work was partially supported by National Science Foundation Contracts DMR-0605493 and DMR-0923166 and was partially performed at the Center for Functional Nanomaterials, Brookhaven National Laboratory, under the auspices of the US Department of Energy, under Contract No. DE-AC02-98CH10886. NR 41 TC 6 Z9 6 U1 0 U2 24 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0947-8396 J9 APPL PHYS A-MATER JI Appl. Phys. A-Mater. Sci. Process. PD NOV PY 2013 VL 113 IS 2 BP 355 EP 359 DI 10.1007/s00339-013-7635-1 PG 5 WC Materials Science, Multidisciplinary; Physics, Applied SC Materials Science; Physics GA 227MA UT WOS:000325115900016 ER PT J AU Varshney, D Sumant, AV Resto, O Mendoza, F Quintero, KP Ahmadi, M Weiner, BR Morell, G AF Varshney, Deepak Sumant, Anirudha V. Resto, Oscar Mendoza, Frank Quintero, Kenneth Perez Ahmadi, Majid Weiner, Brad R. Morell, Gerardo TI Single-step route to hierarchical flower-like carbon nanotube clusters decorated with ultrananomystalline diamond SO CARBON LA English DT Article ID FIELD-EMISSION PROPERTIES; CHEMICAL-VAPOR-DEPOSITION; ULTRANANOCRYSTALLINE DIAMOND; NANOCRYSTALLINE DIAMOND; CRYSTALLINE DIAMOND; FILMS; NANODIAMOND; HYBRID; GROWTH; RAMAN AB Two distinct forms of carbon, ultra nanocrystalline diamond (UNCD) and carbon nanotubes (CNTs), were synthesized in a single-step process via hot filament chemical vapor deposition for the first time. The synthesized structure displays unique hierarchical flower-like clusters of vertically aligned carbon nanotubes with diameters ranging from 30 to 50 nm conformally coated with UNCD having a grain size in the range of 3-5 nm. The seeding employed a mixture of diamond and nickel nano powders dispersed in a polymer melt, which promoted the self-assembly of sp(2) and sp(3) carbon into hierarchical structures. The UNCD decorated tubes show good field emission properties with low turn-on field, large field enhancement factor, and an excellent current stability over a period of over 400 h. The ability to synthesize flower like structures of CNTs decorated with UNCD by a single-step process opens up new possibilities for the fabrication of robust nanoelectronic devices. C1 [Varshney, Deepak; Resto, Oscar; Mendoza, Frank; Weiner, Brad R.; Morell, Gerardo] Univ Puerto Rico, Inst Funct Nanomat, San Juan, PR 00931 USA. [Varshney, Deepak; Resto, Oscar; Mendoza, Frank; Quintero, Kenneth Perez; Ahmadi, Majid; Morell, Gerardo] Univ Puerto Rico, Dept Phys, San Juan, PR 00936 USA. [Sumant, Anirudha V.; Quintero, Kenneth Perez] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA. [Weiner, Brad R.] Univ Puerto Rico, Dept Chem, San Juan, PR 00936 USA. RP Varshney, D (reprint author), Univ Puerto Rico, Inst Funct Nanomat, San Juan, PR 00931 USA. EM deepvar20@gmail.com RI Morell, Gerardo/H-6300-2011; OI Morell, Gerardo/0000-0003-4787-2239; Ahmadi, Majid/0000-0003-2321-3060 FU Institute for Functional Nanomaterials (NSF) [0701525]; PR NASA EPSCoR (NASA [NNX13AB22A] FX This research was carried out under the auspices of the Institute for Functional Nanomaterials (NSF Grant 0701525) and PR NASA EPSCoR (NASA Cooperative Agreement NNX13AB22A). This work was performed, in part, at the Center for Nanoscale Materials, a US Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DEAC02-06CH11357. We also want to acknowledge the artistry of Alexander Figueroa who prepared the cover image. NR 41 TC 13 Z9 13 U1 3 U2 44 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD NOV PY 2013 VL 63 BP 253 EP 262 DI 10.1016/j.carbon.2013.06.078 PG 10 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 223XI UT WOS:000324845400027 ER PT J AU Pathak, S Raney, JR Daraio, C AF Pathak, Siddhartha Raney, Jordan R. Daraio, Chiara TI Effect of morphology on the strain recovery of vertically aligned carbon nanotube arrays: An in situ study SO CARBON LA English DT Article ID ANODIC ALUMINUM-OXIDE; MECHANICAL-PROPERTIES; DYNAMIC NANOINDENTATION; UNIAXIAL COMPRESSION; METALLIC FOAMS; BEHAVIOR; GROWTH; INDENTATION; MODULI; VISCOELASTICITY AB We report on the distinctly different mechanical responses of two vertically aligned carbon nanotube (VACNT) films, subjected to large displacement (up to 70 mu m) flat punch indentations. The VACNT films were synthesized using the same chemical vapor deposition (CVD) technique but for varying reaction times, which resulted in their different thicknesses (480 and 160 mu m, respectively) and morphologies. In situ tests reveal that the shorter, more aligned VACNT film deforms via an instantaneous vertical shearing of the material directly underneath the indenter tip, which is manifested as a rapid displacement burst in the load-displacement response when tested at rates of 100 nm/s and above. The resultant buckles were of a more permanent nature leading to their low recoverability (22-40%). In contrast, we find the thicker, more tortuous VACNT film to show a higher (similar to 80%) recovery and a more compliant response. These differences in the mechanical response of the VACNTs are discussed in the framework of foam-like deformation with a particular emphasis on their different morphological features, namely density and tortuosity. Published by Elsevier Ltd. C1 [Pathak, Siddhartha; Raney, Jordan R.; Daraio, Chiara] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA. RP Pathak, S (reprint author), Los Alamos Natl Lab, MPA CINT Ctr Integrated Nanotechnol, POB 1663,MS-K771, Los Alamos, NM 87545 USA. EM pathak@caltech.edu RI Daraio, Chiara/N-2170-2015 OI Daraio, Chiara/0000-0001-5296-4440 FU W.M. Keck Institute for Space Studies; Army Research Office [W911NF-09-D-0001]; Department of Defense; Kavli Nanoscience Institute at Caltech FX We acknowledge Prof. Julia R. Greer for helpful discussions and for providing access to testing facilities. SP gratefully acknowledges support from the W.M. Keck Institute for Space Studies Postdoctoral Fellowship program for this work. JRR acknowledges the Army Research Office and the Department of Defense for funding via a National Defense Science & Engineering Graduate fellowship during the course of this work. CD acknowledges support from the Institute for Collaborative Biotechnologies under contract W911NF-09-D-0001 with the Army Research Office. We acknowledge critical support and infrastructure provided for this work by the Kavli Nanoscience Institute at Caltech. NR 73 TC 8 Z9 8 U1 2 U2 37 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 EI 1873-3891 J9 CARBON JI Carbon PD NOV PY 2013 VL 63 BP 303 EP 316 DI 10.1016/j.carbon.2013.06.083 PG 14 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 223XI UT WOS:000324845400032 ER PT J AU Cervini-Silva, J Nieto-Camacho, A Palacios, E Montoya, JA Gomez-Vidales, V Ramirez-Apan, MT AF Cervini-Silva, Javiera Nieto-Camacho, Antonio Palacios, Eduardo Ascencion Montoya, Jose Gomez-Vidales, Virginia Teresa Ramirez-Apan, Maria TI Anti-inflammatory and anti-bacterial activity, and CYTOTOXICITY of halloysite surfaces SO COLLOIDS AND SURFACES B-BIOINTERFACES LA English DT Article DE Surface morphology; Time-dependent infiltration ID DRUG-DELIVERY SYSTEM; CLAY NANOTUBES; NANOCOMPOSITES; RELEASE; AGENTS AB Halloysite is a naturally-occurring nanomaterial occurring in the thousands of tons and that serves as biomaterial, with applications in the areas of biotechnology, pharmaceutical, and medical research. This study reports on the anti-inflammatory, cytotoxic, and anti-oxidant activity of halloysite Jarrahdale (collected at similar to 45 km SE of Perth, Western Australia; JA), Dragon Mine (provided by Natural Nano Inc., Rochester, New York; NA), and Kalgoorie Archean (collected at Siberia, similar to 85 km NW of Kalgoorlie, West Australia; PA). Prior to biological testing, halloysites were characterized by 27Al and 29Si Nuclear Magnetic Resonance Spectroscopy, the anti-inflammatory activity was determined by (a) the mouse ear edema method, using 12-o-tetradecanoylphorbol-13-acetate (TPA) as anti-inflammatory agent; and (b) the myeloperoxidase enzymatic activity method (MPO). Cell viability was determined using the MTT method. Sample characterization by NMR method showed similar symmetry and atomic environments, with no evidence of distortion(s) due to shiftings in atomic ordering or electron density. The anti-inflammatory activity followed the order: PA > JA > NA, and remained invariant with time. Prolonged anti-inflammatory activity related inversely to surface area and lumen space. The low extent of infiltration at shorter reaction times confirmed a limiting number of active surface sites. EPR intensity signals followed the order: JA > NA > PA. The poor stabilization of RO center dot species in PA suspensions was explained by tube alignment provoking occlusion, thus limiting transfer of H+ or e(-) from-and-to the surface, and decreases in acidity associated to Al-oct. Cell viability (%) varied from one surface to the other, PA(92.3 +/- 6.0), JA(84.9 +/- 7.8), and NA(78.0 +/- 5.6), but related directly to S-BET values. (C) 2013 Elsevier B.V. All rights reserved. C1 [Cervini-Silva, Javiera] Univ Autonoma Metropolitana, Dept Proc & Tecnol, Unidad Cuajimalpa, Mexico City 01120, DF, Mexico. [Cervini-Silva, Javiera] Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA USA. [Nieto-Camacho, Antonio; Gomez-Vidales, Virginia; Teresa Ramirez-Apan, Maria] Univ Nacl Autonoma Mexico, Inst Quim, Lab Pruebas Biol, Mexico City 04510, DF, Mexico. [Palacios, Eduardo; Ascencion Montoya, Jose] Inst Mexicano Petr, Direcc Invest & Posgrad, Mexico City, DF, Mexico. RP Cervini-Silva, J (reprint author), Univ Autonoma Metropolitana, Dept Proc & Tecnol, Artificios 40,6C Piso, Mexico City 01120, DF, Mexico. EM jcervini@correo.cua.uam.mx FU Universidad Autonoma Metropolitana Unidad Cuajimalpa; Instituto Mexicano del Petroleo (Mexican Oil Institute) FX This work would not possible without the kind generosity of John Keeling Geological Survey of South Australia, Jock Churchman (Soil and Land Systems, School of Earth and Environmental Sciences, The University of Adelaide, Australia) and Benny Theng (Landcare Research, Palmerston North 4442, New Zealand), who provided the halloysite samples, and Professor Rossman Giese (Department of Geology, Columbia University) for providing insightful discussions. The authors are most thankful to librarians Lic. Maria del Rocio Galindo Ortega and Ms. Maria Ines Escalante Vargas (UAM-Cuajimalpa) for technical assistance. This project was supported in part by Universidad Autonoma Metropolitana Unidad Cuajimalpa and Instituto Mexicano del Petroleo (Mexican Oil Institute). NR 39 TC 16 Z9 16 U1 3 U2 70 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-7765 J9 COLLOID SURFACE B JI Colloid Surf. B-Biointerfaces PD NOV 1 PY 2013 VL 111 BP 651 EP 655 DI 10.1016/j.colsurfb.2013.06.056 PG 5 WC Biophysics; Chemistry, Physical; Materials Science, Biomaterials SC Biophysics; Chemistry; Materials Science GA 224OM UT WOS:000324897900085 PM 23907053 ER PT J AU Lee, SH Augenbroe, G Lee, JK Zhao, F AF Lee, Sang Hoon Augenbroe, Godfried Lee, Jin-Kook Zhao, Fei TI A Design Methodology for Energy Infrastructures at the Campus Scale SO COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING LA English DT Article ID SYSTEM; PERFORMANCE; DEMAND; SIMULATION; BUILDINGS AB To improve the design of large-scale energy infrastructures such as campuses, energy managers need to predict the outcomes of interventions in buildings, as well as have sufficient insights in the implications of changes to the supply and generation network. This article develops a methodology to express overall network energy performance (NEP) with the aim to manage the properties of and multiple relationships between energy consumers and producers in the network. It is based on a directed graph that contains consumers and producers at its nodes, while the connecting arcs represent modes of energy exchange, thus expressing the overall energy topology. The NEP model supports decisions at the generation side, the consumption side, and defines the macroenergy connections, that is, which consumer nodes connect to which suppliers. Our approach forms a bridge between two competing approaches at opposite ends of the spectrum, (1) network models that use high-fidelity dynamic building simulation models but typically break down under the computational weight of hundreds of buildings, and (2) the large scale geographical information system (GIS) approaches that are capable to handle large urban collections of buildings but whose building models are typically too shallow to inspect individual building performance. As an example, the article illustrates the use of the NEP model in the support of systematic improvement of a university campus energy performance. C1 [Lee, Sang Hoon] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Augenbroe, Godfried] Georgia Inst Technol, Coll Architecture, Atlanta, GA 30332 USA. [Lee, Jin-Kook] Hanyang Univ, Seoul 133791, South Korea. [Zhao, Fei] Retroficiency Inc, Boston, MA USA. RP Augenbroe, G (reprint author), Georgia Inst Technol, Coll Architecture, Atlanta, GA 30332 USA. EM Godfried.Augenbroe@coa.gatech.edu NR 32 TC 11 Z9 11 U1 0 U2 8 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1093-9687 J9 COMPUT-AIDED CIV INF JI Comput.-Aided Civil Infrastruct. Eng. PD NOV PY 2013 VL 28 IS 10 BP 753 EP 768 DI 10.1111/mice.12050 PG 16 WC Computer Science, Interdisciplinary Applications; Construction & Building Technology; Engineering, Civil; Transportation Science & Technology SC Computer Science; Construction & Building Technology; Engineering; Transportation GA 232KU UT WOS:000325493400002 ER PT J AU Cao, FY Shi, ZM Song, GL Liu, M Atrens, A AF Cao, Fuyong Shi, Zhiming Song, Guang-Ling Liu, Ming Atrens, Andrej TI Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)(2) of as-cast and solution heat-treated binary Mg-X alloys: X = Mn, Sn, Ca, Zn, Al, Zr, Si, Sr SO CORROSION SCIENCE LA English DT Article DE Magnesium; Weight loss; SEM; EIS; Polarisation ID MAGNESIUM-ALUMINUM-ALLOYS; PRESSURE DIE-CAST; ANODIC POLARIZATION CURVES; 3.5 WT.PERCENT NACL; PURE MAGNESIUM; ELECTROCHEMICAL-BEHAVIOR; MECHANICAL-PROPERTIES; AQUEOUS-SOLUTIONS; MG/AL ALLOYS; Y ALLOYS AB Corrosion of binary Mg-X alloys (as-cast and solution heat-treated) was characterised by immersion tests in 3.5% NaCl solution saturated with Mg(OH)(2), and by salt spray. Alloys with high corrosion rates in immersion tests also had high corrosion rates in salt spray. Corrosion rates of the solution heat-treated alloys did not meet the expectation that they should be equal to or lower than those of high-purity Mg. There was circumstantial evidence that the higher corrosion rates were caused by the particles in the microstructure; the second phases had been dissolved. The corrosion rate of all alloys was faster than that of high-purity Mg. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Cao, Fuyong; Shi, Zhiming; Song, Guang-Ling; Atrens, Andrej] Univ Queensland, Brisbane, Qld 4072, Australia. [Song, Guang-Ling] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Liu, Ming] GM China Sci Lab, Shanghai 201206, Peoples R China. RP Atrens, A (reprint author), Univ Queensland, Brisbane, Qld 4072, Australia. EM Andrejs.Atrens@uq.edu.au RI Song, Guang-Ling/D-9540-2013; Atrens, Andrejs/I-5850-2013 OI Song, Guang-Ling/0000-0002-9802-6836; Atrens, Andrejs/0000-0003-0671-4082 FU Boeing Research and Technology; CAST CRC; Australian Research Council Centre of Excellence Design of Light Alloys; GM Global Research and Development; Australian Federal Government's Cooperative Research Centre scheme; China Scholarship Council FX This research was supported by Boeing Research and Technology, CAST CRC, the Australian Research Council Centre of Excellence Design of Light Alloys, and GM Global Research and Development. CAST CRC was established under, and was funded in part by the Australian Federal Government's Cooperative Research Centre scheme. Thanks to the China Scholarship Council to provide a scholarship under the State Scholarship Fund to Fuyong Cao. The authors acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, The University of Queensland. NR 169 TC 39 Z9 40 U1 9 U2 72 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X EI 1879-0496 J9 CORROS SCI JI Corrosion Sci. PD NOV PY 2013 VL 76 BP 60 EP 97 DI 10.1016/j.corsci.2013.06.030 PG 38 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 224OR UT WOS:000324898400007 ER PT J AU Shi, ZM Cao, FY Song, GL Liu, M Atrens, A AF Shi, Zhiming Cao, Fuyong Song, Guang-Ling Liu, Ming Atrens, Andrej TI Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)(2) of as-cast and solution heat-treated binary Mg-RE alloys: RE = Ce, La, Nd, Y, Gd SO CORROSION SCIENCE LA English DT Article DE Magnesium; Rare earth elements; Weight loss; SEM; EIS ID STAINLESS-STEELS; MAGNESIUM ALLOYS; PASSIVE FILMS; CR-ALLOYS; ESCA; CHLORIDE; AZ91; MICROSTRUCTURE; DISSOLUTION; CHROMIUM AB Corrosion behaviour was characterised in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg-RE alloys. The corrosion rate in the immersion test for the solution heat-treated Mg-RE alloys was substantial, and was greater than that of high-purity Mg. These corrosion rates were probably caused by the particles in the microstructure and/or by Fe rich particles precipitated during the solution heat-treatment. The corrosion rate in the immersion tests for each as-cast Mg-RE alloy was greater than that of high-purity Mg, attributed to micro-galvanic acceleration caused by the second phase. Corrosion rates in salt spray had a general correlation with corrosion rates in the immersion tests, but there were differences. The values of apparent valence were always less than 2 consistent with Mg corrosion being only partly under electrochemical control. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Shi, Zhiming; Cao, Fuyong; Song, Guang-Ling; Atrens, Andrej] Univ Queensland, Brisbane, Qld 4072, Australia. [Song, Guang-Ling] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Liu, Ming] GM China Sci Lab, Shanghai 201206, Peoples R China. RP Atrens, A (reprint author), Univ Queensland, Brisbane, Qld 4072, Australia. EM Andrejs.Atrens@uq.edu.au RI Song, Guang-Ling/D-9540-2013; Atrens, Andrejs/I-5850-2013 OI Song, Guang-Ling/0000-0002-9802-6836; Atrens, Andrejs/0000-0003-0671-4082 FU Boeing Research and Technology; CAST CRC; Australian Research Council Centre of Excellence Design of Light Alloys; GM Global Research and Development; China Scholarship Council FX Thanks to the research support from Boeing Research and Technology, CAST CRC, the Australian Research Council Centre of Excellence Design of Light Alloys, GM Global Research and Development, China Scholarship Council (for to Fuyong Cao) and the facilities and technical assistance of the Centre for Microscopy and Microanalysis, The University of Queensland. NR 44 TC 26 Z9 26 U1 3 U2 42 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X J9 CORROS SCI JI Corrosion Sci. PD NOV PY 2013 VL 76 BP 98 EP 118 DI 10.1016/j.corsci.2013.06.032 PG 21 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 224OR UT WOS:000324898400008 ER PT J AU Nielsen, BC Dogan, ON Howard, BH Nall, E AF Nielsen, Benjamin C. Dogan, Oemer N. Howard, Bret H. Nall, Eileen TI Comparison of the corrosion of Cu50Pd50 and Cu50Pd44M6 (M = Y, Mg, or Al) hydrogen separation membrane alloys in simulated syngas containing H2S SO CORROSION SCIENCE LA English DT Article DE Alloy; Copper; SEM; XRD; Sulfidation ID PD-S SYSTEM; SURFACE SEGREGATION; CU; TEMPERATURES; PERMEATION; DIFFUSION; PERMEANCE AB The resistance to sulfidation was examined by exposing coupons including a Cu-Pd binary alloy and three ternary alloys with 6 at% Y, Mg, or Al to simulated syngas containing varying amounts of H2S. The mass change of the samples was determined and the exposed surfaces were characterized by SEM/EDS and XRD. The best corrosion resistance of the ternary alloys was observed in the Cu50Pd44Al6 alloy. A slight decrease was observed when Mg was added, but both the Al and Mg alloys were roughly on par with the binary composition. The Y addition resulted in a degradation in the corrosion resistance by forming extensive internal Y2O3 and Cu1-xYxS and external Pd4-xCuxS and Pd 13Cu3S7. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Nielsen, Benjamin C.; Dogan, Oemer N.; Nall, Eileen] DOE Natl Energy Technol Lab, Albany, OR 97321 USA. [Nielsen, Benjamin C.] URS Corp, Albany, OR 97321 USA. [Howard, Bret H.] DOE Natl Energy Technol Lab, Pittsburgh, PA 15236 USA. RP Nielsen, BC (reprint author), DOE Natl Energy Technol Lab, 1450 Queen Ave SW, Albany, OR 97321 USA. EM Benjamin.Nielsen@contr.netl.doe.gov FU NETL under the RES [DE-FE0004000]; US Department of Energy FX The authors wish to thank Joe Tylczak for the use of the SECERF facility at NETL for performing the exposure tests, Paul Danielson for metallographic preparation of samples, and David Smith for XRD analysis. This technical effort was performed in support of ongoing research at NETL under the RES contract DE-FE0004000. Additionally, this research was supported in part by an appointment (EN) to the National Energy Technology Laboratory Research Internship Program, sponsored by the US Department of Energy and administered by the Oak Ridge Institute for Science and Education. NR 30 TC 4 Z9 4 U1 1 U2 17 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0010-938X J9 CORROS SCI JI Corrosion Sci. PD NOV PY 2013 VL 76 BP 170 EP 181 DI 10.1016/j.corsci.2013.06.040 PG 12 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 224OR UT WOS:000324898400014 ER PT J AU Piette, MA Kiliccote, S Dudley, JH AF Piette, Mary Ann Kiliccote, Sila Dudley, Junqiao H. TI Field demonstration of automated demand response for both winter and summer events in large buildings in the Pacific Northwest SO ENERGY EFFICIENCY LA English DT Article DE Demand response; Automated demand response; OpenADR; Dynamic peak load reduction AB There are growing strains on the electric grid as cooling peaks grow and equipment ages. Increased penetration of renewables on the grid is also straining electricity supply systems and the need for flexible demand is growing. This paper summarizes results of a series of field test of automated demand response systems in large buildings in the Pacific Northwest. The objective of the research was twofold. One objective was to evaluate the use demand response automation technologies. A second objective was to evaluate control strategies that could change the electric load shape in both winter and summer conditions. Winter conditions focused on cold winter mornings, a time when the electric grid is often stressed. The summer test evaluated DR strategies in the afternoon. We found that we could automate both winter and summer control strategies with the open automated demand response communication standard. The buildings were able to provide significant demand response in both winter and summer events. C1 [Piette, Mary Ann; Kiliccote, Sila; Dudley, Junqiao H.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Piette, MA (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. EM mapiette@lbl.gov FU BPA; Seattle City Light; US Department of Energy [DE-AC02-05CH11231] FX The work described in this paper was funded by BPA, by Seattle City Light, and by the US Department of Energy under Contract No. DE-AC02-05CH11231. The authors are grateful for the extensive support from numerous individuals and organizations that assisted in this project. These include the Bonneville Power Administration, Seattle City Light, Akuacom, McKinstry, Target, Seattle Municipal Tower, and Seattle University. NR 14 TC 2 Z9 2 U1 1 U2 11 PU SPRINGER PI DORDRECHT PA VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS SN 1570-646X J9 ENERG EFFIC JI Energy Effic. PD NOV PY 2013 VL 6 IS 4 SI SI BP 671 EP 684 DI 10.1007/s12053-013-9206-x PG 14 WC GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY; Energy & Fuels; Environmental Studies SC Science & Technology - Other Topics; Energy & Fuels; Environmental Sciences & Ecology GA 227MD UT WOS:000325116300005 ER PT J AU Hosseini, SA Horton, S Saldivar, JC Miuma, S Stampfer, MR Heerema, NA Huebner, K AF Hosseini, Seyed Ali Horton, Susan Saldivar, Joshua C. Miuma, Satoshi Stampfer, Martha R. Heerema, Nyla A. Huebner, Kay TI Common Chromosome Fragile Sites in Human and Murine Epithelial Cells and FHIT/FRA3B Loss-Induced Global Genome Instability SO GENES CHROMOSOMES & CANCER LA English DT Article ID TUMOR-SUPPRESSOR GENES; BREAST-CANCER; LUNG-CANCER; CARCINOMA; DELETION; FHIT; TRANSFORMATION; APHIDICOLIN; REGIONS; LESIONS AB Chromosomal positions of common fragile sites differ in lymphoblasts and fibroblasts, with positions dependent on the epigenetically determined density of replication origins at these loci. Because rearrangement of fragile loci and associated loss of fragile gene products are hallmarks of cancers, we aimed to map common fragile sites in epithelial cells, from which most cancers derive. Among the five most frequently activated sites in human epithelial cells were chromosome bands 2q33 and Xq22.1, which are not among top fragile sites identified in lymphoblasts or fibroblasts. FRA16D at 16q23 was among the top three fragile sites in the human epithelial cells examined, as it is in lymphoblasts and fibroblasts, while FRA3B at 3p14.2, the top fragile locus in lymphoblasts, was not fragile in most epithelial cell lines tested. Epithelial cells exhibited varying hierarchies of fragile sites; some frequent epithelial cell fragile sites are apparently not frequently altered in epithelial cancers and sites that are frequently deleted in epithelial cancers are not necessarily among the most fragile. Since we have reported that loss of expression of the FRA3B-encoded FHIT protein causes increased replication stress-induced DNA damage, we also examined the effect of FHIT-deficiency on markers of genome instability in epithelial cells. FHIT-deficient cells exhibited increases in fragile breaks and in H2AX and 53BP1 foci in G1 phase cells, confirming in epithelial cells that the FHIT gene and encompassing FRA3B, is a caretaker gene necessary for maintenance of genome stability. (c) 2013 Wiley Periodicals, Inc. C1 [Hosseini, Seyed Ali; Saldivar, Joshua C.; Miuma, Satoshi; Huebner, Kay] Ohio State Univ, Dept Mol Virol Immunol & Med Genet, Wexner Med Ctr, Columbus, OH 43210 USA. [Horton, Susan; Heerema, Nyla A.] Ohio State Univ, Dept Pathol, Wexner Med Ctr, Columbus, OH 43210 USA. [Stampfer, Martha R.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA. RP Huebner, K (reprint author), Ohio State Univ, Dept Mol Virol Immunol & Med Genet, Wexner Med Ctr, Biomed Res Tower,Rm 916,460 W 12th Ave, Columbus, OH 43210 USA. EM kay.huebner@osumc.edu FU US National Institutes of Health [CA120516, CA154200, CA132453, F31CA157150, T32GM068412]; Pelotonia Postdoctoral Fellowship, Ohio State University Comprehensive Cancer Center; Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy [DE-AC02-05CH11231] FX Supported by: US National Institutes of Health, Grant numbers: CA120516, CA154200, and CA132453 (to K. H.); Pelotonia Postdoctoral Fellowship, Ohio State University Comprehensive Cancer Center (to S. A. H.); US National Institutes of Health, Grant numbers: F31CA157150 and T32GM068412 (to J.C.S.); Director, Office of Science, Office of Biological and Environmental Research, of the U.S. Department of Energy, Grant numbers: DE-AC02-05CH11231 (to M.R.S.). NR 51 TC 17 Z9 17 U1 0 U2 7 PU WILEY-BLACKWELL PI HOBOKEN PA 111 RIVER ST, HOBOKEN 07030-5774, NJ USA SN 1045-2257 EI 1098-2264 J9 GENE CHROMOSOME CANC JI Gene Chromosomes Cancer PD NOV PY 2013 VL 52 IS 11 BP 1017 EP 1029 DI 10.1002/gcc.22097 PG 13 WC Oncology; Genetics & Heredity SC Oncology; Genetics & Heredity GA 227IS UT WOS:000325106700003 PM 23929738 ER PT J AU Varshney, KR Prenger, RJ Marlatt, TL Chen, BY Hanley, WG AF Varshney, Kush R. Prenger, Ryan J. Marlatt, Tracy L. Chen, Barry Y. Hanley, William G. TI Practical Ensemble Classification Error Bounds for Different Operating Points SO IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING LA English DT Article DE Cantelli inequality; random forests; receiver operating characteristic; reject option ID REJECT OPTION; CLASSIFIERS; OPTIMIZATION; RECOGNITION; DIVERSITY; MARGIN AB Classification algorithms used to support the decisions of human analysts are often used in settings in which zero-one loss is not the appropriate indication of performance. The zero-one loss corresponds to the operating point with equal costs for false alarms and missed detections, and no option for the classifier to leave uncertain test samples unlabeled. A generalization bound for ensemble classification at the standard operating point has been developed based on two interpretable properties of the ensemble: strength and correlation, using the Chebyshev inequality. Such generalization bounds for other operating points have not been developed previously and are developed in this paper. Significantly, the bounds are empirically shown to have much practical utility in determining optimal parameters for classification with a reject option, classification for ultralow probability of false alarm, and classification for ultralow probability of missed detection. Counter to the usual guideline of large strength and small correlation in the ensemble, different guidelines are recommended by the derived bounds in the ultralow false alarm and missed detection probability regimes. C1 [Varshney, Kush R.] IBM Thomas J Watson Res Ctr, Business Analyt & Math Sci Dept, Yorktown Hts, NY 10598 USA. [Prenger, Ryan J.; Marlatt, Tracy L.; Chen, Barry Y.] Lawrence Livermore Natl Lab, Syst & Intelligence Anal Sect, Natl Secur Engn Div, Livermore, CA 94550 USA. [Hanley, William G.] Exponent, Menlo Pk, CA 94025 USA. RP Varshney, KR (reprint author), IBM Thomas J Watson Res Ctr, Business Analyt & Math Sci Dept, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA. EM krvarshn@us.ibm.com; prenger1@llnl.gov; marlatt1@llnl.gov; chen52@llnl.gov; wghanley3@hotmail.com FU US Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344] FX Part of this work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. NR 34 TC 3 Z9 3 U1 0 U2 5 PU IEEE COMPUTER SOC PI LOS ALAMITOS PA 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1314 USA SN 1041-4347 J9 IEEE T KNOWL DATA EN JI IEEE Trans. Knowl. Data Eng. PD NOV PY 2013 VL 25 IS 11 BP 2590 EP 2601 DI 10.1109/TKDE.2012.219 PG 12 WC Computer Science, Artificial Intelligence; Computer Science, Information Systems; Engineering, Electrical & Electronic SC Computer Science; Engineering GA 225AJ UT WOS:000324934400013 ER PT J AU Greiner, M del Valle, M Lopez, C Figueroa, V AF Greiner, Miles del Valle, Marcelo Lopez, Carlos Figueroa, Victor TI Thermal measurements of a rail-cask-size pipe-calorimeter in jet fuel fires SO JOURNAL OF FIRE PROTECTION ENGINEERING LA English DT Article DE Pool fire; heat transfer; experiment; nuclear fuel transport safety ID HEAT-TRANSFER AB Three large-scale fire tests were conducted in which a 2.4-m-(8-ft)-dia., 4.6-m-(15-ft)-long, 25-mm-(1-inch)-wall-thickness mild-steel pipe calorimeter was centered 1m above a 7.9-m-dia. basin containing 7.57m(3) (2000 gal) of jet fuel. The wind conditions, calorimeter wall temperatures, and temperatures of foil radiant heat flux gages near the calorimeter were measured at several locations as functions of time during and after the fires. Video and still photography from several directions were used to monitor the calorimeter's engulfment in flames. The objective of these tests was to determine how the fuel consumption rate, calorimeter coverage in flames and the calorimeter temperatures varied with wind conditions. These data can be used to benchmark computational and engineering models of heat transfer from large pool fires to thermally-massive objects. Those types of models are used to predict the response of rail-car-sized used-nuclear-fuel transport packages in severe accidents. The first two tests had average wind speeds of about 1m/s and lasted for roughly 40min. The third had 3-m/s winds and consumed the fuel in only 25min. When winds blew toward a side or end of the calorimeter, the flames became thin and the radiant heat flux gage temperatures measured near those regions decreased. In the lower wind-speed tests, the calorimeter was more completely engulfed in flames and its temperatures were more uniform and reached higher average values compared to the high wind-speed test. C1 [Greiner, Miles; del Valle, Marcelo] Univ Nevada, Dept Mech Engn, Reno, NV 89557 USA. [Lopez, Carlos; Figueroa, Victor] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Greiner, M (reprint author), Univ Nevada, Mail Stop 312, Reno, NV 89557 USA. EM greiner@unr.edu FU US Department of Energy [DEFC07-06ID14782] FX This work was sponsored by the US Department of Energy's Global Nuclear Energy Partnership under contract DEFC07-06ID14782. NR 16 TC 1 Z9 1 U1 1 U2 5 PU SAGE PUBLICATIONS LTD PI LONDON PA 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND SN 1042-3915 J9 J FIRE PROT ENG JI J. Fire Prot. Eng. PD NOV PY 2013 VL 23 IS 4 BP 300 EP 319 DI 10.1177/1042391513487002 PG 20 WC Engineering, Civil; Materials Science, Multidisciplinary SC Engineering; Materials Science GA 227UV UT WOS:000325141600004 ER PT J AU Pennycook, SJ Hammond, SD Wright, SA Herdman, JA Miller, I Jarvis, SA AF Pennycook, S. J. Hammond, S. D. Wright, S. A. Herdman, J. A. Miller, I. Jarvis, S. A. TI An investigation of the performance portability of OpenCL SO JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING LA English DT Article DE Many-core computing; GPU computing; Optimisation; OpenCL; High performance computing AB This paper reports on the development of an MPI/OpenCL implementation of LU, an application-level benchmark from the NAS Parallel Benchmark Suite. An account of the design decisions addressed during the development of this code is presented, demonstrating the importance of memory arrangement and work-item/work-group distribution strategies when applications are deployed on different device types. The resulting platform-agnostic, single source application is benchmarked on a number of different architectures, and is shown to be 1.3-1.5x slower than native FORTRAN 77 or CUDA implementations on a single node and 1.3-3.1x slower on multiple nodes. We also explore the potential performance gains of OpenCL's device fissioning capability, demonstrating up to a 3 x speed-up over our original OpenCL implementation. (C) 2012 Elsevier Inc. All rights reserved. C1 [Pennycook, S. J.; Wright, S. A.; Jarvis, S. A.] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England. [Hammond, S. D.] Sandia Natl Labs, Ctr Res Comp, Albuquerque, NM 87185 USA. [Herdman, J. A.; Miller, I.] UK Atom Weapons Estab, Supercomp Solut Ctr, Aldermaston RG7 4PR, Berks, England. RP Pennycook, SJ (reprint author), Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England. EM sjp@dcs.warwick.ac.uk FU Royal Society [IF090020/AM]; UK Atomic Weapons Establishment [CDK0660, CDK0724]; AWE and the TSB Knowledge Transfer Partnership [KTP006740]; United States Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work is sponsored in part by The Royal Society through their Industry Fellowship Scheme (IF090020/AM).; Access to the LLNL Open Computing Facility is made possible through collaboration with the UK Atomic Weapons Establishment under grants CDK0660 (The Production of Predictive Models for Future Computing Requirements) and CDK0724 (AWE Technical Outreach Programme). The HPC performance benchmarking research is also supported jointly by AWE and the TSB Knowledge Transfer Partnership grant no. KTP006740.; Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. NR 22 TC 12 Z9 14 U1 0 U2 7 PU ACADEMIC PRESS INC ELSEVIER SCIENCE PI SAN DIEGO PA 525 B ST, STE 1900, SAN DIEGO, CA 92101-4495 USA SN 0743-7315 J9 J PARALLEL DISTR COM JI J. Parallel Distrib. Comput. PD NOV PY 2013 VL 73 IS 11 SI SI BP 1439 EP 1450 DI 10.1016/j.jpdc.2012.07.005 PG 12 WC Computer Science, Theory & Methods SC Computer Science GA 231VS UT WOS:000325447100004 ER PT J AU Malm, J Schlatter, P Fischer, PF Henningson, DS AF Malm, Johan Schlatter, Philipp Fischer, Paul F. Henningson, Dan S. TI Stabilization of the Spectral Element Method in Convection Dominated Flows by Recovery of Skew-Symmetry SO JOURNAL OF SCIENTIFIC COMPUTING LA English DT Article DE Spectral element method (SEM); Stability; Over-integration; Skew-symmetry ID NAVIER-STOKES EQUATIONS; LARGE-EDDY SIMULATION; DIRECT NUMERICAL-SIMULATION; VANISHING VISCOSITY METHOD; FILTER-BASED STABILIZATION; INCOMPRESSIBLE FLOWS; LAGRANGIAN-MULTIPLIERS; TRANSITIONAL FLOWS; COMPLEX GEOMETRIES; CHANNEL FLOW AB We investigate stability properties of the spectral element method for advection dominated incompressible flows. In particular, properties of the widely used convective form of the nonlinear term are studied. We remark that problems which are usually associated with the nonlinearity of the governing Navier-Stokes equations also arise in linear scalar transport problems, which implicates advection rather than nonlinearity as a source of difficulty. Thus, errors arising from insufficient quadrature of the convective term, commonly referred to as 'aliasing errors', destroy the skew-symmetric properties of the convection operator. Recovery of skew-symmetry can be efficiently achieved by the use of over-integration. Moreover, we demonstrate that the stability problems are not simply connected to underresolution. We combine theory with analysis of the linear advection-diffusion equation in 2D and simulations of the incompressible Navier-Stokes equations in 2D of thin shear layers at a very high Reynolds number and in 3D of turbulent and transitional channel flow at moderate Reynolds number. For the Navier-Stokes equations, where the divergence-free constraint needs to be enforced iteratively to a certain accuracy, small divergence errors can be detrimental to the stability of the method and it is therefore advised to use additional stabilization (e.g. so-called filter-based stabilization, spectral vanishing viscosity or entropy viscosity) in order to assure a stable spectral element method. C1 [Malm, Johan; Schlatter, Philipp; Henningson, Dan S.] KTH Mech, Linne FLOW Ctr, Swedish E Sci Res Ctr SeRC, S-10044 Stockholm, Sweden. [Fischer, Paul F.] Argonne Natl Lab, MCS, Lemont, IL USA. RP Malm, J (reprint author), KTH Mech, Linne FLOW Ctr, Swedish E Sci Res Ctr SeRC, S-10044 Stockholm, Sweden. EM johan@mech.kth.se FU VR (The Swedish Research Council); Knut and Alice Wallenberg (KAW) Foundation; U.S. Department of Energy [DE-AC02-06CH11357] FX The authors gratefully acknowledge funding by VR (The Swedish Research Council) Computer time was provided by SNIC (Swedish National Infrastructure for Computing) with a generous grant by the Knut and Alice Wallenberg (KAW) Foundation. The simulations were run at the Centre for Parallel Computers (PDC) at the Royal Institute of Technology (KTH). The third author was supported by the U.S. Department of Energy under Contract DE-AC02-06CH11357. NR 56 TC 9 Z9 9 U1 0 U2 8 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 0885-7474 EI 1573-7691 J9 J SCI COMPUT JI J. Sci. Comput. PD NOV PY 2013 VL 57 IS 2 BP 254 EP 277 DI 10.1007/s10915-013-9704-1 PG 24 WC Mathematics, Applied SC Mathematics GA 227TT UT WOS:000325138400002 ER PT J AU Gundlach-Graham, A Dennis, EA Ray, SJ Enke, CG Barinaga, CJ Koppenaal, DW Hieftje, GM AF Gundlach-Graham, Alexander Dennis, Elise A. Ray, Steven J. Enke, Christie G. Barinaga, Charles J. Koppenaal, David W. Hieftje, Gary M. TI Interleaved Distance-of-Flight Mass Spectrometry: A Simple Method to Improve the Instrument Duty Factor SO JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY LA English DT Article DE Glow discharge; Distance-of-flight; Duty factor; Ion detector array ID LINEAR ION-TRAP; ACCELERATION; CYCLE; PERFORMANCE; DETECTOR; RANGE; RESOLUTION AB Distance-of-flight mass spectrometry (DOFMS) is a velocity-based, spatially dispersive MS technique in which ions are detected simultaneously along the plane of a spatially selective detector. In DOFMS, ions fly though the instrument and mass separate over a set period of time. The single flight time at which all ions are measured defines the specific m/z values that are detectable; the range of m/z values is dictated by the length of the spatially selective detector. However, because each packet of ions is detected at a single flight time, multiple groups of ions can fly through the instrument concurrently and be detected at a single detector. In this way, DOFMS experiments can be interleaved to perform several mass separation experiments within a single DOF repetition period. Interleaved operation allows the orthogonal acceleration region to be operated at a repetition rate higher than the reciprocal of the flight time, which improves the duty factor of the technique. In this paper, we consider the fundamental parameters of interleaved DOFMS and report first results. C1 [Gundlach-Graham, Alexander; Dennis, Elise A.; Ray, Steven J.; Hieftje, Gary M.] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. [Enke, Christie G.] Univ New Mexico, Dept Chem, Albuquerque, NM 87131 USA. [Barinaga, Charles J.; Koppenaal, David W.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Hieftje, GM (reprint author), Indiana Univ, Dept Chem, Bloomington, IN 47405 USA. EM hieftje@indiana.edu RI Gundlach-Graham, Alexander/B-6069-2011; OI Gundlach-Graham, Alexander/0000-0003-4806-6255; Ray, Steven/0000-0001-5675-1258 FU Division of Analytical Chemistry (DAC) of the American Chemistry Society; Agilent Technologies for a DAC graduate-research fellowship; National Science Foundation [DBI-1062846]; Battelle Memorial Institute [DE-AC06-76RLO-1830op]; US Department of Energy [DE-FG02-09ER14980] FX A.G.-G. thanks the Division of Analytical Chemistry (DAC) of the American Chemistry Society and Agilent Technologies for a DAC graduate-research fellowship. This research was supported in part by the National Science Foundation through grant DBI-1062846 and performed in collaboration with Pacific Northwest National Laboratory, operated for the US DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO-1830op. Partial salary support was provided by the US Department of Energy through grant DE-FG02-09ER14980. NR 29 TC 5 Z9 5 U1 2 U2 15 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1044-0305 J9 J AM SOC MASS SPECTR JI J. Am. Soc. Mass Spectrom. PD NOV PY 2013 VL 24 IS 11 BP 1736 EP 1744 DI 10.1007/s13361-013-0718-6 PG 9 WC Biochemical Research Methods; Chemistry, Analytical; Chemistry, Physical; Spectroscopy SC Biochemistry & Molecular Biology; Chemistry; Spectroscopy GA 229HU UT WOS:000325254100014 PM 23982936 ER PT J AU Karra, S AF Karra, Satish TI Modeling the diffusion of a fluid through viscoelastic polyimides SO MECHANICS OF MATERIALS LA English DT Article DE Viscoelasticity; Mixture theory; Large deformation; Diffusion; Polyimide ID LARGE-DEFORMATION; MIXTURES; TRANSPORT; POLYMER; SOLIDS; RELAXATION AB This paper is concerned with the diffusion of a fluid through viscoelastic polyimides undergoing large deformations. Using ideas from the classical theory of mixtures and a well established thermodynamic framework that uses the notion of maximization of the rate of entropy production, the constitutive relations for a mixture of a viscoelastic solid and a fluid (specifically Newtonian fluid) are derived. By prescribing forms for the specific Helmholtz potential and the rate of dissipation, the relations for the partial stress in the solid, the partial stress in the fluid and the interaction force between the solid and the fluid, are derived. Results from the developed model are shown to be in good agreement with the available experimental data for the diffusion of various solvents through polyimides. The deformation of the viscoelastic solid under simultaneous swelling and application of an external force is also studied. Published by Elsevier Ltd. C1 [Karra, Satish] Texas A&M Univ, Dept Mech Engn, College Stn, TX 77843 USA. RP Karra, S (reprint author), Los Alamos Natl Lab, Computat Earth Sci Grp EES 16, Earth & Environm Sci Div, MS T003, Los Alamos, NM 87545 USA. EM satkarra@lanl.gov OI Karra, Satish/0000-0001-7847-6293 FU AFOSR/AFRL FX The author thanks AFOSR/AFRL for partially supporting this work. Part of this work has been done when the author was appointed as a lecturer during his Ph.D. by the Department of Mechanical Engineering at Texas A&M University. This support by the department is appreciated. NR 43 TC 0 Z9 0 U1 0 U2 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0167-6636 J9 MECH MATER JI Mech. Mater. PD NOV PY 2013 VL 66 BP 120 EP 133 DI 10.1016/j.mechmat.2013.06.012 PG 14 WC Materials Science, Multidisciplinary; Mechanics SC Materials Science; Mechanics GA 228OJ UT WOS:000325195800010 ER PT J AU Niezgoda, SR Glover, J AF Niezgoda, Stephen R. Glover, Jared TI Unsupervised Learning for Efficient Texture Estimation From Limited Discrete Orientation Data SO METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE LA English DT Article ID ELECTRON BACKSCATTER DIFFRACTION; PREFERRED ORIENTATION; BINGHAM DISTRIBUTION; POLE FIGURES; X-RAY; COMPONENTS; MICROSCOPY; REPRESENTATION; STATISTICS; GONIOMETRY AB The estimation of orientation distribution functions (ODFs) from discrete orientation data, as produced by electron backscatter diffraction or crystal plasticity micromechanical simulations, is typically achieved via techniques such as the Williams-Imhof-Matthies-Vinel (WIMV) algorithm or generalized spherical harmonic expansions, which were originally developed for computing an ODF from pole figures measured by X-ray or neutron diffraction. These techniques rely on ad-hoc methods for choosing parameters, such as smoothing half-width and bandwidth, and for enforcing positivity constraints and appropriate normalization. In general, such approaches provide little or no information-theoretic guarantees as to their optimality in describing the given dataset. In the current study, an unsupervised learning algorithm is proposed which uses a finite mixture of Bingham distributions for the estimation of ODFs from discrete orientation data. The Bingham distribution is an antipodally-symmetric, max-entropy distribution on the unit quaternion hypersphere. The proposed algorithm also introduces a minimum message length criterion, a common tool in information theory for balancing data likelihood with model complexity, to determine the number of components in the Bingham mixture. This criterion leads to ODFs which are less likely to overfit (or underfit) the data, eliminating the need for a priori parameter choices. C1 [Niezgoda, Stephen R.] Los Alamos Natl Lab, Mat Sci & Technol Div, Los Alamos, NM 87545 USA. [Glover, Jared] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA. RP Niezgoda, SR (reprint author), Los Alamos Natl Lab, Mat Sci & Technol Div, POB 1663, Los Alamos, NM 87545 USA. EM niezgoda.s@gmail.com RI Niezgoda, Stephen/I-6750-2013 OI Niezgoda, Stephen/0000-0002-7123-466X NR 53 TC 2 Z9 2 U1 1 U2 7 PU SPRINGER PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1073-5623 EI 1543-1940 J9 METALL MATER TRANS A JI Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. PD NOV PY 2013 VL 44A IS 11 BP 4891 EP 4905 DI 10.1007/s11661-013-1653-7 PG 15 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 223QM UT WOS:000324822100007 ER PT J AU Brown, DW Alexander, DJ Clarke, KD Clausen, B Okuniewski, MA Sisneros, TA AF Brown, D. W. Alexander, D. J. Clarke, K. D. Clausen, B. Okuniewski, M. A. Sisneros, T. A. TI Elastic properties of rolled uranium-10 wt.% molybdenum nuclear fuel foils SO SCRIPTA MATERIALIA LA English DT Article DE Tension testing; Neutron diffraction; Elastic behavior; Uranium-molybdenum alloy ID RIETVELD REFINEMENT; MINI-PLATES; STRAIN AB In situ neutron diffraction data was collected during elastic loading of rolled foils of uranium-10 wt.% molybdenum bonded to a thin layer of zirconium. Lattice parameters were ascertained from the diffraction patterns to determine the elastic strain and, subsequently, the elastic moduli and Poisson's ratio in the rolling and transverse directions. The foil was found to be elastically isotropic in the rolling plane with an effective modulus of 86 +/- 3 GPa and a Poisson's ratio 0.39 +/- 0.04. (C) 2013 Published by Elsevier Ltd. on behalf of Acta Materialia Inc. C1 [Brown, D. W.; Alexander, D. J.; Clarke, K. D.; Clausen, B.; Sisneros, T. A.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Okuniewski, M. A.] Idaho Natl Lab, Idaho Falls, ID 83415 USA. RP Brown, DW (reprint author), Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA. EM dbrown@lanl.gov RI Clausen, Bjorn/B-3618-2015; Clarke, Kester/R-9976-2016 OI Clausen, Bjorn/0000-0003-3906-846X; FU US Department of Energy Global Threat Reduction Initiative Reactor Convert program; US DOE, Office of Basic Energy Sciences; National Nuclear Security Administration of the US Department of Energy [DE-AC52-06NA25396] FX The authors acknowledge the financial support of the US Department of Energy Global Threat Reduction Initiative Reactor Convert program. The Lujan Center at the Los Alamos Neutron Science Center at LANSCE is funded by the US DOE, Office of Basic Energy Sciences. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. NR 18 TC 10 Z9 10 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 1359-6462 J9 SCRIPTA MATER JI Scr. Mater. PD NOV PY 2013 VL 69 IS 9 BP 666 EP 669 DI 10.1016/j.scriptamat.2013.07.025 PG 4 WC Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Science & Technology - Other Topics; Materials Science; Metallurgy & Metallurgical Engineering GA 228NW UT WOS:000325194500006 ER PT J AU Aalseth, CE Day, AR Fuller, ES Hoppe, EW Keillor, ME LeFerriere, B Mace, EK Merriman, J Myers, AW Overman, CT Panisko, ME Seifert, A Warren, GA Williams, RM AF Aalseth, C. E. Day, A. R. Fuller, E. S. Hoppe, E. W. Keillor, M. E. LeFerriere, B. Mace, E. K. Merriman, J. Myers, A. W. Overman, C. T. Panisko, M. E. Seifert, A. Warren, G. A. Williams, R. M. TI A new shallow underground gas-proportional counting lab-First results and Ar-37 sensitivity SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Argon-37; Proportional counter; Shallow underground; Beta spectroscopy ID COPPER; LIMITS AB A new ultra-low-background proportional counter was recently developed with an internal volume of 100 cm(3) and has been characterized at pressures from 1-10 atm with P-10 (90% Ar, 10% methane) gas. This design, along with a counting system providing event digitization and passive and active shielding, has been developed to complement a new shallow underground laboratory (30 m water-equivalent). Backgrounds and low-level reference materials have been measured, and system sensitivity for Ar-37 has been calculated. (C) 2013 Elsevier Ltd. All rights reserved. C1 [Aalseth, C. E.; Day, A. R.; Fuller, E. S.; Hoppe, E. W.; Keillor, M. E.; LeFerriere, B.; Mace, E. K.; Merriman, J.; Myers, A. W.; Overman, C. T.; Panisko, M. E.; Seifert, A.; Warren, G. A.; Williams, R. M.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Aalseth, CE (reprint author), Pacific NW Natl Lab, 902 Battelle Blvd,POB 999,MSIN J4-65, Richland, WA 99352 USA. EM craig.aalseth@pnnl.gov OI Keillor, Martin/0000-0001-7828-5868; Day, Anthony/0000-0002-1217-1822 FU United States Department of Energy [DE-AC06-76RLO-1830] FX This work was performed at the Pacific Northwest National Laboratory with Government support under Contract no. DE-AC06-76RLO-1830 awarded by the United States Department of Energy. NR 13 TC 3 Z9 3 U1 3 U2 13 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD NOV PY 2013 VL 81 BP 151 EP 155 DI 10.1016/j.apradiso.2013.03.050 PG 5 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 225LE UT WOS:000324963600032 PM 23623763 ER PT J AU Williams, RM Aalseth, CE Ely, JH Day, AR Hayes, JC Hoppe, EW LaFerriere, B Mace, EK Merriman, J Overman, CT Seifert, A AF Williams, R. M. Aalseth, C. E. Ely, J. H. Day, A. R. Hayes, J. C. Hoppe, E. W. LaFerriere, B. Mace, E. K. Merriman, J. Overman, C. T. Seifert, A. TI Development of an absolute gas-counting capability for low to medium activities SO APPLIED RADIATION AND ISOTOPES LA English DT Article DE Absolute radiation measurement; Length compensated proportional counting; Ultra low-background; Electroformed copper; Uncertainty analysis ID PYCNOMETER AB Pacific Northwest National Laboratory (PNNL) is developing a capability to measure the absolute activity concentration of gaseous radionuclides using length-compensated proportional-counting. This capability will enable the validation of low-level calibration standards for use in PNNL's new shallow underground laboratory. Two sets of unequal length proportional counters have been fabricated; one set has been fabricated using ultra-low background (ULB) electroformed copper and a second set fabricated from Oxygen-Free High-Conductivity Copper (OFHC). (C) 2013 Elsevier Ltd. All rights reserved. C1 [Williams, R. M.; Aalseth, C. E.; Ely, J. H.; Day, A. R.; Hayes, J. C.; Hoppe, E. W.; LaFerriere, B.; Mace, E. K.; Merriman, J.; Overman, C. T.; Seifert, A.] Pacific NW Natl Lab, Richland, WA 99352 USA. RP Williams, RM (reprint author), Pacific NW Natl Lab, POB 999, Richland, WA 99352 USA. EM Richard.Williams@pnnl.gov OI Day, Anthony/0000-0002-1217-1822 FU U.S. Department of Energy [DE-AC05-76RL01830] FX The authors thank Dr. Marty Keillor and Dr. Warren Harper for their thorough review of this manuscript. This document is PNNL-SA-89541. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle under contract DE-AC05-76RL01830. NR 10 TC 3 Z9 3 U1 0 U2 7 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0969-8043 J9 APPL RADIAT ISOTOPES JI Appl. Radiat. Isot. PD NOV PY 2013 VL 81 BP 179 EP 183 DI 10.1016/j.apradiso.2013.03.064 PG 5 WC Chemistry, Inorganic & Nuclear; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging SC Chemistry; Nuclear Science & Technology; Radiology, Nuclear Medicine & Medical Imaging GA 225LE UT WOS:000324963600038 PM 23597417 ER PT J AU Garrett, M Ivanov, IN Geohegan, D Hu, B AF Garrett, Matthew Ivanov, Ilia N. Geohegan, David Hu, Bin TI Effect of purity on the electro-optical properties of single wall nanotube-based transparent conductive electrodes SO CARBON LA English DT Article ID LARGE-SCALE PURIFICATION; CARBON NANOTUBES; ABSORPTION-SPECTROSCOPY; YIELD PURIFICATION; FUNCTIONALIZATION; SENSITIVITY; FILMS; RAMAN; SOOT; BAND AB We present a detailed assessment of centrifugation technique for purification of single wall carbon nanotubes (SWCNTs) for application as transparent conductive electrodes. As-grown and highly-purified SWCNTs were dispersed in surfactants by ultrasonication, and then centrifuged to selectively remove carbonaceous and metal impurities. The centrifuged supernatant suspensions were made into thin films by transferring filtrated nanotube coatings onto glass slides. The absorbance and resistance of nanotube coatings were measured, and their optical purity level estimated from a comparison of the area of the near-infrared S-22 SWCNT optical absorption band relative to the area of the background. The single-step centrifugation process is shown to purify laser-vaporization grown SWCNTs from an initial optical purity of 0.10 to an averaged purity of 0.23, with an 8.8% yield, which is comparable to other purification techniques. The quality of transparent conductive electrodes estimated as a ratio of visible-spectrum absorbance to sheet conductivity is improved by a factor of 12 upon purification. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved. C1 [Garrett, Matthew; Ivanov, Ilia N.; Geohegan, David] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37932 USA. [Garrett, Matthew] Huazhong Univ Sci & Technol, Wu Han Natl Lab Optoelect, Wuhan 430074, Peoples R China. [Hu, Bin] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. RP Ivanov, IN (reprint author), Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37932 USA. EM ivanovin@ornl.gov RI Hu, Bin/A-2954-2015; ivanov, ilia/D-3402-2015; Geohegan, David/D-3599-2013 OI Hu, Bin/0000-0002-1573-7625; ivanov, ilia/0000-0002-6726-2502; Geohegan, David/0000-0003-0273-3139 FU Oak Ridge National Laboratory by the Office of Basic Energy Sciences, US Department of Energy; Office of Energy Efficiency and Renewable Energy, US Department of Energy FX This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Office of Basic Energy Sciences, US Department of Energy. A portion of this research was supported by the Solar Energy Technologies Program of the Office of Energy Efficiency and Renewable Energy, US Department of Energy. NR 33 TC 5 Z9 5 U1 0 U2 38 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0008-6223 J9 CARBON JI Carbon PD NOV PY 2013 VL 64 BP 1 EP 5 DI 10.1016/j.carbon.2013.04.037 PG 5 WC Chemistry, Physical; Materials Science, Multidisciplinary SC Chemistry; Materials Science GA 224OT UT WOS:000324898600001 ER PT J AU Novak, V Koci, P Gregor, T Choi, JS Stepanek, F Marek, M AF Novak, Vladimir Koci, Petr Gregor, Tomas Choi, Jae-Soon Stepanek, Frantisek Marek, Milos TI Effect of cavities and cracks on diffusivity in coated catalyst layer SO CATALYSIS TODAY LA English DT Article; Proceedings Paper CT International conference on structured catalysts and reactions CY SEP 25-27, 2013 CL Beijing, PEOPLES R CHINA DE X-ray microtomography; Diffusion; Porous catalyst; Coating; 3D digital reconstruction; Exhaust gas after treatment ID POROUS CATALYSTS; TRANSPORT; OXIDATION; MONOLITHS; WASHCOAT; MEDIA AB In this paper we apply novel experimental and computational methods that investigate the contribution of cracks and cavities to diffusion in catalytic coating (washcoat). A sample of commercial catalytic monolith for automotive exhaust gas after treatment is scanned by X-ray micro tomography (mu CT) to obtain realistic 3D images of the coated layer. In the tested sample the cracks and cavities represent about 20% of the coated layer volume. A 3D diffusion is then simulated within sections of the virtually reconstructed porous structure. Benchmark simulations performed for the coating without any cracks or cavities (i.e. containing only standard meso-and macro-pores) indicate that the overall effective diffusivity is approx. 1.7 times lower in absence of these structural defects and the difference increases with temperature. The effect of cracks and cavities is further tested in combined reaction and transport simulation and corresponding effectiveness factors are evaluated. Finally, spatially averaged reaction rates are employed in multi-scale simulations of light-off curves that reveal the impact of the structural defects in the catalytic coating on overall performance of the monolith reactor. (C) 2013 Elsevier B.V. All rights reserved. C1 [Novak, Vladimir; Koci, Petr; Stepanek, Frantisek; Marek, Milos] Inst Chem Technol, Dept Chem Engn, CR-16628 Prague, Czech Republic. [Koci, Petr; Gregor, Tomas; Stepanek, Frantisek; Marek, Milos] Univ W Bohemia, New Technol Res Ctr, Plzen 30614, Czech Republic. [Choi, Jae-Soon] Oak Ridge Natl Lab, Fuels Engines & Emiss Res Ctr, Oak Ridge, TN 37831 USA. RP Koci, P (reprint author), Inst Chem Technol, Dept Chem Engn, CR-16628 Prague, Czech Republic. EM petr.koci@vscht.cz RI Stepanek, Frantisek/C-1218-2009; OI Stepanek, Frantisek/0000-0001-9288-4568; Choi, Jae-Soon/0000-0002-8162-4207 FU Czech Science Foundation [GACR P106/10/1568]; CEN-TEM project [CZ.1.05/2.1.00/03.0088]; European Research Development Fund as part of the Czech Ministry of Education, Youth and Sports' OP RDI programme; Czech Ministry of Education, Youth and Sports [LH 12086]; U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program FX This work has been financially supported by the Czech Science Foundation (GACR P106/10/1568). The X-ray microtomography scans and 3D reconstruction results were obtained within the CEN-TEM project CZ.1.05/2.1.00/03.0088, co-funded by the European Research Development Fund as part of the Czech Ministry of Education, Youth and Sports' OP RDI programme. The work was further supported by the project LH 12086 of the Czech Ministry of Education, Youth and Sports. The research at ORNL was sponsored by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program, with Ken Howden and Gurpreet Singh as the Program Managers. NR 29 TC 12 Z9 13 U1 1 U2 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0920-5861 EI 1873-4308 J9 CATAL TODAY JI Catal. Today PD NOV 1 PY 2013 VL 216 SI SI BP 142 EP 149 DI 10.1016/j.cattod.2013.07.002 PG 8 WC Chemistry, Applied; Chemistry, Physical; Engineering, Chemical SC Chemistry; Engineering GA 216PO UT WOS:000324296400022 ER PT J AU Li, DS Joshi, V Lavender, C Khaleel, M Ahzi, S AF Li, Dongsheng Joshi, Vineet Lavender, Curt Khaleel, Mohammad Ahzi, Said TI Yield asymmetry design of magnesium alloys by integrated computational materials engineering SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Yield asymmetry; Magnesium; Integrated computational materials engineering; phi-Model; Grain refinement ID EXTRUDED MG-3AL-1ZN ALLOY; GRAIN-SIZE; MECHANICAL-PROPERTIES; TEXTURE EVOLUTION; DEFORMATION; TITANIUM; SHEET; AZ31B; MODEL AB Deformation asymmetry of magnesium alloys is an important factor on machine design in the automobile industry. Represented by the ratio of compressive yield stress (CYS) against tensile yield stress (TYS), deformation asymmetry is strongly related to texture and grain size. A polycrystalline viscoplasticity model, modified intermediate phi-model, is used to predict the deformation behavior of magnesium alloys with different grain sizes. Validated with experimental results, integrated computational materials engineering is applied to find out the route in achieving desired asymmetry via thermomechanical processing. For example, CYS/TYS in rolled texture is smaller than 1 under different loading directions. In other textures, such as extruded texture, CYS/TYS is large along the normal direction. Starting from rolled texture, asymmetry will increase to close to 1 along the rolling direction after being compressed to a strain of 0.2. Our modified phi-model also shows that grain refinement increases CYS/TYS. Along with texture control, grain refinement also can optimize the yield asymmetry. After the grain size decreases to a critical value, CYS/TYS reaches to 1 because CYS increases much faster than TYS. By tailoring the microstructure using texture control and grain refinement, it is achievable to optimize yield asymmetry in wrought magnesium alloys. Published by Elsevier B.V. C1 [Li, Dongsheng; Joshi, Vineet; Lavender, Curt] Pacific NW Natl Lab, CSMD, Richland, WA 99352 USA. [Ahzi, Said] Univ Strasbourg, IMFS, CNRS, F-67000 Strasbourg, France. [Khaleel, Mohammad] Qatar Fdn Res & Dev, Qatar Energy & Environm Res Inst, Doha, Qatar. RP Li, DS (reprint author), Pacific NW Natl Lab, CSMD, Richland, WA 99352 USA. EM Dongsheng.li@pnnl.gov OI khaleel, mohammad/0000-0001-7048-0749; Joshi, Vineet/0000-0001-7600-9317 FU US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy; DOE [DE-AC05-76RL01830] FX Support for this work was provided by the US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy. Pacific Northwest National Laboratory is operated by Battelle for the DOE under Contract DE-AC05-76RL01830. NR 21 TC 5 Z9 5 U1 3 U2 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 J9 COMP MATER SCI JI Comput. Mater. Sci. PD NOV PY 2013 VL 79 BP 448 EP 455 DI 10.1016/j.commatsci.2013.06.045 PG 8 WC Materials Science, Multidisciplinary SC Materials Science GA 218ZE UT WOS:000324471100059 ER PT J AU Lane, JMD Grest, GS Mattsson, TR AF Lane, J. Matthew D. Grest, Gary S. Mattsson, Thomas R. TI Hot spot and temperature analysis of shocked hydrocarbon polymer foams using molecular dynamics simulation SO COMPUTATIONAL MATERIALS SCIENCE LA English DT Article DE Molecular dynamics simulation; Shock; Polymer foam; Hot spot; Temperature; Dissociation ID REACTIVE FORCE-FIELD; REAXFF AB Hydrocarbon polymers, foams and nanocomposites are increasingly being subjected to extreme environments. Molecular scale modeling of these materials offers insight into failure mechanisms and complex response. Prior classical molecular dynamics (MD) simulations of the principal shock Hugoniot for two hydrocarbon polymers, polyethylene (PE) and poly (4-methyl-1-pentene) (PMP) have shown good agreement with density functional theory (DFT) calculations and experiments conducted at Sandia National Laboratories. We extended these results to include low-density polymer foams using nonequilibrium MD techniques and found good quantitative agreement with experiment. Here, we have measured the local temperature during void collapse to investigate the formation of hot spots and their relationship to polymer dissociation in foams. (c) 2013 Elsevier B.V. All rights reserved. C1 [Lane, J. Matthew D.; Grest, Gary S.; Mattsson, Thomas R.] Sandia Natl Labs, Albuquerque, NM 87185 USA. RP Lane, JMD (reprint author), Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA. EM jlane@sandia.gov FU NNSA Science Campaigns at Sandia National Laboratories; US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000] FX This work was supported by the NNSA Science Campaigns at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. NR 13 TC 5 Z9 5 U1 1 U2 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0927-0256 J9 COMP MATER SCI JI Comput. Mater. Sci. PD NOV PY 2013 VL 79 BP 873 EP 876 DI 10.1016/j.commatsci.2013.06.044 PG 4 WC Materials Science, Multidisciplinary SC Materials Science GA 218ZE UT WOS:000324471100108 ER PT J AU Hung, MS Xu, ZD Chen, Y Smith, E Mao, JH Hsieh, D Lin, YC Yang, CT Jablons, DM You, L AF Hung, Ming-Szu Xu, Zhidong Chen, Yu Smith, Emmanuel Mao, Jian-Hua Hsieh, David Lin, Yu-Ching Yang, Cheng-Ta Jablons, David M. You, Liang TI Hematein, a casein kinase II inhibitor, inhibits lung cancer tumor growth in a murine xenograft model SO INTERNATIONAL JOURNAL OF ONCOLOGY LA English DT Article DE hematein; casein kinase II; Wnt; lung cancer; xenograft ID SQUAMOUS-CELL CARCINOMA; CK2; EXPRESSION; TUMORIGENESIS; CK2-ALPHA; SURVIVIN; SUBUNIT; AKT/PKB AB Casein kinase II (CK2) inhibitors suppress cancer cell growth. In this study, we examined the inhibitory effects of a novel CK2 inhibitor, hematein, on tumor growth in a murine xenograft model. We found that in lung cancer cells, hematein inhibited cancer cell growth, Akt/PKB Ser129 phosphorylation, the Wnt/TCF pathway and increased apoptosis. In a murine xenograft model of lung cancer, hematein inhibited tumor growth without significant toxicity to the mice tested. Molecular docking showed that hematein binds to CK2 alpha in durable binding sites. Collectively, our results suggest that hematein is an allosteric inhibitor of protein kinase CK2 and has antitumor activity to lung cancer. C1 [Hung, Ming-Szu; Xu, Zhidong; Hsieh, David; Jablons, David M.; You, Liang] Univ Calif San Francisco, Ctr Comprehens Canc, Dept Surg, Thorac Oncol Lab, San Francisco, CA 94115 USA. [Hung, Ming-Szu; Lin, Yu-Ching] Chang Gung Mem Hosp, Chiayi Branch, Div Pulm & Crit Care Med, Tao Yuan, Taiwan. [Hung, Ming-Szu; Lin, Yu-Ching] Chang Gung Univ, Coll Med, Dept Med, Tao Yuan, Taiwan. [Hung, Ming-Szu; Lin, Yu-Ching] Chang Gung Univ Sci & Technol, Dept Resp Care, Chiayi, Taiwan. [Chen, Yu; Smith, Emmanuel] Univ S Florida, Coll Med, Dept Mol Med, Tampa, FL USA. [Mao, Jian-Hua] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Life Sci Div, Berkeley, CA 94720 USA. [Yang, Cheng-Ta] Chang Gung Mem Hosp, Div Pulm & Crit Care Med, Tao Yuan, Taiwan. [Yang, Cheng-Ta] Chang Gung Univ, Coll Med, Dept Resp Care, Tao Yuan, Taiwan. RP Jablons, DM (reprint author), Univ Calif San Francisco, Ctr Comprehens Canc, Dept Surg, Thorac Oncol Lab, San Francisco, CA 94115 USA. EM jablonsd@surgery.ucsf.edu; liang.you@ucsfmedctr.org RI Ruan, YL/B-9813-2009 FU NIH [5 R01 CA140654-03]; Oberman Foundation, Inc.; Jeffrey and Karen Peterson Family Foundation; Barbara Isackson Lung Cancer Research Fund FX The present work was supported by NIH grant 5 R01 CA140654-03 (to L.Y.). We are grateful for support from the Kazan, McClain, Abrams, Fernandez, Lyons, Greenwood, Harley & Oberman Foundation, Inc.; the Estate of Robert Griffiths; the Jeffrey and Karen Peterson Family Foundation; Paul and Michelle Zygielbaum; the Estate of Norman Mancini; and the Barbara Isackson Lung Cancer Research Fund. We thank Pamela Derish from the Department of Surgery at the University of California, San Francisco, for editorial review of this manuscript. NR 24 TC 4 Z9 5 U1 0 U2 5 PU SPANDIDOS PUBL LTD PI ATHENS PA POB 18179, ATHENS, 116 10, GREECE SN 1019-6439 J9 INT J ONCOL JI Int. J. Oncol. PD NOV PY 2013 VL 43 IS 5 BP 1517 EP 1522 DI 10.3892/ijo.2013.2087 PG 6 WC Oncology SC Oncology GA 225SN UT WOS:000324982700022 PM 24008396 ER PT J AU Chu, HJ Zhou, CZ Wang, J Beyerlein, IJ AF Chu, H. J. Zhou, C. Z. Wang, J. Beyerlein, I. J. TI An analytical model for the critical shell thickness in core/shell nanowires based on crystallographic slip SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Critical shell thickness; Crystalline slip; Dislocations; Core/shell nanowires; Green's function ID MISFIT DISLOCATIONS; HETEROSTRUCTURES; GROWTH; RELAXATION; EPITAXY; ENERGY; LOOPS; FIELD; FILM AB Employing crystal plasticity theory and micromechanics inclusion theory, we developed a full-strain relaxation model under isotropic assumption of materials properties to predict the dependence of the critical shell thickness (CST) for defect-free core/shell nanowires (NWs) on their growth direction. Unlike prior models, we consider three important factors in the energetic analysis (1) the self-energy of a dislocation loop in a finite domain, (2) the three-dimensional mismatch strains that develop in core/shell NWs (axial, radial and tangential directions) as a result of the finite NW geometry and the lattice mismatch between the core and shell materials, and (3) the three-dimensional plastic strains from misfit dislocations that nucleate to relax the mismatch strains. With these, the full-relaxation model is able to reveal that (i) the variation of the CST with growth direction depends on the core radius, (ii) misfit dislocations will not nucleate when the core radius falls below a critical value, (iii) the CST tends to a constant as the core radius increases, and (iv) the CST predicted by prior uniaxial-strain relaxation models is a lower bound. Published by Elsevier Ltd. C1 [Chu, H. J.] Shanghai Univ, Dept Mech, Coll Sci, Shanghai 200444, Peoples R China. [Chu, H. J.; Wang, J.] Los Alamos Natl Lab, MST Div, Los Alamos, NM 87545 USA. [Zhou, C. Z.; Beyerlein, I. J.] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA. [Zhou, C. Z.] Missouri Univ Sci & Technol, Dept Mat Sci & Engn, Rolla, MO 65409 USA. RP Wang, J (reprint author), Los Alamos Natl Lab, MST Div, POB 1663, Los Alamos, NM 87545 USA. EM wangj6@lanl.gov RI Wang, Jian/F-2669-2012 OI Wang, Jian/0000-0001-5130-300X FU Los Alamos National Laboratory Directed Research and Development projects [DR20110029, ER20140450]; US Department of Energy, Office of Science, Office of Basic Energy Sciences; National Natural Science Foundation [10602050]; Center for Nonlinear Studies, Statistical Physics Beyond Equilibrium Project from the Los Alamos National Laboratory Directed Research and Development Office FX The authors acknowledge the support provided by Los Alamos National Laboratory Directed Research and Development projects DR20110029 and ER20140450. JW also acknowledges the support provided by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Chu also acknowledges the National Natural Science Foundation for the research support (10602050) and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions. CZ acknowledges support provided the Center for Nonlinear Studies, Statistical Physics Beyond Equilibrium Project from the Los Alamos National Laboratory Directed Research and Development Office. Authors sincerely appreciate the discussions with Prof. J.P. Hirth and Prof. R.G. Hoagland at Los Alamos National Laboratory. NR 41 TC 10 Z9 10 U1 2 U2 29 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD NOV PY 2013 VL 61 IS 11 BP 2147 EP 2160 DI 10.1016/j.jmps.2013.07.004 PG 14 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 223EK UT WOS:000324787300004 ER PT J AU Stebner, AP Vogel, SC Noebe, RD Sisneros, TA Clausen, B Brown, DW Garg, A Brinson, LC AF Stebner, A. P. Vogel, S. C. Noebe, R. D. Sisneros, T. A. Clausen, B. Brown, D. W. Garg, A. Brinson, L. C. TI Micromechanical quantification of elastic, twinning, and slip strain partitioning exhibited by polycrystalline, monoclinic nickel-titanium during large uniaxial deformations measured via in-situ neutron diffraction SO JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS LA English DT Article DE Shape memory alloy; Neutron diffraction; Twinning; Monoclinic; Plasticity ID SHAPE-MEMORY ALLOYS; CRYSTALLITE SIZE DISTRIBUTION; PERCENT-NI-ALLOY; ELECTRON-MICROSCOPY; CONSTITUTIVE MODEL; MARTENSITIC-TRANSFORMATION; TEXTURE ANALYSIS; SINGLE-CRYSTALS; B19 MARTENSITE; THIN-FILMS AB We draw upon existing knowledge of twinning and slip mechanics to develop a diffraction analysis model that allows for empirical quantification of individual deformation mechanisms to the macroscopic behaviors of low symmetry and phase transforming crystalline solids. These methods are applied in studying elasticity, accommodation twinning, deformation twinning, and slip through neutron diffraction data of tensile and compressive deformations of monoclinic NiTi to similar to 18% true strain. A deeper understanding of tension-compression asymmetry in NiTi is gained by connecting crystallographic calculations of polycrystalline twinning strains with in situ diffraction measurements. Our analyses culminate in empirical, micromechanical quantification of individual elastic, accommodation twinning, deformation twinning, and slip contributions to the total macroscopic stress-strain response of a monoclinic material subjected to large deformations. From these results, we find that 20-40% of the total plastic response at high strains is due to deformation twinning and 60-80% due to slip. 2013 Elsevier Ltd. All rights reserved. C1 [Stebner, A. P.; Brinson, L. C.] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA. [Vogel, S. C.; Sisneros, T. A.; Clausen, B.; Brown, D. W.] Los Alamos Natl Lab, Los Alamos, NM 87545 USA. [Noebe, R. D.; Garg, A.] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA. [Brinson, L. C.] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA. RP Stebner, AP (reprint author), Colorado Sch Mines, Dept Mech Engn, Golden, CO 80401 USA. EM astebner@mines.edu RI Brinson, L. Catherine/B-6678-2009; Stebner, Aaron/A-7685-2015; Clausen, Bjorn/B-3618-2015; Brinson, L Catherine/B-1315-2013; OI Clausen, Bjorn/0000-0003-3906-846X; Brinson, L Catherine/0000-0003-2551-1563; Vogel, Sven C./0000-0003-2049-0361 FU Office of Basic Energy Sciences of the Department of Energy under DOE Contract [DE-AC52-06NA25396]; Toshio Mura Endowment, Predictive Science and Engineering Design Cluster at Northwestern (PSED); Initiative for Sustainability and Energy at Northwestern (ISEN); Army Research Office [W911 NF-12-1-0013/P00002]; NASA Fundamental Aeronautics Program; Aeronautical Sciences Project FX This work has benefited from the use of the Lujan Neutron Scattering Center at LANSCE, which is funded by the Office of Basic Energy Sciences of the Department of Energy under DOE Contract DE-AC52-06NA25396. A.S. acknowledges funding through fellowships from the Toshio Mura Endowment, Predictive Science and Engineering Design Cluster at Northwestern (PSED), Initiative for Sustainability and Energy at Northwestern (ISEN). A.S. and C.B. acknowledge the support of the Army Research Office, Grant # W911 NF-12-1-0013/P00002, and A.G. and R.D.N. acknowledge support from the NASA Fundamental Aeronautics Program, Aeronautical Sciences Project. G.B. Olson is thanked for pre-submission critique of this work. NR 81 TC 29 Z9 29 U1 4 U2 54 PU PERGAMON-ELSEVIER SCIENCE LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND SN 0022-5096 EI 1873-4782 J9 J MECH PHYS SOLIDS JI J. Mech. Phys. Solids PD NOV PY 2013 VL 61 IS 11 BP 2302 EP 2330 DI 10.1016/j.jmps.2013.05.008 PG 29 WC Materials Science, Multidisciplinary; Mechanics; Physics, Condensed Matter SC Materials Science; Mechanics; Physics GA 223EK UT WOS:000324787300012 ER PT J AU Briggs, BR Graw, M Brodie, EL Bahk, JJ Kim, SH Hyun, JH Kim, JH Torres, M Colwell, FS AF Briggs, Brandon R. Graw, Michael Brodie, Eoin L. Bahk, Jang-Jun Kim, Sung-Han Hyun, Jung-Ho Kim, Ji-Hoon Torres, Marta Colwell, Frederick S. TI Microbial distributions detected by an oligonucleotide microarray across geochemical zones associated with methane in marine sediments from the Ulleung Basin SO MARINE AND PETROLEUM GEOLOGY LA English DT Article DE Gas hydrates; PhyloChip; T-RFLP; Microbiology ID 16S RIBOSOMAL-RNA; FRAGMENT-LENGTH-POLYMORPHISMS; CONTINENTAL-MARGIN SEDIMENTS; DEEP SUBSEAFLOOR SEDIMENTS; CITY HYDROTHERMAL FIELD; MOSBY MUD VOLCANO; CASCADIA MARGIN; BACTERIAL COMMUNITIES; SUBSURFACE SEDIMENTS; ANAEROBIC OXIDATION AB The biogeochemical processes that occur in marine sediments on continental margins are complex; however, from one perspective they can be considered with respect to three geochemical zones based on the presence and form of methane: sulfate-methane transition (SMTZ), gas hydrate stability zone (GHSZ), and free gas zone (FGZ). These geochemical zones may harbor distinct microbial communities that are important in biogeochemical carbon cycles. The objective of this study was to describe the microbial communities in sediments from the SMTZ, GHSZ, and FGZ using molecular ecology methods (i.e. PhyloChip microarray analysis and terminal restriction fragment length polymorphism (T-RFLP)) and examining the results in the context of non-biological parameters in the sediments. Non-metric multidimensional scaling and multi-response permutation procedures were used to determine whether microbial community compositions were significantly different in the three geochemical zones and to correlate samples with abiotic characteristics of the sediments. This analysis indicated that microbial communities from all three zones were distinct from one another and that variables such as sulfate concentration, hydrate saturation of the nearest gas hydrate layer, and depth (or unmeasured variables associated with depth e.g. temperature, pressure) were correlated to differences between the three zones. The archaeal anaerobic methanotrophs typically attributed to performing anaerobic oxidation of methane were not detected in the SMTZ; however, the marine benthic group-B, which is often found in SMTZ, was detected. Within the GHSZ, samples that were typically closer to layers that contained higher hydrate saturation had indicator sequences related to Vibrio-type taxa. These results suggest that the biogeographic patterns of microbial communities in marine sediments are distinct based on geochemical zones defined by methane. (C) 2013 Published by Elsevier Ltd. C1 [Briggs, Brandon R.; Kim, Ji-Hoon; Torres, Marta; Colwell, Frederick S.] Oregon State Univ, Corvallis, OR 97331 USA. [Briggs, Brandon R.; Colwell, Frederick S.] Natl Energy & Technol Lab, Albany, OR 97322 USA. [Graw, Michael] Cornell Univ, Coll Arts & Sci, Ithaca, NY 14853 USA. [Brodie, Eoin L.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. [Bahk, Jang-Jun; Kim, Ji-Hoon] Korea Inst Geosci & Mineral Resources, Taejon 305350, South Korea. [Kim, Sung-Han; Hyun, Jung-Ho] Hanyang Univ, Dept Environm Marine Sci, Ansan 426791, Gyeonggi Do, South Korea. RP Colwell, FS (reprint author), Oregon State Univ, 104 CEOAS Adm Bldg, Corvallis, OR 97331 USA. EM rcolwell@coas.oregonstate.edu RI Brodie, Eoin/A-7853-2008; OI Brodie, Eoin/0000-0002-8453-8435; Kim, Ji-Hoon/0000-0003-2430-3869 FU Ministry of Knowledge Economy of Korea (MKE); Department of Energy (DOE), National Energy Technology Laboratory, an agency of the United States Government, through a support contract with URS Energy & Construction, Inc.; National Energy Laboratory [DEFE0004000]; U.S. DOE [DE-ACO2-05CH11232]; Oregon State University FX Samples were collected as a part of the second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2) in 2010 which was funded by the Ministry of Knowledge Economy of Korea (MKE) under management of Korea Gas Hydrate Research and Development Organization (KGHDO). We thank the entire UBGH2 scientific parties and D/V Fugro Synergy crews for assisting us in the collection of samples. This project was funded by the Department of Energy (DOE), National Energy Technology Laboratory, an agency of the United States Government, through a support contract with URS Energy & Construction, Inc. in support of the National Energy Laboratory's ongoing research in methane hydrates under the RES contract DEFE0004000. Additional support came in part by an appointment to the U.S. Department of Energy (DOE) Postgraduate Research Program at the National Energy Technology Laboratory administered by the Oak Ridge Institute for Science and Education and by the Center for Dark Energy Biosphere Investigations (C-DEBI) Contribution number 152. Part of this work was performed at Lawrence Berkeley National Lab under U.S. DOE contract number DE-ACO2-05CH11232. Michael Graw was supported under a Research Experience for Undergraduates (REU) program at Oregon State University. NR 77 TC 3 Z9 3 U1 2 U2 31 PU ELSEVIER SCI LTD PI OXFORD PA THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND SN 0264-8172 EI 1873-4073 J9 MAR PETROL GEOL JI Mar. Pet. Geol. PD NOV PY 2013 VL 47 BP 147 EP 154 DI 10.1016/j.marpetgeo.2013.02.015 PG 8 WC Geosciences, Multidisciplinary SC Geology GA 224PB UT WOS:000324899500013 ER PT J AU David, SA Siefert, JA Feng, Z AF David, S. A. Siefert, J. A. Feng, Z. TI Welding and weldability of candidate ferritic alloys for future advanced ultrasupercritical fossil power plants SO SCIENCE AND TECHNOLOGY OF WELDING AND JOINING LA English DT Review DE Ferritic alloys; Type IV cracking; Fossil energy; Ultrasupercritical; Dissimilar metal welds; Weld repair; Friction stir welding ID HEAT-AFFECTED ZONE; MODIFIED 9CR-1MO STEEL; P91 STEEL; RESIDUAL-STRESSES; RESISTANT STEELS; CREEP STRENGTH; WELDED-JOINTS; IV FRACTURE; 9CR STEELS; CRACKING AB Fossil fuels continue to be the primary source of energy in the world. The worldwide demand for clean and affordable energy will continue to grow, and a strong emphasis has been placed on increasing the efficiency and reducing the carbon footprint of new and existing fossil fired power plants. Throughout Asia, Europe and the USA, this demand is being met with programmes to develop advanced materials that have enhanced high temperature creep and corrosion properties. A new class of ferritic alloys, known as creep strength enhanced ferritic steels, has been developed to meet these requirements. This article focuses on the weldability of the advanced ferritic alloys used in boilers and boiler components of ultrasupercritical coal fired power plants. This review focuses on alloy selection; welding and weldability issues, including in service weld failure such as type IV cracking; welding of dissimilar metals; and weld repair. Future articles will address the welding and weldability issues of two other classes of materials, namely austenitic stainless steels and nickel base superalloys. C1 [David, S. A.; Feng, Z.] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. [Siefert, J. A.] Elect Power Res Inst, Charlotte, NC 28262 USA. RP David, SA (reprint author), Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA. EM standavid@charter.net RI Feng, Zhili/H-9382-2012 OI Feng, Zhili/0000-0001-6573-7933 FU Office of Fossil Energy Advanced Research Materials Program, US Department of Energy [DE-AC05-00OR22725]; UT-Battelle, LLC FX The authors wish to acknowledge Dr J. Chen (Oak Ridge National Laboratory) for his valuable time and assistance in preparing this manuscript. We thank Dr W. F. Newell, Euroweld, Newell associates and K. Coleman (EPRI) for valuable comments. We also would like to thank Professors H. K. D. H. Bhadeshia (Cambridge University), T. DebRoy (Pennsylvania State University) and Dr J. Shingledecker (EPRI) for their review and valuable comments. Research is sponsored by the Office of Fossil Energy Advanced Research Materials Program, US Department of Energy, under contract DE-AC05-00OR22725 with UT-Battelle, LLC. NR 137 TC 17 Z9 17 U1 4 U2 62 PU MANEY PUBLISHING PI LEEDS PA STE 1C, JOSEPHS WELL, HANOVER WALK, LEEDS LS3 1AB, W YORKS, ENGLAND SN 1362-1718 J9 SCI TECHNOL WELD JOI JI Sci. Technol. Weld. Join. PD NOV PY 2013 VL 18 IS 8 BP 631 EP 651 DI 10.1179/1362171813Y.0000000152 PG 21 WC Materials Science, Multidisciplinary; Metallurgy & Metallurgical Engineering SC Materials Science; Metallurgy & Metallurgical Engineering GA 223MO UT WOS:000324809900001 ER PT J AU Musselwhite, N Somorjai, GA AF Musselwhite, Nathan Somorjai, Gabor A. TI Investigations of Structure Sensitivity in Heterogeneous Catalysis: From Single Crystals to Monodisperse Nanoparticles SO TOPICS IN CATALYSIS LA English DT Article DE Structure sensitive; Surface chemistry; Catalysis; Model nanoparticles ID SURFACE SCIENCE; AMMONIA-SYNTHESIS; OXIDE SURFACES; METAL-SURFACES; ACTIVE-SITE; MODEL; PRESSURE; IRON; CO; HYDROGENATION AB Metal surface structure is often a crucial component in determining the activity and selectivity of heterogeneous catalytic reactions. Many important industrial reactions, such as ammonia synthesis, catalytic combustion, Fischer-Tropsch synthesis, and hydrocarbon reforming have been labeled as structure-sensitive. Metal single crystal studies utilizing ultra high vacuum techniques have repeatedly shown the importance of surface structure in reaction kinetics. Recent advances in the field of colloidal synthesis allow for fine control of the size and shape of metal nanoparticles, which permits catalytic studies of structure sensitivity to be performed on nanometer sized catalysts. It is clear that in order to optimize the performance of a catalyst, a complete molecular level understanding of the role of surface structure in the reaction of interest is essential. This article aims to review the importance of surface structure in heterogeneous catalysts, ranging from single crystals to size and shape controlled nanocatalysts. C1 [Musselwhite, Nathan; Somorjai, Gabor A.] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Musselwhite, Nathan; Somorjai, Gabor A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. RP Somorjai, GA (reprint author), Univ Calif Berkeley, Dept Chem, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM somorjai@berkeley.edu FU Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231] FX This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under Contract No. DE-AC02-05CH11231. NR 59 TC 17 Z9 17 U1 9 U2 117 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD NOV PY 2013 VL 56 IS 15-17 BP 1277 EP 1283 DI 10.1007/s11244-013-0150-y PG 7 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 223RK UT WOS:000324825500002 ER PT J AU Mullins, DR Albrecht, PM Calaza, F AF Mullins, David R. Albrecht, Peter M. Calaza, Florencia TI Variations in Reactivity on Different Crystallographic Orientations of Cerium Oxide SO TOPICS IN CATALYSIS LA English DT Article DE Cerium oxide; Temperature programmed desorption; Organic oxygenates; Water ID SCANNING-TUNNELING-MICROSCOPY; SINGLE-CRYSTAL SURFACES; TEMPERATURE-PROGRAMMED DESORPTION; WATER-GAS SHIFT; RAY PHOTOELECTRON-SPECTROSCOPY; ATOMIC-FORCE MICROSCOPY; CEOX(111) THIN-FILMS; STRUCTURE SENSITIVITY; CEO2(111) SURFACES; TIO2(001) SURFACE AB Cerium oxide is a principal component in many heterogeneous catalytic processes. One of its key characteristics is the ability to provide or remove oxygen in chemical reactions. The different crystallographic faces of ceria present significantly different surface structures and compositions that may alter the catalytic reactivity. The structure and composition determine the number of coordination vacancies surrounding surface atoms, the availability of adsorption sites, the spacing between adsorption sites and the ability to remove O from the surface. To investigate the role of surface orientation on reactivity, CeO2 films were grown with two different orientations. CeO2(100) films were grown ex situ by pulsed laser deposition on Nb-doped SrTiO3(100). CeO2(111) films were grown in situ by thermal deposition of Ce metal onto Ru(0001) in an oxygen atmosphere. The chemical reactivity was characterized by the adsorption and decomposition of various molecules such as alcohols, aldehydes and organic acids. In general the CeO2(100) surface was found to be more active, i.e. molecules adsorbed more readily and reacted to form new products, especially on a fully oxidized substrate. However the CeO2(100) surface was less selective with a greater propensity to produce CO, CO2 and water as products. The differences in chemical reactivity are discussed in light of possible structural terminations of the two surfaces. Recently nanocubes and nano-octahedra have been synthesized that display CeO2(100) and CeO2(111) faces, respectively. These nanoparticles enable us to correlate reactions on high surface area model catalysts at atmospheric pressure with model single crystal films in a UHV environment. C1 [Mullins, David R.; Albrecht, Peter M.; Calaza, Florencia] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA. RP Mullins, DR (reprint author), Oak Ridge Natl Lab, POB 2008,MS 6201, Oak Ridge, TN 37831 USA. EM mullinsdr@ornl.gov FU Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy [DE-AC05-00OR22725]; US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-98CH10886] FX Research sponsored by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy, under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. NR 90 TC 23 Z9 23 U1 11 U2 135 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD NOV PY 2013 VL 56 IS 15-17 BP 1345 EP 1362 DI 10.1007/s11244-013-0146-7 PG 18 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 223RK UT WOS:000324825500007 ER PT J AU Szanyi, J Yi, CW Mudiyanselage, K Kwak, JH AF Szanyi, Janos Yi, Cheol Woo Mudiyanselage, Kumudu Kwak, Ja Hun TI Understanding Automotive Exhaust Catalysts Using a Surface Science Approach: Model NOx Storage Materials SO TOPICS IN CATALYSIS LA English DT Article DE Model NSR catalysts; BaO; NOx uptake mechanism; Co-adsorbates; Metal-oxide interface; Catalytic nitrate decomposition ID THETA-AL2O3/NIAL(100) ULTRATHIN FILMS; VIBRATIONAL SPECTROSCOPY; NSR CATALYSTS; BA DEPOSITION; BARIUM OXIDE; ADSORPTION; PT(111); NANOPARTICLES; REACTIVITY; REDUCTION AB The structure-reactivity relationships of model BaO-based NOx storage/reduction catalysts were investigated under well controlled experimental conditions using surface science analysis techniques. The reactivity of BaO toward NO2, CO2, and H2O was studied as a function of BaO layer thickness [0 < theta(BaO) < 30 monolayer (ML)], sample temperature, reactant partial pressure, and the nature of the substrate the NOx storage material was deposited onto. Most of the efforts focused on understanding the mechanism of NO2 storage either on pure BaO, or on BaO exposed to CO2 or H2O prior to NO2 exposure. The interaction of NO2 with a pure BaO film results in the initial formation of nitrite/nitrate ion pairs by a cooperative adsorption mechanism predicted by prior theoretical calculations. The nitrites are then further oxidized to nitrates to produce a fully nitrated surface. The mechanism of NO2 uptake on thin BaO films (< 4 ML), BaO clusters (< 1 ML) and mixed BaO/Al2O3 layers are fundamentally different: in these systems initially nitrites are formed only, and then converted to nitrates at longer NO2 exposure times. These results clarify the contradicting mechanisms presented in prior studies in the literature. After the formation of a nitrate layer the further conversion of the underlying BaO is slow, and strongly depends on both the sample temperature and the NO2 partial pressure. At 300 K sample temperature amorphous Ba(NO3)(2) forms that then can be converted to crystalline nitrates at elevated temperatures. The reaction between BaO and H2O is facile, a series of Ba(OH)(2) phases form under the temperature and H2O partial pressure regimes studied. Both amorphous and crystalline Ba(OH)(2) phases react with NO2, and initially form nitrites only that can be converted to nitrates. The NO2 adsorption capacities of BaO and Ba(OH)(2) are identical, i.e., both of these phases can completely be converted to Ba(NO3)(2). In contrast, the interaction of CO2 with pure BaO results in the formation of a BaCO3 layer that prevents to complete carbonation of the entire BaO film under the experimental conditions applied in these studies. However, these "carbonated" BaO layers readily react with NO2, and at elevated sample temperature even the carbonate layer is converted to nitrates. The importance of the metal oxide/metal interface in the chemistry on NOx storage-reduction catalysts was studied on BaO(< 1 ML)/Pt(111) reverse model catalysts. In comparison to the clean Pt(111), new oxygen adsorption phases were identified on the BaO/Pt(111) surface that can be associated with oxygen atoms strongly adsorbed on Pt atoms at the peripheries of BaO particles. A simple kinetic model developed helped explain the observed thermal desorption results. The role of the oxide/metal interface in the reduction of Ba(NO3)(2) was also substantiated in experiments where Ba(NO3)(2)/O/Pt(111) samples were exposed to CO at elevated sample temperature. The catalytic decomposition of the nitrate phase occurred as soon as metal sites opened up by the removal of interfacial oxygen via CO oxidation from the O/Pt(111) surface. The temperature for catalytic nitrate reduction was found to be significantly lower than the onset temperature of thermal nitrate decomposition. C1 [Szanyi, Janos; Yi, Cheol Woo; Mudiyanselage, Kumudu; Kwak, Ja Hun] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. RP Szanyi, J (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, POB 999,MSIN K8-87, Richland, WA 99352 USA. EM janos.szanyi@pnnl.gov RI Kwak, Ja Hun/J-4894-2014; Mudiyanselage, Kumudu/B-2277-2013; Yi, Cheol-Woo/B-3082-2010 OI Mudiyanselage, Kumudu/0000-0002-3539-632X; Yi, Cheol-Woo/0000-0003-4549-5433 FU UD Department of Energy (DOE), Office of Science, Division of Chemical Sciences; DOE Office of Biological and Environmental Research; US DOE by Battelle Memorial Institute [DE-AC05-76RL01830] FX The authors are thankful for the initial work on model NOx storage system by Prof. Emrah Ozensoy, and the helpful discussions with Dr. Charles H.F. Peden. We gratefully acknowledge the UD Department of Energy (DOE), Office of Science, Division of Chemical Sciences for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national user facility sponsored by the DOE Office of Biological and Environmental Research and located at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830. The authors acknowledge the many contributions of Prof. D.W. Goodman to the field of surface science in automotive catalysis. His fundamental studies on CO oxidation and CO + NO reactions on noble metal surfaces formed the foundation of our understanding of three-way catalysis. Some of us (J.Sz. and CW.Y.) were fortunate enough to be mentored by Wayne, and his contagious enthusiasm with which he approached the everyday challenges of life in a surface science lab will always stay with us. His scientific insights and intuitions, guidance, enthusiasm, friendship and wonderful humor are greatly missed. NR 53 TC 4 Z9 4 U1 1 U2 56 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 EI 1572-9028 J9 TOP CATAL JI Top. Catal. PD NOV PY 2013 VL 56 IS 15-17 BP 1420 EP 1440 DI 10.1007/s11244-013-0152-9 PG 21 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 223RK UT WOS:000324825500012 ER PT J AU Gao, F Kwak, JH Szanyi, J Peden, CHF AF Gao, Feng Kwak, Ja Hun Szanyi, Janos Peden, Charles H. F. TI Current Understanding of Cu-Exchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNO(x) Catalysts SO TOPICS IN CATALYSIS LA English DT Article DE Selective catalytic reduction; Chabazite zeolite catalyst; SSZ-13; Copper; Diesel engine; NOx ID ON-ALUMINA CATALYSTS; NITRIC-OXIDE; FE-ZSM-5 CATALYST; NOX REDUCTION; ZEOLITE CATALYSTS; HYDROTHERMAL STABILITY; CATIONIC POSITIONS; FE/ZSM-5 CATALYSTS; REACTION-MECHANISM; NITROGEN MONOXIDE AB Selective catalytic reduction (SCR) of NOx with ammonia using metal-exchanged molecular sieves with a chabazite structure has recently been commercialized on diesel vehicles. One of the commercialized catalysts, i.e., Cu-SSZ-13, has received much attention for both practical and fundamental studies. For the latter, the particularly well-defined structure of this zeolite is allowing long-standing issues of the catalytically active site for SCR in metal-exchanged zeolites to be addressed. In this review, recent progress is summarized with a focus on two areas. First, the technical significance of Cu-SSZ-13 as compared to other Cu ion-exchanged zeolites (e.g., Cu-ZSM-5 and Cu-beta) is highlighted. Specifically, the much enhanced hydrothermal stability for Cu-SSZ-13 compared to other zeolite catalysts is addressed via performance measurements and catalyst characterization using several techniques. The enhanced stability of Cu-SSZ-13 is rationalized in terms of the unique small pore structure of this zeolite catalyst. Second, the fundamentals of the catalytically active center; i.e., the chemical nature and locations within the SSZ-13 framework are presented with an emphasis on understanding structure-function relationships. For the SCR reaction, traditional kinetic studies are complicated by intra-crystalline diffusion limitations. However, a major side reaction, nonselective ammonia oxidation by oxygen, does not suffer from mass-transfer limitations at relatively low temperatures due to significantly lower reaction rates. This allows structure-function relationships that are rather well understood in terms of Cu ion locations and redox properties. Finally, some aspects of the SCR reaction mechanism are addressed on the basis of in situ spectroscopic studies. C1 [Gao, Feng; Kwak, Ja Hun; Szanyi, Janos; Peden, Charles H. F.] Pacific NW Natl Lab, Inst Integrated Catalysis, Richland, WA 99352 USA. RP Peden, CHF (reprint author), Pacific NW Natl Lab, Inst Integrated Catalysis, POB 999, Richland, WA 99352 USA. EM chuck.peden@pnnl.gov RI Kwak, Ja Hun/J-4894-2014 FU US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program; DOE's Office of Biological and Environmental Research FX The authors gratefully acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy/Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle. As Wayne Goodman's previous coworkers and friends, the authors greatly appreciate his invaluable guidance and inspiration. NR 56 TC 81 Z9 82 U1 22 U2 183 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD NOV PY 2013 VL 56 IS 15-17 BP 1441 EP 1459 DI 10.1007/s11244-013-0145-8 PG 19 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 223RK UT WOS:000324825500013 ER PT J AU Senanayake, SD Rodriguez, JA Stacchiola, D AF Senanayake, Sanjaya D. Rodriguez, Jose A. Stacchiola, Dario TI Electronic Metal-Support Interactions and the Production of Hydrogen Through the Water-Gas Shift Reaction and Ethanol Steam Reforming: Fundamental Studies with Well-Defined Model Catalysts SO TOPICS IN CATALYSIS LA English DT Article DE Nickel; Platinum; Ceria; Hydrogen; Water; Ethanol; CO Methanation; Water-gas shift reaction; Ethanol steam reforming ID SINGLE-CRYSTAL NICKEL; NANOPARTICLES; MECHANISM; KINETICS; SURFACE; CERIA; H-2; CO; CE1-XNIXO2-Y; ADSORPTION AB The electronic properties of Ni and Pt nanoparticles deposited on CeO2(111) have been examined using core and valence photoemission. The results of valence photoemission point to a new type of metal-support interaction which produces large electronic perturbations for small Ni and Pt particles in contact with ceria. The Ni/CeO2(111) and Pt/CeO2(111) systems exhibited a density of metal d states near the Fermi level that was much smaller than that expected for bulk metallic Ni or Pt. The electronic perturbations induced by ceria on Ni made this metal a very poor catalyst for CO methanation, but transformed Ni into an excellent catalyst for the production of hydrogen through the water-gas shift and the steam reforming of ethanol. Furthermore, the large electronic perturbations seen for small Pt particles in contact with ceria significantly enhanced the ability of the admetal to adsorb and dissociate water made it a highly active catalyst for the water-gas shift. The behaviour seen for the Ni/CeO2(111) and Pt/CeO2(111) systems illustrates the positive effects derived from electronic metal-support interactions and points to a promising approach for improving or optimizing the performance of metal/oxide catalysts. C1 [Senanayake, Sanjaya D.; Rodriguez, Jose A.; Stacchiola, Dario] Brookhaven Natl Lab, Upton, NY 11973 USA. RP Rodriguez, JA (reprint author), Brookhaven Natl Lab, Upton, NY 11973 USA. EM rodrigez@bnl.gov RI Stacchiola, Dario/B-1918-2009; Senanayake, Sanjaya/D-4769-2009 OI Stacchiola, Dario/0000-0001-5494-3205; Senanayake, Sanjaya/0000-0003-3991-4232 FU US Department of Energy (DOE), Chemical Sciences Division, Office of Basic Energy Science [DE-AC02-98CH10086] FX This work was financed by the US Department of Energy (DOE), Chemical Sciences Division, Office of Basic Energy Science (DE-AC02-98CH10086). NR 36 TC 14 Z9 14 U1 3 U2 93 PU SPRINGER/PLENUM PUBLISHERS PI NEW YORK PA 233 SPRING ST, NEW YORK, NY 10013 USA SN 1022-5528 J9 TOP CATAL JI Top. Catal. PD NOV PY 2013 VL 56 IS 15-17 BP 1488 EP 1498 DI 10.1007/s11244-013-0148-5 PG 11 WC Chemistry, Applied; Chemistry, Physical SC Chemistry GA 223RK UT WOS:000324825500016 ER PT J AU Li, C Poplawsky, J Wu, YL Lupini, AR Mouti, A Leonard, DN Paudel, N Jones, K Yin, WJ Al-Jassim, M Yan, YF Pennycook, SJ AF Li, Chen Poplawsky, Jonathan Wu, Yelong Lupini, Andrew R. Mouti, Anas Leonard, Donovan N. Paudel, Naba Jones, Kim Yin, Wanjian Al-Jassim, Mowafak Yan, Yanfa Pennycook, Stephen J. TI From atomic structure to photovoltaic properties in CdTe solar cells SO ULTRAMICROSCOPY LA English DT Article DE CdTe; Solar cell; Dislocation core structure; Cathodoluminescence; Electron-beam-induced-current; Electrical activity ID TRANSMISSION ELECTRON-MICROSCOPY; TOTAL-ENERGY CALCULATIONS; MOLECULAR-BEAM EPITAXY; BLOCH WAVE ANALYSIS; II-VI COMPOUNDS; S-STATE MODEL; 60-DEGREES DISLOCATIONS; POLYCRYSTALLINE DEVICES; THIN-FILMS; BASIS-SET AB Aberration corrected scanning transmission electron microscopy (STEM) has been used to determine the structures of a variety of dislocation cores in CdTe, including 30 degrees and 90 degrees Shockley partial dislocations, positive and negative Frank sessile partial dislocations, and steps on twin boundaries. Structure models have been constructed from the images and electrical activity has been investigated with density functional calculations. An integrated electron energy loss spectroscopy, cathodoluminescence and electron beam induced current system has been designed and built to probe electrical and optical properties of individual defects. The first STEM-cathodoluminescence result shows strong impurity segregation between the CdTe and the glass. The correlation between the scanning electron microscopy-electron beam induced current and electron backscatter diffraction maps proves that the grain structures and boundaries dominate the electrical activity. After heat treatment in CdCl2, Cl is found to segregate to the grain boundaries, and they show higher efficiency than the bulk material. (C) 2013 Elsevier B.V. All rights reserved. C1 [Li, Chen; Poplawsky, Jonathan; Lupini, Andrew R.; Mouti, Anas; Leonard, Donovan N.; Pennycook, Stephen J.] Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. [Li, Chen] Vanderbilt Univ, Dept Chem, Nashville, TN USA. [Poplawsky, Jonathan; Pennycook, Stephen J.] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA. [Wu, Yelong; Paudel, Naba; Yin, Wanjian; Yan, Yanfa] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA. [Mouti, Anas] Univ Kentucky, Dept Chem, Lexington, KY 40506 USA. [Jones, Kim; Al-Jassim, Mowafak] Natl Renewable Energy Lab, Measurements & Characterizat Grp, Golden, CO USA. RP Pennycook, SJ (reprint author), Oak Ridge Natl Lab, Div Mat Sci & Technol, Oak Ridge, TN USA. EM pennycooksj@ornl.gov RI Wu, Yelong/G-1100-2010; Li, Chen/C-4019-2014; Yin, Wanjian/F-6738-2013; Poplawsky, Jonathan/Q-2456-2015 OI Wu, Yelong/0000-0002-4211-911X; Li, Chen/0000-0001-9839-6100; Poplawsky, Jonathan/0000-0002-4272-7043 FU US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy, Foundational Program to Advance Cell Efficiency (F-PACE); Office of Basic Energy Sciences (BES), Materials Science and Engineering Division; DOE BES at Oak Ridge National Laboratory; DOE Office of Science [DE-AC02-05CH11231] FX This research was supported by the US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy, Foundational Program to Advance Cell Efficiency (F-PACE), (CL, JP, YLW, AM, WJY, NP, KJ, MAJ, YY, SJP), the Office of Basic Energy Sciences (BES), Materials Science and Engineering Division (ARL), and performed (in part) at the Shared Research Equipment (SHaRE) User Program (DNL) which is sponsored by DOE BES at Oak Ridge National Laboratory, This research used resources of the National Energy Research Scientific Computing Center, which is supported by the DOE Office of Science under Contract No. DE-AC02-05CH11231. NR 70 TC 28 Z9 28 U1 5 U2 115 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 EI 1879-2723 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD NOV PY 2013 VL 134 SI SI BP 113 EP 125 DI 10.1016/j.ultramic.2013.06.010 PG 13 WC Microscopy SC Microscopy GA 219AG UT WOS:000324474900016 ER PT J AU Volkov, VV Han, MG Zhu, Y AF Volkov, V. V. Han, M. G. Zhu, Y. TI Double-resolution electron holography with simple Fourier transform of fringe-shifted holograms SO ULTRAMICROSCOPY LA English DT Article DE High-resolution electron holography; Interferometry; Analytical reconstruction; Image processing; Error reduction ID OFF-AXIS HOLOGRAPHY; PATTERN ANALYSIS; ORDER AB We propose a fringe-shifting holographic method with an appropriate image wave recovery algorithm leading to exact solution of holographic equations. With this new method the complex object image wave recovered from holograms appears to have much less traditional artifacts caused by the autocorrelation band present practically in all Fourier transformed holograms. The new analytical solutions make possible a double-resolution electron holography free from autocorrelation band artifacts and thus push the limits for phase resolution. The new image wave recovery algorithm uses a popular Fourier solution of the side band-pass filter technique, while the fringe-shifting holographic method is simple to implement in practice. Published by Elsevier B.V. C1 [Volkov, V. V.; Han, M. G.; Zhu, Y.] Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. RP Volkov, VV (reprint author), Brookhaven Natl Lab, Dept Condensed Matter Phys & Mat Sci, Upton, NY 11973 USA. EM volkov@bnl.gov RI Volkov, Vyacheslav/D-9786-2016 FU US DOE, Division of Materials, Office of Basic Energy Science [DE-AC02-98CH10886] FX All authors acknowledge useful discussions with Dr. M.A. Schofield and express gratitude to Assist. Prof. G. Caruntu from University of New Orleans for synthesis of BaTiO3 nanocube samples used for test objects in the current holographic work. This work was supported by the US DOE, Division of Materials, Office of Basic Energy Science, Contract no, DE-AC02-98CH10886. NR 22 TC 0 Z9 0 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD NOV PY 2013 VL 134 SI SI BP 175 EP 184 DI 10.1016/j.ultramic.2013.06.018 PG 10 WC Microscopy SC Microscopy GA 219AG UT WOS:000324474900023 PM 23911214 ER PT J AU Zheng, HM Sadtler, B Habenicht, C Freitag, B Alivisatos, AP Kisielowski, C AF Zheng, Haimei Sadtler, Bryce Habenicht, Carsten Freitag, Bert Alivisatos, A. Paul Kisielowski, Christian TI Controlling electron beam-induced structure modifications and cation exchange in cadmium sulfide-copper sulfide heterostructured nanorods SO ULTRAMICROSCOPY LA English DT Article DE Hctcrostructurcd nanocrystals; Electron beam irradiation; Exit wave reconstruction; Aberration corrected TEM; Phase transition ID CDSE NANOCRYSTALS; CRYSTAL-STRUCTURE; LOW CHALCOCITE; RESOLUTION; RECONSTRUCTION; TOMOGRAPHY; CELLS; CU2S AB The atomic structure and interfaces of CdS/Cu2S heterostructured nanorods are investigated with the aberration corrected TEAM 0.5 electron microscope operated at 80 kV and 300 kV applying in line holography and complementary techniques. Cu2S exhibits a low-chalcocite structure in pristine CdS/Cu2S nanorods. Under electron beam irradiation the Cu2S phase transforms into a high-chalcocite phase while the CdS phase maintains its wurtzite structure. Time resolved experiments reveal that Cu+-Cd2+ cation exchange at the CdS/Cu2S interfaces is stimulated by the electron beam and proceeds within an undisturbed and coherent sulfur sob lattice A variation of the electron beam current provides an efficient way to control and exploit such irreversible solid-state chemical processes that provide unique information about system dynamics at the atomic scale. Specifically, we show that the electron beam-induced copper cadmium exchange is site specific and anisotropic. A resulting displacement of the CdS/Cu2S interfaces caused by beam-induced cation interdiffusion equals within a factor of 3-10 previously reported Cu diffusion length measurements in heterostructured CdS/Cu2S thin film solar cells with an activation energy of 0.96 eV. (C) 2013 Elsevier B.V. All rights reserved C1 [Zheng, Haimei; Alivisatos, A. Paul] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA. [Sadtler, Bryce; Habenicht, Carsten; Alivisatos, A. Paul] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA. [Freitag, Bert] FEI Co, NL-5600 KA Eindhoven, Netherlands. [Kisielowski, Christian] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. [Kisielowski, Christian] Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA. RP Kisielowski, C (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA. EM CFKisielowski@lbl.gov RI Foundry, Molecular/G-9968-2014; Alivisatos , Paul /N-8863-2015 OI Alivisatos , Paul /0000-0001-6895-9048 FU U.S. Department of Energy [DE-AC02-05CH11231]; DOE Early Career Research Program FX The TEM characterizations were performed at the National Center for Electron Microscopy, Lawrence Berkeley National Lab which is supported by the U.S. Department of Energy under Contract no. DE-AC02-05CH11231. HZ thanks the support of DOE Early Career Research Program. NR 29 TC 6 Z9 6 U1 4 U2 94 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0304-3991 EI 1879-2723 J9 ULTRAMICROSCOPY JI Ultramicroscopy PD NOV PY 2013 VL 134 SI SI BP 207 EP 213 DI 10.1016/j.ultramic.2013.05.004 PG 7 WC Microscopy SC Microscopy GA 219AG UT WOS:000324474900027 PM 23830376 ER PT J AU Hong, SP Fuciarelli, AF Johnson, JD Graves, SW Bates, DJ Smith, CS Waidyanatha, S AF Hong, S. Peter Fuciarelli, Alfred F. Johnson, Jerry D. Graves, Steven W. Bates, Derrick J. Smith, Cynthia S. Waidyanatha, Suramya TI Toxicokinetics of Isoeugenol in F344 rats and B6C3F(1) mice SO XENOBIOTICA LA English DT Article DE Bioavailability; Isoeugenol; toxicokinetics ID FISCHER-344 RAT; METABOLISM; SAFROLE; PHARMACOKINETICS; METHYLEUGENOL; CONSTITUENTS; DERIVATIVES; INDUCTION; TOXICITY; MOUSE AB 1. Isoeugenol (IEG) has been tested for toxicity and carcinogenicity due to high potential for human exposure and the structural resemblance to known carcinogenic allylbenzenes. In order to support the interpretation of toxicity and carcinogenecity study outcomes, a toxicokinetic study was performed in which both sexes of F344 rats and B6C3F(1) mice were given IEG as a single intravenous (IV) or gavage administration. 2. Following IV administration, IEG was rapidly eliminated from systemic circulation in both species and sexes. Gavage administration revealed a rapid absorption of IEG with t(max) values <= 20 min for both species and sexes. In rats, AUC increased in a greater than dose-proportional manner and Cl-app values decreased with increasing dose in both sexes suggesting saturation of IEG metabolism. On the other hand, Cl-app values in male mice increased with increasing dose suggesting induction of IEG metabolism although this was not evident in the females. 3. Absolute bioavailability was greater in female rats (19%) than male rats (10%) (p < 0.0001), but was not different between the sexes for mice (28% males; 31% females) (p = 0.2437). The collective toxicokinetic data supported that low bioavailability following administration of IEG was the result of extensive first-pass metabolism. C1 [Hong, S. Peter; Johnson, Jerry D.; Graves, Steven W.] Battelle Mem Inst, Columbus, OH 43201 USA. [Fuciarelli, Alfred F.] Valdosta State Univ, Valdosta, GA USA. [Bates, Derrick J.] Pacific NW Natl Lab, Richland, WA 99352 USA. [Smith, Cynthia S.; Waidyanatha, Suramya] NIEHS, Res Triangle Pk, NC 27709 USA. RP Hong, SP (reprint author), Battelle Mem Inst, 505 King Ave, Columbus, OH 43201 USA. EM hongs@battelle.org NR 32 TC 2 Z9 2 U1 2 U2 12 PU INFORMA HEALTHCARE PI LONDON PA TELEPHONE HOUSE, 69-77 PAUL STREET, LONDON EC2A 4LQ, ENGLAND SN 0049-8254 J9 XENOBIOTICA JI Xenobiotica PD NOV PY 2013 VL 43 IS 11 BP 1010 EP 1017 DI 10.3109/00498254.2013.790576 PG 8 WC Pharmacology & Pharmacy; Toxicology SC Pharmacology & Pharmacy; Toxicology GA 227GN UT WOS:000325099600008 PM 23627552 ER PT J AU Voronov, DL Anderson, EH Gullikson, EM Salmassi, F Warwick, T Yashchuk, VV Padmore, HA AF Voronov, D. L. Anderson, E. H. Gullikson, E. M. Salmassi, F. Warwick, T. Yashchuk, V. V. Padmore, H. A. TI Control of surface mobility for conformal deposition of Mo-Si multilayers on saw-tooth substrates SO APPLIED SURFACE SCIENCE LA English DT Article DE EUV; Soft X-rays; Diffraction grating; Multilayer; Film growth; Continuum growth model; Surface diffusion ID EXTREME-ULTRAVIOLET; EFFICIENCY; GRATINGS; DEMULTIPLEXER; DIFFRACTION AB Multilayer-coated blazed gratings (MBG) are the most promising solution for ultra-high resolution soft X-ray spectroscopy, since they can have very high groove density and provide high-order operation and very high diffraction efficiency. The performance of MBGs however depends critically on the conformal deposition of the multilayer (ML) stack on a saw-tooth substrate and the minimization of roughness. We present an analysis of the roughening and smoothing processes during growth of Mo/Si multilayers deposited over a range of pressures of Ar sputtering gas on flat and saw-tooth substrates. A Linear Continuum Model (LCM) of the film growth was used to understand the interplay between smoothing and roughening of the ML films and to predict the optimum conditions for deposition. The MBG coated under the optimal deposition conditions demonstrated high diffraction efficiency in the EUV and soft X-ray wavelength ranges (C) 2013 Elsevier B. V. All rights reserved. C1 [Voronov, D. L.; Anderson, E. H.; Gullikson, E. M.; Salmassi, F.; Warwick, T.; Yashchuk, V. V.; Padmore, H. A.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA. RP Voronov, DL (reprint author), Univ Calif Berkeley, Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA. EM dlvoronov@lbl.gov FU Office of Science, Office of Basic Energy Sciences, Material Science Division, of the U.S. Department of Energy under Lawrence Berkeley National Laboratory [DE-AC02-05CH11231] FX The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, Material Science Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. NR 29 TC 8 Z9 8 U1 1 U2 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0169-4332 J9 APPL SURF SCI JI Appl. Surf. Sci. PD NOV 1 PY 2013 VL 284 BP 575 EP 580 DI 10.1016/j.apsusc.2013.07.136 PG 6 WC Chemistry, Physical; Materials Science, Coatings & Films; Physics, Applied; Physics, Condensed Matter SC Chemistry; Materials Science; Physics GA 215YY UT WOS:000324248600082 ER PT J AU Chen, KJ Heger, A Almgren, AS AF Chen, Ke-Jung Heger, Alexander Almgren, Ann S. TI Numerical approaches for multidimensional simulations of stellar explosions SO ASTRONOMY AND COMPUTING LA English DT Article DE Computational astrophysics; Supernova; Stellar evolution; Massive stars AB We introduce numerical algorithms for initializing multidimensional simulations of stellar explosions with 1D stellar evolution models. The initial mapping from 1D profiles onto multidimensional grids can generate severe numerical artifacts, one of the most severe of which is the violation of conservation laws for physical quantities. We introduce a numerical scheme for mapping 1D spherically-symmetric data onto multidimensional meshes so that these physical quantities are conserved. We verify our scheme by porting a realistic 1D Lagrangian stellar profile to the new multidimensional Eulerian hydro code CASTRO. Our results show that all important features in the profiles are reproduced on the new grid and that conservation laws are enforced at all resolutions after mapping. We also introduce a numerical scheme for initializing multidimensional supernova simulations with realistic perturbations predicted by 1D stellar evolution models. Instead of seeding 3D stellar profiles with random perturbations, we imprint them with velocity perturbations that reproduce the Kolmogorov energy spectrum expected for highly turbulent convective regions in stars. Our models return Kolmogorov energy spectra and vortex structures like those in turbulent flows before the modes become nonlinear. Finally, we describe approaches to determining the resolution for simulations required to capture fluid instabilities and nuclear burning. Our algorithms are applicable to multidimensional simulations besides stellar explosions that range from astrophysics to cosmology. (C) 2014 Elsevier B.V. All rights reserved. C1 [Chen, Ke-Jung] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. [Chen, Ke-Jung] Univ Minnesota, Sch Phys & Astron, Minneapolis, MN 55455 USA. [Heger, Alexander] Monash Univ, Monash Ctr Astrophys, Clayton, Vic 3800, Australia. [Almgren, Ann S.] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA. RP Chen, KJ (reprint author), Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA 95064 USA. EM chen1399@umn.edu NR 26 TC 6 Z9 6 U1 0 U2 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 2213-1337 EI 2213-1345 J9 ASTRON COMPUT JI Astron. Comput. PD NOV-DEC PY 2013 VL 3-4 BP 70 EP 78 DI 10.1016/j.ascom.2014.01.001 PG 9 WC Astronomy & Astrophysics; Computer Science, Interdisciplinary Applications SC Astronomy & Astrophysics; Computer Science GA V39BF UT WOS:000209385800008 ER EF